Workflow Package Tutorial Sample

iAnywhere® Mobile Office 5.7

B
T
B
G
ol -
c N

8 |

(=

(O

SYBASE

&y,

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

Document ID: DC01174-01-0570-01
LAST REVISED: September 2009

Copyright and Trademarks

iAnywhere Solutions is a subsidiary of Sybase, Inc. Copyright © 2009 iAnywhere Solutions, Inc. All
rights reserved. iAnywhere, OneBridge, Sybase and the Sybase logo are trademarks of Sybase, Inc. or
its subsidiaries. All other trademarks are properties of their respective owners. ® Indicates
registration in the United States of America.

Disclaimer

This documentation, as well as the software described in it, is furnished under a license agreement.
The content of this documentation is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by iAnywhere Solutions, Inc.
iAnywhere Solutions, Inc. assumes no responsibility or liability for any errors or inaccuracies that may
appear in this documentation. Any changes in the programs will be incorporated in a future edition of
this publication.

Technical Support

For product-specific technical information, visit the iAnywhere Technical Support site
at http://frontline.sybase.com/support/.

NOTE: Register at our technical support site for the latest information for your product.
This site is available only to customers with a valid maintenance contract.

United States Germany

+1 800 235 7576, menu options 2, 1 +49 (0) 7032 798-555

+1 208 322 7575, menu options 2, 1 8:00 a.m. to 6:00 p.m. (GMT+1)
6:00 a.m. to 6:00 p.m. Mountain Time (GMT France

-7) +33 (0) 825 826 835

United Kingdom 8:00 a.m. to 6:00 p.m. (GMT+1)
+44 (0) 117 333 9032 Benelux

8:00 a.m. to 6:00 p.m. (GMT+1) +31 (0) 302 478 455

8:00 a.m. to 6:00 p.m. (GMT+1)

ii Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

http://frontline.sybase.com/support/

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

Table of Contents

Copyright and Trademarksccceiiiiiiiiiiiiiiiiiiiiiiiiiierssssseserrresssssssssssssttreessssssssssssssssnns ii
LT ol = T = RS ii
LT T ot 1 BT VT T o T SR ii
Table Of CONtENES.....ccciiiiiiiiitiiiiic s aaaee iii
AT e T ¥ ot o o o S 1

Creating a Business Process Workflow Package with .NET Technologyccccccoeeevvvvveeeeeicccnnnnnenn. 1
STEP ONE: Create the Server Module (WorkflowServer.dll)eeueeciieiiiiieeeeccceceeenneeeeennnceeeeeeeeeeenns 2
STEP 2: Create the Client Module...........uuui s sassanes 11

STEP 2 (i): Create a .NET Compact Framework Client Module (WorkflowClient.dll) 11

STEP 2 (ii): Create a XML Client Module (ActivitiesSWorkflow.Xxml)ccceeovveieiiiiiiiiiiiiieeneeeinnne 29
STEP 3: Package the WOrkflow Packageccccceiiiiiimniiiiiimniiiiiieniiiiieneiiniienessennesnessensenssssssssnssenns 35
STEP 4: Deploy and Assign Users to WoOrkflow PacKage.....cccceeerreeeneereennniceieennneerrennneeeeennnsessennnneens 38
STEP 5: Run the Tutorial on a Client DeVICe.........cciiiiiiiiiiinnnniiiiiiiiiinntesseree e 39

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. iii

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

iv Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

Introduction

Creating a Business Process Workflow Package with .NET Technology

This tutorial will guide readers through the process of creating a Workflow package using the .NET Framework.
When completed, readers would have developed an end-to-end Workflow package that is able to collect data on
a handheld device and asynchronously send it to Mobile Office for processing.

Server to client data transfer is demonstrated in this tutorial by sending a client module and list object to a
mobile device. Once the user has selected an item from the list and filled out the various user-interface control
items, the data is serialized and sent back to the server to be written to a text file.

A reference of the completed Workflow package (ActivitiesPackage.zip) can be found in the C:\Program
Files\iAnywhere Mobile Office\Tools\ Workflow Samples\Activities directory.

This tutorial illustrates the five basic steps required to build and configure an end-to-end Workflow package.
The five steps are:

1.

2.

Create the Server Module (WorkflowServer.dll)

Create the Client Module
i. Create a .NET Compact Framework Client Module (WorkflowClient.dll)
ii. Create a XML Client Module (ActivitiesWorkflow.xml)

Package the Workflow package

Deploy and Assign Users to Workflow package

Run the Workflow package on a Client Device

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 1

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

STEP ONE: Create the Server Module (WorkflowServer.dll)

The following instructions guide readers through the process of creating a server module. The server module is
responsible for processing the e-mail message and supplementing it with context data so that the client module
could be used to display it in a meaningful fashion. The server module also handles the response from the
handheld device.

The server module used in this tutorial will consist of two .NET classes; both built to a single WorkflowServer.dll
file.

A copy of the completed WorkflowServer.dll project is located in the C:\Program Files\iAnywhere Mobile
Office\Tools\ Workflow Samples\Activities\ WorkflowServer directory. Before building this project, the
AMPInterfaces.dll file located in C:\Program Files\iAnywhere Mobile Office\Bin must be added as a project
reference.

1. Open Visual Studio.NET 2005
2. Start a Windows C# Class Library project named WorkflowServer.

3. Inthe Solution Explorer, rename file Classl.cs to Handler.cs. Click Yes if prompted to update all references
of Class1 to Handler.

4. Right-click the References tab of the WorkflowServer project and add a reference to the AMPInterface.dll
library. AMPInterfaces.dll is located in the C:\Program Files\iAnywhere Mobile Office\Bin directory.

5. Open Handler.cs and add the following code to import various namespaces used by the Workflow package
component.

using System;

using System.Data;

using System.Data.SqlClient;
using System.Collections.Generic;
using System.Xml;

using System.Xml.Serialization;
using System.IO;

using iAnywhere.MobileOffice.AMP;

6. Remove the Handler class definition that was generically added to the WorkflowServer namespace upon
beginning the project.

public class Handler

{1}

7. Create a new public class in the WorkflowServer namespace named TransformerComponent. This class
must inherit the IMailProcessor interface defined in the iAnywhere.MobileOffice. AMP namespace.

public class TransformerComponent : IMailProcessor

{1}

2 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

8. Add the following function to the TransformerComponent class.

public void ProcessMail(ContextData oContextData,
MailData oMailData,
out string sData)

// Create a new message to be sent to the client module
XmIWorkflowMessage _message = new XmlWorkflowMessage(Q);

// The message header can be used to transport state information (optional)
_message .Header = Guid.NewGuid()-ToString("N);

// Demonstrate jumping to a different screen in the Workflow package.
// In this example, jump to the comment screen if the subject

// of the e-mail contains the text 'skip me"

if (oMailData.Subject.Contains('skip me'))

// The WorkflowScreen property can be set to show a particular screen
// instead of the first screen. (optional)

// For a _NET Workflow package, this property should be a class name.
// For a Xml Workflow package, this property should be the screen name.

// To target both types of Workflow packages, name the screen of the
XmIWorkflow

// the same as the class name.

_message.WorkflowScreen = "WorkflowClient.uicComment";

}

// Get the intial value from the Context Variables

// Context variables are defined in the manifest.xml file and can be
// edited by Administrators using the Mobile Office Admin console.
string initialActivity = oContextData.Variables["Activity'];

string initialLocation = oContextData.Variables[''Location'];

// Set the selected value for the "activity'" combobox and

// "location” combobox in the uicMain form

// or the "activity" selectbox and "location" selectbox in the

// ActivitiesWorkflow.xml
_message.Values.Add("activity",

initialActivity);
_message.Values._Add(*location™, in

ni

itialLocation);

// sData is available as the CustomContext in the uicMain.ApplyContext() method
sData = _message.Serialize();

}

ProcessMail is the first function called when the Workflow package is run and gives an opportunity for
server modules to supplement the e-mail message with any context data to send to the device.

The above sample creates an instance of a XmIWorkflowMessage class used for storing all the data to be
sent to the client module. The XmIWorkflowMessage class is available on both .NETCF and XML client
modules and should be used when a server module’s implementation is to be shared between a .NETCF
and XML client implementation.

sData is assigned to the string serialization of the XmIWorkflowMessage object, and is deserialized in the
client module automatically by Mobile Office when XML is used, or by the
XmlWorkflowMessage.CreateFromXml method in .NETCF.

In STEP 2: Create the Client Module, sData is retrieved, deserialized and used by the client module.
Therefore, if no data is required to be sent from the server to client, then sData need not be populated.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 3

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

Steps 7 and 8 complete the required code to send data from the server to client.

The following instructions implement the server module response component for when data is sent
from the client to server.

9. Create a new public class in the WorkflowServer namespace named ResponderComponent. This class
must inherit the IResponseProcessor and ISynchronousRequestProcessor interface defined in the
iAnywhere.MobileOffice. AMP namespace.

public class ResponderComponent : IResponseProcessor,
ISynchronousRequestProcessor

1

10. Add the following method to the ResponderComponent class.

privéfe static string USERNAME
private static string PASSWORD

= "userl";
= "password";
public void ProcessResponse(ContextData oContextData, string sData)

{
if (String.IsNullOrEmpty(sData))

// nothing to process
return;

}

// sData was sent to us in the uicMain.Serialize() method
XmlWorkflowMessage msg = XmlWorkflowMessage.CreateFromXml(sData);

// Demonstrate requesting the client to enter new credentials by throwing
// a CredentialRequestException
string desc = Convert.ToString(msg.Values["description™]);
if (oContextData.BackEndUser.Equals(USERNAME) &&
desc.Contains("‘discard™))
{

throw new CredentialRequestException("Please refresh credentials for Activity
Workflow package",
" Workflow package Admin™,
string.Empty);
}

// Put the values from the client into an Activity object
Activity activity = new Activity(msg.-Header);

activity.Name = Convert._ToString(msg.Values["activity']);
activity.Location = Convert.ToString(msg.Values["location']);
activity.Date = Convert._ToDateTime(msg.Values[''date"]);
activity.Summary = Convert.ToString(msg.Values["'description™]);
activity.Comments = Convert.ToString(msg.Values["comments']);
activity.RequestAction = msg.RequestAction;

activity _WorkflowScreen = msg.WorkflowScreen;
activity.BackendPassword = oContextData.BackEndPassword.TrimeEnd();
activity.BackendUsername = oContextData.BackEndUser;

// Save the Activity

_SaveResponse(oContextData, activity);

4 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

ProcessResponse is the first method called when control is returned from client to server. In this example,
string variable sData, will contain the serialized data collected from the client module. The above
ProcessResponse implementation deserializes sData and saves it via a helper function called
_SaveResponse.

It is also possible to inform the Workflow package on the client that new credentials (if supported by the
Workflow package) are required by throwing a CredentialRequestException (see the
“iAnywhere.MobileOffice. AMP.CredentialRequestException Class” topic in the iAnywhere Mobile Office
Workflow Package Developer Guide). The user is prompted with an e-mail in their Inbox when a
CredentialRequestException is thrown and processing for the Workflow package on the user’s device stops
until credentials are received.

The credential information from the Workflow package on the client are available in ContextData as the
BackEndUser and BackEndPassword properties (see the “iAnywhere.MobileOffice. AMP.ContextData Class”
topic in the iAnywhere Mobile Office Workflow Package Developer Guide).

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 5

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

11. Add the following method to the ResponderComponent class.

private void _SaveResponse(ContextData oContextData, Activity activity)

try

// Get the path from the context variables
// Context variables are defined in the manifest.xml file and can be
// edited by Administrators using the Mobile Office Admin console.
string path = oContextData.Variables["OutputFolder"];
// Set username.devicetype.deviceID.txt as the filename
string filename = String.Format("{@}.{1}.{2}.txt",
oContextData.UserName,
oContextData.DeviceType,
oContextData.DeviceName);
// Construct the absolute path and filename
path = System.IO.Path.Combine(path, filename);

// This will cause an exception if the absolute path is not valid on
// the system
using (StreamWriter sw = File.AppendText(path))

{

sw.WriteLine("ProcessReponse - " + DateTime.Now + " - " + activity.Identity);
// get the activity object as an xml string

XmlSerializer xmls = new XmlSerializer(typeof(Activity));

StringWriter stringWriter = new StringWriter();

xmls.Serialize(stringWriter, activity);

sw.WriteLine(stringWriter.ToString());
sw.WriteLine();
}// using

catch (Exception ex)

{
{
}
}
}

// This exception will be logged in the Workflow package's Error List in the
// Mobile Office Admin console.
throw ex;

_SaveResponse, given a ContextData and Activity type parameter, will output the data of the Activity
parameter to a location specified in the manifest file (discussed in STEP 3: Package the Workflow
package). The name of the file is decided by the username, device type and device name used by the client.
Therefore, a device connected to iAnywhere Mobile Office with username InboxAppUser, on a Windows
Mobile 5.0 Pocket PC device with device id 150006 F0063006B006500740050004300000000 would
produce a results file named
InboxAppUser.WindowsMobileProfessional. 150006 F0063006B006500740050004300000000.txt.

The following instructions will implement the Activity class. An instantiation of an Activity object is used when
data is serialized and sent from client to server.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

12. Add the following method to the ResponderComponent class.

public string ProcessSyncRequest(ContextData oContextData, string sData)

{
it (String.IsNullOrEmpty(sData))
{
// nothing to process
return sData;
}
// sData was sent to us in the uicMain.Serialize() method
XmlWorkflowMessage msg = XmlWorkflowMessage.CreateFromXml(sData);
string description = Convert.ToString(msg.Values[''description']);
if (description == null)
description = "*;
string rmitype = Convert.ToString(msg.Values["rmitype']);
if (rmitype == null)
rmitype = ""';
it (msg.WorkflowScreen == "main™)
//demonstrate the ability to update Workflow package screen control data
msg.Values.Remove("'description');
msg.Values._Add(*"description™, "Description data requested from server.');
}
if (msg.WorkflowScreen == "WorkflowClient.uicComment")
{
if (rmitype.ToLower().Contains("update'))
//demonstrate the ability to update the Workflow package screen controls
msg.Values.Remove("‘comments");
msg.Values_.Add("comments', "Comments data requested from server.");
else if (rmitype.ToLower() .-Contains("exception™))
//demonstrate throwing an exception request from server to client
throw new Exception("'Server demonstrates throwing an exception to
device.");
else iT (rmitype.ToLower() .Contains("'screen"™))
//demonstrate the ability to change screens
msg.-WorkflowScreen = "main";
}
}
return msg.Serialize();
}

The ProcessSyncRequest method handles a Remote Method Invocation (RMI) from the client Workflow
package. Unlike the ProcessResponse method, the client Workflow package is waiting for the
ProcessSyncRequest method to complete and a timeout may occur if the method does not complete in a timely
fashion (see timeout attribute for the <action> tag in the Workflow Developer Guide). The return value from
ProcessSyncRequest should be a serialized XmIWorkflowMessage if the client Workflow package is an Xml
Workflow package. Values from the returned XmlIWorkflowMessage are used to update values in the client
Workflow package with the same key. It is also possible to redirect the client Workflow package to a different
screen when the method returns by using the XmIWorkflowMessage.WorkflowScreen property.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 7

Workflow Package Tutorial Sample iAnywhere Mobile Office

13. In the Solution Explorer, right-click the WorkflowServer project and select New Item... from the Add menu.
From the popup menu, select Class and name the file Activity.cs.

14. In the Solution Explorer, double-click the Activity.cs file to view the source code.

15. From the top of the Activity.cs source code, remove all using namespace statements except using
System;

16. Modify the default Activity signature to be public
public class Activity

17. Copy the following code into the Activity class.

private string m_ident;

private string m_activityName;
private string m_locationName;
private DateTime m_activityDate;
private string m_summary;

private string m_comments;

private string m_requestAction;
private string m_workflowScreen;
private string m_backendUsername;
private string m_backendPassword;

public Activity()

{
m_ident =
}Y// Activity()

wn o,
3

public Activity(string ident)

{
m_ident = ident;
}// Activity (string ident)

public string Identity

{
get

{

return m_ident;
}
}// Identity

public string Comments

{
get

{

return m_comments;

m_comments = String.IsNullOrEmpty(value) ? "" : value;

}
}// Page Two

public string Name

{

8 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

get
{
return m_activityName;
}
set
{
m_activityName = String.IsNullOrEmpty(value) ? "" : value;
}
}// Name
public string Location
{
get
{
return m_locationName;
}
set
{
m_locationName = String.IsNullOrEmpty(value) ? " : value;
}
}// Location
public DateTime Date
{
get
{
return m_activityDate;
}
set
{
m_activityDate = value;
}
} // Date
public string Summary
{
get
{
return m_summary;
}
set
{
m_summary = String.IsNullOrEmpty(value) ? "" : value;
}

}// Summary

public string RequestAction

{
get

{
}

set

{

return m_requestAction;

m_requestAction = String.IsNullOrEmpty(value) ? """ : value;
}
}// SubmitAction

public string WorkflowScreen

{

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 9

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

get
{
return m_workflowScreen;
}
set
m_workflowScreen = String. IsNullOrEmpty(value) ? " : value;
}
}/7/ WorkflowScreen
public string BackendUsername
{
get
{
return m_backendUsername;
}
set

m_backendUsername = String. IsNullOrEmpty(value) ? "' : value;
}// BackendUsername

public string BackendPassword

{
get
{
return m_backendPassword;
}
set
m_backendPassword = String.IsNullOrEmpty(value) ? "' : value;
}
}// BackendPassword

}// class Activity

The above implementation defines class fields used when collecting data from the client to be sent to the
server. The get and set definitions are required by the Microsoft .NET Framework for XML serialization and
deserialization.

18. Save the changes and build the project. Verify that the WorkflowServer.dll assembly is saved to the bin
folder of the WorkflowServer project.

10 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

STEP 2: Create the Client Module

Workflow package developers have the flexibility of creating the client module either as a .NET Compact
Framework project or formatted XML document. Both client module types are discussed in the following
subsections. Furthermore, each client module type described in this tutorial will share the same user-interface
format and functionality.

Client modules developed with .NETCF are only supported on Windows Mobile Professional (WM6), Windows

Mobile Pocket PC (WM5), Windows Mobile Standard (WM6) and Windows Mobile Smartphone (WM5) devices.
This option gives the widest degree of flexibility as the client module can basically be made to do anything that

.NETCF supports.

Client modules developed with a cross-platform XML description file are supported on all the above mentioned
platforms in addition to Symbian and iPhone. Therefore, this option gives the widest range of platform support
using a single code base.

To develop a .NET Compact Framework client module please reference subsection STEP 2 (i): Create a .NET
Compact Framework Client Module (WorkflowClient.dll); otherwise, subsection STEP 2 (ii): Create a XML Client
Module (ActivitiesWorkflow.xml) will review the process of developing a XML client module.

STEP 2 (i): Create a .NET Compact Framework Client Module
(WorkflowClient.dll)

The following instructions guide readers through the process of creating a .NET Compact Framework client
module. The client module used in this subsection will consist of four user-controls (each corresponding to a
single screen) and will be built to WorkflowClient.dll.

A copy of the completed project is located in the C:\Program Files\iAnywhere Mobile Office\Tools\
WorkflowSamples\Activities\ WorkflowClient directory. Before building this project, the iAnywhere.OMAAT .dll
assembly located in C:\Program Files\iAnywhere Mobile Office\Tools\MO_SDK\DotNet\WM5\PPC and the
MOCF20Client.dll assembly located in C:\Program Files\iAnywhere Mobile Office\Tools\MO_SDK\DotNet\WM5
must be added as project references.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 11

Workflow Package Tutorial Sample

iAnywhere Mobile Office

-

> Activities - Microsoft Visual Studio

o3

File Edit Eivild Data

SRR AT " - NI RS e

Wiew Projeck Debug

Farmak

Tools Window Community Help

HESE | f Release -

.

‘indows Mobile 5.0 Pocket PC Emulat - | 8l &3]

" -

v

o

_~uicMain.cs [Design] | -

X

Solution Explorer - Solution 'Ackivities' (2 projects) - 0 X

Pleaze select an activity:
Flease select a location:

Activity date:
|May 06, 2009

AhElh, A2IN0Sa Y

=

Cormments and description:

|xu:nq|u:u:|l ;:{:: san)dg daauas

1= mainMenu

: Solution ‘Activities' (2 projects)
—)- 7% Salukion Tkems
|2 ActivitiestWidget. xml
|2 mariFest,xml
= -_.J? WidgetClienk
[+ [=d| Properties
= | References
A3 iAnywhere OMAAT
A0 MOCF20CNent
A3 mscorlib
A System
A System.Daka
A System.Drawing
A Swskem.Windows, Forms
A2 Swskern, Xml
'E_f:j AMPProcessar.cs
ﬂ uichctivate, cs
ﬂ uicComment, cs
ﬂ uicLagin.cs
ﬂ uichain, cs
"ﬁ}__} uickain. Designer.cs
%] uicMain.resx
(7 widgetServer
[+ [=d| Properties
[+ [«3] References
'Zf_rj Activiby cs
] Handler,cs

Q‘jSDIutinn Explarer |23 Class Wiew !@Pmperty Manager

Ready

1. Open Visual Studio.NET 2005.

2. Create a new project and select Visual C# | Smart Device | Windows Mobile 5.0 Pocket PC | Control

Library. Name the project WorkflowClient.

3. Inthe Solution Explorer, rename UserControll.cs to uicMain.cs.

4. In Design mode, right click on the user-control and select Properties. Assign the following values:

BackColor: Pink

12

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

Name: uicMain
Size: 240, 268
confiscate it

5. Using the Toolbox, add a ComboBox named cbxActivity. In the properties of the ComboBox go to Iltems
and add a collection of strings to populate the ComboBox. For example add “l was swimming”, “| was
running”, “I was shopping” and “I was working”. Create a label beside the ComboBox; name the label
IblActivity and change its Text setting in properties to Please select an Activity:

6. Using the Toolbox, add a ComboBox named cbcLocation. This ComboBox will be populated with named
value pairs in the ApplyContext method. Create a label beside the ComboBox; name the label IblLocation
and change its Text setting in properties to Please select a location:

7. Using the Toolbox, add a DateTimePicker named dtpDate. In the properties of the DateTimePicker, assign
Format to Custom, and the CustomFormat property to MMMMMMMM dd, yyyy. Create a label beside the
DateTimePicker named IblDate and change its Text setting in properties to Activity date:

8. Using the Toolbox, add a TextBox named tbxSummary. In the properties of the TextBox, adjust the
following values:

Text:
Multiline: True
Size: 223, 57

Using the Toolbox, create a lable IbISummary above the TextBox named tbxSummary and change its Text
property to Comments and description:

9. Using the Toolbox, add a new ContextMenu named mainMenu. In the Solution Explorer right click on
uicMain.Designer.cs and select View Code. In InitializeComponent() change

this.mainMenu = new System.Windows.Forms.ContextMenu();
to
this.mainMenu = new System.Windows.Forms.MainMenu();

At the end of the file change

private System.Windows.Forms.ContextMenu mainMenu;
to
private System.Windows.Forms.MainMenu mainMenu;

Save and close the uicMain.Designer.cs file and return to the Design view of uicMain.cs.

10. Create a left menu button named menuSend and set the label property to Send. On the right of the main
menu, create a submenu named menuMenu and set the label property to Menu. Add the following menu
items to the submenu: menuNext with label property Next and menuCancel with label property Cancel.

11. Right-click the References tab of the WorkflowClient project and add the iAnywhere.OMAAT.dII library.
iAnywhere.OMAAT.dIl is located in the C:\Program Files\iAnywhere Mobile
Office\Tools\MO_SDK\DotNet\WM5\PPC directory.

12. Right-click the References tab of the WorkflowClient project and add the MOCF20Client.dll library.
MOCF20Client.dll is located in the C:\Program Files\iAnywhere Mobile
Office\Tools\MO_SDK\DotNet\WM5 directory.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 13

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

13. Right-click on the user-control, and select View Code. The remaining instructions implement the
functionality of the user-control in uicMain.cs.

At the top of the user-control source file, add the following code to import various namespaces used
by the user-control.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;

using System.Data;

using System.Text;

using System.Windows.Forms;

using System.Xml;

using System.Xml.Serialization;
using System.10;

using iAnywhere.OMAAT;

using iAnywhere._MobileOffice.AMP;

14. Modify the uicMain class signature to inherit UIComponent instead of UserControl.

public partial class uicMain : UIComponent

{1}
15. Add the following class field definition just before the uicMain() constructor in the uicMain class.

private bool m_bCancel = false;
private string m_strRequestAction = String.Empty;
XmlWorkflowMessage m_Msg;

16. Add the following ApplyContext method definition below the uicMain() constructor in the uicMain class.

protected override void ApplyContext()

{
//reset the UI to a known good state
Framework.BaseForm.Menu = this.mainMenu;
this.m_bCancel = false;

// Initialize the UI once when first loaded

if (!this.valid)

{
// Set existing controls to default values.
this.cbxActivity.Text = "";
this.cbxLocation.Text = "';
this.dtpDate.Value = DateTime.Today;
this.tbxSummary.Text = "";

// CustomContext is what was set in TransformerComponent.ProcessMail
// on the server
string strCustomContext = this.CustomContext as string;
if (IString.IsNullOrEmpty(strCustomContext))
{

this.m_Msg = XmlWorkflowMessage.CreateFromxml(strCustomContext);

if (this.m_Msg != null)

{

this.cbxActivity.Text = Convert.ToString(this.m_Msg.Values["activity"]);

14 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

// parse the location context variable for a list of items
// the user can select

this.cbxLocation.ltems_Clear();

this.cbxLocation.Text = "

string[] _values =
Convert._ToString(this.m_Msg.Values["location™]).Split("]");

List<string> _keyCollection = new List<string>();

foreach (string _val in _values)

{
string _key = val;
string _value = _val;
int _index = _val.IndexOf("$");
if (_index >= 0)
{
_key = _val.Substring(0, _index);
_value = _val _Substring(_index + 1);
3
if (! _keyCollection.Contains(_key))
_keyCollection.Add(_key);
this.cbxLocation.ltems_Add(_value);
3
}

if (this.cbxLocation.ltems.Count > 0)
this.cbxLocation.Text = this.cbxLocation.ltems[0].-ToString();

}
}
else
{
this.m_Msg = new XmlWorkflowMessage();
}

this.Valid = true;

}

ApplyContext is the first method called when the client module about to be displayed on the mobile device.
The implementation above overrides that defined in the UlControl base class; if the client module is being
loaded for the first time, then default values will be assigned to each of its user-interface control items;
otherwise, the user must be navigating back from the second page of the client module and the data
previously entered to the first page is restored.

When the client module first loads to a mobile device, the chxActivity ComboBox is populated with the
values previously assigned by the ProcessMail method during instruction 8 of STEP 1: Create Server
Module (WorkflowServer.dil). The cbxLocation ComboBox is filled with named value pairs.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 15

Workflow Package Tutorial Sample iAnywhere Mobile Office

17. Add the following Validate function definition below the ApplyContext method in the uicMain class.

protected override bool Validate()
{
//Check if the user selected to close the form
//without submitting the entered data
if (this.m_bCancel)
{
this.Valid = false; // do not submit the data to server
return true; // the form is allowed to close

}

//perform simple validation: if an activity is not selected or summary

//1is blank

//do not allow the form to close

iT (String.IsNullOrEmpty(cbxActivity.Selectedltem.ToString()) |I
String. IsNullOrEmpty(cbxLocation.Selectedlndex.ToString()) ||
String. IsNullOrEmpty(tbxSummary.Text))

// the form is not allowed to close
return false;

}

// All validation passed
this.Valid = true; // submit the data to server
return true; // the form is allowed to close

}

Validate is called as the client module is being closed. Similar to ApplyContext, Validate is also a function
overridden from the UlControl base class. This function is responsible for determining whether the data
entered into the user-control is valid. Invalid data entered should result in this.valid to be set to false; this
will prevent any further processing of the entered data. Conversely, assigning this.valid to true will allow
the submitted data to be relayed back to the server module.

The bool value returned from Validate is used to determine if the currently displayed client module should
be allowed to close. If false is returned from the Validate method, the currently displayed client module will
remain visible.

16 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

18. Add the following Serialize function definition below the Validate method in the uicMain class.

public override string Serialize()

{

//gather all the information and return the result string.
//result string is received as sData parameter of //ResponderComponent.ProcessResponse()
if (this.m_Msg != null)

if (this.m_Msg.Values["activity"] != null)
this.m_Msg.Values.Remove("activity");

this.m_Msg.Values.Add("activity", this.cbxActivity.Text);

iT (this.m_Msg.Values["location™] != null)
this.m_Msg.Values.Remove("'location');

this.m_Msg.Values.Add('location”, this.cbxLocation.Text);

if (this.m_Msg.Values["date"] != null)
this.m_Msg.Values.Remove("date");

this.m_Msg.Values.Add("date", this.dtpDate.Value);

if (this.m_Msg.Values["description"] != null)
this.m_Msg.Values.Remove("description"”);

this.m_Msg.Values.Add("description"”, this.tbxSummary.Text);
this.m_Msg.RequestAction = this.m_strRequestAction;

// Display a message box for user to dismiss via the OK button.
MessageBox.Show("The information has been sent.",

"Info",

MessageBoxButtons.OK,

MessageBoxlcon.Asterisk,
MessageBoxDefaultButton._Buttonl

);

// The value that was set in uicComment on the second form

// is already contained inside the XmlWorkflowMessage. The value
// was set in the Validate() method when the uicComment form

// was closed.

return this.m_Msg.Serialize();

}

//The message and stack trace of this exception will be written to the
//client log file at \Program Files\OneBridge\AMP\AMPHost.log.

//The administrator can retrieve this log file via the Mobile Office
//Admin console.

throw new Exception("Unable to collect XmlWorkflowMessage data.");

}

Serialize is the last function called in the client module before returning control to the server module.
Serialize is also a function overridden from the UIComponent base class. The implementation above
serializes the activity selected from the cbxActivity and cbxLocaiton ComboBox, date selected from the
dtpDate DateTimePicker and description entered in the tbxSummary TextBox into a single string. The menu
item that was selected is also saved in the XmIWorkflowMessage. The XmIWorkflowMessage is serialized
to a string is relayed to the sData parameter of the ProcessResponse method in the server module.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 17

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

19.

20.

21.

The XmIWorkflowMessage class is used in this method to allow the same server module to be shared
between the XML and .NET Compact Framework client Workflow package. Thus, eliminating the redundant
task of creating two server modules with the same logic; differing only by their associated client module type
(.NET Compact Framework or XML).

Add the following menuNext_Click method definition below the Serialize method in the uicMain class.

private void menuNext_Click(object sender, EventArgs e)

{
// Get a reference to the UIComponent that represents the second form.
// The Framework keeps a cache of all UIComponents loaded via
// GetUIComponent.
UIComponent _uic = Framework.GetUIComponent(typeof(uicComment));
// Now make _uic the top UIComponent in the Framework's stack of
// UIComponents
_uic.BringToFront(_uic.Text, // set the title of the form for the second page
false, // no minimize box
true, // show OK button
this.m_Msg // our XmlWorkflowMessage that stores all values
)
}

menuNext_Click will be triggered when the Next submenu item is selected. The above implementation gets
a reference of the second page user-control and sends it a reference of the XmIWorkflowMessage class
member this.m_Msg. The second page is displayed with a BringToFront call. this.m_Msg is passed as a
parameter in the BringToFront call for containing the data entered to the second page screen; thus, all the
data entered to the client module is contained in a single XmlWorkflowMessage instance.

Add the following menu method implementations below the Serialize function in the uicMain class.

private void menuCancel_Click(object sender, EventArgs e)

{
this.m_bCancel = true;
this.Close(); // this will cause the Validate() method to get called
}
private void menuSubmit_Click(object sender, EventArgs e)
{
this.m_bCancel = false;
this.m_strRequestAction = "send"; // Control that caused submit
// (Text matches action key in XML)
this.Close(); // this will cause the Validate() method to get called
}

To instruct the Workflow package to call the appropriate method implementations when the menu items are
selected, the methods created in the previous steps have to be linked with the Click events of the menu
items. Switch back to the Design view of uicMain.cs and select the mainMenu. Select the menu item Submit
and link the menuSubmit_Click method implementation to the Click event in the Properties Windows by
switching to the Events view (indicated by the small flash icon) and selecting the menuSubmit_Click method
from the drop down for the Click event. Repeat this for the menuNext_Click and the menuCancel_Click
methods.

This concludes the construction of the first page for the client module.

18

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

The following instructions describe the process of creating a second page to the client module, accessible via
the Next submenu item on the first page main menu.

22. In the Solution Explorer, right-click the WorkflowClient project and select Add | New Item. From the Add
New Item menu select User Control and name the file uicComment.cs.

23. Double-click on the uicComment.cs file from the Solution Explorer. In Design mode, right-click on the user-
control and select Properties. Assign the following values:

BackColor: ControlLightLight
Name: uicComment
Size: 240, 268

24. Using the Toolbox, add a ComboBox named cmbrmiType. In the properties of the ComboBox go to Items
and add a collection of strings to populate the ComboBox. “Update control data from server”, “Throw

exception from server”, “and “Return to previous screen”. These strings are the same ones used in the Xml
Workflow package to allow the same server component to be used.

Create a label beside the ComboBox; name the label IblIrmiType and change its Text setting in properties to
Please select a RMI demonstration type:.

25. Using the Toolbox, add a TextBox named tbxComments. In the properties of the TextBox, adjust the
following values:

Text:
Multiline: True
Size: 227, 152

26. Using the Toolbox, create a label beside on top of the tbxComments Textbox; name the label IbIPageTwo
and change its Text property to Page 2 Comments:.

27. Using the Toolbox, add a new ContextMenu named mainMenul. In the Solution Explorer right click on
uicComment.Designer.cs and select View Code. In InitializeComponent() change

this.mainMenu = new System.Windows.Forms.ContextMenu();
to
this.mainMenul = new System.Windows.Forms.MainMenu();

At the end of the file change

private System.Windows.Forms.ContextMenu mainMenu;
to
private System.Windows.Forms.MainMenu mainMenul;

Save and close the uicComment.Designer.cs file and return to the Design view of uicComment.cs.

28. Create a left menu button named menuBack and set its Text property to Back. Create a right menu button
named menuRMI and set its Text property to RMI.

29. At the top of the user-control source file, add the following code to import various namespaces used by the
user-control.

using System;
using System.Collections.Generic;
using System.ComponentModel;

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 19

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

30.

31.

using System.Drawing;

using System.Data;

using System.Text;

using System.Windows.Forms;

using System._Xml;

using System.Xml.Serialization;

using System.I10;

using iAnywhere.OMAAT;

using iAnywhere._MobileOffice.AVP;

using ExtendedSystems.OneBridge.MobileObject;

Modify the uicComment class signature to inherit UIComponent instead of UserControl.

public partial class uicComment : UIComponent

1

Add the following ApplyContext method definition below the uicComment() constructor in the
uicComment class.

protected override void ApplyContext()

{
//reset the UI to a known good state
Framework.BaseForm.Menu = this.mainMenu;

this.tbxComments.Text = ;

// Load message passed from page one

// This was passed to us in the BringToFront(...) call

// from the uicMain form

XmlWorkflowMessage _msg = this.CustomContext as XmlWorkflowMessage;

if (_msg != null)

{
// Load comments if provided within the context for this form.
if (_msg.Values["comments"] != null)

{
¥

this.tbxComments.Text = Convert.ToString(_msg.Values["comments"]);

}

The above ApplyContext() method is called when the second page user-control is loaded. This
implementation loads the XmIWorkflowMessage object passed from page one and adjusts the menu bar
accordingly. Next a check is performed to see if data has previously been entered to the tbxComments box
(possibly from switching back and forth between the first page user-control and second page user-control) if
so, the Textbox is loaded with this data.

20

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

32. Add the following menuBack_Click method definition below the ApplyContext() method in the
uicComment class.

private void menuBack_Click(object sender, EventArgs e)

{
//Save the comments into the context.
XmlWorkflowMessage _msg = this.CustomContext as XmlWorkflowMessage;
if (_msg != null)

// Load comments if provided within the context for this form.
if (_msg.Values["comments"] != null)
_msg.Values.Remove("comments");

_msg.Values.Add("comments", this.tbxComments.Text);

}

// This would cause the Validate() method to get called.

// If there is no Validate() override defined, the default

// returned value is true (i.e. the form is allowed to be closed).
this.Close();

}

The above implementation of menuBack_Click saves any data entered to the tboxComments box and
closes the second page user-control.

33. Add the following menuRMI_Click method definition to the the uicComment class.

private void menuRMI_Click(object sender, EventArgs e)

{

XmIWorkflowMessage _msg = this.CustomContext as XmlWorkflowMessage;
if (_msg = null)

// Setup Mobile Objects for RMI call

MOConnection _conn = new MOConnection();

//CGet User Name

string strUserName = MobileOfficeConfig.UserName;

//Get Server Name

string strServer = MobileOfficeConfig.ServerName;

//Get Port

ushort usPortNumber = MobileOfficeConfig.ServerPort;

//Get ActivationCode

string strActivationCode = MobileOfficeConfig.ActivationCode;

string strCompanylD = MobileOfficeConfig.CompanylD;

_conn.Init(strServer, usPortNumber, strCompanylD, strUserName,
true, strActivationCode, "OBPIM", "AMPACTIVITYSAMPLE");

MORequestOptions _req = new MORequestOptions();
_reg.ClientTimeout = 60; // 1 minute timeout;

// Construct the params for the call with the values from the on screen controls
XmIWorkflowMessage _msgRequest = new XmlWorkflowMessage();
_msgRequest._WorkflowScreen = "WorkflowClient_uicComment';
_msgRequest.Values.Add("rmitype", this.cmbrmiType.Text);
_msgRequest.Values.Add("'comments™, this.tbxComments.Text);

string _request = _msgRequest.Serialize();

byte[] _bufEntrylID = null;

try
{

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 21

Workflow Package Tutorial Sample iAnywhere Mobile Office

// Get the Credentials for the Workflow package
string _strUsername = String.Empty;
byte[] _bufPassword = null;
WorkflowUtils.GetCredentials("activity_credentials", // specified in the
// manifest_xml file
ref _strUsername,
ref _bufPassword);

// ModuleName is specified in the manifest.xml file, get the corresponding
// NModulelD
int _modulelD = WorkflowUtils.GetModulelD("SampleActivitiesModule™);

// send the RMI request to server
AMPResponseProcessor _processor = new AMPResponseProcessor(_conn);
string strResponse =
_processor .ProcessSyncRequest(_modulelD, // server assigned module 1D
1, // version of Workflow package
// specified in manifest.xml file
_conn.DevicelD,
_request, // serialized params
_bufEntrylD,// 1D of e-mail message if known
_strUsername,// username if Workflow package
// supports credentials
_bufPassword, // password if Workflow package
// supports credentials
_req);

// parse the server®s response
XmIWorkflowMessage _msgResponse = XmlWorkflowMessage.CreateFromXxml(strResponse);

// Server asked us to jump back to the main screen;
it (_msgResponse.WorkflowScreen.Equals('main'))

menuBack_Click(sender, e);

}

// Update the comments from the server
this.tbhxComments.Text = Convert.ToString(_msgResponse.Values[' comments"]);

}
catch (MOException ex)

// Show server thrown exception
MessageBox.Show(ex.Message,
"Exception",
MessageBoxButtons.OK,
MessageBoxlcon.Exclamation,
MessageBoxDefaul tButton.Buttonl);
}

_conn.Close();
Y/ if
}// menuRMI_click

The above implementation of menuRMI_Click connects to the server and makes a Remote Method
Invocation (RMI) call to the responder component’s implementation of ProcessSyncRequest. This method call
blocks the Workflow form execution until a response is obtained from the server, or the request timesout.

The response from the responder component is parsed and used to update the screen controls or used for
navigation. Utility methods in the WorkflowUtils class are used to obtain the Workflow package properties
needed for the method call.

22 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

34. To instruct the Workflow package to call the appropriate method implementations when the menu items are
selected the method created in the previous steps, they have to be linked with the Click event of the menu
item. Switch back to the Design view of uicComment.cs and select the mainMenu. Select the menu item
Back and link the menuBack_Click method implementation to the Click event in the Properties Windows by
switching to the Events view (indicated by the small flash icon) and selecting the menuBack_Click method
from the drop down for the Click event. Repeat for the RMI menu item.

35. Save the changes and build the project. Verify that the WorkflowClient.dll assembly is saved to the bin
folder of the WorkflowClient project.

36. In the Solution Explorer, right-click the WorkflowClient project and select Add | New Item. From the Add
New Item menu select User Control and name the file uicLogin.cs.

37. Double-click on the uicLogin.cs file from the Solution Explorer. In Design mode, right-click on the user-
control and select Properties. Assign the following values:

BackColor: ControlLightLight
Name: uicLogin
Size: 240, 268

38. Using the Toolbox, add a TextBox named txtUsername. In the properties of the TextBox, adjust the
following values:

Text:
Size: 223, 21
Tag: username

39. Using the Toolbox, create a label beside on top of the txtUsername Textbox; name the label IblUsername
and change its Text property to Username:.

40. Using the Toolbox, add a TextBox named txtPassword. In the properties of the TextBox, adjust the
following values:

Text:
Size: 223,21
Tag: password

41. Using the Toolbox, create a label beside on top of the txtUsername Textbox; name the label IbIPassword
and change its Text property to Password:.

42. In the previous steps, the values username and password specified in the Tag property of the text boxes
are important. They help the Workflow package framework identify which controls should be treated as
credentials and automatically persisted.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 23

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

43.

44,

45,

46.

47.

Using the Toolbox, add a new ContextMenu named mainMenu. In the Solution Explorer right click on
uicComment.Designer.cs and select View Code. In InitializeComponent() change

this.mainMenu = new System.Windows.Forms.ContextMenu();
to
this.mainMenu2 = new System.Windows.Forms.MainMenu();

At the end of the file change

private System.Windows.Forms.ContextMenu mainMenu;
to
private System.Windows.Forms.MainMenu mainMenu2;

Save and close the uicLogin.Designer.cs file and return to the Design view of uicLogin.cs.
Create a left menu button named menuOk and set its Text property to OK.

At the top of the user-control source file, add the following code to import various namespaces used by the
user-control.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;

using System.Data;

using System.Text;

using System.Windows.Forms;

using System.Xml;

using System.Xml.Serialization;
using System.I10;

using iAnywhere.OMAAT;

using iAnywhere_MobileOffice. AMP;

Modify the uicLogin class signature to inherit UIComponent instead of UserControl.

public partial class uiclLogin : UIComponent

{1}
Add the following ApplyContext method definition below the uicLogin() constructor in the uicLogin class.
protected override void ApplyContext()

//reset the Ul to a known good state
Framework.BaseForm.Menu = mainMenu2;
this.valid = true;

}

The above ApplyContext() method is called when the Login page is needed. A login page will be shown to
the user if the Workflow package requires credentials (specified in the manifest.xml file), and its credentials
are expired. The server can also inform the Workflow form to prompt for new credentials by throwing a
CredentialsRequestException. See server response component for details.

24

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

48. Add the following Validate method definition to the uicLogin class.
protected override bool Validate()

{
//perform simple validation: if the username or password textbox are blank
//do not allow the form to close
ifT (String. IsNullOrEmpty(txtUsername.Text) ||
String. IsNul lOrEmpty(txtPassword.Text))

// the form is not allowed to close
return false;

}

// All validation passed
this.valid = true; // submit the data to server
return true; // the form is allowed to close

}

The above implementation does simple validation on the username and password textbox fields to make sure
that values are filled in.

49. Add the following menuOk_Click method definition to the uicLogin class.

private void menuOk_Click(object sender, EventArgs e)

{
// This would cause the Validate() method to get called.

// If there is no Validate() override defined, the default
// returned value is true (i.e. the form is allowed to be closed).
this.Close();

}

50. To instruct the Workflow package to call the appropriate method implementations when the menu items are
selected the method created in the previous steps, they have to be linked with the Click event of the menu
item. Switch back to the Design view of uicLogin.cs and select the mainMenu. Select the menu item OK and
link the menuOk_Click method implementation to the Click event in the Properties Windows by switching to
the Events view (indicated by the small flash icon) and selecting the menuOk_Click method from the drop
down for the Click event.

51. Save the changes and build the project. Verify that the WorkflowClient.dll assembly is saved to the bin
folder of the WorkflowClient project.

52. In the Solution Explorer, right-click the WorkflowClient project and select Add | New Item. From the Add
New Item menu select User Control and name the file uicActivate.cs.

53. Double-click on the uicActivate.cs file from the Solution Explorer. In Design mode, right-click on the user-
control and select Properties. Assign the following values:

BackColor: ControlLightLight
Name: uicActivate
Size: 240, 268

54. Using the Toolbox, add a TextBox named txtUsername. In the properties of the TextBox, adjust the
following values:

Text:
Size: 223, 21

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 25

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

55.

56.

57.

58.

59.

60.

61.

62.

Tag: username

Using the Toolbox, create a label beside on top of the txtUsername Textbox; name the label IblUsername
and change its Text property to Username:.

Using the Toolbox, add a TextBox named txtPassword. In the properties of the TextBox, adjust the
following values:

Text:
Size: 223,21
Tag: password

Using the Toolbox, create a label beside on top of the txtUsername Textbox; name the label IbIPassword
and change its Text property to Password:.

In the previous steps, the values username and password specified in the Tag property of the text boxes
are important. They help the Workflow package framework identify which controls should be treated as
credentials and automatically persisted.

Using the Toolbox, add a ComboBox nhamed cmbLanguage. In the properties of the ComboBox go to Items
and add a collection of strings to populate the ComboBox. For example add “English”, “German” and
“Chinese”. Create a label beside the ComboBox; name the label IblLangauge and change its Text setting in
properties to Language:

Using the Toolbox, add a new ContextMenu named mainMenu. In the Solution Explorer right click on
uicComment.Designer.cs and select View Code. In InitializeComponent() change

this.mainMenu = new System.Windows.Forms.ContextMenu();
to
this.mainMenu = new System.Windows.Forms.MainMenu();

At the end of the file change

private System.Windows.Forms.ContextMenu mainMenu;
to
private System.Windows.Forms.MainMenu mainMenu;

Save and close the uicLogin.Designer.cs file and return to the Design view of uicActivate.cs.
Create a left menu button named menuActivate and set its Text property to Activate.

At the top of the user-control source file, add the following code to import various namespaces used by the
user-control.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;

using System.Data;

using System.Text;

using System.Windows.Forms;

using System.Xml;

using System_Xml.Serialization;
using System.I10;

using iAnywhere.OMAAT;

using iAnywhere._MobileOffice.AMP;

26

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

63. Modify the uicActivate class signature to inherit UIComponent instead of UserControl.

public partial class uicActivate : UIComponent

{1}

64. Add the following ApplyContext method definition below the uicActivate() constructor in the uicActivate
class.

protected override void ApplyContext()

{
//reset the Ul to a known good state
Framework.BaseForm.Menu = mainMenu;
this.Valid = true;

s

The above ApplyContext() method is called when the Activation page is needed. An Activation page will be
shown to the user if the Workflow package requires activation the first time it is used (specified in the
manifest.xml file).

After the Activation page is dismissed, the default screen for the Workflow package will be shown. If the
Workflow package also requires credentials and they have not been entered the credentials screen will be
shown to collect the credentials. The Activation page automatically saves credentials if the screen contains
credentials controls. Recall the Workflow package framework treats controls with the Tag values of
username or password as credential controls.

65. Add the following Validate method definition to the uicActivate class.
protected override bool Validate()

{

//perform simple validation: if the username or password textbox are blank
//do not allow the form to close
it (String. IsNullOrEmpty(txtUsername.Text) ||

String. IsNul lOrEmpty(txtPassword.Text))

// the form is not allowed to close
return false;

}

// All validation passed
this.Vvalid = true; // submit the data to server
return true; // the form is allowed to close

}

The above implementation does simple validation on the username and password textbox fields to make sure
that values are filled in.

66. Add the following menultemActivate_Click method definition to the uicActivate class.

private void menultemActivate_Click(object sender, EventArgs e)
{
// This would cause the Validate() method to get called.
// If there is no Validate() override defined, the default
// returned value is true (i.e. the form is allowed to be closed).
this.Close();

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 27

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

67.

68.

To instruct the Workflow package to call the appropriate method implementations when the menu items are
selected the method created in the previous steps, they have to be linked with the Click event of the menu
item. Switch back to the Design view of uicActivate.cs and select the mainMenu. Select the menu item
Activate and link the menultemActivate_Click method implementation to the Click event in the Properties
Windows by switching to the Events view (indicated by the small flash icon) and selecting the
menultemActivate_Click method from the drop down for the Click event.

Save the changes and build the project. Verify that the WorkflowClient.dll assembly is saved to the bin
folder of the WorkflowClient project.

28

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

STEP 2 (ii): Create a XML Client Module (ActivitiesWorkflow.xml)

The following instructions guide readers through the process of creating a XML client module. A copy of the
completed ActivitiesWorkflow.xml client module is located in the C:\Program Files\iAnywhere Mobile
Office\Tools\ Workflow Samples\Activities directory.

Once deployed to the client device, the frameworks implemented in iAnywhere Mobile Office will parse the XML,
construct its graphical user-interface items and display them to the screen. XML client modules are supported
on Windows Mobile , Symbian and iPhone platforms. The iAnywhere Mobile Office framework will contruct the
graphical user-interface elements for each platform using the native controls on each platform.

1. Using a text editor, create a file named ActivitiesWorkflow.xml.
2. Copy the following code into the ActivitiesWorkflow.xml file.

<?xml version="1.0" encoding="utf-8"?>
<workflow>
<screens default="main">
<screen key="main" text="%ACTIVITY%" okaction="cancel" backcolor="pink">
<actions default="send">
<action key="send" text="%SEND%" type="'submit"
onsubmit=""%0ONSUBMITTEXT%" onresubmit="%0NRESUBMITTEXT%" />

<action key="rmi" text="%RMI%" type="'rmi" timeout="60"
onerror="%REQUESTERROR%"">
<param key="activity" />
<param key="'date" />
<param key="description" />
</action>

<action key="next" text="%NEXT%" type="open" target="WorkflowClient.uicComment"
/>

<action key="cancel" text="%CANCEL%" type="close" />
</actions>
</screen>
</screens>
<resources>
<strings default="en-us">
<lang key="en-us">
<string key="ACTIVITY" value="Activity" />
<string key="ACTIVITY2" value="Activity - Page 2" />
<string key="LOGIN" value="Login' />

<string key="SEND" value="Send" />
<string key="CANCEL" value="Cancel" />
<string key="SWIM" value="I was swimming" />
<string key="RUN" value="I was running" />
<string key="SHOP" value="I was shopping" />
<string key="WORK" value="I was working" />
<string key="DATE" value="Activity date:" />
<string key="SELECTLABEL" value="Please select an activity:" />
<string key="SELECTLABEL2" value="Please select a location:" />
<string key="SELECTLABEL3" value=""Please select a RMI

demonstration type:" />

<string key="TEXTLABEL" value="Comments and description:" />
<string key="COMMENTSLABEL" value="Page 2 Comments:" />

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 29

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

<string key="NEXT" value="Next" />

<string key="BACK" value="Back" />

<string key="INFO" value="Notice" />

<string key="ONSUBMITTEXT" value="The information has been sent." />

<string key="ONRESUBMITTEXT" value="The information has already been
sent." />

<string key="USERNAMELABEL"™ value="Username:" />

<string key="PASSWORDLABEL" value="Password:" />

<string key="0K" value="0K" />

<string key=""REQUESTERROR" value="Error requesting data from server." />

<string key="RMI" value="RMI" />

<string key="UPDATE" value="Update control data from server.' />

<string key="EXCEPTION" value="Throw exception from server." />

<string key=""SCREEN" value="Return to previous screen.' />

<string key="ACTIVATE" value="Activation Screen'/>

<string key="ACTMNU" value="Activate"/>

<string key="LANGLBL" value="Language:"/>

</lang>
</strings>
</resources>
</workflow>

The XML definition above creates a new screen on the client-side device with four menu items, Send, RMI,
Next and Cancel. The next menu button will allow for navigation to the second page of the client module.
The code enclosed by the <resources> and </resources> tag map strings to keywords that are used
throughout the user-interface implementation. Localized text can be supplied for different languages by
specifying an additional <lang> ...</lang> section for the desired language. (See Xml Workflow Resources
in the Workflow Developer Guide and Step 5 below). The completed sample demonstrates localized
German text.

The default attribute on the screen tag denotes which screen is displayed first when this client module is
loaded by Mobile Office.

3. Copy the following code into the ActivitiesWorkflow.xml file between the </actions> and </screen> tags.

<controls>
<selectbox key="activity" value="o04"
required="true" label="%SELECTLABEL%" labelpos="top">
<option key="" value="" />
<option key="01" value="%SWIM%" />
<option key="02" value="%RUN%" />
<option key="03" value="%SHOP%" />
<option key="o04" value="%WORK%" />
</selectbox>
<selectbox key="location" value=""
required="false" label="%SELECTLABEL2%" labelpos=""top"">
</selectbox>

<datepicker key="date" value="today" label="%DATE%" labelpos="top" minvalue="today-7"
maxvalue="today+7">
</datepicker>
<textbox key="description" value="" required="false"
multiline="3" label="%TEXTLABEL%" labelpos="top">
</textbox>
</controls>

The code above adds four controls to the user-interface. These controls are a ComboBox populated with 4
values (each displaying their associated strings mapped from the <resources> section), a second

30 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

ComboBox used to demonstrate setting named value pairs for the <selectbox> tag, a DateTimePicker and a
TextBox. The controls are labeled with strings specified in the <resources> section.

4. Copy the following code into the ActivitiesWorkflow.xml file between the </screen> and </screens> tags.

<screen key="WorkflowClient.uicComment" text="%ACTIVITY2%">
<actions default="back">
<action key="back" text="%BACK%" type="save" />
<action key="rmi" text="%RMI%" type="rmi" timeout="60" onerror="%REQUESTERROR%">
<param key="rmitype" />
<param key="comments" />
</action>
</actions>
<controls>
<selectbox key="rmitype" value="update"
required="true" label="%SELECTLABEL3%" labelpos="top">
<option key="update" value="%UPDATE%" />
<option key="exception" value="%EXCEPTION%" />
<option key="screen" value="%SCREEN%" />
</selectbox>
<textbox key="comments" value="" required="false" multiline="6" label="%COMMENTSLABEL%"
labelpos="top">
</textbox>
</controls>
</screen>

The code above implements a second page for the client module. The second page consists of a SelectBox
and TextBox control with menu options to demonstrate an RMI call to the server and also to navigate back
to the first page.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 31

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

5. Copy the following co
<resources>
<strings default="e
<lang key="en-us">

<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
</lang>
<lang key="de-de">
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string

de into the ActivitiesWorkflow.xml file between the </lang> and </strings> tags.
n-us">

key="ACTIVITY" value="Activity" />

key="ACTIVITY2" value="Activity - Page 2" />

key="LOGIN" value="Login" />

key="SEND" value="Send" />

key="CANCEL" value="Cancel" />

key="SWIM" value="I was swimming" />

key="RUN" value="I was running" />

key="SHOP" value="I was shopping" />

key="WORK" value="I was working" />

key="DATE" value="Activity date:" />

key="SELECTLABEL" value="Please select an activity:" />
key="SELECTLABEL2" value="Please select a location:" />
key="SELECTLABEL3" value="Please select a RMI demonstration type:" />
key="TEXTLABEL" value="Comments and description:" />
key="COMMENTSLABEL" value="Page 2 Comments:" />

key="NEXT" value="Next" />

key="BACK" value="Back" />

key="INFO" value="Notice" />

key="ONSUBMITTEXT" value="The information has been sent." />
key="ONRESUBMITTEXT" value="The information has already been sent." />
key="USERNAMELABEL" value="Username:" />

key="PASSWORDLABEL" value="Password:" />

key="0K" value="0OK" />

key="REQUESTERROR" value="Error requesting data from server." />
key="RMI" value="RMI" />

key="UPDATE" value="Update control data from server." />
key="EXCEPTION" value="Throw exception from server." />
key="SCREEN" value="Return to previous screen." />
key="ACTIVATE" value="Activation Screen"/>

key="ACTMNU" value="Activate"/>

key="LANGLBL" value="Language:"/>

key="ACTIVITY" value="Aktivitat" />

key="ACTIVITY2" value="Aktivitdt - Seite 2" />

key="LOGIN" value="Logon" />

key="SEND" value="Speichern" />

key="CANCEL" value="Schliessen" />

key="SWIM" value="Ich war schwimmen" />

key="RUN" value="Ich war laufen" />

key="SHOP" value="Ich war einkaufen" />

key="WORK" value="Ich habe gearbeitet" />

key="DATE" value="Datum:" />

key="SELECTLABEL" value="Bitte wdhlen Sie eine Aktivitat:" />
key="TEXTLABEL" value="Kommentar und Beschreibung:" />
key="COMMENTSLABEL" value="Kommentare Seite 2:" />

key="NEXT" value="Weiter" />

key="BACK" value="Zuriick" />

key="INFO" value="Info" />

key="ONSUBMITTEXT" value="Ihre Eingaben wurden versendet." />
key="ONRESUBMITTEXT" value="Ihre Eingaben wurden bereits gesendet." />
key="USERNAMELABEL" value="Username:" />

key="PASSWORDLABEL" value="Passwort:" />

key="0K" value="OK" />

key="REQUESTERROR" value="Es ist eine Fehler in der Kommunikation

mit dem Server aufgetreten." />

32

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

<string key="RMI" value="RMI" />
<string key="UPDATE" value="Controldaten via Server aktualisieren.™ />
<string key="EXCEPTION" value="Eine Ausnahme auf dem Server ausldsen." />
<string key="SCREEN" value="Zum vorherigen Screen zuriickkehren." />
<string key="ACTIVATE" value="Aktivierung"/>
<string key="ACTMNU" value="Aktivieren"/>
<string key="LANGLBL" value="Sprache"/>

</lang>

</strings>

</resources>

The code above adds German support for the client module. Each of the keywords mapped earlier to an
English string have now been mapped to their equivalent German expressions. Depending on the language
set on the client device, the XML user-interface will display the text for the appropriate language
accordingly.

5. Copy the following code into the ActivitiesWorkflow.xml file between the </screen> and </screens> tags.

<screen key="WorkflowClient.uicLogin" text="%LOGIN%">
<actions>
<action key="ok" text="%0K%" type='"'save" />
</actions>
<controls>
<textbox key="username' value=""
required=""true"
credential=""username"
label =""%USERNAMELABEL%" labelpos=""top'>
</textbox>
<textbox key="password" value=""
required=""true"
credential="password"
password=""true" label="%PASSWORDLABEL%" labelpos=""top">
</textbox>
</controls>
</screen>

The code above defines a login screen to prompt for credentials. IT at anytime
the credentials are expired, this screen will be shown to the user before the
default screen. See <CredentialsCache> tag in the Manifest file reference and
<textbox> control from the Workflow Developer Guide for more information.

6. Copy the following code into the ActivitiesWorkflow.xml file between the </screen> and </screens> tags.

<screen key="WorkflowClient._.uicActivate" text="%ACTIVATE% >
<actions>
<action key="activate" text="%ACTMNU%" type="save" />
</actions>
<controls>
<textbox key="username'" value="""
required=""true"
credential=""username"
label="%USERNAMELABEL%" labelpos=""top">
</textbox>
<textbox key="password" value=""
required=""true"
credential="password"
password=""true" label="%PASSWORDLABEL%" labelpos=""top">
</textbox>

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 33

Workflow Package Tutorial Sample iAnywhere Mobile Office

<selectbox key="lang" value="en"
labe I=""%LANGLBL%"
required=""true'">
<option key=""" value="" />
<option key="en" value="English' />
<option key="de" value="German" />
<option key="cn" value="Chinese" />
</selectbox>
</controls>
</screen>

The code above defines an activation screen for the Workflow package. The package denoted it required
Activation in the manifest file with the <RequiresActivation> tag. An activation screen is only shown the first
time a Workflow package that requires activation is invoked. If the defined activation screen contains credential
controls (<textbox> with the credential attribute defined), the credentials are automatically saved to the
Credentials Cache.

7. Save and close the ActivitiesWorkflow.xml file.

34 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

STEP 3: Package the Workflow Package

A Workflow package is packaged as a compressed zip file. The manifest.xml file which must sit at the root of
the zip package is a description of how the zip contents are organized. Inside the manifest.xml file, it specifies
matching rules, the location of the server module implementation, and the client module to deploy onto the
mobile device. Matching rules are used to differentiate between regular emails and Workflow package email
requests. The following instructions document the construction of a manifest.xml file.

A copy of the completed manifest.xml file is located in the C:\Program Files\iAnywhere Mobile Office
\Tools\Workflow Samples\Activities directory.

1. Using a text editor, create a file named manifest.xml.
2. Copy the following code into the manifest.xml file.

<?xml version="1.0" encoding="utf-16"?>

<Manifest xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalLocation="AMPManifest.xsd">
<ModuleName>SampleActivitiesModule</ModuleName>
<ModuleVersion>1</ModuleVersion>
<ModuleDesc>AMP Sample - Activities Collection</ModuleDesc>
<ModuleDisplayName>Activities Sample</ModuleDisplayName>
<ClientIconIndex>35</ClientIconIndex>
<InvokeOnClient>1</InvokeOnClient>
<MarkProcessedMessages>1</MarkProcessedMessages>
<DeleteProcessedMessages>0</DeleteProcessedMessages>
<CredentialsCache key="activity_credentials">1</CredentialsCache>
<RequiresActivation>1</RequiresActivation>

<MatchRules>
<SubjectRegExp>"~Activity:.*</SubjectRegExp>
</MatchRules>
</Manifest>

The code above uses the regular expression Activity: followed by any set of characters as its matching
rule.

3. Copy the following code into the manifest.xml file between the </RequiresActivation> and <MatchRules>
tags.

<TransformPlugin>
<File>WorkflowServer.dl1l</File>
<Class>WorkflowServer.TransformerComponent</Class>
</TransformPlugin>

<ResponsePlugin>
<File>WorkflowServer.dl1l</File>
<Class>WorkflowServer.ResponderComponent</Class>
</ResponsePlugin>

The above tags specify that the server module responsible for the transform of the e-mail and processing its
response is implemented in the WorkflowServer.dll file. The file paths are relative to the zip package, so in
the above example, WorkflowServer.dll resides at the root of the zip package.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 35

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

4. Copy the following code into the manifest.xml file between the </ResponsePlugin> and <MatchRules>
tags.

<ClientWorkflows>
<WindowsMobileProfessional>
<CFWorkflow>
<File>Client\WorkflowClient.dll</File>
<Class>WorkflowClient.uicMain</Class>
<CredentialScreen>WorkflowClient.uicLogin</CredentialScreen>
<ActivationScreen>WorkflowClient.uicActivate</ActivationScreen>
</CFWorkflow>
</WindowsMobileProfessional>
<WindowsMobileStandard>
<XMLWorkflow>
<File>Client\ActivitiesWorkflow.xml</File>
<CredentialScreen>WorkflowClient.uicLogin</CredentialScreen>
<ActivationScreen>WorkflowClient.uicActivate</ActivationScreen>
</XMLWorkflow>
</WindowsMobileStandard>
<Symbian>
<XMLWorkflow>
<File>Client\ActivitiesWorkflow.xml</File>
<CredentialScreen>WorkflowClient.uiclLogin</CredentialScreen>
<ActivationScreen>WorkflowClient.uicActivate</ActivationScreen>
</XMLWorkflow>
</Symbian>
<iPhone>
<XMLWorkflow>
<File>Client\ActivitiesWorkflow.xml</File>
<CredentialScreen>WorkflowClient.uicLogin</CredentialScreen>
<ActivationScreen>WorkflowClient.uicActivate</ActivationScreen>
</XMLWorkflow>
</i1Phone>
</ClientWorkflows>

The <ClientWorkflows> tag specifies the client module to deploy to the mobile device. In this tutorial, we
associate the .NET Compact Framework client module with the Windows Mobile PocketPC device, and the
XML client module with the Windows Mobile Smartphone , Symbian and iPhone platforms. The file paths
are relative to the zip package, so in the above example, WorkflowClient.dll and ActivitiesWorkflow.xml
reside in a folder named Client at the root of the zip package.

5. Copy the following code into the manifest.xml file between the </ClientWorkflows> and <MatchRules>
tags.

<ContextVariables>

<ContextVariable>
<Name>OutputFolder</Name>
<Value>C:\ActivitiesSampleOutput</Value>
<Password>false</Password>

</ContextVariable>

<ContextVariable>
<Name>Activity</Name>
<Value>I was running</Value>
<Password>false</Password>

</ContextVariable>

<ContextVariable>
<Name>Location</Name>
<Value>|Locl$Location 1]Loc2$Location 2|Loc3$Location 3</Value>
<Password>false</Password>

36 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample

</ContextVariable>
</ContextVariables>

The <ContextVariables> tag provides developers the freedom of sending string variables to a server
module without having to recompile the project. In this tutorial, we specify the string value
C:\AMPSampleOutput to be set to variable OutputFolder. This value was used by the _SaveResponse
method in our WorkflowServer.dll for outputting our client module data to a text file. In addition, we specify
the string value | was running to be set to variable Activity. This value is used by the ProcessMail method
in the TransformerComponent class to populate the Activities ComboBox on the client module. Finally, we
populate the Location ComboBox with named value pairs with the Location context variable. When a
Workflow package is deployed, Administrators have the option of overwriting the values of the context
variables via the Mobile Office Admin console.

6. Save and close the manifest.xml file.

This concludes the configuration required in our manifest.xml file. Next, we will need to package our server
module (WorkflowServer.dll) and client module (ActivitiesWorkflow.xml or WorkflowClient.dll) according to
what was specified in the manifest.xml file.

The manifest.xml file should be at the same directory level as WorkflowServer.dlIl.

If during STEP 2: Create the Client Module a .NET Compact Framework client module was created then
WorkflowClient.dll need be located in the directory Client\ where Client is a directory of equal level to the
manifest.xml file.

Similarly, if during STEP 2: Create the Client Module a XML client module was created then
ActivitiesWorkflow.xml need be located in the directory Client\ where Client is a directory of equal level to
the manifest.xml file.

7. Using the cursor, highlight the manifest.xml file, WorkflowServer.dll file and Client directory.
8. Right click the group of selected files, and select Compressed (zipped) Folder from the Send To menu. A

.zip file will be generated; the name of this file can be assigned to any desired string. Let’s call it
ActivitiesPackage.zip.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 37

Workflow Package Tutorial Sample iAnywhere Mobile Office

STEP 4: Deploy and Assign Users to Workflow Package

Open iAnywhere Mobile Office Admin. In the Workflows tab, select the Add... button located on the left of
the screen. Locate the ActivitiesPackage.zip file generated from STEP 3: Package the Workflow Package
and select Open.

From the Users tab in the iAnywhere Mobile Office Admin console, highlight a user you wish to register to
the Workflow package and select Edit Settings... followed by Workflows...

From the checklist menu, select Activities Sample. Select OK from each submenu screen until you have
returned to the iAnywhere Mobile Office Admin main menu screen.

38

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

iAnywhere Mobile Office Workflow Package Tutorial Sample
-

STEP 5: Run the Tutorial on a Client Device

Running the Workflow package on a client device is the final task of this tutorial. Our server module, client
module, and iAnywhere Mobile Office configurations have now been built and configured to run our Workflow
package.

1. On the Mobile Office server, create a new directory on the C:\ drive named ActivitiesSampleOutput.
Recall, this value was specified in the manifest.xml file as a context variable.

2. If a .NET Compact Framework client module was created during STEP 2: Create the Client Module then the
following OneBridge Mobile Office cab file should be installed to the Windows Mobile 5.0 Pocket PC device.

C:\Program Files\iAnywhere Mobile Office\Bin\Clients\OneBridgeSetup_ppc.cab

Otherwise, the following OneBridge Mobile Office cab file should be installed to the Windows Mobile 5.0
Smart Phone device.

C:\Program Files\iAnywhere Mobile Office\Bin\Clients\OneBridgeSetup_sp.cab

When prompted for a server name and credentials, specify the server used in STEP 4: Deploy and Assign
Users to Workflow Packages and the user registered to the Workflow package.

3. Send an email request to the iAnywhere Mobile Office user. This may be accomplished by logging into the
email account of the iAnywhere Mobile Office user specified in instruction 2 and composing a new email.
The email must be addressed to the iAnywhere Mobile Office user and the email subject must begin with
Activity: followed by any set of characters.

The client will shortly receive an email in their device’s Inbox labeled with a unique inbox icon (specified in
the Workflows tab of iAnywhere Mobile Office Admin console) and the subject entered in the server-side
email client.

4. On the client device, select the Workflow package request email. The client module created in STEP 2:
Create the Client Module will appear.

5. Populate the items on the client module as desired and click the Send button.
6. On the Mobile Office server, open the C:\ActivitiesSampleOutput directory. A newly generated text file

containing the information sent from the client device will be present. Open this text file and compare its
contents against those typed in the client module.

Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved. 39

Workflow Package Tutorial Sample iAnywhere Mobile Office
-

40 Copyright © 2009 iAnywhere Solutions, Inc. All rights reserved

	Copyright and Trademarks
	Disclaimer
	Technical Support
	Table of Contents
	Introduction
	Creating a Business Process Workflow Package with .NET Technology

	STEP ONE: Create the Server Module (WorkflowServer.dll)
	STEP 2: Create the Client Module
	STEP 2 (i): Create a .NET Compact Framework Client Module (WorkflowClient.dll)
	STEP 2 (ii): Create a XML Client Module (ActivitiesWorkflow.xml)

	STEP 3: Package the Workflow Package
	STEP 4: Deploy and Assign Users to Workflow Package
	STEP 5: Run the Tutorial on a Client Device

