
DataWindow® Programmers Guide

PowerBuilder® Classic
12.0

DOCUMENT ID: DC37775-01-1200-01

LAST REVISED: March 2010

Copyright © 2010 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

DataWindow Programmers Guide iii

About This Book .. vii

PART 1 DATAWINDOW AND DATASTORE BASICS

CHAPTER 1 About DataWindow Technology .. 3
About DataWindow objects, controls, and components 3

Presentation styles and data sources 5
Basic process .. 7

Choosing a DataWindow technology ... 7
Solutions for client/server and distributed applications 8
Solutions for Web applications .. 8

PowerBuilder DataWindow control... 10

CHAPTER 2 Using DataWindow Objects ... 13
About using DataWindow objects .. 13
Putting a DataWindow object into a control.................................... 14

Names for DataWindow controls and DataWindow objects 15
Working with the DataWindow control in PowerBuilder 16
Specifying the DataWindow object during execution 18

Accessing the database ... 21
Setting the transaction object for the DataWindow control...... 21
Retrieving and updating data .. 26

Accessing a Web service data source ... 29
Importing data from an external source.. 29
Manipulating data in a DataWindow control 30

How a DataWindow control manages data 30
Accessing the text in the edit control 32
Manipulating the text in the edit control 33
Coding the ItemChanged event... 33
Coding the ItemError event ... 34
Accessing the items in a DataWindow 34
Using other DataWindow methods.. 36

Accessing the properties of a DataWindow object 37

Contents

iv PowerBuilder Classic

Handling DataWindow errors ... 38
Retrieve and Update errors and the DBError event 39
Errors in property and data expressions and the Error event.. 42

Updating the database ... 44
How the DataWindow control updates the database 44
Changing row or column status programmatically 46

Creating reports ... 47
Planning and building the DataWindow object 48
Printing the report.. 48

Using nested reports .. 49
Using crosstabs.. 52

Viewing the underlying data .. 52
Letting users redefine the crosstab ... 52
Modifying the crosstab's properties during execution.............. 54

Generating HTML... 55
Controlling display ... 59
Calling the SaveAs method ... 61
Displaying DataWindow objects as HTML forms 62

CHAPTER 3 Dynamically Changing DataWindow Objects 67
About dynamic DataWindow processing.. 67
Modifying a DataWindow object ... 68
Creating a DataWindow object... 69
Providing query ability to users .. 72

How query mode works... 72
Using query mode ... 74

Providing Help buttons ... 77
Reusing a DataWindow object ... 77

CHAPTER 4 Using DataStore Objects... 79
About DataStores... 79
Working with a DataStore .. 82
Using a custom DataStore object... 82
Accessing and manipulating data in a DataStore 84
Sharing information .. 86

Example: printing data from a DataStore 88
Example: using two DataStores to process data..................... 89

CHAPTER 5 Manipulating Graphs ... 93
Using graphs .. 93
Modifying graph properties... 94

How parts of a graph are represented..................................... 95

Contents

DataWindow Programmers Guide v

Referencing parts of a graph... 96
Accessing data properties.. 97

Getting information about the data .. 97
Saving graph data ... 100
Modifying colors, fill patterns, and other data........................ 100
Using graph methods .. 101

Using point and click .. 104

PART 2 USING THE DATAWINDOW IN WEB APPLICATIONS

CHAPTER 6 Using the Web DataWindow... 109
What the Web DataWindow is ... 109

Web DataWindow types .. 110
How the Web DataWindow works ... 110
The Web DataWindow server component and client control 112

Using the XML Web DataWindow.. 114
About XML, XSLT, CSS, and XHTML 115
How the XML Web DataWindow works................................. 116
How to use the XML Web DataWindow 120

Designing DataWindow objects for the Web DataWindow 121
Web DataWindow properties... 125
Controlling the size of generated code.................................. 130
Using drop-down DataWindows .. 131
Callback and client-side paging support................................ 132
Using JavaScript caching for Web DataWindow methods 133
Using expressions ... 137
Using foreign language character sets.................................. 138
Providing links for data .. 138
Rendering HTML for controls in an HTML Web DataWindow 138
Using Button and Picture controls ... 140
Specifying Web generation for a specific browser 142
Previewing the DataWindow ... 142

Setting up database connections ... 143
Deploying DataWindow objects to the component server............ 146

The Web DataWindow Container project wizard................... 147
Writing client-side scripts ... 148
Customizing Web DataWindow generation.................................. 151

The Export Template view for XHTML 151
What you can customize ... 152
The default XHTML export template 153
Managing templates .. 155
Template structure .. 159
Editing XHTML export templates... 162

Contents

vi PowerBuilder Classic

Selecting XHTML export templates at runtime...................... 169
Exporting the DataWindow Web form in XML and XSLT or in

XHTML ... 169

CHAPTER 7 Server-Side Processing for the Web DataWindow 171
Server configuration requirements ... 171
Instantiating and configuring the server component 173

Instantiating the component .. 174
Loading the DataWindow object.. 175
Controlling what is generated.. 176
Specifying the database connection and retrieving data....... 177
Passing page-specific data to the reloaded page 178
Passing user actions to the server component 181
Inserting the generated HTML or XHTML into the page 182

Using a custom server component... 183
Creating a custom server component in EAServer 185
Setting properties for a custom component in EAServer 187
Instantiating the custom component...................................... 189
Maintaining state on the server ... 190

Using service classes... 192
Defining a service class for PowerBuilder components 193
Defining a service class for Java components 195

CHAPTER 8 Using the DataWindow Web Control for ActiveX 199
About the Web ActiveX .. 199
HTML for inserting the controls on a Web page........................... 203

Object element .. 203
Properties and Param elements.. 205

DataWindow objects for the Web ActiveX.................................... 206
What the DataWindow object can include............................. 207
Managing DataWindow objects in PowerBuilder libraries 207
Specifying a DataWindow object for the control.................... 208

Using the DataWindow Transaction Object control...................... 209
Making database connections.. 210

Connecting and retrieving data ... 212
Coding for the Web ActiveX ... 212

Datatypes for method arguments and return values 213
Setting event return codes .. 213

Deploying the Web ActiveX.. 214

Index ... 217

DataWindow Programmers Guide vii

About This Book

Subject This book provides information about using DataWindow® technology in
client/server, distributed, and Web applications. It describes how to define
DataWindow® objects appropriate for your application and how to write
code that interacts with those DataWindow objects.

Audience This book is for anyone developing applications that use DataWindow
technology. It assumes that:

• You are familiar with the DataWindow painter. If not, see the
PowerBuilder® Users Guide.

• You have a basic familiarity with the PowerScript® language. .

Other sources of
information

Use the Sybase® Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation
guides in PDF format, and may also contain other documents or
updated information not included on the SyBooks CD. It is included
with your software. To read or print documents on the Getting Started
CD, you need Adobe Acrobat Reader, which you can download at no
charge from the Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access
the manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or
print the PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or
the README.txt file on the SyBooks CD for instructions on installing
and starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the
SyBooks CD that you can access using a standard Web browser. In
addition to product manuals, you will find links to
EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

viii PowerBuilder Classic

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

 About This Book

DataWindow Programmers Guide ix

Sybase EBFs and
software
maintenance

You can find information about EBFs and software maintenance on the Sybase
Web site.

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

x PowerBuilder Classic

P A R T 1 DataWindow and DataStore
basics

This part describes how to create and use DataWindow and
DataStore objects.

Additional information about these objects and about the
DataWindow control is available in the Users Guide and in
Application Techniques. Reference information is available in
the DataWindow Reference guide and in the online Help.

DataWindow Programmers Guide 3

C H A P T E R 1 About DataWindow Technology

About this chapter This chapter describes what DataWindow objects are and the ways you
can use them in various application architectures and programming
environments.

Contents

About DataWindow objects, controls, and components
DataWindow technology is implemented in two parts:

• A DataWindow object The DataWindow object defines the data
source and presentation style for the data.

• A DataWindow control or component The control or component
is a container for the DataWindow object in the application. You write
code that calls methods of the container to manipulate the
DataWindow object.

DataWindow controls and
components

The DataWindow was originally invented for use in PowerBuilder to
provide powerful data retrieval, manipulation, and update capabilities for
client/server applications. Now the DataWindow is available in several
environments:

• PowerBuilder DataWindow A PowerBuilder control for use in
client/server and distributed PowerBuilder applications.

Topic Page

About DataWindow objects, controls, and components 3

Choosing a DataWindow technology 7

PowerBuilder DataWindow control 10

About DataWindow objects, controls, and components

4 PowerBuilder Classic

• Web DataWindow A thin-client DataWindow implementation for Web
applications that provides most of the data manipulation, presentation, and
scripting capabilities of the PowerBuilder DataWindow, requiring the Web
DataWindow component on a component server but no PowerBuilder
DLLs on the client. The Web DataWindow can be implemented in three
ways:

• XML Web DataWindow Separate XML (content), XSLT (layout),
and CSS (style) with a subsequent transformation to XHTML

• XHTML Web DataWindow XHTML

• HTML Web DataWindow HTML

• Sybase DataWindow Web control for ActiveX An ActiveX control for
use on Web pages. The client browser must support ActiveX controls to
display a DataWindow object used by this control.

• WPF DataWindow Windows Presentation Foundation DataWindow
with managed code. In the PowerBuilder .NET IDE, you can create WPF
Window Application targets. For more information, refer to the
PowerBuilder .NET documentation.

For a comparison of each of these environments, see “Choosing a
DataWindow technology” on page 7.

You can also use DataStore objects as containers for a DataWindow object.
DataStores provide DataWindow functionality for retrieving and manipulating
data without the on-screen display. Uses for DataStores include specifying
layouts for printing and managing data in the server component of a distributed
application.

What DataWindow
objects are

A DataWindow object is an object that you use to retrieve, present, and
manipulate data from a relational database or other data source (such as an
Excel worksheet or dBASE file). You can specify whether the DataWindow
object supports updating of data.

DataWindow objects have knowledge about the data they are retrieving. You
can specify display formats, presentation styles, and other data properties to
make the data meaningful to users.

In the DataWindow painter, you can also make Powersoft report (PSR) files,
which you can use in DataWindow controls or components. A PSR file
contains a report definition—essentially a nonupdatable DataWindow object—
as well as the data contained in the report when the PSR file was created. It
does not retrieve data.

CHAPTER 1 About DataWindow Technology

DataWindow Programmers Guide 5

Where to define
DataWindow objects

You define DataWindow objects in the PowerBuilder DataWindow painter.
You can also define nonupdatable DataWindow objects in the InfoMaker
Report painter.

Presentation styles and data sources
When you define a DataWindow object, you choose a presentation style and a
data source.

Presentation styles A presentation style defines a typical style of report and handles how rows are
grouped on the page. You can customize the way the data is displayed in each
presentation style. The presentation styles include:

Table 1-1: DataWindow presentation styles

Presentation style Description

Tabular Data columns across the page and headers above each
column. Several rows are viewable at once.

Freeform Data columns going down the page with labels next to each
column. One row displayed at a time.

Grid Row-and-column format like a spreadsheet with grid lines.
Users can move borders and columns.

Label Several labels per page with one row for each label. Used for
mailing and other labels.

N-Up Two or more rows of data next to each other across the page.
Useful for periodic data, such as data for each day of the
week or each month in the quarter.

Group A tabular style with rows grouped under headings. Each
group can have summary fields with computed statistics.

TreeView A tabular style that groups data hierarchically and displays
the data in a way that is collapsible and expandable.

Composite Several DataWindow objects grouped into a single
presentation. Not supported by the Web DataWindow.

Graph Graphical presentation of data. Not supported by the Web
DataWindow.

Crosstab Data summary in a row-and-column format.

RichText Paragraphs of text with embedded data columns. Not
supported by the Web DataWindow or the Sybase
DataWindow Web control for ActiveX.

OLE An OLE object linked or embedded in the DataWindow and
associated with the retrieved data. Not supported by the Web
DataWindow.

About DataWindow objects, controls, and components

6 PowerBuilder Classic

For examples of the presentation styles, see the PowerBuilder Users Guide.

Data sources The data source specifies where the data in the DataWindow comes from and
what data items are displayed. Data can come from tables in a database, a Web
service, a file with data that you can import, or code that specifies the data. For
databases, the data specification is saved in a SQL statement. In all cases, the
DataWindow object saves the names of the data items to display, as well as
their datatypes.

Table 1-2: Data sources you can use for a DataWindow

Data source Description

Quick Select The data is coming from one or more tables in a SQL database.
The tables must be related through a foreign key. You need to
choose only columns, selection criteria, and sorting.

SQL Select You want more control over the select statement that is
generated for the data source. You can specify grouping,
computed columns, and so on.

Query The data has already been selected and the SQL statement is
saved in a query object that you have defined in the Query
painter. When you define the DataWindow object, the query
object is incorporated into the DataWindow and does not need
to be present when you run the application.

External The data is not stored in a database, but is imported from a file
(such as a tab-separated or dBASE file) or populated from
code.

Stored Procedure The data is defined in a database stored procedure.

Web Service The data is defined in a Web service. Support for a Web service
data source is not available for the Composite, RichText, and
OLE presentation styles.

CHAPTER 1 About DataWindow Technology

DataWindow Programmers Guide 7

Basic process
Using a DataWindow involves two main steps:

1 Use the DataWindow painter to create or edit a DataWindow object.

In the painter, you define the data source, presentation style, and all other
properties of the object, such as display formats, validation rules, sorting
and filtering criteria, and graphs.

2 In your development environment, put a DataWindow control in a
window, visual user object, or form or a DataWindow container in a Web
page and associate a DataWindow object with the control or container.

It is through the control or container that your application communicates
with the DataWindow object you created in the DataWindow painter. You
write code to manipulate the DataWindow control or container and the
DataWindow object it contains. Typically, your code retrieves and updates
data, changes the appearance of the data, handles errors, and shares data
between DataWindow controls.

Choosing a DataWindow technology
Since DataWindow technology can be used in different environments, it might
not be obvious what approach you should take to implement your data-enabled
application. This section describes the DataWindow technologies available for
the basic application architectures and the requirements for each DataWindow
solution.

The basic architectures are:

• Client/server A program running on a client workstation accesses a
database running on a server. The user interface and business logic reside
together on the client computer.

• Distributed application The user interface on the client computer calls
components on a middle-tier server, which execute business logic and
access the database server.

Choosing a DataWindow technology

8 PowerBuilder Classic

• Web application A client Web browser sends requests for HTML or JSP
documents to a Web server. The Web server passes control to a page or
application server, where server-side scripts can access components on a
transaction server that can connect to databases on a database server.

• .NET application PowerBuilder lets you deploy DataWindows in .NET
Web Forms and Windows Forms applications. For more information about
.NET applications, see Deploying Applications and Components to .NET.

• WPF Window application Using the PowerBuilder .NET IDE, you can
create Windows Presentation Foundation Window applications. This
allows you to take advantage of XAML and WPF technology. For more
information, refer to the PowerBuilder .NET documentation.

Solutions for client/server and distributed applications
The PowerBuilder DataWindow was initially developed for use in client/server
applications.

You can implement the PowerBuilder DataWindow as a control that displays a
DataWindow object or as a DataStore that supports data retrieval and update
without displaying the data. A complete set of events and methods
programmed in PowerScript provides control over all aspects of the
DataWindow, including data retrieval, display, validation, and update.

You can also deploy the PowerBuilder DataWindow as a component for use in
distributed applications.

For more information, see “PowerBuilder DataWindow control” on page 10.

Solutions for Web applications
You can use these DataWindow technologies in Web applications:

• Web DataWindow

• Sybase DataWindow Web control for ActiveX

• .NET applications

CHAPTER 1 About DataWindow Technology

DataWindow Programmers Guide 9

Web DataWindow

The Web DataWindow is a thin-client DataWindow implementation for Web
applications. It provides most of the data manipulation, presentation, and
scripting capabilities of the PowerBuilder DataWindow without requiring any
PowerBuilder DLLs on the client.

Functionality The Web DataWindow supports a subset of the PowerBuilder DataWindow
events and methods, including dynamic modification of the DataWindow
object. The user can modify and update data. Composite, Graph, OLE,
TreeView, and RichText presentation styles and controls are not supported.

Client requirements The HTML Web DataWindow works in most browsers, but the appearance of
the generated HTML is usually best in Internet Explorer. Generated HTML can
be dynamically optimized for Netscape or Internet Explorer, or scaled back to
handle older browsers. The XML Web DataWindow and the XHTML Web
DataWindow require browsers that support the following client-side
technologies: XML, XSLT, XHTML, CSS, and JavaScript. For information
about supported browsers, see “Browser requirements for the XML Web
DataWindow” on page 119.

Server requirements A component server and a dynamic page server work together to generate a
client control with data and include it in a Web page. Each time the user
requests a new page of data, updates data, or inserts or deletes rows, the server
gets a request to generate a new page. Depending on how state is managed, the
component might retrieve data each time it is called, causing added load on the
server.

Sybase DataWindow Web control for ActiveX

The Sybase DataWindow Web control for ActiveX is an interactive
DataWindow control for use with Internet Explorer that implements all
features of the PowerBuilder DataWindow except rich text.

Functionality The Web ActiveX is fully programmable and supports DataWindow events,
methods, and dynamic modification of the DataWindow object. The user can
modify and update data. The RichText presentation style is not supported.

Client requirements The control uses ActiveX technology and works in Microsoft Internet Explorer
only.

The user must download the CAB file for the component, which is less than
two megabytes in size. Database connection through JDBC occurs from the
client, which must be configured with the connection software. The software
can be downloaded from the Web server.

PowerBuilder DataWindow control

10 PowerBuilder Classic

DataWindow behavior that would compromise security of the client, such as
the SaveAs functionality, is disabled.

Server requirements The JDBC database connection can access databases on a remote server.

For more information, see Chapter 8, “Using the DataWindow Web Control
for ActiveX.”

.NET applications

For information, see Deploying Applications and Components to .NET.

WPF Window applications

For information, see the PowerBuilder .NET documentation.

PowerBuilder DataWindow control
Features The PowerBuilder DataWindow control is a container for DataWindow objects

in a PowerBuilder application. You can use it in a window to present an
interactive display of data. The user can view and change data and send
changes to the database.

In addition to the DataWindow control, the DataStore object provides a
nonvisual container for server applications and other situations where
on-screen viewing is not necessary.

The DataWindow supports data retrieval with retrieval arguments and data
update. You can use edit styles, display formats, and validation rules for
consistent data entry and display. The DataWindow provides many methods
for manipulating the DataWindow, including Modify for changing
DataWindow object properties. You can share a result set between several
DataWindow controls and you can synchronize data between a client and
server.

Development
environment

You can develop both parts of your DataWindow implementation in
PowerBuilder. You use:

• The DataWindow painter to define DataWindow objects.

• The Window or User Object painters to add DataWindow controls to
windows or visual user objects. The DataWindow control is on the
drop-down palette of controls for these painters.

CHAPTER 1 About DataWindow Technology

DataWindow Programmers Guide 11

In the Window or User Object painters, you can write scripts that control
the DataWindow’s behavior and manipulate the data it retrieves. Your
scripts can also instantiate DataStore objects.

In the PowerBuilder Browser you can examine the properties, events, and
methods of DataWindow controls and DataStore objects on the System tab
page. If you have a library open that contains DataWindow objects, you can
examine the internal properties of the DataWindow object on the Browser’s
DataWindow tab page.

DataWindow objects The DataWindow control or DataStore object uses a DataWindow object
defined with any presentation style. The DataWindow object determines what
data is retrieved and how it is displayed. The control can also display Powersoft
reports (PSRs), which do not need to retrieve data.

Database connections The PowerBuilder DataWindow can use ODBC, JDBC, and native database
drivers for database connectivity. Users can connect to a data source on any
server to which they have access, including databases and middle-tier servers
on the Internet.

To make a connection, you can use the internal Transaction object of the
DataWindow, or you can make the connection with a separate PowerBuilder
transaction object.

A PowerBuilder application provides a default Transaction object, SQLCA.
You can define additional Transaction objects if you need to make additional
connections. When you connect with a separate Transaction object, you can
control when SQL COMMIT and ROLLBACK statements occur, and you can
use the same connection for multiple controls.

For more information about using a Transaction object with a DataWindow, see
Chapter 2, “Using DataWindow Objects.”

For more information about PowerBuilder Transaction objects, see Application
Techniques in the PowerBuilder documentation set.

Coding You write scripts in the Window or User Object painter to connect to the
database, retrieve data, process user input, and update data.

In PowerBuilder, you can take advantage of object inheritance by defining a
user object inherited from a DataWindow control and adding your own custom
functionality. You can reuse the customized DataWindow control throughout
your applications.

PowerBuilder DataWindow control

12 PowerBuilder Classic

You create DataStore objects, the nonvisual version of a DataWindow control,
by creating them in a script and calling methods for the object. You can also
define a user object that is inherited from a DataStore and customize it. For
more information, see Chapter 4, “Using DataStore Objects.”

Libraries and
applications

You store DataWindow objects in PowerBuilder libraries (PBLs) during
development. When you build your application, you can include the
DataWindow objects in the application executable or in PowerBuilder dynamic
libraries (PBDs).

For more information about designing DataWindow objects and building a
PowerBuilder application, see the PowerBuilder Users Guide and Application
Techniques.

DataWindow Programmers Guide 13

C H A P T E R 2 Using DataWindow Objects

About this chapter This chapter describes how to use DataWindow objects in an application.

Contents

Before you begin This chapter assumes that you know how to build DataWindow objects in
the DataWindow painter, as described in the PowerBuilder Users Guide.

About using DataWindow objects
Building DataWindow
objects

Before you can use a DataWindow object in an application, you need to
build it. PowerBuilder has separate painters for database management,
DataWindow definition, and library management.

You define and edit a DataWindow object in the DataWindow painter. You
specify its data source and presentation style, then enhance the object by
specifying display formats, edit styles, and more.

Topic Page

About using DataWindow objects 13

Putting a DataWindow object into a control 14

Accessing the database 21

Accessing a Web service data source 29

Importing data from an external source 29

Manipulating data in a DataWindow control 30

Accessing the properties of a DataWindow object 37

Handling DataWindow errors 38

Updating the database 44

Creating reports 47

Using nested reports 49

Using crosstabs 52

Generating HTML 55

Putting a DataWindow object into a control

14 PowerBuilder Classic

The DataWindow painter is also where you make Powersoft report (PSR) files,
which you might also want to use in applications. A PSR file contains a report
definition—essentially a nonupdatable DataWindow object—as well as the
data contained in that report when the PSR file was created.

Report objects only in InfoMaker
Older versions of PowerBuilder had a Report painter as well as a DataWindow
painter. A report object could retrieve but not update data; it was essentially a
nonupdatable DataWindow object. The Report painter is now available only in
InfoMaker.

Managing
DataWindow objects

Several painters let you manage and package your DataWindow objects for use
in applications.

In particular, you can maintain DataWindow objects in one or more libraries
(PBL files). When you are ready to use your DataWindow objects in
applications, you can package them in more compact runtime libraries (PBD
files).

For further details on how to build and organize DataWindow objects, see the
PowerBuilder Users Guide.

Using DataWindow
objects

After you build a DataWindow object (or PSR file) in the DataWindow painter,
you can use it to display and process information from the appropriate data
source. The sections that follow explore the details of how to do this.

Putting a DataWindow object into a control
The DataWindow control is a container for DataWindow objects in an
application. It provides properties, methods, and events for manipulating the
data and appearance of the DataWindow object. The DataWindow control is
part of the user interface of your application.

You also use DataWindow objects in the nonvisual DataStore and in child
DataWindows, such as drop-down DataWindows and composite presentation
styles. For more information about DataStores, see Chapter 4, “Using
DataStore Objects.” For more information about drop-down DataWindows
and composite DataWindows, see the PowerBuilder Users Guide.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 15

To use the DataWindow object in an application, you add a DataWindow
control to a window or form, then associate that control with the DataWindow
object, as illustrated in Figure 2-1:

Figure 2-1: Putting a DataWindow object into a DataWindow control

This section has information about:

• Names for DataWindow controls and DataWindow objects

• Procedures for inserting a control and assigning a DataWindow object to
the control

• Specifying the DataWindow object during execution

For information about assigning a DataWindow object to a Web DataWindow
control, see “Loading the DataWindow object” on page 175.

For information about assigning a DataWindow object to a Web control for
ActiveX, see “Specifying a DataWindow object for the control” on page 208.

Names for DataWindow controls and DataWindow objects
There are two names to be aware of when you are working with a
DataWindow:

• The name of the DataWindow control

• The name of the DataWindow object associated with the control

The DataWindow control name When you place a DataWindow control in
a window or form, it gets a default name. You should change the name to be
something meaningful for your application.

In PowerBuilder, the name of the control has traditionally had a prefix of dw_.
This is a useful convention to observe in any development environment. For
example, if the DataWindow control lists customers, you might want to name
it dw_customer.

Putting a DataWindow object into a control

16 PowerBuilder Classic

Using the name
In code, always refer to a DataWindow by the name of the control (such as
dw_customer). Do not refer to the DataWindow object that is in the control.

The DataWindow object name To avoid confusion, you should use different
prefixes for DataWindow objects and DataWindow controls. The prefix d_ is
commonly used for DataWindow objects. For example, if the name of the
DataWindow control is dw_customer, you might want to name the
corresponding DataWindow object d_customer.

Working with the DataWindow control in PowerBuilder

❖ To place a DataWindow control in a window:

1 Open the window that will contain the DataWindow control.

2 Select Insert>Control>DataWindow from the menu bar.

3 Click where you want the control to display.

PowerBuilder places an empty DataWindow control in the window:

4 (Optional) Resize the DataWindow control by selecting it and dragging
one of the handles.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 17

Specifying a
DataWindow object

After placing the DataWindow control, you associate a DataWindow object
with the control.

❖ To associate a DataWindow object with the control:

1 In the DataWindow Properties view, click the Browse button for the
DataObject property.

2 Select the DataWindow object that you want to place in the control and
click OK.

The name of the DataWindow object displays in the DataObject box in the
DataWindow Properties view.

3 (Optional) Change the properties of the DataWindow control as needed.

Allowing users to move DataWindow controls
If you want users to be able to move a DataWindow control during
execution, give it a title and select the Title Bar check box. Then users can
move the control by dragging the title bar.

Defining reusable DataWindow controls

You might want all the DataWindow controls in your application to have
similar appearance and behavior. For example, you might want all of them to
do the same error handling.

To be able to define these behaviors once and reuse them in each window, you
should create a standard user object based on the DataWindow control: define
the user object’s properties and write scripts that perform the generic
processing you want, such as error handling. Then place the user object
(instead of a new DataWindow control) in the window. The DataWindow user
object has all the desired functionality predefined. You do not need to respecify
it.

For more information about creating and using user objects, see the
PowerBuilder Users Guide.

Putting a DataWindow object into a control

18 PowerBuilder Classic

Editing the DataWindow object in the control

Once you have associated a DataWindow object with a DataWindow control in
a window, you can go directly to the DataWindow painter to edit the associated
DataWindow object.

❖ To edit an associated DataWindow object:

• Select Modify DataWindow from the DataWindow control’s pop-up
menu.

PowerBuilder opens the associated DataWindow object in the
DataWindow painter.

Specifying the DataWindow object during execution
Changing the
DataWindow object

The way to change the DataWindow object depends on the environment:

• PowerBuilder Set the DataObject property to one of the DataWindow
objects built into the application.

• Web ActiveX Set the SourceFileName and DataWindowObject
properties to select a new library file and DataWindow.

• Web DataWindow If you are not using the Web Target object model, you
can call the SetDWObject method on the Web DataWindow generator
component.

Setting the transaction object when you change the DataWindow object
When you change the DataWindow object during execution, you might need to
call setTrans or setTransObject again.

For more information, see “Setting the transaction object for the DataWindow
control” on page 21.

Dynamically creating
a DataWindow object

You can also create a new DataWindow object during execution and associate
it with a control.

For more information, see Chapter 3, “Dynamically Changing DataWindow
Objects.”

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 19

Changing the DataWindow in PowerBuilder

When you associate a DataWindow object with a control in the window, you
are setting the initial value of the DataWindow control’s DataObject property.

During execution, this tells your application to create an instance of the
DataWindow object specified in the control’s DataObject property and use it in
the control.

Setting the
DataObject property in
code

In addition to specifying the DataWindow object in the Window painter, you
can switch the object that displays in the control during execution by changing
the value of the DataObject property in code.

For example: to display the DataWindow object d_emp_hist from the library
emp.pbl in the DataWindow control dw_emp, you can code:

dw_emp.DataObject = "d_emp_hist"

The DataWindow object d_emp_hist was created in the DataWindow painter
and stored in a library on the application search path. The control dw_emp is
contained in the window and is saved as part of the window definition.

Preventing redrawing
You can use the SetRedraw method to turn off redrawing in order to avoid
flicker and reduce redrawing time when you are making several changes to the
properties of an object or control. Dynamically changing the DataWindow
object at execution time implicitly turns redrawing on. To turn redrawing off
again, call the SetRedraw method every time you change the DataWindow
object:

dw_emp.DataObject = "d_emp_hist"
dw_emp.SetRedraw(FALSE)

Using PSR files To put a PSR file into a DataWindow control at execution time, change the
control’s DataObject property to specify that PSR file name.

Putting a DataWindow object into a control

20 PowerBuilder Classic

Changing the DataWindow in the Web ActiveX

When you associate a DataWindow object with a DataWindow control, you are
setting the initial value of the DataWindow control’s SourceFileName and
DataWindowObject properties.

During execution, this tells your application to:

1 Look for DataWindow objects in the library (PBL file) or runtime library
(PBD file) specified in the control's SourceFileName property.

2 Create an instance of the DataWindow object specified in the control’s
DataWindowObject property (which must be in the specified library) and
use it in the control.

Setting the
SourceFileName and
DataWindowObject
properties in code

In addition to specifying the DataWindow object in the Window painter, you
can switch the object that displays in the control during execution by changing
the value of the SourceFileName and DataWindowObject properties in code.

You might simply change the DataWindowObject property to use a different
DataWindow object from the same library, or you might change both properties
to use a DataWindow object from some other library.

For information about URLs for SourceFileName, see “Specifying a
DataWindow object for the control” on page 208.

For more information about the SourceFileName and DataWindowObject
properties, see the DataWindow Reference.

Using PSR files If you want to dynamically put a PSR file into a
DataWindow control at execution time, change the control’s SourceFileName
property to an empty string and specify a URL for the PSR file as the value for
the DataWindowObject property.

Examples This example shows the code to set the properties in JavaScript. The code
changes the DataWindow object in dw_emp, a DataWindow control in a form
or Web page. Dw_emp is saved as part of the form or Web page definition. The
value for DataWindowObject is d_emp_hist; it was created in the DataWindow
painter and is stored in the library named emp.pbl, the value for
SourceFileName.

Web ActiveX For the Web ActiveX on a Web page, you set the
SourceFileName and DataWindowObject properties directly.

To display the DataWindow object d_emp_hist from the library emp.pbl in the
DataWindow control dw_emp, you can code:

dw_emp.SourceFileName = "dwlibs/emp.pbl";
dw_emp.DataWindowObject = "d_emp_hist";

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 21

Accessing the database
Before you can display data in a DataWindow control, you must get the data
stored in the data source into that control. The most common way to get the
data is to access a database.

An application goes through several steps in accessing a database:

1 Set the appropriate values for the transaction object.

2 Connect to the database.

3 Set the transaction object for the DataWindow control.

4 Retrieve and update data.

5 Disconnect from the database.

This section provides instructions for setting the transaction object for a
DataWindow control and for using the DataWindow object to retrieve and
update data.

To learn more about setting values for the transaction object, connecting to the
database, and disconnecting from the database, see:

• PowerBuilder Application Techniques, “Using Transaction Objects”

• Web DataWindow “Specifying the database connection and retrieving
data” on page 177

• Web ActiveX “Using the DataWindow Transaction Object control” on
page 209

Setting the transaction object for the DataWindow control
There are two ways to handle database connections and transactions for the
DataWindow control. You can use:

• Internal transaction management

• A separate transaction object

The two methods provide different levels of control over database transactions.

If you are displaying a PSR file in the control
You do not need to use a transaction object or make a database connection if
you are displaying a PSR file in the DataWindow control.

Accessing the database

22 PowerBuilder Classic

If you change the DataWindow object
If you change the DataWindow object associated with a DataWindow control
during execution, you might need to call the SetTrans or SetTransObject
method again.

PowerBuilder You always need to call one of the methods to set the
transaction object.

Web ActiveX You need to call SetTransObject again only when you are using
a separate transaction object.

These options are described in this section.

Internal transaction management
What it does When the DataWindow control uses internal transaction management, it

handles connecting, disconnecting, commits, and rollbacks. It automatically
performs connects and disconnects as needed; any errors that occur cause an
automatic rollback.

Whenever the DataWindow needs to access the database (such as when a
Retrieve or Update method is executed), the DataWindow issues an internal
CONNECT statement, does the appropriate data access, then issues an internal
DISCONNECT.

Whether to use it When not to use it Do not use internal transaction management when:

• Your application requires the best possible performance

Internal transaction management is slow and uses considerable system
resources because it must connect and disconnect for every database
access.

• You want control over when a transaction is committed or rolled back

Because internal transaction management must disconnect after a database
access, any changes are always committed immediately.

When to use it If the number of available connections at your site is limited,
you might want to use internal transaction management because connections
are not held open.

Internal transaction management is appropriate in simple situations when you
are doing pure retrievals (such as in reporting) and do not need to hold database
locks—when application control over committing or rolling back transactions
is not an issue.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 23

How it works PowerBuilder To use internal transaction management, you specify
connection values for a transaction object, which could be the automatically
instantiated SQLCA. Then you call the SetTrans method, which copies the
values from a specified transaction object to the DataWindow control’s internal
transaction object.

SQLCA.DBMS = ProfileString("myapp.ini", &
"database", "DBMS", " ")

... // Set more connection parameters
dw_employee.SetTrans(SQLCA)
dw_employee.Retrieve()

Connecting to the database
When you use SetTrans, you do not need to explicitly code a CONNECT or
DISCONNECT statement in a script. CONNECT and DISCONNECT
statements are automatically issued when needed.

For more information about PowerBuilder transaction objects, see
PowerBuilder Application Techniques.

Web ActiveX To use internal transaction management, set the transaction
properties for the DataWindow Web ActiveX control instead of using a
DataWindow Transaction Object control. You can set the properties using
Param elements or in a script. This example sets the DbParm property and calls
Retrieve in a script:

dw_employee.DbParm =
"Driver='com.sybase.jdbc3.jdbc.SybDriver',
URL='jdbc:sybase:Tds:www.domain.com:7373'";

dw_employee.Retrieve();

For internal transaction management, you do not call SetTransObject. If you
change the DataWindow object during execution, the connection information
is still available and the DataWindow connects as needed. You can change the
connection information by changing the value of the DbParm property.

Accessing the database

24 PowerBuilder Classic

Transaction management with a separate transaction object
How it works When you use a separate transaction object, you control the duration of the

database transaction. Your scripts explicitly connect to and disconnect from the
database. If the transaction object’s AutoCommit property is set to false, you
also program when an update is committed or rolled back.

Typically, a script for data retrieval or update involves these statements:

Connect
SetTransObject
Retrieve or Update
Commit or Rollback
Disconnect

In PowerBuilder, you use embedded SQL for connecting and committing. For
the Web ActiveX, the transaction object has methods that perform these
actions.

The transaction object also stores error messages returned from the database in
its properties. You can use the error information to determine whether to
commit or roll back database changes.

When to use it When the DataWindow control uses a separate transaction object, you have
more control of the database processing and are responsible for managing the
database transaction.

There are several reasons to use a separate transaction object:

• You have several DataWindow controls that connect to the same database
and you want to make one database connection for all of them, saving the
overhead of multiple connections

• You want to control transaction processing

• You require the improved performance provided by keeping database
connections open

How it works PowerBuilder The SetTransObject method associates a transaction object
with the DataWindow control. PowerBuilder has a default transaction object
called SQLCA that is automatically instantiated. You can set its connection
properties, connect, and assign it to the DataWindow control.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 25

The following statement uses SetTransObject to associate the DataWindow
control dw_emp with the default transaction object (SQLCA):

// Set connection parameters in the transaction object
SQLCA.DBMS = ...
SQLCA.database = ...
CONNECT USING SQLCA;
dw_emp.SetTransObject(SQLCA)
dw_emp.Retrieve()

Instead of or in addition to using the predefined SQLCA transaction object, you
can define your own transaction object in a script. This is necessary if your
application needs to connect to more than one database at the same time.

The following statement uses SetTransObject to associate dw_customer with a
programmer-created transaction object (trans_customer):

transaction trans_customer
trans_customer = CREATE transaction
// Set connection parameters in the transaction object
trans_customer.DBMS = ...
trans_customer.database = ...
CONNECT USING trans_customer;
dw_customer.SetTransObject(trans_customer)
dw_customer.Retrieve()

Web ActiveX To use a separate transaction object for the Web ActiveX, you
add an OBJECT element for the Sybase DataWindow Transaction Object
control to the Web page. You can set its connection properties using Param
elements or a script.

A script that connects and retrieves data would have statements like these:

trans_1.Connect();
dw_employee.SetTransObject(trans_1);
dw_employee.Retrieve();
trans_1.Disconnect();

For more information For more information about database transaction processing:

• PowerBuilder See the chapter on using transaction objects in
Application Techniques

• Web ActiveX See Chapter 8, “Using the DataWindow Web Control for
ActiveX”

For more information about SetTrans and SetTransObject methods, see the
DataWindow Reference.

Accessing the database

26 PowerBuilder Classic

Retrieving and updating data
You call the following two methods to access a database through a
DataWindow control:

Retrieve
Update

Basic data retrieval

After you have set the transaction object for your DataWindow control, you can
use the Retrieve method to retrieve data from the database into that control:

dw_emp.Retrieve()

The Web DataWindow server component has a second form of the method,
RetrieveEx, for use when the method requires arguments. For more
information about retrieving data with the Web DataWindow, see “Specifying
the database connection and retrieving data” on page 177 and “Passing page-
specific data to the reloaded page” on page 178.

Using retrieval arguments
About retrieval
arguments

Retrieval arguments qualify the SELECT statement associated with the
DataWindow object, reducing the rows retrieved according to some criteria.
For example, in the following SELECT statement, Salary is a retrieval
argument defined in the DataWindow painter:

SELECT Name, emp.sal FROM Employee
WHERE emp.sal > :Salary

When you call the Retrieve method, you supply a value for Salary. In
PowerBuilder, the code looks like this:

dw_emp.Retrieve(50000)

Special considerations for each environment are explained below.

When coding Retrieve with arguments, specify them in the order in which they
are defined in the DataWindow object. Your Retrieve method can provide more
arguments than a particular DataWindow object expects. Any extra arguments
are ignored. This allows you to write a generic Retrieve that works with several
different DataWindow objects.

Omitting retrieval arguments If your DataWindow object takes retrieval
arguments but you do not pass them in the Retrieve method, the DataWindow
control prompts the user for them when Retrieve is called.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 27

More than 16
arguments

The Retrieve method is limited to 16 arguments in some environments.

PowerBuilder You can specify any number of retrieval arguments.

Web DataWindow You can specify a maximum of 16 arguments using the
RetrieveEx method.

Web ActiveX You can specify a maximum of 16 arguments for Retrieve. If
you need to specify more, use the RetrieveEx method for the Web ActiveX and
pass an array where each array element is a retrieval argument.

Updating data

After users have made changes to data in a DataWindow control, you can use
the Update method to save those changes in the database.

In PowerBuilder, the code looks like this:

dw_emp.Update()

Update sends to the database all inserts, changes, and deletions made in the
DataWindow control since the last Update method. When you are using an
external transaction object, you can then commit (or roll back) those database
updates. In PowerBuilder, you use SQL statements. In the Web ActiveX, you
use methods and properties of the transaction object. In the Web DataWindow
client control, update requests call the update method in the server component,
which handles the commit or rollback.

For more specifics on how a DataWindow control updates the database (that is,
which SQL statements are sent in which situations), see “Updating the
database” on page 44.

Examples The following example shows code that connects, retrieves, updates, commits
or rolls back, and disconnects from the database.

Although the example shows all database operations in a single script or
function, most applications separate these operations. In a PowerBuilder
application, for example, an application could connect to the database in the
application Open event, retrieve and update data in one or more window
scripts, and disconnect from the database in the application Close event.

PowerBuilder The following statements retrieve and update data using the
transaction object EmpSQL and the DataWindow control dw_emp:

// Connect to the database specified in the
// transaction object EmpSQL
CONNECT USING EmpSQL;

Accessing the database

28 PowerBuilder Classic

// Set EmpSQL as the transaction object for dw_emp
dw_emp.SetTransObject(EmpSQL)

// Retrieve data from the database specified in
// EmpSQL into dw_emp
dw_emp.Retrieve()

// Make changes to the data...
...

// Update the database
IF dw_emp.Update() > 0 THEN

COMMIT USING EmpSQL;
ELSE

ROLLBACK USING EmpSQL;
END IF

// Disconnect from the database
DISCONNECT USING EmpSQL;

Web ActiveX The following JavaScript statements retrieve and update data
using the transaction object EmpSQL and the DataWindow control dw_emp.

// Connect to the database specified in the
// transaction object EmpSQL
EmpSQL.Connect();

// Set EmpSQL as the transaction object for dw_emp
dw_emp.SetTransObject(EmpSQL);

// Retrieve data from the database specified in
// EmpSQL into dw_emp
dw_emp.Retrieve();

// Make changes to the data
...

// Update the database
if (dw_emp.Update() > 0) {

EmpSQL.Commit();
} else {

EmpSQL.Rollback();
}

// Disconnect from the database
EmpSQL.Disconnect();

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 29

Handling retrieval or
update errors

A production application should include error tests after each database
operation.

For more about checking for errors, see “Handling DataWindow errors” on
page 38.

Accessing a Web service data source
You do not use a transaction object to access data from a Web service data
source. However, some Web services support or require a user ID and
password, and other session-related properties like firewall settings. The
WSConnection object can provide this information for your DataWindow
connections.

You use an instance of the WSConnection object to connect to a Web service
by calling the SetWSObject method.

For more information about setting properties for a Web service connection,
see WSConnection and SetWSObject in the online Help.

Importing data from an external source
PowerBuilder and
Web ActiveX

If the data for a DataWindow is not coming from a database or a Web service
data source (that is, the data source was defined as External in the DataWindow
wizard), you can use these methods to import data into the DataWindow
control:

ImportClipboard
ImportFile
ImportString

All environments You can also get data into the DataWindow by using the SetItem method or by
using a DataWindow expression.

For more information on the SetItem method and DataWindow expressions,
see "Manipulating data in a DataWindow control" next.

Manipulating data in a DataWindow control

30 PowerBuilder Classic

Manipulating data in a DataWindow control
To handle user requests to add, modify, and delete data in a DataWindow, you
can write code to process that data, but first you need to understand how
DataWindow controls manage data.

How a DataWindow control manages data
As users add or change data, the data is first handled as text in an edit control.
If the data is accepted, it is then stored as an item in a buffer.

About the
DataWindow buffers

A DataWindow uses three buffers to store data:

Table 2-1: DataWindow buffers

About the edit control As the user moves around the DataWindow control, the DataWindow places an
edit control over the current cell (row and column):

About text The contents of the edit control are called text. Text is data that has not yet been
accepted by the DataWindow control. Data entered in the edit control is not in
a DataWindow buffer yet; it is simply text in the edit control.

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows that are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or through code

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 31

About items When the user changes the contents of the edit control and presses Enter or
leaves the cell (by tabbing, using the mouse, or pressing UP ARROW or DOWN
ARROW), the DataWindow processes the data and either accepts or rejects it,
depending on whether it meets the requirements specified for the column. If the
data is accepted, the text is moved to the current row and column in the
DataWindow Primary buffer. The data in the Primary buffer for a particular
column is referred to as an item.

Events for changing
text and items

When data is changed in the edit control, several events occur. The names of
the events are different in each environment, as shown in the table. This chapter
refers to events using PowerBuilder names.

Table 2-2: Event names in different environments

How text is processed
in the edit control

When the data in a column in a DataWindow has been changed and the column
loses focus (for example, because the user tabs to the next column), the
following sequence of events occurs:

1 The DataWindow control converts the text into the correct datatype for the
column. For example, if the user is in a numeric column, the DataWindow
control converts the string that was entered into a number. If the data
cannot be converted, the ItemError event is triggered.

2 If the data converts successfully to the correct type, the DataWindow
control applies any validation rule used by the column. If the data fails
validation, the ItemError event is triggered.

3 If the data passes validation, then the ItemChanged event is triggered. If
you set an action/return code of 1 in the ItemChanged event, the
DataWindow control rejects the data and does not allow the focus to
change. In this case, the ItemError event is triggered.

Event Description

For PowerBuilder,
Web DataWindow
client control For Web ActiveX

EditChanged (not
available on client
control)

onEditChange Occurs for each keystroke the
user types in the edit control

ItemChanged beforeItemChange Occurs when a cell has been
modified and loses focus

ItemError onItemError Occurs when new data fails the
validation rules for the column

ItemFocusChanged onItemFocusChange Occurs when the current item in
the control changes

Manipulating data in a DataWindow control

32 PowerBuilder Classic

4 If the ItemChanged event accepts the data, the ItemFocusChanged event
is triggered next and the data is stored as an item in a buffer.

Figure 2-2: How text is processed in edit controls

Action/return codes
for events

You can affect the outcome of events by specifying numeric values in the
event’s program code. For example, step 3 above describes how you can force
data to be rejected with a code of 1 in the ItemChanged event.

To specify action/return codes:

• PowerBuilder and Web DataWindow Use a RETURN statement

• Web ActiveX Call the SetActionCode or setActionCode method

For information about codes for individual events, see the DataWindow
Reference.

Accessing the text in the edit control
Using methods The following methods allow you to access the text in the edit control:

• GetText—Obtains the text in the edit control

• SetText—Sets the text in the edit control

In event code In addition to these methods, the following events provide access to the text in
the edit control:

EditChanged
ItemChanged
ItemError

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 33

Use the Data parameter, which is passed into the event, to access the text of the
edit control. In your code for these events, you can test the text value and
perform special processing depending on that value.

For an example, see “Coding the ItemChanged event” on page 33.

Manipulating the text in the edit control
When you want to further manipulate the contents of the edit control within
your DataWindow control, you can use any of these methods:

For more information about these methods, see the DataWindow Reference.

Coding the ItemChanged event
If data passes conversion and validation, the ItemChanged event is triggered.
By default, the ItemChanged event accepts the data value and allows focus to
change. You can write code for the ItemChanged event to do some additional
processing. For example, you could perform some tests, set a code to reject the
data, have the column regain focus, and trigger the ItemError event.

Example The following sample code for the ItemChanged event for a DataWindow
control called dw_Employee sets the return code in dw_Employee to reject
data that is less than the employee’s age, which is specified in a SingleLineEdit
text box control in the window.

CanUndo
Clear
Copy
Cut
LineCount
Paste
Position
ReplaceText

Scroll
SelectedLength
SelectedLine
SelectedStart
SelectedText
SelectText
TextLine
Undo

Manipulating data in a DataWindow control

34 PowerBuilder Classic

This is the PowerBuilder version of the code:

int a, age
age = Integer(sle_age.text)
a = Integer(data)

// Set the return code to 1 in the ItemChanged
// event to tell PowerBuilder to reject the data
// and not change the focus.
IF a < age THEN RETURN 1

Coding the ItemError event
The ItemError event is triggered if there is a problem with the data. By default,
it rejects the data value and displays a message box. You can write code for the
ItemError event to do some other processing. For example, you can set a code
to accept the data value, or reject the data value but allow focus to change.

For more information about the events of the DataWindow control, see the
DataWindow Reference.

Accessing the items in a DataWindow
You can access data values in a DataWindow by using methods or
DataWindow data expressions. Both methods allow you to access data in any
buffer and to get original or current values.

The method you use depends on how much data you are accessing and whether
you know the names of the DataWindow columns when the script is compiled.

For guidelines on deciding which method to use, see the DataWindow
Reference.

Using methods There are several methods for manipulating data in a DataWindow control.

These methods obtain the data in a specified row and column in a specified
buffer (Web DataWindow methods have separate methods for overloaded
versions):

• PowerBuilder GetItemDate, GetItemDateTime, GetItemDecimal,
GetItemNumber, GetItemString, GetItemTime

• Web ActiveX GetItemDate, GetItemNumber, GetItemString

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 35

• Web DataWindow server component GetItemDate,
GetItemDateByColNum, GetItemDateByColNumEx, GetItemDateEx,
GetItemDateTime, GetItemDateTimeByColNum,
GetItemDateTimeByColNumEx, GetItemDateTimeEx, GetItemNumber,
GetItemNumberByColNum, GetItemNumberByColNumEx,
GetItemNumberEx, GetItemStatus, GetItemStatusByColNum,
GetItemString, GetItemStringByColNum, GetItemStringByColNumEx,
GetItemStringEx, GetItemTime, GetItemTimeByColNum,
GetItemTimeByColNumEx, GetItemTimeEx

This method sets the value of a specified row and column:

• PowerBuilder and Web ActiveX SetItem

• Web DataWindow server component SetItemDate,
SetItemDateByColNum, SetItemDateTime,
SetItemDateTimeByColNum, SetItemNumber,
SetItemNumberByColNum, SetItemStatus, SetItemStatusByColNum,
SetItemString, SetItemStringByColNum, SetItemTime,
SetItemTimeByColNum

For example, the following statement, using PowerBuilder syntax, assigns the
value from the empname column of the first row to the variable ls_Name in the
Primary buffer:

ls_Name = dw_1.GetItemString (1, "empname")

This PowerBuilder statement sets the value of the empname column in the first
row to the string Waters:

dw_1.SetItem(1, "empname", "Waters")

Uses You call the GetItem methods to obtain the data that has been accepted
into a specific row and column. You can also use them to check the data in a
specific buffer before you update the database. You must use the method
appropriate for the column’s datatype.

For more information about the methods listed above, see the DataWindow
Reference.

Using expressions DataWindow data expressions refer to single items, columns, blocks of data,
selected data, or the whole DataWindow.

The way you construct data expressions depends on the environment:

• PowerBuilder Use dot notation

• Web ActiveX Data expressions are not supported

Manipulating data in a DataWindow control

36 PowerBuilder Classic

Expressions in PowerBuilder The Object property of the DataWindow
control lets you specify expressions that refer directly to the data of the
DataWindow object in the control. This direct data manipulation allows you to
access small and large amounts of data in a single statement, without calling
methods:

dw_1.Object.jobtitle[3] = "Programmer"

The next statement sets the value of the first column in the first row in the
DataWindow to Smith:

dw_1.Object.Data[1,1] = "Smith"

For complete instructions on how to construct DataWindow data expressions,
see the DataWindow Reference.

Using other DataWindow methods
There are many more methods you can use to perform activities in
DataWindow controls. Here are some of the more common ones:

Table 2-3: Common methods in DataWindow controls

Method Purpose

AcceptText Applies the contents of the edit control to the
current item in the DataWindow control

DeleteRow Removes the specified row from the DataWindow
control, placing it in the Delete buffer; does not
delete the row from the database

Filter Displays rows in the DataWindow control based on
the current filter

GetRow Returns the current row number

InsertRow Inserts a new row

Reset Clears all rows in the DataWindow control

Retrieve Retrieves rows from the database

RowsCopy, RowsMove Copies or moves rows from one DataWindow
control to another

ScrollToRow Scrolls to the specified row

SelectRow Highlights a specified row

ShareData Shares data among different DataWindow controls.

Update Sends to the database all inserts, changes, and
deletions that have been made in the DataWindow
control

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 37

Some, but not all, of these methods are available for the Web DataWindow
client control, server component, or both. Each development environment
provides a reference list of methods.

For complete information on DataWindow methods, see the DataWindow
Reference.

Accessing the properties of a DataWindow object
About DataWindow
object properties

DataWindow object properties store the information that controls the behavior
of a DataWindow object. They are not properties of the DataWindow control,
but of the DataWindow object displayed in the control. The DataWindow
object is itself made up of individual controls—column, text, graph, and
drawing controls—that have DataWindow object properties.

You establish initial values for DataWindow object properties in the
DataWindow painter. You can also get and set property values during execution
in your code.

You can access the properties of a DataWindow object by using the Describe
and Modify methods or DataWindow property expressions. Which you use
depends on the type of error checking you want to provide and on whether you
know the names of the controls within the DataWindow object and properties
you want to access when the script is compiled.

Note that in the Web ActiveX, only the Describe and Modify methods (not
property expressions) are supported.

For guidelines on deciding which method to use and for lists and descriptions
of DataWindow object properties, see the DataWindow Reference.

Using methods to
access object
properties

You can use the following methods to work with the properties of a
DataWindow object:

• Describe—Reports the values of properties of a DataWindow object and
controls within the DataWindow object

• Modify—Modifies a DataWindow object by specifying a list of
instructions that change the DataWindow object’s definition

PowerBuilder For example, the following statements assign the value of the
Border property for the empname column to a string variable:

string ls_border
ls_border = dw_1.Describe("empname.Border")

Handling DataWindow errors

38 PowerBuilder Classic

The following statement changes the value of the Border property for the
empname column to 1:

dw_emp.Modify("empname.Border=1")

Web ActiveX The JavaScript code is nearly identical to PowerScript. These
statements get the value of the Border property for the empname column:

string ls_border
ls_border = dw_1.Describe("empname.Border");

The following statement changes the value of the Border property for the
empname column to 1:

dw_emp.Modify("empname.Border=1");

About dynamic DataWindow objects
Using Describe and Modify, you can provide an interface through which
application users can alter the DataWindow object during execution. For
example, you can change the appearance of a DataWindow object or allow an
application user to create ad hoc reports. For more information, see Chapter 3,
“Dynamically Changing DataWindow Objects.”

Using expressions DataWindow property expressions provide access to properties with fewer
nested strings. In PowerBuilder, you can handle problems with incorrect object
and property names in the Error event:

PowerBuilder Use the Object property and dot notation. For example:

integer li_border
li_border = Integer(dw_1.Object.empname.Border)
dw_1.Object.empname.Border = 1

For reference material on the available variations for property expressions, see
the DataWindow Reference.

Handling DataWindow errors
There are several types of errors that can occur during DataWindow
processing:

• Data items that are invalid (discussed in “Manipulating data in a
DataWindow control” on page 30)

• Failures when retrieving or updating data

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 39

• Attempts to access invalid or nonexistent properties or data

This section explains how to handle the last two types of errors.

Retrieve and Update errors and the DBError event
Retrieve and update
testing

When using the Retrieve or Update method in a DataWindow control, you
should test the method's return code to see whether the activity succeeded.

Do not test the SQLCode attribute
After issuing a SQL statement (such as CONNECT, COMMIT, or
DISCONNECT) or the equivalent method of the transaction object, you should
always test the success/failure code (the SQLCode attribute in the transaction
object). However, you should not use this type of error checking following a
retrieval or update made in a DataWindow.

For more information about error handling after a SQL statement, see:

• PowerBuilder The chapter on using transaction objects in Application
Techniques

• Web ActiveX Chapter 8, “Using the DataWindow Web Control for
ActiveX”

Table 2-4: Return codes for the Retrieve and Update methods

Example PowerBuilder If you want to commit changes to the database only if an
update succeeds, you can code:

IF dw_emp.Update() > 0 THEN
COMMIT USING EmpSQL;

ELSE
ROLLBACK USING EmpSQL;

END IF

Web ActiveX To commit changes to the database only if an update succeeds,
you can code:

Method
Return
code Meaning

Retrieve >=1 Retrieval succeeded; returns the number of rows retrieved.

-1 Retrieval failed; DBError event triggered.

0 No data retrieved.

Update 1 Update succeeded.

-1 Update failed; DBError event triggered.

Handling DataWindow errors

40 PowerBuilder Classic

number rtn;
rtn = dw_emp.Update();
if (rtn == 1) {

trans_a.Commit();
} else {

trans_a.Rollback();
}

Using the DBError
event

The DataWindow control triggers its DBError event whenever there is an error
following a retrieval or update; that is, if the Retrieve or Update methods return
–1. For example, if you try to insert a row that does not have values for all
columns that have been defined as not allowing NULL, the DBMS rejects the
row and the DBError event is triggered.

By default, the DataWindow control displays a message box describing the
error message from the DBMS, as shown here:

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 41

In many cases you might want to code your own processing in the DBError
event and suppress the default message box. Here are some tips for doing this:

Table 2-5: Tips for processing messages from DBError event

About DataWindow action/return codes
Some events for DataWindow controls have codes that you can set to override
the default action that occurs when the event is triggered. The codes and their
meaning depend on the event. In PowerBuilder, you set the code with a
RETURN statement. In the Web ActiveX, you call the SetActionCode or
setActionCode method.

Example PowerBuilder Here is a sample script for the DBError event:

// Database error -195 means that some of the
// required values are missing
IF sqldbcode = -195 THEN

MessageBox("Missing Information", &
"You have not supplied values for all " &
+"the required fields.")

END IF
// Return code suppresses default message box
RETURN 1

During execution, the user would see the following message box after the error:

To Do this

Get the DBMS's error code Use the SQLDBCode argument of the DBError
event.

Get the DBMS's message text Use the SQLErrText argument of the DBError
event.

Suppress the default message box Specify an action/return code of 1.

Handling DataWindow errors

42 PowerBuilder Classic

Web ActiveX In JavaScript, the code for the DBError event might look like
this:

// Database error -195 means that some of the
// required values are missing
if (sqldbcode == -195) {

alert("Missing information:\n" +
"You have not supplied values for all " +
"the required fields.");

}
// Action code suppresses default message box
dw_1.SetActionCode(1);

Errors in property and data expressions and the Error event
A DataWindow control’s Error event is triggered whenever an error occurs in
a data or property expression at execution time. These expressions that refer to
data and properties of a DataWindow object might be valid under some
execution-time conditions but not others. The Error event allows you to
respond with error recovery logic when an expression is not valid.

PowerBuilder syntax
checking

In PowerBuilder, when you use a data or property expression, the PowerScript
compiler checks the syntax only as far as the Object property. Everything
following the Object property is evaluated at execution time. For example, in
the following expression, the column name emp_name and the property Visible
are not checked until execution time:

dw_1.Object.emp_name.Visible = "0"

If the emp_name column did not exist in the DataWindow, or if you had
misspelled the property name, the compiler would not detect the error.
However, at execution time, PowerBuilder would trigger the DataWindow
control’s Error event.

Using a Try-Catch
block

The Error event is triggered even if you have surrounded an error-producing
data or property expression in a Try-Catch block. The catch statement is
executed after the Error event is triggered, but only if you do not code the Error
event or do not change the default Error event action from ExceptionFail!. The
following example shows a property expression in a Try-Catch block:

TRY
dw_1.Object.emp_name.Visible = "0"

CATCH (dwruntimeerror dw_e)
MessageBox (“DWRuntimeError”, dw_e.text)

END TRY

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 43

Determining the cause
of the error

The Error event has several arguments that provide information about the error
condition. You can check the values of the arguments to determine the cause of
the error. For example, you can obtain the internal error number and error text,
the name of the object whose script caused the error, and the full text of the
script where the error occurred. The information provided by the Error event’s
arguments can be helpful in debugging expressions that are not checked by the
compiler.

If you catch a DWRuntimeError error, you can use the properties of that class
instead of the Error event arguments to provide information about the error
condition. The following table displays the correspondences between the Error
event arguments and the DWRuntimeError properties.

Table 2-6: Correspondence between Error event arguments and
DWRuntimeError properties

Controlling the
outcome of the event

When the Error event is triggered, you can have the application ignore the error
and continue processing, substitute a different return value, or escalate the error
by triggering the SystemError event. In the Error event, you can set two
arguments passed by reference to control the outcome of the event.

Table 2-7: Setting arguments in the Error event

For a complete description of the arguments of the Error event, see the
DataWindow Reference.

Error event argument DWRuntimeError property

errornumber number

errorline line

errortext text

errorwindowmenu objectname

errorobject class

errorscript routinename

Argument Description

Action A value you specify to control the application's course of action as
a result of the error. Values are:

ExceptionIgnore!
ExceptionSubstituteReturnValue!
ExceptionFail! (default action)

ReturnValue A value whose datatype matches the expected value that the
DataWindow would have returned. This value is used when the
value of action is ExceptionSubstituteReturnValue!.

Updating the database

44 PowerBuilder Classic

When to substitute a return value
The ExceptionSubstituteReturnValue! action allows you to substitute a return
value when the last element of an expression causes an error. Do not use
ExceptionSubstituteReturnValue! to substitute a return value when an element
in the middle of an expression causes an error.

The ExceptionSubstituteReturnValue! action is most useful for handling errors
in data expressions.

Updating the database
After users have made changes to data in a DataWindow control, you can use
the Update method to save the changes in the database. Update sends to the
database all inserts, changes, and deletions made in the DataWindow since the
last Update or Retrieve method was executed.

How the DataWindow control updates the database
When updating the database, the DataWindow control determines the type of
SQL statements to generate by looking at the status of each of the rows in the
DataWindow buffers.

There are four DataWindow item statuses, two of which apply only to rows:

Table 2-8: DataWindow item status for rows and columns

Status Applies to

PowerBuilder
name

Web
DataWindow
name Numeric value

New! New 2 Rows

NewModified! NewModified 3 Rows

NotModified! NotModified 0 Rows and columns

DataModified! DataModified 1 Rows and columns

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 45

Named or numeric constants
The constants shown in the table are used differently in each environment:

PowerBuilder The named values are values of the enumerated datatype
dwItemStatus. You must use the named values, which end in an exclamation
point.

Web DataWindow You can use a string value with or without the
exclamation point

Web ActiveX Named values are not defined; use the numeric values.

This discussion uses the PowerBuilder names.

How statuses are set When data is retrieved When data is retrieved into a DataWindow, all rows
and columns initially have a status of NotModified!.

After data has changed in a column in a particular row, either because the user
changed the data or the data was changed programmatically, such as through
the SetItem method, the column status for that column changes to
DataModified!. Once the status for any column in a retrieved row changes to
DataModified!, the row status also changes to DataModified!.

When rows are inserted When a row is inserted into a DataWindow, it
initially has a row status of New!, and all columns in that row initially have a
column status of NotModified!. After data has changed in a column in the row,
either because the user changed the data or the data was changed
programmatically, such as through the SetItem method, the column status
changes to DataModified!. Once the status for any column in the inserted row
changes to DataModified!, the row status changes to NewModified!.

When a DataWindow column has a default value, the column’s status does not
change to DataModified! until the user makes at least one actual change to a
column in that row.

When Update is called For rows in the Primary and Filter buffers When the Update method is
called, the DataWindow control generates SQL INSERT and UPDATE
statements for rows in the Primary and/or Filter buffers based upon the
following row statuses:

Table 2-9: Row status after INSERT and UPDATE statements

Row status SQL statement generated

NewModified! INSERT

DataModified! UPDATE

Updating the database

46 PowerBuilder Classic

A column is included in an UPDATE statement only if the following two
conditions are met:

• The column is on the updatable column list maintained by the
DataWindow object

For more information about setting the update characteristics of the
DataWindow object, see the PowerBuilder Users Guide.

• The column has a column status of DataModified!

The DataWindow control includes all columns in INSERT statements it
generates. If a column has no value, the DataWindow attempts to insert a
NULL. This causes a database error if the database does not allow NULLs in
that column.

For rows in the Delete buffer The DataWindow control generates SQL
DELETE statements for any rows that were moved into the Delete buffer using
the DeleteRow method. (But if a row has a row status of New! or
NewModified! before DeleteRow is called, no DELETE statement is issued for
that row.)

Changing row or column status programmatically
You might need to change the status of a row or column programmatically.
Typically, you do this to prevent the default behavior from taking place. For
example, you might copy a row from one DataWindow to another; and after the
user modifies the row, you might want to issue an UPDATE statement instead
of an INSERT statement.

You use the SetItemStatus method to programmatically change a
DataWindow's row or column status information. Use the GetItemStatus
method to determine the status of a specific row or column.

Changing column
status

You use SetItemStatus to change the column status from DataModified! to
NotModified!, or the reverse.

Change column status when you change row status
Changing the row status changes the status of all columns in that row to
NotModified!, so if the Update method is called, no SQL update is produced.
You must change the status of columns to be updated after you change the row
status.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 47

Changing row status Changing row status is a little more complicated. The following table
illustrates the effect of changing from one row status to another:

Table 2-10: Effects of changing from one row status to another

In the preceding table, Yes means the change is valid. For example, issuing
SetItemStatus on a row that has the status NotModified! to change the status to
New! does change the status to New!. No means that the change is not valid
and the status is not changed.

Issuing SetItemStatus to change a row status from NewModified! to
NotModified! actually changes the status to New!. Issuing SetItemStatus to
change a row status from DataModified! to New! actually changes the status to
NewModified!.

Changing a row's status to NotModified! or New! causes all columns in that
row to be assigned a column status of NotModified!. Change the column’s
status to DataModified! to ensure that an update results in a SQL Update.

Changing status indirectly
When you cannot change to the desired status directly, you can usually do it
indirectly. For example, change New! to DataModified! to NotModified!.

Creating reports
You can use DataWindow objects to create standard business reports such as
financial statements, sales order reports, employee lists, or inventory reports.

To create a production report, you:

• Determine the type of report you want to produce

• Build a DataWindow object to display data for the report

Original status

Specified status

New! NewModified! DataModified! NotModified!

New! - Yes Yes No

NewModified! No - Yes New!

DataModified! NewModified! Yes - Yes

NotModified! Yes Yes Yes -

Creating reports

48 PowerBuilder Classic

• Place the DataWindow object in a DataWindow control on a window or
form

• Write code to perform the processing required to populate the
DataWindow control and print the contents as a report

Calling InfoMaker from an application
If your users have installed InfoMaker (the Sybase reporting product), you can
invoke InfoMaker from an application. This way you can let your users create
and save their own reports. To do this in PowerBuilder, use the Run function.
For information about invoking InfoMaker, see the InfoMaker Users Guide.

Planning and building the DataWindow object
To design the report, you create a DataWindow object. You select the data
source and presentation style and then:

• Sort the data

• Create groups in the DataWindow object to organize the data in the report
and force page breaks when the group values change

• Enhance the DataWindow object to look like a report (for example, you
might want to add a title, column headers, and a computed field to number
the pages)

Using fonts
Printer fonts are usually shorter and fatter than screen fonts, so text might not
print in the report exactly as it displays in the DataWindow painter. You can pad
the text fields to compensate for this discrepancy. You should test the report
format with a small amount of data before you print a large report.

Printing the report
After you build the DataWindow object and fill in print specifications, you can
place it in a DataWindow control on a window or form, as described in “Putting
a DataWindow object into a control” on page 14.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 49

To allow users to print the report, your application needs code that performs the
printing logic. For example, you can place a button on the window or form,
then write code that is run when the user clicks the button.

To print the contents of a single DataWindow control or DataStore, call the
Print method. For example, this PowerBuilder statement prints the report in the
DataWindow control dw_Sales:

dw_Sales.Print(TRUE)

For information about the Print method, see the DataWindow Reference. For
information about using nested reports to print multiple DataWindows, see
“Using nested reports” on page 49.

Separate DataWindow
controls in a single
print job

For PowerBuilder applications only If the window has multiple
DataWindow controls, you can use multiple PrintDataWindow method calls in
a script to print the contents of all the DataWindow controls in one print job.

These statements print the contents of three DataWindow controls in a single
print job:

int job
job = PrintOpen("Employee Reports")
// Each DataWindow starts printing on a new page.
PrintDataWindow(job, dw_EmpHeader)
PrintDataWindow(job, dw_EmpDetail)
PrintDataWindow(job, dw_EmpDptSum)
PrintClose(job)

For information about PowerBuilder system functions for printing, see the
PowerScript Reference.

Using nested reports
When designing a DataWindow object for a report, you can choose to nest
other reports (which are also DataWindow objects) within it. The basic steps
for using nested reports in an application are the same ones you follow for the
other report types. There are, however, some additional topics concerning
nested reports that you should know about.

Availability
Composite and nested reports are not available in the Web DataWindow.

Using nested reports

50 PowerBuilder Classic

To learn about designing nested reports, see the PowerBuilder Users Guide.

Printing multiple
updatable
DataWindows on a
page

An advantage of composite reports is that you can print multiple reports on a
page. A limitation of composite reports is that they are not updatable, so you
cannot directly print several updatable DataWindows on one page. However,
there is an indirect way to do that, as follows.

You can use the GetChild method on named nested reports in a composite
report to get a reference to a nested report. After getting the reference to the
nested report, you can address the nested report during execution like other
DataWindows.

Using this technique, you can call the ShareData method to share data between
multiple updatable DataWindow controls and the nested reports in your
composite report. This allows you to print multiple updatable DataWindows on
a page through the composite report.

❖ To print multiple DataWindows on a page using a composite
DataWindow:

1 Build a window or form that contains DataWindow controls with the
updatable DataWindow objects.

2 Define a composite report that has reports corresponding to each of the
DataWindows in the window or form that you want to print. Be sure to
name each of the nested reports in the composite report.

Naming the nested report
To use GetChild on a nested report, the nested report must have a name.
To name a nested report in the DataWindow painter, double-click it in the
workspace and enter a name in the Name box on the General property
page.

3 Add the composite report to the window or form (it can be hidden).

4 In your application, do the following:

a Retrieve data into the updatable DataWindow controls.

b Use GetChild to get a reference to the nested reports in the composite
report.

c Use ShareData to share data between the updatable DataWindow
objects and the nested reports.

d When appropriate, print the composite report.

The report contains the information from the updatable DataWindow
objects.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 51

Re-retrieving data
Each time you retrieve data into the composite report, all references (handles)
to nested reports become invalid, and data sharing with the nested reports is
terminated. Therefore, be sure to call GetChild and ShareData each time after
retrieving data.

Creating and
destroying nested
reports during
execution

You can create and destroy nested reports in a DataWindow object dynamically
during execution using the same technique you use to create and destroy other
controls in a DataWindow object.

Creating nested reports To create a nested report, use the CREATE
keyword with the Modify method. Supply the appropriate values for the nested
report's properties.

Viewing syntax for creating a nested report
The easiest way to see the syntax for creating a nested report dynamically is to
export the syntax of an existing DataWindow object that contains a nested
report. The export file contains the syntax you need.

For more information about exporting syntax in the Library painter, see the
PowerBuilder Users Guide.

When creating a nested report, you need to re-retrieve data to see the report. In
a composite report, you can either retrieve data for the whole report or use
GetChild to get a reference to the new nested report and retrieve its data
directly. For nested reports in other reports, you need to retrieve data for the
base report.

Destroying nested reports To destroy a nested report, use the DESTROY
keyword with the Modify method. The nested report disappears immediately.

For more about creating and destroying controls in a DataWindow object or
report, see Chapter 3, “Dynamically Changing DataWindow Objects.”

For a list of properties of nested reports, see the DataWindow Reference.

Using crosstabs

52 PowerBuilder Classic

Using crosstabs
To perform certain kinds of data analysis, you might want to design
DataWindow objects in the Crosstab presentation style. The basic steps for
using crosstabs in an application are the same ones you follow for the other
DataWindow types, but there are some additional topics concerning crosstabs
that you should know about.

To learn about designing crosstabs, see the PowerBuilder Users Guide.

Viewing the underlying data
If you want users to be able to see the raw data as well as the cross-tabulated
data, you can do one of two things:

• Place two DataWindow controls on the window or form: one that is
associated with the crosstab and one that is associated with a DataWindow
object that displays the retrieved rows.

• Create a composite DataWindow object that contains two reports: one that
shows the raw data and one that shows the crosstab.

Do not share data between the two DataWindow objects or reports
They have the same SQL SELECT data definition, but they have different
result sets.

For more about composite DataWindows, see the PowerBuilder Users Guide.

Letting users redefine the crosstab

Availability
This technique is available in PowerBuilder and the Web ActiveX.

With the CrosstabDialog method, you can allow users to redefine which
columns in the retrieved data are associated with the crosstab’s columns, rows,
and values during execution.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 53

The CrossTabDialog method displays the Crosstab Definition dialog box for
the user to define the data for the crosstab's columns, rows, and values (using
the same techniques you use in the DataWindow painter). When the user clicks
OK in the dialog box, the DataWindow control rebuilds the crosstab with the
new specifications.

Displaying
informational
messages

You can display informational messages when a crosstab is rebuilt during
execution as a result of the call to CrosstabDialog. (The messages are the same
ones you see when building a crosstab in the DataWindow painter, such as
Retrieving data and Building crosstab.) You might want to do this if
you are working with a very large number of rows and rebuilding the crosstab
could take a long time.

PowerBuilder In PowerBuilder, you use a user event to display the crosstab’s
informational messages.

❖ To display informational messages when a crosstab is rebuilt:

1 Define a user event for the DataWindow control containing the crosstab.
Associate it with the event ID pbm_dwnmessagetext.

2 In the script for the user event, get the value of the text argument (which
holds the message that PowerBuilder would display when building the
crosstab in the DataWindow painter) and display it to the user.

Web ActiveX In a Web page, you use the DataWindow’s onMessageText
event to handle informational messages.

❖ To display informational messages when a crosstab is rebuilt:

1 Edit the code for the onMessageText event of your DataWindow control.

2 In that event, get the value of the Text argument and display it to the user.

Examples PowerBuilder In the example, code for the DataWindow control’s user event
for pbm_dwnmessagetext displays informational messages in a static text
control in the window containing the crosstab:

st_message.Text = text

With that script in place, after CrosstabDialog has been called and the user has
redefined the crosstab, as the crosstab is being rebuilt, your application
dynamically displays the informational messages in the static text control
st_message. (You might want to reset st_message.Text to be the empty string
in the line following the CrosstabDialog call.)

Using crosstabs

54 PowerBuilder Classic

In this example, code in the user event for pbm_dwnmessagetext displays
informational messages as MicroHelp in an MDI application (w_crosstab is an
MDI frame window):

w_crosstab.SetMicroHelp(text)

The informational messages are displayed in the MDI application's MicroHelp
as the crosstab is rebuilt.

For more information For more about user events in PowerBuilder, see the PowerBuilder Users
Guide.

For more about the CrosstabDialog method and MessageText event, see the
DataWindow Reference.

Modifying the crosstab's properties during execution
As with other DataWindow objects, you can modify the properties of a crosstab
during execution using the Modify method. Some changes require the
DataWindow control to dynamically rebuild the crosstab; others do not. (If the
original crosstab was static, it becomes a dynamic crosstab when it is rebuilt.)

Availability
You can use this technique in all DataWindow environments.

Changes that do not
force a rebuild

You can change the following properties without forcing the DataWindow
control to rebuild the crosstab:

Table 2-11: Properties you can change on a crosstab DataWindow
without forcing a rebuild

Properties Objects

Alignment Column, Compute, Text

Background Column, Compute, Line, Oval, Rectangle,
RoundRectangle, Text

Border Column, Compute, Text

Brush Line, Oval, Rectangle, RoundRectangle

Color Column, Compute, Text

Edit styles (dddw, ddlb, checkbox,
edit, editmask, radiobutton,
richtext)

Column

Font Column, Compute, Text

Format Column, Compute

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 55

Changes that force a
rebuild

If you change any other properties, the DataWindow control rebuilds the
structure of the crosstab when Modify is called. You should combine all needed
expressions into one Modify call so that the DataWindow control has to rebuild
the crosstab only once.

Default values for
properties

For computations derived from existing columns, the DataWindow control by
default uses the properties from the existing columns. For completely new
columns, properties (such as font, color, and so on) default to the first column
of the preexisting crosstab. Properties for text in headers default to the
properties of the first text control in the preexisting crosstab’s first header line.

For more about the Modify method, see Chapter 3, “Dynamically Changing
DataWindow Objects.” For details on the DataWindow object properties, see
the DataWindow Reference.

Generating HTML
You can use the data in a DataWindow object to create HyperText Markup
Language (HTML) syntax. Once the HTML has been created, you can display
it in a Web browser.

Web DataWindow not described here
This section does not include description of the Web DataWindow. The Web
DataWindow uses DataWindow object properties that are described in detail in
the DataWindow Reference. For overview information, see the “Web
DataWindow properties” on page 124.

Techniques you can
use

You can use any of several techniques to generate HTML from a DataWindow
object.

In a painter In both the DataWindow painter and the Output view in the
Database painter, you can save retrieved data in HTML format. To do this in
the DataWindow painter, select File>Save Rows As from the menu. In the
Database painter, open the Output view, then select Rows>Save Rows As from
the menu. In both painters, specify HTML Table as the format for the file.

Pen Line, Oval, Rectangle, RoundRectangle

Pointer Column, Compute, Line, Oval, Rectangle,
RoundRectangle, Text

Properties Objects

Generating HTML

56 PowerBuilder Classic

In your application code You can obtain an HTML string of the
DataWindow presentation and data from the Data.HTMLTable property. You
can save the string in a variable and modify the HTML with string
manipulation operations. In PowerBuilder, you can also use the FileOpen and
FileWrite functions to save the HTML to a file.

The HTMLTable property has its own properties which you can set to control
the HTML attributes and style sheet associated with the Table HTML element.

PowerBuilder only In PowerBuilder, there are two more techniques
available to you. You can:

• Call the SaveAs method to save the contents of a DataWindow directly to
a file on disk. To save the data in HTML format, you need to specify
HTMLTable as the file type when you call SaveAs.

• Call the GenerateHTMLForm method to create an HTML form from data
contained in a DataWindow control or DataStore whose DataWindow
object uses the Freeform or Tabular presentation style.

Choosing presentation
styles

Some DataWindow presentation styles translate better into HTML than others.
The following presentation styles produce good results:

Tabular
Group
TreeView
Freeform
Crosstab
Grid

The Composite, Graph, RichText, and OLE 2.0 presentation styles produce
HTML output that is based on the result only, and not on the presentation style.
DataWindows that have overlapping controls might not produce the expected
results. Nested reports are ignored; they are not included in the generated
HTML.

Example This example illustrates how you might use DataWindow-generated HTML in
an application.

The key line of code gets the HTML from the DataWindow by referring to its
HTMLTable property. Variations for each environment are shown below. In
PowerBuilder, you can use the Describe method or a property expression. The
Web ActiveX has to use Describe.

PowerBuilder

ls_htmlstring = dw_1.Object.DataWindow.Data.HTMLTable

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 57

Web ActiveX

str_html = dw_1.Describe("DataWindow.Data.HTMLTable");

The complete example that follows is implemented in PowerBuilder.

The window below displays customer data in a tabular DataWindow object. By
pressing the Browse button, the user can translate the contents of the
DataWindow object into HTML format and invoke a Web browser to view the
HTML output. By pressing the Select Browser button, the user can tell the
application which Web browser to use:

Script for the Select Browser button The script for the Select Browser
button displays a dialog box where the user can select an executable file for a
Web browser. The path to the executable is stored in is_Browser, which is an
instance variable defined on the window:

String ls_BrowserName
Integer li_Result

// Open the dialog to select a browser.
li_Result = GetFileOpenName("Select Browser", &

is_Browser, ls_BrowserName, &
"exe", "Executable Files (*.EXE),*.EXE")

IF li_Result = -1 THEN
MessageBox("No Browser", "No Browser selected")

END IF

Generating HTML

58 PowerBuilder Classic

Script for the Browse button The script for the Browse button creates an
HTML string from the data in the DataWindow by assigning the
Data.HTMLTable property to a string variable. After constructing the HTML
string, the script adds a header to the HTML string. Then the script saves the
HTML to a file and runs the Web browser to display the output.

String ls_HTML, ls_FileName, ls_BrowserPath
Integer li_FileNumber, li_Bytes,
Integer li_RunResult, li_Result

// Generate the HTML.
ls_HTML = dw_1.Object.DataWindow.Data.HTMLTable
IF IsNull(ls_HTML) Or Len(ls_HTML) <= 1 THEN

MessageBox ("Error", "Error generating HTML!")
Return

ELSE
ls_HTML ="<H1>HTML Generated From a DataWindow"&

+ "</H1><P>" + ls_HTML
END IF

//Create the file.
ls_FileName = "custlist.htm"
li_FileNumber = FileOpen(ls_FileName, StreamMode!, &

Write!, LockReadWrite!, Replace!)

IF (li_FileNumber >= 0) THEN
li_Bytes = FileWrite(li_FileNumber, ls_HTML)
FileClose(li_FileNumber)
IF li_Bytes = Len(ls_HTML) THEN

// Run Browser with the HTML file.
IF Not FileExists(is_Browser) THEN

cb_selbrowser.Trigger Event Clicked()
IF NOT FileExists(is_Browser) THEN

MessageBox("Select Browser", "Could &
not find the browser.")

RETURN
END IF

END IF
li_RunResult = Run(is_Browser + " file:///"+&

ls_FileName)
IF li_RunResult = -1 THEN

MessageBox("Error", "Error running
browser!")

END IF
ELSE

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 59

MessageBox ("Write Error", &
"File Write Unsuccessful")

END IF
ELSE

MessageBox ("File Error", "Could not open file")
END IF

Controlling display
You control table display and style sheet usage through the
HTMLTable.GenerateCSS property. The HTMLTable.GenerateCSS property
controls the downward compatibility of the HTML found in the HTMLTable
property. If HTMLTable.GenerateCSS is FALSE, formatting (style sheet
references) is not referenced in the HTMLTable property; if it is TRUE, the
HTMLTable property includes elements that reference the cascading style
sheet saved in HTML.StyleSheet.

This screen shows an HTML table in a browser using custom display features:

HTMLTable.Generate
CSS is TRUE

If the HTMLTable.GenerateCSS property is TRUE, the HTMLTable element
in the HTMLTable property uses additional properties to customize table
display. For example, suppose you specify the following properties:

HTMLTable.NoWrap=Yes
HTMLTable.Border=5
HTMLTable.Width=5
HTMLTable.CellPadding=2
HTMLTable.CellSpacing=2

Generating HTML

60 PowerBuilder Classic

Describe, Modify, and dot notation
You can access these properties by using the Modify and Describe PowerScript
methods or by using dot notation.

The HTML syntax in the HTMLTable property includes table formatting
information and class references for use with the style sheet:

<table cellspacing=2 cellpadding=2 border=5 width=5>
<tr>
<td CLASS=0 ALIGN=center>Employee ID
<td CLASS=0 ALIGN=center>First Name
<td CLASS=0 ALIGN=center>Last Name
<tr>
<td CLASS=6 ALIGN=right>102
<td CLASS=7>Fran
<td CLASS=7>Whitney
</table>

HTMLTable.Generate
CSS is FALSE

If HTMLTable.GenerateCSS is FALSE, the DataWindow does not use
HTMLTable properties to create the Table element. For example, if
GenerateCSS is FALSE, the HTML syntax for the HTMLTable property might
look like this:

<table>
<tr>
<th ALIGN=center>Employee ID
<th ALIGN=center>First Name
<th ALIGN=center>Last Name
<tr>
<td ALIGN=right>102
<td>Fran
<td>Whitney
</table>

Merging HTMLTable
with the style sheet

The HTML syntax contained in the HTMLTable property is incomplete: it is
not wrapped in <HTML></HTML> elements and does not contain the style
sheet. You can write code in your application to build a string representing a
complete HTML page.

PowerBuilder example This example sets DataWindow properties, creates
an HTML string, and returns it to the browser:

String ls_html
ds_1.Modify &
("datawindow.HTMLTable.GenerateCSS='yes'")
ds_1.Modify("datawindow.HTMLTable.NoWrap='yes'")
ds_1.Modify("datawindow.HTMLTable.width=5")

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 61

ds_1.Modify("datawindow.HTMLTable.border=5")
ds_1.Modify("datawindow.HTMLTable.CellSpacing=2")
ds_1.Modify("datawindow.HTMLTable.CellPadding=2")
ls_html = "<HTML>"
ls_html += &

ds_1.Object.datawindow.HTMLTable.StyleSheet
ls_html += "<BODY>"
ls_html += "<H1>DataWindow with StyleSheet</H1>"
ls_html += ds_1.Object.DataWindow.data.HTMLTable
ls_html += "</BODY>"
ls_html += "</HTML>"
return ls_html

This technique provides control over HTML page content. Use this technique
as an alternative to calling the SaveAs method with the HTMLTable!
Enumeration.

Calling the SaveAs method

Availability
The SaveAs method is not available for the Web control for ActiveX.

As an alternative to creating HTML pages dynamically, you can call the
SaveAs method with the HTMLTable! Enumeration:

ds_1.SaveAs &
("C:\TEMP\HTMLTemp.htm", HTMLTable!, TRUE)

This creates an HTML file with the proper elements, including the style sheet:

<STYLE TYPE="text/css">
<!--
.2 {COLOR:#000000;BACKGROUND:#ffffff;FONT-
STYLE:normal;FONT-WEIGHT:normal;FONT:9pt "Arial",
sans-serif;TEXT-DECORATION:none}

.3{COLOR:#000000;BACKGROUND:#ffffff;FONT-
STYLE:normal;FONT-WEIGHT:normal;FONT:8pt "MS Sans
Serif", sans-serif;TEXT-DECORATION:none}

.3{COLOR:#000000;BACKGROUND:#ffffff;FONT-
STYLE:normal;FONT-WEIGHT:normal;FONT:8pt "MS Sans
Serif", sans-serif;TEXT-DECORATION:none}
-->
</STYLE>

Generating HTML

62 PowerBuilder Classic

<TABLE nowrap cellspacing=2 cellpadding=2 border=5
width=5>
<tr>

<td CLASS=2 ALIGN=right>Employee ID:
<td CLASS=3 ALIGN=right>501

<tr>
<td CLASS=2 ALIGN=right>Last Name:
<td CLASS=3>Scott

<tr>
<td CLASS=2 ALIGN=right>First Name:
<td CLASS=3>David

<tr>
<td CLASS=2 ALIGN=right>Status:
<td CLASS=3>Active

</TABLE>

Displaying DataWindow objects as HTML forms
The GenerateHTMLForm method creates HTML form syntax for
DataWindow objects. You can create an HTML form that displays a specified
number of columns for a specified number of rows. Note the following:

• You create HTML form syntax by calling the GenerateHTMLForm
method for the DataWindow control or DataStore

• The GenerateHTMLForm method creates HTML form syntax for the
detail band only

• Embedded nested DataWindows are ignored; they are omitted from the
generated HTML

Presentation styles Although the GenerateHTMLForm method generates syntax for all
presentation styles, the only styles that create usable forms are Freeform and
Tabular.

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 63

The following HTML page shows a freeform DataWindow object converted
into a form using syntax generated by the GenerateHTMLForm method:

Edit style conversion The GenerateHTMLForm method converts column edit styles into the
appropriate HTML elements:

Table 2-12: HTML elements generated for column edit styles

Generating syntax To generate HTML form syntax, you call the GenerateHTMLForm method:

instancename.GenerateHTMLForm (syntax, style, action { , startrow,
endrow, startcolumn, endcolumn { , buffer } })

The method places the Form element syntax into the syntax argument and the
HTML style sheet into the style argument, both of which are passed by
reference.

Static texts in freeform DataWindow objects
All static texts in the detail band are passed through to the generated HTML
form syntax. If you limit the number of columns to be converted using the
startcolumn and endcolumn arguments, remove the headers from the detail
band for the columns you eliminate.

Column edit style HTML element

CheckBox Input element specifying TYPE=CHECKBOX

DropDownDataWindow Select element with a single Option element

DropDownListBox Select element with one Option element for each item
in the DropDownListBox

Edit Input element specifying TYPE=TEXT

RadioButton Input element specifying TYPE=RADIO

Generating HTML

64 PowerBuilder Classic

Here is an example of the GenerateHTMLForm method:

String ls_syntax, ls_style, ls_action
String ls_html
Integer li_return
ls_action = &

"/cgi-
bin/pbcgi60.exe/myapp/uo_webtest/f_emplist"
li_return = ds_1.GenerateHTMLForm &

(ls_syntax, ls_style, ls_action)

IF li_return = -1 THEN
MessageBox("HTML", "GenerateHTMLForm failed")

ELSE
// of_MakeHTMLPage is an object method,
// described in the next section.
ls_html = this.of_MakeHTMLPage &

(ls_syntax, ls_style)
END IF

After calling the GenerateHTMLForm method, the ls_syntax variable contains
a Form element. Here is an example:

<FORM ACTION=
"/cgi-

bin/pbcgi60.exe/myapp/uo_webtest/f_emplist"
METHOD=POST>

<P>
<P>Employee ID:
<INPUT TYPE=TEXT NAME="emp_id_1" VALUE="501">

<P>Last Name:
<INPUT TYPE=TEXT NAME="emp_lname_1" MAXLENGTH=20
VALUE="Scott">

<P>First Name:
<INPUT TYPE=TEXT NAME="emp_fname_1" MAXLENGTH=20
VALUE="David">

<P>Status:
<INPUT TYPE="RADIO" NAME="status_1" CHECKED CLASS=5
>Active

<P>
<INPUT TYPE="RADIO" NAME="status_1" CLASS=5 >
Terminated

CHAPTER 2 Using DataWindow Objects

DataWindow Programmers Guide 65

<P>
<INPUT TYPE="RADIO" NAME="status_1" CLASS=5 >
On Leave

<P>
<P>

<INPUT TYPE=SUBMIT NAME=SAMPLE VALUE="OK">
</FORM>

The ls_stylesheet variable from the previous example contains a Style element,
an example of which is shown below:

<STYLE TYPE="text/css">
<!--
.2{COLOR:#000000;BACKGROUND:#ffffff;FONT-
STYLE:normal;FONT-WEIGHT:normal;FONT:9pt "Arial",
sans-serif;TEXT-DECORATION:none}

.3{COLOR:#000000;BACKGROUND:#ffffff;FONT-
STYLE:normal;FONT-WEIGHT:normal;FONT:8pt "MS Sans
Serif", sans-serif;TEXT-DECORATION:none}

.5{COLOR:#000000;BACKGROUND:#ffffff;FONT-
STYLE:normal;FONT-WEIGHT:normal;FONT:8pt "MS Sans
Serif", sans-serif;TEXT-DECORATION:none}
-->
</STYLE>

Unique element names
The GenerateHTMLForm method creates unique names for all elements in the
form (even when displaying multiple rows in one form) by adding a
_nextsequentialnumber suffix.

Creating an HTML
page

To use the syntax and style sheet returned by the GenerateHTMLForm method,
you must write code to merge them into an HTML page. A complete HTML
page requires <HTML> and <BODY> elements to contain the style sheet and
syntax.

One way to do this is to create a global or object function that returns a
complete HTML page, taking as arguments the Form and Style elements
generated by the GenerateHTMLForm method. Such a function might contain
the following code:

// Function Name: of_MakeHTMLPage
// Arguments: String as_syntax, String as_style
// Returns: String

Generating HTML

66 PowerBuilder Classic

//***********************************
String ls_html
IF as_syntax = "" THEN

RETURN ""
END IF

IF as_style = "" THEN
RETURN ""

END IF

ls_html = "<HTML>"
ls_html += as_style
ls_html += "<BODY>"
ls_html += "<H1>Employee Information</H1>"
ls_html += as_syntax
ls_html += "</BODY></HTML>"
RETURN ls_html

DataWindow Programmers Guide 67

C H A P T E R 3 Dynamically Changing
DataWindow Objects

About this chapter This chapter describes how to modify and create DataWindow objects
during execution.

Contents

About dynamic DataWindow processing
Basics DataWindow objects and all entities in them (such as columns, text,

graphs, and pictures) each have a set of properties. You can look at and
change the values of these properties during execution using DataWindow
methods or property expressions. You can also create DataWindow
objects during execution.

A DataWindow object that is modified or created during execution is
called a dynamic DataWindow object.

About property expressions
Property expressions are available in PowerBuilder and the Web
DataWindow. Property expressions use dot notation to address properties
directly and are evaluated on the server component of the Web
DataWindow.

For the Web ActiveX, property expressions are not available; use the
Describe and Modify methods.

Topic Page

About dynamic DataWindow processing 67

Modifying a DataWindow object 68

Creating a DataWindow object 69

Providing query ability to users 72

Providing Help buttons 77

Reusing a DataWindow object 77

Modifying a DataWindow object

68 PowerBuilder Classic

What you can do Using this dynamic capability, you can allow users to change the appearance
of the DataWindow object (for example, change the color and font of the text)
or create ad hoc queries by redefining the data source. After you create a
dynamic DataWindow object and the user is satisfied with the way it looks and
the data that is displayed, the user can print the contents as a report.

Modifying a DataWindow object
During execution, you can modify the appearance and behavior of a
DataWindow object by doing one of the following:

• Changing the values of its properties

• Adding or deleting controls from the DataWindow object

Changing property
values

You can use the Modify method or a property expression to set property values.
This lets you change settings that you ordinarily specify during development in
the DataWindow painter.

Before changing a property, you might want to get the current value and save
it in a variable so that you can restore the original value later. To obtain
information about the current properties of a DataWindow object or a control
in a DataWindow object, use the Describe method or a property expression.

Using expressions in
property values

With some DataWindow properties, you can assign a value through an
expression that the DataWindow evaluates during execution, instead of having
to assign a value directly. For example, the following statement displays a
salary in red if it is less than $12,000, and in black otherwise:

dw_1.Modify("salary.Color &
= '0 ~t if(salary <12000,255,0)' ")

For more information The syntax is different for expressions in code versus expressions specified in
the DataWindow painter. For the correct syntax and information about which
properties can be assigned expressions, see the DataWindow Reference.

For more information about property expressions and DataWindow object
properties and examples of using Describe and Modify methods, see the
DataWindow Reference.

CHAPTER 3 Dynamically Changing DataWindow Objects

DataWindow Programmers Guide 69

Adding and deleting
controls within the
DataWindow object

You can also use the Modify method to:

• Create new objects in a DataWindow object

This lets you add DataWindow controls (such as text, bitmaps, and graphic
controls) dynamically to the DataWindow object.

For how to get a good idea of the correct Create syntax, see “Specifying
the DataWindow object syntax” on page 70.

• Destroy controls in a DataWindow object

This lets you dynamically remove controls you no longer need.

PowerBuilder tool for
easier coding of
DataWindow syntax

PowerBuilder only Included with PowerBuilder is DW Syntax, a tool that
makes it easy to build the correct syntax for property expressions, Describe,
Modify, and SyntaxFromSQL statements. You click buttons to specify which
properties of a DataWindow you want to use, and DW Syntax automatically
builds the appropriate syntax, which you can copy and paste into your
application code.

To access DW Syntax, select File>New and select the Tool tab.

Viewing DataWindow
object properties in
PowerBuilder

PowerBuilder only You can use the PowerBuilder Browser to get a list of
DataWindow properties: on the DataWindow tab, select a DataWindow object
in the left pane and Properties in the right pane. To see the properties for a
control in a DataWindow object, double-click the DataWindow object name,
then select the control.

Creating a DataWindow object
This section describes how to create a DataWindow object by calling the
Create method in an application.

DataWindow painter
You should use the techniques described here for creating a DataWindow from
syntax only if you cannot accomplish what you need to in the DataWindow
painter. The usual way of creating DataWindow objects is to use the
DataWindow painter.

To learn about creating DataWindow objects in the DataWindow painter, see
the PowerBuilder Users Guide.

Creating a DataWindow object

70 PowerBuilder Classic

You use the Create method to create a DataWindow object dynamically during
execution. Create generates a DataWindow object using source code that you
specify. It replaces the DataWindow object currently in the specified
DataWindow control with the new DataWindow object.

Resetting the transaction object
The Create method destroys the association between the DataWindow control
and the transaction object. As a result, you need to reset the control’s
transaction object by calling the SetTransObject or SetTrans method after you
call Create.

Web ActiveX If you used a connection technique that did not require you to
call the SetTransObject or SetTrans method, you do not need to call it after
Create either.

To learn how to associate a DataWindow control with a transaction object, see
Chapter 2, “Using DataWindow Objects.”

Specifying the
DataWindow object
syntax

There are several ways to specify or generate the syntax required for the Create
method. Not all the techniques are available in all environments.

In PowerBuilder, you can:

• Use the SyntaxFromSQL method of the transaction object

• Use the LibraryExport PowerScript function

In all environments, you can:

• Use the DataWindow.Syntax property of the DataWindow object

• Create the syntax yourself

Using SyntaxFromSQL You are likely to use SyntaxFromSQL to create the
syntax for most dynamic DataWindow objects. If you use SyntaxFromSQL, all
you have to do is provide the SELECT statement and the presentation style.

In PowerBuilder, SyntaxFromSQL is a method of the transaction object. The
transaction object must be connected when you call the method.

Setting USERID for native drivers
In PowerBuilder, table names are automatically qualified with the owner’s
name if you are using a native driver. To obtain the same results in an
application, you must set the USERID property in the transaction object so that
the table name is properly qualified and extended attributes can be looked up.

CHAPTER 3 Dynamically Changing DataWindow Objects

DataWindow Programmers Guide 71

SyntaxFromSQL has three required arguments:

• A string containing the SELECT statement for the DataWindow object

• A string identifying the presentation style and other settings

• The name of a string you want to fill with any error messages that might
result

SyntaxFromSQL returns the complete syntax for a DataWindow object that is
built using the specified SELECT statement.

Using SyntaxFromSQL with Adaptive Server Enterprise
If your DBMS is Adaptive Server Enterprise and you call SyntaxFromSQL,
PowerBuilder must determine whether the tables are updatable through a
unique index. This is possible only if you set AutoCommit to TRUE before
calling SyntaxFromSQL, as shown below:

sqlca.autocommit=TRUE
sqlca.syntaxfromsql (sqlstmt, presentation, err)
sqlca.autocommit=FALSE

Using LibraryExport in PowerBuilder You can use the LibraryExport
PowerScript function to export the syntax for a DataWindow object and store
the syntax in a string.

You can then use the exported syntax (or a modification of the syntax) in Create
to create a DataWindow object.

Using the DataWindow.Syntax property You can obtain the source code of
an existing DataWindow object to use as a model or for making minor changes
to the syntax. Many values in the source code syntax correspond to properties
of the DataWindow object.

This JavaScript example gets the syntax of the DataWindow object in the
DataWindow control, dw_1, and displays it in the text box control,
textb_dw_syntax :

var dwSyntax;
dwSyntax = dw_1.Describe("datawindow.syntax");
textb_dw_syntax.value = dwSyntax;

Creating the syntax yourself You need to create the syntax yourself to use
some of the advanced dynamic DataWindow features, such as creating a group
break.

Providing query ability to users

72 PowerBuilder Classic

The DataWindow source code syntax that you need to supply to the Create
method can be very complex. To see examples of DataWindow object syntax,
go to the Library painter and export a DataWindow object to a text file, then
view the file in a text editor.

For more information on Create and Describe methods as well as DataWindow
object properties and syntax, see the DataWindow Reference.

Providing query ability to users
When you call the Retrieve method for a DataWindow control, the rows
specified in the DataWindow object’s SELECT statement are retrieved. You
can give users the ability to further specify which rows are retrieved during
execution by putting the DataWindow into query mode. To do that, you use the
Modify method or a property expression (the examples here use Modify).

Limitations
You cannot use query mode in a DataWindow object that contains the UNION
keyword or nested SELECT statements.

How query mode works
Once the DataWindow is in query mode, users can specify selection criteria
using query by example—just as you do when you use Quick Select to define
a data source. When criteria have been defined, they are added to the WHERE
clause of the SELECT statement the next time data is retrieved.

The following three figures show what happens when query mode is used.

CHAPTER 3 Dynamically Changing DataWindow Objects

DataWindow Programmers Guide 73

First, data is retrieved into the DataWindow. There are 36 rows:

Next, query mode is turned on. The retrieved data disappears and users are
presented with empty rows where they can specify selection criteria. Here the
user wants to retrieve rows where Quarter = Q1 and Units > 15:

Next, Retrieve is called and query mode is turned off. The DataWindow control
adds the criteria to the SELECT statement, retrieves the three rows that meet
the criteria, and displays them to the user:

You can turn query mode back on, allow the user to revise the selection criteria,
and retrieve again.

Providing query ability to users

74 PowerBuilder Classic

Using query mode

❖ To provide query mode to users during execution:

1 Turn query mode on by coding.

In PowerBuilder:

dw_1.Modify("datawindow.querymode=yes")

In JavaScript:

dw_1.Modify("datawindow.querymode=yes");

All data displayed in the DataWindow is blanked out, though it is still in
the DataWindow control’s Primary buffer, and the user can enter selection
criteria where the data had been.

2 The user specifies selection criteria in the DataWindow, just as you do
when using Quick Select to define a DataWindow object’s data source.

Criteria entered in one row are ANDed together; criteria in different rows
are ORed. Valid operators are =, <>, <, >, <=, >=, LIKE, IN, AND, and
OR.

For more information about Quick Select, see the PowerBuilder Users
Guide.

3 Call AcceptText and Retrieve, then turn off query mode to display the
newly retrieved rows.

In PowerBuilder:

dw_1.AcceptText()
dw_1.Modify("datawindow.querymode=no")
dw_1.Retrieve()

In JavaScript:

dw_1.AcceptText();
dw_1.Modify("datawindow.querymode=no");
dw_1.Retrieve();

The DataWindow control adds the newly defined selection criteria to the
WHERE clause of the SELECT statement, then retrieves and displays the
specified rows.

CHAPTER 3 Dynamically Changing DataWindow Objects

DataWindow Programmers Guide 75

Revised SELECT statement
You can look at the revised SELECT statement that is sent to the DBMS when
data is retrieved with criteria. To do so, look at the sqlsyntax argument in the
SQLPreview event of the DataWindow control.

How the criteria affect
the SELECT
statement

Criteria specified by the user are added to the SELECT statement that
originally defined the DataWindow object.

For example, if the original SELECT statement was:

SELECT printer.rep, printer.quarter, printer.product,
printer.units
FROM printer
WHERE printer.units < 70

and the following criteria are specified:

the new SELECT statement is:

SELECT printer.rep, printer.quarter, printer.product,
printer.units
FROM printer
WHERE printer.units < 70
AND (printer.quarter = 'Q1'
AND printer.product = 'Stellar'
OR printer.quarter = 'Q2')

Clearing selection
criteria

To clear the selection criteria, Use the QueryClear property.

In PowerBuilder:

dw_1.Modify("datawindow.queryclear=yes")

In JavaScript:

dw_1.Modify("datawindow.queryclear=yes");

Providing query ability to users

76 PowerBuilder Classic

Sorting in query mode You can allow users to sort rows in a DataWindow while specifying criteria in
query mode using the QuerySort property. The following statement makes the
first row in the DataWindow dedicated to sort criteria (just as in Quick Select
in the DataWindow wizard).

In PowerBuilder:

dw_1.Modify("datawindow.querysort=yes")

In JavaScript:

dw_1.Modify("datawindow.querysort=yes");

Overriding column
properties during
query mode

By default, query mode uses edit styles and other definitions of the column
(such as the number of allowable characters). If you want to override these
properties during query mode and provide a standard edit control for the
column, use the Criteria.Override_Edit property for each column.

In PowerBuilder:

dw_1.Modify("mycolumn.criteria.override_edit=yes")

In JavaScript:

dw_1.Modify("mycolumn.criteria.override_edit=yes");

You can also specify this in the DataWindow painter by checking Override Edit
on the General property page for the column. With properties overridden for
criteria, users can specify any number of characters in a cell (they are not
constrained by the number of characters allowed in the column in the
database).

Forcing users to
specify criteria for a
column

You can force users to specify criteria for a column during query mode by
coding the following:

In PowerBuilder:

dw_1.Modify("mycolumn.criteria.required=yes")

In JavaScript:

dw_1.Modify("mycolumn.criteria.required=yes");

You can also specify this in the DataWindow painter by checking Equality
Required on the General property page for the column. Doing this ensures that
the user specifies criteria for the column and that the criteria for the column use
= rather than other operators, such as < or >=.

CHAPTER 3 Dynamically Changing DataWindow Objects

DataWindow Programmers Guide 77

Providing Help buttons
A DataWindow object has properties related to online Help. By initializing the
DataWindow.Help.File property to the name of a Help file, you can display
Help command buttons on dialog boxes that display for a DataWindow during
execution.

For complete information on the Help-related DataWindow object properties,
see the DataWindow Reference.

Reusing a DataWindow object

PowerBuilder only
This technique uses PowerScript methods, which are not available in other
DataWindow environments.

You can reuse a DataWindow object by retrieving its syntax from the library it
is stored in, then using the syntax to create a DataWindow object dynamically
in a DataWindow control.

Here is a typical way to accomplish this in an application. Use:

• The LibraryDirectory function to obtain a list of DataWindow objects and
other library entries in the current library

• A DropDownListBox to list the DataWindow objects in the library and
then allow the user to select a DataWindow from the list

• The LibraryExport function to export the selected DataWindow object
syntax into a string variable

• The Create method to use the DataWindow syntax to create the
DataWindow object in the specified DataWindow control

• The Describe method to get the current DataWindow object syntax—for
example:

string dwSyntax
dwSyntax = dw_1.Describe("datawindow.syntax")

• The Modify method to allow the user to modify the DataWindow object

• The LibraryImport function to save the user-modified DataWindow object
in a library

Reusing a DataWindow object

78 PowerBuilder Classic

For information about the PowerScript functions, see the PowerScript
Reference. For information about the DataWindow methods Create, Describe,
and Modify, see the DataWindow Reference.

DataWindow Programmers Guide 79

C H A P T E R 4 Using DataStore Objects

About this chapter This chapter describes how to use DataStore objects in an application.

Contents

Before you begin This chapter assumes you know how to build DataWindow objects in the
DataWindow painter, as described in the PowerBuilder Users Guide.

About DataStores
A DataStore is a nonvisual DataWindow control. DataStores act just like
DataWindow controls except that they do not have many of the visual
characteristics associated with DataWindow controls. Like a DataWindow
control, a DataStore has a DataWindow object associated with it.

Availability
In PowerBuilder, a DataStore is a nonvisual object. The Web control for
ActiveX does not support DataStores.

The Web DataWindow server component uses an instance of a custom
DataStore object to hold the DataWindow definition and data. See “Using
a custom DataStore object” on page 82.

Topic Page

About DataStores 79

Working with a DataStore 82

Using a custom DataStore object 82

Accessing and manipulating data in a DataStore 84

Sharing information 86

About DataStores

80 PowerBuilder Classic

When to use a
DataStore

DataStores are useful when you need to access data but do not need the visual
presentation of a DataWindow control. DataStores allow you to:

• Perform background processing against the database without
having to hide DataWindow controls in a window

Suppose that the DataWindow object displayed in a DataWindow control
is suitable for online display but not for printing. In this case, you could
define a second DataWindow object for printing that has the same result
set description and assign this object to a DataStore. You could then share
data between the DataStore and the DataWindow control. Whenever the
user asked to print the data in the window, you could print the contents of
the DataStore.

• Hold data used to show multiple views of the same information

When a window shows multiple views of the same information, you can
use a DataStore to hold the result set. By sharing data between a DataStore
and one or more DataWindow controls, you can provide different views of
the same information without retrieving the data more than once.

• Manipulate table rows without using embedded SQL statements

In places where an application calls for row manipulation without the need
for display, you can use DataStores to handle the database processing
instead of embedded SQL statements. DataStores typically perform faster
at execution time than embedded SQL statements. Also, because the SQL
is stored with the DataWindow object when you use a DataStore, you can
easily reuse the SQL.

• Perform database access on an application server

In a multitier application, the objects in a remote server can use DataStores
to interact with the database. DataStores let you take advantage of the
computer resources provided by a server machine, removing the need to
perform database operations on each client.

DataStore methods Most of the methods and events available for DataWindows are also available
for DataStores. However, some of the methods that handle online interaction
with the user are not available. For example, DataStores support the Retrieve,
Update, InsertRow, and DeleteRow methods, but not GetClickedRow and
SetRowFocusIndicator.

CHAPTER 4 Using DataStore Objects

DataWindow Programmers Guide 81

Prompting for
information

When you are working with DataStores, you cannot use functionality that
causes a dialog box to display to prompt the user for more information. Here
are some examples of ways to overcome this restriction:

SetSort and SetFilter You can use the SetSort and SetFilter methods to
specify sort and filter criteria for a DataStore object, just as you would with a
DataWindow control. However, when you are working with a DataWindow
control, if you pass a NULL value to either SetSort or SetFilter, the
DataWindow prompts the user to enter information. When you are working
with a DataStore, you must supply a valid format when you call the method.
Moreover, you must supply a valid format when you share data between a
DataStore and a DataWindow control; you cannot pass the NULL value to the
DataWindow control rather than the DataStore.

Prompt for Criteria You can define your DataWindow objects so that the
user is prompted for retrieval criteria before the DataWindow retrieves data.
This feature works with DataWindow controls only. It is not supported with
DataStores.

SaveAs When you use the SaveAs method with a DataWindow object, you
can pass an empty string for the filename argument so that the user is prompted
for a file name to save to. If you are working with a DataStore, you must supply
the filename argument.

Prompt for Printing For DataWindow controls, you can specify that a print
setup dialog box display at execution time, either by checking the Prompt
Before Printing check box on the DataWindow object’s Print Specifications
property page, or by setting the DataWindow object’s Print.Prompt property in
a script. This is not supported with DataStores.

Retrieval arguments If you call the Retrieve method for a DataWindow
control that has a DataWindow object that expects an argument, but do not
specify the argument in the method call, the DataWindow prompts the user for
a retrieval argument. This behavior is not supported with DataStores.

DataStores have
some visual methods

Many of the methods and events that pertain to the visual presentation of the
data in a DataWindow do not apply to DataStores. However, because you can
print the contents of a DataStore and also import data into a DataStore,
DataStores have some visually oriented events and methods. For example,
DataStores support the SetBorderStyle and SetSeriesStyle methods so that you
can control the presentation of the data at print time. Similarly, DataStores
support the ItemError event, because data imported from a string or file that
does not pass the validation rules for a column triggers this event.

For a complete list of the methods and events for the DataStore object and
information about each method, see the DataWindow Reference.

Working with a DataStore

82 PowerBuilder Classic

DataStores require no
visual overhead

Unlike DataWindow controls, DataStores do not require any visual overhead
in a window. Using a DataStore is therefore more efficient than hiding a
DataWindow control in a window.

Working with a DataStore
To use a DataStore, you first need to create an instance of the DataStore object
in a script and assign the DataWindow object to the DataStore. Then, if the
DataStore is intended to retrieve data, you need to set the transaction object for
the DataStore. Once these setup steps have been performed, you can retrieve
data into the DataStore, share data with another DataStore or DataWindow
control, or perform other processing.

Examples The following script uses a DataStore to retrieve data from the database. First
it instantiates the DataStore object and assigns a DataWindow object to the
DataStore. Then it sets the transaction object and retrieves data into the
DataStore:

datastore lds_datastore
lds_datastore = CREATE datastore
lds_datastore.DataObject = "d_cust_list"
lds_datastore.SetTransObject (SQLCA)
lds_datastore.Retrieve()
/* Perform some processing on the data... */

Using a custom DataStore object
This section describes how to extend a DataStore in PowerBuilder by creating
a user object.

You might want to use a custom version of the DataStore object that performs
specialized processing. To define a custom DataStore, you use the User Object
painter. There you specify the DataWindow object for the DataStore, and you
can optionally write scripts for events or define your own methods, user events,
and instance variables.

CHAPTER 4 Using DataStore Objects

DataWindow Programmers Guide 83

Using a custom DataStore involves two procedures:

1 In the User Object painter, define and save a standard class user object
inherited from the built-in DataStore object.

2 Use the custom DataStore in your PowerBuilder application.

Once you have defined a custom DataStore in the User Object painter, you can
write code that uses the user object to perform the processing you want.

For instructions on using the User Object painter in PowerBuilder, see the
PowerBuilder Users Guide.

❖ To define the standard class user object:

1 Select Standard Class User Object on the PBObjects tab in the New dialog
box.

2 Select datastore as the built-in system type that you want your user object
to inherit from, and click OK.

The User Object painter workspace displays so that you can define the
custom object.

3 Specify the name of the DataWindow object in the DataObject box in the
Properties view and click OK.

4 Customize the DataStore by scripting the events for the object, or by
defining methods, user events, and instance variables.

5 Save the object.

❖ To use the user object in your application:

1 Select the object or control for which you want to write a script.

2 Open the Script view and select the event for which you want to write the
script.

3 Write code that uses the user object to do the necessary processing.

Here is a simple code example that shows how to use a custom DataStore
to retrieve data from the database. First it instantiates the custom
DataStore object, then it sets the transaction object and retrieves data into
the DataStore:

uo_cust_dstore lds_cust_dstore
lds_cust_dstore = CREATE uo_cust_dstore
lds_cust_dstore.SetTransObject (SQLCA)
lds_cust_dstore.Retrieve()
/* Perform some processing on the data... */

Accessing and manipulating data in a DataStore

84 PowerBuilder Classic

Notice that this script does not assign the DataWindow object to the
DataStore. This is because the DataWindow object is specified in the user
object definition.

Changing the DataWindow object at execution time
When you associate a DataWindow object with a DataStore in the User
Object painter, you are setting the initial value of the DataStore’s
DataObject property. During execution, you can change the DataWindow
object for the DataStore by changing the value of the DataObject property.

4 Compile the script and save your changes.

Accessing and manipulating data in a DataStore
To access data using a DataStore, you need to read the data from the data source
into the DataStore.

If the data source is a
database

If the data for the DataStore is coming from a database (that is, the data source
was defined as anything but External in the DataWindow painter), you need to
communicate with the database to get the data. The steps you perform to
communicate with the database are the same steps you use for a DataWindow
control.

For more information about communicating with the database, see “Accessing
the database” on page 21.

If the data source is
not a database

If the data for the DataWindow object is not coming from a database (that is,
the data source was defined as External in the DataWindow painter), you can
use the following methods to import data into the DataStore:

ImportClipboard
ImportFile
ImportString

You can also get data into the DataStore by using a DataWindow data
expression, or by using the SetItem method.

For more information on accessing data in a DataStore, see the DataWindow
Reference.

CHAPTER 4 Using DataStore Objects

DataWindow Programmers Guide 85

About the DataStore
buffers

Like a DataWindow control, a DataStore uses three buffers to manage data:

Table 4-1: DataStore buffers

About the Edit control The DataStore object has an Edit control. However, the Edit control for a
DataStore behaves in a slightly different manner from the Edit control for a
DataWindow. The Edit control for a DataWindow keeps track of text entered
by the user in the current cell (row and column); the Edit control for a
DataStore is used to manage data imported from an external source, such as the
clipboard or a file. The text in the Edit control for a DataStore cannot be
changed directly by the user. It must be manipulated programmatically.

Programming with
DataStores

There are many methods for manipulating DataStore objects. These are some
of the more commonly used:

Table 4-2: Common methods in DataStore objects

For information about DataStore methods, see the DataWindow Reference.

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows that are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or in a script

Method Purpose

DeleteRow Deletes the specified row from the DataStore.

Filter Filters rows in the DataStore based on the current filter criteria.

InsertRow Inserts a new row.

Print Sends the contents of the DataStore to the current printer.

Reset Clears all rows in the DataStore.

Retrieve Retrieves rows from the database.

RowsCopy Copies rows from one DataStore to another DataStore or
DataWindow control.

RowsMove Moves rows from one DataStore to another DataStore or
DataWindow control.

ShareData Shares data among different DataStores or DataWindow controls.
See “Sharing information” on page 86.

Sort Sorts the rows of the DataStore based on the current sort criteria.

Update Sends to the database all inserts, changes, and deletions that have
been made since the last Update.

Sharing information

86 PowerBuilder Classic

Dynamic DataWindow objects The methods in the table above manipulate
data in the DataStore but do not change the definition of the underlying
DataWindow object. In addition, you can use the Modify and Describe
methods to access and manipulate the definition of a DataWindow object.
Using these methods, you can change the DataWindow object during
execution. For example, you can change the appearance of a DataWindow or
allow your user to create ad hoc reports.

For more information, see Chapter 3, “Dynamically Changing DataWindow
Objects.”

Property and data expressions You can use the same property and data
expressions as for the DataWindow control. For information, see the
DataWindow Reference.

Using DataStore properties and events This chapter mentions only a few
of the properties and events that you can use to manipulate DataStores. For
more information about DataStore properties and events, see the DataWindow
Reference.

Sharing information
The ShareData method allows you to share a result set among two different
DataStores or DataWindow controls. When you share information, you remove
the need to retrieve the same data multiple times.

The ShareData method shares data retrieved by one DataWindow control or
DataStore (called the primary DataWindow) with another DataWindow control
or DataStore (the secondary DataWindow).

Result set
descriptions must
match

When you share data, the result set descriptions for the DataWindow objects
must be the same. However, the SELECT statements can be different. For
example, you could use the ShareData method to share data between
DataWindow objects that have the following SELECT statements (because the
result set descriptions are the same):

SELECT dept_id from dept

SELECT dept_id from dept where dept_id = 200

SELECT dept_id from employee

CHAPTER 4 Using DataStore Objects

DataWindow Programmers Guide 87

You can also share data between two DataWindow objects where the source of
one is a database and the source of the other is external. As long as the lists of
columns and their datatypes match, you can share the data.

What is shared? When you use the ShareData method, the following information is shared:

Primary buffer
Delete buffer
Filter buffer
Sort order

ShareData does not share the formatting characteristics of the DataWindow
objects. That means you can use ShareData to apply different presentations to
the same result set.

When you alter the
result set

If you perform an operation that affects the result set for either the primary or
the secondary DataWindow, the change affects both of the objects sharing the
data. Operations that alter the buffers or the sort order of the secondary
DataWindows are rerouted to the primary DataWindow. For example, if you
call the Update method for the secondary DataWindow, the update operation is
applied to the primary DataWindow also.

Turning off sharing
data

To turn off the sharing of data, you use the ShareDataOff method. When you
call ShareDataOff for a primary DataWindow, any secondary DataWindows
are disassociated and no longer contain data. When you call ShareDataOff for
a secondary DataWindow, that DataWindow no longer contains data, but the
primary DataWindow and other secondary DataWindows are not affected.

In most cases you do not need to turn off sharing, because the sharing of data
is turned off automatically when a window is closed and any DataWindow
controls (or DataStores) associated with the window are destroyed.

Crosstabs You cannot share data with a DataWindow object that has the Crosstab
presentation style.

Sharing information

88 PowerBuilder Classic

Example: printing data from a DataStore
Suppose you have a window called w_employees that allows users to retrieve,
update, and print employee data retrieved from the database:

The DataWindow object displayed in the DataWindow control is suitable for
online display but not for printing. In this case, you could define a second
DataWindow object for printing that has the same result set description as the
object used for display and assign the second object to a DataStore. You could
then share data between the DataStore and the DataWindow control. Whenever
the user asked to print the data in the window, you could print the contents of
the DataStore.

When the window or
form opens

The code you write begins by establishing the hand pointer as the current row
indicator for the dw_employees DataWindow control. Then the script sets the
transaction object for dw_employees and issues a Retrieve method to retrieve
some data. After retrieving data, the script creates a DataStore using the
instance variable or data member ids_datastore, and assigns the DataWindow
object d_employees to the DataStore. The final statement of the script shares
the result set for the dw_employees DataWindow control with the DataStore.

This code is for the window’s Open event:

dw_employees.SetRowFocusIndicator(Hand!)
dw_employees.SetTransObject(SQLCA)
dw_employees.Retrieve()

ids_datastore = CREATE datastore
ids_datastore.DataObject = "d_employees"
dw_employees.ShareData(ids_datastore)

CHAPTER 4 Using DataStore Objects

DataWindow Programmers Guide 89

Code for the Update
button

Code for the cb_update button applies the update operation to the
dw_employees DataWindow control.

This code is for the Update button’s Clicked event:

IF dw_employees.Update() = 1 THEN
COMMIT using SQLCA;
MessageBox("Save","Save succeeded")

ELSE
ROLLBACK using SQLCA;
MessageBox("Save","Save failed")

END IF

Code for the Print
button

The Clicked event of the cb_print button prints the contents of ids_datastore.
Because the DataWindow object for the DataStore is d_employees, the printed
output uses the presentation specified for this object.

This code is for the Print button’s Clicked event:

ids_datastore.Print()

When the window or
form closes

When the window closes, the DataStore gets destroyed.

This code is for the window’s Close event:

destroy ids_datastore

Example: using two DataStores to process data
Suppose you have a window called w_multi_view that shows multiple views
of the same result set. When the Employee List radio button is selected, the
window shows a list of employees retrieved from the database:

Sharing information

90 PowerBuilder Classic

When the Employee Salary Information radio button is selected, the window
displays a graph that shows employee salary information by department:

This window has one DataWindow control called dw_display. It uses two
DataStores to process data retrieved from the database. The first DataStore
(ids_emp_list) shares its result set with the second DataStore (ids_emp_graph).
The DataWindow objects associated with the two DataStores have the same
result set description.

When the window or
form opens

When the window or form opens, the application sets the mouse pointer to the
hourglass shape. Then the code creates the two DataStores and sets the
DataWindow objects for the DataStores. Next the code sets the transaction
object for ids_emp_list and issues a Retrieve method to retrieve some data.

After retrieving data, the code shares the result set for ids_emp_list with
ids_emp_graph. The final statement triggers the Clicked event for the
Employee List radio button.

This code is for the window’s Open event:

SetPointer(HourGlass!)
ids_emp_list = Create DataStore
ids_emp_graph = Create DataStore

ids_emp_list.DataObject = "d_emp_list"
ids_emp_graph.DataObject = "d_emp_graph"

ids_emp_list.SetTransObject(sqlca)
ids_emp_list.Retrieve()
ids_emp_list.ShareData(ids_emp_graph)
rb_emp_list.EVENT Clicked()

CHAPTER 4 Using DataStore Objects

DataWindow Programmers Guide 91

Code for the
Employee List radio
button

The code for the Employee List radio button (called rb_emp_list) sets the
DataWindow object for the DataWindow control to be the same as the
DataWindow object for ids_emp_list. Then the script displays the data by
sharing the result set for the ids_emp_list DataStore with the DataWindow
control.

This code is for the Employee List radio button’s Clicked event:

dw_display.DataObject = ids_emp_list.DataObject
ids_emp_list.ShareData(dw_display)

Code for the
Employee Salary
Information radio
button

The code for the Employee Salary Information radio button (called rb_graph)
is similar to the code for the List radio button. It sets the DataWindow object
for the DataWindow control to be the same as the DataWindow object for
ids_emp_graph. Then it displays the data by sharing the result set for the
ids_emp_graph DataStore with the DataWindow control.

This code is for the Employee Salary Information radio button’s Clicked event:

dw_display.DataObject = ids_emp_graph.DataObject
ids_emp_graph.ShareData(dw_display)

When the window or
form closes

When the window closes, the DataStores get destroyed.

This code is for the window’s Close event:

Destroy ids_emp_list
Destroy ids_emp_graph

Use garbage collection
Do not destroy the objects if they might still be in use by another process—rely
on garbage collection instead.

Sharing information

92 PowerBuilder Classic

DataWindow Programmers Guide 93

C H A P T E R 5 Manipulating Graphs

About this chapter This chapter describes how to write code that allows you to access and
change a graph in your application at execution time.

Contents

Using graphs

Supported environments

PowerBuilder and Web ActiveX Graphs are supported. Because you
can print DataStores, PowerBuilder provides some events and functions
for DataStores that pertain to the visual presentation of the data. However,
graph functions such as CategoryCount, CategoryName, GetData,
SeriesCount, and so forth depend on the visual graph control, which is not
created for a DataStore. These functions return an error value or an empty
string when used with DataStore objects.

Web DataWindow Graphs are not supported. If you use a DataWindow
object that includes graphs, the graphs are ignored. If you use a
DataWindow object with the Graph presentation style, nothing displays.

It is common for developers to design DataWindow objects that include
one or more graphs. When users need to quickly understand and analyze
data, a bar, line, or pie graph can often be the most effective format to
display.

To learn about designing graphs, see the PowerBuilder Users Guide.

Topic Page

Using graphs 93

Modifying graph properties 94

Accessing data properties 97

Using point and click 104

Modifying graph properties

94 PowerBuilder Classic

Working with graphs
in your code

The following sections describe how you can access (and optionally modify) a
graph by addressing its properties in code at execution time. There are two
kinds of graph properties:

• Properties of the graph definition itself These properties are initially
set in the DataWindow painter when you create a graph. They include a
graph’s type, title, axis labels, whether axes have major divisions, and so
on. For 3D graphs, this includes the Render 3D property that uses
transparency rather than overlays to enhance a graph’s appearence and
give it a more sophisticated look.

• Properties of the data These properties are relevant only at execution
time, when data has been loaded into the graph. They include the number
of series in a graph (series are created at execution time), colors of bars or
columns for a series, whether the series is an overlay, text that identifies
the categories (categories are created at execution time), and so on.

Using graphs in other PowerBuilder controls
Although you will probably use graphs most often in DataWindow objects, you
can also add graph controls to windows, and additional PowerScript functions
and events are available for use with graph controls.

For more information, see PowerBuilder Application Techniques.

Modifying graph properties
When you define a graph in the DataWindow painter, you specify its behavior
and appearance. For example, you might define a graph as a column graph with
a certain title, divide its Value axis into four major divisions, and so on. Each
of these entries corresponds to a property of a graph. For example, all graphs
have a property GraphType, which specifies the type of graph.

When dynamically changing the graph type
If you change the graph type, be sure also to change the other properties as
needed to properly define the new graph.

You can change these graph properties at execution time by assigning values to
the graph’s properties in code.

CHAPTER 5 Manipulating Graphs

DataWindow Programmers Guide 95

Property expressions PowerBuilder You can modify properties using property expressions. For
example, to change the type of the graph gr_emp to Column, you could code:

dw_empinfo.Object.gr_emp.GraphType = ColGraph!

To change the title of the graph at execution time, you could code:

dw_empinfo.Object.gr_emp.Title = "New title"

Modify method In any environment , you can use the Modify method to reference parts of a
graph.

Example for PowerBuilder For example, to change the title of graph gr_emp
in DataWindow control dw_empinfo, you could code:

dw_empinfo.Modify("gr_emp.Title = 'New title'")

Example for Web ActiveX This example changes the label text for the Value
axis of graph gr_emp in the DataWindow control dw_empinfo:

dw_empinfo.Modify("gr_emp.Values.Label = 'New label'");

For a complete list of graph properties, see the DataWindow Reference.

How parts of a graph are represented
Graphs consist of parts: a title, a legend, and axes. Each of these parts has a set
of display properties. These display properties are themselves stored as
properties in a subobject (structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies the text for the title.
Graphs also have a property TitleDispAttr, of type grDispAttr, which itself
contains properties that specify all the characteristics of the title text, such as
the font, size, whether the text is italicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These
properties are stored in a subobject (structure) of Graph called grAxis. For
example, graphs have a property Values, of type grAxis, which specifies the
properties of the Value axis, such as whether to use autoscaling of values, the
number of major and minor divisions, the axis label, and so on.

Modifying graph properties

96 PowerBuilder Classic

Here is a representation of the properties of a graph:

Graph
int Height
int Depth
grGraphType GraphType
boolean Border
string Title
…

grDispAttr TitleDispAttr, LegendDispAttr, PieDispAttr
string FaceName
int TextSize
boolean Italic
…

grAxis Values, Category, Series
boolean AutoScale
int MajorDivisions
int MinorDivisions
string Label
…

Referencing parts of a graph
You use dot notation or the Describe and Modify methods to reference the
display properties of the various parts of a graph. For example, one of the
properties of a graph’s title is whether the text is italicized or not. That
information is stored in the boolean Italic property in the TitleDispAttr
property of the graph.

This example changes the label text for the Value axis of graph gr_emp in the
DataWindow control dw_empinfo:

dw_empinfo.Object.gr_emp.Values.Label="New label"

For a complete list of graph properties, see the DataWindow Reference.

You can use the PowerBuilder Browser to examine the properties of a
DataWindow object that contains a graph. For more information, see the
PowerBuilder Users Guide.

CHAPTER 5 Manipulating Graphs

DataWindow Programmers Guide 97

Accessing data properties
To access properties related to a graph’s data during execution, you use
DataWindow methods for graphs. There are three categories of these methods
related to data:

• Methods that provide information about a graph’s data

• Methods that save data from a graph

• Methods that change the color, fill patterns, and other visual properties of
data

How to use the
methods

To call the methods for a graph in a DataWindow control, use the following
syntax:

DataWindowName.methodName ("graphName", otherArguments…)

For example, there is a method CategoryCount, which returns the number of
categories in a graph. So to get the category count in the graph gr_printer
(which is in the DataWindow control dw_sales), write:

Ccount = dw_sales.CategoryCount("gr_printer")

Getting information about the data
There are quite a few methods for getting information about data in a graph in
a DataWindow control at execution time. For all methods, you provide the
name of the graph within the DataWindow as the first argument. You can
provide your own name for graph controls when you insert them in the
DataWindow painter. If the presentation style is Graph, you do not need to
name the graph.

PowerBuilder These methods get information about the data and its display.
For several of them, an argument is passed by reference to hold the requested
information:

Table 5-1: Common methods for graph DataWindows in PowerBuilder

Method Information provided

CategoryCount The number of categories in a graph

CategoryName The name of a category, given its number

DataCount The number of data points in a series

FindCategory The number of a category, given its name

FindSeries The number of a series, given its name

Accessing data properties

98 PowerBuilder Classic

Web ActiveX These methods get information about the data and its display.
There are additional helper methods available whenever the equivalent
PowerBuilder method uses an argument passed by reference. These helper
methods are identified in the second column of the following table (and are
described in the DataWindow Reference):

GetData The value of a data point, given its series and position
(superseded by GetDataValue, which is more flexible)

GetDataLabelling The display setting for the data label at a given data point
in a DirectX 3D graph

GetDataPieExplode The percentage at which a pie slice is exploded

GetDataStyle The color, fill pattern, or other visual property of a
specified data point

GetDataTransparency The transparency percentage of a data point in a DirectX
3D graph

GetDataValue The value of a data point, given its series and position

GetSeriesLabelling The display setting for the series label for a given series in
a DirectX 3D graph

GetSeriesStyle The color, fill pattern, or other visual property of a
specified series

GetSeriesTransparency The transparency percentage of a series in a DirectX 3D
graph

ObjectAtPointer The graph element the mouse was positioned over when it
was clicked

SeriesCount The number of series in a graph

SeriesName The name of a series, given its number

Method Information provided

CHAPTER 5 Manipulating Graphs

DataWindow Programmers Guide 99

Table 5-2: Common methods for graph DataWindows in Web ActiveX

Method Information provided

CategoryCount The number of categories in a graph.

CategoryName The name of a category, given its number.

DataCount The number of data points in a series.

FindCategory The number of a category, given its name.

FindSeries The number of a series, given its name.

ObjectAtPointer The graph element the mouse was positioned over when it
was clicked. Call ObjectAtPointerSeries and
ObjectAtPointerDataPoint to get additional information.

SeriesCount The number of series in a graph.

SeriesName The name of a series, given its number.

Getting information about a data point’s appearance

GetDataPieExplode The percentage at which a pie slice is exploded. Call
GetDataPieExplodePercentage to retrieve the requested
value.

GetDataStyleColor The color of a specified data point. Call
GetDataStyleColorValue to retrieve the requested value.

GetDataStyleFill The fill pattern of a specified data point. Call
GetDataStyleFillPattern to retrieve the requested value.

GetDataStyleLine The line style and width of a specified data point. Call
GetDataStyleLineWidth and GetDataStyleLineStyle to
retrieve the requested values.

GetDataStyleSymbol The symbol of a specified data point. Call
GetDataStyleSymbolValue to retrieve the requested value.

Getting a data point’s value

GetDataDate The value of a data point that contains a date, given its
series and position. Call GetDataDateVariable to retrieve
the requested value.

GetDataNumber The value of a numeric data point, given its series and
position. Call GetDataNumberVariable to retrieve the
requested value.

GetDataString The value of a string data point, given its series and
position. Call GetDataStringVariable to retrieve the
requested value.

Getting information about a series’ appearance

GetSeriesStyleColor The color of a specified series. Call
GetSeriesStyleColorValue to retrieve the requested value.

GetSeriesStyleFill The fill pattern of a specified series. Call
GetSeriesStyleFillPattern to retrieve the requested value.

Accessing data properties

100 PowerBuilder Classic

Saving graph data
PowerBuilder The following methods allow you to save data from the graph:

Table 5-3: PowerBuilder methods for saving data from a graph

Web ActiveX You can save an image of the graph on the clipboard, but you
cannot save data in a file. Writing to the file system is a security violation for
an ActiveX control:

Table 5-4: Web Active X method for saving data from a graph

Modifying colors, fill patterns, and other data
PowerBuilder The following methods allow you to modify the appearance of
data in a graph:

Table 5-5: PowerBuilder methods for modifying the appearance of data

GetSeriesStyleLine The line style and width used by a specified series. Call
GetSeriesStyleLineWidth and GetSeriesStyleLineStyle to
retrieve the requested values.

GetSeriesStyleOverlay Indication whether a series in a graph is an overlay (that is,
whether it is shown as a line on top of another graph type).
Call GetSeriesStyleOverlayValue to retrieve the requested
value.

GetSeriesStyleSymbol The symbol of a specified series. Call
GetSeriesStyleSymbolValue to retrieve the requested
value.

Method Information provided

Method Action

Clipboard Copies a bitmap image of the specified graph to the clipboard

SaveAs Saves the data in the underlying graph to the clipboard or to a
file in one of a number of formats

Method Action

Clipboard Copies a bitmap image of the specified graph to the clipboard

Method Action

ResetDataColors Resets the color for a specific data point

SetDataLabelling Specifies the display setting for a data label in a DirectX 3D
graph

CHAPTER 5 Manipulating Graphs

DataWindow Programmers Guide 101

Web ActiveX These methods modify the appearance of data in a graph:

Table 5-6: Web ActiveX methods for modifying the appearance of data

Using graph methods
You call the data-access methods after a graph has been created and populated
with data. Some graphs, such as graphs that display data for a page or group of
data, are destroyed and re-created internally as the user pages through the data.
Any changes you made to the display of a graph, such as changing the color of
a series, are lost when the graph is re-created.

Event for graph
creation

To be assured that data-access methods are called whenever a graph has been
created and populated with data, you can call the methods in the code for an
event that is triggered when a graph is created. The event is:

SetDataStyle Sets the color, fill pattern, or other visual property for a
specific data point

SetDataTransparency Sets the transparency percentage for a data point in a
DirectX 3D graph

SetSeriesLabelling Specifies the display setting for a series label in a DirectX
3D graph

SetSeriesStyle Sets the color, fill pattern, or other visual property for a
series

SetSeriesTransparency Sets the transparency percentage of a series in a DirectX 3D
graph

Method Action

ResetDataColors Resets the color for a specific data point

SetDataColor Sets the color of a specified data point

SetDataFill Sets the fill pattern of a specified data point

SetDataLine Sets the line style and width of a specified data point

SetDataPieExplode Explodes a slice in a pie graph

SetDataSymbol Sets the symbol of a specified data point

SetSeriesColor Sets the color of a specified series

SetSeriesFill Sets the fill pattern of a specified series

SetSeriesLine Sets the line style and width used by a specified series

SetSeriesOverlay Specifies whether a series in a graph is an overlay (that is,
whether it is shown as a line on top of another graph type)

SetSeriesSymbol Sets the symbol of a specified series

Method Action

Accessing data properties

102 PowerBuilder Classic

• PowerBuilder Event ID pbm_dwngraphcreate, which you can assign to
a user event for a DataWindow control (described below)

• Web ActiveX The onGraphCreate event

The graph-creation event is triggered by the DataWindow control after it has
created a graph and populated it with data, but before it has displayed the graph.
By accessing the data in the graph in this event, you are assured that you are
accessing the current data and that the data displays the way you want it.

Setting up the
PowerBuilder user
event

PowerBuilder provides an event ID, pbm_dwngraphcreate, that you can assign
to a user event for a DataWindow control.

❖ To access data properties of a graph in a DataWindow control:

1 Place the DataWindow control in a window or user object and associate it
with the DataWindow object containing the graph.

Next you create a user event for the DataWindow control that is triggered
whenever a graph in the control is created or changed.

2 Select Insert>Event from the menu bar.

The Script view displays and includes prototype fields for adding a new
event.

3 Select the DataWindow control in the first drop-down list of the prototype
window.

If the second drop-down list also changes to display an existing
DataWindow event prototype, scroll to the top of the list to select New
Event or select Insert>Event once again from the menu bar.

4 Name the user event you are creating.

For example, you might call it GraphCreate.

CHAPTER 5 Manipulating Graphs

DataWindow Programmers Guide 103

5 Select pbm_dwngraphcreate for the event ID.

6 Click OK to save the new user event.

7 Write a script for the new GraphCreate event that accesses the data in the
graph.

Calling data access methods in the GraphCreate event assures you that the
data access happens each time the graph has been created or changed in
the DataWindow.

Examples PowerBuilder The following statement sets to black the foreground (fill)
color of the Q1 series in the graph gr_quarter, which is in the DataWindow
control dw_report. The statement is in the GraphCreate event, which is
associated with the event ID pbm_dwngraphcreate in PowerBuilder:

dw_report.SetSeriesStyle("gr_quarter", "Q1", &
foreground!, 0)

The following statement changes the foreground (fill) color to red of the
second data point in the Stellar series in the graph gr_sale in a window. The
statement can be in a script for any event:

int SeriesNum
// Get the number of the series.
SeriesNum = gr_sale.FindSeries("Stellar")

// Change color of second data point to red
gr_sale.SetDataStyle(SeriesNum, 2, foreground!, 255)

Web ActiveX The following statement sets the foreground (fill) color to
black in one of the series in the graph gr_quarter, which is in the DataWindow
control dw_report. The statement is in the onGraphCreate event:

dw_report.SetSeriesStyleColor("gr_quarter", 1, 0, 0);

For more information For complete information about the data-access graph methods, see the
DataWindow Reference.

For more about PowerBuilder user events, see the PowerBuilder Users Guide.

Using point and click

104 PowerBuilder Classic

Using point and click
Users can click graphs during execution. The DataWindow control provides a
method called ObjectAtPointer that stores information about what was clicked.
You can use this method in a number of ways in mouse events. For example,
with the ObjectAtPointer information, you can call other graph methods to
report to the user the value of the clicked data point. This section shows you
how.

Mouse events and
graphs

To cause actions when a user clicks a graph, you might:

• PowerBuilder Write a Clicked script for the DataWindow control

• Web ActiveX Write code for the MouseDown or onButtonClick event

You should call ObjectAtPointer in the first statement of the event’s code.

Using ObjectAtPointer ObjectAtPointer works differently in PowerBuilder and the Web ActiveX.

PowerBuilder ObjectAtPointer has this syntax:

DataWindowName.ObjectAtPointer ("graphName", seriesNumber,
dataNumber)

ObjectAtPointer does these things:

• Returns the kind of object the user clicked

The object is identified by a grObjectType enumerated value. For
example, if the user clicks on a data point, ObjectAtPointer returns
TypeData!. If the user clicks on the graph’s title, ObjectAtPointer returns
TypeTitle!.

For a list of object values, see the chapter on constants in the DataWindow
Reference. In PowerBuilder, you can also open the Browser and click the
Enumerated tab.

• Stores the number of the series the pointer was over in the variable
seriesNumber, which is an argument passed by reference

• Stores the number of the data point in the variable dataNumber, also an
argument passed by reference

Web ActiveX ObjectAtPointer is used with two supporting methods to get all
the information. ObjectAtPointer has this syntax:

DataWindowName.ObjectAtPointer ("graphName")

CHAPTER 5 Manipulating Graphs

DataWindow Programmers Guide 105

To get the information, you:

1 Call ObjectAtPointer, which returns the kind of graph element the user
clicked.

The element type is identified by a number. For example, if the user clicks
on a series, ObjectAtPointer returns 1. If the user clicks on a graph’s title,
ObjectAtPointer returns 4.

For a list of values for individual graph elements, see the chapter on
constants in the DataWindow Reference.

2 Call ObjectAtPointerSeries, which returns the number of the series the
pointer was over.

3 Call ObjectAtPointerDataPoint, which returns the number of the data
point the pointer was over.

The second two methods must be called after ObjectAtPointer.

Example Assume there is a graph named gr_sales in the DataWindow control dw_sales.
The following code for the control’s MouseDown event displays a message
box:

• If the user clicks on a series (that is, if ObjectAtPointer returns 1), the
message box shows the name of the series clicked on. The example uses
the method GetSeriesName to get the series name, given the series number
stored by ObjectAtPointer.

• If the user clicks on a data point (that is, if ObjectAtPointer returns 2), the
message box lists the name of the series and the value clicked on. The
example uses GetDataNumber to get the data’s value, given the data’s
series and data point number.

PowerBuilder This code is for the Clicked event:

int SeriesNum, DataNum
double Value
grObjectType ObjectType
string SeriesName, ValueAsString
string GraphName
GraphName = "gr_sale"

// The following method stores the series number
// clicked on in SeriesNum and stores the number
// of the data point clicked on as DataNum.
ObjectType = &

dw_printer.ObjectAtPointer (GraphName, &
SeriesNum, DataNum)

Using point and click

106 PowerBuilder Classic

IF ObjectType = TypeSeries! THEN
SeriesName = &

dw_printer.SeriesName (GraphName, SeriesNum)
MessageBox("Graph", &

"You clicked on the series " + SeriesName)

ELSEIF ObjectType = TypeData! THEN
Value = dw_printer.GetData (GraphName, &

SeriesNum, DataNum)
ValueAsString = String(Value)
MessageBox("Graph", &

dw_printer.SeriesName (GraphName, &
SeriesNum) + " value is " + ValueAsString)

END IF

Web ActiveX This code is for the MouseDown event:

number SeriesNum, DataNum, ObjectType, Success, Value;
string SeriesName, GraphName;

GraphName = "gr_sales";

ObjectType =
dw_sales.GrObjectAtPointer(GraphName);

if (ObjectType == 1) {
SeriesName =

dw_sales.GetSeriesName(GraphName,
SeriesNum);

alert("You clicked on the series " + SeriesName);
}
else {

if (ObjectType == 2) {
Success = dw_sales.GetDataNumber(GraphName,

SeriesNum, DataNum, 1);
if (Success == 1) {

Value = GetDataNumberVariable();

alert(dw_sales.GetSeriesName(GraphName,
SeriesNum) +" value is " + Value);

}
}

}

P A R T 2 Using the DataWindow in
Web Applications

This part includes information about the Web DataWindow,
and the DataWindow Web Control for ActiveX.

The technologies described in the following chapters are not
used for DataWindow objects and controls that you deploy
to ASP.NET. For information on .NET Web Forms targets,
see Deploying Applications and Components to .NET in the
HTML Help.

DataWindow Programmers Guide 109

C H A P T E R 6 Using the Web DataWindow

About this chapter This chapter describes how to use the Web DataWindow in data-based
Web applications. Particular focus is given to the XML Web DataWindow
because it can provide the best performance and you can customize its
generation by applying a custom template to the default generation.

Contents

What the Web DataWindow is
The Web DataWindow is a DataWindow that is generated for use in Web
applications. The Web DataWindow offers a thin-client solution that
provides most of the data manipulation, presentation, and scripting
capabilities of the PowerBuilder DataWindow without requiring any
PowerBuilder DLLs or plug-ins on the Web client. The DataWindow that
displays in the Web browser looks very much like the DataWindow you
designed in the DataWindow painter.

JavaScript keywords
You cannot use JavaScript reserved words to name fields or bands in a
DataWindow control that you deploy to the Web. The list of reserved
words is available on the Sun Microsystems Web site at
http://docs.sun.com/source/816-6410-10/keywords.htm.

Topic Page

What the Web DataWindow is 109

Using the XML Web DataWindow 114

Designing DataWindow objects for the Web DataWindow 121

Setting up database connections 142

Deploying DataWindow objects to the component server 145

Writing client-side scripts 147

Customizing Web DataWindow generation 150

What the Web DataWindow is

110 PowerBuilder Classic

Web DataWindow types
Web DataWindow functionality includes three types of Web DataWindow
implementation:

• XML Web DataWindow Separate XML (content), XSLT (layout), and
CSS (style) with a subsequent transformation to XHTML

• XHTML Web DataWindow XHTML content only

• HTML Web DataWindow HTML content only

HTML Generation property page has been renamed
Since the Web DataWindow can be generated in XML, XHTML, and HTML,
the HTML Generation property page in the DataWindow properties view is
now called the Web Generation property page. Shared XHTML and HTML
properties and properties specific to XML, XHTML, and HTML can be set
there. For information about setting Web generation properties, see “Setting
Web generation properties for the Web DataWindow” on page 127.

Web DataWindow use No matter what type of Web DataWindow you want to use, the way you use it
is the same. For specific information about using the XML Web DataWindow,
see “Using the XML Web DataWindow” on page 114.

How the Web DataWindow works
The Web DataWindow uses a component running in a transaction server (such
as EAServer or COM+) cooperating with a dynamic page server (such as
Microsoft Active Server Pages in IIS or Java Server Pages in Tomcat) and
communicating with a Web client by means of a Web server. No PowerBuilder
DLLs or plug-ins are required on the Web client.

The built-in Web DataWindow component is the HTMLGenerator120
component that is preinstalled in EAServer 6.x. The component is used to
generate the JavaScript and the HTML; XHTML; or XML, XSLT, CSS, and
XHTML, depending on the type of Web DataWindow you are creating. You
can also use a custom component that you develop instead. For more
information, see “The Web DataWindow server component and client control”
on page 112.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 111

Disabling instance pooling when deploying Web DataWindow targets
Instance pooling allows transaction server clients to reuse component instances
and so improves server performance by eliminating the resource drain caused
by repeated allocation of component instances. Instance pooling is turned on
by default for the HTMLGenerator120 component in EAServer. This prevents
you from deploying a target that uses the component a second time without
stopping and restarting the server. During development, you might want to turn
instance pooling off. For information on changing the pooling property of a
component, see your server documentation.

In EAServer, you can disable instance pooling using EAServer Manager or by
setting the com.sybase.jaguar.component.pooling property to false in the
HTMLGenerator120.props file in the
\EAServer\Repository\Component\DataWindow directory. The component
pooling property should be set to true for production use.

What happens when a
user requests a page

Figure 6-1 shows you graphically (in eight steps) what happens when a user
accesses a Web page containing an XHTML or HTML Web DataWindow.

Figure 6-1: How the Web DataWindow works

The numbers 1 through 8 in the figure correspond to the events that occur after
you develop and deploy a Web DataWindow and a user accesses a page
containing the Web DataWindow:

1 In a Web browser, a user requests the URL for a page.

What the Web DataWindow is

112 PowerBuilder Classic

2 The Web server passes the request to the page server, which locates the
template for the requested page and executes server-side scripts in the
template.

3 The server-side scripts connect to the (transaction) server component,
passing it information about the DataWindow and database connection.

4 Methods on the server component retrieve data required for the
DataWindow from the database and translate the DataWindow definition,
data, and state into JavaScript and XHTML or HTML.

5 The server component returns the JavaScript and XHTML or HTML and
to the page server.

6 The page server replaces the server-side script in the requested Web page
with the generated JavaScript and XHTML or HTML and returns the page
to the Web browser through the Web server.

7 The user interacts with the DataWindow—for example, requesting the
next page or updating the data.

8 The Web server passes the URL with added action parameters to the page
server, and the cycle begins again.

The Web DataWindow server component and client control
The Web DataWindow has two main components: the server component and
the client control.

Web DataWindow
server component

The Web DataWindow server component retrieves data from a database and
returns JavaScript and XSLT, XHTML, or HTML that represent the data and
the DataWindow object definition to the page server. The server component is
a PowerBuilder custom class user object that uses a DataStore to handle
retrieval and updates and is deployed as an EAServer component. You can use
the generic component provided with PowerBuilder or a custom component.

The generic EAServer component, HTMLGenerator120, is preinstalled in
EAServer in a package named DataWindow.

Using an older version of the generic component
Earlier versions of the generic HTMLGenerator component are also installed
in the EAServer DataWindow package. Because EAServer supports multiple
PowerBuilder VMs, you can continue to run older Web DataWindow
applications that use this component.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 113

The generic component has methods that you call in your Web page template
to instantiate and configure the component. The generic component also
provides most of the methods available on the PowerBuilder DataWindow
control. You should probably use the generic component when you are getting
started with the Web DataWindow. Later you might want to build and deploy
a custom component that uses the methods of the generic EAServer component
interface or that uses only the methods you design for the component. For
information, see “Using a custom server component” on page 183.

Types of server
components and
platforms

The following table describes all the types of Web DataWindow server
components and their supported platforms:

Table 6-1: Web DataWindow server components and platforms

Web
DataWindow
server
component

Platform
(server component name) Description

Generic EAServer
(DataWindow::HTMLGenerator120)

Prebuilt EAServer
component. No generation
or compiling of stubs
required.

Container
(can include
multiple
DataWindow
definitions)

EAServer
(PackageName::ComponentName
using generic
DataWindow::HTMLGenerator120
interface)

Deploy with Web DW
Container project wizard.
Increases performance by
reducing calls to server. No
generation or compiling of
stubs required.

Custom
(hybrid)

EAServer
(PackageName::ComponentName
using generic
DataWindow::HTMLGenerator120
interface)

Use to increase flexibility
of generic component. Can
build and deploy with PB
object or project wizard.
Generic methods remain
available.

Custom
(user-
designed)

EAServer
(PackageName::ComponentName)

Potentially best for
performance and
scalability. Can use to
avoid downloads of
unneeded generic methods
to client.

Using the XML Web DataWindow

114 PowerBuilder Classic

Web DataWindow
client control

Embedding client-side scripts The Web DataWindow client control is the
JavaScript plus XML, XSLT, and CSS; the JavaScript plus XHTML; or the
JavaScript plus HTML that is generated by the server component and
embedded in the page returned to the Web client. Client-side scripts that you
add to your Web page template and wrap in SCRIPT tags are embedded as
JavaScript in the client control.

JavaScript caching Some features available on the client control are
optional: events, methods, data update and validation, and display formatting
for newly entered data. The size of the generated JavaScript increases as you
add more client-side functionality. You can cache client-side methods in
JavaScript files on your Web server to reduce the size of the markup generated
for Web DataWindow pages and, if the browser is configured to use cached
files, improve the performance on the client machine.

For information about enabling JavaScript caching, see “Using JavaScript
caching for Web DataWindow methods” on page 133. You can find additional
information about client-side caching, HTMLGen properties, and other
generation properties in the DataWindow Reference.

Using client-side events Events that are triggered on the client control and
several of the client control methods do not require the server component to
reload the page, so processing on the client is typically much faster than
processing performed on the server.

For more information about enabling features on the client, see “Web
DataWindow properties” on page 124 and “Controlling what is generated” on
page 176. For more about writing scripts, see “Writing client-side scripts” on
page 147.

For complete documentation of the events and methods available on the server
component and the client control, see the DataWindow Reference or the
PowerBuilder online Help.

Using the XML Web DataWindow
This section first provides you with a brief introduction to XML, XSLT, CSS,
and XHTML and then describes what the XML Web DataWindow is and how
to use it in Web applications.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 115

Using the HTML Web DataWindow and the XHTML Web DataWindow
The process for using the HTML Web DataWindow and the XHTML Web
DataWindow is similar to the process of using the XML Web DataWindow.
The only difference is in selecting the type of Web Generation you specify and
and the DataWindow object properties you set.

Before an XML Web DataWindow can be generated for use in a Web
application, you must create the DataWindow object you want to use in the
DataWindow painter. For information about designing DataWindow objects
for any type of Web DataWindow, see “Designing DataWindow objects for the
Web DataWindow” on page 121.

About XML, XSLT, CSS, and XHTML
HTML is the most popular markup language in the world. The goal though of
most HTML markup is appearance—the HTML tags do not provide you with
any information. For example, if you see an HTML document with an element
that has content as simple as <td>12345</td>, you do not know what the
content represents. The content could be the zip code of a particular town, or it
might be the population of the town.

An XML document:

• Contains information that is marked up with tags that describe all the
pieces of information

• Models the relationships between all the pieces of information

• Is contained in a single element called the root element which becomes the
root of a tree structure that contains other elements that represent the
information

An XML document might include the element <zipcode>12345</zipcode>,
and you know from the zipcode tag that 12345 is a zip code.

XML documents separate the content from the presentation, and they can be
transformed (using XSLT, the Extensible Stylesheet Language for
Transformations) into a variety of presentation types such as:

• An HTML page that includes <td>12345</td>

• A PDF file that includes zip code information

• A display of zip code information in wireless phones or pagers

Using the XML Web DataWindow

116 PowerBuilder Classic

With XSLT, you can transform XML documents into other documents, which
are often XML documents themselves. For example, Web pages created in
XHTML (an XML-compliant version of HTML) are XML documents, and you
can use XSLT to transform any XML document into a styled XHTML Web
page for display in a browser.

A cascading style sheet (CSS) allows you to add style rules to the elements of
a document that define how the content of the elements should be rendered.
Using a CSS enables you to separate the contents of an HTML, XHTML, or
XML document from its visual presentation. However, XSLT moves you
beyond CSS because XSLT offers you complete flexibility to change the layout
of content. XSLT also allows you to define rules that not only alter the design,
but also add, change, or remove elements of the content if appropriate.

For an overview of XML, see the first section of the chapter on exporting and
importing XML in the PowerBuilder Users Guide. For detailed information
about XML and XSLT, see the O’Reilly and Associates, Inc. Learning XML
and XSLT books.

How the XML Web DataWindow works
The XML Web DataWindow generates DataWindow content, layout, and style
separately at runtime and renders in the browser a fully functional
DataWindow in XHTML.

You can customize each of these XML Web DataWindow components at
design time using a custom XHTML export template in the Export Template
view for XHTML. For information, see “Customizing Web DataWindow
generation” on page 150.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 117

Server-side and client-side activity

When you have developed and deployed the pieces the XML Web
DataWindow needs, here is what happens when a user requests the URL for a
page containing the DataWindow.

Server-side activity Server-side code is used to invoke the Web DataWindow generator. During the
generation process:

1 Using the default XHTML export template or a custom template you
created, an XHTML rendering of the DataWindow is generated in a
Document Object Model (DOM) tree.

2 A CSS style sheet is generated in a DOM tree with the style information
for the DataWindow elements.

Generating as many of the style rules in CSS as possible (including all
absolute positions) can increase page download speed because the
stylesheet is downloaded only once and cached.

3 Client-side JavaScript files are generated for instantiating the control
object and the array of row elements.

You can improve performance by generating most of this client-side
JavaScript in static files. For information about how you create and deploy
the static JavaScript files, see “Using JavaScript caching for Web
DataWindow methods” on page 133.

4 A reverse transformation of the XHTML DOM tree to XML
(DataWindow content) and XSLT (DataWindow layout) occurs.

XSLT also creates the structural layout of the page, saving bandwidth.
Server processing is also reduced by offloading work to the client.

5 A small amount of JavaScript is generated to perform explicit
transformation on the client side to render in the browser a fully functional
DataWindow in XHTML.

Client-side activity When a user accesses a Web page containing the XML Web DataWindow, the
client browser:

1 Downloads the source XML file (DataWindow content for the page) and
the XSLT stylesheet, which is cached locally.

2 Performs the transformation using the built-in Microsoft or Netscape
XSLT processor.

3 Outputs the XHTML result into a <DIV> section on the page.

Using the XML Web DataWindow

118 PowerBuilder Classic

4 Downloads, caches, and applies the CSS stylesheet for display in the
browser.

5 Downloads and caches JavaScript files.

6 Regenerates and downloads the XML file and JavaScript row objects file
for the updated DataWindow page after a specified action by the user
(HTTP Get/HTTP response).

Benefits of XHTML Web pages

XHTML Web pages are processed and rendered more quickly in the browser
than HTML pages because extensive browser code is not needed to handle the
more complex rules of HTML. Web users benefit from faster download of
DataWindow pages because the XSLT and CSS stylesheets are downloaded
only once and cached, resulting in bandwidth savings. Enterprises also benefit
from the greater efficiency, scalability, extensibility, and accessibility gained
by using standard W3C technologies.

Which type of Web DataWindow to use? The XML and XHTML Web
DataWindow expand on the functionality provided by the HTML Web
DataWindow. The following table shows you when you should use the XML
or XHTML Web DataWindow and when you should use the HTML Web
DataWindow:

Table 6-2: Features of Web DataWindow rendering formats

Feature XML XHTML HTML

Web pages conform to industry
standards

Yes Yes No

Pages can be customized using
an XHTML export template

Yes Yes No

XSLT stylesheets are cached Yes No No

CSS stylesheets are cached Yes Yes No

Common JavaScript files can be
cached

Yes Yes Yes

Most efficient handling of large
amounts of paged data

Yes No No

Callback mechanism for paging
and other client actions

Yes Yes Yes

Client-side mechanism for
paging and other client actions

Yes No No

A Grid DataWindow page can
be sorted on the client without a
postback

Yes No No

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 119

The XML rendering format does not support accessibility software. Some
aspects of the HTML generated using the HTML rendering format do not
support accessibility software.

The caching and bandwidth savings and the client-side paging feature of the
XML Web DataWindow result in better performance. In addition, you can
customize the XHTML rendering of the XML Web DataWindow using
XHTML export templates.

Customizing the XSLT transformation
The XSLT stylesheet that transforms the DataWindow content to XHTML can
be customized by applying a custom XHTML export template to the default
generation. The CSS stylesheet can be customized by applying custom style
attributes in a custom XHTML export template. Using stylesheets to target the
presentation enables the DataWindow to be rendered on virtually every device.
For information about using the new Export Template view for XHTML in the
DataWindow painter, see “Customizing Web DataWindow generation” on
page 150.

Browser requirements for the XML Web DataWindow

The XML Web DataWindow requires browsers that support the following
client-side technologies: XML, XSLT, XHTML, CSS, and JavaScript. You can
select the browser to use for the XML Web DataWindow (XHTML format) in
the Web Generation page in the DataWindow object property view.

Composite and nested
DataWindows are supported

No Yes No

Absolute positioning is
supported in Grid DataWindows

Yes Yes No

Greatest compatibility with
accessibility software (Section
508)

No Yes No

Feature XML XHTML HTML

Browser XML parser/XSLT processor XSLT version

Internet Explorer 5, 5.5 MSXML 2.0, 2.5 (update required) XSL-WD

Internet Explorer 6.0 MSXML 3.0+ XSLT 1.0

Netscape 6+ TransforMiiX XSLT 1.0

Mozilla 1.0+ TransforMiiX XSLT 1.0

Using the XML Web DataWindow

120 PowerBuilder Classic

MSXML 2.6 or higher is required with Internet Explorer
The XML Web DataWindow requires MSXML 2.6 or higher with Internet
Explorer. Internet Explorer 5 or 5.5 includes MSXML 2.0 or 2.5, so you must
either update MSXML to 2.6 or higher or use Internet Explorer 6.0. For
information about MSXML versions, refer to Microsoft Knowledge Base
article 269238 on the Microsoft Web site.

How to use the XML Web DataWindow
The easiest way to use the XML Web DataWindow in your Web applications
is to do the following:

1 Create a new DataWindow object or select an existing DataWindow object
that you want to display in a Web browser.

For information, see “Designing DataWindow objects for the Web
DataWindow” on page 121.

2 Set JavaScript Generation properties for the static JavaScript of the XML
Web DataWindow if you have not already done so.

For information, see “Using JavaScript caching for Web DataWindow
methods” on page 133.

Reusing static JavaScript for the XML Web DataWindow
If you are using the static JavaScript caching feature that was introduced
with the HTML Web DataWindow, then you must regenerate and redeploy
this static JavaScript for the XML Web DataWindow (and the XHTML
Web DataWindow). You need to do this only once.

3 In the Web server’s root publishing folder, create distinct Web publishing
folders (for static JavaScript) and JavaScript publishing folders (for
dynamic JavaScript) and set the Web and JavaScript Generation properties
(that point to these folders) for your DataWindow.

If you do not create these folders, the generator creates them for you. If
you do not set these properties, then the default object model creates a
temp publishing folder _tmp automatically.

4 In the Java implementation for your JSP page, ensure you are calling the
GenerateXMLWeb method on the server component to request the XML
generation format.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 121

The XML generation format results in the separate generation of data and
presentation in XML and XSLT for transformation to XHTML, and is the
optimal format for the XML Web DataWindow.

For an example of a JSP page calling the GenerateXMLWeb method, see
the XML WebDataWindow Code Sample in the DataWindow N-Tier
section on the CodeXchange Web site at
https://powerbuilder.codexchange.sybase.com/.

5 Display the results in the browser by typing in the URL.

Designing DataWindow objects for the Web
DataWindow

The Web DataWindow supports most PowerBuilder DataWindow
functionality. This section describes what features to use to take full advantage
of the Web DataWindow.

Use default properties of DataWindow column edit styles
The properties of DataWindow column edit styles default to values that
optimize their appearance—for example, radio buttons are left aligned. If you
must change these style properties, the appearance of a column in the Web
DataWindow might differ from its appearance in the DataWindow painter
because the browser manages the rendering of HTML controls. You can adjust
the appearance of the Web DataWindow by repositioning the control or
resizing the column.

Using existing
DataWindow objects

Many existing DataWindow objects work in the Web DataWindow. If a
DataWindow object uses features that the Web DataWindow does not support,
then the features are ignored. You can still use the DataWindow object if the
remaining functionality is acceptable for your application. For example: if the
DataWindow includes a graph control, the graph is ignored; if the DataWindow
uses the Graph presentation style, the DataWindow object will not be useful.

Designing DataWindow objects for the Web DataWindow

122 PowerBuilder Classic

Supported and
unsupported features

Table 6-3: Web DataWindow supported and unsupported features

DataWindow feature Supported and unsupported features

Presentation styles All presentation styles except OLE, Graph, and RichText are supported. Unsupported
presentation styles retrieve data but display nothing. The Grid presentation style is
rendered as an HTML table if you use the HTML format, and as a result absolute
positioning is not supported and the display characteristics differ from those of XML
and XHTML Web DataWindows.

Nested and composite
reports

Supported for the XHTML format only.

Controls Supported controls: Column, Computed Field, Graph, Text, Picture, Button,
GroupBox, Rectangle.

These controls are ignored: OLE Object, OLE Database Blob, RoundRectangle,
Oval, InkPicture.

Report controls are supported in XHTML Web DataWindows only.

Rectangles cannot be rendered in a Label DataWindow with any rendering format
when the layer of the Rectangle is foreground, unless the height of the DataWindow
control is set to a fixed value.

The following Rectangle properties are not supported: moveable, pointer, resizeable,
slideleft, slideup, brush.hatch, pen.style

GroupBoxes cannot be rendered in Crosstab and Grid style DataWindows.

The following GroupBox properties are not supported: moveable, pointer, resizeable,
slideleft, slideup, font.charset, font.width.

Only horizontal Line controls are supported. The line’s color property is always
rendered, and the width property is rendered if the line is solid. Other line styles are
displayed as solid lines with the default width. Vertical and slanted lines are ignored.

For information on:

• Expressions for computed fields, see “Using expressions” on page 136.

• Images for Picture controls, see “Using Picture controls” on page 140.

• Including valid HTML in a control, see “Including HTML in a control” on page
138

• Button controls and supported actions, see “Using Button controls” on page 139.

Retrieving data Up to 16 retrieval arguments are supported. Filtering and sorting are supported by
setting properties with the Modify method or calling methods on the server
component. Sorting can also be specified by using a client control method.

User-specified queries using the QueryMode property are not supported.

Updating data Same as the PowerBuilder DataWindow control. The DataWindow object must
contain editable columns.

Edit styles All edit styles are supported except InkEdit and EditMask, with the exception of the
DDCalendar EditMask. If the DataWindow uses the EditMask edit style, the styles
specified are treated as though they were specified as a display format.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 123

Using a drop-down
calendar

The drop-down calendar DataWindow option is available for use on any
DataWindow column with an EditMask, and a Date, DateTime, or TimeStamp
datatype. The DDCalendar EditMask property option allows for separate
selections of the calendar month, year, and date. This option can be set in a
check box on the Edit tab of the DataWindow painter Properties view when a
column with the EditMask edit style is selected. It can also be set in code, as in
this example for the birth_date column:

dw_1.Modify("birth_date.EditMask.DDCalendar='Yes'")

You can set the following properties to control the display of the calendar in a
script or on the Other page in the Properties view for the column:

DDCalendar EditMask
property

The DDCalendar EditMask property option allows for separate selections of the
calendar month, year, and date. This option can be set in a check box on the Edit tab
of the DataWindow painter Properties view when a Date or DateTime column with
the EditMask edit style is selected. It can also be set in code, as in this example for
the birth_date column:

dwEmp.Modify("birth_date.EditMask.DDCalendar='Yes'")

For more information, see “Using a drop-down calendar” on page 123.

DropDownDataWindows A drop-down DataWindow must be in the same PBL as the DataWindow in which it
is used. Data for drop-down DataWindows is retrieved on the server. See “Using
drop-down DataWindows” on page 130. The dddw.lines property is not supported in
Web pages because the browser controls how the DropDownDataWindow displays.

Display formats Supported, including the use of color.

Validation rules The expression might be evaluated on the client or the server, depending on the
expression.

For information, see “Using expressions” on page 136.

Property expressions Evaluated on the server.

Layout Properties that specify autosizing of height and width or allow the user to resize or
move controls, such as SlideLeft and SlideRight, are ignored.

Properties The following properties are not supported:

• EditMask.Spin DataWindow object property

• Sparse (Suppress Repeating Values) DataWindow object property

• RightToLeft DataWindow control property

• The ShowConnectLines and ShowLeafNodeConnectLines properties of the
TreeView Web DataWindow

The Limit property is not supported in multiline edit columns in a Web DataWindow.
In JavaScript, the multiline edit column maps to a textarea object, and the limit
property maps to a maxlength attribute, which the textarea object does not support.

Tab order Supported in HTML 4 and later browsers.

DataWindow feature Supported and unsupported features

Designing DataWindow objects for the Web DataWindow

124 PowerBuilder Classic

To make sure that dates selected with the drop-down calendar option are
displayed with the desired edit mask for Web DataWindows, you should
specify that the Client Formatting option be included with the static JavaScript
generated and deployed for the DataWindow. To conserve bandwidth,
JavaScript for client formatting is not included by default. To include this
script, you can select the Client Formatting check box on the Web Generation
page of the DataWindow Properties view. If you do not include script for client
formatting, the drop-down calendar will use a default edit mask to display the
column data based on the client machine’s default localization settings.

To navigate in the drop-down calendar, a user can:

• Click the arrows in the top corners to move from month to month.

• Click the month to display a list of months, then click a month to select it.

• Click the year to display a spin control, then use the spin control’s arrows
to select a year.

• Click a date to select the date and close the calendar.

• Press the Esc key to close the calendar without changing the selection.

Web DataWindow properties
This section describes the XML, XHTML, and HTML DataWindow object
properties for the Web DataWindow. You can set these properties in the
DataWindow painter or in script.

For more detailed information about each property, see the DataWindow
Reference or the online Help for the property name. For information about how
to set properties in the DataWindow painter, including shared HTML and
XHTML properties, see “Setting Web generation properties for the Web
DataWindow” on page 127.

Painter option Property

Drop Align Right Column.Editmask.ddcal_alignright

CalendarBackColor Column.Editmask.ddcal_backcolor

CalendarTextColor Column.Editmask.ddcal_textcolor

CalendarTitleBackColor Column.Editmask.ddcal_titlebackcolor

CalendarTitleTextColor Column.Editmask.ddcal_titletextcolor

CalendarTrailingTextColor Column.Editmask.ddcal_trailingtextcolor

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 125

XML and XHTML
data properties

Table 6-4 shows row data properties for the XML and XHTML Web
DataWindow.

Table 6-4: Row properties for the XML and XHTML Web DataWindow

XML Web
DataWindow
generation properties

Table 6-5 lists properties supporting XML Web DataWindow generation.

Table 6-5: Properties supporting XML Web DataWindow generation

Property User interface fields Description

Data.XHTML Read only, so no user
interface field

A string containing the row
data content of the
DataWindow object in
XHTML format

Data.XMLWeb Read only, so no user
interface field

A string containing
browser-specific JavaScript
that performs the XSLT
transformation on the browser

Property User interface fields Allows you to

CSSGen.property Web Generation property
page with CSS selected
as the format to
configure: resource base
and publish path

Specify the physical path to
which a generated CSS style
sheet is published and the URL
indicating the location of the
style sheet where the property
variable is PublishPath or
ResourceBase.

JSGen.property JavaScript Generation
property page with
XHTML selected as the
format to configure:
resource base and publish
path

Specify the physical path to
which generated JavaScript
(that is included in the final
XHTML page) is published and
the URL indicating the location
of the generated JavaScript
where the property variable is
PublishPath or ResourceBase.

XMLGen.property Web Generation property
page with XML selected
as the format to
configure: resource base
and publish path

Specify the physical path to
which XML is published and
the URL referenced by the
JavaScript that transforms the
XML to XHTML where the
property variable is PublishPath
or ResourceBase. You can also
specify whether XML is
generated inline to the XSLT
transformation script and
whether paging is performed on
the client or server.

Designing DataWindow objects for the Web DataWindow

126 PowerBuilder Classic

About PublishPath and ResourceBase
PublishPath is a string that specifies the physical path of the Web site folder to
which PowerBuilder publishes generated CSS, JavaScript, XML, or XSLT.
ResourceBase is a string that specifies the URL of the generated file.

HTML properties There are four types of HTML properties you can set in the DataWindow
painter. The first three apply to the DataWindow object itself. The last applies
to bitmap, column, computed field, and text controls in the DataWindow
object.

Some properties are now shared but property names are unchanged
In previous versions of PowerBuilder, HTML properties applied only to the
HTML Web DataWindow. Now some HTML properties are shared with the
XML Web DataWindow and the XHTML Web DataWindow. The HTML
property names have not changed.

Table 6-6: HTML properties you can set in the DataWindow painter

XSLTGen.property Web Generation property
page with XSLT selected
as the format to
configure: resource base
and publish path

Specify the physical path to
which the generated XSLT style
sheet is published and the URL
referenced by the JavaScript
that transforms the XML to
XHTML (using the generated
XSLT stylesheet) where the
property variable is PublishPath
or ResourceBase.

XHTMLGen.Browser Web Generation property
page with XHTML
selected as the format to
configure: browser

Identify the browser in which
XHTML generated within an
XSLT style sheet is displayed.

Property User interface fields Allows you to

Property User interface fields Allows you to

HTMLDW
(shared)

Web DataWindow check
box on the General page
of the DataWindow
object Property view.
Selecting this check box
sets this property to Yes.

View the HTML in a browser
using Design>HTML Preview
(or if you plan to use the
DataWindow object with a
custom Web DataWindow
server component). The generic
server component automatically
sets this property to Yes.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 127

Setting Web generation properties for the Web DataWindow

Each of the Web formats (and ultimately the files) that contribute to the
generation of a Web DataWindow require configuration:

HTML
XHTML
CSS
XML
XSLT
JavaScript

XHTML and HTML optimized for a browser
For information about generating XHTML and HTML optimized for a specific
browser, see “Specifying Web generation for a specific browser” on page 141

The rest of this section describes configuration of HTML, XHTML, CSS,
XML, and XSLT. For information about JavaScript configuration, see “Using
JavaScript caching for Web DataWindow methods” on page 133.

HTMLTable.property
(HTML only)

All fields on the HTML
Table page of the
DataWindow object
Property view.

Change the display
characteristics of HTML tables,
including border style and cell
width and padding.

HTMLGen.property
(shared by all Web
DataWindow
formats)

All fields on the Web
Generation page and the
JavaScript Generation
page of the DataWindow
object Property view.
(You can also start the
JavaScript Generation
wizard using the
Generate File button on
the JavaScript
Generation page).

Control the number of rows
displayed on the page, generate
HTML for a specific browser or
HTML version, choose
client-side features to
incorporate into the page, and set
up JavaScript caching to
enhance performance.

HTML.property
(shared by all Web
DataWindow
formats)

All fields on the HTML
page of the Property
view for a Column,
Computed Field, Text, or
Picture control in a
DataWindow object.

Set up hyperlinks and retrieval
arguments typically used to
create master/detail Web pages,
specify whether the content of a
control should be rendered as
HTML, and specify any HTML
to be appended to a control.

Property User interface fields Allows you to

Designing DataWindow objects for the Web DataWindow

128 PowerBuilder Classic

To configure a particular Web format, you use the Web Generation page in the
DataWindow object property view. The Web Generation page is controlled by
the Format to configure drop-down list box at the top of the view that displays
the Web formats for the Web DataWindow:

The properties that are shared by all rendering formats display in the view by
default:

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 129

The properties you can set are subject to change based on the format you select:

Typically you share style (CSS), layout (XSLT), and control definitions (JS) for
use by all clients; however, if you use dynamic DataWindows customized for
specific clients, you can force generation of the DataWindow
presentation-related document names to be specific to each client. You do this
by selecting the Session Specific CSS, XSLT and JS Filenames check box or
by setting the CSSGen.SessionSpecific property to “yes”. This eliminates the
possibility of server-side contention for presentation formats when the
DataWindow generation is specific to the client.

Format to
configure Description Properties

HTML and XHTML
(shared)

Properties that are
shared by all Web
DataWindow rendering
formats

Rows per page
Generate JavaScript
Client events
Client validation
Client computed fields
Client formatting
Client scriptable
Generate DDW Frames
Object name
Self link
Self link arguments
Encode self link arguments
TabIndex base
Paging method

HTML HTML-only Web
DataWindow properties

Browser
HTML version

XHTML XHTML-only XML
Web DataWindow
properties

Browser

CSS XML Web DataWindow
CSS properties

Resource base
Publish path
Session specific file names

XML XML Web DataWindow
data and presentation
properties

Resource base
Publish path
Generate securely inline
Paging method

XSLT XML Web DataWindow
XSLT properties

Resource base
Publish path

Designing DataWindow objects for the Web DataWindow

130 PowerBuilder Classic

For different DataWindows with the same name in the same application, you
can eliminate the possibility of server-side contention for presentation formats
and data content by entering a fully qualified file name (rather than a path) for
the publish path properties of those DataWindows. If you do use a file name for
a publish path property, the file extension must correspond to the type of format
you are configuring. For example, if you are adding a file name to the publish
path of the XML format, the file extension must be XML.

Controlling the size of generated code
Some supported features increase the size of the generated code. If you do not
use a feature such as display formatting, validation rules, or client-side
scripting, you can enhance performance by preventing the server component
from generating code for the unused feature. You can turn these features on or
off on the Web Generation property page in the DataWindow painter or in a
script. For more information, see “Controlling what is generated” on page 176.

You can also cache client-side methods in JavaScript files to reduce the size of
the generated code and increase performance on both the server and the client.
Without JavaScript caching, each time a Web DataWindow is rendered in a
client browser, JavaScript code for DataWindow methods is generated on the
server and downloaded to the client. When you set DataWindow properties to
reference cached JavaScript files, the methods defined in the files are not
generated with the HTML in any Web DataWindow pages that are sent to the
page server (and client browser).

For more information, see “Using JavaScript caching for Web DataWindow
methods” next.

Using drop-down DataWindows
When you tab to a column that uses the drop-down DataWindow edit style, you
can use the arrow keys on the keyboard to change its value. If you click the
column, the drop-down DataWindow displays so that you can scroll to a
different value and click to select it.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 131

You set the display properties for the column on the Edit page in the Properties
view in the DataWindow painter. The Width of DropDown property sets the
width of the drop-down display to a size that is a percentage of the width of the
column. For example, 300 sets the display width to three times the column
width.

The default behavior uses inline frames (iFrames), which increases the volume
of markup generated. For DataWindow objects that make heavy use of
drop-down DataWindows, you can save bandwidth by generating the
drop-down DataWindows in HTML select elements. To do so, clear the
Generate DDDW Frames check box on the Web Generation page with the
Format to Configure option set to HTML/XHTML or set the
HTMLGen.GenerateDDDWFrames property to “No”.

For information about the HTMLGen.GenerateDDDWFrames property, see
the DataWindow Reference or online Help.

Netscape and Mozilla browsers
The HTMLGen.GenerateDDDWFrames property is not supported in Netscape
or Mozilla browsers. For information on browser support, see “Browser
requirements for the XML Web DataWindow” on page 119.

Callback and client-side paging support
The PagingMethod property enables you to specify how paging requests are
handled. The default setting is PostBack, which posts each page request back
to the server. You can change the setting on the Web Generation page in the
Properties view with the Format to Configure set to HTML/XHTML.

Designing DataWindow objects for the Web DataWindow

132 PowerBuilder Classic

CallBack CallBack paging uses a script callback feature to provide page navigation
without posting the whole page back to the server. The XML data for the next
requested page is downloaded as an XML string returned to the callback. A
JavaScript function on the client collects the data and invokes the client-side
XSLT processor to transform the data using the XSLT stylesheet that was
downloaded and cached on the first request. The next page of data is displayed
on demand. If you set the PagingMethod property to CallBack, you do not need
to write server-side code and client-side JavaScript to take advantage of the
script callback feature.

For the XML rendering format, the design of the Callback! option requires that
a reusable XSLT stylesheet be generated so that the browser can cache it. The
benefit from this requirement is that only the XML data for the next requested
page need be returned by the callback. This XML data is always trivial in size
(about a 1 to 20 ratio), resulting in significant bandwidth savings. This is unlike
other implementations, where the entire presentation is always regenerated and
downloaded again from every callback.

The generated XSLT stylesheet is not reusable, and therefore cannot be cached
by the browser, if the DataWindow layout is inconsistent page-to-page, or it
does not contain a complete first page of data. In these scenarios, the Callback!
option defers to PostBack! until a stylesheet can be generated that is reusable,
and can therefore be cached in the browser.

XMLClientSide When the PagingMethod property is set to XMLClientSide, the page takes
slightly longer to load on the first request because all the data in the result set
is pulled down to the client, but subsequent paging requests take place entirely
on the client. InsertRow, AppendRow, and DeleteRow actions take place on the
client with no postback or callback to the server. However, any computed fields
in the DataWindow that rely on the RowCount method are not reevaluated until
the user performs an action such as an Update or Retrieve that forces a postback
to the server.

Client-side paging is available only for the XML rendering format and in
button actions and client JavaScript paging functions of the Web DataWindow
client control.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 133

Using JavaScript caching for Web DataWindow methods
You can use the Web Data Window JavaScript Generator wizard to create
JavaScript files (at design time) that contain the JavaScript client-side methods.
You can start the Web Data Window JavaScript Generator wizard by clicking
the Generate File button in the JavaScript Generation property page of the
DataWindow property view or from the Tool tab of the New dialog box.

Shared JavaScript
generation properties

These JavaScript files (HTML/XHTML) are shared by all Web formats of the
Web DataWindow—XML, XHTML, and HTML.

Each pass of the wizard generates only one file—which allows you to combine
or separate classes of functions. Once you have generated one or more
JavaScript files, you can attach them to a DataWindow object using the
Filename drop-down lists (for Common Class, Date Time Management,
Number Format, String Format, and User Class) in the JavaScript Generation
property page.

Generating and associating JavaScript files with a DataWindow object enables
the JavaScript functions to be cached and then reused each time the page
containing the DataWindow object displays in the browser.

Designing DataWindow objects for the Web DataWindow

134 PowerBuilder Classic

XML and XHTML
JavaScript generation
properties

To configure the JavaScript generation properties that are only for the XML
Web DataWindow and XHTML Web DataWindow, you select XHTML and
provide the resource base and the publish path:

Improving server-side
and client-side
performance

When you set new DataWindow properties to reference included JavaScript
files, the methods defined in the referenced files are not generated with the
HTML in any Web DataWindow pages that are sent to the page server and
client browser. Using JavaScript files also reduces the size of the HTML page
rendered in the browser.

With JavaScript caching, you improve performance on the client machine as
long as the client browser is configured to use cached files. With caching
enabled, the browser loads the JavaScript files from the Web server into its
cache, and these become available for all the Web DataWindow pages in your
application. There is no client-side performance gain if the browser does not
find the JavaScript files in its cache since, in this case, it reloads the files from
the Web server.

Web DataWindow
JavaScript Generator
wizard

With the Web DataWindow JavaScript Generator wizard, you can generate
only one JavaScript file at a time. The wizard gives you the option of including
all Web DataWindow methods in a single file, but you can also restrict the
types of methods to include in each JavaScript file it generates every time you
use the wizard. The different method types correspond to the following
DataWindow HTML properties:

Table 6-7: Methods generated by JavaScript Generator wizard in
cached files

HTMLGen.property Contents of cached file

CommonJSFile Methods used by all DataWindows.

DateJSFile Methods used by DataWindows with date and time
formatting.

NumberJSFile Methods used by DataWindows with number formatting.

StringJSFile Methods used by DataWindows with string formatting.

UserJSFile User-defined client-side JavaScript methods—these
cannot be generated by the Web DataWindow JavaScript
Generator wizard (see “User-defined JavaScript methods”
on page 135).

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 135

All of these properties are optional. You can set each of the properties from the
JavaScript Generation page of the DataWindow property view, selecting the
files you generate with the wizard as values. The wizard registers each file it
generates, making it available for selection from the drop-down lists in the
DataWindow property view.

Using the
ResourceBase
property

You must deploy all cached files for your Web application to your Web server.
You can use relative URLs or path names for cached JavaScript files if you
specify their location in the HTMLGen.ResourceBase property.

You set these on the JavaScript Generation page of the DataWindow property
view in the DataWindow painter. The ResourceBase property is also used to
specify the location of image files.

If you do not set the HTMLGen.ResourceBase property, you must include the
complete URL in the values of any of the HTMLGen properties that you set.
In either case, the URLs are rendered as SRC attributes inside SCRIPT tags in
the pages generated by the Web DataWindow component and sent to the client
browser.

Setting the properties
in script

You can customize the DataWindow HTML Generator component
(nv_remote_datawindow in PBDWRMT.PBL that ships with PowerBuilder),
setting the HTMLGen properties in the script for the Generate method. This
example sets the URL location for included files and names the files for
common and date-formatted Web DataWindow methods that you deploy to the
Web server (and that will be downloaded to browser clients the first time they
connect to the Web site):

ids_datastore.Modify &
 ("DataWindow.HTMLGen.ResourceBase=" +&
 "'http://www.myserver.com/JavaScripts'")
ids_datastore.Modify &
 ("DataWindow.HTMLGen.CommonJSFile=" +&
 "'dwcomn.js'")

ids_datastore.Modify &
 ("DataWindow.HTMLGen.DateJSFile=" +&
 "'dwdate.js'")

User-defined
JavaScript methods

You can also reference a file where you store your own client-side JavaScript
methods. To use this feature, you must assign the name of the file to the
DataWindow HTMLGen.UserJSFile property and make sure the file is
available to your Web server. As for the wizard-generated JavaScript files, you
can use the HTMLGen.ResourceBase property to set the location for the file,
or you can include the complete path to the file in the property value
assignment.

Designing DataWindow objects for the Web DataWindow

136 PowerBuilder Classic

You can make this assignment in the DataWindow painter or in script. The
following script sets the user-defined JavaScript file to MyMethods.JS:

ids_datastore.Modify &
 ("DataWindow.HTMLGen.UserJSFile=" +&
 "'http://my_server.com/JavaScripts/MyMethods.JS'")

This example will be rendered in the generated HTML page as:

<SCRIPT LANGUAGE="JavaScript" SRC=
"http://my_server.com/JavaScripts/MyMethods.JS">
</SCRIPT>

You can then call client-side methods stored in the MyMethods.JS file from the
HTML syntax rendered for (or appended to) controls in a DataWindow object.
For information on generating or appending HTML syntax to controls, see
“Rendering HTML for controls in an HTML Web DataWindow” on page 137.

Using expressions
In general, expressions for validation rules and computed fields are translated
into JavaScript and evaluated in the client browser. For validation of data entry,
the user gets immediate feedback on the new data.

Some expressions have to be evaluated on the server. This might be because
the evaluation involves all the rows, rather than data on the current page only,
or because the expression does not translate into JavaScript.

If an expression includes these functions, it will be evaluated on the server:

• Aggregation functions, like Sum, Max, Average, First

• Case function

• External functions

If you use an aggregation function in a computed field, the value is computed
on the server and displayed on the client. If the user edits data, the value is not
updated. If an action occurs that reloads the page, the value is computed again
based on the changed data.

ProfileInt and ProfileString return default values
The ProfileInt and ProfileString DataWindow expression functions do not
examine a user’s INI files if you use them in an expression evaluated on the
client. Doing so would be a security violation. They always return the default
value.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 137

Using foreign language character sets
If a data source for your Web DataWindow uses foreign characters with accent
marks, you might need to change the character set for the generated Web page
to display the characters properly. This is also necessary if you expect to update
the data with foreign character text. You can use the HTML editor to edit the
<META> tags in the <HEAD> section of the generated page. The following
example uses the utf8 character set instead of the default iso-8859-1 character
set:

<META content="text/html; charset=utf-8"
http-equiv="Content-Type">

Changing the character set in EAServer
You can also change the character set used by your component in EAServer by
setting the com.sybase.jaguar.component.code.set property for the component.
By default, the component uses the server’s codeset.

Providing links for data
You can set properties that apply to all Web DataWindow formats that cause
columns, text, computed fields, and Picture controls to be hyperlinks. In the
painter, select the control and choose the HTML tab in the Properties view. The
URL you specify must be valid when you deploy your application.

Rather than set link information in the painter, you can set the HTML
properties for columns by calling methods of the server component. For
information, see the SetColumnLink method in the DataWindow Reference.

Rendering HTML for controls in an HTML Web DataWindow

For HTML Web DataWindow only
This section applies to the HTML Web DataWindow only. XML Web
DataWindow and XHTML Web DataWindow features supersede the need to
perform any of the following actions.

Designing DataWindow objects for the Web DataWindow

138 PowerBuilder Classic

Including HTML in a
control

You can include valid HTML in some controls in a DataWindow object,
including a text control, column, or computed field. To render the contents of
the control as HTML when the HTML for the DataWindow is generated, set
the control’s ValueIsHTML property to TRUE. For example, suppose a text
control’s text property is <I>Name</I>. The following table shows how the
text is rendered in the generated HTML and displayed in a browser.

Table 6-8: Effect of ValueIsHTML property on rendered text

No validation
The HTML Generator does not validate the HTML you include in controls in
DataWindow objects. If the HTML is not valid, the DataWindow might not
display correctly.

Appending HTML to a
control

The AppendedHTML property enables you to append your own HTML to the
HTML generated by the HTML Generator component. You can use this feature
to specify attributes and event actions. The HTML you specify for the
AppendedHTML property value is appended to generated syntax for the
rendering of a DataWindow control before the closing bracket of the HTML
element for that control.

No validation
The HTML Generator does not validate the HTML you append to controls in
DataWindow objects. If the HTML is not valid, the DataWindow might not
display correctly.

You must also make sure not to use an event handler name that is already
generated for a DataWindow control as a client-side event handler. These
include the event handlers in Table 6-9.

ValueIsHTML Generated HTML source Output in browser

TRUE <I>Name</I> Name

FALSE <I>Name</I> <I>Name</I>

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 139

Table 6-9: Generated event handler names

Using Button and Picture controls
Using Button controls When a DataWindow object includes a Button control, the button becomes an

HTML or XHTML button element in the Form element for the Web
DataWindow client control. The button action becomes JavaScript code for the
button’s Clicked event. You do not need to write any code yourself.

You can use Button controls for:

• Navigation Buttons with the PageFirst, PageLast, PageNext, and
PagePrior actions let the user scroll to other rows in the result set.

• Getting and editing data Buttons with Retrieve, Update, InsertRow,
DeleteRow, and AppendRow actions let the user maintain data. There
must be updatable columns in the DataWindow object.

These button actions are not supported and are ignored:

Setting SelfLink
properties to enable
navigation buttons

Button actions send information back to the server, whose scripts apply the
action to the DataWindow data. Then the Web page is reloaded. To complete
this loop, you must set the SelfLink property for the DataWindow object so that
the server knows what page to reload.

You can set this property in the DataWindow painter on the Web Generation
tab in the DataWindow properties view, or you can set it in a server-side script.
The value is the name of the application server template or file to be reloaded—
generally, the name of the current document. If the DataWindow uses retrieval
arguments, they must be provided in the SelfLinkArgs property.

For more information, see “Passing page-specific data to the reloaded page”
on page 178 and the SetSelfLink method in the DataWindow Reference.

DataWindow control Generated event handler names

Edit, EditMask, DropDownListBox, or
DropDownDataWindow

onFocus, onClick, onChange, and onBlur

CheckBox or RadioButton onFocus, onClick, and onBlur

TextBox, Picture with link, or Button onClick

Cancel QueryClear

Filter QueryMode

Preview QuerySort

PreviewWithRulers SaveRowsAs

Print Sort

Designing DataWindow objects for the Web DataWindow

140 PowerBuilder Classic

GIF and JPEG images
for buttons

The picture on a button in a DataWindow object can be rendered in the Web
browser as a JPEG, GIF, or BMP image. Use a JPEG or GIF image to ensure
that the image will display on all browsers. PowerBuilder provides GIF images
for commonly used buttons such as Retrieve, Update, PageNext, and so on.
These pictures are included in the DWACTION.JAR file in the
Sybase\Shared\PowerBuilder directory.

To make the images available to the Web page in the Web browser, you must
uncompress the JAR file, deploy the image files to the page server, and set the
HTMLGen.ResourceBase property to the directory where the files are located.

Alternative to buttons:
use methods of the
client control

If you want to use an existing DataWindow object that does not have Button
controls, you can edit the DataWindow object and save a new version with
Button controls. However, if you are sharing DataWindow objects with an
existing application and it is not practical to edit them, your Web page can
include HTML or XHTML buttons that call methods of the Web DataWindow
client control.

There are methods of the client control that correspond to each of the supported
button actions. For information, see “Writing client-side scripts” on page 147.

Using Picture controls You can use any image types the browser supports, most commonly JPEG or
GIF. Use relative paths for ease of deployment.

To make sure the images are available to the Web page in the browser, place
the image files in a directory on the Web server and then set the
HTMLGen.ResourceBase property to that directory. You can do this in the
DataWindow painter on the JavaScript Generation page of the DataWindow
property view, or in a script:

dwMine.Modify("DataWindow.HTMLGen.ResourceBase=
'C:\Sybase\MyApp\Images'")

The ResourceBase property also specifies the location of JavaScript include
files. See “Using JavaScript caching for Web DataWindow methods” on page
133.

Where to deploy image files
The image files need to be deployed to the Web server, not the component
server. If these servers are on different computers, the files belong with the
templates and Web files of the application, not the PBL containing the
DataWindow objects.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 141

Specifying Web generation for a specific browser
About browsers and
HTML version

The Web DataWindow can generate XHTML and HTML optimized for
different browsers. You can use the Browser choice for the XHTML and
HTML formats on the Web Generation tab of the DataWindow property sheet
to preview what the DataWindow looks like in different browsers. You can also
specify an HTML version that the Web generation should use if it does not
recognize the browser.

At runtime, a server-side script should find out what browser the current client
is using and pass that information to the server component. For information,
see “SetBrowser” on page 177 and the SetBrowser method in the DataWindow
Reference or online Help.

Using absolute
positioning in
Netscape

Netscape implements absolute positioning differently than Internet Explorer.
To format the DataWindow with absolute positioning for Netscape browsers,
you must set the DataWindow HTMLGen.NetscapeLayers property to true.
You can do this in the DataWindow painter by selecting the Use Layers for
Netscape check box on the Web Generation page of the DataWindow property
view. Alternatively, you can use a DataWindow Modify call in the script for the
Generate method of the HTML Generator (nv_remote_datawindow in
PBDWRMT.PBL that ships with PowerBuilder).

The default DataWindow HTML Generator generates code for determining the
browser type and version of the client browser. For Netscape browsers earlier
than the 4.0 version, the DataWindow is formatted as an HTML table, whether
or not the NetscapeLayers property is set.

Limitations in Netscape
Certain functionality in a Netscape browser using absolute positioning might
not be identical to the functionality available with Internet Explorer. For
example, you cannot tab between DataWindow columns using a Netscape
browser on an NT machine, although you can do this using a Netscape browser
on a Solaris machine.

Previewing the DataWindow
To see what the DataWindow will look like in a Web DataWindow application,
you can use HTML Preview.

Setting up database connections

142 PowerBuilder Classic

❖ To get an HTML preview of a Web DataWindow:

1 On the General property page of the DataWindow property sheet, check
Web DataWindow.

If you do not check Web DataWindow, the preview displays the data as an
HTML table without buttons, validation rules, or other scripts.

2 On the Web Generation page, specify a value for Rows per Page.

This sets the PageSize property for the DataWindow object. To display
only one row of data, specify 1.

3 Specify a value for Browser and one for Version if you want to preview the
DataWindow for a specific client configuration.

4 Select Design>HTML Preview from the menu bar.

If the menu item is disabled, open the Preview view to enable it.

5 Enter data and see whether validation rules behave as expected.

6 Use your buttons to navigate to other pages.

Setting up database connections
When you use the Web DataWindow, it is the Web DataWindow server
component that interacts with the database, so you need to set up database
connections on the server where the component is running.

What database
connectivity software
to use

If you are using EAServer as the component server, you can use several types
of connectivity software, including ODBC, Open Client, JDBC, and OCI. You
need to set up a connection cache for the data source you are using. See
“Creating a connection cache on EAServer 5.x” next.

If you are using COM+ as the component server, you must use ODBC to take
advantage of connection pooling and transaction management features. The
data source for your DataWindow objects must be configured as a system DSN
on COM+ because it runs as a service.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 143

When you are defining DataWindow objects, you can use the types of
connectivity software documented in Connecting to Your Database. To
simplify setting up database connections on the server, use the same type of
connection in the DataWindow painter that will be used when the DataWindow
is deployed. For example, if you plan to use the DataWindow object in
EAServer with an Open Client connection, use Open Client in the
DataWindow painter too.

Using Adaptive Server Enterprise
PowerBuilder and EAServer use slightly different versions of the CT-Lib
software to connect to Adaptive Server Enterprise through Open Client. In the
PowerBuilder development environment you use the SYC native database
interface to connect to the database, but to connect to an Adaptive Server
Enterprise database in EAServer you must use the SYJ database interface.

Creating a connection
cache on EAServer
5.x

To use the HTMLGenerator120 component (or your own custom component)
in EAServer, you need to define a connection cache (EAServer 5.x) or data
source cache (EAServer 6.x) for the database it will use.

❖ To create an EAServer 5.x connection cache:

1 Define the connection type you want, using the appropriate database
configuration software.

For an ODBC connection on Windows, for example, open the ODBC
control panel and define a Data Source Name (DSN) for the database. If
you installed SQL Anywhere 11, you can use the predefined user DSN to
connect to the SQL Anywhere Sample database for testing purposes. If
EAServer is running as a service, you must use a system DSN, not a user
DSN. On UNIX, see your driver documentation.

2 Start EAServer and EAServer Manager.

Instructions are in the EAServer Getting Started book for your platform.

3 In EAServer Manager's left pane, right-click the Connection Caches node
under the server name and select Install Connection Cache.

4 In the dialog box, select Create and Install a New Connection Cache.

5 Enter a name for the cache and click OK. (You cannot change this name.)

Setting up database connections

144 PowerBuilder Classic

6 In the Connection Cache Properties dialog box, specify database
connection information on the General tab and the driver you want to use
on the Driver tab.

For ODBC on Windows: for Database Connection:Server Name on the
General tab, specify the DSN you defined in step 1. You do not need to
specify a user name or password if they are specified as part of the DSN.

On the Driver tab, click the ODBC radio button and specify ODBC32.dll
for the Driver Class or File.

For other connection types: see the EAServer Getting Started book for
your platform.

7 Select the Enable Cache-by-Name Access check box on the Cache tab.

8 Click Refresh on the General tab (the Refresh button is available only on
the Connection Cache Properties dialog box accessed from the server
node).

9 To test the connection, click Ping.

For more detailed information about setting up connection caches, see the
EAServer 5.x documentation.

Creating a data
source cache on
EAServer 6.x

For EAServer 6.x, you define a data source cache rather than a connection
cache. You define the cache in the Web Administration Console (Sybase
Management Console).

❖ To create an EAServer 6.x data source cache:

1 Define the connection type you want, using the appropriate database
configuration software.

For an ODBC connection on Windows, for example, open the ODBC
control panel and define a Data Source Name (DSN) for the database. If
you installed SQL Anywhere 11, you can use the predefined user DSN to
connect to the SQL Anywhere Sample database for testing purposes. If
EAServer is running as a service, you must use a system DSN, not a user
DSN. On UNIX, see your driver documentation.

2 Start EAServer and the Web Administration Console.

Instructions are in the EAServer System Administration Guide book for
your platform.

3 In the left pane of the console, right-click the EAServer Manager>Local
Server>Resources>Data Sources node and select Add.

The New Data Source Wizard displays in the right pane of the console.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 145

4 Enter a data source name for the cache on the second page of the wizard
and click Next.

You cannot change this name in the console, although you can delete it and
start the wizard again.

5 On the remaining wizard pages, select the database type of the DBMS and
change the default entries for other wizard fields for which you are not
using default settings and click Finish.

You can change the settings you enter in the wizard on the tabs of the data
source property sheet that displays in the right pane of the console after
you click Finish.

For ODBC on Windows: for the Server Name in the wizard or on the
General tab of the data source property sheet, specify the DSN you defined
in step 1. You do not need to specify a user name or password if they are
specified as part of the DSN.

For other connection types: see the EAServer Getting Started book for
your platform.

6 Click Apply after making any changes on the tabs of the data source
property sheet.

7 To test the connection, right-click the data source you created under the
Data Sources node in the left pane of the console, and select Ping.

You might need to restart EAServer if the ping is not successful.

For more detailed information about setting up data sources, see the EAServer
6.x documentation.

Deploying DataWindow objects to the component
server

When you run a Web DataWindow application, the definitions of your
DataWindow objects must be available on the component server. You can
ensure this by copying the PBL or PBD file that contains the definition of the
objects to the server. If you are using EAServer, the files must be in the server’s
path, or if the server component is running as a service, in the system path.
COM+ always runs as a service, so the files must be in the COM+ server’s
system path.

Deploying DataWindow objects to the component server

146 PowerBuilder Classic

For more information about setting up your development environment, see
“Server configuration requirements” on page 171.

The Web DataWindow Container project wizard
In PowerBuilder, you can use the Web DataWindow Container project wizard
to create a project that deploys a custom version of the Web DataWindow
server component (HTMLGenerator120) to EAServer with all the
DataWindow objects in your library list built into the deployed PBD.

Because you are using a custom component instead of the preinstalled
HTMLGenerator120 component, you can set properties for your component in
EAServer Manager. Setting properties reduces the number of method calls
required to configure the component and can result in improved performance,
maintainability, and scalability.

Using the wizard When you have defined the DataWindow objects you need, start the Web
DataWindow Container wizard from the Project page of the New dialog box
and follow the instructions in the wizard.

The choices you make in the wizard are similar to those you make for other
EAServer components, such as whether to support instance pooling or live
editing. The package and component can have any names you want, with the
exception that you cannot name the package DataWindow (the name of the
package that contains the preinstalled HTMLGenerator120 component). You
cannot set component type or transaction support properties.

Building the Web DataWindow Container project presets some of the
properties of the component that you would otherwise need to set in scripts or
in EAServer Manager. You can specify a database profile in the wizard or
Project painter to set the com.sybase.datawindow.trans.dbms and other
database transaction properties. If you want calls to component methods to be
written to the server log, select Enable Trace to set the
com.sybase.datawindow.trace property.

Connection or data source cache
Specifying a profile sets database transaction properties for the component, but
you still need to create a connection cache (EAServer 5.x) or data source cache
(EAServer 6.x) in EAServer Manager for the database that the component will
access.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 147

Service classes You can add a custom class user object to your project to perform any special
processing you require. This object acts as a service class. The custom class
user object must be in the same library as the DataWindow objects or on the
target’s library list. When you build the Web DataWindow Container project,
select the class in the Select Objects dialog box in the Project painter.

For more information, see “Using service classes” on page 192.

Instantiating the
container component

When you create an instance of the container component, you must either
provide a Java proxy for the component or pass
DataWindow/HTMLGenerator120 as the last argument to the
CreateComponent method. This specifies that the component uses the proxy
provided for the generic component. For example:

dwObj = java.CreateComponent
("ContainerPkg/ContComponent",
"iiop://testMachine:2000", "Jagadmin", "mypass",
"DataWindow/HTMLGenerator120");

This is the same way you instantiate custom components. For more
information on custom components, see “Instantiating the custom component”
on page 189.

Selecting a
DataWindow from the
container component

To select a DataWindow from the container component, you must use the
SetDWObjectEx method rather than the SetDWObject method:

//Only the DW is needed, as package already specified
//above when connecting
retVal = dwObj.SetDWObjectEx("d_mydw");
document.write("SetDwObject = " + retVal);

For more information on the SetDWObject method, see “Loading the
DataWindow object” on page 175 and the DataWindow Reference.

Writing client-side scripts
Responding to events If you want to provide additional processing of newly entered data or have

more control over user interactions with the data, you can choose to enable
events in the Web DataWindow client control. To do so, you set the Client
Events property on the Web Generation page in the DataWindow painter or call
the SetWeight method in a server-side script.

Writing client-side scripts

148 PowerBuilder Classic

The client control supports several events:

Most of these events have similar arguments and the same return codes as the
events of the PowerBuilder DataWindow control. For information, see the
DataWindow Reference or online Help.

Implementing an
event

To write a script for an event of the client control, you define a function whose
name is the control name plus the event name, separated by an underscore:

HTMLGenObjectName_eventname (arguments)

The control name is the one you specified using the SetHTMLObjectName
method or the Object Name property on the Web Generation page in the
DataWindow painter. The script must be enclosed in SCRIPT tags. You can
include client methods in the script if client scripting is enabled (described
next).

This example prevents focus from changing if the user tries to go back to an
earlier row. In this case the name of the DataWindow control is dwMine:

<SCRIPT Language=JavaScript>
function dwMine_RowFocusChanging(curRow, newRow)
{

if (newRow < curRow) { return 1; }
}
</SCRIPT>

You can put the script anywhere in your Web page template.

Calling client methods To write scripts that call methods of the client control, you must enable client
scripting. To do so, you can set the Client Scriptable property in the
DataWindow painter or call the SetWeight method in a server-side script.

Several client methods accomplish the same tasks as actions of Button
controls. If your DataWindow object uses Button controls to implement
scrolling and updating, you might not need to do any client scripting.

ButtonClicking ItemError RowFocusChanging

ButtonClicked ItemFocusChanged UpdateStart

Clicked OnSubmit

ItemChanged RowFocusChanged

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 149

You can use the following methods on the client (methods marked with an
asterisk force the Web page to be reloaded):

GetNextModified
The GetNextModified method finds modified rows in the current page only.

For information about these methods, see the DataWindow Reference or online
Help.

This example includes a form with a button that causes data to be updated on
the server:

<FORM NAME="update">
<INPUT type="button" value="Update"
onClick="{dwMine.Update();}">

Note that you can get the same functionality with the Update action for a
Button control in the DataWindow object.

Multiple DataWindows
on a page

If you have multiple updatable Web DataWindows on the same Web page, you
can script the OnSubmit client-side event to synchronize them before the
changes on the page are submitted. You call the GetFullContext method to get
a string that represents the context of the client side control that would be
passed on a submit, and transfer the context to the other DataWindow control.

To enable the second DataWindow to create the required fields on the submit
form, each of the DataWindows must have two arguments defined as self-link
arguments:

dw_1.SetSelfLink(document.name,
 "dw_2_context=''|dw_2_action=''")

dw_2.SetSelfLink(document.name,
 "dw_1_context=''|dw_1_action=''")

AcceptText GetItem ScrollNextPage *

DeletedCount GetItemStatus ScrollPriorPage *

DeleteRow * InsertRow * SelectRow

GetClickedColumn IsRowSelected SetItem

GetClickedRow ModifiedCount SetColumn

GetColumn Retrieve * SetRow

GetFullContext RowCount SetSort

GetNextModified ScrollFirstPage * Sort *

GetRow ScrollLastPage * Update *

Customizing Web DataWindow generation

150 PowerBuilder Classic

This client-side script transfers the context and action from dw_2 to dw_1
when dw_1 is submitted, and from dw_1 to dw_2 when dw_2 is submitted:

<SCRIPT>
function dw_1_OnSubmit()
{

dw_1.submitForm.dw_2_context.value =
dw_2.GetFullContext();

dw_1.submitForm.dw_2_action.value = "";
}

function dw_2_OnSubmit()
{

dw_2.submitForm.dw_1_context.value =
dw_1.GetFullContext();

dw_2.submitForm.dw_1_action.value = "";
}

</SCRIPT>

Customizing Web DataWindow generation
You can customize the XHTML that is generated at runtime by the XML Web
DataWindow and the XHTML Web DataWindow using an XHTML export
template in the DataWindow painter’s Export Template view for XHTML.

XML and XHTML Web DataWindow customization
This section focuses on customizing the XHTML generated by the XML Web
DataWindow.

The Export Template view for XHTML
Each DataWindow object that you create has a default XHTML export
template associated with it. You can see the default template in the
DataWindow painter’s Export Template view for XHTML.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 151

Displaying the XHTML export template
The Export Template view for XHTML coexists with the Export Template
view for XML, each on its own tab page with XML on the top by default. To
display the view for XHTML, click the XHTML tab. If you have any problems
displaying the view, select View>Export/Import Template>XHTML from the
menu bar or select View>Layouts>Default and then click the XHTML tab.

The XHTML export template is a single-instance document of the <form>
element. It stores only the structural layout and any changes that you make to
the elements, attributes, and style declarations. When XHTML or XSLT is
generated, these changes are incorporated into the <form> element and the
CSS stylesheet used to render the DataWindow in the browser. More than one
export template can be created for a DataWindow.

Default style rules and most default attributes are not stored in the template.
Any changes to style declarations are stored in the template, but at runtime they
are removed and applied to the separately generated CSS stylesheet.

In the Export Template view for XHTML, you can reference DataWindow
column, computed field, and text controls, and DataWindow expressions for
each row in the XHTML, wherever character data is allowed. At runtime, these
are replaced with text.

What you can customize
The XML Web DataWindow generates DataWindow content, layout, and style
separately at runtime and renders in the browser a fully-functional
DataWindow in XHTML.

At design time, you can customize each of these XML Web DataWindow
components:

Customizing Web DataWindow generation

152 PowerBuilder Classic

• Elements or contents of the <form> element

• CSS stylesheet declarations

• Other XHTML element-specific attributes (including style attributes) in
the DataWindow form

• JavaScript event handlers

Examples of
customization

Your customizations can include these types of modifications:

The default XHTML export template
In the default XHTML export template, export XHTML entities (markup and
character data) are displayed as single tree view items that denote the type of
entity. The default template has one element for each column in the
DataWindow object:

Customization Example

Structural layout Add or remove elements and content (input fields
of the XHTML <form> element) from the header,
detail, summary, and footer bands

Style rules of data input field
elements in the <form> element

Modify the default CSS stylesheet property values
and add or remove CSS stylesheet declarations

Other attributes of elements of
the DataWindow

Override attribute values and remove or add
attributes specific to these elements

JavaScript event handlers Override, redirect, add, or remove JavaScript
event handlers

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 153

You can create multiple templates and save them by name with the
DataWindow object. Each template is uniquely associated with the
DataWindow object open in the painter. For information, see “Managing
templates” on page 154.

How tree view items
are represented

Each item in the XHTML export template displays as a single tree view item
with an image and font color that denotes its type. Elements are represented by
a yellow icon that resembles a luggage tag. The end tags of elements and the
markup delimiters (angle brackets) used in an XHTML document do not
display.

Table 6-10 shows the icons used in the Export Template view for XHTML.

Table 6-10: Icons used in the Export Template view for XHTML

Icon Description

Root or child element

Group header element

DataWindow column reference

Static text control reference

Computed field or DataWindow expression reference

Literal text

CDATA section

Nested report

Customizing Web DataWindow generation

154 PowerBuilder Classic

Managing templates
From the pop-up menu for the default XHTML export template (with no items
selected), you can create multiple templates and save them by name with the
DataWindow object open in the painter. You can also open and edit existing
templates that are associated with the current DataWindow object and, when
more than one template is associated with the DataWindow, delete the current
template:

The pop-up menu has these options for managing templates:

Menu item Description

New Default Define a new default XHTML export template based on the
current DataWindow layout

Open Open a saved template

Save Save the current template; if the template has no name, name it

Save As Save the current template with a new name

Delete Delete the current template (enabled only if more than one
template exists for the current DataWindow object)

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 155

Creating and saving templates
Creating a new default
template

To create a new default XHTML export template, select New Default from the
pop-up menu in the Export Template view for XHTML.

A new default XHTML export template has the following elements:

Elements Name defaults to

Root <form> DataWindow name_dataForm

Header <div> DataWindow name_band1

Detail <div> DataWindow name_bandn

Summary <div> DataWindow name_bandn

Footer <div> DataWindow name_bandn

Child elements of the
Header, Detail,
Summary, and Footer
elements

Name of each DataWindow control.

Customizing Web DataWindow generation

156 PowerBuilder Classic

Saving the template To save a new default template, select Save from the pop-up menu in the
Export Template view for XHTML, name the template, and provide a comment
that identifies its use.

The template is stored inside the DataWindow object in the PBL. After saving
a template with a DataWindow object, you can see its definition in the Source
editor for the DataWindow object. For example, this is part of the source for a
DataWindow that has two templates. The templates have required elements
only:

export.xhtml(usetemplate = "t_phone"
template = (name = "t_address"

comment = "Employee Address Book" xhtml = "<…>")
template = (name = "t_phone"

comment = "Employee Phone Book" xhtml = "<…>"))

Defining multiple templates
You can define multiple templates for a single DataWindow object. One reason
you might do this is to vary the edit styles generated for the same DataWindow
edit control.

Selecting the template to use
Using the
Export.XHTML.
UseTemplate property

The Data Export page in the Properties view lets you set properties for
exporting data in XHTML. The names of all templates that you create and save
for the current DataWindow object display in the Use Template drop-down list.

In addition to the properties that you can set on this page, you can use the
Export.XHTML.TemplateCount and Export.XHTML.Template[].Name
properties to let the user of an application select an export template at runtime.
See “Selecting XHTML export templates at runtime” on page 168.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 157

You can specify the template you want to apply to the default XML Web
DataWindow or XHTML Web DataWindow generation at runtime by setting
the Export.XHTML.UseTemplate property. You set the property using the Data
Export tab in the DataWindow painter’s Properties view by selecting XHTML
as the format and then selecting the XHTML export template’s name from the
Use Template drop-down list box.

You can also set the Export.XHTML.UseTemplate DataWindow property in
script. For information, see “Selecting XHTML export templates at runtime”
on page 168.

Incorrect setting of the UseTemplate property
If you set the Export.XHTML.UseTemplate property at runtime to the name of
a template that does not exist, the built-in default Template is used on an export.

Properties related to
XHTML export
templates

Table 6-11 shows properties related to XHTML export templates.

Customizing Web DataWindow generation

158 PowerBuilder Classic

Table 6-11: Properties for XHTML export templates

For detailed information about DataWindow properties, see the DataWindow
Reference.

Template structure
An XHTML export template has a Header section and a Detail section
separated graphically by a line across the tree view. Other DataWindow bands
are incorporated into these sections.

Property User interface fields Description

Export.XHTML.
TemplateCount

Read only, so no user
interface field.

The number of XHTML export
templates associated with a
DataWindow object

Export.XHTML.
Template[num].
Name

Read only, so no user
interface field.

The name of an XHTML export
template associated with a
DataWindow object returned by index
value that ranges from 1 to the value of
the Export.XHTML.TemplateCount
property

Export.XHTML.
UseTemplate

Select a template from
the Use Template
drop-down list box in
the Data Export tab in
the DataWindow
painter’s Properties
view.

The name of an XHTML export
template (previously saved in the
DataWindow painter) that optionally
controls the logical structure of the
XHTML generated by a DataWindow
object

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 159

The Detail Start
element

A line across the Export/Import Template view separates the Header section
from the Detail section. The first element after this line, d_dept_list_row in the
previous screen shot, is called the Detail Start element.

There can be only one Detail Start element, and it must be inside the
document’s root element. Each band of the DataWindow is wrapped by a <div>
element. When the DataWindow is exported in XHTML, this element and all
children and/or siblings after it are generated iteratively for each row.

Header section

The Header section can contain the items listed in Table 6-12. Only the root
XHTML <form> element is required:

Table 6-12: Items permitted in the Header section of an XHTML
document

Detail section in root element
The root element displays in the Header section, but the entire content of the
Detail section is contained in the root element.

The items in the Header section are generated only once at runtime (when the
DataWindow is exported to XHTML), unless the DataWindow is a Group
DataWindow. For Group DataWindows, the corresponding XHTML fragment
in the Header section is repeated so that it iteratively heads each group detail—
the group of XHTML rows corresponding to the group specified in the
DataWindow.

Item Details

Root <form> element
(start tag)

The XHTML <form> element is the root element of the
XHTML template. See “Root element” on page 162.

XHTML elements Additional elements below the root element.

DataWindow control
references

Text. See “DataWindow controls” on page 163.

DataWindow
expressions

Text. See “DataWindow expressions” on page 163.

Literal text Text that does not correspond to a DW control.

Attributes Can be assigned to all elements. See “Element attributes”
on page 164.

CDATA sections See “CDATA sections” on page 166.

Child elements Child elements in the Header section cannot be iterative
except for the Group DataWindow.

Customizing Web DataWindow generation

160 PowerBuilder Classic

The Header section contains the rendering of the DataWindow header band and
any group header bands. Bands are generated within <div> elements. The
controls rendered in the Header section (such as computed titles and text
control column headings) are typically also generated within <div> elements,
with referenced content.

These entities are generated only once and are not iterated for each row.
However, for DataWindows with group headers, the corresponding XHTML
fragment in the Header section is repeated, iteratively heading each group of
XHTML rows corresponding to the group specified in the DataWindow.

Detail section

The Detail section contains the rendering of the DataWindow Detail band,
delimited by the first <div> element. The <div> element’s contents represent a
single row instance to be generated iteratively. Any group trailers, summary
band, and footer band are also appended and enclosed by <div> elements. The
controls rendered in the Detail section (for example, column, computed field,
DropDownDataWindow, DropDownListBox, checkbox, and button controls)
are usually also generated within <div>, <input>, or <select> elements with
referenced content.

The Detail section can contain the items listed in Table 6-13.

Table 6-13: Items permitted in the Detail section of an XHTML document

Item Details

First <div> element The contents of the <div> element represent a single row
instance to be generated iteratively.

XHTML elements Additional elements below the root element.

DataWindow control
references

Text. See “DataWindow controls” on page 163.

DataWindow
expressions

Text. See “DataWindow expressions” on page 163.

Literal text Text that does not correspond to a DW control.

Attributes Can be assigned to all elements. See “Element attributes”
on page 164.

CDATA sections See “CDATA sections” on page 166.

Child elements Child elements in the Header section cannot be iterative
except in the case of group DataWindows.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 161

Editing XHTML export templates
Every item in the Export Template view for XHTML has a pop-up menu for
modifying the structural layout of the XHTML document that will be generated
at runtime. Using the pop-up menu, you can perform actions appropriate to that
item, such as editing or deleting the item, adding or editing attributes, adding
child elements or other items, and inserting elements, CDATA sections, and so
forth, before the current item.

If an element has no attributes, you can edit its tag in the Export Template view
for XHTML by selecting it and left-clicking the tag or pressing F2. Literal text
nodes can be edited in the same way. You can delete items (and their children)
by pressing the Delete key.

Customizing Web DataWindow generation

162 PowerBuilder Classic

Root element

The root element of the XHTML export template is the XHTML <form>
element. You can change the name of the root element and add attributes and
children.

Changing the name of the root element changes the name of its start and end
tags. You can change the name using the Edit Attributes menu item to display
the Element Attributes dialog box. For information about editing attributes, see
“Element attributes” on page 164.

You can add the following kinds of children to the root element:

• Elements

• Text

• DataWindow control references

• DataWindow expressions (including column references)

• CDATA sections

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 163

DataWindow controls

Adding a DataWindow control reference opens a dialog box containing a list
of the columns, computed fields, report controls, and text controls in the
document.

Control references can also be added to empty attribute values or element
contents using drag and drop from the Control List view. Column references
can also be added using drag-and-drop from the Column Specifications view.

Drag-and-drop cannot replace
You cannot drag-and-drop an item on top of another item to replace it. For
example, if you want to replace one control reference with another control
reference, or with a DataWindow expression, you first need to delete the
control reference you want to replace.

DataWindow expressions

Adding a DataWindow expression using the Add Child>DataWindow Control
Reference menu item opens the Modify Expression dialog box. This enables
you to create references to columns from the data source of the DataWindow
object. It also enables the calling of global functions. One use of this feature is
to return a fragment of XHTML to embed, providing another level of dynamic
XHTML generation.

Customizing Web DataWindow generation

164 PowerBuilder Classic

Using Date and
DateTime with strings

If you use a control reference or a DataWindow expression that does not
include a string to represent Date and DateTime columns in a template, the
XHTML output conforms to ISO 8601 date and time formats. For example,
consider a date that displays as 12/27/2002 in the DataWindow, using the
display format mm/dd/yyyy. If the export template does not use an expression
that includes a string, the date is exported to XHTML as 2002-12-27.

However, if the export template uses an expression that combines a column
with a Date or DateTime datatype with a string, the entire expression is
exported as a string and the regional settings in the Windows registry are used
to format the date and time.

Using the previous example, if the short date format in the registry is
mm/dd/yy, and the DataWindow expression is: "Start Date is " +
start_date, the XHTML output is Start Date is 12/27/02.

Element attributes

Select Edit Attributes from the pop-up menu for elements to edit an existing
attribute or add a new one. The attributes that display include all the default
attributes for the elements with any template changes applied. The name
attribute (and in some cases the class attribute) used to identify the element is
omitted and cannot be changed.

You can change or delete the default attribute values or add new ones. Controls
or expressions can also be referenced for element attribute values.

For each attribute specified, you can select a control reference from the
drop-down list or enter a literal text value. A literal text value takes precedence
over a control reference. You can also use the expression button to the right of
the Text box to enter an expression.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 165

The expression button and entry operates similarly to DataWindow object
properties in the Properties view. The button shows a green equals sign if an
expression has been entered, and a red not-equals sign if not. A control
reference or text value specified in addition to the expression is treated as a
default value. In the template, this combination is stored with the control
reference or text value, followed by a tab, preceding the expression. For
example:

attribute_name=~"text_val~~tdw_expression~"

When you finish modifying element attributes and you click OK, only changes
are stored in the template. Default attributes that are deleted are added in the
template and marked with an empty value.

Style declarations

If you right-click an element and select Edit Styles from the pop-up menu, the
Style Declarations dialog box displays the read-only set of default style
declarations for the element on the left:

For clarity, style declarations are omitted from the XHTML export template.
You can add new style declarations or override the existing ones by declaring
them on the right side, or remove them by adding them with an empty value.

Customizing Web DataWindow generation

166 PowerBuilder Classic

JavaScript event handlers

If you right-click an element and select Edit Events from the pop-up menu, the
JavaScript Event Handlers dialog box displays a read-only set of event
handlers for the element on the left:

This dialog displays the current JavaScript event handlers, if any. You can add
new event handlers or override the existing ones by declaring them on the right
side, or remove them by adding them with an empty value.

CDATA sections

Everything inside a CDATA section is ignored by the parser. If text contains
characters such as less than or greater than signs (< or >) or ampersands (&)
that are significant to the parser, it should be defined as a CDATA section. A
CDATA section starts with <![CDATA[and ends with]]>. CDATA sections
cannot be nested, and there can be no white space characters inside the]]>
delimiter—for example, you cannot put a space between the two square
brackets.

Example <![CDATA[
do not parse me

]]>

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 167

Element Context Menus

The tree view in the Export Template view for XHTML represents a real-time
DOM tree. Each XHTML element of the tree in the Header and Detail sections
has a pop-up menu. The pop-up menu items perform DOM-based actions for
modifying the structural layout of the XHTML document that will be
generated. The menu options include:

DOM-based actions Edit allows changing the label of the tree view item representing the XHTML
element name. All element items that display no attributes, as well as literal
text nodes selected in the tree view, can also be edited with a single
mouse-click or with the shortcut key F2. Add Child allows appending an entity
as a last child. The submenu option DataWindow Control Reference invokes a
dialog containing a filtered list box of Column, Computed Field, and Text
controls for user selection. Control references can also be added to empty
attribute values or element contents using drag-and-drop from the existing
Control List View. DataWindow Expressions can also be added using the
existing dialog. DataWindow column references (in the form of expressions)
can also be added using drag-and-drop from the Column Specification View.
Tree view items, except the <form> element, can also be deleted with the
Delete key.

Presentation and
function

The remaining context menu items invoke dialogs that allow overriding
presentational and functional specifications of each element. These include:

• Style declarations

• Element attributes

• JavaScript event handlers

The dialogs first display these specifications as they would be generated at
runtime by default. The painter gets these from the XML Web Generator in
DWE in real-time, read-only display on one half of the dialog. Within input
field(s) on the other half of the dialog, the developer can override these
specifications at the atomic declaration or attribute level. This includes
resetting included declarations/attributes, setting declarations/attributes not
included, or removing declarations/attributes. These change specifications will
then persist in the XHTML export template, and be applied to the default
presentation generated by the XML Web Generator at runtime.

Menu item DOM-based action

Edit DOMNode::SetNodeName

Add Child DOMNode::AppendChild

Insert Before DOMNode::InsertBefore

Delete DOMNode::RemoveChild

Customizing Web DataWindow generation

168 PowerBuilder Classic

Selecting XHTML export templates at runtime
Two DataWindow properties, Export.XHTML.TemplateCount and
Export.XHTML.Template[].Name, enable you to provide a list of templates
from which the user of the application can select at runtime.

The TemplateCount property gets the number of templates associated with a
DataWindow object. You can use this number as the upper limit in a FOR loop
that populates a drop-down list with the template names. The FOR loop uses
the Template[].Name property.

string ls_template_count, ls_template_name
long i

ls_template_count=dw_1.Describe
("DataWindow.Export.XHTML.TemplateCount")

for i=1 to Long(ls_template_count)
ls_template_name=
dw_1.Object.DataWindow.Export.XHTML.Template[i].Name
ddlb_1.AddItem(ls_template_name)

next

Before generating the XHTML, set the export template using the text in the
drop-down list box:

dw_1.Object.DataWindow.Export.XHTML.UseTemplate=
ddlb_1.text

Exporting the DataWindow Web form in XML and XSLT or in XHTML
Exporting in XML
and XSLT

You can export the DataWindow or DataStore object in XML and XSLT using
PowerScript dot notation or the Describe method:

ls_xmlstring = dw_1.Object.DataWindow.Data.XMLWeb
ls_xmlstring = dw_1.Describe("DataWindow.Data.XMLWeb")

When you export the DataWindow or DataStore object, PowerBuilder uses an
export template to specify the content of the generated XSLT and CSS style
sheets.

CHAPTER 6 Using the Web DataWindow

DataWindow Programmers Guide 169

Default export format
If you have not created or assigned an export template, PowerBuilder uses the
default XSLT export format. This is the same format used when you create a
new default export template. See “Creating and saving templates” on page
155.

Exporting in XHTML You can export the DataWindow or DataStore object in XHTML using
PowerScript dot notation or the Describe method:

ls_xmlstring = dw_1.Object.DataWindow.Data.XHTML
ls_xmlstring = dw_1.Describe("DataWindow.Data.XHTML")

When you export the DataWindow or DataStore object, PowerBuilder uses an
export template to specify the content of the generated XHTML and CSS style
sheet.

Default export format
If you have not created or assigned an export template, PowerBuilder uses the
default XHTML export format. This is the same format used when you create
a new default export template. See “Creating and saving templates” on
page 155.

Customizing Web DataWindow generation

170 PowerBuilder Classic

DataWindow Programmers Guide 171

C H A P T E R 7 Server-Side Processing for the
Web DataWindow

About this chapter This chapter describes configuration requirements for the server-side Web
DataWindow component and design and programming techniques.

Contents

Server configuration requirements
The servers and clients used by the Web DataWindow can run on the same
or different machines. The following diagram shows typical
configurations with the Web server and page server on the same machine
and the component server and database on separate machines, but any or
all of the servers can run on the same computer. In your development
environment, the client browser could be on the same computer, too.

Topic Page

Server configuration requirements 171

Instantiating and configuring the server component 173

Using a custom server component 183

Using service classes 192

Server configuration requirements

172 PowerBuilder Classic

Figure 7-1: Typical client and server configurations

Web server is built in to EAServer
As shown in the first configuration, EAServer has a built-in Web server, so this
configuration demonstrates the full capability of EAServer.

Using the Web
DataWindow with
EAServer

If you are not running your Web server as a service and you have a user
CLASSPATH environment variable, make sure that this variable includes the
paths to all classes needed for communication between the Web server and
EAServer. This includes the Sybase\EAServer\html\classes directory and the
path to any component stubs that you generate for use with your Web pages
(if these are in a different directory). When you install EAServer, the path
information for the server is placed only in the system CLASSPATH variable,
not the user variable.

Transaction server
configuration tasks

You must perform the following configuration tasks on the EAServer
transaction server:

• Copy the PBLs, PBDs, SRDs, or PSRs containing the definitions of your
DataWindow objects to a directory on the EAServer server’s path or the
system path if the server component is running as a service.

• Set up a DSN and a connection cache for your data source.

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 173

Instantiating and configuring the server component
You can write code to create an instance of the Web DataWindow server
component, and you can call its methods to create a Web DataWindow
application.

For information on the types of Web DataWindow server components, see
“The Web DataWindow server component and client control” on page 112.

Two sets of methods Two sets of methods are available on the generic Web DataWindow server
component:

• Methods that are available for other DataWindow controls

• Methods used to configure the component and generate HTML

DataWindow control
methods

DataWindow control methods supported by the generic server component
include sorting, filtering, validation, and get and set methods. When you call
one of these methods on the server component, the server reloads the page in
the browser.

Methods with more than one syntax have a different form for each syntax to
overcome restrictions on the use of overloading. For example, the ClearValues
method takes a string as an argument and the ClearValuesByColNum method
takes a number.

For a complete list of supported DataWindow control methods, see the
DataWindow Reference or the online Help.

Examining server component methods
You can view the generic EAServer component methods on the Components
page of the System Tree or in EAServer Manager.

Configuration and
generation methods

Other methods are available to set up the component, retrieve data, establish
persistent values needed by your Web page, and generate HTML.

If you use a custom server component, there are additional configuration tasks.
For more information, see “Using a custom server component” on page 183.

Mixed case method names
The methods of the generic EAServer server component use mixed case names
and all the examples in this section use mixed case. If you write your own
server component, the methods of the component you generate are all
lowercase. (You can use the sample PBDWRMT.PBL as a starting point if you
want the methods described here.)

Instantiating and configuring the server component

174 PowerBuilder Classic

Coding steps In your server-side script, you will code these tasks:

1 Instantiate the component.

2 Load the DataWindow object.

3 Control what HTML is generated (for example, by specifying what
functionality to include and what browser to target).

4 Specify the database connection and retrieve data.

5 Pass page-specific data to the reloaded page.

6 Pass user action information to the server component.

7 Insert the generated HTML in the page template.

Sample code for some of these tasks follows. For detailed information about
the methods used in the examples, see the DataWindow Reference or the online
Help.

Instantiating the component
You can instantiate a Web DataWindow component in the following manner:

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ page import="org.omg.CORBA.ORB" %>
<%@ page import="org.omg.CosNaming.NamingContext" %>
<%@ page import=

"org.omg.CosNaming.NamingContextHelper" %>
<%@ page import="org.omg.CosNaming.NameComponent" %>
<%@ page import="DataWindow.*" %>

String dwGenerator = "DataWindow/HTMLGenerator120";
HTMLGenerator120 dwGen = null;

java.util.Properties props =new java.util.Properties();
props.put("org.omg.CORBA.ORBClass",

"com.sybase.CORBA.ORB");
props.put("com.sybase.CORBA.NameServiceURL",

"iiop://testmachine:2000");
ORB orb = ORB.init((String[])null, props);
try {

NamingContext cntx = NamingContextHelper.narrow
(orb.resolve_initial_references("NameService"));
NameComponent[] name = {new

NameComponent(dwGenerator,"")};
SessionManager.Factory factory =

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 175

SessionManager.FactoryHelper.narrow
(cntx.resolve(name));

dwGen =
HTMLGenerator120Helper.narrow(factory.create
("jagadmin",""));

} catch(org.omg.CORBA.ORBPackage.InvalidName ie) {
out.print("Error: " + ie.getMessage());

} catch
(org.omg.CosNaming.NamingContextPackage.NotFound ne) {

out.print("Error: " + ne.getMessage());
} catch
(org.omg.CosNaming.NamingContextPackage.CannotProceed

ce) {
out.print("Error: " + ce.getMessage());

} catch
(org.omg.CosNaming.NamingContextPackage.InvalidName

ie1) {
out.print("Error: " + ie1.getMessage()); }

Loading the DataWindow object
SetDWObject The next step is to specify the PBD or PBL file that contains
the DataWindow object and the name of the DataWindow object. You do not
need to specify the location of the file, but it must be available on the
component server in a directory on the server’s path (or on the system path if
the EAServer component is running as a service or if you are using COM+):

 retVal = dwGen.SetDWObject ("htgenex.pbl",
"d_tabular_dept");

You can also specify a:

• Source definition (SRD) file containing the source for a DataWindow
object. You can export a DataWindow definition to an SRD file in the
Library painter or System Tree.

• Powersoft report (PSR) file containing a DataWindow object plus data.
You can save a PSR file from the DataWindow painter.

• DataWindow Container component on EAServer containing multiple
DataWindow object definitions.

For SRD and PSR files, specify an empty string for the DataWindow name:

dwServer.SetDWObject("myreport.psr", "");

Instantiating and configuring the server component

176 PowerBuilder Classic

For DataWindow Container components, use the the SetDWObjectEx method:

dwServer.SetDWObjectEx ("d_emp");

Controlling what is generated
Disabling features of
the client control

SetWeight Although the server component generates a considerable amount
of HTML or XHTML and JavaScript for the Web DataWindow client control,
it is still no more than an average image file. However, to reduce the size of the
control on the client, you can instruct the component to leave out code for
features you are not using. You can tell the component to omit code for:

• Updating data

• Validating newly entered data

• Client-side events

• Allowing client-side scripts to call methods of the client control

• Applying display formats to newly entered data

You can disable any of these on the Web Generation property page in the
DataWindow painter or with the SetWeight method. False for a particular
argument means no code for that feature is generated.

This statement enables all features:

dwGen.SetWeight(true, true, true, true, true);

If updating of data is false, no validation or display formatting code is
generated either. In this statement, it does not matter what the second and fifth
arguments are, because the first argument for updating data is false:

dwGen.SetWeight(false, false, true, true, false);

This statement turns off the client-side scripting capability:

dwGen.SetWeight(true, true, true, false, true);

Updating data and display formatting add the most code to the client-side
control. Date processing also generates additional code. For the smallest client
control, turn on only the features you need and make sure your DataWindow
object does not have any date columns.

Naming the client
control

SetHTMLObjectName You need to provide a name for the Web DataWindow
client control. The name is used for page parameters and client-side events. If
there is more than one Web DataWindow client control on the Web page, each
needs a unique name.

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 177

This code uses the same name for the server component variable and the client
control:

dwGen.SetHTMLObjectName ("dw_1");

XML Web DataWindow
If you are using an XML Web DataWindow with a custom XHTML template,
the object name in the template must match the name of the client control
(dw_1 in the example).

Optimizing HTML for a
browser

SetBrowser The Web DataWindow can generate HTML optimized for
particular browsers and versions. In particular, it can generate code for
Microsoft and Netscape browsers. The browser might be different each time
the server component is instantiated by a different client, so this information
cannot be preset in the DataWindow painter. You can tell it what browser and
version to target in the server-side script. In the painter, you can set the HTML
Version property to specify what level of HTML to generate if the browser is
not recognized.

For information on what HTML features the DataWindow uses for different
browsers, see the DataWindow Reference or the HTMLGen.property topic in
online Help.

At runtime, the HTTP header sent from the client browser to the Web server
contains the User-Agent or HTTP_USER_AGENT value, which the server
component can use to identify the client browser.

Specifying the database connection and retrieving data
Specifying connection
information

SetTrans You provide connection information for the server component with
the SetTrans method. The arguments you specify depend on the type of
connection. For an ODBC connection to SQL Anywhere, you specify all the
connection information in the dbParm argument.

In EAServer, you must also set up a connection cache for the component,
described in “Creating a connection cache on EAServer 5.x” on page 143.

The data source must be defined on the server machine. It must be a system
DSN on EAServer if the component is running as a service. This statement
connects to the EAS Demo DB sample database:

Instantiating and configuring the server component

178 PowerBuilder Classic

dwGen.SetTrans("ODBC","ConnectString='DSN=EAS Demo
DB V120;UID=dba;PWD=sql'","", "", "", "", "");

If you are using the XML Web DataWindow, it is best to call the SetPageSize
method to limit the number of rows per page:

dwGen.SetPageSize(2);

Using Adaptive Server Enterprise
PowerBuilder and EAServer use slightly different versions of the CT-Lib
software to connect to Adaptive Server Enterprise via Open Client. In the
PowerBuilder development environment, you use the SYC native database
interface to connect to the database, but you must use SYJ as the first argument
to SetTrans to connect to ASE in EAServer.

Retrieving data Retrieve To tell the server component to retrieve data when the DataWindow
object does not have retrieval arguments, you call the Retrieve method:

retVal = dwGen.Retrieve();

Specifying retrieval
arguments

RetrieveEx If the DataWindow object expects retrieval arguments, call
RetrieveEx:

dwGen.RetrieveEx("60000");

Typically, the retrieval arguments are not constants. They are page parameters
passed to the page from another page where the user filled in a form or clicked
a hyperlink. If the DataWindow expects more than one retrieval argument, the
arguments must be passed in a single string. The arguments in the string must
be separated by newline characters (\n), and individual values cannot contain
newline characters as part of the value. Array values must be separated by tab
characters (\t).

Getting the retrieval argument from another page works the first time the page
is loaded. The retrieval arguments have to be page parameters each time the
page is reloaded. To specify page parameters for the reloaded page, you use the
SetSelfLink method, described next.

Passing page-specific data to the reloaded page
Using self link
information

The first time the client browser requests the page template, it can pass page-
specific information using GET or POST, and the page can use those values in
the server-side scripts. However, when the page is reloaded because of user
interactions with the Web DataWindow, that information is not passed to the
page automatically.

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 179

To make the information available, you specify a selflinkargs string with values
that become page parameters in the reloaded page. Typically, you would use
self-link parameters to keep available:

• Login information from another page

• The DataWindow object name

• Retrieval arguments for the DataWindow object

To provide these values when the page is reloaded, you use the SetSelfLink
method, which takes as arguments the URL of the page template as well as the
selflinkargs string.

To reload the page correctly in response to user actions, the server component
needs to know the URL of the page template. You can get this information from
the name property of the document object header or the SCRIPT_NAME
server variable.

Building a self-link
argument string

Self-link arguments become page parameters in the reloaded page. Your script
typically looks at an existing page parameter and re-creates it using a self-link
argument. The syntax for specifying a self-link argument string is:

pageparam1=’expr1’|pageparam2=’expr2’...|pageparamn=’exprn’

The string can contain one or more page parameter and expression pairs
separated by pipes (|). Each expression is a DataWindow expression that
evaluates to a string. Usually you specify constant string values that are already
values of page parameters rather than expressions.

The expression is enclosed in quotes, and if the value is a constant, it must also
be enclosed in quotes. For example, if a page parameter has the value Johnson,
the value of the expression must be enclosed in two sets of quote marks:
'"Johnson"'

To get the value from the current Logname parameter, which is already defined
for the page, you build the expression using the Logname page parameter. The
single quotes and inner double quotes are embedded in the expression. The
current value is inserted between the quotes:

String logname = (String)
request.getParameter("Logname");

String linkargs =
"logname='\"" + logname + "\"'";

An expression does not need the inner quotes:

String linkargs = "date='String(Today())'";

Instantiating and configuring the server component

180 PowerBuilder Classic

Passing the URL and
argument string to
SetSelfLink

SetSelfLink Use the URL and the link arguments string as arguments to the
SetSelfLink method:

dwGen.SetSelfLink(pageName, linkargs);

Retrieval arguments
as self-link values

The first time the page is loaded, the retrieval argument might be:

• A page parameter passed from another page. The user might have clicked
a URL that included the value or filled in a form that posted the value.

• A new value calculated in the current script.

If the value is a page parameter, then you can re-create the page parameter
using SetSelfLink. If the value is from some other source, you need to write
code that gets the value from the source (which might be a page parameter) the
first time the page is loaded and from a page parameter when it is reloaded.

Examples These examples show code that works with the types of values listed above.
They illustrate how to get each type of value and use it in both RetrieveEx and
SetSelfLink method calls.

Value from another page If the user entered a product ID in a form to get
detailed information on the product, the product ID is passed to the product
report template as a page parameter. The page parameter should always exist
because it comes from the calling page, but the code provides a default value
anyway:

String prod_id;
prod_id=(String) request.getParameter("ProdID");
if (prod_id == null){

prod_id = "1";
}
dwGen.RetrieveEx(prod_id);
dwGen.SetSelfLink("ProdID=" + "'\"" + prod_id + "\"'");

Multiple values In this example, a Web page with a form prompts the user for
a user name and a product category and the level of detail the user wants to see.
The code uses the product category as a retrieval argument for the Web
DataWindow. The script selects a DataWindow object based on the level of
detail. All three values are carried over each time the page is reloaded:

// Get product category as a retrieval arg
String retrievearg, username, rptlevel, dw;
retrievearg =

(String)request.getParameter("category");
if (retrievearg == null) {
retrievearg = "all";
}
int rtn = dwGen.RetrieveEx(retrievearg);

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 181

if (rtn < 0) {
... // Check for error

}
// Get the user name
username =(String)request.getParameter("username");
if (username != null){
out.print("<P>Dear " + username + "</P>");
}
out.print("<P>Here is the report you

requested.</P>");

// Choose DW based on detail level requested
rptlevel=(String)request.getParameter("reportlevel");
if (rptlevel == "detail"){

dw = "d_product_detail";
} else if (rptlevel == "summary"){

dw = "d_product_summary";
} else {

dw = (String) request.getParameter("dw");
if (dw == null} {
out.print ("<P>Error selecting report");
//handle error or halt processing ...

}
dwGen.SetDWObject("productrpt.pbd", dw);

// Tell the server component to recreate the
// page parameters generated for the browser
String linkargs = "username='\"" + username + "\"'"
 + "|category= '\"" + retrievearg + "\"'"
 + "|dw= '\"" + dw + "\"'";

dwGen.SetSelfLink(pageName, linkargs);

Passing user actions to the server component
SetAction When the user clicks a DataWindow button, action information is
passed back to the page server as context and action page parameters. Your
server-side script needs to access those page parameters and call SetAction so
the server component can apply the action to the generated HTML.

The names of the parameters use the object name specified in the
SetHTMLObjectName method, for example: dw_1_action and dw_1_context.
You can also specify the object name on the Web Generation tab page in the
DataWindow painter.

Instantiating and configuring the server component

182 PowerBuilder Classic

You can include buttons for scrolling to other pages of data and for retrieving
and updating data and inserting and deleting rows. When these button actions
occur, the change is sent back to the server component and the change is made
in the DataWindow buffer. If the user clicks an update button, the update
method is called in the component without any other scripting needed.

No need to call methods
You can call server component methods directly for retrieving data, updating,
inserting and deleting rows, and so forth. However, remember that button
clicks invoke the actions. You do not need to call the methods too.

This code checks whether parameters have been defined (meaning that the
page is a reloaded page) and if so, calls SetAction to send the action
information to the server component:

int retVal;
String dw_1_action =(String)request.GetParameter

("dw_1_action");
String dw_1_context = (String)request.GetParameter

("dw_1_context");
if (dw_1_context == null){

dw_1_context = " ";
}
// Check if we need to perform the action
if (dw_1_action!=null){

retVal = dwGen.SetAction(dw_1_action, dw_1_context);
if (retVal < 0) {
out.print("Error on SetAction: "+ retVal + "
");
out.print(dwGen.GetLastErrorString()+ "
");

}
}

Inserting the generated HTML or XHTML into the page
Generate After the server script has done all the setup, it calls the Generate
function, which returns the generated HTML as a string.

Use out.print to insert code in the page template:

out.print(dwGen.Generate());

GenerateXHTML and GenerateXMLWeb You return the Web DataWindow
in XHTML with the GenerateXHTML command:

out.print(dwGen.GenerateXHTML());

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 183

The GenerateXMLWeb method generates the content, layout, style, and
client-side functionality of the DataWindow separately in XML, XSLT, CSS,
and JS files. It returns the browser-specific XSLT transformation script that
uses the generated files to render the DataWindow in XHTML on the client
side:

out.print(dwGen.GenerateXMLWeb());

Using a custom server component
If you are using EAServer as the component server, you can deploy a custom
component that uses methods of the generic server component interface. You
can also write a server component with its own DataWindow methods for use
with EAServer or COM+.

Some advantages of a
custom component

You can use a custom component to enhance:

• Maintainability Keep connection information on the server by
specifying values for transaction properties.

• Performance Specify the source file and DataWindow object on the
server so that the DataWindow object is loaded when the component
instance is created, resulting in fewer method calls from server-side scripts
in the Web page. You can also improve performance by having your
custom component maintain its state.

For information about changing the state property of a custom component,
see “Maintaining state on the server” on page 190.

• Scalability Specify the source file and DataWindow object and use
EAServer instance pooling so that the component is reused and loading the
DataWindow object occurs only once.

Contention between the DataWindow painter and EAServer
If you are working in the DataWindow painter and testing the same PBL in
EAServer, your PBL might be locked when the EAServer component loads the
DataWindow. To avoid this, disable instance pooling for the component in
EAServer Manager. After you have finished testing and editing the
DataWindow object, you can enable instance pooling.

Instance pooling provides better performance in a production environment
when a component instance can be reinitialized and reused for multiple clients.

Using a custom server component

184 PowerBuilder Classic

For information on creating a custom component that uses the generic Web
DataWindow interface, see “Creating a custom server component in
EAServer” on page 185 or “Deploying DataWindow objects to the component
server” on page 145.

Writing your own
custom component

For full control of Web generation and the state of the DataStore object that
holds the DataWindow definition and data, you can write your own custom
class user object in PowerBuilder and deploy it as an EAServer or COM
component. Using a custom component that includes only the processing you
need can reduce the size of the client control returned to the Web client.

The source code for the generic component is available in PBDWRMT.PBL in
the PowerBuilder code examples directory so that you can examine or reuse it.
You can modify or add to the code in this PBL or start from scratch, using the
sample PBL as a model for your own component.

Mixed-case method names
The methods of the generic EAServer component use mixed-case names and
all the examples in this section use mixed case. If you write your own server
component, the methods of the EAServer component you generate are all
lowercase. However, you can change the case of the method names in the IDL
file for your component after it is deployed to EAServer. When you use your
own component, you must generate and compile stubs for the component, and
you must do this after you make any changes to the IDL.

Your server component will use methods on a DataStore object to retrieve data
and return the data and state to the client as HTML. To get the HTML and
JavaScript that represents the state, data, and presentation of the DataWindow
object, use the Describe method:

ls_html = ds_1.Describe("DataWindow.Data.HTML");

To update the HTML according to user actions, use the SetHTMLAction
method:

li_rtn = ds_1.SetHTMLAction(arg_action, arg_context);

SetHTMLAction restores the state of the DataStore based on the context
passed in as an argument and then changes the state based on the passed action.

For more information about SetHTMLAction, see the DataWindow Reference
or online Help. For information about working with DataStore objects, see
Chapter 4, “Using DataStore Objects”.

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 185

If you create your own server component and deploy it to EAServer, you must
also generate and compile the stubs. For information on generating and
compiling stubs, see the EAServer documentation.

Creating a custom server component in EAServer
You can install and configure a custom Web DataWindow server component in
EAServer Manager. In this procedure, you create a custom version of the
EAServer server component with custom properties preset in EAServer
Manager.

Using the Web DataWindow Container Project wizard
The procedure in this section describes how to create a custom component in
EAServer Manager that uses the generic DataWindow::HTMLGenerator120
interface. You can also create a custom component with a Web DataWindow
Container project. For more information, see “The Web DataWindow
Container project wizard” on page 146.

The procedures for creating a custom component depend on the version of
EAServer you are using.

❖ To create a Web DataWindow custom component in EAServer 5.x:

1 In the left pane of EAServer Manager, under the server name, right-click
Packages and select New Package from the pop-up menu.

2 In the New Package dialog box, type a package name (you cannot change
it later) and click Create A New Package.

For example, use EmpListPkg to identify a package for an application
called EmpList.

3 On the General tab of the Package Properties dialog box, enter a
description of the package and click OK.

For example, enter DataWindow Components for EmpList app to describe
EmpListPkg in terms of the application that you are customizing it for.

4 In the left pane of EAServer Manager, under the server name, right-click
the new package and choose Install Component from the pop-up menu.

5 In the wizard, choose the Define New Component radio button and click
Next.

Using a custom server component

186 PowerBuilder Classic

6 Specify the name of your custom component (you cannot change it later)
and click Finish.

For example, use EmpListDW to identify a component that uses the
d_emplist DataWindow object.

7 In the Component Properties dialog on the General tab, specify:

8 On the All Properties tab, add the properties for which you want preset
values.

❖ To create a Web DataWindow custom component in EAServer 6.x:

1 In the left pane of Sybase Management Console, right-click CORBA
Packages under EAServer Manager>Local Server and select Add from the
pop-up menu.

2 On the second page of the New Package wizard, type a package name (you
cannot change it later) and click Finish.

The package name displays under the CORBA Packages node in the left
pane of the console.

3 Right-click Components under the new package name in the left pane of
the console, and select Add from the pop-up menu.

4 Specify the name of your custom component on the second page of the
wizard (you cannot change it later) and click Finish.

5 On the General tab of the component properties sheet that displays in the
right pane of the console, specify the following:

6 On the Advanced tab of the component property sheet, add the properties
for which you want preset values.

Module and interface DataWindow::HTMLGenerator120

Component Type PowerBuilder NVO

PowerBuilder Class Name nv_remote_datawindow

PowerBuilder Library List pbdwr120.pbd

PowerBuilder Application remote_datawindow_appl

Component Type PowerBuilder NVO

PowerBuilder NVO Class nv_remote_datawindow

PowerBuilder Library List pbdwr120.pbd

PowerBuilder Version 12.0

IDL Remote Interface DataWindow::HTMLGenerator120

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 187

Setting properties for a custom component in EAServer
You add as many of the following properties as needed for your custom
component. The properties are divided into two groups: general and database
connection.

For boolean properties, values can be true or false, or yes or no.

General properties These properties specify settings that take effect when
the component is instantiated.

Table 7-1: General properties to add for custom component

General property Description

com.sybase.datawindow.
sourceFileName

Specifies the PBL, the PBD that contains the
DataWindow object for the component, or the SRD or
PSR file that is the DataWindow object.

See also the SetDWObject method in the online Help
or DataWindow Reference.

com.sybase.datawindow.
dwObjectName

The name of the DataWindow object in the PBL or
PBD specified for sourceFileName.

See also the SetDWObject method.

com.sybase.datawindow.
fixed

Whether component properties can be modified from
server-side script (SetDWObject, Create, Modify, and
SetTrans methods) that instantiates the component.
Values are:

• Yes — Properties are fixed and cannot be changed.

• No — Properties can be changed.

com.sybase.datawindow.
serverServiceClasses

A list of PowerBuilder user objects that are in the PBL
or PBD specified in sourceFileName. The class names
should be separated by semicolons (;). The user objects
implement custom events for data validation.

For information on custom events, see the
SetServerServiceClasses method in the online Help or
DataWindow Reference.

com.sybase.datawindow.
serverSideState

Specifies whether the server attempts to maintain its
state between method calls. Values are:

• Yes — The server component keeps the result set
and keeps the transaction open if possible.

• No — (Default) The result set is not saved and the
server component uses information passed back
from the client to retrieve the result set again and
restore any uncommitted changes.

Using a custom server component

188 PowerBuilder Classic

Database connection properties For the database connection properties,
you must add com.sybase.datawindow.trans.dbms. This property must be set
for any of the other trans properties to be recognized. When trans.dbms is set,
any unspecified connection properties default to an empty string.

For more information about database connections, see the SetTrans method in
the DataWindow Reference.

Table 7-2: Database connection properties to add for custom
component

com.sybase.datawindow.
trace

Whether calls to component methods are included in
the EAServer server log. Values are:

• Yes — Calls to component methods are listed in the
log.

• No — (Default) Calls to component methods are not
logged.

com.sybase.datawindow.
HTMLObjectName

The name used for the Web DataWindow client control
in the generated code. The name is used to implement
client-side events and to allow client-side scripting

Set this property when there will be more than one Web
DataWindow on a Web page so that they do not
conflict.

See also the SetHTMLObjectName method.

com.sybase.datawindow.
modifyString

A string that is used as an argument to the Modify
method for setting properties of the DataWindow
object. The component calls the Modify method when
it is initialized.

For information on syntax, see the Modify method.

Database connection
property Description

com.sybase.datawindow.
trans.dbms

A database vendor identifier, as displayed in the
PowerBuilder Connection Profiles dialog box.

com.sybase.datawindow.
trans.dbparm

DBMS-specific connection parameters.

com.sybase.datawindow.
trans.lock

The isolation level. See the online Help for information
about database preferences.

com.sybase.datawindow.
trans.logid

The name or ID of the account the component uses
when it logs on to the database server.

com.sybase.datawindow.
trans.logpass

The password used to log on to the database server.

General property Description

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 189

Instantiating the custom component
To use the custom component in your server-side scripts, you specify your
package and component name in the form YourPackage/YourComponent. If
you are using methods of the generic component installed with EAServer, you
must use the narrow method on the generic component helper class to reference
the DataWindow/HTMLGenerator120 interface.

The following code instantiates a custom component called EmpListDW that
uses the generic HTMLGenerator120 component interface. EmpListDW is
deployed in the EmpListPkg package. You substitute this code for the line that
instantiates the generic component in the example for “Instantiating the
component” on page 174, but you do not change the narrow method called on
the generic component’s helper class:

String dwGenerator = "EmpListPkg/EmpListDW";
EmpListDW dwGen = null;

...
dwGen = HTMLGenerator120Helper.narrow(factory.create

("jagadmin",""));

Using OneTrip to set up the component and get the generated HTML
“Instantiating and configuring the server component” on page 173 described
several items your server script should include to set up the Web DataWindow
correctly. Instead of coding all these things separately, you can do all the setup
and get the generated HTML with a single method when the EAServer
component has been configured with a DataWindow definition and transaction
information.

This technique is especially useful for improving performance without
requiring the server component to maintain state.

String browser=(String)request.getHeader("User-Agent");
dwGen.SetBrowser(browser);
String URI = request.getRequestURI();
String [] myArray = URI.split ("/");
String selfLink = myArray [myArray.length-1];
int retVal;

com.sybase.datawindow.
trans.database

The name of the database to which the component is
connecting. Ignored for ODBC.

com.sybase.datawindow.
trans.servername

The name of the server on which the database resides.

Database connection
property Description

Using a custom server component

190 PowerBuilder Classic

String dw_1_action =(String)request.GetParameter
("dw_1_action");

String dw_1_context = (String)request.GetParameter
("dw_1_context");

if (dw_1_action == null){
 dw_1_action = "";
}
if (dw_1_context == null){
 dw_1_context = "";
}
// Pass setup info to server
String dwHTML = dwGen.OneTrip("dw_1", browser,

selfLink, "", dw_1_action, dw_1_context);
// Insert HTML returned from OneTrip in the page
out.print (dwHTML);

Using OneTripEx for retrieval arguments If your DataWindow requires
retrieval arguments, use OneTripEx instead of OneTrip. The code checks for a
page parameter that has the retrieval argument value. It also makes sure the
value will still be available in a reloaded page by providing a selflinkargs
expression:

String retrievearg = (String) request.getParameter
("RetArg"):
if (retrievearg == null){
// Provide some meaningful default value

retrievearg = "default";
}
String selflinkarg = "RetArg='\"" + retrievearg + "\"'";
String dwHTML = dwGen.OneTripEx("dw_1", retrievearg,

browser, selfLink, selflinkarg, action, context);
out.print (dwHTML);

Maintaining state on the server
Using a stateless
component

The Web DataWindow can run in a fully stateless server environment.
Variables in the Web page keep information about the rows being viewed and
any changes the user makes; this information is communicated to the server
component as needed so that the component can restore its state each time it is
called. Restoring its state includes retrieving data from the database each time
the page is reloaded, including each time the user navigates to another page.

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 191

Operating in a stateless mode minimizes use of server resources but can
decrease performance. The client maintains the state of the server component
in string form and the information is sent back and forth with every request.
Also, when state is not maintained on the server, the component must connect
to the database and retrieve data each time it is called. If the component server
does not do connection caching, response time for the client could be very
slow.

Using a stateful
component

You can increase performance by maintaining state on the server. To maintain
state, the page server’s session object keeps a reference to the server
component. If the server component is running in EAServer, you must mark
the component as a stateful object and set a timeout value for the component.
Failing to set a timeout value if you are using the component as a stateful object
will result in orphaned instances of the component on the server.

Maintaining state on the server provides faster response time if the same
component is accessed again. However, it also increases the server resources
used for each client connection.

To minimize impact on server resources, a short timeout on a session lets the
server get rid of a component that might not be requested again. If the
component is called again, its state can be restored from the client state
information. When the number of hits on a page is expected to be large, setting
a shorter timeout reduces the number of instances that need to be maintained
simultaneously.

Marking the object as
stateful

To mark the component as a stateful object, set the component’s
com.sybase.datawindow.serverSideState property in EAServer Manager or
call the SetServerSideState method in a server-side script:

dwGen.SetServerSideState(true);

You should not set the com.sybase.jaguar.component.stateless property for the
HTMLGenerator120 component in EAServer Manager.

Setting timeout values To set the timeout value for the HTMLGenerator120 component, open its
Component Properties dialog box in EAServer Manager and set the
com.sybase.jaguar.component.timeout property. Timeout values are specified
in seconds; a value of 0 means the component never times out.

Using service classes

192 PowerBuilder Classic

Using service classes
You can use the methods available on the server component to perform most
server-side processing, including validation routines and error handling. The
Web DataWindow also provides another way to add specialized processing.

To include server-side processing not available on the server component, you
can define one or more PowerBuilder custom class user objects called service
classes. These service classes are stored in the same PBL or PBD as the
DataWindow object for the server component. They can be used whenever you
want to include additional processing on the server. For example, you might
want to use this technique to access the SQLPreview event so that you can
examine the syntax of a SQL statement before it is committed to the database.

Where you implement
the code

The service classes implement user-defined events with prescribed signatures.
These events correspond to standard DataWindow events. In the user-defined
events, you perform the processing and specify return codes that tell the server
component whether to cancel the corresponding DataWindow event.

In the server component, you set a property or call a method that identifies
these user objects as service classes for the server component.

How the code is called Service classes work like this:

1 Service classes are instantiated when the component is instantiated (if they
are specified in an EAServer property) or when they are first registered by
the SetServerServiceClasses method.

2 An event occurs in the server component for the DataStore.

3 The server component calls an event of the same name in each registered
service class.

4 If the service class implements the event, the event script is executed and
a return code is sent back to the server component.

5 If the event can be canceled via a return code and if any of the service
classes returns that code, the event is canceled in the server component.

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 193

Figure 7-2: How service classes work

Defining a service class for PowerBuilder components

❖ To create and register a service class for PowerBuilder components:

1 In the PBL that contains the DataWindow object for the server component,
define one or more PowerBuilder custom class user objects.

2 In each custom class user object, define one or more user-defined events.
The event signatures must match one of these (all these events return a
long):

• DBError (long sqldbcode, string sqlerrtext, string sqlsyntax,
DWBuffer buffer, long row, DataStore ds)

• HTMLContextApplied (string action, DataStore ds)

• RetrieveEnd (long rowcount, DataStore ds)

• RetrieveStart (DataStore ds)

• SQLPreview (SQLPreviewFunction request, SQLPreviewType
sqltype, string sqlsyntax, DWBuffer buffer, long row, DataStore ds)

Using service classes

194 PowerBuilder Classic

• UpdateEnd (long rowsinserted, long rowsupdated, long rowsdeleted,
DataStore ds)

• UpdateStart (DataStore ds)

The arguments are the same as those documented for the similarly named
DataWindow events in the DataWindow Reference, with the exception of
the additional DataStore argument, which gives the user object access to
the Web DataWindow data.

3 In the event script, use return codes to specify whether the server
component should cancel the event.

The return codes are also the same as those documented in the
DataWindow Reference. Any of the service classes that implements the
event can specify that the event be canceled.

4 Register the service classes for the component.

There are two ways to make the user object available as a service class:

• For any component in EAServer, call the SetServerServiceClasses
method in the Web page template’s server-side script:

dwGen.SetServerServiceClasses
("uo_update_validate;uo_retrieve_process");

• For a custom component in EAServer, add this property in EAServer
Manager:

com.sybase.datawindow.serverServiceClasses

Set its value to the list of user object names, with names separated by
semicolons. For example:

uo_update_validate;uo_retrieve_process

Example Suppose that you want to check that data did not exceed a budgeted total before
it was updated in the database. You might set up a service class that implements
the UpdateStart event.

In the custom class user object in PowerBuilder, select Insert>Event and
declare a new event called UpdateStart that returns a long and has one
argument of type DataStore called ds:

UpdateStart (DataStore ds) returns long

This script for the UpdateStart event has a DataStore that retrieves data from a
budget table and compares it to the component’s data:

DataStore ds_budget
double darray[], total

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 195

long ll_upper
integer i

ds_budget = CREATE datastore
ds_budget.DataObject = "d_budget"
ds_budget.SetTransObject(...)
ds_budget.Retrieve()

// Get data to be validated

darray[] = ds.Object.expenses.Primary
// Add up values in darray
ll_upper = UpperBound(darray)

FOR i = 1 to ll_upper
total = total + darray[i]

NEXT
IF ds_budget.Object.cf_expense_total < total THEN

RETURN 1
END IF

Defining a service class for Java components

❖ To create and register a service class for Java components:

1 Make sure your Java service class is in the system classpath.

2 In your Java service class, define one or more methods. Method prototypes
must match one of these (all event datatypes are in the
powersoft.datawindow.event package):

• DBError (DatabaseEvent event, DataStore ds)

• RetrieveEnd (RetrieveEvent event, DataStore ds)

• RetrieveStart (RetrieveEvent event, DataStore ds)

• SQLPreview (DatabaseEvent event, DataStore ds)

• UpdateEnd (UpdateEvent event, DataStore ds)

• UpdateStart (UpdateEvent event, DataStore ds)

The arguments are the same as those documented for the similarly named
DataWindow, Java Edition events in the DataWindow Reference, with the
exception of the additional DataStore argument, which gives the Java class
access to the Web DataWindow data.

Using service classes

196 PowerBuilder Classic

3 In the class methods, set the return codes to specify whether the server
component should cancel the event.

The return codes are also the same as those documented in the
DataWindow Reference. Any of the service classes that implements the
event can specify that the event be canceled.

4 Register the service classes for the component.

There are two ways to make the Java class available as a service class:

• For any component in EAServer, call the SetServerServiceClasses
method in the Web page template’s server-side script:

dwGen.SetServerServiceClasses
("UpdateValidate;RetrieveProcess");

• For a custom component in EAServer, add this property in EAServer
Manager:

com.sybase.datawindow.serverServiceClasses

Set its value to the list of user object names, with names separated by
semicolons. For example:

UpdateValidate;RetrieveProcess

Example Suppose that you want to check that data did not exceed a budgeted total before
it was updated in the database. You might set up a service class that implements
the UpdateStart event.

The method declaration would be:

public void UpdateStart (UpdateEvent event,
DataStore ds)

The body of this method has a DataStore that retrieves data from a budget table
and compares it to the component’s data:

import powersoft.datawindow.event.*;
import powersoft.datawindow.*;

public void UpdateStart (UpdateEvent event, DataStore
ds)
{

DataStore ds_budget;
ds_budget = new DataStore();
ds_budget.setSourceFileName

("c:\\mydirectory\\mypbd.pbd");
ds_budget.setDataWindowObjectName("d_object");
ds_budget.setTransObject(...);

CHAPTER 7 Server-Side Processing for the Web DataWindow

DataWindow Programmers Guide 197

ds_budget.retrieve();
// Get data to be validated
int rowcount = ds.getRowCount();
int total = 0;
for (int i = 1; i<=rowcount;i++){

total=total + ds.getItemNumber(i, "expenses",
ds.Primary);

}
String expense_total = ds_1.describe (...);
double d_expense_total = Double.parseDouble

(expense_total);
if (d_expense_total<total){

event.setReturnCode(1);
}

)

Using service classes

198 PowerBuilder Classic

DataWindow Programmers Guide 199

C H A P T E R 8 Using the DataWindow Web
Control for ActiveX

About this chapter This chapter describes how to use the Sybase DataWindow Web control
for ActiveX (Web ActiveX).

Deprecated technology
The DataWindow Web Control for ActiveX is deprecated technology and
might not be supported in future releases of PowerBuilder.

Contents

About the Web ActiveX
Features The Sybase DataWindow Web control for ActiveX is a fully interactive

DataWindow control for use with Microsoft Internet Explorer. It
implements all standard DataWindow features except rich text.

The Web ActiveX supports data retrieval with retrieval arguments and
data update. You can use edit styles, display formats, and validation rules.
Most of the standard methods for manipulating the DataWindow are
available, including Modify for changing DataWindow object properties.
Several functions that involve file system interactions, such as SaveAs
and SaveAsAscii, are not supported, allowing the Web ActiveX to be in
the safely scriptable category of ActiveX controls.

Topic Page

About the Web ActiveX 199

HTML for inserting the controls on a Web page 203

DataWindow objects for the Web ActiveX 206

Using the DataWindow Transaction Object control 209

Making database connections 210

Coding for the Web ActiveX 212

Deploying the Web ActiveX 214

About the Web ActiveX

200 PowerBuilder Classic

Included with the Web ActiveX is the Sybase DataWindow Transaction Object
control for making database connections that can be shared by several Web
ActiveX controls.

Browser support
The Web ActiveX and Transaction Object control are designed to work in
browsers that support ActiveX controls, such as Microsoft Internet Explorer
version 3 and higher.

The DataWindow controls are not designed to work in Netscape browsers,
which do not support ActiveX controls. Even if you use third-party plug-ins to
enable ActiveX support, scripting for the controls works differently and is not
tested.

Development
environment

When you install PowerBuilder, the Setup program registers the Web ActiveX
and the Transaction Object controls in the Windows registry. The class
information entered in the registry is visible in the PowerBuilder Browser
under OLE Custom Controls on the OLE tab. You can also examine the
properties, events, and methods of the controls on the OLE tab of the Browser.

To use the Web ActiveX, your development system must meet the following
requirements, all of which are met when you install any PowerBuilder
component that requires the Java VM:

• The Sun JRE 1.2 or later must be installed on your system

• The path to the jvm.dll file must be in your system PATH environment
variable

The path is ...\JRE\bin\client for JRE 1.4 and ...\JRE\bin\classic for
JRE 1.2 or 1.3

• The following files must be in a directory in your system PATH
environment variable: pbjvm120.dll, pbshr120.dll, and pbjdbc12120.jar

• If you are using Internet Infomation Services (IIS) 6.0, you need to
configure IIS to recognize the .pbl, .pbd, and .psr extensions as MIME
types. See “Adding MIME types to IIS 6.0” on page 201.

In addition, the Java classes required by your database vendor's client layer
must be installed on your system.

For information about the required HTML, see “HTML for inserting the
controls on a Web page” on page 203.

CHAPTER 8 Using the DataWindow Web Control for ActiveX

DataWindow Programmers Guide 201

DataWindow objects The Web ActiveX uses a DataWindow object, which determines what data is
retrieved and how it is displayed. The Web ActiveX can also display Powersoft
reports (PSRs), which do not need to retrieve data.

A DataWindow object for the Web ActiveX can have any presentation style
except RichText.

DataWindow objects are stored in PowerBuilder libraries (PBLs) or
PowerBuilder dynamic libraries (PBDs). The DataWindow libraries are stored
on the Web server and downloaded as needed by the Internet Explorer browser.
You use a URL to point to the library. It can be relative or absolute, using any
supported protocol—for example, http, ftp, or file.

For more information, see “DataWindow objects for the Web ActiveX” on
page 206.

Adding MIME types to
IIS 6.0

To use the Web ActiveX with IIS 6.0, which is the IIS version included in
Windows Server 2003, you need to configure IIS to recognize the .pbl, .pbd,
and .psr extensions. Previous versions of IIS include a wildcard character
MIME mapping that allows IIS to serve any file.

You must be a member of the Administrators group on the local computer to
perform the following procedure, or you must have been delegated the
appropriate authority. For more information, see the Microsoft documentation
for IIS 6.0 or this Microsoft support document at
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/cd
72c0dc-c5b8-42e4-96c2-b3c656f99ead.mspx.

❖ To add a global MIME type to IIS 6.0:

1 In IIS Manager, right-click the computer on which you want to add a
MIME type, and click Properties.

2 Click MIME Types.

3 Click New.

4 In the Extension box, type pbl.

5 In the MIME type box, type application/octet-stream.

6 Repeat steps 4 and 5 for the .pbd and .psr extensions, using
application/octet-stream and application/datawindow
respectively as the MIME types.

7 Click OK.

8 Restart IIS to apply the new settings.

About the Web ActiveX

202 PowerBuilder Classic

You can also add a MIME type to a specific Web site or directory from its
HTTP Headers property page.

Database connections The Web ActiveX uses JDBC for database connectivity. Users can connect to
a data source on any server to which they have access, including databases and
middle-tier servers on the Internet.

You can use internal transaction properties for specifying a connection; or you
can make the connection with a separate Transaction object, the Sybase
DataWindow Transaction Object control. When you connect using a separate
transaction object, you can control when SQL COMMIT and ROLLBACK
statements occur and you can use the same connection for multiple Web
ActiveX controls.

For more information, see “Using the DataWindow Transaction Object
control” on page 209.

Scripting Since the Web ActiveX is designed for Internet Explorer, you can use Jscript
or another ECMAScript-compatible scripting language for scripting purposes.

In general, you can use the same methods as in a PowerBuilder application.
However, there are a few differences:

• Datatypes are mapped to the basic JavaScript types of string, number,
boolean, and various object types

• ECMAScript languages do not support arguments passed by reference; so
instead of checking the value of a reference argument, you call a separate
method to retrieve the value

• Enumerated datatypes are not supported; instead, specify the integer that
corresponds to the enumerated data value

For more information, see “Coding for the Web ActiveX” on page 212.

Events The Web ActiveX supports the same events as a standard DataWindow control,
with these differences:

• Event names are different to conform to Web conventions

• Events in ECMAScript languages do not have return values; instead you
can call SetActionCode to affect the outcome of an event

Deployment The Web ActiveX is provided as a CAB file, which allows the client browser
to install and register the control. When the user downloads a Web page that
refers to the CAB file, the browser also downloads the CAB file if necessary,
unpacks it, and registers the control. Some additional files must also be
deployed to the client.

CHAPTER 8 Using the DataWindow Web Control for ActiveX

DataWindow Programmers Guide 203

For more information, see “Deploying the Web ActiveX” on page 214.

HTML for inserting the controls on a Web page
You include the controls on a Web page with an Object element and associated
Param elements. Then you write scripts that direct the control to make database
connections, retrieve and update data, and respond to user actions. The way the
Object and Param elements look in a Web page are described next.

Object element
How it works ActiveX controls use the Object element to specify the GUID (a unique

identifier) of the control as well as the space the control takes on the page. The
Object tag looks like this:

<OBJECT id=PSDWC1 height=357 classid="CLSID:CCCC1503-
CCCC-1000-8000-080009AC61A9" width=343>
</OBJECT>

CODEBASE attribute If your users need to download the controls, you can include the CODEBASE
attribute in the Object element to identify the file to be downloaded. After the
browser downloads the CAB file, it unpacks it and registers the ActiveX
controls in the user’s system registry.

The value for CODEBASE has the format:

url#version

A typical value for CODEBASE uses a relative URL:

CODEBASE="cabs/psdwc120.cab#12,0,0,1053"

URL The URL is the location of the DataWindow control’s CAB file on your
Web server. It can be an absolute or relative URL.

Version The version is a set of four numbers, separated by commas. The
numbers must match the version of the CAB file. The version number of the
CAB file is the same as the version number for PowerBuilder.

HTML for inserting the controls on a Web page

204 PowerBuilder Classic

❖ To find out the 4-part version number in Windows:

1 Select the PowerBuilder executable or a PowerBuilder DLL in Windows
Explorer.

2 Select File>Properties from the menu bar.

3 On the Version tab, look at File Version. A typical number is 12.0.0.1053.

Example The Object element with a CODEBASE attribute looks like this:

<OBJECT codeBase=
"http://www.domain.com/psdwc120.cab#Version=12,0,0,
1053" id=PSDWC1 height=357 classid="CLSID:CCCC1503-
CCCC-1000-8000-080009AC61A9" width=343>
</OBJECT>

New versions When you get new versions of the CAB file, you can change the version
numbers on the Web page and cause the browser to install a new version of the
control.

For more information about how to deploy new versions, see “Deploying the
Web ActiveX” on page 214.

Putting the Object tag
in a separate file

If the Cumulative Security Update for Internet Explorer (912812) or a
subsequent update is installed on the computer where the Web ActiveX control
is running, a browser refresh does not refresh the control correctly. This update
is described in Microsoft Security Bulletin MS06-013, published in April
2006.

To work around this issue, put the <OBJECT> tag in a separate JavaScript file
instead of the main HTML file, as shown in this example:

// HTML file
<HTML>
<HEAD>

<TITLE>test</TITLE>
</HEAD>
<BODY bgColor="white" PSPARAMS="">
<P>Put your data here </P>
<P> </P>
<P>

<div id="DivID">
<script src="createElement.js"></script>

</div>
</BODY>
</HTML>

The createElement.js JavaScript file contains the Object tag:

CHAPTER 8 Using the DataWindow Web Control for ActiveX

DataWindow Programmers Guide 205

// createElement.js file
var d = document.getElementById("DivID");
d.innerHTML =
'<OBJECT id="OBJECT1" style="WIDTH: 627px; HEIGHT:
320px" codeBase="psdwc120.cab"
classid="CLSID:CCCC1503-CCCC-1000-8000-080009AC61A9">'
+'<PARAM NAME="_Version" VALUE="65536"></PARAM>'
+'<PARAM NAME="_ExtentX" VALUE="16589"></PARAM>'
+'<PARAM NAME="_ExtentY" VALUE="8467"></PARAM>'
+'<PARAM NAME="_StockProps" VALUE="2"></PARAM>'
+'<PARAM NAME="Caption" VALUE=""></PARAM>'
+'<PARAM NAME="SourceFileName"
VALUE="test.psr"></PARAM>'
+'<PARAM NAME="DataWindowObject"
VALUE="test.psr"></PARAM>'
+'<PARAM NAME="LogId" VALUE=""></PARAM>'
+'<PARAM NAME="LogPass" VALUE=""></PARAM>'
+'<PARAM NAME="dbParm" VALUE=""></PARAM>'
+'<PARAM NAME="SuppressEvents" VALUE="0"></PARAM>'
+'<PARAM NAME="VScrollBar" VALUE="0"></PARAM>'
+'<PARAM NAME="HScrollBar" VALUE="0"></PARAM>'
+'<PARAM NAME="HSplitScroll" VALUE="0"></PARAM>'
+'<PARAM NAME="LiveScroll" VALUE="0"></PARAM>'
+'</OBJECT>';

Properties and Param elements
How they work The Web ActiveX and the Transaction Object control have several properties

that specify connection information. The Web ActiveX also has properties that
specify a DataWindow object or a PSR. You provide values for the properties
with Param elements, which are enclosed in the Object element.

The inserted Param elements are grouped in an order that corresponds to pages
in the control property sheets. The first group of Param elements contains
standard ActiveX properties. You can assign values for the standard ActiveX
properties in the ActiveX OBJECTn Properties dialog box, where n is the order
in which the object is placed on the page.

The Web ActiveX also inserts Param elements for custom properties. You set
these custom properties from the Sybase DataWindow Web Control Properties
dialog box. To open this dialog box, you can click the Control Properties button
on the ActiveX page of the ActiveX OBJECTn Properties dialog box for the
Web ActiveX control.

DataWindow objects for the Web ActiveX

206 PowerBuilder Classic

The Sybase DataWindow Web Control Properties dialog box has four tab pages
where you can set custom properties: General, Scrolling, Transaction, and
Trans User. The Transaction Object control has only two custom property
pages: Transaction and Trans User.

Standard ActiveX
properties

<PARAM VALUE=65536 NAME="_Version"></PARAM>
<PARAM VALUE=9280 NAME="_ExtentX"></PARAM>
<PARAM VALUE=5155 NAME="_ExtentY"></PARAM>
<PARAM VALUE=2 NAME="_StockProps"></PARAM>
<PARAM VALUE="" NAME=Caption></PARAM>

Properties on General
page

<PARAM VALUE="javadwtest.pbl" NAME=SourceFileName>
</PARAM>
<PARAM VALUE="d_emp" NAME=DataWindowObject></PARAM>
<PARAM VALUE=0 NAME=SuppressEvents></PARAM>

Properties on
Scrolling page

<PARAM VALUE=0 NAME=VScrollBar></PARAM>
<PARAM VALUE=0 NAME=HScrollBar></PARAM>
<PARAM VALUE=0 NAME=HSplitScroll></PARAM>
<PARAM VALUE=0 NAME=LiveScroll></PARAM>

Properties on
Transaction page

<PARAM
VALUE="Driver='com.sybase.jdbc3.jdbc.SybDriver',
URL='jdbc:sybase:Tds:localhost:2638'" NAME=dbParm>
</PARAM>

Properties on Trans
User page

<PARAM VALUE=dba NAME=LogId></PARAM>
<PARAM VALUE=sql NAME=LogPass></PARAM>

DataWindow objects for the Web ActiveX
The DataWindow Web control for ActiveX requires either of these:

• A DataWindow object stored in a PBL or PBD

• A PSR that was saved with data

Properties for the Web ActiveX identify the DataWindow object that you want
to display in the control.

This section describes considerations for:

• Defining DataWindow objects

• Building libraries

• Identifying the DataWindow object or PSR by setting Web page properties

CHAPTER 8 Using the DataWindow Web Control for ActiveX

DataWindow Programmers Guide 207

What the DataWindow object can include
You define DataWindow objects in PowerBuilder. The Web ActiveX supports
all DataWindow presentation styles except RichText.

You can use all edit styles, including DropDownDataWindow. Properties can
have conditional expressions (written in PowerScript) and computed fields can
use any of the functions available to a standard DataWindow.

In the Web page, you can include scripts (written in JScript or other
ECMAScript-compatible scripting languages) to manipulate DataWindow
presentation and data.

Managing DataWindow objects in PowerBuilder libraries
Types of libraries The Web ActiveX can use DataWindow objects that are stored in PBLs or

PBDs.

When to use a PBD The Web browser downloads the library specified for the Web ActiveX and
stores it in a temporary cache. If you do not want your DataWindow object
source code to be available to the user (who could copy it from the cache),
convert a PBL to a PBD before deploying it.

Because the library will be downloaded, you should make it as small as
possible—another good reason to convert a PBL to a PBD.

PowerBuilder version
PBLs must be migrated to Version 10 or later.

Grouping
DataWindow objects
into libraries

A PBL or PBD is downloaded in its entirety from the Web server; therefore,
you should make sure your library includes only those objects needed on your
Web pages. You can group DataWindow objects that are used on different Web
pages in a single library; however, you should avoid forcing users to download
objects used on pages they will not view.

When choosing how to group DataWindow objects into libraries, make the set
of objects in the library correspond to the typical set of pages the user will view.
Although a single download saves a lot of communications overhead, it is
worthwhile for users only if they view the pages that use the objects.

DataWindow objects for the Web ActiveX

208 PowerBuilder Classic

Using other resources
in the DataWindow
object

A DataWindow object can use external resources such as bitmaps or cursors.
You can use a resource file when you build a PBD to include these resources
in the library. You can also store these resources on the Web server. A relative
path in the DataWindow object can point to the file’s location on the Web
server. The browser retrieves the resource as needed.

A DataWindow object can use other DataWindow objects, such as drop-down
DataWindows. Make sure these objects are included in the downloaded library.

Specifying a DataWindow object for the control
To identify the DataWindow object you want to display in the control, you
specify values for two properties:

• SourceFileName

• DataWindowObject

You enter their values on the General page of the Sybase DataWindow Web
Control Properties dialog box.

About
SourceFileName

The value for SourceFileName is the name of the library that contains the
DataWindow object for the control. It can be a URL or a file path. These
examples illustrate some typical variations:

• Absolute URL:

http://www.domain.com/dwlibraries/financedws.pbd

• Relative URLs:

financedws.pbd
dwlibraries/financedws.pbd

• Absolute file path (can be useful while developing pages):

d:/web project/dwlibraries/financedws.pbd

In the Web ActiveX property sheet, when you use the Browse button to look
for the library, you browse the file system, not URLs. After the full path is
inserted in the field, you probably should edit it so that it is valid when your
Web pages are deployed.

Changing SourceFileName during execution You can change the value of
SourceFileName in a script. If you do, you also have to specify a value for
DataWindowObject that is valid in the new library. You must also call
SetTransObject again if you are using a separate transaction object.

CHAPTER 8 Using the DataWindow Web Control for ActiveX

DataWindow Programmers Guide 209

About
DataWindowObject

The value for DataWindowObject is the name of a DataWindow object that is
in the library specified in SourceFileName.

If the library is accessible in the development environment (for example, it is
part of the PowerBuilder workspace and you specify a relative URL), then the
property sheet displays a drop-down list of the DataWindow objects contained
in the library.

Displaying Powersoft reports
To display a PSR file instead of a DataWindow object, specify its URL as the
value for the DataWindowObject and leave the SourceFileName blank.

Using the DataWindow Transaction Object control
What it does The DataWindow Transaction Object control allows you to establish a

database connection independent of the Web ActiveX. It is similar to the
PowerBuilder Transaction object.

Internal transaction
management or
separate Transaction
object

Both the Web ActiveX control and the Transaction Object control can establish
a database connection. The one you use depends on your needs.

There are two main reasons to use the Transaction Object control:

• You can make one database connection for several Web ActiveX controls,
saving the overhead of multiple connections.

• You can control transaction processing with Connect and Disconnect
methods, equivalent to the SQL statements CONNECT and DISCONNECT.
If the AutoCommit property is set to false, you can control when an update
is committed or rolled back (by calling the Commit and Rollback methods).

If you have only one control and are simply retrieving data, you do not need
either of these features. Instead of instantiating a separate control, you can set
the connection properties of the Web ActiveX itself and allow it to connect and
disconnect for each database access.

Status and error
information

The Transaction Object control receives status information from the database.
You can test the success or failure of a database operation and get status
information with these methods, which are equivalent to PowerBuilder
transaction object properties:

• GetSQLCode

Making database connections

210 PowerBuilder Classic

• GetDBCode

• GetSQLErrText

• GetSQLNRows

• GetSQLReturnData

Hiding the Transaction
Object control

The Transaction Object control has no visual aspect, but if it is in the BODY
section of the Web page, it still takes up space. You can set its HEIGHT and
WIDTH attributes to very small values or use stylesheet settings to make it
invisible.

For information on setting properties for making a database connection, see
"Making database connections" next.

Making database connections
The connection
process

The Web ActiveX and Transaction Object controls make database connections
using JDBC. Their Java classes interact with the Java classes of the database
vendor’s JDBC interface. The vendor’s classes interact with the database.

JDBC driver from a
database vendor

The classes for the JDBC database driver you plan to use must be available to
the user’s browser. If the user does not have them installed already, you can set
up the Web page so that they are downloaded and installed just as you do for
the Web ActiveX.

To have the JDBC driver classes installed automatically, you can:

1 Convert the database vendor’s Java classes into a CAB file. You can use a
Microsoft utility called CABARC to do the conversion. The classes can be
in a ZIP archive or directory tree.

2 Add an Object element with a CODEBASE attribute for the CAB file to
the Web page.

The browser downloads the CAB file and adds the classes to its internal class
path. There is no change made to the CLASSPATH environment variable.

If you want to use the JDBC driver when you are defining DataWindow
objects, you need to do some additional installation, such as putting the JDBC
driver classes on the system class path.

For more information, see Connecting to Your Database or the online Help for
PowerBuilder.

CHAPTER 8 Using the DataWindow Web Control for ActiveX

DataWindow Programmers Guide 211

Connection properties The connection information for the Transaction Object or Web ActiveX is set
as Param elements enclosed in the Object element. Whether you use a separate
Transaction object or the internal connection properties of the Web ActiveX,
the connection properties are the same:

Table 8-1: Connection properties of the Transaction Object and Web
ActiveX controls

About dbParm For JDBC drivers, the dbParm property specifies essential connection
information. Its value is a string that contains at least two values. Those values
identify the driver you want to use and the URL of the database, in a format
understood by the driver.

The format is:

Driver='JDBCclassname',URL='database_url '

To find the class name for Driver and the format of the database URL, check
the documentation from the DBMS vendor.

For examples of setting these properties in Param elements, see “Properties
and Param elements” on page 205.

JConnect in the
development
environment

If you want to use JConnect when you define DataWindow objects, put the
Java classes for JConnect on the class path.

Param name Meaning Typical value

LogID The ID needed to log
in to the database.

dba (default ID for ASA databases)

LogPass The password
needed to log in to
the database.

sql (default password for ASA databases)

dbParm A string specifying
the Java classes for
the driver and the
URL for the
database.

For the JConnect driver:
Driver='com.sybase.jdbc3.jdbc.SybDriver',
URL='jdbc:sybase:Tds:199.1.1.1:9999/my
database'

Lock The isolation level of
the connection.

Vendor-specific values

AutoCommit Whether a commit
occurs immediately
after the database is
updated.

False (default)

Coding for the Web ActiveX

212 PowerBuilder Classic

Connecting and retrieving data
To connect and retrieve data, you must write a script. The script can belong to
a Retrieve button, or you can have the retrieval occur automatically by putting
the code in the window’s onLoad script.

For example, to connect and retrieve data for a Web ActiveX named dw_1,
using a DataWindow Transaction Object control named trans_1, your script
would be similar to this:

trans_1.Connect();
dw_1.SetTransObject(trans_1);
dw_1.Retrieve();

When you use the internal transaction properties, the Web ActiveX makes the
connection automatically. The script can be simpler, like this:

dw_1.Retrieve();

Coding for the Web ActiveX
You can write scripts in the Web page to manipulate the DataWindow data and
presentation. The methods and events are similar to those available in a
standard DataWindow, but the events have been renamed to match JavaScript
naming conventions.

The properties, methods, and events—as well as the DataWindow object
properties and expression functions—are documented in the DataWindow
Reference.

You can see a list of the properties, methods, and events for the controls on the
Components page of the System Tree or in another tool for examining ActiveX
controls.

The Script editor lets you write scripts for all events of the Web ActiveX.

❖ To write a script for a particular event in:

1 In Page view, select a Web ActiveX that you have inserted in the Web page
or
In the Script editor, select the name of the DataWindow Web ActiveX in
the leftmost drop-down list.

CHAPTER 8 Using the DataWindow Web Control for ActiveX

DataWindow Programmers Guide 213

2 In the Script editor, select an event from the second drop-down list. The
drop-down list shows the event name and the parameters whose values are
available in the script.

3 In the third drop-down list, select JScript as the scripting language.

4 Write code for the event. To call methods or access properties without
typing, drag them from the Page tab of the System Tree to the editor.

Datatypes for method arguments and return values
Primitive types JScript supports three primitive datatypes:

• string

• number

• boolean

Method arguments and return values and event parameters are one of these
basic types, or an object type.

DataWindow methods that deal with specific datatypes, such as
GetItemDecimal, are not available for the Web ActiveX. Instead, you use the
method that handles the more general data type, such as GetItemNumber.

Date datatypes PowerBuilder has several date and time datatypes, but in JScript these all map
to the Date object.

Enumerated
datatypes

PowerBuilder enumerated datatypes have named values, but in JScript, each
value is a number. The list of numbers (and their meaning) is documented in
the DataWindow Reference for each enumerated data type.

Setting event return codes
The event return codes documented for DataWindow events are also valid for
the Web ActiveX. However, JScript does not support return values for events.
Instead, to specify a return code, you call the SetActionCode method as the last
line in the event script.

For example, the return code of the onItemError event allows you to determine
what happens when user-entered data fails a validation rule. By specifying a
return code of 3, you cause the Web ActiveX to reject the data but allow focus
to change. This statement would be the last line of the onItemError event script:

Deploying the Web ActiveX

214 PowerBuilder Classic

This.SetActionCode(3);

Deploying the Web ActiveX
CAB file for
deployment

The PowerBuilder Setup program installs the PSDWC120.CAB file in the
Sybase\Shared\PowerBuilder directory. This CAB file contains files and
information the client Web browser (Internet Explorer) needs for installing the
Web ActiveX and the Transaction Object control. The CAB file includes:

• An Open Software Distribution information file

• DLLs for the controls

The browser manages installation of the ActiveX controls using the
information in the CAB file. It installs the controls in the system registry and
maintains its Java class path. If your Web ActiveX control uses a PSR file, you
need only to tell the browser how to find the CAB file.

❖ To make the Web ActiveX and Transaction Object control available to
users:

1 Put the CAB file on your Web server.

If the Web server uses Internet Infomation Services (IIS) 6.0, you need to
configure IIS to recognize the .pbl, .pbd, and .psr extensions as MIME
types. See “Adding MIME types to IIS 6.0” on page 201.

2 Refer to the CAB file on the Web page in the CODEBASE attribute of the
Object element.

If your Web page uses a JDBC connection, the Web ActiveX has additional
deployment requirements:

• The Sun JRE 1.2 or later must be installed on the client. Users can
download the latest version of the JRE from the Sun Java Web site at
http://www.java.com:80/en/download/windows_manual.jsp (where en
indicates the English language version).

• The path to the file jvm.dll (...\JRE\bin\client for JRE 1.4 and
...\JRE\bin\classic for JRE 1.2 or 1.3) must be added to each user’s system
PATH environment variable.

• The following files must be in a directory in the client's system PATH
environment variable: pbjvm120.dlland pbshr120.dll.

CHAPTER 8 Using the DataWindow Web Control for ActiveX

DataWindow Programmers Guide 215

• The pbjdbc12120.jar file, which contains class files required by the Web
ActiveX, must be deployed to the client. You can deploy the JAR file by
referencing it in the CODEBASE attribute of the Object element in your
Web page.

• Java classes required by your database vendor’s client layer must be
available on the client. They can be added to a CAB file that is referenced
in the CODEBASE attribute of the Object element in your Web page. For
example, if you are using Sybase jConnect to connect to a database, the
jconn2.jar file should be included in the CAB file. If the client layer is
provided in a JAR file, it can be referenced directly in the CODEBASE
attribute.

Deploying a new
version

The version number in the value of the CODEBASE attribute determines
whether the browser downloads and installs a new version of the ActiveX
controls. The browser compares the version number in the CODEBASE value
with the version of the controls that is installed in the system registry. If the
version numbers do not match, the browser downloads the CAB file again and
installs it.

❖ To deploy the new CAB file when you get a new version of PowerBuilder:

1 Find the new version number by checking the version number of any
PowerBuilder DLL (as described in “HTML for inserting the controls on
a Web page” on page 203).

2 Edit the Web pages that refer to the CAB file. Change the version number
in the CODEBASE attribute to match the new number.

3 Replace the CAB file on the Web server with the new version.

Deploying the Web ActiveX

216 PowerBuilder Classic

DataWindow Programmers Guide 217

A
absolute positioning, Netscape browser 142
accent marks, Web DataWindow 138
action codes 41
aggregation functions, Web DataWindow 137
applications

architectures 7
using DataWindow objects in 13

B
bitmaps, dynamically adding and removing 69
buffers

DataStore 85
DataWindow 30, 44

Button controls, Web DataWindow 140

C
CAB file, Web control for ActiveX 214
CallBack paging 132
Case function, Web DataWindow 137
character set, foreign language 138
Clicked events in graphs 104
client control, Web DataWindow 114
client/server applications 7
client-side paging 133
CODEBASE HTML attribute, Web ActiveX 203
column status in DataWindow controls 44
COMMIT statement and SetTransObject 24
communication with databases 21
CONNECT statement and SetTransObject 24
connection caches, defining in EAServer 144, 145
controls, supported in Web DataWindow 122
create capability for Modify 69
Create method 69
CrosstabDialog function 52

crosstabs
modifying during execution 54
users redefining during execution 52
using in applications 52
viewing underlying data 52

custom DataStore objects 82

D
data

retrieving and updating 26
saving in graphs 100
sharing 85
updating 27
Web control for ActiveX 212
Web DataWindow 123, 177

data sources
external 29, 84
types 6

database connections
about 21
Web control for ActiveX 210
Web DataWindow 177

database errors 39
databases

communicating with 21
connecting automatically 22
data source 6
disconnecting automatically 22
retrieving, presenting, and manipulating data 4, 26
snapshot connections 22
transaction management 24
updating 27

DataModified status 44
DataObject property of DataWindow controls 19
DataStore objects

accessing data 84
buffers 85
custom 82

Index

Index

218 PowerBuilder Classic

importing data from external sources 84
methods 85
sharing data 85
using in distributed applications 4

DataWindow controls
about 3, 8, 10, 14
accessing a specified item 34
accessing the current text 32
action codes 41
and graphs 97
assigning transaction objects to 70
associating with objects during execution 19, 20
buffers 30, 44
column status 44
creating reports with 47
data management in 30
DataObject property 19
DBError event 40
displaying PSR files in 19, 20, 21
handling errors 39
importing data from external sources 29
ItemChanged event 33
ItemError event 34
methods 36
names 15
naming in code 16
placing in windows 15
processing entries 31
row status 44
updating, use of row/column status when 44
using crosstabs 52
using graph methods 101

DataWindow execution time errors 42
DataWindow objects

about 3
associating with controls 17, 19, 20
basic use of 13
creating dynamically 69
creating reports with 47
data sources 6
defining 5
designing for Web DataWindow 121
displaying data 21
dynamic use of 67
editing 18
generating HTML from 55

graphs in 93
HTML preview 142
names 15
overview 4
preparing to use 13
presentation styles 5
printing multiple on a page 50
properties of 37
PSR file for Web DataWindow 175
SRD file for Web DataWindow 175
Web DataWindow, set in script 175
Web DataWindow, set on server 185

DataWindow painter
about 13
editing DataWindow object 18
working in 13

DataWindow technology 3, 7
DataWindowObject property, Web control for ActiveX

20, 208
DBError event 40
Delete buffer

DataStore 85
DataWindow 30

Describe method 37, 68, 70, 71
destroy capability for Modify 69
DISCONNECT statement and SetTransObject 24
display formats in Web DataWindow 123
distributed applications 7
dynamic DataWindow objects

about 67
adding elements 69
creating 69
modifying 68
providing query mode 72
specifying create syntax 70, 71

E
EAServer

database connection caches 144, 145
HTML generator components 112
installing custom component 185
instantiating custom component 189
locked PBL 183
maintaining state for Web DataWindow 190

Index

DataWindow Programmers Guide 219

edit controls
in DataStore objects 85
in DataWindow controls 30, 32, 33

edit styles
overriding in query mode 76
Web DataWindow 123

EditChanged event 32
Error event 42
errors, following database retrieval or update 39
events

action codes 41
DBError 40
Error 42
ItemChanged 33
ItemError 34
Web control for ActiveX 212, 213
Web DataWindow client control 148

execution
accessing graphs 94
associating DataWindow objects with controls

19, 20
modifying DataWindow objects 68

Export/Import Template view icons 154
expressions, assigning DataWindow property values

68
External data source, importing data 29, 84
external functions in Web DataWindow 137

F
files as data source 6
Filter buffer 30, 85
fonts, using in reports 48
foreign language character set 138

G
Generate method, example 182
GenerateHTMLForm method 63
GetChild method 50
GetItemDate method 34
GetItemDateTime method 34
GetItemDecimal method 34
GetItemNumber method 34

GetItemString method 34
GetItemTime method 34
GetMessageText method 53
GetText method 32
graphics, adding to DataWindow objects 69
graphs

about 93
data properties 97
getting information about 97
internal representation 95
modifying data properties in DataWindow control

102
modifying display of data 100
modifying during execution 94
properties of 95
saving data 100

grAxis subobject of graphs 95
grDispAttr subobject of graphs 95

H
header section in XML template 160
Help, providing in dynamic DataWindow objects 77
HTML

appending to a control 139
generating forms 63
including in a control 139
saving DataWindow data as 55

HTML Preview 142

I
InfoMaker Report painter 5
instance pooling, EAServer 183
ItemChanged event 32, 33
ItemError event 32, 34
items in DataWindow controls 31

J
JavaScript caching, Web DataWindow 133

Index

220 PowerBuilder Classic

L
language, character sets 138
libraries

for DataWindow objects 12, 13
locked by EAServer 183
Web control for ActiveX 207

LibraryExport function 71

M
MessageText event 53
methods

DataStore 85
DataWindow 36
graph 97
JavaScript caching 133
Web DataWindow client control 150
Web DataWindow server component 173

Modify method
basic usage 37, 68
using query mode 72
using with graphs 95
with crosstabs 54

multiple Web DataWindows on a page 150

N
names of DataWindow controls and DataWindow objects

15
nested reports

creating during execution 51
destroying during execution 51
using in applications 50

Netscape browser, absolute positioning 142
New status 44
NewModified status 44
NotModified status 44

O
OneTrip method, Web DataWindow 189

P
PagingMethod property 132
painters 13
Param elements, Web control for ActiveX 205
PBD files see libraries 12
PBL files see libraries 12
Picture button in Web DataWindow 141
Picture controls in Web DataWindow 141
point and click, in graphs 104
PowerBuilder libraries see libraries 12
Powersoft reports

about 4, 13
displaying in DataWindow controls 19
displaying in Web control for ActiveX 20
no database connection needed 21

presentation styles
list 5
supported in Web control for ActiveX 207
supported in Web DataWindow 122

Primary buffer 30, 85
Print method 48
printing

multiple DataWindow objects on a page 50
reports 48

programs, using DataWindow objects in 13
properties

DataWindow object 37
retrieving current values of 68, 70, 71

PSR files see Powersoft reports

Q
query mode

clearing 75
forcing equality 76
providing to users 72
sorting in 76

quotation marks in self-link expressions 179

R
reports

 see also Powersoft reports 4
creating with DataWindow objects 47

Index

DataWindow Programmers Guide 221

nested 50
printing 48

Retrieve method
handling errors 39
using 26
Web DataWindow example 178

RetrieveEx method, example 178
ROLLBACK statement and SetTransObject 24
rows

providing user-specified retrieval 72
status in DataWindow controls 44

runtime libraries see libraries 13

S
saving data in graphs 100
scripts, modifying graphs in 94
SELECT statements, modifying at execution time 75
selection criteria see query mode 72
self-link arguments, Web DataWindow 178
separator line in XML template 160
server component

accessing from server-side scripts 173
properties 187

server component, Web DataWindow 112
server-side validation for Web DataWindow 192
service classes for Web DataWindow 192
SetAction method, example 181
SetBrowser method, example 177
SetDWObject method, example 175
SetHTMLObjectName method, example 176
SetItem method 34
SetText method 32
SetTrans method

about 22
Web DataWindow example 177

SetTransObject method 24
SetWeight method, example 176
ShareData method 50
sorting in query mode 76
SourceFileName property, Web control for ActiveX

20, 208
SRD file for Web DataWindow 175
status of DataWindow rows or columns 44
SyntaxFromSQL method 71

T
text controls in DataWindow objects 69
text in DataWindow edit control 30
transaction objects

reassociating DataWindow controls with 70
Web control for ActiveX 209

U
Update method

handling errors 39
using 27

URLs, Web control for ActiveX 208
user events, for graphs in DataWindow controls 101
user objects, inherited from DataStore objects 83

V
validation rules in Web DataWindow 123
validation, server-side 192

W
Web applications and DataWindow technology 8,

109, 199
Web browsers

Web control for ActiveX 200
Web DataWindow 142, 177

Web control for ActiveX
about 9, 199
CODEBASE HTML attribute 203
database connections 210
DataWindow objects 207
DataWindowObject property 20, 208
deployment 214
event return codes 213
libraries 207
library versions 207
retrieving data 212
setting DataWindow object during execution 208
SourceFileName property 20, 208
transaction objects 209
version number of CAB 203

Index

222 PowerBuilder Classic

Web browsers 200
writing scripts 212

Web DataWindow
about 9, 109
aggregation functions 137
browsers 142
browser-specific HTML 177
client-side scripts 148
custom server component 185
data manipulation 140
database connections 177
DataWindow objects 121
EAServer connection cache 144
events for client control 148
expressions 137
foreign language text 138
generating HTML 182
how it works 110
HTML generator components 112
HTML version 142
installing custom component 185
instantiating custom component 189
JavaScript caching 133
JavaScript Generator wizard 133
locked PBL 183
maintaining state 190
methods for client control 149
multiple, on a page 150
navigation 140
object name 176
OneTrip method 189
page parameters 178, 181
picture button 141
process 111
programming for server component 173
PSR file 175
reloading page 178
retrieving data 178
self-link information in scripts 178
self-link properties 140
server component and client control 112
server component properties 187
server-side scripts 173
service classes 192
setting DataWindow object during execution 175
size of generated code 176

SRD file 175
types 110
user actions 181
where to install 171

Web DataWindow Container wizard 146
Window painter, placing DataWindow controls 15
wizards

Web DataWindow Container 146
Web DataWindow JavaScript Generator 133

X
XHTML export template

creating and saving 155
Detail Start element 160
editing 162
exporting 169, 170
saving 157

XML Web DataWindow
benefits 118
how it works 116
how to use 120
using 114

XMLClientSide paging 133

	DataWindow® Programmers Guide
	About This Book
	CHAPTER 1 About DataWindow Technology
	About DataWindow objects, controls, and components
	Presentation styles and data sources
	Basic process

	Choosing a DataWindow technology
	Solutions for client/server and distributed applications
	Solutions for Web applications
	Web DataWindow
	Sybase DataWindow Web control for ActiveX
	.NET applications
	WPF Window applications

	PowerBuilder DataWindow control

	CHAPTER 2 Using DataWindow Objects
	About using DataWindow objects
	Putting a DataWindow object into a control
	Names for DataWindow controls and DataWindow objects
	Working with the DataWindow control in PowerBuilder
	Defining reusable DataWindow controls
	Editing the DataWindow object in the control

	Specifying the DataWindow object during execution
	Changing the DataWindow in PowerBuilder
	Changing the DataWindow in the Web ActiveX

	Accessing the database
	Setting the transaction object for the DataWindow control
	Internal transaction management
	Transaction management with a separate transaction object

	Retrieving and updating data
	Basic data retrieval
	Using retrieval arguments
	Updating data

	Accessing a Web service data source
	Importing data from an external source
	Manipulating data in a DataWindow control
	How a DataWindow control manages data
	Accessing the text in the edit control
	Manipulating the text in the edit control
	Coding the ItemChanged event
	Coding the ItemError event
	Accessing the items in a DataWindow
	Using other DataWindow methods

	Accessing the properties of a DataWindow object
	Handling DataWindow errors
	Retrieve and Update errors and the DBError event
	Errors in property and data expressions and the Error event

	Updating the database
	How the DataWindow control updates the database
	Changing row or column status programmatically

	Creating reports
	Planning and building the DataWindow object
	Printing the report

	Using nested reports
	Using crosstabs
	Viewing the underlying data
	Letting users redefine the crosstab
	Modifying the crosstab's properties during execution

	Generating HTML
	Controlling display
	Calling the SaveAs method
	Displaying DataWindow objects as HTML forms

	CHAPTER 3 Dynamically Changing DataWindow Objects
	About dynamic DataWindow processing
	Modifying a DataWindow object
	Creating a DataWindow object
	Providing query ability to users
	How query mode works
	Using query mode

	Providing Help buttons
	Reusing a DataWindow object

	CHAPTER 4 Using DataStore Objects
	About DataStores
	Working with a DataStore
	Using a custom DataStore object
	Accessing and manipulating data in a DataStore
	Sharing information
	Example: printing data from a DataStore
	Example: using two DataStores to process data

	CHAPTER 5 Manipulating Graphs
	Using graphs
	Modifying graph properties
	How parts of a graph are represented
	Referencing parts of a graph

	Accessing data properties
	Getting information about the data
	Saving graph data
	Modifying colors, fill patterns, and other data
	Using graph methods

	Using point and click

	CHAPTER 6 Using the Web DataWindow
	What the Web DataWindow is
	Web DataWindow types
	How the Web DataWindow works
	The Web DataWindow server component and client control

	Using the XML Web DataWindow
	About XML, XSLT, CSS, and XHTML
	How the XML Web DataWindow works
	Server-side and client-side activity
	Benefits of XHTML Web pages
	Browser requirements for the XML Web DataWindow

	How to use the XML Web DataWindow

	Designing DataWindow objects for the Web DataWindow
	Web DataWindow properties
	Setting Web generation properties for the Web DataWindow

	Controlling the size of generated code
	Using drop-down DataWindows
	Callback and client-side paging support
	Using JavaScript caching for Web DataWindow methods
	Using expressions
	Using foreign language character sets
	Providing links for data
	Rendering HTML for controls in an HTML Web DataWindow
	Using Button and Picture controls
	Specifying Web generation for a specific browser
	Previewing the DataWindow

	Setting up database connections
	Deploying DataWindow objects to the component server
	The Web DataWindow Container project wizard

	Writing client-side scripts
	Customizing Web DataWindow generation
	The Export Template view for XHTML
	What you can customize
	The default XHTML export template
	Managing templates
	Creating and saving templates
	Selecting the template to use

	Template structure
	Header section
	Detail section

	Editing XHTML export templates
	Root element
	DataWindow controls
	DataWindow expressions
	Element attributes
	Style declarations
	JavaScript event handlers
	CDATA sections
	Element Context Menus

	Selecting XHTML export templates at runtime
	Exporting the DataWindow Web form in XML and XSLT or in XHTML

	CHAPTER 7 Server-Side Processing for the Web DataWindow
	Server configuration requirements
	Instantiating and configuring the server component
	Instantiating the component
	Loading the DataWindow object
	Controlling what is generated
	Specifying the database connection and retrieving data
	Passing page-specific data to the reloaded page
	Passing user actions to the server component
	Inserting the generated HTML or XHTML into the page

	Using a custom server component
	Creating a custom server component in EAServer
	Setting properties for a custom component in EAServer
	Instantiating the custom component
	Maintaining state on the server

	Using service classes
	Defining a service class for PowerBuilder components
	Defining a service class for Java components

	CHAPTER 8 Using the DataWindow Web Control for ActiveX
	About the Web ActiveX
	HTML for inserting the controls on a Web page
	Object element
	Properties and Param elements

	DataWindow objects for the Web ActiveX
	What the DataWindow object can include
	Managing DataWindow objects in PowerBuilder libraries
	Specifying a DataWindow object for the control

	Using the DataWindow Transaction Object control
	Making database connections
	Connecting and retrieving data

	Coding for the Web ActiveX
	Datatypes for method arguments and return values
	Setting event return codes

	Deploying the Web ActiveX

	Index

