SYBASE

Java in Adaptive Server Enterprise

Adaptive Server® Enterprise
15.0.2

DOCUMENT ID: DC31652-01-1502-01
LAST REVISED: November 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

F N o Lo UL A I oV S =2 X Yo P PERRT iX
CHAPTER 1 An Introduction to Java in the Databasecccccceeeiiiiiiieennnne, 1
Advantages of Java in the databaseccceccvvvveeieeiiiicciiiinnee, 1
Capabilities of Java in the databaseccccccveeeiiiiiiiiiiie e, 2
Invoking Java methods in the database.............ccccccovviiiiiennennn. 2
Storing Java classes as datatypescccvvvevieeeiiiiiiiieiiieeenennns 3
Storing and querying XML in the databasecccccevveeiiinns 4
StaNdardS.........ovvvviiii 4
Java in the database: questions and anSWersccccccovvvvveeeeeennn. 4
What are the key features?cooovvviiiieiiiiiiiiiiiie e 5
How can | store Java instructions in the database? 5
How is Java executed in the database?...........cccccccvvviivivnnnnenn. 6
How can | use Java and SQL together?..........cccccceevviiiivieneeennn. 6
What is the Java API?oueiiiee et 7
How can | access the Java APl from SQL?ccccccovvvivivnnneennn. 7
Which Java classes are supported in the Java API? 8
Can | install my own Java Classes?........ccccvvvveeeiiiiiiiieeieees s 8
Can | access data USiNg JAVA?ccovvvviieeiieeeniiiiiiieeeee e 8
Can | use the same classes on client and server?................... 8
How do | use Java classes in SQL?........evvvevveeeveeeeviieeieeeeeeennnnns 9
Where can | find information about Java in the database? 9
What you cannot do with Java in the database................c........ 9
SamPpPle JAVA CIASSESeviiiiiiiiiiiiiiiie et 10
CHAPTER 2 Preparing for and Maintaining Java in the Database................. 11
The Java runtime enViroNMENT...........coivviiieeeeeeeiiiiee e 11
Java classes in the databasecccccccvvviiiiii e, 11
JDBC AFVEIS ...ueiiiiiee ettt e e a e e s e e e e 12
THE JAVA VM ..ottt a e e 12
Configuring memory for Java in the database..................cccoeuvvveeen. 13
Enabling the server for Javacccccceeeeviiiiiiiiec e 13
Disabling the server for Java..........ccccvvvviiiiiiiiiiiiiiiee e, 13

Java in Adaptive Server Enterprise iii

Contents

CHAPTER 3

Creating Java classes and JARScccoocviiiiiiiiiciiie e 14
Writing the Java code
Compiling Java code.........
Saving classes in @ JARIle ..ovvvieiiiiiiiii e, 15
Installing Java classes in the database............cccccceeveeeiiiiiiiinnneenn, 15
USING INSTAIJAVAvvvveeeiiciiiiiccee et 16
Referencing other Java-SQL Classes.........cccccccvveeviiiciiienneennn. 18
Viewing information about installed classes and JARs.................. 18
Downloading installed classes and JARS............cccccvvvevieeeiiiiiinnnnn. 19
Removing classes and JARSccooviiiiiieiiiiiic e 19
RetaiNiNg ClaSSEScoovviiiiiiiei e 20
Using Java Classes iN SQL.....ccoiiiiiiaiiiiiieeeiiiieee e 21
GENETal CONCEPLS ..ooeeiiiiiiiiiie ettt 22
Java CONSIAEIAtIONS.cuveieiirieie it 22
Java-SQL NAMES.......uuiiiii e 23
Using Java classes as datatypesccccveeerireeenniieeeniiiee e 23
Creating and altering tables with Java-SQL columns.............. 24
Selecting, inserting, updating, and deleting Java objects........ 26
Invoking Java methods in SQLcoccvviiiieee e 28
Sample MEthOAScccoiiiiiiieic e 29
Exceptions in Java-SQL methodsccccvvvveeieeeiiiiiiiieeeee, 29
Representing Java iNStAnCeScccovviivriiieeeee e e e 30
Assignment properties of Java-SQL data items...........ccccceeeeeriiinns 31
Datatype mapping between Java and SQL fieldsc.cooevvveen. 33
Character sets for data and identifierscccccviiiiiieiiiiiniiieen, 34
Subtypes in Java-SQL dataccocvvveiiiiiieniieeeeee e 34
Widening CONVEISIONS ...cccceviiiiiiiiiiiiee st 35
NarrOWing CONVEISIONSccviieiiiiiiiieitieeesiiiiiieeeeeeesssniieneeeaee s 35
Runtime versus compile-time datatypescccccccovvvvvvieeneenn. 36
The treatment of nulls in Java-SQL data...............eevvvveeeeeeeveeennnnnnns 36
References to fields and methods of null instances................ 37
Null values as arguments to Java-SQL methods 38
Null values when using the SQL convert function................... 39
Java-SQL StriNg datacuvveeieeiiiiiiiiiiccce e 40
Zero-1ength StHNGSvveeiiiiiiiie e 40
Type and void MethodS..........coocviiiiiiiii e 41
Java void instance Methods...........ccceiviiiiiiiiie e 42
Java void static Methods............cooiiiiiiiiiie e 43
Equality and ordering Operationscccvevveeeeeiiiiiiiiniee e 44
Evaluation order and Java method callscccvvvveiiiiiiiiininnnn. 45
COIUMNS L.t 45
Variables and parameterscccvvvveeeeeeiiiiiiiieec e 46
Static variables in Java-SQL ClasSes........ccccccevvvvvevieieeieieiieeeee 46

Adaptive Server Enterprise

Contents

Java classes in multiple databases............ccccvvveviieeiiiiiiiiiiiie e a7
Yo 0] 01 48
Cross-database referenCesccooceeeiviiiieiiiiie e 48
INter-class tranSfers ... 49
Passing inter-class arguments ... iiiiiiieeeeee e 50
Temporary and work databases...........ccccvvvevieeiiiiiiiieeniennnns 50

JAVA CIASSES. 51

CHAPTER 4 Data Access USiNg JDBC ...t 57

OVEIVIEBW ..ttt e e e e nb b 57

JDBC concepts and terminologyccceeeiiiiiiiiiiieeeniiiiiieeeeeeen 58

Differences between client- and server-side JDBC..............ccccc..... 58

PEIMISSIONS ...t 59

Using JDBC t0 aCCeSS Aatavvvvvvieeeeeiiiiiiiiiieee e e e e 59
Overview of the IDBCExamples Classccccvvvvvveeeeiiiciinnnnn, 60
The main() and serverMain() methodscccccvveveeeeiiinns 61
Obtaining a JDBC connection: the Connecter() method 62

Routing the action to other methods: the doAction() method. 63
Executing imperative SQL operations: the doSQL() method . 63

Executing an update statement: the updater() method 63
Executing a select statement: the selecter() method 64
Calling a SQL stored procedure: the caller() method.............. 65
Error handling in the native JIDBC driver..........cccoovveviiiiicniiieeens 66
The JIDBCEXaMPIES ClaSS....cuiieeeiiiiiiiiiiiee e 68
The main() Methodccco i 69
The serverMain() methodccvevveeiiiiiiiiie e 69
The connecter() Methodccvvvvieii e 70
The doAction() Method...........cccvvivieie i 70
The doSQL() Method........ccooiiiiiiiiiecceece e 72
The updater() Method........cccoiiiiiiiiii e 72
The selecter() method ..o 72
The caller() method ..o 73
CHAPTER 5 SQLJ Functions and Stored Procedures...........ccccceevvvvvvviiinnnnnn. 75
OVEIVIEBW ..ttt et e e e e nnb e 75
Compliance with SQLJ Part 1 specifications.........ccccccovvvvneee. 76
GENETAL ISSUES ...ttt 76
Security and PermiSSIONSeeuieeiviiiiiiiiiee e 77
SQLJI EXAMPIES....uiiiiiiee ittt 77
Invoking Java methods in Adaptive Server........ccccccceeviiivvieeeeeennn. 78
Using Sybase Central to manage SQLJ functions and procedures 80
SQLJ user-defined fUNCLIONSoevviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 81
Handling null argument values............cccccveeeiiiiiiiieniee e, 84

Java in Adaptive Server Enterprise v

Contents

Deleting a SQLJ function Name.........cccccoevvviiiiiiiieneesssiiiiieeennn 86
SQLJ Stored ProCEAUIESccoiiiiiiiiiiieee et e e e e e e 86
Modifying SQL data.........ccevveeiiiiiiiiiiiieees e 88
Using input and output parameterscccccoeeevvveeveeeeeeesinnnn 90
Returning result SEtScvveiiiiiiiiiiiiee e 93
Viewing information about SQLJ functions and procedures 97
AdVANCEA tOPICS ...uvviiiiiie et 97
Mapping Java and SQL datatypesccccvvvveeeeeeiiiiiinieeeeennnn 97
Using the command main method..............cccccveveieiiiiiininnnn. 101
SQLJ and Sybase implementation: a comparison 102
SQLIEXAMPIES CIASSvvviiiieeiiiiiiiiiiiiee sttt 105
CHAPTER 6 Debugging Java in the Databasecccccoviiiiis 109
Introduction to debugging Java.........cccccueveeiiiiiiiiiiiee e 109
How the debugger WOrkS...........oocviiiieiiiiiiii e, 109
Requirements for using the Java debuggerccccvveeeeennn. 109
What you can do with the debugger..........ccccccceviiiiiiiiennnnnnn, 110
Using the debugger..........uoioiiiiiiiiec e 110
Starting the debugger and connecting to the database......... 110
Compiling classes for debuggingcccccevveeeviiiiiiiieee i, 111
Attaching to @ Java VMoocciiiiiiiieiccciie e 111
The SoUrce WINAOW..........eiiiiiiiiiiiiiie i 112

(0] 0110] 4 1S3 PRRRRR 113
Setting breakpointS. ... 114
Disconnecting from the database.............cccccceiiiiiiiinnnn, 116

A debugging tutorialccoeeriiiiiiii 117
Before you begin ... 117
Start the Java debugger and connect to the database.......... 117
Attach t0 @ Java VMcoeiiiiiiiiiec e 118
Load source code into the debugger.........ccccccveeiiiiciiiennneenn, 118
Step through source Codeccoovviviiiieeeeeiiiiiiieeee e 119
Inspecting and modifying variablesccccccceeeiiiiiiiinneenn, 120
CHAPTER 7 Network Access Using java.net.........ccoccvvvvieeeeieee e, 123
OVEBIVIBW ...ttt ettt ettt e et e et e e e e enaee s 123
JAVANET CIASSES....cciiiiiiiiiie ettt 124
Setting UP JAVA.NEL ..ccoiiiiiiiie e 124
EXAQMPIE USAQE ..oeeieiiiii i 125
USING SOCKEL ClaSSES......c.uvvvieiiieeiiiiiiiiciee e 125
UsiNg the URL ClasS.......cuuviiiiiiiiiiiiiieceee e 128
USEBI NOTES ... 130

Vi Adaptive Server Enterprise

Contents

CHAPTER 8 REfEreNCe TOPICS oo e 131
JDK requirement for Java classes in the server...........ccccoeeeeeeen. 131

ASSIGNIMENES ...ttt a e e aae s 132

Assignment rules at compile-timeccccvvvvveeeiiiiiiiieneeenn, 132

Assignment rules at runtimecccvvveeeeeeiiiiiiceee e, 132

AlIOWE CONVEISIONS ...oeeiiiiiiiiiiieee st 133

Transferring Java-SQL objects to clientscccccovvveiiiiiiennnn, 134

Supported Java API packages, classes, and methods................ 134

Supported Java packages and classes............occvvveeviieeniiins 135

Unsupported Java packages, classes, and methods............. 135

Unsupported java.sql methods and interfaces 136

INVOKiNg SQL from JAVA........ceviiieeiiiiiiiiiiieee e e e 137

Special considerationsccccuveveeeeeeiiiiiiiieee e 138

Transact-SQL commands from Java methods...........cccccevvvevennnns 138

Datatype mapping between Java and SQL..........cccccevvveeeiiivinnnnn. 142

Java-SQL identifierS.........uueeeeeieiiiiiiiiiieiiieeiieieieeseeeeeeeeeeeeeeaeeeaeeeaees 144

Java-SQL class and package Names..........cccocvvveriiviieiiieneennnn 145

Java-SQL column declarationscc.eevveeeeiiiiiiiiieeeee e 146

Java-SQL variable declarationsccccccueeeriniiiineeeeniinennnn, 147

Java-SQL column referenCes........ooovvviiiiiiiiiiiiiieeee e 147

Java-SQL member referenCescocovvvvveeeiiiiiiiiiiieee e 148

Java-SQL method CallS ... 149

GlOSSAIY ittt e ettt e e e e e bbbt e e e e e et e e e e e e e nanee s 153
1T L= PSP RPN 157

Java in Adaptive Server Enterprise Vii

viii Adaptive Server Enterprise

About This Book

Audience Thisbook is for Sybase System Administrators, Database Owners, and
userswho are familiar with the Java programming language and Transact-
SQL®, the Sybase version of Structured Query Language (SQL).
Familiarity with Java Database Connectivity (JDBC) isassumed for those
who use these features.

How to use this book Thisbook will assist you ininstalling, configuring, and using Java classes
and methods in the Adaptive Server database. It includes these chapters:

Java in Adaptive Server Enterprise

Chapter 1, “An Introduction to Java in the Database,” provides an
overview of Javain Adaptive Server, including a“questions and
answers’ section for both novice and experienced Java users.

Chapter 2, “Preparing for and Maintaining Java in the Database,”
describes the Java runtime environment and the steps for enabling
Javaon the server and installing Java classes.

Chapter 3, “Using Java Classes in SQL,” describes how to use Java-
SQL classesin your Adaptive Server database.

Chapter 4, “Data Access Using JDBC,” describes how you use a
JDBC driver (on the server or on the client) to perform SQL
operations in Java.

Chapter 5, “SQLJ Functions and Stored Procedures,” describes how
you can enclose and use Java methods in SQL wrappers.

Chapter 6, “Debugging Javain the Database,” describes how you use
the Sybase debugger with Java.

Chapter 7, “Network Access Using java.net,” describeshow you can
use java.net, a package that allows you to create networking
applications over TCP/IP. It enables classes running in Adaptive
Server to access different kinds of servers.

Chapter 8, “Reference Topics,” provides information about datatype
mapping, Java-SQL syntax, and other useful information.

Related documents

In addition, a glossary provides descriptions of the Java and Java-SQL terms
used in this book.

Note Information about XML in the SQL database, included in this book
through version 12.5 of Adaptive Server, is now included in XML Servicesin
Adaptive Server Enterprise.

The Adaptive Server® Enterprise documentation set consists of the following:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

TheInstallation Guidefor your platform —describesinstal lation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

ASE Replicator User’s Guide — describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
aprimary server to one or more remote Adaptive Servers.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

The Configuration Guide for your platform — provides instructions for
performing specific configuration tasks for Adaptive Server.

Enhanced Full-Text Search Specialty Data Store User’s Guide —describes
how to use the Full-Text Search feature with Verity to search Adaptive
Server Enterprise data.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Historical Server User’s Guide—describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

Adaptive Server Enterprise

About This Book

e Javain Adaptive Server Enterprise—describeshow toinstall and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

e Job Scheduler User's Guide — provides instructions on how to install and
configure, and create and schedule jobs on alocal or remote Adaptive
Server using the command line or agraphical user interface (GUI).

e Messaging Service User’s Guide — describes how to useReal Time
Messaging Services to integrate TIBCO Java Message Service and IBM
WebSphere MQ messaging services with all Adaptive Server database
applications.

e Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

e Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

e Performance and Tuning Series — a series of books that explain how to
tune Adaptive Server for maximum performance:

e Basics—the basics for understanding and investigating performance
questions in Adaptive Server.

e Locking and Concurrency Control — describes how the various
locking schemas can be used for improving performance in Adaptive
Server, and how to select indexes to minimize concurrency.

e Query Processing and Abstract Plans — describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

e Physical Database Tuning — describes how to manage physical data
placement, space allocated for data, and the temporary databases.

e Monitoring Adaptive Server with sp_sysmon — describes how to
monitor Adaptive Server’s performance with sp_sysmon.

e Improving Performance with Satistical Analysis— describes how
Adaptive Server stores and displays statistics, and how to use the set
statistics command to analyze server statistics.

e Using the Monitoring Tables — describes how to query Adaptive
Server’s monitoring tables for statistical and diagnostic information.

Java in Adaptive Server Enterprise Xi

Xii

Quick Reference Guide — provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, data types, and utilitiesin a pocket-sized book (regular size
when viewed in PDF format).

Reference Manual —is a series of four books that contains the following
detailed Transact-SQL information:

» Building Blocks — Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

e Commands — Transact-SQL commands.

» Procedures — Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

e Tables— Transact-SQL system tables and dbcc tables.
System Administration Guide —

e \olume 1 — provides an introduction to the basics of system
administration, including a description of configuration parameters,
resource issues, character sets, sort orders, and diagnosing system
problems. The second part of this book is an in-depth description of
security administration.

e Volume 2 —includes instructions and guidelines for managing
physical resources, mirroring devices, configuring memory and data
caches, managing multiprocessor servers and user databases,
mounting and unmounting databases, creating and using segments,
using the reorg command, and checking database consistency. The
second half of this book describes how to back up and restore system
and user databases.

System Tables Diagram — illustrates system tables and their entity
relationshipsin aposter format. Full-size availableonly in print version; a
compact version is available in PDF format.

Transact-SQL User’s Guide — documents Transact-SQL , the Sybase
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

Troubleshooting Series (for release 15.0) —

Adaptive Server Enterprise

About This Book

Other sources of
information

» Troubleshooting: Error Messages Advanced Resolutions — contains
troubleshooting procedures for problems that you may encounter
when using Sybase® Adaptive Server® Enterprise. The problems
addressed here are those which the Sybase Technical Support staff
hear about most often

e Troubleshooting and Error Messages Guide — contains detailed
instructionson how to resolve the most frequently occurring Adaptive
Server error messages. Most of the messages presented here contain
error numbers (from the master..sysmessages table), but some error
messages do not have error numbers, and occur only in Adaptive
Server's error log.

User Guide for Encrypted Columns — describes how configure and use
encrypted columns with Adaptive Server

Using Adaptive Server Distributed Transaction Management Features—
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

Using Sybase Failover in a High Availability System — provides
instructions for using Sybase Failover to configure an Adaptive Server as
acompanion server in a high availability system.

Unified Agent and Agent Management Console — describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

Utility Guide — documents the Adaptive Server utility programs, such as
isql and bep, which are executed at the operating system level.

Web Services User’s Guide — explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

XML Servicesin Adaptive Server Enter prise—describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

Java in Adaptive Server Enterprise Xiii

Sybase certifications
on the Web

Xiv

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manualsin an easy-to-use, HTML -based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks I nstallation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manuals Web siteis an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

[IFinding the latest information on product certifications

1

4

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocsl/.

Click Certification Report.

In the Certification Report filter select aproduct, platform, and timeframe
and then click Go.

Click a Certification Report title to display the report.

[IFinding the latest information on component certifications

1

Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

Adaptive Server Enterprise

About This Book

Sybase EBFs and

software

maintenance

Conventions

3

Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set upaMySybaseprofile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

[IFinding the latest information on EBFs and software maintenance

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

Specify atime frame and click Go. A list of EBF/Maintenancereleasesis
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

This section describes conventions used for Java and Transact_ SQL in this
book.

This book uses these font and syntax conventions for Javaitems:

Classes, interfaces, methods, and packages are shown in Helveticawithin
paragraph text. For example:

SybEventHandler interface

setBinaryStream() method

Java in Adaptive Server Enterprise XV

com.Sybase.jdbx package

e Objects, instances, and parameter names are shown initalics. For
example:

“In the following example, ctx is aDirContext object.”

“eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

» Javanamesare aways case sensitive. For example, if aJavamethod name
is shown as Misc.stripLeadingBlanks(), you must type the method name
exactly as displayed.

Transact-SQL is afree-form language. There are no rules about the number of
words you can put on aline or where you must break aline. However, for
readability, all examples and most syntax statementsin this manual are
formatted so that each clause of a statement begins on anew line. Clauses that
have more than one part extend to additional lines, which are indented.
Complex commands are formatted using modified Backus Naur Form (BNF)
notation.

Table 1 showsthe conventionsfor syntax statementsthat appear in thismanual :

Table 1: Font and syntax conventions for this manual

Element Example
Command names,procedure names, utility names, and select
other keywords display in sans serif font. sp_configure

Database names and datatypes are in sans serif font. master database
Book names, file names, variables, and pathnamesare System Administration Guide
initalics. sgl.ini file
column_name
$SYBASE/ASE directory

Variables—or words that stand for valuesthat you fill select column name

in—when they are part of aquery or statement, arein from table name

italicsin Courier font. where search conditions
Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is ~ : : =

written in BNF notation. Do not type this symbol.

Indicates “is defined as”.

Curly braces mean that you must choose at least one {cash, check, credit}
of the enclosed options. Do not type the braces.

XVi Adaptive Server Enterprise

About This Book

Element

Example

Brackets mean that to choose one or more of the [cash | check | credit]
enclosed optionsisoptional. Do not type the brackets.

The comma means you may choose as many of the cash, check, credit
options shown as you want. Separate your choices
with commas as part of the command.

Thepipeor vertical bar(|) meansyoumay selectonly cash | check | credit

one of the options shown.

Anellipsis(...) meansthat you can repeat thelast unit buy thing = price [cash | check | credit]

as many times asyou like.

[, thing = price [cash | check | creditl]...

You must buy at |east onething and giveitsprice. You may
choose amethod of payment: one of theitems enclosed in
square brackets. You may aso choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

Syntax statements (displaying the syntax and all options for acommand)
appear asfollows:

sp_dropdevice [device_name]
For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiersare in lowercase. Italic font shows user-supplied words.

Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

Examples of output from the computer appear as follows:

pub_ id pub name city state
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley (@)

(3 rows affected)

Java in Adaptive Server Enterprise XVii

Accessibility
features

If you need help

XViil

This document isavailable inan HTML version that is specialized for
accessihility. You can navigate the HTML with an adaptive technol ogy such as
ascreen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the
Database

This chapter provides an overview of Java classesin Adaptive Server

Enterprise.
Topic Page
Advantages of Javain the database 1
Capabilities of Javain the database 2
Standards 4
Javain the database: questions and answers 4
Sample Java classes 10

Advantages of Java in the database

Adaptive Server provides a runtime environment for Java, which means
that Java code can be executed in the server. Building aruntime
environment for Javain the database server provides powerful new ways
of managing and storing both data and logic.

¢ You can use the Java programming language as an integral part of
Transact-SQL.

* You can reuse Java code in the different layers of your application—
client, middle-tier, or server—and use them wherever makes most
sense to you.

« Javain Adaptive Server provides a more powerful language than
stored procedures for building logic into the database.

« Javaclasses becomerrich, user-defined data types.

* Methods of Java classes provide new functions accessible from SQL .

Java in Adaptive Server Enterprise 1

Capabilities of Java in the database

» Javacan be used in the database without jeopardizing the integrity,
security, and robustness of the database. Using Java does not alter the
behavior of existing SQL statements or other aspects of non-Java
relational database behavior.

Capabilities of Java in the database

Javain Adaptive Server allowsyou to:

* Invoke Java methods in the database
» Store Java classes as datatypes

* Storeand query XML in the database

Invoking Java methods in the database

You can install Java classes in Adaptive Server, and then invoke the static
methods of those classes in two ways:

* You can invoke the Java methods directly in SQL.

* You can wrap the methods in SQL names and invoke them as you would
standard Transact-SQL stored procedures.

Invoking Java methods directly in SQL

The methods of an object-oriented language correspond to the functions of a
procedural language. You can invoke methods stored in the database by
referencing them, with name qualification, on instances for instance methods,
and on either instances or classesfor static (class) methods. You caninvokethe
method directly in, for example, Transact-SQL select lists and where clauses.

You can use static methods that return a value to the caller as user-defined
functions (UDFs).

Certain restrictions apply when using Java methods in this way:

» If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the Database

e Output parameters are not supported. A method can manipulate the dataiit
receives from a JDBC connection, but the only value it can return to its
caller isasingle return value declared as part of its definition.

Invoking Java methods as SQLJ stored procedures and functions

You can enclose Java static methodsin SQL wrappers and use them exactly as
you would Transact-SQL stored procedures or built-in functions. This
functionality:

* Allows Java methods to return output parameters and result sets to the
calling environment.

« Allowsyou to take advantage of traditional SQL syntax, metadata, and
permission capabilities.
* Allowsyou to invoke SQLJ functions across databases.

* Allowsyou to use existing Java methods as SQL J procedures and
functions on the server, on the client, and on any SQL J-compliant, third-
party database.

e Complieswith Part 1 of the standard specification. See “ Standards’ on
page 4.

Storing Java classes as datatypes

With Javain the database, you can install pure Java classesin a SQL system,
and then use those classesin anatural manner as datatypesin a SQL database.
This capability adds afull object-oriented datatype extension mechanism to
SQL, using amodel that is widely understood and alanguage that is portable
and widely available. The objectsthat you create and storewith thisfacility are
readily transferable to any Java-enabled environment, either in another SQL
system or standal one Java environment.

This capability of using Java classes in the database has two different but
complementary uses:

e |t provides atype extension mechanism for SQL, which you can use for
datathat is created and processed in SQL .

Java in Adaptive Server Enterprise 3

Standards

» It providesapersistent datacapability for Java, which you can useto store
datain SQL that is created and processed (mainly) in Java. Javain
Adaptive Server provides adistinct advantage over traditional SQL
facilities: you do not need to map the Java objectsinto scalar SQL
datatypes or store the Java objects as untyped binary strings.

Storing and querying XML in the database

Standards

Similar to Hypertext Markup Language (HTML), the eXtensible Markup
Language (XML) alows you to define your own application-specific markup
tags and is thus particularly suited for data interchange.

XML Servicesin Adaptive Server Enter prise describesthe Sybase native XML
processor and the Sybase Java-based XML support, introduces XML in the
database, and documentsthe query and mapping functionsthat comprise XML
Services.

The ANSI SQL standards specify SQL extensions for using Java facilitiesin
SQL. The Java-SQL specifications arein the SQL standard, “Part 13: SQL
Routines and Types Using the Java™ Programming Language (SQL/JRT).”
This standard is referred to informally as“ SQL J.”

Sybase supports the SQLJ specifications for Java routines, and provides
equivalent facilities for Java types. In addition, Sybase extends the standard.
For example, Adaptive Server allows you to reference Java methods and
classes directly in SQL.

Javain the database: questions and answers

Although this book assumes that readers are familiar with Java, there is much
to learn about Javain adatabase. Sybase is not only extending the capabilities
of the database with Java, but also extending the capabilities of Java with the
database.

Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the Database

Both experienced and novice Java users should read this section. It uses a
guestion-and-answer format to familiarize you with the basics of Javain
Adaptive Server.

What are the key features?

All of these points are explained in detail in later sections. With Javain
Adaptive Server, you can:

Run Javain the database server using an internal Java Virtual Machine
(JavaVM).

Call Java functions (methods) directly from SQL statements.

Wrap Java methods in SQL aliases and call them as standard SQL stored
procedures and built-in functions.

Access SQL datafrom Java using an internal JDBC driver.
Use Java classes as SQL datatypes.
Save instances of Java classesin tables.

Generate XML -formatted documents from raw data stored in Adaptive
Server databases and, conversely, store XML documents and data
extracted from them in Adaptive Server databases.

Debug Javain the database.

How can | store Java instructions in the database?

Javais an object-oriented language. Its instructions (source code) comein the
form of classes. You write and compile the Java instructions outside the
database into compiled classes (byte code), which are binary filesholding Java
instructions.

You then install the compiled classes into the database, where they can be
executed in the database server.

Adaptive Server is aruntime environment for Java classes. You need a Java
devel opment environment, such as Sybase PowerJ™ or Sun Microsystems
Java Development Kit (JDK), to write and compile Java.

Java in Adaptive Server Enterprise 5

Java in the database: questions and answers

How is Java executed in the database?
To support Javain the database, Adaptive Server:

e Comeswith itsown Java VM, specifically developed for handling Java
processing in the server.

e Usesitsown JDBC driver that runsin the server and accesses a database.

The Sybase Java VM runs in the database environment. It interprets compiled
Javainstructions and runs them in the database server.

The Sybase Java VM meets the JCM specifications from Java Software; it is
designed to work with the 2.0 version of the Java API. It supports public class
and instance methods; classesinheriting from other classes; the Java API; and
accessto protected, public, and private fields. Some Java API functionsthat are
not appropriate in a server environment, such as user interface elements, are
not supported. All supported Java API packages and classes come with
Adaptive Server.

The Adaptive Server JavaVM is available at all timesto perform a Java
operation whenever it isrequired as part of the execution of a SQL statement.
The database server starts the Java VM automatically when it is needed; you
do not need to take any explicit action to start or stop the Java VM.

Client- and server-side JDBC

JDBC isthe industry standard API for executing SQL in Java.
Adaptive Server provides a native JDBC driver. This driver is designed to
maximize performance asit executes on the server because it does not need to

communicate across the network. This driver permits Java classesinstalled in
adatabase to use JDBC classes that execute SQL statements.

When JDBC classesare used within aclient application, you typically must use
jConnect™ for JDBC™, the Sybase client-side JDBC database driver, to
provide the classes necessary to establish a database connection.

How can | use Java and SQL together?

A guiding principle for the design of Javain the database isthat it provides a
natural, open extension to existing SQL functionality.

6 Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the Database

« Java operationsareinvoked from SQL — Sybase has extended the range of
SQL expressionsto includefieldsand methods of Javaobjects, so that you
can include Java operationsin a SQL statement.

e Java methods as SQL J stored procedures and functions — you create a
SQLJ alias for Java static methods, so that you can invoke them as
standard SQL stored procedures and user-defined functions (UDFs).

« Java classes become user-defined datatypes — you store Java class
instances using the same SQL statements asthose used for traditional SQL
datatypes.

You can use classes that are part of the Java API, and classes created and
compiled by Java devel opers.

What is the Java API?

The Java Application Programming Interface (API) is a set of classes defined
by Sun Microsystems. It providesarange of base functionality that can be used
and extended by Java devel opers. It isthe core of “what you can do” with Java.

TheJava API offersconsiderablefunctionality initsown right. A large portion
of the Java API isbuilt in to any database that is enabled to use Java code—
which includes the majority of nonvisual classes from the Java APl aready
familiar to devel opers using the Sun Microsystems JDK.

How can | access the Java API from SQL?

You can use the Java APl in stored procedures, in UDFs, and in SQL
statements as extensions to the available built-in functions provided by SQL.

For example, the SQL function PI(*) returns the value for Pi. The Java API
classjavalang.Math has aparallel field named PI that returns the same value.
But java.lang.Math also has afield named E that returns the base of the natural
logarithm, as well as a method that computes the remainder operation on two
arguments as prescribed by the IEE754 standard.

Java in Adaptive Server Enterprise 7

Java in the database: questions and answers

Which Java classes are supported in the Java API?

Not all Java API classes are supported in the database. Some classes, for
example, the java.awt package that contains user interface components for
applications, are not appropriate inside a database server. Other classes,
including part of java.io, deal with writing information to adisk, and are also
not supported in the database server environment. See Chapter 8, “ Reference
Topics,” for alist of supported and unsupported classes.

Can | install my own Java classes?

You caninstall your own Java classesinto the database as, for example, a user-
created Employee class or Inventory class that a devel oper designed, wrote,
and compiled with a Java compiler.

User-defined Java classes can contain both information and methods. Once
installed in a database, Adaptive Server lets you use these classesin al parts
and operations of the database and execute their functionality (in the form of
class or instance methods).

Can | access data using Java?

The JDBC interface is an industry standard designed to access database
systems. The JDBC classes are designed to connect to a database, request data
using SQL statements, and return results that can be processed in the client
application.

You can connect from aclient application to Adaptive Server Enterprise via
JDBC, using jConnect or aJDBC/ODBC bridge. Adaptive Server also
provides an internal JDBC driver, which permits Java classesinstalled in a
database to use JDBC classes that execute SQL statements.

Can |l use the same classes on client and server?

You can create Java classes that can be used on different levels of an enterprise
application. You can integrate the same Java class into either the client
application, amiddle tier, or the database.

8 Adaptive Server Enterprise

CHAPTER 1 An Introduction to Java in the Database

How do | use Java classes in SQL?

Using Java classes, whether user-defined or from the Java AP, is athree-step
activity:

1 Writeor acquire aset of Java classes that you want to use as SQL
datatypes, or as SQL aliases for static methods.

2 Install those classesin the Adaptive Server database.
3 Usethose classesin SQL code:
e Cadl class (static) methods of those classes as UDFs.

e Declarethe Java classes as datatypes of SQL columns, variables, and
parameters. In this book, they are called Java-SQL columns,
variables, and parameters.

* Reference the Java-SQL columns, their fields, and their methods.

e Wrap static methodsin SQL aliases and usethem as stored procedures
or functions.

Where can | find information about Java in the database?

There are many books about Java and Java in the database. Two particularly
useful books are:

e James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java™
Language Specification, Second Edition, Addison-Wesl ey, 2000.

e Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark
Hapner, JDBC™ API Tutorial and Reference, Second Edition, Addison-
Wesley, 1999.

What you cannot do with Java in the database

Adaptive Server is aruntime environment for Java classes, not a Java
devel opment environment.

You cannot perform these actions in the database:
» Edit class sourcefiles (*.java files).

» Compile Javaclass source files (* .java fil es).

Java in Adaptive Server Enterprise 9

Sample Java classes

» Execute Java APIsthat are not supported, such as applet and visual
classes.

» UseJavathreading. Adaptive Server doesnot support java.lang. Thread and
java.lang.ThreadGroup. If you attempt to spawn athread, Adaptive Server
throws java.lang.UnsupportedOperationException.

e Usethe Java Native Interface (INI).

» UseJavaobjectsas parameters sent to aremote procedure call or received
from aremote procedure call. They do not trandlate correctly.

e Sybase recommends that you do not use static variables in methods
referenced by Java-SQL functions, SQL J functions, or SQL J stored
procedures. The values returned for these variables may be unreliable as
the scope of the static variable is implementation-dependent.

Sample Java classes

The chapters of this book use simple Java classes to illustrate basic principles
for using Javain the database. You can find copies of these classes in the
chapters that describe them and in the Sybase release directory in
$SYBASE/$SYBASEASE/sample/JavaXml/JavaXml.zip (UNIX) or
%SYBASEY\Ase-15 O\sampl e\JavaXml/JavaXml.zip (Windows NT).

10 Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining
Java in the Database

This chapter describes the Java runtime environment, how to enable Java
on the server, and how to install and maintain Javaclassesin the database.

Topic Page
The Java runtime environment 11
Configuring memory for Javain the database 13
Enabling the server for Java 13
Creating Java classes and JARs 14
Installing Java classes in the database 15
Viewing information about installed classes and JARS 18
Downloading installed classes and JARS 19
Removing classes and JARS 19

The Java runtime environment

The Adaptive Server runtime environment for Javarequiresa JavaVM,
which isavailable as part of the database server, and the Sybase runtime
Java classes, or Java API. If you are running Java applications on the
client, you may also require the Sybase JDBC driver, jConnect, on the
client.

Java classes in the database
You can use either of the following sources for Java classes:
e Sybase runtime Java classes

e User-defined classes

Java in Adaptive Server Enterprise 11

The Java runtime environment

Sybase runtime Java classes

The Sybase Java VM supports a subset of JDK version 2.0 (UNIX and
Windows NT) classes and packages.

The Sybase runtime Java classes are the low-level classes installed to Java
enable a database. They are downloaded automatically when Adaptive Server
isinstalled and are available thereafter from $SYBASE
/$SYBASE_ASE/lib/runtime.zip (UNIX) or
%SYBASEY\%SYBASE_ASE%\lib\runtime.zip (Windows NT). You do not
need to set the CLASSPATH environment variable specifically for Javain
Adaptive Server.

Sybase does not support runtime Java packages and classes that assume a
screen display, deal with networking and remote communications, or handle
security. See Chapter 8, “Reference Topics’ for alist of supported and
unsupported packages and classes.

User-defined Java classes

JDBC drivers

The Java VM

12

You install user-defined classes into the database using the installjava utility.
Once installed, these classes are avail able from other classes in the database
and from SQL as user-defined datatypes.

The Sybase native JDBC driver that comes with Adaptive Server supports
JDBC versions 1.1 and 1.2, and is compliant with several classes and methods
of JIDBC version 2.0. See Chapter 8, “Reference Topics,” for acompletelist of
supported and not supported classes and methods.

If your system requires a JDBC driver on the client, you must use jConnect
version 5.5 or later, which supports JDBC version 2.0.

To ensure that each invoked method is executed as quickly as possible, Sybase
provides aJava VM. The JavaVM runs on the server. The Java VM requires
little or no administration once installation is complete.

Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining Java in the Database

Configuring memory for Java in the database

Usethe sp_configure system procedure to change memory allocationsfor Java
in Adaptive Server. You can change the memory allocation for:

* size of global fixed heap — specifies memory space for internal data
structures.

* size of process object fixed heap — specifies the total memory space
available for al user connections using the Java VM.

e size of shared class heap — specifies the shared memory spacefor al Java
classes called into the Java VM.

See “Java Services’ in the System Administration Guide for complete
information about these configuration parameters.

Enabling the server for Java

To enable the server and its databases for Java, enter this command from isq|:
sp_configure "enable java", 1
Then shut down and restart the server.

By default, Adaptive Server is not enabled for Java. You cannot install Java
classes or perform any Java operations until the server is enabled for Java.

You can increase or decrease the amount of memory available for Javain
Adaptive Server and optimize performance using sp_configure. Java
configuration parameters are described in the System Administration Guide.

Disabling the server for Java
To disable Javain the database, enter this command from isq|:

Sp_configure "enable java", 0

Java in Adaptive Server Enterprise 13

Creating Java classes and JARs

Creating Java classes and JARs

The Sybase-supported classes from the JDK areinstalled on your system when
you install Adaptive Server version 12 or later. This section describesthe steps
for creating and installing your own Java classes.

To make your Java classes (or classes from other sources) available for usein
the server, follow these steps:

1 Write and save the Java code that defines the classes.

2 Compilethe Java code.

3 Create Javaarchive (JAR) filesto organize and contain your classes.
4

Install the JARS/classes in the database.

Writing the Java code

Use the Sun Java SDK or a devel opment tool such as Sybase PowerJ to write
the Java code for your class declarations. Save the Java code in afile with an
extension of .java. The name and case of the file must be the same as that of
the class.

Note Make certain that any Java APl classes used by your classes are among
the supported API classes listed in Chapter 8, “ Reference Topics”'.

Compiling Java code

14

This step turns the class declaration containing Java code into a new, separate
file containing bytecode. The name of the new fileisthe same asthe Java code
file but has an extension of .class. You can run acompiled Javaclassin aJava
runtime environment regardless of the platform on which it was compiled or
the operating system on which it runs.

Warning! Java classes that you install and use in the server must be compiled
with JDK 1.2.2. If you compile a class with alater JDK, you will be able to
install it in the server using the installjava utility, but you will get a
java.lang.ClassFormatError exception when you attempt to use the class.

Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining Java in the Database

Saving classes in a JAR file

You can organize your Java classes by collecting related classes in packages
and storing them in JAR files. JAR filesallow you to install or remove related
classes as a group.

Installing uncompressed JARs

Toinstall Javaclassesin adatabase, save the classes or packagesin aJAR file,
in uncompressed form. To create an uncompressed JAR file that contains Java
classes, use the Javajar cfo (“zero”) command.

InthisUNIX example, the jar command creates an uncompressed JAR file that
contains al .classfilesin the jcsPackage directory:

jar cf0 jcsPackage.jar jcsPackage/*.class

Installing compressed JARs

You can aso install acompressed JAR fileif you first expand the compressed
file using the x option of the jar command. In this UNIX example, abcPackage
isacompressed file.

1 Placethe compressed JAR filein an empty directory and expand it:
jar xf0 abcPackage.jar

2 Deletethe compressed JAR file so that it won't be included in the new,
uncompressed JAR file:

rm abcPackage.jar
3 Create the uncompressed JAR file:

jar cf0 abcPackage.jar*

Installing Java classes in the database

To ingtall Java classes from a client operating system file, use the installjava
(UNIX) or instjava (Windows NT) utility from the command line.

See the Adaptive Server Enterprise Utilities Guide for detailed information
about these utilities. Both utilities perform the same tasks; for simplicity, this
document uses UNIX examples.

Java in Adaptive Server Enterprise 15

Installing Java classes in the database

Using installjava

installjava copiesa JAR fileinto the Adaptive Server system and makes the
Javaclasses contained in the JAR availablefor use in the current database. The
syntax is.

installjava

-f file_name

[-new | -update]

[-j jar_name]

[-S server_name]
[-U user_name]

[-P password]

[-D database_name]
[-l interfaces_file]

[-a display_charset]
[-J client_charset]

[-z language]

[-t timeout]

For example, toinstall classesin the addr.jar file, enter:
installjava -f “/home/usera/jars/addr.jar”

The -f parameter specifies an operating system file that contains a JAR. You
must use the complete path name for the JAR.

This section describes retained JAR files (using -j) and updating installed JARs
and classes (using new and update). For more information about these and the
other options available with installjava, see the Utility Guide.

Note When you install aJAR file, Application Server copiesthefileto a
temporary table and then installs it from there. If you install alarge JAR file,
you may need to expand the size of tempdb using the alter database command.

Warning! Java classes that you install and use in the server must be compiled
with JDK 1.2.2. If you compile a class with alater JDK, you will be able to
install it in the server using the installjava utility, but you will get a
java.lang.ClassFormatError exception when you attempt to use the class.

Retaining the JAR file

When aJAR isinstalled in a database, the server disassembles the JAR,
extracts the classes, and stores them separately. The JAR is not stored in the
database unless you specify installjava with the -j parameter.

16 Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining Java in the Database

Use of -j determines whether the Adaptive Server system retainsthe JAR
specifiedininstalljava or usesthe JAR only to extract the classesto beinstalled.

e If you specify the -j parameter, Adaptive Server installs the classes
contained in the JAR in the normal manner, and then retains the JAR and
its association with the installed classes.

e If you do not specify the -j parameter, Adaptive Server does not retain any
association of the classes with the JAR. Thisis the default option.

Sybase recommends that you specify a JAR name so that you can better
manage your installed classes. If you retain the JAR file;

e Youcanremovethe JAR and all classes associated withit, al at once, with
the remove java statement. Otherwise, you must remove each class or
package of classes one at atime.

e You can use extractjava to download the JAR to an operating system file.
See “Downloading installed classes and JARS’ on page 19.

Updating installed classes
The new and update clauses of installjava indicate whether you want new
classes to replace currently installed classes.
e If you specify new, you cannot install a class with the same name as an
existing class.

» If you specify update, you can install a class with the same name as an
existing class, and the newly installed class replaces the existing class.

Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, make sure that the modified class can read
and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access existing objects without
reinstalling the original class.

Substitution of new classes for installed classes depends also on whether the
classes being installed or the already installed classes are associated with a
JAR. Thus:

e If youupdate aJAR, dl classesin the existing JAR are deleted and
replaced with classesin the new JAR.

Java in Adaptive Server Enterprise 17

Viewing information about installed classes and JARs

e Aclasscanbeassociated only with asingle JAR. You cannot install aclass
inone JAR if aclass of that same nameisalready installed and associated
with another JAR. Similarly, you cannot install a class not-associated with
aJARIf that classis currently installed and associated with a JAR.

You can, however, install aclassin aretained JAR with the same name as
an installed class not associated with aJAR. In this case, the class not
associated with aJAR is deleted and the new class of the same nameis
associated with the new JAR.

If you want to reorganize your installed classes in new JARS, you may find it
easier to first disassociate the affected classes from their JARs. See“ Retaining
classes” on page 20 for more information.

Referencing other Java-SQL classes

Installed classes can reference other classes in the same JAR file and classes
previoudly installed in the same database, but they cannot reference classesin
other databases.

If the classesin aJAR file do reference undefined classes, an error may result:

» If anundefined classisreferenced directly in SQL, it causes a syntax error
for “undefined class.”

» If anundefined classis referenced within a Java method that has been
invoked, it throws a Java exception that may be caught in theinvoked Java
method or cause the general SQL exception described in “ Exceptionsin
Java-SQL methods’ on page 29.

The definition of a class can contain references to unsupported classes and
methods as long as they are not actively referenced or invoked. Similarly, an
installed class can contain a reference to a user-defined class that is not
installed in the same database as long as the classis not instantiated or
referenced.

Viewing information about installed classes and JARs

To view information about classes and JARs installed in the database, use
sp_helpjava. The syntax is:

18 Adaptive Server Enterprise

CHAPTER 2 Preparing for and Maintaining Java in the Database

sp_helpjava [‘class’ [, name [, 'detail' | , 'depends']] |
‘jar’ [, name [, 'depends']]]

Toview detailed information about the Addressclass, for example, logintoisgl
and enter:

sp_helpjava “class”, Address, detail

See“sp_helpjava’ in the Reference Manual for more information.

Downloading installed classes and JARS

You can download copies of Java classes installed on one database for usein
other databases or applications.

Use the extractjava system utility to download a JAR file and its classesto a
client operating system file. For example, to download addr.jar to
~/home/usera/jars/addrcopy.jar, enter:

extractjava -j ’addr.jar’ -f
‘~/home/usera/jars/addrcopy.jar’

See the Utility Guide manual for more information.

Removing classes and JARsS

Use the Transact-SQL remove java statement to uninstall one or more Java-
SQL classes from the database. remove java can specify one or more Javaclass
names, Java package names, or retained JAR names. For example, to uninstall
the package utilityClasses, from isgl enter:

remove java package "utilityClasses"

Note Adaptive Server does not allow you to remove classesthat are used asthe
datatypesfor columnsand parametersor that arereferenced by SQL Jfunctions
or stored procedures.

You must make sure that you do not remove subclasses or classesthat are used
as variables or UDF return types.

Java in Adaptive Server Enterprise 19

Removing classes and JARs

remove java package deletes all classes in the specified package and all of its
sub-packages.

See the Reference Manual for more information about remove java.

Retaining classes

20

You can delete a JAR file from the database but retain its classes as classes no
longer associated withaJAR. Useremove java with theretain classes optionif,
for example, you want to rearrange the contents of several retained JARs.

For example, from isql enter:
remove java jar 'utilityClasses' retain classes

Once the classes are disassociated from their JARS, you can associate them
with new JARs using installjava with the new keyword.

Adaptive Server Enterprise

CHAPTER 3

Using Java Classes in SQL

This chapter describes how to use Java classesin an Adaptive Server

environment. The first sections give you enough information to get

started; succeeding sections provide more advanced information.

Topics Page
General concepts 22
Using Java classes as datatypes 23
Invoking Java methods in SQL 28
Representing Java instances 30
Assignment properties of Java-SQL dataitems 31
Datatype mapping between Java and SQL fields 33
Character sets for data and identifiers 34
Subtypesin Java-SQL data 34
The treatment of nullsin Java-SQL data 36
Java-SQL string data 40
Type and void methods 41
Equality and ordering operations 44
Evaluation order and Java method calls 45
Static variablesin Java-SQL classes 46
Java classes in multiple databases 47
Java classes 51

In this document, SQL columns and variables whose datatypes are Java-
SQL classes are described as Java-SQL columns and Java-SQL variables

or as Java-SQL dataitems.

The sample classes used in this chapter can be found in:

Java in Adaptive Server Enterprise

21

General concepts

e $SYBASE/$SYBASE ASE/sample/JavaxXml/JavaxXml.zip (UNIX)
* %SYBAEY\Ase-15 O\sample\Javaxmi\JavaXml.zip (Windows NT)

General concepts

This sections provides general Java and Java-SQL identifier information.

Java considerations

Before you use Javain your Adaptive Server database, here are some genera
considerations.

» Javaclasses contain:
» Fieldsthat have declared Java datatypes.
» Methods whose parameters and results have declared Java datatypes.

» Javadatatypes for which there are corresponding SQL datatypes are
defined in “ Datatype mapping between Java and SQL” on page 142.

» Javaclasses can include classes, fields, and methods that are private,
protected, friendly, Or public.

Classes, fields and methods that are public can be referenced in SQL.
Classes, fields, and methods that are private, protected, or friendly cannot
be referenced in SQL, but they can be referenced in Java, and are subject
to normal Javarules.

» Javaclasses, fields, and methods all have various syntactic properties:
* Classes—the number of fields and their names
* Field —their datatypes

* Methods —the number of parameters and their datatypes, and the
datatype of the result

The SQL system determines these syntactic properties from the Java-SQL
classes themselves, using the Java Reflection API.

22 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Java-SQL names

Java-SQL class names (identifiers) are limited to 255 bytes. Java-SQL field
and method names can be any length, but they must be 255 bytesor lessif you
use them in Transact-SQL. All Java-SQL names must conform to the rulesfor
Transact-SQL identifiersif you use them in Transact-SQL statements.

Class, field, and method names of 30 or more bytes must be surrounded by
guotation marks.

Thefirst character of the name must be either an al phabetic character
(uppercase or lowercase) or an underscore () symbol. Subsequent characters
can include alphabetic characters, numbers, the dollar ($) symbol, or the
underscore () symbol.

Java-SQL names are always case sensitive, regardless of whether the SQL
system is specified as case sensitive or case insensitive.

See Java-SQL identifiers on page 144 for more information about identifiers.

Using Java classes as datatypes

After you have installed a set of Java classes, you can reference them as
datatypesin SQL. To be used as a column datatype, a Java-SQL class must be
defined as public and must implement either java.io.Serializable or
javaio.Externalizable.

You can specify Java-SQL classes as:
e The datatypes of SQL columns

e Thedatatypesof Transact-SQL variables and parametersto Transact-SQL
stored procedures

» Default values for SQL columns

When you create atable, you can specify Java-SQL classes as the datatypes of
SQL columns:

create table emps (
name varchar(30),
home_addr Address,
mailing Address2Line null)

Java in Adaptive Server Enterprise 23

Using Java classes as datatypes

The name column is an ordinary SQL character string, the home_addr and
mailing_addr columns can contain Java objects, and Address and Address2Line
are Java-SQL classes that have been installed in the database.

You can specify Java-SQL classes as the datatypes of Transact-SQL variables:

declare @A Address
declare @A2 Address2Line

You can also specify default values for Java-SQL columns, subject to the
normal constraint that the specified default must be aconstant expression. This
expression is normally a constructor invocation using the new operator with
constant arguments, such as the following:

create table emps (
name varchar (30),
home addr Address default new Address
('Not known', ''),
mailing addr Address2Line

Creating and altering tables with Java-SQL columns

24

When you create or ater tables with Java-SQL columns, you can specify any
installed Java class as a column datatype. You can also specify how the
information inthe columnisto be stored. Your choi ce of storage options affects
the speed with which Adaptive Server references and updatesthefieldsin these
columns.

Columnvaluesfor arow typically arestored “in-row,” that is, consecutively on
the data pages all ocated to a table. However, you can also store Java-SQL
columns in a separate “ off-row” location in the same way that text and image
dataitems are stored. The default value for Java-SQL columnsis off-row.

If aJava-SQL column is stored in-row:

» Objects stored in-row are processed more quickly than objects stored off-
row.

e Anobject stored in-row can occupy up to approximately 16K bytes,
depending on the page size of the database server and other variables. This
includes its entire serialization, not just the valuesinitsfields. A Java
object whose runtime representation is more than the 16K limit generates
an exception, and the command aborts.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

If aJava-SQL columnisstored off-row, the columnissubject to therestrictions
that apply to text and image columns:

e Objects stored off-row are processed more slowly than objects stored in-
row.

e Anobject stored off-row can be of any size—subject to norma limitson
text and image columns.

* Anoff-row column cannot be referenced in a check constraint.

Similarly, do not reference atable that contains an off-row columnin a
check constraint. Adaptive Server allows you to include the check
constraint when you create or alter the table, but issuesawarning message
at compile time and ignores the constraint at runtime.

* You cannot include an off-row column in the column list of a select query
with select distinct.

e You cannot specify an off-row column in a comparison operator, in a
predicate, or in agroup by clause.

Partial syntax for create table with thein row/off row option is:

create table...column_name datatype
[default {constant_expression | user | null}]
{[{identity | null | not null}]
[off row | [in row [(size_in_bytes)]1]...

size_in_bytes specifies the maximum size of the in-row column. The value can
be aslarge as 16K bytes. The default value is 255 bytes.

The maximum in-row column size you enter in create table must include the
column’s entire serialization, not just the valuesin its fields, plus minimum
valuesfor overhead.

To determine an appropriate column size that includes overhead and
serialization values, use the datalength system function. datalength allows you
to determine the actual size of arepresentative object you intend to storein the
column.

For example:
select datalength (new class name(...))
where class nameisan installed Java-SQL class.

Partial syntax for alter table is:

Java in Adaptive Server Enterprise 25

Using Java classes as datatypes

alter table...{add column_name datatype
[default {constant_expression | user | null}]
{identity | null} [off row | [in row]...

Note You cannot change the column size of an in-row column using alter
column in this Adaptive Server release.

Altering partitioned tables

If atable containing Java columns s partitioned, you cannot ater the table
without first dropping the partitions. To change the table schema:

1 Remove the partitions.
2 Usethealter table command.

3 Repartition the table.

Selecting, inserting, updating, and deleting Java objects

declare @A Address,

After you specify Java-SQL columns, the values that you assign to those data
items must be Javainstances. Such instances are generated initially by callsto
Java constructors using the new operator. You can generate Javainstances for
both columns and variables.

Constructor methods are pseudo instance methods. They create instances.
Constructor methods have the same name as the class, and have no declared
datatype. If you do not include a constructor method in your classdefinition, a
default method is provided by the Java base class object. You can supply more
than one constructor for each class, with different numbers and types of
arguments. When a constructor isinvoked, the one with the proper number and
type of argumentsis used.

In the following example, Javainstances are generated for both columns and
variables:

@AA Address, @A2 Address2Line,

@AA2 Address2Line

select
select
select
select

26

@A
@AA
@A2

@AA2
'"Unit 2',

new Address()

new Address('123 Main Street', '99123')
new Address2Line()

new Address2Line('987 Front Street',
199543")

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

insert into emps values ('John Doe', new Address(),
new Address2Line())
insert into emps values('Bob Smith',
new Address('432 ElmStreet', '99654'),
new Address2Line ('PO Box 99', 'attn: Bob Smith', '99678'))

Values assigned to Java-SQL columns and variables can then be assigned to
other Java-SQL columns and variables. For example:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = home addr, @A2 = mailing addr from emps
where name = 'John Doe'
insert into emps values ('George Baker', @A, @A2)

select @AA2 = @A2
update emps

set home addr = new Address('456 Shoreline Drive', '99321'),
mailing addr = @AA2
where name = 'Bob Smith'
You can also copy values of Java-SQL columns from one table to another. For
example:

create table trainees (
name char (30),
home addr Address,
mailing addr Address2Line null

)

insert into trainees

select * from emps
where name in ('Don Green', 'Bob Smith',

'George Baker')

You can reference and update thefiel ds of Java-SQL columnsand of Java-SQL
variables with normal SQL qualification. To avoid ambiguities with the SQL
use of dotsto qualify names, use a double-angle (>>) to qualify Javafield and
method names when referencing them in SQL.

declare @name varchar (100), @street varchar (100),
@streetLine2 varchar(100), @zip char(10), @A Address

select @A = new Address()
select @A>>street = '789 Oak Lane'
select @street = @A>>street

Java in Adaptive Server Enterprise 27

Invoking Java methods in SQL

select @street = home add>>street, @zip = home add>>zip from emps

where name = 'Bob Smith'
select @name = name from emps
where home addr>>street= '456 Shoreline Drive'

update emps

set home addr>>street = '457 Shoreline Drive',
home_addr>>zip = '99323"
where home addr>>street = '456 Shoreline Drive'

Invoking Java methods in SQL

28

You can invoke Java methodsin SQL by referencing them, with name
qualification, on instances for instance methods, and on either instances or
classes for static methods.

Instance methods are generally closely tied to the data encapsulated in a
particular instance of their class. Static (class) methods affect the whole class,
not aparticular instance of the class. Static methods often apply to objects and
values from awide range of classes.

Once you have installed a static method, it is ready for use. A class that
contains a static method for use as a function must be public, but it does not
need to be seriaizable.

One of the primary benefits of using Javawith Adaptive Server isthat you can
use static methods that return avalue to the caller as user-defined functions
(UDFs).

You can use a Java static method as a UDF in a stored procedure, atrigger, a
where clause, or anywhere that you can use a built-in SQL function.

Javamethodsinvoked directly in SQL as UDFsare subject to these limitations:

» If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

e Output parameters are not supported. A method can manipulate the dataiit
receives from a JDBC connection, but the only valueit can return to its
caler isasinglereturn value declared as part of its definition.

» Cross-databaseinvocations of static methods are supported only if you use
aclass instance as a column value.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Sample methods

Permission to execute any UDF is granted implicitly to public. If the UDF
performs SQL queries via JDBC, permission to access the data is checked
against the invoker of the UDF. Thus, if user A invokes a UDF that accesses
table t1, user A must have select permission on t1 or the query will fail. For a
more detailed discussion of security models for Java method invocations, see
“Security and permissions’ on page 77.

To use Javastatic methodsto return result sets and output parameters, you must
enclose the methods in SQL wrappers and invoke them as SQL J stored
procedures or functions. See “Invoking Java methods in Adaptive Server” on
page 78 for acomparison of thewaysyou caninvoke Javamethodsin Adaptive
Server.

The sample Address and Address2Line classes have instance methods named
toString(), and the sample Misc class has static methods named
stripLeadingBlanks(), getNumber(), and getStreet(). You can invoke value
methods as functions in a value expression.

declare @name varchar (100)
declare @street varchar (100)
declare @streetnum int
declare @A2 Address2Line

select @name = Misc.

@street =

stripLeadingBlanks (name) ,
Misc.stripLeadingBlanks (home addr>s>street),

@streetnum = Misc.getNumber (home addr>>street),
@A2 = mailing addr

from emps

where home addr>>toString() like '%Shoreline%'

For information about void methods (methods with no returned value) see
“Type and void methods” on page 41.

Exceptions in Java-SQL methods

When the invocation of a Java-SQL method completes with unhandled
exceptions, a SQL exception israised, and this error message displays:

Unhandled Java method exception

Java in Adaptive Server Enterprise 29

Representing Java instances

The message text for the exception consists of the name of the Java class that
raised the exception, followed by the character string (if any) supplied when
the Java exception was thrown.

Representing Java instances

30

Non-Java clients such as isql cannot receive serialized Java objects from the
server. To allow you to view and use the object, Adaptive Server must convert
the object to a viewable representation.

To use an actual string value, Adaptive Server must invoke a method that
translates the object into a char or varchar value. The toString() method in the
Address classis an example of such amethod. You must create your own
version of the toString() method so that you can work with the viewable
representation of the object.

Note The toString() method in the Java APl does not convert the object to a
viewable representation. The toString() method you create overrides the
toString() method in the Java API.

When you use a toString() method, Adaptive Server imposes alimit on the
number of bytes returned. Adaptive Server truncates the printable
representation of the object to the value of the @ @stringsize global variable.
The default value of @@stringsize is 50; you can change this value using the
set stringsize command. For example:

set stringsize 300

The display software on your computer may truncate the data item further so
that it fits on the screen without wrapping.

If you include atoString() or similar method in each class, you can return the
value of the object’s toString() method in either of two ways:

* You can select aparticular field in the Java-SQL column, which
automatically invokes toString():

select home addr>>street from emps

* You can select the column and the toString() method, which listsin one
string all of the field values in the column:

select home addr>>toString() from emps

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Assignment properties of Java-SQL data items

Thevaluesassigned to Java-SQL dataitemsare derived ultimately from values
constructed by Java-SQL methods in the Java VM. However, the logical
representation of Java-SQL variables, parameters, and resultsis different from
the logical representation of Java-SQL columns.

Java-SQL columns, which are persistent, are Javaserialized streams stored
in the containing row of the table. They are stored values containing
representations of Javainstances.

Java-SQL variables, parameters, and function results are transient. They
do not actually contain Java-SQL instances, but instead contain references
to Javainstances contained in the Java VM.

These differences in representation give rise to differencesin assignment
properties as these examplesillustrate.

The Address constructor method with the new operator is evaluated in the
Java VM. It constructs an Address instance and returns areferenceto it.
That reference is assigned as the value of Java-SQL variable @A:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line
select @A = new Address('432 Post Lane', '99444"')

Variable @A contains areference to a Javainstance in the Java VM. That
reference is copied into variable @AA. Variables @A and @AA now
reference the same instance.

select @AA=@A

This assignment modifies the zip field of the Address referenced by @A.
Thisis the same Address instance that is referenced by @AA. Therefore,
the values of @A.zip and @AA.zip are now both '99222'.

select @A>>zip='99222"

The Address constructor method with the new operator constructs an
Address instance and returns areferenceto it. However, since thetarget is
aJava-SQL column, the SQL system serializes the Address instance
denoted by that reference, and copiesthe serialized valueinto the new row
of the emps table.

insert into emps
values ('Don Green', new Address('234 Stone
Road', '99777'), new Address2Line())

Java in Adaptive Server Enterprise 31

Assignment properties of Java-SQL data items

The Address2Line constructor method operates the same way as the
Address method, except that it returns a default instance rather than an
instancewith specified parameter values. The action taken is, however, the
same as for the Address instance. The SQL system serializes the default
Address2Line instance, and stores the serialized value into the new row of
the emps table.

» Theinsert statement specifiesno valuefor the mailing_addr column, so that
column will be set to null, in the same manner as any other column whose
value is not specified in an insert. Thisnull value is generated entirely in
SQL, and initialization of the mailing_addr column does not involve the
JavaVM at all.

insert into emps (name, home addr) values ('Frank Lee', @A)

Theinsert statement specifiesthat the value of the home_addr columnisto
be taken from the Java-SQL variable @A. That variable contains a
referenceto an Address instancein the JavaVVM. SincethetargetisaJava
SQL column, the SQL system serializes the Address instance denoted by
@A, and copies the serialized value into the new row of the emps table.

* Thisstatement inserts anew emps row for 'Bob Brown.' The value of the
home_addr column is taken from the SQL variable @A. Itisaso a
seriaization of the Java instance referenced by @A.

insert into emps (name, home addr) values ('Bob Brown', @A)

* Thisupdate statement setsthe zip field of the home_addr column of the
‘Frank Leg' row to ‘99777." Thishasno effect onthe zip field in the ‘ Bob
Brown’ row, whichisstill 199444

update emps
set home adds>>zip = '99777'
where name = 'Frank Lee'

e TheJava-SQL column home_addr contains a serialized representation of
thevalue of an Address instance. The SQL system invokesthe JavaVM to
deserialize that representation as a Javainstance in the Java VM, and
return areference to the new deserialized copy. That referenceis assigned
to @AA. The deserialized Address instance that is referenced by @AA is
entirely independent of both the column value and the instance referenced
by @A.

select @AA = home addr from emps where name = 'Frank Lee'

32 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

e Thisassignment modifiesthe zip field of the Address instance referenced
by @A. Thisinstanceisacopy of thehome_addr column of the 'Frank Lee'
row, but is independent of that column value. The assignment therefore
does not modify the zip field of the home_addr column of the 'Frank Lee'
row.

select @A>>zip = '95678'

Datatype mapping between Java and SQL fields

When you transfer dataiin either direction between the JavaVVM and Adaptive
Server, you must take into account that the datatypes of the dataitems are
different in each system. Adaptive Server automatically maps SQL itemsto
Javaitems and vice versa according to the correspondencetablesin “ Datatype
mapping between Java and SQL” on page 142.

Thus, SQL type char translates to Java type String, the SQL type binary
trangdates to the Java type byte[1, and so on.

» For the datatype correspondences from SQL to Java, char, varchar, and
varbinary types of any length correspond to Java String or byte[] datatypes,
as appropriate.

« For the datatype correspondences from Javato SQL:

e The Java String and byte[] datatypes correspond to SQL varchar and
varbinary, where the maximum length value of 16K bytesis defined
by Adaptive Server.

e The JavaBigDecimal datatype corresponds to SQL
numeric(precision,scale), where precision and scale are defined by the
user.

In the emps table, the maximum value for the Address and Address2Line
classes, street, zip, and line2 fields is 255 bytes (the default value). The Java
datatype of these classes is java.String, and they aretreated in SQL as
varchar(255).

An expression whose datatype is a Java object is converted to the
corresponding SQL datatype only when the expression is used in a SQL
context. For example, if the field home_addr>>street for employee * Smith’ is
260 characters, and begins ‘6789 Main Street ...

select Misc.getStreet (home addr>>street) from emps where name='Smith'

Java in Adaptive Server Enterprise 33

Character sets for data and identifiers

The expression in the select list passes the 260-character value of
home_addr>>street to the getStreet() method (without truncating it to 255
characters). The getStreet() method then returns the 255-character string
beginning ‘Main Street....". That 255-character string isnow an element of the
SQL select list, and is, therefore, converted to the SQL datatype and (if need
be) truncated to 255 characters.

Character sets for data and identifiers

The character set for both Java source code and for Java String datais Unicode.
Fields of Java-SQL classes can contain Unicode data.

Note Javaidentifiersused in the fully qualified names of visible classes or in
the names of visible members can use only Latin characters and Arabic
numerals.

Subtypes in Java-SQL data

Class subtypes allow you to use subtype substitution and method override,
which are characteristics of Java. A conversion from aclass to one of its
superclassesis awidening conversion; a conversion from a classto one of its
subclasses is a narrowing conversion.

* Widening conversions are performed implicitly with normal assignments
and comparisons. They are always successful, since every subclass
instance is also an instance of the superclass.

* Narrowing conversions must be specified with explicit convert
expressions. A narrowing conversion is successful only if the superclass
instance is an instance of the subclass, or a subclass of the subclass.
Otherwise, an exception occurs.

34 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Widening conversions

You do not need to use the convert function to specify awidening conversion.
For example, since the Address2Line classis a subclass of the Address class,
you can assign Address2Line valuesto Address dataitems. In the emps table,
the home_addr column is an Address datatype and the mailing_addr column is
an Address2Line datatype:

update emps
set home addr = mailing addr
where home addr is null

For the rows fulfilling the where clause, the home_addr column contains an
Address2Line, even though the declared type of home_addr is Address.

Such an assignment implicitly treats an instance of a class as an instance of a
superclass of that class. The runtime instances of the subclass retain their
subclass datatypes and associated data.

Narrowing conversions

update

update

update

You must use the convert function to convert an instance of aclassto an
instance of a subclass of the class. For example:

emps
set mailing addr = convert (Address2Line, home addr)
where mailing addr is null

The narrowing conversionsin the update statement cause an exception if they
are applied to any home_addr column that contains an Address instance that is
not an Address2Line. You can avoid such exceptions by including a condition
in the where clause:

emps
set mailing addr = convert (Address2Line, home_addr)
where mailing addr is null

and home addr>>getClass()>>toString() = 'Address2Line'’

The expression “home_addr>>getClass()>>toString()” invokes getClass()
and toString() methods of the Java Object class. The Object classisimplicitly a
superclass of all classes, so the methods defined for it are available for al
classes.

You can also use a case EXpPression:

emps
set mailing addr =

Java in Adaptive Server Enterprise 35

The treatment of nulls in Java-SQL data

case
when home addrs>>getClass()>>toString()
='Address2Line'’
then convert (Address2Line, home addr)
else null
end
where mailing addr is null

Runtime versus compile-time datatypes

Neither widening nor narrowing conversions modify the actual instance value
or itsruntime datatype; they simply specify the classto be used for the compile-
time type. Thus, when you store Address2Line values from the mailing_addr
columninto the home_address column, those values still havethe runtimetype
of Address2Line.

For example, the Address class and the Address2Line subclass both have the
method toString(), which returns a String form of the complete address data.

select name, home addr>>toString() from emps
where home addr>>toString() not like '$Line2=[]'

For each row of emps, the declared type of the home_addr column is Address,
but the runtime type of thehome_addr valueiseither Address or Address2Line,
depending on the effect of the previous update statement. For rows in which
the runtime value of the home_addr column is an Address, the toString()
method of the Address classisinvoked, and for rows in which the runtime
value of the home_addr column is Address2Line, the toString() method of the
Address2Line subclassisinvoked.

See “Null values when using the SQL convert function” on page 39 for a
description of null values for widening and narrowing conversions.

The treatment of nulls in Java-SQL data

This section discusses the use of nullsin Java-SQL dataitems.

36 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

References to fields and methods of null instances

If the value of the instance specified in afield reference is null, then the field
referenceisnull. Similarly, if the value of the instance specified in an instance
method invocation is null, then the result of the invocation is null.

Java has different rules for the effect of referencing afield or method of anull
instance. In Java, if you attempt to reference afield of anull instance, an
exception israised.

For example, suppose that the emps table has the following rows:

insert into emps (name, home addr)
values ("Al Adams",
new Address ("123 Main", "95321"))

insert into emps (name, home addr)
values ("Bob Baker",
new Address ("456 Side", "95123"))

insert into emps (name, home addr)
values ("Carl Carter", null)

Consider the following select:

select name, home addr>>zip from emps
where home addr>>zip in ('95123', '95125', '95128"')

If the Javarule were used for the referencesto “home_addr>>zip,” then those
references would cause an exception for the “ Carl Carter” row, whose
“home_addr” columnisnull. To avoid such an exception, you would need to
write such aselect asfollows:

select name,
case when home addr is not null then home addr>>zip
else null end

from emps
where case when home_addr is not null
then home_addr>>zip

else
null end

in ('95123', '95125', '95128")

The SQL convention is therefore used for references to fields and methods of
null instances: if theinstanceisnull, then any field or method referenceisnull.
The effect of this SQL ruleisto make the above case statement implicit.

Java in Adaptive Server Enterprise 37

The treatment of nulls in Java-SQL data

However, this SQL rulefor field references with null instances only appliesto
field references in source (right-side) contexts, not to field references that are
targets (Ieft-side) of assignments or set clauses. For example:

update emps
set home addr>>zip D '99123'
where name D 'Charles Green'

Thiswhere clauseis obviously true for the“ Charles Green” row, so the update
statement triesto perform the set clause. Thisraises an exception, because you
cannot assign avalue to afield of anull instance as the null instance has no
field to which avalue can be assigned. Thus, field references to fields of null
instances are valid and return the null value in right-side contexts, and cause
exceptions in left-side contexts.

The same considerations apply to invocations of methods of null instances,
and the sameruleis applied. For example, if we modify the previous example
and invoke the toString() method of the home_addr column:

select name, home addr>>toString()from emps
where home addrs>>toString() D
'StreetD234 Stone Road ZIPD 99777'

If the value of the instance specified in an instance method invocation is null,
then the result of the invocation is null. Hence, the select statement isvalid
here, whereas it raises an exception in Java.

Null values as arguments to Java-SQL methods

The outcome of passing null as a parameter isindependent of the actions of the
method for which it is an argument, but instead depends on the ability of the
return datatype to deliver anull value.

You cannot passthe null value asaparameter to a Javascal ar type method; Java
scalar types are always non-nullable. However, Java object types can accept
null values.

For the following Java-SQL class:

public class General implements java.io.Serializable ({
public static int identityl (int I) {return I;}
public static java.lang.Integer identity2
(java.lang.Integer I) {return I;}
public static Address identity3 (Address A) {return A;}

Consider these calls:

38 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

declare @I int
declare @A Address;

select @I General.identityl (@I)
select @I General.identity2 (new java.lang.Integer (@I))
select @A = General.identity3 (@A)

Thevaues of both variable @I and variable @A are null, since values have not
been assigned to them.

e Thecall of theidentity1() method raises an exception. The datatype of the
parameter @I of identity1() isthe Javaint type, which is scalar and has no
null state. An attempt to pass a null valued argument to identity1() raises
an exception.

e Thecal of theidentity2() method succeeds. The datatype of the parameter
of identity2() isthe Java class java.lang.Integer, and the new expression
creates an instance of java.lang.Integer that is set to the value of variable
Q@l.

* Thecadl of theidentity3() method succeeds.

A successful call of identity1() never returns anull result because the return
type has no null state. A null cannot be passed directly because the method
resolution fails without parameter type information.

Successful calls of identity2() and identity3() can return null results.

Null values when using the SQL convert function

You use the convert function to convert a Java object of one classto a Java
object of a superclass or subclass of that class.

Asshownin“Subtypesin Java-SQL data” on page 34, the home_addr column
of the emps table can contain values of both the Address class and the
Address2Line class. In this example:

select name, home addr>>street, convert (Address2Line, home addr)s>>line2,
home addr>>zip from emps

the expression “ convert(Address2Line, home addr)” contains a datatype
(Address2Line) and an expression (home_addr). At compile-time, the
expression (home_addr) must be a subtype or supertype of the class
(Address2Line). At runtime, the action of this convert invocation depends on
whether the runtime type of the expression’s value is a class, subclass, or
superclass:

Java in Adaptive Server Enterprise 39

Java-SQL string data

e If theruntime value of the expression (home_addr) is the specified class
(Address2Line) or one of its subclasses, the value of the expression is
returned, with the specified datatype (Address2Line).

e If theruntime value of the expression (home_addr) is a superclass of the
specified class (Address), then anull is returned.

Adaptive Server evaluates the select statement for each row of the result. For
each row:

e If thevalue of the home_addr column isan Address2Line, then convert
returnsthat value, and thefield reference extractsthe line2 field. If convert
returns null, then the field reference itself is null.

* Whenaconvert returns null, thenthefield referenceitself evaluatesto null.

Hence, the results of the select shows the line2 value for those rows whose
home_addr column is an Address2Line and a null for those rows whose
home_addr column isan Address. As described in “The treatment of nullsin
Java-SQL data” on page 36, the select also shows anull line2 value for those
rows in which the home_addr column is null.

Java-SQL string data

In Java-SQL columns, fields of type String are stored as Unicode.

When a Java-SQL String field is assigned to a SQL dataitem whose typeis
char, varchar, nchar, nvarchar, or text, the Unicode data is converted to the
character set of the SQL system. Conversion errors are specified by the set
char_convert options.

When a SQL dataitem whosetypeischar, varchar, nchar, or text isassigned to
aJava-SQL string field that is stored as Unicode, the character dataiis
converted to Unicode. Undefined codepoints in such data cause conversion
errors.

Zero-length strings

40

In Transact-SQL, a zero-length character string istreated as a null value, and
the empty string () istreated as a single space.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

To be consistent with Transact-SQL , when a Java-SQL String value whose
lengthiszeroisassigned to a SQL dataitem whosetypeischar, varchar, nchar,
nvarchar, Or text, the Java-SQL String value is replaced with a single space.

For example:

1> declare @s varchar (20)

2> select @s = new java.lang.String/()
3> select @s, char length(@s)

4> go

(1 row affected)

1

Otherwise, the zero-length value would be treated in SQL asa SQL null, and
when assigned to a Java-SQL String, the Java-SQL String would be a Javanull.

Type and void methods

insert

select

Java methods (both instance and static) are either type methods or void
methods. In general, type methods return a value with a result type, and void
methods perform some action(s) and return nothing.

For example, in the Address class:
e ThetosString() method is atype method whose type is String.
* TheremoveleadingBlanks() method is avoid method.

e The Address constructor method is a type method whose typeis the
Address class.

Youinvoketype methods asfunctions and use the new keyword when invoking
a constructor method:

into emps
values ('Don Green', new Address('234 Stone Road', '99777'),
new Address2Line())

name, home addr>>toString() from emps
where home addr>>toString() like ‘%Baker%’

Java in Adaptive Server Enterprise 41

Type and void methods

The removelLeadingBlanks() method of the Address classis avoid instance
method that modifies the street and zip fields of agiven instance. You can
invoke removeleadingBlanks() for the home_addr column of each row of the
emps table. For example;

update emps
set home_addr =
home addr>>removelLeadingBlanks ()

removeLeadingBlanks() removes the leading blanks from the street and zip
fields of the home_addr column. The Transact-SQL update statement does not
provide aframework or syntax for such an action. It simply replaces column
values.

Java void instance methods

update emps

set home_addr

To usethe “update-in-place” actions of Javavoid instance methodsin the SQL
system, Javain Adaptive Server treatsacall of a Javavoid instance method as
follows:

For avoid instance method M() of an instance ClI of aclass C, written
“CLM(...)":

* InSQL, thecall istreated as atype method call. The result typeis
implicitly class C, and the result value is areference to CI. That reference
identifies a copy of the instance ClI after the actions of the void instance
method call.

* InJava, thiscall isavoid method call, which performsits actions and
returns no value.

For example, you can invoke the removelLeadingBlanks() method for the
home_addr column of selected rows of the emps table as follows:

= home addr>>removeLeadingBlanks()

where home addr>>removeLeadingBlanks()>>street like “123%”

42

1 Inthewhere clause, “home_addr>>removel eadingBlanks()" callsthe
removeleadingBlanks() method for the home_addr column of arow of the
emps table. removeleadingBlanks() strips the leading blanks from the
street and zip fields of acopy of the column. The SQL system then returns
areference to the modified copy of the home_addr column. The
subsequent field reference:

home_addr>>removeLeadingBlanks ()>>street

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

update emps

set home_ addr
where ...

returnsthestreet field that hasthe leading blanks removed. The references
to home_addr in the where clause are operating on a copy of the column.
This evaluation of the where clause does not modify the home_addr
column.

The update statement performs the set clause for each row of emps in
which the where clauseistrue.

On theright-side of the set clause, the invocation of
“home_addr>>removel eadingBlanks()" is performed as it was for the
where clause: removeleadingBlank() strips the leading blanks from street
and zip fields of that copy. The SQL system then returns areference to the
maodified copy of the home_addr column.

The Address instance denoted by the result of the right side of the set
clauseisserialized and copied into the column specified on the | eft-side of
the set clause: theresult of the expression on theright side of the set clause
isacopy of the home_addr column in which the leading blanks have been
removed from the street and zip fields. The modified copy isthen assigned
back to the home_addr column as the new value of that column.

The expressions of the right and |eft side of the set clause are independent, as
is normal for the update statement.

Thefollowing update statement shows an invocation of avoidinstance method
of the mailing_addr column on theright side of the set clause being assigned to
the home_address column on the left side.

mailing addr>>removeLeadingBlanks ()

Inthis set clause, the void method removeleadingBlanks() of the mailing_addr
column yields areference to amodified copy of the Address2Line instancein
the mailing_addr column. The instance denoted by that referenceis then
serialized and assigned to the home_addr column. This action updates the
home_addr column; it has no effect on the mailing_addr column.

Java void static methods

You cannot invoke avoid static method using asimple SQL execute command.
Rather, you must place the invocation of the void static method in aselect
statement.

Java in Adaptive Server Enterprise 43

Equality and ordering operations

For example, suppose that a Java class C has avoid static method M(...), and
assume that M() performs an action you want to invoke in SQL. For example,
M() can use JDBC callsto perform a series of SQL statements that have no
return values, such as create or drop, that would be appropriate for avoid
method.

You must invoke the void static method in a select command, such as;
select C.M(...)

To alow void static methods to be invoked using aselect, void static methods
aretreated in SQL as returning a value of datatype int with avalue of null.

Equality and ordering operations

You can use equality and ordering operatorswhen you use Javain the database.
You cannot:

» Reference Java-SQL dataitemsin ordering operations.

» Reference Java-SQL dataitemsin equality operationsif they are stored in
an off-row column.

» Usetheorder by clause, which requires that you determine the sort order.
* Makedirect comparisons using the“>", “<”, “<=", or “>=" operator.
These equality operations are allowed for in-row columns:

» Useof thedistinct keyword, which is defined in terms of equality of rows,
including Java-SQL columns.

» Direct comparisonsusing the“=" and “!=" operators.

» Useof the union operator (not union all), which eliminates duplicates, and
requires the same kind of comparisons as the distinct clause.

» Useof the group by clause, which partitions the rows into sets with equal
values of the grouping column.

44 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Evaluation order and Java method calls

Adaptive Server does not have a defined order for evaluating operands of
comparisons and other operations. Instead, Adaptive Server eval uates each
guery and chooses an evaluation order based on the most rapid rate of
execution.

This section describes how different eval uation orders affect the outcome when
you pass columns or variables and parameters as arguments. The examplesin
this section use the following Java-SQL class:

public class Utility implements java.io.Serializable {
public static int F (Address A) {
if (A.zip.length() > 5) return O;
else {A.zip = A.zip + "-1234"; return 1;}

}

public static int G (Address A) {
if (A.zip.length() > 5) return O0;
else {A.zip = A.zip + "-1234"; return 1;}

Columns

In general, avoid invoking in the same SQL statement multiple methods on the
same Java-SQL object. If at least one of them modifies the object, the order of
evaluation can affect the outcome.

For example, in this example:

select * from emp E
where Utility.F(E.home addr) > Utility.F(E.home addr)

the where clause passes the same home_addr column in two different method
invocations. Consider the evaluation of the where clause for arow whose
home_addr column has a 5-character zip, such as“95123.”

Adaptive Server can initially evaluate either the left or right side of the
comparison. After the first evaluation completes, the second is processed.
Because it executes faster this way, Adaptive Server may let the second
invocation see the modifications of the argument made by the first invocation.

Java in Adaptive Server Enterprise 45

Static variables in Java-SQL classes

In the example, the first invocation chosen by Adaptive Server returns 1, and
the second returns 0. If the left operand is evaluated first, the comparison is
1>0, and the where clauseistrue; if the right operand is evaluated first, the
comparison is 0>1, and the where clauseis false.

Variables and parameters

Similarly, the order of evaluation can affect the outcome when passing
variables and parameters as arguments.

Consider the following statements:

declare @A Address
declare @Order varchar (20)

select @A = new Address('95444', '123 Port Avenue')
select case when Utility.F(@A)>Utility.G(@A)
then ‘Left’ else ‘Right’ end
select @Order = case when utility.F (@A) > utility.G(e@A)
then 'Left' else 'Right' end

Thenew Address hasafive-character zip code field. When the case expression
isevaluated, depending on whether the left or right operand of the comparison
isevaluated first, the comparison iseither 1>0 or 0>1, and the @Order variable
isset to ‘Left’ or ‘Right’ accordingly.

Asfor column arguments, the expression value depends on the evaluation
order. Depending on whether the left or right operand of the comparisonis
evaluated first, the resulting value of the zip field of the Address instance
referenced by @A is either “95444-4321" or “95444-1234.”

Static variables in Java-SQL classes

A Javavariable that is declared static is associated with the Java class, rather

than with each instance of the class. Thevariableisallocated oncefor theentire
class.

For example, you might include a static variable in the Address class that
specifies the recommended limit on the length of the Street field:

public class Address implements java.io.Serializable ({

public static int recommendedLimit;

46 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

public String street;
public String zip;

//

}

You can specify that astatic variable is final, which indicates that it is not
updatable;

public static final int recommendedLimit;
Otherwise, you can update the variable.

You reference a static variable of a Java classin SQL by qualifying the static
variable with an instance of the class. For example:

declare @a Address
select @a>>recommendedLimit

If you don't have an instance of the class, you can use the following technique:
select convert (Address, null)>>recommendedLimit

The expression “(convert(null, Address))” converts anull valueto an Address
type; that is, it generates a null Address instance, which you can then qualify
with the static variable name. You cannot reference a static variable of aJava
classin SQL by qualifying the static variablewith the classname. For example,
the following are both incorrect:

select Address.recommendedLimit
select Address>>recommendedLimit

Values assigned to non-final static variables are accessible only within the
current session.

Java classes in multiple databases

You can store Java classes of the same namein different databasesin the same
Adaptive Server system. This section describes how you can use these classes.

Java in Adaptive Server Enterprise 47

Java classes in multiple databases

Scope

When you install a Javaclass or set of classes, it isinstalled in the current
database. When you dump or load a database, the Java-SQL classes that are
currently installed in that database are alwaysincluded—even if classes of the
same name exist in other databases in the Adaptive Server system.

You can install Java classes with the same name in different databases. These
synonymous classes can be;

e |dentical classesthat have been installed in different databases.

» Different classesthat are intended to be mutually compatible. Thus, a
serialized value generated by either classis acceptable to the other.

» Different classesthat are intended to be “upward” compatible. That is, a
serialized value generated by one of the classes should be acceptableto the
other, but not vice versa.

» Different classesthat are intended to be mutually incompatible; for
example, a class named Sheet designed for supplies of paper, and other
classes named Sheet designed for supplies of linen.

Cross-database references

48

You can reference objects stored in table columnsin one database from another
database.

For example, assume the following configuration:
* TheAddress classisinstalled in dbl and db2.

* Theemps table has been created in both db1 with owner Smith, andindb2,
with owner Jones.

In these examples, the current database is db1. You caninvoke ajoin or a
method across databases. For example:

* Ajoin across databases might look like this:

declare @count int
select @count (*)
from db2.Jones.emps, dbl.Smith.emps
where db2.Jones.emps.home addr>>zip =
dbl.Smith.emps.home addr>>zip

» A method invocation across databases might look like this:

select db2.Jones.emps.home addr>>toString()

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

from db2.Jones.emps
where db2.Jones.emps.name = 'John Stone'

In these examples, instance values are not transferred. Fields and methods of
an instance contained in db2 are merely referenced by aroutine in do1. Thus,
for across-database joins and method invocations:

¢ dbl need not contain an Address class.

e If dbl doescontain an Address class, it can have completely different
properties than the Address classin db2.

Inter-class transfers

You can assign an instance of a class in one database to an instance of a class
of the same name in another database. Instances created by the classin the
source database are transferred into columns or variables whose declared type
isthe classin the current (target) database.

You can insert or update from atable in one database to atable in another
database. For example:

insert into dbl.Smith.emps select * from
db2.Jones.emps

update dbl.Smith.emps
set home_addr = (select db2.Jones.emps.home_addr
from db2.Jones.emps
where db2.Jones.emps.name =
dbl.Smith.emps.name)

You can insert or update from a variable in one database to another database.
(The following fragment isin a stored procedure on db2.) For example:

declare @home addr Address

select @home addr = new Address('94608’, ‘222 Baker
Street’)

insert into dbl.Janes.emps (name, home addr)
values (‘Jone Stone’, @home addr)

In these examples, instance values are transferred between databases. You can:
* Transfer instances between two local databases.
* Transfer instances between alocal database and a remote database.

e Transfer instances between a SQL client and an Adaptive Server.

Java in Adaptive Server Enterprise 49

Java classes in multiple databases

Replace classes using install and update statements or remove and update
statements.

In aninter-classtransfer, the Java serialization istransferred from the sourceto
thetarget. If the classin the source database is not compatible with the classin
the target database, then the Java exception InvalidClassException is raised.

Passing inter-class arguments

You can pass arguments between classes of the same name in different
databases.When passing inter-class arguments:

A Java-SQL column is associated with the version of the specified Java
classin the database that contains the column.

A Java-SQL variable (in Transact-SQL) is associated with the version of
the specified Java class in the current database.

A Java-SQL intermediate result of class C isassociated with the version of
class C in the same database as the Java method that returned the result.

When a Javainstance value JI is assighed to atarget variable or column,
or passed to a Javamethod, JI is converted from its associated classto the
class associated with the receiving target or method.

Temporary and work databases

All rulesfor Java classes and databases al so apply to temporary databases and
the model database:

50

Java-SQL columns of temporary tables contain byte string serializations
of the Javainstances.

A Java-SQL column is associated with the version of the specified classin
the temporary database.

You can install Java classes in atemporary database, but they persist only as
long as the temporary database persists.

The simplest way to provide Java classes for reference in temporary databases
istoinstall Javaclasses in the model database. They are then present in any
temporary database derived from the model.

Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

Java classes

This section shows the simple Java classes that this chapter uses to illustrate
Javain Adaptive Server. You can also find these classes and their Java source
code in $SYBASE/$SYBASE_ASE/sample/JavaxXml/JavaXml.zip. (UNIX) or
%SYBASE%\Ase-15_0\sample\JavaxXmi\Javaxml.zip (Windows NT).

Thisisthe Address class:

//

// Copyright (c) 2005

// Sybase, Inc

// Dublin, CA 94568

// BAll Rights Reserved

//

/**

* A simple class for address data, to illustrate using a Java class
* as a SQL datatype.

*/

public class Address implements java.io.Serializable ({

/**
* The street data for the address.
* @serial A simple String value.
*/

public String street;

/**
* The zipcode data for the address.
* @serial A simple String value.
*/
String zip;

/** A default constructor.
*/
public Address () {
street = "Unknown";
zip = "None';
/** }
* A constructor with parameters
* @param S a string with the street information
* @param Z a string with the zipcode information
*/
public Address (String S, String Z) {
street = S;

Java in Adaptive Server Enterprise 51

Java classes

zip = Z;
}
/**
* A method to return a display of the address data.
* @returns a string with a display version of the address data.
*/
public String toString() {
return "Street= " + gstreet + " ZIP= " + zip;
/** }

* A voild method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</codes>.

*/

public void removeLeadingBlanks() {

street = Misc.stripLeadingBlanks (street) ;

zip = Misc.stripLeadingBlanks (street) ;

}
}

Thisisthe Address2Line class, which is asubclass of the Address class:

//

// Copyright (c) 2005

// Sybase, Inc

// Dublin, CA 94568

// All Rights Reserved

//

/**

* A subclass of the Address class that adds a seond line of address data,
* <p>This is a simple subclass to illustrate using a Java subclass

* as a SQL datatype.

*/

public class Address2Line extends Address implements java.io.Serializable

/**
* The second line of street data for the address.
* @serial a simple String wvalue

*/
String line2;
/**
* A default constructor
*/
public Address2Line () {
street = "Unknown";
line2 = " ";
zip = "None";

52 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

}
/**
* A constructor with parameters.
* @param S a string with the street information
* @param L2 a string with the second line of address data
* @param Z a string with the zipcode information
*/
public Address2Line (String S, String L2, String 2Z) {
street = S;
line2 = L2;
zip = Z;

}

/**
* A method to return a display of the address data
* @returns a string with a display version of the address data

*/

public String toString()
return "Street= " + street + " Line2= " 4+ line2 + " ZIP= " + zip;

/**

* A void method to remove leading blanks.
* This method uses the static method

* <code>Misc.stripLeadingBlanks</codes>.

*/
public void removeLeadingBlanks() {
line2 = Misc.stripLeadingBlanks(line2) ;
super.removeLeadingBlanks () ;
!
1
The Misc class contains sets of miscellaneous routines:
//

// Copyright (c) 2005

// Sybase, Inc

// Dublin, CA 94568

// All Rights Reserved

//

/**

* A non-instantiable class with miscellaneous static methods
* that illustrate the use of Java methods in SQL.

*/

public class Misc{

Java in Adaptive Server Enterprise 53

Java classes

/**

* The Misc class contains only static methods and cannot be instantiated.

*/

private Misc() { }
/**
* Removes leading blanks from a String
*/
public static String stripLeadingBlanks (String s) {
if (s == null) return null;
for (int scan=0; scan<s.length(); scan++)
if (!java.lang.Character.isWhitespace (s.charAt (scan)))
break;
} else if (scan == s.length()){
return "";

} else return s.substring(scan) ;

}
}

return "";
;**
* Extracts the street number from an address line.
* e.g., Misc.getNumber (" 123 Main Street") == 123
* Misc.getNumber (" Main Street") == 0
* Misc.getNumber ("") == 0
* Misc.getNumber (" 123 ") == 123
* Misc.getNumber (" Main 123 ") == 0
* @param s a string assumed to have address data
* @return a string with the extracted street number
*/

public static int getNumber (String s) {
String stripped = stripLeadingBlanks(s) ;
if (s==null) return -1;

for (int right=0; right < stripped.length(); right++) {
if (!java.lang.Character.isDigit (stripped.charAt (right))) {
break;
} else if (right==0) {
return 0;
} else {

return java.lang.Integer.parselnt
(stripped.substring (0, right), 10);

54 Adaptive Server Enterprise

CHAPTER 3 Using Java Classes in SQL

}

return -1;

/**
* Extract the "street" from an address line.
* e.g., Misc.getStreet (" 123 Main Street") == "Main Street"
* Misc.getStreet (" Main Street") == "Main Street"
* Misc.getStreet ("") == """
* Misc.getStreet (" 123 " == nn
* Misc.getStreet (" Main 123 ") == "Main 123"
* @param s a string assumed to have address data
* @return a string with the extracted street name
*/
public static String getStreet (String s) {
int left;
if (s==null) return null;
for (left=0; left<s.length(); left++){
if (java.lang.Character.isLetter (s.charAt (left))) {
break;
} else if (left == s.length()) {
return "";
} else {

return s.substring(left) ;

}
}

return "";

Java in Adaptive Server Enterprise 55

Java classes

56 Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

This chapter describes how to use Java Database Connectivity (JDBC) to

access data.
Topics Page
Overview 57
JDBC concepts and terminol ogy 58
Differences between client- and server-side JDBC 58
Permissions 59
Using JDBC to access data 59
Error handling in the native JDBC driver 66
The JDBCExamples class 68

Overview

JDBC provides a SQL interface for Java applications. If you want to
access relational datafrom Java, you must use JDBC calls.

You can use JDBC with the Adaptive Server SQL interface in either of

two ways:

« JDBC ontheclient—Javaclient applications can make JDBC callsto

Adaptive Server using the Sybase jConnect JDBC driver.

+ JDBC ontheserver —Javaclassesinstalled in the database can make
JDBC callsto the database using the JDBC driver native to Adaptive

Server.

The use of JDBC callsto perform SQL operationsis essentially the same

in both contexts.

This chapter provides sample classes and methods that describe how you
might perform SQL operations using JDBC. These classes and methods

are not intended to serve as templates, but as general guidelines.

Java in Adaptive Server Enterprise

57

JDBC concepts and terminology

JDBC concepts and terminology

JDBC isaJava APl and a standard part of the Java class libraries that control
basic functions for Java application development. The SQL capabilities that
JDBC provides are similar to those of ODBC and dynamic SQL.

The following sequence of eventsistypical of a JDBC application:

1

Create a Connection object — call the getConnection() static method of the
DriverManager class to create a Connection object. This establishes a
database connection.

Generate a Satement object — use the Connection object to generate a
Satement object.

Pass a SQL statement to the Satement object —if the statement isa query,
this action returns a ResultSet object.

The ResultSet object contains the data returned from the SQL statement,
but provides it one row at atime (similar to the way a cursor works).

L oop over the rows of the results set — call the next() method of the
ResultSet object to:

» Advancethe current row (the row in the result set that is being
exposed through the ResultSet object) by one row.

» Return aBoolean value (true/false) to indicate whether thereis arow
to advanceto.

For each row, retrieve the values for columnsin the ResultSet object —use
the getint(), getString(), or Similar method to identify either the name or
position of the column.

Differences between client- and server-side JDBC

Thedifference between JDBC on the client and in the database server isin how
aconnection is established with the database environment.

58

When you use client-side or server-side JDBC, you call the
Drivermanager.getConnection() method to establish a connection to the server.

For client-side JDBC, you use the Sybase jConnect JDBC driver, and call
the Drivermanager.getConnection() method with the identification of the
server. This establishes a connection to the designated server.

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

e For server-side JDBC, you use the Adaptive Server native JDBC driver,
and call the Drivermanager.getConnection() method with one of the
following values:

¢ jdbc:default:connection
¢ jdbc:sybase:ase

e jdbc:default

e empty string

This establishes aconnection to the current server. Only thefirst call tothe
getConnection() method creates a new connection to the current server.
Subsequent calls return awrapper of that connection with all connection
properties unchanged.

You can write JDBC classes to run at both the client and the server by using a
conditional statement to set the URL.

Permissions

e Java execution permissions— like all Java classesin the database, classes
containing JDBC statements can be accessed by any user. Thereisno
equivalent of the grant execute statement that grants permission to execute
procedures in Java methods, and there is no need to qualify the name of a
class with the name of its owner.

e SQL execution permissions — Java classes are executed with the
permissions of the connection executing them. This behavior is different
from that of stored procedures, which execute with granted permission by
the database owner.

Using JDBC to access data

This section describeshow you can use JDBC to perform thetypical operations
of aSQL application. The examples are extracted from the class
JDBCExamples, whichisdescribed in“ The JDBCExamples class’ on page 68
and in $SYBASE/$SYBASE_ASE/sample/JavaXML/JavaxXml.zip (UNIX) or
%SYBASEY%\Ase-12_5\sample\JavaxXML\JavaxXml.zip (Windows NT).

Java in Adaptive Server Enterprise 59

Using JDBC to access data

JDBCExamples illustrates the basics of a user interface and showsthe internal
coding techniques for SQL operations.

Overview of the JDBCExamples class

The JDBCExamples class uses the Address class shown in “ Sample Java
classes” on page 10. To execute these examples on your machine, install the
Address class on the server and include it in the Java CLASSPATH of the

jConnect client.

You can call the methods of JDBCExamples from either ajConnect client or
Adaptive Server.

Note You must create or drop stored procedures from the jConnect client. The
Adaptive Server native driver does not support create procedure and drop
procedure statements.

JDBCExamples static methods perform the following SQL operations:
» Create and drop an example table, xmp:

create table xmp (id int, name varchar(50), home Address)
» Create and drop a sample stored procedure, inoutproc:

create procedure inoutproc @id int, @newname varchar (50),
@newhome Address, @oldname varchar (50) output, @oldhome
Address output as

select @oldname = name, @oldhome = home from xmp
where id=e@id

update xmp set name=@newname, home = @newhome
where id=@id

e Insert arow into the xmp table.
* Sdlect arow from the xmp table.
e Update arow of the xmp table.

e Cadll the stored procedure inoutproc, which has both input parameters and
output parameters of datatypes java.lang.String and Address.

JDBCExamples operates only on the xmp table and inoutproc procedure.

60 Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

The main() and serverMain() methods
JDBCExamples has two primary methods:
e main() —isinvoked from the command line of the jConnect client.

e serverMain() — performsthe same actions as main(), but isinvoked within
Adaptive Server.

All actions of the IDBCExamples class are invoked by calling one of these
methods, using a parameter to indicate the action to be performed.

Using main()

e You can invoke the main() method from ajConnect command line as
follows:

java JDBCExamples
“server-name:port-number?user=user-name&password=password” action

You can determine server-name and port-number from your interfacesfile,
using the dsedit tool. user-name and password are your user name and
password. If you omit &password=password, the default isthe empty password.
Here are two examples:

"antibes:4000?user=smith&password=1x2x3"
"antibes:4000?user=sa"

Make sure that you enclose the parameter in quotation marks.

The action parameter can be create table, create procedure, insert, select,
update, or call. It is case insensitive.

You can invoke JDBCExamples from ajConnect command line to create the
table xmp and the stored procedure inoutproc as follows:

java JDBCExamples “antibes:4000?user=sa” CreateTable
java JDBCExamples “antibes:4000?user=sa” CreateProc

You can invoke JDBCExamples for insert, select, update, and call actions as
follows:

java JDBCExamples “antibes:4000?user=sa” insert
java JDBCExamples “antibes:4000?user=sa” update
java JDBCExamples “antibes:4000?user=sa” call

java JDBCExamples “antibes:4000?user=sa” select

These invocations display the message “Action performed.”

To drop the table xmp and the stored procedure inoutproc, enter:

Java in Adaptive Server Enterprise 61

Using JDBC to access data

Using serverMain()

java JDBCExamples “antibes:4000?user=sa” droptable
java JDBCExamples “antibes:4000?user=sa” dropproc

Note Because the server-side JDBC driver does not support create procedure
or drop procedure, create the table xmp and the example stored procedure
inoutproc with client-side calls of the main() method before executing these
examples. Refer to “ Overview of the JDBCExamples class’ on page 60.

After creating xmp and inoutproc, you can invoke the serverMain() method as
follows:

select JDBCExamples.serverMain('insert')
go

select JDBCExamples.serverMain('select')
go

select JDBCExamples.serverMain ('update')
go

select JDBCExamples.serverMain('call')

go

Note Server-side calls of serverMain() do not require a server-name: port-
number parameter; Adaptive Server simply connectsto itself.

Obtaining a JDBC connection: the Connecter() method

62

Both main() and serverMain() call the connecter() method, which returns a
JDBC Connection object. The Connection object isthe basisfor all subsequent
SQL operations.

Both main() and serverMain() call connecter() with a parameter that specifies
the JDBC driver for the server- or client-side environment. The returned
Connection object is then passed as an argument to the other methods of the
JDBCExamples class. By isolating the connection actions in the connecter()
method, JDBCExamples’ other methods are independent of their server- or
client-side environment.

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

Routing the action to other methods: the doAction() method

ThedoAction() method routesthe call to one of the other methods, based on the
action parameter.

doAction() has the Connection parameter, which it simply relays to the target
method. It also has a parameter |ocale, which indicates whether the call is
server- or client-side. Connection raises an exception if either create procedure
or drop procedure isinvoked in a server-side environment.

Executing imperative SQL operations: the doSQL() method

The doSQL() method performs SQL actions that require no input or output
parameters such as create table, create procedure, drop table, and drop
procedure.

doSQL() hastwo parameters: the Connection object and the SQL statement it
isto perform. doSQL() creates aJDBC Satement object and usesit to execute
the specified SQL statement.

Executing an update statement: the updater() method

The updater() method performs a Transact-SQL update statement. The update
actionis:
String sql = "update xmp set name = ?, home = ? where id = ?";

It updates the name and home columns for all rows with agiven id value.

The update values for the name and home column, and the id value, are
specified by parameter markers (?). updater() supplies values for these
parameter markers after preparing the statement, but before executing it. The
values are specified by the IDBC setString(),

setObject(), and setint() methods with these parameters:

e Theordinal parameter marker to be substituted
e Thevalueto be substituted
For example:

pstmt.setString (1, name)
pstmt.setObject (2, home)
pstmt.setInt (3, id);

After making these substitutions, updater() executes the update statement.

Java in Adaptive Server Enterprise 63

Using JDBC to access data

To simplify updater(), the substituted values in the example are fixed.
Normally, applications compute the substituted values or obtain them as
parameters.

Executing a select statement: the selecter() method

if

The selecter() method executes a Transact-SQL select statement:
String sgl = "select name, home from xmp where id=?";

Thewhere clause uses a parameter marker (?) for the row to be selected. Using
the JIDBC setint() method, selecter() suppliesavaluefor the parameter marker
after preparing the SQL statement:

PreparedStatement pstmt =
con.prepareStatement (sql) ;
pstmt.setInt (1, id);

selecter() then executes the select statement:

ResultSet rs = pstmt.executeQuery () ;

Note For SQL statements that return no results, use doSQL() and updater().
They execute SQL statements with the executeUpdate() method.

For SQL statements that do return results, use the executeQuery() method,
which returns a JDBC ResultSet object.

The ResultSet object issimilar to aSQL cursor. Initialy, it is positioned before
the first row of results. Each call of the next(') method advances the ResultSet
object to the next row, until there are no more rows.

selecter() requiresthat the ResultSet object have exactly onerow. The selecter(
) method invokes the next method, and checksfor the case where ResultSet has
Nno rows or more than one row.

(rs.next ()) |

name = rs.getString(l);

home = (Address)rs.getObject(2);
if (rs.next()) {

throw new Exception("Error: Select returned multiple rows") ;
} else { // No action

}

} else { throw new Exception("Error: Select returned no rows") ;

}

64

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

In the above code, the call of methods getString() and getObject() retrieve the
two columns of the first row of the result set. The expression
“(Address)rs.getObject(2)” retrieves the second column as a Java object, and
then coerces that object to the Address class. If the returned object is not an
Address, then an exception is raised.

selecter() retrieves asingle row and checks for the cases of no rows or more
than one row. An application that processes a multiple row ResultSet would
simply loop on the calls of the next() method, and process each row as for a
single row.

Executing in batch If you want to execute a batch of SQL statements, make sure that you use the
mode execute() method. If you use executeQuery() for batch mode:

e |f the batch operation does not return aresult set (contains no select
statements), the batch executes without error.

e |f the batch operation returns one result set, all statements after the
statement that returnsthe result areignored. If getxxX() iscalled to get an
output parameter, the remaining statements execute and the current result
set is closed.

e | the batch operation returns more than one result set, an exceptionis
raised and the operation aborts.

Using execute() ensures that the complete batch executes for all cases.

Calling a SQL stored procedure: the caller() method
The caller() method calls the stored procedure inoutproc:

create proc inoutproc @id int, @newname varchar (50), @newhome Address,
@oldname varchar (50) output, @oldhome Address output as

select @oldname = name, @oldhome = home from xmp where id=@id
update xmp set name=@newname, home = @newhome where id=@id

Thisprocedure hasthreeinput parameters (@id, @newname, and @newhorme)
and two output parameters (@ol dname and @oldhome). caller() setsthe name
and home columns of the row of table xmp with the ID value of @id to the
values @newname and @newhome, and returns the former values of those
columns in the output parameters @oldname and @oldhome.

Theinoutproc procedure illustrates how to supply input and output parameters
inaJDBC call.

Java in Adaptive Server Enterprise 65

Error handling in the native JDBC driver

caller() executes the following call statement, which prepares the call
statement:

CallableStatement cs = con.prepareCall("{call inoutproc (?, 2, ?, ?, ?)}");

All of the parameters of the call are specified as parameter markers (?).

caller() suppliesvaluesfor theinput parameters using JDBC setint(), setString(
), and setObject() methods that were used in the doSQL(), updatAction(), and
selecter() methods:

cs.setInt (1, id);
cs.setString (2, newName) ;
cs.setObject (3, newHome) ;

These set methods are not suitable for the output parameters. Before executing
the call statement, caller() specifies the datatypes expected of the output
parameters using the JDBC registerOutParameter() method:

cs.registerOutParameter (4, java.sqgl.Types.VARCHAR) ;
cs.registerOutParameter (5, java.sqgl.Types.JAVA OBJECT) ;

caller() then executesthe call statement and obtainsthe output values using the
same getString() and getObject() methods that the selecter() method used:

int res = cs.executeUpdate() ;
String oldName = cs.getString(4) ;
Address oldHome = (Address)cs.getObject (5);

Error handling in the native JDBC driver

66

Sybase supports and implements all methods from the java.sgl. SQLException
and java.sql.SQLWarning classes. SQLException provides information on
database access errors. SQLWarning extends SQLException and provides
information on database access warnings.

Errors raised by Adaptive Server are numbered according to severity. Lower
numbers are less severe; higher numbers are more severe. Errors are grouped
according to severity:

e Warnings (EX_INFO: severity 10) — are converted to SQL Warnings.
e Exceptions (severity 11 tol8) — are converted to SQLEXxceptions.
e Fatal errors (severity 19 to 24) — are converted to fatal SQL Exceptions.

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

SQL Exceptions can be raised through JDBC, Adaptive Server, or the native
JDBC driver. Raising a SqlException aborts the JDBC query that caused the
error. Subsequent system behavior differs depending on where the error is
caught;

e Iftheerror iscaughtinJava—a“try” block and subsequent “catch” block
process the error.

Adaptive Server provides several extended JDBC driver-specific
SQLException error messages. All are EX_USER (severity 16) and can
always be caught. There are no driver-specific SQLWarning messages.

e Iftheerror isnot caughtin Java—the JavaVM returns control to Adaptive
Server, Adaptive Server catchesthe error, and an unhandled SQLException
error israised.

Theraiserror command is used typically with stored proceduresto raise an
error and to print a user-defined error message. When a stored procedure
that calls the raiserror command is executed via JDBC, the error is treated
asan internal error of severity EX USER, and anonfatal SQLException is
raised.

Note You cannot access extended error data using the raiserror command,;
the with errordata clause is not implemented for SQLException.

If an error causesatransaction to abort, the outcome depends on the transaction
context in which the Java method is invoked:

« Ifthetransaction contains multiple statements—the transaction aborts and
control returnsto the server, which rolls back the entire transaction. The
JDBC driver ceasesto process queriesuntil control returnsfrom the server.

« If thetransaction contains a single statement — the transaction aborts, the
SQL statement it contains rolls back, and the JIDBC driver continues to
process queries.

The following scenariosillustrate the different outcomes. Consider a Java
method jdbcTests.Errorexample() that contains these statements:

stmt .executeUpdate ("delete from parts where partno = 0"); Q2
stmt .executeQuery ("select 1/0"); 03
stmt .executeUpdate ("delete from parts where partno = 10"); Q4

A transaction containing multiple statements includes these SQL commands:

begin transaction
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample ()

Java in Adaptive Server Enterprise 67

The JDBCExamples class

In this case, these actions result from an aborted transaction:

* A divide-by-zero exceptionisraised in Q3.

e Changesfrom Q1 and Q2 are rolled back.

* Theentiretransaction aborts.

A transaction containing a single statement includes these SQL commands:

set chained off
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample ()

In this case:
* A divide-by-zero exceptionisraised in Q3.
» Changesfrom Q1 and Q2 are not rolled back

» Theexceptionis caught in “catch” and “try” blocksin
JDBCTests.Errorexample.

» Thedeletion specified in Q4 does not execute because it is handled in the
same “try” and “catch” blocks as Q3.

» JDBC queries outside of the current “try” and “catch” blocks can be
executed.

The JDBCExamples class

// An example class illustrating the use of JDBC facilities
// with the Java in Adaptive Server feature.

// The methods of this class perform a range of SQL operations.
// These methods can be invoked either from a Java client,

// using the main method, or from the SQL server, using

// the serverMain method.

//

import java.sqgl.*; // JDBC

public class JDBCExamples

{

68 Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

The main() method

// The main method, to be called from a client-side command line
//
public static void main(String args[])
if (args.length!=2) ({
System.out.println("\n Usage: "
+ "java ExternalConnect server-name:port-number
action ") ;
System.out.println(" The action is connect, createtable,
" 4+ "createproc, drop, "
+ "insert, select, update, or call \n");
return;

}
try(
String server = args[0];
String action args [1] .toLowerCase () ;
Connection con = connecter (server) ;
String workString = doAction(action, con, client);
System.out.println("\n" + workString + "\n");
} catch (Exception e) {
System.out.println("\n Exception: ");
e.printStackTrace () ;

The serverMain() method

// A JDBCExamples method equivalent to 'main’,
// to be called from SQL or Java in the server

public static String serverMain (String action) ({
try {
Connection con = connecter ("default") ;
String workString = doAction(action, con, server);
return workString;

} catch (Exception e)
if (e.getMessage () .equals(null)) {
return "Exc: " + e.toString();
} else {
return "Exc - " + e.getMessage() ;

}

Java in Adaptive Server Enterprise 69

The JDBCExamples class

The connecter() method

// A JDBCExamples method to get a connection.
// It can be called from the server with argument
// or from a client, with an argument that is the

public static Connection connecter (String server)

'default’',
server name.

throws Exception, SQLException, ClassNotFoundException {

String forName="";

String url="";

if (server=="default") { // server connection to current server
forName = "sybase.asejdbc.ASEDriver";
url = "jdbc:default:connection";

} else if (server!="default") { //client connection to server
forName= "com.sybase.jdbc.SybDriver";
url = "jdbc:sybase:Tds:"+ server;

String user = "sa";

String password = "'";

// Load the driver
Class.forName (forName) ;
// Get a connection

Connection con = DriverManager.getConnection (url,

user, password) ;
return con;

The doAction() method

// A JDBCExamples method to route to the 'action'

to be performed

public static String doAction(String action, Connection con,

String locale)
throws Exception {

String createProcScript =

" create proc inoutproc @id int, @newname varchar (50),

@newhome Address, "

+ " @oldname varchar (50) output, @oldhome Address

output as "
+ " select @oldname = name, @oldhome =

70

home from xmp

Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

where id=@id "
+ " update xmp set name=@newname, home = @newhome
where id=@id ";
String createTableScript =
" create table xmp (id int, name varchar (50),
home Address)" ;

String dropTableScript = "drop table xmp ";
String dropProcScript = "drop proc inoutproc ";
String insertScript = "insert into xmp "
+ "values (1, 'Joe Smith', new Address('987 Shore',
112345"))";
String workString = "Action (" + action +) ;
if (action.equals("connect")) {
workString += "performed";
} else if (action.equals("createtable")) {
workString += doSQL(con, createTableScript);
} else if (action.equals ("createproc"))
if (locale.equals(server))

throw new exception (CreateProc cannot be performed
in the server) ;

} else {
workString += doSQL(con, createProcScript);

}

} else if (action.equals ("droptable")) {
workString += doSQL(con, dropTableScript);
} else if (action.equals("dropproc")) {
if (locale.equals (server)) {

throw new exception (CreateProc cannot be performed
in the server) ;

} else {
workString += doSQL(con, dropProcScript);

}

} else if (action.equals("insert")) ({
workString += doSQL(con, insertScript);

} else if (action.equals ("update"))
workString += updater (con) ;

} else if (action.equals("select")) {
workString += selecter (con) ;

} else if (action.equals("call")) {
workString += caller (con) ;

} else { return "Invalid action: " + action ;

}

return workString;

Java in Adaptive Server Enterprise 71

The JDBCExamples class

The doSQL() method

// A JDBCExamples method to execute an SQL statement.

public static String doSQL (Connection con, String action)
throws Exception {

Statement stmt = con.createStatement () ;
int res = stmt.executeUpdate (action) ;
return "performed";

The updater() method

// A method that updates a certain row of the 'xmp' table.
// This method illustrates prepared statements and parameter markers.

public static String updater (Connection con)
throws Exception {

String sgl = "update xmp set name = ?, home = ? where id = ?";
int id=1;

Address home = new Address("123 Main", "98765") ;

String name = "Sam Brown';

PreparedStatement pstmt = con.prepareStatement (sql) ;

pstmt.setString (1, name) ;
pstmt.setObject (2, home) ;
pstmt.setInt (3, id);

int res = pstmt.executeUpdate() ;
return "performed";

The selecter() method

// A JDBCExamples method to retrieve a certain row

// of the 'xmp' table.

// This method illustrates prepared statements, parameter markers,
// and result sets.

public static String selecter (Connection con)
throws Exception {

String sgl = "select name, home from xmp where id=?";

72 Adaptive Server Enterprise

CHAPTER 4 Data Access Using JDBC

int id=1;

Address home = null;

String name = "";

String street = "";

String zip = "";

PreparedStatement pstmt = con.prepareStatement (sql) ;
pstmt.setInt (1, id);

ResultSet rs = pstmt.executeQuery() ;

if (rs.next()) {
name = rs.getString(l) ;
home = (Address)rs.getObject(2);
if (rs.next()) {

throw new Exception("Error: Select returned
multiple rows") ;
} else { // No action

}

} else { throw new Exception("Error: Select returned no rows") ;
return "- Row with id=1: name("+ name +)
+ " street (" + home.street +) zip("+ home.zip +);

The caller() method

// A JDBCExamples method to call a stored procedure,

// passing input and output parameters of datatype String
// and Address.
// This method illustrates callable statements, parameter markers,
// and result sets.

public static String caller (Connection con)
throws Exception {

CallableStatement cs = con.prepareCall ("{call inoutproc
(2, 2, 2, 2, ?2)}");

int id = 1;

String newName = "Frank Farr";

Address newHome = new Address ("123 Farr Lane", "87654");

cs.setInt (1, id);

cs.setString (2, newName) ;

cs.setObject (3, newHome) ;

cs.registerOutParameter (4, java.sqgl.Types.VARCHAR) ;
cs.registerOutParameter (5, java.sqgl.Types.JAVA OBJECT) ;

int res = cs.executeUpdate() ;

String oldName = cs.getString(4) ;

Address oldHome = (Address)cs.getObject (5) ;

return "- 0ld values of row with id=1: name ("+oldName+)

Java in Adaptive Server Enterprise 73

The JDBCExamples class

street (" + oldHome.street + ") zip("+ oldHome.zip +);

74 Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored
Procedures

This chapter describes how to wrap Java methods in SQL names and use

them as Adaptive Server functions and stored procedures.

Name Page
Overview 75
Invoking Java methods in Adaptive Server 78
Using Sybase Central to manage SQLJ functions and procedures 80
SQL J user-defined functions 81
SQLJ stored procedures 86
Viewing information about SQLJ functions and procedures 97
Advanced topics 97
SQLJ and Sybase implementation: a comparison 102
SQLJExamples class 105

Overview

You can enclose Java static methods in SQL wrappers and use them

exactly as you would Transact-SQL stored procedures or built-in

functions. This functionality:

* AllowsJavamethodsto return output parametersand result setsto the

calling environment.

e Complieswith Part 1 of the ANSI SQLJ standard specification.
* Allowsyou to take advantage of traditional SQL syntax, metadata,

and permission capabilities.

* Allowsyou to use existing Java methods as SQL J procedures and
functions on the server, on the client, and on any SQL J-compliant,

third-party database.

Java in Adaptive Server Enterprise

75

Overview

[ICreating a SQLJ stored procedure or function

Perform these stepsto create and execute a SQL J stored procedure or function.

1 Create and compile the Java method. Install the method classin the
database using the installjava utility.

Refer to Chapter 2, “ Preparing for and Maintaining Javain the Database,”
for information on creating, compiling, and installing Java methodsin
Adaptive Server.

2 Using the SQLJ create procedure or create function statement, define a SQL
name for the method.

3 Executethe procedureor function. The examplesin thischapter use JDBC
method calls or isql. You can also execute the method using Embedded
SQL or ODBC.

Compliance with SQLJ Part 1 specifications

General issues

76

Adaptive Server SQL Jstored procedures and functions comply with SQL J Part
1 of the standard specifications for using Javawith SQL. See “ Standards’ on
page 4 for adescription of the SQLJ standards.

Adaptive Server supports most features described in the SQLJ Part 1
specification; however, there are some differences. Unsupported features are
listed in Table 5-3 on page 103; partialy supported features are listed in
Table 5-4 on page 103. Sybase-defined features—those not defined by the
standard but left to the implementation—are listed in Table 5-5 on page 103.

In those instances where Sybase proprietary implementation differs from the
SQLJ specifications, Sybase supports the SQL J standard. For example, non-
Java Sybase SQL stored procedures support two parameter modes: in and inout.
The SQLJ standard supports three parameter modes: in, out, and inout. The
Sybase syntax for creating SQL J stored procedures supports al three
parameter modes.

This section describes general issues and constraints that apply to SQLJ
functions and stored procedures.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Security and permissions

SQLJ Examples

Sybase provides different security models for SQL J stored procedures and
SQL J functions.

SQL J functions and user-defined functions (UDFs) (see “Invoking Java
methods in SQL” on page 28) use the same security model. Permission to
execute any UDF or SQLJ function is granted implicitly to public. If the
function performs SQL queries via JDBC, permission to access the datais
checked against the invoker of the function. Thus, if user A invokes afunction
that accessestablet1, user A must have select permission on t1 or the query fails.

SQLJ stored procedures use the same security model as Transact-SQL stored
procedures. The user must be granted explicit permission to execute a SQL J or
Transact-SQL stored procedure. If a SQLJ procedure performs SQL queries
viaJDBC, implicit permission grant support is applied. This security model
allows the owner of the stored procedure, if the owner owns all SQL objects
referenced by the procedure, to grant execute permission on the procedure to
another user. The user who has execute permission can execute all SQL queries
in the stored procedure, even if the user does not have permission to access
those objects.

For a more detailed description of security for stored procedures, see the
System Administration Guide.

The examples used in this chapter assume a SQL table called sales_emps with
these columns:

e name —the employee's name

e id —the employee's identification number

« state —the state in which the employeeislocated
* sales —amount of the employee’s sales

e jobcode —the employee’s job code

The table definition is:

create table sales emps
(name varchar (50), id char(5),
state char(20), sales decimal (6,2),
jobcode integer null)

Java in Adaptive Server Enterprise 77

Invoking Java methods in Adaptive Server

The example classis SQLJExamples, and the methods are:

» region() —mapsaU.S. state code to aregion number. The method does not
use SQL.

e correctStates() — performs a SQL update command to correct the spelling
of state codes. Old and new spellings are specified by input parameters.

* DbestTwoEmps() — determinesthe top two employees by their sales records
and returns those values as output parameters.

e SQLJExamplesorderedEmps() — creates a SQL result set consisting of
selected employeerows ordered by valuesin the sales column, and returns
the result set to the client.

e job() —returns a string value corresponding to an integer job code value.

See “SQL JExamples class’ on page 105 for the text of each method.

Invoking Java methods in Adaptive Server

Invoking Java
methods directly with
their Java names

78

You can invoke Java methods in two different waysin Adaptive Server:

* Invoke Javamethodsdirectly in SQL. Directionsfor invoking methodsin
thisway are presented in Chapter 3, “Using Java Classes in SQL.”

* Invoke Java methods indirectly using SQL J stored procedures and
functions that provide Transact-SQL aliases for the method name. This
chapter describes invoking Java methods in this way.

Whichever way you choose, you must first create your Javamethodsand install
them in the Adaptive Server database using the installjava utility. See Chapter
2, “Preparing for and Maintaining Javain the Database,” for more
information.

You can invoke Java methodsin SQL by referencing them with their fully
qualified Javanames. Reference instances for instance methods, and either
instances or classes for static methods.

You can use static methods as user-defined functions (UDFs) that return a
valueto the calling environment. You can use a Java static method asa UDF in
stored procedures, triggers, where clauses, select statements, or anywhere that
you can use abuilt-in SQL function.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

When you call a Java method using its name, you cannot use methods that
return output parameters or result setsto the calling environment. A method
can manipulate the data it receives from a JDBC connection, but the method
can only return the single return value declared in its definition to the calling
environment.

You cannot use cross-database invocations of UDF functions.

See Chapter 3, “Using Java Classesin SQL,” for information about using Java
methods in this way.

Invoking Java You can invoke Java methods as SQL J functions or stored procedures. By
methods indirectly wrapping the Java method in a SQL wrapper, you take advantage of these
using SQL) capabilities:

e You can use SQLJ stored procedures to return result sets and output
parameters to the calling environment.

e You can take advantage of SQL metadata capabilities. For example, you
can view alist of al stored procedures or functionsin the database.

e SQLJprovidesaSQL namefor amethod, which allows you to protect the
method invocation with standard SQL permissions.

e Sybase SQLJ conformsto the recognized SQLJ Part 1 standard, which
allows you to use Sybase SQL J procedures and functionsin conforming
non-Sybase environments.

e You can invoke SQLJ functions and SQL J stored procedures across
databases.

« Because Adaptive Server checks datatype mapping when the SQLJ
routineiscreated, you need not be concerned with dataty pe mapping when
executing the routines.

You must reference static methodsin a SQL J routine; you cannot reference
instance methods.

This chapter describes how you can use Java methods as SQL J stored
procedures and functions.

Java in Adaptive Server Enterprise 79

Using Sybase Central to manage SQLJ functions and procedures

Using Sybase Central to manage SQLJ functions and

procedures

You can manage SQL Jfunctions and procedures from the command line using
isgl and from the Adaptive Server plug-into Sybase Central. From the Adaptive
Server plug-in you can:

Create a SQL J function or procedure

Execute a SQL J function or procedure

View and modify the properties of a SQL J function or procedure
Delete a SQL J function or procedure

View the dependencies of a SQL J function or procedure

Create permissions for a SQL J procedure

Thefollowing procedures describes how to create and view the properties of a
SQLJroutine. You can view dependencies and create and view permissions
from the routine's property sheet.

[ICreating a SQLJ function/procedure

First, create and compile the Java method. Install the method classin the
database using installjava. Then follow these steps:

1

2
3
4
5

80

Start the Adaptive Server plug-in and connect to Adaptive Server.
Double-click on the database in which you want to create the routine.
Open the SQL J Procedures/SQL J Functions folder.

Double-click the Add new Java Stored Procedure/Function icon.

Use the Add new Java Stored Procedure/Function wizard to create the
SQLJ procedure or function.

When you have finished using the wizard, the Adaptive Server plug-in
displays the SQLJ routine you have created in an edit screen, where you
can modify the routine and execute it.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

v To view the properties of a SQLJ function or procedure
1 Start the Adaptive Server plug-in and connect to Adaptive Server.

Double-click on the database in which the routine is stored.
Open the SQL J Procedures/SQL J Functions folder.

Highlight a function or procedure icon.

g A W N

Select File | Properties.

SQLJ user-defined functions

Thecreate function command specifiesa SQL Jfunction name and signature for
a Javamethod. You can use SQL J functions to read and modify SQL and to
return a value described by the referenced method.

The SQLJ syntax for create function is:

create function [owner].sgl function name
([sgl parameter name sgl datatype

[(length)| (precision[, scale])]
[, sgl parameter name sqgl datatype
[(length) | (precision[, scalel) 1]

D)
returns sgl datatype
[(length)| (precision[, scalel)]
[modifies sgl datal
[returns null on null input |
called on null input]
[deterministic | not deterministic]
[exportable]
language java
parameter style java
external name 'java method name
[([java_datatypel {, java_datatype }
1D

When creating a SQL J function:

e The SQL function signatureisthe SQL datatype sgl_datatype of each
function parameter.

e To comply with the ANSI standard, do not include an @ sign before
parameter names.

Java in Adaptive Server Enterprise 81

SQLJ user-defined functions

82

Sybase adds an @ signinternally to support parameter name binding. You
will seethe @ sign when using sp_help to print out information about the
SQLJ stored procedure.

When creating a SQL J function, you must include the parentheses that
surround the sgl_parameter_nameand sgl_datatype information—even if
you do not include that information.

For example:

create function sqglj fc()
language java
parameter style java
external name 'SQLJExamples.method'

The modifies sql data clause specifies that the method invokes SQL
operations and reads and modifies SQL data. Thisisthedefault value. You
do not need to include it except for syntactic compatibility with the SQLJ
Part 1 standard.

esreturns null on null input and called on null input specify how Adaptive
Server handles null arguments of a function call. returns null on null input
specifiesthat if the value of any argument is null at runtime, the return
value of the function is set to null and the function body is not invoked.
called on null input is the default. It specifies that the function isinvoked
regardless of null argument values.

Function calls and null argument values are described in detail in
“Handling nullsin the function call” on page 85.

You can include the deterministic or not deterministic keywords, but Adaptive
Server does not use them. They are included for syntactic compatibility
with the SQLJ Part 1 standard.

Clauses exportable keyword specifies that the functionistorun on a
remote server using Sybase OmniConnect™ capabilities. Both the
function and the method on which it is based must be installed on the
remote server.

Clauses language java and parameter style java specify that the referenced
method iswritten in Javaand that the parameters are Java parameters. You
must include these phrases when creating a SQL J function.

The external name clause specifies that the routine is not written in SQL
and identifies the Java method, class and, package name (if any).

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

e The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signatureis optional. If it isnot
specified, Adaptive Server infersthe Java method signature from the SQL
function signature.

Sybase recommendsthat you include the method signature asthis practice
handles all datatype translations. See* M apping Java and SQL datatypes’
on page 97.

e You can define different SQL names for the same Java method using
create function and then use them in the same way.

Writing the Java Before you can create a SQL Jfunction, you must write the Java method that it
method references, compile the method class, and install it in the database.

In this example, SQLJExamples.region() maps a state code to aregion number
and returns that number to the user.

public static int region(String s)
throws SQLException {

s = s.trim() ;

if (s.equals "MN") || s.equals("VT") ||
s.equals ("NH")) return 1;

if (s.equals("FL") || s.equals("GA") ||
s.equals ("AL")) return 2;

if (s.equals("CA") || s.equals("az") ||
s.equals ("NV")) return 3;

else throw new SQLException
("Invalid state code", "X2001");

}
Creating the SQLJ After writing and installing the method, you can create the SQL Jfunction. For

function example:

create function region of (state char(20))
returns integer

language java parameter style java

external name
'SQLJExamples.region(java.lang.String) '

The SQLJ create function statement specifies an input parameter (state
char (20)) and aninteger return value. The SQL function signatureischar(20).
The Java method signature is java.lang.String.

Calling the function You can call a SQLJfunction directly, asif it were a built-in function. For
example:

Java in Adaptive Server Enterprise 83

SQLJ user-defined functions

select name, region of (state) as region
from sales emps
where region of (state)=3

Note The search sequence for functions in Adaptive Server is:
1 Built-in functions

2 SQLJfunctions

3 Java-SQL functionsthat are called directly

Handling null argument values

84

Java class datatypes and Java primitive datatypes handle null argument values
in different ways.

» Javaobject datatypesthat are classes—such asjava.lang.Integer,
java.lang.String, java.lang.byte[], and java.sql. Timestamp—can hold both
actual values and null reference values.

» Javaprimitivedatatypes—such asboolean, byte, short, and int—have no
representation for anull value. They can hold only non-null values.

When a Java method is invoked that causes a SQL null value to be passed as
an argument to a Java parameter whose datatype isa Javaclass, it is passed as
aJavanull reference value.When a SQL null valueis passed as an argument to
aJava parameter of a Java primitive datatype, however, an exception israised
because the Java primitive datatype has no representation for a null value.

Typicaly, you will write Java methods that specify Java parameter datatypes

that are classes. In this case, nulls are handled without raising an exception. If
you choose to write Java functions that use Java parameters that cannot handle
null values, you can either:

* Include the returns null on null input clause when you create the SQLJ
function, or

* Invoke the SQLJfunction using a case or other conditional expression to
test for null valuesand call the SQL J function only for the non-null values.

You can handle expected nullswhen you create the SQL Jfunction or when you
call it. The following sections describe both scenarios, and reference this
method:

public static String job(int jc)

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

throws SQLException {
if (jc==1) return “Admin”;
else 1f (jc==2) return “Sales”;
else 1f (jc==3) return “Clerk”;
else return “unknown jobcode”;

}

Handling nulls when creating the function

If null values are expected, you can include the returns null on null input clause
when you create the function. For example:

create function job of (jc integer)
returns varchar (20)

returns null on null input

language java parameter style java

external name 'SQLJExamples.job (int)''

You can then call job_of in thisway:

select name, job_ of (jobcode)
from sales_emp
where job of (jobcode) <> "Admin"

When the SQL system evaluates the call job_of(jobcode) for arow of
sales_emps in which the jobcode column is null, the value of the call is set to
null without actually calling the Javamethod SQLJExamples.job. For rowswith
non-null values of the jobcode column, the call is performed normally.

Thus, when a SQL Jfunction created using the returns null on null input clause
encounters anull argument, the result of the function call is set to null and the
function is not invoked.

Note If youinclude the returns null on null input clause when creating a SQL J
function, the returns null on null input clause appliesto all function parameters,
including nullable parameters.

If you include the called on null input clause (the default), null arguments for
non-nullable parameters generates an exception.

Handling nulls in the function call

You can use a conditional function call to handle null values for non-nullable
parameters. The following example uses a case expression:

Java in Adaptive Server Enterprise 85

SQLJ stored procedures

select name,
case when jobcode is not null
then job of (jobcode)
else null end
from sales emps where
case when jobcode is not null
then job of (jobcode)
else null end <> "Admin"

In this example, we assume that the function job_of was created using the
default clause called on null input.

Deleting a SQLJ function name

You can delete the SQL J function name for a Java method using the drop
function command. For example, enter:

drop function region of

which deletes the region_of function name and its reference to the
SQLJExamples.region method. drop function does not affect thereferenced Java
method or class.

See the Reference Manual for complete syntax and usage information.

SQLJ stored procedures

86

Using Java-SQL capahilities, you can install Java classes in the database and
then invoke those methods from a client or from within the SQL system. You
can also invoke Java static (class) methods in another way—as SQL J stored
procedures.

SQLJ stored procedures:

e Canreturn result sets and/or output parameters to the client

e Behave exactly as Transact-SQL stored procedures when executed
e Can be called from the client using ODBC, isql, or JDBC

e Can be called within the server from other stored procedures or native
Adaptive Server IDBC

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

The end user need not know whether the procedure being called isa SQLJ
stored procedure or a Transact-SQL stored procedure. They are both invoked
in the same way.

The SQLJ syntax for create procedure is:

create procedure [owner.]sqgl procedure name

([[in | out | inout] sgl parameter name
sgl datatype [(length) |
(precision[, scalel)]

[, [in | out | inout] sgl parameter name
sgl datatype [(length) |
(precisionl, scalel) 11

.1)
[modifies sgl datal
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name 'java method name
[([java datatypel, java datatype
111

Note Tocomply withthe ANSI standard, the SQL Jcreate procedure command
syntax is different from syntax used to create Sybase Transact-SQL stored
procedures.

Refer to the Reference Manual for a detailed description of each keyword and
option in this command.

When creating SQL J stored procedures:;

e TheSQL proceduresignatureisthe SQL datatype sql_datatype of each
procedure parameter.

e When creating a SQL J stored procedure, do not include an @ sign before
parameter names. This practise is compliant with the ANSI standard.

Sybase addsan @ sign internally to support parameter name binding. You
will seethe @ sign when using sp_help to print out information about the
SQLJ stored procedure.

e When creating a SQL Jstored procedure, you must include the parentheses
that surround the sgl_parameter_name and sgl_datatype information—
even if you do not include that information.

For example:

Java in Adaptive Server Enterprise 87

SQLJ stored procedures

Modifying SQL data

You can use a SQL J stored procedure to modify information in the database.
The method referenced by the SQL J procedure must be either:

88

create procedure sglj sproc ()
language java
parameter style java

external name "SQLJExamples.methodl"

You can include the keywords modifies sl data to indicate that the method
invokes SQL operations and reads and modifies SQL data. Thisisthe
default value.

You must include the dynamic result sets integer option when result sets
are to be returned to the calling environment. Use the integer variable to
specify the maximum number of result sets expected.

You can include the keywords deterministic or not deterministic for
compatibility with the SQL J standard. However, Adaptive Server does not
make use of this option.

You must include the language java parameter and style java keywords,
which tell Adaptive Server that the external routineis written in Javaand
the runtime conventions for arguments passed to the externa routine are
Java conventions.

The external name clause indicates that the external routine is writtenin
Javaand identifies the Java method, class, and package name (if any).

The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signature is optional. If oneis
not specified, Adaptive Server infers one from the SQL procedure
signature.

Sybase recommends that you include the method signature asthis practice
handles all datatype translations. See “Mapping Java and SQL datatypes”
on page 97 for more information.

You can define different SQL names for the same Java method using
create procedure and then use them in the same way.

A method of type void, or

A method with an int return type (incorporation of theint return typeisa
Sybase extension of the SQL J standard).

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Writing the Java Themethod SQLJExamples.correctStates() performsaSQL update statement to
method correct the spelling of state codes. Input parameters specify the old and new
spellings. correctStates() is a void method; no valueis returned to the caller.

public static void correctStates(String oldSpelling,
String newSpelling) throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {
Class.forName ("sybase.asejdbc.ASEDriver") ;
conn = DriverManager.getConnection
("jdbc:default:connection") ;
}
catch (Exception e)
System.err.println(e.getMessage () +
“:error in connection”) ;
}
try {
pstmt = conn.prepareStatement
("UPDATE sales emps SET state = ?
WHERE state = ?");
pstmt.set.String (1, newSpelling) ;
pstmt.set.String (2, oldSpelling) ;
pstmt.executeUpdate () ;
}
catch (SQLException e) ({
System.err.println (“SQLException: "+

e.getErrorCode () + e.getMessage()) ;
}
return;
}
Creating the stored Before you can call a Javamethod with a SQL name, you must create the SQL

procedure name for it using the SQL J create procedure command. The modifies sql data

clauseis optional.

create procedure correct states(old char(20),
not old char(20))
modifies sqgl data
language java parameter style java
external name
'SQLJExamples.correctStates
(java.lang.String, java.lang.String)'

The correct_states procedure has a SQL procedure signature of char(20),
char(20). The Java method signature isjava.lang.String, java.lang.String.

Java in Adaptive Server Enterprise 89

SQLJ stored procedures

Calling the stored You can execute the SQL J procedure exactly as you would a Transact-SQL
procedure procedure. In this example, the procedure executes from isq:
execute correct states 'GEO', 'GA'

Using input and output parameters

Javamethods do not support output parameters. When you wrap a Javamethod
in SQL, however, you can take advantage of Sybase SQL J capabilities that
allow input, output, and input/output parameters for SQL J stored procedures.

When you create a SQL J procedure, you identify the mode for each parameter
asin, out, Of inout.

For input parameters, use the in keyword to qualify the parameter. in isthe
default; Adaptive Server assumes an input parameter if you do not enter a
parameter mode.

For output parameters, use the out keyword.

For parameters that can pass val ues both to and from the referenced Java
method, use the inout keyword.

Note You create Transact-SQL stored procedures using only the in and out
keywords. The out keyword corresponds to the SQL J inout keyword. See the
create procedure reference pagesin the Adaptive Server Reference Manual for
more information.

To create a SQL J stored procedure that defines output parameters, you must:

90

Define the output parameter(s) using either the out or inout option when
you create the SQL J stored procedure.

Declare those parameters as Java arrays in the Java method. SQL J uses
arrays as containers for the method’s output parameter values.

For example, if you want an Integer parameter to return avalue to the
caller, you must specify the parameter type asinteger[] (an array of Integer)
in the method.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

The array object for an out or inout parameter is created implicitly by the
system. It has asingle element. The input value (if any) is placed in the
first (and only) element of the array before the Java method is called.
When the Java method returns, the first element is removed and assigned
tothe output variable. Typically, thiselement will be assigned anew value
by the called method.

The following examples illustrate the use of output parameters using a Java
method bestTwoEmps() and a stored procedure best2 that references that

method.

Writing the Java
method

The SQLJExamples.bestTwoEmps() method returns the name, ID, region, and
sales of the two employees with the highest sales performance records. The

first eight parameters are output parameters requiring a containing array. The
ninth parameter is an input parameter and does not require an array.

Java in Adaptive Server Enterprise

public static void bestTwoEmps (String[] nl,
Stringl[] idl, int[] r1,
BigDecimal[] sl1, Stringl[] n2,
String[] id2, int[] r2, BigDecimall[] s2,

int regionParm) throws SQLException {

nl[o] =
idi[o] = "";

r1[0] = O;

s1[0] = new BigDecimal (0) :
n2 [O] = MkkxkxN,

id2[0]
r2[0] = 0;

s2[0] = new BigDecimal (0) ;

Mk kkxll .
7

= nmn.
= 7

try {
Connection conn = DriverManager.getConnection
("jdbc:default:connection") ;
java.sqgl.PreparedStatement stmt =
conn.prepareStatement ("SELECT name, id,"
+ "region of (state) sales FROM"
+ "sales_emps WHERE"
+ "region of (state)>? AND"
+ "sales IS NOT NULL ORDER BY sales DESC");
stmt.setInteger (1, regionParm) ;
ResultSet r = stmt.executeQuery () ;

as region,

if (r.next()) {
nl[0] = r.getString("name") ;
id1[0] = r.getString("id") ;
rl1[0] = r.getInt("region");

91

SQLJ stored procedures

s1[0] = r.getBigDecimaL("sales") ;

}

else return;

if (r.next()) {
n2[0] = r.getString("name") ;
id2[0] = r.getString("id");
r2[0] = r.getInt("region") ;

s2[0] r.getBigDecimal ("sales") ;

}

else return;
}
catch (SQLException e)
System.err.println ("SQLException: "+
e.getErrorCode () + e.getMessage()) ;
}

Creating the SQLJ Create a SQL name for the bestTwoEmps method. The first eight parameters
procedure are output parameters; the ninth is an input parameter.

create procedure best2

(out nl varchar(50), out idl varchar(5),

out sl decimal (6,2), out rl integer,

out n2 varchar(50), out i1d2 varchar(50),

out r2 integer, out s2 decimal(6,2),

in region integer)

language java

parameter style java

external name
'SQLJExamples.bestTwoEmps (java.lang.String,
java.lang.String, int, java.math.BigDecimal,
java.lang.String, java.lang.String, int,
java.math.BigDecimal, int)'

The SQL procedure signature for best2 is: varchar(20), varchar(5), decimal (6,2)
and so on. The Javamethod signatureis String, String, int, BigDecimal and so on.

Calling the procedure After the method isinstalled in the database and the SQL J procedure
referencing the method has been created, you can call the SQL J procedure.

At runtime, the SQL system:

1 Createsthe needed arraysfor the out and inout parameters when the SQL J
procedureis called.

92 Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

2 Copiesthe contents of the parameter arrays into the out and inout target
variables when returning from the SQL J procedure.

The following example calls the best2 procedure from isgl. The value for the
region input parameter specifies the region number.

declare @nl varchar(50), @idl varchar(5),
@sl decimal (6,2), @rl integer, @n2 varchar (50),
@id2 varchar(50), @r2 integer, @s2 decimal(6,2),
@region integer

select @region = 3

execute best2 @nl out, @idl out, @sl out, @rl out,
@n2 out, @id2 out, @r2 out, @s2 out, @region

Note Adaptive Server calls SQLJ stored procedures exactly asit calls
Transact-SQL stored procedures. Thus, when using isql or any other non-Java
client, you must precede parameter names by the @ sign.

Returning result sets

A SQL result set is a sequence of SQL rowsthat is delivered to the calling
environment.

When a Transact-SQL stored procedure returns one or more results sets, those
result sets areimplicit output from the procedure call. That is, they are not
declared as explicit parameters or return values.

Java methods can return Java result set objects, but they do so as explicitly
declared method values.

To return a SQL-style result set from a Java method, you must first wrap the
Javamethod in a SQL J stored procedure. When you call the method asa SQL J
stored procedure, the result sets, which are returned by the Javamethod as Java
result set objects, are transformed by the server to SQL result sets.

When writing the Java method to be invoked as a SQL J procedure that returns
aSQL-styleresult set, you must specify an additional parameter to the method
for each result set that the method can return. Each such parameter isa single-
element array of the Java ResultSet class.

This section describes the basi ¢ process of writing amethod, creating the SQLJ
stored procedure, and calling the method. See “ Specifying Java method
signatures explicitly or implicitly” on page 99 for more information about
returning result sets.

Java in Adaptive Server Enterprise 93

SQLJ stored procedures

Writing the Java The following method, SQL JExamples.orderedEmps, invokes SQL, includes a
method ResultSet parameter, and uses JDBC callsfor securing aconnection and opening
astatement.

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class. forName
("sybase.asejdbc.ASEDriver") ;
Connection conn =
DriverManager.getConnection
("jdbc:default:connection") ;

}

catch (Exception e) {
System.err.println(e.getMessage ()

+ ":error in connection") ;
try {
java.sql.PreparedStatement
stmt = conn.prepareStatement

("SELECT name, region of (state)"
"as region, sales FROM sales emps"
"WHERE region of (state) > ? AND"
"sales IS NOT NULL"
"ORDER BY sales DESC") ;
stmt.setInt (1, regionParm) ;
rs[0] = stmt.executeQuery() ;
return;
}
catch (SQLException e)
System.err.println ("SQLException:"
+ e.getErrorCode () + e.getMessage()) ;

}

return;

orderedEmps returns asingle result set. You can aso write methods that return
multiple result sets. For each result set returned, you must:

94 Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Creating the SQLJ
stored procedure

Calling the procedure

e Include a separate ResultSet array parameter in the method signature.
e Create a Statement object for each result set.
e Assign each result set to the first element of its ResultSet array.

Adaptive Server always returns the current open ResultSet object for each
Statement object. When creating Java methods that return result sets:

e Create aStatement object for each result set that isto be returned to the
client.

e Do not explicitly close ResultSet and Statement objects. Adaptive Server
closes them automatically.

Note Adaptive Server ensuresthat ResultSet and Statement objectsare hot
closed by garbage collection unless and until the affected result sets have
been processed and returned to the client.

« If somerowsof theresult set arefetched by calls of the Javanext() method,
only the remaining rows of the result set are returned to the client.

When you create a SQL J stored procedure that returns result sets, you must
specify the maximum number of result setsthat can be returned. In this
example, the ranked_emps procedure returns a single result set.

create procedure ranked emps (region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps (int,
ResultSet []'

If ranked_emps generates more result sets than are specified by create
procedure, awarning displays and the procedure returns only the number of
result sets specified. As written, the ranked_emps SQL J stored procedures
matches only one Java method.

Note Somerestrictionsapply to method overloading when you infer amethod
signature involving result sets. See “Mapping Java and SQL datatypes’” on
page 97 for more information.

After you have installed the method's class in the database and created the
SQL J stored procedure that references the method, you can call the procedure.
You can write the call using any mechanism that processes SQL result sets.

Java in Adaptive Server Enterprise 95

SQLJ stored procedures

For example, to call the ranked_emps procedure using JDBC, enter the
following:

java.sgl.CallableStatement stmt =
conn.prepareCall ("{call ranked emps(?)}");
stmt.setInt (1,3);

ResultSet rs = stmt.executeQuery () ;

while (rs.next()) ({
String name = rs.getString(l) ;
int.region = rs.getInt(2);
BigDecimal sales = rs.get.BigDecimal (3) ;
System.out.print ("Name = " + name) ;
System.out.print ("Region = "+ region);
System.out.print ("Sales = "+ sales);

System.out.printIn() :

}

Theranked_emps procedure supplies only the parameter declared in the create
procedure statement. The SQL system supplies an empty array of ResultSet
parameters and callsthe Java method, which assignsthe output result set to the
array parameter. When the Java method compl etes, the SQL system returnsthe
result set in the output array element asa SQL result set.

Note You can return result sets from atemporary table only when using an
external JDBC driver such asjConnect. You cannot use the Adaptive Server
native JDBC driver for thistask.

Deleting a SQLJ stored procedure name

You can delete the SQL J stored procedure name for a Java method using the
drop procedure command. For example, enter:

drop procedure correct states

which deletes the correct_states procedure name and its reference to the
SQLJExamples.correctStates method. drop procedure does not affect the Java
class and method referenced by the procedure.

96 Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Viewing information about SQLJ functions and
procedures

Several system stored procedures can provide information about SQLJ
routines:

* sp_depends lists database objects referenced by the SQL J routine and
database objects that reference the SQL J routine.

* sp_help lists each parameter name, type, length, precision, scale,
parameter order, parameter mode and return type of the SQLJ routine.

* sp_helpjava listsinformation about Java classes and JARs installed in the
database. The depends parameter lists dependencies of specified classes
that are named in the external name clause of the SQLJ create function or
SQLJ create procedure statement.

e sp_helprotect reportsthe permissionsof SQLJstored proceduresand SQLJ
functions.

See the Adaptive Server Reference Manual for complete syntax and usage
information for these system procedures.

Advanced topics

The following topics present a detailed description of SQLJ topics for
advanced users.

Mapping Java and SQL datatypes

When you create a stored procedure or function that references a Java method,
the datatypes of input and output parameters or result sets must not conflict

when values are converted from the SQL environment to the Java environment
and back again. The rulesfor how this mapping takes place are consistent with
the JDBC standard implementation. They are shown below and in Table 5-1 on

page 98.

Each SQL parameter and its corresponding Java parameter must be mappable.
SQL and Java datatypes are mappable in these ways:

Java in Adaptive Server Enterprise 97

Advanced topics

98

e A SQL datatype and a primitive Java datatype are simply mappable if so
specified in Table 5-1.

e A SQL datatype and anon-primitive Java datatype are object mappable if
so specified in Table 5-1.

e A SQL abstract datatype (ADT) and a non-primitive Java datatype are
ADT mappableif both are the same class or interface.

e A SQL datatype and a Java datatype are output mappable if the Java
datatype is an array and the SQL datatype is simply mappable, object
mappable, or ADT mappable to the Java datatype. For example, character
and String[] are output mappable.

* A Javadatatypeisresult-set mappableif it isan array of the result set-
oriented class: java.sql.ResultSet.

In general, a Java method is mappable to SQL if each of its parametersis
mappable to SQL and itsresult set parameters are result-set mappable and the
return type is either mappable (functions) or void or int (procedures).

Support for int return types for SQLJ stored proceduresis a Sybase extension
of the SQLJ Part 1 standard.

Table 5-1: Simply and object mappable SQL and Java datatypes
Corresponding Java datatypes

SQL datatype

Simply mappable

Object mappable

char/unichar

javalang.String

nchar

javalang.String

varchar/univarchar

javalang.String

nvarchar javalang.String

text javalang.String
numeric java.math.BigDecimal
decimal java.math.BigDecimal
money java.math.BigDecimal
smallmoney java.math.BigDecimal
bit boolean Boolean

tinyint byte Integer

smallint short Integer

integer int Integer

bigint long java.math.Biglnteger
unsigned smallint int Integer

unsigned int long Integer

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Specifying Java
method signatures
explicitly or implicitly

Corresponding Java datatypes
SQL datatype Simply mappable Object mappable
unsigned bigint java.math.Biglnteger
real float Float
float double Double
double precision double Double
binary byte[]
varbinary byte[]
datetime java.sgl.Timestamp
smalldatetime java.sgl. Timestamp
date javasgl.Date
time javasgl.Time

When you create a SQL J function or stored procedure, you typically specify a
Java method signature. You can also allow Adaptive Server to infer the Java
method signature from the routine’s SQL signature according to standard
JDBC datatype correspondence rules described earlier in this section and in
Table 5-1.

Sybase recommendsthat you include the Javamethod signature asthis practise
ensuresthat all datatype translations are handled as specified.

You can alow Adaptive Server to infer the method signature for datatypesthat
are

e Simply mappable

« ADT mappable

e Output mappable

e Result-set mappable

For example, if you want Adaptive Server to infer the method signature for
correct_states, the create procedure statement is:

create procedure correct states(old char(20),
not old char(20))
modifies sqgl data
language java parameter style java
external name ‘SQLJExamples.correctStates’

Adaptive Server infers a Java method signature of java.lang.String and
java.lang.String. If you explicitly add the Java method signature, the create
procedure statement looks likethis:

Java in Adaptive Server Enterprise 99

Advanced topics

Returning result sets
and method
overloading

100

create procedure correct states(old char(20),
not old char(20))
modifies sgl data
language java parameter style java
external name ‘SQLJExamples.correctStates
(java.lang.String, java.lang.String)’

You must explicitly specify the Java method signature for datatypes that are
object mappable. Otherwise, Adaptive Server infers the primitive, simply
mappabl e datatype.

For example, the SQLJExamples.job method contains a parameter of type int.
(See “Handling null argument values’ on page 84.) When creating a function
referencing that method, Adaptive Server infersaJavasignature of int, and you
need not specify it.

However, suppose the parameter of SQLJExamples.job was JavaInteger, which
is the object-mappabl e type. For example:

public class SQLJExamples
public static String job (Integer jc)
throws SQLException ...

Then, you must specify the Java method signature when you create afunction
that referencesit:

create function job of (jc integer)
external name
'SQLJExamples.job (java.lang.Integer) '

When you create a SQL J stored procedure that returns result sets, you specify
the maximum number of result sets that can be returned.

If you specify a Java method signature, Adaptive Server looks for the single
method that matches the method name and signature. For example:

create procedure ranked emps (region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps
(int, java.sgl.ResultSet[])'

In this case, Adaptive Server resolves parameter types using normal Java
overloading conventions.

Suppose, however, that you do not specify the Java method signature:

create procedure ranked emps (region integer)
dynamic result sets 1

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

language java parameter style java
external name 'SQLJExamples.orderedEmps'

If two methods exist, onewith asignature of int, RS[], the other with asignature
of int, RS[1, RS[], Application Server cannot distinguish between the two
methods and the procedurefails. If you allow Adaptive Server to infer the Java
method signature when returning result sets, make sure that only one method
satisfies the inferred conditions.

Note The number of dynamic result sets specified only affects the maximum
number of results that can be returned. It does not affect method overloading.

Ensuring signature If aninstalled class has been modified, Adaptive Server checks to make sure

validity that the method signature is valid when you invoke a SQL J procedure or
function that referencesthat class. If the signature of amodified method is still
valid, the execution of the SQL J routine succeeds.

Using the command main method

In aJavaclient, you typically begin Java applications by running the Java
Virtual Machine (VM) on the command main method of aclass. The
JDBCExamplesclass, for example, containsamain method. It isthe command
main method that executes when you execute the class from the command line
asin the following:

java JDBCExamples

Note You cannot reference a Java main method in a SQL J create function
statement.

If you reference a Java main method in a SQL J create procedure statement, the
command main method must have the Java method signature string[] asin:

public static void main(java.lang.String[]) {

If the Java method signature is specified in the create procedure statement, it
must be specified as (java.lang.string[]). If the Javamethod signatureis
not specified, itisassumed to be (java.lang.sString[]) .

Java in Adaptive Server Enterprise 101

SQLJ and Sybase implementation: a comparison

If the SQL procedure signature contains parameters, those parameters must be
char, unichar, varchar, or univarchar. At runtime, they are passed asa Javaarray
of javalang.String.

Each argument you provide to the SQL J procedure must be char, unichar,

varchar, univarchar, or aliteral string becauseit is passed to the main method as
an element of thejava.lang.String array. You cannot use the dynamic result sets
clause when creating a main procedure.

SQLJ and Sybase implementation: a comparison

This section describes differences between SQL J Part 1 standard specifications
and the Sybase proprietary implementation for SQL J stored procedures and
functions.

Table 5-2 describes Adaptive Server enhancements to the SQLJ
implementation.

Table 5-2: Sybase enhancements

Category

SQLJ standard

Sybase implementation

create procedure command

Supports only Java methods that do
not return values. The methods must
have void return type.

Supports Javamethodsthat allow an
integer value return. The methods
referenced in create procedure can
have either void or integer return
types.

create procedure and create function
commands

Supports only SQL datatypesin
create procedure Or create function
parameter list.

Supports SQL datatypes and
nonprimitive Java datatypes as
abstract data types (ADTS).

SQL J function and SQLJ procedure
invocation

Does not support implicit SQL
conversion to SQLJ datatypes.

Supportsimplicit SQL conversionto
SQLJ datatypes.

SQLJ functions

Does not allow SQL J functions to
run on remote servers.

Allows SQLJ functions to run on
remote servers using Sybase
OmniConnect capabilities.

drop procedure and drop function
commands

Requires complete command name:
drop procedure or drop function.

Supports complete function name
and abridged names: drop proc and
drop func.

Table 5-3 describes SQL J standard features not included in the Sybase
implementation.

102

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Table 5-3: SQLJ features not supported

SQLJ category

SQLJ standard

Sybase implementation

create function command

Allows users to specify the same
SQL name for multiple SQLJ
functions.

Requires unique namesfor all stored
procedure and functions.

utilities

Supports sqlj.install_jar,
sglj.replace_jar, sglj.remove_jar, and
similar utilitiesto install, replace,
and remove JAR files.

Supports the installjava utility and
the remove java Transact-SQL
command to perform similar
functions.

Table 5-4 describesthe SQL J standard features supported in part by the Sybase
implementation.

Table 5-4: SQLJ features partially supported

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

Allows usersto install different
classes with the same name in the
samedatabaseif they arein different
JAR files.

Requires unique class hamesin the
same database.

create procedure and create function
commands

Supports the key words no sql,
contains sql, reads sgl data, and
modifies sgl data to specify the SQL
operations the Java method can
perform.

Supports modifies sgl data only.

create procedure command

Supports java.sgl.ResultSet and the
SQL/OLB iterator declaration.

Supports java.sgl.ResultSet only.

drop procedure and drop function
commands

Supportsthekey wordrestrict, which
requiresthe user to drop al SQL
objects (tables, views, and routines)
that invokethe procedureor function
before dropping the procedure or
function.

Does not support the restrict key
word and functionality.

Table 5-5 describes the SQL J implementation-defined featuresin the Sybase
implementation.

Table 5-5: SQLJ features defined by the implementation

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

Java in Adaptive Server Enterprise

Supports the deterministic |

not deterministic keywords, which
specify whether or not the procedure
or function always returns the same
values for the out and inout
parameters and the function result.

Supports only the syntax for
deterministic | not deterministic, not
the functionality.

103

SQLJ and Sybase implementation: a comparison

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

The validation of the mapping
between the SQL signature and the
Java method signature can be
performed either when the create
command is executed or when the
procedure or function isinvoked.
The implementation defines when
the validation is performed.

If the referenced class has been
changed, performs al validations
when the create command is
executed, which enables faster
execution.

create procedure and create function
commands

Can specify the create procedure or
create function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

Invoking SQL Jroutines

When aJavamethod executesa SQL
statement, any exception conditions
areraised in the Java method as a
Java exception of the
Exception.sqlException subclass.
Theeffect of the exception condition
is defined by the implementation.

Follows the rules for Adaptive
Server JDBC.

Invoking SQLJroutines

Theimplementation defineswhether
aJavamethod called using a SQL
name executes with the privileges of
the user who created the procedure
or function or those of theinvoker of
the procedure or function.

SQLJ procedures and functions
inherit the security features of SQL
stored procedures and Java-SQL
functions, respectively.

drop procedure and drop function
commands

104

Can specify the drop procedure or
drop function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

SQLJExamples class

This section displays the SQLIExamples class used to illustrate SQL J stored
procedures and functions. They are also in
$SYBASE/$SYBASE_ASE/sample/JavaXML/JavaxXml.zip (UNIX) or
%SYBASE%\Ase-15_0O\sample\JavaxXML\Javaxml.zip (Windows NT).

import
import
import
static

public

java.lang.*;
java.sqgl.*;
java.math.*;

String url = “jdbc:default:connection”;

class SQLExamples {

public static int region(String s)

}

throws SQLException {

s = s.trim() ;

if (s.equals("MN") || s.equals("vT") ||
s.equals ("NH")) return 1;

if (s.equals("FL") || s.equals("GA") ||
s.equals ("AL")) return 2;

if (s.equals("CA") || s.equals("Az") ||
s.equals ("NV")) return 3;

else throw new SQLException
("Invalid state code", "X2001") ;

public static void correctStates

Java in Adaptive Server Enterprise

(String oldSpelling,
throws SQLException {

String newSpelling)

Connection conn null;
PreparedStatement pstmt
try {
Class. forName
("sybase.asejdbc.ASEDriver") ;
conn DriverManager.getConnection(url) ;

null;

catch (Exception e) {
System.err.println(e.getMessage ()
":error in connection") ;

+

}
try {
pstmt conn.prepareStatement
("UPDATE sales emps SET state
WHERE state = ?");

=2

105

SQLJExamples class

106

pstmt.setString (1, newSpelling) ;
pstmt.setString (2, oldSpelling) ;
pstmt.executeUpdate () ;

}

catch (SQLException e)
System.err.println ("SQLException: "+
e.getErrorCode () + e.getMessage()) ;

}
public static String job (int jc)
throws SQLException {
if (jc==1) return "Admin";
else if (jc==2) return "Sales";
else 1f (jc==3) return "Clerk";
else return "unknown jobcode";
}
public static String job (int jc)
throws SQLException {
if (jc==1) return "Admin";
else if (jc==2) return "Sales";
else 1f (jc==3) return "Clerk";
else return "unknown jobcode';

}

public static void bestTwoEmps (String[] nl,
String[] idl, int[] r1,
BigDecimal[] s1, String[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParm) throws SQLException ({

nl[o] = "****";

idi[o] = "";

r1[0] 0;

s1[0] = new BigDecimal (0) :
n2[0] = "HkEkxk,

id2[0] = "";

r2[0] = 0;

s2[0] = new BigDecimal (0) ;

try {
Connection conn = DriverManager.getConnection
("jdbc:default:connection") ;
java.sql.PreparedStatement stmt =
conn.prepareStatement ("SELECT name, id,"
+ "region of (state) as region, sales FROM"
+ "sales emps WHERE"

Adaptive Server Enterprise

CHAPTER 5 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise

}

catch

}

+ "region of (state)>? AND"

+ "sales IS NOT NULL ORDER BY sales DESC") ;
stmt.setInteger (1, regionParm) ;
ResultSet r = stmt.executeQuery () ;

if (r.next())
nl[0] = r.getString("name") ;
id1[0] = r.getString("id");
r1[0] = r.getInt("region");
s1[0] = r.getBigDecimal ("sales") ;

}

else return;

if (r.next())
n2[0] = r.getString("name") ;

id2[0] = r.getString("id") ;
r2[0] = r.getInt("region") ;
s2[0] = r.getBigDecimal ("sales") ;

}

else return;

(SQLException e)
System.err.println ("SQLException: "+

e.getErrorCode () + e.getMessagel()) ;
}

public static void orderedEmps

(int regionParm, ResultSet[] rs) throws

SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {
Class.forName
("sybase.asejdbc.ASEDriver") ;
Connection conn =
DriverManager.getConnection
("jdbc:default:connection") ;
}
catch (Exception e)
System.err.println(e.getMessage ()
+ ":error in connection") ;

107

SQLJExamples class

try {
java.sql.PreparedStatement
stmt = conn.prepareStatement
("SELECT name, region of (state)"
"as region, sales FROM sales_emps"
"WHERE region of (state) > ? AND"
"sales IS NOT NULL"
"ORDER BY sales DESC") ;
stmt.setInt (1, regionParm) ;
rs[0] = stmt.executeQuery() ;
return;
}
catch (SQLException e)
System.err.println ("SQLException:"
+ e.getErrorCode () + e.getMessage()) ;
}
return;
} return;

108 Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

This chapter describes the Sybase Java debugger and how you can use it
when developing Javain Adaptive Server.

Name Page
Introduction to debugging Java 109
Using the debugger 110
A debugging tutorial 117

Introduction to debugging Java

You can use the Sybase Java debugger to test Java classes and fix
problems with them.

How the debugger works

The Sybase Java debugger is a Java application that runs on aclient
machine. It connects to the database using the Sybase jConnect JDBC
driver.

The debugger debugs classes running in the database. You can step
through the source code for the files as long as you have the Java source
code onthedisk of your client machine. (Remember, the compiled classes
areinstalled in the database, but the source code is not).

Requirements for using the Java debugger
To use the Java debugger, you need:

e A Javaruntime environment such as the Sun Microsystems Java
Runtime Environment, or the full Sun Microsystems JDK on your
machine.

Java in Adaptive Server Enterprise 109

Using the debugger

e The source code for your application on your client machine.

What you can do with the debugger
Using the Sybase Java debugger, you can:

» Trace execution — Step line by line through the code of a class runningin
the database. You can also look up and down the stack of functions that
have been called.

* Set breakpoints— Run the code until you hit a breakpoint, and stop at that
point in the code.

» Set break conditions— Breakpointsinclude lines of code, but you can also
specify conditionswhen the code isto break. For example, you can stop at
aline thetenth time it is executed, or only if avariable has a particular
value. You can also stop whenever a particular exception isthrown in the
Java application.

* Browse classes— You can browse through the classes installed into the
database that the server is currently using.

* Inspect and set variables — You can inspect the values of variables alter
their value when the execution is stopped at a breakpoint.

* Inspect and break on expressions— You can ingpect the value of awide
variety of expressions.

Using the debugger

This section describes how to use the Java debugger. The next section provides
asimpletutorial.

Starting the debugger and connecting to the database

The debugger isthe JAR file Debug.jar, instaled in your Adaptive Server
installation directory in $SYBASE/$SYBASE ASE/debugger. If itisnot already
present, add thisfile as the first element to your CLASSPATH environment
variable.

110 Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

Debug.jar contains many classes. To start the debugger you invoke the
sybase.vm.Debug class, which hasamain() method.You can start the debugger
in three ways:

* Runthejdebug script located in $SYBASE/$SYBASE_ASE/debugger.

“A debugging tutorial” on page 117 provides a sample debugging session
using the jdebug script.

* From the command line, enter:
java sybase.vm.Debug

In the Connect window, enter a URL, user login name, and password to
connect to the database.

e From Sybase Central:

a Start Sybase Central and open the Utilities folder, under Adaptive
Server Enterprise.

b Double-click the Java debugger icon in the right panel.

¢ Inthe Connect window, enter aURL, user login name, and password
to connect to the database.

Compiling classes for debugging

Java compilers such asthe Sun Microsystems javac compiler can compile Java
classes at different levels of optimization. You can opt to compile Java code so
that information used by debuggersisretained in the compiled classfiles.

If you compileyour source codewithout using switchesfor debugging, you can
still step through code and use breakpoints. However, you cannot inspect the
values of local variables.

To compile classes for debugging using the javac compiler, use the -g option:

javac -g ClassName.java

Attaching to a Java VM

When you connect to a database from the debugger, the Connection window
shows all currently active Java VVMs under the user login name. If there are
none, the debugger goes into wait mode. Wait mode works like this:

Java in Adaptive Server Enterprise 111

Using the debugger

The Source window

The debugger windows

112

Each time anew Java VM is started, it shows up inthelist.

You may choose either to debug the new Java VM or to wait for another
one to appear.

Once you have passed on aJava VM, you lose your chance to debug that
Java VM. If you then decide to attach to the passed Java VM, you must
disconnect from the database and reconnect. At thistime, the JavaVM
appears as active, and you can attach to it.

The Source window:

Displays Java source code, with line numbers and breakpoint indicators
(an asterisk in the left column).

Displays execution statusin the status box at the bottom of the window.

Provides access to other debugger windows from the menu.

The debugger has the these windows:

Breakpoints window — Displaysthe list of current breakpoints.
Calls window — Displays the current call stack.

Classes window — Displays alist of classes currently loaded in the Java
VM. In addition, this window displays alist of methods for the currently
selected class and alist of static variablesfor the currently selected class.
In this window you can set breakpoints on entry to a method or when a
static variable is written.

Connection window — The Connection window is shown when the
debugger isstarted. You can display it againif you wish to disconnect from
the database.

Exceptions window — You can set a particular exception on which to
break, or choose to break on all exceptions.

Inspection window — Displays current static variables, and allows you to
modify them. You can also inspect the value of a Java expression, such as
the following:

e Local variables

Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

o Static variables

e Expressions using the dot operator

e Expressions using subscripts|]

e Expressions using parentheses, arithmetic, or logical operators.
For example, the following expressions could be used:

[1] .field

i
+ 1

—~ F-Q X

=7
i+ 1)*3
e Localswindow — Displays current local variables, and allows you to
modify them.

e Status window — Displays messages describing the execution state of the
Java VM.

Options

The complete set of options for stepping through source code are displayed on
the Run menu. They include the following:

Function Shortcut key Description

Run F5 Continue running until
the next breakpoint, until
the Stop itemis selected,
or until execution
finishes.

Step Over F7 or Space Steptothenextlineinthe
current method. If the
line steps into a different
method, step over the
method, not into it. Also,
step over any breakpoints
within methods that are
stepped over.

Step Into F8ori Step to the next line of
code. If theline stepsinto
adifferent method, step
into the method.

Java in Adaptive Server Enterprise 113

Using the debugger

Function Shortcut key Description

Step Out F11 Complete the current
method, and break at the
next line of the calling
method.

Stop Break execution.

Run to Selected F6 Run until the currently
selected lineis executed
and then break.

Home F4 Select the line where the

execution is broken.

Setting breakpoints

When you set abreakpoint in the debugger, the JavaVVM stops execution at that
breakpoint. Once execution is stopped, you can inspect and modify the values
of variablesand other expressionsto better understand the state of the program.
You can then trace through execution step by step to identify problems.

Setting breakpoints in the proper placesis akey to efficiently pinpointing the
problem execution steps.

The Javadebugger allowsyou to set breakpoints not only on aline of code, but
on many other conditions. This section describes how to set breakpoints using
different conditions.

Breaking on aline number

114

When you break on aparticular line of code, execution stopswhenever that line
of code is executed.

To set a breakpoint on a particular line:
* Inthe Source window, select the line and press F9.
» Alternatively, you can double-click aline.

When a breakpoint is set on aline number, the breakpoint is shown in the
Source window by an asterisk in the left column. If the Breakpointswindow is
open, the method and line number is displayed in the list of breakpoints.

You can toggle the breakpoint on and off by repeatedly double-clicking or
pressing FO.

Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

Breaking on a static method

When you break on a method, the break point is set on thefirst line of codein

the method that contains an executable statement.

To set a breakpoint on a static method:

1 From the Source window, choose Break— New. The Break At window is
displayed.

2 Enter the name of a method in which you wish execution to stop. For
example:

JDBCExamples.selecter

stops execution whenever the JIDBCExamples.selecter() method isentered.

When a breakpoint is set on amethod, the breakpoint is shown in the Source
window by an asterisk in the left column of the line where the breakpoint
actually occurs. If the Breakpointswindow is open, the method is displayed in
the list of breakpoints.

Using counts with breakpoints

If you set abreakpoint on aline that isin aloop, or in amethod that is
frequently invoked, you may find that the line is executed many times before
the condition you areredlly interested in takes place. The debugger alowsyou
to associate a count with a breakpoint, so that execution stops only when the
line is executed a set number of times.

To associate a count with a breakpoint:

1 From the Source window, select Break— Display. The Breakpoints
window is displayed.

In the Breakpoints window, click a breakpoint to select it.

3 Select Break—Count. A window is displayed with afield for entering a
number of iterations. Enter an integer value. The execution will stop when
the line has been executed the specified number of times.

Using conditions with breakpoints

The debugger alows you to associate a condition with a breakpoint, so that
execution stops only when the line is executed and the condition is met.

To associate a condition with a breakpoint:

Java in Adaptive Server Enterprise 115

Using the debugger

1 From the Source window, select Break— Display. The Breakpoints
window is displayed.

2 Inthe Breakpoints window, click abreakpoint to select it.

3 Select Break—Condition. A window isdisplayed with afield for entering
an expression. The execution will stop when the condition is true.

The expressions used here are the same as those that can be used in the
Inspection window, and include the following:

Local variables

Static variables

Expressions using the dot operator
Expressions using subscripts []

Expressions using parentheses, arithmetic, or logical operators.

Breaking when execution is not interrupted

With a single exception, breakpoints can only be set when program execution
isinterrupted. If you clear all breakpoints, and run the program you are
debugging to completion, you can no longer set a breakpoint on aline or at the
start of amethod. Also, if aprogram isrunning in aloop, execution is
continuing and is not interrupted.

To debug your program under either of these conditions, select Run—Stop
from the Source window. This stops execution at the next line of Java code that
is executed. You can then set breakpoints at other pointsin the code.

Disconnecting from the database

When the program has run to compl etion, or at anytime during debugging, you
can disconnect from the database from the Connect window. Then, exit the
Source window and reconnect to the database after the debug program
terminates.

116

Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

A debugging tutorial

This section takes you through a simple debugging session.

Before you begin

The source code for the class used in this tutorial islocated in the directory
contained inthe zip file

SSYBASE/$SSYBASE ASE/sample/JavaxXml/JavaxXml.zip. See
/JavaxXml/JavalJava-Sgl-examplesin the unzipped directory.

Before you run the debugger, compile the source code using the javac
command with the -g option.

See " Creating Javaclassesand JARS’ on page 14 for complete instructionsfor
compiling and installing Java classes in the database.

Start the Java debugger and connect to the database

You can start the debugger and connect to the database using a script, command
line options, or Sybase Central. In thistutorial, we use jdebug to start the
debugger. You can use any database.

Follow these steps:
1 Start Adaptive Server.

2 If Javaqueries have not yet been executed on your server, run any Java
query to initialize the Java subsystem and start a Java VM.

3 Runthe $SYBASE/$SYBASE ASE/debugger/jdebug script. jdebug
prompts you for these parameters:

a Machine name of the Adaptive Server
b Port number for the database

¢ Your login name

d Your password

e An alternate path to Debug.jar if itslocation is not in your
CLASSPATH

Once the connection is established, the debugger window displays alist of
available Java VMs or “Waiting for aVM.”

Java in Adaptive Server Enterprise 117

A debugging tutorial

Attach to a Java VM
To attach to a Java VM from your user session:

1 Withthedebugger running, connect to the sample database fromisqgl asthe
sa.

$SYBASE/$SYBASE OCS/bin/isgl -Usa -P

Note You cannot start Java execution from the debugger. To start a Java
VM you must carry out aJavaoperation from another connection using the
same user name.

2 Execute Java code using the following statements:

select JDBCExamples.serverMain(‘createtable’)
select JDBCExamples.serverMain(‘insert’)
select JDBCExamples.serverMain(‘'select’)

The Sybase Java VM startsin order to retrieve the Java objects from the
table. The debugger immediately stops execution of the Java code.

The debugger Connection window displaysthe JavaV Ms belonging to the
user in thisformat:

VM#: “login name, spid:spid#”

3 Inthedebugger Connection window, click the JavaVM you want and then
click Attach to VM. The debugger attaches to the Java VM and the Source
window appears. The Connection window disappears.

Next, enable the Source window to show the source code for the method.
The source code is available on disk.

Load source code into the debugger

The debugger looks for source code files. You need to make the
$SYBASE/$SYBASE_ASE/sample/JavaSgl/manual -examples/ subdirectory
available to the debugger, so that the debugger can find source code for the
class currently executing in the database.

To add a source code location to the debugger:

1 From the Source window, select File— Source Path. The Source Path
window displays.

118 Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

2

From the Source Path window, select Path—Add. Enter the following
location into the text box:

$SYBASE/$SYBASE ASE/sample/JavaSql/
manual-examples/

The source codefor the IDBCExamples class displaysin thewindow, with
the first line of the Query method serverMain() highlighted. The Java
debugger has stopped execution of the code at this point.

You can now close the Source Path window.

Step through source code

You can step through source code in the Java debugger in several ways. In this
section we illustrate the different ways you can step through code using the
serverMain() method.

When execution pauses at aline until you provide further instructions, we say
that the execution breaks at the line. The lineisabreakpoint. Stepping
through codeis a matter of setting explicit or implicit breakpointsin the code,
and executing code to that breakpoint.

Following the previous section, the debugger should have stopped execution of
JDBCExamples.serverMain() at the first statement:

Examples

Here are some steps you can try:

1

Stepping into afunction — press F7 to step to the next linein the current
method.

Press F8 to step into the function doAction() in line 99.

Run to aselected line. You are now in function doAction(). Click on line
155 and press F6 to run to that line and break:

String workString = “Action(“ + action + “)”;

Set a breakpoint and execute to it — select line 179 and press F9 to set a
breakpoint on that line when running isgl select
JDBCExamples.serverMain ('select!'):

workString + = selecter(con) ;

Press F5 to execute to that line.

Java in Adaptive Server Enterprise 119

A debugging tutorial

5 Experiment —try different methods of stepping through the code. End with
F5 to complete the execution.

When you have completed the execution, the Interactive Data window
displays:

Action(select) - Row with id = 1: name (Joe Smith)

Inspecting and modifying variables

You can ingpect the values of both local variables (declared in amethod) and
class static variablesin the debugger.

Inspecting local variables

120

You can inspect the values of local variables in a method as you step through
the code, to better understand what is happening.

To inspect and change the value of avariable:

1 Setabreakpoint at thefirst line of the selecter() method from the
Breakpoint window. Thislineis:

String sgl = "select name, home from xmp where
id=2";

2 Inlinteractive, enter the following statement again to execute the method:
select JDBCExamples.serverMain(‘'select’)
The query executes only as far as the breakpoint.
3 PressF7to step to the next line. The variable has now been declared and
initialized.
4 From the Source window, select Window— L ocals. The Local window
appears.

The Locals window shows that there are several local variables. The sl
variable has avalue of zero. All others are listed as not in scope, which
means they are not yet initialized.

You must add the variables to the list in the Inspect window.

5 Inthe Source window, press F7 repeatedly to step through the code. As
you do so, the values of the variables appear in the Locals window.

Adaptive Server Enterprise

CHAPTER 6 Debugging Java in the Database

If alocal variableisnot asimpleinteger or other quantity, then as soon as
itisset a+ sign appears next to it. Thismeansthelocal variable hasfields
that have values. You can expand alocal variable by double-clicking the +
sign or setting the cursor on the line and pressing Enter.

Complete the execution of the query to finish this exercise.

Modifying local variables

You can aso modify values of variables from the Locals window.

To modify alocal variable:

1

In the debugger Source window, set a breakpoint at the following linein
the selecter() method of the serverMain
class:

String sgl = "select name, home from xmp where
id=?";

Step past this line in the execution.
Open the Locals window. Select theid variable, and select

Local—Modify. Alternatively, you can set the cursor ontheline and press
Enter.

Enter avalue of 2 in thetext box, and click OK to confirm the new value.
Theid variableis set to 2 in the Locals window.

From the Source window, press F5 to complete execution of the query. In
the Interactive Datawindow, an error message displaysindicating that no
rows were found.

Inspecting static variables

You can also inspect the values of class-level variables (static variables).

To inspect a static variable:

1

From the debugger Source window, select Window—Classes. The Classes
window is displayed.

Select aclassin the left box. The methods and static variables of the class
are displayed in the boxes on the right.

Select Static—1nspect. The Inspect window is displayed. It lists the
variables available for inspection.

Java in Adaptive Server Enterprise 121

A debugging tutorial

122 Adaptive Server Enterprise

CHAPTER 7

Overview

Network Access Using java.net

Adaptive Server 12.5 supports java.net, a package that allows you to
create networking applications and access different kinds of external
servers.

Topic Page
Overview 123
java.net classes 124
Setting up java.net 124
Example usage 125
User notes 130

Adaptive Server java.net is compliant with the Java 1.2 API.

Support for java.net in the Adaptive Server allowsyouto create client-side
Java networking applications within the server. You can create a network
Javaclient application in the Adaptive Server that connectsto any server,
which in effect enables Adaptive Server to function asaclient to external
servers. See “Example usage” on page 125.

You can use java.net for many purposes:
* Download documents from any URL address on the Internet.
e Send e-mail messages from inside the server.

« Connect to an external server to save a document and perform file
functions: saving a document, editing a document, and so forth.

e Access documentsusing XML.

Java in Adaptive Server Enterprise 123

java.net classes

java.net classes

Table 7-1 shows the java.net classes Sybase supports.

Table 7-1: Supported java.net classes

Class Supported | Special circumstances
InetAddress Yes None
Socket Yes Does not support deprecated

constructor “Socket (string host, int
port, boolean stream)” when stream

=fdse

URL Yes No file URL
HttpURLConnection Yes None
URLConnection Yes No file URL
URLDecoder Yes None
URLEncoder Yes None
DatagramPacket No

DatagramSocket No

MulticastSocket No

ServerSocket No

You can use any of the supported classes in java.net to write Adaptive Server
client applications.

Setting up java.net

The following steps enable java.net.
[lenabling jave.net
1 Enable Java Virtua Machine (VM).
sp_configure "enable java", 1

2 Specify the number of sockets you want to open (the default is 0). The
number of sockets configuration parameter is dynamic; you need not
restart Adaptive Server if you change the configuration option. For
example, to open 10 sockets, enter

sp_configure "number of java sockets", 10

124 Adaptive Server Enterprise

CHAPTER 7 Network Access Using java.net

3 Adjust the amount of memory available for the Java VM. Since you may
be streaming largetext documentsin and out, you may need toincreasethe
amount of memory available to the Java VM. The parameters you may
need to adjust are:

* size of global fixed heap
* size of process object heap
* size of shared class heap

For more information on these parameters, see Chapter 5, “ Configuration
Parameters,” in the Sybase System Administration Guide.

Example usage

This section provides examples for using both socket classes and the URL
class. You can:

e Accessan externa document with XQL, using the URL class
* Savetext out of Adaptive Server

¢ Usethe MailTo class URL to mail a document

Using socket classes

Socket classes allow you to do more sophisticated network transfers than you
can achieve using URL classes. The Socket class allows you to connect to
specified port on any specified network host, and use the InputStream and
OutputStream classes to read and write the data.

Saving text out of Adaptive Server

This example describes how to set up a client application in Adaptive Server.
Adaptive Server version12.5 and later does not support direct accessto afile;
this example is aworkaround for this limitation.

You can write your own external server, which performs file operations, and
connect to this new server from the Adaptive Server, using a socket created
from a Socket class.

Java in Adaptive Server Enterprise 125

Example usage

In the basic roles of client and server, the client connects to the server and
streams the text, while the server receives the stream and streamsiit to afile.

This example shows how you caninstall a Java application in Adaptive Server,
using java.net. This application acts as aclient to an external server.

[1The client process:
1 Receivesan InputStream.

2 Creates asocket using the Socket class to connect to the server.
3 Creates an OutputStream on the socket.
4 Readsthe InputStream and writes it to the OutputStream:

import java.io.*;
import java.net.*;
public class TestStream2File {
public static void writeOut (InputStream fin)throws Exception
{

Socket socket = new Socket ("localhost", 1718);
OutputStream fout =
newBufferedOutputStream (socket.getOutputStream()) ;
byte[] buffer = new byte[10];
int bytes_read;
while ((bytes read = fin.read(buffer)) != -1) {
fout.write (buffer, 0, bytes read);

}

fout.close () ;

Compile this program.

[IThe server process:
1 Createsaserver socket, using the SocketServer class, to listen on a port.

2 Usesthe server socket to obtain a socket connection.

3 Recelvesan InputStream.

126 Adaptive Server Enterprise

CHAPTER 7 Network Access Using java.net

import java.io.*;

import java.net.*;

4 Readsthe InputStream and writes it to a FileOutputStream.

Note Inthisexample, the server does not use threads, and therefore it can
receive a connection from only oneclient at atime.

public class FileServer {
public static void main (string[] args) throws IOException{
Socket client = accept (1718);

}

try{

finally {
client.close ();

}
}

InputStream in = client.getInputStream () ;

FileOutputStream fout = new

FileOutputStream("chastity.txt") ;

byte[] buffer = new byte [10];

int bytes_read;

while (bytes_read = in.read(buffer))!= -1){
fout.write (buffer, 0, bytes_read) ;

}

fout.close() ;

static Socket accept (int port) throwsIOException {
System.out.prinln ("Starting on port " + port);
ServerSocket server = new ServerSocket (port) ;

System.

Socket

System.
server.

return

}

out.println ("Waiting") ;

client = server.accept ();

out.println ("Accepted from " + client.getInetAddress ());
close ();

client;

Compile this program.

To use this combination of client and server, you must install the client in
Adaptive Server and start the external server:

witness% java FileServer &
[2] 28980
witness% Starting on port 1718

Java in Adaptive Server Enterprise 127

Example usage

Waiting
Invoke the client from within Adaptive Server.

use pubs2

go
select TestStream2File.writeOut (cl) from blurbs
where au_id = “486-29-1786"

go

Using the URL class

You can use the URL class to:
* Send an e-mail message.

* Download an HTTP document from a Web server. This document can be
adtatic file or can be dynamically constructed by the Web server.

» Access an external document with XQL

Use the mailto:URL class to mail a document

128

Mailing a document is a good example of using the URL class. Before you
start, your client must connect to amail server, so that the machine referenced
by System Properties (in this case salsa.sybase.com) is running a mail server,
such as sendmail.

1 Create aURL object.

2 Set aURLConnection object.

3 Create an OutputStream object from the URL object.
4 Writethe mail. For example:

import java.io.*;
import java.net.*;
public class MailTo
public static void sendIt() throws Exception{
System.getProperty ("mail.host", "salsa.sybase.com");
URL url = new URL(mailto:'"name@sybase.com") ;
URLConnection conn = url.openConnection() ;
PrintStream out = new PrintStream(conn.getOutputStream(),
true) ;
out.print ("From: kennysesybase.com"+"\r\n") ;
out.print ("Subject: Works Great!"+"\r\n");

Adaptive Server Enterprise

CHAPTER 7 Network Access Using java.net

out.print ("Thanks for the example - it works great!"+"\r\n");
out.close() ;
System.out .printIn("Messsage Sent");

5 Instal mailto:URL for sending e-mail from within the database:

select MailTo.sendIt ()
Message Sent!

A connection to a server isrequired for these actions.

Obtaining an HTTP document

Another way to use the URL classisto download a document froman HTTP
URL. When you start the client connects to a Web server. In the client code,
you:

e CreateaURL object.

e Create an InputStream object from the URL object.

e Useread on the InputStream object to read in the document.

The following code sample works by:

« Reading the entire document into Adaptive Server memory.

e Creating anew InputStream on the document in Adaptive Server memory.

import java.io.*;
import java.net.*;
public class URLprocess
public static InputStream readURL()
throws Exception {
URL u = newURL (“http://www.xxxx.com”) ;
InputStream in = u.openStream() ;
//This is the same as creating URLConnection, then
//calling getInputStream(). In ASE you need to read
//the entire document into memory, then create an
//InputStream on the in-memory copy.
int n=0,0ff;
byte b[]=new byte[50000] ;
for (off=0; (off<b.length512)

&& ((n=in.read(b,off,512) !=-1) ;off+=n) {}
System.out.println (“Number of bytes read :” + off);
in.close() ;

ByteArrayInputStream test =

Java in Adaptive Server Enterprise 129

User notes

new ByteArrayInputStream(b,0,0ff) ;
return (InputStream) test;

}
}

After you create the new InputStream class, you can install this class and useit
to read atext file into the database, inserting datainto atable, asin the
following example.

User notes

create table t (¢l text)
go

insert into t values (URLprocess.readURL())

go
Number of bytes read :40867

select datalength(cl) from t
go

Certain aspects of java.net require caution:

130

Most objects associated with java.net are not serializable, which means
that you cannot insert them into tables.

You might encounter the exception “ Too many openfiles,” when you have
opened only afew. Check Number of Java Sockets configuration
parameter.

Most of the I/O-related functions use buffered 1/0, which means that you
might need to flush your data explicitly. The PrintWriter classis an
example of aclassin which the datais not automatically flushed.

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

This chapter presents information on several reference topics.

Topic Page
JDK requirement for Java classes in the server 131
Assignments 132
Allowed conversions 133
Transferring Java-SQL objectsto clients 134
Supported Java API packages, classes, and methods 134
Invoking SQL from Java 137
Transact-SQL commands from Java methods 138
Datatype mapping between Java and SQL 142
Java-SQL identifiers 144
Java-SQL class and package names 145
Java-SQL column declarations 146
Java-SQL variable declarations 147
Java-SQL column references 147
Java-SQL member references 148
Java-SQL method calls 149

JDK requirement for Java classes in the server

Java classes that you install and use in the server must be compiled with
JDK 1.2.2. If you compile aclasswith alater JDK, you will be able to
install it in the server using the installjava utility, but you will receive a
java.lang.ClassFormatError exception when you attempt to usethe classin
Adaptive Server.

Java in Adaptive Server Enterprise 131

Assignments

Assignments

This section defines the rules for assignment between SQL data items whose
datatypes are Java-SQL classes.

Each assignment transfers a source instance to atarget data item:

For an insert statement specifying atable that has a Java-SQL column,
refer to the Java-SQL column as the target data item and the insert value
as the source instance.

For an update statement that updates a Java-SQL column, refer to the Java-
SQL column as the target data item and the update value as the source
instance.

For aselect or fetch statement that assignsto avariable or parameter, refer
to the variable or parameter as the target dataitem and the retrieved value
as the source instance.

Note If the sourceisavariable or parameter, then it isareferenceto an object
inthe Java VM. If the source is a column reference, which contains a
serialization, then the rules for column references (see Java-SQL column
references on page 147) yield areference to an object in the Java VM. Thus,
the source is areference to an object in the Java VM.

Assignment rules at compile-time

1

Define SC and TC as compile-time class names of the source and target.
DefineSC_T and TC_T as classes named SC and DT in the database
associated with the target. Similarly, define SC_S and TC_S as classes
named SC and DT in the database associated with the source.

SC_T must bethesameasTC_T or asubclassof TC_T.

Assignment rules at runtime
Assume that DT_SC isthe sameasDT_TC or its subclass.

132

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

Define RSC asthe runtime class name of the source value. DefineRSC_S
asthe class named RSC in the database associated with the source. Define
RSC_T asthe name of aclassRSC_T installed in the database associated
with the target. If thereis no classRSC_T, then an exception israised. If
RSC_T isneither the sameas TC_T nor asubclassof TC_T, thenan
exception israised.

If the databases associated with the source and target are not the same
database, then the source object is serialized by its current class, RSC_S,
and that serialization is deserialized by the classRSC_T that it will be
associated with in the database associated with the target.

If the target is a SQL variable or parameter, then the source is copied by
reference to the target.

If the target is a Java-SQL column, then the source is serialized, and that
serialization is deep copied to the target.

Allowed conversions

Y ou can use convert to change the expression datatype in these ways:

Convert Java types where the Java datatype is a Java object type to the
SQL datatype shown in “ Datatype mapping between Java and SQL” on
page 142. The action of the convert function isthe mapping implied by the

Java-SQL mapping.
Convert SQL datatypes to Javatypes shown in “Datatype mapping

between Java and SQL” on page 142. The action of the convert function
is the mapping implied by the SQL -Java mapping.

Convert any Java-SQL classinstalled in the SQL system to any other Java-
SQL classinstalled inthe SQL system if the compile-time datatype of the
expression (source class) is a subclass or superclass of the target class.
Otherwise, an exception is raised.

The result of the conversion is associated with the current database.

See “Using the SQL convert function for Java subtypes,” for a discussion of
the use of the convert function for Java subtypes.

Java in Adaptive Server Enterprise 133

Transferring Java-SQL objects to clients

Transferring Java-SQL objects to clients

When a value whose datatype is a Java-SQL object type istransferred from
Adaptive Server to aclient, the data conversion of the object depends on the
client type:

» If theclientisanisgl client, the toString() or similar method of the object
isinvoked and theresult istruncated to varchar, which istransferred to the
client.

Note The number of bytes transferred to the client is dependent on the
value of the @ @stringsize global variable. The default value is 50 bytes.
See “Representing Java instances’ on page 30 for more information.

» If theclient isaJavaclient that usesjConnect 4.0 or later, the server
transmits the object serialization to the client. This serialization is
seamlessly deserialized by jConnect to yield a copy of the object.

 Iftheclientisab client:

» If the object isa column declared as in row, the serialized value
contained inthe column istransferred to theclient asavarbinary value
of length determined by the size of the column.

» Otherwise, the serialized value of the object (the result of the
writeObject method of the object) is transferred to the client asan
image value.

Supported Java API packages, classes, and methods

134

Adaptive Server supportsmany but not all classes and methodsinthe JavaAPI.
In addition, Adaptive Server may impose security restrictions and
implementation limitations. For example, Adaptive Server does not support all
of the thread creation and manipulation facilities of java.lang.Thread.

The supported packages are installed with Adaptive Server and are always
available. They cannot be installed by the user.

Note Javain Adaptive Server does not support the JavaNative I nterface (INI).

This section lists:

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

Supported Java packages and classes
Unsupported Java packages
Unsupported java.sgl methods

Supported Java packages and classes

java.io

¢ Externalizable

. Datalnput

. DataOutput

* ObjectinputStream

* ObjectOutputStream
* Serializable

java.lang — see “ Unsupported java.sgl methods and interfaces’ on page
136 for alist of the unsupported classes in java.lang.

java.math
java.net —see Chapter 7, “Network Access Using java.net”

java.sgl —see*“ Unsupported java.sgl methods and interfaces’ on page 136
for alist of the unsupported methods and interfacesin java.sql.

java.text
java.util

java.util.zip

Unsupported Java packages, classes, and methods

java.applet

java.awt
java.awt.datatransfer
java.awt.event

java.awt.image

Java in Adaptive Server Enterprise 135

Supported Java API packages, classes, and methods

Unsupported java.sql methods and interfaces

136

java.awt.peer
java.beans
java.lang.ref
java.lang.Thread
java.lang.ThreadGroup
java.rmi
java.rmi.dgc
java.rmi.registry
java.rmi.server
java.security
java.security.acl

java.security.interfaces

Connection.commit()

Connection.getMetaData()

Connection.nativeSQL()

Connection.rollback()

Connection.setAutoCommit()
Connection.setCatalog()
Connection.setReadOnly()

Connection.setTransactionlsolation()

DatabaseMetaData.* — DatabaseMetaData iS supported except for these

methods:

* deletesAreDetected()

e getUDTs()

. insertsAreDetected()

* updatesAreDetected()

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

¢ othersDeletesAreVisible()

* othersinsertsAreVisible()

* othersUpdatesAreVisible()

* ownDeletesAreVisible()

¢ ownlnsertsAreVisible()

* ownUpdatesAreVisible()
* PreparedStatement.setAsciiStream()
* PreparedStatement.setUnicodeStream()
* PreparedStatement.setBinaryStream()
* ResultSetMetaData.getCatalogName()
* ResultSetMetaData.getSchemaName()
* ResultSetMetaData.getTableName()
* ResultSetMetaData.isCaseSensitive()
* ResultSetMetaData.isReadOnly()
* ResultSetMetaData.isSearchable()
* ResultSetMetaData.isWritable()
* Statement.getMaxFieldSize()
* Statement.setMaxFieldSize()
e Statement.setCursorName()
* Statement.setEscapeProcessing()
e Statement.getQueryTimeout()

* Statement.setQueryTimeoutt()

Invoking SQL from Java

Adaptive Server suppliesanative JDBC driver, java.sql, that implements JDBC
1.1 and 1.2 specifications, and is compliant with version 2.0. java.sql enables
Java methods executing in Adaptive Server to perform SQL operations.

Java in Adaptive Server Enterprise 137

Transact-SQL commands from Java methods

Special considerations
java.sqgl.DriverManager.getConnection() accepts these URLs:
* null
e “" (thenull string)
* jdbc:default:connection
When invoking SQL from Java some restrictions apply:

e A SQL query that is performing update actions (update, insert, or delete)
cannot use the facilities of java.sql to invoke other SQL operations that
also perform update actions.

e Triggersthat are fired by SQL using the facilities of java.sgl cannot
generate result sets.

e java.sgl cannot be used to execute extended stored procedures or remote
stored procedures.

Transact-SQL commands from Java methods

You can use certain Transact-SQL commands in Java methods called within
the SQL system. Table 8-1 lists Transact-SQL commands and whether or not
you can use them in Java methods. You can find further information on most
of these commands in the Sybase Adaptive Server Enterprise Reference
Manual.

Table 8-1: Support status of Transact-SQL commands

Command Status

alter database Not supported.
alter role Not supported.
alter table Supported.
begin ... end Supported.
begin transaction Not supported.
break Supported.
case Supported.
checkpoint Not supported.
commit Not supported.
compute Not supported.

138 Adaptive Server Enterprise

CHAPTER 8 Reference Topics

Command Status

connect - disconnect Not supported.

continue Supported.

create database Not supported.

create default Not supported.

create existing table Not supported.

create function Supported.

create index Not supported.

create procedure Not supported.

create role Not supported.

create rule Not supported.

create schema Not supported.

create table Supported.

create trigger Not supported.

create view Not supported.

cursors Not supported.
Only “server cursors’ are
supported, that is, cursors
that are declared and used
within a stored procedure.

dbcc Not supported.

declare Supported.

disk init Not supported.

disk mirror Not supported.

disk refit Not supported.

disk reinit Not supported.

disk remirror Not supported.

disk unmirror Not supported.

drop database Not supported.

drop default Not supported.

drop function Supported.

drop index Not supported.

drop procedure Not supported.

drop role Not supported.

drop rule Not supported.

drop table Supported.

drop trigger Not supported.

drop view Not supported.

Java in Adaptive Server Enterprise

139

Transact-SQL commands from Java methods

140

Command Status

dump database Not supported.
dump transaction Not supported.
execute Supported.
goto Supported.
grant Not supported.
group by and having clauses Supported.
if...else Supported.
insert table Supported.

kill Not supported.
load database Not supported.
load transaction Not supported.
online database Not supported.
order by Clause Supported.
prepare transaction Not supported.
print Not supported.
raiserror Supported.
readtext Not supported.
return Supported.
revoke Not supported.
rollback trigger Not supported.
rollback Not supported.
save transaction Not supported.

set See Table 12-2 for set
options.

setuser Not supported.
shutdown Not supported.
truncate table Supported.
union Operator Supported.
update statistics Not supported.
update Supported.
use Not supported.
waitfor Supported.
where Clause Supported.
while Supported.
writetext Not supported.

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

Table 8-2 lists set command options and whether or not you can use themin

Java methods.

Table 8-2: Support status of set command options

set command option Status

ansinull Supported.
ansi_permissions Supported.

arithabort Supported.

arithignore Supported.

chained Not supported. See Note 1.
char_convert Not supported.
cis_rpc_handling Not supported

close on endtran Not supported

cursor rows Not supported
datefirst Supported

dateformat Supported

fipsflagger Not supported
flushmessage Not supported
forceplan Supported
identity_insert Supported

language Not supported

lock Supported

nocount Supported

noexec Not supported

offsets Not supported
or_strategy Supported
parallel_degree Supported. See Note 2.
parseonly Not supported
prefetch Supported
process_limit_action Supported. See Note 2.
procid Not supported

proxy Not supported
quoted_identifier Supported

replication Not supported

role Not supported
rowcount Supported
scan_parallel_degree Supported. See Note2.
self_recursion Supported

Java in Adaptive Server Enterprise

141

Datatype mapping between Java and SQL

set command option Status
session_authorization Not supported
showplan Supported
sort_resources Not supported
statistics io Not supported
statistics subquerycache Not supported
statistics time Not supported
string_rtruncation Supported
stringsize Supported
table count Supported
textsize Not supported
transaction iso level Not supported. See Note 1.
transactional_rpc Not supported

Note (1) set commands with options chained or
transaction isolation level are allowed only if the setting
that they specify isaready in effect. That is, this kind of
set command is allowed if it has no affect. Thisisdoneto
support common coding practises in stored procedures.

Note (2) set commands pertaining to parallel degree are
allowed but have no affect. This supportsthe use of stored
procedures that set the parallel degree for other contexts.

Datatype mapping between Java and SQL

Adaptive Server maps SQL datatypes to Java types (SQL -Java datatype
mapping) and Java scalar types to SQL datatypes (Java-SQL datatype
mapping). Table 8-3 shows SQL -Java datatype mapping.

142

Adaptive Server Enterprise

CHAPTER 8

Reference Topics

Table 8-3: Mapping SQL datatypes to Java types

SQL type Java type

char String

varchar String

nchar String

nvarchar String

unichar String

univarchar String

unitext String

text String

numeric java.math.BigDecimal
decimal java.math.BigDecimal
money java.math.BigDecimal
smallmoney Java.math.BigDecimal
bit boolean

tinyint byte

smallint short

integer int

bigint long

unsigned smallint int

unsigned int long

unsigned bigint

java.math.Biglnteger

bigint java.math.Biglnteger
real float

float double

double precision double

binary byte[]

varbinary byte[]

image java.io.InputStream
datetime java.sql.Timestamp

smalldatetime

java.sql.Timestamp

date

java.sqgl.Date

time

java.sgl.Time

Note The mapping of unsigned bigint to double isan approximation; it will not
provide exact values. For exact values, convert the unsigned bigint valueto a
string value when passing it to a Java method.

Java in Adaptive Server Enterprise

143

Java-SQL identifiers

Table 8-4 shows Java-SQL datatype mapping.
Table 8-4: Mapping Java scalar types to SQL datatypes

Java scalar type SQL type
boolean bit

byte tinyint
short smallint
int integer
long bigint

float real

double double

Java-SQL identifiers

Description Java-SQL identifiers are a subset of Javaidentifiersthat can be referenced in
SQL.
Syntax java_sql_identifier ::= alphabetic character | underscore (_) symbol

[alphabetic character | arabic numeral | underscore(_) symbol |
dollar ($) symbol]
Usage e Java-SQL identifiers can be amaximum of 255 bytesin length if they are
surrounded by quotation marks. Otherwise, they must be 30 bytes or
fewer.

e Thefirst character of the identifier must be either an al phabetic character
(uppercase or lowercase) or the underscore () symbol. Subsequent
characters can include alphabetic characters (uppercase or lowercase),
numbers, the dollar ($) symbol, or the underscore () symbol.

e Java-SQL identifiers are always case sensitive.

144 Adaptive Server Enterprise

CHAPTER 8 Reference Topics

Delimited Identifiers

« Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers for Java-SQL identifiers allows you to avoid certain
restrictions on the names of Java-SQL identifiers.

Note You can use double quotes with Java-SQL identifiers whether the
set quoted_identifier option ison or off.

« Delimited identifiers allow you to use SQL reserved words for packages,
classes, methods, and so on. Each time you use the delimited identifier in
a statement, you must enclose it in double quotes. For example:

create table tl
(cl char(12)
c2 pl.”select”.p2.”"jar")

e Doublequotessurround only individual Java-SQL identifiers, not thefully
qualified name.

See also For additional information about identifiers, see Chapter 5, “ Transact-SQL
Topics,” in the Reference Manual.

Java-SQL class and package names
Description To reference a Java-SQL class or package, use the following syntax:
Syntax java_sqgl_class_name ::= [java_sql_package_name.]java_sql_identifier

java_sgl_package_name ::=
[java_sql_package_name.]java_sql_identifier

Parameters java_sgl_class name
The fully qualified name of a Java-SQL class in the current database.

java_sgl_package name
The fully qualified name of a Java-SQL package in the current database.

java_sql_identifier
See Java-SQL identifiers.

Usage For Java-SQL class names:

e A class namereference always refers to a class in the current database.

Java in Adaptive Server Enterprise 145

Java-SQL column declarations

» If you specify a Java-SQL class name without referencing the package
name, only one Java-SQL class of that name must exist in the current
database, and its package must be the default (anonymous) package.

e If aSQL user-defined datatype and a Java-SQL class possess the same
sequence of identifiers, Adaptive Server usesthe SQL user-defined
datatype name and ignores the Java-SQL class name

For Java-SQL package names:

e If you specify a Java-SQL subpackage name, you must reference the
subpackage name with its package name:

java_sgl_package_name.java_sql_subpackage_name

* UseJava-SQL package namesonly as qualifiers for class names or
subpackage names and to del ete packages from the database using the
remove java command.

Java-SQL column declarations

Description To declare a Java-SQL column when you create or alter atable, use the
following syntax:

Syntax java_sqgl_column ::= column_name java_sql_class_name

Parameters java_sgl_column
Specifies the syntax of Java-SQL column declarations.

column_name
The name of the Java-SQL column.

java_sql_class name
The name of aJava-SQL classin the current database. Thisisthe “declared
class’ of the column.

Usage » Thedeclared classmust implement either the Serializable or Externalizable
interface.

* A Java-SQL column is always associated with the current database.
* A Java-SQL column cannot be specified as:

e notnull

* unique

* A primary key

146 Adaptive Server Enterprise

CHAPTER 8 Reference Topics

See also You use a Java-SQL column declaration only when you create or alter atable.
See the create table and alter table information in the Reference Manual.

Java-SQL variable declarations

Description Use Java-SQL variable declarations to declare variables and stored procedure
parameters for datatypes that are Java-SQL classes.

Syntax java_sgl_variable ::= @variable_name java_sql_class_name
java_sql_parameter ::= @parameter_name java_sql_class_name
Parameters java_sql_variable

Specifies the syntax of a Java-SQL variable in a SQL stored procedure.

java_sql_parameter
Specifies the syntax of a Java-SQL parameter in a SQL stored procedure.

java_sgl_class name
The name of a Java-SQL classin the current database.

Usage A java_sql_variable or java_sgl_parameter is always associated with the
database containing the stored procedure.

See also Refer to the Reference Manual for more information about variable
declarations.

Java-SQL column references

Description To reference a Java-SQL column, use the following syntax:

Syntax column_reference ::=
[[[database_name.]Jowner.]Jtable_name.]Jcolumn_name
| database_name..table_name.column_name

Parameters column_reference
A reference to a column whose datatype is a Java-SQL class.

Usage e If the value of the column is null, then the column referenceis also null.

* If the value of the column is a Java seridlization, S, and the name of its
classisCs, then:

Java in Adaptive Server Enterprise 147

Java-SQL member references

» |ftheclassCs doesnot exist in the current database or if CS isnot the
name of aclassin the database associated with the serialization, then
an exception israised.

Note The database associated with the serialization is normally the
database that contains the column. Serializations contained in work
tablesand in temporary tables created with “insert into #tempdb” are,
however, associated with the database in which the serialization was
stored originaly.

» Thevalue of the column referenceis:
CSC.readObject(S)

where CSC is the column reference. If the expression raises an
uncaught Java exception, then an exception is raised.

The expression yields areference to an object in the Java VM, which
is associated with the database associated with the seriaization.

Java-SQL member references

Description

Syntax

Parameters

148

References afield or method of aclass or class instance.

member_reference ::= class_member_reference |
instance_member_reference

class_member_reference ::= java_sql_class_name.method_name
instance_member_reference ::= instance_expression>>member_name

instance_expression ::= column_reference | variable_name
| parameter_name | method_call | member_reference

member_name ::= field_name | method_name
member_reference
An expression that describes afield or method of a class or object.

class_member_reference
An expression that describes a static method of a Java-SQL class.

instance_member_reference
An expression that describes a static or dynamic method or field of a Java
SQL class instance.

Adaptive Server Enterprise

CHAPTER 8 Reference Topics

Usage

java_sgl_class name

A fully qualified name of a Java-SQL classin the current database.

instance_expression

An expression whose datatype is a Java-SQL class.

member_name

The name of afield or method of the class or class instance.

If amember references afield of aclassinstance, the instance has a null
value, and the Java-SQL member reference is the target of afetch, select,
or update statement, then an exception is raised.

Otherwise, the Java-SQL member reference has the null value.

The double angle (>>) and dot (.) qualification take precedence over any
operator, such as the addition (+) or equal to (=) operator, for example:

X>>Al1>>Bl + X>>A1l>>B2

In this expression, the addition operation is performed after the members
have been referenced.

The field or method designated by a member reference is associated with
the same database as that of its Java-SQL class or instance of its Java-SQL
class.

If the Javatype of amember reference isone of the Javascalar types (such
as boolean, byte, and so on), then the corresponding SQL datatype of the
reference is obtained by mapping the Javatypetoits equivalent SQL type.

If the Java type of a member reference is an object type, then the SQL
datatype is the same Java object type or class.

Java-SQL method calls

Description

Syntax

To invoke a Java-SQL method, which returns asingle value, use the following
syntax:

method_call ::= member_reference ([parameters])

| new java_sql_class_name ([parameters])

parameters ::= parameter [(, parameter)...]

parameter ::= expression

Java in Adaptive Server Enterprise 149

Java-SQL method calls

Parameters method_call
An invocation of a static method, instance method, or class constructor. A
method call can be used in an expression where a non-constant value of the
method’s datatype is required.

member_reference
A member reference that denotes a method.

parameters
Thelist of parametersto be passed to the method. If there are no parameters,
include empty parentheses.

Usage Method overloading
* When there are methods with the same namein the same class or instance,
the issue is resolved according to Java method overloading rules.
Datatype of method calls
» The datatype of amethod call is determined as follows:

e If amethod call specifiesnew, its datatype is that of its Java-SQL
class.

» If amethod call specifies a member reference that denotes atype-
valued method, then the datatype of the method call isthat type.

e If amethod call specifies a member reference that denotes avoid
static method, then the datatype of the method call is SQL integer.

e If amethod call specifies a member reference that denotes avoid
instance method of aclass, then the datatype of the method call isthat
of the class.

e Toinclude a parameter in a member reference when the parameter is a
Java-SQL instance associated with another database, you must ensure that
the class name associated with the Java-SQL instance isincluded in both
databases. Otherwise, an exception is raised.

Runtime results
e The runtime result of amethod call is as follows:

* If amethod call specifiesamember reference whose runtimevalueis
null (that is, areferenceto amember of anull instance), then theresult
isnull.

» If amethod call specifies a member reference that denotes atype-
valued method, then the result is the value returned by the method.

150 Adaptive Server Enterprise

CHAPTER 8 Reference Topics

e If amethod call specifies amember reference that denotes avoid
static method, then the result is the null value.

e If amethod call specifies amember reference that denotes avoid
instance method of an instance of aclass, thentheresult isareference
to that instance.

+ Themethod call and result of the method call are associated with the
same database.

e Adaptive Server does not pass the null value asthe value of a
parameter to a method whose Javatype is scalar.

Java in Adaptive Server Enterprise 151

Java-SQL method calls

152 Adaptive Server Enterprise

Glossary

assignment
associated JAR

bytecode

class

class method

class file
class instance

datatype mapping

declared class

externalization

Thisglossary describes Java and Java-SQL terms used in this book. For a
description of Adaptive Server and SQL terms, refer to the Adaptive
Server Glossary.

A generic term for the data transfers specified by select, fetch, insert, and
update Transact-SQL commands. An assignment sets a source value into
atarget dataitem.

If aclass’/JAR isinstalled with installjava and the -jar option, then the JAR
is retained in the database and the class is linked in the database with the
associated JAR. Seeretained JAR.

The compiled form of Java source code that is executed by the Java VM.

A class is the basic element of Java programs, containing a set of field
declarations and methods. A classisthe master copy that determines the
behavior and attributes of each instance of that class. classdefinitionisthe
definition of an active data type, that specifies alegal set of values and
defines a set of methods that handle the values. See class instance.

See static method.

A file of type “class’ (for example, myclass.class) that contains the
compiled bytecode for a Java class. See Java file and Java archive (JAR).

Value of the class datatypethat contains avaluefor each field of the class
and that accepts all methods of the class.

Conversions between Java and SQL datatypes.

The declared datatype of aJava-SQL dataitem. It iseither the datatype of
the runtime value or a supertype of it.

An externalization of a Javainstance is a byte stream that contains
sufficient information for the class to reconstruct the instance.
Externalization is defined by the externalizable interface. All Java-SQL
classes must be either externalizable or serializable. See serialization.

Java in Adaptive Server Enterprise 153

Glossary

installed classes

instance method

interface

Java archive (JAR)

Java Database
Connectivity (JDBC)

Java datatypes

Java Development
Kit (JDK)

Java file

Java method
signhature

Java object

Java-SQL column

Java-SQL class

Java-SQL datatype
mapping

Java-SQL variable

154

Java classes and methods that have been placed in the Adaptive Server system
by theinstalljava utility.

A invoked method that references a specific instance of aclass.

A named collection of method declarations. A classcanimplement aninterface
if the class defines all methods declared in the interface.

A platform-independent format for collecting classesin asinglefile.

A Java-SQL API that isastandard part of the Java Class Librariesthat control
Java application development. JDBC provides capabilities similar to those of
ODBC.

Java classes, either user-defined or from the JavaSoft API, or Java primitive
datatypes, such as boolean, byte, short, and int.

A toolset from Sun Microsystems that allows you to write and test Java
programs from the operating system.

Afileof type“java’ (for example, myfilejava) that contains Java source code.
See class file and Java archive (JAR).

The Java datatype of each parameter of a Java method.

Aninstance of aJavaclassthat iscontained in the storage of the JavaVVM. Java
instancesthat arereferenced in SQL are either values of Java columns or Java
objects.

A SQL column whose datatype is a Java-SQL class.

A public Java class that has been installed in the Adaptive Server system. It
consists of a set of variable definitions and methods.

A classinstance consists of an instance of each of the fields of the class. Class
instances are strongly typed by the class name.

A subclassisaclassthat isdeclared to extend (at most) to one other class. That
other classis called the direct superclass of the subclass. A subclass has all of
the variables and methods of its direct and indirect superclasses, and may be
used interchangeably with them.

Conversions between Java and SQL datatypes. See “ Datatype mapping
between Java and SQL” on page 142.

A SQL variable whose datatype is a Java-SQL class.

Adaptive Server Enterprise

Glossary

Java Virtual Machine
(Java VM)

mappable

method

narrowing
conversion

package

procedure
public
retained JAR

serialization

SQL function
signhature

The Javainterpreter that processes Javain the server. It isinvoked by the SQL
implementation.

A Java datatype is mappableif itis either:

e Listedinthefirst column of Table 8-3 on page 143, or

e A public Java-SQL classthat isinstalled in the Adaptive Server system.
A SQL datatype is mappableif it is either:

e Listedinthefirst column of Table 8-4 on page 144, or

e A public Java-SQL classthat isbuilt-in or installed in the Adaptive Server
system.

A Javamethod is mappableif al of its parameter and result datatypes are
mappable.

A set of instructions, contained in aJavaclass, for performing atask. A method
can be declared static, in which caseit is called aclass method. Otherwisg, itis
an instance method. Class methods can be referenced by qualifying the method
name with either the class name or the name of an instance of the class.
Instance methods are referenced by qualifying the method name with the name
of an instance of the class. The method body of an instance method can
reference the variables local to that instance.

A Javaoperation for converting areference to aclassinstanceto areferenceto
an instance of asubclass of that class. Thisoperationiswrittenin SQL withthe
convert function. See also widening conversion.

A packageisaset of related classes. A classeither specifiesapackageor ispart
of an anonymous default package. A class can use Javaimport statements to
specify other packages whose classes can then be referenced.

An SQL stored procedure, or a Java method with a void result type.
Public fields and methods, as defined in Java.
See associated JAR.

A serialization of a Javainstance is a byte stream containing sufficient
information to identify its class and reconstruct the instance. All Java-SQL
classes must be either externalizable or serializable. See externalization.

The SQL datatype of each parameter of a SQLJ function.

Java in Adaptive Server Enterprise 155

Glossary

SQL-Java datatype
mapping

SQL procedure
sighature

static method

subclass

superclass

synonymous
classes

Unicode

variable

visible

well-formed
document

widening conversion

156

Conversions between Java and SQL datatypes. See “ Datatype mapping
between Java and SQL” on page 142.

The SQL datatype of each parameter of a SQL J procedure.

A method invoked without referencing an object. Static methods affect the
whole class, not an instance of the class. Also caled a class method.

A class below ancther classin ahierarchy. It inherits attributes and behavior
from classes above it. A subclass may be used interchangeably with its
superclasses. The class above the subclassisits direct superclass. See
superclass, narrowing conversion, and widening conversion.

A class above one or more classes in a hierarchy. It passes attributes and
behavior to the classes below it. It may not be used interchangeably with its
subclasses. See subclass, narrowing conversion, and widening conversion.

Java-SQL classes that have the same fully qualified name but areinstalled in
different databases.

A 16-hit character set defined by 1SO 10646 that supports many languages.

In Java, avariableislocal to aclass, to instances of the class, or to a method.
A variable that is declared static is local to the class. Other variables declared
intheclass arelocal to instances of the class. Those variables are called fields
of the class. A variable declared in amethod is local to the method.

A Javaclassthat has been installed in a SQL systemisvisiblein SQL if itis
declared public; afield or method of a Javainstanceisvisiblein SQL if itis
both public and mappable. Visible classes, fields, and methods can be
referencedin SQL . Other classes, fields, and methods cannot, including classes
that are private, protected, or friendly, and fields and methods that are either
private, protected, or friendly, or are not mappable.

In XML, the necessary characteristics of awell-formed document include: all
elements with both start and end tags, attribute values in quotes, all elements
properly nested.

A Javaoperation for converting areferenceto a classinstance to areferenceto
an instance of a superclass of that class. This operation iswritten in SQL with
the convert function. See also narrowing conversion.

Adaptive Server Enterprise

Index

Symbols
::= (BNF notation)

in SQL statements xvii
, (comma)

in SQL statements xvii
{} (curly braces)

in SQL statements xvii
() (parentheses)

in SQL statements xvii
[1 (square brackets)

in SQL statements xvii
>> (double angle)

to qualify Javafields and methods 149
@sign 81

A

Adaptive Server

plug-in 25, 80
additional information

about Java 9
ADT mappable datatypes 98
alter table

command 25

syntax 25
ANS| standards 4
assignment properties

Java-SQL dataitems 31
assignments 132
atachingtoaJavavVM 111

B

Backus Naur Form (BNF) notation xvi, xvii
BNF notation in SQL statements xvi, xvii
brackets. See square brackets| |

breaking

Java in Adaptive Server Enterprise

onaclassmethod 115

onalinenumber 114

using conditions 115

using counts 115

when execution isnot interrupted 116
breskpoints 114

C

caled on null input parameter 82
caseexpressions 35, 85
character sets
Adaptive server plug-in 80
unicode 25, 34, 80
classnames 145
classsubtypes 34-36
classes. See Java classes
clients
bep 134
isg 134
client-side JODBC 6
column
declarations 146
referencing 147
column datatypes, requirements 23
column declarations 146
column references 147
comma (,)
in SQL statements xvii
command main method 101
commands
createtable 24, 25
drop function 86
SQLJcreatefunction 81
SQLJ create procedure 87
commands, create procedure SQLJ 89
compile-time datatypes 36
compiling Javacode 14
configuration parameter, Number of Java Sockets

130

157

Index

constructor method 26
constructors 26, 41
conventions
See also syntax
Java-SQL syntax xvi
Transact-SQL syntax xvi
conversions 133
narrowing 35
widening 35
convert function 34, 133
create procedure (SQLJ) command 87, 89
create table command, syntax 24, 25
creating
client applications 123
network applications, java.net 123
tables 24
user-defined classes 14
curly braces ({}) in SQL statements xvii

D

DatagramPacket, Javaclass 124
datatype conversions 133
datatype mapping 33, 97, 142-144
datatypes

compile-time 36

conversions 133

Javaclasses 3

method calls 150

runtime 36
Debug.jar, Javafile 110
debugger

attachingtoaJavavVM 111
compiling classesfor 111
disconnecting 116
how it works 109
location 110
options 113
requirementsfor using 109
starting 110
wait mode 111

debugger capabilities
browseclasses 110
inspect and break on expressions 110
inspect and set variables 110

158

set break conditions 110
set breakpoints 110
trace execution 110
debugger windows
breskpoints 112
cdls 112
classes 112
connection 112
exceptions 112
inspection 112
locas 113
source 112
debugging
Java 109-121
debugging tutorial 117-121
attachingtoaJavaVM 118
examples 119
inspecting loca variables 120
inspecting static variables 121
inspecting variables 119
loading source code 118
modifying local variables 121
sourcecode 117
starting the debugger 117
stepping through source code 119
deleting 26, 96
Javaobjects 26
delimited identifiers 145
deterministic parameter 82, 88
disabling Java 13
distinct keyword 44
double angle
qualifying Java fields and methods 149
to qualify Javafields and methods 27
downloading
installed classes 19
installed JARs 19
drop function command 86
dynamic result sets parameter 88

E

email

javanet 123
messages, sending 123

Adaptive Server Enterprise

enabling Java 13
enabling java.net, procedure 124
equality operations 44
examples

for SQLJroutines 77
exceptions 29
explicit Java method signatures 99
external name parameter 88
external server, writing with java.net 125
externalization 146
extractjava utility 19

F

flushing data explicitly 130

G

group by clause 44

H

HttpURL Connection, Javaclass 124

identifiers 144

delimited 145
implicit Java method signatures 99
in parameter 90
InetAddress, Javaclass 124
inout parameter 90
InputStream class 128
InputStream, Javaclass 130
inserting

datainatable 128

Javaobjects 26
installing

compressed JARS 15

Javaclasses 15,18

uncompressed JARS 15
installjava utility 12, 15

Java in Adaptive Server Enterprise

Index

-f option 16
-j option 16
-new option 17
syntax 16
update option 17
instance methods 42
inter-class arguments 50
invoking
Javamethod, using SQLJ 79
Javamethods 28, 78
Java methods, invoking directly 78
Javamethods, using SQLJ 78
SQL fromJava 137, 142

J

JAR files

creating 15

installing 15

retaining 16

JARs

compressed, installing 15
uncompressed, installing 15
JavaAPl 7

accessing fromSQL 7
supported packages 134-137
Sybase support for 8

Javaarrays 90
Javaclass datatypes 84
Java classes
as datatypes 3,23
creating 14

DatagramPacket 124
DatagramSocket 124
HttpURL Connection
InetAddress
InputStream 125, 128
installing 15-18
MailTo 128
MulticastSocket 124
OutputStream 125, 128
PrintWriter 130
referencing other classes 18
retained 20

runtime 12

159

Index

savinginJAR 15
ServerSocket 124, 126

JavaVM parameters

size of global fixedheap 125

Socket size of process object heap 125
SQLJexamples 78 size of shared classheap 125
subtypes 34 Java, SQL, using together 6
supported 8 javanet 124, 125, 126, 130
updating 17 accessing documentsusing XML, JDBC 123
URL 128, 129 accessing external documents 125
URL class, using 126 cautions 130
URLConnection 124 classes
URLDecoder 124 client application, settingup 125
URLEncoder 124 client process 126
user-defined 8, 12 client process procedure 126

Java code connecting through JDBC with jconnect 123
compiling 14 creating networking applications 123
writing 14 downloading documents 123

Javacompiler 111 enabling 124

Java datatypes examples 125
ADT mappable 98 help 130

object mappable 98
output mappable 98
result-set mappable 98
simply mappable 98
Java Development Kit 5
Javain the database
advantagesof 1
capabilities 2
key features 5
preparing for 11-20
questions and answers 4
Javainstances, representing 30
Javamethod signature 83, 88
Java methods
cal by reference 29, 45
command main 101

mailing documents 125

objects not serializable 130
procedure for enabling 124

reference documents 130

saving documents 123

saving text from Adaptive Server 125
sending email messages 123

server process 126

server process procedure 126

writing external server 125

java.net classes

HttpURL Connection 124
InetAddress 124

See Java classes

Socket 124

URL 124

exceptions 29 URLConnection 124
instance 42 URLDecoder 124

invoking 28,78 URLEncoder 124

static 43 java.net, for network access 123
type 40,41 javasgl 137

void 41 java.sgl methods, unsupported 136
Javaobjects 26 Java-SQL

Java operations, invoked fromSQL 6 classnames 145
Java primitive datatypes 84 column declarations 146
Javaruntime environment 11 column references 147

JavaVM 6, 11 columns 31, 45

160 Adaptive Server Enterprise

creating tables 24
function results 31
identifiers 144
member references 148
method calls 149
names 23
package names 145
parameters 31, 46
static variables 46
transferring objects 134
transferring objectsto clients 133
unsupported methods 136
variable declarations 147
varisbles 31, 46
Java-SQL classes
in multiple databases 46
installing 15-18
Java-SQL columns
storage options 24

jConnect
JOBC 6

jeconnect 123

JOBC 57-74

accessing data 59
client-side 6,58
concepts 58
connection defaults 59
connections 62
interfface 8
JDBCExamplesclass 60
obtaining a connection 62
permissions 59
server-side 6, 58
terminology 58
version support 12
JDBC drivers 12, 137
client-side 6,58
jConnect 6
server-side 6, 58
JDBC standard datatype mapping 97
JDBCExamplesclass 68-74
methods 61-66
overview 60

Java in Adaptive Server Enterprise

Index

L

language java parameter 88

M

mailing adocument 125
MailTo, Javaclass 128
mapping datatypes 142-144
mapping Java and SQL datatypes 97
member references 148
method calls 149
datatype of 150
method overloading 100, 150
methods
exceptions 29
runtime results 150
See aso XQL methods
SQLJExamples.bestTwoEmps() 78
SQL JExamples.correctStates() 78, 89
SQLJExamplesjob() 78
SQLJExamples.region() 78
modifies sgl data parameter 82, 88
MulticastSocket, Javaclass 124
multiple databases 47

N

namesin JavaeSQL 23

case 23

length 23
narrowing conversions 35
network access, javanet 123
null values

case statements 85

in SQLJfunctions 84
nullsinJavaSQL 3640

argumentsto methods 38

using convert functions 39
Number of Java Sockets, configuration parameter

O

object mappable datatypes 98

130

161

Index

obtaining connections 62
options
external name 82
languagejava 82
parameter stylejava 82
order by clauses 44
ordering operations 44
out parameter 90

output mappable datatypes 98

P

package names 145

parameter style java parameter 88

parameters

(JavaVM) size of global fixed heap 125
(JavaVM) size of processobject heap 125
(JavaVM) size of shared classheap 125

deterministic 88
external name 88
inout 90

input 90
languagejava 88
modifiessgl data 88
not deterministic 88
output 90

parameter stylejava 88
parentheses ()

in SQL statements xvii
permissions

Java 6,22

JOBC 59
SQLJroutines 77
persistent dataitems 31
PrintWriter, Javaclass 130
procedure

creating SQLJroutine 76
enabling javanet 124
procedures

client process, java.net 126
server process, java.net 126

162

Q

questions and answers

R

4

rearranging installed classes 20

referencing

fields 27
remove java command
removing classes 19
removing JARs 19

19, 146

restrictions on Javain the database 9

result sets 100
ResultSet

mappable datatypes

98

returns null on null input parameter, Javaclause 82

runtime
datatypes 36
Runtime environment
Runtime Java classes
locationof 12

11

runtime Javaclasses 12

S

sampleclasses 51-53
address 51
address2Line 52

JDBCExamples 60-74

locationof 10
misc 53

saving text out of Adaptiveserver 125

search order

functiontypes 84
security

SQLJroutines 77
selecting Java objects
serialization 146, 148
server process 126
server-sideJDBC 6

26

ServerSocket, Javaclass 124,126

set commands

alowed in Javamethods 141

updating 43

Adaptive Server Enterprise

settingup 124
shared classheap 124
simply mappable datatypes 98
Socket classes, using 125
Socket, Javaclass 124
sp_configure system procedure 13
sp_depends system procedure 97
sp_help system procedure 97
sp_helpjava
syntax 18
utilitysp_helpjava 18
sp_helpjava system procedure 97
sp_helprotect system procedure 97
SQL
expressions, include Javaobjects 6
function signature 81
procedure signature 87
wrappers 75,79
SQLJ create procedure command 87
SQLJfunctions 81-86
dropping 86
viewing information about 97
SQLJimplementation
features not supported 103
features partially supported 103
SQLJand Sybase differences 102
Sybase defined 103
SQLJstandards 76
SQLJ stored procedures 86-88, 96
capabilitiesof 86
deleting 96
modifying SQL data 88
using input and output parameters 90
viewing information about 97
SQLJExamplesclass 105
SQL JExampl es.bestTwoEmps() method 78
SQL JExamples.correctStates() method 78, 89
SQL JExamplesjob() method 78
SQL JExamples.region() method 78, 83
square brackets| |
in SQL statements xvii
standardsfor SQL 4
standards specifications 4
static methods 43, 78, 86
static variables 46
storage options

Java in Adaptive Server Enterprise

Index

inrow 24
String data
zerolength 40
stringdata 40
stylejavakeyword 88
subtypes 34
supertypes 34
Sybase Central
creating a SQL Jfunction or procedurefrom 80
managing SQLJ procedures and functions from 80
viewing SQLJ routine propertiesfrom 81
symbols
in SQL statements xvi, xvii
syntax conventions
JavarSQL xvi
syntax conventions, Transact-SQL xvi
system procedures
helpjava 18
sp_depends 97
sp_help 97
sp_helpjava 97
sp_helprotect 97

T

table definition 77
temporary databases 50
transact-SQL

commands, in Javamethods 138
transient dataitems 31

U

unicode 40

union operator 44

updating Java objects 26

URL
Javaclass 126

URL class
accessing external server with XQL 128
downloading HTTP document 128
inserting datain atable 128
Javaclass 124, 128, 129
obtaining an HTTP document 128

163

Index

sending email 128

using 128
URLConnection, Javaclass 124
URLDecoder, Javaclass 124
URLEncoder, Javaclass 124
user-defined classes, creating 14
using

Javaand SQL together 6

Javaclasses 21,50

Socket classes 125

URL class 126

Vv

variable declarations 147
variables 147
datatypesof 24
static 46
valuesassignedto 27
viewing information
about installed classes 18
about installed JARs 18
void methods 88

W

whereclause 35, 42, 45
work databases 50

X

XML
accessing documents with java.net

Z

zero-length strings 40

164

123

Adaptive Server Enterprise

	Java in Adaptive Server Enterprise
	Adaptive Server® Enterprise
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Sybase certifications on the Web
	Finding the latest information on product certifications
	Finding the latest information on component certifications
	Creating a personalized view of the Sybase Web site (including support pages)
	Sybase EBFs and software maintenance
	Finding the latest information on EBFs and software maintenance
	Conventions
	Table 1: Font and syntax conventions for this manual
	Accessibility features
	If you need help

	CHAPTER 1 An Introduction to Java in the Database
	Advantages of Java in the database
	Capabilities of Java in the database
	Invoking Java methods in the database
	Invoking Java methods directly in SQL
	Invoking Java methods as SQLJ stored procedures and functions

	Storing Java classes as datatypes
	Storing and querying XML in the database

	Standards
	Java in the database: questions and answers
	What are the key features?
	How can I store Java instructions in the database?
	How is Java executed in the database?
	Client- and server-side JDBC

	How can I use Java and SQL together?
	What is the Java API?
	How can I access the Java API from SQL?
	Which Java classes are supported in the Java API?
	Can I install my own Java classes?
	Can I access data using Java?
	Can I use the same classes on client and server?
	How do I use Java classes in SQL?
	Where can I find information about Java in the database?
	What you cannot do with Java in the database

	Sample Java classes

	CHAPTER 2 Preparing for and Maintaining Java in the Database
	The Java runtime environment
	Java classes in the database
	Sybase runtime Java classes
	User-defined Java classes

	JDBC drivers
	The Java VM

	Configuring memory for Java in the database
	Enabling the server for Java
	Disabling the server for Java

	Creating Java classes and JARs
	Writing the Java code
	Compiling Java code
	Saving classes in a JAR file
	Installing uncompressed JARs
	Installing compressed JARs

	Installing Java classes in the database
	Using installjava
	Retaining the JAR file
	Updating installed classes

	Referencing other Java-SQL classes

	Viewing information about installed classes and JARs
	Downloading installed classes and JARs
	Removing classes and JARs
	Retaining classes

	CHAPTER 3 Using Java Classes in SQL
	General concepts
	Java considerations
	Java-SQL names

	Using Java classes as datatypes
	Creating and altering tables with Java-SQL columns
	Altering partitioned tables

	Selecting, inserting, updating, and deleting Java objects

	Invoking Java methods in SQL
	Sample methods
	Exceptions in Java-SQL methods

	Representing Java instances
	Assignment properties of Java-SQL data items
	Datatype mapping between Java and SQL fields
	Character sets for data and identifiers
	Subtypes in Java-SQL data
	Widening conversions
	Narrowing conversions
	Runtime versus compile-time datatypes

	The treatment of nulls in Java-SQL data
	References to fields and methods of null instances
	Null values as arguments to Java-SQL methods
	Null values when using the SQL convert function

	Java-SQL string data
	Zero-length strings

	Type and void methods
	Java void instance methods
	Java void static methods

	Equality and ordering operations
	Evaluation order and Java method calls
	Columns
	Variables and parameters

	Static variables in Java-SQL classes
	Java classes in multiple databases
	Scope
	Cross-database references
	Inter-class transfers
	Passing inter-class arguments
	Temporary and work databases

	Java classes

	CHAPTER 4 Data Access Using JDBC
	Overview
	JDBC concepts and terminology
	Differences between client- and server-side JDBC
	Permissions
	Using JDBC to access data
	Overview of the JDBCExamples class
	The main() and serverMain() methods
	Using main()
	Using serverMain()

	Obtaining a JDBC connection: the Connecter() method
	Routing the action to other methods: the doAction() method
	Executing imperative SQL operations: the doSQL() method
	Executing an update statement: the updater() method
	Executing a select statement: the selecter() method
	Executing in batch mode

	Calling a SQL stored procedure: the caller() method

	Error handling in the native JDBC driver
	The JDBCExamples class
	The main() method
	The serverMain() method
	The connecter() method
	The doAction() method
	The doSQL() method
	The updater() method
	The selecter() method
	The caller() method

	CHAPTER 5 SQLJ Functions and Stored Procedures
	Overview
	Creating a SQLJ stored procedure or function
	Compliance with SQLJ Part 1 specifications
	General issues
	Security and permissions
	SQLJ Examples

	Invoking Java methods in Adaptive Server
	Invoking Java methods directly with their Java names
	Invoking Java methods indirectly using SQLJ

	Using Sybase Central to manage SQLJ functions and procedures
	Creating a SQLJ function/procedure
	v To view the properties of a SQLJ function or procedure

	SQLJ user-defined functions
	Writing the Java method
	Creating the SQLJ function
	Calling the function
	Handling null argument values
	Handling nulls when creating the function
	Handling nulls in the function call

	Deleting a SQLJ function name

	SQLJ stored procedures
	Modifying SQL data
	Writing the Java method
	Creating the stored procedure
	Calling the stored procedure

	Using input and output parameters
	Writing the Java method
	Creating the SQLJ procedure
	Calling the procedure

	Returning result sets
	Writing the Java method
	Creating the SQLJ stored procedure
	Calling the procedure
	Deleting a SQLJ stored procedure name

	Viewing information about SQLJ functions and procedures
	Advanced topics
	Mapping Java and SQL datatypes
	Table 5-1: Simply and object mappable SQL and Java datatypes
	Specifying Java method signatures explicitly or implicitly
	Returning result sets and method overloading
	Ensuring signature validity

	Using the command main method

	SQLJ and Sybase implementation: a comparison
	Table 5-2: Sybase enhancements
	Table 5-3: SQLJ features not supported
	Table 5-4: SQLJ features partially supported
	Table 5-5: SQLJ features defined by the implementation

	SQLJExamples class

	CHAPTER 6 Debugging Java in the Database
	Introduction to debugging Java
	How the debugger works
	Requirements for using the Java debugger
	What you can do with the debugger

	Using the debugger
	Starting the debugger and connecting to the database
	Compiling classes for debugging
	Attaching to a Java VM
	The Source window
	The debugger windows

	Options
	Setting breakpoints
	Breaking on a line number
	Breaking on a static method
	Using counts with breakpoints
	Using conditions with breakpoints
	Breaking when execution is not interrupted

	Disconnecting from the database

	A debugging tutorial
	Before you begin
	Start the Java debugger and connect to the database
	Attach to a Java VM
	Load source code into the debugger
	Step through source code
	Examples

	Inspecting and modifying variables
	Inspecting local variables
	Modifying local variables
	Inspecting static variables

	CHAPTER 7 Network Access Using java.net
	Overview
	java.net classes
	Table 7-1: Supported java.net classes

	Setting up java.net
	enabling jave.net

	Example usage
	Using socket classes
	Saving text out of Adaptive Server
	The client process:
	The server process:

	Using the URL class
	Use the mailto:URL class to mail a document
	Obtaining an HTTP document

	User notes

	CHAPTER 8 Reference Topics
	JDK requirement for Java classes in the server
	Assignments
	Assignment rules at compile-time
	Assignment rules at runtime

	Allowed conversions
	Transferring Java-SQL objects to clients
	Supported Java API packages, classes, and methods
	Supported Java packages and classes
	Unsupported Java packages, classes, and methods
	Unsupported java.sql methods and interfaces

	Invoking SQL from Java
	Special considerations

	Transact-SQL commands from Java methods
	Table 8-1: Support status of Transact-SQL commands
	Table 8-2: Support status of set command options

	Datatype mapping between Java and SQL
	Table 8-3: Mapping SQL datatypes to Java types
	Table 8-4: Mapping Java scalar types to SQL datatypes

	Java-SQL identifiers
	Delimited Identifiers

	Java-SQL class and package names
	Java-SQL column declarations
	Java-SQL variable declarations
	Java-SQL column references
	Java-SQL member references
	Java-SQL method calls
	Method overloading
	Datatype of method calls
	Runtime results

	Glossary
	assignment
	associated JAR
	bytecode
	class
	class method
	class file
	class instance
	datatype mapping
	declared class
	externalization
	installed classes
	instance method
	interface
	Java archive (JAR)
	Java Database Connectivity (JDBC)
	Java datatypes
	Java Development Kit (JDK)
	Java file
	Java method signature
	Java object
	Java-SQL column
	Java-SQL class
	Java-SQL datatype mapping
	Java-SQL variable
	Java Virtual Machine (Java VM)
	mappable
	method
	narrowing conversion
	package
	procedure
	public
	retained JAR
	serialization
	SQL function signature
	SQL-Java datatype mapping
	SQL procedure signature
	static method
	subclass
	superclass
	synonymous classes
	Unicode
	variable
	visible
	well-formed document
	widening conversion
	Index

