
User Guide for Encrypted Columns

Adaptive Server® Enterprise
15.0.2

DOCUMENT ID: DC00968-01-1502-01

LAST REVISED: November 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

User Guide for Encrypted Columns iii

About This Book .. vii

CHAPTER 1 Overview of Encryption .. 1

CHAPTER 2 Creating and Managing Encryption Keys 5
Creating encryption keys.. 5
Key protection .. 10

Granting access to keys .. 11
Key protection using the system-encryption password 11
Changing the key .. 13
Separating keys from data .. 13

Dropping encryption keys... 14

CHAPTER 3 Encrypting Data... 15
Specifying encryption on new tables .. 16

Specifying encryption on select into .. 17
Encrypting data in existing tables... 18
Creating indexes and constraints on encrypted columns............... 19
Decrypt permission .. 20

Revoking decryption permission ... 21
Restricting decrypt permission ... 22

Assigning privileges for restricted decrypt permissions........... 22
Returning default values instead of decrypted data 23

Defining a decrypt default.. 23
Permissions and decrypt default ... 24
Columns with decrypt default values....................................... 25
Decrypt default columns and query qualifications 26
decrypt default and implicit grants... 27
decrypt default and insert, update, and delete statements...... 28
Removing decrypt defaults .. 29

Length of encrypted columns ... 30

iv Adaptive Server Enterprise

CHAPTER 4 Accessing Encrypted Data... 33
Processing encrypted columns... 33
Permissions for decryption ... 34
Dropping encryption ... 35

CHAPTER 5 Protecting Data Privacy from the Administrator........................ 37
Role of the key custodian ... 37

Users, roles, and data access ... 39
Key protection using user-specified passwords 40

Changing a key’s password... 41
Creating key copies ... 43
Changing passwords on key copies .. 44
Accessing encrypted data with user password........................ 45
Application transparency using login passwords on key copies 48
Login password change and key copies.................................. 51
Dropping a key copy.. 51

CHAPTER 6 Recovering Keys from Lost Passwords 53
Loss of password on key copy ... 53
Loss of login password ... 54
Loss of password on base key ... 54
Key recovery commands .. 55
Changing ownership of encryption keys... 57

CHAPTER 7 Auditing Encrypted Columns... 59
Auditing options .. 59
Audit values .. 59
Event names and numbers... 59
Masking passwords in command text auditing 60
Auditing actions of the key custodian ... 60

CHAPTER 8 Performance Considerations ... 61
Indexes on encrypted columns... 61
Sort orders and encrypted columns.. 62
Joins on encrypted columns ... 63
Search arguments and encrypted columns 64
Movement of encrypted data as cipher text.................................... 65

CHAPTER 9 System Information for Encrypted Columns.............................. 67
System tables ... 67
System commands ... 68

User Guide for Encrypted Columns v

set proxy .. 68
set encryption password .. 68
alter table ... 68
create index ... 70
create table .. 71
select into... 72
create encryption key... 73
alter encryption key.. 73
drop encryption key ... 73
grant create encryption key ... 73
revoke create encryption key... 74
grant decrypt.. 74
revoke decrypt ... 74
unmount database ... 75
dump and load database ... 75
quiesce database... 76
drop database.. 77
dbcc ... 77

System stored procedures.. 78
sp_helprotect ... 78
sp_dropuser... 78
sp_help .. 78
sp_configure .. 79
sp_helpconfig... 81
sp_password.. 82
sp_audit ... 82
sp_displayaudit .. 82
sp_encryption .. 83

Utilities .. 100
ddlgen.. 100
sybmigrate ... 107
bulk copy (bcp) .. 108

Component Integration Services (CIS)... 110
Replicating encrypted data ... 111

Index.. 113

vi Adaptive Server Enterprise

User Guide for Encrypted Columns vii

About This Book

Audience This book is intended for system administrators configuring Adaptive
Server® Enterprise for encrypted columns.

How to use this book • Chapter 1, “Overview of Encryption,” – describes the Adaptive
Server encrypted column feature.

• Chapter 2, “Creating and Managing Encryption Keys,” – describes
commands for creating, altering, and droping encryption keys.

• Chapter 3, “Encrypting Data,” – describes what data can be
encrypted and the steps to preform for encryption.

• Chapter 4, “Accessing Encrypted Data,” – describes how to access
encrypted data.

• Chapter 5, “Protecting Data Privacy from the Administrator,” –
describes how to protect your encrypted data from the system
administrator.

• Chapter 6, “Recovering Keys from Lost Passwords,” – describes
what to do if you or a user loses an encryption key or a password.

• Chapter 7, “Auditing Encrypted Columns,” – describes how to audit
encrypted data.

• Chapter 8, “Performance Considerations,” – describess performance
implications and resolutions for encrypted columns.

• Chapter 9, “System Information for Encrypted Columns,” –
describes changes made to system tables, commands, system
procedures, utilities, CIS, and replication for encrypted columns.

Related documents The Adaptive Server Enterprise documentation set consists of the
following:

• The release bulletin for your platform – contains last-minute
information that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document
information that was added after the release of the product CD, use
the Sybase Technical Library.

viii Adaptive Server Enterprise

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

• ASE Replicator User’s Guide – describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
a primary server to one or more remote Adaptive Servers.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• The Configuration Guide for your platform – provides instructions for
performing specific configuration tasks for Adaptive Server.

• Enhanced Full-Text Search Specialty Data Store User’s Guide – describes
how to use the Full-Text Search feature with Verity to search Adaptive
Server Enterprise data.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Historical Server User’s Guide – describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

• Job Scheduler User's Guide – provides instructions on how to install and
configure, and create and schedule jobs on a local or remote Adaptive
Server using the command line or a graphical user interface (GUI).

• Messaging Service User’s Guide – describes how to useReal Time
Messaging Services to integrate TIBCO Java Message Service and IBM
WebSphere MQ messaging services with all Adaptive Server database
applications.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

 About This Book

User Guide for Encrypted Columns ix

• Performance and Tuning Series – a series of books that explain how to
tune Adaptive Server for maximum performance:

• Basics – the basics for understanding and investigating performance
questions in Adaptive Server.

• Locking and Concurrency Control – describes how the various
locking schemas can be used for improving performance in Adaptive
Server, and how to select indexes to minimize concurrency.

• Query Processing and Abstract Plans – describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

• Physical Database Tuning – describes how to manage physical data
placement, space allocated for data, and the temporary databases.

• Monitoring Adaptive Server with sp_sysmon – describes how to
monitor Adaptive Server’s performance with sp_sysmon.

• Improving Performance with Statistical Analysis – describes how
Adaptive Server stores and displays statistics, and how to use the set
statistics command to analyze server statistics.

• Using the Monitoring Tables – describes how to query Adaptive
Server’s monitoring tables for statistical and diagnostic information.

• Quick Reference Guide – provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, data types, and utilities in a pocket-sized book (regular size
when viewed in PDF format).

• Reference Manual – is a series of four books that contains the following
detailed Transact-SQL information:

• Building Blocks – Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

• Commands – Transact-SQL commands.

• Procedures – Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

• Tables – Transact-SQL system tables and dbcc tables.

• System Administration Guide –

x Adaptive Server Enterprise

• Volume 1 – provides an introduction to the basics of system
administration, including a description of configuration parameters,
resource issues, character sets, sort orders, and diagnosing system
problems. The second part of this book is an in-depth description of
security administration.

• Volume 2 – includes instructions and guidelines for managing
physical resources, mirroring devices, configuring memory and data
caches, managing multiprocessor servers and user databases,
mounting and unmounting databases, creating and using segments,
using the reorg command, and checking database consistency. The
second half of this book describes how to back up and restore system
and user databases.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Full-size available only in print version; a
compact version is available in PDF format.

• Transact-SQL User’s Guide – documents Transact-SQL, the Sybase
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• Troubleshooting Series (for release 15.0) –

• Troubleshooting: Error Messages Advanced Resolutions – contains
troubleshooting procedures for problems that you may encounter
when using Sybase® Adaptive Server® Enterprise. The problems
addressed here are those which the Sybase Technical Support staff
hear about most often

• Troubleshooting and Error Messages Guide – contains detailed
instructions on how to resolve the most frequently occurring Adaptive
Server error messages. Most of the messages presented here contain
error numbers (from the master..sysmessages table), but some error
messages do not have error numbers, and occur only in Adaptive
Server’s error log.

• User Guide for Encrypted Columns – describes how configure and use
encrypted columns with Adaptive Server

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

 About This Book

User Guide for Encrypted Columns xi

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase Failover to configure an Adaptive Server as
a companion server in a high availability system.

• Unified Agent and Agent Management Console – describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

• Utility Guide – documents the Adaptive Server utility programs, such as
isql and bcp, which are executed at the operating system level.

• Web Services User’s Guide – explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

xii Adaptive Server Enterprise

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

 About This Book

User Guide for Encrypted Columns xiii

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe conventions used in this manual.

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and most syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names,procedure names, utility names, and
other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font. master database

Book names, file names, variables, and path names are
in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

xiv Adaptive Server Enterprise

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

Variables—or words that stand for values that you fill
in—when they are part of a query or statement, are in
italics in Courier font.

select column_name

from table_name

where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbol.
Indicates “is defined as”.

::=

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed options is optional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipe or vertical bar(|) means you may select only
one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the last unit
as many times as you like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may
choose a method of payment: one of the items enclosed in
square brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

Element Example

 About This Book

User Guide for Encrypted Columns xv

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xvi Adaptive Server Enterprise

User Guide for Encrypted Columns 1

C H A P T E R 1 Overview of Encryption

This chapter describes the Adaptive Server™ encrypted column feature.

Adaptive Server authentication and access control mechanisms ensure
that only properly identified and authorized users can access data. Data
encryption further protects sensitive data against theft and security
breaches.

The Adaptive Server encryption column enables you to encrypt column-
level data that is at rest, without changing your applications. This native
support provides the following capabilities:

• Column-level granularity

• Use of a symmetric, National Institute of Standards and Techology
(NIST)-approved algorithm: Advanced Encryption Standard (AES)

• Optimized for performance

• Enforced separation of duties

• Fully integrated and automatic key management

• Application transparency: no application changes are needed

• Protects data privacy from the power of the system administrator

Data encryption and decryption is automatic and transparent. If you have
insert or update permission on a table, any data you insert or modify is
automatically encrypted prior to storage. Daily tasks are not interrupted.

Selecting decrypted data from an encrypted column requires decrypt
permission in addition to select permission. Decrypt permission can be
granted to specific database users, groups, or roles. Sybase gives you more
control by providing you with granular access capability to sensitive data.
Sybase also automatically decrypts selected data for users with decrypt
permission.

Encryption keys are stored in the database in encrypted form. You can
encrypt an encryption key using a system-level or a user-supplied
password (which can be the user’s login password). The password you
select reflects your ability to preserve data privacy, even from system
administrators.

2 Adaptive Server Enterprise

Encrypting columns in Adaptive Server is more straightforward than using
encryption in the middle tier, or in the client application. You use SQL
statements to create encryption keys and to specify columns for encryption,
and existing applications continue to run without change.

When data is encrypted, it is stored in an encoded form called “cipher text.”
Cipher text increases the length of the encrypted column from a few bytes to
32 extra bytes. See “Length of encrypted columns” on page 30. Unencrypted
data is stored as plain text.

Figure 1-1 describes encryption and decryption processing in Adaptive Server.
In this example, a client is updating and encrypting a Social Security Number
(SSN).

Figure 1-1: Encryption and decryption in Adaptive Server

Column encryption uses a symmetric encryption algorithm, which means that
the same key is used for encryption and decryption. Adaptive Server tracks the
key that is used to encrypt a given column.

When you insert or update data in an encrypted column, Adaptive Server
transparently encrypts the data immediately before writing the row. When you
select from an encrypted column, Adaptive Server decrypts the data after
reading it from the row. Integer and floating point data are encrypted in the
following form for all platforms:

• Most significant bit format for integer data

• Institute of Electrical and Electronics Engineers (IEEE) floating point
standard with MSB format for floating point data

You can encrypt data on one platform and decrypt it on a different platform,
provided that both platforms use the same character set.

Client

Insert or update SSN

Encryption
algorithm

Encryption

Decryption
algorithm

Encrypted
dataClient

key

Adaptive Server Enterprise

Select SSN

CHAPTER 1 Overview of Encryption

User Guide for Encrypted Columns 3

Generally, using encrypted columns requires these administrative steps:

1 Install the license option ASE_ENCRYPTION. See the Adaptive Server
Enterprise Installation Guide.

2 The system security officer (SSO) enables encryption in Adaptive Server:

sp_configure 'enable encrypted columns', 1

3 Use sp_encryption to set the system encryption password for a database.

4 Create one or more named encryption keys. See Chapter 2, “Creating and
Managing Encryption Keys.” Consider using passwords to protect data
even from the database administrator. See Chapter 5, Protecting Data
Privacy from the Administrator.

5 Specify the columns for encryption. See “Specifying encryption on new
tables” on page 16 and “Encrypting data in existing tables” on page 18.

6 Grant decrypt permission to users who must see the data. You may choose
to specify a default plain text value known as a “decrypt default.” The
Adaptive Server returns this default, instead of the protected data, to users
who do not have decrypt permission. See “Permissions for decryption” on
page 34.

Once you perform these steps, you can run your existing applications against
your existing tables and columns, but now the data in your database is securely
protected against theft and misuse. Adaptive Server utilities and other Sybase
products can process data in encrypted form, protecting your data throughout
the enterprise. For example, you can:

• Use the Sybase Central Adaptive Server Plug-in to manage encrypted
columns using a graphical interface. See the online help for Sybase
Central.

• Use the bulk copy utility (bcp) to securely copy encrypted data in and out
of the server. See the Utility Guide.

• Use the Adaptive Server migration tool sybmigrate to securely migrate
data from one server to another. See the Adaptive Server Enterprise System
Administration Guide.

• Use Sybase Replication Server to securely distribute encryption keys and
data across servers and platforms. See the Replication Server
Administration Guide for information on encryption when replicating.

4 Adaptive Server Enterprise

User Guide for Encrypted Columns 5

C H A P T E R 2 Creating and Managing
Encryption Keys

Adaptive Server includes commands to create encryption keys, alter the
properties of an encryption key, and drop unused encryption keys. Key
owners must grant permission to table owners to use a specific key or keys
to configure encryption at the column level.

Creating encryption keys
An encryption key must exist before a table owner can mark a column for
encryption on a new or existing table. When you set up keys for the first
time, consider:

• Key owner or custodian assignment – the system security officer must
grant create encryption key permission to create keys. The sso_role
and the keycustodian_role have automatic create encryption key
permission. See “Role of the key custodian” on page 37.

• Whether keys should be created in a separate key database – Sybase
recommends that you use a separate database for keys, especially if
keys are encrypted by the system encryption password.

• The number of keys needed – you can create a separate key for each
encrypted column, or you can use the same key to encrypt columns
across multiple tables. From a performance standpoint, encrypted
columns that join with equivalent columns in other tables should
share the same key. For security purposes, unrelated columns should
use different keys.

Topic Page
Creating encryption keys 5

Key protection 10

Dropping encryption keys 14

Creating encryption keys

6 Adaptive Server Enterprise

Column encryption in Adaptive Server uses the Advanced Encryption
Standard (AES) symmetric key encryption algorithm, with available key sizes
of 128, 192, and 256 bits. Random-key generation and cryptographic
functionality is provided by the FIPS 140-2 compliant modules.

To securely protect key values, Adaptive Server uses a 128-bit key-encrypting
key, which is derived from either the system encryption password or a user-
specified password. Adaptive Server encrypts the new key (the column
encryption key) and stores the result in sysencryptkeys.

Figure 2-1: Encrypting user keys

Syntax for create
encryption key

 The syntax for create encryption key is:

System encryption
password

Random

values

1c2fg&H39....

IEEE key
derivation
function

128-bit
key-encryption key

4p69jX36bn00........

29c4WRg89....

Column-encryption
key Symmetric

encryption

algorithm

Encrypted
column-encryption key

845t710Kp9....

PasswordForKey

CHAPTER 2 Creating and Managing Encryption Keys

User Guide for Encrypted Columns 7

create encryption key [[database.][owner].]keyname
[as default] [for algorithm]
[with

{[key_length num_bits]
[password 'password_phrase']
[init_vector {null | random}]
[pad {null | random}]

}]

where:

• keyname – must be unique in the user’s table, view, and procedure name
space in the current database. Specify the database name if the key is in
another database, and specify the owner’s name if more than one key of
that name exists in the database. The default value for owner is the current
user, and the default value for database is the current database. Only the
system security officer can create keys for other users.

Note You cannot create temporary keys with names starting with ‘#’ as
the first character.

• as default – allows the system security officer or key custodian to create a
database default key for encryption. This enables the table creator to
specify encryption without using a keyname on create table, alter table, and
select into. Adaptive Server uses the default key from the same database.
The default key may be changed. See “alter encryption key” on page 73.

• for algorithm – Advanced Encryption Standard (AES) is the only
algorithm supported. AES supports key sizes of 128, 192, and 256 bits,
and a block size of 16 bytes. The block size is the number of bytes in an
encryption unit. Large data is subdivided for encryption.

• keylength num_bits – the size, in bits, of the key to be created. For AES,
valid key lengths are 128, 192, and 256 bits. The default keylength is 128
bits.

• password_phrase – a quoted alphanumeric string up to 255 bytes in length
that Adaptive Server uses to protect the key. By default, Adaptive Server
uses the system encryption password to protect encryption keys. See “Key
protection using user-specified passwords” on page 40.

• init_vector

Creating encryption keys

8 Adaptive Server Enterprise

• random – specifies use of an initialization vector during encryption.
When an initialization vector is used by the encryption algorithm, the
cipher text of two identical pieces of plain text are different, which
prevents detection of data patterns. Using an initialization vector can
add to the security of your data.

Use of an initialization vector implies using a cipher-block chaining
(CBC) mode of encryption, where each block of data is combined
with the previous block before encryption, with the first block being
combined with the initialization vector.

However, initialization vectors have some performance implications.
You can create indexes and optimize joins and searches only on
columns where the encryption key does not specify an initialization
vector. See Chapter 8, “Performance Considerations.”

• null – omits the use of an initialization vector when encrypting. This
makes the column suitable for supporting an index.

The default is to use an initialization vector, that is, init_vector random.

Setting init_vector null implies the electronic codebook (ECB) mode,
where each block of data is encrypted independently.

To encrypt one column using an initialization vector and another
column without using an initialization vector, create two separate
keys—one that specifies use of an initialization vector and another
that specifies no initialization vector.

• pad

• null – the default, omits random padding of data.

You cannot use padding if the column must support an index.

• random – data is automatically padded with random bytes before
encryption. You can use padding instead of an initialization vector to
randomize the cipher text. Padding is suitable only for columns whose
plain text length is less than half the block length. For the AES
algorithm the block length is 16 bytes.

create encryption key
examples

This example specifies a 256-bit key called “safe_key” as the database default
key:

create encryption key safe_key as default for AES with
keylength 256

Only the system security officer or a user with the keycustodian_role can create
a default key.

CHAPTER 2 Creating and Managing Encryption Keys

User Guide for Encrypted Columns 9

This creates a 128-bit key called “salary_key” for encrypting columns using
random padding:

create encryption key salary_key for AES with
init_vector null pad random

This creates a 192-bit key named “mykey” for encrypting columns using an
initialization vector:

create encryption key mykey for AES with keylength 192
init_vector random

This example creates a key protected by a user-specified password:

create encryption key key1
with passwd 'Worlds1Biggest6Secret'

If a key is protected by a user-specified password, that password must be
entered before accessing a column encrypted by the key. See Chapter 5,
Protecting Data Privacy from the Administrator for information about using
keys with explicit passwords.

create encryption key
permissions

The sso_role and keycustodian_role implicitly have permission to create
encryption keys. The system security officer uses this syntax to grant create
encryption key permissions to others:

grant create encryption key
to user_name | role_name | group_name

For example:

grant create encryption key to key_admin_role

Use this syntax to revoke key creation permission:

revoke create encryption key
{to | from} user_name | role_name | group_name

Note grant all does not grant create encryption key permission to the user. It
must be explicitly granted by the system security officer.

Key protection

10 Adaptive Server Enterprise

Key protection
Adaptive Server keeps keys encrypted when not in use. There are actually two
keys between the user and the data: the column-encryption key (CEK) and the
key-encryption key (KEK). The CEK encrypts data and users must have access
to it before they can access the encrypted data, but it cannot be stored on disk
in an un-encrypted form. Instead, Adaptive Server uses a KEK to encrypt the
CEK when you create or alter an encryption key. The KEK is also used to
decrypt the CEK before you can access decrypted data. The KEK is derived
internally from the system encryption password, a user-specified password, or
a login password, depending on how you specify the key’s encryption with the
create and alter encryption key statements. CEKs are stored in encrypted form
in sysencryptkeys.

Key management consists of creating, dropping, and modifying encryption
keys, distributing passwords, creating key copies, and providing for key
recovery in the event of a lost password.

Figure 2-2 describes creating and storing a column encryption key for a create
encryption key statement. The KEK is derived from a password and the KEK
and the raw CEK are fed into the encryption function to produce an encrypted
CEK.

Figure 2-2: Steps to create an encryption key

Figure 2-3 describes how the KEK is used during a DML operation to decrypt
the CEK. The raw CEK is then used to encrypt or decrypt data.

create encryption key. . .

Encrypted
CEK saved in
sysencryptkeys

Raw column
encryption key

(CEK)

Key encryption
key (KEK)

Random data

Encryption

key derivation

Password
key derivation

CHAPTER 2 Creating and Managing Encryption Keys

User Guide for Encrypted Columns 11

Figure 2-3: Accessing a CEK to encrypt or decrypt on DML statement

Granting access to keys
The key owner must grant select permission on the key before another user can
specify the key in the create table, alter table, and select into statements. The key
owner can be the system security officer, the key custodian or, for nondefault
keys, any user with create encryption key permission. Key owners should grant
select permission on keys as needed.

The following example allows users with db_admin_role to use the encryption
key that is named “safe_key” when specifying encryption on create table, alter
table, and select into statements:

grant select on safe_key to db_admin_role

Note Users who process encrypted columns through insert, update, delete, and
select do not need select permission on the encryption key.

Key protection using the system-encryption password
The system encryption password is a database-specific password. By default,
Adaptive Server uses this password to encrypt keys created in a given database.
Once the system security officer or key custodian has set a system encryption
password, you need not specify this password to process encrypted columns.
Adaptive Server internally accesses the system encryption password when it
needs to encrypt or decrypt column encryption keys.

Decrypted
CEK used for
DML

Encrypted
CEK saved in
sysencryptkeys

Key encryption
key (KEK)

Decryption

Password
key derivation

Key protection

12 Adaptive Server Enterprise

The system security officer or key custodian use sp_encryption to set the system
encryption password. The system password is specific to the database using
sp_encryption, and its encrypted value is stored in the sysattributes system table
in that database.

sp_encryption system_encr_passwd, password

password can be as many as 255 bytes in length, and is the default method
Adaptive Server uses to encrypt all keys in the selected database.

Using a system encryption password simplifies the administration of encrypted
data because:

• Managing passwords for keys is restricted to setting up and changing the
system encryption password.

• You need not specify passwords on create and alter encryption key
statements.

• Password distribution and recovery from lost passwords are not required.

• Access control over encrypted data is enforced through decrypt
permission on the column. See “Restricting decrypt permission” on page
22.

• You need not make any changes to the application.

Set a system encryption password only in the database where encryption keys
are created. If you choose to protect your keys with individual user passwords,
you may not need to set the system encryption password. You can create
encrypted columns in the same database as the keys or in other databases. See
“Key protection using user-specified passwords” on page 40.

The system encryption password protects your encryption keys. Choose long
and complex system encryption passwords. Longer passwords are harder to
guess or crack by brute force. Include uppercase and lowercase letters,
numbers, and special characters in the system encryption password. Sybase
recommends that system encryption password be at least 16 bytes in length. In
addition, when creating your password:

• Do not use information such as your birthday, street address, or any other
word or number that has anything to do with your personal life.

• Do not use names of pets or loved ones.

• Do not use words that appear in the dictionary or words spelled
backwards.

CHAPTER 2 Creating and Managing Encryption Keys

User Guide for Encrypted Columns 13

Adaptive Server enforces compliance of the system encryption password with
the minimum password length and check password for digit configuration
parameters.

The system security officer or key custodian can change the system password
by using sp_encryption and supplying the old password:

sp_encryption system_encr_passwd, password [, old_password]

Periodically change the system encryption password, especially when an
administrator with knowledge of the system encryption password leaves the
company. When the system password is changed, Adaptive Server
automatically reencrypts all keys in the database with the new password.
Encrypted data is not affected when the system password is changed, in other
words, data is not decrypted and reencrypted.

You can unset the system encryption password by supplying “null” as the
argument for password and supplying the value for old_password. Un-set the
system password only if you have dropped all the encryption keys in that
database that were encrypted by the system encryption password.

Changing the key
Periodically change the keys used to encrypt columns. Create a new key using
create encryption key, then use alter table...modify to encrypt the column with the
new key

In the following example, assume that the “creditcard” column is already
encrypted. The alter table command decrypts and reencrypts the credit card
value for every row of customer using cc_key_new.

create encryption key cc_key_new for AES

alter table customer modify creditcard encrypt with
cc_key_new

See “alter table” on page 68 for more information.

Separating keys from data
When you specify a column for encryption, you can use a named key from the
same database or from a different database. If you do not specify a named key,
the column is automatically encrypted with the default key from the same
database.

Dropping encryption keys

14 Adaptive Server Enterprise

Encrypting with a key from a different database provides a security advantage
because, in the event of the theft of a database dump, it protects against access
to both keys and encrypted data. Administrators can also protect each database
dump with a different password, making unauthorized access even more
difficult.

Encrypting with a key from a different database needs special care to avoid
data and key integrity problems in distributed systems. Carefully coordinate
database dumps and loads. If you use a named key from a different database,
Sybase recommends that, when you dump a database that contains:

• Encrypted columns, you also dump the database where the key was
created. You must do this if new keys have been added since the last dump.

• An encryption key, dump all databases containing columns encrypted with
that key. This keeps encrypted data in sync with the available keys.

The system security officer or the key custodian can use sp_encryption to
identify the columns encrypted with a given key.

Dropping encryption keys
To drop an encryption key, use:

 drop encryption key [[database.][owner].]keyname

For example, this drops an encryption key named cc_key:

drop encryption key cust.dbo.cc_key

Key owners can drop their own keys. The system security officer can drop any
key. A key can be dropped only if there are no encrypted columns in any
database that use the key.

When executing drop encryption key, Adaptive Server does not check for
encrypted columns in databases that are suspect, archived, offline, not
recovered, or currently being loaded. In any of these cases, the command issues
a warning message naming the unavailable database, but does not fail. When
the database is brought online, any tables with columns that were encrypted
with the dropped key are not usable. To restore the key, the system
administrator must load a dump of the dropped key’s database from a time that
precedes when the key was dropped.

The system security officer can use sp_encryption to identify all the columns
encrypted with a given key.

User Guide for Encrypted Columns 15

C H A P T E R 3 Encrypting Data

You can encrypt these datatypes:

• int, smallint, tinyint

• unsigned int, unsigned smallint, unsigned tinyint

• bigint, unsigned bigint

• decimal and numeric

• float4 and float8

• money, smallmoney

• date, time, smalldatetime, datetime

• char and varchar

• unichar, univarchar

• binary and varbinary

• bit

Encrypted data on disk is stored in the varbinary datatype. See “Length of
encrypted columns” on page 30 for more information about the length of
the varbinary data.

Null values are not encrypted.

Topic Page
Specifying encryption on new tables 16

Encrypting data in existing tables 18

Creating indexes and constraints on encrypted columns 19

Decrypt permission 20

Restricting decrypt permission 22

Returning default values instead of decrypted data 23

Length of encrypted columns 30

Specifying encryption on new tables

16 Adaptive Server Enterprise

Specifying encryption on new tables
To encrypt columns in a new table, use the encrypt column qualifier on the
create table statement.

The following partial syntax for create table includes only clauses that are
specific to encryption. See the Reference Manual for complete syntax of create
table.

create table table_name
(column_name
. . .

[constraint_specification]
[encrypt [with [database.[owner].]keyname]]
[, next_column_specification . . .]
)

keyname – identifies a key created using create encryption key. The
creator of the table must have select permission on keyname. If keyname
is not supplied, Adaptive Server looks for a default key created using the
as default clause on the create encryption key.

Note You cannot encrypt a computed column, and an encrypted column cannot
appear in an expression that defines a computed column. You cannot specify
an encrypted column in the partition_clause of a table.

The following example creates two keys: a database default key, and another
key (cc_key) which you must name in the create table command. Both keys use
default values for length and an initialization vector. The ssn column in the
employee table is encrypted using the default key, and the creditcard column in
the customer table is encrypted with cc_key:

create encryption key new_key as default for AES
create encryption key cc_key

create table employee_table (ssn char(15) encrypt,
ename char(50), ...))

create table customer (creditcard char(20)
encrypt with cc_key, cc_name char(50), ...)

This example creates key k1, which uses nondefault values for the initialization
vector and random pad. The employee esalary column is padded with random
data before encryption:

create encryption key k1 init_vector null pad random

CHAPTER 3 Encrypting Data

User Guide for Encrypted Columns 17

create table employee (eid int, esalary money encrypt with k1, ...)

Specifying encryption on select into
By default, select into creates a target table without encryption even if the
source table has one or more encrypted columns. To encrypt any column in the
target table, you must qualify the target column with the encrypt clause, as
shown:

select [all|distinct] column_list
into table_name
[(colname encrypt [with [[database.][owner].]keyname]

[, colname encrypt
[with[[database.][owner].]keyname]])]

from table_name | view_name

You can encrypt a specific column in the target table even if the data was not
encrypted in the source table. If the column in the source table is encrypted
with the same key specified for the target column, Adaptive Server optimizes
processing by bypassing the decryption step on the source table and the
encryption step on the target table.

The rules for specifying encryption on a target table are the same as those for
encryption specified on create table in regard to:

• Allowable datatypes on the columns to be encrypted

• The use of the database default key when the keyname is omitted

• The requirement for select permission on the key used to encrypt the target
columns.

The following example selects the encrypted column creditcard from the
daily_xacts table and stores it in encrypted form in the #bigspenders temporary
table:

select creditcard, custid, sum(amount) into
#bigspenders
(creditcard encrypt with cust.dbo.new_cc_key)
from daily_xacts group by creditcard
having sum(amount) > $5000

Note select into requires column-level permissions, including decrypt, on the
source table.

Encrypting data in existing tables

18 Adaptive Server Enterprise

Encrypting data in existing tables
To encrypt columns in existing tables, use the modify column option on the alter
table statement with the encrypt clause:

alter table table_name modify column_name
[encrypt [with [[database.][owner].]keyname]]

keyname – identifies a key created using create encryption key. The creator
of the table must have select permission on keyname. If keyname is not
supplied, Adaptive Server looks for a default key created using the as
default clause on the create encryption key.

See the Adaptive Server Enterprise Reference Manual for the complete
syntax for alter table.

There are restrictions on modifying encrypted columns:

• You cannot modify a column for encryption or decryption on which you
have created a trigger. You must:

a Drop the trigger.

b Encrypt or decrypt the column.

c Re-create the trigger.

• You cannot change an existing encrypted column, modify a column for
encryption or decryption on a table, or modify the type of an encrypted
column if that column is a key in a clustered or placement index. You
must:

a Drop the index.

b Alter the table/modify the type of column.

c Re-create the index.

You can alter the encryption property on a column at the same time you alter
other attributes. You can also add an encrypted column using alter table.

For example:

alter table customer modify custid null encrypt
with cc_key

alter table customer add address varchar(50) encrypt
with cc_key

CHAPTER 3 Encrypting Data

User Guide for Encrypted Columns 19

Creating indexes and constraints on encrypted
columns

You can create an index on an encrypted column if the encryption key has been
specified without any initialization vector or random padding. An error occurs
if you execute create index on an encrypted column that has an initialization
vector or random padding. Indexes on encrypted columns are generally useful
for equality and nonequality matches. However, indexes are not useful for
matching case-insensitive data, or for range searches of any data.

Note You cannot use an encrypted column in an expression for a functional
index.

In the following example, cc_key specifies encryption without using an
initialization vector or padding. This allows an index to be built on any column
encrypted with cc_key:

create encryption key cc_key
 with init_vector null

create table customer(custid int,
 creditcard varchar(16) encrypt with cc_key)

create index cust_idx on customer(creditcard)

You can encrypt a column that is declared as a primary or unique key.

You can define referential integrity constraints on encrypted columns when:

• Both referencing and referenced columns are encrypted with the same key.

• The key used to encrypt the columns specifies init_vector null and pad
random has not been specified.

Referential integrity checks are efficient because they are performed on cipher
text values.

In this example, ssn_key encrypts the ssn column in both the primary and
foreign tables:

create encryption key ssn_key for AES
with init_vector null

create table user_info (ssn char(9) primary key encrypt
with ssn_key, uname char(50), uaddr char(100))

create table tax_detail (ssn char(9) references user_info encrypt

Decrypt permission

20 Adaptive Server Enterprise

with ssn_key, return_info text)

Decrypt permission
Users must have decrypt permission to select plain text data from an encrypted
column, or to search or join on an encrypted column.

The table owner uses grant decrypt to grant explicit permission to decrypt one
or more columns in a table to other users, groups, and roles. Decrypt
permission may be implicitly granted when a procedure or view owner grants:

• exec permission on a stored procedure or user-defined function that selects
from an encrypted column where the owner of the procedure or function
also owns the table containing the encrypted column

• decrypt permission on a view column that selects from an encrypted
column where the owner of the view also owns the table

In both cases, decrypt permission need not be granted on the encrypted column
in the base table.

The syntax is:

grant decrypt on [owner.] table
[(column[{,column}])]
to user| group | role
[with grant option]

Granting decrypt permission at the table or view level grants decrypt
permission on all encrypted columns in the table.

To grant decrypt permission on all encrypted columns in the customer table,
enter:

grant decrypt on customer to accounts_role

The following example shows the implicit decrypt permission of user2 on the
ssn column of the base table “employee”. user1 sets up the employee table and
the employee_view as follows:

create table employee (ssn varchar(12)encrypt,
dept_id int, start_date date, salary money)

create view emp_salary as select
ssn, salary from employee

grant select, decrypt on emp_salary to user2

CHAPTER 3 Encrypting Data

User Guide for Encrypted Columns 21

user2 has access to decrypted Social Security Numbers when selecting from
the emp_salary view:

select * from emp_salary

Note grant all on a table or view does not grant decrypt permission. Decrypt
permission must be granted separately.

Configure Adaptive Server for restricted decrypt permission to restrict users
from implicit decrypt permission. See “Restricting decrypt permission” on
page 22.

Users with only select permission on an encrypted column can still process
encrypted columns as cipher text through the bulk copy command. See “bulk
copy (bcp)” on page 108. Additionally, if an encrypted column specifies a
decrypt default value, the column can be named in a select target list or in a
where clause by users who do not have permission to decrypt data. See
“Returning default values instead of decrypted data” on page 23.

Revoking decryption permission
You can revoke a user’s decryption permission using:

revoke decrypt on [owner.] table[(column[{,column}])] from user
| group | role

For example:

revoke decrypt on customer from public

Restricting decrypt permission

22 Adaptive Server Enterprise

Restricting decrypt permission
Adaptive Server protects data privacy from the powers of the administrator
even if you use the system encryption password for key protection. If you
prefer to avoid password management and use the system encryption password
to protect encryption keys, you can restrict access to private data from the
database owner by setting the restricted decrypt permission configuration
parameter. System security officers (SSOs) can use this parameter to control
which users have decrypt permission. Once restricted decrypt permission is
enabled, the SSO is the only user who receives implicit decrypt permission and
who has implicit privilege to grant that permission to others. The SSO
determines which users receive decrypt permission, or delegates this job to
another user by granting decrypt permission with the with grant option. Table
owners do not automatically have decrypt permission on their tables.

Users with execute permission on stored procedures or user-defined functions
do not have implicit permission to decrypt data selected by the procedure or
function. Users with decrypt permission on a view column do not have implicit
permission to decrypt data selected by the view.

Note Users with aliases continue to inherit all decrypt permissions of the user
to whom they are aliased. set proxy/set user statements continue to allow the
administrator or database owner the decrypt permissions of the user whose
identity is assumed by this command.

Assigning privileges for restricted decrypt permissions
If you are using restricted decrypt permission, you can assign the privileges for
creating the task’s schema and managing keys as follows:

• System security officer – configures restricted decrypt permission, creates
encryption keys and grants select permission on keys to the DBO, and
grants decrypt permission to the end user.

• DBO – creates the schema and loads data.

CHAPTER 3 Encrypting Data

User Guide for Encrypted Columns 23

Returning default values instead of decrypted data
This section describes how to use decrypt defaults with encrypted columns.
When users who are not permitted to see confidential data run queries against
encrypted columns, they see the decrypt defaults instead of the decrypted data.
Decrypt defaults allow legacy applications and reports to run without error,
even for users not permitted to see confidential data.

Defining a decrypt default
The decrypt_default parameter for create table and alter table allows an
encrypted column to return a user-defined value when a user without decrypt
permission attempts to select information from the encrypted column, avoiding
error message 10330:

Decrypt permission denied on object <table_name>,
database <database name>, owner <owner name>

Using decrypt defaults on encrypted columns allows existing reports to run to
completion without error, and allows users to continue seeing the information
that is not encrypted. For example, if the customer table contains the encrypted
column creditcard, you can design the table schema so that:

select * from customer

Returns the value “****************” instead of returning the credit card
data to users who lack decrypt permission.

Adding and removing
a decrypt default

Specify a decrypt default on a new column with create table. The partial syntax
for create table is:

create table table_name (column_name datatype
[[encrypt [with keyname]] [decrypt_default value]],)

• decrypt_default – specifies that this column returns a default value on a
select statement for users who do not have decrypt permissions.

• value – is the value Adaptive Server returns on select statements instead of
the decrypted value. A constant-valued expression cannot reference a
database column but it can include a user-defined function which itself
references tables and columns. The value can be NULL on nullable
columns only, and the value must be convertible into the column’s
datatype.

For example, the ssnum column for table t2 returns “?????????” when a user
without decrypt permissions selects it:

Returning default values instead of decrypted data

24 Adaptive Server Enterprise

create table t2 (ssnum char(11)
encrypt decrypt_default '???????????', ...)

To add encryption and a decrypt default value to an existing column not
previously encrypted, use:

alter table table_name modify column_name [type]
[[encrypt [with keyname]] [decrypt_default value]], …

This example modifies the emp table to encrypt the ssn column and specifies
decrypt default:

alter table emp modify ssn encrypt
with key1 decrypt_default '000-00-0000'

To add a decrypt default to an existing encrypted column or change the decrypt
default value on a column that already has a decrypt default, use:

alter table table_name replace column_name decrypt_default value

Tthis example adds a decrypt default to the salary column, which is already
encrypted:

alter table employee replace salary
decrypt_default $0.00

This example replaces the previous decrypt_default value with a new value and
uses a user-defined funcion (UDF) to generate the default value:

alter table employee replace salary
decrypt_default dbo.mask_salary()

To remove a decrypt default from an encrypted column without removing the
encryption property, use:

alter table table_name replace column_name drop decrypt_default

This example removes the decrypt default for salary without removing the
encryption property:

alter table employee replace salary
drop decrypt_default

Permissions and decrypt default
You must grant decrypt permission on encrypted columns before users or roles
can select or search on encrypted data in those columns. If an encrypted
column has a decrypt default attribute, users without decrypt permission can
run queries that select or search on these columns, but the plain text data is not
displayed and is not used for searching.

CHAPTER 3 Encrypting Data

User Guide for Encrypted Columns 25

In this example, the owner of table emp allows users with the hr_role to view
emp.ssn. Because the ssn column has a decrypt default, users who have only
select permission on emp and who do not have the hr_role see the
decrypt_default value only and not the actual decrypted data.

create table emp (name char(50), ssn (char(11) encrypt
decrypt_default '000-00-000', ...)

grant select permission on table emp to public
grant decrypt on emp(ssn) to hr_role

If you have the hr_role and select from this table, you see the values for ssn:

select name, ssn from emp
name ssn
------------------------------ ------------
Joe Cool 123-45-6789
Tinna Salt 321-54-9879

If you do not have the hr_role and select from the table, you see the decrypt
default:

select name, ssn from emp
name ssn
------------------------------ -----------
Joe Cool 000-00-0000
Tinna Salt 000-00-0000

order by clauses have no effect on the result set if you do not have the hr_role
for this table.

Columns with decrypt default values
There are no restrictions on how you use columns with the decrypt default
attribute in a query. You can use them in a target list expression, where clause,
order by, group by, or subquery. Although expressions on the decrypt default
constant value may not have a practical use, placing a decrypt default on a
column does not impose any syntactic restrictions on use of the column in a
Transact-SQL™ statement.

This example uses a select statement on a column with a decrypt default value
in the target list:

create table emp_benefits (col1 name char(30),
salary float encrypt decrypt_default -99.99)

Returning default values instead of decrypted data

26 Adaptive Server Enterprise

select salary/12 as monthly_salary from emp_benefits
where name = 'Bill Smith'

When you perform the select statement against this table, but do not have
decrypt permission, you see:

monthly_salary

8.332500

When Adaptive Server returns a column’s decrypt default value on a select into
command, this decrypt default value is inserted into the target table. However,
the target column does not inherit the decrypt default property. You must use
alter table to specify a decrypt default on the target table.

Decrypt default columns and query qualifications
If you use a column with the decrypt default property in a where clause, the
qualification evaluates to false if you do not have decrypt permission. These
examples use the emp table described above. Only users with the hr_role have
decrypt permission on ssn.

1 If you have the hr_role and issue the following query, Adaptive Server
returns one row.

select name from emp where ssn = '123-456-7890'

name

Joe Cool

2 If you do not have the hr_role, Adaptive Server returns no rows:

select name from emp where ssn = '123-456-7890'

name

(0 rows affected)

3 If you have the hr_role and include an or statement on a nonencrypted
column, Adaptive Server returns the appropriate rows:

select name from emp where ssn = '123-456-7890' or
name like 'Tinna%'

name

Joe Cool
Tinna Salt

CHAPTER 3 Encrypting Data

User Guide for Encrypted Columns 27

4 If you do not have the hr_role and issue the same command, Adaptive
Server returns only one row:

select name from emp where ssn = '123-456-7890' or
name like 'Tinna%'

name

Tinna Salt

In this case, the qualification against the encrypted column with the
decrypt default property evaluates to false, but the qualification against the
nonencrypted column succeeds.

If you do not have decrypt permission on an encrypted column, and you
issue a group by statement on this column with a decrypt default, Adaptive
Server groups by the decrypt default constant value.

decrypt default and implicit grants
If you do not have explicit or implicit permission on a table, Adaptive Server
returns the decrypt default value.

In this example (using the emp table described above), the DBO creates the
p_emp procedure which selects from the DBO-owned emp table:

create procedure p_emp as
select name, ssn from emp

grant exec on p_emp to corp_role

Because you have the corp_role, you have implicit select and decrypt
permission on emp

exec p_emp

name ssn
------------------------------ ------------
Tinna Salt 123-45-6789
Joe Cool 321-54-9879

If the emp table and p_emp stored procedure have been created by different
users, you must have select permission on emp to avoid permissions errors. If
you have select permission but not decrypt permission, Adaptive Server returns
the decrypt default value of emp.ssn.

In this next example, “joe,” a non-DBO user, creates the v_emp view, which
selects from the DBO-owned emp table. In this case, any permissions granted
on the view are not implicitly applied to the base table.

Returning default values instead of decrypted data

28 Adaptive Server Enterprise

create view v_emp as
select name, ssn from emp

grant select on v_emp to emp_role
grant select on emp to emp_role
grant decrypt on v_emp to emp_role

Although you have the emp_role, when you issue:

select * from joe.v_emp

Adaptive Server returns the following because decrypt permission on
dbo.emp.ssn has not been granted to the emp_role, and there is no implicit grant
to emp_role on dbo.emp.ssn:

name ssn
-------------------------- ---------------
Tinna Salt 000-00-0000
Joe Cool 000-00-0000

decrypt default and insert, update, and delete statements
The decrypt default parameter does not affect target lists of insert and update
statements.

If you use a column with a decrypt default value in the where clause of an
update or delete statement, Adaptive Server may not update or delete any rows.
For example, when using the emp table and permissions from the previous
examples, if you do not have the hr_role and issue the following query,
Adaptive Server does not delete the user’s name:

delete emp where ssn = '123-45-6789'
(0 rows affected)

Decrypt default attributes may indirectly affect inserting and updating data if
an application, particularly one with a graphical user interface (GUI) process:

1 Selects data

2 Allow a user to update any of the data.

3 Applies the changed row back to the same or a different table

If the user does not have decrypt permission on the encrypted columns, the
application retrieves the decrypt default value and may automatically write the
the unchanged decrypt default value back to the table. To avoid overwriting
valid data with decrypt default values, use a check constraint to prevent these
values from being automatically applied. For example:

CHAPTER 3 Encrypting Data

User Guide for Encrypted Columns 29

create table customer (name char(30)),
cc_num int check (cc_num != -1)
encrypt decrypt_default -1

If the user does not have decrypt permission on cc_num and selects data from
the customer table, this data appears:

name cc_num
-------------------- ------------
Paul Jones -1
Mick Watts -1

However, if the user changes a name and updates the database, and the
application attempts to update all fields from the values displayed, the default
value for cc_num causes Adaptive Server to issue error 548:

"Check constraint violation occurred, dbname =
<dbname>, table name = <table_name>, constraint name =
<internal_constraint _name>"

Setting a check constraint protects the integrity of the data. For a better
solution, you can filter these updates when you write the application’s logic.

Removing decrypt defaults
You can remove the decrypt default using any of these commands:

• drop table

• alter table .. modify .. drop col

• alter table .. modify .. decrypt

• alter table .. replace .. drop decrypt_default

For example, to remove the decrypt default attribute from the ssn column,
enter:

alter table emp replace ssn drop decrypt_default

If you do not have the hr_role and select from the emp table after the table
owner removed the decrypt default, Adaptive Server returns error message
10330.

Length of encrypted columns

30 Adaptive Server Enterprise

Length of encrypted columns
During create table, alter table, and select into operations, Adaptive Server
calculates the maximum internal length of the encrypted column. To make
decisions on schema arrangements and page sizes, the database owner must
know the maximum length of the encrypted columns.

AES is a block-cipher algorithm. The length of encrypted data for block-cipher
algorithms is a multiple of the block size of the encryption algorithm. For AES,
the block size is 128 bits, or 16 bytes. Therefore, encrypted columns occupy a
minimum of 16 bytes with additional space for:

• The initialization vector. If used, the initialization vector adds 16 bytes to
each encrypted column. By default, the encryption process uses an
initialization vector. Specify init_vector null on create encryption key to omit
the initialization vector.

• The length of the plain text data. If the column type is char, varchar, binary,
or varbinary, the data is prefixed with 2 bytes before encryption. These 2
bytes denote the length of the plain text data. No extra space is used by the
encrypted column unless the additional 2 bytes result in the cipher text
occupying an extra block.

• A sentinel byte, which is a byte appended to the cipher text to safeguard
against the database system trimming trailing zeros.

In Table 3-1, the lengths in the Maximum encrypted data length columns
reflect the value in sycolumns.encrlen for a column of the specified type and
length.

Table 3-1: cipher text lengths

User-specified
column type

Input data
length

Encrypted
column
type

Maximum
encrypted
data length
(no init
vector)

Actual
encrypted
data length
(no init
vector)

Maximum
encrypted
data length
(with init
vector)

Actual
encrypted
data length
(with init
vector)

bigint 8 varbinary 17 17 33 33

unsigned bigint 8 varbinary 17 17 33 33

tinyint, smallint, or int
(signed or unsigned)

1, 2, or 4 varbinary 17 17 33 33

tinyint, smallint, or int
(signed or unsigned)

0 (null) varbinary 17 0 33 0

float, float(4), real 4 varbinary 17 17 33 33

float, float(4), real 0 (null) varbinary 17 0 33 0

float(8), double 8 varbinary 17 17 33 33

CHAPTER 3 Encrypting Data

User Guide for Encrypted Columns 31

Note text, image, timestamp and unitext datatypes are not supported by
Adaptive Server.

Table 3-2: datatype length for encrypted columns

float(8), double 0 (null) varbinary 17 0 33 0

numeric(10,2) 3 varbinary 17 17 33 33

numeric (38,2) 18 varbinary 33 33 49 49

numeric (38,2) 0 (null) varbinary 33 0 49 0

char, varchar (100) 1 varbinary 113 17 129 33

char, varchar(100) 14 varbinary 113 17 129 33

char, varchar(100) 15 varbinary 113 33 129 49

char, varchar(100) 31 varbinary 113 49 129 65

char, varchar(100) 0 (null) varbinary 113 0 129 0

binary, varbinary(100) 1 varbinary 113 17 129 33

binary, varbinary(100) 14 varbinary 113 17 129 33

binary, varbinary(100) 15 varbinary 113 33 129 49

binary, varbinary(100) 31 varbinary 113 49 129 65

binary, varbinary(100) 0 (null) varbinary 113 0 65 0

unichar(10) 2 (1 unichar
character)

varbinary 33 17 49 33

unichar(10) 20 (10
unichar
characters)

varbinary 33 33 49 49

univarchar(20) 20 (10
unichar
characters)

varbinary 49 33 65 49

User-specified
column type

Input data
length

Encrypted
column
type

Maximum
encrypted
data length
(no init
vector)

Actual
encrypted
data length
(no init
vector)

Maximum
encrypted
data length
(with init
vector)

Actual
encrypted
data length
(with init
vector)

Datatype
Input data
length

Encrypted
column
type

Max
encrypted
data length
(no
init_vector)

Actual
encrypted
data length
(no init
vector)

Max
encrypted
data length
with
init_vector

Actual
encrypted
data length
(with
init_vector)

date 4 varbinary 17 17 33 33

time 4 varbinary 17 17 33 33

Length of encrypted columns

32 Adaptive Server Enterprise

char and binary are treated as variable-length datatypes and are stripped of
blanks and zero padding before encryption. Any blank or zero padding is
applied when the data is decrypted.

Note The column length on disk increases for encrypted columns, but the
increases are invisible to tools and commands. For example, sp_help shows
only the original size.

time null varbinary 17 0 33 0

smalldatetime 4 varbinary 17 17 33 33

datetime 8 varbinary 17 17 33 33

smallmoney 4 varbinary 17 17 33 33

money 8 varbinary 17 17 33 33

money null varbinary 17 0 33 0

bit 1 varbinary 17 17 33 33

Datatype
Input data
length

Encrypted
column
type

Max
encrypted
data length
(no
init_vector)

Actual
encrypted
data length
(no init
vector)

Max
encrypted
data length
with
init_vector

Actual
encrypted
data length
(with
init_vector)

User Guide for Encrypted Columns 33

C H A P T E R 4 Accessing Encrypted Data

Adaptive Server automatically performs encryption and decryption when
you process data in encrypted columns. Adaptive Server encrypts data
when you update or insert data into an encrypted column, and decrypts
data when you select it or use it in a where clause.

Processing encrypted columns
When you issue a select, insert, update, or delete command against an
encrypted column, Adaptive Server automatically encrypts or decrypts the
data using the encryption key associated with the encrypted column.

• When you issue an insert or update on an encrypted column:

• If you do not have insert or update permission on the encrypted
column, the command fails.

• If the column is encrypted by a key with a user-specified
password, Adaptive Server expects the password to be available.
If the user-specified password has not been set, the command
fails. See “Accessing encrypted data with user password” on
page 45

• Adaptive Server decrypts the encryption key.

• Adaptive Server encrypts the data using the column’s encryption
key.

• Adaptive Server inserts the varbinary cipher text data into the
table.

Topic Page
Processing encrypted columns 33

Permissions for decryption 34

Dropping encryption 35

Permissions for decryption

34 Adaptive Server Enterprise

• After the insert or update, Adaptive Server clears the memory holding
the plain text. At the end of the statement, it clears the memory
holding the raw encryption keys.

• When you issue a select command on data from an encrypted column:

• The command fails if you do not have select permission on the
encrypted column.

• If the encryption key is associated with a column encrypted with a
user-specified password, Adaptive Server expects the password to be
available. If the user-specified password has not been set, the select
statement fails. See “Accessing encrypted data with user password”
on page 45. Otherwise, Adaptive Server decrypts the encryption key.

• The decryption of the selected data succeeds if you have decrypt
permission on the column, and Adaptive Server returns plain text data
to the user.

• If a decrypt default has been declared on the encrypted column and if
you do not have decrypt permission on the column, Adaptive Server
returns the decrypt default value.

• When you include encrypted columns in a where clause:

• If you do not have decrypt permission on the column, and the column
includes a decrypt default, the where clause predicate evaluates to
false. See “Decrypt default columns and query qualifications” on
page 26.

• When possible, Adaptive Server makes the comparison without
decrypting the data if:

• The where clause joins an encrypted column with another column
encrypted by the same key without use of an initialization vector
or random pad

• The column data is being matched with an equality or an
inequality condition to a constant value

See “Performance Considerations” on page 61.

Permissions for decryption
To see or process decrypted data, users must have:

CHAPTER 4 Accessing Encrypted Data

User Guide for Encrypted Columns 35

• select and decrypt permissions on the column used in the target list and in
where, having, order by, group by, and other such clauses

• A password used to encrypt the key if you use the passwd
password_phrase clause with the create or alter encryption key commands.
See Chapter 5, “Protecting Data Privacy from the Administrator,”.

Configuring Adaptive Server for restricted decrypt permission restricts implicit
decrypt permissions. You must explicitly grant table owners decrypt
permission to enable them to select from an encrypted column on tables that
they own. Users cannot expect that execute permission on a stored procedure
or select permission on a view does not explicitly grant users decrypt
permission against the underlying table. The user must also have explicit
decrypt permission on the base table.

Dropping encryption
If you are a table owner, you can use alter table with the decrypt option to drop
encryption on a column.

For example, to drop encryption on the creditcard column in the customer table,
enter:

alter table customer modify creditcard decrypt

If the creditcard column was encrypted by a key with an explicit user password,
you would need to set that password first.

Dropping encryption

36 Adaptive Server Enterprise

User Guide for Encrypted Columns 37

C H A P T E R 5 Protecting Data Privacy from the
Administrator

Role of the key custodian
The key custodian, who must be assigned the keycustodian_role,
maintains encryption keys. Using the keycustodian_role role allows you
to separate the duties for administering confidential data by ensuring that
no administrator has implicit access to data. Figure 5-1 illustrates that the
database owner, as the schema owner, controls permissions for accessing
the data, but has no access without knowledge of the key’s password. The
key custodian, however, administers keys and their passwords, but has no
permissions on the data. Only the qualified end user, with permissions on
the data and knowledge of the encryption key's password, can access the
data.

Topic Page
Role of the key custodian 37

Key protection using user-specified passwords 40

Role of the key custodian

38 Adaptive Server Enterprise

Figure 5-1: Database owner controlling permissions for data

The system administrator and database owner do not have implicit key
management responsibilities. Adaptive Server provides the system role
keycustodian_role so that the SSO need not assume all encryption responsibity.
The key custodian owns the encryption keys, but should have no explicit or
implicit permissions on the data. The DBO grants users access to data through
column permissions, and the key custodian allows users access to the key’s
password. keycustodian_role is automatically granted to sso_role and can be
granted by a user with the sso_role.

The key custodian can:

• Create and alter encryption keys.

• Assign as the database default key a key he or she owns, as long as he or
she also owns the current default key, if one exists.

• Set up key copies for designated users, allowing each user access to the
key through a chosen password or a login password.

• Share key encryption passwords with end users.

• Grant schema owners select access to encryption keys on keys owned by
the key custodian.

Key
custodian

creates Encryption
keys

Permissions

Data

DBO

grants

Yes

Is there:
A password for key?
Permission on the data?End user

CHAPTER 5 Protecting Data Privacy from the Administrator

User Guide for Encrypted Columns 39

• Set the system encryption password.

• Recover encryption keys.

• Drop his or her own encryption keys.

• Change ownership of keys he or she owns.

You can have multiple key custodians, who each own a set of keys. The key
custodian grants the schema owner permission to use the keys on create table,
alter table, and select into, and may disclose the key password to privileged
users or allow users to associate key copies with a personal password or a login
password. The key custodian can work with a “key recoverer” to recover keys
in the event of a lost password or disaster. If the key custodian leaves the
company, the SSO can use the alter encryption key command to change key
ownership to a new key custodian.

Users, roles, and data access
User-specified passwords on encryption keys ensure that data privacy is
protected from the system administrator. Table 5-1 explains how:

• The key custodian can own the keys, but not see the data.

• The DBO can own the schema, but not the data.

• A user can see and process the data because of:

• Key access, granted by the key custodian

• Data access, granted by the table owner

Table 5-1: Permissions for users and roles on encrypted columns

Role
Can create
encryption key?

Can use key in a
schema definition? Can decrypt encrypted data?

sso_role Yes No, requires create table
permission

No. User with role may have
knowledge of password, but requires
select permission on table (SSO has
implicit decrypt permission).

sa_role No, requires create
encryption key
permission

Yes, but must be granted
select permission on the
key

No, requires knowledge of password

keycustodian_role Yes No, requires create table
permission

No. User with role may have
knowledge of password, but requires
decrypt and select permission on table
or column.

Key protection using user-specified passwords

40 Adaptive Server Enterprise

Key protection using user-specified passwords
You can limit the power of the system administrator or DBO to access private
data when you specify passwords on keys using create encryption key or alter
encryption key. If keys have explicit passwords, before users can decrypt data,
they need:

• decrypt permission on the column

• The encryption key’s password

Users must also know the password to run DML commands that encrypt data.

Use create encryption key to associate a password with a key:

create encryption key [[db.][owner].]keyname [as default]
[for algorithm_name]
[with {[keylength num_bits]
[passwd 'password_phrase']
[init_vector {NULL | random}]
[pad {NULL | random}]}

]

where:

• password_phrase – is a quoted alphanumeric string of up to 255 bytes in
length that Adaptive Server uses to generate thekey encryption key
(KEK).

Adaptive Server does not save the user-specified password. It saves a string of
validating bytes known as the “salt” in sysencryptkeys.eksalt, which allows
Adaptive Server to recognize whether a password used on a subsequent
encryption or decryption operation is legitimate for a key. You must supply the
password to Adaptive Server before you can access any column encrypted by
keyname.

DBO or schema owner No, requires create
encryption key
permission

Yes, but must be granted
select permission on the
key

No, requires knowledge of password.

User No No Yes, but must be granted decrypt or
select permission and have knowledge
of key’s password.

Role
Can create
encryption key?

Can use key in a
schema definition? Can decrypt encrypted data?

CHAPTER 5 Protecting Data Privacy from the Administrator

User Guide for Encrypted Columns 41

When you create an encryption key, its entry in the sysencryptkeys table is
known as the base key. For some users and applications, the base key,
encrypted by either the system encryption password or by an explicit password,
is sufficient. Any explicit password is shared among users requiring access to
the key. Additionally, you can create key copies for different users and
applications. Each key copy can be encrypted by an individual password and is
stored as a separate row in sysencryptkeys. An encryption key is always
represented by one base key and zero or more key copies.

This example shows how to use passwords on keys, and the key custodian’s
function in setting up encryption. The password on the key is shared among all
users who have a business need to process encrypted data.

1 Key custodian “razi” creates an encryption key:

create encryption key key1
with passwd 'Worlds1Biggest6Secret'

2 “razi” distributes the password to all users who need access to encrypted
data.

3 Each user enters the password before processing tables with encrypted
columns:

set encryption passwd 'Worlds1Biggest6Secret'
for key razi.key1

4 If the key is compromised because an unauthorized user gained access to
the password, “razi” alters the key to change the password.

Changing a key’s password
You can use the alter encryption key command to change the current password
for an encryption key:

alter encryption key [[database.database][owner].] keyname
[with passwd 'old_password' | system_encr_passwd | login_passwd]
modify encryption
[with passwd 'new_password' | system_encr_passwd |

login_passwd]

where:

• keyname – identifies a column encryption key.

Key protection using user-specified passwords

42 Adaptive Server Enterprise

• with passwd 'old_password' – specifies the user-defined password
previously specified to encrypt the base key or the key copy with a create
encryption key or alter encryption key statement. The password can be up to
255 bytes long. If you do not specify with passwd on the base key, the
default is the system encryption password.

• with passwd 'new_password' – specifies the new password Adaptive Server
uses to encrypt the column encryption key or key copy. The password can
be up to 255 bytes long. If you do not specify with passwd and you are
encrypting the base key, the default is system_encr_passwd.

• system_encr_passwd – is the default encryption password. You cannot
modify the base key to be encrypted with the system encryption password
if one or more key copies already exist. This restriction prevents the key
custodian from inadvertently exposing an encryption key to access by an
administrator after the key custodian has set up the key for restricted use
by individual users. You cannot modify key copies to encrypt using the
system encryption password.

• login_passwd – is the login password of the current session. You cannot
modify the base key to use login_password for encryption. A user can
modify his own key copy to encrypt with his login password.

In this example, the key custodian alters the base key because the password
was compromised or a user who knew the password left the company.

1 Key custodian Razi creates an encryption key:

create encryption key key1
with passwd 'MotherOfSecrets'

2 Razi shares the password on the base key with Joe and Bill, who need to
process the encrypted data (no key copies are involved).

3 Joe leaves the company.

4 Razi alters the password on the encryption key and then shares it with Bill,
and Pete, who is Joe’s replacement. The data does not need to be
reencrypted because the underlying key has not changed, just the way the
key is protected. The following statement decrypts key1 using the old
password and reencrypts it with the new password:

alter encryption key key1
with passwd 'MotherOfSecrets'
modify encryption
with passwd 'FatherOfSecrets'

CHAPTER 5 Protecting Data Privacy from the Administrator

User Guide for Encrypted Columns 43

Creating key copies
The key custodian may need to make a copy of the key temporarily available
to an administrator or an operator who must load data into encrypted columns.
Because this operator does not otherwise have permission to access encrypted
data, he should not have permanent access to a key.

You can make key copies available to individual users as follows:

• The key custodian uses create encryption key to create a key with a user-
defined password. This key is known as the base key.

• The key custodian uses alter encryption key to assign a copy of the base key
to an individual user with an individual password.

This syntax shows how to add a key encrypted using an explicit password for
a designated user:

alter encryption key [database.[owner].]key
with passwd 'base_key_password'
add encryption with passwd 'key_copy_password'
for user_name ''

where:

• base_key_password – is the password used to encrypt the base key, and
may be known only by the key custodian. The password can be upto 255
bytes in length. Adaptive Server uses the first password to decrypt the base
column-encryption key.

• key_copy_password – the password used to encrypt the key copy. The
password cannot be longer than 255 bytes. Adaptive Server makes a copy
of the decrypted base key, encrypts it with a key encryption key derived
from the key_copy_password, and saves the encrypted base key copy as a
new row in sysencryptkeys.

• user_name – identifies the user for whom the key copy is made. For a
given key, sysencryptkeys includes a row for each user who has a copy of
the key, identified by their user ID (uid).

• The key custodian adds as many key copies as there are users who require
access through a private password.

• Users can alter their copy of the encryption key to encrypt it with a
different password.

The following example illustrates how to set up and use key copies with an
encrypted column:

Key protection using user-specified passwords

44 Adaptive Server Enterprise

1 Key custodian Razi creates the base encryption key with a user-specified
password:

create encryption key key1 with passwd 'WorldsBiggestSecret'

2 Razi grants select permission on key1 to DBO for schema creation:

grant select on key key1 to dbo

3 DBO creates schema and grants table and column-level access to Bill:

create table employee (empname char(50), emp_salary money encrypt with
razi.key1, emp_address varchar(200))
grant select on employee to bill
grant decrypt on employee(emp_salary) to bill

4 Key custodian creates a key copy for Bill and gives Bill the password to
his key copy. Only the key custodian and Bill know this password.

alter encryption key key1 with passwd 'WorldsBiggestSecret'
add encryption with passwd 'justforBill'
for user 'bill'

5 When Bill accesses employee.emp_salary, he first supplies his password:

set encryption passwd 'justforBill' for key razi.key1
select empname, emp_salary from dbo.employee

When Adaptive Server accesses the key for the user, it looks up that user’s key
copy. If no copy exists for a given user, Adaptive Server assumes the user
intends to access the base key.

Changing passwords on key copies
Once a user has been assigned a key copy, he or she can use alter encryption key
to modify the key copy’s password.

This example shows how a user assigned a key copy alters the copy to access
data through his or her personal password:

• Key custodian Razi (whose UID is “razi”) sets up a key copy on an
existing key for Bill and encrypts it with a temporary password:

alter encryption key key1 with passwd 'MotherOfSecrets'
add encryption with passwd 'just4bill' for user bill

• Razi sends Bill his password for access to data through key1.

• Bill assigns a private password to his key copy:

CHAPTER 5 Protecting Data Privacy from the Administrator

User Guide for Encrypted Columns 45

alter encryption key razi.key1 with passwd 'just4bill'
modify encryption with passwd 'billswifesname'

Only Bill can change the password on his key copy. When Bill enters the
command above, Adaptive Server verifies that a key copy exists for Bill.
If no key copy exists for Bill, Adaptive Server assumes the user is
attempting to modify the password on the base key and issues an error
message:

Only the owner of object '<keyname>' or a user with

sso_role can run this command.

Accessing encrypted data with user password
You must supply the encryption key’s password to encrypt or decrypt data on
an insert, update, delete, select, alter table, or select into statement. If the system
encryption password protects the encryption key, you need not supply the
system encryption password because Adaptive Server can already access it.
Similarly, if your key copy is encrypted with your login password, Adaptive
Server can access this password while you remain logged in to the server (see
“Application transparency using login passwords on key copies” on page 48).
For keys encrypted with an explicit password, you must set the password in
your session before executing any command that encrypts or decrypts an
encrypted column with this syntax:

set encryption passwd 'password_phrase'
for {key | column} {keyname | column_name}

where:

• password_phrase – is the explicit password specified with the create
encryption key or alter encryption key command to protect the key.

• key – indicates that Adaptive Server uses this password to decrypt the key
when accessing any column encrypted by the named key

• keyname – may be supplied as a fully qualified name. For example:

[[database.][owner].]keyname

• column – specifies that Adaptive Server use this password only in the
context of encrypting or decrypting the named column. End users do not
necessarily know the name of the key that encrypts a given column.

• column_name – name of the column on which you are setting an
encryption password. Supply column_name as:

Key protection using user-specified passwords

46 Adaptive Server Enterprise

[[database.][owner].]table_name.column_name

Each user who requires access to a key encrypted by an explicit password must
supply the password. Adaptive Server saves the password in encrypted form in
the user session's internal context. Adaptive Server removes the key from
memory at the end of the session by overwriting the memory with zeros.

This example illustrates how Adaptive Server determines the password when
it must encrypt or decrypt data. It assumes that the ssn column in the employee
and payroll tables is encrypted with key1, as shown in these simplified schema
creation statements:

create encryption key key1 with passwd "Ynot387"
create table employee (ssn char (11) encrypt with key1, ename char(50))
create table payroll (ssn char(11) encrypt with key1, base_salary float)

1 The key custodian shares the password required to access employee.ssn
with Susan (user ID “susan”). He does not need to disclose the name of the
key to do this.

2 If Susan has select and decrypt permission on employee, she can select
employee data using the password given to her for employee.ssn:

set encryption passwd "Ynot387" for column employee.ssn
select ename from employee where ssn = '111-22-3456'

ename

Priscilla Kramnik

3 If Susan attempts to select data from payroll without specifying the
password for payroll.ssn, the following select fails (even if Susan has select
and decrypt permission on payroll):

select base_salary from payroll where ssn = '111-22-3456'

You cannot execute 'SELECT' command because the user encryption password
has not been set.

To avoid this error, Susan must first enter:

set encryption passwd "Ynot387" for column payroll.ssn

The key custodian may choose to share passwords on a column-name basis and
not on a key-name basis to avoid users hard-coding key names in application
code, which can make it difficult for the DBO to change the keys used to
encrypt the data. However, if one key is used to encrypt several columns, it may
be convenient to enter the password once. For example:

set encryption passwd "Ynot387" for key key1
select base_salary from payroll p, employee e

CHAPTER 5 Protecting Data Privacy from the Administrator

User Guide for Encrypted Columns 47

where p.ssn = e.ssn
and e.ename = "Priscilla Kramnik"

If one key is used to encrypt several columns and the user is setting a password
for the column, the user needs to set password for all the columns they want to
process. For example:

set encryption passwd 'Ynot387' for column payroll.ssn
set encryption passwd 'Ynot387' for column employee.ssn
select base_salary from payroll p, employee e

where p.ssn = e.ssn
and e.ename = 'Priscilla Kramnik'

If a password is set for a column and then set at the key level for the key that
encrypts the column, Adaptive Server discards the password associated with
the column and retains the password at the key level. If two successive entries
for the same key or column are entered, Adaptive Server retains only the latest.
For example:

1 If a user mistypes the password for the column employee.ssn as “Unot387”
instead of the correct “Ynot387”:

set encryption passwd "Unot387"
for column employee.snn

2 And then the user reenters the correct password, Adaptive Server retains
only the second entry:

set encryption passwd "Ynot387"
for column employee.ssn

3 If the user now enters the same password at the key level, Adaptive Server
retains only this last entry:

set encryption passwd "Ynot387" for key key1

4 If the user now enters the same password at the column level, Adaptive
Server discards this entry because it already has this password at the key
level:

set encryption passwd "Ynot387"
for column payroll.ssn

Key protection using user-specified passwords

48 Adaptive Server Enterprise

If a stored procedure or a trigger references a column encrypted by a user
specified password, you must set the encryption password before executing the
procedure or the statement that fires the trigger.

Note Sybase recommends that you do not place the set encryption passwd
statement inside a trigger or procedure; this could lead to unintentional
exposure of the password through sp_helptext. Additionally, hard-coded
passwords require you to change the procedure or trigger when a password is
changed.

Application transparency using login passwords on key copies
The key custodian can set up key copies for encryption with a user’s login
password, and thereby provide:

• Ease of use – users whose login password is associated with a key can
access encrypted data without supplying a password.

• Better security – users have fewer passwords to track, and are less likely
to write them down.

• Lower administrative overhead for key custodian – the key custodian need
not manually distribute temporary passwords to each user who requires
key access through a private password.

• Application transparency – applications need not prompt for a password to
process encrypted data. Existing applications can take advantage of the
measures to protect data privacy from the power of the administrator.

To encrypt a key copy with a user’s login password, use:

alter encryption key [[database.][owner].]keyname
with passwd 'base_key_password'
add encryption for user 'user_name' for login_association

where login_association tells Adaptive Server to create a key copy for the
named user, which it later encrypts with the user's login password. Encrypting
a key copy with a login password requires two steps.

CHAPTER 5 Protecting Data Privacy from the Administrator

User Guide for Encrypted Columns 49

1 Using alter encryption key, the key custodian creates a key copy for each
user who requires key access via a login password. Adaptive Server
attaches information to the key copy to securely associate the key copy
with a given user. The identifying information and key are temporarily
encrypted using a key derived from the system encryption password. The
key copy is saved in sysencryptkeys.

2 When a user processes a column requiring a key lookup, Adaptive Server
notes that a copy of the encryption key identified for this user is ready for
login password association. Using the system encryption password to
decrypt the information in the key copy, Adaptive Server validates the user
information associated with the key copy against the user’s login
credentials, and encrypts the key copy with a KEK derived from the user’s
login password, which has been supplied to the session.

When adding a key copy with alter encryption key key for login_association, the
system encryption password must be available for encryption of the key copy.
The system encryption password must still be available for Adaptive Server to
decrypt the key copy when the user logs in. After Adaptive Server has
reencrypted the key copy with the user’s login password, the system encryption
password is no longer required.

The following example encrypts a user’s copy of the encryption key, key1, with
the user’s login password:

1 Key custodian Razi (with user ID “razi”) creates an encryption key:

create encryption key key1 for AES
with passwd 'MotherofSecrets'

2 If there is not already a system encryption password, Razi sets one:

sp_encryption system_encr_passwd, 'keepitsecret'

3 Razi creates a copy of key1 for user Bill (with user ID “bill”), initially
encrypted with the system encryption password but eventually to be
encrypted by Bill’s login password:

alter encryption key key1 with
passwd 'MotherofSecrets'
add encryption
for user 'bill'
for login_association

4 Adaptive Server uses the system encryption password to encrypt a
combination of the key and information identifying the key copy for Bill,
and stores the result in sysencryptkeys.

Key protection using user-specified passwords

50 Adaptive Server Enterprise

5 Bill logs in to Adaptive Server and processes data, requiring the use of
key1. For example, if emp.ssn is encrypted by key1:

select * from emp

Adaptive Server recognizes that it must encrypt Bill’s copy of key1 with
his login password. Adaptive Server uses the system encryption password
to decrypt the key value data saved in step 4. It validates the information
against the current login credentials, then encrypts key1's key value with a
KEK generated from Bill’s login password.

6 During future logins when Bill processes columns encrypted by key1,
Adaptive Server accesses key1 directly by decrypting it with Bill’s login
password, which is available to Adaptive Server through Bill’s internal
session context.

Users who are aliased to Bill cannot access the data encrypted by key1
because their own login passwords cannot decrypt key1.

7 When Bill loses authority to process confidential data, the key custodian
drops Bill’s access to the key:

alter encryption key key1
drop encryption
for user 'bill'

A user can encrypt a key copy directly with a login password with alter
encryption key using the with passwd login_passwd clause. However, the
disadvantages of using this method over the login association are:

• The key custodian must communicate the key copy’s first assigned
password to the user.

• The user must issue alter encryption key to reencrypt the key copy with a
login password.

For example:

• Razi adds a key copy for user Bill encrypted by an explicit password:

alter encryption key key1
with passwd 'MotherofSecrets'

add encryption with passwd 'just4bill'
for user bill

• Razi shares the key copy's password with Bill.

• Bill decides to encrypt his key copy with his login password for his own
convenience:

alter encryption key key1 with passwd "just4bill"

CHAPTER 5 Protecting Data Privacy from the Administrator

User Guide for Encrypted Columns 51

modify encryption with passwd login_passwd

• Now, when Bill processes encrypted columns, Adaptive Server accesses
Bill’s key copy through his login password.

Login password change and key copies
If you hold a key copy encrypted by a login password on one or more keys, you
need not modify the key copies after you have changed your login password.
As part of changing the login password, sp_password decrypts your key copies
with your old login password and reencrypts them using the new login
password.

If the SSO uses sp_password to change your password without supplying your
old password, sp_password drops your key copies. This prevents an
administrator from gaining access to a key through a known password. After a
mandatory password change of this kind, the key custodian must use alter
encryption key to add a key copy for login_association for the user whose
password is changed. sp_password ignores offline databases and, for keys
stored in offline databases, the key custodian follows the steps for recovering
a lost key copy password when the database comes back online. See “Loss of
login password” on page 54.

The key custodian may also need to perform these steps when a user’s
password is changed after the server is started using the -p flag. If the SSO, who
uses the -p flag also has access to keys through key copies encrypted with his
or her login password, then the key custodian must drop and re-create the
SSO’s key copies.

Dropping a key copy
When a user changes jobs or leaves the company, the key custodian should
drop the user’s key copy:

alter encryption key keyname
drop encryption for user user_name

For example, if user “bill” leaves the company, the key owner can prevent
Bill’s access to key1 by dropping his key copy:

alter encryption key key1
drop encryption for user bill

Key protection using user-specified passwords

52 Adaptive Server Enterprise

Adaptive Server does not require a password for this command because no key
decryption is required.

drop encryption key drops the base key and all its copies.

User Guide for Encrypted Columns 53

C H A P T E R 6 Recovering Keys from Lost
Passwords

Loss of password on key copy
If a user loses a password for the encryption key, the key custodian must
drop the user’s copy of the encryption key and issues to the user another
copy of the encryption key with a new password.

In this example, the key custodian assigned a copy of key1 to Bill (who
has user ID “bill”), and Bill changed his password on key1 to a password
known only to him. After losing his password, Bill requests a new key
copy from the key custodian.

1 The key custodian deletes Bill’s copy of the key:

alter encryption key key1
drop encryption for user bill

2 The key custodian makes a new copy of key1 for user Bill and gives
Bill the password:

alter encryption key key1
with passwd 'MotherofSecrets'
add encryption with passwd 'over2bill'
for user bill

3 Bill automatically has permission to alter his own copy of key1:

alter encryption key key1

Topic Page
Loss of password on key copy 53

Loss of login password 54

Loss of password on base key 54

Key recovery commands 55

Changing ownership of encryption keys 57

Loss of login password

54 Adaptive Server Enterprise

with passwd 'over2bill'
modify encryption
with passwd 'billsnupasswd'

Loss of login password
If user Bill, who has key copies encrypted by his login password, loses his login
password, you can recover his access to encryption keys with these steps:

1 The SSO uses sp_password to issue Bill a new login password. Adaptive
Server drops any key copies assigned to Bill for login association or key
copies already encrypted by Bill’s login password.

2 The key custodian follows the regular procedure for setting up key
encryption by login association. He verifies that the system encryption
password was set, and creates Bill’s key copy:

alter encryption key k1
with passwd 'masterofsecrets'
add encryption for bill
for login_association

This step assumes the key custodian still knows the base key’s password.
If the key’s encryption password is unknown, the key custodian must first
follow the key recovery procedure. See “Loss of password on base key”
on page 54 for more information.

3 The next time Bill accesses data encrypted by k1, Adaptive Server
reencrypts Bill's key copy using Bill's new login password. For example,
if emp_salary is encrypted by key k1, the following statement
automatically reencrypts Bill’s key copy with his login password:

select emp_salary from emp
where name like 'Prisicilla%'

Loss of password on base key
Key custodians can use key recovery if the base key password is lost. Key
recovery is vital because, without the password, the key custodian cannot
change the key’s password or add key copies.

CHAPTER 6 Recovering Keys from Lost Passwords

User Guide for Encrypted Columns 55

If all users share access to data through the base key and a user forgets the
password, he or she can get the password from another user or the key
custodian. If no one remembers the password, all access to the data is lost.
Because of this, Adaptive Server recommends that you back up keys by
creating a copy of the base key that you can use for recovery. This copy is
called the key recovery copy.

The key custodian should:

1 Appoint one user as the key recoverer. The key recoverer’s responsibility
is to remember the password to the key recovery copy.

2 Make a copy of the base key for the key recoverer. Every key that requires
recovery after a disaster must have a key recovery copy.

Key recovery commands
 Adaptive Server does not allow access to data through the recovery key copy.
A key recovery copy exists only to provide a backup for accessing the base key.

Set up a recovery key copy using:

alter encryption key keyname with passwd base_key_passwd
add encryption with passwd recovery_passwd
for user key_recovery_user for recovery

where:

• base_key_passwd – is the password the key custodian assigned to the base
key.

• recovery_passwd – is the password used to protect the key recovery copy.

• key_recovery_user – user assigned the responsibility for remembering a
password for key recovery.

After setting the key recovery copy, the key custodian shares the password with
the key recovery user, who can alter the password using:

alter encryption key keyname with passwd old_recovery_passwd
modify encryption with passwd new_recovery_passwd for recovery

During key recovery, the key recovery user tells the key custodian the
password of the key recovery copy. The key custodian restores access to the
base key using:

Key recovery commands

56 Adaptive Server Enterprise

alter encryption key keyname with passwd recovery_key_passwd
recover encryption with passwd new_base_key_passwd

where:

• recovery_key_passwd – is the password associated with the key recovery
copy, shared with the key custodian by the recovery key user. Adaptive
Server uses the recovery_key_passwd to decrypt the key recovery copy to
access the raw key.

• new_base_key_passwd – is the password used to encrypt the raw key.
Adaptive Server updates the base key row in sysencryptkeys with the
result.

You may also need to change ownership of the key to another key custodian.
See “Changing ownership of encryption keys” on page 57.

This example shows how to set up the recovery key copy and use it for key
recovery after losing a password:

1 The key custodian creates a new encryption key protected by a password.

create encryption key key1 for AES
passwd 'loseitl8ter'

2 The key custodian adds a encryption key recovery copy for key1 for
Charlie.

alter encryption key key1 with passwd 'loseitl8ter'
add encryption
with passwd 'temppasswd'
for user charlie
for recovery

3 Charlie assigns a different password to the recovery copy and saves this
password in a locked drawer:

alter encryption key key1
with passwd 'temppasswd'
modify encryption
with passwd 'finditl8ter'
for recovery

4 If the key custodian loses the password for base key, he can obtain the
password from Charlie and recover the base key from the recovery copy
using:

alter encryption key key1
with passwd 'finditl8ter'
recover encryption
with passwd 'newpasswd'

CHAPTER 6 Recovering Keys from Lost Passwords

User Guide for Encrypted Columns 57

The key custodian now shares access to key1 with other users by sharing the
base key’s password, or by dropping and adding key copies where changes in
personnel have occurred.

Changing ownership of encryption keys
Changing ownership may occur in the normal course of business, or as part of
key recovery. This command, when executed by the SSO, transfers key
ownership to a named user:

alter encryption key [[database.][owner].]keyname
modify owner user_name

Where user_name is the name of the new key owner. This user must already be
a user in the database where the key was created.

For example, if Razi is the key custodian, and owns the key encr_key, but is
being replaced by a new key custodian named Tina (user ID “tinnap”), change
the key ownership using:

alter encryption key encr_key modify owner tinnap

Only the SSO or the key owner can run this command.

If the new owner already has a copy of the key, you see:

A copy of key encr_key already exists for user tinnap

A user who already has a regular key copy or a recovery key copy cannot
become the new owner of the key. Adaptive Server does not allow a key copy
to be made for a key owner.

If the previous key owner had granted any permissions on the key, the grantor
uid in sysprotects system table is changed to the uid of the new owner of the
key. The ownership change is effective immediately; the new owner need not
log in again for the change to take effect.

Changing ownership of encryption keys

58 Adaptive Server Enterprise

User Guide for Encrypted Columns 59

C H A P T E R 7 Auditing Encrypted Columns

Auditing options
See Chapter 18, “Auditing” in the System Administration Guide: Volume
1 for encrypted columns auditing information (specifically Table 18-5,
which lists the values in the event and extrainfo columns).

Audit values
See Chapter 18, “Auditing” in the System Administration Guide: Volume
1 for values that appear in the event column of sysaudits (specifically
Table 18-2, which lists auditing options, requirements, and examples).

Event names and numbers
You can query the audit trail for specific audit events. Use audit_event_name
with event id as a parameter.

audit_event_name(event_id)

Topic Page
Auditing options 59

Audit values 59

Event names and numbers 59

Masking passwords in command text auditing 60

Auditing actions of the key custodian 60

Masking passwords in command text auditing

60 Adaptive Server Enterprise

See Chapter 18, “Auditing” in the System Administration Guide: Volume 1 for
values that appear in the event column of sysaudits (specifically Table 18-6,
which lists the audit event values).

Masking passwords in command text auditing
Passwords are masked in audit records. For example, if the SSO has enabled
command text auditing (that is, auditing all actions of a particular user) for user
Alan (user ID “alan”) in database db1:

sp_audit "cmdtext", "alan", "db1", "on"

And Alan issues this command:

create encryption key key1 with passwd "bigsecret"

Adaptive Server writes the following SQL text to the extrainfo column of the
audit table:

"create encryption key key1 with passwd "xxxxxx"

Auditing actions of the key custodian
To audit all actions in which keycustodian_role is active, use:

sp_audit "all", "keycustodian_role", "all", "on"

User Guide for Encrypted Columns 61

C H A P T E R 8 Performance Considerations

Encryption is a CPU-intensive operation that may introduce a
performance overhead to your application in terms of CPU usage and the
elapsed time of commands that use encrypted columns. The amount of
overhead depends on the number of CPUs and Adaptive Server engines,
the load on the system, the number of concurrent sessions accessing the
encrypted data, and the number of encrypted columns referenced in a
query. The encryption key size and the length of the encrypted data are
also factors. In general, the larger the key size and the wider the data, the
higher the CPU usage in the encryption operation.

The elapsed time depends on whether the Adaptive Server optimizer can
make use of an encrypted column.

Indexes on encrypted columns
You can create an index on an encrypted column if the column’s
encryption key does not specify the use of an initialization vector or
random padding. Using an initialization vector or random padding results
in identical data encrypting to different patterns of cipher text, which
prevents an index from enforcing uniqueness and from performing
equality matching of data in cipher text form.

Topic Page
Indexes on encrypted columns 61

Sort orders and encrypted columns 62

Joins on encrypted columns 63

Search arguments and encrypted columns 64

Movement of encrypted data as cipher text 65

Sort orders and encrypted columns

62 Adaptive Server Enterprise

Indexes on encrypted data are useful for equality and nonequality matching of
data but not for data ordering, range searches, or finding minimum and
maximum values. If Adaptive Server is performing an order-dependent search
on an encrypted column, it cannot execute an indexed lookup on encrypted
data. Instead, the encrypted column in each row must be decrypted and then
searched. This slows data processing.

Sort orders and encrypted columns
If you use a case-insensitive sort order, Adaptive Server cannot use an index on
an encrypted char or varchar column when performing a join with another
column or a search based on a constant value. This is also true of an accent-
insensitive sort order.

For example, For example, in a case-insensitive search, the string abc matches
all strings in the following range: abc, Abc, ABc, ABC, AbC, aBC, aBc, abC.
Adaptive Server must compare abc against this range of values. By contrast, a
case-sensitive comparison of the string abc to the column data matches only
identical column values, that is, columns containing abc. The main difference
between case-insensitive and case-sensitive column lookups is that case-
insensitive matching requires Adaptive Server to perform a range search
whereas case-sensitive matching requires an equality search.

An index on a nonencrypted character column orders the data according to the
defined sort order. For encrypted columns, the index orders the data according
to the cipher text values, which bears no relationship to the ordering of plain
text values. Therefore, an index on an encrypted column is useful only for
equality and non-equality matching and not for searching a range of values.
abc and Abc encrypt to different cipher text values and are not stored
adjacently in an index.

When Adaptive Server uses an index on an encrypted column, it compares
column data in cipher text form. For case sensitive data, you do not want abc
to match Abc, and the cipher text join or search based on equality matching
works well. Adaptive Server can join columns based on cipher text values and
can efficiently match where clause values. In this example, the maidenname
column is encrypted:

select account_id from customer
where cname = 'Peter Jones'
and maidenname = 'McCarthy'

CHAPTER 8 Performance Considerations

User Guide for Encrypted Columns 63

Providing that maidenname has been encrypted without use of an initialization
vector or random padding, Adaptive Server encrypts McCarthy and performs
a cipher text search of maidenname. If there is an index on maidenname, the
search uses of the index.

Joins on encrypted columns
Adaptive Server optimizes the joining of two encrypted columns by
performing cipher text comparisons if:

• The joining columns have the same datatype. For cipher text comparisons,
char and varchar are considered to be the same datatypes, as are binary and
varbinary.

• For int and float types, the columns have the same length. For numeric and
decimal types, the columns must have the same precision and scale.

• The joining columns are encrypted with the same key.

• The joining columns are not part of an expression. For example, you
cannot perform a cipher text join on a join where t.encr_col1 = s.encr_col1
+1.

• The encryption key was created with init_vector and pad set to NULL.

• The join operator is ‘=’ or ‘<>’.

• The data uses the default sort order.

This example sets a schema to join on cipher text:

create encryption key new_cc_key for AES
with init_vector NULL

create table customer
(custid int,
creditcard char(16) encrypt with new_cc_key)

create table daily_xacts
(cust_id int, creditcard char(16) encrypt with
new_cc_key, amount money........)

You can also set up indexes on the joining columns:

create index cust_cc on customer(creditcard)

create index daily_cc on daily_xacts(creditcard)

Search arguments and encrypted columns

64 Adaptive Server Enterprise

Adaptive Server executes the following select statement to total a customer’s
daily charges on a credit card without decrypting the creditcard column in either
the customer or the daily_xacts table.

select sum(d.amount) from daily_xacts d, customer c
where d.creditcard = c.creditcard and
c.custid = 17936

Search arguments and encrypted columns
For equality and non-equality comparison of an encrypted column to a constant
value, Adaptive Server optimizes the column scan by encrypting the constant
value once, rather than decrypting the encrypted column for each row of the
table. The same restrictions listed in “Joins on encrypted columns” on page 63
apply.

For example:

select sum(d.amount) from daily_xacts d
where creditcard = '123-456-7890'

Adaptive Server cannot use an index to perform a range search on an encrypted
column; it must decrypt each row before performing data comparisons. If a
query contains other predicates, Adaptive Server selects the most efficient join
order, which often leaves searches against encrypted columns until last, on the
smallest data set.

If your query has more than one range search without a useful index, write the
query so that the range search against the encrypted column is last. This
example which searches for the Social Security Numbers of taxpayers earning
more than $100,000 in Rhode Island positions the zipcode column before the
range search of the encrypted adjusted gross income column:

select ss_num from taxpayers
where zipcode like ‘02%’ and
agi_enc > 100000

Referential integrity
searches

Referential integrity probes match at the cipher text level if both the following
are true:

• The datatypes of the primary key and foreign key match according to the
rules described above.

• The encryption of the primary and foreign keys meets the key
requirements for joining columns.

CHAPTER 8 Performance Considerations

User Guide for Encrypted Columns 65

Movement of encrypted data as cipher text
As much as possible, Adaptive Server optimizes the copying of encrypted data
by copying cipher text instead of decrypting and reencrypting data. This
applies to select into commands, bulk copying, and replication.

Movement of encrypted data as cipher text

66 Adaptive Server Enterprise

User Guide for Encrypted Columns 67

C H A P T E R 9 System Information for
Encrypted Columns

This chapter provides information about system tables, commands,
system procedures, utilities, CIS, and replication that are affected by, and
are used by, encrypted columns.

System tables
See the Reference Manual: Tables for information about updates to the
system tables for encrypted columns.

Topic Page

System tables 68

System commands 68

System stored procedures 78

Utilities 100

Component Integration Services (CIS) 110

Replicating encrypted data 111

System commands

68 Adaptive Server Enterprise

System commands

set proxy
If a user issues set proxy to assume the privileges, login name, and suid of
another user, Adaptive Server checks the proxy user’s access to database
objects, rather than the original user’s access. When Adaptive Server accesses
a key copy, however, it does so on behalf of the original user and not the proxy
user. Because a key copy may be encrypted by a user's login password.
Adaptive Server uses the name and password information to check for
automatic access to encryption keys using login credentials. Adaptive Server
does not have access to the proxy user's password.

For example, if user1 has set his proxy to user2, that means user2 has access to
the key through user1’s key copy, which may be encrypted by user1’s login
password, or by a user-defined password which user1 must have passed to
user2.

set encryption password
See “Accessing encrypted data with user password” on page 45 for
information about using set encryption password. See the Reference Manual:
Commands for the complete set syntax.

alter table
Use alter table to:

• Encrypt or decrypt existing data

• Add an encrypted column to a table

• Add, drop, or replace a decrypt default

The following partial syntax for alter table includes only clauses specific to
encryption. See the Reference Manual for the complete syntax.

Syntax Encrypt a column:

alter table tablename add column_name
encrypt [with [database.[owner].]keyname]
[decrypt_default constant expression]

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 69

Decrypt an existing column:

alter table tablename modify column_name
[decrypt [with [database.[owner].]keyname]]

keyname – identifies a key created using create encryption key. The table owner
must have select permission on keyname. If keyname is not supplied, Adaptive
Server looks for a default key created using create encryption key or alter
encryption key as default.

Examples Example 1 To create an encryption key and encrypt ssn column in existing
employee table, enter.

set encryption passwd '4evermore' for key ssn_key
alter table employee modify ssn

encrypt with ssn_key
If ssn in this encrypted by key1, alter table would cause Adaptive Server to
decrypt ssn using key1 and reencrypt ssn using ‘ssn_key’.

Example 2 This adds an encrypted column to an existing table. Because
keyname is omitted, Adaptive Server uses the database default encryption key:

alter table sales_mgr
add bonus money null encrypt

Example 3 To decrypt credit card data that is no longer sensitive, enter:

alter table stolen_ccards
decrypt ccard

If ccard was encrypted by a key protected by a user-defined password, precede
this command with the set encryption key command.

Example 4 To add a decrypt default to an existing encrypted column, enter:

alter table employee
replace salary decrypt_default $0.0

Example 5 A user-defined password that protects a keyname must be set
using set encryption passwd before you can execute alter table. To remove a
decrypt default from the encrypted salary column without decrypting the
column, enter:

alter table employee
replace salary
drop decrypt_default

Usage • Use alter table to change an encrypted column. This operation may take a
significant amount of time if the table contains a large number of rows.

• Modifying a column for encryption can cause the row size of the table to
increase.

System commands

70 Adaptive Server Enterprise

• You cannot use alter table to encrypt or decrypt a column belonging to a
clustered or placement index. To encrypt or decrypt such a column:

a Drop the index.

b Alter the column.

c Re-create the index.

• You cannot use alter table to encrypt or decrypt a column if the table has a
trigger defined. To modify the column:

a Drop the trigger.

b Alter the column.

c Re-create the trigger.

• If the type of the encrypted column which belongs to a clustered or
placement index is modified, it results in the index being out of order. alter
table displays an error. To modify the type:

a Drop the index

b Modify the type

c Re-create the index

• alter table reports an error if you:

• Change a computed column to an encrypted column or change an
encrypted column to a computed column

• Enable a column for encryption where the column is referenced in an
expression used by a computed column

• Change a computed column to reference an encrypted column.

• Encrypt a column that is a member of a functional index

• Specify an encrypted column as a partition key

• Encryption-enable a column that is already used as a partition key

create index
To improve performance on both equality and nonequality searches, and on
joins, create indexes on encrypted columns. See “Performance
Considerations” on page 61 for information on how Adaptive Server makes
use of indexes on encrypted columns.

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 71

create index reports an error if you create:

• A functional index using an expression that references an encrypted
column.

• An index on a column encrypted with initialization vector or random
padding.

create table
Use the encrypt qualifier with create table to set up encryption on a table
column and optionally specify a decrypt default.

The following partial create table syntax only includes clauses specific to
encryption. See the Reference Manual for the complete syntax:

Syntax create table tablename (colname datatype [default_clause]
[identity_clause][column_constraints]
[encrypt [with [database.[owner].]keyname]

[decrypt default constant expression]]
[, next_colname datatype [optional clauses]]

keyname – identifies a key created using create encryption key. The creator of
the table must have select permission on keyname. If keyname is not supplied,
Adaptive Server looks for a default key created using the as default clause on
create encryption key or alter encryption key.

Note You cannot reference a column in the partition_clause of create table that
is specified for encryption in the target table.

Example Example 1 Creates an employee table with a nullable encrypted column.
Adaptive Server uses the database default encryption key to encrypt the ssn
data:

create table employee_table (ssn char(15) null
encrypt name char(50), deptid int)

Example 2 To create a customer table with an encrypted column for credit
card data, enter:

create table customer (ccard char(16) unique
encrypt with cc_key
decrypt_default 'XXXXXXXXXXXXXXXX', name char(30))

System commands

72 Adaptive Server Enterprise

The ccard column has a unique constraint and uses cc_key for encryption.
Because of the decrypt_default specifier, Adaptive Server returns the value
‘XXXXXXXXXXXXXXXX’ instead of the actual data when a user without
decrypt permission selects the ccard column.

Usage create table displays an error if you:

• Specify a computed column based on an expression that references one or
more encrypted columns.

• Use the encrypt and compute parameters on the same column.

• List an encrypted column in the partition clause

select into
select into requires column-level permissions, including decrypt, on the source
table. The following partial syntax for select into includes only clauses specific
to encryption. See the Reference Manual for the complete syntax.

Syntax select [all|distinct] column_list
into target_table

 [(colname encrypt [with [database.[owner].]keyname]
[,colname encrypt

 [with [database.[owner].]keyname]])]
from tabname | viewname

Example This example encrypts the creditcard column in the bigspenders table:

select creditcard, custid, sum(amount) into
#bigspenders
(creditcard encrypt with

custdb.dbo.cc_key)
from daily_xacts group by creditcard
having sum(amount) > $5000

Usage • If you use the encrypt clause without specifying a key name, Adaptive
Server uses the database default key to encrypt the data in the target
column.

• If a column in the source table is encrypted and you do not specify the
encrypt clause for the target column, Adaptive Server decrypts the data in
the source table and inserts plain text data in the target column.

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 73

• If you specify encryption for the target column with the same key used for
the source column data, and if the key does not use an initialization vector
or random padding, then Adaptive Server copies the data from the source
column to the target column as cipher text, without intermediate
decryption and reencryption operations.

• If however, you specify encryption for the target column using a different
key from that used for the source column, or if the key uses an
initialization vector or padding during encryption, the Adaptive Server
performs a decryption and encryption operation for each selected row of
the encrypted column.

create encryption key
See “Creating encryption keys” on page 5 for create encryption key usage
information. See the Reference Manual: Commands for the complete syntax.

alter encryption key
See Chapter 5, “Protecting Data Privacy from the Administrator,” for alter
encryption key usage information. See the Reference Manual: Commands for
the complete syntax.

drop encryption key
drop encryption key drops the key copies when you drop the base key. The key
owner and the SSO can drop encryption keys. The command fails if any
column in any database is encrypted using the key.

The syntax is:

drop encryption key [database.[owner].]keyname

grant create encryption key
The SSO grants permission to create encryption keys. Only the SSO and the
key custodian have implicit permission to create encryption keys.

The syntax is:

System commands

74 Adaptive Server Enterprise

grant create encryption key to user | role| group

Note grant all in a database does not grant create encryption key permission.

revoke create encryption key
The SSO can revoke the permission to create encryption keys from users,
groups, and roles:

The syntax is:

revoke create encryption key from user | role | group

grant decrypt
The table owner or the SSO can grant decrypt permission on a table or a list of
columns in a table if you have not configured 'restricted decrypt permission'. If
you have configured restricted decrypt permission, only the SSO can grant
decrypt permission.

The syntax is:

grant decrypt on [owner.]tablename[(columnname [{,columname}])]
to user | group | role
with grant option

Note grant all on a table or column does not grant decrypt permission

revoke decrypt
The table owner or the SSO can revoke decrypt permission on a table or a list
of columns in a table if you have not configured restricted decrypt permission.
If you have configured restricted decrypt permission, only the SSO can revoke
decrypt permission.

The syntax is:

revoke decrypt on [owner.] tablename[(columnname [{,columname}])]
from user | group | role

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 75

unmount database
When columns are encrypted by keys from other databases, unmount all
interdependent databases as a set. The interdependency of the databases
containing the encrypted columns and the databases containing the keys is
similar to the interdependency of databases that use referential integrity.

Use the override option to unmount a database containing columns encrypted
by a key in another database.

In this example, the encryption key created in key_db has been used to encrypt
columns in col_db. These commands successfully unmount the named
databases:

unmount database key_db, col_db
unmount database key_db with override
unmount database col_db with override

If you include with override, Adaptive Server issues a warning message, but the
operation is successful.

If you do not include with override, commands fail with an error message

dump and load database
If the database you are loading contains encryption keys used in other
databases, load database does not succeed unless you use with override.

Syntax load database key_db from device_file with override

Usage dump and load work on the cipher text of encrypted columns, ensuring that the
data in encrypted columns remains encrypted while on disk. dump and load act
on entire databases. Default keys, and keys created in the same database, are
dumped and loaded along with the data they protect.

If your keys are in a separate database from the columns they encrypt, Sybase
recommends that:

• When you dump the database containing encrypted columns, you also
dump the database where the key was created. You must do this if you
have added new keys since the last dump.

• When you dump the database containing an encryption key, dump all
databases containing columns encrypted with that key. This keeps the
encrypted data in sync with the available keys.

System commands

76 Adaptive Server Enterprise

• After loading the database containing the encryption keys and the database
containing the encrypted columns, bring both databases online at the same
time.

If you load the database containing the keys into a different database, errors
result when you try to access the encrypted columns in other databases. To
change the database name of the keys’ database:

• Before dumping the database containing the encrypted columns, use alter
table to decrypt the data.

• Dump the databases containing keys and encrypted columns.

• After loading the databases, use alter table to reencrypt the data with the
keys in the newly named database.

 Warning! The consistency issues between encryption keys and encrypted
columns are similar to those for cross-database referential integrity. See
“Cross-database constraints and loading databases” in Chapter 12 of the
Adaptive Server Enterprise System Administration Guide: Volume One.

quiesce database
You can use quiesce database when the database containing encrypted columns
also contains the encryption key.

You must use with override to quiesce a database whose columns are encrypted
with keys used in other databases.

quiesce database key_db, col_db is allowed, where key_db is the database with
the encryption key and col_db is the database with a table that has a column
encrypted with the key in key_db.

For example, the following commands succeed when key_db contains the
encryption key used to encrypt columns in col_db:

quiesce database key_tag hold key_db for external
dump to '/tmp/keydb.dat'

quiesce database encr_tag hold col_db for external dump
to '/tmp/col.dat' with override

quiesce database col_tag hold key_db, col_db for
external dump to '/tmp/col.dat'

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 77

drop database
To prevent accidental loss of keys, drop database fails if the database contains
keys currently used to encrypt columns in other databases. To drop a database:

1 Decrypt the columns or modify the columns for encryption by a different
key using alter table

2 Drop the table or database containing the encrypted columns

In this example, key_db is the database where the encryption key resides, and
col_db is the database containing the encrypted columns:

drop database key_db, col_db

Adaptive Server raises an error and does not drop key_db; however, col_db is
dropped. To drop both databases, drop col_db first:

drop database col_db, key_db

dbcc
For encryption, dbcc checkcatalog includes these consistency checks:

• For each encryption key row in sysobjects, sysencryptkeys is checked for
the existence of a row defining that key.

• For each column in syscolumns marked for encryption, the existence of the
key is checked in sysobjects and sysencryptkeys.

dbcc checkcatalog ensures that:

• The corresponding base key is present in sysencryptkeys for every key
copy in sysencryptkeys. If the base key is not present, Adaptive Server
issues an error.

• For every key copy, the corresponding uid is present in sysusers. If the uid
is not present, Adaptive Server issues an error.

• For every decrypt default defined on a column, that the corresponding
decrypt default is present in sysobjects and sysattributes. If the
corresponding decrypt default is not present, Adaptive Server issues an
error.

System stored procedures

78 Adaptive Server Enterprise

System stored procedures

sp_helprotect
Syntax sp_helprotect [name [, username [, "grant"

[,"none"|"granted"|"enabled"|role_name [,permission_name]]]]]

The value for permission_name can be any of the values from
sysprotects.action.

This example executes sp_helprotect using the “Decrypt” action from
sysprotects.action:

sp_helprotect @permission_name = 'Decrypt'

grantor grantee type action object column grantable
------- -------- ----- ------- ------- ------ ---------
sa1 hr_login Grant Decrypt employee ssn TRUE
sa1 hr_role Grant Decrypt employee ssn FALSE

Any user can run sp_helprotect to view his or her permission information. Only
the SSO can view permissions for all users.

sp_dropuser
sp_dropuser drops all key copies from sysencryptkeys for the specified user in
the current database. sp_dropuser fails if the user owns an encryption key in
any database.

sp_help
For tables that include an encrypted column, sp_help tablename displays
whether a column is encrypted and whether the encrypted column has a decrypt
default. For example:

create table encr_table(col1 int encrypt decrypt_default 1)

The output from this example is similar to:

Column_name Type Length Prec Scale Nulls Default_name
Rule_name Access_Rule_name Computed_Column_object Identity Encrypted
Decrypt_Default_name

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 79

----------- ---- ------ ---- ----- ----- ------------
--------- -------------- -------------------- --------- -------------

c1 int 4 NULL NULL 0 NULL
NULL NULL NULL 0 1
encr_table_col1_1036527695

sp_configure

enable encrypted columns

enable encrypted columns enables encrypted columns, and is a dynamic
configuration option.

You cannot set enable encrypted columns unless you have purchased, installed,
and registered the ASE_ENCRYPTION license on your server. Any attempt to
set it without such licensing results in Msg. 10834:

Configuration parameter 'enable encrypted columns'
cannot be enabled without license 'ASE_ENCRYPTION'

Note Using encrypted columns increases the logical memory used by 8198
kilobytes.

restricted decrypt permission

restricted decrypt permission enables or disables restricted decrypt permission
in all databases, and is a dynamic configuration option: you need not restart
Adaptive Server for it to take affect.

The SSO runs this command to enable or disable restricted decrypt permission
in all databases:

sp_configure "restricted decrypt permission", [1 | 0]

When restricted decrypt permission is set to 0 (off), decrypt permission on
encrypted columns acts the same as in versions earlier than 15.0.2:

• The table owner or the SSO explicitly grants decrypt permission.
However, with grant option on decrypt permission is supported.

System stored procedures

80 Adaptive Server Enterprise

• Decrypt permission is granted implicitly to table owners and the SSO, as
well as to any user through a chain of ownership. For example, if user Fred
owns the proc1 stored procedure, which selects data from the encrypted
column fred.table1.col1, and if Fred grants exec permission on proc1 to
Harry, then Harry has implicit decrypt permission on fred.table1.col1

• Decrypt permission is not needed for alter table decryp. because the table
owner has implicit decrypt permission on encrypted columns.

When restricted decrypt permission is set to 1 (on):

• Decrypt permission is granted implicitly only to the SSO.

• The SSO can grant decrypt permission using the with grant option
parameter. This allows the SSO to decide who can grant decrypt
permission in the system. For example, if the SSO wants user1 to be able
to grant decrypt permission on user3.user3_tab, the SSO issues:

grant decrypt on user3.user3_tab to user1
with grant option

If you use a system encryption password, Sybase recommends that, to
protect data privacy, you do not grant decrypt permission to the DBO to.
Access to keys through user passwords prevents the DBO and other parties
from accessing the data unless they have a key’s password; however, you
may find it convenient for the DBO to decide which users should see the
decrypted data. If you are not protecting keys and data with user-specified
passwords, the SSO should retain the sole responsibility to grant decrypt
permission.

• Table ownership does not give a user implicit decrypt permission. That is,
if you create a table with encrypted columns, you do not have decrypt
permission on them unless it is explicitly granted to you.

• No user is implicitly granted decrypt permission through an ownership
chain. For example, if Fred owns the proc1 stored procedure, which selects
data from the encrypted column fred.table1.col1, and if Fred grants exec
permission on proc1 to Harry, then Harry must also have explicit decrypt
permission on fred.table1.col1 to see the data.

• Aliased users assume the permissions of the user to whom they are aliased.
Similarly, a user with sa_role, who is implicitly aliased to the DBO in any
database, inherits any decrypt permissions that have been explicitly
granted to the DBO.

• Decrypt permission is required for alter table decrypt statement because the
table owner does not have implicit decrypt permission on the table.

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 81

If you change restricted decrypt permission from 0 to 1, currently executing
statements that use implicit decrypt permission finish; however any subsequent
statements that use implicit decrypt permission fail with this error until the
SSO grants the user decrypt permission on the necessary columns:

Msg 10330 "DECRYPT permission denied on object object_name, database
database_name, owner owner_name."

If you change restricted decrypt permission from 1 to 0, the rows that reflect
explicit grants remain in the sysprotects system table. However, these rows
have no effect on implicitly granted decrypt permissions because Adaptive
Server does not check sysprotects to make sure decrypt permission can be
implicitly granted. sp_helprotect displays misleading information for only
those users who were granted or revoked explicit decrypt permission before
you reconfigure the system, and who now have implicit decrypt permission.

Sybase recommends that, to keep the system consistent, you revoke any
explicit decrypt permissions granted to users before you switch between
enabling or disabling restricted decrypt permission to keep the system
consistent.

sp_helpconfig
Any user in the server can query the value of the encrypted columns options
using sp_helpconfig. For example, to find out if restricted decrypt permission is
active, enter:

sp_helpconfig 'restricted decrypt permission'

The output is similar to:

0 - restricted decrypt permission disabled (default).
1 - restricted decrypt permission enabled

Minimum Value Maximum Value Default Value Current Value
Memory Used Unit Type

 ---------------- ----------- ---------- ---------
------- ------------ -------------
0 1 0 0
0 switch dynamic

you can also run sp_helpconfig 'enable encrypted columns' to determine if
encrypted columns in enabled on the server.

System stored procedures

82 Adaptive Server Enterprise

sp_password
When you use sp_password to change your password, Adaptive Server:

• Uses the original password to decrypt all the key copies that were
encrypted using your login password then reencrypts them with the new
password.

• Updates any key copies assigned to you that are designated for login
association. The key copies’ password type remains the same.

After a password change, log out of all your Adaptive Server sessions then log
in again before accessing any encrypted data. Alternatively, you can use the
immediate parameter of sp_password to propagate the password change to all
sessions.

When the SSO issues sp_password to reset a user's password, the user’s login
password-encrypted key copies are dropped by Adaptive Server because the
user’s old login password is not available. Adaptive Server requires the key
custodian to re-create the key copies for the user, if they are needed

sp_audit
The sp_audit ‘encryption_key’ option manages auditing for encrypted column
commands and events. encryption_key audits these commands:

• create encryption key

• sp_encryption

• alter encryption key

• drop encryption key

sp_displayaudit
sp_displayaudit displays current audit settings. sp_displayaudit displays the
encryption_key information under the database audit options.

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 83

sp_encryption
The SSO or the key custodian uses sp_encryption to set the system encryption
password. The system password is specific to the database in which
sp_encryption is executed, and its encrypted value is stored in the sysattributes
system table in that database.

sp_encryption system_encr_passwd, ‘password’

The password specified using sp_encryption can be 255 bytes in length, and is
used by Adaptive Server to encrypt all keys all keys that do not specify a user-
specified password, login password, or login association in that database. Once
the system encryption password has been set in a database, Adaptive Server has
automatic access to it, not only to encrypt new keys, but also to decrypt keys
when a user reads or writes encrypted columns.

The system encryption password must be set in every database where
encryption keys are created without the with passwd clause. The system
encryption password must be set when key copies are added for
login_association, until the key copy assignees have logged in to Adaptive
Server and used their key copy.

The SSO or key custodian can change the system password by using:

sp_encryption system_encr_passwd, ‘password’ [, ‘old_password’]

When the system password is changed, Adaptive Server automatically
reencrypts all keys encrypted with the system encryption password in the
database with the new password.

Syntax
sp_encryption help | helpkey

sp_encryption help | helpkey [, keyname | wildcard]
[, all_dbs | key_copy | display_cols]

sp_encryption [help | helpkey][, system_encr_password]
[, display_keys | all_dbs]

sp_encryption helpcol [, table_name | column_name]

sp_encryption helpuser [, user_name | wildcard][, key_copy]

• helpkey – lists encryption key properties, including:

• Whether the database contains encryption keys.

System stored procedures

84 Adaptive Server Enterprise

• When run by a user with sso_role, key custodian, or DBO: key name,
key owner, key length, key algorithm, key type, pad, initialization
vector, type of password used to encrypt the key, whether key
recovery has been enabled and count of key copies.

The output is sorted on owner.key name. When run by a non-
privileged user, this command lists keyname, key owner and key type.

• help – included for backward compatibility. Includes the same output as
helpkey.

• keyname – name of the key you are investigating. Lists the properties
defined for keyname. If keyname is omitted, lists properties for all keys.

• wildcard – lists the properties for keys matching the wildcard pattern in the
current database.

For information on using wildcard characters, see Chapter 4, “Using
wildcard characters” in Reference Manual:Building Blocks.

• all_dbs – lists information on encryption keys in all available databases.
Only the SSO can run all_dbs.

• key_copy – lists all user copies for the specified key in the current
database. The output is sorted by key_owner.keyname and includes
information about:

• The base key owner.

• Whether the key copy is a recovery key copy.

• The user to whom a copy belongs.

• Whether the copy is encrypted with a user-encryption password, a
login password, or the system encryption password for login
association (indicated in the output by Login Access).

• display_cols – displays the key name, all keys (or matching wildcard keys)
in the current database, and the columns the key encrypts. When SSO
includes display_cols, all columns encrypted by the keys across all
available databases are included. When a user without the sso_role runs
display_cols, only those columns encrypted by the key in the current
database appear. Data is sorted by keyname, key_owner, database,
table_owner, table_name, and column_name.

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 85

• helpcol column_name – displays the column name and the key used to
encrypt the column. If the SSO includes helpcol, the key name appears in
the output, even if the key is not present in the current database. If a user
without the SSO includes helpcol, Adaptive Server prints the keyid of the
key if it is not present in the current database, omitting the keyname. The
output includes: owner.table.column, database.owner.keyname. The
information is sorted by owner.table.column.

• helpuser – displays the keys owned by or assigned to a user in the current
database.

• system_encr_passwd – displays the keys and key copies that are encrypted
using the system encryption password in the current database.

• system_encr_passwd, all_dbs – displays the properties of the system
encryption password in every database where it has been set. The output
is sorted by . Only the SSO can run this command. If the system encryption
password has not been set for all databases, you see:

The system encryption password has not been set for
all available databases

• display_keys – used with system_encr_passwd to display the keys and key
copies that are encrypted using the system encryption password.

Examples
Example 1 To display the properties of all base encryption keys in the current database

when run by the SSO, key custodian, or the DBO, issue:

sp_encryption helpkey

This is the output:

Key Name Key Owner Key Length Key Algorithm
Key Type Pad Init Vector Type of Password
Key Recovery # of Key Copies
---------- -------- --------- --------------
---------- ------- ------------ -----------
-------- ------
tinnap_key tinnap 128 AES
Symmetric key 0 1 System Encr Passwd
0 0
tinnap_key1 tinnap 128 AES
Symmetric default key 0 1 User Passwd
1 3
sample_key1 dbo 192 AES
Symmetric key 1 1 Login Passwd

System stored procedures

86 Adaptive Server Enterprise

1 2

When run by user “tinnap”, this displays the following properties of all base
encryption keys in the current database:

sp_encryption helpkey

This is the output:

Key Name Key Owner Key Type
-------------- --------- ------------
tinnap_key tinnap Symmetric key
tinnap_key1 tinnap Symmetric default key
sample_key1 dbo Symmetric key

Example 2 Displays properties of all base encryption keys with names similar to
“tinnap%” in the current database when run by SSO, key custodian, or DBO:

sp_encryption helpkey, "tinnap%"
Key Name Key Owner Key Length Key Algorithm Key Type
Pad Init Vector Type of Password Key Recovery
of Key Copies
--------- -------- --------- -------------- ---------
----- ----------- -------------- -----------

tinnap_key tinnap 128 AES Symmetric key
0 1 System Encr Passwd 0
0
tinnap_key1 tinnap 128 AES Symmetric default key
0 1 User Passwd 1 3

When run by user “tinnap”, displays the following properties for the base
encryption keys in the current database with names similar to “tinnap%”:

sp_encryption helpkey, "tinnap%"

This is the output:

Key Name Key Owner Key Type
------------------ --------- ------------
tinnap_key tinnap Symmetric key
tinnap_key1 tinnap Symmetric default key

Example 3 Displays the properties of base encryption key sample_key1 when run by the
SSO, key custodian, or DBO in the current database:

sp_encryption helpkey, sample_key1

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 87

Key Name Key Owner Key Length Key Algorithm Key Type
Pad Init Vector Type of Password Key Recovery
of Key Copies
----------- -------- ---------- ------------- --------- -----
----------- ----------- ------------ ---------

sample_key1 dbo 192 AES Symmetric Key
1 1 Login 1
2

When “tinnap” executes the command:

sp_encryption helpkey, sample_key1

this is the output:

Key Name Key Owner Key Type
------------- ----------- ------------
sample_key1 dbo Symmetric key

Example 4 Displays the properties of all base encryption keys in all available databases
(only the SSO can run this command):

sp_encryption helpkey, NULL, all_dbs

This is the output:

Db.Owner.Keyname Key Length Key Algorithm Key Type
Pad Init Vector Type of Password Key Recovery #of Key Copies
------------------------ ---------- ----------- -------------------
----- ---------- --------------- ------ --------------
keydb.dbo.cc_key 256 AES Symmetric default key
1 1 System EncrPasswd 0 0
keydb.dbo.sample_key1 128 AES Symmetric key
0 0 System Encr Password 1 4
keydb1.tinnap.tinnap_key 128 AES Symmetric key
0 1 System Encr Passwd 0 0
keydb1.tinnap.tinnap_key1 128 AES Symmetric default key
0 1 User Password 1 3
keydb1.dbo.sample_key1 192 AES Symmetric key
1 1 Login Passwd 1 2

Example 5 Displays the properties of all base encryption keys similar to %key1 in all
available databases (only the SSO can run this command):

sp_encryption helpkey, '%key', all_dbs

This is the output:

System stored procedures

88 Adaptive Server Enterprise

Db.Owner.Keyname Key Length Key Algorithm Key Type
Pad Init Vector Type of Password Key Recovery #of Key Copies
------------------------ ---------- ----------- -------------------
----- ---------- --------------- ------ -----
keydb.dbo.cc_key 256 AES Symmetric default key
1 1 System EncrPasswd 0 0
keydb1.tinnap.tinnap_key 128 AES Symmetric key
0 1 System Encr Passwd 0 0

Example 6 Displays the properties of base encryption key sample_key1 in all available
databases (only the SSO can run this command):

sp_encryption helpkey, sample_key1, all_dbs

This is the output:

Db.Owner.Keyname Key Length Key Algorithm Key Type
Pad Init Vector Type of Password Key Recovery #of Key Copies
------------------------ ---------- ----------- -------------------
----- ---------- --------------- ------ -----
keydb.dbo.sample_key1 128 AES Symmetric key
0 0 System Encr Password 1 4
keydb1.dbo.sample_key1 192 AES Symmetric key
1 1 Login Passwd 1 2

Example 7 Displays all the user access copies of keys when run by the SSO, key custodian,
or DBO in the current database:

sp_encryption helpkey, Null, “key_copy”

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery
------------------ ---------- --------------- ----------
tinnap.tinnap.key1 joesmp User Passwd 0
tinnap.tinnap.key1 samcool User Passwd 1
tinnap.tinnap.key1 billyg User Passwd 0
dbo.sample.key1 tinnap Login Access 0
dbo.sample.key1 joesmp Login Passwd 1

When user “tinnap” runs this command, it displays the key copies assigned to
this user and the key copies for the keys “tinnap” owns in the current database:

sp_encryption helpkey, Null, “key_copy”

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 89

------------------ ---------- --------------- ----------
tinnap.tinnap.key1 joesmp User Passwd 0
tinnap.tinnap.key1 samcool User Passwd 1
tinnap.tinnap.key1 billyg User Passwd 0
dbo.sample.key1 tinnap Login Access 0

Example 8 Displays all the user access copies of keys with name similar to “sample%”
when run by the SSO, key custodian, or DBO:

sp_encryption helpkey, "sample%", “key_copy”

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery
------------------ ---------- --------------- ----------
dbo.sample_key1 tinnap Login Access 0
dbo.sample_key1 joesmp Login Passwd 1

When user “tinnap” runs this command, it displays the key copies of keys with
names similar to “sample%” assigned to user “tinnap”, and the key copies for
keys with names similar to “sample%” for which “tinnap” is the owner in the
current database:

sp_encryption helpkey, "sample%", “key_copy”

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery
------------------ ---------- --------------- ----------
dbo.sample_key1 tinnap Login Access 0

Example 9 When run by the SSO, key custodian, or the DBO, displays all key copies for
key tinnap_key1 in the current database:

sp_encryption helpkey, tinnap_key1, “key_copy”

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery
------------------ --------- ---------------- ----------
tinnap.tinnap_key1 joesmp User Passwd 0
tinnap.tinnap_key1 samcool User Passwd 1
tinnap.tinnap_key1 billyg User Passwd 0

System stored procedures

90 Adaptive Server Enterprise

When run by user “joesmp”, this displays all encryption key copies assigned to
user “joesmp” and also all the key copies for that keyname if the user is the
owner of the key in the current database:

sp_encryption helpkey, tinnap_key1, “key_copy”

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery
------------------ --------- ---------------- ----------
tinnap.tinnap_key1 joesmp User Passwd 0

Example 10 When run by the SSO, displays all encrypted columns in all available databases
encrypted by keys in the current database:

sp_encryption helpkey, null, display_cols

This is the output:

Key Name Key Owner Database Name Table Owner Table Name
Column Name
------------ ------- ----------- ---------- ------------

tinnap_key tinnap testdb1 tinnap t3
c3
tinnap_key1 tinnap testdb tinnap t4
c4
sample_key1 dbo coldb dbo t1
c1
sample_key1 dbo coldb billyg t2
c2

When this statement is run by user “tinnap”, Adaptive Server displays the
columns in the current database encrypted by keys in the current database:

sp_encryption helpkey, null, display_cols

This is the output:

Key Name Key Owner Database Name Table Owner Table Name
Column Name
------------ ------- ----------- ---------- ------------

tinnap_key tinnap testdb1 tinnap t3
c3

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 91

Example 11 When run by the SSO, displays all encrypted columns in all available databases
encrypted by a key with a name like “%key%” in the current database:

sp_encryption helpkey, "%key%", display_cols

This is the output:

Key Name Key Owner Database Name Table Owner Table Name
Column Name
------------ ------- ----------- ---------- ------------

tinnap_key1 tinnap testdb tinnap t4
c4
sample_key1 dbo coldb dbo t1
c1
sample_key1 dbo coldb billyg t2
c2

When this statement is run by user “tinnap”, Adaptive Server returns all
columns that are encrypted by keys with name matching “%key%” in the
current database:

sp_encryption helpkey, "%key%", display_cols

This is the output:

Key Name Key Owner Database Name Table Owner Table Name
Column Name
------------ ------- ----------- ---------- ------------

tinnap_key1 tinnap testdb tinnap t4
c4

Example 12 This example displays all columns which have been encrypted by key
sample_key1 across all available databases:

sp_encryption helpkey, sample_key1, display_cols

This is the output:

Key Name Key Owner Database Name Table Owner
Table Name Column Name
------------ ---------- --------------- ----------
----------- -----------
sample_key1 dbo coldb dbo
t1 c1

sample_key1 dbo coldb billyg
t2 c2

System stored procedures

92 Adaptive Server Enterprise

When run by user “tinnap”, displays all columns in the current database that
are encrypted by key sample_key1:

sp_encryption helpkey, sample_key1, display_cols

This is the output:

Key Name Key Owner Database Name Table Owner
Table Name Column Name
------------ ---------- --------------- ----------
----------- -----------
sample_key1 dbo coldb dbo
t1 c1

sample_key1 dbo coldb billyg
t2 c2

Example 13 When run by the SSO, key custodian, or DBO, lists keys and key copies that
are encrypted with the system encryption password in the current database:

sp_encryption helpkey, system_encr_passwd, display_keys

This is the output:

Owner.Keyname Assignee
--------------- -------------
dbo.cc_key NULL
dbo.sample_key1 NULL
dbo.sample_key1 tinnap

When run by user “tinnap”, this command displays the keys owned by, or key
copies assigned to, user “tinnap” that are encrypted with the system encryption
password in the current database:

sp_encryption helpkey, system_encr_passwd, display_keys

This is the output:

Owner.Keyname Assignee
--------------- -------------
dbo.sample_key1 tinnap

Example 14 Lists all base keys owned by users in the current database when the SSO, key
custodian, or DBO runs this command:

sp_encryption helpuser

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 93

This is the output:

Owner.Keyname Type of Password
--------------- -------------------
tinnap.tinnap_key System Encr Passwd
tinnap.tinnap_key1 User Passwd
dbo.sample_key1 Login Passwd

If user “tinnap” runs this command, lists all base keys owned by this user in the
current database:

sp_encryption helpuser

This is the output:

Owner.Keyname Type of Password
--------------- -------------------
tinnap.tinnap_key System Encr Passwd
tinnap.tinnap_key1 User Passwd

Example 15 When run by the SSO, key custodian, or DBO, lists all base encryption keys
owned by user “tinnap” in the current database:

sp_encryption helpuser, tinnap

This is the output:

Owner.Keyname Type of Password
--------------- -------------------
tinnap.tinnap_key System Encr Passwd
tinnap.tinnap_key1 User Passwd

If run by user “tinnap”, lists all base encryption keys owned by user “tinnap”
in the current database:

sp_encryption helpuser, tinnap

This is the output:

Owner.Keyname Type of Password
--------------- -------------------
tinnap.tinnap_key System Encr Passwd
tinnap.tinnap_key1 User Passwd

Example 16 When run by the SSO, key custodian, or DBO, lists all key copies assigned to
all users in the current database:

sp_encryption helpuser, NULL, “key_copy”

System stored procedures

94 Adaptive Server Enterprise

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery
--------------------- ----------- ---------------- ---------
dbo.sample_key1 tinnap Login Passwd 0
tinnap.tinnap_key1 joesmp User Passwd 0
dbo.sample_key1 joesmp Login Passwd 1
tinnap.tinnap_key1 samcool User Passwd 1
tinnap.tinnap_key1 billyg User Passwd 0

If user “tinnap” runs this statement, it displays the key copies assigned to this
user and the key copies for the keys owned by this user in the current database:

sp_encryption helpuser, NULL, “key_copy”

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery
--------------------- ----------- ---------------- ---------
dbo.sample_key1 tinnap Login Passwd 0
tinnap.tinnap_key1 joesmp User Passwd 0
tinnap.tinnap_key1 samcool User Passwd 1
tinnap.tinnap_key1 billyg User Passwd 0

Example 17 When run by the SSO, key custodian, or DBO, lists all the key copies in the
current database with assignee names like “%na%”:

sp_encryption helpuser, '%na%', “key_copy”

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery
--------------------- ----------- ------------------ -----------
dbo.sample_key1 tinnap Login Passwd 0
tinnap.tinnap_key1 joesmp User Passwd 0
dbo.sample_key1 joesmp Login Passwd 1

When run by user “tinnap”, lists all the key copies in the current database with
assignee name like “%na%” and the key copies for keys owned by this user
with name like “%na%” only if the user’s name matches the wildcard pattern:

sp_encryption helpuser, '%na%', “key_copy”

This is the output:

Owner.Keyname Assignee Type of Password Key Recovery
--------------------- ----------- ------------------ -----------
dbo.sample_key1 tinnap Login Passwd 0

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 95

tinnap.tinnap_key1 joesmp User Passwd 0
tinnap.tinnap_key1 samcool User Passwd 1
tinnap.tinnap_key1 billyg User Passwd 1

Example 18 When run by the SSO, key custodian, or DBO, lists all encrypted columns in
the current database (coldb in this example) and the keys used to encrypt the
columns:

sp_encryption helpcol

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.dbo.sample_key1
billyg.t2.c2 keydb.dbo.sample_key1
tinnap.t3.c3 coldb.dbo.sample_key2

When user “tinnap” runs this statement in the coldb database, Adaptive Server
displays values for keyid instead of keyname for those keys not in coldb:

sp_encryption helpcol

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.123456
billyg.t2.c2 keydb.2345678
tinnap.t3.c3 coldb.dbo.sample_key3

Example 19 When run by the SSO, lists all encrypted columns in table t3 in the current
database, and the keys used to encrypt the columns across all available
databases:

sp_encryption helpcol, t3

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
tinnap.t3.c3 coldb.dbo.sample_key2

When run by user “tinnap”, lists all encrypted columns in table t3 in the current
database and the keys used to encrypt the columns:

sp_encryption helpcol, t3

System stored procedures

96 Adaptive Server Enterprise

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
tinnap.t3.c3 coldb.dbo.sample_key3

Example 20 When run by the SSO, lists all encrypted columns named c1 in the current
database across all available databases, and the keys used to encrypt the
columns:

sp_encryption helpcol, c1

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.dbo.sample_key1

When run by user “tinnap”, lists all encrypted columns named c1 in the current
database and the keyid of the keys used to encrypt the columns if the key is not
present in the current database:

sp_encryption helpcol, c1

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.123456

Example 21 When run by the SSO, lists all encrypted columns in table dbo.t1 in the current
database and the keys used to encrypt the columns across all available
databases:

sp_encryption helpcol, dbo.t1

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.dbo.sample_key1

When run by user “tinnap”, lists all encrypted columns in table dbo.t1 in the
current database and the keyid of the keys used to encrypt the columns if the
key is not present in the current database:

sp_encryption helpcol, dbo.t1

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 97

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.123456

Example 22 When run by the SSO, lists all encrypted columns named c1 in table t1 in the
current database and the keys used to encrypt the columns across all available
databases:

sp_encryption helpcol, t1.c1

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.dbo.sample_key1

When run by user “tinnap”, lists all encrypted columns named c1 in table t1 in
the current database and the keyid of the keys used to encrypt the columns if the
key is not present in the current database:

sp_encryption helpcol, t1.c1

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.12345678

Example 23 When run by the SSO, lists all encrypted columns named c1 in table t1 owned
by the DBO in the current database, and the keys used to encrypt the columns
across all available databases:

sp_encryption helpcol, dbo.t1.c1

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.dbo.sample_key1

When run by user “tinnap”, lists all encrypted columns named c1 in table t1
owned by the DBO, and the keyid of keys used to encrypt the columns if the
key is not present in the current database:

sp_encryption helpcol, dbo.t1.c1

System stored procedures

98 Adaptive Server Enterprise

This is the output:

Owner.Table.Column Db.Owner.Keyname
----------------------- ---------------------
dbo.t1.c1 keydb1.123456789

Example 24 When run by the SSO, lists the properties of the system encryption password
in each database:

sp_encryption helpkey, system_encr_passwd, all_dbs

This is the output:

Database Type of system_encr_passwd Last modified by
Date
---------- ---------------------------- --------------
---- -------------------
master persistent sa Aug 26 2008 10:05AM

Usage

• The privileges granted to the user who runs sp_encryption determines the
output. See “Usage restrictions” on page 99 for more information.

• If you run sp_encryption helpkey and no keys are present in the database,
you see an informational message.

• You must specify the key_copy parameter to get information about key
copies. If you do not specify the key_copy parameter, sp_encryption returns
information only about base keys.

• If keyname is NULL in sp_encryption helpkey, keyname, key_copy, lists all
the key copies in the current database for a SSO, key custodian, or DBO.
If it is run by a user without privileges, it lists all the key copies assigned
to the user in the current database and all key copies of the keys owned by
the user in the current database.

• For sp_encryption helpcol, column_name uses the form name.name.name,
where:

• name – if sp_encryption finds no tables of this name, it looks for all
columns of that name.

• name.name – is owner.table. If sp_encryption finds no tables of this
name, it looks for a single column named table.column.

• name.name.name – is owner.table.name.

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 99

For all columns identified by these rules in the current database,
sp_encryption displays column name along with the key used to encrypt
the column.

The output for sp_encryption helpcol, column_name is owner.table.column
and db.owner.keyname. The keyname is expressed as database.keyid when
run by non-SSO users, and the key is present in a different database from
the encrypted column. The result set is sorted by owner.table.column.

Usage restrictions

• Only an SSO can run sp_encryption helpkey, [,keyname | wildcard], all_dbs
to get the properties of keys in all databases. If a user without the sso_role
runs this command, they receive an “unauthorized user” error message. If
no keys qualify the keyname or wildcard, Adaptive Server returns a
message stating 'There are no encryption keys (key copies)
like keyname in all databases'.

• When the SSO runs sp_encryption helpkey, keyname, display_cols, it lists
all columns across all available databases encrypted by keyname. If it is
run by a user without privileges, it lists the columns in the current database
encrypted by keyname.

If the SSO runs sp_encryption helpkey, keyname, display_cols and the
keyname value is NULL, it displays all encrypted columns across all
available databases. When run by a user without privileges, it displays all
encrypted columns in the current database.

• If an SSO, key custodian, or DBO runs sp_encryption helpuser, user_name,
key_copy without specifying a user_name and key_copy for the helpuser
parameter, it lists all the base keys owned by all users in the current
database. If sp_encryption is run by a user without privileges without
specifying a user_name or key_copy, it displays the base keys owned by
the current user.

If any user runs sp_encryption helpuser, user_name, it lists all the base keys
owned by owner.keyname. If a user without privileges runs the command
and owns no base keys, Adaptive Server displays an informational
message stating this.

If an SSO, key custodian, or DBO runs sp_encryption helpuser, user_name,
key_copy, it lists the key copies assigned to user_name. If a user without
privileges issues this command, its lists the key copies assigned to this user
and all the key copies of the keys owned by the user in the current
database, with these columns in the result set: Owner.Keyname, Assignee,
Type of Password, and Key Recovery. The output is sorted by Assignee.

Utilities

100 Adaptive Server Enterprise

If user_name is NULL for sp_encryption helpuser user_name, key_copy, it
lists all the key copies in the current database for a SSO, key custodian, or
DBO. For users without privileges, it lists all the key copies assigned to
the user in the current database and the key copies for the keys owned by
this user.

• When a SSO, key custodian, or DBO runs sp_encryption helpkey, keyname,
key_copy, it lists the key copies in the current database for keyname. If this
is run by a user without privileges, it lists the key copies assigned to the
user for that keyname and the key copies for that keyname if the user is the
key owner.

• The SSO, key custodian, and DBO can run sp_encryption helpkey,
system_encr_passwd, display_keys to receive information on all keys and
key copies in the current database encrypted by system encryption
password. Users without privileges receive information about the base
encryption keys or key copies they own or are assigned in the current
database. Key copies are encrypted with the system encryption password
only when they are created for login association. The output is sorted by
owner.keyname.

Utilities

ddlgen
ddlgen supports generation of DDL statements for encryption keys. The syntax
is:

ddlgen -Usa -P -Sserver -TEK -Ndb_name.owner.key_name

where:

• EK – is the encrypted key type

• db_name.owner.key_name – is the fully qualified name for the encrypted
key.

The type EK, used for encryption key, generates the DDL to create an
encryption key and to grant permissions on it. ddlgen generates encrypted
column information and a grant decrypt statement, along with the table
definition.

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 101

See the Adaptive Server Enterprise Utility Guide for the complete ddlgen
syntax. See the Replication Server Administration Guide for examples of using
ddlgen with replicated databases.

Generating DDL for a
single encryption key

To generate DDL for an encryption key “ssn_key” in a database called
“SampleKeysDB,” the syntax is:

ddlgen -Usa -P -Sserver -TEK -NSampleKeysDB.dbo.ssn_key

If “ssn_key” was created as:

create encryption key ssn_key

ddlgen generates this output:

--
-- DDL for EncryptedKey 'ssn_key'
--
print 'ssn_key'
go
use SampleKeysDB
go
IF EXISTS (SELECT 1 FROM sysobjects o, sysusers u WHERE
o.uid=u.uid AND o.name = 'ssn_key' AND u.name = 'dbo'
AND o.type = 'EK')

drop encryption key SampleKeysDB.dbo.ssn_key
IF (@@error != 0)
BEGIN

PRINT "Error CREATING EncryptedKey 'ssn_key'"
SELECT syb_quit()

END
go
create encryption key SampleKeysDB.dbo.ssn_key for AES
with keylength 128
init_vector random
go

Generating DDL for all
encryption keys

This example generates DDL for all encryption keys in a database accounts on
a machine named “HARBOR” using port 1955:

ddlgen -Uroy -Proy123 -SHARBOR:1955 -TEK
-Naccounts.dbo.%

Alternatively, you use the -D option to specify the database name:

This is the output:

ddlgen -Uroy -Proy134 -SHARBOR:1955 -TEK -Ndbo.%
-Daccounts

--

Utilities

102 Adaptive Server Enterprise

-- DDL for EncryptedKey 'ssn_key'
--

print 'ssn_key'

create encryption key accounts.dbo.ssn_key
for AES
with keylength 128
init vector random

go

--

-- DDL for EncryptedKey 'ek1'
--

print 'ek1'

create encryption key accounts.dbo.ek1 as default
for AES
with keylength 192
init vector NULL

go

use accounts
go

grant select on accounts.dbo.ek1 to acctmgr_role
go

Generating DDL with
-XOD

ddlgen has an option -XOD which generates the create encryption key that
specifies the key’s encrypted value as represented in sysencryptkeys. Use the -
XOD to synchronize encryption keys across servers for data movement.

When a user specifies -XOD, ddlgen generates DDL that includes a system
encryption password (if it has been set and DDL is generated for a key
encrypted with a system encryption password) and DDL for keys.

For the following syntax and output, the system encryption password has been
set in sampleKeysdb, and ek1 has been created with encryption by the system
encryption password. The ddlgen command below generates syntax to set the
system encryption password using an encrypted version of the original setting
in sampleKeysdb. It then creates syntax to create ek1 using the encrypted value
of ek1 as stored in sysencryptkeys in sampleKeysdb.

ddlgen -Usa -P -Sserver -TEK -NsampleKeysdb.dbo.ek1 -XOD

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 103

The output for the command is:

-- System Encryption Password

use SampleKeysDB
go

sp_encryption 'system_encr_passwd',
'0x8e050e3bb607225c60c7cb9f59124e99866ca22e677b2cdc9a4d09775850f4721',
NULL, 2, 0
go

--
-- DDL for EncryptedKey 'ek1'
--

print '<<<<< CREATING EncryptedKey - "ek1" >>>>>'
go

IF EXISTS (SELECT 1 FROM sysobjects o, sysusers u WHERE o.uid=u.uid

AND o.name = 'ek1' AND u.name = 'dbo'

AND 'o.type = 'EK')

drop encryption key sampleKeysdb.dbo.ek1
go
if (@@error != 0)
BEGIN

PRINT "Error CREATING EncryptedKey 'ek1'"
SELECT syb_quit()

END
go
create encryption key SampleKeysDB.dbo.ek1 for AES
with keylength 128
passwd 0x0000C7BC28C3020AC21401
init_vector NULL
keyvalue
0xCE74DB1E028FF15D908CD066D380AB4AD3AA88284D6F7742DFFCADCAABE4100D01
keystatus 32

Utilities

104 Adaptive Server Enterprise

go

Note When migrating keys from a source to a target server using ddlgen, set
the system encryption password, if it exists, to NULL in the target server to run
the ddlgen output from the source server for encryption keys generated using
-XOD. If you do not set the password to NULL, you see errors when you try to
execute the ddlgen output against the target server.

Generating DDL
without specifying
-XOD

If you do not specify the -XOD option, and the key to be migrated has been
created in the source database using the with passwd clause, ddlgen generates a
create encryption key command with password as its explicit password.This is
similar to what ddlgen does for roles and login passwords, and its output looks
similar to the following:

-- DDL for EncryptedKey 'ssn_key'

print '<<<< CREATING EncryptedKey - "ssn_key" >>>>>'
go
use SampleKeysDB
go
IF EXISTS (SELECT 1 FROM sysobjects o, sysusers u WHERE o.uid=u.uid

AND o.name = 'ssn_key' AND u.name = 'dbo' AND o.type = 'EK'
drop encryption key SampleKeysDB.dbo.ssn_key

IF (@@error !=0)
BEGIN

PRINT "Error CREATING EncryptedKey 'k1'"
SELECT syb_quit()

END
go

-- The DDL is generated with a default password – 'password' as
-- a password was specified when this key was created.

create encryption key SampleKeysDB.dbo.ssn_key for AES
with keylength 128
passwd 'password'
init_vector random
go

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 105

Key-copy support

 ddlgen generates DDL for key copies along with the DDL for the base key. For
example, the following syntax generates DDL for “ssn_key” and its key
copies:

ddlgen -Usa -P -Sserver -TEK -NSampleKeysDB.dbo.ssn_key

The output from ddlgen looks like:

-- DDL for EncryptedKey 'ssn_key'

print '<<<<< CREATING EncryptedKey - "k1" >>>>>'
use SampleKeysDB
go
IF EXISTS (SELECT 1 FROM sysobjects o, sysusers u WHERE o.uid=u.uid

AND o.name = 'ssn_key' AND u.name = dbo AND o.type = 'EK)
drop encryption key SampleKeysDB.dbo.ssn_key

IF (@@error != 0)
BEGIN

PRINT "Error CREATING EncryptedKey 'ssn_key'"
SELECT syb_quit()

END
go

-- The DDL is generated with a default password – 'password' as
-- a password was specified when this key was created.

create encryption key SampleKeysDB.dbo.ssn_key for AES
with keylength 128
passwd 'password'
init_vector random
go

alter encryption key SampleKeysDB.dbo.ssn_key
with passwd 'password'
add encryption with passwd 'passwd'
for user 'user1'
go

If you include the -XOD flag, the DDL for key copy looks similar to this:

alter encryption key SampleKeysDB.dbo.ssn_key add encryption
with keyvalue
0x84A7360AA0B28801D6D4CBF2F8219F634EE641E1082F221A2C58C9BBEC9F49B501
passwd 0x000062DF4B8DA5709E5E01
keystatus 257
for user 'user1'

Utilities

106 Adaptive Server Enterprise

go

Encryption key copy (EKC) filter

ddlgen supports the EKC (encryption key copy) extended type on the -F filter
argument, which suppresses the generation of key copies for encryption keys.

This example uses -FEKC to avoid creating DDL for key copies when
generating DDL for the “ssn_key” encryption key:

ddlgen -Usa -P -Sserver -TEK -NSampleKeysDB.dbo.ssn_key -FEKC

This is the output from ddlgen:

-- DDL for EncryptedKey 'ssn_key'

print '<<<<< CREATING EncryptedKey - "k1" >>>>>'
go
use SampleKeysDB
go
IF EXISTS (SELECT 1 FROM sysobjects o, sysusers u WHERE o.uid=u.uid

AND o.name = 'ssn_key' AND u.name = 'dbo' AND o.type = 'EK')
drop encryption key SampleKeysDB.dbo.ssn_key

IF (@@error != 0)BEGIN
PRINT "Error CREATING EncryptedKey 'ssn_key'"

END
go

-- The DDL is generated with a default password – 'password' as
-- a password was specified when this key was created.

create encryption key SampleKeysDB.dbo.ssn_key for AES
with keylength 128
passwd 'password'
init_vector random
go

Create table DDL

ddlgen can generate decrypt_default statements for encrypted columns along
with a table’s DDL.

This example issues a ddlgen command on a table called employee, which has
an “ssn” column that is encrypted with encryption key “ssn_key,” and a
decrypt default value that is set to 100:

ddlgen -Usa -P -Sserver -TU -N db1.dbo.employee

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 107

The DDL output from the command is:

create table employee (
ssn int not null encrypt with ssn_key decrypt_default 100 ,
last_name int not null ,
first_name int not null

)
lock allpages
on 'default'

go

sybmigrate
sybmigrate migrates data from one server to another.

By default, sybmigrate migrates encrypted columns in cipher text format. This
avoids the overhead of decrypting data at the source and reencrypting it at the
target. In some cases, however, sybmigrate chooses the reencrypt method of
migration, which does decrypt data at the source and reencrypts it at the target.

For databases with encrypted columns, sybmigrate:

1 Migrates the system encryption password. If you specify not to migrate the
system encryption password, sybmigrate migrates the encrypted columns
using the reencrypt method instead of migrating cipher text.

2 Migrates the encryption keys. You may select the keys to migrate.
sybmigrate automatically selects keys in the current database used to
encrypt columns in the same database. If you have selected migration of
the system encryption password, sybmigrate migrates the encryption keys
using their actual values. The key values from the sysencryptkeys system
table have been encrypted using the system encryption password and these
are the values that are migrated. If you have not migrated the system
encryption password, sybmigrate migrates the keys by name, to avoid
migrating keys that do not decrypt correctly at the target. Migrating the
key by name causes the key at the target to be created with a different key
value from the key at the source.

3 Migrates the data. By default, the data is transferred in cipher text form.
cipher text data can be migrated to a different operating system. Character
data requires that the target server uses the same character set as the
source.

Utilities

108 Adaptive Server Enterprise

sybmigrate works on a database as a unit of work. If your database on the source
server has data encrypted by a key in another database, migrate the key’s
database first.

sybmigrate chooses to reencrypt migrated data when:

• Any keys in the current database are specifically not selected for
migration, or already exist in the target server. There is no guarantee that
the keys at the target are identical to the keys are the source, so the
migrating data must be reencrypted.

• The system password was not selected for migration. When the system
password at the target differs from that at the source, the keys cannot be
migrated by value. In turn, the data cannot be migrated as cipher text.

• The user uses the following flag:

sybmigrate -T 'ALWAYS_REENCRYPT'

Reencrypting data can slow performance. A message to this effect is written to
the migration log file when you perform migration with reencryption mode.

To migrate encrypted columns, you must have both sa_role and sso_role
enabled.

bulk copy (bcp)
bcp transfers encrypted data in and out of databases in either plain text or cipher
text form. By default, bcp copies plain text data, processing them as follows:

• Data is automatically encrypted by Adaptive Server before insertion when
executing bcp in. Slow bcp is used. The user must have insert and select
permission on all columns.

• Data is automatically decrypted by Adaptive Server when executing bcp
out. select permission is required on all columns; in addition, decrypt
permission is required on the encrypted columns.

This example copies the customer table out as plain text data in native machine
format:

bcp uksales.dbo.customer out uk_customers -n -Uroy -Proy123

If the data to be copied out as plain text is encrypted by a key that uses an
explicit password, you can supply that password to bcp using the --c password
or --colpasswd options.

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 109

For example, if the salary column in the employee table is encrypted by a key
that is protected by an explicit password, you can only copy out the salary data
as plain text by providing bcp with the password, as follows:

bcp hr.dbo.employee out -c -Upjones -PX15tgol --
colpasswd hr.dbo.employee.salary '4mIneIsonly'

Alternatively, if you know the name of the key that encrypts the salary column,
you can use:

bcp hr.dbo.employee out -c -Upjones -PX15tgol --
keypasswd keydb.dbo.hr_key '4mIneIsonly'

bcp uses the password to issue a set encryption passwd command before
selecting the data.

Use the --keypasswd and --colpasswd options in a similar way on the bcp
command line when copying the data back in.

Use the -C option for bcp to copy the data as cipher text. When copying cipher
text, you may copy data out and in across different operating systems. If you
are copying character data as cipher text, both platforms must support the same
character set.

The -C option for bcp allows administrators to run bcp when they lack decrypt
permission on the data. When the -C option is used, bcp processes data as
follows:

• Data is assumed to be in cipher text format during execution of bcp in, and
Adaptive Server performs no encryption. Use the -C option only if the file
being copied into Adaptive Server was created using the -C option on bcp
out. The cipher text must have been copied from a column with exactly the
same column attributes and encrypted by the same key as the column into
which the data is being copied. Fast bcp is used. The user must have insert
and select permission on the table.

• Data is copied out of Adaptive Server without decryption on bcp out. The
cipher text data is in hexadecimal format. The user must have select
permission on all columns. For copying cipher text, decrypt is not required
on the encrypted columns.

• Encrypted char or varchar data retains the character set used by Adaptive
Server at the time of encryption. If the data is copied in cipher text format
to another server, the character set used on the target server must match
that of the encrypted data copied from the source. The character set
associated with the data on the source server when it was encrypted is not
stored with the encrypted data and is not known or converted on the target
server.

Component Integration Services (CIS)

110 Adaptive Server Enterprise

You can also perform bcp without the -C option to avoid the character set
issue.

You cannot use the -J option (for character set conversion) with the -C
option.

The following example copies the customer table. The cc_card column is
copied out as human-readable cipher text. Other columns are copied in
character format. User “roy” is not required to have decrypt permission on
customer cc_card.

 bcp uksales.dbo.customer out uk_customers -C -c -Uroy
-Proy123

When copying data as cipher text, ensure that the same keys are available in the
database when the data is copied back in. If necessary, use the ddlgen utility to
move keys from one database to another.

Component Integration Services (CIS)
By default, encryption and decryption are handled by the remote Adaptive
Server. CIS makes a one-time check for encrypted columns on the remote
Adaptive Server. If the remote Adaptive Server supports encryption, CIS
updates the local syscolumns catalog with the encrypted-column-related
metadata as follows:

• create proxy_table automatically updates syscolumns with any encrypted-
column information from the remote tables.

• create existing table automatically updates syscolumns with any encrypted-
column metadata from the remote tables. The encrypt keyword is not
allowed in the columnlist for create existing table. CIS automatically marks
columns as encrypted if it finds any encrypted columns on the remote
table.

• create table at the location with encrypted columns is not allowed.

• alter table is not allowed on encrypted columns for proxy tables.

• select into existing brings the plain text from the source and inserts it into
destination table. The local Adaptive Server then encrypts the plain text
before insertion into any encrypted columns.

The following columns are updated from the remote server’s syscolumns
catalog:

CHAPTER 9 System Information for Encrypted Columns

User Guide for Encrypted Columns 111

• encrtype – type of data on disk.

• encrlen – length of encrypted data.

• status2 – status bits that indicate that column is encrypted.

Replicating encrypted data
If your site replicates schema changes, the following DDL statements are
replicated:

• alter encryption key

• create table and alter table with extensions for encryption

• create encryption key

• grant and revoke create encryption key

• grant and revoke select on the key

• grant and revoke decrypt on the column

• sp_encryption system_encr_passwd

• drop encryption key

The keys are replicated in encrypted form.

If your system does not replicate DDL, manually synchronize encryption keys
at the replicate site. ddlgen supports a special form of create encryption key for
replicating the key’s value. See “ddlgen” on page 100.

For DML replications, the insert and update commands replicate encrypted
columns in encrypted form, which safeguards replicated data while Replication
Server processes it in stable queues on disk.

Replication Server version 12.6 ESD # 5 and later supports encrypted columns.

See the Replication Server Administration Guide for information on using
encryption during replication.

Replicating encrypted data

112 Adaptive Server Enterprise

User Guide for Encrypted Columns 113

Symbols
 10, 59
::= (BNF notation)

in SQL statements xiv
, (comma)

in SQL statements xiv
{} (curly braces)

in SQL statements xiv
() (parentheses)

in SQL statements xiv
[] (square brackets)

in SQL statements xiv

A
accessing encrypted data 33

syntax 45
adding decrypt default 23
alter encryption key 10
alter encryption key command 40
alter table, to create encryption 13
application transparency 48
as default 7
auditing

actions of key custodian 60
encrypted columns 59
masking passwords in command text 60
options 59
values 59

B
Backus Naur Form (BNF) notation xiii, xiv
base key 41

loss of password 54
bcp 108
BNF notation in SQL statements xiii, xiv

brackets. See square brackets []

C
capabilities of encryption column support 1
case sensitivity

in SQL xv
cc_key

using for building index 19
cc_key_new

used to create encryption key 13
CEK, column-encryption key 10
changing a key’s password 41
cipher text

encoded form for data 2
increases length of encrypted column 2
movement of encrypted data as 65
sentinel byte appended to 30

CIS (Component Integration Services 110
columns

encrypting, syntax 18
encryption 30
processing encrypted 33
with decrypt default values 25
with query qualifications 26

comma (,)
in SQL statements xiv

command
 19
alter encryption key 40
create encryption key 40
create index 70
create table 71
dbcc 77
dgrant create encryption key 73
drop database 77
drop encryption key 73
dump and load database 75
exec 20

Index

Index

114 Adaptive Server Enterprise

grant decrypt 74
quiesce database 76
revoke create encryption key 74
revoke decrypt 74
select 34
select into 72
select into, requires column-level permissions 17
set proxy 68
timestamp 31
unmount database 75

command text auditiing, masking passwords in 60
commands

for removing decrypt defaults 29
key recovery 55
syntax for key recovery 55
syntax for sharing the password 55
system 68
text 31

Component Integration Services (CIS) 110
computed column

cannot encrypt 16
encrypted column cannot appear in definition 16

conventions
See also syntax
Transact-SQL syntax xiii
used in the Reference Manual xiii

copies
changing passwords on key 44
creating key 43
key, with login password change 51

create
index on encrypted column 19

create encryption key
examples 8
permissions 9

create encryption key 6, 10, 13
create encryption key command 40
create encryption key syntax 40
create index 19, 70
create table partial syntax for encryption 16
create tablecommand 71
creating

encryption keys 5
key copies 43
password, instructions for 12

curly braces ({}) in SQL statements xiv

D
data access

users and roles 39
data, encrypted, movement as cipher text 65
database

different, encrypting key from 14
encrypting key from 13

datatypes not supported
test 31

datatypes, encryptable 15
dbcc command 77
decrypt default

adding and removing 23
defining 23
implicit grants 27
insert and delete 28
permissions 24
removing 29

decrypt default columns
query qualifications 26

decrypt default values, columns with 25
decrypt permission

grant decrypt 20
decrypt permission 1
decrypt_default parameter 23
decrypted data, returning default values instead of 23
decryption

permissions 34
default encryption key

create 13
default values, returning 23
drop database command 77
drop encryption key command 73
dropping

encryption 14, 35
key copy 51

dump 75
dump and load database command 75

E
encrypt data

syntax for 18
encryptable datatypes 15
encrypted column

Index

User Guide for Encrypted Columns 115

create index 19
included in a where clause 34
maximum internal length 30
to increase length 2

encrypted columns
auditing 59
indexes 61
joins on 63
processing 33
restrictions on modifying 18
search arguments 64
sort orders 62
steps to use 3

encrypted data
accessing 33
accessing with user password 45
movement as cipher text 65
replicating 111

encryption
changing the key 13
columns 30
create system encryption password 12, 83
default key 13
dropping 14, 35
dropping keys 14
granting permission on keys 11
new tables 16
on existing tables 18
quiesce database 76
select into 17
unmount 75

encryption keys
changing ownership 57
changing ownership syntax 57
creating 5
creating and managing, chapter 5
creating, considerations before creating 5
from a different database 13, 14
password 1
stored encrypted 1
to encrypt 1

Encryption, encrypted columns 1
event names 59

syntax 59
event numbers 59
exec command 20

existing tables
encrypt data 18

F
floating point data, forms for encryption 2
for algorithm 7

G
grand decrypt command 74
grant all command, does not grant decrypt permission.

Command
grant all 21

grant create encryption key command 73
grant decrypt on, syntax 20
grants, implicit 27

I
image 31
implicit grants and decrypt default 27, 28
indexes on encrypted columns 61
indexing encrypted columns 19
init_vector 7
initialization vector 30
insert 2
int_vector 7
integer data, forms for encryption 2
internal length of encrypted column, maximum 30
issuing statements on encrypted column, requirements

33, 34

J
joins, on encrypted columns 63

K
KEK, key-encryption key 10
key

Index

116 Adaptive Server Enterprise

creating copies 43
key copies 41

changing passwords on 44
with login change 51

key copy
dropping 51

key custodian 41
auditing actions 60
custodian, key, activities of 38
role of 37

key protection 10
key recovery commands 55
key_length num_bits 7
keycustodian_role 37
key-encryption key (KEK) 10
keylength 7
keys

changing 13
creating encryption 5
dropping encrypting 14
granting permissions 11
recovering from lost passwords 53
separating from data 13, 14
using passwords 41

L
length

maximum, of encrypted column 30
of plain text data 30

load 75
login password

loss of 54
login password change 51
lost

login password 54
password on encryption key 53
passwords, recovering keys from 53

N
names, event 59
null 7
numbers, event 59

O
options

auditing 59
ownership of encryption keys, changing syntax 57

P
pad 7

parameter 7
parameters

 key_length 7
 keyname 7
decrypt default 23
null 7
password_phrase 7

parameters for create encryption key
keylength num_bits 7
keylength num_bits 7
keyname 7

parentheses ()
in SQL statements xiv

partial clause, variable 16
password

accessing data with user password 45

alter encryption key, changing, syntax
alter encryption key 41

changing on key copies 44
login change 51
loss of 54
loss of on base key 54
lost for encryption key 53
masking in command text auditing 60
recovering keys from lost 53
system-encryption, key protection 11
user-specified 40
using on keys 41

password, variable, length of 12
password_phrase 7
performance considerations 61
permissions

assigning privileges for restricted decrypt 22
decrypt default 24
decryption 34
restricting decrypt 22

Index

User Guide for Encrypted Columns 117

revoking decrypt 21
plain text

data, length of 30
for unencrypted data 2

platforms
encryption forms for all platforms 2

privileges, assigning 22

Q
quiesce database

command 76
encryption 76

R
random 7
recovery, of key commands 55
referential integrity searches 64
removing decrypt defaults 23, 29

commands 29
replicating encrypted data 111
requirements

for issuing 34
for issuing insert 33
for issuing select 34
for issuing update 33

restricted decrypt permissions
assigning privileges for 22

restricting decrypt permissions 22
restrictions on modifying encrypted columns 18
returning default values instead of decrypted data 23
revoke create encryption key command 74
revoke decrypt command 74
revoke decryption permission 21
roles

data access 39

S
search arguments, on encrypted columns 64
searches

referential integrity 64

select command 34
select into 17, 72

encryption 17
requires decrypt 17

sentinel byte, appended to cipher text 30
set encryption passwd

do not place inside trigger or procedure 48
set proxy 68
sort orders on encrypted columns 62
source table, requiring column-level permissions 17
sp_audit 82
sp_configure 79
sp_displayaudit 82
sp_dropuser 78
sp_encryption 11, 83
sp_encryption, syntax of 11
sp_help 32, 78
sp_helpconfig 81
sp_helprotect 78
sp_password 82
square brackets []

in SQL statements xiv
steps, administrative, to use encrypted columns 3
symbols

in SQL statements xiii, xiv
symmetric encryption algorithm 2
syntax

alter encryption key 40
commands for sharing password with key recovery

user 55
dropping encryption key 14
event names and numbers 59
for encrypting columns 18
for encryption keys, changing ownership 57
for key copy recovery 55
grant decrypt on 20
partial, for encryption 16
set encryption password 45

syntax conventions, Transact-SQL xiii
sysencryptkeys 41

storage for column encryption key (CEK) 10
system commands 68
system encryption password 12, 83

instructions for creating 12
system information 67
system stored procedures 78

Index

118 Adaptive Server Enterprise

system tables 67
system-encryption password for key protection 11

T
tables

encryption on new tables 16
system 67

timestamp command not encrypted 31
transparency

application 48
transparent encryption 2

U
unitext 31
unmount

encryption 75
unmount database command 75
update, encrypts transparently 2
user password

accessing encrypted data 45
users

data access 39
user-specified passwords 40
using passwords on keys 41
utilities

bulk copy (bcp) 108
ddlgen 100
sybmigrate 107

V
values

auditing 59
default 25

variable
partial clause 16

vector, initialization 30

W
where clause, issuing commands on data from encrypted

column 34

	User Guide for Encrypted Columns
	About This Book
	CHAPTER 1 Overview of Encryption
	CHAPTER 2 Creating and Managing Encryption Keys
	Creating encryption keys
	Key protection
	Granting access to keys
	Key protection using the system-encryption password
	Changing the key
	Separating keys from data

	Dropping encryption keys

	CHAPTER 3 Encrypting Data
	Specifying encryption on new tables
	Specifying encryption on select into

	Encrypting data in existing tables
	Creating indexes and constraints on encrypted columns
	Decrypt permission
	Revoking decryption permission

	Restricting decrypt permission
	Assigning privileges for restricted decrypt permissions

	Returning default values instead of decrypted data
	Defining a decrypt default
	Permissions and decrypt default
	Columns with decrypt default values
	Decrypt default columns and query qualifications
	decrypt default and implicit grants
	decrypt default and insert, update, and delete statements
	Removing decrypt defaults

	Length of encrypted columns

	CHAPTER 4 Accessing Encrypted Data
	Processing encrypted columns
	Permissions for decryption
	Dropping encryption

	CHAPTER 5 Protecting Data Privacy from the Administrator
	Role of the key custodian
	Users, roles, and data access

	Key protection using user-specified passwords
	Changing a key’s password
	Creating key copies
	Changing passwords on key copies
	Accessing encrypted data with user password
	Application transparency using login passwords on key copies
	Login password change and key copies
	Dropping a key copy

	CHAPTER 6 Recovering Keys from Lost Passwords
	Loss of password on key copy
	Loss of login password
	Loss of password on base key
	Key recovery commands
	Changing ownership of encryption keys

	CHAPTER 7 Auditing Encrypted Columns
	Auditing options
	Audit values
	Event names and numbers
	Masking passwords in command text auditing
	Auditing actions of the key custodian

	CHAPTER 8 Performance Considerations
	Indexes on encrypted columns
	Sort orders and encrypted columns
	Joins on encrypted columns
	Search arguments and encrypted columns
	Movement of encrypted data as cipher text

	CHAPTER 9 System Information for Encrypted Columns
	System tables
	System commands
	set proxy
	set encryption password
	alter table
	create index
	create table
	select into
	create encryption key
	alter encryption key
	drop encryption key
	grant create encryption key
	revoke create encryption key
	grant decrypt
	revoke decrypt
	unmount database
	dump and load database
	quiesce database
	drop database
	dbcc

	System stored procedures
	sp_helprotect
	sp_dropuser
	sp_help
	sp_configure
	enable encrypted columns
	restricted decrypt permission

	sp_helpconfig
	sp_password
	sp_audit
	sp_displayaudit
	sp_encryption
	Syntax
	Examples
	Usage

	Utilities
	ddlgen
	Key-copy support

	sybmigrate
	bulk copy (bcp)

	Component Integration Services (CIS)
	Replicating encrypted data

	Index

