SYBASE

Reference Manual: Building Blocks

Adaptive Server® Enterprise
15.0.2

DOCUMENT ID: DC36271-01-1502-01
LAST REVISED: November 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

PN oo 1 0L A I g T =T o o PRSPPI xi
CHAPTER 1 System and User-Defined Datatypesccccccevevvvvcvviiiiieeeeeeeeeeeen 1
Datatype CAtEQONIESuuiieeeiiiiiiieiieeesseiiiieer e e e e s settar e e aa e e s anneenneeaaeeas 1
Range and StOrage SiZE€cccuvviiieeieieiiiiiiie e 2
Datatypes of columns, variables, or parameters.............ccoccvvveeeeenn. 4
Declaring the datatype for a column in atable..............cccc....... 5
Declaring the datatype for a local variable in a batch or procedure
5
Declaring the datatype for a parameter in a stored procedure.. 5
Determining the datatype of a literal............ccccevieiiiiiiiiiiennnnnn, 6
Datatypes of mixed-mode eXpressionscccvccuvveeeeeeeeiinciivneeeeaen 7
Determining the datatype hierarchyccccovevveeviiiciiinennenn. 7
Determining precision and SCaleccccccovecvvveevieeeiisciiieeeeen, 9
Datatype CONVEISIONSuutieitieeeeitieie ettt e e aatbee e et e e s abeeeeasnaeeaeeeees 9
Automatic conversion of fixed-length NULL columns.............. 10
Handling overflow and truncation errors...........ccccccveeeeeeecvinnen. 10
Standards and COMPlIANCE...........cocuviiiiiiee e 11
EXact NUMENIC datatyPes.......ccuvviiieieiiiiiiiiiieee e 12
INEEOET TYPES ... ueeiiieeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeeneseeseenesnensenenee 13
Decimal datatyPesS......ccoivuvriiiiiieiiiiiiiieee e 14
Standards and complianCe..........ccccceeeviiiiiiiiieee e 15
Approximate NUMeric datatyPes........covvvvviveeeeeiiiiiiiiiiee e 16
Understanding approximate numeric datatypes............ccc.ue.... 16
Range, precision, and storage Sizec.ccceecvvvvevieeesiincvnnnnn, 17
Entering approximate numeric dataccccvvveveeeesiiivvnnnnn. 17
NaN and Inf values..........cooeiiiiiiiiie e 18
Standards and complianCeccoovviiiiiiieee e 18
MONEY datatYPEScuvvieiie e e ettt 18
ACCUFACY ...ttt a e e e e e e e e e 18
Range and StOrage SiZe€ccccvviviiiiiiiieie e 18
Entering monetary ValUES...........cooviiiiiiiiiiee e 19
Standards and complianCe..........ccccceeeeiviiiiiiiiee e 19
TiMeStamp AatatyPe.....ccovviiurriieiiie i 19

Reference Manual: Building Blocks iii

Contents

CHAPTER 2

Creating a timestamp COIUMN..........ooiiiiiiiiiee e 19
Date and time datatypPesoccvvveeeiieeiiiiiiiieeee e 20
Range and storage reqUIremMentS.........c.ooeevvveeeiieeniiniienneeeennn 21
Entering date and time datacccccceeeeeeeiiiiiiiee e, 21
Standards and complianCe.............ccccvuviiieeeeeiiciiiiee e 25
Character datatyPes........uuvveeeiiiciiiieiee e e e 25
unichar, UNIVAICRAToouieeee e 26
Length and Storage SiZ€ceeevvviiiiiieiee e 26
Entering character data............occvvveevieeii i 28
Treatment of BlanKsS..........ooiiiiii e 29
Manipulating character data............ccccccevvviiiiiiiiiee e, 30
Standards and cOmMpPlianCe.........ccoovvviiiiiiiieeeiiiiirieee e 30
Binary datatyPescc.vvveeiiieiiiiiiiiii e 31
Valid binary and varbinary entries..........cccccccceeniiniiiieeiiee s 31
Entries of more than the maximum column size 31
Treatment of trailing ZEeros..........ccccveeeeeiiiiiiiiee e 32
Platform dependenceccccovvvuviieeeie s 33
Standards and complianCe.............ccccvvvvieeeeeiiiciiieee e 33

DIt AtALYPE . eveieeee e ————— 33
Standards and complianCe.............ccccuviiieeeeeiniiiiiieee e 34
sysname and longsysname datatypes.........ccccceeeeeeiiiciviiieneeeeniiinnns 34
Standards and coOmMplianCe..........ccovvviiiiiiiiieeiiiiiieee e 34
text, image, and unitext datatypesccccovvviiiiiiieeninniiiiiieee e 34
Data structures used for storing text, unitext, and image data 36
Initializing text, unitext, and image columns............cccvveeeeeennn. 37
Saving space by allowing NULL.........ccccccceeiiiiiiiiiiinee e, 38
Getting information from SySiNdeXescccovcvvveeiieeeiiiiiinnn. 38
Using readtext and WriteteXt..........cccvvvveeeeeiiiciiiiiee e, 39
Determining how much space a column uses............cccceeeee.. 39
Restrictions on text, image, and unitext columns................... 40
Selecting text, unitext, and image dataccccceeeeeviecvinnen. 40
Converting text and image datatypes............cccvvvvveeeeeeecinnnen, 41
Converting to or from UNItEXE.......ccveeeiiiiiiiiiiieee e 41
Pattern matching in text data...........ccccceeeieviiiiiiiiee e, 42
DUPICALE FOWSvviiiieeiiiiiiiiie ettt 42
Standards and complianCe..........ccovvviiiiiiiieeeiiniiiiiee e 42
Datatypes and encrypted COIUMNScccvvviieeeeeiiiiiiiiicee e 42
User-defined datatyPesoovvviiiiiieeiiiiiiiiicee i 43
Standards and cOmMplianCe..........coovvviiiiiiiieeeiiiiiiieee e 44
Transact-SQL FUNCLIONS .cooiiiiiiiiiieicceeeeeeee e 45
TYPES Of FUNCHIONS ...vveee e 45
Aggregate fUNCLONScoooiiiiiiie e 51
Aggregates used with group byccooviiiiiiieii e 52

Adaptive Server Enterprise

Contents

Aggregate functions and NULL values.........ccccccccevvvcvvineennenn. 52
Vector and scalar aggregatesccccvveeevvvciviiereee e csiieneeeae 53
Aggregate functions as row aggregates.........ccccceeevvecvvvveeeeannn. 55
Statistical aggregate funCtionsccccovviiiiiiiiiii i 58
Standard deviation and varianCe............cccovcvvveriiere e 58
Statistical aggregatesooovvvviiieeiiiiiiiee e 59
Datatype conversion fUNCLONScoooviiiiiiiiine e 60
Converting character data to a noncharacter type 63
Converting from one character type to another....................... 63
Converting numbers to a character typecccccevveeevvevvvnen. 64
Rounding during conversion to and from money types........... 64
Converting date and time informationccccccevveeeeiicinnen, 65
Converting between NUMETrIC tyPesccccvvveeeiiciiiiiiiee e, 65
Arithmetic overflow and divide-by-zero errors..........ccccceeeen. 66
Conversions between binary and integer typescc....... 67
Converting between binary and numeric or decimal types...... 68
Converting image columns to binary typescccceeevvvivvneeen. 68
Converting other types to bit ... 68
Converting NULL ValUu€ouvviiiiiiiiiiieeee e 69
Date fUNCHIONSecoiiiieeiriie ettt 69
DAL PANTS ... uuuuueiiiiiiiteteeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeerneneerrerreee 69
Mathematical fUNCHIONSccoiiiiiiii e 70
SeCUrity fFUNCLONS ... 71
SNG FUNCHONS ..eviieiic e 72
Limits on string funCtionS...........cceeviiiiiiiiiie e 72
SyStemM fUNCLONS ... 73
Text, unitext, and image COIUMNSccceeeviiiiiiiieee e 73
Text and image fUNCLONScveiiiiiiiiiieee e 74
User-defined SQL functions............ccccooee 74
ADS 76
BICOS ... eeiiiee ettt e e 77
BISCH 1ttt ettt 78
ASENOSINAMEo 79
BISHN et 80
ALAN L. e e 81
AINZ e 82
2\ o PP PPRRPPP 83
aUdit_BVENE_NAIME......ceiiiiie e 85
AUENMECKH .. 87
DIGINTEONEX ... 88
DINTOSEE .. 89
GBS ..ttt ittt ettt e e 91
CAST. ettt e 94
CRIIING et 97

Reference Manual: Building Blocks v

Contents

Vi

CRAK . 99
Char_1ENGLN ..o 101
CRANNOEX. ... 103
(o0 = [T oSO ERRR 104
COLIENGLN .. 106
(oo I 1 F= 0 0 L= SRS PRRPP 107
[od0] 1 0] o= 1 (= PRSP PPPPPPPPPR 108
(o300 1Y/ o (PP PPPPPPPPRR 113
o 01 PP PPPPPPPPPPR 119
(o]0 | PO O PP P PP 120
(001U OO PP P PP 121
COUNT_ DG 123
CUMTENE_dALE ..ceveeiieeeeeeeeeeeeeeeee e 125
(o1 [=Y o 111 0= PSPPSR 126
CUFUNTESEIVEADPUTS +evvieeiiieriiieeesiaiitieeetaeessssibbeaeeeeeessasssbbeeeaaesssannnes 127
(0 P = 0 F= Lo [T SO PERPP 129
dAtaChanNQevvviiiee e e 131
datalengthoeeeeeeee e 133
(0 P> =T To [o 1RSSR 134
datediff ..o 137
(0 P2 =] 0= 1y = PP PERPP 140
(0o (=] o= 1 SO PP PPRRPPN 142
Y e 146
D00 e 147
Ab NAME oo 148
JEOIEES ..ottt a e anae 149
derived _Stat.........oceviiiiiiiiieiiee 150
QIffEIENCE oot 155
L2 o PP PPPPPPPPPR 156
OO e ——————————— 157
L _APPCONTEXT...iiiiiiiieiieeeeeeee e 159
(0] (0 I L= 2 PSSR 161
[0 =] (0] (ot - (PSRRI 162
has role ... 163
NASH <. 165
NASNDYIES ... 167
NEXTODIGINT.....eiiiiieiii e 169
NEXEOINT.....eeeie e 170
NOSE ..o 171
NOSE_NAIME .. 172
identity _BUIM_MaX.......cuuiiieeiiiiiiiiec e 173
1 To 1= G oo OO ERRPR 174
INAEX_COIOTAETcciiiiiiiie ettt 175
g To Loy o T U 1= TP ERRRR 176

Adaptive Server Enterprise

Contents

Reference Manual: Building Blocks

INEEONEX. .. 177
10 F= L (=P RRRR 178
ISNUIMIEIIC ... vvetee e e e ettt e e e et e e e e e e s et e e e e e e s e nnntbaaaeaaeesannnnennees 179
IS _QUIESCEM ...eeiiiieiiiiiiiiie ettt 180
ST o1 =1 Vi o =T o) o PO 182
ISNUIL ... e 183
ISNUMIEBTIC ..ttt e e 184
ICt admin......ooooi e ———— 185
LT e 188
= o P RRRRR 190
license_enabledcc.ooeii i 191
[IST_@PPCONTEXL ..eiieiiiiiiiiie ettt e e e a e nnneeee s 192
[OCKSCNEMIE ..eviiiie e e 193
oo TP RRRPR 194
o T T 0 PR 195
JOWVET ...ttt 196
TEFIIMY e 197
10T ¥ PP PP PP 198
L1010 PP PP PP 200
MONEN L. 201
MUE_EXClL_TOIES ... 202
1T/ To P RRRRR 203
NEXE_IAENTILY .vvvviee e 205
T T PR 206
(o] o] =X A (o RSO PERRR 208
(o] o] [=Tod a1 =T o1 T PSR PPERPP 209
(o] o] [=Tod al o111V a =] S (o SRS PRRPP 210
PAGESIZE ... ittt 211
PAIHION_I0. . eeiiiiieee i 213
PArtItiON_NAME ...oiiiiiiiiiiie e 214
partition_0ObJECt_iduvieiiiiiiii e 215
PASSINTO ..t 216
T L 10 [G TP PRTPR T 217
O T PP PP RPN 220
POWET <. 221
1o (o] - PR 222
7= (o 1= 1o £ PR 224
7= 10 o PRSPPI 225
7= 10 o 2 PSRRI 226
=]][0r- | (= PR 227
FESEIVE_TUENTILY ...oeiiiiiieie ettt 228
FESEIVEA_PAGES .ooiiiiiiiiiee ettt s e e 231
TEVEISE ...t e e ettt e e e e 235
10 | | S PP PPRPPRTTP 236

Vii

Contents

viii

FM_BPPCONTEXT .o 238
FOlE _CONtAIN.......cci i 239
(0] L= o 240
o] ST F= 10 = PSSR 241
(o 18] o SR ERPPR 242
(0117010 o | SRR 244
L 0 I 245
SEL_ APPCONTEXE .. .eeteeieieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesssesesesssssnnnsnnnnnnes 246
SHOW_TOIE ..eiiiiee e 248
SNOW_SEC_ SEIVICES ...uvvviuuiiiiiiiiiiieieieeeessseresesensessennsssnsssssssnnnsnnnnnnns 249
1[0 o TR TSP PP PP PP PP P PP PPPPPPPPPPPPPPPPR 250
L] DT TP 251
SOPEKEY ..ttt ettt ettt e e a e 252
L1 1000 (= O TS TOPP RPN 257
L] 1= Tol TP P PP P P PP P PP PP PPPPPPPPPPPPPPPPR 258
ST U= PP PPPPPPPRIN 259
LS 0 | PSP PPPPPPPPRIN 260
5] (0 [0 [YRR 261
L] (0 [V SRR 262
5] 10 [/ o SRR 263
1500 [0 [V oo o F OSSP 264
SIAARY_SAMP i 266
Sll e 268
SI_TEPIACE oiiieiii it 270
SEEODIN <. 272
SEUTT e 274
10 o153 14 o TR PP TOTPPPRP 276
£ 1 0 PSP PPPPPPPPPPPRIN 278
LS 1STT (o T SRR 280
SUSEI_NMAMNE ...eetetetteteteeeteeeeeeeeeeeeeeeeseeessssessssessssesssssssssssssssnnssnssnnnns 281
SYD QUIT e 282
SYD _SENAMSY ... 283
L= 1 [PPSR PPPPPPPPPRIN 284
teMPAD_Id ..o 285
LES241 0] L TSP PP PP PP PP PP PPPPPPPPPPPPPPPPPRt 286
TEXEVAIIT ... 287
L(TR0] 1] = PP PPPPPNS 288
tran_dumpable_StatusS..........ccccveeiiiiiiiieee e 289
ESEQUAL ...ttt 290
UNIGRSUIT ..o 292
0] 01 [PSSR 293
(U] 0] o1 SF 294
D1 or= 1= | PSR 295
BESY=To [o= To (= TSP RRRPR 296

Adaptive Server Enterprise

Contents

(U 7= S 298
B 1YY o [SRR SRPPR 299
(7<) g = 0 1 300
Valid_NAME ... 301
A2z 11T U= 302
VAL ittt e a s 303
VAIE_POP e e s 304
VAI_SBIMP oo s 306
VANMBINCEeiiiitiie ettt ettt et e e sn e ne e e s nnnee e e 307
L2210 308
XA DU ...eiee e 309
DC: o 11 1 (o PR 311
D011 7= 1 o =SSR 313
VL= 326
CHAPTER 3 Global Variables ... 327
Adaptive Server global variables...........ccccccceovvviiiiiiiee e, 327
CHAPTER 4 Expressions, Identifiers, and Wildcard Characters.................. 335
EXPrESSIONS......iiiieiiiieee et 335
SizZe Of @XPIESSIONS ..oeiivieieiirreie ettt 336
Arithmetic and character exXpressionsc.cceevevvcvveeeinneeen. 336
Relational and logical eXpressions...........cccovevveeeeinieees e 336
Operator PreCEUBNCEcoevviiiiiiieeee ettt 337
ArthmetiC OPEratorsevvieii i 337
BitWiSE OPEIAtOrSceeeiiiciiiiieieeeeseeititee e e e e e s esnteaee e e e e e e enneeeees 338
String concatenation OPEeratorcccvveeieeeeiiiciinneeeaeesannns 339
ComMPAariSON OPEIALOrScccccviiiiriiieeeeeesiirreeee e e e e s sirrereeaeaeanns 340
Nonstandard OPEerators.eeveeeeiiiuirieeeee e e iiireee e e e 340
Using any, all and in..........cccceveeeniiiiiiiecee e 341
Negating and teStingccccvvviieeeeeiiiiiiie e 341
RANGES ..ttt eeeeteeeeeeeeeeeeeseeeenesenensnnnnnneees 341
Using NUIIS iN @XPreSSIONSuviiee i 341
CoNNECtiNG EXPreSSIONS ...covviiiiiiiiie e eeriiireeee e 343
Using parentheses in eXPresSionsovvvvieeeieeesninieeenen 344
Comparing character eXpressions.........cccccveeviviivieeeeeensnnnnns 344
Using the empty String..........eveeeeeeiiiiiiiiiiee e 345
Including quotation marks in character expressions 345
Using the continuation character.........cccccccooecvvvveieeee i, 345

To =T) 1] 1T €T 345
Short identifiersveevieeiii e 347
Tables beginning with # (temporary tables)cccccceee..... 348
Case sensitivity and identifiers..........ccccvvcevee e 348

Reference Manual: Building Blocks iX

Contents

CHAPTER 5

CHAPTER 6

Uniqueness of object NamesS.........coccvvvvviiee i 349

Using delimited identifierscccccoiiiiiiieiiiiiee e 349
Identifying tables or columns by their qualified object name. 350
Determining whether an identifier is valid...............cccccveeenn. 352
Renaming database objects...........cccccceevviiiiiiiee e, 352

Using multibyte character Setsccccvvveeeeeiiiciiiieeee e 352

Pattern matching with wildcard characters...........ccccccceeeiiiiinnen. 353
USING NOL KB ... 354

Case and accent iINSENSILIVILYceeeeeeciiiiiieeee e e 355

Using wildcard characterscccccoovvvviiiiiieiiiiiiiiieee e 355

Using multibyte wildcard characters............occcvvveiieiniiiiinnnnn, 357

Using wildcard characters as literal characters..................... 357

Using wildcard characters with datetime data....................... 359
RESErved WOTAS ..oooieiiiiiiee ettt 361
Transact-SQL reserved WOrdsccccceueeeuinnnninnnns 361
ANSI SQL reserved WOrdScccceeeeeieeeiecceceseee e s 362
Potential ANSI SQL reserved words..............cccoooeeei. 363
SQLSTATE Codes and MeSSAQES ...vccvveeveeviiiererienrerreeeeeeeiesainnnes 365
LAYz U4 g 11 o < PR 365

o (e]=] o) o] 1T P RRRPR 366
Cardinality VIOIAtiONSccvvvieiiee e 366

Data EXCEPLIONS.....ccceiiirieieee e e ittt e e e e s estre e e e e e s e aaeeaaee s 367

Integrity constraint violationsccceeeeeviiiiieeec e, 368

INValid CUrSOr SEAESccvvviiiiieieeieee e 368

Syntax errors and access rule violations............cccceeceeviins 369
Transaction rollDAckS ... 370

with check option violation.............ccccvvviiiiiienee e 370
... 373

Adaptive Server Enterprise

About This Book

The Adaptive Server Reference Manual includes four guidesto Syba's;e®
Adaptive Server® Enterprise and the Transact-SQL® language:

Building Blocks describes the “ parts” of Transact-SQL : datatypes,
built-in functions, global variables, expressions and identifiers,
reserved words, and SQL STATE errors. Before you can use
Transact-SQL sucessfully, you must understand what these building
blocksdo and how they affect the results of Transact-SQL statements.

Commands provides reference information about the Transact-SQL
commands, which you use to create statements.

Procedures provides reference information about system procedures,
catal og stored procedures, extended stored procedures, and dbcc
stored procedures. All procedures are created using Transact-SQL
statements.

Tables providesreference information about the system tables, which
store information about your server, databases, users, and other
details of your server. It also provides information about the tablesin
the dbcedb and dbccalt databases.

Audience The Adaptive Server Reference Manual isintended as areference tool for
Transact-SQL users of all levels.

How to use this book .

Reference Manual: Building Blocks

Chapter 1, “ System and User-Defined Datatypes,” describes the
system and user-defined datatypes that are supplied with Adaptive
Server and indicates how to use them to create user-defined
datatypes.

Chapter 2, “ Transact-SQL Functions,” lists the Adaptive Server
functions in atable that provides the name and a brief description.

Chapter 3, “Global Variables,” lists the system-defined variables for
Adaptive Server in atable that provides the name and a brief
description of the returned status.

Chapter 4, “Expressions, |dentifiers, and Wildcard Characters,”
which provides information about using the Transact-SQL language.

Xi

Related documents

Xii

Chapter 5, “Reserved Words,” provides information about the
Transact-SQL and ANSI SQL keywords.

Chapter 6, “ SQLSTATE Codes and Messages,” contains information
about Adaptive Server SQL STATE status codes and the associated

messages.

The Adaptive Server® Enterprise documentation set consists of the following:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

The Installation Guidefor your platform —describesinstal lation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

ASE Replicator User’s Guide — describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
aprimary server to one or more remote Adaptive Servers.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

The Configuration Guide for your platform — provides instructions for
performing specific configuration tasks for Adaptive Server.

Enhanced Full-Text Search Specialty Data Sore User’s Guide — describes
how to use the Full-Text Search feature with Verity to search Adaptive
Server Enterprise data.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Historical Server User’s Guide— describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

Javain Adaptive Server Enterprise— describeshow to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

Adaptive Server Enterprise

About This Book

e Job Scheduler User's Guide — provides instructions on how to install and
configure, and create and schedule jobs on alocal or remote Adaptive
Server using the command line or agraphical user interface (GUI).

e Messaging Service User’'s Guide — describes how to useReal Time
Messaging Services to integrate TIBCO Java Message Service and IBM
WebSphere MQ messaging services with all Adaptive Server database
applications.

e Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

¢ Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

« Performance and Tuning Series — a series of books that explain how to
tune Adaptive Server for maximum performance:

e Basics—the basics for understanding and investigating performance
questions in Adaptive Server.

e Locking and Concurrency Control — describes how the various
locking schemas can be used for improving performance in Adaptive
Server, and how to select indexes to minimize concurrency.

e Query Processing and Abstract Plans — describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

e Physical Database Tuning — describes how to manage physical data
placement, space allocated for data, and the temporary databases.

e Monitoring Adaptive Server with sp_sysmon — describes how to
monitor Adaptive Server’s performance with sp_sysmon.

< Improving Performance with Satistical Analysis— describes how
Adaptive Server stores and displays statistics, and how to use the set
statistics command to analyze server statistics.

e Using the Monitoring Tables — describes how to query Adaptive
Server’s monitoring tables for statistical and diagnostic information.

e Quick Reference Guide — provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, data types, and utilities in a pocket-sized book (regular size
when viewed in PDF format).

Reference Manual: Building Blocks Xiii

Xiv

Reference Manual —is a series of four books that contains the following
detailed Transact-SQL information:

» Building Blocks — Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

e Commands — Transact-SQL commands.

e Procedures — Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

e Tables— Transact-SQL system tables and dbcc tables.
System Administration Guide —

* Volume 1 — provides an introduction to the basics of system
administration, including a description of configuration parameters,
resource issues, character sets, sort orders, and diagnosing system
problems. The second part of this book is an in-depth description of
security administration.

* Volume 2 —includes instructions and guidelines for managing
physical resources, mirroring devices, configuring memory and data
caches, managing multiprocessor servers and user databases,
mounting and unmounting databases, creating and using segments,
using the reorg command, and checking database consistency. The
second half of this book describes how to back up and restore system
and user databases.

System Tables Diagram — illustrates system tables and their entity
relationshipsin aposter format. Full-size available only in print version; a
compact version is available in PDF format.

Transact-SQL User’s Guide — documents Transact-SQL , the Sybase
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

Troubleshooting Series (for release 15.0) —

e Troubleshooting: Error Messages Advanced Resolutions — contains
troubleshooting procedures for problems that you may encounter
when using Sybase® Adaptive Server® Enterprise. The problems
addressed here are those which the Sybase Technical Support staff
hear about most often

Adaptive Server Enterprise

About This Book

Other sources of
information

e Troubleshooting and Error Messages Guide — contains detailed
instructionson how to resolve the most frequently occurring Adaptive
Server error messages. Most of the messages presented here contain
error numbers (from the master..sysmessages table), but some error
messages do not have error numbers, and occur only in Adaptive
Server's error log.

User Guide for Encrypted Columns — describes how configure and use
encrypted columns with Adaptive Server

Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

Using Sybase Failover in a High Availability System — provides
instructions for using Sybase Failover to configure an Adaptive Server as
acompanion server in a high availability system.

Unified Agent and Agent Management Console — describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

Utility Guide — documents the Adaptive Server utility programs, such as
isgl and bep, which are executed at the operating system level.

Web Services User’s Guide — explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

XA Interface Integration Guide for CICS Encina, and TUXEDO —
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

XML Servicesin Adaptive Server Enterprise—describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

The Getting Started CD contains rel ease bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

Reference Manual: Building Blocks XV

Sybase certifications
on the Web

XVi

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manualsin an easy-to-use, HTML -based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks I nstallation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manuals Web siteis an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

[IFinding the latest information on product certifications

1

2
3
4
5

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocsl/.

Select Products from the navigation bar on the | eft.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

[IFinding the latest information on component certifications

1

Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

Select Search to display the availability and certification report for the
selection.

Adaptive Server Enterprise

About This Book

Sybase EBFs and

software

maintenance

Conventions

[ICreating a personalized view of the Sybase Web site (including support

pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

[JFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select aproduct.

4 Specify atimeframeand click Go. A list of EBFSMaintenancereleasesis
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBFs/Maintenance rel eases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBFs/Maintenance report, or click the
product description to download the software.

The following sections describe conventions used in this manual.

SQL isafree-formlanguage. There are no rules about the number of wordsyou
can put on aline or where you must break aline. However, for readability, all
examples and most syntax statementsin this manual are formatted so that each
clause of astatement beginson anew line. Clausesthat have morethan one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 showsthe conventionsfor syntax statementsthat appear in thismanual:

Reference Manual: Building Blocks XVii

Table 1: Font and syntax conventions for this manual

Element

Example

Command names,procedure names, utility names, and
other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font.

master database

Book names, file names, variables, and path namesare
initalics.

System Administration Guide
sgl.ini file

column_name
$SYBASE/ASE directory

Variables—or words that stand for valuesthat you fill
in—when they are part of aquery or statement, arein
italicsin Courier font.

select column_name
from table name
where search conditions

Type parentheses as part of the command.

compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbal.
Indicates “is defined as’.

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed optionsisoptional. Do not typethe brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipeor vertical bar(|) meansyou may select only
one of the options shown.

cash | check | credit

Anéllipsis(...) meansthat you can repeat the last unit
as many times asyou like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | creditl]...
You must buy at least onething and giveits price. You may
choose amethod of payment: one of the itemsenclosed in
sguare brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

e Syntax statements (displaying the syntax and all options for a command)

appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

XViil

Adaptive Server Enterprise

About This Book

In syntax statements, keywords (commands) are in normal font and
identifiersare in lowercase. Italic font shows user-supplied words.

e Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

« Examples of output from the computer appear as follows:

pub name city state
New Age Books Boston MA
Binnet & Hardley Washington DC
Algodata Infosystems Berkeley CA

(3 rows affected)

Accessibility
features

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such astable
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For moreinformation, see the System Administration Guide.

This document is availablein an HTML version that is specialized for
accessibility. You can navigatethe HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Reference Manual: Building Blocks Xix

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary

in your area.

XX Adaptive Server Enterprise

CHAPTER 1 System and User-Defined
Datatypes

This chapter describes the Transact-SQL datatypes, which specify the
type, size, and storage format of columns, stored procedure parameters,
and local variables.

Topics Page
Datatype categories 1
Range and storage size 2
Datatypes of columns, variables, or parameters 4
Datatypes of mixed-mode expressions 7
Datatype conversions 9
Standards and compliance 11
Exact numeric datatypes 12
Approximate numeric datatypes 16
Money datatypes 18

sysname and longsysname datatypes

text, image, and unitext datatypes

Timestamp datatype 19
Date and time datatypes 20
Character datatypes 25
Binary datatypes 31
bit datatype 33
34
34
43

User-defined datatypes

Datatype categories

Adaptive Server provides several system datatypes and the user-defined
datatypes timestamp, sysname, and longsysname. Table 1-1 lists the
categories of Adaptive Server datatypes. Each category isdescribed in a
section of this chapter.

Reference Manual: Building Blocks 1

Range and storage size

Table 1-1: Datatype categories

Category Used for

Exact numeric datatypes Numeric values (both integers and numberswith adecimal portion) that must be
represented exactly

Approximate numeric datatypes Numeric data that can tolerate rounding during arithmetic operations

Money datatypes Monetary data

Timestamp datatype Tables that are browsed in Client-Library™ applications

Date and time datatypes Date and time information

Character datatypes Strings consisting of |etters, numbers, and symbols

Binary datatypes Raw binary data, such as pictures, in a hexadecimal-like notation

bit datatype True/fase and yes/no type data

sysname and longsysname System tables

datatypes

text, image, and unitext
datatypes

Printable characters or hexadecimal-like data that requires more than the
maximum column size provided by your server’slogical page size.

Abstract datatypes

Adaptive Server supports abstract datatypes through Java classes. See Java in
Adaptive Server Enterprise for more information.

User-defined datatypes

Defining objects that inherit the rules, default, null type, IDENTITY property,
and base datatype of the datatypes listed in thistable. text undergoes
character-set conversion if client isusing a different character set, image does
not.

Range and storage size

Table 1-2 lists the system-supplied datatypes and their synonyms and provides
information about the range of valid values and storage size for each. For
simplicity, the datatypesare printed in lowercase characters, although Adaptive
Server allows you to use either uppercase or lowercase characters for system
datatypes. User-defined datatypes, such astimestamp, are case-sensitive. Most
Adaptive Server-supplied datatypes are not reserved words and can be used to
name other objects.

Table 1-2: Adaptive Server system datatypes

Datatypes by

category Synonyms Range Bytes of storage

Exact numeric: integers

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Datatypes by

category Synonyms Range Bytes of storage
bigint Wholenumbersbetween 253 and-25% 8
-1 (from -
9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807,
inclusive.
int integer 231 .1 (2,147,483,647) to 4
281 (-2,147,483,648
smallint 215 .1 (32,767) to -21° (-32,768) 2
tinyint 0to 255 (Negative numbersarenot 1
permitted)
unsigned bigint Whole numbers between 0 and 8
18,446,744,073,709,551,615
unsigned int Whole numbers between 0 and 4
4,294,967,295
unsigned smallint Whole numbers between 0 and 2
65535
Exact numeric: decimals
numeric (p, s) 10%8-1t0-10%8 2to 17
decimal (p, s) dec 10%-1t0-10% 2to 17

Approximate numeric

float (precision)

machine dependent

4 for default precision < 16,
8 for default precision >= 16

double precision

machine dependent

8

real machine dependent 4

Money

smallmoney 214,748.3647 to -214,748.3648 4

money 922,337,203,685,477.5807 to 8
-922,337,203,685,477.5808

Date/time

smalldatetime January 1, 1900 to June 6, 2079 4

datetime January 1, 1753 to December 31, 8
9999

date January 1, 0001 to December 31, 4
9999

time 12:00:00AM to 11:59:59:999PM 4

Character

char(n) character pagesize n

Reference Manual: Building Blocks

Datatypes of columns, variables, or parameters

Datatypes by

category Synonyms Range Bytes of storage
varchar(n) character varying, pagesize actual entry length
char varying
unichar Unicode character pagesize n* @@unicharsize
(@@unicharsize equals 2)
univarchar Unicode character pagesize actual number of characters*
varying, char varying @@unicharsize
nchar(n) national character, pagesize n* @@ncharsize
national char
nvarchar(n) nchar varying, pagesize @@ncharsize * number of
national char varying, characters
national character
varying
text 2%1.1(2,147,483,647) bytesor fewer 0 when uninitialized;
multiple of 2K after
initialization
unitext 1-1,073,741,823 0 when uninitialized;
multiple of 2K after
initialization
Binary
binary(n) pagesize n
varbinary(n) pagesize actual entry length

2°1.1(2,147,483,647) bytesor fewer

image 0 when uninitialized;
multiple of 2K after
initialization

Bit

bit Oor1l 1 (one byte holds up to 8 bit
columns)

Datatypes of columns, variables, or parameters

You must declare the datatype for a column, local variable, or parameter. The
datatype can be any of the system-supplied datatypes, or any user-defined
datatype in the database.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Declaring the datatype for a column in a table

To declare the datatype of anew column in acreate table or alter table
statement, use:

create table [[database.]Jowner.]table_name
(column_name datatype [identity | not null | null]
[, column_name datatype [identity | not null |
null]]...)

alter table [[database.]Jowner.Jtable_name
add column_name datatype [identity | null
[, column_name datatype [identity | null]...

For example:

create table sales_daily
(stor id char(4)not null,
ord num numeric(10,0)identity,
ord_amt money null)

You can also declare the datatype of a new column in a select into Statement,
use convert Or cast:

select convert (double precision, x), cast (int, y) into
newtable from oldtable

Declaring the datatype for a local variable in a batch or procedure
To declare the datatype for aloca variable in a batch or stored procedure, use:

declare @variable_name datatype
[, @variable_name datatype]...

For example:

declare @hope money

Declaring the datatype for a parameter in a stored procedure

Use the following syntax to declare the datatype for a parameter in a stored
procedure:

create procedure [owner.]Jprocedure_name [;number]
[[((@parameter_name datatype [= default] [output]
[,@parameter_name datatype [= default]

[output]]...D]]
[with recompile]
as SQL_statements

Reference Manual: Building Blocks 5

Datatypes of columns, variables, or parameters

For example:

create procedure auname sp @auname varchar (40)

as

select au_lname, title, au_ord

from authors, titles, titleauthor

where @auname = au_lname

and authors.au id = titleauthor.au id

and titles.title id = titleauthor.title id

Determining the datatype of a literal

Numeric literals

Character literals

Numeric literals entered with E notation are treated as float; al others are
treated as exact numerics:

« Literals between 231 - 1 and -231 with no decimal point are treated as
integer.

e Literalsthat include adecimal point, or that fall outside the range for
integers, are treated as numeric.

Note To preserve backward compatibility, use E notation for numeric
literals that should be treated asfloat.

In versions of Adaptive Server earlier than 12.5.1, when the client’s character
set was different from the server’s character set, conversions were generally
enabled to allow the text of SQL queriesto be converted to the server’s
character set before being processed. If any character could not be converted
becauseit could not berepresented in the server’s character set, theentire query
wasrejected. This character set “bottleneck” has been removed as of Adaptive
Server version 12.5.1.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

You cannot declare the datatype of a character literal. Adaptive Server treats
character literals asvarchar, except those that contain characters that cannot be
converted to the server’s default character set. Such literals are treated as
univarchar. Thismakes it possible to perform such queries as selecting unichar
datain aserver configured for “iso_1" using a“sjis’ (Japanese) client. For
example:

select * from mytable where unichar column = ' ﬂ !

Since the character literal cannot be represented using the char datatype (in
“iso_1"), it is promoted to the unichar datatype, and the query succeeds.

Datatypes of mixed-mode expressions

When you perform concatenation or mixed-mode arithmetic on values with
different datatypes, Adaptive Server must determine the datatype, length, and
precision of the result.

Determining the datatype hierarchy

Each system datatype has a datatype hierar chy, which is stored in the
systypes system table. User-defined datatypes inherit the hierarchy of the
system datatype on which they are based.

Thefollowing query ranksthe datatypesin a database by hierarchy. In addition
to the information shown below, your query results will include information
about any user-defined datatypes in the database:

select name, hierarchy
from systypes
order by hierarchy

name hierarchy

1
float 2
datetimn 3
datetime 4
real 5
numericn 6
numeric 7

Reference Manual: Building Blocks 7

Datatypes of mixed-mode expressions

decimaln 8
decimal 9
moneyn 10
money 11
smallmoney 12
smalldatetime 13
intn 14
uintn 15
bigint 16
ubigint 17
int 18
uint 19
smallint 20
usmallint 21
tinyint 22
bit 23
univarchar 24
unichar 25
unitext 26
sysname 27
varchar 27
nvarchar 27
longsysname 27
char 28
nchar 28
timestamp 29
varbinary 29
binary 30
text 31
image 32
date 33
time 34
daten 35
timen 36
extended type 99

Note u<int type> isan internal representation. The correct syntax for unsigned
typesis unsigned {int | integer | bigint | smallint }

The datatype hierarchy determines the results of computati ons using values of
different datatypes. The result valueis assigned the datatype that is closest to
the top of the list or has the least hierarchical value.

8 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Inthefollowing example, gty from the sales tableis multiplied by royalty from
theroysched table. gty isasmallint, which hasahierarchy of 20; royalty isanint,
which has a hierarchy of 18. Therefore, the datatype of the result is an int:

smallint (gty) * int (royalty) = int

Determining precision and scale

For numeric and decimal datatypes, each combination of precision and scaleis
adistinct Adaptive Server datatype. If you perform arithmetic on two numeric
or decimal values:

e nlwith precision p1 and scale s1, and
e n2with precision p2 and scale n2

Adaptive Server determines the precision and scale of the results as shown in

Table 1-3.
Table 1-3: Precision and scale after arithmetic operations
Operation Precision Scale
nl+n2 max(sl, s2) + max(pl-sl, p2-s2) +1 max(sl, s2)
nl- n2 max(sl, s2) + max(pl-sl, p2-s2) +1 max(sl, s2)
nl* n2 sl+s2+(pl-sl)+(p2-s2)+1 sl+s2
nl/n2 max(sl + p2 + 1, 6) + pl- sl +p2 max(sl + p2-s2 + 1, 6)

Datatype conversions

Many conversions from one datatype to another are handled automatically by
Adaptive Server. These are called implicit conversions. Other conversions
must be performed explicitly with the convert, hextoint, inttohex, hextobigint,
and biginttohex functions. See“ Datatype conversion functions’ on page 60 for
details about datatype conversions supported by Adaptive Server.

Reference Manual: Building Blocks 9

Datatype conversions

Automatic conversion of fixed-length NULL columns

Only columns with variable-length datatypes can store null values. When you
create aNULL column with afixed-length datatype, Adaptive Server
automatically convertsit to the corresponding variable-length datatype.
Adaptive Server does not inform the user of the datatype change.

Table 1-4 lists the fixed- and variable-length datatypes to which they are
converted. Certain variable-length datatypes, such as moneyn, are reserved
datatypes; you cannot use them to create columns, variables, or parameters:

Table 1-4: Automatic conversion of fixed-length datatypes

Original fixed-length datatype Converted to
char varchar
unichar univarchar
nchar nvarchar
binary varbinary
datetime datetimn
date daten
time timen
float floatn
bigint, int, smallint, and tinyint intn
unsigned bigint, unsigned int, and uintn
unsigned smallint

decimal decimaln
numeric numericn
money and smallmoney moneyn

Handling overflow and truncation errors

The arithabort option determines how Adaptive Server behaves when an
arithmetic error occurs. Thetwo arithabort options, arithabort arith_overflow and
arithabort numeric_truncation, handle different types of arithmetic errors. You
can set each option independently, or set both options with asingle set
arithabort on or set arithabort off statement.

10 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

e arithabort arith_overflow specifies behavior following a divide-by-zero
error or aloss of precision during either an explicit or animplicit datatype
conversion. Thistype of error is considered serious. The default setting,
arithabort arith_overflow on, rolls back the entire transaction in which the
error occurs. If the error occurs in a batch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier
commands in the batch, but Adaptive Server does not execute any
statements that follow the error-generating statement in the batch.

Setting arith_overflow to on refersto the execution time, not to the level of
normalization to which Adaptive Server is set.

If you set arithabort arith_overflow off, Adaptive Server abortsthe statement
that causes the error, but continues to process other statementsin the
transaction or batch.

e arithabort numeric_truncation specifies behavior following aloss of scale
by an exact numeric datatype during an implicit datatype conversion.
(When an explicit conversion resultsin aloss of scale, the results are
truncated without warning.) The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error but
continuesto process other statementsin thetransaction or batch. If you set
arithabort numeric_truncation off, Adaptive Server truncates the query
results and continues processing.

The arithignore option determines whether Adaptive Server prints awarning

message after an overflow error. By default, the arithignore option isturned off.
This causes Adaptive Server to display awarning message after any query that
resultsin numeric overflow. To ignore overflow errors, use set arithignore on.

Standards and compliance

Table 1-5 lists the ANSI SQL standards and compliance levels for
Transact-SQL datatypes.

Reference Manual: Building Blocks 11

Exact numeric datatypes

Table 1-5: ANSI SQL standards and compliance levels for Transact-SQL

datatypes
Transact-SQL — ANSI SQL Transact-SQL extensions —
datatypes User-defined datatypes
e char e binary
e varchar * varbinary
¢ smallint e hit
e int e nchar
¢ bigint e datetime
¢ decimal * smalldatetime
e numeric e tinyint
« float ¢ unsigned smallint
e real e unsigned int
e date ¢ unsigned bigint
e time * money
¢ double precision ¢ smallmoney
e text
e unitext
* image
e nvarchar
e unichar

e univarchar
e sysname
¢ longsysname

e timestamp

Exact numeric datatypes

Use the exact numeric datatypes when you must represent a value exactly.
Adaptive Server provides exact numeric types for both integers (whole
numbers) and numbers with adecimal portion.

12 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Integer types

Adaptive Server provides the following exact numeric datatypesto store

integers: bigint, int (or integer), smallint, tinyint and each of their unsigned

counterparts. Choose the integer type based on the expected size of the

numbersto be stored. Internal storage size varies by type, asshownin Table 1-
6.

Table 1-6: Integer datatypes

Datatype Stores

Bytes of storage

bigint Whole numbers between -258 and 253 - 1 (from -9,223,372,036,854,775,808t0 8
+9,223,372,036,854,775,807, inclusive.

intleger] Whole numbers between-25 and 231 - 1 (-2,147,483,648 and 2,147,483,647), 4

inclusive.
smallint Whole numbers between -21° and 21° -1 (-32,768 and 32,767), inclusive. 2
tinyint Whole numbers between 0 and 255, inclusive. (Negative numbers are not 1
permitted.)
unsigned Whole numbers between 0 and 18,446,744,073,709,551,615 8
bigint
unsigned Whole numbers between 0 and 4,294,967,295 4
int
unsigned Whole numbers between 0 and 65,535 2
smallint

Entering integer data

Enter integer dataas astring of digitswithout commas. Integer datacan include
adecimal point aslong asall digitsto the right of the decimal point are zeros.
The smallint, integer, and bigint datatypes can be preceded by an optional plus
or minus sign. The tinyint datatype can be preceded by an optional plus sign.

Table 1-7 shows somevalid entries for a column with a datatype of integer and
indicates how isql displays these val ues:

Table 1-7: Valid integer values

Value entered Value displayed
2 2

+2 2

-2 -2

2. 2

2.000 2

Table 1-8 lists some invalid entries for an integer column:

Reference Manual: Building Blocks 13

Exact numeric datatypes

Table 1-8: Invalid integer values

Value entered Type of error

2,000 Commeas not allowed.
2- Minus sign should precede digits.
345 Digits to the right of the decimal point are nonzero digits.

Decimal datatypes

Specifying precision
and scale

Storage size

14

Adaptive Server provides two other exact numeric datatypes, numeric and
dec[imal], for numbers that include decimal points. The numeric and decimal
datatypes are identical in al respects but one: only numeric datatypes with a
scale of 0 and integer datatypes can be used for the IDENTITY column.

The numeric and decimal datatypes accept two optional parameters, precision
and scale, enclosed in parentheses and separated by a comma:

datatype [(precision [, scale])]

Adaptive Server treats each combination of precision and scale as adistinct
datatype. For example, numeric(10,0) and numeric(5,0) are two separate
datatypes. The precision and scale determine the range of values that can be
stored in adecimal or numeric column:

e Theprecision specifiesthe maximum number of decimal digitsthat can be
stored in the column. It includes all digits, both to the right and to the I eft
of the decimal point. You can specify precisionsranging from 1 digit to 38
digits or use the default precision of 18 digits.

» Thescale specifies the maximum number of digitsthat can be stored to the
right of the decimal point. The scale must be less than or equal to the
precision. You can specify ascale ranging from 0 digitsto 38 digits, or use
the default scale of 0 digits.

The storage size for anumeric or decimal column depends on its precision. The
minimum storage requirement is 2 bytesfor al- or 2-digit column. Storagesize
increases by approximately 1 byte for each additional 2 digits of precision, up
to amaximum of 17 bytes.

Use the following formulato cal culate the exact storage size for a numeric or
decimal column:

ceiling (precision / logl0(256)) + 1

For example, the storage size for a numeric(18,4) column is 9 bytes.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Entering decimal data Enter decimal and numeric dataasastring of digits preceded by an optional plus
or minus sign and including an optional decimal point. If the value exceeds
either the precision or scale specified for the column, Adaptive Server returns
an error message. Exact numeric types with ascale of 0 are displayed without
adecimal point.

Table 1-9 shows some valid entries for a column with a datatype of
numeric(5,3) and indicates how these values are displayed by isql:

Table 1-9: Valid decimal values

Value entered Value displayed
12.345 12.345

+12.345 12.345

-12.345 -12.345
12.345000 12.345

121 12.100

12 12.000

Table 1-10 shows someinvalid entries for a column with a datatype of
numeric(5,3):

Table 1-10: Invalid decimal values

Value entered Type of error

1,200 Commeas not allowed.
12- Minus sign should precede digits.
12.345678 Too many nonzero digits to the right of the decimal point.

Standards and compliance

Transact-SQL providesthesmallint, int, bigint, numeric, and decimal ANSI SQL
exact numeric datatypes. The unsigned bigint, unsigned int, unsigned smallint,
and tinyint type is a Transact-SQL extension.

Reference Manual: Building Blocks 15

Approximate numeric datatypes

Approximate numeric datatypes

Use the approximate numeric types, float, double precision, and real, for
numeric data that can tolerate rounding. The approximate numeric types are
especialy suited to datathat covers awide range of values. They support all
aggregate functions and all arithmetic operations.

Understanding approximate numeric datatypes

16

Approximate numeric datatypes, used to store floating-point numbers, are
inherently slightly inaccurate in their representation of real numbers—hence
the name* approximate numeric.” To usethese datatypes, you must understand
their limitations.

When a floating-point number is printed or displayed, the printed
representation is not quite the same as the stored number, and the stored
number is not quite the same as the number that the user entered. Most of the
time, the stored representation is close enough, and software makesthe printed
output look just likethe original input, but you must understand theinaccuracy
if you plan to use floating-point numbers for calculations, particularly if you
are doing repeated cal cul ations using approximate numeric datatypes—the
results can be surprisingly and unexpectedly inaccurate.

The inaccuracy occurs because floating-point numbers are stored in the
computer as binary fractions (that is, as a representative number divided by a
power of 2), but the numbers we use are decimal (powers of 10). This means
that only avery small set of numbers can be stored accurately: 0.75 (3/4) can
be stored accurately becauseit isabinary fraction (4 isapower of 2); 0.2 (2/10)
cannot (10 is not a power of 2).

Some numbers contain too many digits to store accurately. double precision is
stored as 8 binary bytes and can represent about 17 digits with reasonable
accuracy. real is stored as 4 binary bytes and can represent only about 6 digits
with reasonable accuracy.

If you begin with numbers that are almost correct, and perform computations
with them using other numbers that are aimost correct, you can easily end up
with aresult that is not even close to being correct. If these considerations are
important to your application, use an exact numeric datatype.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Range, precision, and storage size

Thereal and double precision types are built on types supplied by the operating
system. Thefloat type accepts an optional binary precision in parentheses. float
columnswith aprecision of 1-15 are stored asreal; those with higher precision
are stored as double precision.

The range and storage precision for all three types is machine-dependent.

Table 1-11 shows the range and storage size for each approximate numeric
type. isql displays only 6 significant digits after the decimal point and rounds
the remainder:

Table 1-11: Approximate numeric datatypes

Datatype Bytes of storage

float[(default precision)] 4 for default precision < 16
8 for default precision >= 16

double precision 8

real 4

Entering approximate numeric data

Enter approximate numeric data as a mantissa followed by an optional
exponent:

e Themantissaisasigned or unsigned number, with or without a decimal
point. The column’s binary precision determines the maximum number of
binary digits allowed in the mantissa.

e Theexponent, which beginswith the character “€” or “E,” must beawhole
number.

The value represented by the entry is the following product:
mantissa * 10EXPONENT

For example, 2.4E3 represents the value 2.4 times 103, or 2400.

Reference Manual: Building Blocks 17

Money datatypes

NaN and Inf values

“NaN”" and “Inf” are special values that the IEEE754/854 floating point
number standards use to represent values that are “not a number” and
“infinity,” respectively. In accordance with the ANSI SQL 92 standard,
Adaptive Server versions 12.5 and later do not allow the insertion of these
values in the database and do not allow them to be generated. In Adaptive
Server versions earlier than 12.5, Open Client clients such as native-mode bcp,
JDBC, and ODBC could occasionally force these values into tables.

If you encounter aNaN or an Inf value in the database, contact Sybase
Customer Support with details of how to reproduce the problem.

Standards and compliance

ANSI SQL — Compliance level: The float, double precision, and real datatypes
are entry-level compliant.

Money datatypes

Accuracy

Use the money and smallmoney datatypes to store monetary data. You can use
these typesfor U.S. dollars and other decimal currencies, but Adaptive Server
provides no means to convert from one currency to another. You can use all
arithmetic operations except modulo, and all aggregate functions, with money
and smallmoney data.

Both money and smallmoney are accurate to one ten-thousandth of a monetary
unit, but they round values up to two decimal placesfor display purposes. The
default print format places a comma after every three digits.

Range and storage size

18

Table 1-12 summarizes the range and storage requirements for money
datatypes:

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Table 1-12: Money datatypes

Datatype Range Bytes of storage
money Monetary values between +922,337,203,685,477.5807 and 8
-922,337,203,685,477.5808

smallmoney Monetary values between +214,748.3647 and -214,748.3648 4

Entering monetary values

Monetary values entered with E notation are interpreted as float. This may
cause an entry to be rejected or to lose some of its precision when it is stored
asamoney or smallmoney value.

money and smallmoney values can be entered with or without a preceding
currency symbol, such asthedollar sign ($), yen sign (¥), or pound sterling sign
(E). To enter anegative value, place the minus sign after the currency symbol.
Do not include commas in your entry.

Standards and compliance

ANSI SQL — The money and smallmoney datatypes are Transact-SQL
extensions.

Timestamp datatype

Use the user-defined timestamp datatype in tables that are to be browsed in
Client-Library™" applications (see “Browse Mode” for more information).
Adaptive Server updates the timestamp column each time its row is modified.
A table can have only one column of timestamp datatype.

Creating atimestamp column

If you create a column named timestamp without specifying a datatype,
Adaptive Server defines the column as atimestamp datatype:

create table testing
(cl int, timestamp, c2 int)

Reference Manual: Building Blocks 19

Date and time datatypes

You can also explicitly assign the timestamp datatype to a column named
timestamp:

create table testing
(cl int, timestamp timestamp, c2 int)

or to a column with another name:

create table testing
(cl int, t _stamp timestamp,c2 int)

You can create a column named timestamp and assign it another datatype
(although thismay be confusing to other usersand does not allow the use of the
browse functionsin Open Client™ or with the tsequal function):

create table testing
(cl int, timestamp datetime)

Date and time datatypes

20

Use datetime, smalldatetime, date, and time to store absolute date and time
information. Use timestamp to store binary-type information.

Adaptive Server has various waysto identify date and time. In versions earlier
than 12.5.1, only datetime and smalldatetime were available. As of version
12.5.1, date and time are these separate datatypes:

* date

* time

* smalldatetime
* datetime

The default display format for datesis“Apr 15 1987 10:23PM”. You can use
the convert function for other styles of date display. You can also perform some
arithmetic cal culations on date and time val ues with the built-in date functions,
though Adaptive Server may round or truncate millisecond values.

* datetime columns hold dates between January 1, 1753 and December 31,
9999. datetime values are accurate to 1/300 second on platforms that
support thislevel of granularity. Storage size is 8 bytes: 4 bytesfor the
number of days since the base date of January 1, 1900 and 4 bytesfor the
time of day.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

e smalldatetime columns hold dates from January 1, 1900 to June 6, 2079,
with accuracy to the minute. Its storage size is 4 bytes: 2 bytes for the
number of days after January 1, 1900, and 2 bytes for the number of
minutes after midnight.

e date columns hold dates from January 1, 0001 to December 31, 9999.
Storage sizeis 4 bytes.

e time is between 00:00:00:000 and 23:59:59:999. You can use either
military time or 12AM for noon and 12PM for midnight. A time value
must contain either a colon or the AM or PM signifier. AM or PM may be
in either uppercase or lowercase.

When entering date and time information, always enclose the time or date in
single or double quotes.

Range and storage requirements

Table 1-13 summarizes the range and storage requirements for the datetime,
smalldatetime, date, and time datatypes:

Table 1-13: Transact-SQL datatypes for storing dates and times

Datatype Range Bytes of storage
datetime January 1, 1753 through December 31,9999 8
smalldatetime January 1, 1900 through June 6, 2079 4
date January 1, 0001 to December 31, 9999 4
time 12:00:00 AM to 11:59:59:999 PM 4

Entering date and time data

The datetime and smalldatetime datatypes consist of a date portion either
followed by or preceded by atime portion. (You can omit either the date or the
time, or both.) The date datatype has only adate and the time datatype has only
the time. You must enclose values in single or double quotes.

Entering the date Dates consist of a month, day, and year and can be entered in a variety of
formats for date, datetime, and smalldatetime:

e You can enter the entire date as an unseparated string of 4, 6, or 8 digits,
or use dash (/), hyphen (-), or period (.) separators between the date parts.

Reference Manual: Building Blocks 21

Date and time datatypes

When entering dates as unseparated strings, use the appropriate
format for that string length. Use leading zeros for single-digit years,
months, and days. Dates entered in the wrong format may be
misinterpreted or result in errors.

When entering dates with separators, use the set dateformat option to
determine the expected order of date parts. If the first date part in a
separated string isfour digits, Adaptive Server interpretsthe string as
yyyy-mm-dd format.

Some date formats accept 2-digit years (yy):

Numbers less than 50 are interpreted as 20yy. For example, o1 is
2001, 32 is2032, and 49 is 2049.

Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is1950, 74 is1974, and 99 is 1999.

You can specify the month as either anumber or aname. Month names and
their abbreviations are language-specific and can be entered in uppercase,
lowercase, or mixed case.

If you omit the date portion of adatetime or smalldatetime value, Adaptive
Server uses the default date of January 1, 1900.

Table 1-14 describes the acceptable formats for entering the date portion of a
datetime or smalldatetime value:

Table 1-14: Date formats for date and time datatypes

Date format Interpretation Sample entries Meaning
4-digit string with no separators Interpreted asyyyy. Date defaultsto “1947” Jan 11947

Jan 1 of the specified year.
6-digit string with no separators Interpreted as yymmdd. “450128" Jan 28 2045

For yy < 50, year is 20yy. “520128" Jan 28 1952

For yy >= 50, year is 19yy.
8-digit string with no separators Interpreted as yyyymmdd. “19940415" Apr 151994
String consisting of 2-digit The dateformat and language set “4/15/94" All of these entries
month, day, and year separated options determine the expected order “4.15.94” areinterpreted as
by dslashes, hyphens, or periods, of date parts. For us_english, the “4-15-94" Apr 15 1994 when
or acombination of theabove default order is mdy. “04.15/94" the dateformat

For yy < 50, year isinterpreted as optionis set to

20yy. For yy >= 50, year isinterpreted mdy.

as 19yy.

22

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Date format Interpretation Sample entries Meaning

String consisting of 2-digit The dateformat and language set “04/15.1994" Interpreted as Apr
month, 2-digit day, and 4-digit options determine the expected order 15 1994 when the
year separated by dashes, of date parts. For us_english, the dateformat option
hyphens, or periods, or a default order is mdy. is set to mdy.

combination of the above
Month is entered in character If 4-digit year is entered, date parts “April 15,1994 All of these entries

form (either full monthnameor can be entered in any order. “1994 15 apr” areinterpreted as
its standard abbreviation), “1994 April 15" Apr 15 1994.
followed by an optional comma “15 APR 1994"

If day isomitted, al 4 digitsof year ~ “apr 1994” Apr 11994

must be specified. Day defaultsto the

first day of the month.

If year isonly 2 digits (yy), it is “mar 16 17" Mar 16 2017
expected to appear after the day. “apr 15 94" Apr 15 1994
For yy < 50, year isinterpreted as

20yy. Foryy >=50, year isinterpreted

as 19yy.
The empty string “” Date defaults to Jan 1 1900. Jan 1 1900
Entering the time The time component of a datetime, smalldatetime, or time value must be

specified asfollows:
hours|[:minutes|:seconds[:milliseconds]] [AM | PM]
e Use12AM for midnight and 12PM for noon.

e A timevauemust contain either acolon or an AM or PM signifier. The
AM or PM can be entered in uppercase, lowercase, or mixed case.

e The seconds specification can include either a decimal portion preceded
by a decimal point, or anumber of milliseconds preceded by a colon. For
example, “15:30:20:1" means twenty seconds and one millisecond past
3:30 PM; “15:30:20.1" means twenty and one-tenth of a second past 3:30
PM.

e |f youomit thetime portion of adatetime or smalldatetime value, Adaptive
Server uses the default time of 12:00:00:000AM.

Displaying formats for The display format for datetime and smalldatetime valuesis “Mon dd yyyy

datetime, hh:mmAM” (or “PM"); for example, “Apr 15 1988 10:23PM” . To display
smalldatetime, and - . D
date values seconds and milliseconds, and to obtain additional date styles and date-part

orders, use the convert function to convert the data to a character string.
Adaptive Server may round or truncate millisecond values.

Table 1-15 lists some examples of datetime entries and their display values:

Reference Manual: Building Blocks 23

Date and time datatypes

Displaying formats for
time value

Finding values that
match a pattern

24

Table 1-15: Examples of datetime and date entries

Entry Value displayed
“1947" Jan 1 1947 12:00AM
“450128 12:30:1PM” Jan 28 2045 12:30PM
“12:30.1PM 450128" Jan 28 2045 12:30PM
“14:30.22" Jan 1 1900 2:30PM
“4am” Jan 1 1900 4:00AM
Examples of date

“1947" Jan 1 1947

“450128" Jan 28 2045
“520317" Mar 17 1952

The display format for time valuesis “hh:mm:ssmmmAM” (or “PM"); for

example, “10:23:40:022PM.

Table 1-16: Examples of time entries

Entry Value displayed
"12:12:00” 12:12PM
“01:23PM” or “01:23:1PM” 1:23PM
“02:24:00:001” 2:24AM

Usethelike keyword to look for datesthat match aparticular pattern. If you use
the equality operator (=) to search date or time values for a particular month,
day, and year, Adaptive Server returns only those values for which thetimeis
precisely 12:00:00:000AM.

For example, if you insert the value “9:20" into a column named arrival_time,
Adaptive Server converts the entry into “Jan 1 1900 9:20AM.” If you look for
this entry using the equality operator, it is not found:

where arrival time = "9:20" /* does not match */
You can find the entry using the like operator:
where arrival time like "%9:20%"

When using like, Adaptive Server first converts the dates to datetime or date
format and then to varchar. The display format consists of the 3-character
month in the current language, 2 characters for the day, 4 characters for the
year, the time in hours and minutes, and “AM” or “PM.”

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Manipulating dates

When searching with like, you cannot use the wide variety of input formatsthat
are available for entering the date portion of datetime, smalldatetime, date, and
time values. Since the standard display formats do not include seconds or
milliseconds, you cannot search for seconds or milliseconds with like and a
match pattern, unlessyou are also using style 9 or 109 and the convert function.

If you are using like, and the day of the month isa number between 1 and 9,
insert 2 spaces between the month and the day to match the varchar conversion
of the datetime value. Similarly, if the hour islessthan 10, the conversion
places 2 spaces between the year and the hour. The following clause with 1
space between “May” and “2") finds all dates from May 20 through May 29,
but not May 2:

like "May 2%"

You do not need to insert the extra space with other date comparisons, only
with like, since the datetime values are converted to varchar only for the like
comparison.

You can do somearithmetic cal culations on date and time datatypes valueswith
the built-in date functions. See “ Date functions’ on page 69.

Standards and compliance

ANSI SQL — Compliance level: The datetime and smalldatetime datatypes are
Transact-SQL extensions. date and time datatypes are entry-level compliant.

Character datatypes

Which datatype you use for a situation depends on the type of datayou are

storing:

e Usethe character datatypesto store strings consisting of letters, numbers,
and symboals.

e Usevarchar(n) and char(n) for both single-byte character sets such as
us_english and for multibyte character sets such as Japanese.

e Usetheunichar(n) and univarchar(n) datatypesto store Unicode characters.
They are useful for single-byte or multibyte characters when you need a
fixed number of bytes per character.

Reference Manual: Building Blocks 25

Character datatypes

» Usethefixed-length datatype, nchar(n) , and the variable-length datatype,
nvarchar(n), for both single-byte and multibyte character sets, such as
Japanese. Thedifference between nchar(n) and char(n) and nvarchar(n) and
varchar(n) isthat both nchar(n) and nvarchar(n) allocate storage based on n
times the number of bytes per character (based on the default character
set). char(n) and varchar(n) allocate n bytes of storage.

e Character datatypes can store a maximum of a page size worth of data

» Usethetext datatype (described in “text, image, and unitext datatypes’ on
page 34)—or multiple rowsin a subtable—for stringslonger than the char
or varchar dataype allow.

unichar, univarchar

You can use the unichar and univarchar datatypes anywhere that you can use
char and varchar character datatypes, without having to make syntax changes.

In Adaptive Server version 12.5.1 and later, queries containing character
literalsthat cannot be represented inthe server’scharacter set are automatically
promoted to the unichar datatype so you do not have to make syntax changes
for data manipulation language (DML) statements. Additional syntax is
available for specifying arbitrary charactersin character literals, but the
decision to “promote” aliteral to unichar is based solely on representability.

With data definition language (DDL) statements, the syntax changes required
are minimal. For example, in the create table command, the size of a Unicode
column is specified in units of 16-bit Unicode values, not bytes, thereby

mai ntaining the similarity between char(200) and unichar(200). sp_help, which
reports on the lengths of columns, uses the same units. The multiplication
factor (2) is stored in the new global variable @@unicharsize.

See Chapter 8, “Configuring Character Sets, Sort Orders, and Languages,” in
the System Administration Guide for more information about Unicode.

Length and storage size

26

Character variables strip the trailing spaces from strings when the variableis
populated in avarchar column of a cursor.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Use n to specify the number of bytes of storage for char and varchar datatypes.
For unichar, use n to specify the number of Unicode characters (the amount of
storage allocated is 2 bytes per character). For nchar and nvarchar, n isthe
number of characters (the amount of storage allocated is n times the number of
bytes per characer for the server’s current default character set).

If you do not use n to specify the length:

e Thedefault length is 1 byte for columns created with create table, alter
table, and variables created with declare.

e Thedefault length is 30 bytes for values created with the convert function.

Entries shorter than the assigned |ength are blank-padded; entries longer than
the assigned length are truncated without warning, unless the string_rtruncation
option to the set command is set to on. Fixed-length columns that allow nulls
areinternally converted to variable-length columns.

Use n to specify the maximum length in characters for the variable-length
datatypes, varchar(n), univarchar(n), and nvarchar(n). Datain variable-length
columnsis stripped of trailing blanks; storage size is the actual length of the
data entered. Datain variable-length variables and parameters retains all
trailing blanks, but is not padded to the defined Iength. Character literals are
treated as variable-length datatypes.

Fixed-length columns tend to take more storage space than variable-length
columns, but are accessed somewhat faster. Table 1-17 summarizesthe storage
reguirements of the different character datatypes:

Table 1-17: Character datatypes

Datatype Stores Bytes of storage

char(n) Character n

unichar(n) Unicode character n* @ @unicharsize (@ @unicharsize equals 2)
nchar(n) National character n* @@ncharsize

varchar(n) Character varying Actua number of characters entered

univarchar(n) Unicode character varying Actua number of characters* @ @unicharsize
nvarchar(n) National character varying Actua number of characters* @ @ncharsize

Determining column Use the char_length string function and datalength system function to
Lﬁﬂ%gz):’]"s'th system determine column length:

* char_length returns the number of charactersin the column, stripping
trailing blanks for variable-length datatypes.

« datalength returns the number of bytes, stripping trailing blanks for data
stored in variable-length columns.

Reference Manual: Building Blocks 27

Character datatypes

When achar value is declared to allow NULL vaues, Adaptive Server stores
it internally as avarchar.

If the min or max aggregate functions are used on achar column, the result
returned isvarchar, and is therefore stripped of al trailing spaces.

Entering character data

Character strings must be enclosed in single or double quotes. If you use set
quoted_identifier on, use single quotes for character strings; otherwise,
Adaptive Server treats them as identifiers.

Stringsthat include the double-quote character should be surrounded by single
guotes. Strings that include the single-quote character should be surrounded by
double quotes. For example:

'George said, "There must be a better way."'
"Isn't there a better way?"

An alternative is to enter two quotation marks for each quotation mark you
want to include in the string. For example:

"George said, ""There must be a better way.""
'Isn''t there a better way?'

To continue a character string onto the next line of your screen, enter a
backdash (\) before going to the next line.

For more information about quoted identifiers, see the section “Delimited
identifiers’ of the Transact SQL User’s Guide.

Entering Unicode characters

28

Optional syntax allows you to specify arbitrary Unicode characters. If a
character literal isimmediately preceded by U& or u& (with no intervening
white space), the parser recognizes escape sequences within the literal. An
escape sequence of the form \xxxx (where xxxx represents four hexadecimal
digits) is replaced with the Unicode character whose scalar value is xxxx.
Similarly, an escape sequence of the form \+yyyyyy is replaced with the
Unicode character whose scalar value isyyyyyy. The escape sequence\\ is
replaced by asingle\. For example, the following is equivalent to:

select * from mytable where unichar column = ' ﬂ !

select * from mytable where unichar column = U&'\4e94"'

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

The U& or u& prefix simply enables the recognition of escapes. The datatype
of theliteral ischosen solely on the basis of representability. Thus, for example,
the following two queries are equival ent:

select * from mytable where char column = 'A'
select * from mytable where char column = U&'\0041"

In both cases, the datatype of the character literal ischar, since“A” isan ASCII
character, and ASCI| is a subset of all Sybase-supported server character sets.

The U& and u& prefixes also work with the double-quoted character literals
and for quoted identifiers. However, quoted identifiers must be representable
in the server’s character set, insofar as all database objects are identified by
names in system tables, and all such names are of datatype char.

Treatment of blanks

The following example creates a table named spaces that has both fixed- and
variable-length character columns:

create table spaces (cnot char(5) not null,
cnull char(5) null,
vnot varchar(5) not null,
vnull varchar(5) null,
explanation varchar (25) not null)

insert spaces values ("a", "b", "c", "d", "pads char-not-null only")

insert spaces values ("1 "n,on2 "n,oon3 ",o"4 ", "truncates trailing
blanks")

insert spaces values (" e", " £, n g", " h", "leading blanks, no
change")

insert spaces values (" w ", " x ", " y "," z ", "truncates trailing
blanks")

insert spaces values (""", "", wnr, wn o veppty string equals space")

select "[" cnot + "]",

+
"[" + cnull + "],
n [ll + VnOt + ll] n ,

n [ll + Vl’lull + Il] n ,
explanation from spaces

explanation
[a 1 [b] [c] [dl pads char-not-null only
[1] [2] [3] [4] truncates trailing blanks

Reference Manual: Building Blocks 29

Character datatypes

[el [[gl [h] 1leading blanks, no change
[w] [x] [y 1] [z] truncates trailing blanks
[1] [1] [1] [] empty string equals space

(5 rows affected)

This example illustrates how the column’s datatype and null type interact to
determine how blank spaces are treated:

e Only char not null and nchar not null columns are padded to the full width
of the column; char null columns are treated like varchar and nchar null
columns are treated like nvarchar.

e Only unichar not null columns are padded to the full width of the column;
unichar null columns are treated like univarchar.

» Preceding blanks are not affected.

e Trailing blanks are truncated except for char, unichar, and nchar not null
columns.

“w on

e Theempty string (* ") istreated as a single space. In char, nchar, and
unichar not null columns, the result is a column-length field of spaces.

Manipulating character data

You can use the like keyword to search character strings for particular
characters and the built-in string functions to manipulate their contents. You
can use strings consisting of numbers for arithmetic after being converted to
exact and approximate numeric datatypes with the convert function.

Standards and compliance

ANSI SQL — Compliance level: Transact-SQL provides the char and varchar
ANSI SQL datatypes. The nchar, nvarchar, unichar, and univarchar datatypes
are Transact-SQL extensions.

30 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Binary datatypes

Use the binary datatypes, binary(n) and varbinary(n), to store raw binary data,
such as pictures, in araw binary notation, up to the maximum column size for
your server’slogical page size.

Valid binary and varbinary entries

Binary data begins with the characters “0x” and can include any combination
of digits, and the uppercase and lowercase letters A through F.

Use n to specify the column length in bytes, or use the default length of 1 byte.
Each byte stores 2 binary digits. If you enter a value longer than n, Adaptive
Server truncates the entry to the specified length without warning or error.

Use the fixed-length binary type, binary(n), for datain which all entries are
expected to be approximately equal in length.

Use the variable-length binary type, varbinary(n), for data that is expected to
vary greatly in length.

Because entries in binary columns are zero-padded to the column length (n),
they may require more storage space than those in varbinary columns, but they
are accessed somewhat faster.

If you do not use n to specify the length:

e Thedefault length is 1 byte for columns created with create table, alter
table, and variables created with declare.

* Thedefault length is 30 bytesfor values created with the convert function.

Entries of more than the maximum column size

Use theimage datatype to store larger blocks of binary data (up to
2,147,483,647 bytes) on external data pages. You cannot use the image
datatype for variables or for parameters in stored procedures. For more
information, see “text, image, and unitext datatypes’ on page 34.

Reference Manual: Building Blocks 31

Binary datatypes

Treatment of trailing zeros

All binary not null columns are padded with zeros to the full width of the
column. Trailing zeros are truncated in al varbinary dataand in binary null
columns, since columns that accept null values must be treated as
variable-length columns.

The following example creates atable with al four variations of binary and
varbinary datatypes, NULL, and NOT NULL. The same dataisinserted in all
four columns and is padded or truncated according to the datatype of the
column.

create table zeros (bnot binary(5) not null,
bnull binary(5) null,
vnot varbinary(5) not null,
vnull varbinary(5) null)

insert zeros values (0x12345000, 0x12345000, 0x12345000, 0x12345000)
insert zeros values (0x123, 0x123, 0x123, 0x123)

select * from zeros

bnot bnull vnot vnull
0x1234500000 0x123450 0x123450 0x123450
0x0123000000 0x0123 0x0123 0x0123

Because each byte of storage holds 2 binary digits, Adaptive Server expects
binary entriesto consist of the characters“0x” followed by an even number of
digits. When the“0x” isfollowed by an odd number of digits, Adaptive Server
assumes that you omitted the leading 0 and adds it for you.

Input values “0x00” and “0x0" are stored as“0x00" in variable-length binary
columns (binary null, image, and varbinary columns). In fixed-length binary
(binary not null) columns, the valueis padded with zerosto the full length of the

field:
insert zeros values (0x0, 0x0,0x0, 0x0)
select * from zeros where bnot = 0x00
bnot bnull vnot vnull
0x0000000000 0x00 0x00 0x00

If theinput value does not include the “0x”, Adaptive Server assumes that the
valueisan ASCII value and convertsit. For example:

32 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

create table sample (col a binary(8))
insert sample values (’002710000000aelb’)

select * from sample
col _a

0x3030323731303030

Platform dependence

Theexact forminwhich you enter aparticul ar value depends upon the platform
you are using. Therefore, calculations involving binary data can produce
different results on different machines.

You cannot use the aggregate functions sum or avg with the binary datatypes.

For platform-independent conversions between hexadecimal strings and
integers, use the inttohex and hextoint functions rather than the
platform-specific convert function. For details, see “ Datatype conversion
functions” on page 60.

Standards and compliance

ANSI SQL — Compliance level: The binary and varbinary datatypes are
Transact-SQL extensions.

bit datatype

Usethenbit datatype for columnsthat contai n true/fal se and yes/no types of data.
The status column in the syscolumns system table indicates the unique offset
position for bit datatype columns.

bit columns hold either O or 1. Integer values other than O or 1 are accepted, but
are always interpreted as 1.

Storage sizeis 1 byte. Multiple bit datatypesin atable are collected into bytes.
For example, 7 bit columnsfit into 1 byte; 9 bit columns take 2 bytes.

Reference Manual: Building Blocks 33

sysname and longsysname datatypes

Columns with a datatype of bit cannot be NULL and cannot have indexes on
them.

Standards and compliance

ANSI SQL — Compliance level: Transact-SQL extension.

sysname and longsysname datatypes

sysname and longsysname are user-defined datatypesthat are distributed onthe
Adaptive Server installation tape and used in the system tables. The definitions
are:

* sysname —varchar(30) "not null"
* longsysname —varchar(255) "not null*

You can declare a column, parameter, or variable to be of types sysname and
longsysname. Alternately, you can also create a user-defined datatype with a
base type of sysname and longsysname, and then define columns, parameters,
and variables with the user-defined datatype.

Standards and compliance

ANSI SQL —Compliancelevel: All user-defined datatypes, including sysname
and longsysname, are Transact-SQL extensions.

text, image, and unitext datatypes

34

text columns are variable-length columns that can hold up to 2,147,483,647
(281 - 1) bytes of printable characters.

The variable-length unitext datatype can hold up to 1,073,741,823 Unicode
characters (2,147,483,646 bytes).

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

image columns are variable-length columns that can hold up to 2,147,483,647
(23 - 1) bytes of raw binary data.

A key distinction between text and image isthat text is subject to character-set
conversion if you are not using the default character set of Adaptive Server
default. image is not subject to character-set conversion.

Define atext, unitext, or image column as you would any other column, with a
create table or alter table statement. text, unitext, or image datatype definitions
do not include lengths. text, unitext, and image columns do permit null values.
Their column definition takes the form:

column_name {text | image | unitext} [null]

For example, the create table statement for the author’s blurbs table in the
pubs2 database with atext column, blurb, that permits null values, is:

create table blurbs
(au_id id not null,
copy text null)

This example creates a unitext column that allows null values:
create table tb (ut unitext null)
To create the au_pix table in the pubs2 database with an image column;

create table au pix

(au_id char(11l) not null,
pic image null,

format type char(11) null,
bytesize int null,

pixwidth hor char(14) null,

pixwidth vert char (14) null)

Adaptive Server storestext, unitext, and image datain alinked list of datapages
that are separate from the rest of the table. Each text, unitext, or image page
stores one logical page sizeworth of data (2, 4, 8, or 16K). All text, unitext, and
image datafor atableis stored in asingle page chain, regardless of the number
of text, unitext, and image columns the table contains.

You can place subsequent allocations for text, unitext, and image data pages on
adifferent logical device with sp_placeobject.

image valuesthat have an odd number of hexadecimal digits are padded with a
leading zero (an insert of “Oxaaabb” becomes “ 0x0aaabb”).

Reference Manual: Building Blocks 35

text, image, and unitext datatypes

You can use the partition option of the alter table command to partition atable
that contains text, unitext, and image columns. Partitioning the table creates
additional page chains for the other columnsin the table, but has no effect on
the way the text, unitext, and image columns are stored.

You can use unitext anywhere you use the text datatype, with the same
semantics. unitext columns are stored in UTF-16 encoding, regardless of the
Adaptive Server default character set.

Data structures used for storing text, unitext, and image data

36

When you allocate text, unitext, or image data, a 16-byte text pointer isinserted
into the row you allocated. Part of thistext pointer refersto atext page number
at the head of the text, unitext, or image data. This text pointer is known asthe
first text page.

Thefirst text page contains two parts:

» Thetext data page chain, which contains the text and image dataand isa
double-linked list of text pages

» Theoptional text-node structure, which is used to access the user text data

Once an first text page is alocated for text, unitext, or image data, it is never
deallocated. If an update to an existing text, unitext,or image datarow resultsin
fewer text pagesthan are currently all ocated for thistext, unitext, or image data,
Adaptive Server deallocatesthe extratext pages. If an update to text, unitext, or
image data setsthe value to NULL, all pages except the first text page are
deall ocated.

Figure 1-1 shows the relationship between the data row and the text pages.

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Figure 1-1: Relationship between the text pointer and data rows

Data row

Cchar |-e4—includes5

- [«]

Cint 8 C_float §|

© 0

| v v
First text page \E % E/Flrst text page

g

Y s\ Y
£

vyOE)y
5

columns

In Figure 1-1, columns c_text and c_image are text and image columns
containing the pages at the bottom of the picture.

Initializing text, unitext, and image columns

text, unitext, and image columns are not initialized until you update them or

insert a non-null value. Initialization allocates at |east one data page for each
non-null text, unitext, or image data value. It also creates a pointer in the table
to the location of the text, unitext, or image data.

For example, thefollowing statements create the tabl e testtext and initialize the
blurb column by inserting a non-null value. The column now has avalid text
pointer, and the first text page has been allocated.

create table texttest
(title id varchar(6), blurb text null, pub id char(4))

insert texttest values
("BU7832", "Straight Talk About Computers is an
annotated analysis of what computers can do for you: a

no-hype guide for the critical user.",

"1389")

The following statements create a table for image values and initialize the

image column:

create table imagetest

(image id varchar (6),

char(4))

Reference Manual: Building Blocks

imagecol image null, graphic id

37

text, image, and unitext datatypes

insert imagetest values
("94732", 0x0000008300000000000100000000013¢c, "1389")

Note Surround text valueswith quotation marksand precedeimage valueswith
the characters “Ox”.

For information on inserting and updating text, unitext, and image data with
Client-Library programs, see the Client-Library/C Reference Manual.

Defining unitext columns

You can define aunitext column the sasmeway you define other datatypes, using
create table or alter table statements. You do not define the length of a unitext
column, and the column can be null.

This example creates a unitext column that allows null values:
create table tb (ut unitext null)

default unicode sort order defines the sort order for unitext columns for pattern
matching in like clauses and in the patindex function, thisisindependent of the
Adaptive Server default sort order.

Saving space by allowing NULL

To save storage space for empty text, unitext, or image columns, define them to
permit null values and insert nulls until you use the column. Inserting a null
valuedoesnot initialize atext, unitext, or image column and, therefore, does not
create atext pointer or allocate storage. For example, the following statement
inserts values into thetitle_id and pub_id columns of the testtext table created
above, but does not initialize the blurb text column:

insert texttest
(title_id, pub_id) values ("BU7832", "1389")

Getting information from sysindexes

38

Each table with text, unitext, or image columns has an additional row in
sysindexes that provides information about these columns. The name column
in sysindexes uses the form “tablename.” Theindid is always 255. These
columns provide information about text storage:

Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Table 1-18: Storage of text and image data

Column Description

ioampg Pointer to the allocation page for the text page chain
first Pointer to the first page of text data

root Pointer to the last page

segment Number of the segment where the object resides

You can query the sysindexes table for information about these columns. For
example, the following query reports the number of data pages used by the
blurbs table in the pubs2 database:

select name, data pages(db _id(), object id("blurbs"), indid)
from sysindexes
where name = "tblurbs"

Note The system tables poster shows a one-to-one relationship between
sysindexes and systabstats. Thisis correct, except for text and image columns,
for which information is not kept in systabstats.

Using readtext and writetext

Before you can use writetext to enter text data or readtext to read it, you must
initialize the text column. For details, see readtext and writetext in Reference
Manual: Commands.

Using update to replace existing text, unitext, and image data with NULL
reclaimsall allocated data pages except the first page, which remains available
for future use of writetext. To deallocate al storage for the row, use delete to
remove the entire row.

There arerestrictions for using readtext and writetext on a column defined for
unitext. For more information see the “Usage” sections under readtext and
writetext in the Reference Manual: Commands.

Determining how much space a column uses

sp_spaceused provides information about the space used for text data as
index_size:

sp_spaceused blurbs

Reference Manual: Building Blocks 39

text, image, and unitext datatypes

name rowtotal reserved data index size unused

blurbs 6 32 KB 2 KB 14 KB 16 KB

Restrictions on text, image, and unitext columns
You cannot use text, image, Or unitext columns;
e Asparametersto stored procedures or as val ues passed to these parameters
* Aslocal variables
e Inorder by clause, compute clause, group by, and union clauses
* Inanindex
e Insubqueriesor joins
* Inawhere clause, except with the keyword like

e With the + concatenation operator

Selecting text, unitext, and image data

The following global variables return information on text, unitext, and image

data
Table 1-19: text , unitext, and image global variables
Variable Explanation
@ @textptr Thetext pointer of the last text, unitext, or image column inserted or updated by aprocess. Do not
confuse this global variable with the textptr function.
@ @textcolid ID of the column referenced by @ @textptr.
@ @textdbid ID of adatabase containing the object with the column referenced by @ @textptr.
@ @textobjid ID of the object containing the column referenced by @ @textptr.
@ @textsize Current value of the set textsize option, which specifies the maximum length, in bytes, of text,

unitext, or image data to be returned with a select statement. It defaults to 32K. The maximum
sizefor @@textsize is 231 - 1 (that is, 2,147,483,647).

@ @textts Text timestamp of the column referenced by @ @textptr.

40 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Converting text and image datatypes

You can explicitly convert text valuesto char, unichar, varchar, and univarchar,
and image values to binary or varbinary with the convert function, but you are
limited to the maximum length of the character and binary datatypes, whichis
determined by the maximum column sizefor your server’slogical pagesize. If
you do not specify the length, the converted value has a default length of 30
bytes. Implicit conversion is not supported.

Converting to or from unitext

You can implicitly convert any character or binary datatype to unitext, as well
as explicitly convert to and from unitext to other datatypes. The conversion
result, however, islimited to the maximum length of the destination datatype.
When a unitext value cannot fit the destination buffer on a Unicode character
boundary, dataistruncated. If you have enabled enable surrogate processing,
the unitext valueis never truncated in the middle of a surrogate pair of values,
which means that fewer bytes may be returned after the datatype conversion.
For example, if aunitext column ut in table tb stores the string
“U+0041U+0042U+00c2” (U+0041 representing the Unicode character “A”),
thisquery returnsthevalue“AB” if the server’scharacter setisUTF-8, because
U+00C2 is converted to 2-byte UTF-8 0xc382:

select convert (char(3), ut) from tb

Table 1-20: Converting to and from unitext

These datatypes convert These datatypes convert These datatypes convert
implicitly to unitext implicitly from unitext explicitly from unitext
char, varchar, unichar, univarchar, | text, image char, varchar, unichar, univarchar,

binary, varbinary, text, image binary, varbinary

Thealter table modify command does not support text, image, or unitext columns
to be the modified column. To migrate from atext to a unitext column:

e Usebcp out -Jutf8 out to copy text column data out
* Create atable with unitext columns

e Usehbcp in -Jutf8 to insert data into the new table

Reference Manual: Building Blocks 41

Datatypes and encrypted columns

Pattern matching in text data

Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in atext, unitext, varchar, univarchar, unichar,
or char column. The % wildcard character must precede and follow the pattern
(except when you are searching for the first or last character).

You can also use the like keyword to search for a particular pattern. The
following exampl e selects each text data value from the copy column of the
blurbs table that contains the pattern “ Net Etiquette.”

select copy from blurbs
where copy like "%Net Etiquette%"

Duplicate rows

The pointer to the text, image, and unitext data uniquely identifies each row.
Therefore, atable that contains text, image, and unitext data does not contain
duplicate rowsunlessthere arerowsin which al text, image, and unitext datais
NULL. If thisisthe case, the pointer has not been initialized.

Standards and compliance

ANSI SQL — Compliance level: The text, image, and unitext datatypes are
Transact-SQL extensions.

Datatypes and encrypted columns

Table 1-21 lists the supported datatypes for encrypted columns, as well asthe
on-disk length of encrypted columns for datatypes supported for Adaptive
Server version 15.0.2.

Table 1-21: Datatype length for encrypted columns

Max Actual Max Actual
encrypted encrypted encrypted encrypted
Encrypted | datalength | datalength | datalength | datalength

Input data | column (no (no init with (with
Datatype length type init_vector) | vector) init_vector | init_vector)
date 4 varbinary ’ 17 ’ 17 ’ 33 ’ 33

42 Adaptive Server Enterprise

CHAPTER 1 System and User-Defined Datatypes

Max Actual Max Actual
encrypted encrypted encrypted encrypted
Encrypted | datalength | datalength | datalength | datalength

Input data | column (no (no init with (with
Datatype length type init_vector) | vector) init_vector | init_vector)
time 4 varbinary 17 17 33 33
smalldatetime | 4 varbinary 17 17 33 33
datetime 8 varbinary 17 17 33 33
smallmoney 4 varbinary 17 17 33 33
money 8 varbinary 17 17 33 33
bit 8 varbinary 17 17 33 33
bigint 8 varbinary 17 17 33 33
unsigned bigint | 8 varbinary 17 17 33 33
unichar(10) 2 (L unichar | varbinary 33 17 49 33

character)
unichar(10) 20(10 varbinary 33 33 49 49

unichar

characters)
univarchar(20) | 20 (10 varbinary 49 33 65 49

unichar

characters)

User-defined datatypes

text, image, and unitext datatypes are not supported for this release of Adaptive
Server.

User-defined datatypes are built from the system datatypes and from the
sysname or longsysname user-defined datatypes. After you create a
user-defined datatype, you can use it to define columns, parameters, and
variables. Objectsthat are created from user-defined datatypesinherit therules,
defaults, null type, and IDENTITY property of the user-defined datatype, as
well as inheriting the defaults and null type of the system datatypes on which
the user-defined datatype is based.

A user-defined datatype must be created in each database in which it will be
used. Create frequently used types in the model database. These types are
automatically added to each new database (including tempdb, which isused for
temporary tables) asit is created.

Reference Manual: Building Blocks

43

User-defined datatypes

Adaptive Server alows you to create user-defined datatypes, based on any
system datatype, using sp_addtype. You cannot create a user-defined datatype
based on ancther user-defined datatype, such as timestamp or the tid datatype
in the pubs2 database.

The sysname and longsysname datatypes are exceptions to this rule. Though
sysname and longsysname are user-defined datatypes, you can use them to
build user-defined datatypes.

User-defined datatypes are database objects. Their names are case-sensitive
and must conform to the rules for identifiers.

You can bind rulesto user-defined datatypeswith sp_bindrule and bind defaults
with sp_bindefault.

By default, objects built on a user-defined datatype inherit the user-defined
datatype'snull type or IDENTITY property. You can override the null type or
IDENTITY property in acolumn definition.

Use sp_rename to rename a user-defined datatype.

Use sp_droptype to remove a user-defined datatype from a database.

Note You cannot drop a datatype that is aready inusein atable.

Use sp_help to display information about the properties of a system datatype
or a user-defined datatype. You can also use sp_help to display the datatype,
length, precision, and scale for each columnin atable.

Standards and compliance

ANSI SQL — Compliance level: User-defined datatypes are a Transact-SQL
extension.

44 Adaptive Server Enterprise

CHAPTER 2

Transact-SQL Functions

This chapter describes the Transact-SQL functions. Functions are used to
return information from the database. They are allowed in the select list,

in the where clause, and anywhere an expression is allowed. They are
often used as part of a stored procedure or program.

Topics Page
Types of functions 45
Aggregate functions 51
Statistical aggregate functions 58
Datatype conversion functions 60
Date functions 69
Mathematical functions 70
Security functions 71
String functions 72
System functions 73
Text and image functions 74
User-defined SQL functions 74

Types of functions
Table 2-1liststhedifferent types of Transact-SQL functionsand describes

the type of information each returns.

Table 2-1: Types of Transact-SQL functions

Type of function

Description

Aggregate functions

Generate summary valuesthat appear as new columns or as additional rowsinthe

query results.

Datatype conversion functions

Change expressions from one datatype to another and specify new display formats

for date and time information.

Date functions

Perform computations on datetime, smalldatetime, date, and time values and their

components, date parts.

Mathematical functions

Commonly needed for operations on mathematical data.

Reference Manual: Building Blocks

45

Types of functions

Type of function

Description

Security functions

Security-related information.

String functions

Operate on binary data, character strings, and expressions.

System functions

Retrieves special information from the database and database objects.

Text and image functions

Supply values commonly needed for operations on text, unitext, and image data.

Table 2-2 lists the functions in alphabetical order.

Table 2-2: List of Transact-SQL functions

Function

Type Return value

abs on page 76

Mathematical The absolute value of an expression.

acos on page 77

Mathematica The angle (in radians) with a specified cosine.

ascii on page 78

String The ASCII code for the first character in an expression.

asin on page 80

Mathematical The angle (in radians) with a specified sine.

atan on page 81

Mathematical The angle (in radians) with a specified tangent.

atn2 on page 82

Mathematica The angle (in radians) with specified sine and cosine.

audit_event_name on
page 85

Security A description of an audit event

avg on page 83

Aggregate The numeric average of all (distinct) values.

biginttohex on page 88

Datatype Returns the platform-independent hexadecimal equivalent of the
conversion specified integer.

case on page 91

Allows SQL expressions to be written for conditional values. case
expressions can be used anywhere a value expression can be used.

cast on page 94 Datatype A specified value, converted to another datatype

conversion
ceiling on page 97 Mathematica The smallest integer greater than or equal to the specified value.
char on page 99 String The character equivalent of an integer.
charindex on page 103 String Returns an integer representing the starting position of an expression.
char_length on page String The number of charactersin an expression.
101
col_length on page 106 System The defined length of acolumn.
col_name on page 107 System The name of the column with specified table and column IDs.
compare on page 108 System Returns the following values, based on the collation rules that you

chose:

e l-indicatesthat char_expressionl is greater than
char_expression2

» O-indicatesthat char_expressionl is equal to char_expression2
e -l1-indicatesthat char_expressionlislessthan char_expression2

convert on page 113

46

Datatype The specified value, converted to another datatype or a different
conversion datetime display format.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Function Type Return value

cos on page 119 Mathematical The cosine of the specified angle (in radians).

cot on page 120 Mathematical The cotangent of the specified angle (in radians).

count on page 121 Aggregate The number of (distinct) non-null values as an integer.

count_big on page 123 Aggregrate The number of (distinct) non-null values as a bigint.

current_date on page Date Returns the current date.

125

current_time on page Date Returns the current time.

126

curunreservedpgs on System The number of free pagesin the specified disk piece.

page 127

data_pages on page System The number of pages used by the specified table or index.

129

datalength on page 133 System The actual length, in bytes, of the specified column or string.

dateadd on page 134 Date Thedate produced by adding a given number of years, quarters, hours,
or other date parts to the specified date.

datediff on page 137 Date The difference between two date expressions.

datename on page 140 Date The name of the specified part of adate expression.

datepart on page 142 Date The integer value of the specified part of a date expression.

day on page 146 Date Returns an integer that represents the day in the datepart of a specified
date.

db_id on page 147 System The ID number of the specified database.

db_name on page 148 System The name of the database with a specified ID number.

degrees on page 149 Mathematical The size, in degrees, of an angle with a specified number of radians.

derived_stat on page System Returns derived statistics for the specified object and index.

150

difference on page 155 String The difference between two soundex values.

exp on page 156 Mathematical The value that results from raising the constant e to the specified
power.

floor on page 157 Mathematical The largest integer that isless than or equal to the specified value.

get_appcontext on Security Returns the value of the attribute in a specified context.

page 159

getdate on page 161 Date The current system date and time.

hextobigint on page Datatype The bigint value equivalent of a hexadecimal string

169 conversion

hextoint on page 170 Datatype The platform-independent integer equivalent of the specified

conversion hexadecimal string.
host_id on page 171 System Returns the client computer’s operating system process ID for the

Reference Manual: Building Blocks

current Adaptive Server client.

47

Types of functions

Function Type Return value
host_name on page System The current host computer name of the client process.
172
identity _burn_max on Theidentity_burn_max value.
page 173
index_col on page 174 System The name of the indexed column in the specified table or view.
index_colorderonpage System Returns the column order
175
inttohex on page 177 Datatype The platform-independent, hexadecimal equivalent of the specified
conversion integer.
isdate on page 178 Datatype Determines whether an input expression is avalid datetime
conversion value
isnumeric on page 179 Datatype Determines if an expression is avalid numeric datatype
conversion
is_quiesced on page System Indicateswhether adatabaseisin quiesce database mode. is_quiesced
180 returns 1 if the database is quiesced and O if it is not.
is_sec_service_on on Security 1if the security serviceisactive; 0if itis not.
page 182
isnull on page 183 System Substitutes the value specified in expression2 when expressionl
evaluatesto NULL.
Ict_admin on page 185 System Manages the last-chance threshold.
left on page 188 String Returns a specified number of characterson the left end of a character
string.
len on page 190 String Returns the number of characters, not the number of bytes, of a
specified string expression, excluding trailing blanks.
license_enabled on System 1" if the feature's license is enabled; O if it is not.
page 191
list_appcontext on Security Lists all the attributes of all the contexts in the current session.
page 192
lockscheme on page Mathematical Returns the locking scheme of the specified object as a string.
193
log on page 194 Mathematical The natural logarithm of the specified number.
log10 on page 195 Mathematica The base 10 logarithm of the specified number.
lower on page 196 String The lowercase equivalent of the specified expression.
ltrim on page 197 String The specified expression, trimmed of leading blanks
max on page 198 Aggregate The highest valuein a column.
min on page 200 Aggregate The lowest value in acolumn.
month on page 201 Date An integer that represents the month in the datepart of aspecified date
mut_excl_roles on Security The mutual exclusivity between two roles.

page 202

48

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Function Type Return value

newid on page 203 System Generates human-readable, globally unique IDs (GUIDSs) in two
different formats, based on arguments you provide.

next_identity on page System Retrieves the next identity value that is available for the next insert.

205

nullif on page 206 Allows SQL expressions to be written for conditional values. nullif
expressions can be used anywhere a value expression can be used;
aternative for acase expression.

object_id on page 208 System The object ID of the specified object.

object_name on page System The name of the object with the specified object ID.

209

pagesize on page 211 Mathematical Returnsthe page size, in bytes, for the specified object.

partition_id on page System Returns the partition ID of the specified data or index partition name.

213

partition_name onpage System The explicit name of anew partition, partition_name returnsthe

214 partition name of the specified data or index partition id.

partition_object_id on ~ System Displaysthe object ID for aspecified partition ID and database

page 215 ID.

patindex on page 217 String, Text, The starting position of the first occurrence of a specified pattern.

Unitext, and
Image

pi on page 220 Mathematical The constant value 3.1415926535897936.

power on page 221 Mathematical The value that results from raising the specified number to agiven
power.

proc_role on page 222 Security 1if the user hasthe correct role to execute the procedure; 0 if the user
does not have thisrole.

radians on page 224 Mathematical Thesize, in radians, of an angle with a specified number of degrees.

rand on page 225 Mathematical A random value between 0 and 1, generated using the specified seed
value.

replicate on page 227 String A string consisting of the specified expression repeated a given
number of times.

reserved_pages on System The number of pages allocated to the specified table or index.

page 231

reverse on page 235 String The specified string, with characters listed in reverse order.

right on page 236 String The part of the character expression, starting the specified number of
characters from the right.

rm_appcontextonpage Security Removes a specific application context, or all application contexts.

238

role_contain on page Security 1if role2 containsrolel.

239

role_id on page 240 Security The system role ID of the role with the name you specify.

Reference Manual: Building Blocks

49

Types of functions

Function Type Return value

role_name on page 241 Security The name of arole with the system role ID you specify.

round on page 242 Mathematica The value of the specified number, rounded to a given number of
decimal places.

row_count on page 244 System An estimate of the number of rows in the specified table.

rtrim on page 245 String The specified expression, trimmed of trailing blanks.

set_appcontext on Security Sets an application context name, attribute name, and attribute value

page 246 for a user session, defined by the attributes of a specified application.

show_role on page 248 Security Thelogin's currently active roles.

show_sec_services on Security A list of the user’s currently active security services.

page 249

sign on page 250 Mathematical The sign (+1 for positive, O, or -1 for negative) of the specified value.

sin on page 251 Mathematical The sine of the specified angle (in radians).

sortkey on page 252 System Values that can be used to order results based on collation behavior,

which allows you to work with character collation behaviors beyond
the default set of Latin-character-based dictionary sort ordersand case
or accent sensitivity.

soundex on page 257 String A 4-character code representing the way an expression sounds.

space on page 258 String A string consisting of the specified number of single-byte spaces.

square on page 259 Mathematica Returns the square of a specified value expressed as afloat.

sqgrt on page 260 Mathematical The sguare root of the specified number.

str on page 268 String The character equivalent of the specified number.

str_replace on page String Replaces any instances of the second string expression that occur

270 within the first string expression with a third expression.

stuff on page 274 String The string formed by deleting a specified number of characters from
one string and replacing them with another string.

substring on page 276 String The string formed by extracting a specified number of charactersfrom
another string.

sum on page 278 Aggregate Thetotal of the values.

suser_id System The server user’s ID number from the syslogins system table.

suser_name on page System The name of the current server user, or the user where the server user

281 ID is specified.

syb_quit on page 282 System Terminates the connection.

syb_sendmsg on page System Sends a message to a User Datagram Protocol (UDP) port.

283

tan on page 284 Mathematical The tangent of the specified angle (in radians).

tempdb_id on page 285 System The database ID of the temporary database assigned to the specified
spid

textptr on page 286 Text, Unitext, The pointer to the first page of the specified text column.

and Image

50 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Function Type Return value
textvalid on page 287 Text and 1if the pointer to the specified text column isvalid; 0 if it is not.
Image

to_unichar on page 288 String

A unichar expression having the value of the integer expression.

tran_dumpable_status System
on page 289

Returns atrue/falseindication of whether dump transaction is allowed.

tsequal on page 290 System

Compares timestamp values to prevent update on arow that has been
modified since it was selected for browsing.

uhighsurr on page 292 String

1if the Unicode value at position start is the high half of asurrogate
pair (which should appear first in the pair); otherwise 0.

ulowsurr on page 293 String

1if theUnicodevalueat position start isthelow half of asurrogate pair
(which should appear second in the pair); otherwise 0.

upper on page 294 String

The uppercase equivalent of the specified string.

uscalar on page 295 String

The Unicode scalar value for the first Unicode character in an
expression.

used_pages on page System
296

The number of pages used by the specified table and its clustered
index.

user on page 298 System The name of the current server user.

user_id on page 299 System The ID number of the specified user or the current user.

user_name on page System The name within the database of the specified user or the current user.
300

valid_name on page System 0if the specified string is not avalid identifier; a number other than O
301 if the string isvalid.

valid_user on page 302 System

1if the specified ID isavalid user or aiasin at least one database on
this Adaptive Server.

year on page 326 Date

An integer that represents the year in the datepart of a specified date.

Thefollowing sections describe the types of functionsin detail. The remainder
of the chapter contains descriptions of the individual functionsin al phabetical

order.

Aggregate functions

The aggregate functions generate summary values that appear as new columns
in the query results. The aggregate functions are:

e avg

° count

Reference Manual: Building Blocks

51

Aggregate functions

* count_big

e max
* min
e sum

Aggregate functions can be used in the select list or the having clause of aselect
statement or subquery. They cannot be used in awhere clause.

Each aggregatein aquery requiresits own worktable. Therefore, aquery using
aggregates cannot exceed the maximum number of worktables allowed in a
query (46).

When an aggregate function is applied to a char datatype value, it implicitly
converts the value to varchar, stripping al trailing blanks. Likewise, aunichar
datatype value isimplicitly converted to univarchar.

The max, min, and count aggregate functions have semantics that include the
unichar datatype.

Aggregates used with group by

Aggregates are often used with group by. With group by, the tableis divided
into groups. Aggregates produce a single value for each group. Without group
by, an aggregate function in the select list produces a single value as a result,
whether it is operating on al the rowsin atable or on a subset of rows defined
by awnhere clause.

Aggregate functions and NULL values

Aggregate functions cal cul ate the summary values of the non-null valuesin a
particular column. If the ansinull option is set off (the default), thereis no
warning when an aggregate function encounters anull. If ansinull is set on, a
query returns the following SQL STATE warning when an aggregate function
encounters anull:

Warning- null value eliminated in set function

52 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Vector and scalar aggregates

Aggregate functions can be applied to all therowsin atable, in which casethey
produce asingle value, ascalar aggregate. They can also be applied to all the
rows that have the same value in a specified column or expression (using the

group by and, optionally, thehaving clause), inwhich case, they produce avalue
for each group, avector aggregate. The results of the aggregate functions are

shown as new columns.,

You can nest avector aggregate inside a scalar aggregate. For example:

select type, avg(price), avg(avg(price))
from titles
group by type

type

UNDECIDED NULL 15.23
business 13.73 15.23
mod_cook 11.49 15.23
popular_ comp 21.48 15.23
psychology 13.50 15.23
trad_cook 15.96 15.23

(6 rows affected)

The group by clause applies to the vector aggregate—in this case, avg(price).
The scalar aggregate, avg(avg(price)), is the average of the average prices by
typein thetitles table.

In standard SQL, when a select_list includes an aggregate, all the select_list
columns must either have aggregate functions applied to them or be in the
group by list. Transact-SQL has no such restrictions.

Example 1 shows aselect statement with the standard restrictions. Example 2
shows the same statement with another item (title_id) added to the select list.
order by is also added to illustrate the differencein displays. These “ extra”
columns can also be referenced in a having clause.

Example 1 select type, avg(price), avg(advance)
from titles

group by type

type

UNDECIDED NULL NULL
business 13.73 6,281.25
mod_cook 11.49 7,500.00
popular_ comp 21.48 7,500.00

Reference Manual: Building Blocks 53

Aggregate functions

Example 2

Example 3

54

psychology
trad cook

(6 rows affe

13.50
15.96

cted)

4,
6,

255.00
333.33

You can use either a column name or any other expression (except a column
heading or alias) after group by.

Null values in the group by column are placed into a single group.

select type,
from titles

group by typ
order by typ

UNDECIDED
business
business
business
business
mod_cook
mod_cook
popular comp
popular comp
popular comp
psychology
psychology
psychology
psychology
psychology
trad cook
trad cook
trad_cook

title id,

e
e

MC3026
BU1032
BU1111
BU2075
BU7832
MC2222
MC3021
PC1035
pC8888
PC9999
PS1372
PS2091
PS2106
PS3333
PS7777
TC3218
TC4203
TC7777

avg (price), avg(advance)

15.

96

6,333.33

The compute clause in aselect statement uses row aggregates to produce
summary values. The row aggregates make it possible to retrieve detail and
summary rows with one command. Example 3 illustrates this feature:

select type,
from titles

where type =
order by typ

compute sum(price),

psychology

title id, price, advance

"psychology"

e

PS1372

sum (advance)

by type

21.

59

7,000.00

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

psychology PS2091 10.95 2,275.00

psychology PS2106 7.00 6,000.00

psychology PS3333 19.99 2,000.00

psychology PS7777 7.99 4,000.00
sum sum

67.52 21,275.00

Note the difference in display between Example 3 and the exampl es without
compute (Example 1 and Example 2).

You cannot use aggregate functions on virtual tables such as sysprocesses and
syslocks.

If you include an aggregate function in the select clause of a cursor, that cursor
cannot be updated.

Aggregate functions as row aggregates
Row aggregate functions generate summary values that appear as additional
rows in the query results.
To use the aggregate functions as row aggregates, use the following syntax:
Start of select statement

compute row_aggregate(column_name)
[, row_aggregate(column_name)]...
[by column_name [, column_name]...]

Where:
¢ column_name —isthe name of a column. It must be enclosed in

parentheses. Only exact numeric, approximate numeric, and money
columns can be used with sum and avg.

One compute clause can apply the same function to several columns.
When using more than one function, use more than one compute clause.

* by—indicatesthat row aggregate valuesareto be cal culated for subgroups.
Whenever the value of the by item changes, row aggregate values are
generated. If you use by, you must use order by.

Listing more than one item after by breaks a group into subgroups and
applies afunction at each level of grouping.

Reference Manual: Building Blocks 55

Aggregate functions

56

The row aggregates make it possible to retrieve detail and summary rowswith
one command. The aggregate functions, on the other hand, ordinarily produce
asingle valuefor all the selected rows in the table or for each group, and these
summary values are shown as new columns.

The following examples illustrate the differences:

select type,
from titles
where type like "%cook"

group by type

sum (price)

, sum(advance)

type

mod_cook 22.98 15,000.00
trad cook 47.89 19,000.00
(2 rows affected)

select type, price, advance

from titles
where type like "%cook"
order by type

compute sum(price), sum(advance) by type
type price advance
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00
sum sum
22.98 15,000.00
type price advance
trad cook 11.95 4,000.00
trad cook 14.99 8,000.00
trad cook 20.95 7,000.00
sum sum
47.89 19,000.00
(7 rows affected)
type price advance
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00

Compute Result:

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

22.98
type price
trad cook 11.95
trad cook 14.99
trad cook 20.95
Compute Result:

47.89

(7 rows affected)

19,000.00

The columns in the compute clause must appear in the select list.

The order of columnsin the select list overrides the order of the aggregatesin

the compute clause. For example;

create table tl
insert

insert
(1 row affected)

compute sum(c),

select a, b, ¢ from tl
a b
1 5
2 6

(a int,
tl values(1,5,8)
tl values(2,6,9)

max (b) ,

b int, ¢ int null)

min (a)

If the ansinull option is set off (the default), there is no warning when a row
aggregate encounters a null. If ansinull is set on, aquery returns the following
SQL STATE warning when arow aggregate encounters a null:

Warning - null value eliminated in set function

You cannot use select into in the same statement as a compute clause because
there is no way to store the compute clause output in the resulting table.

Reference Manual: Building Blocks

57

Statistical aggregate functions

Statistical aggregate functions

Aggregate functions summarize data over a group of rows from the database.
The groups are formed using the group by clause of the select statement.

Simple aggregate functions, such as sum, avg, max, min, count_big, and count
are alowed only in the select list and in the having and order by clauses aswell
asthe compute clause of aselect statement. These functions summarize data
over a group of rows from the database.

Adaptive Server Enterprise supports statistical aggregate functions, which
permit statistical analysis of numeric data. These functions include stddev,
stddev_samp, stddev_pop, variance, var_samp, and var_pop.

These functions, including stddev and variance, are true aggregate functionsin
that they can compute values for agroup of rows as determined by the query’s
group by clause. As with other basic aggregate functions such as max or min,
their computation ignores null valuesin the input. Also, regardless of the
domain of the expression being analyzed, all variance and standard deviation
computation uses |EEE double-precision floating-point standard.

If theinput to any variance or standard deviation function isthe empty set, then
each function returns asitsresult anull value. If the input to any variance or
standard deviation function isa single value, then each function returns 0 asits
result.

Standard deviation and variance

58

The statistical aggregate functions (and their aliases) are:

* stddev_pop (also stdevp) — standard deviation of a population. Computes
the population standard deviation of the provided value expression
evaluated for each row of the group (if distinct was specified, then each
row that remains after duplicates have been eliminated), defined as the
square root of the population variance. See stddev_pop on page 264 for
syntax and usage information.

* stddev_samp (also stdev, stddev) — standard deviation of a sample.
Computes the popul ation standard deviation of the provided value
expression evaluated for each row of the group (if distinct was specified,
then each row that remains after duplicates have been eliminated), defined
as the square root of the sample variance. See stddev_samp on page 266
for syntax and usage information.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

var_pop (also varp) — variance of a population. Computes the population
variance of value expression evaluated for each row of the group (if distinct
was specified, then each row that remains after duplicates have been
eliminated), defined as the sum of squares of the difference of value
expression from the mean of value expression, divided by the number of
rows in the group. See var_pop on page 304 for syntax and usage
information.

var_samp (alsovar, variance) —variance of asample. Computesthe sample
variance of value expression evaluated for each row of the group (if distinct
was specified, then each row that remains after duplicates have been
eliminated), defined as the sum of squares of the difference from the mean
of thevalue expression, divided by onelessthan the number of rowsinthe
group. See var_samp on page 306 for syntax and usage information.

Statistical aggregates
Statistical aggregates are similar to the avg aggregate in that:

The syntax is:
var_pop ([all | distinct] expression)
Only expressions with numerical datatypes are valid.
Null values do not participate in the calculation.
Theresult isNULL only if no data participates in the calculation.
The distinct or all clauses can precede the expression (the default is all).

You can use statistical aggregates as vector aggregates (with group by),
scalar aggregates (without group by), or in the compute clause.

Unlike the avg aggregate, however, the results are:

Always of float datatype (that is, a double-precision floating-point),
whereasfor the avg aggregate, the datatype of theresult isthe same asthat
of the expression (with exceptions).

0.0 for asingle data point.

Reference Manual: Building Blocks 59

Datatype conversion functions

Formulas Figure 2-1: The formula for population-related statistical aggregate
functions

The formulathat defines the variance of the population of size n
having mean 1 (var_pop) is asfollows. The population standard
deviation (stddev_pop) is the positive square root of this.

2 2= Variance
X —
02 - Z—(|~ n = Population size
n M = Mean of the values x;

Figure 2-2: The formula for sample-related statistical aggregate
functions

The formulathat defines an unbiased estimate of the population
variance from a sample of size n having mean x (var_samp) is as
follows. The sample standard deviation (stddev_samp) is the positive
square root of this.

2 s? = Variance
S2 _ § (Xi_x) n = Sample size
n-1 x = Mean of the values x;

Theessential difference betweenthetwo formulasisthedivision by n-1instead
of n.

These two functions are similar, but are used for different purposes:

e var_samp —is used when you want evaluate a sample—that is, a subset—
of apopulation as being representative of the entire population

e var_pop —isused when you have al of the dataavailable for a population,
or when n is so large that the difference between n and n-1 isinsignificant

Datatype conversion functions

Datatype conversion functions change expressions from one datatype to
another and specify new display formats for date and time information. The
datatype conversion functions are;

60 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

* cast

e convert
* inttohex
* hextoint

* hextobigint
* biginttohex
e str

You can use the datatype conversion functions in the select list, in the where
clause, and anywhere else an expression is allowed.

Adaptive Server performs certain datatype conversions automatically. These
are called implicit conversions. For example, if you compare achar
expression and a datetime expression, or a smallint expression and an int
expression, or char expressions of different lengths, Adaptive Server
automatically converts one datatype to another.

You must request other datatype conversions explicitly, using one of the
built-in datatype conversion functions. For example, before concatenating
numeric expressions, you must convert them to character expressions.

Adaptive Server does not allow you to convert certain datatypes to certain
other datatypes, either implicitly or explicitly. For example, you cannot convert
the following:

e smallint datato datetime

e datetime datato smallint

* binary or varbinary datato smalldatetime or datetime data
Unsupported conversions result in error messages.

Table 2-3 indicates whether individual datatype conversions are performed
implicitly, explicitly, or are not supported.

Reference Manual: Building Blocks 61

Datatype conversion functions

Table 2-3: Explicit, implicit, and unsupported datatype conversions

auwin

arep

leyoleaiun

leyoiun

Uulujuju

E|E|U| U

abew

U E|E|UlU

1Xalun

1X81

U/U U E|lE|U|U

U/U U E|lE|U|U
U/U U U E|UlU
U/U U E|lE|U|U

U/U U E|lE|U|U
U/U U E|IE|U|U
U/U U E|IE|U|U
U/U U E|lE|U|U

U/U U E|lE|U|U
U/U U E|lE|U|U
U/U U E|lE|U|U
U/U U E|lE|U|U
U/U U ElE|U|U
U/U U ElE|U|U

Aauouwjews

Asuow

[eal

jeoyj}

aollswnu

[ewiosp

1u1biq paubisun

wibig

jul paubisun

wi

1u1fews paubisun

ijjews

JulAun

EIE|E|E|E|E|E|E|E|E|E|E|E
EIE|E|E|E|E|E|E|E|E|E|E|E

uuv v uvuuvuuvuuuuuuluju
u v vy uvlujujuvjujujujyjujujuju

EIE|E|E|E|E|E|E|E/E|E|E|E
EIE|E|E|E|E|E|E|E|E|E|E|E

awinaep|ews

u v uvuvuvuuvjujyvjujujvjyujuju
uuvuvuvuvuuuvuvuvuuuvuuuu

awnelep

Jeyouenfu]

reyo[u]

E|E| Ul U
E|E| Ul U

E|E|U| U
E|E|U| U
E|E| Ul U

E|E| Ul U

E|E|U| U

1q

Areuigrena

Areuiq

UU U EE|lU U U U U U UU U U U U U U Uy -
EIE|/E|E|E|U/U/U U U U U U UU U UUuuuu
EIE|Uj U Ul U/U U U U U VU UUUuuvuuuuu

From

binary

varbinary

bit

[n]char

[n]varchar

datetime

smalldatetime

tinyint

smallint

unsigned
smallint

int

unsigned int

bigint

unsigned
bigint

decimal

numeric

float

real

money

smallmoney

text

unitext

image

unichar

univarchar

date

time

Adaptive Server Enterprise

62

CHAPTER 2 Transact-SQL Functions

Datatype conversion .
key

E — explicit datatype conversionis required.

| —conversion can be done either implicitly, or with an explicit datatype
conversion function.

I/E — Explicit datatype conversion function required when there is loss of
precision or scale, and arithabortnumeric_truncation is on; implicit
conversion alowed otherwise.

U — unsupported conversion.

—conversion of adatatype to itself. These conversions are allowed, but
are meaningless.

Converting character data to a noncharacter type

You can convert character data to a noncharacter type—such as a money,
date/time, exact numeric, or approximate numeric type—if it consists entirely
of charactersthat are valid for the new type. Leading blanks are ignored.
However, if achar expression that consists of ablank or blanksis converted to
adatetime expression, Adaptive Server converts the blanks into the default
datetime value of “Jan 1, 1900.”

Syntax errors are generated when the data includes unacceptabl e characters.
Following are some examples of characters that cause syntax errors:

Commas or decimal pointsin integer data
Commas in monetary data
Lettersin exact or approximate numeric data or bit stream data

Misspelled month namesin date and time data

Implicit conversions between unichar/univarchar and datetime/smalldatetime
are supported.

Converting from one character type to another

When converting from a multibyte character set to a single-byte character set,
characters with no single-byte equivalent are converted to question marks.

Reference Manual: Building Blocks 63

Datatype conversion functions

text and unitext columns can be explicitly converted to char, nchar, varchar,
unichar, univarchar, or nvarchar. You are limited to the maximum length of the
character datatypes, which isdetermined by the maximum column sizefor your
server’slogical page size. If you do not specify the length, the converted value
has a default length of 30 bytes.

Converting numbers to a character type

Rounding during

64

Exact and approximate numeric data can be converted to a character type. If
the new typeistoo short to accommodate the entire string, an insufficient space
error is generated. For example, the following conversion triesto storea
5-character string in a 1-character type:

select convert (char(l), 12.34)
Insufficient result space for explicit conversion
of NUMERIC value '12.34’ to a CHAR field.

When converting float data to a character type, the new type should be at least
25 characterslong.

Note The str function may be preferable to convert or cast when making
conversions, because it provides more control over conversions and avoids
errors.

conversion to and from money types

Themoney and smallmoney types store 4 digitsto theright of the decimal point,
but round up to the nearest hundredth (.01) for display purposes. When datais
converted to amoney type, it isrounded up to four places.

Data converted from a money type follows the same rounding behavior if
possible. If the new typeis an exact numeric with less than three decimal
places, the data is rounded to the scale of the new type. For example, when
$4.50 is converted to an integer, it yields 5:

select convert (int, $4.50)

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Data converted to money or smallmoney isassumed to bein full currency units
such as dallars rather than in fractional units such as cents. For example, the
integer value of 5isconverted to the money equivalent of 5 dollars, not 5 cents,
in the us_english language.

Converting date and time information

Datathat isrecognizable as a date can be converted to datetime, smalldatetime,
date, or time. Incorrect month names lead to syntax errors. Dates that fall
outside the acceptabl e range for the datatype | ead to arithmetic overflow errors.

When datetime values are converted to smalldatetime, they are rounded to the
nearest minute.

When converting date datato a character type, use style numbers 1 through 7

(101 through 107) or 10through 12 (110 through 112) in Table 2-6 on page 114
to specify the display format. The default valueis 100 (mon dd yyyy hh:miAM
(or PM)). If date data is converted to a style that contains a time portion, that
time portion reflects the default value of zero.

When converting time datato a character type, use style number 8 or 9 (108 or
109) to specify the display format. The default is 100 (mon dd yyyy hh:miAM
(or PM)). If time datais converted to a style that contains a date portion, the
default date of Jan 1, 1900 is displayed.

Converting between numeric types

You can convert data from one numeric type to another. Errors can occur if the
new type is an exact numeric with precision or scale that is not sufficient to
hold the data.

For example, if you provide a float or numeric value as an argument to a
built-in function that expects an integer, the value of the float or numericis
truncated. However, Adaptive Server does not implicitly convert numericsthat
have afractional part but returns a scale error message. For example, Adaptive
Server returns error 241 for numerics that have afractional part and error 257
if other datatypes are passed.

Use the arithabort and arithignore options to determine how Adaptive Server
handles errors resulting from numeric conversions.

Reference Manual: Building Blocks 65

Datatype conversion functions

Arithmetic overflow and divide-by-zero errors

Scale errors

66

Divide-by-zero errors occur when Adaptive Server triesto divide anumeric
value by zero. Arithmetic overflow errors occur when the new type hastoo few
decimal places to accommodate the results. This happens during:

e Explicit or implicit conversions to exact types with alower precision or
scale

» Explicit or implicit conversions of datathat falls outside the acceptable
range for amoney or date/time type

» Conversionsof hexadecimal stringsrequiring morethan 4 bytesof storage
using hextoint

Both arithmetic overflow and divide-by-zero errors are considered serious,
whether they occur during animplicit or explicit conversion. Use the arithabort
arith_overflow option to determine how Adaptive Server handles these errors.
The default setting, arithabort arith_overflow on, rollsback the entire transaction
inwhich the error occurs. If the error occursin abatch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier commandsin
the batch, and Adaptive Server does not execute statements that follow the
error-generating statement in the batch. If you set arithabort arith_overflow off,
Adaptive Server aborts the statement that causes the error, but continues to
process other statements in the transaction or batch.You can use the @ @error
global variable to check statement results.

Usethearithignore arith_overflow option to determine whether Adaptive Server
displays a message after these errors. The default setting, off, displays a
warning message when a divide-by-zero error or aloss of precision occurs.
Setting arithignore arith_overflow on suppresses warning messages after these
errors. You can omit optional arith_overflow keyword without any effect.

When an explicit conversion resultsin aloss of scale, the results are truncated
without warning. For example, when you explicitly convert afloat, numeric, or
decimal typeto an integer, Adaptive Server assumes you want the result to be
an integer and truncates all numbers to the right of the decimal point.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Duringimplicit conversionsto numeric or decimal types, |oss of scale generates
ascale error. Use the arithabort numeric_truncation option to determine how
serious such an error is considered. The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error, but continues
to process other statements in the transaction or batch. If you set arithabort
numeric_truncation off, Adaptive Server truncates the query results and
continues processing.

Note For entry level ANSI SQL compliance, set:
e arithabort arith_overflow off
* arithabort numeric_truncation on

* arithignore off

Domain errors

The convert function generates a domain error when the function’s argument
falls outside the range over which the function is defined. This happensrarely.

Conversions between binary and integer types

Thebinary and varbinary types store hexadecimal-like data consisting of a*“0x”
prefix followed by astring of digits and letters.

These strings are interpreted differently by different platforms. For example,
the string “0x0000100" represents 65536 on machines that consider byte 0
most significant (little-endian) and 256 on machines that consider byte O |east
significant (big-endian).

Binary types can be converted to integer types either explicitly, using the
convert function, or implicitly. If the dataistoo short for the new type, itis
stripped of its “0x” prefix and zero-padded. If it istoo long, it is truncated.

Both convert and the implicit datatype conversions evaluate binary data
differently on different platforms. Because of this, results may vary from one
platform to another. Use the hextoint function for platform-independent
conversion of hexadecimal strings to integers, and the inttohex function for
platform-independent conversion of integers to hexadecimal values. Use the
hextobigint function for platform-independent conversion of hexadecimal
stringsto 64-hit integers, and the biginttohex function for platform-independent
conversion of 64-hit integers to hexadecimal values.

Reference Manual: Building Blocks 67

Datatype conversion functions

Converting between binary and numeric or decimal types

In binary and varbinary data strings, the first two digits after “0x” represent the
binary type: “00” represents a positive number and “01" represents a negative
number. When you convert abinary or varbinary type to numeric or decimal, be
sure to specify the“00” or “01” values after the “0x” digit; otherwise, the
conversion will fail.

For example, hereis how to convert the following binary data to numeric:

select convert (numeric
(38, 18),0x000000000000000006b14bdle6eeal000000000000000000000000000000)

123.456000
This example converts the same numeric data back to binary:

select convert (binary, convert (numeric (38, 18), 123.456))

0x000000000000000006b14bd1le6eeca0000000000000000000000000000000

Converting image columns to binary types

You can use the convert function to convert an image column to binary or
varbinary. You are limited to the maximum length of the binary datatypes,
which is determined by the maximum column size for your server’s logical
page size. If you do not specify the length, the converted value has a default
length of 30 characters.

Converting other types to bit

Exact and approximate numeric types can be converted to the bit type
implicitly. Character types require an explicit convert function.

The expression being converted must consist only of digits, adecimal point, a
currency symbol, and a plus or minus sign. The presence of other characters
generates syntax errors.

The bit equivalent of 0is0. The bit equivalent of any other number is 1.

68 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Converting NULL value

You can use the convert function to change NULL to NOT NULL and NOT
NULL to NULL.

Date functions

Date parts

The date functions manipul ate val ues of the datatypes datetime, smalldatetime,
date or time.

You can use date functions in the select list or where clause of a query.

Use the datetime datatype only for dates after January 1, 1753. datetime values
must be enclosed in single or double quotes. Use date for dates from January,
1 0001 to January 1, 9999. date values must be enclosed in single or double
quotes. Use char, nchar, varchar, or nvarchar for earlier dates. Adaptive Server
recognizes awide variety of date formats. See “ Datatype conversion
functions’ on page 60 and “ Date and time datatypes’ on page 20 for more
information.

Adaptive Server automatically converts between character and datetime values
when necessary (for example, when you compare a character value to a
datetime value).

The date datatype can cover dates from January 1, 0001 to January 1, 9999.

The date parts, the abbreviations recognized by Adaptive Server, and the
acceptable values are:

Date part Abbreviation Values

year yy 1753 — 9999 (2079 for smalldatetime)
quarter qq 1-4

month mm 1-12

week wk 1-54

day dd 1-31

dayofyear dy 1-366

weekday dw 1-7(Sun. —Sat.)

hour hh 0-23

Reference Manual: Building Blocks 69

Mathematical functions

Date part Abbreviation Values
minute mi 0-59
second ss 0-59
millisecond ms 0-999

When you enter ayear as two digits (yy):

* Numberslessthan 50 areinterpreted as 20yy. For example, 01 is2001, 32
i$2032, and 49 is2049.

* Numbersequal to or greater than 50 are interpreted as 19yy. For example,
50151950, 74 is1974, and 99 is 1999.

Milliseconds can be preceded either with a colon or a period. If preceded by a
colon, the number means thousandths of a second. If preceded by a period, a
single digit means tenths of a second, two digits mean hundredths of a second,
and three digits mean thousandths of a second. For example, “12:30:20:1"
means twenty and one-thousandth of a second past 12:30; “12:30:20.1" means
twenty and one-tenth of a second past 12:30. Adaptive Server may round or
truncate millisecond values when inserting datetime or time data, as these
datatypes have a granularity of 1/300th of a second rather than 1/1000th of a
second. You can use the time datatype for time information.

Mathematical functions

70

Mathematical functions return values commonly needed for operations on
mathematical data. Mathematical function names are not keywords.

Each function also accepts arguments that can be implicitly converted to the
specified type. For example, functions that accept approximate numeric types
also accept integer types. Adaptive Server automatically convertsthe argument
to the desired type.

The mathematical functions are:

e abs e COS ¢ log e rand
e acos e cot ¢ logl0 e round
e asin e degrees e pagesize e sign
e atan e exp e pi e sin

e atn2 * floor * power e sqrt
¢ ceiling ¢ lockscheme e radians e tan

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Error traps are provided to handle domain or range errors of these functions.
Users can set the arithabort and arithignore options to determine how domain
errors are handled:

arithabort arith_overflow specifies behavior following a divide-by-zero
error or aloss of precision. The default setting, arithabort arith_overflow on,
rolls back the entire transaction or aborts the batch in which the error
occurs. If you set arithabort arith_overflow off, Adaptive Server aborts the
statement that causes the error, but continues to process other statements
in the transaction or batch.

arithabort numeric_truncation specifies behavior following aloss of scale
by an exact numeric type during an implicit datatype conversion. (When
an explicit conversion resultsin aloss of scale, the results are truncated
without warning.) The default setting, arithabort numeric_truncation on,
aborts the statement that causes the error, but continues to process other
statements in the transaction or batch. If you set arithabort
numeric_truncation off, Adaptive Server truncates the query results and
continues processing.

By default, the arithignore arith_overflow option is turned off, causing
Adaptive Server to display awarning message after any query that results
in numeric overflow. Set the arithignore option on to ignore overflow
errors.

Security functions

Security functions return security-related information.

The security functions are:

is_sec_service_on ¢ show_role
show_sec_services e proc_role
get_appcontext ¢ role_contain
list_appcontext e role_id
set_appcontext ¢ role_name

rm_appcontext

Reference Manual: Building Blocks 71

String functions

String functions

String function operate on binary data, character strings, and expressions. The
string functions are:

e ascii e ltrim e soundex e to_unichar
e char e patindex * space e uhighsurr
¢ charindex e replicate e str e ulowsurr
e char_length e reverse e str_replace e upper

e difference e right o stuff e uscalar

¢ lower e rtrim e substring

You can nest string functions and usethemin aselect list, in awhere clause, or
anywhere an expression is allowed. When you use constants with a string
function, enclose them in single or double quotes. String function names are
not keywords.

Each string function also accepts argumentsthat can be implicitly converted to
the specified type. For example, functions that accept approximate numeric
expressions also accept integer expressions. Adaptive Server automatically
converts the argument to the desired type.

When a string function accepts two character expressions but only one
expression is unichar, the other expression is* promoted” and internally
converted to unichar. Thisfollows existing rules for mixed-mode expressions.
However, this conversion may cause truncation, since unichar data sometimes
takes twice the space.

Limits on string functions

Results of string functions are limited to 16K. Thislimit isindependent of the
server’s page size. In Transact-SQL string functions and string variables,
literals can be as large as 16K even on a 2K page size.

If set string_rtruncation iS on, auser receives an error if an insert or update
truncates acharacter string. However, Adaptive Server does not report an error
if adisplayed string is truncated. For example:

select replicate("a", 16383) + replicate("B", 4000)

This shows that the total length would be 20383, but the result string is
restricted to 16K.

72 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

System functions
System functions return special information from the database. The system

functions are:

¢ col_length ¢ host_id * reserved_pages « tsequal

e col_name ¢ host_name e row_count ¢ used_pages
e curunreservedpgs < index_col ¢ show_role e user

* data_pages e is_quiesced e suser_id e user_id

* datalength e isnull e suser_name e user_name
e« db_id ¢ object_id e tempdb_id ¢ valid_name
¢ db_name ¢ object_name ¢ tran_dumpable_status <« valid_user

The system functions can be used in aselect list, in awhere clause, and
anywhere an expression is allowed.

When the argument to a system function is optional, the current database, host
computer, server user, or database user is assumed.

Text, unitext, and image columns

text, unitext, and image columns cannot be used:

As parameters to stored procedures

As values passed to stored procedures

Aslocal variables

In order by, compute, and group by clauses

In an index

In awhere clause clause, except with the keyword like

Injoins

In triggers, both the inserted and deleted text val ues reference the new value;
you cannot reference the old value.

Reference Manual: Building Blocks 73

Text and image functions

Text and image functions

Text and image functions operate on text, image, and unitext data. The text and
image functions are:

* textptr
U textvalid

Text and image built-in function names are not keywords. Use the set textsize
option to limit the amount of text, image, and unitext data that isretrieved by a
select statement.

You can use the patindex text function on text, image, and unitext columns and
can consider it on atext and image function.

You can use the datalength function to display the length of datain text, image,
and unitext columns.

User-defined SQL functions

74

You can include these in a scalar function:

* declare statementsto define data variables and cursorsthat are local to the
function.

» Assigned valuesto objectslocal to the function (for example, assigning
valuesto scalar and variableslocal to atablewith select or set commands).

» Cursor operations that reference local cursors that are declared, opened,
closed, and deallocated in the function.

» Control-of-flow statements.
» setoptions (only valid in the scope of the function).

Adaptive Server does not allow fetch statementsin ascalar function that return
data to the client. You cannot include:

» select or fetch statements that returns data to the client.

* insert, update, Or delete statements.

» Utility commands, such as dbcc, dump and load commands.
e print statements

» Statement that referencesrand, rand2, getdate, or newid.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

You can include select or fetch statements that assign values only to local
variable.

Reference Manual: Building Blocks 75

abs

abs

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

76

Returns the absolute value of an expression.

abs(numeric_expression)

numeric_expression
isacolumn, variable, or expression with datatype that is an exact numeric,
approximate numeric, money, or any type that can be implicitly converted
to one of these types.

Returns the absolute value of -1:

select abs(-1)

abs, amathematical function, returns the absolute val ue of agiven expression.
Results are of the same type and have the same precision and scale as the
numeric expression.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute abs.

“Mathematical functions” on page 70 for general information about
mathematical functions.

Functions ceiling, floor, round, sign

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

acos

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the angle (in radians) with a specified cosine.

acos(cosine)

cosine
isthe cosine of the angle, expressed as a column name, variable, or constant
of typefloat, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Returns the angle where the cosine is 0.52:

select acos(0.52)

1.023945

acos, amathematical function, returns the angle (in radians) where the cosine
isthe specified value.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute acos.

“Mathematical functions’” on page 70 for general information about
mathematical functions.

Functions cos, degrees, radians

Reference Manual: Building Blocks 77

ascii

ascii
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

78

Returns the ASCII code for the first character in an expression.
ascii(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

select au_ lname, ascii(au lname) from authors
where ascii(au lname) < 70

au_lname

Bennet 66
Blotchet-Halls 66
Carson 67
DeFrance 68
Dull 68

Returns the author’s|ast names and the ACSI| codesfor thefirst lettersin their
last names, if the ASCII codeis less than 70.

» ascii, astring function, returnsthe ASCII codefor thefirst character inthe
expression.

» When astring function accepts two character expressions but only one
expression is unichar, the other expression is*promoted” and internally
converted to unichar. This follows existing rules for mixed-mode
expressions. However, this conversion may causetruncation, sinceunichar
data sometimes takes twice the space.

e If char_expr or uchar_exprisNULL, returns NULL.
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute ascii.

For general information about string functions, see“ String functions” on page
72.

Functions char, to_unichar

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

asehostname
Description Returnsthe physical or virtual host on which Adaptive Server is running.
Syntax asehostname
Parameters

None.
Examples select asehostname ()

linuxkernel.sybase.com

Standards SQL/92 and SQL/99 compliant
Permissions Only users with the sa_role can execute asehostname.

Reference Manual: Building Blocks 79

asin

asin
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

80

Returns the angle (in radians) with a specified sine.
asin(sine)
sine
isthesine of the angle, expressed as acolumn name, variable, or constant of

type float, real, double precision, or any datatype that can beimplicitly
converted to one of these types.

select asin(0.52)

0.546851

» asin, amathematical function, returnsthe angle (in radians) with a sine of
the specified value.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute asin.

“Mathematical functions’ on page 70 for general information about
mathematical functions.

Functions degrees, radians, sin

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

atan

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the angle (in radians) with a specified tangent.
atan(tangent)

tangent
isthetangent of theangle, expressed asacolumn name, variable, or constant
of typefloat, real, double precision, or any datatype that can be implicitly
converted to one of these types.

select atan(0.50)

0.463648

* atan, amathematical function, returns the angle (in radians) of a tangent
with the specified value.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute atan.

“Mathematical functions” on page 70 for general information about
mathematical functions.

Functions atn2, degrees, radians, tan

Reference Manual: Building Blocks 81

atn2

atn2

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

82

Returns the angle (in radians) with specified sine and cosine.
atn2(sine, cosine)
sine
isthesine of the angle, expressed as acolumn name, variable, or constant of

type float, real, double precision, or any datatype that can beimplicitly
converted to one of these types.

cosine
isthe cosine of the angle, expressed as a column name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

select atn2 (.50, .48)

0.805803

» atn2, amathematical function, returns the angle (in radians) whose sine
and cosine are specified.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute atn2.

“Mathematical functions’” on page 70 for general information about
mathematical functions.

Functions atan, degrees, radians, tan

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

avg
Description

Syntax

Parameters

Examples

Returns the numeric average of all (distinct) values.

avg([all | distinct] expression)

all

applies avg to al values. all is the default.
distinct

eliminates duplicate values before avg is applied. distinct is optional.
expression

is acolumn name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “ Expressions’ on page 335.

Example 1 Calculates the average advance and the sum of total salesfor all
business books. Each of these aggregate functions produces a single summary
valuefor al of the retrieved rows:

select avg(advance), sum(total sales)
from titles
where type = "business"

6,281.25 30788

Example 2 Used with agroup by clause, the aggregate functions produce
single values for each group, rather than for the entire table. This statement
produces summary values for each type of book:

select type, avg(advance), sum(total sales)
from titles
group by type

type

UNDECIDED NULL NULL
business 6,281.25 30788
mod_cook 7,500.00 24278
popular comp 7,500.00 12875
psychology 4,255.00 9939
trad cook 6,333.33 19566

Example 3 Groupsthetitles table by publishersand includesonly those groups
of publishers who have paid more than $25,000 in total advances and whose
books average more than $15 in price:

Reference Manual: Building Blocks 83

avg

Usage

Standards
Permissions

See also

84

select pub id, sum(advance), avg(price)

from titles

group by pub_id

having sum(advance) > $25000 and avg(price) > $15

pub id
0877 41,000.00 15.41
1389 30,000.00 18.98

* avg, anaggregatefunction, findsthe average of thevaluesinacolumn. avg
can only be used on numeric (integer, floating point, or money) datatypes.
Null values are ignored in calculating averages.

* Whenyou average (signed or unsigned) int, smallint, tinyint data, Adaptive
Server returns the result as an int value. When you average (signed or
unsigned) bigint data, Adaptive Server returns the result as a bigint value.
To avoid overflow errorsin DB-Library programs, declare variables used
for resultrs appropriately.

* You cannot use avg with the binary datatypes.

» Sincethe average value is only defined on numeric datatypes, using avg
Unicode expressions generates an error.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute avg.

For general information about aggregate functions, see“ Aggregate functions’
on page 51.

Functions max, min

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

audit_event_name

Description Returns a description of an audit event.
Syntax audit_event_name(event_id)
Parameters event_id
is the number of an audit event.
Examples Example 1 Queriesthe audit trail for table creation events:
select * from audit data where audit event name(event) = "Create Table"

Example 2 Obtains current audit event values. See the Usage section below
for acompletelist of audit values and their descriptions.

create table #tmp(event id int, description varchar (255))

go

declare @a int

select @a=1

while (@a<120)

begin

insert #tmp values (@a, audit_event_name (@a))
select @a=@a + 1

end

select * from #tmp

go
event id description
1 Ad hoc Audit Record
2 Alter Database
104 Create Index
105 Drop Index
Usage The following lists the ID and name of each of the audit events:

Reference Manual: Building Blocks 85

audit_event_name

P OoO~NO O~ WNEPR

0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Ad Hoc Audit record
Alter Database
Alter table
BCPIn

NULL

Bind Default
Bind Message
Bind Rule
Create Database
Create Table
Create Procedure
Create Trigger
Create Rule
Create Default
Create Message
Create View
Access To Database
Delete Table
Delete View
Disk Init

Disk Refit

Disk Reinit

Disk Mirror

Disk Unmirror
Disk Remirror
Drop Database
Drop Table

Drop Procedure
Drop Trigger
Drop Rule

Drop Default
Drop Message
Drop View
Dump Database
Dump Transaction
Fatal Error
Nonfatal Error

Standards

Permissions

See also

86

38 Execution Of Stored
Procedure

39 Execution Of Trigger
40 Grant Command
41 Insert Table

42 Insert View

43 Load Database
44 Load Transaction
45 Logln

46 Log Out

47 Revoke Command
48 RPC In

49 RPC Out

50 Server Boot

51 Server Shutdown
52 NULL

53 NULL

54 NULL

55 Role Toggling

56 NULL

57 NULL

58 NULL

59 NULL

60 NULL

61 Access To Audit Table
62 Select Table

63 Select View

64 Truncate Table

65 NULL

66 NULL

67 Unbind Default
68 Unbind Rule

69 Unbind Message
70 Update Table

71 Update View

72 NULL

73 Auditing Enabled

74 Auditing Disabled

75 NULL

76 SSO Changed Password
79 NULL

80 Role Check Performed
81 DBCC Command

82 Config

83 Online Database

84 Setuser Command

85 User-defined Function
Command

86 Built-in Function

87 Disk Release

88 Set SSA Command

90 Connect Command

91 Reference

92 Command Text

93 JCS Install Command
94 JCS Remove Command
95 Unlock Admin Account
96 Quiesce Database Command
97 Create SQLJ Function
98 Drop SQLJ Function
99 SSL Administration
100 Disk Resize

101 Mount Database

102 Unmount Database
103 Login Command

104 Create Index

105 Drop Index

106 NULL

107 NULL

108 NULL

109 NULL

110 Deploy UDWS

111 Undeploy UDWS

115 Password Administration

Note Adaptive Server does not log eventsif audit_event_name returns NULL.

ANSI SQL —compliance level: Transact-SQL extension.
Any user can execute audit_event_name.

Commands select, sp_audit

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

authmech

Description

Syntax

Examples

Usage

Permissions

Determines what authentication mechanism is used by a specified logged in
server process | D.

authmech ([spid])

Example 1 Returns the authentication mechanism for server process ID 42,
whether KERBEROS, LDAP, or any other mechanism:

select authmech (42)

Example 2 Returns the authentication mechanism for the current login's
server process ID:

select authmech ()
or
select authmech(0)
Example 3 Prints the authentication mechanism used for each login session:

select suid, authmech (spid)
from sysprocesses where suid!=0

e Thisfunction returns output of type varchar from one optional argument.

e |If thevalue of the server process ID is O, the function returns the
authentication method used by the server process ID of the current client
session.

e If noargument is specified, the output is the same as if the value of the
server process ID isO.

¢ Possiblereturn valuesinclude 1dap, ase, pam, and NULL.

Any user can execute authmech to query a current personal session. You must
have sso_role privilegesto query the details of another user’s session.

Reference Manual: Building Blocks 87

biginttohex

biginttohex

Description

Syntax

Parameters

Examples

Usage

See also

88

Returns the platform-independent 8 byte hexadecimal equivalent of the
specified integer expression.

biginttohex (integer_expression)
integer_expression
isthe integer value to be converted to a hexadecimal string.

This example converts the big integer -9223372036854775808 to a
hexadecimal string.

1> select biginttohex(-9223372036854775808)
2> go

8000000000000000

* biginttohex, a datatype conversion function, returnsthe
platform-independent hexadecimal equivalent of an integer, without a
“Ox” prefix.

» Usethe biginttohex function for platform-independent conversions of
integers to hexadecimal strings. biginttohex accepts any expression that
evaluatesto abigint. It alwaysreturnsthe same hexadecimal equivalent for
agiven expression, regardless of the platform on which it is executed.

Functions convert, hextobigint, hextoint, inttohex

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

bintostr

Description

Syntax

Parameters

Examples

Usage

Standards

Converts a sequence of hexadecimal digits to a string of its equivalent
aphanumeric characters or varbinary data.

select bintostr(sequence of hexadecimal digits)

sequence of hexadecimal digits
isthe sequence of valid hexadecimal digits, consisting of [0 — 9], [a—f] and
[A —F], and which is prefixed with “0x”.

Example 1 Converts the hexadecimal sequence of “0x723ad82fe” to an
aphanumeric string of the same value:

1> select bintostr (0x723ad82fe)
2> go

0723ad82fe

In this example, thein-memory representation of the sequence of hexadecimal
digits and its equivalent alphanumeric character string are:

Hexadecimal digits (5 bytes)

[0]7]2]3]afd[8[2]f [e]

Alphanumeric character string (9 bytes)

[0 [7 [2 [38 [a [d [8 [2 [f [Je |

The function processes hexadecimal digits from right to left. In this example,
the number of digitsin theinput is odd. For this reason, the alphanumeric
character sequence has a prefix of “0” and is reflected in the output.

Example 2 Convertsthe hexadecimal digits of alocal variable called
@hbin_data to an aphanumeric string equivalent to the value of “ 723ad82fe”:

declare @bin data varchar (30)
select @bin_data = 0x723ad82fe
select bintostr(@bin data)

0723ad82fe
e Anyinvalid charactersin the input results in null as the outpuit.
e Theinput must be valid varbinary data.
e A NULL input resultsin NULL output.
ANSI SQL — Compliance level: Transact-SQL extension.

Reference Manual: Building Blocks 89

bintostr

Permissions Any user can execute bintostr.

See also Functions strtobin

90 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

case

Description

Syntax

Parameters

Examples

Supports conditional SQL expressions; can be used anywhere avalue
expression can be used.

case
when search_condition then expression
[when search_condition then expression]...
[else expression]

end

case and values syntax:

case expression
when expression then expression
[when expression then expression]...
[else expression]

end

case
begins the case expression.

when
precedes the search condition or the expression to be compared.

search_condition
is used to set conditions for the results that are selected. Search conditions
for case expressions are similar to the search conditions in awhere clause.
Search conditions are detailed in the Transact-SQL User’s Guide.

then
precedes the expression that specifies aresult value of case.

expression
isacolumn name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “ Expressions’ on
page 335.

Example 1 Selects all the authors from the authors table and, for certain
authors, specifies the city in which they live:

select au lname, postalcode,

case
when postalcode = "94705"

then "Berkeley Author"

when postalcode = "94609"

then "Oakland Author"

when postalcode = "94612"

then "Oakland Author"

Reference Manual: Building Blocks 91

case

when postalcode = "97330"
then "Corvallis Author"
end
from authors

Example 2 Returnsthefirst occurrence of anon-NULL valuein either the
lowgty or highgty column of the discounts table:

select stor_id, discount,
coalesce (lowgty, highgty)
from discounts

Yuo can also use the following format to produce the same result, since
coalesce is an abbreviated form of a case expression:

select stor_ id, discount,
case
when lowgty is not NULL then lowqgty
else highgty
end
from discounts

Example 3 Selects thetitles and type from the titles table. If the book typeis
UNDECIDED, nulliif returnsa NULL value:

select title,
nullif (type, "UNDECIDED")
from titles

You can a so use the following format to produce the sameresult, since nullifis
an abbreviated form of acase expression:

select title,
case
when type = "UNDECIDED" then NULL
else type
end
from titles

Example 4 Produces an error message, because at least one expression must
be something other than the null keyword:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

Example 5 Produces an error message, because at |east two expressions must
follow coalesce:

select stor id, discount, coalesce (highgty) from discounts

92 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

A single coalesce element is illegal in a COALESCE expression.

Usage e case expression simplifies standard SQL expressions by allowing you to
express a search condition using awhen...then construct instead of an if
statement.

e case expressions can be used anywhere an expression can be used in SQL.

e If your query produces a variety of datatypes, the datatype of acase
expression result is determined by datatype hierarchy, as described in
“Datatypes of mixed-mode expressions” on page 7 in. If you specify two
datatypes that Adaptive Server cannot implicitly convert (for example,
char and int), the query fails.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions case permission defaults to all users. No permission isrequired to use it.
See also Commands coalesce, nullif, if...else, select, where clause

Reference Manual: Building Blocks 93

cast

cast

Description

Syntax

Parameters

Examples

94

Returns the specified value, converted to another datatype. cast can change the
nullability of the source expression, and uses the default format for date and
time datatypes.

cast (expression as datatype [(length | precision[, scale])])

expression
is the value to be converted from one datatype or date format to another. It
includes columns, constants, functions, any combination of constants, and
functionsthat are connected by arithmetic or bitwise operators orsubqueries.

When Javais enabled in the database, expression can be avalue to be
converted to aJava-SQL class.

When unichar is used as the destination datatype, the default length of 30
Unicode valuesis used if no length is specified.

length
isan optional parameter used with char, nchar, unichar, univarchar, varchar,
nvarchar, binary and varbinary datatypes. If you do not supply alength,
Adaptive Server truncates the data to 30 characters for character types and
30 bytesfor binary types. The maximum allowable length for character and
binary expression is 64K.

precision
isthe number of significant digitsinanumeric or decimal datatype. For float
datatypes, precision isthe number of significant binary digitsin the
mantissa. If you do not supply a precision, Adaptive Server uses the default
precision of 18 for numeric and decimal datatypes.

scale
is the number of digits to the right of the decimal point in a numeric, or
decimal datatype. If you do not supply a scale, Adaptive Server uses the
default scale of 0.

Example 1 Converts the date into a more readable datetime format:

select cast("01/03/63" as datetime)
go

Jan 3 1963 12:00AM

(1 row affected)

Example 2 Convertsthe total_sales column in the title database to a
12-character column;

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage

select title, cast(total sales as char(12))

e For more information about datatype conversion, see “ Datatype
conversion functions’ on page 60.

e cast generates adomain error when the argument falls outside the range
over which the function is defined. This should happen rarely.

e Usenull or not null to specify the nullability of atarget column. You can
use null or not null with select into to create a new table and change the
datatype and nullability of existing columns in the source table.

* You can use cast to convert animage column to binary or varbinary. You
are limited to the maximum length of the binary datatypesthat is
determined by the maximum column size for your server’slogical page
size. If you do not specify the length, the converted value has a default
length of 30 characters.

e You can use unichar expressions as a destination datatype, or they can be
converted to another datatype. unichar expressions can be converted either
explicitly between any other datatype supported by the server, or
implicitly.

e If youdo not specify length when unichar is used as a destination type, the
default length of 30 Unicode valuesisused. If thelength of the destination
typeis not large enough to accommodate the given expression, an error

message appesars.
Implicit conversion

Implicit conversion between types when the primary fields do not match may
cause datatruncation, theinsertion of adefault value, or an error messageto be
raised. For example, when a datetime value is converted to adate value, the
time portion is truncated, leaving only the date portion. If atime valueis
converted to a datetime value, a default date portion of Jan 1, 1900 is added to
the new datetime value. If adate value is converted to adatetime value, a
default time portion of 00:00:00:000 is added to the datetime value.

DATE -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
TIME -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> DATE
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> TIME

Explicit conversion

If you attempt to explicitly convert adate to adatetime, and thevalueisoutside
the datetime range such as*“Jan 1, 1000” the conversion is not allowed and an
informative error message is raised.

DATE -> UNICHAR, UNIVARCHAR

Reference Manual: Building Blocks 95

cast

TIME -> UNICHAR, UNIVARCHAR
UNICHAR, UNIVARCHAR -> DATE
UNICHAR, UNIVARCHAR -> TIME

Conversions involving Java classes

* When Javaisenabledinthe database, you can use cast to change datatypes
in these ways:

e Convert Java object typesto SQL datatypes.
e Convert SQL datatypesto Javatypes.

e Convert any Java-SQL classinstalled in Adaptive Server to any other
Java-SQL classinstalled in Adaptive Server if the compile-time
datatype of the expression (the source class) is a subclass or
superclass of the target class.

The result of the conversion is associated with the current database.
Standards ANSI SQL — Compliance level: ANSI compliant.

Permissions Any user can execute cast.

96 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

ceiling
Description

Syntax

Parameters

Examples

Returns the smallest integer greater than or equal to the specified value.

ceiling(value)

value
isacolumn, variable, or expression with a datatype is exact numeric,
approximate numeric, money, or any type that can be implicitly converted
to one of these types.

Example 1 Returns avalue of 124:
select ceiling(123.45)
124

Example 2 Returnsavalue of -123:
select ceiling(-123.45)
-123

Example 3 Returns avalue of 24.000000:
select ceiling(1.2345E2)
24.000000

Example 4 Returns avalue of -123.000000:
select ceiling(-1.2345E2)
-123.000000

Example 5 Returns avalue of 124.00
select ceiling($123.45)
124.00

Example 6 Returnsvalues of “discount” from the salesdetail table where
title_id is the value “PS3333":

select discount, ceiling(discount) from salesdetail

where title id = "PS3333"

discount
45.000000 45.000000
46.700000 47.000000
46.700000 47.000000
50.000000 50.000000

Reference Manual: Building Blocks 97

ceiling

Usage

Standards
Permissions

See also

98

e ceiling, amathematical function, returnsthe smallest integer that isgreater
than or equal to the specified value. Thereturn val ue hasthe same datatype
as the value supplied.

For numeric and decimal values, results have the same precision as the
value supplied and a scale of zero.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute ceiling.

For general information about mathematical functions, see “Mathematical
functions’ on page 70.

Command set

Functions abs, floor, round, sign

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

char

Description

Syntax

Parameters

Examples

Usage

Returns the character equivalent of an integer.
char(integer_expr)

integer_expr
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression between 0 and 255.

Example 1

select char(42)

*

Example 2
select xxx = char(65)

XXX

A

e char, astring function, converts a single-byte integer value to a character
value (char is usually used as the inverse of ascii).

e char returns a char datatype. If the resulting valueisthe first byte of a
multibyte character, the character may be undefined.

e If char_exprisNULL, returns NULL.

Reformatting output with char

¢ You can use concatenation and char values to add tabs or carriage returns
to reformat output. char(10) convertsto areturn; char(9) convertsto atab.

For example:
/* just a space */
select title id + " " + title from titles where title_id = "T67061"
/* a return */
select title id + char(10) + title from titles where title id = "T67061"
/* a tab */
select title id + char(9) + title from titles where title id = "T67061"

T67061

Programming with Curses

Reference Manual: Building Blocks 99

char

T67061 Programming with Curses
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute char.
See also For general information about string functions, see* String functions” on page
72.

Functions ascii, str

100 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

char_length

Description
Syntax

Parameters

Examples

Usage

Returns the number of charactersin an expression.
char_length(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is acharacter-type column name, variable, or constant expression of unichar
or univarchar type.

Example 1
select char length(notes) from titles
where title id = "PC9999"
39
Example 2
declare @varl varchar(20), @var2 varchar(20), @char
char (20)
select @varl = "abcd", @var2 = "abcd ",
@char = "abcd"

select char length(@varl), char length(evar2),
char length (@char)

e char_length, astring function, returns an integer representing the number

of charactersin a character expression or text value.

* For variable-length columns and variables, char_length returnsthe number

of characters (not the defined length of the column or variable). If explicit
trailing blanks are included in variable-length variables, they are not
stripped. For literals and fixed-length character columns and variables,
char_length does not strip the expression of trailing blanks (see Example
2).

e For unitext, unichar, and univarchar columns, char_length returns the

number of Unicode values (16-bit), with one surrogate pair counted astwo
Unicode values. For example, thisiswhat is returned if a unitext column
ut contains row value U+0041U+0042U+d800dc00:

select char length(ut) from unitable

Reference Manual: Building Blocks 101

char_length

4

» For multibyte character sets, the number of charactersin the expressionis
usually fewer than the number of bytes; use datalength to determine the
number of bytes.

» For Unicode expressions, returns the number of Unicode values (not
bytes) in an expression. Surrogate pairs count as two Unicode values.

» If char_expr or uchar_expr isNULL, char_length returns NULL.

» For general information about string functions, see “ String functions’ on

page 72.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute char_length.
See also Function datalength

102 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

charindex

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns an integer representing the starting position of an expression.
charindex(expressionl, expression2)

expression
isabinary or character column name, variable, or constant expression. Can
be char, varchar, nchar, nvarchar, unichar or univarchar, binary, or varbinary.

Returns the position at which the character expression “wonderful” beginsin
the notes column of the titles table:

select charindex ("wonderful", notes)
from titles
where title id = "TC3218"

« charindex, a string function, searches expression2 for the first occurrence
of expressionl and returns an integer representing its starting position. If
expressionl is not found, charindex returns O.

« |If expressionl contains wildcard characters, charindex treats them as
literals.

e |If expression2isNULL, returnsO.

e If avarchar expression is given as one parameter and a unichar expression
asthe other, the varchar expression isimplicitly converted to unichar (with
possible truncation).

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute charindex.

For general information about string functions, see“ String functions” on page
72.

Function patindex

Reference Manual: Building Blocks 103

coalesce

coalesce
Description Supports conditional SQL expressions; can be used anywhere avalue
expression can be used; alternative for acase expression.
Syntax coalesce(expression, expression [, expression]...)
Parameters coalesce
evaluates the listed expressions and returns the first non-null value. If all
expressions are null, coalesce returns NULL.
expression
isacolumn name, a constant, afunction, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “ Expressions’ on
page 335.
Examples Example 1 Returnsthefirst occurrence of anon-null value in either the lowqty
or highgty column of the discounts table:
select stor_id, discount,
coalesce (lowgty, highgty)
from discounts
Example 2 An alternative way of writing Example 1:
select stor_ id, discount,
case
when lowgty is not NULL then lowqgty
else highgty
end
from discounts
Usage e coalesce expression simplifies standard SQL expressions by allowing you

to express a search condition as a ssmple comparison instead of using a
when...then construct.

* You can use coalesce expressions anywhere an expressionin SQL.

e Atleast oneresult of the coalesce expression must return anon-null value.
This example produces the following error message:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

104 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e |f your query produces a variety of datatypes, the datatype of acase
expression result is determined by datatype hierarchy, as described in
“Datatypes of mixed-mode expressions’ on page 7. If you specify two
datatypes that Adaptive Server cannot implicitly convert (for example,
char and int), the query fails.

e coalesce isan abbreviated form of acase expression. Example 2 describes
an alternative way of writing the coalesce statement.

» coalesce must befollowed by at |least two expressions. This example
produces the following error message:

select stor_id, discount, coalesce (highgty)
from discounts

A single coalesce element is illegal in a COALESCE expression.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute coalesce.
See also Commands case, nullif, select, if...else, where clause

Reference Manual: Building Blocks 105

col_length

col_length

Description
Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

106

Returns the defined length of a column.

col_length(object_name, column_name)

object_name
is name of a database object, such as atable, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the
database and owner name). It must be enclosed in quotes.

column_name
is the name of the column.

Finds the length of the title column in the titles table. The “X” gives a column
heading to the result:

select x = col length("titles", "title")

X

80
* col_length, asystem function, returns the defined length of column.

» For general information about system functions, see “ System functions”
on page 73.

» Tofind the actual length of the data stored in each row, use datalength.

» Fortext, unitext, and image columns, col_length returns 16, thelength of the
binary(16) pointer to the actual text page.

» For unichar columns, the defined length is the number of Unicode values
declared when the column was defined (not the number of bytes
represented).

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute col_length.

Function datalength

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

col_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the name of the column where the table and column IDs are specified,
and can be up to 255 bytesin length.

col_name(object_id, column_id [, database_id])

object_id
isanumeric expression that is an object ID for atable, view, or other
database object. These are stored in the id column of sysobjects.

column_id
isanumeric expression that isacolumn ID of acolumn. These are stored in
the colid column of syscolumns.

database_id
isanumeric expression that isthe ID for adatabase. These are stored in the
db_id column of sysdatabases.

select col name (208003772, 2)

e col_name, a system function, returns the column’s name.

« For general information about system functions, see “ System functions”
on page 73.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute col_name.

Functions db_id, object_id

Reference Manual: Building Blocks 107

compare

compare

Description

Syntax

Parameters

Examples

108

Allows you to directly compare two character strings based on aternate
collation rules.

compare ({char_expressionl|uchar_expressionl},
{char_expression2|uchar_expression2}),
[{collation_name | collation_ID}]

char_expressionl or uchar_expressionl
are the character expressions to compare to char_expression2 or
uchar_expression 2.

char_expression2 Or uchar_expression2
arethe character expressions against which to compare char_expressionl or
uchar_expressionl.

char_expressionl and char_expression2 can be;
e Character type (char, varchar, nchar, or nvarchar)
» Character variable, or

e Constant character expression, enclosed in single or double quotation
marks

uchar_expressionl and uchar_expression2 can be:
e Character type (unichar or univarchar)
» Character variable, or

e Constant character expression, enclosed in single or double quotation
marks

collation_name
can be a quoted string or a character variable that specifies the collation to
use. Table 2-5 on page 111 shows the valid values.

collation_ID
isaninteger constant or avariablethat specifiesthe collation to use. Table 2-
5 on page 111 showsthe valid values.

Example 1 Compares aaa and bbb:

1> select compare ("aaa", "bbb")
2> go

-1
(1 row affected)

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Alternatively, you can also compare aaa and bbb using this format:

1> select compare (("aaa"), ("bbb"))
2> go

-1
(1 row affected)

Example 2 Compares aaa and bbb and specifies binary sort order:

1> select compare ("aaa","bbb","binary")
2> go

-1
(1 row affected)

Alternatively, you can compare aaa and bbb using thisformat, and the collation
ID instead of the collation name:

1> select compare (("aaa"), ("bbb"), (50))
2> go

-1
(1 row affected)

Usage e Thecompare function returns the following values, based on the collation
rules that you chose:

e 1-indicatesthat char_expressionl or uchar_expressionl is greater
than char_expression2 or uchar_expression2.

e O-indicatesthat char_expressionl or uchar_expressionl isequal to
char_expression2 or uchar_expression2.

e -l-indicatesthat char_expressionl or uchar_expressionlislessthan
char_expression2 or uchar expression2.

e compare can generate up to six bytes of collation information for each
input character. Therefore, the result from using compare may exceed the
length limit of the varbinary datatype. If this happens, the result is
truncated to fit. Adaptive Server issues awarning message, but the query
or transaction that contained the compare function continuesto run. Since
thislimit is dependent on the logical page size of your server, truncation
removes result bytes for each input character until the result string is less
than the following for DOL and APL tables:

Reference Manual: Building Blocks 109

compare

Table 2-4: Maximum row and column length—APL and DOL

Locking scheme Page size Maximum row length Maximum column length
APL tables 2K (2048 bytes) 1962 1960 bytes
4K (4096 bytes) 4010 4008 bytes
8K (8192 bytes) 8106 8104 bytes
16K (16384 bytes) 16298 16296 bytes
DOL tables 2K (2048 bytes) 1964 1958 bytes
4K (4096 bytes) 4012 4006 bytes
8K (8192 bytes) 8108 8102 bytes
16K (16384 bytes) 16300 16294 bytesif table does not include any

variable length columns

16K (16384 bytes) 16300 (subject to a max 8191-6-2 = 8183 bytesif tableincludesat

start offset of varlen=8191) least on variable length column.*

* This sizeincludes six bytes for the row overhead and two bytes for the row length field

110

Both char_expressionl, uchar_expressionl, and char_expression2,
uchar_expression2 must be characters that are encoded in the server’s
default character set.

char_expressionl, uchar_expression 1, or char_expression2,
uchar_expression2, or both, can be empty strings:

e If char_expression2 or uchar_expression2 is empty, the function
returns 1.

» If both strings are empty, then they are equal, and the function returns
0.

e |f char_expressionl or uchar_expression 1 isempty, the function
returns-1.

The compare function does not equate empty stringsand strings containing
only spaces. compare uses the sortkey function to generate collation keys
for comparison. Therefore, atruly empty string, astring with one space, or
astring with two spaces do not compare equally.

If either char_expressionl, uchar_expressionl; or char_expression2,
uchar_expression2 isNULL, then theresult isNULL.

If avarchar expression is given as one parameter and a unichar expression
is given as the other, the varchar expression isimplicitly converted to
unichar (with possible truncation).

If you do not specify avauefor collation_nameor collation ID, compare
assumes hinary collation.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e Table2-5liststhe valid values for collation_name and collation_ID.

Table 2-5: Collation names and IDs

Description Collation name Collation ID
Deafult Unicode multilingual default 20
Thai dictionary order thaidict 21
1S014651 standard 15014651 22
UTF-16 ordering — matches UTF-8 binary ordering utf8bin 24
CP 850 Alternative — no accent altnoacc 39
CP 850 Alternative — lowercase first altdict 45
CP 850 Western European — no case preference altnocsp 46
CP 850 Scandinavian — dictionary ordering scandict 47
CP 850 Scandinavian — case-insensitive with preference scannocp 48
GB Pinyin gbpinyin n‘a
Binary sort binary 50
Latin-1 English, French, German dictionary dict 51
Latin-1 English, French, German no case nocase 52
Latin-1 English, French, German no case, preference nocasep 53
Latin-1 English, French, German no accent noaccent 54
Latin-1 Spanish dictionary espdict 55
Latin-1 Spanish no case espnocs 56
Latin-1 Spanish no accent espnoac 57
SO 8859-5 Russian dictionary rusdict 58

I SO 8859-5 Russian no case rusnocs 59
ISO 8859-5 Cyrillic dictionary cyrdict 63
SO 8859-5 Cyrillic no case cyrnocs 64
SO 8859-7 Greek dictionary dldict 65

I SO 8859-2 Hungarian dictionary hundict 69

I SO 8859-2 Hungarian no accents hunnoac 70
SO 8859-2 Hungarian no case hunnocs 71
SO 8859-9 Turkish dictionary turdict 72
ISO 8859-9 Turkish no accents turknoac 73
SO 8859-9 Turkish no case turknocs 74
CP932 hinary ordering cp932bin 129
Chinese phonetic ordering dynix 130
GB2312 binary ordering gh2312bn 137
Common Cyrillic dictionary cyrdict 140
Turkish dictionary turdict 155

Reference Manual: Building Blocks 111

compare

Description Collation name Collation ID
EUCKSC binary ordering euckschn 161
Chinese phonetic ordering gbpinyin 163
Russian dictionary ordering rusdict 165
SJIS binary ordering gishin 179
EUCJIS binary ordering eucjisbn 192
BIG5 binary ordering bigshin 194
Shift-JIS binary order gisbin 259

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute compare.

See also Function sortkey

112 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

convert

Description

Syntax

Parameters

Returns the specified value, converted to another datatype or a different
datetime display format.

convert (datatype [(length) | (precision[, scale])]
[null | not null], expression [, style])

datatype
is the system-supplied datatype (for example, char(10), unichar (10),
varbinary (50), or int) into which to convert the expression. You cannot use
user-defined datatypes.

When Javaisenabled in the database, datatype can also be aJava-SQL class
in the current database.

length
isan optional parameter used with char, nchar, unichar, univarchar, varchar,
nvarchar, binary, and varbinary datatypes. If you do not supply alength,
Adaptive Server truncates the data to 30 characters for the character types
and 30 bytes for the binary types. The maximum allowable length for
character and binary expression is 64K.

precision
isthe number of significant digitsin anumeric or decimal datatype. For float
datatypes, precision is the number of significant binary digitsin the
mantissa. If you do not supply aprecision, Adaptive Server uses the default
precision of 18 for numeric and decimal datatypes.

scale
is the number of digits to the right of the decimal point in anumeric, or
decimal datatype. If you do not supply a scale, Adaptive Server uses the
default scale of 0.

null | not null
specifies the nullabilty of the result expression. If you do not supply either
null or not null, the converted result has the same nullability as the
expression.

expression
isthe value to be converted from one datatype or date format to another.

When Javais enabled in the database, expression can be avalue to be
converted to a Java-SQL class.

When unichar is used as the destination datatype, the default length of 30
Unicode valuesisused if no length is specified.

Reference Manual: Building Blocks 113

convert

style
isthe display format to use for the converted data. When converting money
or smallmoney data to a character type, use a style of 1 to display acomma
after every 3 digits.

When converting datetime or smalldatetime datato a character type, use the
style numbersin Table 2-6 to specify the display format. Vauesin the
left-most column display 2-digit years (yy). For 4-digit years (yyyy), add
100, or use the value in the middle column.

When converting date datato a character type, use style numbers 1 through
7 (101 through 107) or 10 through 12 (110 through 112) in Table 2-6 to
specify thedisplay format. The default valueis 100 (monddyyyy hh:miAM
(or PM)). If date datais converted to astylethat containsatime portion, that
time portion reflects the default value of zero.

When converting time data to a character type, use style number 8 or 9 (108
or 109) to specify the display format. The default is 100 (mon dd yyyy
hh:miAM (or PM)). If time datais converted to a style that contains a date
portion, the default date of Jan 1, 1900 is displayed.

Table 2-6: Date format conversions using the style parameter

Without With century
century (yy) (yyyy) Standard Output
- 0or 100 Default mon dd yyyy hh:mm AM (or PM)
1 101 USA mnvdd/yy
2 2 SQL standard yy.mm.dd
3 103 English/French dd/mm/yy
4 104 German dd.mm.yy
5 105 dd-mm-yy
6 106 dd mon yy
7 107 mon dd, yy
8 108 HH:mm:ss
- 9or 109 Default + milliseconds mon dd yyyy hh:mm:ss AM (or PM)
10 110 USA mm-dd-yy
1 111 Japan yy/mm/dd
12 112 ISO yymmdd
13 113 yy/dd/mm
14 114 mm/yy/dd

Key “mon” indicates a month spelled out, “mm” the month number or minutes. “HH
"indicates a 24-hour clock value, “hh” a12-hour clock value. Thelast row, 23, includesa
literal “T” to separate the date and time portions of the format.

114 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Without With century

century (yy) (yyyy) Standard Output

14 114 hh:mi:ss:mmmAM (or PM)
15 115 dd/yy/mm

- 16 or 116 mon dd yyyy HH:mm:ss
17 117 hh: mmAM

18 118 HH:mm

19 hh:mm: ss:zzzAM

20 hh:mm:ss. zzz

21 yy/mm/dd HH:mm:ss

22 yy/mm/dd HH:mm AM (or PM)
23 yyyy-mmddTHH: mm: ss

Key “mon” indicatesa month spelled out, “mm” the month number or minutes. “HH
"indicates a 24-hour clock value, “hh” a12-hour clock value. Thelast row, 23, includesa
literal “T” to separate the date and time portions of the format.

Examples

The default values (style 0 or 100), and style 9 or 109 return the century
(yyyy). When converting to char or varchar from smalldatetime, styles that
include seconds or milliseconds show zerosin those positions.

Example 1

select title, convert (char(1l2), total sales)
from titles

Example 2

select title, total_ sales
from titles
where convert (char(20), total sales) like "1%"

Example 3 Convertsthe current date to style 3, dd/mm/yy:
select convert (char(12), getdate(), 3)

Example 4 If the value pubdate can be null, you must use varchar rather than
char, or errors may result:

select convert (varchar(12), pubdate, 3) from titles

Example 5 Returnstheinteger equivalent of the string “ 0x00000100". Results
can vary from one platform to another:

select convert (integer, 0x00000100)
Example 6 Returns the platform-specific bit pattern as a Sybase binary type:

select convert (binary, 10)

Reference Manual: Building Blocks 115

convert

Usage

116

Example 7 Returns 1, the bit string equivalent of $1.11:

select convert (bit, $1.11)

Example 8 Creates#tempsales withtotal_sales of datatype char(100), and does
not allow null values. Even if titles.total_sales was defined as allowing nulls,
#tempsales is created with #tempsales.total_sales hot allowing null values:

select title, convert (char(100) not null, total sales)
into #tempsales
from titles

convert, a datatype conversion function, converts between awide variety
of datatypes and reformats date/time and money datafor display purposes.

For more information about datatype conversion, see “ Datatype
conversion functions’” on page 60.

convert — returns the specified value, converted to another datatype or a
different datetime display format. When converting from unitext to other
character and binary datatypes, theresult islimited to the maximum length
of the destination datatype. If the length is not specified, the converted
value has a default size of 30 bytes. If you are using enabled enable
surrogate processing, asurrogate pair is returned as awhole. For example,
thisiswhat is returned if you convert a unitext column that contains data
U+0041U+0042U+20acU+0043 (stands for “AB €") toaUTF-8
varchar(3) column:

select convert (varchar(3), ut) from untable

AB

convert generates adomain error when the argument falls outside therange
over which the function is defined. This should happen rarely.

Use null or not null to specify the nullability of atarget column.
Specifically, this can be used with select into to create a new table and
changethe datatype and nullability of existing columnsin the sourcetable
(See Example 8, above).

The result is an undefined value if:
» The expression being converted is to a not null result.
» Theexpression'svaueisnull.

Use the following select statement to generate aknown non-NULL value
for predictable results:

select convert (int not null isnull(col2, 5)) from tablel

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

* You can useconvert to convert animage columnto binary or varbinary. You
are limited to the maximum length of the binary datatypes, whichis
determined by the maximum column size for your server’slogical page
size. If you do not specify the length, the converted value has a default
length of 30 characters.

* You can use unichar expressions as a destination datatype or you can
convert them to another datatype. unichar expressions can be converted
either explicitly between any other datatype supported by the server, or
implicitly.

e If youdo not specify the length when unichar is used as adestination type,
the default length of 30 Unicode valuesis used. If the length of the
destination typeisnot large enough to accommodate the given expression,
an error message appears.

Implicit conversion

Implicit conversion between types when the primary fields do not match may
cause datatruncation, theinsertion of adefault value, or an error messageto be
raised. For example, when a datetime value is converted to adate value, the
time portion is truncated, leaving only the date portion. If atime valueis
converted to a datetime value, adefault date portion of Jan 1, 1900 is added to
the new datetime value. If adate value is converted to adatetime value, a
default time portion of 00:00:00:000 is added to the datetime value.

DATE -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
TIME -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> DATE
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> TIME

Explicit conversion

If you attempt to explicitly convert adate to adatetime and the value is outside
the datetime range, such as*“Jan 1, 1000" the conversion isnot allowed and an
informative error message is raised.

DATE -> UNICHAR, UNIVARCHAR
TIME -> UNICHAR, UNIVARCHAR
UNICHAR, UNIVARCHAR -> DATE
UNICHAR, UNIVARCHAR -> TIME

Conversions involving Java classes

* When Javais enabled in the database, you can use convert to change
datatypes in these ways:

e Convert Java object typesto SQL datatypes.
e Convert SQL datatypesto Javatypes.

Reference Manual: Building Blocks 117

convert

Standards
Permissions

See also

118

e Convert any Java-SQL classinstalled in Adaptive Server to any other
Java-SQL classinstalled in Adaptive Server if the compile-time
datatype of the expression (the source class) is a subclass or
superclass of the target class.

The result of the conversion is associated with the current database.
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute convert.

Documents Javain Adaptive Server Enterprisefor alist of allowed datatype
mappings and more information about datatype conversionsinvolving Java
classes.

Datatypes User-defined datatypes

Functions hextoint, inttohex

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

COS

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the cosine of the specified angle.
cos(angle)

angle
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

select cos(44)
0.999843

e cos, amathematical function, returns the cosine of the specified angle, in
radians.

» For genera information about mathematical functions, see“Mathematical
functions” on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute cos.

Functions acos, degrees, radians, sin

Reference Manual: Building Blocks 119

cot

cot

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

120

Returns the cotangent of the specified angle.
cot(angle)

angle
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

select cot (90)

-0.501203

» cot, amathematical function, returns the cotangent of the specified angle,
in radians.

» For general information about mathematical functions, see* M athematical
functions’ on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute cot.

Functions degrees, radians, sin

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

count

Description

Syntax

Parameters

Examples

Usage

Returns the number of (distinct) non-null values, or the number of selected
rows as an integer.

count([all | distinct] expression)

all
applies count to al values. all isthe default.

distinct
eliminates duplicate values before count is applied. distinct is optional.

expression
is acolumn name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “ Expressions’ on page 335.

Example 1 Finds the number of different citiesin which authorslive:

select count (distinct city)
from authors

Example 2 Liststhetypesin thetitles table, but eliminates the types that
include only one book or none:

select type
from titles
group by type
having count(*) > 1

e count, an aggregate function, finds the number of non-null valuesin a
column. For general information about aggregate functions, see
“Aggregate functions’ on page 51.

* When distinct is specified, count finds the number of unique non-null
values. count can be used with all datatypes, including unichar, but cannot
be used with text and image. Null values are ignored when counting.

e count(column_name) returnsavalue of 0 on empty tables, on columnsthat
contain only null values, and on groups that contain only null values.

e count(*) finds the number of rows. count(*) does not take any arguments,
and cannot be used with distinct. All rows are counted, regardless of the
presence of null values.

Reference Manual: Building Blocks 121

count

Standards
Permissions

See also

122

* Whentablesare being joined, include count(*) in the select list to produce
the count of the number of rows in the joined results. If the objectiveisto
count the number of rows from one table that match criteria, use
count(column_name).

» You can use count as an existence check in a subquery. For example:

select * from tab where 0 <
(select count(*) from tab2 where ...)

However, because count counts all matching values, exists or in may return
results faster. For example:

select * from tab where exists
(select * from tab2 where ...)

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute count.

Commands compute clause, group by and having clauses, select, where
clause

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

count_big

Description

Syntax

Parameters

Examples

Usage

Returnsthe number of (distinct) non-null valuesor the number of selected rows
as abigint.

count_big([all | distinct] expression)

all
applies count_big to al values. all is the defaullt.

distinct
eliminates duplicate values before count_big is applied. distinct is optional.

expression
is acolumn name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name.

Finds the number of occurances of name in systypes:

1> select count big(name) from systypes
2> go

e count_big, an aggregate function, finds the number of non-null valuesin a
column.

* When distinct is specified, count_big finds the number of unique non-null
values. Null values are ignored when counting.

e count_big(column_name) returnsavalue of 0 on empty tables, on columns
that contain only null values, and on groups that contain only null values.

e count_big(*) finds the number of rows. count_big(*) does not take any
arguments, and cannot be used with distinct. All rows are counted,
regardless of the presence of null values.

¢ When tables are being joined, include count_big(*) in the select list to
produce the count of the number of rows in the joined results. If the
objectiveisto count the number of rowsfrom onetable that match criteria,
use count_big(column_name).

* You can use count_big as an existence check in a subquery. For example:

select * from tab where 0 <
(select count big(*) from tab2 where ...)

However, because count_big counts all matching values, exists or in may
return results faster. For example:

Reference Manual: Building Blocks 123

count_big

select * from tab where exists
(select * from tab2 where ...)

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute count_big.

See also Commands compute clause, group by and having clauses, select, where
clause

124 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

current_date

Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

Returns the current date.

current_date()
None.

Example 1 ldentifies the current date with datename:

1> select datename (month, current date())
2> go

Example 2 |dentifiesthe current date with datepart:

1> select datepart (month, current date())
2> go

(1 row affected)
Finds the current date as it exists on the server.
ANSI SQL — Compliance level: Entry-level compliant.
Any user can execute current_date.
Datatypes Date and time datatypes
Commands select, where clause

Functions dateadd, datename, datepart, getdate

Reference Manual: Building Blocks 125

current_time

current_time

Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

126

Returns the current time.

current_time()
None.

Example 1 Findsthe current time:

1> select current date()
2> go

Aug 29 2003

(1 row affected)
Example 2 Use with datename:

1> select datename (minute, current time())
2> go

(1 row affected)
Finds the current time as it exists on the server
ANSI SQL — Compliance level: Entry-level compliant.
Any user can execute current_time.
Datatypes Date and time datatypes
Commands select, where clause

Functions dateadd, datename, datepart, getdate

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

curunreservedpgs
Description Returns the number of free pages in the specified disk piece.
Syntax curunreservedpgs (dbid, Istart, unreservedpgs)
Parameters dbid
isthe ID for adatabase. These are stored in the db_id column of
sysdatabases.
Istart

is a page within the disk piece for which pages are to be returned.

unreservedpgs
isthe default value to return if the dbtable is presently unavailable for the
reguested database.

Examples Example 1 Returns the database name, device name, and the number of
unreserved pages for each device fragment

If adatabaseisopen, curunreservedpgs takesthe value from memory. If it isnot
in use, the valueis taken from the third parameter you specify in
curunreservedpgs. In this example, the value comes from the unreservedpgs
column in the sysusages table.

select

(dbid), d.name,
curunreservedpgs (dbid, lstart, unreservedpgs)
from sysusages u, sysdevices d

where u.vdevno=d.vdevno

and d.status &2 = 2

name

master master 1634
tempdb master 423
model master 423
pubs2 master 72
sybsystemdb master 399
sybsystemprocs master 6577
sybsyntax master 359

(7 rows affected)

Example 2 Displaysthe number of free pages on the segment for dbid starting
on sysusages.|Istart:

select curunreservedpgs (dbid, sysusages.lstart, 0)

Reference Manual: Building Blocks 127

curunreservedpgs

Usage

Standards
Permissions

See also

128

e curunreservedpgs, asystem function, returnsthe number of freepagesina
disk piece. For general information about system functions, see “ System
functions’ on page 73.

» |If adatabaseisopen, the valuereturned by curunreservedpgs istaken from
memory. If itisnot in use, the value istaken from the third parameter you
specify in curunreservedpgs.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute curunreservedpgs.

Functions db_id, Ict_admin

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

data_pages

Description

Syntax

Parameters

Examples

Usage

Returns the number of pages used by the specified table, index, or a specific
partition. The result does not include pages used for internal structures.

Thisfunction replaces data_pgs and ptn_data_pgs from versions of Adaptive
Server earlier than 15.0.

data_pages(dbid, object_id [, indid [, ptnid]])

dbid
is the database ID of the database that contains the data pages.

object_id
isan object ID for atable, view, or other database object. These are stored
in theid column of sysobjects.

indid
istheindex ID of the target index.

ptnid
isthe partition ID of the target partition.

Example 1 Returnsthe number of pages used by the object with aobject 1D of
31000114 in the specified database (including any indexes):

select data pages (5, 31000114)

Example 2 Returnsthe number of pages used by the object in the data layer,
regardless of whether or not a clustered index exists:

select data pages (5, 31000114, O0)

Example 3 Returnsthe number of pages used by the object in the index layer
for a clustered index. This does not include the pages used by the data layer:

select data pages (5, 31000114, 1)

Example 4 Returnsthe number of pages used by the object in the datalayer of
the specific partition, which in this case is 2323242432:

select data pages (5, 31000114, 0, 2323242432)

In the case of an APL (all-pageslock) table, if a clustered index exists on the
table, then passing in an indid of:

e 0-reportsthe data pages.
e 1-reportstheindex pages.

All erroneous conditionsreturn aval ue of zero, such aswhen the object_id does
not exist in the current database, or the targeted indid or ptnid cannot be found.

Reference Manual: Building Blocks 129

data_pages

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute data_pages.
See also Functions object_id, row_count

System procedure sp_spaceused

130 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

datachange

Description

Syntax

Parameters

Examples

Usage

M easures the amount of change in the data distribution since update statistics
last ran. Specifically, it measures the number of inserts, updates, and deletes
that have occurred on the given object, partition, or column, and helps you
determine if invoking update statistics would benefit the query plan.

datachange(object_name, partition_name, column_name)

object_name
is the object name in the current database.

partition_name
is the data partition name. This value can be null.

column_name
is the column name for which the datachange is requested. Thisvalue can
be null.

Example 1 Provides the percentage change in the au_id column in the
author_ptn partition:

select datachange ("authors", "author ptn", "au id")

Example 2 Provides the percentage change in the authors table on the au_ptn
partition. The null value for the column_name parameter indicates that this
checks all columns that have historgram statistics and obtains the maximum
datachange value from among them.

select datachange ("authors", "au ptn", null)
e Thedatachange function requires all three parameters.

* datachange is ameasure of theinserts, deletes and updates but it does not
count them individually. datachange counts an update as adelete and an
insert, SO each update contributes a count of 2 towards the datachange
counter.

e The datachange built-in returns the datachange count as a percent of the
number of rows, but it bases this percentage on the number of rows
remaining, not the original number of rows. For example, if atablehasfive
rows and onerow is deleted, datachange reports avalue of 25 % since the
current row count is 4 and the datachange counter is 1.

e datachange isexpressed as apercentage of the total number of rowsin the
table, or partition if you specify a partition. The percentage value can be
greater than 100 percent because the number of changes to an object can
be much greater than the number of rows in the table, particularly when
the number of deletes and updates happening to atable is very high.

Reference Manual: Building Blocks 131

datachange

Thevaluethat datachange displaysisthein-memory value. Thiscan differ
from the on-disk value because the on-disk value gets updated by the
housekeeper, when you run sp_flushstats, or when an object descriptor
gets flushed.

The datachange valuesis not reset when histograms are created for global
indexes on partitioned tables.

datachange isreset or initialized to zero when:

New columns are added, and their datachange value isinitialized.
New partitions are added, and their datachange valueisinitialized.

Data-partition-specific histograms are created, deleted or updated. When
this occurs, the datachange value of the histogramsisreset for the
corresponding column and partition.

Dataistruncated for atable or partition, and its datachange value is reset

A tableisrepartitioned either directly or indirectly asaresult of some other
command, and the datachange valueis reset for all the table’s partitions
and columns.

A tableis unpartitioned, and the datachange valueisreset for al columns
for the table.

datachange has the following restrictions:

datachange statistics are not maintained on tables in system tempdbs,
user-defined tempdbs, system tables, or proxy tables.

datachange updates are non-transactional. If you roll back atransaction,
the datachange values are not rolled back, and these values can become
inaccurate.

If memory allocation for column-level countersfails, Adaptive Server
tracks partition-level datachange values instead of column-level values.

If Adaptive Server does not maintain column-level datachange values, it
then resetsthe partition-level datachange valueswhenever the datachange
values for acolumn are reset.

Permissions Any user can execute datachange.

132

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

datalength

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the actual length, in bytes, of the specified column or string.
datalength(expression)

expression
isacolumn name, variable, constant expression, or acombination of any of
these that evaluatesto asingle value. expression can be of any datatype, an
isusually acolumn name. If expression is a character constant, it must be
enclosed in quotes.

Finds the length of the pub_name column in the publishers table:

select Length = datalength (pub name)
from publishers

e datalength, a system function, returns the length of expression in bytes.

e For columns defined for the Unicode datatype, datalength returns the
actual number of bytes of the data stored in each row. For example, thisis
what isreturned if a unitext column ut contains row value
U+0041U-+0042U+d800dc00:

select datalength(ut) from unitable

» datalength findsthe actual length of the data stored in each row. datalength
isuseful on varchar, univarchar, varbinary, text, and image datatypes, since
these datatypes can store variable lengths (and do not store trailing
blanks). When achar or unichar valueis declared to allow nulls, Adaptive
Server storesit internally asvarchar or univarchar. For all other datatypes,
datalength reports thr defined length.

e datalength of any NULL datareturns NULL.
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute datalength.

Functions char_length, col_length

Reference Manual: Building Blocks 133

dateadd

dateadd

Description

Syntax

Parameters

Examples

134

Returns the date produced by adding or subtracting a given number of years,
quarters, hours, or other date parts to the specified date.

dateadd(date_part, integer, date expression)

date_part
isadate part or abbreviation. For alist of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts’ on page 69.

numeric
isan integer expression.

date expression
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Example 1 Displays the new publication dates when the publication dates of
all the booksin thetitles table dip by 21 days:

select newpubdate = dateadd(day, 21, pubdate)
from titles

Example 2 Add one day to adate:

declare @a date
select @a = "apr 12, 9999"
select dateadd(dd, 1, @a)

Apr 13 9999
Example 3 Subtracts five minutes to atime:

select dateadd(mi, -5, convert (time, "14:20:00"))

Example 4 Add one day to atime and the time remains the same:

declare @a time
select @a = "14:20:00"
select dateadd(dd, 1, @a)

Example 5 Although there are limits for each date_part, as with datetime
values, you can add higher valuesresulting in the valuesrolling over to the next
significant field:

--Add 24 hours to a datetime

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage

select dateadd (hh, 24, "4/1/1979")

Apr 2 1979 12:00AM

--Add 24 hours to a date
select dateadd (hh, 24, "4/1/1979")

Apr 2 1979

dateadd, a date function, adds an interval to a specified date. For more
information about date functions, see “Date functions’ on page 69.

dateadd takes three arguments: the date part, a number, and a date. The
result is adatetime value equal to the date plus the number of date parts.

If the date argument is a smalldatetime value, the result isalso a
smalldatetime. You can use dateadd to add seconds or millisecondsto a
smalldatetime, but such an addition is meaningful only if the result date
returned by dateadd changes by at least one minute.

Use the datetime datatype only for dates after January 1, 1753. datetime
values must be enclosed in single or double quotes. Use the date datatype
for dates from January 1, 0001 to 9999. date must be enclosed in single or
double quotes.Use char, nchar, varchar, or nvarchar for earlier dates.
Adaptive Server recognizes awide variety of date formats. For more
information, see “ User-defined datatypes’ on page 43 and “ Datatype
conversion functions’ on page 60.

Adaptive Server automatically converts between character and datetime
values when necessary (for example, when you compare a character value
to adatetime value).

Using the date part weekday or dw with dateadd is not logical, and
produces spurious results. Use day or dd instead.

Reference Manual: Building Blocks 135

dateadd

Standards
Permissions

See also

136

Table 2-7: date_part recognized abbreviations

Date part Abbreviation Values

Year vy 1753 — 9999 (datetime)
1900 — 2079 (smalldatetime)
0001 — 9999 (date)

Quarter qq 1-4

Month mm 1-12

Week wk 1054

Day dd 1-7

dayofyear dy 1-366

Weekday dw 1-7

Hour hh 0-23

Minute mi 0-59

Second ss 0-59

millisecond ms 0-999

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute dateadd.

Datatypes Date and time datatypes

Commands select, where clause

Functions datediff, datename, datepart, getdate

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

datediff

Description
Syntax

Parameters

Examples

Returns the difference between two dates.

datediff(datepart, date expressionl, date expression2)

datepart
isadate part or abbreviation. For alist of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts’ on page 69.

date expressionl
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

date expression2
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Example 1 Finds the number of days that have elapsed between pubdate and
the current date (obtained with the getdate function):

select newdate = datediff (day, pubdate, getdate())
from titles

Example 2 Find the number of hours between two times:

declare @a time

declare @b time

select @a = "20:43:22"
select @b = "10:43:22"
select datediff (hh, @a, @b)

Example 3 Find the number of hours between two dates:

declare @a date

declare @b date

select @a = "apr 1, 1999"
select @b = "apr 2, 1999"
select datediff (hh, @a, @b)

Example 4 Find the number of days between two times:

declare @a time

declare @b time

select @a "20:43:22"
select @b = "10:43:22"
select datediff (dd, @a, @b)

Reference Manual: Building Blocks 137

datediff

Example 5 Overflow size of milliseconds return value:

select datediff (ms, convert (date, "4/1/1753"), convert (date, "4/1/9999"))

Msg 535, Level 16,

Line 2:

State 0:

Difference of two datetime fields caused overflow at runtime.
Command has been aborted

Usage .

138

datediff, a date function, calculates the number of date parts between two
specified dates. For more information about date functions, see “Date
functions’ on page 609.

datediff takesthree arguments. Thefirst isadate part. The second and third
aredates. Theresultisasignedinteger valueequal to date2 - datel, in date
parts.

datediff produces results of datatype int, and causes errorsif theresult is
greater than 2,147,483,647. For milliseconds, this is approximately 24
days, 20:31.846 hours. For seconds, thisis 68 years, 19 days, 3:14:07
hours.

datediff results are always truncated, not rounded, when theresult isnot an
even multiple of the date part. For example, using hour asthe date part, the
difference between “4:00AM” and “5:50AM” is 1.

When you use day asthe date part, datediff counts the number of midnights
between the two times specified. For example, the difference between
January 1, 1992, 23:00 and January 2, 1992, 01:00 is 1, the difference
between January 1, 1992 00:00 and January 1, 1992, 23:59is 0.

The month datepart counts the number of first-of-the-months between two
dates. For example, the difference between January 25 and February 2 is
1; the difference between January 1 and January 31is0.

When you use the date part week with datediff, you see the number of
Sundays between the two dates, including the second date but not thefirst.
For example, the number of weeks between Sunday, January 4 and
Sunday, January 11 is 1.

If you use smalldatetime values, they are converted to datetime values
internally for the calculation. Seconds and milliseconds in smalldatetime
values are automatically set to O for the purpose of the difference
calculation.

If the second or third argument is adate, and the datepart is hour, minute,
second, or millisecond, the dates are treated as midnight.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e |f the second or third argument isatime, and the datepart is year, month,
or day, then O is returned.

* datediff results are truncated, not rounded, when the result is not an even
multiple of the date part.

* For the smaller time units, there are overflow values, and the function
returns an overflow error if you exceed these limits:

e Milliseconds: approx 24 days
e Seconds. approx 68 years
e Minutes: approx 4083 years

¢ Others: No overflow limit

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute datediff.
See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

Reference Manual: Building Blocks 139

datename

datename

Description

Syntax

Parameters

Examples

Usage

140

Returns the specified datepart (the first argument) of the specified date or time
(the second argument) as a character string. Takes a date, time, datetime, Or
smalldatetime value as its second argument.

datename(datepart, date_expression)

datepart
isadate part or abbreviation. For alist of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts’ on page 69.

date_expression
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Example 1 Assumes a current date of November 20, 2000:
select datename (month, getdate())
November

Example 2 Findsthe month name of adate:

declare @a date
select @a = "apr 12, 0001"
select datename (mm, @a)

Example 3 Findsthe seconds of atime:

declare @a time
select @a = "20:43:22"
select datename (ss, @a)

» datename, adate function, returns the name of the specified part (such as
the month “June”) of a datetime or smalldatetime value, as a character
string. If the result is numeric, such as*“23” for the day, it is still returned
as a character string.

» For moreinformation about date functions, see “ Date functions’ on page
69.

* Thedate part weekday or dw returnsthe day of the week (Sunday, Monday,
and so on) when used with datename.

» Since smalldatetime is accurate only to the minute, when a smalldatetime
value is used with datename, seconds and milliseconds are always 0.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute datename.
See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

Reference Manual: Building Blocks 141

datepart

datepart
Description Returns the specified datepart in the first argument of the specified date (the
second argument) as an integer. Takes a date, time, datetime, or smalldatetime
value asits second argument. If the datepart is hour, minute, second, or
millisecond, the result is 0.
Syntax datepart(date_part, date_expression)
Parameters date_part
isadate part. Table 2-8 lists the date parts, the abbreviations recognized by
datepart, and the acceptable values.
Table 2-8: Date parts and their values
Date part Abbreviation Values
year vy 1753 — 9999 (2079 for smalldatetime). 0001 to 9999 for date
quarter qq 1-4
month mm 1-12
week wk 1-54
day dd 1-31
dayofyear dy 1-366
weekday dw 1-7(Sun. —Sat.)
hour hh 0-23
minute mi 0-59
second ss 0-59
millisecond ms 0-999
calweekofyear cwk 1-53
calyearofweek cyr 1753 — 9999 (2079 for smalldatetime). 0001 to 9999 for date
caldayofweek cdw 1-7
142 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

When you enter ayear astwo digits (yy):

* Numberslessthan 50 areinterpreted as 20yy. For example, 01 is 2001,
32152032, and 49 is 2049.

* Numbersequal to or greater than 50 are interpreted as 19yy. For
example, 50 is1950, 74 is 1974, and 99 is 1999.

Milliseconds can be preceded by either acolon or a period. If preceded
by a colon, the number means thousandths of a second. If preceded by
aperiod, asingle digit means tenths of a second, two digits mean
hundredths of a second, and three digits mean thousandths of a second.
For example, “12:30:20:1” means twenty and one-thousandth of a
second past 12:30; “12:30:20.1" means twenty and one-tenth of a
second past 12:30.

date_expression
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Examples Example 1 Assumes a current date of November 25, 1995:

select datepart (month, getdate())

Example 2 Returnsthe year of publication from traditional cookbooks:

select datepart (year, pubdate) from titles where type =
"trad cook"

Example 3

select datepart (cwk,’1993/01/01")

Example 4

select datepart (cyr,’1993/01/01")

Reference Manual: Building Blocks 143

datepart

Usage

144

Example 5

select datepart (cdw,’1993/01/01")

Example 6 Find the hoursin atime:

declare @a time
select @a = "20:43:22"
select datepart (hh, @a)

Example 7 If ahour, minute, or second portion is requested from a date using
datename or datepar) theresult isthe default time, zero. If amonth, day, or year
isrequested from atime using datename or datepart, the result is the default
date, Jan 1 1900:

--Find the hours in a date
declare @a date

select @a = "apr 12, 0001"
select datepart (hh, @a)

--Find the month of a time
declare @a time

select @a = "20:43:22"
select datename (mm, @a)

January

When you give a null value to a datetime function as a parameter, NULL is
returned.

e datepart, adate function, returns an integer value for the specified part of
adatetime value. For more information about date functions, see “ Date
functions’ on page 609.

e datepart returns a number that follows I SO standard 8601, which defines
the first day of the week and the first week of the year. Depending on
whether the datepart function includes a value for calweekofyear,
calyearofweek, Or caldayorweek, the date returned may be different for the
same unit of time. For example, if Adaptive Server is configured to use
U.S. English as the default language, the following returns 1988:

datepart (cyr, "1/1/1989")

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Standards
Permissions

See also

However, the following returns 1989:
datepart (yy, "1/1/1989)

This disparity occurs because the SO standard defines the first week of
the year asthe first week that includes a Thursday and begins with
Monday.

For serversusing U.S. English astheir default language, thefirst day of the
week is Sunday, and the first week of the year is the week that contains
January 4th.

The date part weekday or dw returnsthe corresponding number when used
with datepart. The numbers that correspond to the names of weekdays
depend on the datefirst setting. Some language defaults (including
us_english) produce Sunday=1, Monday=2, and so on; others produce
Monday=1, Tuesday=2, and so on.You can change the default behavior on
a per-session basis with set datefirst. See the datefirst option of the set
command for more information.

calweekofyear, which can be abbreviated as cwk, returns the ordinal
position of the week within the year. calyearofweek, which can be
abbreviated as cyr, returns the year in which the week begins.
caldayofweek, which can abbreviated as cdw, returns the ordinal position
of the day within the week. You cannot use calweekofyear, calyearofweek,
and caldayofweek as date parts for dateadd, datediff, and datename.

Since datetime and time are only accurate to 1/300th of a second, when
these datatypes are used with datepart, milliseconds are rounded to the
nearest 1/300th second.

Since smalldatetime is accurate only to the minute, when a smalldatetime
value is used with datepart, seconds and milliseconds are always 0.

The values of the weekday date part are affected by the language setting.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute datepart.

Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datediff, datename, getdate

Reference Manual: Building Blocks 145

day

day
Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

146

Returns an integer that represents the day in the datepart of a specified date.

day(date_expression)

date_expression
isan expression of type datetime, smalldatetime, date, or a character stringin
adatetime format.

Returns the integer 02:

day ("11/02/03")

day(date_expression) is equivalent to datepart(dd,date_expression).
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute day.

Datatypes datetime, smalldatetime, date, time

Functions datepart, month, year

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

db_id

Description Returns the ID number of the specified database.
Syntax db_id(database_name)
Parameters database_name

isthe name of adatabase. database _name must be acharacter expression. If
it is aconstant expression, it must be enclosed in quotes.

Examples Returns the ID number of sybsystemprocs:

select db_id("sybsystemprocs")

Usage e db_id, asystem function, returns the database ID number.

e Ifyoudo not specify adatabase _name, db_id returnsthe ID number of the
current database.

e For genera information about system functions, see “ System functions”

on page 73.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute db_id.
See also Functions db_name, object_id

Reference Manual: Building Blocks 147

db_name

db_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

148

Returns the name of the database where the ID number is specified.
db_name([database_id])

database_id
isanumeric expression for the database ID (stored in sysdatabases.dbid).

Example 1 Returns the name of the current database:
select db_name ()
Example 2 Returnsthe name of database ID 4:

select db_name (4)

sybsystemprocs
* db_name, a system function, returns the database name.

* If nodatabase_id is supplied, db_name returns the name of the current
database.

» For general information about system functions, see “ System functions”
on page 73.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute db_name.

Functions col_name, db_id, object_name

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

degrees

Description
Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returnsthe size, in degrees, of an angle with the specified number of radians.
degrees(numeric)

numeric
isanumber, in radians, to convert to degrees.

select degrees (45)

* degrees, amathematical function, convertsradiansto degrees. Resultsare
of the same type as the numeric expression.

For numeric and decimal expressions, the results have an internal
precision of 77 and a scale equal to that of the expression.

» For genera information about mathematical functions, see“Mathematical
functions” on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute degrees.

Function radians

Reference Manual: Building Blocks 149

derived_stat

derived_stat

Description

Syntax

Parameters

Examples

Returns derived statistics for the specified object and index.

derived_stat("object_name" | object_id,
index_name | index_id,
['partition_name" | partition_id,]
“statistic”)
object_name
is the name of the object you are interested in. If you do not specify afully
qualified object name, derived_stat searches the current database.

object_id
isan aternative to object_name, and is the object ID of the object you are
interested in. object_id must be in the current database

index_name
is the name of the index, belonging to the specified object that you are
interested in.

index_id
isan aternative to index_name, and isthe index ID of the specified object
that you are interested in.

partition_name
is the name of the partition, belonging to the specific partition that you are
interested in. partition_name is optional. When you use partition_name or
partition_id, Adaptive Server returns statisticsfor the target partition, instead
of for the entire object.

partition_id
is an aternative to partition_name, and is the partition ID of the specified
object that you are interested in. partition_id is optional.

“statistic”
the derived statistic to be returned. Available statistics are:

Value Returns

data page cluster ratio or dpcr | The data page cluster ratio for the object/index pair

index page cluster ratio or ipcr | Theindex page cluster ratio for the object/index pair

data row cluster ratio or drcr | The datarow cluster ratio for the object/index pair

large io efficiency or Igio The large /0 efficiency for the object/index pair

space utilization or sput The space utilization for the object/index pair

Example 1 Selectsthe space utilization for thetitleidind index of thetitles table:

select derived stat("titles", "titleidind", "space utilization")

150

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Example 2 Selectsthe datapage cluster ratio for index ID 2 of thetitles table.
Note that you can use either "dpcr" OF "data page cluster ratio":

select derived stat("titles", 2, "dpcr")

Example 3 Statistics are reported for the entire object, as neither the partition
ID nor name is not specified:

1> select derived stat (object id("t1i"), 2, "drcr")
2> go

0.576923
Example 4 Reportsthe statistic for the partition tI_928003396:

1> select derived stat (object id("tl"), 0, "tl 928003306", "drcr")
2> go

1.000000

(1 row affected)

Example 5 Selectsderived statisticsfor all indexes of agiventable, using data
from syspartitions:

select convert (varchar(30), name) as name, indid,

convert (decimal (5, 3), derived stat(id, indid, 'sput')) as 'sput',
convert (decimal (5, 3), derived stat(id, indid, 'dpcr')) as 'dpcr',
convert (decimal (5, 3), derived stat(id, indid, 'drcr')) as 'drcr',
convert (decimal (5, 3), derived stat(id, indid, 'lgio')) as 'lgio'
from syspartitions where id = object id('titles')
go
name indid sput dpcr drcr lgio
titleidind_2l33579608 1 0.895 1.000 1.000 1.000
titleind_2133579608 2 0.000 1.000 0.688 1.000

(2 rows affected)

Example 6 Selects derived statistics for all indexes and partitions of a
partitioned table. Here, mymsgs_rr4 is aroundrobin partitioned table that is
created with aglobal index and alocal index.

1> select * into mymsgs rr4 partition by roundrobin 4 lock datarows
2> from master..sysmessages
2> go

(7597 rows affected)

Reference Manual: Building Blocks 151

derived_stat

152

1> create clustered index mymsgs rr4 clustind on mymsgs_ rr4 (error, severity)

2> go

1> create index mymsgs_rr4 ncindl on mymsgs_rr4 (severity)

2> go

1> create index mymsgs_rr4 ncind2 on mymsgs_rr4 (langid, dlevel) local index

2> go

2> update statistics mymsgs_rr4

1>

2> select convert (varchar (10), object _name(id)) as name,

3> (select convert (varchar(20), i.name) from sysindexes 1

4> where 1.id = p.id and i.indid = p.indid),

5> convert (varchar (30), name) as ptnname, indid,

6> convert (decimal (5, 3), derived stat (id, indid, partitionid, 'sput')) as 'sput',
7> convert (decimal (5, 3), derived stat (id, indid, partitionid, 'dpcr')) as 'dpcr',
8> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'drcr')) as 'drcr',
9> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'lgio')) as 'lgio!
10> from syspartitions p

11> where id = object_id('mymsgs_rr4')

name ptnname indid sput dpcr drcr lgio
mymsgs_rr4 mymsgs_rré mymsgs_rr4_ 786098810 0 0.90 1.000 1.00 1.000
mymsgs_rr4 mymsgs_rré mymsgs_rr4 802098867 0 0.90 1.000 1.00 1.000
mymsgs_rr4 mymsgs_rré mymsgs_rr4 818098924 0 0.89 1.000 1.00 1.000
mymsgs_rr4 mymsgs_rré mymsgs_rr4 834098981 0 0.90 1.000 1.00 1.000
mymsgs_rr4 mymsgs_rr4 clustind mymsgs_rr4 clustind 850099038 2 0.83 0.995 1.00 1.000
mymsgs_rr4 mymsgs_rr4 ncindl mymsgs_rr4 ncindl 882099152 3 0.99 0.445 0.88 1.000
mymsgs_rr4 mymsgs_rr4 ncind2 mymsgs_rr4 ncind2 898099209 4 0.15 1.000 1.00 1.000
mymsgs_rr4 mymsgs_rr4 ncind2 mymsgs_rr4 ncind2 914099266 4 0.88 1.000 1.00 1.000
mymsgs_rr4 mymsgs_rr4 ncind2 mymsgs_rr4 ncind2 930099323 4 0.877 1.000 1.000
1.000
mymsgs_rr4 mymsgs_rr4 ncind2 mymsgs_rr4 ncind2 946099380 4 0.945 0.993 1.000
1.000

Example 7 Select derived statisticsfor all allpages-locked tablesin the current
database:

2> select convert (varchar (10), object name(id)) as name

3> (select convert (varchar(20), i.name) from sysindexes 1

4> where i.id = p.id and i.indid = p.indid),

5> convert (varchar (30), name) as ptnname, indid,

6> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'sput')) as 'sput',
7> convert (decimal (5, 3), derived_stat(id, indid, partitionid, 'dpcr')) as 'dpcr',
8> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'drcr')) as 'drcr',
9> convert (decimal (5, 3), derived stat(id, indid, partitionid, 'lgio')) as 'lgio!
10> from syspartitions p

11> where lockscheme (id) = "allpages"

12> and (select o.type from sysobjects o where o.id = p.id) = 'U!'

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

name ptnname indid sput dpcr drcr lgio
stores stores stores_ 18096074 0 0.276 1.000 1.000 1.000
discounts discounts discounts 50096188 0 0.075 1.000 1.000 1.000
au_pix au_pix au_pix 82096302 0 0.000 1.000 1.000 1.000
au_pix tau_pix tau pix 82096302 255 NULL NULL NULL NULL

blurbs blurbs blurbs 114096416 0 0.055 1.000 1.000 1.000
blurbs tblurbs tblurbs_114096416 255 NULL NULL NULL NULL

tlapl tlapl tlapl 1497053338 0 0.095 1.000 1.000 1.000
tlapl tlapl tlapl 1513053395 0 0.082 1.000 1.000 1.000
tlapl tlapl tlapl_ 1529053452 0 0.095 1.000 1.000 1.000
tlapl tlapl ncind tlapl ncind 1545053509 2 0.149 0.000 1.000 1.000
tlapl tlapl ncind local tlapl ncind local 1561053566 3 0.066 0.000 1.000 1.000
tlapl tlapl_ncind local tlapl ncind local 1577053623 3 0.057 0.000 1.000 1.000
tlapl tlapl ncind local tlapl ncind local 1593053680 3 0.066 0.000 1.000 1.000
authors auidind auidind 1941578924 1 0.966 0.000 1.000 1.000
authors aunmind aunmind_1941578924 2 0.303 0.000 1.000 1.000
publishers pubind pubind 1973579038 1 0.059 0.000 1.000 1.000
roysched roysched roysched 2005579152 0 0.324 1.000 1.000 1.000
roysched titleidind titleidind 2005579152 2 0.777 1.000 0.941 1.000
sales salesind salesind 2037579266 1 0.444 0.000 1.000 1.000
salesdetai salesdetail salesdetail 2069579380 0 0.614 1.000 1.000 1.000
salesdetai titleidind titleidind 2069579380 2 0.518 1.000 0.752 1.000
salesdetai salesdetailind salesdetailind 2069579380 3 0.794 1.000 0.726 1.000
titleautho taind taind 2101579494 1 0.397 0.000 1.000 1.000
titleautho auidind auidind_2101579494 2 0.285 0.000 1.000 1.000
titleautho titleidind titleidind 2101579494 3 0.223 0.000 1.000 1.000
titles titleidind titleidind 2133579608 1 0.895 1.000 1.000 1.000
titles titleind titleind_ 2133579608 2 0.402 1.000 0.688 1.000

(27 rows affected)
Usage e derived_stat returns a double precision value.

e Thevaluesreturned by derived_stat match the values presented by the
optdiag utility.

« |If the specified object or index does not exist, derived_stat returns NULL.
e Specifying an invalid statistic type resultsin an error message.

e Using the optional partition_name or partition_id reports the requested
statistic for the target partition; otherwise, derived_stat reportsthe statistic
for the entire object.

e If you provide:

e Four arguments—derived_stat usesthethird argument asthe partition,
and returns derived statistics on the fourth argument.

e Three arguments — derived_stat assumes you did not specifiy a
partition, and returns derived statistic specified by the third argument.

Reference Manual: Building Blocks 153

derived_stat

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Only the table owner can execute derived_stat.
See also Document Performance and Tuning Guide for:

* “Access Methods and Query Costing for Single Tables’
o “Satigtics Tables and Displaying Statistics with optdiag”
Utility optdiag

154 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

difference

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the difference between two soundex values.
difference(exprl,expr2)

exprl
is a character-type column name, variable, or constant expression of char,
varchar, nchar, nvarchar, or unichar type.

expr2
is another character-type column name, variable, or constant expression of
char, varchar, nchar, nvarchar, or unichar type.

Example 1

select difference("smithers", "smothers")

Example 2

select difference("smothers", "brothers")

« difference, a string function, returns an integer representing the difference
between two soundex values.

* Thedifference function compares two strings and evaluates the similarity
between them, returning a value from 0 to 4. The best match is 4.

The string values must be composed of a contiguous sequence of valid
single- or double-byte roman letters.

 Ifexprlorexpr2isNULL, returns NULL.

« If you give avarchar expression is given as one parameter and a unichar
expression as the other, the varchar expression isimplicitly converted to
unichar (with possible truncation).

» For general information about string functions, see “ String functions’ on
page 72.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute difference.

Function soundex

Reference Manual: Building Blocks 155

exp

exp
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

156

Returns the value that results from raising the constant to the specified power.
exp(approx_numeric)

approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

select exp(3)

20.085537

* exp, amathematical function, returns the exponential value of the
specified value.

» For general information about mathematical functions, see* M athematical
functions’ on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute exp.

Functions log, log10, power

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

floor

Description
Syntax

Parameters

Examples

Returns the largest integer that is less than or equal to the specified value.
floor(numeric)

numeric
is any exact numeric (numeric, dec, decimal, tinyint, smallint, int, Or bigint),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or acombination of these.

Example 1

select floor(123)

Example 2

select floor(123.45)

Example 3

select floor(1.2345E2)

123.000000
Example 4

select floor(-123.45)

Example 5

select floor(-1.2345E2)

-124.000000
Example 6

select floor($123.45)

Reference Manual: Building Blocks 157

floor

Usage

Standards
Permissions

See also

158

e floor, amathematical function, returns the largest integer that isless than
or equal to the specified value. Results are of the same type asthe numeric
expression.

For numeric and decimal expressions, the results have aprecision equal to
that of the expression and a scale of 0.

e For genera information about mathematical functions, see“Mathematical
functions’ on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute floor.

Functions abs, ceiling, round, sign

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

get_appcontext

Description Returns the value of the attribute in a specified context. get_appcontext isa
built-in function provided by the Application Context Facility (ACF).

Syntax get_appcontext (“context_name”, “attribute_name”)

Parameters context_name
isarow specifying an application context name. It is saved as datatype
char(30).

attribute_name
isarow specifying an application context attribute name. It is saved as

datatype char(30).
Examples Example 1 Shows VALUEL returned for ATTRL.
select get appcontext ("CONTEXT1", "ATTR1")
VALUE1

ATTR1 does not exist in CONTEXT2:
select get appcontext ("CONTEXT2", "ATTR1")

Example 2 Shows the result when a user without appropriate permissions
attempts to get the application context.

select get appcontext ("CONTEXT1", "ATTR2", "VALUE1")

Select permission denied on built-in get appcontext, database dbid

Usage * Thisfunction returns O for success and -1 for failure.

e | the attribute you require does not exist in the application context,
get_appcontext returns NULL.

e get_appcontext saves attributes as char datatypes. If you are creating an
access rule that compares the attribute value to other datatypes, the rule
should convert the char data to the appropriate datatype.

e All argumentsfor this function are required.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, and are
stored by the ACF.

See also For more information on the ACF, see “Row-level access control” in Chapter

11, “Managing User Permissions’ of the System Administration Guide.

Reference Manual: Building Blocks 159

get_appcontext

Functions get_appcontext, list_appcontext, rm_appcontext, set_appcontext

160 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

getdate

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the current system date and time.

getdate()
None.

Example 1 Assumes a current date of November 25, 1995, 10:32 am.:
select getdate()
Nov 25 1995 10:32AM
Example 2 Assumes acurrent date of November:
select datepart (month, getdate())
11
Example 3 Assumes acurrent date of November:
select datename (month, getdate())
November
e getdate, adate function, returns the current system date and time.

« For more information about date functions, see “ Date functions’ on page
69.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute getdate.
Datatypes Date and time datatypes

Functions dateadd, datediff, datename, datepart

Reference Manual: Building Blocks 161

getutcdate

getutcdate
Description Returns a date and time where the valueisin Universal Coordinated Time
(UTC). getutcdate is calculated each time arow isinserted or selected.
Syntax getutcdate()
Examples insert tl1 (c1, c2, c3) select cl, getutcdate(),
getdate () from t2)
See also Functions biginttohex, convert

162 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

has_role

Description
Syntax

Parameters

Examples

Usage

Returnsinformation about whether the user has been granted the specified role.
has_role ("role_name", option)

role_name
is the name of a system or user-defined role.

option
allowsyouto limit the scope of theinformation returned. Currently, the only
option supported is 1, which suppresses auditing.

Example 1 Creates aprocedure to check if the user isa System Administrator:

create procedure sa_ check as

if (has_role("sa role", 0) > 0)

begin
print "You are a System Administrator."
return(1l)

end

Example 2 Checksthat the user has been granted the System Security Officer
role:

select has_role("sso_role", 1)
Example 3 Checksthat the user has been granted the Operator role:
select has role("oper role", 1)

e has_role functionsthe same way proc_role does. Beginning with Adaptive
Server version 15.0, Sybase supports—and recommends—that you use
has_role instead of proc_role. You need not, hoever, convert all of your
existing uses of proc_role to has_role.

e has_role, asystem function, checks whether an invoking user has been
granted, and has activated, the specified role.

* has_role returns 0 if the user has;
* Not been granted the specified role
* Not been granted arole which contains the specified role
e Been granted, but has not activated, the specified role

e has_role returns 1if theinvoking user has been granted, and has activated,
the specified role.

e has_role returns 2 if the invoking user has a currently activerole, which
contains the specified role.

Reference Manual: Building Blocks 163

has_role

e For general information about system functions, see “ System functions”

on page 73.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute has_role.
See also Commands alter role, create role, drop role, grant, set, revoke

Functions mut_excl_roles, role_contain, role_id, role_name, show_role

164 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

hash

Description

Syntax

Parameters

Examples

Usage

Produces a fixed-length hash value expression.
hash(expression , [algorithm])

expression
is the value to be hashed. This can be a column name, variable, constant
expression, or any combination of these that evaluatesto asingle value. It
cannot be image, text, unitext, or off-row Java datatypes. Expressionis
usually acolumn name. If expression is a character constant, it must be
enclosed in quotes.

algorithm
is the algorithm used to produce the hash value. A character literal (not a
variable or column name) that can take the values of either mds or shal, 2
(meaning mds binary), or 3 (meaning shal binary). If omitted, md5 is used.

Algorithm Results in

hash(expression, ‘md5’) | A varchar 32-byte string.

md5 (Message Digest Algorithm 5) isthe cryptographic
hash function with a 128-bit hash value.
hash(expression) A varchar 32-byte string

hash(expression, ‘shal’) | A varchar 40-byte string

shal (Secure Hash Algorithm) is the cryptographic
hash function with a 160-bit hash value.

hash(expression, 2) A varbinary 16-byte value (using the mds agorithm)
hash(expression, 3) A varbinary 20-byte value (using the shal algorithm)

Thisexample shows how aseal isimplemented. The existence of atable called
“atable” and with columnsid, sensitive_field and tamper seal.

update atable set tamper seal=hash (convert (varchar (30),
id) + sensitive field+@salt, 'shal')

When specified as a character literal, algorithm is not case-sensitive—*md5”,
“Md5” and “MD5” are equivalent. However, if expression is specified asa
character datatype then the value is case sensitive. “Time,” “TIME,” and
“time” will produce different hash values.

If algorithm isacharacter literal, the result isavarchar string. For “md5” thisis
a 32-byte string containing the hexadecimal representation of the 128-bit result
of the hash calculation. For “shal” thisis a40-byte string containing the
hexadecimal representation of the 160-bit result of the hash calculation.

Reference Manual: Building Blocks 165

hash

Standards
Permissions

See also

166

If algorithm is an integer literal, the result is avarbinary value. For 2, thisisa
16-byte value containing the 128-bit result of the hash calculation. For 3, this
is a 20-byte value containing the 160-bit result of the hash calculation.

Note Trailing null values are trimmed by Adaptive Server when inserted into
varbinary columns.

Individual bytesthat form expression are fed into the hash algorithm in the
order they appear in memory. For many datatypes order is significant. For
example, the binary representation of the 4-byte INT value 1 will be 0x00,
0x00, 0x00, 0x01 on M SB-first (big-endian) platforms and 0x01, 0x00, 0x00,
0x00 on LSB-first (little-endian) platforms. Because the stream of bytesis
different between platforms, the hash value is different aswell. Use hashbytes
function to achieve platform independent hash value.

Note The hash agorithms MD5 and SHA1 are no longer considered entirely
secure by the cryptographic community. Asfor any such algorithm, you should
be aware of the risks of using MD5 or SHA 1 in a security-critical context.

SQL92- and SQL 99- compliant
Any user can execute hash.
See also hashbytes for platform independent hash values.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

hashbytes

Description Produces a fixed-length, hash value expression.
Syntax hashbytes(algorithm, expression[, expression...] [, using options])
Parameters expression[, expression...]

—isthe value to be hashed. This value can be a column name, variable,
constant expression, or acombination of these that produces asingle value.
It cannot be image, text, unitext, or off-row Java datatypes.

algorithm

is the algorithm used to produce the hash value. A character literal (not a
variable or a column name) that can take the values “md5”, “sha’, “shal”,

or “ptn”.

Algorithm

Description

Md5

Message Digest Algorithm 5 — is the cryptographic hash algorithm
with a 128 bit hash value. hashbytes('md5', expression],...]) results
in avarbinary 16-byte value.

Sha-Shal

Secure Hash Algorithm —isthe cryptographic hash algorithm with a
160-bit hash value. hashbytes('shal’, expression,...]) resultsin a
varbinary 20-byte value.

Ptn

The partition hash algorithm with 32-bit hash value. The using
clauseisignored for the ‘ptn’ algorithm. hashbytes('ptn’,
expression],...]) resultsin an unsigned int 4-byte value.

using

Orders bytes for platform independence. The optional using clause
can precede the following option strings:

* Isb —all byte-order dependent datais normalized to little-endian
byte-order before being hashed.

* msb —all byte-order dependent data is normalized to big-endian
byte-order before being hashed.

 unicode — character datais normalized to unicode (UTF-16)
before being hashed.

Note A UTF-16 string issimilar to an array of short integers.
Because it is byte-order dependent, Sybase suggest for platform
independence you use Isb or msb in conjunction with
UNICODE.

* unicode_lsb —acombination of unicode and Isb.
 unicode_msb — a combination of unicode and msb.

Examples Example 1 Sealseach row of atable against tampering. This example assumes
the existence of auser table called “xtable” and coll, col2, col3 and tamper_sedl .

Reference Manual: Building Blocks

167

hashbytes

Usage

Standards
Permissions

See also

168

update xtable set tamper seal=hashbytes('shal', coll,
col2, col4, @salt)

declare @nparts unsigned int

select @nparts= 5

select hashbytes('ptn', coll, col2, col3) % nparts from
xtable

Example 2 Shows how col1, col2, and col3 will be used to partition rows into
five partitions.

alter table xtable partition by hash(coll, col2, col3) 5

The algorithm parameter is not case-sensitive; “md5,” “Md5” and “MD5” are
all equivalent. However, if the expression is specified as a character datatype,
thevalueiscase sensitive. “Time,” “TIME,” and “time” will produce different
hash values.

Note Trailing null values are trimmed by Adaptive Server when inserting into
varbinary columns.

In the absence of ausing clause, the bytes that form expression are fed into the
hash algorithm in the order they appear in memory. For many datatypes, order
issignificant. For example, the binary representation of the 4-byte INT value 1
will be 0x00, 0x00, 0x00, 0x01, on M SB-first (big-endian) platformsand 0x01,
0x00, 0x00, 0x00 on L SB-first (little-endian) platforms. Because the stream of
bytesis different for different platforms, the hash value is different as well.

With the using clause, the bytesthat form expression can befedinto the hashing
algorithmin aplatform-independent manner. The using clause can also be used
to transform character datainto Unicode so that the hash value becomes
independent of the server’s character configuration.

Note The hash agorithms MD5 and SHA1 are no longer considered entirely
secure by the cryptographic community. Be aware of the risks of using MD5 or
SHAL in a security-critical context.

SQL92- and SQL 99-compliant
Any user can execute hashbyte.
See also hash for platform dependent hash values.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

hextobigint

Description

Syntax

Parameters

Examples

Usage

See also

Returns the bigint value equivalent of a hexadecimal string
hextobigint(hexadecimal_string)

hexadecimal_string
is the hexadecimal value to be converted to an big integer; must be a
character-type column, variable name, or avalid hexadecimal string, with or
without a“0x” prefix, enclosed in quotes.

The following example converts the hexadecimal string Ox7fffffffffffffff to a
big integer.

1> select hextobigint ("Ox7fffffffffffffffn)
2> go

9223372036854775807

e hextobigint, a datatype conversion function, returns the
platform-independent integer equivalent of a hexadecimal string.

» Usethe hextobigint function for platform-independent conversions of
hexadecimal datato integers. hextobigint accepts a valid hexadecimal
string, with or without a“0x” prefix, enclosed in quotes, or the name of a
character-type column or variable.

hextobigint returns the bigint equivalent of the hexadecimal string. The
function always returnsthe same bigint equivalent for agiven hexadecimal
string, regardless of the platform on which it is executed.

Functions biginttohex, convert, inttohex, hextoint

Reference Manual: Building Blocks 169

hextoint

hextoint

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

170

Returns the platform-independent integer equivalent of a hexadecimal string.
hextoint(hexadecimal_string)

hexadecimal_string
is the hexadecimal value to be converted to an integer; must be a
character-type column, variable name, or avalid hexadecimal string, with or
without a“0x” prefix, enclosed in quotes.

Returns the integer equivalent of the hexadecimal string “0x00000100". The
result is always 256, regardless of the platform on which it is executed:

select hextoint ("0x00000100")

* hextoint, adatatype conversion function, returnsthe platform-independent
integer equivalent of a hexadecimal string.

e Usethe hextoint function for platform-independent conversions of
hexadecimal datato integers. hextoint accepts avalid hexadecimal string,
with or without a“0x” prefix, enclosed in quotes, or the name of a
character-type column or variable.

hextoint returns the integer equivalent of the hexadecimal string. The
function always returns the same integer equivalent for agiven
hexadecimal string, regardless of the platform on which it is executed.

e For more information about datatype conversion, see “ Datatype
conversion functions” on page 60.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute hextoint.

Functions biginttohex, convert, inttohex

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

host_id

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the client computer’s operating system process |D for the current
Adaptive Server client.

host_id()
None.

Inthisexample, the nameof the client computer is* ephemeris’ and the process
ID on the computer “ephemeris’ for the Adaptive Server client processis 2309:

ephemeris 2309

The following is the process information, gathered using the UNIX ps
command, from the computer “ephemeris’ showing that the client in this
exampleis*“isgl” and its process ID is 2309:

2309 pts/2 S 0:00 /work/asl25/0CS-12 5/bin/isql

e host_id, asystem function, returnsthe host process D of the client process
(not the server process).

* For general information about system functions, see* String functions’ on
page 72.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute host_id.

Function host_name

Reference Manual: Building Blocks 171

host_name

host name

Description Returns the current host computer name of the client process.

Syntax host_name()

Parameters None.

Examples select host_name ()
violet

Usage * host_name, a system function, returns the current host computer name of
the client process (not the server process).

» For general information about system functions, see “ System functions”

on page 73.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute host_name.

See also Function host_id

172 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

identity _burn_max

Description

Syntax

Parameters

Examples

Usage

Permissions

Trackstheidentity burn max valuefor agiven table. Thisfunction returnsonly
the value; does not perform an update.

identity_burn_max(table_name)

table_name
is the name of the table selected.

select identity burn max("tl")

identity _burn_max tracks the identity burn max value for a given table.

Only the table owner, System Administrator, or database administrator can
issue this command.

Reference Manual: Building Blocks 173

index_col

index_col

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

174

Returns the name of theindexed column in the specified table or view, and can
be up to 255 bytesin length

index_col(object_name, index_id, key_#[, user_id])

object_name
isthe name of atableor view. The name can be fully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

index_id
isthe number of object_name’sindex. This number isthe sasme asthe value
of sysindexes.indid.

key #
isakey in theindex. Thisvalueis between 1 and sysindexes.keycnt for a
clustered index and between 1 and sysindexes.keycnt+1 for a nonclustered
index.

user_id
isthe owner of object_name. If you do not specify user_id, it defaultsto the
caler'suser ID.

Finds the names of the keys in the clustered index on table t4:

declare @keycnt integer

select @keycnt = keycnt from sysindexes
where id = object id("t4")
and indid = 1

while @keycnt > 0

begin
select index col("t4", 1, @keycnt)
select @keycnt = @keycnt - 1

end

e index_col, asystem function, returns the name of the indexed column.
e index_col returns NULL if object_name isnot atable or view name.

e For genera information about system functions, see“ String functions’ on
page 72.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute index_col.
Function object_id

System procedure sp_helpindex

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

index_colorder

Description
Syntax

Parameters

Examples

Usage

Standards

Permissions

Returns the column order.
index_colorder(object_name, index_id, key_#[, user_id])
object_name

isthe name of atable or view. The name can befully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

index_id
isthe number of object_name’sindex. This number isthe same asthevaue
of sysindexes.indid.

key #
isakey intheindex. Valid values are 1 and the number of keysin theindex.
The number of keysis stored in sysindexes.keycnt.

user_id
isthe owner of object_name. If you do not specify user_id, it defaultsto the
caler'suser ID.

Returns“DESC” because the salesind index on the sales tableisin descending
order:

select name, index colorder ("sales", indid, 2)
from sysindexes

where id = object id ("sales")

and indid > 0

salesind DESC

e index_colorder, a system function, returns “ASC” for columnsin
ascending order or “DESC” for columns in descending order.

* index_colorder returnsNULL if object_name isnot atablenameor if key_#
isnot avalid key number.

e For general information about system functions, see“ String functions’ on
page 72.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute index_colorder.

Reference Manual: Building Blocks 175

index_name

iIndex_name

Description

Syntax

Parameters

Examples

Usage

Permissions

See also

176

Returns an index name, when you provide the index ID, the database ID, and

the object on which the index is defined.

index_name(dbid, obijid, indid)

dbid
isthe ID of the database on which the index is defined.

objid
isthe ID of the table (in the specified database) on which the index is
defined.

indid

isthe ID of the index for which you want a name.
Example 1
This exampleillustrates the normal usage of this function.

select index name (db_id("testdb"),
object id("testdb...tab apl"),1)

Example 2 Thisexampleillustratesthe output if the database ID isSNULL and

you use the current database ID.

select index name (NULL,object id("testdb..tab apl"),1)

Example 3 This example displays the table nameif theindex ID is 0, and the

database ID and object ID are valid.

select index name (db_id("testdb"),
object id("testdb..tab apl"),1)

e index_name uses the current database ID, if you passaNULL value

in the dbid parameter

e index_name returns NULL if you passa NULL value in the dbid
parameter.

* index_name returnsthe object name, if theindex ID is 0, and you pass

valid inputs for the object ID and the database ID.
Any user can execute this function.
db_id, object_id

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

inttohex

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the platform-independent hexadecimal equivalent of the specified
integer.

inttohex(integer_expression)

integer_expression
isthe integer value to be converted to a hexadecimal string.

select inttohex (10)

0000000A

e inttohex, adatatype conversion function, returnsthe platform-independent
hexadecimal equivalent of an integer, without a“0x” prefix.

* Usetheinttohex function for platform-independent conversionsof integers
to hexadecimal strings. inttohex accepts any expression that evaluatesto an
integer. It always returns the same hexadecimal equivalent for agiven
expression, regardless of the platform on which it is executed.

e For more information about datatype conversion, see “Datatype
conversion functions’ on page 60.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute inttohex.

Functions convert, hextobigint, hextoint

Reference Manual: Building Blocks 177

isdate

isdate

Description
Syntax

Parameters

Examples

Usage

178

Determines whether an input expression is avalid datetime value.

isdate(character_expression)

character_expression
is a character-type variable, constant expression, or column name.

Example 1 Determinesif the string 12/21/2005 is a valid datetime value:
select isdate('12/21/2005")

Example 2 Determinesif stor_id and date in the sales table are valid datetime
values:

select isdate(stor_id), isdate(date) from sales

store_id is not avalid datetime value, but date is.

Returns 1 if the expression is avalid datetime value; returns O if it is not.
Returns O for NULL input.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

iIsnumeric

Description
Syntax

Parameters

Examples

Usage

Determines if an expression is avalid numeric datatype.
isnumeric (character_expression)

character_expression
is a character-type variable, constant expression, or a column name.

Example 1 Determinesif the values in the postalcode column of the authors
table contains valid numeric datatypes:

select isnumeric (postalcode) from authors
Example 2 Determinesif the value $100.12345 is a valid numeric datatype:
select isnumeric("$100.12345")

e Returns 1if theinput expressionisavalid integer, floating point number,
money or decimal type; returns O if it does not or if theinputisaNULL
value. A return value of 1 guarantees that you can convert the expression
to one of these numeric types.

e You can include currency symbols as part of the input.

Reference Manual: Building Blocks 179

is_quiesced

IS_quiesced

Description

Syntax

Parameters

Examples

180

Indicates whether a database isin quiesce database mode. is_quiesced returns
1if the database is quiesced and O if it isnot.

is_quiesced(dbid)

dbid
is the database ID of the database.

Example 1 Uses the test database, which has a database ID of 4, and whichis
not quiesced:

1> select is quiesced(4)
2> go

(1 row affected)
Example 2 Uses the test database after running quiesce database to suspend
activity:

1> quiesce database tst hold test
2> go

1> select is quiesced(4)

2> go

(1 row affected)

Example 3 Usesthe test database after resuming activity using quiesce
database:

1> quiesce database tst release
2> go

1> select is _quiesced(4)

2> go

(1 row affected)

Example 4 Executes aselect statement with is_quiesced using an invalid
database I D:

l>select is_quiesced(-5)

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

(1 row affected)

Usage e is_quiesced has no default values. You see an error if you execute
is_quiesced without specifying a database.

e is_quiesced returnsNULL if you specify adatabase |D that does not exist.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute is_quiesced.
See also Command quiesce database

Reference Manual: Building Blocks 181

is_sec_service_on

IS_sec_service _on

Description Returns 1 if the security serviceisactive and O if it is not.
Syntax is_sec_service_on(security_service_nm)
Parameters security_service_nm

is the name of the security service.
Examples select is sec service on("unifiedlogin")

Usage » Useis_sec_service_on to determine whether a given security serviceis
active during the session.

e Tofind valid names of security services, execute:
select * from syssecmechs
The result might look something like:

sec_mech name available service

dce unifiedlogin
dce mutualauth

dce delegation

dce integrity

dce confidentiality
dce detectreplay
dce detectseq

The available_service column displays the security servicesthat are

supported by Adaptive Server.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can executeis_sec_service_on.
See also Function show_sec_services

182 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

isnull
Description Substitutes the value specified in expression2 when expressionl evaluatesto
NULL.
Syntax isnull(expressionl, expression2)
Parameters expression
isacolumn name, variable, constant expression, or acombination of any of
these that evaluates to a single value. It can be of any datatype, including
unichar. expression is usually a column name. If expression is a character
constant, it must be enclosed in quotes.
Examples Returns all rows from thetitles table, replacing null valuesin price with O:
select isnull (price, 0)
from titles
Usage e isnull, asystem function, substitutes the value specified in expression2
when expressionl evaluatesto NULL. For general information about
system functions, see “ String functions’ on page 72.
e Thedatatypes of the expressions must convert implicitly, or you must use
the convert function.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute isnull.
See also Function convert

Reference Manual: Building Blocks 183

isnumeric

isnumeric

Description
Syntax

Parameters

Examples

Usage

184

Determinesif an expression is avalid numeric datatype.
isnumeric (character_expression)

character_expression
is a character-type variable, constant expression, or a column name.

Example 1 Determines if the values in the postalcode column of the authors
table contains valid numeric datatypes:

select isnumeric(postalcode) from authors
Example 2 Determinesif the value $100.12345 is a valid numeric datatype:
select isnumeric("$100.12345")

e Returns 1if theinput expressionisavalid integer, floating point number,
money or decimal type; returns O if it does not or if the inputisaNULL
value. A return value of 1 guarantees that you can convert the expression
to one of these numeric types.

* You caninclude currency symbols as part of the input.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

lct_admin

Description

Syntax

Parameters

Manages the last-chance threshol d, returns the current value of the last-chance
threshold (LCT), and aborts transactions in a transaction log that has reached
itsLCT.

Ict_admin({{"lastchance" | "logfull" | "reserved_for_rollbacks"},
database_id
|"reserve”, {log_pages | 0}
| "abort", process-id [, database-id]})
lastchance
creates aLCT in the specified database.

logfull
returns 1if the LCT hasbeen crossed in the specified database and O if it has
not.

reserved_for_rollbacks
determines the number of pages a database currently reserved for rollbacks.

database_id
specifies the database.

reserve
obtains either the current value of the LCT or the number of log pages
required for dumping atransaction log of a specified size.

log_pages
is the number of pages for which to determine a LCT.

returns the current value of the LCT. The size of the LCT in adatabase with
separate log and data segments does not vary dynamically. It has afixed
value, based on the size of the transaction log. The LCT varies dynamically
in a database with mixed log and data segments.

abort
aborts transactions in a database where the transaction log has reached its
last-chance threshold. Only transactions in log-suspend mode can be
aborted.

logsegment_freepages
describesthe free space avail able for the log segment. Thisisthetotal value
of free space, not per-disk.

Reference Manual: Building Blocks 185

Ict_admin

Examples

186

process-id
The ID (spid) of aprocessin log-suspend mode. A processis placedin
log-suspend mode when it has open transactionsin atransaction |og that has
reached its last-chance threshold (LCT).

database-id
the ID of a database with a transaction log that has reached its LCT. If
process-id is 0, all open transactions in the specified database are
terminated.

Example 1 Createsthe log segment last-chance threshold for the database with
dbid 1. It returns the number of pages at which the new threshold resides. If
there was a previous last-chance threshold, it is replaced:

select lct _admin("lastchance", 1)

Example 2 Returns1if thelast-chance threshold for the database with dbid of
6 has been crossed, and O if it has not:

select lct admin("logfull", 6)

Example 3 Calculates and returns the number of log pages that would be
required to successfully dump the transaction log in alog containing 64 pages:

select lct admin("reserve", 64)

Example 4 Returnsthe current last-chance threshold of the transaction log in
the database from which the command was issued:

select lct_admin("reserve", 0)

Example 5 Aborts transactions belonging to process 83. The process must be
inlog-suspend mode. Only transactionsin atransaction log that hasreached its
LCT are terminated:

select lct_admin("abort", 83)

Example 6 Abortsall open transactions in the database with dbid of 5. This
form awakens any processes that may be suspended at the log segment
last-chance threshold:

select lct admin("abort", 0, 5)

Example 7 Determines the number of pages reserved for rollbacksin the
pubs2 database, which has a dbid of 5:

select lct admin("reserved for rollbacks", 5, 0)

Example 8 Describes the free space available for a database with a dbid of 4:

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage

Standards

Permissions

See also

select lct admin("logsegment freepages", 4)

Ict_admin, a system function, manages the log segment’s last-chance
threshold. For general information about system functions, see “ System
functions” on page 73.

If Ict_admin(“lastchance”, dbid) returns zero, thelog is not on a separate
segment in this database, so no last-chance threshold exists.

Whenever you create a database with a separate |og segment, the server
creates a default last chance threshold that defaultsto calling
sp_thresholdaction. This happens even if a procedure called
sp_thresholdaction does not exist on the server at all.

If your log crosses the last-chance threshold, Adaptive Server suspends
activity, triesto call sp_thresholdaction, finds it does not exist, generates
an error, then leaves processes suspended until the log can be truncated.

To terminate the oldest open transaction in atransaction log that has
reached its LCT, enter the ID of the process that initiated the transaction.

To terminate all open transactionsin atransaction log that has reached its
LCT, enter 0 as the process-id, and specify adatabase ID in the
database-id parameter.

ANSI SQL — Compliance level: Transact-SQL extension.

Only a System Administrator can execute Ict_admin abort. Any user can
execute the other Ict_admin options.

Document System Administration Guide.
Command dump transaction
Function curunreservedpgs

System procedure sp_thresholdaction

Reference Manual: Building Blocks 187

left

left

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

188

Returns a specified number of characters on the left end of acharacter string.

left(character_expression, integer_expression)

character_expression
isthe character string from which the characters on the left are selected.

integer_expression
isthe positive integer that specifies the number of characters returned. An
error is returned if integer_expression is negative.

Example 1 Returns the five leftmost characters of each book title.

use pubs

select left(title, 5)
from titles

order by title id

(18 row(s) affected)

Example 2 Returns the two leftmost characters of the character string
"abcdef".

select left ("abcdef", 2)

ab
(1 row(s) affected)

» character_expression can be of any datatype (except text or image) that can
beimplicitly converted to varchar or nvarchar. character_expression can be
aconstant, variable, or a column name. You can explicitly convert
character_expression using convert.

» leftisequivalent to substring(character_expression, 1, integer_expression).
For more information on this function, see substring on page 276.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute left.

Datatypes varchar, nvarchar

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Functions len, str_replace, substring

Reference Manual: Building Blocks 189

len

len
Description Returnsthe number of characters, not the number of bytes, of aspecified string
expression, excluding trailing blanks.
Syntax len(string_expression)
Parameters string_expression
isthe string expression to be evaluated.

Examples Returns the characters

select len(notes) from titles

where title id = "PC9999"

39
Usage This function isthe equivalent of char_length(string_expression).
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute len.
See also Datatypes char, nchar, varchar, nvarchar

Functions char_length, left, str_replace

190 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

license_enabled

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns 1 if afeature’slicenseis enabled, 0 if the license is not enabled, or
NULL if you specify aninvalid license name.

license_enabled("ase_server" | "ase_ha" | "ase_dtm" | "ase_java" |
"ase_asm")

ase_server
specifies the license for Adaptive Server.

ase_ha
specifies the license for the Adaptive Server high availability feature.

ase_dtm
specifies the license for Adaptive Server distributed transaction
management features.

ase_java
specifies the license for the Javain Adaptive Server feature.

ase_asm
specifies the license for Adaptive Server advanced security mechanism.

Indicates that the license for the Adaptive Server distributed transaction
management feature is enabled:

select license enabled("ase dtm")

« Forinformation about installing license keysfor Adaptive Server features,
seeyour installation guide.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute license_enabled.
Documents Installation guide for your platform

System procedure sp_configure

Reference Manual: Building Blocks 191

list_appcontext

list_appcontext

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

See also

192

Lists al the attributes of all the contextsin the current session. list_appcontext
isabuilt-in function provided by the Application Context Facility (ACF).

list_appcontext(['context_name"])

context_name
isan optional argument that names all the application context attributesin
the session.

Example 1 Shows the results when a user with appropriate permissions
attempts to list the application contexts:

select list appcontext ([context name])

Context Name: (CONTEXT1)
Attribute Name: (ATTR1) Value: (VALUE2)
Context Name: (CONTEXT2)
Attribute Name: (ATTR1l) Value: (VALUE1l)

Example 2 Shows the results when a user without appropriate permissions
attempts to list the application contexts:

select list appcontext ()

Select permission denied on built-in list appcontext,
database DBID

e Thisfunction returns O for success.

» Since built-in functions do not return multiple result sets, the client
application receives list_appcontext returns as messages.

ANSI SQL — Compliance level: Transact-SQL extension

Permissions depend on the user profile and the application profile, and are
stored by the ACF.

For more information on the ACF, see “Row-level access control” in Chapter
11, “Managing User Permissions” of the System Administration Guide.

Functions get_appcontext, list_appcontext, rm_appcontext, set_appcontext

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

lockscheme

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

Returns the locking scheme of the specified object as a string.

lockscheme(object_name)
lockscheme(object_id [, db_id])

object_name
is the name of the object that the locking scheme returns. object_name can
also be afully qualified name.

db_id
the ID of the database specified by object_id.

object_id
the ID of the object that the locking scheme returns.

Example 1 Selects the locking scheme for the titles table in the current
database;

select lockscheme("titles")

Example 2 Selects the locking scheme for object_id 224000798 (in this case,
the titles table) from database ID 4 (the pubs2 database):

select lockscheme (224000798, 4)

Example 3 Returnsthe locking schemefor thetitles table (object_name inthis
exampleis fully qualified):

select lockscheme (tempdb.ownerjoe.titles)
¢ lockscheme returnsvarchar(11) and allows NULLSs.
* lockscheme defaults to the current database if you:

* Do not provide afully qualified object_name.

* Do not provide adb_id.

¢ Provideanull for db_id.

« If the specified object is not atable, lockscheme returns the string “not a
table.”

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute lockscheme.

Reference Manual: Building Blocks 193

log

log
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

194

Returns the natural logarithm of the specified number.

log(approx_numeric)

approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

select log(20)

2.995732

* log, amathematical function, returnsthe natural logarithm of the specified
value.

» For general information about mathematical functions, see* M athematical
functions’ on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute log.

Functions logl0, power

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

log10

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the base 10 logarithm of the specified number.
log10(approx_numeric)

approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

select logl0(20)

1.301030

* logl0, amathematical function, returns the base 10 logarithm of the
specified value.

« For genera information about mathematical functions, see“Mathematical
functions” on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute log10.

Functions log, power

Reference Manual: Building Blocks 195

lower

lower

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

196

Returns the lowercase equivalent of the specified expression.
lower(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

select lower (city) from publishers

boston
washington
berkeley

» lower, astring function, converts uppercase to lowercase, returning a
character value.

* lower istheinverse of upper.
e If char_expr or uchar_exprisNULL, returns NULL.

e For general information about string functions, see “ String functions” on
page 72.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute lower.

Function upper

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

[trim

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the specified expression, trimmed of |eading blanks.
Itrim(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is acharacter-type column name, variable, or constant expression of unichar
or univarchar type.

select ltrim(" 123")

e ltrim, astring function, removes leading blanks from the character
expression. Only values equivalent to the space character in the current
character set are removed.

e If char_expr or uchar_expr isNULL, returns NULL.

« For Unicode expressions, returns the lowercase Unicode equivalent of the
specified expression. Charactersin the expression that have no lowercase
equivalent are left unmodified.

» For general information about string functions, see “ String functions’ on
page 72.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute Itrim.

Function rtrim

Reference Manual: Building Blocks 197

max

max

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

198

Returns the highest value in an expression.
max(expression)

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery.

Example 1 Returns the maximum valuein the discount column of the
salesdetail table as a new column:

select max(discount) from salesdetail

62.200000

Example 2 Returns the maximum value in the discount column of the
salesdetail table as a new row:

select discount from salesdetail
compute max (discount)

* max, an aggregate function, finds the maximum value in a column or
expression. For general information about aggregate functions, see
“Aggregate functions’ on page 51.

* You can use max with exact and approximate numeric, character, and
datetime columns; you cannot use it with bit columns. With character
columns, max finds the highest value in the collating sequence. max
ignores null values. max implicitly converts char datatypesto varchar, and
unichar datatypes to univarchar, stripping al trailing blanks.

* unichar datais collated according to the default Unicode sort order.

» Adaptive Server goes directly to the end of the index to find the last row
for max when there is an index on the aggregated column, unless:

* Theexpression not acolumn.
» Thecolumnisnot the first column of an index.
» Thereisanother aggregate in the query.
» Thereisagroup by or where clause.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute max.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

See also Commands compute clause, group by and having clauses, select, where
clause

Functions avg, min

Reference Manual: Building Blocks 199

min

min
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

200

Returns the lowest value in a column.
min(expression)

expression

is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “ Expressions” on page 335.

select min(price) from titles
where type = "psychology"

min, an aggregate function, finds the minimum value in a column.

For general information about aggregate functions, see “ Aggregate
functions’ on page 51.

You can use min with numeric, character, time, and datetime columns; you
cannot use it with bit columns. With character columns, min finds the
lowest valuein the sort sequence. min implicitly convertschar datatypesto
varchar, and unichar datatypes to univarchar, stripping all trailing blanks.
min ignores null values. distinct is not available, sinceit is not meaningful
with min.

unichar datais collated according to the default Unicode sort order.

Adaptive Server goes directly to the first qualifying row for min when
there is an index on the aggregated column, unless:

* Theexpression is not acolumn.
* Thecolumn isnot the first column of an index.
» Thereisanother aggregate in the query.

e Thereisagroup by clause.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute min.

Commands compute clause, group by and having clauses, select, where
clause

Functions avg, max

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

month

Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

Returns an integer that represents the month in the datepart of a specified date.

month(date_expression)

date_expression
isan expression of type datetime, smalldatetime, date, or acharacter stringin
adatetime format.

Returnsthe integer 11:

day("11/02/03")

month(date_expression) is equivalent to datepart(mm, date_expression).
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute month.

Datatypes datetime, smalldatetime, date

Functions datepart, day, year

Reference Manual: Building Blocks 201

mut_excl_roles

mut_excl _roles

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

202

Returns information about the mutual exclusivity between two roles.

mut_excl_roles (rolel, role2 [membership | activation])

rolel
is one user-defined role in amutually exclusive relationship.

role2
is the other user-defined role in amutually exclusive relationship.

level
isthe level (membership or activation) at which the specified roles are
exclusive.

Shows that the admin and supervisor roles are mutually exclusive:

alter role admin add exclusive membership supervisor
select
mut excl roles("admin", "supervisor", "membership")

* mut_excl_roles, asystem function, returns information about the mutual
exclusivity between two roles. If the System Security Officer definesrolel
as mutually exclusive with role2 or arole directly contained by role2,
mut_excl_roles returns 1. If the roles are not mutually exclusive,
mut_excl_roles returns 0.

» For general information about system functions, see “ System functions”
on page 73.

ANSI SQL — Compliance level: Transact-SQL extension

Any user can execute mut_excl_roles.

Commands alter role, create role, drop role, grant, set, revoke
Functions proc_role, role_contain, role_id, role_name

System procedures sp_activeroles, sp_displayroles, sp_role

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

newid

Description

Syntax

Parameters

Examples

Generates human-readable, globally unique IDs (GUIDs) in two different
formats, based on arguments you provide. The length of the human-readable
format of the GUID valueis either 32 bytes (with no dashes) or 36 bytes (with
dashes).
newid([optionflag])
option flag

e 0, or novalue—the GUID generated is human-readable (varchar), but

does not include dashes. This argument, which is the default, is useful
for converting values into varbinary.

e -1-the GUID generated is human-readable (varchar) and includes
dashes.

e -0x0—returnsthe GUID as avarbinary.
e Any other value for newid returns NULL.

Example 1 Createsatablewith varchar columns 32 bytes|ong, then uses newid
with no arguments with the insert statement:

create table t (UUID wvarchar(32))

go
insert into t values (newid())
insert into t values (newid())

go
select * from t

f81d4fae7decll1d0a76500a0c9le6bf6
7cd5b7769df75cefe040800208254639

Example 2 Produces a GUID that includes dashes:

select newid (1)

b59462af-a55b-469d-a79f-1d6c3clel9el

Example 3 Returns anew GUID of type varbinary for every row that is
returned from the query:

select newid(0x0) from sysobjects
Example 4 Usesnewid with the varbinary datatype:

sp_addtype binguid, "varbinary(1l6)"
create default binguid dflt

Reference Manual: Building Blocks 203

newid

Usage

Standards

Permissions

204

as
newid (0x0)

sp_bindefault "binguid dflt", "binguid"

create table Tl (empname char(60), empid int, emp guid

binguid)
insert Tl (empname, empid) values ("John Doe", 1)
insert Tl (empname, empid(values ("Jane Doe", 2)

* newid generates two values for the globally unique ID (GUID) based on
arguments you pass to newid. The default argument generates GUIDs
without dashes. By default newid returns new valuesfor every filtered row.

* You can use newid in defaults, rules, and triggers, similar to other
functions.

e Make sure the length of the varchar columnis at least 32 bytes for the
GUID format without dashes, and at |east 36 bytes for the GUID format
with dashes. The column length istruncated if it is not declared with these
minimum required lengths. Truncation increases the probability of
duplicate values.

e Anargument of zero is equivalent to the default.

» Because GUIDs are globally unique, they can be transported across
domains without generating duplicates.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute newid.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

next_identity

Description Retrieves the next identity value that is available for the next insert.
Syntax next_identity(table_name)
Parameters table_name
identifies the table being used.

Examples Updates the value of c2 to 10. The next available valueis 11.

select next identity ("t1")

t1

11
Usage e next_identity returns the next value to be inserted by thistask. In some

cases, if multiple users are inserting values into the same tabl e, the actual
value reported as the next value to be inserted is different from the actual
value inserted if another user performs an intermediate insert.

e next_identity returns avarchar chararcter to support any precision of the
identity column. If the table is aproxy table, a non-user table, or the table
does not have identity property, NULL isreturned.

Permissions Only the table owner, System Administrator, or database administrator can
issue this command.

Reference Manual: Building Blocks 205

nullif

nullif

Description Supports conditional SQL expressions; can be used anywhere avalue
expression can be used; alternative for acase expression.

Syntax nullif(expression, expression)

Parameters nullif
comparesthe values of thetwo expressions. If thefirst expression equalsthe
second expression, nullif returnsNULL. If thefirst expression does not equal
the second expression, nullif returns the first expression.

expression
isacolumn name, a constant, afunction, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “ Expressions’ on
page 335.

Examples Example 1 Selectsthetitles and type from the titles table. If the book typeis
UNDECIDED, nullif returnsa NULL value;

select title,
nullif (type, "UNDECIDED")
from titles

Example 2 Thisisan aternative way of writing Example 1:

select title,
case
when type = "UNDECIDED" then NULL
else type
end
from titles

Usage * nullif expression alternate for a case expression.

* nullif expression simplifies standard SQL expressions by alowing you to
express a search condition as a simple comparison instead of using a
when...then construct.

* You can use nullif expressions anywhere an expression can be used in SQL .

» Atleast oneresult of the case expression must return anon-null value. For
exampl e the following results in an error message:

select price, coalesce (NULL, NULL, NULL)
from titles
All result expressions in a CASE expression must not be NULL.

206 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e |f your query produces a variety of datatypes, the datatype of acase
expression result is determined by datatype hierarchy, as described in
“Datatypes of mixed-mode expressions’ on page 7. If you specify two
datatypes that Adaptive Server cannot implicitly convert (for example,
char and int), the query fails.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Anyone can execute nullif.
See also Commands case, coalesce, select, if...else, where clause

Reference Manual: Building Blocks 207

object_id

object id
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

208

Returns the object 1D of the specified object.
object_id(object_name)

object_name
isthe name of a database object, such as atable, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the
database and owner name). Enclose the object_name in quotes.

Example 1

select object id("titles")

208003772
Example 2

select object id("master..sysobjects")

* object_id, asystem function, returnsthe object’sID. Object | Ds are stored
in the id column of sysobjects.

» For general information about system functions, see “ System functions”
on page 73.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute object_id.
Functions col_name, db_id, object_name

System procedure sp_help

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

object_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the name of the object with the object ID you specify; can be up to 255
bytesin length.

object_name(object_id[, database_id])

object_id
istheobject ID of adatabase object, such asatable, view, procedure, trigger,
default, or rule. Object IDs are stored in the id column of sysobjects.

database_id
isthe ID for adatabase if the object is not in the current database. Database
IDs are stored in the db_id column of sysdatabases.

Example 1

select object name (208003772)

titles
Example 2

select object name (1, 1)

sysobjects
e object_name, asystem function, returns the object’s name.

« For general information about system functions, see “ System functions”
on page 73.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute object_name.
Functions col_name, db_id, object_id

System procedure sp_help

Reference Manual: Building Blocks 209

object_owner_id

object_owner _id

Description Returns an object’s owner ID.
Syntax object_owner_id(object_id[, database_id])
Parameters object_id

ID of the object you are investigating.

database id
ID of the database in which the object resides.

Examples Select the owner’s 1D for an object with an ID of 1, inthe database with the ID
of 1 (the master database):

select object owner id(1,1)

Permissions Any user can execute object_owner_id

210 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

pagesize
Description

Syntax

Parameters

Examples

Returns the page size, in bytes, for the specified object.
pagesize(object_name],])
pagesize(object_id[,db_id[, index_id]])

object_name
is the object name of the page size of this function returns.

index_name
indicates the index name of the page size you want returned.

object_id
isthe object ID of the page size this function returns.

db_id
isthe database ID of the object.

index_id
istheindex ID of the abject you want returned.

Example 1 Selectsthe page size for thetitle_id index in the current database.
select pagesize("title", "title id")

Example 2 Thefollowing returns the page size of the datalayer for the object
with object_id 1234 and the database with adb_id of 2 (the previous example
defaults to the current database):

select pagesize(1234,2, null)
select pagesize(1234,2)
select pagesize(1234)

Example 3 Thefollowing all default to the current database:

select pagesize (1234, null, 2)
select pagesize(1234)

Example 4 Selectsthe page sizefor thetitles table (object_id 224000798) from
the pubs2 database (db_id 4):

select pagesize (224000798, 4)

Example 5 Returns the page size for the nonclustered index’s pages table
mytable, residing in the current database:

pagesize (object id(‘mytable’), NULL, 2)

Example 6 Returnsthe page size for object titles_clustindex from the current
database:

Reference Manual: Building Blocks 211

pagesize

select pagesize("titles", "titles clustindex")

Usage » pagesize defaultsto the datalayer if you do not provide an index name or
index_id (for example, select pagesize("t1i")) if you usetheword
“null” as aparameter (for example, select pagesize ("t1", null).

» If the specified object is not an object requiring physical data storage for
pages (for example, if you provide the name of aview), pagesize returnsO.

» If the specified object does not exist, pagesize returns NULL.
Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute pagesize.

212 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

partition_id

Description Returns the partition ID of the specified data or index partition name.

Syntax partition_id(table_name, partition_name[,index_name])

Parameters table_name

isthe name for atable.
partition_name

is the partition name for a table partition or an index partition.
index_name

is the name of theindex of interest.

Examples Example 1 Returnsthe partition ID corresponding to the partition name
testtable_ptn1 and index id O (the base table). The testtable must exist in the
current database:

select partition id("testtable", "testtable ptnl")
Example 2 Returnsthe partition ID corresponding to the partition name
testtable_clust_ptn1 for the index name clust_index1. The testtable must exist
in the current database:
select partition id("testtable", "testtable clust ptnl", "clust indexl")
Example 3 Thisisthe same asthe previous example, except that the user need
not be in the same database as where the target table is located:
select partition id("mydb.dbo.testtable", "testtable clust ptnl",
"clust indexl1")
Usage You must enclose table_name, partition_name and index_name in quotes.
See also Functions data_pages, object_id, partition_name, reserved_pages,

row_count, used_pages

Reference Manual: Building Blocks 213

partition_name

partition_name

Description

Syntax

Parameters

Examples

Usage

See also

214

The explicit name of anew partition, partition_name returns the partition name
of the specified data or index partition id.

partition_name(indid, ptnid[, dbid])
indid
isthe index ID for the target partition.

ptnid
isthe ID of the target partition.

dbid
isthe database ID for the target partition. If you do not specify this
parameter, the target partition is assumed to be in the current database.

Example 1 Returns the partition name for the given partition ID belonging to
the base table (with an index 1D of 0). The lookup is done in the current
database because it does not specify a database ID:

select partition name (0, 1111111111)

Example 2 Returnsthe partition name for the given partition ID belonging to
the clustered index (index ID of 1 is specified) in the testdb database.

select partition name (1, 1212121212, db_id("testdb")
e If the search does not find the target partition, the return is NULL.

Functions data_pages, object_id, partition_id, reserved_pages, row_count

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

partition_object _id

Description

Syntax

Parameters

Examples

Usage

Displays the object ID for a specified partition ID and database ID.
partition_object_id(partition_id [, database_id])

partition_id
isthe ID of the partition whose object ID isto be retrieved.

database_id
isthe database 1D of the partition.

Example 1 Displaysthe object ID for the partition whose partition ID is 2;
select partition object id(2)

Example 2 Displaysthe object ID for the partition whose partition ID is 14
and whose database ID is 7:

select partition object id(14,7)

Example 3 ReturnsaNULL vauefor the database ID becauseaNULL value
is passed to the function:

select partition object id(1424005073, NULL)

NULL
(1 row affected)

e partition_object_id uses the current database ID if you do not include a
database ID.

e partition_object_id returns NULL if you use aNULL value for the
partition_id.

e partition_object_id returnsa NULL valueif you includeaNULL value for
database ID.

e partition_object_id returns NULL if you provide an invalid or non-existent
partition_id Or database_id.

Reference Manual: Building Blocks 215

passinfo

passinfo

Description

Syntax

Parameters

Usage

216

Internet protocol version 6 (IPv6) architecture uses an IP address length of 64
bytes. Use passinfo to return information from the process status structure

(pss):
pssinfo(<spid | 0>, '<pss field>")

spid —
isthe process ID. When you enter 0, the current process is used.

pss field
is the process status structure field. Valid values are:

e ipaddr —client |P address.

e extusername —when using externa authentication like (PAM, LDAP),
extusername returns the external PAM or LDAP user name used.

e dn —distinguished name when using LDAP authentication.

The pssinfo function also includes the option to display the external user name
and the distinguish name.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

patindex

Description

Syntax

Parameters

Examples

Returns the starting position of the first occurrence of a specified pattern.

patindex("%pattern%", char_exprluchar_expr[, using
{bytes | characters | chars}])

pattern
isacharacter expression of thechar or varchar datatype that may include any
of the pattern-match wildcard characters supported by Adaptive Server. The
% wildcard character must precede and follow pattern (except when
searching for first or last characters). For a description of the wildcard
characters, see “Pattern matching with wildcard characters’ on page 353.

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar,
or univarchar type.

using

specifies aformat for the starting position.
bytes

returns the offset in bytes.

chars or characters
returns the offset in characters (the default).

Example 1 Selectsthe author 1D and the starting character position of theword
“circus’ in the copy column:

select au_id, patindex("%circus%", copy)
from blurbs

au id
486-29-1786 0
648-92-1872 0
998-72-3567 38
899-46-2035 31
672-71-3249 0
409-56-7008 0
Example 2
select au_id, patindex("%circus%", copy,

Reference Manual: Building Blocks 217

patindex

using chars)
from blurbs

Example 3 Findsall therowsin sysobjects that start with “sys’ with afourth
character thatis“a’, “b”, “c”, or “d”:
select name

from sysobjects
where patindex("sys[a-d]%", name) > 0

sysalternates
sysattributes
syscharsets
syscolumns
syscomments
sysconfigures
sysconstraints
syscurconfigs
sysdatabases
sysdepends
sysdevices

Usage e patindex, astring function, returns an integer representing the starting
position of the first occurrence of pattern in the specified character
expression, or a0 if pattern is not found.

e You can use patindex on all character data, including text and image data.

» For unichar, univarchar, and unitext, patindex returns the offset in Unicode
characters. The pattern string isimplicitly converted to UTF-16 before
comparison, and the comparison is based on the default unicode sort order
configuration. For example, thisiswhat is returned if a unitext column
contains row val ue U+0041U+0042U+d800U+dc00U+0043:

°

select patindex("%C%", ut) from unitable

» By default, patindex returns the offset in characters; to return the offset in
bytes (multibyte character strings), specify using bytes.

* Include percent signs before and after pattern. To look for pattern as the
first characters in a column, omit the preceding %. To look for pattern as
the last characters in a column, omit the trailing %.

e If char_expr or uchar_expr isNULL, patindex returns 0.

218 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e Ifyou giveavarchar expression as one parameter and aunichar expression
asthe other, the varchar expression isimplicitly converted to unichar (with
possible truncation).

e For general information about string functions, see “ String functions’ on

page 72.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute patindex.
See also Functions charindex, substring

Reference Manual: Building Blocks 219

pi

Description Returns the constant value 3.1415926535897936.
Syntax pi()
Parameters None
Examples select pi()
3.141593
Usage * pi, amathematical function, returns the constant value of
3.1415926535897931.

» For general information about mathematical functions, see* M athematical
functions’ on page 70.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute pi.
See also Functions degrees, radians

220 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

power

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the value that results from raising the specified number to agiven
power.

power(value, power)

value
isanumeric value.

power
iS an exact numeric, approximate numeric, or money value.

select power (2, 3)

« power, amathematical function, returns the value of value raised to the
power power. Results are of the same type as value.

In expressions of type numeric or decimal, this function returns
precision:38, scale 18.

* For genera information about mathematical functions, see*Mathematical
functions” on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute power.

Functions exp, log, log10

Reference Manual: Building Blocks 221

proc_role

proc_role

Description

Syntax

Parameters

Examples

Usage

222

Returnsinformation about whether the user has been granted the specified role.

Note Sybase supports—and recommends—that you use has_role instead of
proc_role. You need not, however, convert your existing uses of proc_role to
has_role.

proc_role("role_name")

role_name
isthe name of a system or user-defined role.

Example 1 Creates a procedure to check if the user isa System Administrator:

create procedure sa_check as

if (proc_role("sa role") > 0)

begin
print "You are a System Administrator."
return(1l)

end

Example 2 Checksthat the user has been granted the System Security Officer
role:

select proc_role("sso_role")

Example 3 Checksthat the user has been granted the Operator role;
select proc_role ("oper_role")

e Using proc_role with a procedure that startswith “sp_” returns an error.

e proc_role, a system function, checks whether an invoking user has been
granted, and has activated, the specified role.

e proc_role returns 0 if the user has;
* Not been granted the specified role
* Not been granted arole which contains the specified role
e Been granted, but has not activated, the specified role

e proc_role returns 1if theinvoking user hasbeen granted, and has activated,
the specified role.

» proc_role returns 2 if theinvoking user has a currently active role, which
contains the specified role.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e For genera information about system functions, see “ System functions”

on page 73.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute proc_role.
See also Commands alter role, create role, drop role, grant, set, revoke

Functions mut_excl_roles, role_contain, role_id, role_name, show_role

Reference Manual: Building Blocks 223

radians

radians
Description Returns the size, in radians, of an angle with the specified number of degrees.
Syntax radians(numeric)
Parameters numeric
isany exact numeric (numeric, dec, decimal, tinyint, smallint, Or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.
Examples select radians(2578)
44
Usage » radians, amathematical function, converts degreesto radians. Resultsare
of the same type as numeric.
To express numeric or decimal dataypes, this function returns precision:
38, scale 18.
When money datatypes are used, internal conversion to float may cause
loss of precision.
» For general information about mathematical functions, see* M athematical
functions’ on page 70.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute radians.
See also Function degrees

224 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

rand

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns arandom value between 0 and 1, which is generated using the
specified seed value.

rand([integer])
integer

isany integer (tinyint, smallint, or int) column name, variable, constant
expression, or a combination of these.

Example 1

select rand()

0.395740
Example 2

declare @seed int
select @seed=100
select rand(@seed)

0.000783

* rand, amathematical function, returns arandom float value between 0 and
1, using the optional integer as a seed value.

e Therand function uses the output of a 32-bit pseudorandom integer
generator. Theinteger is divided by the maximum 32-bit integer to give a
double value between 0.0 and 1.0. The rand function is seeded randomly
at server start-up, so getting the same sequence of random numbersis
unlikely, unlessthe user first initializes this function with a constant seed
value. Therand function is aglobal resource. Multiple users calling the
rand function progress along asingle stream of pseudorandom values. If a
repeatabl e series of random numbers is needed, the user must assure that
the function is seeded with the same value initialy and that no other user
calls rand while the repeatable sequenceis desired.

e For genera information about mathematical functions, see*“Mathematical
functions” on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute rand.

Datatypes Approximate numeric datatypes

Reference Manual: Building Blocks 225

rand2

rand2

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

226

Returns arandom value between 0 and 1, which is generated using the
specified seed value, and computed for each returned row when used in the
select list.

rand2([integer])

integer
isany integer (tinyint, smallint, or int) column name, variable, constant
expression, or a combination of these.

If there are n rows istablet, the following select statement returns n different
random values, not just one.

select rand2() from t

* rand2, amathematical function, returns arandom float value between 0
and 1, using the optional integer as a seed value. Unlikerand, itis
computed for each returned row when it is used in the select list.

e Thebehavior of rand2 in places other than the select list is currently
undefined.

» For more information about the 32-bit pseudorandom integer generator,
see the Usage section of rand, in Reference Manual: Blocks.

e For general information about mathematical functions, see“Mathematical
functions’ on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute rand.

Datatypes Approximate numeric datatypes

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

replicate

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returnsastring consi sting of the specified expression repeated agiven number
of times.
replicate(char_expr | uchar_expr, integer_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is acharacter-type column name, variable, or constant expression of unichar
or univarchar type.

integer_expr
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression.

select replicate("abcd", 3)

abcdabcdabed

* replicate, a string function, returns a string with the same datatype as
char_expr or uchar_expr containing the same expression repeated the
specified number of times or as many times asfitsinto 16K, whichever is
less.

e If char_expr or uchar_expr isNULL, returnsasingle NULL.

» For general information about string functions, see “ String functions’ on
page 72.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute replicate.

Function stuff

Reference Manual: Building Blocks 227

reserve_identity

reserve_identity

Description

Syntax

Parameters

Examples

228

reserve_identity allowsaprocessto reserve ablock of identity valuesfor use by

that process.

After aprocess callsreserve_identity to reserve the block of values, subsequent
identity values needed by this process are drawn from thisreserved pool. When
these reserved numbers are exhausted, or if you insert datainto a different
table, the existing identity options apply. reserve_identity can retain more than
one block of identity values, so if inserts to different tables are interleaved by
asingle process, the next value in atable’'s reserved block is used.

Reserves a specified size block of identity valuesfor the specified table, which
are used exclusively by the calling process. Returns the reserved starting
number, and subsequent insertsinto the specified table by thisprocessusethese
values. When the process terminates, any unused values are eliminated.

reserve_identity (table_name, number_of_values)

table_name

isthe name of the table for which the reservation are made. The name can
be fully qualified; that is, it can include the database_name, owner_name,
and object_name (in quotes).

number_of_values
isthe number of sequentia identity values reserved for this process. This
must be a positive value that will not cause any of the reserved values to
exceed the maximum values for the datatype of the identity column.

Describesatypical usage scenario for reserve_identity, and assumes that table1
includes col1 (with a datatype of int) and a col2 (an identity column with a

datatype of int). This processisfor spid 3:

select reserve identity(tablel,

Insert values for spids 3 and 4:

Insert
Insert
Insert
Insert
Insert

tablel
tablel
tablel
tablel
tablel

values (56)
values (48)
values (96)
values (02)
values (84)

Select from table tablel:

select * from tablel

->

->

->

->

->

spid
spid
spid
spid
spid

w ik W ww

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Coll col2

3 1-> spid 3 reserved 1-5

3 2-> spid 3

3 3-> spid 3

4 6<= spid 4 gets next unreserved value
3 4<= spid 3 continues with reservation

Theresult set showsthat spid 3 reservered identity values1—5, spid 4 receives
the next unreserved value, and then spid 3 reserves the subsequent identity
values.

Usage e Thereturnvalue, start_value, isthe starting value for the block of reserved
identity values. The calling process uses this value for the next insert into
the specified table

e reserve_identity allows a process to:
e Reserveidentity values without issuing an insert statement.
e Know the values reserved prior issuing the insert statement
e “Grab” different size blocks of identity values, according to need.

e Better control “over gaps’ by reserving only what is needed (that is,
they are not restricted by preset server grab size

e Values are automatically used with no change to the insert syntax.
e NULL vaues arereturned if:

e A negative value or zero is specified as the block size.

* Thetable does not exist.

e Thetable does not contain an identity column.

e If youissuereserve_identity on atable in which this process has already
reserved these identity values, the function succeeds and the most recent
group of valuesis used.

e Youcannot usereserve_identity to reserveidentity valueson aproxy table.
Local serverscan usereserve_identity on aremote table if the local server
callsaremote procedurethat callsreserve_identity. Becausethesereserved
values are stored on the remote server but in the session belonging to the
local server, subsequent insertsto the remote table use the reserved values.

Reference Manual: Building Blocks 229

reserve_identity

If theidentity_gap is less than the reserved block size, the reservation
succeeds by reserving the specified block size (not an identity_gap size) of
values. If these values are not used by the process, thisresultsin potential
gaps of up to the specified block size regardless of theidentity_gap setting.

Permissions You must have insert permission to reserve identity values.

230 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

reserved_pages

Description

Syntax

Parameters

Examples

Reports the number of pages reserved for a database, object, or index. The
result includes pages used for internal structures.

This function replaces the old reserved_pgs function used in Adaptive Server
versions earlier than 15.0.

reserved_pages(dbid, object_id[, indid[, ptnid]])
dbid
isthe database ID of the database where the target object resides.

object_id
isan object ID for atable.
indid
istheindex ID of target index.
ptnid
isthe partition ID of target partition.

Example 1 Returnsthe number of pages reserved by the object with a object
ID of 31000114 in the specified database (including any indexes):

select reserved pages (5, 31000114)

Example 2 Returnsthe number of pages reserved by the object in the data
layer, regardless of whether or not a clustered index exists:

select reserved pages (5, 31000114, 0)

Example 3 Returnsthe number of pages reserved by the abject in the index
layer for a clustered index. This does not include the pages used by the data
layer:

select reserved pages (5, 31000114, 1)

Example 4 Returnsthe number of pages reserved by the object in the data
layer of the specific partition, which in this case is 2323242432:

select reserved pages (5, 31000114, 0, 2323242432)

Example 5 Use one of the following three methods to calculate space in a
database with reserved_pages:

» Usecase expressionsto select a value appropriate for the index you are
inspecting, selecting all non-log indexesin sysindexes for thisdatabase. In

this query:

Reference Manual: Building Blocks 231

reserved_pages

232

 Thedatahasavalue of “index 0", and is available when you include
the statements when sysindexes.indid = 0 Or
sysindexes.indid = 1.

» indid valuesgreater than 1 for areindexes. Because this query doesnot
sum the data space into the index count, it does not include a page
count for indid of 0.

e Each object has an index entry for index of 0 or 1, never both.

e Thisquery countsindex 0 exactly once per table.

select

'data rsvd' = sum(case
when indid > 1 then 0
else reserved pages(db_id(), id, 0)
end),

'index rsvd' = sum(case
when indid = 0 then 0
else reserved pages(db_id(), id, indid)
end)

from sysindexes

where id != 8

data rsvd index rsvd

* Query sysindexes multiple times to display results after al queries are
complete:

declare @data int,
@dbsize int,
@dataused int,
@indices int,
@indused int

select @data = sum(reserved pages(db_id(), id, 0)),
@dataused = sum(used pages(db_id(), id, 0))

from sysindexes

where id != 8

and indid <= 1

select @indices = sum(reserved pages(db_id(), id, indid)),
@indused = sum(used pages(db_id(), id, indid))

from sysindexes

where id != 8 and indid > 0

select @dbsize as 'db size',
@data as 'data rsvd'
db size data rsvd

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage

* Query sysobjects for data space information and sysindexes for index
information. From sysobjects, select table objects: [S]ystem or [U]ser:

declare @data int,
@dbsize int,
@dataused int,
@indices int,
@indused int

select @data = sum(reserved pages(db_id(), id, 0)),

@dataused = sum(used pages(db _id(), id, 0))

from sysobjects

where id != 8

and type in ('S', 'U')

select @indices = sum(reserved pages(db_id(), id, indid)),
@indused = sum(used pages(db_id(), id, indid))

from sysindexes

where id != 8

and indid > 0

select @dbsize as 'db size',

@data as 'data rsvd',
@dataused as 'data used',
@indices as 'index rsvd',
@indused as 'index used'
data rsvd data used index rsvd index used

« If aclustered index exists on an all-pages locked table, passing an index
ID of 0 reports the reserved data pages, and passing an index 1D of 1
reportsthereserved index pages. All erroneous conditionsresultin avalue
of zero being returned.

e reserved_pages counts whatever you specify; if you supply avalid
database, object, index (datais “index 0" for every table), it returns the
reserved space for this database, object, or index. However, it can also
count a database, object, or index multiple times. If you have it count the
data space for every index in atable with multiple indexes, you get it
counts the data space once for every index. If you sum these results, you
get the number of indexes multiplied by the total data space, not the total
number of data pagesin the object.

» For Adaptive Server version 15.0, reserved_pages replaces the
reserved_pgs function. These are the differences between reserved_pages
and reserved_pgs.

Reference Manual: Building Blocks 233

reserved_pages

Standards
Permissions

See also

234

In Adaptive Server versions 12.5 and earlier, Adaptive Server stored
OAM pages for the data and index in sysindexes. In Adaptive Server
versions 15.0 and later, thisinformation is stored per-partition in
sysparitions. Because thisinformation is stored differently,
reserved_pages and reserved_pgs require different parameters and
have different result sets.

reserved_pgs required apage ID. If you supplied avalue that did not
have a matching sysindexes row, the supplied page ID was 0 (for
example, the data OAM page of a nonclustered index row). Because
0 was never avalid OAM page, if you supplied a page ID of 0,
reserved_pgs returned 0; because the input value isinvalid,
reserved_pgs could not count anything.

However, reserved_pages requiresan index ID, and Oisavalid index
ID (for example, datais“index Q" for every table). Because
reserved_pages can not tell from the context that you do not requireit
to recount the data space for any index row except indid O or 1, it
counts the data space every time you pass 0 as an index 1D. Because
reserved_pages counts this data space once per row, itsyields a sum
many times the true value.

These differences are described as:

» reserved_pgs does not affect the sum if you supply O asavalue
for the page ID for the OAM page input; it just returns aval ue of
0.

» If yousupply reserved_pages with avalue of O astheindex ID, it
countsthe data space. Issue reserved_pages only when you want
to count the data or you will affect the sum.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute reserved_pgs.
Command update statistics

Function data_pages, reserved_pages, row_count, used_pages

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

reverse

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the specified string with characterslisted in reverse order.

reverse(expression | uchar_expr)

expression
isacharacter or binary-type column name, variable, or constant expression
of char, varchar, nchar, nvarchar, binary, or varbinary type.

uchar_expr
isacharacter or binary-type column name, variable, or constant expression
of unichar or univarchar type.

Example 1

select reverse ("abcd")

dcba
Example 2

select reverse (0x12345000)

0x00503412
e reverse, astring function, returns the reverse of expression.

e If expression isNULL, reverse returns NULL.

e Surrogate pairs are treated asindivisible and are not reversed.

» For general information about string functions, see “ String functions’ on
page 72.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute reverse.

Functions lower, upper

Reference Manual: Building Blocks 235

right

right
Description

Syntax

Parameters

Examples

236

The rightmost part of the expression with the specified number of characters.

right(expression, integer_expr)

expression

isacharacter or binary-type column name, variable, or constant expression
of char, varchar, nchar, unichar, nvarchar, univarchar, binary, or varbinary type.

integer_expr

isany integer (tinyint, smallint, or int) column name, variable, or constant

expression.

Example 1

select

cde
Example 2

select

de
Example 3

select

Example 4

select

0x3450
Example 5

select

0x5000
Example 6

select

0x1234

right ("abcde", 3)

right ("abcde", 2)

right ("abcde", 6)

right (0x12345000,

00

right (0x12345000,

right (0x12345000,

5000

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage * right, astring function, returnsthe specified number of charactersfrom the
rightmost part of the character or binary expression.

« |f the specified rightmost part begins with the second surrogate of a pair
(the low surrogate), the return value starts with the next full character.
Therefore, one less character is returned.

e Thereturn value has the same datatype as the character or binary
expression.

e |If expression isNULL, right returns NULL.

« For general information about string functions, see “ String functions’ on

page 72.
Standards ANSI SQL — Compliance level: Transact-SQL extension
Permissions Any user can execute right.
See also Functions rtrim, substring

Reference Manual: Building Blocks 237

rm_appcontext

rm_appcontext

Description Removes a specific application context, or all application contexts.
rm_appcontext isafunction provided by the Application Context Facility
(ACF).
Syntax rm_appcontext(“context_name”, “attribute_name”)
Parameters context_name
isarow specifying an application context name. It is saved as datatype
char(30).

attribute_name
isarow specifying an application context attribute name. It is saved as

datatype char(30).
Examples Example 1 Removes an application context by specifying some or all
attributes:
select rm appcontext ("CONTEXT1", "*")
0
select rm_appcontext ("*", ")

Example 2 Shows the result when a user without appropriate permissions
attempts to remove an application context:

select rm_appcontext ("CONTEXT1", "ATTR2")

Usage » Thisfunction aways returns O for success.

» All the arguments for this function are required.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, which are
stored by ACF.

See also For more information on the ACF see “Row-level access control” in Chapter

11, “Managing User Permissions” of the System Administration Guide.

Functions get_appcontext, list_appcontext, set_appcontext

238 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

role_contain

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns 1 if role2 containsrolel.

role_contain("rolel", "role2")

rolel
is the name of a system or user-defined role.

role2
is the name of another system or user-defined role.

Example 1

select role contain("intern role", "doctor role")

Example 2

select role contain("specialist role", "intern role")

* role_contain, a system function, returns 1 if rolel is contained by role2.

« For more information about system functions, see“ System functions’ on
page 73.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute role_contain.

Documents For moreinformation about contained rolesand role hierarchies,
see the System Administration Guide.

Functions mut_excl_roles, proc_role, role_id, role_name
Commands alter role

System procedures sp_activeroles, sp_displayroles, sp_role

Reference Manual: Building Blocks 239

role_id

role_id
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

240

Returns the system role ID of the name you specify.
role_id("role_name")

role_name
isthe name of a system or user-defined role. Role names and role IDs are
stored in the syssrvroles system table.

Example 1 Returnsthe system role ID of sa_role:

select role id("sa_ role")

Example 2 Returns the system role ID of the “intern_role”:

select role id("intern role")

* role_id, asystem function, returns the system role ID (srid). System role
IDs are stored in the srid column of the syssrvroles system table.

» If therole_name is not avalid rolein the system, Adaptive Server returns
NULL.

» For moreinformation about system functions, see “ System functions’ on
page 73.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute role_id.

Documents For moreinformation about roles, seethe System Administration
Guide.

Functions mut_excl_roles,proc_role,role_contain, role_name

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

role_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the name of a system role ID you specify.
role_name(role_id)

role_id
isthe system role ID (srid) of the role. Role names are stored in syssrvroles.

select role name(01)

sso_role

e role_name, a system function, returns the role name.

« For more information about system functions, see“ System functions’ on
page 73.
ANSI SQL — Compliance level: Transact-SQL extension

Any user can execute role_name.

Functions mut_excl_roles, proc_role, role_contain, role_id

Reference Manual: Building Blocks 241

round

round

Description

Syntax

Parameters

Examples

Usage

242

Returns the value of the specified number, rounded to a specified number of
decimal places.

round(number, decimal_places)

number
isany exact numeric (numeric, dec, decimal, tinyint, smallint, int, or bigint),
approximate numeric (float, real, or double precision), Or money column,
variable, constant expression, or a combination of these.

decimal_places
is the number of decimal places to round to.

Example 1

select round(123.4545, 2)

123.4500
Example 2

select round(123.45, -2)

Example 3

select round(1.2345E2, 2)

123.450000
Example 4

select round(1l.2345E2, -2)

100.000000

* round, amathematical function, rounds the number so that it has
decimal_places significant digits.

* A positive value for decimal_places determines the number of significant
digitsto theright of the decimal point; anegative valuefor decimal_places
determines the number of significant digitsto theleft of the decimal point.

* Resultsare of the same type as number and, for numeric and decimal
expressions, have an internal precision equal to the precision of the first
argument plus 1 and a scale equal to that of number.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

« round alwaysreturnsavalue. If decimal_places isnegative and exceedsthe
number of significant digits specified for number, Adaptive Server returns
0. (Thisis expressed in the form 0.00, where the number of zeros to the
right of the decimal point is equal to the scale of numeric.) For example,
the following returns a value of 0.00:

select round(55.55, -3)

« For genera information about mathematical functions, see“Mathematical
functions” on page 70.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute round.
See also Functions abs, ceiling, floor, sign, str

Reference Manual: Building Blocks 243

row_count

row_count

Description

Syntax

Parameters

Examples

Usage
Standards
Permissions

See also

244

Returns an estimate of the number of rows in the specified table.
row_count(dbid, object_id [,ptnid])

dbid
the database |D where target object resides

object_id
object ID of table

ptnid
partition ID of interest

Example 1 Returns an estimate of the number of rows in the given object:
select row_count (5, 31000114)

Example 2 Returnsan estimate of the number of rowsin the specified partition
(with partition ID of 2323242432) of the object with object IDof 31000114:

select row count (5, 31000114, 2323242432)
All erroneous conditions will returnin avalue of zero being returned.
ANSI SQL — Compliance level: Transact-SQL extension
Any user can execute row_count.

Functions reserved_pages, used_pages

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

rtrim

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the specified expression, trimmed of trailing blanks.
rtrim(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is acharacter-type column name, variable, or constant expression of unichar
or univarchar type.

select rtrim("abcd ")

e rtrim, astring function, removestrailing blanks.
e For Unicode, ablank is defined as the Unicode value U+0020.
e If char_expr or uchar_expr isNULL, returns NULL.

« Only values equivaent to the space character in the current character set
are removed.

» For general information about string functions, see “ String functions’ on
page 72.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute rtrim.

Function ltrim

Reference Manual: Building Blocks 245

set_appcontext

set_appcontext

Description Sets an application context name, attribute name, and attribute value for auser
session, defined by the attributes of a specified application. set_appcontextisa
built-in function that the Application Context Facility (ACF) provides.

Syntax set_appcontext(“context_name, “attribute_name”, “attribute_value”)
Parameters context_name
isarow that specifiesan application context name. It is saved asthe datatype
char(30).

attribute_name
isarow that specifies an application context attribute name. It is saved as
the datatype char(30).

attribute_value
isarow that specifies and application attribute value. It is saved as the
datatype char(30).

Examples Example 1 Creates an application context called CONTEXT1, with an
attribute ATTR1 that has the value VALUEL.

select set appcontext ("CONTEXT1", "ATTR1", "VALUELl")

Attempting to override the existing application context created causes the
following:

select set_appcontext("CONTEXTl", "ATTR1", "VALUE1")

Example 2 Shows set_appcontext including a datatype conversion in the
value.

declare@numericvarchar varchar (25)

select @numericvar = "20"

select set_appcontext ("CONTEXT1", "ATTR2",
convert (char (20), @numericvar))

Example 3 Shows the result when a user without appropriate permissions
attempts to set the application context.

select set appcontext ("CONTEXT1", "ATTR2", "VALUE1l")

246 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage .

set_appcontext returns O for success and -1 for failure.

If you set values that already exist in the current session, set_appcontext
returns-1.

Thisfunction cannot overridethe values of an existing appli cation context.
To assign new values to a context, remove the context and re-create it
using new values.

set_appcontext saves attributes as char datatypes. If you are creating an
access rule that must compare the attribute value to another datatype, the
rule should convert the char data to the appropriate datatype.

All the arguments for this function are required.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, stored by
ACF.

See also For more information on the ACF see “Row-level access control” in Chapter
11, “Managing User Permissions’ of the System Administration Guide.

Functions get_appcontext, list_appcontext, rm_appcontext

Reference Manual: Building Blocks 247

show_role

show _role

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

248

Shows the login’s currently active system-defined roles.
show_role()
None.

Example 1

select show_role()

sa_role sso_role oper role replication role
Example 2

if charindex("sa role", show role()) >0
begin

print "You have sa_role"
end

» show_role, asystem function, returns the login’s current active
system-defined roles, if any (sa_role, sso_role, oper_role, or
replication_role). If thelogin has no roles, show_role returns NULL.

* When aDatabase Owner invokesshow_role after using setuser, show_role
displaysthe activeroles of the Database Owner, not the user impersonated
with setuser.

» For general information about system functions, see “ System functions”
on page 73.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute show_role.

Commands alter role, create role, drop role, grant, set, revoke
Functions proc_role, role_contain

System procedures sp_activeroles, sp_displayroles, sp_role

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

show_sec_services

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Lists the security servicesthat are active for the session.

show_sec_services()

None.

Shows that the user’s current session is encrypting dataand performing replay
detection checks:

select show _sec_ services()
encryption, replay detection

« Useshow_sec_services to list the security services that are active during
the session.

e If no security services are active, show_sec_services returns NULL.
ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute show_sec_services.

Functions is_sec_service_on

Reference Manual: Building Blocks 249

sign

sign
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

250

Returns the sign (1 for positive, 0, or -1 for negative) of the specified value.
sign(numeric)

numeric
isany exact numeric (numeric, dec, decimal, tinyint, smallint, int, or bigint),
approximate numeric (float, real, or double precision), Or money column,
variable, constant expression, or a combination of these.

Example 1

select sign(-123)

Example 2

select sign(0)

Example 3

select sign(123)

» sign,amathematical function, returnsthepositive (1), zero (0), or negative
(-1).

* Resultsare of the sametype, and have the same precision and scale, asthe
numeric expression.

e For general information about mathematical functions, see“Mathematical
functions’ on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute sign.

Functions abs, ceiling, floor, round

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

sin
Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

See also

Returns the sine of the specified angle (in radians).
sin(approx_numeric)

approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

select sin(45)

0.850904

* sin, amathematical function, returns the sine of the specified angle
(measured in radians).

« For genera information about mathematical functions, see“Mathematical
functions” on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute sin.

Functions cos, degrees, radians

Reference Manual: Building Blocks 251

sortkey

sortkey

Description Generates values that can be used to order results based on collation behavior,
which allows you to work with character collation behaviors beyond the
default set of Latin character-based dictionary sort orders and case- or
accent-sensitivity.

Syntax sortkey(char_expression | uchar_expression)][, {collation_name |

collation_ID}])

Parameters char_expression

is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expression
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

collation_name
isaquoted string or a character variable that specifies the collation to use.
Table 2-10 on page 255 shows the valid values.

collation_ID
isaninteger constant or avariablethat specifiesthe collation to use. Table 2-
10 on page 255 shows the valid values.

Examples Example 1 Shows sorting by European language dicitionary order:

select * from cust table where cust name like "TI%$" order by
(sortkey (cust name, "dict")

Example 2 Shows sorting by simplified Chinese phonetic order:

select *from cust_table where cust name like "TI%" order by
(sortkey (cust-name, "gbpinyin")

Example 3 Shows sorting by European language dictionary order using the
in-line option:

select *from cust_table where cust_name like "TI%" order by cust_ french sort

Example 4 Shows sorting by Simplified Chinese phonetic order using
preexisting keys:

select * from cust table where cust name like "TI%$" order by
cust_chinese sort.

252 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage

sortkey, a system function, generates values that can be used to order
resultsbased on collation behavior. Thisallowsyou to work with character
collation behaviors beyond the default set of Latin-character-based
dictionary sort orders and case- or accent-sensitivity. Thereturnvalueisa
varbinary datatype value that contains coded collation information for the
input string that is returned from the sortkey function.

For example, you can store the valuesreturned by sortkey in acolumn with
the source character string. Ro retrieve the character datain the desired
order, include in the select statement an order by clause on the columns
that contain the results of running sortkey.

sortkey guarantees that the valuesiit returns for a given set of collation
criteriawork for the binary comparisons that are performed on varbinary
datatypes.

sortkey can generate up to sixbytes of collation information for each input
character. Therefore, the result from using sortkey may exceed the length
limit of thevarbinary datatype. If this happens, theresult istruncated to fit.
Since this limit is dependent on the logical page size of your server,
truncation removes result bytes for each input character until the result
string is less than the following for DOL and APL tables:

Table 2-9: Maximum row and column length—APL and DOL tables

Locking scheme Page size Maximum row length Maximum column length
APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes
DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes

If table does not include any
variable length columns
16K (16384 bytes) 16300 8191-6-2 = 8183 bytes

(subject to amax start If table includes at least on
offset of varlen=8191) variablelength column.*

* Thissizeincludes six bytes for the row overhead and two bytes for the row length field.

If this occurs, Adaptive Server issues awarning message, but the query or
transaction that contained the sortkey function continues to run.

Reference Manual: Building Blocks 253

sortkey

254

char_expression or uchar_expression must be composed of charactersthat
are encoded in the server’s default character set.

char_expression or uchar_expression can be an empty string. If itisan
empty string, sortkey returns a zero-length varbinary value, and stores a
blank for the empty string.

An empty string has a different collation value than an NULL string from
adatabase column.

If char_expression or uchar_expression is NULL, sortkey returnsanull
value.

If a unicode expression has no specified sort order, Adaptive Server uses
the binary sort order.

If you do not specify avalue for collation_name or collation_ID, sortkey
assumes hinary collation.

The binary values generated from the sortkey function can change from
one magjor version to another major version of Adaptive Server, such as
version 12.0t0 12.5, version 12.9.2t0 12.0, and so on. If you are upgrading
to the current version of Adaptive Server, regenerate keys and repopul ate
the shadow columns before any binary comparison takes place.

Note Upgradesfrom version 12.5t0 12.5.0.1 do not require this step, and
Adaptive Server does not generate any errors or warning messagesif you
do not regenerate the keys. Although a query involving the shadow
columns should work fine, the comparison result may differ from the
pre-upgrade server.

Collation tables

There are two types of collation tables you can use to perform multilingual
sorting:

1

A “built-in” collation table created by the sortkey function. This function
existsin versions of Adaptive Server later than 11.5.1. You can use either
the collation name or the collation ID to specify abuilt-in table.

An external collation table that uses the Unilib library sorting functions.
You must use the collation name to specify an external table. These files
are located in $SYBASE/collate/unicode.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Both of these methodswork equally well, but a“built-in" tableistiedto a
Adaptive Server database, while an external tableis not. If you use an
Adaptive Server database, a built-in table provides the best performance.
Both methods can handle any mix of English, European, and Asian
languages.

There are two ways to use sortkey:

1 In-line—thisusessortkey as part of the order by clause and is useful for
retrofitting an existing application and minimizing the changes. However,
this method generates sort keys on-the-fly, and therefore does not provide
optimum performance on large data sets of moe than 1000 records.

2 Pre-existing keys— this method calls sortkey whenever a new record
requiring multilingual sorting isadded to thetable, such asanew customer
name. Shadow columns (binary or varbinary type) must be set up in the
database, preferably in the sametable, one for each desired sort order such
as French, Chinese, and so on. When a query requires output to be sorted,
theorder by clause uses one of the shadow columns. Thismethod produces
the best performance since keys are already generated and stored, and are
quickly compared only on the basis of their binary values.

You canview alist of available collation rules. Print thelist by executing either
sp_helpsort, or by querying and selecting the name, id, and description from
syscharsets (type is between 2003 and 2999).

* Table2-10 liststhe valid values for collation_name and collation_ID.

Table 2-10: Collation names and IDs

Description Collation name Collation ID
Deafult Unicode multilingual default 20
Thai dictionary order thaidict 21
1S014651 standard 15014651 22
UTF-16 ordering — matches UTF-8 binary ordering utf8bin 24
CP 850 Alternative — no accent altnoacc 39
CP 850 Alternative — lowercase first altdict 45
CP 850 Western European — no case preference altnocsp 46
CP 850 Scandinavian — dictionary ordering scandict 47
CP 850 Scandinavian — case-insensitive with preference scannocp 48
GB Pinyin gbpinyin n‘a
Binary sort binary 50
Latin-1 English, French, German dictionary dict 51
Latin-1 English, French, German no case nocase 52

Reference Manual: Building Blocks 255

sortkey

Description Collation name Collation ID
Latin-1 English, French, German no case, preference nocasep 53
Latin-1 English, French, German no accent noaccent 54
Latin-1 Spanish dictionary espdict 55
Latin-1 Spanish no case espnocs 56
Latin-1 Spanish no accent espnoac 57
SO 8859-5 Russian dictionary rusdict 58
I SO 8859-5 Russian no case rusnocs 59
SO 8859-5 Cyrillic dictionary cyrdict 63
SO 8859-5 Cyrillic no case cyrnocs 64
SO 8859-7 Greek dictionary dldict 65
I SO 8859-2 Hungarian dictionary hundict 69
I SO 8859-2 Hungarian no accents hunnoac 70
SO 8859-2 Hungarian no case hunnocs 71
SO 8859-9 Turkish dictionary turdict 72
ISO 8859-9 Turkish no accents turknoac 73
I SO 8859-9 Turkish no case turknocs 74
CP932 binary ordering cp932hbin 129
Chinese phonetic ordering dynix 130
GB2312 binary ordering gh2312bn 137
Common Cyrillic dictionary cyrdict 140
Turkish dictionary turdict 155
EUCKSC binary ordering euckschn 161
Chinese phonetic ordering gbpinyin 163
Russian dictionary ordering rusdict 165
SJIS binary ordering gjishin 179
EUCJIS binary ordering eucjisbn 192
BIG5 binary ordering bigshin 194
Shift-JIS binary order gisbin 259

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute sortkey.

See also Function compare

256 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

soundex

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns a four-character code representing the way an expression sounds.

soundex(char_expr | uchar_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is acharacter-type column name, variable, or constant expression of unichar
or univarchar type.

select soundex ("smith"), soundex ("smythe")

S530 S530

* soundex, astring function, returns a four-character soundex code for
character strings that are composed of a contiguous sequence of valid
single- or double-byte roman letters.

* Thesoundex function converts an al phabetic string to afour-digit code for
use in locating similar-sounding words or names. All vowels are ignored
unless they congtitute the first letter of the string.

e If char_expr or uchar_expr isNULL, returns NULL.

» For general information about string functions, see “ String functions’ on
page 72.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute soundex.

Function difference

Reference Manual: Building Blocks 257

space

space
Description Returns a string consisting of the specified number of single-byte spaces.
Syntax space(integer_expr)
Parameters integer_expr
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression.
Examples select "aaa", space(4), "bbb"
aaa bbb
Usage * space, astring function, returns a string with the indicated number of
single-byte spaces.
» For general information about string functions, see “ String functions’ on
page 72.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute space.
See also Functions isnull, rtrim

258 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

square

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the sguare of a specified value expressed as afloat.
square(numeric_expression)

numeric_expression
isanumeric expression of type float.

Example 1 Returnsthe square from an integer column;

select square(total sales)from titles

16769025.00000
15023376.00000
350513284.00000

16769025.00000
(18 row(s) affected)
Example 2 Returns the square from a money column:

select square(price) from titles

399.600100
142.802500

8.940100

NULL

224.700100

(18 row(s) affected)

This function is the equivalent of power(numeric_expression,?2), but it returns
type float rather than int.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute square.
Function power

Datatypes exact_numeric, approximate_numeric, money, float

Reference Manual: Building Blocks 259

sqrt

sqrt
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

260

Returns the square root of the specified number.
sqrt(approx_numeric)

approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression that evaluates to a positive number.

select sqgrt (4)
2.000000

* sgrt, amathematical function, returns the square root of the specified
value.

* If you attempt to select the square root of a negative number, Adaptive
Server returns the following error message:

Domain error occurred.

» For general information about mathematical functions, see* M athematical
functions’ on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute sqrt.

Function power

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

stddev

Description Computes the standard deviation of a sample consisting of a numeric
expression, as adouble.

Note stddev and stdev are aliases for stddev_samp. See stddev_samp on page
266 for details.

Reference Manual: Building Blocks 261

stdev

stdev

Description Computes the standard deviation of a sample consisting of a numeric
expression, as adouble.

Note stddev and stdev are aliases for stddev_samp. See stddev_samp on page
266 for details.

262 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

stdevp

Description Compuites the standard deviation of a population consisting of a numeric
expression, as adouble.

Note stdevp isan aliasfor stddev_pop. See stddev_pop on page 264 for details.

Reference Manual: Building Blocks 263

stddev_pop

stddev_pop

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

264

Computes the standard deviation of a population consisting of a numeric
expression, as adouble. stdevp is an alias for stddev_pop, and uses the same
syntax.

stddev_pop ([all | distinct] expression)

all
applies stddev_pop to all values. all is the default.

distinct
eliminates duplicate values before stddev_pop is applied.

expression
is the expression—commonly a column name—in which its
popul ation-based standard deviation is calculated over a set of rows.

The following statement lists the average and standard deviation of the
advances for each type of book in the pubs2 database.

select type, avg(advance) as "avg", stddev pop (advance)
as "stddev" from titles group by type order by type

Computes the population standard deviation of the provided value expression
evaluated for each row of thegroup (if distinct was specified, then each row that
remains after duplicates have been eliminated), defined as the square root of
the population variance.

Figure 2-3: The formula for population-related statistical aggregate
functions

The formulathat defines the variance of the population of size n
having mean 1 (var_pop) is asfollows. The population standard
deviation (stddev_pop) is the positive square root of this.

()2 o2 = Variance

X —

02 - Z—' H n = Population size

n M = Mean of the values x;

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute stddev_pop.

For general information about aggregate functions, see “ Aggregate functions’
in Adaptive Server Enterprise Reference Manual: Building Blocks.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Functions stddev_samp, var_pop, var_samp

Reference Manual: Building Blocks 265

stddev_samp

stddev_samp

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

266

Computes the standard deviation of a sample consisting of a numeric
expression, as a double. stdev and stddev are aliases for stddev_samp, and use
the same syntax.

stddev_samp ([all | distinct | expression)

all
applies stddev_samp to all values. all is the default.

distinct
eliminates duplicate values before stddev_samp is applied.

expression
isany numeric datatype (float, real, or double precision) expression.

The following statement lists the average and standard deviation of the
advances for each type of book in the pubs2 database.

select type, avg(advance) as "avg",
stddev_samp (advance) as "stddev" from titles
where total sales > 2000 group by type order by type

Computes the sample standard deviation of the provided value expression
evaluated for each row of thegroup (if distinct was specified, then each row that
remains after duplicates have been eliminated), defined as the square root of
the sample variance.

Figure 2-4: The formula for sample-related statistical aggregate
functions

The formulathat defines an unbiased estimate of the population
variance from a sample of size n having mean x (var_samp) is as
follows. The sample standard deviation (stddev_samp) is the positive
square root of this.

2 s? = Variance
S2 _ § (Xi_x) n = Sample size
n-1 x = Mean of the values ;

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute stddev_samp.

For general information about aggregate functions, see “ Aggregate functions’
in Adaptive Server Enterprise Reference Manual: Building Blocks.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Functions stddev_pop, var_pop, var_samp

Reference Manual: Building Blocks 267

str

str

Description

Syntax

Parameters

Examples

Usage

268

Returns the character equivalent of the specified number.

str(approx_numeric[, length [, decimal]])

approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

length
setsthe number of charactersto be returned (including the decimal point, all
digitsto the right and left of the decimal point, and blanks). The default is
10.

decimal
sets the number of decimal digitsto be returned. The default is 0.

Example 1

select str(1234.7, 4)

1235
Example 2

select str(-12345, 6)

Example 3

select str(123.45, 5, 2)

» str,astring function, returnsacharacter representation of thefloating point
number. For general information about string functions, see “ String
functions’ on page 72.

» length and decimal are optional. If given, they must be nonnegative. str
rounds the decimal portion of the number so that the results fit within the
specified length. The length should be long enough to accommodate the
decimal point and, if negative, the number’s sign. The decimal portion of
theresult isrounded to fit within the specified length. If theinteger portion
of the number does not fit within the length, however, str returns arow of
asterisks of the specified length. For example:

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

* %
select str(123.456, 2, 4)

A short approx_numeric isright-justified in the specified length, and along
approx_numeric is truncated to the specified number of decimal places.

e If approx_numeric isNULL, returns NULL.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute str.
See also Functions abs, ceiling, floor, round, sign

Reference Manual: Building Blocks 269

str_replace

str_replace
Description Replaces any instances of the second string expression (string_expression2)
that occur within the first string expression (string_expression1) with athird
expression (string_expression3).
Syntax str_replace("string_expressionl”, "string_expression2", "string_expression3")
Parameters string_expressionl
is the source string, or the string expression to be searched, expressed as
char, varchar, unichar, univarchar, varbinary, or binary datatype.
string_expression2
isthe pattern string, or the string expression to find within the first
expression (string_expressionl). string_expression?2 is expressed as char,
varchar, unichar, univarchar, varbinary, or binary datatype.
string_expression3
is the replacement string expression, expressed as char, varchar, unichar,
univarchar, binary, or varbinary datatype.
Examples Example 1 Replaces the string def within the string cdefghi with yyy.
str replace("cdefghi", "def", "yyy")
cyyyghi
(1 row(s) affected)
Example 2 Replaces all spaces with "toyota".
select str replace("chevy, ford, mercedes",
nn , n toyotall)
chevy, toyotaford, toyotamercedes
(1 row(s) affected)
Note Adaptive Server converts an empty string constant to a string of one
space automatically, to distinguish the string from NULL values.
Example 3 Returns “abcghijklm”:
select str replace("abcdefghijklm", "def", NULL)
abcghijklm
(1 row affected)
Usage e Returnsvarchar dataif string_expression (1, 2, or 3) ischar or varchar.

270 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e Returns univarchar dataif string_expression (1, 2, or 3) iS unichar or
univarchar.

« Returnsvarbinary dataif string_expression (1, 2, or 3) isbinary or varbinary.
e All arguments must share the same datatype.
e |If any of the three argumentsis NULL, the function returns null.

str_replace accepts NULL inthethird parameter and treatsit as an attempt
to replace string_expression2 with NULL, effectively turning str_replace
into a“string cut” operation.

For example, the following returns “abcghijklm”:
str replace("abcdefghijklm", "def", NULL)

e Theresult length may vary, depending upon what is known about the
argument values when the expression is compiled. If all arguments are
variables with known constant values, Adaptive Server calculates the
result length as:

result length = ((s/p)*(r-p)+s)
where
s = length of source string

p = length of pattern string
r = length of replacement string
if (r-p) <= 0, result length = s

« |If the source string (string_expressionl) isacolumn, and
string_expression2 and string_expression3 are constant values known at
compile time, Adaptive Server calculates the result length using the
formula above.

« If Adaptive Server cannot cal cul ate the result length because the argument
values are unknown when the expression is compiled, the result length
used is 255, unless traceflag 244 is on. In that case, the result length is

16384.
e result_len never exceeds 16384.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute str_replace.
See also Datatypes char, varchar, binary, varbinary, unichar, univarchar

Function length

Reference Manual: Building Blocks 271

strtobin

strtobin

Description

Syntax

Parameters

Examples

Usage

272

Converts a sequence of al phanumeric charactersto their equivalent
hexadecimal digits.

select strtobin(“string of valid alphanumeric characters”)

string of valid alphanumeric characters
isstring of valid alphanumeric characters, which consists of [1 —9], [a—f]
and [A —F].

Example 1 Converts the a phanumeric string of “723ad82fe” to a sequence of
hexadecimal digits:

select strtobin("723ad82fe")
go

0x0723ad82fe

The in-memory representation of the al phanumeric character string and its
equivalent hexadecimal digits are:

Alphanumeric character string (9 bytes)

o [7 J2 [3 [a [da [&8 [2 [f [Je
Hexadecimal digits (5 bytes)

[0]7[2]3[a]d[8]2]f e]

The function processes characters from right to left. In this example, the
number of charactersin the input is odd. For this reason, the hexadecimal
sequence has a prefix of “0” and isreflected in the output.

Example 2 Converts the alphanumeric string of alocal variable called
@str_data to a sequence of hexadecimal digits equivalent to the value of
“723ad82f€”:

declare @str data varchar (30)

select @str_data = "723ads82fe"
select strtobin(@str data)

go

0x0723ad82fe

» Any invalid charactersin the input resultsin NULL as the output.
» Theinput sequence of hexadecimal digits must have a prefix of “0x”.
* A NULL input resultsin NULL output.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute strtobin.
See also Function bintostr

Reference Manual: Building Blocks 273

stuff

stuff

Description

Syntax

Parameters

Examples

274

Returns the string formed by deleting a specified number of characters from
one string and replacing them with another string.

stuff(char_exprl | uchar_exprl, start, length, char_expr2 | uchar_expr2)

char_exprl
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_exprl
isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

start
specifies the character position at which to begin deleting characters.

length
specifies the number of charactersto delete.

char_expr2
is another character-type column name, variable, or constant expression of
char, varchar, nchar, or nvarchar type.

uchar_expr2
is another character-type column name, variable, or constant expression of
unichar or univarchar type.

Example 1

select stuff ("abec", 2, 3, "xyz")

axyz
Example 2
select stuff ("abcdef", 2, 3, null)

go

aef
Example 3

select stuff ("abcdef", 2, 3, "")

a ef

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Usage

Standards
Permissions

See also

stuff, a string function, deletes length characters from char_exprl or
uchar_exprl at start, then inserts char_expr2 or uchar_expr2 into
char_exprl or uchar_expr2 at start. For general information about string
functions, see “ String functions’ on page 72.

If the start position or the length is negative, aNULL string isreturned. If
the start position is zero or longer than exprl, aNULL string is returned.

If thelength to be deleted islonger than expri, exprl is deleted through its
last character (see Example 1).

If the start position fallsin the middle of a surrogate pair, start is adjusted
to beoneless. If the start length position fallsin the middle of asurrogate
pair, length is adjusted to be one less.

To usestuff to delete acharacter, replace expr2 with NULL rather than with
empty quotation marks. Using ** *’ to specify anull character replaces it
with a space (see Eexamples 2 and 3).

If char_exprl or uchar_exprl isNULL, stuff returns NULL. If char_exprl
or or uchar_exprlisastring valueand char_expr2 or uchar_expr2 isNULL,
stuff replaces the deleted characters with nothing.

If you give avarchar expression as one parameter and aunichar expression
asthe other, the varchar expression isimplicitly converted to unichar (with
possible truncation).

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute stuff.

Functions replicate, substring

Reference Manual: Building Blocks 275

substring

substring

Description

Syntax

Parameters

Examples

Usage

276

Returns the string formed by extracting the specified number of characters
from another string.

substring(expression, start, length)

expression
isabinary or character column name, variable, or constant expression. Can
be char, nchar, unichar, varchar, univarchar, or nvarchar data, binary, or
varbinary.

start
specifies the character position at which the substring begins.

length
specifies the number of charactersin the substring.

Example 1 Displaysthelast name and first initial of each author, for example,
“Bennet A.":

select au_lname, substring(au fname, 1, 1)
from authors

Example 2 Convertstheauthor’slast nameto uppercase, then displaysthefirst
three characters:

select substring(upper(au lname), 1, 3)
from authors

Example 3 Concatenates pub_id and title_id, then displays the first six
characters of the resulting string:

select substring((pub_id + title id), 1, 6)
from titles

Example 4 Extractsthe lower four digits from a binary field, where each
position represents two binary digits:

select substring(xactid,5,2)
from syslogs

e substring, astring function, returns part of acharacter or binary string. For
general information about string functions, see* String functions’ on page
72.

» If substring’ssecond argument isSNULL, theresult isNULL. If substring’s
first or third argument isNULL, the result is blank..

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e |f the start position from the beginning of uchar_expr1 falsin the middlie
of asurrogate pair, start is adjusted to one less. If the start length position
from the beginning of uchar_expr1 falls in the middle of a surrogate pair,
length is adjusted to one less.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute substring.
See also Functions charindex, patindex, stuff

Reference Manual: Building Blocks 277

sum

sum

Description

Syntax

Parameters

Examples

Usage

278

Returns the total of the values.
sum([all | distinct] expression)

all
applies sum to all values. all is the defaullt.

distinct
eliminates duplicate values before sum is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “ Expressions” on page 335.

Example 1 Calculates the average advance and the sum of total salesfor all
business books. Each of these aggregate functions produces a single summary
valuefor dl of the retrieved rows:

select avg(advance), sum(total sales)
from titles
where type = "business"

Example 2 Used with a group by clause, the aggregate functions produce
single values for each group, rather than for the entire table. This statement
produces summary values for each type of book:

select type, avg(advance), sum(total sales)
from titles

group by type

Example 3 Groups thetitles table by publishers, and includes only those
groups of publishers who have paid more than $25,000 in total advances and
whose books average more than $15 in price:

select pub id, sum(advance), avg(price)

from titles

group by pub_id

having sum(advance) > $25000 and avg(price) > $15

* sum, an aggregate function, finds the sum of all the valuesin a column.
sum can only be used on numeric (integer, floating point, or money)
datatypes. Null values areignored in calculating sums.

» For general information about aggregate functions, see “ Aggregate
functions’ on page 51.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e When you sum integer data, Adaptive Server treats the result as an int
value, even if the datatype of the column is smallint or tinyint.\WWhen you
sum bigint data, Adaptive Server treats the result as a bigint. To avoid
overflow errorsin DB-Library programs, declare al variables for results
of averages or sums appropriately.

e You cannot use sum with the binary datatypes.

e Thisfunction defines only numeric types; use with Unicode expressions
generates an error.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute sum.

See also Commands compute clause, group by and having clauses, select, where
clause

Functions count, max, min

Reference Manual: Building Blocks 279

suser_id

suser_id
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

280

Returns the server user’s ID number from the syslogins table.
suser_id([server_user_name])

server_user_name
isan Adaptive Server login name.

Example 1

select suser id()

Example 2

select suser id("margaret")

» suser_id, asystem function, returns the server user’s ID number from
syslogins. For general information about system functions, see “ System
functions’ on page 73.

» Tofindtheuser’'s|D in aspecific database from the sysusers table, usethe
user_id system function.

* If noserver_user_name issupplied, suser_id returns the server 1D of the
current user.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute suser_id.

Functions suser_name, user_id

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

suser_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the name of the current server user or the user whose server ID is
specified.
suser_name([server_user_id])

server_user_id
isan Adaptive Server user ID.

Example 1

select suser name ()

Example 2

select suser name (4)

margaret

e suser_name, asystemfunction, returnsthe server user’'sname. Server user
IDs are stored in syslogins. If no server_user_id is supplied, suser_name
returns the name of the current user.

« For general information about system functions, see “ System functions”
on page 73.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute suser_name.

Functions suser_id, user_name

Reference Manual: Building Blocks 281

syb_quit

syb_quit

Description Terminates the connection.

Syntax syb_quit()

Examples Terminates the connection in which the function is executed and returns an
error message.

select syb quit()

CT-LIBRARY error:

ct_results(): network packet layer:
internal net library error: Net-Library operation
terminated due to disconnect

Usage You can use syb_quit to terminate ascript if theisql preprocessor command exit
CaUSeS an error.

Permissions Any user can execute syb_quit.

282 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

syb_sendmsg

Description UNIX only Sends amessageto a User Datagram Protocol (UDP) port.
Syntax syb_sendmsg ip_address, port_number, message
Parameters ip_address

isthe IP address of the machine where the UDP application is running.

port_number
is the port number of the UDP port.

message
is the message to send. It can be up to 255 charactersin length.

Examples Example 1 Sendsthe message “Hello” to port 3456 at IP address 120.10.20.5:
select syb sendmsg("120.10.20.5", 3456, "Hello")

Example 2 Readsthe |P address and port number from a user table, and uses
avariable for the message to be sent:

declare @msg varchar (255)
select @msg = "Message to send"
select syb sendmsg (ip address, portnum, @msg)
from sendports
where username = user name ()

Usage * To enablethe use of UDP messaging, a System Security Officer must set
the configuration parameter allow sendmsg to 1.

* No security checks are performed with syb_sendmsg. Sybase strongly
recommends that you do not use syb_sendmsg to send sensitive
information across the network. By enabling this functionality, the user
accepts any security problems that result from its use.

e For asample C program that creates a UDP port, see sp_sendmsg.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute syb_sendmsg.
See also System procedure sp_sendmsg

Reference Manual: Building Blocks 283

tan

tan

Description
Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

284

Returns the tangent of the specified angle (in radians).
tan(angle)

angle
isthe size of the anglein radians, expressed as a column name, variable, or
expression of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

select tan(60)

0.320040

» tan, amathematical function, returns the tangent of the specified angle
(measured in radians).

» For general information about mathematical functions, see* M athematical
functions’ on page 70.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute tan.

Functions atan, atn2, degrees, radians

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

tempdb_id

Description Reportsthe temporary database to which agiven sessionisassigned. Theinput
of thetempdb_id functionisaserver process D, and its output isthe temporary
database to which the process is assigned. If you do not provide a server
process, tempdb_id reports the dbid of the temporary database assigned to the
current process.

Syntax tempdb_id()
Examples Finds all the server processes that are assigned to a given temporary database:
select spid from master..sysprocesses
where tempdb id(spid) = db_id("tempdatabase")
Usage select tempdb_id gives the same result as select @ @tempdbid.
See also Commands select

Reference Manual: Building Blocks 285

textptr

textptr

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

286

Returns a pointer to the first page of atext, image, or unitext column.,
textptr(column_name)

column_name
isthe name of atext column.

Example 1 Usesthetextptr function to locate the text column, copy, associated
with au_id 486-29-1786 in the author’s blurbs table. The text pointer is placed
inlocal variable @val and supplied as a parameter to the readtext command,
which returns 5 bytes, starting at the second byte (offset of 1):

declare @val binary(16)
select @val = textptr(copy) from blurbs
where au_id = "486-29-1786"
readtext blurbs.copy @val 1 5

Example 2 Selectsthetitle_id column and the 16-byte text pointer of the copy
column from the blurbs table:

select au_id, textptr (copy) from blurbs

* textptr, atext and image function, returns the text pointer value, a 16-byte
varbinary value.

» If atext, unitext, or image column has not been initialized by a non-null
insert or by any update statement, textptr returnsa NULL pointer. Use
textvalid to check whether atext pointer exists. You cannot use writetext or
readtext without avalid text pointer.

» For general information about text and image functions, see “ Text and
image functions’ on page 74.

Note Trailing £ in varbinary values are truncated when the values are
stored in tables. If you are storing text pointer valuesin atable, use binary
as the datatype for the column.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute textptr.

Datatypes text, image, and unitext datatypes

Function textvalid

Commands insert, update, readtext, writetext

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

textvalid

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns 1 if the pointer to the specified text or unitext columnisvalid; O if itis
not.

textvalid("table_name.column_name", textpointer)

table_name.column_name
is the name of atable and its text column.

textpointer
isatext pointer value.

Reports whether avalid text pointer exists for each value in the blurb column
of the texttest table:

select textvalid ("texttest.blurb", textptr (blurb))
from texttest

e textvalid, atext and image function, checks that a given text pointer is
valid. Returns 1 if the pointer isvalid, or O if it isnot.

* Theidentifier for atext or animage column must include the table name.

« For general information about text and image functions, see “Text and
image functions’ on page 74.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute textvalid.
Datatypes text, image, and unitext datatypes

Function textptr

Reference Manual: Building Blocks 287

to_unichar

to_unichar
Description Returns a unichar expression having the value of the integer expression.
Syntax to_unichar(integer_expr)
Parameters integer_expr
isany integer (tinyint, smallint, or int) column name, variable, or constant
expression.
Usage e to_unichar, astring function, converts a Unicode integer valueto a
Unicode character value.
e If aunichar expression refersto only half of a surrogate pair, an error
message appears and the operation is aborted.
e If ainteger_expr isNULL, to_unichar returns NULL.
e For general information about string functions, see “ String functions” on
page 72.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute to_unichar.
See also Datatypes text, image, and unitext datatypes

Function char

288 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

tran_dumpable_status

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns a true/false indication of whether dump transaction is allowed.

tran_dumpable_status("database_name")

database_name
is the name of the target database.

Checksto seeif the pubs2 database can be dumped:

1> select tran dumpable status("pubs2")
2> go

(1 row affected)

In thisexample, you cannot dump pubs2. The return code of 106 isasum of all
the conditions met (2, 8, 32, 64). See the Usage section for adescription of the
return codes.

tran_dumpable_status allows you to determine if dump transaction is allowed
on a database without having to run the command. tran_dumpable_status
performs all of the checks that Adaptive Server performs when dump
transaction is issued.

If tran_dumpable_status returns 0, you can perform the dump transaction
command on the database. If it returns any other value, it cannot. The non-0
values are:

e 1- A database with the name you specified does not exist.

e 2-—Alogdoesnot exist on a separate device.

 4-Thelog first pageisin the bounds of a data-only disk fragment.
e 8—thetrunc log on chkpt option is set for the database.

* 16 — Non-logged writes have occurred on the database.

e 32 -Truncate-only dump tran has interrupted any coherent sequence of
dumps to dump devices.

e 64— Database is newly created or upgraded. Transaction log may not be
dumped until adump database has been performed.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute this function.

Command dump transaction

Reference Manual: Building Blocks 289

tsequal

tsequal

Description

Syntax

Parameters

Examples

Usage

Comparestimestamp valuesto prevent update on arow that has been modified
since it was selected for browsing.

tsequal(browsed_row_timestamp, stored_row_timestamp)

browsed_row_timestamp
is the timestamp column of the browsed row.

stored_row_timestamp
is the timestamp column of the stored row.

Retrievesthetimestamp column from the current version of the publishers table
and comparesit to the valuein thetimestamp column that has been saved. If the
valuesin the two timestamp columns are equal, tsequal updates the row. If the
values are not equal, tsequal returns this error message:

update publishers

set city = "Springfield"

where pub id = "0736"

and tsequal (timestamp, 0x0001000000002ea8)

* tsequal, a system function, compares the timestamp column values to
prevent an update on arow that has been modified since it was sel ected for
browsing. For general information about system functions, see “ System
functions’ on page 73.

» tsequal alowsyou to use browse mode without calling the dbqual function
in DB-Library. Browse mode supportsthe ability to perform updateswhile
viewing data. It isused in front-end applications using Open Client and a
host programming language. A table can be browsed if its rows have been
timestamped.

» Tobrowse atable in afront-end application, append the for browse
keywords to the end of the select statement sent to Adaptive Server. For
example:

Start of select statement in an Open Client application

for browse

Completion of the Open Client application routine

290

e Do not usetsequal in the where clause of a select statement; only in the
where clause of insert and update statements where the rest of the where
clause matches a single unique row.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

If you use atimestamp column as a search clause, compareit likearegular
varbinary column; that is, timestamp1 = timestamp2.
Timestamping a new table for browsing

e When creating a new table for browsing, include a column named
timestamp in the table definition. The column is automatically assigned a
datatype of timestamp; you do not have to specify its datatype. For
example:

create table newtable(coll int, timestamp, col3 char (7))

Whenever you insert or update a row, Adaptive Server timestampsit by
automatically assigning a unique varbinary value to the timestamp column.
Timestamping an existing table

* Toprepare an existing table for browsing, add a column named timestamp
using alter table. For example, to add atimestamp column with a NULL
value to each existing row:

alter table oldtable add timestamp

To generate atimestamp, update each existing row without specifying new
column values:

update oldtable
set coll = coll

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute tsequal.
See also Datatype Timestamp datatype

Reference Manual: Building Blocks 291

uhighsurr

uhighsurr

Description Returns 1 if the Unicode value at position start is the high half of a surrogate

pair (which should appear first in the pair). Returns O otherwise.

Syntax uhighsurr(uchar_expr, start)

Parameters uchar_expr

isacharacter-type column name, variable, or constant expression of unichar
or univarchar type.

start
specifies the character position to investigate.

Usage e uhighsurr, astring function, allowsyou to write explicit code for surrogate
handling. Specifically, if a substring starts on a Unicode character where
uhighsurr istrue, extract a substring of at least 2 Unicode val ues (substr
does not extract half of a surrogate pair).

e If uchar_expris NULL, uhighsurr returns NULL.
e For general information about string functions, see “ String functions’ on
page 72.

Standards ANSI SQL — Compliance level: Transact-SQL extension.

Permissions Any user can execute uhighsurr.

See also Function ulowsurr

292 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

ulowsurr

Description

Syntax

Parameters

Usage

Standards
Permissions

See also

Returns 1 if the Unicode value at position start isthe low half of a surrogate
pair (which should appear second in the pair). Returns 0 otherwise.

ulowsurr(uchar_expr, start)

uchar_expr
is acharacter-type column name, variable, or constant expression of unichar
or univarchar type.

start
specifies the character position to investigate.

e ulowsurr, astring function, allows you to write explicit code around
adjustments performed by substr, stuff, and right. Specifically, if a
substring ends on a Unicode value where ulowsurr istrue, the user knows
to extract a substring of 1 less characters (or 1 more). substr does not
extract astring that contains an unmatched surrogate pair.

e If uchar_expr isNULL, ulowsurr returns NULL.

« For general information about string functions, see “ String functions’ on
page 72.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute ulowsurr.

Function uhighsurr

Reference Manual: Building Blocks 293

upper

upper
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

294

Returns the uppercase equivalent of the specified string.
upper(char_expr)

char_expr
is a character-type column name, variable, or constant expression of char,
unichar, varchar, nchar, nvarchar, or univarchar type.

select upper ("abcd")

ABCD

* upper, astring function, converts lowercase to uppercase, returning a
character value.

» If char_expr or uchar_expr isNULL, upper returns NULL.
» Characters that have no upper-ase equivalent are left unmodified.

» If aunichar expression is created containing only half of a surrogate pair,
an error message appears and the operation is aborted.

» For general information about string functions, see “ String functions’ on
page 72.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute upper.

Function lower

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

uscalar

Description

Syntax

Parameters

Usage

Standards
Permissions

See also

Returns the Unicode scalar value for the first Unicode character in an
expression.

uscalar(uchar_expr)

uchar_expr
isacharacter-type column name, variable, or constant expression of unichar,
or univarchar type.

e uscalar, astring function, returns the Unicode val ue for the first Unicode
character in an expression.

e If uchar_exprisNULL, returns NULL.

e If uscalaris called on auchar_expr containing an unmatched surrogate
half, and error occurs and the operation is aborted.

« For general information about string functions, see “ String functions’ on
page 72.
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute uscalar.

Functions ascii

Reference Manual: Building Blocks 295

used_pages

used pages

Description

Syntax

Parameters

Examples

Usage

296

Reports the number of pages used by a table, an index, or a specific partition.
Unlikedata_pages, used_pages doesinclude pagesused for internal structures.
This function replaces the used_pgs function used in versions of Adaptive
Server earlier than 15.0.

used_pages(dbid, object_id[, indid[, ptnid]])
dbid
the database id where target object resides.

object_id
isthe object ID of the table for which you want to see the used pages. To see
the pages used by an index, specify the abject ID of the table to which the
index belongs.

indid
istheindex id of interest.

ptnid
isthe partition id of interest.

Example 1 Returnsthe number of pages used by the object with aobject ID of
31000114 in the specified database (including any indexes):

select used pages (5, 31000114)

Example 2 Returns the number of pages used by the object in the data layer,
regardless of whether or not a clustered index exists:

select used pages (5, 31000114, 0)

Example 3 Returnsthe number of pages used by the object in the index layer
for an index with index ID 2. This does not include the pages used by the data
layer (See the first bullet in the Usage section for an exception):

select used pages (5, 31000114, 2)

Example 4 Returnsthe number of pages used by the object in the datalayer of
the specific partition, which in this caseis 2323242432:

select used pages (5, 31000114, 0, 2323242432)

* Inanall-pageslocked table with a clustered index, the value of the last
parameter determines which pages used are returned:

* used_pages(dbid, objid, 0) —which explicitly passes 0 astheindex ID,
returns only the pages used by the data layer.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Standards
Permissions

See also

e used_pages(dbid, objid, 1) — returns the pages used by the index layer
aswell asthe pages used by the data layer.

To obtain the index layer used pages for an all-pages locked table with a
clustered index, subtract used_pages(dbid, objid, 0) from used_pages(dbid,
objid, 1).

Inin an al-pages-locked table with a clustered index, used_pages is
passed only the used pages in the data layer, for avalue of indid = o.
When indid=1 is passed, the used pages at the data layer and at the
clustered index layer are returned, asin previous versions.

used_pages is similar to the old used_pgs(objid, doampg, ioampg)
function.

All erroneous conditions result in areturn value of zero.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute used_pgs.

Functions data_pages, object_id

Reference Manual: Building Blocks 297

user

user
Description Returns the name of the current user.
Syntax user
Parameters None.
Examples select user
dbo
Usage » user, asystem function, returns the user’'s name.
» If thesa_role isactive, you are automatically the Database Owner in any
database you are using. Inside a database, the user name of the Database
Owner isaways “dbo”.
» For general information about system functions, see “ System functions”
on page 73.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can execute user.
See also Functions user_name

298 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

user_id

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

See also

Returnsthe ID number of the specified user or of the current user in the
database.

user_id(Juser_name])

user_name
is the name of the user.

Example 1

select user_id()

Example 2

select user id("margaret")

e user_id, asystem function, returns the user’s ID number. For general
information about system functions, see “ System functions’ on page 73.

« user_id reports the number from sysusers in the current database. If no
user_nameis supplied, user_id returnsthe ID of the current user. To find
the server user ID, which is the same number in every database on
Adaptive Server, use suser_id.

e Inside adatabase, the “guest” user ID is always 2.

* Inside adatabase, the user_id of the Database Owner is always 1. If you
have the sa_role active, you are automatically the Database Owner in any
database you are using. To return to your actual user ID, useset sa_role off
before executing user_id. If you are not avalid user in the database,
Adaptive Server returns an error when you use set sa_role off.

ANSI SQL — Compliance level: Transact-SQL extension.

You must System Administrator or System Security Officer to usethisfunction
on auser_name other than your own.

Commands setuser

Functions suser_id, user_name

Reference Manual: Building Blocks 299

user_name

user_name

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

See also

300

Returns the name within the database of the specified user or of the current
user.

user_name([user_id])

user_id
isthe ID of auser.

Example 1

select user name ()

Example 2

select user name (4)

margaret

* user_name, asystem function, returnsthe user’s name, based onthe user’s
ID in the current database. For general information about system
functions, see " System functions’ on page 73.

* If nouser_idissupplied, user_name returns the name of the current user.

» If thesa_role isactive, you are automatically the Database Owner in any
database you are using. Inside a database, the user_name of the Database
Owner isaways “dbo”.

ANSI SQL — Compliance level: Transact-SQL extension.

You must be a System Administrator or System Security Officer to use this
function on auser_id other than your own.

Functions suser_name, user_id

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

valid_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns 0 if the specified string is not avalid identifier or anumber other than
0if the string isavalid identifier, and can be up to 255 bytesin length.

valid_name(character_expression[, maximum_length])

character_expression
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type. Constant expressions must be enclosed in
guotation marks.

maximum_length
isan integer larger than 0 and less than or equal to 255. The default valueis
30. If theidentifier length is larger than the second argument, valid_name
returns 0, and returns a value greater than zero if the identifier length is
invalid.

Creates a procedure to verify that identifiers are valid:

create procedure chkname
@name varchar (30)
as
if valid name (@name) = 0
print "name not wvalid"

* valid_name, asystem function, returns O if the character_expression is not
avalididentifier (illegal characters, more than 30 byteslong, or areserved
word), or anumber other than O if it isavalid identifier.

e Adaptive Server identifiers can be a maximum of 16384 bytesin length,
whether single-byte or multibyte characters are used. Thefirst character of
an identifier must be either an alphabetic character, as defined in the
current character set, or the underscore (_) character. Temporary table
names, which begin with the pound sign (#), and local variable names,
which begin with the at sign (@), are exceptions to this rule. valid_name
returns O for identifiers that begin with the pound sign (#) and the at sign

(@).

« For general information about system functions, see “ System functions”
on page 73.

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute valid_name.

System procedure sp_checkreswords

Reference Manual: Building Blocks 301

valid_user

valid_user
Description Returns 1 if the specified ID isavalid user or dliasin at least one database on
this Adaptive Server.
Syntax valid_user(server_user_id)
Parameters server_user_id
isaserver user ID. Server user IDsare stored in the suid column of syslogins.
Examples select valid_user (4)
1
Usage » valid_user, asystem function, returns 1 if the specified ID isavalid user or
aliasin at least one database on this Adaptive Server.
» For general information about system functions, see “ System functions”
on page 73.
Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions You must be a System Administrator or a System Security Officer to use this
function on aserver_user_id other than your own.
See also System procedures sp_addlogin, sp_adduser

302 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

var

Description Compuites the statistical variance of a sample consisting of anumeric
expression, as adouble, and returns the variance of a set of numbers.

Note var and variance are aliases of var_samp. See var_samp on page 306 for
details.

Reference Manual: Building Blocks 303

var_pop

var_pop

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

304

Computes the statistical variance of a population consisting of a numeric
expression, as adouble. varp isan aliasfor var_pop, and uses the same syntax.

var_pop ([all | distinct] expression)

all
appliesvar_pop to al values. all is the defaullt.

distinct
eliminates duplicate values before var_pop is applied.

expression
is an expression—commonly a column name—in which its
population-based variance is calculated over a set of rows.

Thefollowing statement liststhe average and variance of the advancesfor each
type of book in the pubs2 database:

select type, avg(advance) as "avg", var pop (advance)
as "variance" from titles group by type order by type

Computes the population variance of the provided value expression eval uated
for each row of the group (if distinct was specified, then each row that remains
after duplicates have been eliminated), defined as the sum of squares of the
difference of value expression, from the mean of value expression, divided by
the number of rows in the group or partition.

Figure 2-5: The formula for population-related statistical aggregate
functions

The formulathat defines the variance of the population of size n
having mean 1 (var_pop) is asfollows. The population standard
deviation (stddev_pop) is the positive square root of this.

()2 o2 = Variance
X —

02 - Z—' H n = Population size

n M = Mean of the values x;

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute var_pop.

For general information about aggregate functions, see “ Aggregate functions’
in Adaptive Server Enterprise Reference Manual: Building Blocks.

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Functions stddev_pop, stddev_samp, var_samp

Reference Manual: Building Blocks 305

var_samp

var_samp

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

306

Computes the statistical variance of a sample consisting of a
numeric-expression, as a double, and returns the variance of a set of numbers.
var and variance are aliases of var_samp, and use the same syntax.

var_samp ([all | distinct] expression)

all
appliesvar_samp to all values. all is the default.

distinct
eliminates duplicate values before var_samp is applied.

expression
isany numeric datatype (float, real, or double) expression.

Thefollowing statement liststhe average and variance of the advancesfor each
type of book in the pubs2 database:

select type, avg(advance) as "avg", var samp (advance)
as "variance" from titles where
total sales > 2000 group by type order by type

var_samp returns aresult of double-precision floating-point datatype. If
applied to the empty set, theresult isNULL.

Figure 2-6: The formula for sample-related statistical aggregate
functions

The formula that defines an unbiased estimate of the population
variance from a sample of size n having mean x (var_samp) is as
follows. The sample standard deviation (stddev_samp) is the positive
square root of this.

2 s? = Variance
S2 _ § (Xi_x) n = Sample size
n-1 x = Mean of the values ;

ANSI SQL — Compliance level: Transact-SQL extension.
Any user can execute var_samp.

For general information about aggregate functions, see “ Aggregate functions’
in Adaptive Server Enterprise Reference Manual: Building Blocks.

Functions stddev_pop, stddev_samp, var_pop

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

variance

Description Compuites the statistical variance of a sample consisting of anumeric
expression, as adouble, and returns the variance of a set of numbers.

Note var and variance are aliases of var_samp. See var_samp on page 306 for
details.

Reference Manual: Building Blocks 307

varp

varp

Description Computes the statistical variance of a population consisting of a numeric
expression, as adouble.

Note varp isan alias of var_pop. See var_pop on page 304 for details.

308 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

xa_bqual

Description

Syntax

Parameters

Examples

Returnsthe binary version of the bqual component of an ASCII XA transaction
ID.

xa_bqual(xid, 0)

xid
isthe ID of an Adaptive Server transaction, obtained from the xactname
column in systransactions or from sp_transactions.

0
is reserved for future use

Example 1 Returns“0x227f06ca80", the binary translation of the branch
qualifier for the Adaptive Server transaction ID

“0000000A _I phl T596i C7TbF2#AUfkzaM_8DY 60EQ”. The Adaptive Server
transaction ID isfirst obtained using sp_transactions:

1> sp_transactions

xactkey type coordinator starttime st
ate connection dbid spid 1loid failover srvname namelen xactna
me

0x531600000600000017e4885b0700 External XA Dec 9 2005 5:15PM In
Command Attached 7 20 877 Resident Tx NULL 39

0000000A IphIT596iC7bF2#AUfkzaM 8DY6OEOQ

1> select xa bqual ("0000000A IphIT596iC7bF2#AUfkzaM 8DY6OEO", 0)

2> go

0x227f06ca80

Example 2 xa_bqual isoften used together with xa_gtrid. Thisexamplereturns
the global transaction IDs and branch qualifiers from all rowsin
systransactions where its coordinator column isthe value of “3”:

1> select gtrid=xa gtrid(xactname,0),
bgqual=xa bqual (xactname, 0)
from systransactions where coordinator = 3

2> go

gtrid

Reference Manual: Building Blocks 309

xa_bqual

0xbl946cdc52464a6lcba42fe4e0£5232b

0x227f06ca80

Usage If an external transaction is blocked on Adaptive Server and you are using
sp_lock and sp_transactions to identify the blocking transaction, you can use
the XA transaction manager to terminate the global transaction. However,
when you execute sp_transactions, the value of xactname it returnsisin ASCI|
string format, while XA Server uses an undecoded binary value. Using
xa_bqual thus allows you to determine the bqual portion of the transaction
name in aformat that can be understood by the XA transaction manager.

xa_bqual returns:

» Thetranslated version of this string that follows the second “_”
(underscore) and preceeds either the third “_" or end-of-string value,
whichever comesfirst.

* NULL if the transaction ID cannot be decoded, or isin an unexpected
format.

Note xa_bqual does not perform avalidation check on the xid, but only returns
atrandated string.

Standards ANSI SQL — Compliance level: Transact-SQL extension.
Permissions Any user can use xa_bqual.
See also Functions xa_gtrid

Stored procedures sp_lock, sp_transactions

310 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

xa_gtrid
Description Returnsthe binary version of the gtrid component of an ASCII XA transaction
ID.
Syntax xa_gtrid(xactname, int)
Parameters xid
isthe ID of an Adaptive Server transaction, obtained from the xactname
column in systransactions or from sp_transactions.
0
isreserved for future use
Examples Example 1 In thistypica situation, returns “0x227f06ca30,” the binary
tranglation of the branch qualifier, and
“0xb1946cdc52464a61chad2fede0f5232b,” the global transaction ID, for the
Adaptive Server transaction 1D
“0000000A _IphI T596iC7bF2#AUfkzaM_8DY 60EQ":
1> select xa gtrid("0000000A IphIT596iC7bF2#AUfkzaM 8DY6OEO", 0)

2>

0xbl946cdc52464a6lcba42fed4e0£5232b

row affected)

Example 2 xa_bqual isoften used together with xa_gtrid. Thisexamplereturns
the global transaction IDs and branch qualifiers from all rowsin
systransactions where its coordinator columnisthe value of “3":

select gtrid=xa gtrid(xactname,0),
bgual=xa bqual (xactname, 0)
from systransactions where coordinator = 3

go
gtrid

bqual

0xbl946cdc52464a6lcba42fe4e0£5232b

Reference Manual: Building Blocks 311

xa_gtrid

Usage

Standards
Permissions

See also

312

0x227£06ca80

If an external transaction is blocked on Adaptive Server and you are using
sp_lock and sp_transactions to identify the blocking transaction, you can use
the XA transaction manager to terminate the global transaction. However,
when you execute sp_transactions, the value of xactname it returnsisin ASCI|
string format, while XA Server usesan undecoded binary value. Using xa_gtrid
thus allows you to determine the gtrid portion of the transaction namein a
format that can be understood by the XA transaction manager.

xa_gtrid returns:

The tranglation version of tis string that followsthefirst “_” (underscore)

and preceeds either the second “_" or end-of-string value, whichever
comesfirst.

NULL if the transaction ID cannot be decoded, or isin an unexpected
format.

Note xa_gtrid does not perform a validation check on the xid, but only returns
atrandated string.

ANSI SQL — Compliance level: Transact-SQL extension.

Any user can use xa_gtrid.

Functions xa_bqual

Stored procedures sp_lock, sp_transactions

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

xmltable

Description

Syntax

Parameters

Extracts datafrom an XML document and returnsit as a SQL table.

xmitable_expression ::= xmitable
(row_pattern passing xml_argument
columns column_definitions
options_parameter)
row_pattern ::= character_string_literal
xml_argument ::= xml_expression | column_reference |
variable_reference
column_definitions ::=
column_definition [{, column_definition }]
column_definition ::=
ordinality_column | regular_column

ordinality_column ::= column_name datatype for ordinality
regular_column ::=
column_name datatype [default literal] [null | not null]
[path column_pattern]
column_pattern ::= character_string_literal
options_parameter ::=[,] option option_string
options_string ::= basic_string_expression

Derived table syntax Returns a SQL table from within a SQL from clause.

from_clause ::= from table_reference [, table_reference]...
table_reference ::=table_view_name | ANSI_join |derived_table
table_view_name::=See the select command in Reference Manual
Volume 2, "Commands."
ANSI_join::=See the select command in Reference Manual
Volume 2, "Commands."
derived_table ::=
(subquery) as table_name [(column_name [, column_name]...)|
xmltable_expression as table_name

xml_argument
is an expression, column reference, or variable, referring to an XML
document.

for
isareserved XML keyword.

ordinality
isanon-reserved XML keyword.

passing
isanon-reserved XML keyword.

Reference Manual: Building Blocks 313

xmltable

row_pattern
isan XPath query expression whose result is a sequence of elements from
the specified document. The xmitable call returns a table with one row for
each element in the sequence.

columns
isanon-reserved XML keyword.

column_name
is the user-specified name of the column.

column_pattern
isan XPath query expression that applies to an element of the sequence
returned by the row_pattern, to extract the data for a column of the result
table. If the column_pattern is omitted, the column_pattern defaults to the
column_name.

ordinality_column
isacolumn of datatypes integer, smallint, tinyint, decimal, or numeric, which
indicates ordering of the elementsin the input XML document.

regular_column
isany column that is not an ordinality column.

derived_table
is a parenthesized subquery specified in the from clause of a SQL query.

path
isareserved XML keyword.

option
is an option_string, defined in XML Services, and areserved XML keyword.

Examples Example 1 Shows asimple xmitable call with the document specified as a
character-string literal:

select * from xmltable('/doc/item!'
passing '<doc><item><id>1l</id><name>Box</name></item>"'
+'<item><id>2</id><name>Jar</names></item></doc>"'
columns id int path 'id',name varchar(20) path 'name') as items_table

id name
1 Box
2 Jar

(2 rows affected)

Example 2 Storesthe document in a Transact-SQL variable, and references
that variable in the xmitable call:

314 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

declare @doc varchar (16384)
set @doc='<doc><item><id>1</id><name>Box</names></items>’
+'<item><id>2</id><name>Jar</name></items></doc>"'

select * from xmltable('/doc/item' passing @doc
columns id int path 'id', name varchar(20) path 'name') as items table

id name
1 Box
2 Jar

(2 rows affected)
Example 3 Storesthe document in atable and referencesit with a subquery:

select 100 as doc_id,
'<docs><items><id>l</id><name>Box</names</items<item><id>2</id>
<name>Jar</name></item></doc>' as doc
into #sample docs
select * from xmltable('/doc/item!'
passing(select doc from #sample docs where doc_id=100)

columns id int path 'id',name varchar(20) path 'name') as items_table
id name
1 Box
2 Jar

(2 rows affected)

Example 4 If arow pattern returns an empty sequence, the result is an empty
table:

select * from xmltable ('/doc/item entry'
passing '<docs><item><id>1l</id><name>Box</name></item>'
+'<item><id>2</id><name>Jar</name></item></doc>"'
columns id int path 'id',
name varchar (20) path 'name') as items_ table

(0 rows affected)

Example 5 Theargumentsfollowing the columns keyword comprisethelist of
column definitions. Each column definition specifies a column name and
datatype, asin create table, and a path, called the column pattern.

Reference Manual: Building Blocks 315

xmltable

When the data for a column is contained in an XML attribute, specify the
column pattern using “ @” to reference an attribute. For example:

select * from xmltable ('/doc/item'
passing '<doc><item id="1"><name>Box</names></item>"'
+'<item id="2"><name>Jar</names></items></doc>"

columns id int path '@id', name varchar(20)) as items_ table
id name
1 Box
2 Jar

(2 rows affected)

Example 6 A column-pattern is commonly the same as the specified
column_name, for example name. In this case, omitting the column-pattern
results in defaulting to the column_name:

select * from xmltable ('/doc/item'
passing '<doc><item><id>1l</id><name>Box</name></item>"'
+'<item><id>2</id><name>Jar</names></items></doc>"'

columns id int, name varchar(20)) as items_ table
id name
1 Box
2 Jar

(2 rows affected)

Example 7 If you want a column pattern to default to the column name, in a
columnwhose valueisin an XML attribute, use a quoted identifier. You must
then quote such identifiers when you reference them in the results:

set quoted_identifier on
select "@id", name from xmltable ('/doc/item'
passing '<doc><item id="1"><name>Box</name></item>"'
+'<item id="2"s><names>Jar</name></items</doc>"

columns "@id" int, name varchar(20)) as items_ table
@id name
1 Box
2 Jar

(2 rows affected)

316 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

Example 8 You can aso use quoted identifiers to specify column names as
default column patterns, using column names that are more complex XPath
expressions. For example:

set quoted identifier on
select "@id", "name/short", "name/full" from xmltable ('/doc/item'
passing '<docs><item id="1"><name><short>Box</short>
<full>Box, packing, moisture resistant, plain</fulls
</name></items"
+'<item id="2"><name><short>Jar</short>
<full>Jar, lidded, heavy duty</fulls>
</name></items></docs>"
columns "@id" int, "name/short" wvarchar (20), "name/full" varchar (50))
as items_table

@id name/short name/full
1 Box Box, packing, moisture resistant, plain
2 Jar Jar, lidded, heavy duty

(2 rows affected)

Example 9 Thefunctiontextisimplicitin column patterns. This example does
not specify text in the column pattern for either the id or name column:

select * from xmltable ('/doc/item'
passing '<doc><item><id>1l</id><name>Box</name></items>"'
+ '<item><id>2</id><names>Jar</name></items></doc>"

columns id int path 'id', name varchar (20) path 'name') as items_ table
id name
1 Box
2 Jar

(2 rows affected)

Example 10 Applying animplicit SQL converst statement to the dataextracted
from the column pattern, derives column valuesin datatype conversions.

select * from xmltable ('/emps/emp'
passing '<emps>
<emp><id>l</id><salary>123.45</salary><hired>1/2/2003</hired></emp>"
+'<emp><id>2</id><salary>234.56</salary><hired>2/3/2004</hired></emp>"'
+'</emps>"
columns id int path 'id', salary dec(5,2), hired date)
as items_table

Reference Manual: Building Blocks 317

xmltable

1 123.45 Jan 2, 2003
2 234 .56 Feb 3, 2004
(2 rows affected)

Example 11 You canuseanordinality_column inxmitable to record the ordering
of elementsin the input XML document:

declare @doc varchar (16384)
set @doc = '<doc><item><id>25</id><name>Box</name></item>'
+'<item><id>15</id><name>Jar</name></item></doc>"
select * from xmltable('/doc/item' passing @doc
columns item order int for ordinality,
id int path 'id',
name varchar (20) path 'name') as items_table
order by item order

item order id name
1 25 Box
2 15 Jar

(2 rows affected)

Without the for ordinality clause and the item_order column, thereis nothing in
the id and name columns that indicates that the row of id 25 precedes the row
of id 15. The for ordinality clause orders the output SQL rows the same as the
ordering of the elementsin the input XML document.

The datatype of an ordinality column can be any fixed numeric datatype: int,
tinyint, bigint, numeric, or decimal. numeric and decimal must have a scale of 0.
An ordinality column cannot bereal or float.

Example 12 Omitsthe <name> element from the second <item>. The name
column allows namesto be NULL by default.

select * from xmltable ('/doc/item'
passing '<doc><item><id>1l</id><name>Box</name></item>"'
+'<item><id>2</id></item></doc>"
columns id int path 'id', name varchar (20) path 'name')
as items_table

id name
1 Box
2 NULL

(2 rows affected)

Example 13 Omitsthe <name> element from the second <item>, and specifies
not null for the name column:

318 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

select * from xmltable ('/doc/item'
passing '<doc><item><id>1l</id><name>Box</name></items>'
+'<item><id>2</id></item></doc>'
columnsg id int path 'id', name varchar(20) not null path 'name')
as items_table

id name

1 Box

Msg 14847, Level 16, State 1:
Line 1:

XMLTABLE column 0, does not allow null values.

Example 14 Addsadefault clauseto the name column, and omitsthe <name>
elements from the second <item>.

select * from xmltable ('/doc/item'
passing'<doc><item><id>1</id><name>Box</name></items>"
+'<item><id>2</id></item></doc>’

columnsg id int path 'id', name varchar (20) default '***' path 'name')

as items_table

id name

1 Box
2 Txkx!
(

2 rows affected)

Example 15 Shows SQL commands in which you can use an xmitable call in
aderived table expression. This example uses xmitable in a simple select
statement:

select * from xmltable ('/doc/item'
passing '<docs><item><id>1l</id><name>Box</name></item>'
+'<item><id>2</id><name>Jar</names></items></doc>"'
columns id int path 'id',

name varchar (20) path 'name') as items_ table
id name
1 Box
2 Jar

(2 rows affected)

Example 16 Usesxmitable in aview definition. It storesadocument in atable
and references that stored document in a create view statement, using xmitable
to extract data from the table:

select 100 as doc_id,

Reference Manual: Building Blocks 319

xmltable

320

'<doc><items><id>l</id><name>Box</names></items"
+'<item><id>2</id><name>Jar</names></item></doc>' as doc
into sample_ docs
create view items_table as
select * from xmltable('/doc/item'
passing (select doc from sample docs where doc_id=100)
columns id int path 'id',
name varchar (20) path 'name') as xml extract
select * from items_table

id name
1 Box
2 Jar

(2 rows affected)
Example 17 Uses xmltable in acursor:

declare C cursor for
select * from xmltable ('/doc/item'
passing (select doc from sample docs where id=100)
columns id int path 'id',
name varchar (20) path 'name') as items_ table
go
declare @idvar int
declare @namevar varchar (20)

open C

while @@sglstatus=0

begin

fetch C into @idvar, @namevar

print 'ID "$1!" NAME"%2!"', @idvar, @namevar
end

ID "1" NAME "Box"
ID "2" NAME "Jar"

(2 rows affected)

In applications that require multiple actions for each generated row, such as
executing update, insert, or delete from other tables, you can process an
xmitable result with a cursor loop. Alternatively, store the xmitable result in a
temporary table and process that table with a cursor loop.

Example 18 This example uses xmltable in select into:

select * into #extracted table
from xmltable('/doc/item'
passing (select doc from sample docs where doc_1d=100

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

columns id int path 'id',
name varchar (20) path 'name') as items_table

select * from #extracted table

id name
1 Box
2 Jar

Example 19 Uses xmitable in an insert command:

create table #extracted data (idcol int, namecol varchar (20))
insert into #extracted data
select * from xmltable('/doc/item!'
passing (select doc from sample docs where doc_id=100)
columns id int path 'id', name varchar(20) path 'name') as items table
select * from #extracted_data

idcol namecol
1 Box
2 Jar

(2 rows affected)

Example 20 Usesxmitable in a subquery. xmitable returnsa SQL table, so the
subquery must perform either an aggregation or a selection to return asingle
row and column for the subquery result.

declare @idvar int
set @idvar = 2
select @idvar,

(select name from xmltable ('/doc/item'
passing(select doc from sample docs where doc i1d=100)
columns id int path 'id',name varchar(20) path 'name') as item table

where items_ table.id=@idvar)

(1 rows affected)

Example 21 Joins an xmitable result with other tables, using either multiple
table joins in the from clause, or outer joins:

create table prices (id int, price decimal (5,2))
insert into prices values(1l,123.45)
insert into prices values (2,234.56)
select prices.id,extracted table.name, prices.price
from prices, (select * from xmltable('/doc/item!'
passing (select doc from sample docs where doc_ id=100)

Reference Manual: Building Blocks 321

xmltable

columns id int path 'id', name varchar (20) path 'name') as a) as
extracted table
where prices.id=extracted table.id
id name price
Box 123.45
Jar 234 .56
2 rows affected)

—~ N B

Example 22 Uses xmitable, with alateral reference to acolumn existing in a
preceding table in the same from clause as xmitable:

create table deptab (coll int, col2 image)
insert deptab values (1, '<depts>
<dept-id>1</dept-id>
<dept-name>Finance</dept-name>
<employeess>
<emp><name>John</name><ids>ell</id></emp>
<emp><name>Bela</name><id>el2</id></emp>
<emp><name>James</name><id>el3</id></emp>
</employees>
</dept>")

insert deptab values (2, '<dept>

<dept-id>2</dept-id>

<dept-name>Engineering</dept-names>

<employeess>
<emp><name>Tom</name><id>e2l</id></emp>
<emp><name>Jeff</name><id>e22</id></emp>
<emp><name>Mary</name><id>e23</id></emp>

</employees>

</dept>")

select id, empname from deptab, xmltable ('/dept/employees/emp' passing
deptab.col2 columns empname varchar (8) path 'name', id varchar (8)
path 'id') as sample tab

id empname
ell John
el2 Bela
el3 James
ezl Tom

e22 Jeff
ez23 Mary

(6 rows affected)

Usage e xmltable isabuilt-in, table-valued function.

322 Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

e The syntax of derived tables requires you to specify atable name, even if
you do not reference it. Therefore, each xmitable expression must also
specify atable name.

e Theargument following passing is the input XML document.

e Theresult type of an xmitable expression isa SQL table, whose column
names and their datatypes are specified by column_definitions.

e To process documents, you can apply xmitable to the XML document in
each row of atable of XML documents.

e These keywords are associated with xmitable:
o Reserved — for, option, xmltable, path
* Not reserved — columns, ordinality, passing

e Theexpressionsin the arguments of an xmitable call can reference the
column names of preceding tablesin the from clause containing the
xmitable call. Only tables that precede the xmitable call can be referenced.
Such areference, to acolumn of apreceding table in the same from clause,
iscalled alateral reference. For example:

select * from T1l, xmltable(...passing T1.Cl...)
as XT2, xmltable(...passing XT2.C2...)as XT3

Thereferenceto T1.C1 in thefirst xmitable call is alateral referenceto
column C1 of table T1. Thereference to XT2.C2 in the second xmitable
call isalateral referenceto column C2 of the table generated by the first
xmitable call.

¢ You cannot usexmitable in the from clause of an update or delete statement.
For example, the following statement fails:

update T set T.C=...
from xmltable(...) as T
where. ..

e Datatypesin regular_columns can be of any SQL datatype.

* Tohandle XML datawhose format is not suitable for a SQL convert
function, extract the data to a string column (varchar, text, image,
java.lang.String).

* Theextracted XML datafor the column must be convertibleto the column
datatype, or an exception is raised.

e |f acolumn pattern returns an empty result, the action taken depends on
thedefault and {null | not null} clauses.

Reference Manual: Building Blocks 323

xmltable

324

Theliteral following adefault in aregular_column must be assignableto the
datatype of the column.

There can be no more than one ordinality_column; the datatype specified
for this variable must be integer, smallint, tinyint, decimal, or numeric.
decimal and numeric must have a scale of zero.

An ordinality_column, if one exists, is not nullable.

Note This default is different from the default value of create table.

The nullable property of other columnsis specified by the {nu11 | not
null} clause. The default is null.

The current setting of set quoted_identifier applies to the clauses of an
xmitable expression. For example:

» If set quoted_identifier iSon, column names can be quoted identifiers,
and string literalsin row_pattern, column_pattern, and default literals
must be surrounded with single quotation marks.

» If set quoted_identifier is off, column names cannot be quoted
identifiers, and string literalsin row_pattern, column_pattern, and
default literals can be surrounded with either single or double
guotation marks.

The general format of the option_string is described in “option_strings:
genera format,” in XML Services, Adaptive Server 15.0.

xmltable row and column patterns

xmitable row and column patterns are allowed to be only simple paths.
Simple paths in XPath consist only of forward traversals using '/ and
element/attribute names.

If therow_pattern doesnot begin at theroot level of the document specified
by xml_argument, an exception israised. Therow pattern must begin at the
root of the XML document.

The row pattern expression cannot contain an XPath function.
A column pattern must be arelative path.

If the row_pattern specifies an XML function, an exception israised. The
row pattern cannot specify an XML function.

If acolumn_definition does not specify apath, the default column_pattern is
the column_name of the column definition. This default is subject to the
case sensitivity of the server. For example, consider this statement:

Adaptive Server Enterprise

CHAPTER 2 Transact-SQL Functions

select * from xmltable(...columns name
varchar(30),...)

If the server is case-insendgitive, thisis equivalent to the following:

select * from xmltable(...columns name varchar (30)
path 'mame',...)

If the server is case-sensitive, the first statement is equivalent to:

select * from xmltable
(...columns name varchar(30)path 'NAME',...)

Generating the rows of the result table

Theresult value of an xmitable expressionisaT-SQL table RT, defined as
follows:

RT hasarow for each element in the XML sequence that results from
applying the row_pattern to the xml_argument.

The rows of RT have a column for each column_definition, with the
column_name and datatype specified in the column_definition.

If acolumn_definition isaordinality_column, itsvalue for the Nth row isthe
integer N.

If acolumn_definition isaregular_column, its value for the Nth row
corresponds to the following:

e Let XVAL betheresult of applying this XPath expression to the
xml_argument:

(row pattern[N])/column pattern/text ()

e If XVAL isempty, and the column_definition contains adefault clause,
the value of the column is that default value.

If XVAL isempty and the column_definition specifies not null, an
exception israised.

Otherwise, the value of the column is the null value.

e If XVAL isnot empty, and the datatype of the columnischar, varchar,
text, unitext, unichar, univarchar, or java.lang.String, de-entitize X VAL.

* Thevalue of the column is the result of:

convert (datatype, XVAL)

Reference Manual: Building Blocks 325

year

year

Description

Syntax

Parameters
Examples
Usage
Standards

Permissions

See also

326

Returns an integer that represents the year in the datepart of a specified date.
year(date_expression)

date_expression
is an expression of type datetime, smalldatetime, date, time or a character
string in a datetime format.

Returns the integer 03:

year("11/02/03")

03
(1 row(s) affected)

year(date_expression) is equivalent to datepart(yy, date_expression).
ANSI SQL — Compliance level: Transact-SQL extension.

Any user can execute year.

Datatypes datetime, smalldatetime, date

Functions datepart, day, month

Adaptive Server Enterprise

CHAPTER 3 Global Variables

Topics | Page
Adaptive Server global variables | 327

Adaptive Server global variables

Global variables are system-defined variables updated by Adaptive Server
while the system is running. Some global variables are session-specific,

while others are server instance-specific. For example, @ @error contains
thelast error number generated by the system for agiven user connection.

See get_appcontext and set_appcontext to specify application context
variables.

To view the value for any global variable, enter:
select variable_name
For example:
select @echar convert
Table 3-1lists the global variables available for Adaptive Server:

Table 3-1: Adaptive Server global variables

Global variable Definition

@@authmech A read-only variable that indicates the mechanism used to authenticate the user.
@@bootcount Returns the number of times an Adaptive Server installation has been booted.
@@Dboottime Returns the date and time Adaptive Server was last booted.

@@bulkarraysize Returns the number of rows to be buffered in local server memory before being

transferred using the bulk copy interface Used only with Component Integration
Services for transferring rows to aremote server using select into. For more
information, see the Component Integration Services User’s Guide.

@@bulkbatchsize Returns the number of rows transferred to a remote server viaselect into proxy_table
using the bulk interface. Used only with Component Integration Services for
transferring rows to a remote server using select into. For more information, see the
Component Integration Services User’s Guide.

Reference Manual: Building Blocks 327

Adaptive Server global variables

Global variable

Definition

@@char_convert

Returns 0 if character set conversion is not in effect. Returns 1 if character set
conversion isin effect.

@@cis_rpc_handling

Returns 0 if cis rpc handling is off. Returns 1 if cis rpc handling is on. For more
information, see the Component Integration Services User’s Guide.

@@cis_version

Returns the date and version of Component Integration Services.

@@client_csexpansion

Returnsthe expansion factor used when converting from the server character set to the
client character set. For example, if it contains avalue of 2, acharacter in the server
character set could take up to twice the number of bytes after translation to the client
character set.

@@client_csid

Returns -1 if the client character set has never been initialized; returns the client
character set ID from syscharsets for the connection if the client character set hasbeen
initialized.

@@client_csname

ReturnsNULL if client character set has never beeninitialized; returnsthe name of the
character set for the connection if the client character set has been initialized.

@@cmpstate

Returns the current mode of Adaptive Server in a high availability environment. Not
used in anon-high availability environment.

@@connections

Returns the number of user logins attempted.

@@cpu_busy

Returns the amount of time, in ticks, that the CPU has spent doing Adaptive Server
work since the last time Adaptive Server was started.

@@cursor_rows

A global variable designed specifically for scrollable cursors. Displays the total
number of rowsin the cursor result set. Returns the following values:

¢ -1-thecursoris:
« Dynamic—because dynamic cursorsreflect all changes, the number of rowsthat

qualify for the cursor is constantly changing. You can never be certain that all
the qualified rows are retrieved.

« semi_sensitive and scrollable, but the scrolling worktable is not yet fully
populated — the number of rows that qualify the cursor is unknown at the time
thisvalueisretrieved.

¢ 0 -—either no cursors are open, no rows qualify for thelast opened cursor, or the last
open cursor is closed or deall ocated.

« n-—thelast opened or fetched cursor result set isfully popul ated. The valuereturned
isthe total number of rows in the cursor result set.

@@curloid Either no cursors are open, no rows qualify for the last opened cursor, or the last open
cursor is closed or deallocated.

@@datefirst Set using set datefirst n where nisavalue between 1 and 7. Returns the current value
of @ @datefirst, indicating the specified first day of each week, expressed as tinyint.
The default value in Adaptive Server is Sunday (based on the us_language defaullt),
which you set by specifying set datefirst 7. Seethe datefirst option of the set
command for more information on settings and values.

@@dbts Returns the timestamp of the current database.

328 Adaptive Server Enterprise

CHAPTER 3 Global Variables

Global variable

Definition

@@error

Returns the error number most recently generated by the system.

@@errorlog

Returns the full path to the directory in which the Adaptive Server error log is kept,
relative to $SYBASE directory (%SYBASEY on NT).

@@failedoverconn

Returns a value greater than O if the connection to the primary companion has failed
over and is executing on the secondary companion server. Used only in ahigh
availability environment, and is session-specific.

@@fetch_status Returns:
» 0 -—fetch operation successful
e -1 —fetch operation unsuccessful
e -2-—valuereserved for future use

@@guestuserid Returns the ID of the guest user.

@@hacmpservername Returns the name of the companion server in a high availability setup.

@@haconnection Returns avalue greater than 0 if the connection hasthe failover property enabled. This
is a session-specific property.

@@heapmemsize Returns the size of the heap memory pooal, in bytes. See the System Administration
Guide for more information on heap memory.

@@identity Returns the most recently generated IDENTITY column value.

@@idle Returns the amount of time, in ticks, that Adaptive Server has been idle since it was
last started.

@@invaliduserid Returns avalue of -1 for an invalid user ID.

@@io_busy Returns the amount of time, in ticks, that Adaptive Server has spent doing input and
output operations.

@@isolation Returns the value of the session-specific isolation level (0, 1, or 3) of the current

Transact-SQL program.

@@kernel_addr

Returns the starting address of thefirst shared memory region that contains the kernel
region. Theresult isin the form of Oxaddress pointer value.

@@kernel_size Returns the size of the kernel region that is part of the first shared memory region.

@@langid Returns the server-wide language ID of the language in use, as specified in
syslanguages.langid.

@@language Returns the name of the language in use, as specified in syslanguages.name.

@@lastlogindate Available to each user login session, @@ astl ogindate includes a datetime datatype,

itsvalueisthe lastlogindate column for the login account before the current session
was established. Thisvariableis specific to each login session and can be used by that
session to determine the previouslogin to the account. If the account has not been used
previously or “sp_passwordpolicy 'set', enable last login updates” is 0, then the value
of @@lastlogindate isSNULL.

@@lock_timeout

Set using set lock wait n. Returns the current lock_timeout setting, in milliseconds.
@@l ock_timeout returnsthe value of n. The default value is no timeout. If no set lock
wait n is executed at the beginning of the session, @@l ock_timeout returns -1.

Reference Manual: Building Blocks 329

Adaptive Server global variables

Global variable

Definition

@@maxcharlen

Returns the maximum length, in bytes, of a character in Adaptive Server's default
character set.

@@max_connections

Returns the maximum number of simultaneous connections that can be made with
Adaptive Server in the current computer environment. You can configure Adaptive
Server for any number of connections less than or equal to the value of
@@max_connections with the number of user connections configuration parameter.

@@maxgroupid Returns the highest group user ID. The highest value is 1048576.

@@maxpagesize Returns the server’slogical page size.

@@max_precision Returns the precision level used by decimal and numeric datatypes set by the server.
Thisvalueisafixed constant of 38.

@@maxspid Returns maximum valid value for the spid.

@@maxsuid Returns the highest server user ID. The default valueis 2147483647.

@@maxuserid Returns the highest user ID. The highest value is 2147483647.

@@mempool_addr

Returns the global memory pool table address. The result isin the form Oxaddress
pointer value. Thisvariableisfor internal use.

@@min_poolsize Returns the minimum size of anamed cache pool, in kilobytes. It is calculated based
onthe DEFAULT_POOL_SIZE, which is 256, and the current value of max database
page size.

@@mingroupid Returns the lowest group user ID. The lowest vaueis 16384.

@@minspid Returns 1, which is the lowest value for spid.

@@minsuid Returns the minimum server user ID. The lowest value is -32768.

@@minuserid Returns the lowest user ID. The lowest value is -32768.

@@monitors_active Reduces the number of messages displayed by sp_sysmon.

@@ncharsize Returns the maximum length, in bytes, of a character set in the current server default
character set.

@@nestlevel Returns the current nesting level.

@@nodeid Returns the current installation's 48-bit node identifier. Adaptive Server generates a
nodeid thefirst timethe master deviceisfirst used, and uniquely identifiesan Adaptive
Server installation.

@@optgoal Returns the current optimization goal setting for query optimization

@@options Returns a hexadecimal representation of the session’s set options.

@@opttimeoutlimit

Returns the current optimization timeout limit setting for query optimization

@@pack_received

Retruns the number of input packets read by Adaptive Server.

@@pack_sent

Returns the nmber of output packets written by Adaptive Server.

@@packet_errors

Returns the number of errors detected by Adaptive Server while reading and writing
packets.

@@pagesize Returns the server’s virtual page size.
@@parallel_degree Returns the current maximum parallel degree setting.
@@probesuid Returns avalue of 2 for the probe user ID.
330 Adaptive Server Enterprise

CHAPTER 3 Global Variables

Global variable

Definition

@@procid

Returns the stored procedure 1D of the currently executing procedure.

@@recovery_state

Indicates whether Adaptive Server isin recovery based on these returns:

* NOT_IN_RECOVERY — Adaptive Server isnot in startup recovery or in failover
recovery. Recovery has been completed and all databases that can be online are
brought online.

 RECOVERY_TUNING—Adaptive Server isin recovery (either startup or failover)
and is tuning the optimal number of recovery tasks.

« BOOTIME_RECOVERY — Adaptive Server isin startup recovery and has
completed tuning the optimal number of tasks. Not all databases have been
recovered.

* FAILOVER_RECOVER — Adaptive Server isin recovery during an HA failover
and has completed tuning the optimal number of recovery tasks. All databases are
not brought online yet.

@@repartition_degree

Returns the current dynamic repartitioning degree setting

@@resource_granularity

Returns the maximum resource usage hint setting for query optimization

@@rowcount

Returns the number of rows affected by the last query. The value of @@rowcount is
affected by whether the specified cursor is forward-only or scrollable.

If the cursor isthedefault, non-scrollable cursor, the val ue of @@rowcount increments
oneby one, in the forward direction only, until the number of rowsin theresult set are
fetched. Theserows are fetched from the underlying tablesto the client. The maximum
value for @@ rowcount is the number of rows in the result set.

In the default cursor, @@rowcount is set to 0 by any command that does not return or
affect rows, such as an if or set command, or an update or delete Sstatement that does
not affect any rows.

If the cursor is scrollable, there is no maximum value for @@rowcount. The value
continues to increment with each fetch, regardless of direction, and thereis no
maximum value. The @@rowcount value in scrollable cursors reflects the number of
rows fetched from the result set, not from the underlying tables, to the client.

@@scan_parallel_degree

Returns the current maximum parallel degree setting for nonclustered index scans.

@@servername Returns the name of Adaptive Server.

@@setrowcount Returns the current value for set rowcount

@@shmem _flags Returns the shared memory region properties. Thisvariable isfor internal use. There
are atotal of 13 different properties values corresponding to 13 bitsin theinteger. The
valid values represented from low to high bit are: MR_SHARED, MR_SPECIAL,
MR_PRIVATE, MR_READABLE, MR_WRITABLE, MR_EXECUTABLE,
MR_HWCOHERENCY, MR_SWCOHERENC, MR_EXACT, MR_BEST,
MR_NAIL, MR_PSUEDO, MR_ZERO.

@@spid Returns the server process ID of the current process.

@@sglstatus Returns status information (warning exceptions) resulting from the execution of a

Reference Manual: Building Blocks

fetch statement.

331

Adaptive Server global variables

Global variable

Definition

@@ss_ciphersuite

Returns NULL if SSL is not used on the current connection; otherwiseg, it returns the
name of the cipher suite you chose during the SSL handshake on the current
connection.

@@stringsize Returns the amount of character data returned from atoString() method. The default is
50. Max values may be up to 2GB. A value of zero specifiesthe default value. Seethe
Component Integration Services User’s Guide for more information.

@@tempdbid Returns avalid temporary database ID (dbid) of the session’s assigned temporary
database.

@@textcolid Returns the column 1D of the column referenced by @@textptr.

@@textdataptnid Returns the partition ID of atext partition containing the column referenced by
@@textptr.

@@textdbid Returnsthe database | D of adatabase containing an object with the column referenced
by @@textptr.

@@textobjid Returns the object ID of an object containing the column referenced by @@textptr.

@@textptnid Returns the partition ID of a data partition containing the column referenced by
@@textptr.

@@textptr Returns the text pointer of the last text, unitext, or image column inserted or updated
by a process (Not the same as the textptr function).

@@textptr_parameters Returns 0 if the current status of the textptr_parameters configuration parameter is off.
Returns 1 if the current status of the textptr_parameters if on. See the Component
Integration Services User’s Guide for more information.

@O@textsize Returnsthelimit on the number of bytes of text, unitext, or image dataaselect returns.
Default limit is 32K bytes for isql; the default depends on the client software. Can be
changed for a session with set textsize.

@@textts Returns the text timestamp of the column referenced by @@textptr.

@@thresh_hysteresis

Returns the decrease in free space required to activate a threshold. This amount, also
known as the hysteresisvalue, is measured in 2K database pages. It determines how
closely thresholds can be placed on a database segment.

@@timeticks

Returns the number of microseconds per tick. The amount of time per tick is
machine-dependent.

@@total_errors

Returns the number of errors detected by Adaptive Server while reading and writing.

@@total_read Returns the number of disk reads by Adaptive Server.

@@total_write Returns the number of disk writes by Adaptive Server.

@@tranchained Returns 0 if the current transaction mode of the Transact-SQL program is unchained.
Returns 1 if the current transaction mode of the Transact-SQL program is chained.

@@trancount Returns the nesting level of transactions in the current user session.

@@transactional_rpc

332

Returns 0 if RPCs to remote servers are transactional. Returns 1 if RPCs to remote
servers are not transactional. For more information, see enable xact coordination and
set option transactional_rpc in the Reference Manual. Also, see the Component
Integration Services User’s Guide.

Adaptive Server Enterprise

CHAPTER 3 Global Variables

Global variable

Definition

@@transtate

Returnsthe current state of atransaction after a statement executes in the current user
on.

@@unicharsize

Returns 2, the size of a character in unichar.

@@version

Returns the date, version string, and so on of the current release of Adaptive Server.

@@version_number

Returns the whole version of the current release of Adaptive Server as an integer

@@version_as_integer

Returns the number of the last upgrade version of the current release of Adaptive
Server as an integer. For example, @ @version_as_integer returns 12500 if you are
running Adaptive Server version 12.5, 12.5.0.3, or 12.5.1.

Reference Manual: Building Blocks 333

Adaptive Server global variables

334 Adaptive Server Enterprise

CHAPTER 4

Expressions

Expressions, ldentifiers, and
Wildcard Characters

This chapter describes Transact-SQL expressions, valid identifiers, and
wildcard characters.

Topics covered are:

Topics Page
Expressions 335
Identifiers 345
Pattern matching with wildcard characters 353

An expression is a combination of one or more constants, literals,
functions, column identifiersand/or variables, separated by operators, that
returns asingle value. Expressions can be of several types, including
arithmetic, relational, logical (or Boolean), and character string. In
some Transact-SQL clauses, a subquery can be used in an expression. A
case expression can be used in an expression.

Table 4-1 lists the types of expressions that are used in Adaptive Server
syntax statements.

Table 4-1: Types of expressions used in syntax statements

Usage Definition
expression Can include constants, literals, functions, column identifiers, variables, or parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as“5+3” or “ABCDE”

float_expr Any floating-point expression or an expression that implicitly convertsto afloating value
integer_expr Any integer expression or an expression that implicitly converts to an integer value
numeric_expr Any numeric expression that returns asingle value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

Reference Manual: Building Blocks 335

Expressions

Size of expressions

Expressions returning binary or character datum can be up to 16384 bytesin
length. However, earlier versions of Adaptive Server only allowed expressions
to be up to 255 bytesin length. If you have upgraded from an earlier release of
Adaptive Server, and your stored procedures or scripts store a result string of
up to 255 bytes, the remainder will be truncated. You may have to re-write
these stored procedures and scripts for to account for the additional length of
the expressions.

Arithmetic and character expressions
The general pattern for arithmetic and character expressionsis:

{constant | column_name | function | (subquery)
| (case_expression)}
[{arithmetic_operator | bitwise_operator |
string_operator | comparison_operator }
{constant | column_name | function | (subquery)
| case_expression}]...

Relational and logical expressions

A logical expression or relational expression returns TRUE, FALSE, or
UNKNOWN. The general patterns are:

336

expression comparison_operator [any | all] expression
expression [not] in expression

[not]exists expression

expression [not] between expression and expression

expression [not] like "match_string"
[escape "escape_character "]

not expression like "match_string"
[escape "escape_character "]

expression is [not] null
not logical_expression
logical_expression {and | or} logical_expression

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Operator precedence

Operators have the following precedence levels, where 1 is the highest level
and 6 isthe lowest:

1 unary (single argument) — + ~
2 */%

3 binary (two argument) + - & | »
4 not

5 and

6

or

When all operatorsin an expression are at the same level, the order of
execution is|eft to right. You can change the order of execution with
parentheses—the most deeply nested expression is processed first.

Arithmetic operators
Adaptive Server uses the following arithmetic operators:

Table 4-2: Arithmetic operators

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo (Transact-SQL extension)

Addition, subtraction, division, and multiplication can be used on exact
numeric, approximate numeric, and money type columns.

The modulo operator cannot be used on smallmoney, money, numeric, float or
real columns. Modulo finds the integer remainder after a division involving
two whole numbers. For example, 21 % 11 = 10 because 21 divided by 11
equals 1 with aremainder of 10.

When you perform arithmetic operations on mixed datatypes, for examplefloat
and int, Adaptive Server follows specific rules for determining the type of the
result. For more information, see Chapter 1, “ System and User-Defined
Datatypes,”

Reference Manual: Building Blocks 337

Expressions

Bitwise operators

338

The bitwise operators are a Transact-SQL extension for use with integer type
data. These operators convert each integer operand into its binary
representation, then eval uate the operands column by column. A value of 1
corresponds to true; a value of 0 corresponds to false.

Table 4-3 summarizes the results for operands of 0 and 1. If either operand is

NULL, the bitwise operator returns NULL:

Table 4-3: Truth tables for bitwise operations

& (and) 1 0
1 1 0
0 0 0
| (or) 1 0
1 1 1
0 1 0
A (exclusive or) 1 0
1 0 1
0 1 0
~ (not)

1 FALSE

0 0

The examplesin Table 4-4 use two tinyint arguments, A = 170
(10101010 in binary form) and B = 75 (01001011 in binary form).

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Table 4-4: Examples of bitwise operations
Operation Binary form Result Explanation

(A & B) 10101010 10 Result column equals 1 if both A and B
01001011 are 1. Otherwise, result column equals 0.
00001010

(A|B) 10101010 235 Result column equals1if either A or B, or
01001011 both, is 1. Otherwise, result column

equals0

11101011

(A"B) 10101010 225 Result column equals 1 if either A or B,
01001011 but not both, is 1
11100001

(~A) 10101010 85 All 1sare changed to Os and all Osto 1s
01010101

String concatenation operator

You can use both the + and || (double-pipe) string operatorsto concatenate two
or more character or binary expressions. For example, the following displays
author names under the column heading Name in last-name first-name order,
with a comma after the last name; for example, “Bennett, Abraham.”:

select Name = (au_lname + ", " + au fname)
from authors

Thisexampleresultsin "abcdef", "abcdef":
select "abc" + "def", "abc" || "def"

Thefollowing returnsthe string “ abc def”. The empty string isinterpreted asa
single spacein al char, varchar, unichar, nchar, nvarchar, and text
concatenation, and invarchar and univarchar insert and assignment statements:

select "abc" + "" 4+ "def™"

When concatenating non-character, non-binary expressions, always use
convert:

select "The date is " +
convert (varchar (12), getdate())

Reference Manual: Building Blocks 339

Expressions

A string concatenated with NULL evaluatesto the value of the string. Thisis
an exception to the SQL standard, which states that a string concatenated with
aNULL should evaluate to NULL.

Comparison operators
Adaptive Server uses the comparison operators listed in Table 4-5:

Table 4-5: Comparison operators

Operator Meaning

= Equal to

> Greater than

< Lessthan

>= Greater than or equal to

<= Lessthan or equal to

< Not equal to

1= Transact-SQL extension Not equal to

1> Transact-SQL extension Not greater than
1< Transact-SQL extension Not lessthan

In comparing character data, < means closer to the beginning of the server’s
sort order and > means closer to the end of the sort order. Uppercase and
lowercase |etters are equal in a case-insensitive sort order. Use sp_helpsort to
see the sort order for your Adaptive Server. Trailing blanks are ignored for
comparison purposes. So, for example, “Dirk” isthe same as “Dirk ”.

In comparing dates, < means earlier and > means | ater.

Put single or double quotes around all character and datetime data used with a
comparison operator:

= "Bennet"
> "May 22 1947"

Nonstandard operators
The following operators are Transact-SQL extensions:
e Modulo operator: %

e Negative comparison operators: !>, I<, I=

340 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

e Bitwiseoperators. ~, *, |, &

e Join operators: *= and =*

Using any, all and in

any isused with <, >, or = and a subquery. It returns results when any value
retrieved in the subgquery matchesthe value in the where or having clause of the
outer statement. For more information, see the Transact-SQL User’s Guide.

allisused with < or > and asubquery. It returnsresultswhen all valuesretrieved
in the subquery are less than (<) or greater than (>) the value in the where or
having clause of the outer statement. For more information, see the
Transact-SQL User’s Guide.

in returns results when any value returned by the second expression matches
the valuein the first expression. The second expression must be a subquery or
alist of values enclosed in parentheses. in is equivalent to = any. For more
information, see where clause in Reference Manual: Commands.

Negating and testing
not negates the meaning of a keyword or logical expression.

Use exists, followed by a subquery, to test for the existence of a particular
result.

Ranges

between is the range-start keyword; and is the range-end keyword. The
following rangeisinclusive:

where columnl between x and y
The following range is not inclusive:

where columnl > x and columnl < y

Using nulls in expressions

Useis null or is not null in queries on columns defined to allow null values.

Reference Manual: Building Blocks 341

Expressions

An expression with a bitwise or arithmetic operator evaluatesto NULL if any
of the operands are null. For example, the following evaluates to NULL if
columnlis NULL:

1 + columnl

Comparisons that return TRUE

In general, the result of comparing null valuesis UNKNOWN, sinceit is not
possibleto determine whether NULL isequal (or not equal) to agiven valueor
toanother NULL. However, thefollowing casesreturn TRUE when expression
isany column, variable or literal, or combination of these, which evaluates as
NULL:

e expressionis null
e expression = null

e expression = @x, where @x is avariable or parameter containing NULL.
This exception facilitates writing stored procedures with null default
parameters.

e expression!=n, wherenisaliteral that does not contain NULL, and
expression evaluatesto NULL.

The negative versions of these expressions return TRUE when the expression
does not evaluate to NULL:

e expression is not null
e expression!=null

e expression!= @x

Note The far right side of these exceptionsisaliteral null, or avariable or
parameter containing NULL. If the far right side of the comparisonisan
expression (such as @nullvar + 1), the entire expression evaluatesto NULL.

Following these rules, null column values do not join with other null column
values. Comparing null column values to other null column valuesin awhere
clause always returns UNKNOWN for null values, regardless of the
comparison operator, and the rows are not included in theresults. For example,
thisquery returnsno result rowswhere columnl contains NULL in both tables
(although it may return other rows):

select columnl
from tablel, table2

342 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

where tablel.columnl = table2.columnl

Difference between FALSE and UNKNOWN

Although neither FAL SE nor UNKNOWN returnsval ues, thereisanimportant
logical difference between FALSE and UNKNOWN, because the opposite of
false (“not false”) istrue. For example, “1 = 2" evaluatesto false and its
opposite, “1 = 2", evaluates to true. But “not unknown” is still unknown. If
null values are included in a comparison, you cannot negate the expression to
get the opposite set of rows or the opposite truth value.

Using “NULL" as a character string

Only columnsfor which NULL was specified in the create table statement and
into which you have explicitly entered NULL (ho quotes), or into which no
data has been entered, contain null values. Avoid entering the character string
“NULL" (with quotes) as data for a character column. It can only lead to
confusion. Use “N/A”, “none”, or asimilar value instead. When you want to
enter the value NULL explicitly, do not use single or double quotes.

NULL compared to the empty string

Theempty string (“ "or * ') isalways stored as a single space in variables and
column data. This concatenation statement is equivalent to “abc def”, not to
“abcdef”:

n abc n + nn + n de f n

The empty string is never evaluated asNULL.

Connecting expressions

and connects two expressions and returns results when both are true. or
connects two or more conditions and returns results when either of the
conditionsistrue.

When more than one logical operator is used in a statement, and is evaluated
before or. You can change the order of execution with parentheses.

Table 4-6 shows the results of logical operations, including those that involve
null values.

Reference Manual: Building Blocks 343

Expressions

Table 4-6: Truth tables for logical expressions

and TRUE FALSE NULL

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
NULL UNKNOWN FALSE UNKNOWN
or TRUE FALSE NULL

TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
NULL TRUE UNKNOWN UNKNOWN
not

TRUE FALSE

FALSE TRUE

NULL UNKNOWN

Theresult UNKNOWN indicatesthat one or more of the expressions eval uates
to NULL, and that the result of the operation cannot be determined to be either
TRUE or FALSE. See “Using nullsin expressions’ on page 341 for more
information.

Using parentheses in expressions

Parentheses can be used to group the elementsin an expression. When
“expression” isgiven asavariable in asyntax statement, a simple expression
isassumed. “Logical expression” is specified when only alogical expression
is acceptable.

Comparing character expressions

344

Character constant expressions are treated as varchar. If they are compared
with non-varchar variables or column data, the datatype precedence rules are
used in the comparison (that is, the datatype with lower precedenceis
converted to the datatype with higher precedence). If implicit datatype
conversion is not supported, you must use the convert function.

Comparison of a char expression to a varchar expression follows the datatype
precedencerule; the“lower” datatypeisconvertedto the*higher” datatype. All
varchar expressionsare converted to char (that is, trailing blanks are appended)
for the comparison. If aunichar expression is compared to achar (varchar,
nchar, nvarchar) expression, the latter isimplicitly converted to unichar.

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Using the empty string

The empty string (") or (" ') isinterpreted asasingle blank in insert or
assignment statements on varchar or univarchar data. In concatenation of
varchar, char, nchar, nvarchar data, the empty string isinterpreted asasingle
space; for following example is stored as “abc def”:

"gbc" 4+ "M 4 ndgefn

The empty string is never evaluated as NULL.

Including quotation marks in character expressions

There aretwo waysto specify literal quoteswithin achar, or varchar entry. The
first method isto double the quotes. For example, if you begin acharacter entry
with asingle quote and you want to include a single quote as part of the entry,
use two single quotes:

'I don''t understand.'
With double quotes:
"He said, ""It's not really confusing."""

The second method isto enclose aquote in the opposite kind of quote mark. In
other words, surround an entry containing adoubl e quote with single quotes (or
vice versa). Here are some examples:

'George said, "There must be a better way."'
"Isn't there a better way?"
'George asked, "Isn"t there a better way?"!'

Using the continuation character

To continue a character string to the next line on your screen, enter abackslash
(\) before going to the next line.

Identifiers

Identifiers are names for database objects such as databases, tables, views,
columns, indexes, triggers, procedures, defaults, rules, and cursors.

Reference Manual: Building Blocks 345

Identifiers

The limit for the length of object names or identifiersis 255 bytes for regular
identifiers, and 253 bytes for delimited identifiers. The limit applies to most
user-defined identifiers including table name, column name, index name and
so on. Due to the expanded limits, some system tables (catalogs) and built-in
functions have been expanded.

For variables, “@" count as 1 byte, and the allowed name for it is 254 bytes
long.

Listed below are the identifiers, system tables, and built-in functions that are
affected these limits.

The maximum length for these identifiersis now 255 bytes.
+ Tablename

* Column name

* Index name

* View name

e User-defined datatype

e Trigger name

» Default name

* Rulename

+ Constraint name

* Procedure name

* Variable name

 JARname

* Name of LWP or dynamic statement
* Function name

* Name of thetimerange

e Application context name

Most user-defined Adaptive Server identifiers can be amaximum of 255 bytes
in length, whether single-byte or multibyte characters are used. Others can be
amximum of 30 bytes. Refer to the Transact-SQL User’s Guide for alist of
both 255-byte and 30-byte identifiers.

346 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Short identifiers

Thefirst character of an identifier must be either an alphabetic character, as
defined in the current character set, or the underscore (_) character.

Note Temporary table names, which begin with the pound sign (#), and
variable names, which begin with the at sign (@), are exceptionsto thisrule.

Subsequent characters can include letters, numbers, the symbols#, @, _, and
currency symbols such as $ (dollars), ¥ (yen), and £ (pound sterling).
Identifiers cannot include special characterssuch as!, %, , &, *, and . or
embedded spaces.

You cannot use a reserved word, such as a Transact-SQL command, as an
identifier. For acomplete list of reserved words, see Chapter 5, “Reserved
Words.”

You cannot use the dash symbol (—) asan identifier.

The maximum length for these identifiers is 30 bytes:
e Cursor name

e Server name

e Host name

e Login name

e Password

e Host processidentification
e Application name

e Initial language name

e Character set name

e User name

e Group name

o Database name

e Logica device name

e Segment name

Reference Manual: Building Blocks 347

Identifiers

Tables beginning

e Session name

e Execution class name
e Engine name

e Quiescetag name

e Cache name

with # (temporary tables)

Tableswith namesthat begin with the pound sign (#) aretemporary tables. You
cannot create other types of objects with namesthat begin with the pound sign.

Adaptive Server performs special operations on temporary table namesto
maintain unigue naming on a per-session basis. When you create a temporary
table with a name of fewer than 238 bytes, the sysobjects name in the tempdb
adds 17 bytes to make the table name unique. If the table name is more than
238 bytes, the temporary table namein sysobjects uses only the first 238 bytes,
then adds 17 bytes to make it unique.

In versions of Adaptive Server earlier than 15.0, temporary table namesin
sysobjects were 30 bytes. If you used atable name with fewer than 13 bytes,
the name was padded with underscores (_) to 13 bytes, then another 17 bytes
of other charactersto bring the name up to 30 bytes.

Case sensitivity and identifiers

348

Sensitivity to the case (upper or lower) of identifiers and data depends on the
sort order installed on your Adaptive Server. Case sensitivity can be changed
for single-byte character sets by reconfiguring Adaptive Server’s sort order;
see the System Administration Guide for more information. Caseis significant
in utility program options.

If Adaptive Server isinstalled with a case-insensitive sort order, you cannot
create atable named MYTABLE if atable named MyTable or mytable already
exists. Similarly, the following command will return rows from MYTABLE,
MyTable, or mytable, or any combination of uppercaseand lowercaselettersin
the name:

select * from MYTABLE

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Uniqueness of object names

Object names need not be unique in a database. However, column names and
index names must be unique within atable, and other object names must be
unique for each owner within a database. Database names must be unique on
Adaptive Server.

Using delimited identifiers

Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers allows you to avoid certain restrictions on object names.
Table, view, and column names can be delimited by quotes; other object names
cannot.

Delimited identifiers can be reserved words, can begin with non-al phabetic
characters, and can include characters that would not otherwise be allowed.
They cannot exceed 253 bytes.

Warning! Delimited identifiers may not be recognized by al front-end
applications and should not be used as parameters to system procedures.

Before creating or referencing a delimited identifier, you must execute:
set quoted identifier on

Each time you use the delimited identifier in a statement, you must enclose it
in double quotes. For example:

create table "lone" (coll char(3))

create table "include spaces" (coll int)
create table "grant" ("add" int)
insert "grant" ("add") values (3)

Whilethe quoted_identifier option isturned on, do not use doubl e quotesaround
character or date strings; use single quotes instead. Delimiting these strings
with double quotes causes Adaptive Server to treat them as identifiers. For
example, to insert a character string into col1 of 1table, use:

insert "lone" (coll) values ('abc')
Do not not use:
insert "lone" (coll) values ("abc")

To insert asingle quote into a column, use two consecutive single quotation
marks. For example, to insert the characters“a b” into col1 use:

Reference Manual: Building Blocks 349

Identifiers

insert "lone" (coll) values('a''b')

Syntax that includes When the quoted_identifier option is set to on, you do not need to use double
quotes quotes around an identifier if the syntax of the statement requires that a quoted
string contain an identifier. For example:

set quoted identifier on
create table 'lone' (cl int)

However, object_id() requires a string, so you must include the table name in
guotes to select the information:

select object id('lone')

896003192

You can include an embedded double quote in a quoted identifier by doubling
the quote:

create table "embedded""quote" (cl int)

However, there is no need to double the quote when the statement syntax
requires the object name to be expressed as a string:

select object id('embedded"quote')

Identifying tables or columns by their qualified object name

You can uniquely identify atable or column by adding other namesthat qualify
it—the database name, owner’s name, and (for a column) the table or view
name. Each qualifier is separated from the next one by a period. For example;

database.owner.table name.column name
database.owner.view_name.column name

The naming conventions are;

[[database.] owner.] table name
[[database.] owner.] view name

Using delimited identifiers within an object name

If you useset quoted_identifier on, you can use double quotes around individual
parts of aqualified object name. Use aseparate pair of quotesfor each qualifier
that requires quotes. For example, use:

database.owner."table name"."column name"

350 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Do not use:

database.owner."table name.column name"

Omitting the owner name

You can omit theintermediate elementsin aname and use dotsto indicate their
positions, as long as the system is given enough information to identify the
object:

database. .table name

database. .view name

Referencing your own objects in the current database

Referencing objects

You need not use the database name or owner name to reference your own
objectsin the current database. The default value for owner isthe current user,
and the default value for database is the current database.

If you reference an object without qualifying it with the database name and
owner name, Adaptive Server triesto find the object in the current database
among the objects you own.

owned by the database owner

If you omit the owner name and you do not own an object by that name,
Adaptive Server looksfor objects of that name owned by the Database Owner.
You must qualify objects owned by the Database Owner only if you own an
object of the same name, but you want to use the object owned by the Database
Owner. However, you must qualify objects owned by other users with the
user’'s name, whether or not you own objects of the same name.

Using qualified identifiers consistently

Example 1

When qualifying acolumn name and table namein the same statement, be sure
to use the same qualifying expressions for each; they are evaluated as strings

and must match; otherwise, an error isreturned. Example 2 isincorrect because
the syntax style for the column name does not match the syntax style used for
the table name.

select demo.mary.publishers.city
from demo.mary.publishers

Reference Manual: Building Blocks 351

Identifiers

Example 2

Boston
Washington
Berkeley

select demo.mary.publishers.city
from demo. .publishers

The column prefix "demo.mary.publishers" does not match a
table name or alias name used in the query.

Determining whether an identifier is valid

Use the system function valid_name, after changing character sets or before
creating atable or view, to determine whether the object nameis acceptable to
Adaptive Server. Here is the syntax:

select valid name ("Object name")

If object_nameisnot avalid identifier (for example, if it containsillegal
characters or is more than 30 bytes long), Adaptive Server returns 0. If
object_nameisavalid identifier, Adaptive Server returns a nonzero number.

Renaming database objects

Rename user objects (including user-defined datatypes) with sp_rename.

Warning! After you rename atable or column, you must redefine all
procedures, triggers, and views that depend on the renamed object.

Using multibyte character sets

352

In multibyte character sets, awider range of charactersis available for usein

identifiers. For example, on a server with the Japanese language installed, the
following types of characters may be used asthefirst character of anidentifier:
Zenkaku or Hankaku Katakana, Hiragana, Kanji, Romaji, Greek, Cyrillic, or

ASCII.

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Although Hankaku K atakana characters are legal in identifiers on Japanese
systems, they are not recommended for use in heterogeneous systems. These
characters cannot be converted between the EUC-JIS and Shift-JIS character
sets.

The same is true for some 8-bit European characters. For example, the OE
ligature, is part of the Macintosh character set (codepoint OXCE). This
character does not exist in the SO 8859-1 (iso_1) character set. If the OE
ligature exists in data being converted from the Macintosh to the | SO 8859-1
character set, it causes a conversion error.

If an object identifier contains a character that cannot be converted, the client
loses direct access to that object.

Pattern matching with wildcard characters

Wildcard characters represent one or more characters, or arange of characters,
inamatch_string. A match_stringisacharacter string containing the patternto
find in the expression. It can be any combination of constants, variables, and
column names or a concatenated expression, such as:

like @variable + "%".

If the match string is a constant, it must always be enclosed in single or double
quotes.

Usewildcard characterswith the keyword like to find character and date strings
that match a particular pattern. You cannot use like to search for seconds or
milliseconds. For more information, see “Using wildcard characters with
datetime data” on page 359.

Use wildcard characters in where and having clauses to find character or
date/time information that is like—or not like—the match string:

{where | having} [not]
expression [not] like match_string
[escape "escape_character "]

expression can be any combination of column names, constants, or functions
with a character value.

Wildcard characters used without like have no special meaning. For example,
this query finds any phone numbersthat start with the four characters“415%":

select phone

Reference Manual: Building Blocks 353

Pattern matching with wildcard characters

Using not like

354

from authors
where phone = "415%"

Use not like to find strings that do not match a particular pattern. These two
queries are equivalent: they find all the phone numbersin the authors table that
do not begin with the 415 area code.

select phone
from authors
where phone not like "415%"

select phone
from authors
where not phone like "415%"

For example, this query finds the system tables in a database whose names
begin with “sys”:
select name

from sysobjects
where name like "sys$%"

To see all the objects that are not system tables, use:
not like "sys%"

If you have atotal of 32 objects and like finds 13 names that match the pattern,
not like will find the 19 objects that do not match the pattern.

not like and the negative wildcard character [*] may give different results (see
“The caret (") wildcard character” on page 357). You cannot always duplicate
not like patterns with like and ~. Thisis because not like finds the items that do
not match the entire like pattern, but like with negative wildcard charactersis
evaluated one character at atime.

A pattern such as like “[*s]["y]["s]%" may not produce the same results. Instead
of 19, you might get only 14, with all the names that begin with “s’, or have
“y" asthe second letter, or have“s’ asthethird letter eliminated from the
results, as well as the system table names. This is because match strings with
negative wildcard characters are evaluated in steps, one character at atime. If
the match fails at any point in the evaluation, it is eliminated.

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Case and accent insensitivity

If your Adaptive Server uses acase-insensitive sort order, caseisignored when
comparing expression and match_string. For example, thisclausewould return
“Smith,” “smith,” and “SMITH" on a case-insensitive Adaptive Server:

where col name like "Sm%"

If your Adaptive Server is also accent-insensitive, it treats all accented
characters as equal to each other and to their unaccented counterparts, both
uppercase and lowercase. The sp_helpsort system procedure displays the
characters that are treated as equivalent, displaying an “=" between them.

Using wildcard characters

You can use the match string with a number of wildcard characters, which are
discussed in detail in the following sections. Table 4-7 summarizes the
wildcard characters:
Table 4-7: Wildcard characters used with like
Symbol Meaning

% Any string of O or more characters

_ Any single character

[1 Any single character within the specified range ([a-f]) or set ([abcdef])

"] Any single character not within the specified range (["af]) or set ([*abcdef])

Enclose the wildcard character and the match string in single or double quotes
(like “[dD]eFr_nce").

The percent sign (%) wildcard character

Usethe % wildcard character to represent any string of zero or more characters.
For example, to find all the phone numbersin the authors table that begin with
the 415 area code:

select phone
from authors
where phone like "415%"

To find names that have the characters “en” in them (Bennet, Green,
McBadden):

select au_ lname
from authors

Reference Manual: Building Blocks 355

Pattern matching with wildcard characters

where au_lname like "%en%"

Trailing blanks following “ %" in alike clause are truncated to asingletrailing
blank. For example, “%” followed by two spaces matches “ X " (one space);
“X " (two spaces); “X 7 (three spaces), or any humber of trailing spaces.

The underscore () wildcard character

Use the underscore () wildcard character to represent any single character.
For example, to find all six-letter names that end with “heryl” (for example,
Cheryl):

select au_fname
from authors
where au_ fname like " heryl"

Bracketed ([]) characters

Use brackets to enclose arange of characters, such as[af], or aset of
characters such as [a2Br]. When ranges are used, dl valuesin the sort order
between (and including) rangespecl and rangespec?2 are returned. For
example, “[0-z2" matches0-9, A-Z and a-z (and several punctuation characters)
in 7-bit ASCII.

To find names ending with “inger” and beginning with any single character
between M and Z:
select au_lname

from authors
where au_lname like " [M-Z]inger"

To find both “DeFrance” and “deFrance’:

select au_ lname
from authors
where au_ lname like " [dD]eFrance"

When using bracketed identifiers to create objects, such as with create table
[table_name] or create dstabase [dbname], you must include at least one valid
character.

All trailing spaces within bracketed identifiers are removed from the object
name. For example, you achieve the same results executing the following
create table commands:

* create table [tabl<space><space>]

* create table [tab1]

356 Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

* create table [tabl<space><space><space>]
* create table tabl

This rule appliesto all objects you can create using bracketed identifiers.

The caret (*) wildcard character

The caret is the negative wildcard character. Use it to find strings that do not
match a particular pattern. For example, “[*a-f]” finds stringsthat are not in the
range a-f and “["a2bR]” finds strings that are not “a,” “2,” “b,” or “R.”

To find names beginning with “M” where the second letter isnot “c”:

select au_lname
from authors
where au_lname like "M["c]%"

When ranges are used, all values in the sort order between (and including)
rangespecl and rangespec? are returned. For example,

“[0-z]" matches 0-9, A-Z , a-z, and several punctuation charactersin 7-bit
ASCII.

Using multibyte wildcard characters

If the multibyte character set configured on your Adaptive Server defines
equivalent double-byte characters for the wildcard characters _, %, - [,], and
A, you can substitute the equivalent character in the match string. The
underscore equivalent represents either a single- or double-byte character in
the match string.

Using wildcard characters as literal characters

To search for the occurrence of %, _, [,], or * within astring, you must use an
escape character. When awildcard character is used in conjunction with an
escape character, Adaptive Server interprets the wildcard character literally,
rather than using it to represent other characters.

Adaptive Server provides two types of escape characters:
e Square brackets, a Transact-SQL extension

e Any single character that immediately follows an escape clause,
compliant with the SQL standards

Reference Manual: Building Blocks 357

Pattern matching with wildcard characters

Using square brackets ([]) as escape characters

Use sguare brackets as escape characters for the percent sign, the underscore,
and the left bracket. The right bracket does not need an escape character; useit
by itself. If you use the hyphen as aliteral character, it must be the first
character inside a set of square brackets.

Table 4-8 shows examples of square brackets used as escape characters with
like.

Table 4-8: Using square brackets to search for wildcard characters

like predicate Meaning

like "5%" 5 followed by any string of 0 or more characters
like "5[%]" 5%

like "_n" an, in, on (and so on)

like "[n" _n

like "[a-cdf]" ab,c dorf

like "[-acdf]" -,a¢,dorf

like "[[]" [

like "]]

like “[[Jab]” [Jab

Using the escape clause

358

Use the escape clause to specify an escape character. Any single character in
the server’s default character set can be used as an escape character. If you try
to use more than one character as an escape character, Adaptive Server
generates an exception.

Do not use existing wildcard characters as escape characters because:

» If you specify the underscore (_) or percent sign (%) as an escape
character, it loses its special meaning within that like predicate and acts
only as an escape character.

» If you specify the left or right bracket ([or]) as an escape character, the
Transact-SQL meaning of the bracket is disabled within that like predicate.

» If you specify the hyphen (-) or caret (") as an escape character, it losesits
special meaning and acts only as an escape character.

An escape character retains its special meaning within square brackets, unlike
wildcard characters such as the underscore, the percent sign, and the open
bracket.

Adaptive Server Enterprise

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

The escape character isvalid only within itslike predicate and has no effect on
other like predicates contained in the same statement. The only characters that
arevalid following an escape character are the wildcard characters (_, %, [,],
or ["]), and the escape character itself. The escape character affects only the
character following it, and subsequent characters are not affected by it.

If the pattern contains two literal occurrences of the character that happensto
be the escape character, the string must contain four consecutive escape
characters. If the escape character does not divide the pattern into pieces of one
or two characters, Adaptive Server returns an error message. Table 4-9 shows
examples of escape clauses used with like.

Table 4-9: Using the escape clause

like predicate Meaning

like "5@%" escape "@" 5%

like "*_n" escape "*" n

like "%80@%%" escape "@" String containing 80%

like "*_sql**%" escape "*" String containing _sgl*
like "voH##HH#E_#%%" escape "#" String containing ## %

Using wildcard characters with datetime data

When you use like with datetime values, Adaptive Server convertsthe dates to
the standard datetime format, then to varchar. Since the standard storage format
does not include seconds or milliseconds, you cannot search for seconds or
milliseconds with like and a pattern.

Itisagood ideato uselike when you search for datetime values, since datetime
entriesmay contain avariety of date parts. For example, if you insert thevalue
“9:20" and the current date into a column named arrival_time, the clause:

where arrival time = '9:20°

would not find the value, because Adaptive Server convertsthe entry into “ Jan
1 1900 9:20AM.” However, the following clause would find this value:

where arrival time like '%9:20%'

Reference Manual: Building Blocks 359

Pattern matching with wildcard characters

360 Adaptive Server Enterprise

CHAPTER 5 Reserved Words

Keywords, also known as reserved words, are words that have special
meanings. This chapter lists Transact-SQL and ANSI SQL keywords.

Topics covered are:

Topics Page
Transact-SQL reserved words 361
ANSI SQL reserved words 362
Potential ANSI SQL reserved words 363

Transact-SQL reserved words

Thewordsin Table 5-1 arereserved by Adaptive Server askeywords (part
of SQL command syntax). They cannot be used as names of database
objects such as databases, tables, rules, or defaults. They can be used as
names of local variables and as stored procedure parameter names.

To find the names of existing objects that are reserved words, use
sp_checkreswords in Reference Manual: Procedures.

Table 5-1: List of Transact-SQL reserved words

Words

A add, al, alter, and, any, arith_overflow, as, asc, at, authorization, avg

B begin, between, break, browse, bulk, by

C cascade, case, char_convert, check, checkpoint, close, clustered, coalesce, commit, compute, confirm,
connect, constraint, continue, controlrow, convert, count, count_big, create, current, cursor

D database, dbcc, deallocate, declare, decrypt, default, delete, desc, deterministic, disk, distinct, drop,
dummy, dump

E else, encrypt, end, endtran, errlvl, errordata, errorexit, escape, except, exclusive, exec, execute, exists,
exit, exp_row_size, external

F fetch, fillfactor, for, foreign, from

G goto, grant, group

H having, holdlock

Reference Manual: Building Blocks 361

ANSI SQL reserved words

Words

identity, identity_gap, identity_start, if, in, index, inout, insensitive, insert, install, intersect, into, is,
isolation

J jar,join

K key, kill

L level, like, lineno, load, lock

M materialized, max, max_rows_per_page, min, mirror, mirrorexit, modify

N national, new, noholdlock, nonclustered, nonscrollable, non_sensitive, not, null, nullif,
numeric_truncation
Note Although “new” isnot a Transact-SQL reserved word, since it may become areserved word in the
future, Sybase recommends that you avoid using it (for example, to name a database object). “New” isa
special case (see “Potential ANSI SQL reserved words” on page 363 for information on other reserved
words) becauseit appearsin the spt_values table, and because sp_checkreswords displays“New” asa
reserved word.

(0] of, off, offsets, on, once, online, only, open, option, or, order, out, output, over

P partition, perm, permanent, plan, prepare, primary, print, privileges, proc, procedure, processexit,
proxy_table, public

Q quiesce

R raiserror, read, readpast, readtext, reconfigure, references, remove, reorg, replace, replication,
reservepagegap, return, returns, revoke, role, rollback, rowcount, rows, rule

S save, schema, scroll, scrollable, select, semi_sensitive, set, setuser, shared, shutdown, some, statistics,
stringsize, stripe, sum, syb_identity, syb_restree, syb_terminate

T table, temp, temporary, textsize, to, tracefile, tran, transaction, trigger, truncate, tsequal

U union, unique, unpartition, update, use, user, user_option, using

\Y values, varying, view

W waitfor, when, where, while, with, work, writetext

X xmlextract, xmlparse, xmitest, xmlvalidate

ANSI SQL reserved words

362

Adaptive Server includes entry-level ANSI SQL features. Full ANSI SQL
implementation includes the words listed in the following tables as command
syntax. Upgrading identifiers can be a complex process; therefore, we are
providing thislist for your convenience. The publication of thisinformation
does not commit Sybase to providing all of these ANSI SQL featuresin
subsequent releases. |n addition, subsequent releases may include keywords
not included in thislist.

Adaptive Server Enterprise

CHAPTER 5 Reserved Words

Thewordsin Table 5-2 are ANSI SQL keywords that are not reserved words
in Transact-SQL.

Table 5-2: List of ANSI SQL reserved words
Words

A absolute, action, adlocate, are, assertion

B | bit, bit_length, both

@]

cascaded, case, cast, catalog, char, char_length, character, character_length, coalesce, collate, collation,
column, connection, constraints, corresponding, cross, current_date, current_time, current_timestamp,
current_user

date, day, dec, decimal, deferrable, deferred, describe, descriptor, diagnostics, disconnect, domain

end-exec, exception, extract

false, first, float, found, full

get, global, go

hour

immediate, indicator, initially, inner, input, insensitive, int, integer, interval

join

language, last, leading, left, local, lower

match, minute, module, month

names, natural, nchar, next, no, nullif, numeric

octet_length, outer, output, overlaps

pad, partial, position, preserve, prior

real, relative, restrict, right

scroll, second, section, semi_sensitive, session_user , size, smallint, space, sql, sglcode, sglerror, sqlstate,
substring, system_user

then, time, timestamp, timezone_hour, timezone_minute, trailing, trandate, tranglation, trim, true
unknown, upper, usage

value, varchar

when, whenever, write, year

zone

WX TO|Z|IZM |« T MmO

Nls|<|c| -

Potential ANSI SQL reserved words

If you are using the ISO/IEC 9075:1989 standard, also avoid using the words
shown in the following list because these words may become ANSI SQL
reserved words in the future.

Reference Manual: Building Blocks 363

Potential ANSI SQL reserved words

Table 5-3: List of potential ANSI SQL reserved words
Words
after, dias, async
before, boolean, breadth
call, completion, cycle
data, depth, dictionary
each, elseif, equals
general
ignore
leave, less, limit, loop
modify
new, none
object, oid, old, operation, operators, others
parameters, pendant, preorder, private, protected
recursive, ref, referencing, resignal, return, returns, routine, row
savepoint, search, sensitive, sequence, signal, similar, sglexception, structure
test, there, type
under
variable, virtual, visible
wait, without

S <|CH X TD|O|ZIZ|IT|T|OMOOH ® >

364 Adaptive Server Enterprise

CHAPTER 6

Warnings

SQLSTATE Codes and Messages

This chapter describes Adaptive Server’'s SQL STATE status codes and
their associated messages.

Topics covered are:

Topics Page
Warnings 365
Exceptions 366

SQL STATE codes are required for entry level ANSI SQL compliance.
They provide diagnostic information about two types of conditions:

e Warnings— conditions that require user notification but are not
serious enough to prevent a SQL statement from executing
successfully

« Exceptions— conditions that prevent a SQL statement from having
any effect on the database

Each SQLSTATE code consists of a 2-character class followed by a
3-character subclass. The class specifies general information about error
type. The subclass specifies more specific information.

SQL STATE codes are stored in the sysmessages system table, along with
the messages that display when these conditions are detected. Not all
Adaptive Server error conditions are associated with a SQLSTATE
code—only those mandated by ANSI SQL. In some cases, multiple
Adaptive Server error conditions are associated with asingle SQLSTATE
value.

Adaptive Server currently detects the following SQLSTATE warning
conditions, described in Table 6-1:

Reference Manual: Building Blocks 365

Exceptions

Table 6-1: SQLSTATE warnings

Message

Value Description

Warning — null value
eliminated in set function.

01003 Occurs when you use an aggregate function (avg, max, min, sum, or
count) on an expression with anull value.

Warning-string data, right
truncation

01004 Occurs when character, unichar, or binary datais truncated to 255 bytes.
The data may be:

« Theresult of aselect statement in which the client does not support the
WIDE TABLES property.

e Parametersto an RPC on remote Adaptive Servers or Open Serversthat
do not support the WIDE TABLES property.

Exceptions

Adaptive Server detects the following types of exceptions:

Cardinality violations

Data exceptions

Integrity constraint violations

Invalid cursor states

Syntax errors and access rule violations
Transaction rollbacks

with check option violations

Exception conditions are described in Table 6-2 through Table 6-8. Each class
of exceptions appearsin its own table. Within each table, conditions are sorted
alphabetically by message text.

Cardinality violations

Cardinality violations occur when aquery that should return only asingle row
returns more than one row to an Embedded SQL ™ application.

366

Adaptive Server Enterprise

CHAPTER 6 SQLSTATE Codes and Messages

Table 6-2: Cardinality violations

Message

Value Description

Subquery returned more than 1 value. This
isillegal when the subquery follows =, !=,
<, <=, >, >=, or when the subquery is used

as an expression.

21000 Occurs when:

« A scalar subquery or arow subquery returns more than
one row.

« A select into parameter_list query in Embedded SQL
returns more than one row.

Data exceptions

Data exceptions occur when an entry:

e Istoolong for its datatype,

e Containsanillegal escape sequence, or

* Contains other format errors.

Table 6-3: Data exceptions

Message Value Description
Arithmetic overflow occurred. 22003 Occurs when:
* Anexact numerictypewould lose precision or scale asaresult
of an arithmetic operation or sum function.
* An approximate numeric type would lose precision or scale as
aresult of truncation, rounding, or asum function.
Data exception - string data right 22001 Occurswhen achar, unichar, univarchar, or varchar column istoo
truncated. short for the data being inserted or updated and non-blank
characters must be truncated.
Divide by zero occurred. 22012 Occurs when a numeric expression is being evaluated and the
value of the divisor is zero.
Illegal escape character found. 22019 Occurs when you are searching for strings that match a given
There are fewer bytesthan pattern if the escape sequence does not consist of asingle
necessary to form avalid character. character.
Invalid pattern string. The character 22025 Occurswhen you are searching for strings that match a particular

following the escape character must
be percent sign, underscore, left
sguare bracket, right square bracket,
or the escape character.

pattern when:

» Theescape character is not immediately followed by a percent
sign, an underscore, or the escape character itself, or

» The escape character partitions the pattern into substrings
whose lengths are other than 1 or 2 characters.

Reference Manual: Building Blocks

367

Exceptions

Integrity constraint violations

Integrity constraint violations occur when aninsert, update, or delete statement
violates aprimary key, foreign key, check, Or unique constraint or auniqueindex.

Table 6-4: Integrity constraint violations

Message Value Description

Attempt to insert duplicate key row in 23000 Occurswhen aduplicate row isinserted
object object name with unique index into atable that has a unique constraint
index name. or index.

Check constraint violation occurred, dbname 23000 Occurs when an update or delete

= database name, table name = table name, would violate a check constraint on a
constraint name = constraint name. column.

Dependent foreign key constraint violation 23000 Occurs when an update or delete on a
in a referential integrity constraint. primary key table would violate a
dbname = database name, foreign key constraint.

table name = table name, constraint name =

constraint_name.

Foreign key constraint violation occurred, 23000 Occurswhen an insert or update on a

dbname database name, table name

table name, constraint name

constraint_name.

foreign key tableisperformed without a
matching valueinthe primary key table.

Invalid cursor states
Invalid cursor states occur when:

A fetch uses a cursor that is not currently open, or

An update where current of or delete where current of affects a cursor row

that has been modified or deleted, or

An update where current of or delete where current of affects a cursor row

that not been fetched.
Table 6-5: Invalid cursor states
Message Value Description
Attempt to use cursor cursor name which is 24000 Occurs when an attempt is made to fetch

not open. Use the system stored procedure
sp_cursorinfo for more information.

368

from a cursor that has never been opened or
that was closed by acommit statement or an
implicit or explicit rollback. Reopen the
cursor and repeat the fetch.

Adaptive Server Enterprise

CHAPTER 6 SQLSTATE Codes and Messages

Message Value Description

Cursor cursor name was closed implicitly 24000 Occurswhen the join column of amultitable
because the current cursor position was cursor has been deleted or changed. Issue
deleted due to an update or a delete. The another fetch to reposition the cursor.
cursor scan position could not be

recovered. This happens for cursors which

reference more than one table.

The cursor cursor name had its current 24000 Occurs when a user issues an update/delete
scan position deleted because of a where current of whose current cursor
DELETE/UPDATE WHERE CURRENT OF or a position has been deleted or changed. Issue
regular searched DELETE/UPDATE. You must another fetch before retrying the

do a new FETCH before doing an UPDATE or update/delete where current of.

DELETE WHERE CURRENT OF.

The UPDATE/DELETE WHERE CURRENT OF failed 24000 Occurs when a user issues an update/delete

for the cursor cursor name because it is
not positioned on a row.

where current of on acursor that:
» Hasnot yet fetched arow

» Hasfetched one or more rows after
reaching the end of the result set

Syntax errors and access rule violations

Syntax errors are generated by SQL statements that contain unterminated
comments, implicit datatype conversions not supported by Adaptive Server or

other incorrect syntax.

Access rule violations are generated when a user tries to access an object that
does not exist or one for which he or she does not have the correct permissions.

Table 6-6: Syntax errors and access rule violations

Message Value Description

command permission denied on 42000 Occurs when a user tries to access an object for which he
object object name, database or she does not have the proper permissions.

database name, OWNer owner_name.

Implicit conversion from 42000 Occurs when the user attempts to convert one datatype to
datatype ‘datatype’ to another but Adaptive Server cannot do the conversion
‘datatype’ is not allowed. Use implicitly.

the CONVERT function to run

this query.

Incorrect syntax near 42000 Occurs when incorrect SQL syntax is found near the

object_name.

Reference Manual: Building Blocks

object specified.

369

Exceptions

Message

Value

Description

Insert error: column name or
number of supplied values does
not match table definition.

42000

Occurs during inserts when an invalid column nameis
used or when an incorrect number of valuesisinserted.

Missing end comment mark ‘*/’.

42000

Occurs when a comment that begins with the /* opening
delimiter does not also have the */ closing delimiter.

object_name not found. Specify
owner.objectname or use sp_help
to check whether the object
exists (sp_help may produce
lots of output) .

42000

Occurs when a user tries to reference an object that he or
she does not own. When referencing an object owned by
another user, be sure to qualify the object name with the
name of its owner.

The size (size) given to the
object_name exceeds the maximum.
The largest size allowed is

size.

42000

Occurs when:

¢ Thetotal size of all the columnsin atable definition
exceeds the maximum allowed row size.

e Thesize of asingle column or parameter exceeds the
maximum allowed for its datatype.

Transaction rollbacks

Transaction rollbacks occur when the transaction isolation level is set to 3, but
Adaptive Server cannot guarantee that concurrent transactions can be
serialized. Thistype of exception generally results from system problems such
as disk crashes and offline disks.

Table 6-7: Transaction rollbacks

Message

Value Description

Your server command (process id

#process _id) was deadlocked with

another process and has been chosen as

deadlock victim. Re-run your command.

40001 Occurs when Adaptive Server detects that it
cannot guarantee that two or more concurrent
transactions can be serialized.

with check option violation

This class of exception occurs when data being inserted or updated through a
view would not be visible through the view.

370

Adaptive Server Enterprise

CHAPTER 6 SQLSTATE Codes and Messages

Table 6-8: with check option violation

Message Value

Description

The attempted insert or update failed because the 44000
target view was either created WITH CHECK OPTION

or spans another view created WITH CHECK OPTION.

At least one resultant row from the command would

not qualify under the CHECK OPTION constraint.

Occurswhen aview, or any view
onwhichit depends, was created
with awith check option clause.

Reference Manual: Building Blocks

371

Exceptions

372 Adaptive Server Enterprise

Index

Symbols

& (ampersand) “and” bitwise operator 338
* (asterisk)
for overlength numbers 268
multiplication operator 337
\ (backslash) character string continuation with 345
::= (BNF notation)
in SQL statements xviii
A (caret)
“exclusive or” bitwise operator 338
wildcard character 355, 357
: (colon) preceding milliseconds 70, 143
, (comma)
in default print format for money values 18
not allowed in money values 19
in SQL statements xviii
{} (curly braces)
in SQL statements xviii
$ (dollar sign)
inidentifiers 347
in money datatypes 19
.. (dots) in database object names 351
|| (double pipe)
string concatenation operator 339
= (equals sign) comparison operator 340
> (greater than) comparison operator 340
>= (greater than or equal to) comparison operator
340
< (less than) comparison operator 340
<= (lessthan or equal to) comparison operator 340
- (Minus sign)
arithmetic operator 337
for negative monetary values 19
ininteger data 13
1= (not equal to) comparison operator 340
<> (not equal to) comparison operator 340
I> (not greater than) comparison operator 340
I< (not less than) comparison operator 340
() (parentheses)

Reference Manual: Building Blocks

inexpressions 344
in SQL statements xviii
% (percent sign)
arithmetic operator (modulo) 337
wildcard character 355
. (period)
preceding milliseconds 70, 143
separator for qualifier names 350
| (pipe) “or” bitwise operator 338
+ (plus)
arithmetic operator 337
ininteger data 13
null valuesand 340
string concatenation operator 339
£ (pound sterling sign)
inidentifiers 347
in money datatypes 19
" (quotation marks)
comparison operatorsand 340
enclosing constant values 72
enclosing datetimevalues 21
enclosing empty strings 343, 345
inexpressions 345
literal specification of 345
/ (dlash) arithmetic operator (division) 337
[1 (square brackets)
character set wildcard 355, 356
in SQL statements xviii
["] (square brackets and caret) character set wildcard
355
~ (tilde) “not” bitwise operator 338
_ (underscore)
object identifier prefix 301, 346
intemporary table names 348
character stringwildcard 355, 356
¥ (yensign)
inidentifiers 347
in money datatypes 19
@@cursor_rows global variable 328

373

Index

Numerics

“Ox” prefix 31, 32
21st century numbers 21

A

abbreviations
chars for characters, patindex 211, 217
date parts 69, 142
abort option, Ict_admin function 185
abs mathematical function 76
accent sensitivity, wildcard charactersand 355
ACF. See Application Context Facility
acos mathematical function 77
adding
interval toadate 135
timestamp column 291
user-defined datatypes 44
addition operator (+) 337
aggregate functions 51-57
See also row aggregates; individual function names
avg 83
count 121
count_big 123-124
difference from row aggregates 56
group by clauseand 52, 54
having clauseand 52
max 198
min 200
scalar aggregates 53
sum 278
vector aggregates 53
aggregate functions and cursors 55
all keyword including subqueries 341
alter table command, adding timestamp column 291
ampersand (&) “and” bitwise operator 338
and (&) bitwise operator 338

and keyword
inexpressons 343
rangeend 341

angles, mathematical functionsfor 77
ANSI SQL datatypes 11

any keyword in expressions 341
application attributes 246

Application Context Facility (ACF) 246

374

application contexts

getting 159
listing 192
removing 238
setting 246

approximate numeric datatypes 16
arithabort option, set
arith_overflow and 11, 66
mathematical functions and arith_overflow 71
mathematical functions and numeric_truncation
67,71
arithignore option, set
arith_overflow and 66
mathematical functions and arith_overflow 71
arithmetic
errors 71
expressions 336
operations, approximate numeric datatypesand 16
operations, exact numeric datatypesand 13
operations, money datatypesand 18
operators, in expressions 337
ASCII characters 78
ascii string function 78
asehostname function 79
asin mathematical function 80
asterisk (*)
multiplication operator 337
overlength numbers 268
atan mathematical function 81
@@authmech global variable 327
@@bootcount global variable 327
@@boottime global variable 327
@@bulkarraysize global variable 327
@@bulkbatchsize global variable 327
@@char_convert global variable 328
@@xcis_rpc_handling global variable 328
@Q@xcis_version global variable 328
@@xclient_csexpansion global variable 328
@@xclient_csid global variable 328
@@xclient_csname global variable 328
@@cmpstate global variable 328
@@connections global variable 328
@@cpu_busy global variable 328
@Q@curloid global variable 328
@@datefirst global variable 328
@@dbts global variable 328

Adaptive Server Enterprise

@@error global variable 329
@@errorlog global variable 329
@@failedoverconn global variable 329
@@fetch_status global variable 329
@@qguestuserid global variable 329
@@hacmpservername global variable 329
@@haconnection global variable 329
@@heapmemsize global variable 329
@@identity global variable 329
@@idlegloba variable 329
@@invaliduserid global variable 329
@@io_busy global variable 329
@@isolation global variable 329
@@kernel_addr global variable 329
@@kernel_size global variable 329
@@langid global variable 329
@@language global variable 329

@@l astlogindate global variable 329
@@lock_timeout global variable 329
@@max_connections global variable 330
@@max_precision global variable 330
@@maxcharlen global variable 330
@@maxgroupid global variable 330
@@maxpagesize global variable 330
@@maxspid global variable 330
@@maxsuid global variable 330
@@maxuserid global variable 330
@@mempool_addr global variable 330
@@min_poolsize global variable 330
@@mingroupid global variable 330
@@minspid global variable 330
@@minsuid global variable 330
@@minuserid global variable 330
@@monitors_active global variable 330
@@ncharsize global variable 330
@@nestlevel global variable 330
@@nodeid global variable 330
@@optgoal global variable 330
@@options global variable 330
@@opttimeout global variable 330
@@pack_received global variable 330
@@pack_sent global variable 330
@@packet_errorsgloba variable 330
@@pagesize global variable 330
@@parallel_degree global variable 330
@@probesuid global variable 330

Reference Manual: Building Blocks

Index

@@procid global variable 331
@@recovery_state global variable 331
@Q@repartition_degree global variable 331
@@resource_granularity global variable 331
@@rowcount global variable 331
@@scan_parallel_degree global variable 331
@@servername global variable 331
@@setrowcount global variable 331
@@shmem flagsglobal variable 331
@@spid global variable 331
@@sglstatus global variable 331
@@ss_ciphersuite global variable 332
@@stringsize global variable 332
@@tempdbid global variable 332
@@textcolid global variable 40, 332
@@textdataptnid global variable 332
@@textdbid global variable 40, 332
@@textobjid global variable 40, 332
@@textptnid global variable 332
@@textptr global variable 40, 332
@@textptr_parametersglobal variable 332
@@textsize global variable 40, 332
@@textts global variable 40, 332
@@thresh_hysteresis global variable 332
@@timeticks global variable 332
@@total_errorsglobal variable 332
@@total_read global variable 332
@@total_write global variable 332
@@tranchained global variable 332
@@trancount global variable 332
@@transactional_rpc global variable 332
@Q@transtate global variable 333
@@unicharsize global variable 333
@@version global variable 333
@@version_as integer global variable 333
@@version_number global variable 333
atn2 mathematical function 82
attributes, setting in an application 246
audit_event_name function 85
auditing

audit_event_name function 85
@@authmech global variable 327
automatic operations, updating columns with timestamp

19

avg aggregate function 83

375

Index

B

backdash (\) for character string continuation 345
Backus Naur Form (BNF) notation xvii, xviii
base 10 logarithm function 195
between keyword 341
bigint datatype 13
biginttohex datatype conversion function 88
binary
datatypes 31-33
datatypes, “Ox” prefix 31,32
datatypes, trailing zerosin 32
expressions 335
expressions, concatenating 339
representation of data for bitwise operations 338
sort 111,255
binary datatype 31-33
bit datatype 33
bitwise operators 338-339
blanks
See also spaces, character
character datatypesand 27-30
comparisons 340
empty string evaluated as 345
likeand 356
removing leading, with Itrim function 197
removing trailing, with rtrim function 245
BNF notation in SQL statements xvii, xviii
boolean (logical) expressions 335
@@bootcount global variable 327
@@boottime global variable 327
brackets. See square brackets|]
browse mode and timestamp datatype 19, 290
built-in function, ACF 246
built-in functions 45-302
See also individual function names
aggregate 51
conversion 60
date 69
image 74
mathematical 70
security 71
string 72
system 73
text 74
typeconversion 113-118
@@bulkarraysize global variable 327

376

@@bulkbatchsize global variable 327
by row aggregate subgroup 55

C

caculating dates 138
caldayofweek date part 142
calweekofyear date part 142
calyearofweek date part 142
case expressions 91-93, 206-207
null valuesand 92, 104, 206
case sensitivity
comparison expressionsand 340, 355
identifiersand 348
inSQL xix
cast function 94-96
cdw. See caldayofweek date part
ceiling mathematical function 97
chains of pages, text orimagedata 35
char datatype 25-27
inexpressons 344
char string function 99
@@char_convert global variable 328
char_length string function 101
character data, avoiding “NULL” in 343
character datatypes 25-30
character expressions
blanks or spacesin 27-30
defined 335
syntax 336
character sets
conversion errors 353
iso 1 353
multibyte 352
object identifiersand 352
character strings
continuation with backslash (\) 345
empty 345
specifying quotes within -~ 345
wildcardsin 353
characters
See also spaces, character
“Ox” 31,32
Ox 67
deleting, using stuff function 275

Adaptive Server Enterprise

number of 101

wildcard 353-359
charindex string function 103
@Q@xcis_rpc_handling global variable 328
@Q@xcis_version global variable 328
client, host computer nameand 172
@Q@xlient_csexpansion global variable 328
@Q@xlient_csid global variable 328
@@xclient_csname global variable 328
@@cmpstate global variable 328
coalesce function 104-105
coalesce keyword, case 104
codes, soundex 257
col_length system function 106
col_name system function 107
colon (:), preceding milliseconds 143
column identifiers. See identifiers.
column name

asqudifier 350

in parentheses 55

returning 107
columns

identifying 350

length definition 106

lengthof 106

numeric, and row aggregates 55

sizesof (list) 2
comma (,)

default print format for money values 18

not allowed in money values 19

in SQL statements xviii
compare system function 108
comparing values

difference string function 155

inexpressions 340

timestamp 290
comparison operators

See also relational expressions

inexpressions 340

symbolsfor 340
compute clause and row aggregates 54
computing dates 138
concatenation

null values 340

using + operator 339

using || operator 339

Reference Manual: Building Blocks

@@connections global variable 328
constants
and string functions 72
comparing in expressions 344
expression for 335
string functionsand 72
continuation lines, character string 345
conventions
See also syntax
identifier name 350
Transact-SQL syntax ~ xvii
used in the Reference Manual ~ xvii
conversion
automatic values 9
between character sets 353
character valueto ASCII code 78
dates used with like keyword 24
degreestoradians 224
implicit 9,344
integer valueto character value 99, 288
lower to higher datatypes 344
lowercaseto uppercase 292, 293, 294, 295
null values and automatic 10
radiansto degrees 149
string concatenation 339
stylesfor dates 114
uppercaseto lowercase 196
convert datatype conversion function 113
concatenationand 339
date styles 114
converting hexadecimal numbers 67
cos mathematical function 119
cot mathematical function 120
count aggregate function 121
count_big aggregate function 123-124
CP 850 Alternative
lower casefirst 111, 255
noaccent 111, 255
no case preference 111, 255
CP 850 Scandinavian
dictionary 111, 255
@@cpu_busy global variable 328
create table command and null values 343
@@curloid global variable 328
curly braces ({}) in SQL statements xviii
currency symbols 19, 347

Index

377

Index

current user
rolesof 248
suser_id system function 280
suser_name system function 281
user_id system function 299
user_name system function 300
current_date date function 125
current_time date function 126
cursors and aggregate functions 55
curunreservedpgs system function 127
cwk. See calweekofyear date part
cyr. See calyearofweek date part
cyrillic characters 352

D

data_pages system function 129-130
database object owners and identifiers 351
database objects

See also individual object names

ID number 208

identifier names 345

user-defined datatypesas 44
database owners

name as qualifier 350, 351

objectsand identifiers 351
databases

See also database objects

getting name of 148

ID number, db_id function 147
datachange system function 131-132
datalength system function 133

compared to col_length 106
datatype conversions

biginttohex 88

binary and numeric data 68

bitinformation 68

character information 63

convert function 113, 116

date and timeinformation 65

domain errors 67, 95, 116

functionsfor 60-68

hexadecimal-like information 67

hextobigint 169

hextoint 170

378

hextoint function 169, 170
image 68, 95, 117
implicit 61

inttohex 177

money information 64
numeric information 64, 65
overflow errors 66
rounding during 64
scaeerrors 66
datatype precedence. See precedence
datatypes 144

See also user-defined datatypes; individual datatype

names
ANSI SQL 11

approximate numeric 16
binary 31-33

bit 33

dateandtime 20-25

datetime values comparison 340
decimal 14-15

dropping user-defined 44
exact numeric 12-15
hierarchy 7

integer 13-14

mixed, arithmetic operationson 337
summary of 24
synonymsfor 2

trailing zerosin binary 32
Transact-SQL extensions 11
user-defined 11

varbinary 253

date and time datatype = 21-25
date datatype 21

date functions 69-70

See also individual function names
current_date 125
current_time 126

dateadd 134

datediff 137

datename 140

datepart 142

day 146

getdate 161

month 201

year 326

date parts

Adaptive Server Enterprise

abbreviation names and values 69, 142
caldayofweek 142
calweekofyear 142
calyearofweek 142
entering 21
order of 22,23
dateadd date function 134
datediff datefunction 137
datediff function 138
datefirst option, set 140, 145
dateformat option, set 22, 23
datename date function 140
datepart date function 142
dates
comparing 340
datatypes 20-25
default display settings 23
display formats 20
earliest allowed 21, 69, 135
entry formats 23
pre-1753 datatypes for
datetime datatype 21-25
comparison of 340
conversion 24
datefunctionsand 143
values and comparisons 24
day datefunction 146
day date part 69, 142
dayofyear date part abbreviation and values 69, 142
db_id system function 147, 148
db_name system function 148
DB-Library programs, overflow errorsin
@@dbts global variable 328
dd. See day date part.
decimal datatype 14-15
decimal numbers
round functionand 242
str function, representation of 268
decimal points
datatypes, adlowingin 14
ininteger data 13
default settings
date display format 20, 23
weekday order 145
default values
datatype length 113

69, 135

84, 279

Reference Manual: Building Blocks

Index

datatype precision 113
datatypescae 113
degrees mathematical function 149
degrees, conversiontoradians 224
delete command and text row 39
derived_stat system function 150
devices. See sysdevicestable.
difference string function 155
division operator (/) 337
dollar sign ($)
inidentifiers 347
in money datatypes 19
domain rules, mathematica functionserrorsin 71
dots (..) for omitted name elements 351
double pipe (|))
string concatenation operator 339
double precision datatype 17
double-byte characters. See Multibyte character sets.
double-precision floating-point values 17
doubling quotes
inexpressions 345
in character strings 28
dropping
character with stuff function 275
leading or trailing blanks 197
duplicate rows, text orimage 42
duplication of text. Seereplicate string function
dw. See weekday date part.
dy. See dayofyear date part.

E

e or E exponent notation
approximate numeric datatypes 17
float datatype 6
money datatypes 19
embedded spaces. See spaces, character.
empty string (“ ") or (" ")
not evaluated asnull 343
asasinglespace 30, 345
enclosing quotesin expressions 345
equal to. See comparison operators
@@error global variable 329
error handling, domainor range 71
@@errorlog global variable 329

379

Index

errors
arithmetic overflow 66
cast function 95
convert function 63-67, 116
divide-by-zero 66
domain 67,95, 116
scale 66
trapping mathematical 71
escape characters 358
escape keyword 358-359
european charactersin object identifiers 353
exact numeric datatypes 12-15
arithmetic operationsand 13
exists keyword in expressions 341
exp mathematical function 156
explicit null value 343
exponent, datatype (e or E)
approximate numeric types 17
float datatype 6
money types 19
exponential value 156
expressions
defined 335
enclosing quotesin 345
including null values 341
name and table name qualifying 351
typesof 335

F

@@failedoverconn global variable 329
@@fetch_status global variable 329
finding

database ID 147

database name 148

serveruser ID 280

server user name 281, 282, 290, 296

starting position of an expression 103

user dliases 302

user IDs 299

user names 298, 300

valid identifiers 301
first-of-the-months, number of 138
fixed-length columns

binary datatypesfor 31

380

character datatypesfor 27
null valuesin 10
float datatype 17
floating-point data 335
str character representation of 268
floor mathematical function 157, 158
formats, date. See dates.
free pages, curunreservedpgs system function
front-end applications, browse modeand 290
functions 45
abs mathematical function 76
acos mathematical function 77
aggregate 51
ascii string function 78
asehostname function 79
asin mathematical function 80
atan mathematical function 81
atn2 mathematical function 82
avg aggregate function 83
biginttohex datatype conversion function
cast function 94-96
ceiling mathematical function 97
char string function 99
char_length string function 101
charindex string function 103
coalesce function 104-105
col_length system function 106
col_name system function 107
compare system function 108
conversion 60
convert datatype conversion function 113
cos mathematica function 119
cot mathematical function 120
count aggregate function 121
count_big aggregate function 123-124
current_date date function 125
current_time date function 126
curunreservedpgs system function 127
data_pages system function 129-130
datachange system function 131-132
datalength system function 133
date 69
dateadd date function 134
datediff date function 137
datename date function 140
datepart date function 142

88

128

Adaptive Server Enterprise

day datefunction 146

db_id system function 147, 148
degrees mathematical function 149
derived_stat system function 150
difference string function 155

exp mathematical function 156

floor mathematical function 157
get_appcontext security function 159
getdate date function 161

has_role system function 163

hash system function 165
hextobigint datatype conversion function 169
hextoint datatype conversion function 170
host_id system function 171
host_name system function 172
image 74

index_col system function 174
index_colorder system function 175
inttohex datatype conversion function 177
is_quiesced function 180-181
is_sec_service_on security function 182
isnull system function 183

Ict_admin system function 185

left system function 188

len string function 190
license_enabled system function 191
list_appcontexsecurity function 192
lockscheme system function 193

log mathematical function 194

log10 mathematical function 195
lower string function 196

Itrim string function 197
mathematical 70

max aggregate function 198

min aggregate function 200

month date function 201
mut_excl_roles system function 202
newidsystem function 203
next_identity system function 205
object_id system function 208
object_name system function 209
pagesize system function 211
partition_id 213

partition_id system function 213
partition_name 214

partition_name system function 214

Reference Manual: Building Blocks

partition_object_id 215

partition_object_id system function 215

passinfo 216

passinfo system function 216

patindex string function 217

pi mathematical function 220

power mathematical function 221

proc_role system function 222

radians mathematical function 224

rand mathematical function 225, 226

replicate string function 227

reserve_identity function 228

reserved_pages system function 231

reverse string function 235

right string function 236

rm_appcontext security function 238

role_contain system function 239

role_id system function 240

role_name system function 241

round mathematical function 242

row_count system function 244

rtrim string function 245

security 71

set_appcontexsecurity function 246

show_role system function 248

show_sec_services security function 249

sign mathematical function 250

sin mathematical function 251

sortkey 253

sortkey system function 252

soundex string function 257

space string function 258

sqrt mathematical function 260

square mathematical function 259

stddev statistical aggregate function. See
stddev_samp.

Index

stddev_pop statistical aggregate function 264

stddev_samp statistical aggregate function

stdev statistical aggregate function. See
stddev_samp.

stdevp statistical aggregate function. See
stddev_pop.

str string function 268

str_replace string function 270

string 72

stuff string function 274

266

381

Index

substring string function 276
sum aggregate function 278
suser_id system function 280
suser_name system function 281
syb_quit system function 282
syb_sendmsg 283

system 73

tan mathematical function 284
tempdb_id system function 285
text 74

textptr text and image function 286
textvalid text and image function 287
to_unichar string function 288
tran_dumptable_status string function 289
tsequal system function 290
uhighsurr string function 292
ulowsurr string function 293
upper string function 294

uscalar string function 295
used_pages system function 296
user system function 298

user_id system function 299
user_name system function 300
valid_name system function 301
valid_user system function 302

var statistical aggregate function. See var_samp.

var_pop statistical aggregate function 304
var_samp statistical aggregate function 306

variance statistical aggregate function. See var_samp.
varp statistical aggregate function. See var_pop.

year date function 326
functions, built-in, type conversion 113-118

G

GB Pinyin 111, 255
get_appcontext security function 159
getdate date function 161
getutcdate to obtainthe GMT 162
global variables
@@authmech 327
@@bootcount 327
@@boottime 327
@@bulkarraysize 327
@@bulkbatchsize 327

382

@@char_convert 328
@Q@xcis_rpc_handling 328
@@cis_version 328
@Q@xclient_csexpansion 328
@Q@xclient_csid 328
@@xclient_csname 328
@@cmpstate 328
@@connections 328
@@cpu_busy 328
@@curloid 328
@@cursor_rows 328
@@dbts 328
@@error 329
@@errorlog 329
@@failedoverconn 329
@@fetch_status 329
@@guestuserid 329
@@hacmpservername 329
@@haconnection 329
@@heapmemsize 329
@@identity 329
@@idle 329
@@invaliduserid 329
@@io_busy 329
@@isolation 329
@@kernel_addr 329
@@kernel_size 329
@@langid 329
@@language 329
@@lastlogindate 329
@@lock_timeout 329
@@max_connections 330
@@max_precision 330
@@maxcharlen 330
@@maxgroupid 330
@@maxpagesize 330
@@maxspid 330
@@maxsuid 330
@@maxuserid 330
@@mempool_addr 330
@@min_poolsize 330
@@mingroupid 330
@@minspid 330
@@minsuid 330
@@minuserid 330
@@monitors_active 330

Adaptive Server Enterprise

@@ncharsize 330
@@nestlevel 330
@@nodeid 330
@@optgoal 330
@@options 330
@@opttimeout 330
@@pack_received 330
@@pack_sent 330
@@packet_errors 330
@@pagesize 330
@@parallel_degree 330
@@probesuid 330
@@procid 331
@@recovery_state 331
@Q@repartition_degree 331
@@resource_granularity 331
@@rowcount 331
@@scan_parallel_degree 331
@@servername 331
@@setrowcount 331
@@shmem flags 331
@@spid 331
@@sglstatus 331
@@ss_ciphersuite 332
@@stringsize 332
@@tempdbid 332
@@textcolid 332
@@textdataptnid 332
@@textdbid 332
@@textobjid 332
@@textptnid 332
@@textptr 332
@@textptr_parameters 332
@@textsize 332
@QOtextts 332
@@thresh_hysteresis 332
@@timeticks 332
@@total_errors 332
@@total_read 332
@@total_write 332
@@tranchained 332
@@trancount 332
@@transactional_rpc 332
@@transtate 333
@Q@unicharsize 333
@@version 333

Reference Manual: Building Blocks

Index

@@version_as integer 333
@@version_number 333
@@datefirst 328
greater than. See comparison operators.
Greek characters 352
group by clause and aggregate functions 52, 54
guest users 299
@@guestuserid global variable 329

H

@@hacmpservername global variable 329
@@haconnection global variable 329
has_role system function 163
hash system function 165
having clause and aggregate functions 52
@@heapmemsize global variable 329
hexadecimal numbers, converting 67
hextobigint datatype conversion function 169
hextoint datatype conversion function 170
hextoint function 169, 170
hh. See hour date part.
hierarchy

See also precedence

operators 337
historic dates, pre-1753 69, 135
host computer name 172
host process ID, client process 171
host_id system function 171
host_name system function 172
hour datepart 69, 142

identifiers 345-353

case sensitivity and 348

long 345

renaming 352

short 347

system functionsand 301
identities

sa_role and Database Owner 299

server user (suser_id) 281

user (user_id) 299

383

Index

@@identity global variable 329
identity_burn_max function 173
@@idle globa variable 329
IDs, server roleandrole_id 240
IDs, user

database (db_id) 147

server user 281

user_id functionfor 280
image datatype 3442

initializing 37

null valuesin 38

prohibited actionson 40
image functions 74
implicit conversion of datatypes 9, 344
in keyword in expressions 341
index_col system function 174
index_colorder system function 175
indexes

See also clustered indexes; database objects;

nonclustered indexes

sysindexestable 38
initializing text or image columns 39
inserting

automatic leading zero 32

spacesintext strings 258
int datatype 13

aggregate functionsand 84, 279
integer datain SQL 335
integer datatypes, convertingto 67
integer remainder. See Modul o operator (%)
internal datatypes of null columns 10

See also datatypes
internal structures, pagesused for 231
inttohex datatype conversion function 177
@@invaliduserid global variable 329
@@io_busy global variable 329
is not null keyword in expressions 341
is_quiesced function 180-181
is_sec_service_on security function 182
isnull system function 183
1SO 8859-5 Cyrillic dictionary 111, 256
1SO 8859-5 Russian dictionary 111, 256
1SO 8859-9 Turkish dictionary 111, 256
iso_1 character set 353
@@isolation global variable 329
isql utility command

384

See also Utility Guide manual
approximate numeric datatypesand 17

J

Japanese character sets and object identifiers
joins

count or count(*) with 122, 123

null valuesand 342

K

@@kernel_addr global variable 329
@@kernel_size global variable 329
keywords 361-364

Transact-SQL 347, 361-362

L

@@langid global variable 329
@@language global variable 329
languages, alternate
effect on date parts 145
weekday order and 145
last-chance threshold and Ict_admin function
last-chance thresholds 187
@@l astlogindate global variable 329
latin-1 English, French, German
dictionary 111, 255
noaccent 111, 256
latin-1 Spanish
noaccent 111, 256
nocase 111, 256
Ict_admin system function 185, 187
leading blanks, removal with Itrim function
leading zeros, automatic insertion of 32
left system function 188
len string function 190
length
Seealso size
of expressionsin bytes 133
identifiers 345
of columns 106

353

186

197

Adaptive Server Enterprise

less than. See comparison operators
license_enabled system function 191
like keyword

searching for dateswith 24

wildcard charactersused with 355
linkage, page. See pages, data
list_appcontex security function 192
listing datatypes with types 7
lists

functions 46
literal character specification

like match string 357

quotes(* ") 345
literal values

datatypesof 6

null 343
@@lock_timeout global variable 329
lockscheme system function 193
log mathematical function 193, 194
log10 mathematical function 195
logarithm, base 10 195
logical expressions 335

syntax 336

truth tablesfor 343

when...then 91, 104, 206
log10 mathematical function 195
longsysname datatype 34
lower and higher datatypes. See precedence.
lower string function 196
lowercase |etters, sort order and 348

See al so case sensitivity
Itrim string function 197

M

macintosh character set 353
matching

See also Pattern matching

name and tablename 351
mathematical functions 70

abs 76

acos 77

asin 80

atan 81

atn2 82

Reference Manual: Building Blocks

Index

ceiling 97

cos 119

cot 120

degrees 149

exp 156

floor 157

log 194

logl0 195

pi 220

power 221

radians 224

rand 225, 226

round 242

sign 250

sin 251

sqrt 260

square 259

tan 284
max aggregate function 198
@@max_connections global variable 330
@@max_precision global variable 330
@@maxcharlen global variable 330
@@maxgroupid global variable 330
@@maxpagesize global variable 330
@@maxspid global variable 330
@@maxsuid global variable 330
@@maxuserid global variable 330
@@mempool_addr global variable 330
messages and mathematical functions 71
mi. See minute date part
midnights, number of 138
millisecond date part 70, 142
millisecond values, datediff resultsin 138
min aggregate function 200
@@min_poolsize global variable 330
@@mingroupid global variable 330
@@minspid global variable 330
@@minsuid global variable 330
minussign (-)

ininteger data 13

subtraction operator 337
@@minuserid global variable 330
minute date part 70, 142
mixed datatypes, arithmetic operationson 337
mm. See month date part
mm. See month date part.

385

Index

model database, user-defined datatypesin 43
modulo operator (%) 337

money
default commaplacement 18
symbols 347

money datatype 19
arithmetic operationsand 18
@@monitors_active global variable 330
month date function 201
month date part 69, 142
month values and date part abbreviation 69, 142
ms. See millisecond date part
multibyte character sets
converting 63
identifier names 352
nchar datatypefor 25
wildcard charactersand 357
multiplication operator (*) 337
mut_excl_roles system function 202
mutual exclusivity of roles and mut_excl_roles 202

N

“N/A” using “NULL” or 343
names
See also identifiers
checking with valid_name 352
date parts 69, 142
db_name function 148
finding similar-sounding 257
host computer 172
index_col andindex 174
object_name function 209
omitted elementsof (..) 351
qualifying database objects 350, 352
suser_name function 281
user_name function 300
weekday numbersand 145
naming
conventions 345-353
database objects 345-353
identifiers 345-353
user-defined datatypes 44
national character. See nchar datatype
natural logarithm 193, 194

386

nchar datatype 27
@@ncharsize global variable 330
negative sign (-) in money values 19
nesting
aggregate functions 53
string functions 72
@@nestlevel global variable 330
newidsystem function 203
next_identity system function 205
@@nodeid global variable 330
“none’, using “NULL” or 343
not keyword in expressions 341
not like keyword 354
not null values
spacesin 30
not null valuesin spaces 30
null keyword in expressions 341
null string in character columns 275, 343
null values
column datatype conversion for 30
default parametersas 342
inexpressions 342
text and image columns 38
null valuesin awhere clause 342
nullif expressions 206207
nullif keyword 206
number (quantity of)
first-of-the-months 138
midnights 138
rowsincount(*) 121,123
Sundays 138
number of charactersand date interpretation 24
numbers
asterisks (**) for overlength 268
converting stringsof 30
database ID 147
objectID 208
odd or even binary 32
random float 225, 226
weekday namesand 145
numeric data and row aggregates 55
numeric datatype 14
numeric expressions 335
round functionfor 242
nvarchar datatype 27
spacesin 27

Adaptive Server Enterprise

O

object names, database
See also identifiers
user-defined datatype namesas 44
object_id system function 208
object_name system function 209
objects. See database objects; databases
operators
arithmetic 337
bitwise 338-339
comparison 340
precedence 337
@@optgoal global variable 330
@@options globa variable 330
@@opttimeout global variable 330
or keyword in expressions 343
order
See also indexes; precedence; sort order
of execution of operatorsin expressions 337
of dateparts 22,23
reversing character expression 235
weekday numeric 145
order by clause 253
other users, qualifying objectsowned by 352
overflow errorsin DB-Library 84, 279
ownership of objectsbeing referenced 352

P

@@pack_received global variable 330
@@pack_sent global variable 330
@@packet_errorsgloba variable 330
padding, data

blanksand 27

underscoresin temporary table names 348

with zeros 32
pages, data

chainof 35

used for internal structures 231
@@pagesize global variable 330
pagesize system function 211
@@parallel_degree global variable 330
parentheses ()

See also Symbols section of thisindex

inan expression 344

Reference Manual: Building Blocks

Index

in SQL statements xviii
partition_id function 213
partition_name function 214
partition_object_id function 215
passinfo function 216
patindex string function 217
text/image function 42
pattern matching 353
See also String functions; wildcard characters
charindex string function 103
difference string function 155
patindex string function 218
percent sign (%)
modulo operator 337
wildcard character 355
period (.)
preceding milliseconds 143
separator for qualifier names 350
pi mathematical function 220
platform-independent conversion
hexadecimal stringsto integer values 169, 170
integer values to hexadecimal strings 177
plus (+)
arithmetic operator 337
ininteger data 13
null valuesand 340
string concatenation operator 339
pointers
null for uninitialized text or image column 286
text and image page 286
text or imagecolumn 37
pound sterling sign (£)
inidentifiers 347
in money datatypes 19
power mathematical function 221
precedence
of lower and higher datatypes 344
of operatorsin expressions 337
preceding blanks. See blanks; spaces, character
precision, datatype
approximate numeric types 17
exact numeric types 14
money types 18
@@probesuid global variable 330
proc_role system function 222
@@procid global variable 331

387

Index

punctuation, characters allowed in identifiers 347

Q

qq. See quarter date part

qualifier names 350, 352

quarter datepart 69, 142

quotation marks (* ")
comparison operatorsand 340
for empty strings 343, 345
enclosing constant values 72
inexpressions 345
literal specification of 345

R

radians mathematical function 224
radians, conversion to degrees 149
rand mathematical function 225, 226
rand2, mathematica function 226
range

See also numbers; size

of date part values 69, 142

datediff results 138

errorsin mathematical functions 71

money valuesallowed 18

of recognized dates 21

wildcard character specification of 356, 357
range queries

and end keyword 341

between start keyword 341
readtext command and text data initialization requirement

39

real datatype 17
@Q@recovery_state global variable 331
reference information

datatypes 1

reserved words 361

Transact-SQL functions 45
relational expressions 336

See also comparison operators
removing application contexts 238
@Q@repartition_degree global variable 331
replicate string function 227

388

reserve option, Ict_admin function 185
reserve_identity function 228
reserved words 361-364

See also keywords

database object identifiersand 345, 347

SQL92 362

Transact-SQL 361362
reserved_pages system function 231
@@resource_granularity global variable 331
results of row aggregate operations 55
retrieving similar-sounding words or names 257
reverse string function 235
right string function 236, 237
right-justification of str function 269
rm_appcontext security function 238
role hierarchiesand role_contain 239
role_contain system function 239
role_id system function 240
role_name system function 241
roles

checkingwith has_role 163

checkingwith proc_role 222

showing system with show_role 248
roles, user-defined and mutual exclusivity 202
round mathematical function 242
rounding 242

approximate numeric datatypes 17

datetimevalues 20, 65

money values 18, 64

str string functionand 268
row aggregates 55

computeand 54

difference from aggregate functions 56
row_count system function 244
@@rowcount global variable 331
rows, table

detail and summary results 55

row aggregatesand 55
rtrim string function 245
rules. See database objects.

S

scalar aggregates and nesting vector aggregates within
53

Adaptive Server Enterprise

scale, datatype 14

decimal 9

IDENTITY columns 14

loss during datatype conversion 11

numeric 9
@@scan_parallel_degree global variable 331
scrollable cursor

@@rowcount 328
search conditions and datetimedata 24
second datepart 70, 142
seconds, datediff resultsin 138
security functions 71

get_appcontext 159

is_sec_service_on 182

list_appcontex 192

rm_appcontext 238

set_appcontex 246

show_sec_services 249
seed values and rand function 225
select command 253

aggregatesand 52

for browse 290

restrictionsin standard SQL 53

in Transact-SQL compared to standard SQL 53
select into command not allowed with compute 57
server user name and ID

suser_id function 280

suser_name function for 281
@@servername global variable 331
set_appcontex security function 246
@@setrowcount global variable 331
setting application context 246
shift-J'Sbinary order 112, 256
@@shmem flags global variable 331
short identifiers 347
show_role system function 248
show_sec_services security function 249
sign mathematical function 250
similar-sounding words. See soundex string function
sin mathematical function 251
single quotes. See quotation marks
single-byte character sets, char datatypefor 25
size

See also length; number (quantity of); range; size

limit; space allocation
column 106

Reference Manual: Building Blocks

Index

floor mathematical function 158
identifiers (length) 346
image datatype 35
of pi 220
text datatype 34
size limit
approximate numeric datatypes 17
binary datatype 31
char columns 27
datatypes 2
double precision datatype 17
exact numeric datatypes 13
fixed-length columns 27
float datatype 17
image datatype 31
integer value smallest or largest 158
money datatypes 19
nchar columns 27
nvarchar columns 27
real datatype 17
varbinary datatype 31
varchar columns 27
dash (/) division operator 337
smalldatetime datatype 21
datefunctionsand 143
smallint datatype 13
smallmoney datatype 19
sort order
character collation behavior 252, 253
comparison operatorsand 340
sortkey function 253
sortkey system function 252
soundex string function 257
sp_bindefault system procedure and user-defined

datatypes 44
sp_bindrule system procedure and user-defined
datatypes 44

sp_help system procedure 44
space string function 258
spaces, character
See also blanks
in character datatypes 27-30
empty strings (“ ")or (" ") as 343,345
inserted in text strings 258
like datetimevaluesand 25
not allowed inidentifiers 347

389

Index

speed (Server)
binary and varbinary datatype access 31
@@spid global variable 331
SQL (used with Sybase databases). See Transact-SQL
SQL standards
aggregate functionsand 53
concatenationand 340
SQLSTATE codes 365-371
exceptions 366-371
@@sqlstatus global variable 331
sqrt mathematical function 260
square brackets| |
caret wildcard character ["] and 355, 357
in SQL statements xviii
wildcard specifier 355
square mathematical function 259
square root mathematical function 260
ss. Seesecond date part
@@ssl_ciphersuite global variable 332
statistical aggregate functions
stddev. See stddev_samp.
stddev_pop 264
stddev_samp 266
stdev. Seestddev_samp.
stdevp. See stddev_pop.
var. Seevar_samp.
var_pop 304
var_samp 306
variance. Seevar_samp.
varp. Seevar_pop.

stddev statistical aggregate function. See stddev_samp.

stddev_pop Statistical aggregate function 264
stddev_samp statistical aggregate function 266

stdev statistical aggregate function. See stddev_samp.
stdevp statistical aggregate function. See stddev_pop.

storage management for text and image data 38
str string function 268

str_replace string function 270

string functions 72

See also text datatype
ascii 78
char 99

char_length 101
charindex 103
difference 155
len 190

390

lower 196
Itrim 197
patindex 217
replicate 227
reverse 235

right 236

rtrim 245
soundex 257
space 258

str 268
str_replace 270
stuff 274

substring 276
to_unichar 288
tran_dumptable_status 289
uhighsurr 292
ulowsurr 293
upper 294
uscalar 295
strings, concatenating 339
@@stringsize global variable 332
stuff string function 274, 275
stylevalues, date representation 114
subqueries
any keywordand 341
inexpressions 341
substring string function 276
subtraction operator (-) 337
sum aggregate function 278
sundays, number value 138
suser_id system function 280
suser_name System function 281
syb_quit system function 282
syb_sendmsg function 283
symbols
See also wildcard characters; Symbols section of this
index
arithmetic operator 337
comparison operator 340
inidentifier names 347
matching character strings 355
money 347
in SQL statements xvii, xviii
wildcards 355
synonyms and chars and characters, patindex 217
synonyms for datatypes 2

Adaptive Server Enterprise

synonyms, chars and characters, patindex
syntax conventions, Transact-SQL xvii
syscolumnstable 33

sysindexes table and name columnin 38
sysname datatype 34
syssrvroles table and role_id system function
system datatypes. See datatypes
system functions 73

col_length 106

col_name 107

compare 108
curunreservedpgs 127
data_pages 129-130
datachange 131-132
datalength 133

db_id 147,148
derived_stat 150

has_role system function 163
hash system function 165
host_id 171

host_name 172

index_col 174
index_colorder 175

isnull 183

Ict_admin 185

left 188

license_enabled 191
lockscheme 193
mut_excl_roles 202
newidsystem function 203
next_identity 205

object_id 208
object_name 209

pagesize 211

proc_role system function 222
reserved_pages 231
role_contain 239

role_id 240

role_name 241

row_count 244

show_role 248

sortkey 252

suser_id 280
suser_name 281
syb_quit 282

tempdb_id 285

Reference Manual: Building Blocks

211

240

tsequal 290

used_pages 296

user 298

user_id 299

user_name 300

valid_name 301

valid_user 302

system rolesand show_role and 248
system tables and sysname datatype 34

T

table pages

See also pages, data
tables

identifying 350

names as qualifiers 350

worktables 52
tan mathematical function 284
tangents, mathematical functionsfor 284
tempdb database, user-defined datatypesin
@@tempdbid global variable 332
tempdb_id system function 285
tempdbs and tempdb_id system function
temporary tables, naming 348

number of bytes 348

padding 348

sysobjects 348
text and image functions

textptr 286

textvalid 287
text datatype 3442

convert command 41

converting 64

initializing with null values 37

null values 38

prohibited actionson 40
text datatype and ascii string function 78
text functions 74
text page pointer 106
text pointer values 286
@@textcolid global variable 40, 332
@@textdataptnid global variable 332
@@textdbid global variable 40, 332
@@textobjid global variable 40, 332

Index

391

Index

@@textptnid global variable 332
textptr function 286
@@textptr global variable 40, 332
textptr text and image function 286
@@textptr_parameters global variable 332
@@textsize global variable 40, 332
@@textts global variable 40, 332
textvalid text and image function 287
Thai dictionary 111, 255
then keyword. Seewhen...then conditions
@@thresh_hysteresis global variable 332
thresholds, last-chance 187
time values

datatypes 20-25
timestamp datatype = 19-20

automatic update of 19

browse modeand 19, 290

comparison using tsequal function 290
@@timeticks global variable 332
tinyint datatype 13
to_unichar string function 288
@@total_errorsglobal variable 332
@@total_read global variable 332
@@total_write global variable 332
trailing blanks. See blanks
tran_dumptable_status string function 289
@@tranchained global variable 332
@@trancount global variable 332
@@transactional_rpc global variable 332

Transact-SQL
aggregate functionsin 53
reserved words 361-362

Transact-SQL extensions 11
trandation of integer arguments into binary numbers
@Q@transtate global variable 333
triggers See database objects; stored procedures.
trigonometric functions 70, 70-284
trueffalse data, bit columnsfor 33
truncation
arithabort numeric_truncation 10
binary datatypes 31
character string 27
datediff results 138
str conversionand 269
temporary tablenames 348
truth tablesfor logical expressions 343

392

338

tsequal system function 290
twenty-first century numbers 21

U

UDP messaging 283
uhighsurr string function 292
ulowsurr string function 293
underscore ()
character string wildcard 355, 356
object identifier prefix 301, 346
intemporary table names 348
@@unicharsize global variable 333
unique names asidentifiers 349
unitext datatype 3442
unsigned bigint datatype 13
unsigned int datatype 13
unsigned smallint datatype 13
updating
Seealso changing 19
inbrowsemode 290
prevention during browse mode 290
upper string function 294, 295
uppercase letter preference 348
See also case sensitivity; order by clause
us_english language, weekdays setting 145
uscalar string function 295
used_pages system function 296
User Datagram Protocol messaging 283
user IDs
user_id functionfor 299
valid_user function 302
user names 300
user names, finding 281, 300
user objects. See database objects
user system function 298
user_id system function 299
user_name system function 300
user-created objects. See database objects
user-defined datatypes 11
See also datatypes
creating 43
dropping 44
longsysnameas 34
sysnameas 34

Adaptive Server Enterprise

user-defined roles and mutual exclusivity 202
using bytes option, patindex string function 211,
217,218

Vv

valid_name system function 301
using after changing character sets 352
valid_user system function 302
var statistical aggregate function. See var_samp.
var_pop dtatistical aggregate function 304
var_samp statistical aggregate function 306
varbinary datatype 31-33, 253
varchar datatype 27
datetime values conversionto 24
inexpressions 344
spacesin 27
variable-length character. See varchar datatype

variance statistical aggregate function. Seevar_samp.

varp statistical aggregate function. See var_pop.
vector aggregates 53

nesting inside scalar aggregates 53
@@version global variable 333
@@version_number global variable 333
@@version_as integer global variable 333
view namein qualified object name 350

W

week date part 69, 142
weekday date part 69, 142
weekday date value, names and numbers 145
when keyword. See when...then conditions
when...then conditions 91
where clause, null valuesina 342
wildcard characters 353-359
See also patindex string function
inalike match string 355
literal charactersand 357
used asliteral characters 357
wk. See week date part
words, finding similar-sounding 257
worktables, number of 52

Reference Manual: Building Blocks

writetext command and text datainitialization
requirement 39

Y

year date function 326
year datepart 69, 142
yensign (¥)

inidentifiers 347

in money datatypes 19
yes/no data, bit columnsfor 33
yy. Seeyear date part

Z

zerox (0x) 31, 32, 67
zeros, trailing, in binary datatypes 3233

Index

393

Index

394 Adaptive Server Enterprise

	Reference Manual: Building Blocks
	About This Book
	CHAPTER 1 System and User-Defined Datatypes
	Datatype categories
	Range and storage size
	Datatypes of columns, variables, or parameters
	Declaring the datatype for a column in a table
	Declaring the datatype for a local variable in a batch or procedure
	Declaring the datatype for a parameter in a stored procedure
	Determining the datatype of a literal
	Numeric literals
	Character literals

	Datatypes of mixed-mode expressions
	Determining the datatype hierarchy
	Determining precision and scale

	Datatype conversions
	Automatic conversion of fixed-length NULL columns
	Handling overflow and truncation errors

	Standards and compliance
	Exact numeric datatypes
	Integer types
	Decimal datatypes
	Standards and compliance

	Approximate numeric datatypes
	Understanding approximate numeric datatypes
	Range, precision, and storage size
	Entering approximate numeric data
	NaN and Inf values
	Standards and compliance

	Money datatypes
	Accuracy
	Range and storage size
	Entering monetary values
	Standards and compliance

	Timestamp datatype
	Creating a timestamp column

	Date and time datatypes
	Range and storage requirements
	Entering date and time data
	Standards and compliance

	Character datatypes
	unichar, univarchar
	Length and storage size
	Entering character data
	Entering Unicode characters

	Treatment of blanks
	Manipulating character data
	Standards and compliance

	Binary datatypes
	Valid binary and varbinary entries
	Entries of more than the maximum column size
	Treatment of trailing zeros
	Platform dependence
	Standards and compliance

	bit datatype
	Standards and compliance

	sysname and longsysname datatypes
	Standards and compliance

	text, image, and unitext datatypes
	Data structures used for storing text, unitext, and image data
	Initializing text, unitext, and image columns
	Defining unitext columns

	Saving space by allowing NULL
	Getting information from sysindexes
	Using readtext and writetext
	Determining how much space a column uses
	Restrictions on text, image, and unitext columns
	Selecting text, unitext, and image data
	Converting text and image datatypes
	Converting to or from unitext
	Pattern matching in text data
	Duplicate rows
	Standards and compliance

	Datatypes and encrypted columns
	User-defined datatypes
	Standards and compliance

	CHAPTER 2 Transact-SQL Functions
	Types of functions
	Aggregate functions
	Aggregates used with group by
	Aggregate functions and NULL values
	Vector and scalar aggregates
	Aggregate functions as row aggregates

	Statistical aggregate functions
	Standard deviation and variance
	Statistical aggregates

	Datatype conversion functions
	Converting character data to a noncharacter type
	Converting from one character type to another
	Converting numbers to a character type
	Rounding during conversion to and from money types
	Converting date and time information
	Converting between numeric types
	Arithmetic overflow and divide-by-zero errors
	Scale errors
	Domain errors

	Conversions between binary and integer types
	Converting between binary and numeric or decimal types
	Converting image columns to binary types
	Converting other types to bit
	Converting NULL value

	Date functions
	Date parts

	Mathematical functions
	Security functions
	String functions
	Limits on string functions

	System functions
	Text, unitext, and image columns
	Text and image functions
	User-defined SQL functions
	abs
	acos
	ascii
	asehostname
	asin
	atan
	atn2
	avg
	audit_event_name
	authmech
	biginttohex
	bintostr
	case
	cast
	ceiling
	char
	char_length
	charindex
	coalesce
	col_length
	col_name
	compare
	convert
	cos
	cot
	count
	count_big
	current_date
	current_time
	curunreservedpgs
	data_pages
	datachange
	datalength
	dateadd
	datediff
	datename
	datepart
	day
	db_id
	db_name
	degrees
	derived_stat
	difference
	exp
	floor
	get_appcontext
	getdate
	getutcdate
	has_role
	hash
	hashbytes
	hextobigint
	hextoint
	host_id
	host_name
	identity_burn_max
	index_col
	index_colorder
	index_name
	inttohex
	isdate
	isnumeric
	is_quiesced
	is_sec_service_on
	isnull
	isnumeric
	lct_admin
	left
	len
	license_enabled
	list_appcontext
	lockscheme
	log
	log10
	lower
	ltrim
	max
	min
	month
	mut_excl_roles
	newid
	next_identity
	nullif
	object_id
	object_name
	object_owner_id
	pagesize
	partition_id
	partition_name
	partition_object_id
	passinfo
	patindex
	pi
	power
	proc_role
	radians
	rand
	rand2
	replicate
	reserve_identity
	reserved_pages
	reverse
	right
	rm_appcontext
	role_contain
	role_id
	role_name
	round
	row_count
	rtrim
	set_appcontext
	show_role
	show_sec_services
	sign
	sin
	sortkey
	soundex
	space
	square
	sqrt
	stddev
	stdev
	stdevp
	stddev_pop
	stddev_samp
	str
	str_replace
	strtobin
	stuff
	substring
	sum
	suser_id
	suser_name
	syb_quit
	syb_sendmsg
	tan
	tempdb_id
	textptr
	textvalid
	to_unichar
	tran_dumpable_status
	tsequal
	uhighsurr
	ulowsurr
	upper
	uscalar
	used_pages
	user
	user_id
	user_name
	valid_name
	valid_user
	var
	var_pop
	var_samp
	variance
	varp
	xa_bqual
	xa_gtrid
	xmltable
	year

	CHAPTER 3 Global Variables
	Adaptive Server global variables

	CHAPTER 4 Expressions, Identifiers, and Wildcard Characters
	Expressions
	Size of expressions
	Arithmetic and character expressions
	Relational and logical expressions
	Operator precedence
	Arithmetic operators
	Bitwise operators
	String concatenation operator
	Comparison operators
	Nonstandard operators
	Using any, all and in
	Negating and testing
	Ranges
	Using nulls in expressions
	Comparisons that return TRUE
	Difference between FALSE and UNKNOWN
	Using “NULL” as a character string
	NULL compared to the empty string

	Connecting expressions
	Using parentheses in expressions
	Comparing character expressions
	Using the empty string
	Including quotation marks in character expressions
	Using the continuation character

	Identifiers
	Short identifiers
	Tables beginning with # (temporary tables)
	Case sensitivity and identifiers
	Uniqueness of object names
	Using delimited identifiers
	Identifying tables or columns by their qualified object name
	Using delimited identifiers within an object name
	Omitting the owner name
	Referencing your own objects in the current database
	Referencing objects owned by the database owner
	Using qualified identifiers consistently

	Determining whether an identifier is valid
	Renaming database objects
	Using multibyte character sets

	Pattern matching with wildcard characters
	Using not like
	Case and accent insensitivity
	Using wildcard characters
	The percent sign (%) wildcard character
	The underscore (_) wildcard character
	Bracketed ([]) characters
	The caret (^) wildcard character

	Using multibyte wildcard characters
	Using wildcard characters as literal characters
	Using square brackets ([]) as escape characters
	Using the escape clause

	Using wildcard characters with datetime data

	CHAPTER 5 Reserved Words
	Transact-SQL reserved words
	ANSI SQL reserved words
	Potential ANSI SQL reserved words

	CHAPTER 6 SQLSTATE Codes and Messages
	Warnings
	Exceptions
	Cardinality violations
	Data exceptions
	Integrity constraint violations
	Invalid cursor states
	Syntax errors and access rule violations
	Transaction rollbacks
	with check option violation

	Index

