SYBASE

Company

Users Guide

PowerBuilder®
12.0

DOCUMENT ID: DC00844-01-1200-02
LAST REVISED: January 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein aswell astheir respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries al over the world.

Javaand al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. inthe U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

PART 1

CHAPTER 1

Users Guide

.. XXV
THE POWERBUILDER ENVIRONMENT

Working with PowerBuildercccccceeviiiiiiiiiiieeee e, 3
About POWETIBUIIAET ..o 3
(o] lot=T o] (3= T o N (T4 14130 SRR 4
Workspaces and targetsS.......ccceevviiviieiieeeeeiiiiiieee e 4

(0] o] 1T o3 £ PR PRRTTR 5
DataWindow ODJECES.......ccviiiiiiiee e 6
PowerBuilder IDrariescccccoivieeiiiiiei e 6
Painters and editorscccoiiiiieiniiiee e 6
EVeNts and SCrPLS ..oocevi it 6
FUNCLIONS ..ot 7
PrOPEIIES ..ottt e e e 7
SOUICE CONION ..o 8
PowerBuilder eXteNSIONS..........cccoveviiiiiieee e 8
The PowerBuilder environment...........ccccvvviveeee i 9
THe SYStEM TrEE ..ot 10
THe POWEIBAYcoiiiiiiiiiiiiee ittt 12
The Clip WINAOWcoiiiiiiiiiiiiee s a e 15
The OUIPUL WINAOW ..o 15
Creating and opening WOrkSPacCeS..........ccovvivireriieeiiiiiiiineiieee s 17
Creating @ WOTKSPACE.......cceeeiiiiiiiiiiee et ee e 17
OpeNING & WOTKSPACE.......ccceeiiiiiiiiiiiee e 17
USING WIZAIUS ...vvviiiieeeiiiiiiceee ettt enneaee s 18
ADOUL WIZAIASuvviieei it e e e 18
Related Wizard typescooooeereiiiie e 19
Creating @ targetooee i 19
TArGEL LY PRS e 21
Application targets.........oooiei i 22
ComponNeNnt targetS ..., 23
NET TArQELS ..eeiieiiiiiiiiiietiietiiieeeeeeeeeeeeeeeeeeeseeseseeeseessesssseessnsennes 24

iii

Contents

Managing WOIKSPACEScciviuuriiiiiieeeiiiiiiiieeee e e ssitireee e e e e s seneeeees 25
Adding an existing target to a workspace............ccccveerieeeiinns 25
Removing a target from a workspace...........ccccccceevviviiinennnenn. 25
Specifying workspace properties.........cccccceeevevvveeeeeeeeescivveeenn. 26

BUIldING WOIKSPACESvvvvieeeiiiiiiieeeee ettt e e 26
In the development enviroNMeNtccooviiiiiiieeeeeeecciiieee. 26
From a command liNe.........c.cooeiiiiiiiiii e 27

Working With tOOISooiiii e 28
UsiNg the TO-D0O LiSt......cccoiiiieiiiieeeieee e 30
Using the file editor..........ccuvviiiieiiiiiiie e 32

UsSIiNg ONlINE HEIP ... 33

Building an appliCationccuveeiieeiiiiiiiiiee et 34

CHAPTER 2 Customizing PowerBuilderccccoo e 37

Starting PowerBuilder with an open workspace...........cccccceeenee... 37
Using options in the development environment 37
Using a workspace filecccoooiiiiiie e 38
Using command line arguments..........ccccceeeeeeeiiiviveeeeeeeeciinn 38

Changing default [ayouts............cccoiiiiiii e 40
Arranging the System Tree, Output, and Clip windows........... 41
USIiNg VIEWS IN PAINTEIS......cvviiiiieeiiiiiiiiiice e 41

USING tOO0IDAIS ...oeiieieiiiiee e 46
TOOIDAr DASICSeeiiiiiiiit it 46
Drop-down tOOIDAISuuviiieeiiiiiiiiiee e 47
Controlling the display of toolbarsccccccov v, 47
Moving toolbars using the mouse...........cccccovviiiiiiiiiiiiee 48
Customizing to0IbArS.........coiiiiieii e 49
Creating New to0IDArSccocvviiiiiie e 53

Customizing keyboard shOrCULSccooviiiiieee e 54

Changing fONESccoeiiieeeee e 55

(D= {1 a g o [T] (o] £ PSR 56

How the PowerBuilder environment is managedccuvveee.. 57
ADOUL the regiStry ... 57
About the initialization file............cccoveiiiiii 58

CHAPTER 3 USIiNG SOUIrce CONLIOl...ccviiiiiiiiiiiiicieee e 61

About source control SYStEMScccceviiiiiiieeee e 61
Using your source control Managerooccvvveeeeeeessenvvnnnnn 62
USING PBNGALIVEovveiieeiiciiiieece e 63
Constraints of a multi-user environment..............cccceveieeennnee. 64
Extension to the SCC AP ... 67

Using a source control system with PowerBuilder 68
Setting up a connection profile..........ccccvvveeeiiiiii 69

iv PowerBuilder Classic

Contents

CHAPTER 4

PART 2

CHAPTER 5

Users Guide

Viewing the status of source-controlled objects 72
Working in offline mode...........ccooooiiiiiiie e 75
Fine-tuning performance for batched source control
FEQUESES ... 76
Configuring Java VM initializationcc.ccccoecvviienieesiiniiinnen. 76
Files available for source control...........cccccovveiiiieieiniieeeiiienen, 77
Source control operations in PowerBuilderccccccceveeviiiinnnenn, 78
Adding objects to SOUrce CoNtrolcccovvevvveieiiees i, 78
Checking objects out from source controlccccceeeviivvnnen. 80
Checking objects in to source control.............ccccvvevveeesieciinnen, 83
Clearing the checked-out status of objectsccccocceeeeeee. 84
Synchronizing objects with the source control server 86
Refreshing the status of ObjectSccccovviiiiiiiii i, 87
Comparing local objects with source control versions............. 88
Displaying the source control version historyccccccccee.... 91
Removing objects from source control...........cccccccveeeiiiiiinnnn. 91
Initialization settings that affect source control...............ccccvveeeeenn. 92
Modifying source-controlled targets and objects.........c....cooevvveeen. 97
Effects of source control on object management.................... 97
Opening objects checked in to source control...............cc........ 98
Copy and move operations on source-controlled objects 98
Editing the PBG file for a source-controlled target 99
Migrating existing projects under source control.......................... 100
Using the Existing Application target wizard 102
Importing source control files to a new library 103
PowerDesigner INtegrationccccooveieiiiiiiieeie e 105
About PowerDesigner and the PowerDesigner plug-in................ 105
What iS @N OOM?.....oiiiiiii ettt 107
Advantages of an OOM class diagram in PowerBuilder 108
Reverse-engineering a PowerBuilder targetccccccceevivivvnneen. 110
Using PowerDesigner menu items in PowerBuilder..................... 112
Class diagram menu ComMmands...........ccceovviuvrieeeeeeessiiiiineeeeeeen 113
Checking the OOM MOdEl.........ccccuiiiiieeeeeieccee e 116
PlUg-in tOOIDAIS ...cooiieiiieeie e 116

WORKING WITH TARGETS

Working With Targets ... e 121
Y o o101 = Vo =3 £ USRS 121
WOrKiNG iN PAINTETS ...ooiiiie e 122

OPENING PAINTETSeiieieieee ettt e e e e 122
Painter SUMMATYcooiiiiiiiiiiiee i e e 123

Contents

Painter featuresoovei i 124
Views in painters that edit ObjectS..........ccccvevveeiiiiiiiiiiennenn, 124
About the Application PaiNterccccvviiieei i 129
Specifying application propertiescccccoeevevvieeeeeeeeiiciieeeeeeen 129
Specifying default text propertiesccoocoeeeiicieeiiceeeee 130
SPECIfYiNG @n ICONcceiieiiiii e 132
Specifying default global objects.........ccccceeeviviiiiiieeees 132
Writing application-level SCriptS..........coocoviiiiii e, 133
Setting application properties in SCriptS.......ccccoecvveeiiereennee. 134
Specifying target Propertiescccevvveeviiciiieeiiee e 135
Specifying the target’s library search pathcccccceeonis 135
Importing .NET assembli€Sccvvvvvereiiiiiiiiiiiie e 137
Looking at an application’s StruCture...........cccceeeeveiiviveeeeeeeesiieee 138
Which objects are displayed..........ccccccviiiviiiiiieiiiiiiiiiieeeeeen 138
Working With ODJECESccoviiiiiiiie 140
Creating NEW ODJECESoiii it 140
Creating new objects using inheritance.............ccccccevveeeiiinns 141
Naming CONVENLIONScuuiiiiiiiiee e 142
Opening existing ObJECTSc..vvviviee e 144
Running or previewing 0bjectsccccviiiieiiiee e 146
Using the Source editor..........cccve i e 146
CHAPTER 6 Working with Librariescccoiiiiiii e 149
ADOUL IBFArES ..o 149
USING lIDFANES . .vvviiieeiiiciiiiicee e 150
Organizing lIbraries ..o 150
Opening the Library painter..........coocooveeiiieeinceee e 151
About the Library painter............oociiiiiieiee e 152
Working with IBrariescooeeveeiiiicc e, 154
Displaying libraries and objects...........cccooooiiiiieiiieee 154
Using the pop-Up MENUcooiiieiiiiee e 155
Controlling columns that display in the List view................... 156
Selecting ODJECES ...vvvviiie i 156
Filtering the display of objects........cccccceeviiiiiiiii e, 157
Creating and deleting libraries..........cccecvvveeeeeeiiiiiciiiieeeeeen 158
Filtering the display of libraries and folders.............ccccveeeen. 159
Working in the current librarycccccoeeeeviiiiiiiieee e, 159
Opening and previewing 0ObjectScccccvveeeeiiiciiiiiee e, 160
Copying, moving, and deleting objects.............ccccoveveeeiiinns 160
Setting the 100tccvii i 162
Moving back, forward, and up one level..............cccoceevnen. 163
Modifying COMMENTSccveiiiiiiiie e 163
Searching targets, libraries, and objects............ccccoecvviviiieeininnns 164
Optimizing Draries........cc.vvveee e 166

Vi PowerBuilder Classic

Contents

PART 3

CHAPTER 7

CHAPTER 8

Users Guide

Regenerating library entriesccccoviei i 167
Rebuilding workspaces and targetsccccceevveevivieeeee e, 168
MIgrating targetseee oo 169
Exporting and importing entriesSccccoovvvviieereeeiniiiiiiiee e 173
Creating runtime librariesccccooovviiiiii e 176
Including additional reSOUICES........cuvvveiiiiiiiiiiiiee et 177
Creating reports on library contents...........ccccceveeeiiiiiiiieieee s 177
Creating library entry reports......ccccccevviiiiiiieeie i 178
Creating the library directory report.........cccccceviviiiiieiieeniinnns 179

CODING FUNDAMENTALS

WIIING SCIIPTS weeeiiiiiie i e 183
ADbOUL the SCHPL VIBWeeiiiiiiie e 183
OPENING SCIPL VIBWS ...ooiiiieiiiiee ettt 185
Modifying Script View propertiescocccceeeeieeeeiiee e 186
o 1T Lo TR ol] o SRS 187

Limiting Size Of SCrIPLS ...coovvviiiiiee e 187
1111 o ST 1] o £ 187
Pasting information into SCrPtSccccvvveeiiviiiiiieeee e, 187
Reverting to the unedited version of a script............ccccvvveen. 192
USING AULOSCIIPL oottt 192
Using the AutoScript pop-up WIiNAOWcccvveevieeeniiiivnnnnn. 193
Customizing AULOSCIIPE ...coovviiiiiiiiee e 195
EXAMPIE .eeiieiiiiiie e 197
Getting context-sensitive Helpcvvvveeeeiiiciiiiiee e 198
Compiling the SCHPL......coiii e 199
Handling problemsooo i 199
Declaring variables and external functionscccccceeviveinnnen. 202

Working with User-Defined FUNCLIONSccoovviiiiiiiiiiiiieeens 203

About user-defined fuNCtioONScccooiiiiiiiii 203
Deciding which kind you wantcccccceeviiiiiiiiniiees i, 204
Defining user-defined fUNCLIONS...........coooiiiiiiiiiie e, 205
Opening a Prototype window to add a new function 206
Defining the access [eVel.........ccccoviiiiiiiiiiiiiiiieeee s 206
Defining @ return tyPeooooiee e 207
Naming the fuNCHioN ... 208
Defining argumENtScoociieiiiiee e 209
Defining @ THROWS ClauSeccueeeeiiiiieeiiee e 210
Coding the fuNCtioNc.cooiiiiii e 211
Compiling and saving the functionccccoviiiiiiiiiinens 211
Modifying user-defined functionscccccveeiiieiiiiiii s 212

Vil

Contents

USING YOUF FUNCHONS ..ottt 214
CHAPTER 9 Working wWith User EVENLS ... 215
ADOUL USEI VENLSoieiiiiie ettt e e e 215
User events and eVent IDScoocvvvveeiiieenie e 216
DefiNiNg USEI BVENLSvvviiicciiiiieeee ettt 218
USING @ USEI BVENEuviiiieeeceiiiiie e e e e e sttt e e e e s s esanrae e e e e e e nanneeee s 221
Examples of user event SCrptscccccovveeeiniieecnniiee e, 221
CHAPTER 10 Working With StrUCTUIEScoevveeeeeeiecee e 225
ADOUL STIUCTUIES ...ttt 225
Deciding which kind you wantccccooevivieee e, 226
DefiNiNg STTUCLUIESoiiiiiiie e 226
MOdifyiNG SIIUCLUIESooiiiiii e 228
USING SEIUCKUIES ...oeieiieeeiiiee ettt e e 229
Referencing StruCturesoccoveviciiee i 230
COPYING SIUCLUIESoiiiiiiiee e e e e 231
Using structures with functions...........cccccceeeeeviiiiiiien s 231
Displaying and pasting structure information 232
PART 4 WORKING WITH WINDOWS
CHAPTER 11 Working With WINAOWScoooiiiiiiiiiiii e 235
ADOUL WINAOWS ...ttt 235
Designing WINAOWS.........uuviiieiiiiiiiiiieie et eirreee e 236
BUilding WINAOWScccviiiiiiei e 236
TYPES Of WINAOWS.....oeiiiiiiiiiiiiiiee e 237
MaIN WINAOWScoeiiiiiie it e s e 237
POP-UP WINAOWSccceiiiiiiirie ettt e e e 238
Child WINAOWS ... 239
RESPONSE WINAOWSooiiiiiieiiiiie e e e e 239
MDI fTAIMES ... 240
About the WINdOW Painterccccveiiiiieiiie e 240
Building @ NEW WINAOWc.uvviiiiieeiiiiiiiiicee e 241
Creating a NEW WINAOWuvvieiieeeiiiiiiiiiiee e s seiiieeeeee e e 241
Defining the window's properties........ccccccvvvvvvveereeeeniiivineenn. 242
AddING CONIOIS....ccciiiiiiiiiie e 248
Adding nonvisual ObJECES.........ccvvviiiiieeiiiice e, 249
Saving the WINAOWccooiiuiiiiiiiieiniiieee e 249
VIEWING YOUE WOTKeeiiiiiiieeiiee et e e 250
Previewing a WiNdOWccoooiiiiariieee e 250
Printing a window's definitioncccccceeeeciiiieee e, 251

viii PowerBuilder Classic

Contents

CHAPTER 12

Users Guide

Writing SCripts in WINAOWScceeeiiiiiiiiiiiee e 252
About events for windows and controls............ccccoccoceeeenneen. 252
About functions for windows and controls...............cccceeeeeee. 253
About properties of windows and controls...............cccceeeenn. 253
Declaring instance variablesccccccvvvvveiiiiiiiiiiiieee e 254
Examples of statementscccceevveiiiiiiiiiee e 254

RUNNING @ WINAOWcuiiiiiiiiiiiiecee e 255

Using inheritance to build a window...........ccccccovviiiiiinnie i, 256
Building two windows with similar definitions 256
Advantages of using inheritancecccco i, 257
Instance variables in descendantsccccocooeeiicieeeinieen. 258
Control names in descendants..........coocccveeiiieeeineees e 259

Working wWith CONtrolS ... 261

ADOUL CONTIOIS ...ttt 261

Inserting controls in @ WINAOWcoouuviiieeeeiiiiiiiccee e 262

Selecting CONIOIS ..o 263

Defining a control’s Properties.........ccccceevviiivieeeeeeeesiiiiiieee e e e 264

NaMING CONLIOIS ..ot 264
About the default prefiXes......ccccoeiiiieeee e, 265
Changing the NAmMecooo i 266

Changing teXEoei i 267
How text Size IS StOredcvvvveeeeeeiiiiiiiee e 267

Moving and resizing CoNtrols..........cccccoeeviiiiiieeee e 268
Moving and resizing controls using the mouse 268
Moving and resizing controls using the keyboard 268
Aligning controls using the gridcccccooviiiiiiieeiiiiiiee, 268
Aligning controls with each other............ccccviiiiiiiiiiiienen, 269
Equalizing the space between controls...........ccccccceeeviiinnneee, 270
Equalizing the size of controls...........cccccceviiiiiiiiiii e, 270

COPYING CONLIOIS ..eviiiiiiiiiiiiee ettt a e 271

Defining the tab order..........ooccvviiiiii e 272
Establishing the default tab order............ccccoiiiiiiiiiine 272
Changing the window's tab orderccccoocoeeiiiieeniceeee 273

Defining accelerator KEYS........ueviiiuiie e 274

Specifying accessibility of controls...........ccccoveiiiiiiiiiiie e, 275
Using the Visible property ... 275
Using the Enabled propertycccceioeeeieeesiiee e 276

ChOOSING COIOTS .eviiiiiiiiiiiie e 276

Using the 3D 100Kouviiiiiiiie e 278

Using the individual CoNtrolsccccceviiiiiiiieeeeeieee e 279
CommaNdBULIONocuviiiiiiiiieiie e 281
PICtUrEBULION ...t 282
ChECKBOX ...ttt 283

iX

Contents

CHAPTER 13

CHAPTER 14

RAIOBULION........uiiiiiiiiiei e 284
SEALICTEXLE .eeeiitiie ettt 285
StatiCHYPErLinKovviieeiii e 286
PICIUIE oo 286
PictureHYpPerLinkccvveiiee i 287
GIOUPBOX .. 287
Drawing CONMIOIS.couuieiiiiiee e e 288
SingleLineEdit and MultiLineEdit..............ccccoevciviiieeeee e, 288
EdItMASK. ... 289
HScrollBar and VSCrollBarccoouvveiiiieeiniieeeeeeeen 291
HTrackBar and VTrackBarccocveeiiiiiieiniiiec e 292
HProgressBar and VProgressBarcccccvvvveeiiiiiiiinennnnn, 293
DropDOWNLISIBOX......ccvvvieiieeeiiiiiiieeeee e e s ssiiiiee e e e e e eitiaeeeae e 293
DropDownPICtureLiStBOXcoocvvvviiieeeeiiiiiiiieee e 294
LISEBOX. 1ttt 295
PiICtUrELISTBOX ..vvvviieeieiiiiieeee e e s ettt e e e e et raneeaa e 296
Iy A V1= RSP 298
TIEEVIBW ...ttt e e a e e s et eaae s 301
TAD e —————— 304

Y o] o1 (g T@F= 1 =T oo - S 308

D= 1 (=] o] SRR 309
ANIMALION L.ttt 313
INKEdit and INKPICUIeccooiiiiiiiiiieieceee e 313
Understanding Inheritanceccccceceeiiiiiiie e, 315
ADOUL INNEMTANCEeiiiiiiee e 315
Creating new objects using inheritancecccccccooccvvieeeeeeiiinns 316
The inheritance hierarchy...........ccccoiiii i 317
Browsing the class hierarchycccooooiiiiiiiiiii e 318
Working with inherited objectscooooiiiii e 320
Using inherited SCrPLSveiiiiieie e 321
Viewing inherited SCrPtS........cooivviiieiieiiiiiiieee e 322
EXtending @ SCrPL......cccviiiiiee i 323
OVErridiNg @ SCHPL ...vvvviiee et 324
Calling an ancestor SCriPt.........uuvvveeeeiiiiiiiiiee e 325
Calling an ancestor functioncccccoviiiiiiieie i 325
Working with Menus and Toolbarsccccceceeeiiiiiiieeeeec e, 327
Menus and MEeNU HEMSccuiiii i 327
Using the Menu painter..........ccccooiiiiie i 329
MENU PAINLET VIBWSoeiiiiiiie e e e e e e 329
MENU SEYIES ...t 331

PowerBuilder Classic

Contents

CHAPTER 15

Users Guide

Building @ NEW MENU........ooiiiiiii e 333
Creating @ NEW MENUcccceeviiiiiiiieeeeeeeeiirrreeeeeeeeesnnnneeeeeeaaens 333
Working with menu itemsccocoiiieee e, 334
SaviNg the MENUeeviiiiiii e 340

Defining the appearance and behavior of menu items................. 341
Setting General properties for menu items...........ccccceeeeviinns 341
Setting menu style properties for contemporary menus........ 344
Setting menu item style properties........cccccceevviiiiinieieeeniinnns 346

Providing toolbars ... 347
HOW t00lbars WOrk.........coooiiiiieiiee e 348
Adding toolbars to a WindOWccceevveeeeiiiiiiiiiee e 350
Selecting a toolbar stylecceeveeeeiiiii e, 350
Setting toolbar Propertiesccooceeevicie e 351
Setting toolbar properties in the Window painter................... 355
Setting toolbar properties in the Application painter.............. 355

Writing scripts for menu itemS.........ooooiivviee i, 356
MENU ILEM EVENTS ...ttt 356
Using functions and variablesccccccceeviiiiiiiniien e, 358
Referring to objects in your applicationcccccceevvvivvneenn. 359

Using inheritance to build a MenuU..........ccccvvvveiiiiiiiii s 360
Using the inherited information............ccccccoovviiiiiiiiens e, 361
Inserting menu items in a descendent menu............cccceeeee... 362

Using menus in your applicationsccccoeiieeiniieeiiiiee e 366
Adding a menu bar to a Windowoccociiiiiieiniieee e, 366
Displaying pop-UP MENUSceeeeeeiiiiiiiireeeeeesiiinreeeeeeeeennnnns 367

Working with User ODJectscccoviiiiiiiiii e 369

ADOUL USEI ODJECES ..vvvviiieiiiiiiiecc e 369
Class USEr ODJECEScvvieiiiiiiiiiiiie et 370
Visual USEr ODJECESuvviiiiie i 371
Building USEr ODJECEScooiiiiiiiiiee e 372

About the User Object painter........cccoovvviviee i 372

Building a new user 0bjeCtccceeeiiiiiiiiiiiiee e 374
Creating a new user object...........cccceviiiiiiiiee e, 374
Building a custom class user objectcccccoecveieiiieeenee. 375
Building a standard class user object...........cccoococeiiiieeennne. 375
Building a custom visual user objectcccoecveieiiiiennne. 376
Building an external visual user object.............ccccceeiireenee 377
Building a standard visual user object...........ccccccvveeviiiiinnnen. 378
Events in USer ODJECESocvvviiiiiie e 379
SaviNg @ USEr ODJECT.....ccoiiiiiiiiiiiie e 380

Using inheritance to build user objectscccoovciiiieiieniiiniiinnen. 382
Using the inherited information............ccccccoovviiiiiiiiens i, 383

Xi

Contents

PART 5

CHAPTER 16

Xii

USING USEI ODJECES......uiiiiiiie ettt 384
Using visual USer ObJECES........cuvviiiiiiiiiiiiee e 384
UsiNg Class USEer ODJECES.......uuiiiiieiiiiiiiiiiee e 386
Using global standard class user objects.........cccccccceveeunnneen. 387

Communicating between a window and a user object................. 389
Examples of user object controls affecting a window............ 391

WORKING WITH DATABASES

Managing the Database...........ccccceeviiiiiiiiii e, 397
Working with database componentscccccoeviieeiniiiee e 397
Managing databases..........ccooiiiriiii i 401
Using the Database painter...........ccocceviiieiiee e 402

Modifying database preferencesccccecvvvvvieeiiiiiiiinennnnn. 405
LOQQING YOUI WOTK ..coiiiiiiiiiee ettt e e e e 406
Creating and deleting a SQL Anywhere database........................ 407
Working With tables ..o 408
Creating a new table from scratch...........ccccccoviiiiiiniiniins 408
Creating a new table from an existing table 410
Specifying column definitionscccccvvveee e, 410
Specifying table and column propertiescccccceeeeeeiinnneee. 411
Altering atable ... 414
Cutting, copying, and pasting ColumnsS.............ccccvveeeeeeeiinnns 416
Closing atable..........cc.ooeeiiiiiii e 416
Dropping atable..........ccovevieeiiii e 417
Viewing pending SQL Changesccccocvvvivvieeeiiiiiiiiiieeeeeenn 417
Printing the table definition ..o, 418
Exporting table Syntax.......cccccovviiiiiiiieiiiiiiiee e 419
About system tablesccccccovviiiiiiiiiee 419
Creating and editing temporary tablescccceeveeeiiins 420
WOrKing With KEYSceviiiiiiiiiiiiiee e 422
Working With INAEXESccoiiiiiiiiie e 426
Working with database VIEWS............cooiiiiiiiiieeiee e 428
Manipulating data..........cooeeriieee e 433
Retrieving datacocoeeriiiiiee e 434
MOodifying data..........ccoeriiiiie e 434
SOMING FOWS ...eiiieiiiee e et e et e et e et e e e e e enene e e e 435
FIltErING FOWS ...t 437
Viewing row informationcccccceeeiiiiiiiiiie e 438
IMPOrtiNG dAtaccceeeiiiiiiiiiee e 438
Printing dataccoeeiiiiiiiiiiee e 439
SAVING TALA ..evieeeiiiiiiiiiie e 439

PowerBuilder Classic

Contents

CHAPTER 17

PART 6

CHAPTER 18

Users Guide

Creating and executing SQL statementscccocccceevicieeennneenn. 440
Building and executing SQL statementsccccceeeceeeennne. 440
Customizing the editor..........ccccvvvveee e 444

Controlling access to the current database.............ccccceevieeninnns 444

Using the ASA MobiLink synchronization wizard 445
What the wizard generates...........cccvvveeeeeeiiiiiiieeee e 445
WiZard OPLIONS.....cvieiiiiiiiiit e 447
Trying out MobiLink synchronization............cccccccovviiiiinnnnnn, 449

Managing MobiLink synchronization on the server...................... 450
Starting the MobiLink synchronization server..............c......... 451
Using Sybase Central.........ccccuvveeeeeeiiiiiiiieee e 451

Working with Data Pipelinesccooeeiiiiiiiiiiiieeec e 453

About data PIPElINES.......coicviiiiiiee e 453
Defining a data pipeline...........cceeeiiiiiiiiiiiee e 454
Piping extended attributes...........cccooeiiiiieiieiiii e 455

Creating a data PIPeliNgcoovcviiiiiiie e 456

Modifying the data pipeline definitionc..cccoooviiiiei i, 459
Choosing a pipeline operation...........ccccvvevieeeiiiniiiiieieee s 461
Dependency of modifications on pipeline operation.............. 461
When eXeCUtion StOPSuuvvieeeiiiiiiiiiiee e e 463
Piping blob data..........ccccoviiii 465
Changing the destination and source databases................... 467

Correcting PIPeliNg EITOIScoiuiii e 468

Saving @ PIPElINEeeie e 469

Using an existing pipelineccvvviviieeeiiiiiiieee e 470

Pipeling eXamples ... 470

WORKING WITH DATAWINDOWS

Defining DataWindow ODjJECEScovuiiiiiiiiiiiiiee e 475
About DataWindow ODJECEScveeiiiiiiiiiiiiee e 475
DataWindow object examples.......ccccocvieeiiiiiiiiieiiee e, 476
How to use DataWindow 0bjects.........ccccccevvviviiiiiieesiiiiiinnen, 477
Choosing a presentation style...........cccceeeiviiiiiiiiee e 478
Using the Tabular style............cooveiiiiiiiiiiiee e 479
Using the Freeform style ..o, 479
Using the Grid Styleoooeiiiiiee e 480
Using the Label Styleccoovvvieeiiiiieee e, 480
Using the N-Up Style ..o 482
Using the Group Style.......ccuvveiieeeeeeiieeee e 483
Using the CompOSite Style........ceeeeeeiiiiiiiiee e 484
Using the Graph and Crosstab styles...........cccccceveeiviiiiineenn. 485
xiii

Contents

CHAPTER 19

Xiv

Using the OLE 2.0 Style.......ccoiiiiiiiiiiiee i 485
Using the RiChTeXt Style.......cccooviiiiiiiiie e 485
Using the TreeView Style.......cccocvieiiiiee i 486
Building a DataWindow ObJECEcccocviiiiiiieee e, 486
Selecting a data SOUICE........ccccueiieiiiiiee e 488
USIiNG QUICK SEIECE......ceiieiie e 489
Selecting atable ... 490
Selecting COIUMNSooiiiie e 492
Specifying sorting Criteriaccccceevvcviiieeee e 492
Specifying selection Criteria.........cccceeveiiiiiiieeeee e 493
USIiNG SQL SEIECL.......ueiiiiiei ittt 499
Selecting tables and VIEWScoeviiiiiiiiiiiee e 500
Selecting COIUMNSuiiiiiiiiiiee e 502
Displaying the underlying SQL statementcccccvveeeenn. 504
JOINING tADIES ..oevvieiie 505
Using retrieval argumentsccccovieeeeiiiieeeieee e 508
Using retrieval argumentsccccovieeeeeiiiieeeieee e 508
Specifying selection, sorting, and grouping criteria............... 509
USING QUEY ..ttt et e et e e et e e e aneee e e e eneeeeas 515
USiNg EXTErnal.........cccuviiiiiiiiiiiecce e 515
Using Stored ProCeaUrec.eueiiiiee e 516
Using a Web service data SOUICEcccvvvevveeeeeeiiiiiiiiieeeeeeeniinns 519
Choosing DataWindow object-wide optionS...........ccccvvvvevreeeiiinns 522
Generating and saving a DataWindow object...........cccccccveeeninns 523
About the extended attribute system tables and
DataWindow ODJECESevviiieiiiiiiiiiiee e 523
Saving the DataWindow ObJecCtccccvvviiieeeeiiiiiiiiieeeeeen 524
Modifying an existing DataWindow object..............ccccvveereennn. 525
DefiNiNG QUETIES ...ttt 526
Previewing the qUEerY ..o 526
SaviNg the QUENYoooiie et 527
MOdifyiNG @ QUETY ..o 527
WRAL'S NEXE.....eeeee ettt e e e eenee e 528
Enhancing DataWindow ODJecCtS........cccevveeiiiiiiiiiiiiiiiece e, 529
Working in the DataWindow painter..........cccccoevvivvieieeeeesiiiiiieeenn. 530
Understanding the DataWindow painter Design view 532
Using the DataWindow painter toolbars............c.ccccvcvvineeenn 534
Using the Properties view in the DataWindow painter 535
Selecting controls in the DataWindow painter....................... 535
Resizing bands in the DataWindow painter Design view 537
Using zoom in the DataWindow paintercccoccoceevnnenn. 537
Undoing changes in the DataWindow painter 537

PowerBuilder Classic

Contents

CHAPTER 20

Users Guide

Using the Preview view of a DataWindow objectc........... 538
Retrieving datacoooiiiiieieee e 538
MOdifying datacoooeiiiiiiee e 540
Viewing row informationccccccceieiiiiiiiiiie e 542
Importing data into a DataWindow object..............cccccvveerennn. 543
USING PHNt PreVIEW ...ccee ittt e e 543
Printing datacevveiiiiiiiiii e 545
Working in a grid DataWindow objectccccccoevvviiiiinnnnnnn. 546

Saving data in an external file...........ccccoceeiiiiii 548
Saving the data as PDFccccvevveee i 549
Saving the data in HTML Table format............ccccocoveviieninnne 554
Working with PSR fil€Sccoeiiiiiiiiiiee e, 555

Modifying general DataWindow object properties........................ 556
Changing the DataWindow object style...........cccococeeiiiienene 556
Setting colors in a DataWindow object...........ccccccoceeviiieeens 557
Setting gradients and background pictures in a

DataWindow ODJECT.........cuviiiiiiiiiiiiiiee e 558
Setting transparency properties for a DataWindow object 559
Specifying properties of a grid DataWindow object............... 559
Specifying pointers for a DataWindow object........................ 560
Defining print specifications for a DatawWindow object 561
Modifying text in a DataWindow objectcccceviieenne. 565
Defining the tab order in a DataWindow object...................... 566
Naming controls in a DataWindow object................ccccceeeee. 567
Using borders in a DataWindow objectcccceeiiineennne. 568
Specifying variable-height bands in a DataWindow object.... 568
Modifying the data source of a DataWindow object 570

Storing data in a DataWindow object using the Data view........... 572
What happens at runtimecoccvvvieeee i, 573

RetrieVviNg data........ccvvviieeiiiciiie e 574
Prompting for retrieval criteria in a DataWindow object 574
Retrieving rows as Needed............oovvvvvveeeeeiiiiiiiiiee e 575
Saving retrieved rows t0 disKcccccvviiiiiiiiiieeiiiiiiiiiieee e 576

Working with Controls in DataWindow Objects..............oc...... 577

Adding controls to a DataWindow objectcccccooiiiiiiiiinen. 577
Adding columns to a DataWindow object...............ccccevneee. 577
Adding text to a DataWindow objectcccceeviceeernnnen. 578
Adding drawing controls to a DataWindow object.................. 579
Adding a group box to a DataWindow object 580
Adding pictures to a DataWindow object..............coccvvveernennn. 580
Adding computed fields to a DataWindow object................... 581
Adding buttons to a DataWindow objectcccvveeeeennn. 586
Adding graphs to a DataWindow objectcccccccovvvvvieennnnnn. 591

XV

Contents

CHAPTER 21

CHAPTER 22

XVi

Adding InkPicture controls to a DataWindow object.............. 591
Adding OLE controls to a DataWindow object 592
Adding reports to a DataWindow object.........c.ccccoccvvvveennennn. 592
Adding tooltips to a DataWindow control...............ccccvveerennnn. 592
Reorganizing controls in a DataWindow object.............c.cc.cccee.... 593
Displaying boundaries for controls in a DataWindow
(0] o] =X PSRRI 593
Using the grid and the ruler in a DataWindow object............. 593
Deleting controls in a DataWindow object..............ccccceeeeeee. 594
Moving controls in a DataWindow objectccccvvveeennn. 594
Copying controls in a DataWindow object............cccccceeriinnns 595
Resizing controls in a DataWindow objectccccvveeennn. 595
Aligning controls in a DataWindow objectcccvvveerennn. 596
Equalizing the space between controls in a
DataWindow ODJECT........covviiiiiiiiiiiiee e 596
Equalizing the size of controls in a DataWindow object........ 597
Sliding controls to remove blank space in a DataWindow
(0] o] =X R PERRR 597
Positioning controls in a DataWindow objectcccccceee. 599
Rotating controls in a DataWindow objectcccccevviiiienneen. 600
Controlling Updates in DataWindow objectsccccceeeninnen. 603
About controlling UPdates.........ccooviiiiiieiie i 603
What YOU CaN dO ... 604
Specifying the table to update.........ccccceviiiiiiiiiiiee s 605
Specifying the unique key ColumNScccooviiieiiie e 605
Specifying an identity column...........ccccccooviiiiiiiee e, 606
Specifying updatable columns ..., 606
Specifying the WHERE clause for update/delete......................... 607
Specifying update when key is modifiedccccceeviieinnien. 609
Using stored procedures to update the database 610
Using a Web service to update the databaseccccccoovuvnneeen. 612
Displaying and Validating Datacccoeeevevevvieviviiiiiicceeenn 617
About displaying and validating data............ccceecvvvieeeeeeiiiiiinnenn. 617
Presenting the dataccccoeeiiiiiii e 618
Validating data.........c.coeeiiriiii e 619
About display formats...........cccvvveei i 619
Working with display formatsccccccvvvieii i, 620
Working with display formats in the Database painter 620
Working with display formats in the DataWindow painter 622
Defining display formats..........cccvvieiiiiiiiiiiic e 623
Number display formatscccocvvviiieeeiiiiiiie e, 625

PowerBuilder Classic

Contents

String display formats...........cccovviiiee e 627
Date display formats..........ccooeeiiieiiie e 627
Time display formatscccccevviiiiiiiiee e, 629
ADOUL €dit SEYIESvviiiiiie it 630
Working with edit StYlES..........ccvvieiiiiiiiiii e 632
Working with edit styles in the Database painter................... 632
Working with edit styles in the DataWindow painter.............. 634
Defining edit StYIESuvviieiiiiie 634
The Edit edit Style....ccuvviieeiie i 634
The DropDownListBox edit Stylecccceiiiiiiiniiieeiieeene 635
The CheckBox edit Style.........ccvvvviveeieieiiee e 636
The RadioButtons edit Stylecccoiiiiiiiieeiee e 637
The EditMask edit Styleccccvviiieeeeiecieee e 638
The DropDownDataWindow edit style..........cccccooroiveeiienens 642
The RichText edit Stylecccooviiiiiiieee e, 644
The INKEdit €dit StYIEuvvvivieiiiiiiieee e 645
Defining a code table ... 645
How code tables are implementedooccvvvevieeniiiiiinnnnn. 646
How code tables are processed........ccccceeviiiiiiiieieeesiiniinnnn, 647
Validating USEer iNPUL.......cooveiiiiiiiiiiee e 648
About validation FUIES...........ceeiiiiiiiii i 649
Understanding validation rulescccccooiiieiiiiie e 649
Working with validation rules.............cccccvvevee i, 650
Defining validation rulesccoo i 651
Defining a validation rule in the Database painter................. 651
Defining a validation rule in the DataWindow painter............ 654
How to maintain extended attributes.............cccceviiiieiiciiie i, 657
CHAPTER 23 Filtering, Sorting, and Grouping ROWScccccoviiiiiiiiiiiinneens 659
FltEIING FOWS ...eiiiiie it 659
SOMING FOWS ...ttt ettt e e s s e e e e e s st eaeaeaeesannne 662
Suppressing repeating ValuesScccuvvvevieeesiiniiiiieeiiee e 663
GrOUPING FOWSeeieeeieiieeiieeee ettt e e e enteeaeateee e s ameeeeeseneeeeeameeeeeeaneeeens 664
Using the Group presentation stylecccccoviieiiiieennee. 666
Defining groups in an existing DataWindow object 670
CHAPTER 24 Highlighting Information in DataWindow Objects 679
Highlighting information.............ccccce i 679
Modifying properties when designingccccevvveeeeiinivnnnen. 679
Modifying properties at runtimeccccceevvivivinieiee s, 680
Modifying properties conditionally at runtimecccccceeevvvvnneen. 683
Example 1: creating a gray bar effect...........cccccceveiviiiinnnenn. 684
Example 2: rotating controlS............cccccvveeeeeeiciiiieee e 685

Users Guide XVil

Contents

CHAPTER 25

XViii

Example 3: highlighting rows of data............ccccccoviiiiiiiennnnnn. 686
Example 4: changing the size and location of controls 688
Supplying Property VaIUES.........ccvvvieiiee ittt 689
Background.Color............cceiiiiiiieee e 691
20T (0 LT RS 691
BruSh.ColOruviiieee i 693
Brush.HatCh...........coooiiiiii e 693
(7] o R PEERRR 694
Font.Escapement (for rotating controls)cccccoeeeennnren. 695
FONLHEIGNT ... 696
FONLIANC ... 697
Font.Strikethrough...........covveeiiiii e 698
FONt.UNAErliNecoooiiiiiiiiie e 699
FONtWeEIghtooiiiiiiee e 699
FOIMMAL....ciiiiii e 700
[[T 1o o | RS 700
PEN.COION ... 701
PEN.SIYIE ... 701
Pen.WIidth ..o 703
POINEET oo 703
PrOtECT ... e 704
TIMEr_INtErvalcoooviiiiiiie e 704
VISIDIE ..o 704
WD s 705
) TR UURTOURR PRI 705
XL, X2ttt 706
| OSSPSR PRI 706
Y L, Y 2 e 707
SPECIfYING COIOIS ..ooeiieiiieie e 707
Using Nested REPOITS ..ocooieeiiiieiiiiiie et 709
ADOUL NESLEA FEPOMSceei it 709
Creating a report using the Composite presentation style 713
Placing a nested report in another report...........cccccevieeiiiiiinnenn. 715
Placing a related nested report in another report.................. 715
Placing an unrelated nested report in another report............ 718
Working with nested reportS...........oocvveieieei i 718
Adjusting nested report width and height..............cccccceeeee. 719
Changing a nested report from one report to another........... 720
Modifying the definition of a nested reportccccvvvveee.. 720
Adding another nested report to a composite report............. 721
Supplying retrieval arguments to relate a nested report
t0 itsS base report........oocoveiiie e 721

PowerBuilder Classic

Contents

Specifying criteria to relate a nested report to its

DASE rEPOIt ... 723
Using options for nested reportsccccoeceeeiieeeeecieeee e, 724
CHAPTER 26 Working With Graphns ..o 727
ADOUL GraphiS ... 727
Parts of a graph ... 728
TYPES Of GraphS...ccooeiie e 730
Using graphs in applicationscoocoeereriieeeeniiee e 734
Using graphs in DataWindow objectscccceviceeeiiieeenieen. 735
Placing a graph in a DataWindow object............ccccccceeeuvneee. 735
Using the graph's Properties VIeWccccceeiiieieiiieeeee 736
Changing a graph's position and Size...........ccccceeiviieriieeens 737
Associating data with a graphccccceeviiiiiiic e, 738
Using the Graph presentation style.........cccccceeviiiiiiiinnie i, 747
Defining a graph's Propertiesccceveeeevvieieeeeeeiiiiiieee e e e 748
Using the General page in the graph's Properties view 748
Sorting data for series and categories............cooecvvveeereeeniinns 750
Specifying text properties for titles, labels, axes, and
=T 01T o <SSP 750
Specifying overlap and spacing...........ccccceevreeeeinieeeiieeee 754
Specifying axis Propertiescocceeeeeiieeeeiiiee e 754
SPEeCfying @ POINLETeiiei e 757
Using graphs in WiNdOWSc.eevveeeiiiiiiiiicee e 757
CHAPTER 27 Working With CroSstabsccvviveiiiiiiiiie e 759
ADOUL CrOSSEADSeeiiiiiiiiciee e 759
Two types Of Crosstabs..........oocviiviiiiiii e 762
Creating CrosSstabsc..vviiiie 763
Associating data with @ crosstab..........cccccceee i, 764
Specifying the informationcccccoeeeiiiiiie e, 764
Viewing the crosstabcccccoeeviiiiiiiie e, 767
Specifying more than one row or column............ccccceeeeeeiinns 769
Previewing CroSstabsc.ooiiiir i 770
ENnhancing Crosstabs.........cooviiiiiiiee e 770
Specifying basic Propertiescccceeeeeevivvriieee e 771
Modifying the data associated with the crosstab................... 772
Changing the names used for the columns and rows........... 772
Defining summary StatiStiCS..........oovvvviiiieeiiiiiiiiiiiee e 773
Cross-tabulating ranges of values..........ccccccco i, 776
Creating static Crosstabsccvvvveeeiiiiiiiiiceee e 779
Using property conditional expressions..........cccccccveeviiivvennen. 780

Users Guide XiX

Contents

CHAPTER 28 Working With Tre@VIiEeWsS ..o 783
TreeView presentation Styleccccuvevvieeiiiiiiiiieiiee e 783
Creating a new TreeView DataWindowcccccevviiiiveerienniinnnns 785

TreeView Creation PrOCESS.......cvuvvviieeeriiiiiiieee e e s siiiiieeeee e 785
Creating a TreeView DataWindowccccceeviiieeeriinnennns 785
Adding and deleting TreeView levels...........cccccooiiiiiiiiine e 790
Selecting a tree node and navigating the tree..............ccccceevnee.. 791
Sorting rows in a TreeView DataWindow..............ccoceveiiieeeennneen. 792
TreeView DataWindow Design VIEWcccccvveeeeeeeiiiiiiieeeeeennn, 793
Setting properties for the TreeView DataWindow 794
Setting general TreeView propertiescccccccvvvveivveeieeeennnnns 795
Setting TreeView level properties.........ccooceveeeiiiiiiiiieieeeennns 797
Setting detail band properties........ccccccovvvvviieeriee e, 798
TreeView DataWindow examplescccccovviiiiiiieeeeiniiiiiieeeeeeen 798
Data Explorer sample........cccccoovviviiiiiieeiiiiiiiiiee e 799
Data Linker Samplecoeevveeiiiiiiieee e 802

CHAPTER 29 Exporting and Importing XML Data............ccceevvvvvviivivinniieeeeenn. 805

Y 010 11 0/ | PR 805
Valid and well-formed XML documents..........cccceeceeeeiineeenns 806
XML SYNEAX s 807
XML PArSING .oveeeeeiiiiiiiiie ettt e e st e e e e s s ssibeeneeaeeesananes 808

XML support in the DataWindow painter..........ccccccceevviiiviieeennenn. 809

The Export/Import Template view for XML........ccccccceeviiiiiinnnnnnnn. 811
Creating temMPIatesSccovviiiiiiiiiiee e 812
SaviNg tEMPIALES......cceviiiiiiiiiiie e 814
Header and Detail SECHIONSc.c.evvvvveeeeiiiiiiiieee e 814

Editing XML tempIatescoouireiiiiiie e 817
XML declarationccceeiiieieiiiiie e 818
Document type declaration............ccccceeeeeeeiiiiieeee e 819
ROOt €18MENt ... 820
(0707 011 0] 1R PEERR 821
DataWindow eXPreSSIONS.......covvviviriiieeeeeeiiirieee e e e e s sivieeeens 821
ARIDULES ..o 822
Composite and nested repPortscccoecevveeeeeeeeiiiiiiieieee e 822
CDATA SECHONS ...ttt 824
COMMENTS ...t 824
Processing iNStrUCLIONScoiviiiiiiiiiee e 825

o To) 11 aTo IR (o 4 1Y | S 825
Setting data export propertiesccoccceeeieeeesicee e 826
Selecting templates at runtimecccccceeeeeevciiiiee e 835

XX PowerBuilder Classic

Contents

IMPOItING XML ...ttt e e eee e e e emeeeeeene 835
Importing with a templatecccooviiieeeiiieee e 836
Default data importooo i 840
Tracing iMPOITcevieeiiiiiiiie e a e 843
CHAPTER 30 Working with RiCh TeXt ... e 847
ADOUL FICN TEXE .. 847
Using the RichText presentation style...........cccccoveoieeiicieienieen. 848
Creating the DataWindow Object..........ccccevieieriiiiee i 849

Formatting for RichText objects within the
DataWindow ODJECT.........eevveieiieiiiiieee e 853
Previewing and printingcccceeoioeeereiieee e 858
Using the RichTextEdit CONtrol............coooieriiiiiee e 859
Formatting keys and tooIbars.........cccccevvviiiiiiieiie e 861
CHAPTER 31 Using OLE in a DataWindow ObjecCt........cccccceeeeiniiieieeieeirieeeennns 863
About using OLE in DataWindow objectsccccccevviiiviieennnnn, 863
OLE objects and the OLE presentation stylecccccceeennee.. 865
Adding an OLE object to a DataWindow object 866
Using the OLE presentation style.........cccoococeeiiieieiiieeeee, 867
Defining the OLE 0bjJeCtcccoeeiviiiiiiiiiee e 868
Specifying data for the OLE object...........ccccccovviiivivreeennnnns 870
Previewing the DataWindow object...........cccccevieieiineennne. 874
Activating and editing the OLE objectcccccceevvviiiininnnnnn, 875
Changing the object in the control............ccccccoviiiiiiiiinnniins 876
Using OLE columns in a DataWindow object...........cccccccoovuvvnenn. 876
Creating an OLE columncvvvvvvieiiiiiiiiceee e 877

PART 7 RUNNING YOUR APPLICATION

CHAPTER 32 Debugging and Running Applications.........ccccccovviiiiieiiiiiienen, 885
Overview of debugging and running applicationsc............. 885
Debugging an application.............ueeeeeeeiiiiiiiiiieee e 886
Starting the debugger.......cooooiiiiiii e 887
Setting breakpoints..........oooiiiiieii e 889
Running in debug modecooooeiiiiiiiieee e 893
Examining an application at a breakpoint.................cccceeee. 894
Stepping through an application...........cccccoiiviiiiiiiiiiiiee 902
Debugging windows opened as local variables..................... 904
Just-in-time debuggingcccooviviiiiiiiee e 905
Using the DEBUG preprocessor symbol.........ccccceeevivivveeenn. 906
Breaking into the debugger when an exception is thrown..... 907

Users Guide XXi

Contents

Running an application............c.uueevieeiiiiiiiiiie e 909
Running the application............cccvveeiiee i, 909
Handling errors at runtimeccccvveveeeeeiniiiiiiiee e 910

CHAPTER 33 Tracing and Profiling Applicationsccccccviviiiie e 917

About tracing and profiling an applicationccccocooeiiiinene 917

Collecting trace information.............ccccoviiiieiiiiiie e 919
Tracing an entire application in PowerBuilder....................... 921
USING @ WINAOW ..ooeiiiiiiiiiiiiee et 921
Collecting trace information using PowerScript functions 927

Analyzing trace information using profiling toolSccccceeeen. 930
Profiling Class VIEW.........covviiiiiiiiiiiiee e 930
Profiling ROULINE VIEWcoooiiiiiiiiiiiiee e 932
Profiling Trace VIEWcceviiiiiiieeeee e 934
Setting call aggregation preferences.........ccccccoecvviiiinennnne. 936

Analyzing trace information programmaticallyc.c.occcee. 936
Analyzing performance with a call graph model.................... 937
Analyzing structure and flow using a trace tree model.......... 940
Accessing trace data directly..........ccoceeiiiiiiiiiiie e, 943

Generating a trace file without timing information....................... 946

CHAPTER 34 Creating Executables and Components.........ccccccceeieieeieieieeeenn, 949

About building PowerBuilder targetscccccvvvivvieieeeeeeiiciiieeenn. 949

Creating @ PrOJECE......cciiveiiie e e s e ectiiee e e e e e s s et e e e e e e s e rae e e e e e e s ananes 951

Defining an executable application project............ccccceeviverernnnen.. 953

Using dynamic librariescccccooeiiiiiieee e 957

Attaching or embedding manifest filesccccooooiiiiiiniiiiee 958

DiStribUting F@SOUICESeeeiiiiieie it e e e 959
Distributing resources separatelyc.cccceeeriieeiiieeennnens. 959
Using PowerBuilder resource filesccccvvvvieeiiiiiciinennnnn, 960
What happens at runtimecccccveeeiiiiiiiiicee e 961

Tracing EXECULIONcviiieieiieiitee e et e et a e e s brree e e e 961

Building an executable file and dynamic libraries 962
How PowerBuilder builds the project..........ccccccceevviiiiiinnnnnnn. 963
How PowerBuilder searches for objects.........ccccccoovcvvvveennnnn. 963
Listing the objects in a project........ccccceeeevviciiiieee e, 966

Building components, proxies, and .NET targets...............cccvoe.... 967

XXii PowerBuilder Classic

Contents

PART 8 APPENDIXES
APPENDIX A The Extended Attribute System Tablesccoovvvvviiiiiccienennn, 971
About the extended attribute system tables.............cocccceeriienenne 971
The extended attribute system tablesccccocevveeiiiiciiineneen, 972
Edit style types for the PBCatEdt tableccccvvveeeeeiiiiciineen. 975
CheckBox edit style (COUE 85).......cccovirriiiiieeeiiiiiiiiiiiee e 975
RadioButton edit style (code 86)ccccceevviirriiirieenniiiiiiennn, 976
DropDownListBox edit style (code 87)ccccvvveeveerriiirrnnnnn. 977
DropDownDataWindow edit style (code 88)........c..cccoevuvrveenn. 978
Edit edit style (COde 89)........uuviiiieiiiiiiiiiiiee e 979
Edit Mask edit style (code 90)cccceevreeeiiiiiiiiieiee e, 981
APPENDIX B The OrcaScript LANQUAQE . ..uuveeeeeeiieieieeeeeeeeeeeeeeeee e 983
ADOUL OrCASCIIPL ... eeeieiiee et e e 983
OrcaScript COMMANASeeeiiiieeeiiiie e e e e e e e eneeeeas 985
Usage notes for OrcaScript commands and parameters............. 989
1o L= O PP O PP PP PUPPPPPPP 997

Users Guide XXili

Contents

XXiV PowerBuilder Classic

About This Book

Audience

How to use this book

Related documents

Two volumes

Other sources of
information

Users Guide

This book is for anyone who builds applications with PowerBuilder®. It
assumes that:

e You arefamiliar with user interface guidelines. If not, consult a book
that covers user interface conventions.

e You have abasic familiarity with SQL. If not, consult a book that
describes SQL statements.

This book describes the PowerBuilder development environment. It
shows you how to use PowerBuilder user interface tools to build the
objectsyou need, including windows, menus, DataWindow® objects, and
user-defined objects, to create client/server and multitier applications.

Application Techniques presents information about programming
techniques and building multitier applications.

Deploying Applications and Componentsto .NET explains how to build
applications in PowerBuilder and deploy them as .NET Windows Forms
or ASPNET applications. It also describes how to deploy custom class
user objects as .NET assemblies and Web services.

The DataWwindow Programmers Guide explains how to use DataWindow
objects in different environments and presents programming techniques
related to DataWindows.

For adescription of all the books in the PowerBuilder documentation set,
see the preface of the PowerBuilder Getting Sarted manual.

The printed version of this book is divided into two volumes:

Volume 1 includes Chapters 1-17.
Volume 2 includes Chapters 18-34.

Use the Sybase® Getting Started CD and the Sybase Product
Documentation Web site to learn more about your product:

¢ The Getting Started CD contains release bulletins and installation
guidesin PDF format. It isincluded with your software. To read or
print documents on the Getting Started CD, you need Adobe Acrobat
Reader, which you can download at no charge from the Adobe Web
siteusing alink provided on the CD.

XXV

* The Sybase Product Documentation Web site is accessible using a
standard Web browser. I n addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Conventions The formatting conventions used in this manual are:

Formatting example | Indicates
Retrieve and Update When used in descriptive text, this font indicates:

* Command, function, and method names

» Keywords such astrue, false, and null

» Datatypes such asinteger and char

« Database column names such asemp_id and
f_name

e User-defined objects such asdw_emp or
w_main

variable or file name When used in descriptive text and syntax

descriptions, oblique font indicates:

» Variables, such as myCounter

» Partsof input text that must be substituted, such
as pblname.pbd

» Fileand path names

File>Save Menu namesand menuitemsaredisplayedin plain

text. The greater than symbol (>) shows you how

to navigate menu selections. For example,

File>Save indicates “ select Save from the File

menu.”

dw_1.Update () Monospace font indicates:

 Information that you enter in adialog box or on
acommand line

» Sample script fragments

» Sample output fragments

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

XXVi PowerBuilder Classic

PART 1 The PowerBuilder
Environment

This part describes the basics of using PowerBuilder:
understanding and customizing the development
environment, creating workspaces and targets, and using
source control. It also describes the PowerDesigner

plug-in.

CHAPTER 1 Working with PowerBuilder

About this chapter This chapter describes the basics of working in the PowerBuilder
development environment.

Contents Topic Page
About PowerBuilder 3
Concepts and terms 4
The PowerBuilder environment 9
Creating and opening workspaces 17
Using wizards 18
Creating atarget 19
Target types 21
Managing workspaces 25
Building workspaces 26
Working with tools 28
Using online Help 33
Building an application 34

Before you begin If you are new to PowerBuilder, doing the tutorial in Getting Sarted will

help you become familiar with the devel opment environment. Thetutorial
guides you through the process of building a PowerBuilder application.

About PowerBuilder

PowerBuilder is an object-centric graphical application development
environment. Using PowerBuilder, you can easily develop many types of
applications and components. PowerBuilder provides all the tools you
need to build enterprise systems, such as order entry, accounting, and
manufacturing systems.

Users Guide 3

Concepts and terms

Two-tier applications

Multitier applications

Web applications

PowerBuilder applications can be traditional graphical client/server two-tier
applicationsthat access server databases. A traditional client/server application
is acollection of windows that contain controls that users can interact with.
You can use standard controls—such as buttons, check boxes, drop-down lists,
and edit controls—as well as special PowerBuilder controls that make your
applications easy to develop and easy to use.

You can also build multitier applications with PowerBuilder. A multitier
application usualy has a client application that requests services from aserver
application or component. For example, your client application could request
services from a PowerBuilder component on an application server. The server
component often requests services from a server database and/or other server
components.

PowerBuilder applications can also be Web based. You can create a new
Web-based application for the Internet or Intranet, or adapt or extend an
existing PowerBuilder application for the Web.

Concepts and terms

This section discusses some basic concepts and terms you need to be familiar
with before you start using PowerBuilder to develop applications and
components.

Workspaces and targets

In PowerBuilder, you work with one or more targetsin a workspace. You can
add as many targets to the workspace as you want, open and edit objectsin
multiple targets, and build and deploy multiple targets at once.

A PowerBuilder target can be one of several types:

« Application target A client/server or multitier executable application.
Most of this book is concerned with building application targets. See
Chapter 5, “Working with Targets.”

« .NETtarget A .NET target that you can use to deploy applications as
.NET Windows Forms or ASPNET applications or to deploy nonvisual
components as .NET assemblies or Web services. .NET targets are
described in detail in a separate book, Deploying Applications and
Componentsto .NET.

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Objects

Users Guide

« An EAServer or Application Server Component target A component
that can be deployed to EAServer or another J2EE-compliant server. For
more information, see Application Techniques.

All of these targets can use PowerBuilder’s built-in language, Power Script®.

You choose targets in the New dialog box. Here are the Target types that are
available in PowerBuilder:

hew x|

Target: | {hlot: Applicable} =

Workspace Target |Library I PE Object I Databwindow I Database I Project I Tool I

B © K @ @

Application Template Existing Application EAServer Application Server
Application Component Component

@ @ @ @

\MET ‘Web Forms WMET Windows — MWET Web Service MET Assembly
Application Forms Application

[8]4 I Cancel |

/d

For more information about creating a workspace and targets, see “ Creating
and opening workspaces’ on page 17 and “Creating atarget” on page 19.

Your application is a collection of objects. For most targets, PowerBuilder
provides many types of objects, including graphical objects such aswindows,
menus, and buttons, and nonvisual objects such as datastore, exception, and
timing objects.

As you work in your application, you create new objects and open existing
objects to continue work on their development.

For more information about creating, opening, and editing objects, see
“Working with objects’ on page 140.

Concepts and terms

DataWindow objects

The applications you build are often centered around your organization’s data.
With PowerBuilder you can define DataWindow® objectsto retrieve, display,
and manipulate data. For more information about DataWindow objects, see
Chapter 18, “Defining Datawindow Objects.”

PowerBuilder libraries

Asyou work in an application, component, or .NET target, the objects you
create are stored in one or more libraries (PBL files) associated with the
application. When you run your application, PowerBuilder retrievesthe
objects from the library.

PowerBuilder providesa Library painter for managing your libraries. For
information about creating a new library and working with librariesin the
Library painter, see Chapter 6, “Working with Libraries.”

Painters and editors

Some of the editorsyou useto edit objectsare called painters. For exampl e, you
build awindow in the Window painter. There you define the properties of the
window, add controls such as buttons and labels, and code the window and its
controls to work as your application requires.

PowerBuilder provides painters for windows, menus, DatawWindow objects,
visual and nonvisual user-defined objects, functions, structures, databases, data
pipelines, and the application itself. For each of these object types, thereisalso
a Source editor in which you can modify code directly. See “Working in
painters’ on page 122 and “Using the Source editor” on page 146.

Thereisalso afile editor you can use to edit any file without leaving the
development environment. See “Using the file editor” on page 32.

Events and scripts

Applications are event-driven: users control the flow of the application by the
actions they take. When a user clicks a button, chooses an item from a menu,
or enters data into atext box, an event istriggered. You write scripts that
specify the processing that should happen when the event is triggered.

6 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Functions

Properties

Users Guide

For example, buttons have a Clicked event. You write a script for a button’s
Clicked event that specifies what happens when the user clicks the button.
Similarly, edit controls have a Modified event that is triggered each time the
user changes avalue in the control.

You write scripts using PowerScript, the PowerBuilder language, in a Script
view in the painter for the object you are working on. Scripts consist of
Power Script functions, expressions, and statements that perform processing in
responseto an event. The script for abutton’s Clicked event might retrieve and
display information from the database; the script for an edit control’s Modified
event might evaluate the data and perform processing based on the data.

Scripts can also trigger events. For example, the script for a button’s Clicked
event might open another window, which triggers the Open event in that
window.

PowerScript provides arich assortment of built-in functions you use to act
upon the objects and controls in your application. There are functions to open
awindow, close awindow, enable a button, retrieve data, update a database,
and so on.

You can a'so build your own functions to define processing unique to your
application.

All the objects and controls in an application or component have properties,
many of which you set as you develop your application. For example, you
specify alabel for abutton by setting its text property. You can set these
properties in painters or set them and modify them dynamically in scripts.

Concepts and terms

Source control

If you are working with other developers on alarge application, you can make
sure you are working with the latest version of a component or object by
synchronizing the copy of the object you are working on with the last version
of the object checked into a source control system. PowerBuilder provides a
basic check in/check out utility aswell as a standard application programming
interface to more sophisticated source control systems. For more information,
see Chapter 3, “Using Source Control.”

PowerBuilder extensions

You can use PowerBuilder extension objectsin an application in the same way
as you would built-in PowerBuilder objects, with one difference—you must
import thefile that contains the definition of the extension into alibrary inthe
target. Some extensions are provided with PowerBuilder, but you can also
obtain them from third parties or build your own.

For more information about the extensions provided with PowerBuilder, see
the PowerBuilder Extension Reference. For how to build your own extensions,
see the Power Builder Native Interface Programmers Guide and Reference.

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

The PowerBuilder environment

Users Guide

When you start PowerBuilder for the first time, the Welcome to PowerBuilder
dialog box lets you create a new workspace with or without targets:

Welcome to PowerBuilder, x|

PowerBuilder can be used to create Windows client applications,
server components, (MET Web and Windows Farms, (NET Web
services and assemblies, and much mare.

Each component or component. collection is stored as & target,
Multiple targets are grouped together as a workspace,

wWould you like ta:

Create a new workspace and a new target

Create a new workspace and add an existing karget

Create just 4 new workspace
Qpen an existing workspace

Close this dialog box

[shaw this dialog box at skarbup with no workspace
Reload last workspace at skartup

When PowerBuilder starts, it opensin awindow that contains a menu bar and
the PowerBar at the top and the System Tree and Clip window on the | ft. The
remaining areawill display the painters and editors you open when you start
working with objects.

= PowerBuilder,

File Run Tools Window Help

Iriredlaal o

FdEe @@l uwan=ead %X x|k
=

..... & (Mo Workspace)

Description

Ready

The PowerBuilder environment

The System Tree

Using the Workspace
tab page

10

The System Tree provides an active resource of programming information you
use while devel oping targets. It etsyou not only get information, but also drag
objectsinto painter views (such as the Script view or Layout view) for
immediate use.

The System Tree displays by default when you start PowerBuilder for the first
time. You can hide or display the System Tree using the System Tree button on
the PowerBar or by selecting Window>System Tree.

The System Tree has a single tab page that provides aview of the current
workspace. The Workspace tab page displays the current workspace and al its
targets. Most targets display the library list for the target and all the objectsin
each PBL. The Workspace tab page in the System Tree works like atree view
in the Library painter, but you can keep it open al the time to serve asthe
control center of the development environment.

You can set the root of the Workspace page to your computer’s root directory,
the current selection, or any directory or library, as well as to the current
workspace.

Working with targets
To see the pop-up menu that lets you perform operations on atarget such as

search, build, and migrate, you must set the root of the System Tree to the
current workspace.

Thefollowing illustration shows aworkspace with two targets. Thefirst target,
orders, has a second library inits library search path.

=]

= @ Sales {Ciwork)

E|'E' orders {C:\work' Sales)
|-k orders.pbl {Ciiwork)Sales)
H-0d orders
]---E m_orders_main
----- 1= p_orders_exe
]8 n_orders_connectservice
/][] w_orders_about
/-] w_orders_main
H B salesdemno, pbl (CiworkiSales)
=] %) cdserver_appscomp (CiworkiSales)

B-=h cdserver_appscomp.pbl {C:iworkiSales)
[]---@ cdserver_appscomp
----- =An cdserver_appscomp
[]---8 n_cdserver_appscomp

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Current target

Actions in the System
Tree

Users Guide

Theorderstarget isbold, indicating it isthe current target, which means that it
is the default target used in the New dialog box and for Run and Debug. The
current target is set whenever you:

¢ Invokean action in the System Tree, Library painter, or main menu that
affects atarget or achild of atarget, such as Build, Migrate, Run, or
Debug. Some actions, such as Search and Migrate, display adial og box. If
you cancel the action by clicking the Cancel button in the dialog box, the
current target is not changed.

¢ Open an object painter.
¢ Change the active object painter.

If you prefer to set the current target explicitly using the Set as Current Target
pop-up menu item for the target in the System Tree or the File>Set Current
Target menuitem, clear the Automatically Set Current Target check box on the
Workspaces tab page in the System Options dialog box. To open the System
Options dialog box, select Tools>System Options from the main menu.

You can use the Workspace page as the hub of your PowerBuilder session.
Pop-up menus let you build and deploy targets and open and edit any object.
Double-clicking an event or function in the System Tree opensits script in the
Script view. Events with scripts have a different icon and are listed before
events without scripts.

Table 1-1 lists the actions you can take on each item that displays on the
Workspace page. You can aso set properties for each item, choose which
object types display in the tree view, change the root of the Workspace page,
and reset the root to the current workspace.

11

The PowerBuilder environment

The PowerBar

12

Table 1-1: Action items for objects in the System Tree

Iltem Menu action items

Workspace New (opens New dialog box), Add Target, Open Workspace,
Close, Incremental Build, Full Build, Deploy, Run, Debug,
Show, Properties.

Target New, Search, Set as Current Target, Remove Target, Library
List, .NET Assemblies, Migrate, Incremental Build, Full Build,
Deploy, Run, Debug, Show, Properties.

.NET Assemblies only displaysfor .NET targets.

PBL Search, Delete, Remove Library, Import, Import PB Extension,
Optimize, Build Runtime Library, Print Directory, Show,
Properties.

PBD Search, Delete, Remove Library, Print Directory, Show,
Properties

PowerBuilder Edit, Edit Source, Search, Inherit from, Run/Preview, Copy,

object Move, Delete, Regenerate, Export, Print, Properties.

Edit Sourceisnot availablefor project and proxy objects. Inherit
from and Run/Preview are available only for some object types.
Source control items are available only if source control
information is associated with the target.

Functions and Edit, Properties.

events The Properties dialog box shows the prototype of the function or
eventandits“signature.” Thesignatureisastring that represents
the argument types, return types, and passing style. You usethis
string when you writeaPBNI extension that callsthe function or
event. For moreinformation, see the PBNI Programmers Guide
and Reference.

.NET assembly Show, Properties.

.NET assemblies can be added to the System Tree by selecting
them from the Properties dialog box for .NET targets.

Likethe System Tree, the PowerBar provides amain control point for building
PowerBuilder applications. From the PowerBar you can create new objectsand
applications, open existing objects, and debug and run the current application.

Mhelse o PdEaedER | oo etk k|0

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Users Guide

While you are getting used to using PowerBuilder, you can display alabel on
each button in atoolbar to remind you of its purpose. To do so, right-click any
toolbar button and select Show Text from the pop-up menu.

Table 1-2 lists the buttons from left to right on the PowerBar.

Table 1-2: PowerBar buttons and their uses

PowerBar

button What you can use it for

New Create new objects.

Inherit Create new windows, user objects, and menus by inheriting from
an existing object.

Open Open existing objects.

Run/Preview Run windows or preview DataWindows.

System Tree Work in the System Tree window, which can serve as the hub of
your development session. For more information see “The
System Tree” on page 10.

Output Window | Examinethe output of avariety of operations (migration, builds,
deployment, project execution, object saves, and searches). See
“The Output window” on page 15.

Next Error, Navigate through the Output window.

Previous Error

To-Do List Keep track of development tasks you need to do for the current
application and use links to get you quickly to the place where
you compl ete the tasks.

Browser View information about system objects and objectsin your
application, such astheir properties, events, functions, and global
variables, and copy, export, or print the information.

Clip Window Store objects or code you use frequently. You can drag or copy
itemsto the Clip window to be saved and then drag or copy these
itemsto the appropriate painter view when you want to use them.
See “The Clip window” on page 15.

Library Manage your libraries using the Library painter.

DB Profile Define and use named sets of parametersto connect to a
particular database.

Application Define the connection parametersfor aparticul ar server. You can

Server Profile then use this predefined profile whenever you need to connect to
an application server.

Database Maintain databases and database tables, control user access to
databases, and manipulate data in databases using the Database
painter.

Edit Edit text files (such as source, resource, and initialization files)

in the file editor.

13

The PowerBuilder environment

Customizing the
PowerBar

About PowerTips

14

PowerBar

button What you can use it for

Incremental Update all the targets and objects in the workspace that have

Build Workspace | changed since the last build.

Full Build Update all the targets and objects in the workspace.

Workspace

Deploy Deploy all the targets in the workspace.

Workspace

Skip, Stop Interrupt a build, deploy, or search operation. When a series of
operationsisin progress, such asafull deploy of the workspace,
the Skip button lets you jump to the next operation. The Stop
button cancels all operations.

Debug Debug the current target. You can set breakpoints and watch
expressions, step through your code, examine and change
variables during execution, and view the call stack and objectsin
memory.

Select & Debug | Select atarget and open the Debugger.

Run Run the current target just as your users would run it. For
standard PowerBuilder application targets, the application runs
in the development environment.

For .NET and server component targets, you must deploy the
target before you can run it for the first time, and you must
specify aclient application for server components. If you have
made changes since you last deployed, you must redeploy to see
those changes when you click the Run button.

Select & Run Select atarget and run it.

Exit Close PowerBuilder.

You can customize the PowerBar. For example, you can choose whether to
move the PowerBar around, add buttonsfor operations you perform frequently,
and display text in the buttons.

For more information, see “Using toolbars’ on page 46.

In the PowerBar, when you |leave the mouse pointer over a button for a second
or two, PowerBuilder displays a brief description of the button, called a
PowerTip. PowerTips display in PowerBuilder wherever there are tool bar

buttons.

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

The Clip window

Using the Clip window

You can store code fragmentsyou use frequently in the Clip window. You copy
text to the Clip window to save it and then drag or copy thistext to the
appropriate Script view or editor when you want to useiit.

The Clip window displays alist of named clips, a preview of the information
contained in the clip, and a description. It provides buttons to move Clip
window contentsto the clipboard, copy clipboard contentsto the Clip window,
rename aclip, delete aclip, and modify the clip’s description. Clips you save
in one workspace are available in all your workspaces; you might want to use
anaming convention that reflectsthis.

For example, you might use standard error-checking code when you use the
ConnectToServer function to connect to EA Server. To copy it to the clipboard,
highlight the code in a Script view and select Copy from the pop-up menu. In
the Clip window, click the Paste icon, and name the clip. The Clip Description
dialog box opens so that you can enter a description. To change the description
later, select the clip’s name and click the Modify button.

You can drag the clip from the Clip window to any script in which you want to
connect to EAServer. You can aso use the Copy icon to copy the clip to the
clipboard.

You can hide or display the Clip window using the Clip Window button on the
PowerBar or by selecting Window>Clip.

=]

2] oH x|]
Marme Preview Description
|_=|ﬁ|Center I* Center window */... Center window
|_=|ﬁ|Retrieve IiPerform data retrieve... Standard retrieve
EStringConv String ls_one, |s_bwo Convert number to string
|_=|E|Resize If Resize the DataWindo,.. Resize DW when window. ..

The Output window

Users Guide

The output of avariety of operations (migration, builds, deployment, project
execution, object saves, and searches) displaysin the Output window.

When you start a new PowerBuilder session, the Output window has a single
tab, Default. New tabs are added as you perform operations.

Tab | Contents

Default General information about the progress of full or
incremental builds and project deployment

15

The PowerBuilder environment

Tab Contents

Debug Debugger output, including the paths of assemblies
loaded to support .NET debugging

Errors Messages that indicate problemsthat prevent the build or
deploy process from completing successfully

Warnings Warning and informational messages

Search Output from search operations

Unsupported features For .NET targets, names and locations of features not
supported in the target type

Using the Output You can hide or display the Output window with the Output button on the
window PowerBar or by selecting Window>Output.

You control operations in the window using the Skip, Stop, Next Error, and
Previous Error buttons or menu options.

Tabs display in the order in which they are created and remain in the Output
window for the rest of the PowerBuilder session. To clear the output from the
tabs automatically when you start a new build, make sure that the
Automatically Clear Output Window check box on the General page of the
System Options dialog box is selected. You can aso clear and close tabs
manually from the pop-up menu.

When appropriate, linesin the Output window provide links that invoke the
correct painter when you double-click on that line. The pop-up menu aso
provides the options Edit and Edit Source to open an object in apainter or the
Source editor. You can copy the contents of the current tab to the Windows
clipboard, save its contents to atext file, or print its contents to your default
printer.

| Default | Search | Unsupported Features || Errors

pbtutor, pbl{n_pbtutor_connectservice)constructor.0018: SQLCA.DEPass ~
pbtutor, pbl{n_pbtutor_connectservice)constructor.0019: SQLCA.LogID

pbtutor. pbl{n_pbtutor_connectservice)constructor.0020: SQLCA.LogPass

pbtutor. pbl{n_pbtutor_connectservice)constructor.0021: SQLCA.ServerM Mext Error/Message
pbtutor, pbl{n_pbtutor_connectservice)constructor.0022; SQLCA.DBParm)
pbtutor. pbl{n_pbtutor _connectservice)constructor.0023: SQLCA.Lock = Previous Error/Message

pbtutor, pbl{n_pbtutor_connectservice)constructor.0026: SQLCA. AutoCq
pbtutor. pbl{n_pbtutor_connectservice)constructor.0028: SQLCA. AutoCq
pbtutor. pbl{n_pbtutor_connectservice)constructor.0030: SQLCA. AutoCq
pbtutor. pbl{w_master_detail_ancestorjue_update.0002: COMMIT using 5
pbtutor. pbl{w_master_detail_ancestorjue_update.0005: ROLLBACK using

pbtutor. pbl{w_master_detail_ancestorjopen.0001: call super::open;dw_m B
pbtutor. pbl{w_master_detail_ancestorjopen.0002: dw_detail. settransobje CloseTah
pbtutor, pbl{; lcome). cb_ok.dicked.0016: SQLCA.userid = Is_userid
pbtutor, pbl{; lcome).cb_ok.dicked.0017: SQLCA.dbpass = ls_passwor Print
pbtutor. pbl{w_welcome).ch_ok.dicked.0018: SQLCA.dbparm = |s_databas
---------- Done 28 Matches Found On "sglca™ Copy
---------- Finished Searching Target pbtutor for 'sglca’ (4:15:46 PM) w
¢ Save S

16 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Creating and opening workspaces

Before you can begin any development in PowerBuilder, you need to create or
open aworkspace.

Creating a workspace

[_ITo create a new workspace:

1 Do oneof thefollowing:
¢ Click the New button in the PowerBar.
¢ Sdlect File>New from the menu bar.

* Inthe Workspace tab of the System Tree, right-click the workspace
name and select New from the pop-up menu.

The New dialog box opens.
2 Onthe Workspace tab, select Workspace.
The New Workspace dialog box displays.
3 Enter aname for the workspace (.pbw) you want to create and click Save.

The workspace is created and the name of the new workspace displaysin
the PowerBuilder title bar.

Opening a workspace

Users Guide

The next time you start PowerBuilder, it opens without opening aworkspace.
You can change this behavior by modifying options on the Workspaces page of
the System Optionsdialog box or on the Welcometo PowerBuilder screen. For
example, you can have PowerBuilder open not only the workspace you used
most recently, but also the objects and scriptsyou worked on last. See” Starting
PowerBuilder with an open workspace” on page 37.

When PowerBuilder openswith an open workspace, it displaysthe name of the
current workspace in the title bar. The current workspace is also displayed in
the Workspace tab page in the System Tree. Although you can create multiple
workspaces, you can have only one workspace open at atime. You can change
workspaces at any time.

17

Using wizards

[_ITo change workspaces:
1 Do oneof thefollowing:

» Select File>Open Workspace from the menu bar.

* IntheWorkspacetab of the System Tree, right-click on theworkspace
name and select Open Workspace from the pop-up menu.

The Open Workspace dialog box displays.
2 Fromtheligt, select the workspace you want to open.

Theworkspaceis changed and the name of the new workspace displaysin
the PowerBuilder title bar.

[_ITo change the workspace to a recent workspace:

» Select File>Recent Workspaces from the menu bar and select the
workspace.

The workspace list includes the eight most recently accessed workspaces.
You caninclude up to 36 workspaceson thelist by selecting Tools>System
Options and modifying the number of items.

Using wizards

About wizards

18

After you have created aworkspace, you can add new or existing targetsto it.
Thefirst step in building a new PowerBuilder target is to use a Target wizard
to create the new target and nameit.

Wizards simplify the initia creation of applications and components. Using
your specifications, wizards can create multiple objects and in some cases
automatically generate complex code that you can modify as needed. The first
page in most wizards explainswhat thewizard builds. If you need help with the
information you need to give the wizard, click the Help [?] button in the upper
right corner of the window and then click the field you need help with, or click
the field and press F1.

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

You start wizards from the New dialog box, but not all the iconsin the New
dialog box represent wizards. On the Project tab page, there are two versions
of someicons: one that starts a wizard, and one that takes you straight to the
Project painter.

Many wizards generate To-Do List entries to guide you through the rest of the
development of the application, object, or component. See “ Using the To-Do
List” on page 30.

Related wizard types

Some of thewizards on the Target, PB Object, and Project tabs are related. For
example, if you want to develop and deploy EA Server components, you can
use the following:

« EAServer Component Target wizard To create a new target, a new
custom class user object, and the project object needed to generate the
EA Server component and deploy the component to EA Server

« EAServer Component Object wizard To create a new custom class
user object in an existing EA Server component target and create the
project object

« EAServer Component Project wizard To create a project object that
will generate an EA Server component from one or more existing custom
class user objects

For EA Server components and applications, you might also want to use the
Connection Object wizard, which builds a standard nonvisual user object,
inherited from the Connection object. Selectionsin thiswizard allow you to set
properties for connecting to EAServer.

Creating a target

Users Guide

When you create atarget, you are prompted for the name and location of a
Target (.pbt) file and one or more other objects. Target files are text files that
contain information about the target.

19

Creating a target

[TTo create a new target:
1 Do oneof thefollowing:

* Click the New button in the PowerBar.
* Sdect File>New from the menu bar.

* Inthe Workspace tab of the System Tree, highlight the workspace
name and select New from the pop-up menu.

The New dialog box opens.
2 Onthe Target tab page, select one of the Target wizards.

hew x|

Target: | {hlot: Applicable} =

Workspace Target |Library I PE Object I Databwindow I Database I Project I Tool I

B © K @ @

Application Template Existing Application EAServer Application Server
Application Component Component

@ @ @ @

\MET ‘Web Forms WMET Windows — MWET Web Service MET Assembly
Application Forms Application

[8]4 I Cancel |

/A

For more information about each type of Target wizard, see the sections
following these instructions.

3 Follow theinstructionsinthewizard, providing theinformation thewizard
needs.

20 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

In most wizards, you can review your choices on the summary page that
displays when you have finished entering information. Thisisasummary
page from the Template Application wizard:

Ready to Create Application

An Application with the Following characteristics wil be created or
¥ generated, Click Finish when yvou are ready.

Property Yalue S
Target File Cihworkimytarget.pbt
Application Library Ciworkimytarget. pbl
Application mytarget
Application Type MDI with Help
Library Search Path Criyworkimytarget. pbl
MDI Frame Window w_mytarget_frame
MDI Frame Menu m_mytarget_frame
Base Sheet Mame w_mytarget_baseshest
Sheet Meru m_riytarget_sheet
Sheet Manager n_mytarget_shestmanager
Sheet 1 Mame w_mytarget_sheetl 3
PR, e eeibmot aLooim
£ >

LE] Generate To-Do List

[< Back ” Finish I[Cancel]

Be sure the Generate To-Do List check box is checked if you want the
wizard to add itemsto the To-Do List to guide and facilitate your
development work.

4 When you are satisfied with your choices in the wizard, click Finish.

The objects are created in the target you specified. If you specified that
itemswereto be added to the To-Do List, you can seetheitemsby clicking
the To-Do List button in the PowerBar.

Asyou devel op the application, you can use linked items on the To-Do list
to open an object in the specific painter and view where you need to work.
See “Using the To-Do List” on page 30.

Target types

This section describes each of the targets you can build.

Users Guide 21

Target types

Application targets

Application Target
wizard

Template Application
Target wizard

22

There are three wizards for creating application targets:
» Application Target wizard

* Template Application Target wizard

» Existing Application Target wizard

You use the Application Target wizard to create a new Power Script-based
Application object and the library containing it. You must create any other
objects you need from scratch.

You use the Template Application Target wizard to create a Power Script-based
application, the library containing it, and a set of basic objects and scripts. If
the application requires a connection to EAServer or a SQL database, the
wizard automatically creates a Connection object.

In the Template Application wizard, you can choose one of two application
types: MDI Application and SDI Application.

MDI Application Thewizard automatically generatesthe shell and scriptsfor
abasic Multiple Document Interface (M DI) application that includes these
objects:

Application object

Frame window

Frame menu

Base sheet window

Sheet menu

Sheet menu service object

Sheet windows

About window

Toolbar window

Connection service object (if database connection is needed)

Project object (optional; can build later using a Project wizard)

You can run the MDI application immediately by clicking the Run button on
the PowerBar. You can open sheets, display an About box, and select items
from menus. The To-Do List can help you usethe application as a starting point
for continuing development of an MDI application.

SDI Application Inthe Template Application wizard, you can also choose to
create a Single Document Interface (SDI) application. An SDI application has
only one main window with a menu and an about window. If the application
reguiresaconnectionto EA Server or aSQL database, thewizard automatically
creates a Connection object.

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Existing Application
Target wizard

For information about building MDI and SDI applications, see Application
Techniques.

You use the Existing Application Target wizard to add atarget to your
workspace that uses an application you built in an earlier version of
PowerBuilder. After you complete the wizard, the Migrate Application dialog
box opens so you can migrate the application to this version.

Before you migrate Always make abackup copy of all the PBLsused in an
application before you migrate it to anew version of PowerBuilder.

You can use the Migration Assistant to check for obsolete syntax in your
application before you migrate; then you can make changes in the earlier
version of PowerBuilder and avoid some migration errors. The Migration
Assistant is particularly useful if you are migrating from PowerBuilder 6 or
earlier. Open the Migration Assistant from the Tool tab of the New dialog box,
and press F1 if you need Help in the wizard.

You should also check the rel ease notes for the version of PowerBuilder that
you are using to find out if there are any migration issues that might affect you.

For moreinformation about migrating targets, see“Migrating targets’ on page
169.

For information about building standard PowerBuilder applications, see the
rest of this book and Application Techniques.

Component targets

EAServer Component
Target wizard

Users Guide

You use the EA Server Component Target wizard to create a new target
containing a custom class user object (to which you later add methods and
properties) with the characteristics required by an EA Server component object
that you can deploy to EA Server. If you want to create an EA Server component
in an existing EAServer component target, use the wizard on the PB Object

page.

Access to the EAServer component from a PowerBuilder client application is
gained through a Proxy object. You create a Proxy object using the EA Server
Proxy wizard on the Project tab page.

23

Target types

Application Server
Component Target
wizard

NET targets

.NET Web Forms
Application wizard

.NET Windows Forms
Application wizard

.NET Web Service
and .NET Assembly
wizards

24

You use the Application Server Component Target wizard to create a new
target containing a custom class user object (to which you later add methods
and properties) with the characteristics required by an Application Server
component object that you can deploy to a J2EE-compliant application server.
To deploy the component to the application server, you must have the
PowerBuilder Application Server Plug-in, which is a separate Sybase product.

If you want to create an application server component in an existing application
server target, use the wizard on the PB Object page.

Access to the application server component from a PowerBuilder client
application is gained through a Proxy object. You create a Proxy object using
the Application Server Proxy wizard on the Project tab page.

The .NET Web Forms Application wizard eases the task of deploying new or
existing PowerBuilder client-server applicationsto the Web and allows you to
useyour PowerBuilder skillsto create new Web applicationsthat use ASPNET
technol ogy.

The .NET Windows Forms Application wizard builds atarget that deploys a
PowerBuilder application asa.NET Windows Formsapplication. Applications
that have arich user interface that relies on resources available on the client
computer, such asacomplex MDI design, graphics, or animations, or that
perform intensive data entry or require arapid response time, make good
candidates for deployment as PowerBuilder .NET Windows Forms
applications.

One of the choices you can make in the wizard is whether the application will
be deployed as a smart client application. A smart client application can work
either online (connected to distributed resources) or offline, and can take

advantage of “intelligent update” technology for deployment and maintenance.

The PowerBuilder .NET Web Service and .NET Assembly wizards build
targets that deploy PowerBuilder custom class user objects as .NET Web
services or assemblies.

For more information about .NET targets, see Deploying Applications and
Componentsto .NET.

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Managing workspaces

Adding an existing target to a workspace

Although you can have only one workspace open at atime, you can add as
many targets to the workspace as you want and open and edit objectsin
multiple targets.

Working with targets that share PBLs
If atarget shares PBL swith another target in the sameworkspace, asisthe case

when you create a .NET target based on an existing application target, you
should work on only one target at atime. Objects are always opened in the
context of a specific target. When you open an object in aPBL that isused in
multiple targets, PowerBuilder needs to set global properties for the specific
target you are working on.

[ITo add an existing target to a workspace:

1 Right-click ontheworkspace displayed in the System Tree and select Add
Target from the pop-up menu.

The Add Target to Workspace dialog box displays.

2 Navigate to the directory containing the target you want to add and select
the target (.pbt) file.

3 Click Open.
The target is added to your current workspace.

Removing atarget from a workspace
When you remove atarget from the workspace, the .pbt file is not deleted.

[ITo remove a target from a workspace:

* Right-click on thetarget displayed in the System Tree and select Remove
Target from the pop-up menu.

Users Guide 25

Building workspaces

Specifying workspace properties

You specify workspace properties in the Properties of Workspace dialog box.

[_TTo specify workspace properties:

1 IntheWorkspacetab of the System Tree, sel ect Propertiesfrom the pop-up
menu for the workspace.

2 Select the Targets, Deploy Preview, or Source Control tab page.
3 Specify the properties as described in the following sections.

Specifying target order You can specify the targets and the order in which
those targets are built or deployed on the Targets tab page. All the targets
identified with the workspace are listed. Check the targets you want to include
in the workspace build or deploy. Use the arrows to change a target’s position
in the target order list.

Previewing deployment You can verify the targets and the order in which
those targets’ projects are built or deployed on the Deploy Preview tab page.
To make changes, you need to use the Targets page of the Workspace dialog
box.

Specifying source control properties You can specify which source
control system, if any, is used for this workspace, as well as other source
control properties. For more information, see Chapter 3, “Using Source
Control.”

Building workspaces

You can build and deploy workspaces while you are working in PowerBuil der,
and from acommand line.

In the development environment

In the devel opment environment, you can specify how you want the targetsin
your workspace to be built and deployed. Then you can build individual targets
or all the targetsin the workspace. Table 1-3 summarizes where you set up
build and deploy options, and how you start builds.

26 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Table 1-3: Building and deploying targets and workspaces

To do this Do this
Set deploy options for Select Propertiesfrom the pop-up menu for thetarget and
most targets select the Deploy tab. Check the box next to a project to

build it when you select Deploy from the target’s pop-up
menu. Use the arrows to set the order in which projects
are built.

Set options for each project in the target in the Project
painter.

Set build and deploy
options for the
workspace

Select Properties from the pop-up menu for the
workspace and sel ect the order in which targets should be
built. You can check which projects and deploy
configurations are currently selected on the Deploy
Preview page.

Build, migrate, or deploy
a selected target

Select Incremental Build, Full Build, Migrate, or Deploy
from the pop-up menu for the target. Deploy builds the
projectsin the target in the order listed on the Deploy
page of the target’s properties dial og box.

Build or deploy all the
targetsin the workspace

From a command line

When you deploy or build a workspace from a command line, PowerBuilder
starts, completes the build, and exits as soon as the operation is completed. To
retain alog filefor the session, you can send the contents of the Output window

Users Guide

to afile. Table 1-4 shows

Select Incremental Build, Full Build, or Deploy from the
pop-up menu for the workspace, from the Run menu, or
from the PowerBar.

command-line options for building and deploying

targets and workspaces.
Table 1-4: Command-line options for building and deploying
Option Description
Iworkspace workspacepath | Open the workspace workspacepath
Itarget targetpath Open the target targetpath
/deploy Deploy the workspace and exit
/fullbuild Fully build the workspace and exit

/incrementalbuild

Incrementally build the workspace and exit

Joutput outputpath

Log the contents of the Output window to outputpath

27

Working with tools

Example

As with other command-line options, you need only use the initial letter or
letters of the option name as long as the option is uniquely identified. The
deploy, fullbuild, and incrementalbuild options can be used only with the
workspace option. You need to create projects and specify build and deploy
options for the workspace in PowerBuilder before you start a build from the
command line. Deploy buildsthe projectsin thetarget in the order listed on the
Deploy page of the target’s properties dialog box.

This example assumes that the location of the PowerBuilder executablefileis
inyour system path. It opensthe workspace called CDShop, buildsand deploys
the targetsin the workspace according to your specificationsin the workspace
and target properties, records the content of the Output window in thefile
D:\tmp\cdshop.out, and exits PowerBuilder:

pb120 /w D:\CDShop\CDShop.pbw /d /out D:\tmp\cdshop.out

The output from all the tab pages in the Output window and from all the
projectsisincluded in the output file.

There are additional command-line options you can use to start PowerBuilder.
See “Using command line arguments” on page 38.

Working with tools

28

PowerBuilder provides a variety of tools to help you with your development
work. There are several ways to open tools:

» Click abutton in the PowerBar for the tool you want
» Select thetool from the Tools menu
» OpentheNew dialog box and select the tool you want on the Tool tab page

Table 1-5 lists the tools available in the PowerBar. Some of these tools are al'so
listed on the Tools menu.

Table 1-5: Tools available in the PowerBar

Tool What you use the tool for

To-Do List Keep track of development tasks you need to do for the current
target and create links to get you quickly to the place where you
need to complete the tasks. For information, see “Using the To-
Do List” on page 30.

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Tool

What you use the tool for

Browser

View information about system objects and objectsin your
target, such asproperties, events, functions, and global variables,
and copy, export, or print the information. For information, see
“Browsing the class hierarchy” on page 318.

Library painter

Manage libraries, create a new library, build dynamic libraries,
and use source control.

Database profiles

Define and use named sets of parametersto connect to a
particular database. For information, see Connecting to Your
Database.

Application
Server profiles

Define and use named sets of parametersto connect to a
particular application server. For information, see Connecting to
Your Database.

Database painter | For information, see Chapter 16, “Managing the Database.”

File Editor Edit text files such as source, resource, and initialization files.
For information, see “Using the file editor” on page 32.

Debugger Set breakpoints and watch expressions, step through your

application, examine and change variabl es during execution, and
view the call stack and objectsin memory. For information, see
Chapter 32, “Debugging and Running Applications.”

Table 1-6 lists the tools you can launch from the Tool tab page in the New
dialog box. You can aso launch the Library painter and File Editor from this

dialog box.

Table 1-6: Additional tools available in the New dialog box

Tool

What you use the tool for

Migration Assistant

Scans PowerBuilder libraries and highlights usage of
obsolete functions and events. For information, see the
Migration Assistant online Help.

Datawindow Syntax

Helps construct the syntax required by Modify, Describe,
and SyntaxFromSQL functions. For information, see
DataWindow Syntax online Help.

Profiling Class View,
Profiling Routine View,
and Profiling Trace View

Use trace information to create a profile of your
application. For information, see Chapter 33, “Tracing
and Profiling Applications.”

Web Datawindow
JavaScript Generator

Users Guide

Generate a JavaScript file that contains DatawWindow
methods you want to associate with a specific
Datawindow object. For information, see the
DataWindow Programmers Guide.

29

Working with tools

Using the To-Do List

To-Do List entries

30

The To-Do List displaysalist of development tasks you need to do. You can
create tasks for any target in the workspace or for the workspace itself. A
drop-down list at the top of the To-Do List lets you choose which tasks to
display. To open the To-Do List, click the To-Do List button in the PowerBar
or select Tools>To-Do List from the menu bar.

The entries on the To-Do list are created:

* Automatically by most PowerBuilder wizards to guide you through the
continued development of objects of different types that you will need to
build the application or component specified by the wizard

« At any time by you when you are working in a painter and want alink to
atask that you want to remember to complete

Some To-Do List entries created by wizards are hot-linked to get you quickly
to the painter (and the specific object you need) or to awizard. You can also
create an entry yourself that links to the PowerBuilder painter where you are
working so you can return to the object or script (event/function and line) you
were working on when you made the entry. When you move the pointer over
entries on the To-Do list, the pointer changesto ahand wheniit isover alinked
entry.

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Exporting and
importing lists

Working with entries

on the To-Do List

Users Guide

For example, if you generate an M DI application with the Template
Application wizard, one of the linked entries on the To-Do List remindsyou to
register new sheets with the sheet manager service, which is anonvisual user
object created by the wizard. Double-clicking this entry automatically opens
the Window painter and the Script view where you register new sheets.

Script - ue_postopen for get_frame returns (Mone) -

w_mytarget_frame “ || = ue_postopen {) returns (@) mykarget (C:iwork) b
I Design Untitled For Sheet 1 ~
A* ue_postopen: Register the sheets sheet: w_mytarget_shestl
I Design Untitled For Sheet 2

shest: w_mytarget_sheetz

Design Untitled For Sheet 3
shest: w_mytarget_sheets

string ls_sheets(], ls_display[]

/* Register sheet windows with sheet manager */
ls_sheets[1] = "w_mytarget_sheetl" Create additional new sheets
ls_sheets[2] = "“w_rmytarget_shest2" inheriting From
ls_sheets[3] = "“w_mytarget_sheetz" w_mytarget_baseshest
Register new sheets with the
sheet manager service:

ls_display[1] = "Untitled for Sheet 1" g i

1=
ls_display[2] = "Untitled for Sheet 2"
1=

ls_display[3] = "Untitled for Sheet 3" pddicanyoiiommationty

the About dialog:
w_mytarget_about
inv_sheetmgt.of_RegisterSheets (ls_sheets, ls_display Run Connection Object Wizard
for additional connections

Run the Project Wizard to
Build Project

v

You can export or import aTo-Do List by selecting Export or Import from the
pop-up menu. Doing thisis useful if you want to move from one computer to
another or you need to work with To-Do Lists as part of some other system
such as a project management system.

Linked entries
If you import alist from another workspace or target, or from a previous

version of PowerBuilder, linked entrieswill display in thelist but thelinkswill
not be active.

Table 1-7 tells you how to work with entries on the To-Do List.

Table 1-7: Using the To-Do List
To Do this

See linked entries Movethe pointer over theentries. A hand displayswhen
the entry you are over is linked.

Usealinked entry to get | Double-click the linked entry or select it and then select
to a painter or wizard Go To Link from the pop-up menu.

Add an entry with no link | Select Add from the pop-up menu.

Add alinked entry to a With the painter open, select Add Linked from the pop-
painter that edits objects | up menu.

31

Working with tools

To

Do this

Add an entry for a
specific target

If the To-Do List is open, select the target from the
drop-down list at the top of the To-Do List and add the
entry.

If the To-Do List is closed, select atarget in the System
Tree, open the To-Do List, and add the entry.

Add an entry for the
workspace

Select Current Workspace from the drop-down list at the
top of the To-Do List and add the entry.

Changethe list that
displays

Select a specific target or Current Workspace from the
drop-down list at the top of the To-Do List. To display
tasks for al targets and the workspace, select All Items.

Change an entry’s
position on the list

Drag the entry to the position you want.

Edit or delete an entry

Select Edit or Delete from the pop-up menu.

Delete checked entries or
al entries

Select Delete Checked or Delete All from the pop-up
menu.

Check or uncheck an
entry

Click in the margin to the left of the entry or select an
entry and then select Check/Uncheck from the pop-up
menu.

Export aTo-Do List

Select Export from the pop-up menu, name the To-Do
List text file, and click Save.

Import a To-Do List

Using the file editor

Select Import from the pop-up menu, navigate to an
exported To-Do List text file, and click Open.

One of thetools on the PowerBar and Tools menu isatext editor that isalways
available. Using the editor, you can view and modify text files (such as
initialization files and tab-separated files with data) without leaving
PowerBuilder. Among the features thefile editor providesarefind and replace,
undo, importing and exporting text files, and dragging and dropping text.

Setting file editing
properties

Thefile editor has font properties and an indentation property that you can
change to make files easier to read. If you do not change any properties, files

have black text on awhite background and atab stop setting of 3 for
indentation. Select Design>Options from the menu bar to change the tab stop

and font settings.

32

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

Dragging and
dropping text

Editor properties apply elsewhere
When you set properties for the file editor, the settings also apply to the

Function painter, the Script view, the Source editor, the Interactive SQL view
in the Database painter, and the Debug window.

To move text, simply select it, drag it to its new location, and drop it. To copy
text, press the Ctrl key while you drag and drop the text.

Using online Help

Online help includes most of the PowerBuilder manuals and reference books
intheMicrosoft HTML Help format, aswell as context-sensitive help for many
windows and controlsin the IDE.

Accessing Help

Sybooks CD and Web

site

Users Guide

Table 1-8 lists the ways you can access Help.

Table 1-8: Accessing online Help

Approach

What it does

Use the Help menu on the
menu bar

Displays the Help contents, the What's New in
PowerBuilder Help, or Help for the current painter.

Inawizard, click the Help
button [?] in the upper right
corner of the window

The pointer displayswith aquestion mark so you can
get context-sensitive Help. Point and click in afield
you need Help on.

In the Properties view in a
painter, select Help from the
pop-up menu on any tab
page

DisplaysaHelp topic fromwhich you can get Helpon
the properties, events, and functions for the object or
control whose properties are displaying in the
Properties view.

Add aHelp button to the Displays the Help contents.
PowerBar and use it
Press F1 Displays the Help contents.

Press Shift+F1 in the Script
view or Function painter

Displays context-sensitive Help about the function,
event, or keyword under the cursor.

Select Help from the pop-up
menu in the Browser

Displays Help for the Browser or for the selected
object, control, or function.

Click the Help button in a
diaog box

Displays information about that dial og box.

PowerBuilder books are also provided on the Sybase Product Manuals Web
site. For more information, see “ Other sources of information” on page xxv.

33

Building an application

Building an application

This section describes the basic steps you follow when building a traditional
client/server application. After completing step 1, you can define the objects
used in your application in any order as you need them.

34

[—TTo build a traditional client/server application:

1

Create the application (using aNew wizard) and specify thelibrary list for
the application.

When you use a Start wizard, you create the Application object, which is
the entry point into the application. The Application object contains the
name of the application and specifies the application-level scripts.

See Chapter 5, “Working with Targets,” and Part 3, “Coding
Fundamentals.”

Create windows.

Place controlsin the window and build scripts that specify the processing
that will occur when events are triggered.

See Chapter 11, “Working with Windows.”
Create menus.

Menus in your windows can include a menu bar, drop-down menus,
cascading menus, and pop-up menus. You definethe menu itemsand write
scripts that execute when the items are selected.

See Chapter 14, “Working with Menus and Toolbars.”
Create user objects.

If you want to be able to reuse components that are placed in windows,
define them as user objects and save them in alibrary. Later, when you
build awindow, you can simply place the user object on the window
instead of having to redefine the components.

See Chapter 15, “Working with User Objects.”
Create functions, structures, and events.

To support your scripts, you define functionsto perform processing unique
to your application and structures to hold related pieces of data. You can
a so define your own user events.

See Chapter 8, “Working with User-Defined Functions,” Chapter 9,
“Working with User Events,” and Chapter 10, “Working with Structures.”

PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder

6 Create DatawWindow objects.

Use these objects to retrieve data from the database, format and validate
data, analyze data through graphs and crosstabs, and update the database.

See Chapter 18, “Defining Datawindow Objects’ and the DataWindow
Programmers Guide.

7 Test and debug your application.

You can run your application at any time. If you discover problems, you
can debug your application by setting breakpoints, stepping through your
code, and looking at variabl e val ues during execution. You can also create
atrace file when you run your application and use PowerBuilder’s
profiling tools to analyze the application’s performance and logical flow.

See Chapter 32, “ Debugging and Running Applications,” and Chapter 33,
“Tracing and Profiling Applications.”

8 Prepare an executable.

When your application is complete, you prepare an executable version to
distribute to your users.

See Chapter 34, “ Creating Executables and Components.”
Using other books This book tells you how to use PowerBuilder painters and tools.

For programming techniques for building applications and components for
deployment to the .NET Framework, see Deploying Applications and
Componentsto .NET.

For programming techniquesfor building applications and building clientsand
components for application servers, see Application Techniques.

For programming techniques related to Datawindows, including using the
Web DatawWindow, see the DataWindow Programmers Guide.

Users Guide 35

Building an application

36 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

About this chapter This chapter describes how you can customize the PowerBuilder

development environment to suit your needs and get the most out of

PowerBuilder’s productivity features.

Contents

Topic Page
Starting PowerBuilder with an open workspace 37
Changing default layouts 40
Using toolbars 46
Customizing keyboard shortcuts 54
Changing fonts 55
Defining colors 56
How the PowerBuilder environment is managed 57

Starting PowerBuilder with an open workspace

When you start PowerBuilder, you might want to resume work on an
existing project. You can have PowerBuilder open the workspace that you
used last, and even open the painters you had open, with the last Script

view you touched open at the code you were working on.

Using options in the development environment

There are three options on the Workspaces page of the System Options
dialog box that you can use to determine what displays when you start

PowerBuilder.

[1ITo open the System Options dialog box:

e Select Tools>System Options from the menu bar.

Opening just the If you want PowerBuilder to open the last workspace you used at startup,

workspace

Users Guide

select the Workspaces page and then check Reopen Workspace on Startup.

37

Starting PowerBuilder with an open workspace

Opening the
workspace, painters,
and scripts

Opening with no
workspace

Displaying the
Welcome dialog box

If you want PowerBuilder to open thelast workspace you used and the painters
and editors you were using, check Reopen Workspace on Startup and Reload
Painters When Opening Workspace. When you open PowerBuilder, any
painters and editors that were open when you closed PowerBuilder are
reloaded. If you edited a script before closing PowerBuilder, the Script view is
scrolled to show the last line you edited.

If you want PowerBuilder to open without loading a workspace, clear Reopen
Workspace on Startup. If you want the painters and editors that were open
when you last used a workspace to be rel oaded when you reopen it, clear
Reopen Workspace on Startup and check Reload Painters When Opening
Workspace.

If you want to see the Welcome to PowerBuilder dialog box when you start
PowerBuilder, check Show Start Dialog at Startup with no Workspace and
clear Reopen Workspace on Startup. The Welcometo PowerBuilder dialog box
isshown in “The PowerBuilder environment” on page 9.

Using a workspace file

Double-click aworkspace file in Windows Explorer. Workspaces have a .pbw
extension. PowerBuilder starts with the workspace open.

Using command line arguments

38

You can start PowerBuilder from acommand line (or the Windows Run dialog
box) and optionally open aworkspace, target, and/or painter. These are the
painters and tools you can open:

Application painter

Database painter

Data Pipeline painter

Datawindow painter

Debugger

File Editor

Function painter

Library painter

Menu painter

Query painter

Structure painter

User Object painter

Window painter

PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

Users Guide

Thesyntax is:

directory\pb120.exe {/workspace workspacepath} {/target targetpath}
{/painter paintername} {/output outputpath}

where directory is the fully qualified name of the directory containing
PowerBuilder.

You can also add one or more of the following options to the command line
after /painter paintername to open a specific object or create a new one:

{/library libraryname} {/object objectname} {/inherit objectname} {/new}
{frun} {/runonly} {/{argument arguments}

The syntax statements show the long form of option names. You need only use
theinitia letter or |etters of the option name as long as the option is uniquely
identified, as shown in Table 2-1.

Table 2-1: Command-line options for opening PowerBuilder
Option Description

/W workspacepath | Opens the workspace wor kspacepath. The default is the most
recently used workspace if you have selected the Reopen
Workspace on Startup check box inthe System Optionsdialog
box. If you have not selected this check box, you must specify
the /w option before specifying any other options.

IT targetpath Opens the target targetpath.

/P paintername Opensthe painter paintername. The default isthe window that
displays when you begin a new PowerBuilder session.

The painter name must uniquely identify the painter. You do

not have to enter the entire name. For example, you can enter
g to open the Query painter and datab to open the Database
painter. If you enter thefull name, omit any spacesin the name
(enter userobject and pataPipeline, for example).

The painter nameis not case sensitive. To open the file editor,
you could set painternameto F1 or fileeditor.

Except for the /w, /T, and /L switches, other switches must
follow /P paintername on the command line, as shown in the
examples after the table.

/OU outputpath L ogs the contents of the Output window to outputpath.

/L libraryname Identifiesthelibrary that containsthe object you want to open.

/O objectname Identifiesthe object, such asaDataWindow object or window,
you want to open.

/I objectname Identifies the object you want to inherit from.

IN Creates anew DataWindow object.

IR Runs the DatawWindow object specified with /0 and allows
designing.

39

Changing default layouts

Option Description
/RO Runs the DataWindow object specified with /0 but does not
allow designing.
/A arguments Provides arguments for the specified DataWindow object.
Examples The following examples assume that the location of the PowerBuilder

executablefileisin your system path.

This example starts a PowerBuilder session by opening the Window painter in
the Client PBL in the Math workspace. The output of the sessionis sent to a
file called math.log. The workspacefile, the PBL, and thelog fileare al in the
current directory:

pbl20 /w Math.pbw /1 Client.pbl /p window /out math.log

Enter this command to start PowerBuilder and open the Datawindow object
called d_emp_report in the workspace Emp.pbw:

pbl120 /w D:\pbws\Emp.pbw /P dataw /O d_emp_ report

Building from the command line]
You can aso build and deploy aworkspace from the command line. For more

information, see “Building workspaces’ on page 26.

Changing default layouts

You can change the layout of the PowerBuilder main window in several ways.
This section describes:

» Showing or hiding the System Tree, Output, and Clip windows and
changing their locations

» Showing or hiding views in painters and changing their locations

You can also show or hide toolbars, change their locations, and add custom
buttons. See “Using toolbars’ on page 46.

40 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

Arranging the System Tree, Output, and Clip windows

Hiding windows

Moving windows

Using the full width or
height of the main
window

The System Tree, Output, and Clip windows can all be hidden at any time by
clicking their buttons on the PowerBar.

You can dock the System Tree, Output, and Clip windows at the top, bottom,
left, or right of the PowerBuilder main window by dragging the double bar at
the top or side of the windows.

Windows docked at the top or bottom of the main window occupy the full
width of the frame. You can change this default by clearing the Horizontal
Dock Windows Dominate check box on the General page System Options
dialog box. The following screen shows the Clip and Output windows docked
at the bottom of the window. The Horizontal Dock Windows Dominate check
box has been cleared so that the System Tree occupies the full height of the
window:

File Run Tools ‘Window Help

[MmrcEselow/pdEnefeE ia=aa B %% %k
b

== pbtutor.pbl {(C:iDocu A
& pbtutor B
[-- d_custlist

[E '- d_customer

[m_my _shest

[+ m_phkukor_frame

£ m_phkutor_sheel
== p_pbtutor_exe

¥ exc_bad_entry
4 exc_low_number
[EXC_NO_rows

[n_pbtutor_conne
[n_phtutor_sheet
[+ w_cust_pet
=

2

2

=

=

2

-1 w_customers
[w_master_detail

- w_pbtutor_abou Mame Presview Description

[w_pbtutor_base: |_=E'|Center J* Center... Center win...

[w_pbhubor_fram: [EResize il Resize th,., Resize W ...

- w_pbtutor_toolb - '.=ﬂ||Retrieve HPerform d... Standardr..,
< | T e etk ¥ [F stringCony Stringls_on... Canvert nu...
Ready

Using views in painters

Users Guide

Most of the PowerBuilder painters have views. Each view provides a specific
way of viewing or modifying the object you are creating or a specific kind of
information related to that object. Having multiple views available in apainter
window means you can work on more than one task at atime. In the Window
painter, for example, you can select a control in the Layout view to modify its
properties, and double-click the control to edit its scripts.

41

Changing default layouts

Viewsaredisplayed in panesin the painter window. Some views are stackedin
asinglepane. At the bottom of the panethereisatab for each view in the stack.
Clicking the tab for aview pops that view to the top of the stack.

Each painter has a default layout, but you can display the views you choosein
as many panes as you want to and save the layouts you like to work with. For
some painters, all availableviewsareincluded in the default layout; for others,
only afew views are included.

Each pane has:
» Atitle bar you can display temporarily or permanently

* A handlein the top-left corner you can use to drag the pane to a new
location

» Splitter bars between the pane and each adjacent pane

Displaying the title bar
For most views, atitle bar does not permanently display at the top of a pane
because it is often unnecessary, but you can display atitle bar for any pane
either temporarily or permanently.
[TTo display atitle bar:
1 Placethe pointer on the splitter bar at the top of the pane.

Thetitle bar displays.

2 Todisplay thetitle bar permanently, click the pushpin at theleft of thetitle
bar or select Pinned from its pop-up menu.

Click the pushpin again or select Pinned again on the pop-up menu to hide
thetitle bar.

After you display atitle bar either temporarily or permanently, you can use the
title bar’s pop-up menu.
[—ITo maximize a pane to fill the workspace:
* Select Maximize from thetitle bar’s pop-up menu or click the Maximize
button on the title bar
[To restore a pane to its original size:

* Sdlect Restorefrom thetitle bar’s pop-up menu or click the Restore button
on thetitle bar

42 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

Moving and resizing panes and views

You can move a pane or aview to any location in the painter window. You
might find it takes a while to get used to moving panes and views around, but
if you do not like alayout, you can always revert to the default layout and start
again. To restore the default layout, select View>L ayouts>Default.

Users Guide

To move apane, select and drag thetitle bar of the view that isat the top of the
stack. If the pane contains stacked views, all views in the stack move together.
To move one of the views out of the stack, drag the tab for the view you want
to move.

[1To move a pane:

1

Place the pointer anywhere on the title bar of the view at the top of the
stack, hold down the left mouse button, and start moving the pane.

A gray outline appears around the pane:

Drag the outline to the new location.

The outline changes size as you drag it. When the pointer is over the
middle of apane, the outlinefillsthe pane. Asyou drag the pointer toward
any border, the outline becomes anarrow rectangl e adjacent to that border.
When the pointer is over a splitter bar between two panes, rows, or
columns, the outline straddles the splitter bar:

When you move the pointer to a corner
When you move the pointer to a corner, you will find that you have many

places where you can drop the outline. To see your options, move the
pointer around in al directionsin the corner and see where the outline
displays as you moveit.

43

Changing default layouts

3 Release the mouse button to drop the outline in the new location:

To move a pane here Drop the outline here

Between two panes On the splitter bar between the panes

Between aborder and apane | At the side of the pane nearest the border

Into anew row On the splitter bar between two rows or at the
top or bottom of the painter window

Into anew column On the splitter bar between two columns or at
the left or right edge of the painter window

Onto a stack of panes On the middle of the pane (if the pane was not
already tabbed, tabs are created)

[_ITo move aview in a stacked pane:
* Place the pointer anywhere on the view’s tab, hold down the left mouse
button, and start moving the view.

You can how move the view as in the previous procedure. If you want to
rearrange the views in a pane, you can drag the view to the left or right
within the same pane.

[TTo resize a pane:
» Drag the splitter bars between panes.

Floating and docking views

44

Panes are docked by default within a painter window, but some tasks may be
easier if you float apane. A floating pane can be moved outside the painter’s
window or even outside the PowerBuilder window.

When you open another painter]
If you have afloating pane in a painter and then open another painter, the

floating pane temporarily disappears. It reappears when the original painter is
selected.

[TTo float a view in its own pane:
» Select Float from thetitle bar’s pop-up menu.

[TTo float a view in a stacked pane:
» Select Float from the tab's pop-up menu.

PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

[TTo dock afloating view:
» Select Dock from the title bar’s pop-up menu.

Adding and removing views

Saving a layout

Users Guide

You may want to add additional views to the painter window. You can open

only oneinstance of some views, but you can open as many instances as you

need of others, such asthe Script view. If there are some views you rarely use,

you can move them into a stacked pane or remove them. When removing a

view in astacked pane, make sure you remove the view and not the pane.
[ITo add a new view to the painter window:

1 Select View from the menu bar and then select the view you want to add.
The view displaysin anew panein anew row.
2 Movethe pane where you want it.

For how to move panes, see “Moving and resizing panes and views’ on
page 43.
[_ITo remove a view in its own pane from the painter window:

1 If theview’'stitle bar is not displayed, display it by placing the pointer on
the splitter bar at the top of the pane.

2 Click the Close button on the title bar.

[_ITo remove a view in a stacked pane from the painter window:
* Select thetab for the view and select Close from its pop-up menu.

[ITo remove a stacked pane from the painter window:
1 If thetitle bar of the top view in the stack is not displayed, display it by
placing the pointer on the splitter bar at the top of the pane.

2 Click the Close button on the title bar.

When you have rearranged panes in the painter window, PowerBuilder saves
thelayout intheregistry. The next time you open the painter window, your |ast
layout displays. You can also save customized layouts so that you can switch
from one to another for different kinds of activities.

45

Using toolbars

[_ITo save customized layouts for a painter window:
1 Select View>Layouts>Manage from the menu bar.

2 Click the New Layout button (second from the | eft at the top of the dialog
box).

Layout g|
- X

[(Default)

E «mltemplate

H design

B preview
web

3 Type an appropriate name in the text box and click OK.

You can restore the default layout at any time by selecting
View>Layout>Default.

Using toolbars

Toolbars provide buttons for the most common tasksin PowerBuilder. You can
move (dock) toolbars, customize them, and create your own.

Toolbar basics

PowerBuilder uses three toolbars: the PowerBar, PainterBar, and StyleBar:

This toolbar | Has buttons for And (unless hidden) displays
PowerBar Opening painters and tools Always
PainterBar Performing tasksin the In each painter or editor; some
current painter painters have more than one
PainterBar
StyleBar Changing properties of text, | In appropriate painters
such as font and alignment

46 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

Drop-down toolbars

To reduce the size of toolbars, some toolbar buttons have a down arrow on the
right that you can click to display a drop-down toolbar containing related
buttons.

For example, the down arrow next to the Text button in the DatawWindow
painter displays the Controls drop-down toolbar, which has a button for each
control you can place on a DataWindow object.

AT | of [2
A E [
Nooo s
NI ey = |
T8 et E
&4

Default button replaced
The button you select from a drop-down tool bar replaces the default button on

the main toolbar. For example, if you select the Picture button from the
Controls drop-down toolbar, it replaces the Text button in the PainterBar.

Controlling the display of toolbars

Users Guide

You can control:

¢ Whether to display individual toolbars and where

¢ Whether to display text on the buttons

¢ Whether to display PowerTips

Choosing to display text and PowerTips affects all toolbars.

[_ITo control a toolbar using the pop-up menu:

1 Position the pointer on atoolbar and display the pop-up menu.
2 Click the items you want.

A check mark meanstheitem is currently selected.

47

Using toolbars

[_TTo control a toolbar using the Toolbars dialog box:

1

Select Tools>Toolbars from the menu bar.
The Toolbars dialog box displays.

Click thetoolbar you want to work with (the current toolbar ishighlighted)
and the options you want.

PowerBuilder saves your toolbar preferencesin the registry and the
PowerBuilder initiaization file.

Moving toolbars using the mouse

You can use the mouse to move a tool bar.

Docking toolbars

48

[1ITo move a toolbar with the mouse:

1

Position the pointer on the grab bar at the left of the toolbar or on any
vertical line separating groups of buttons.

Press and hold the left mouse button.
Drag the toolbar and drop it where you want it.

As you move the mouse, an outlined box shows how the toolbar will
display when you drop it. You can lineit up along any frame edge or float
it in the middle of the frame.

When you first start PowerBuilder, al the toolbars display one above another
at the top left of the workspace. When you move a toolbar, you can dock
(position) it:

At the top or bottom of the workspace, at any point from the left edge to
theright edge

At the left or right of the workspace, at any point from the top edge to the
bottom edge

To the l€eft or right of, or above or below, another toolbar

PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

Customizing toolbars

You can customize toolbars with PowerBuilder buttons and with buttons that
invoke other applications, such as aclock or text processor.

Adding, moving, and You can add, move, and delete buttons in any toolbar.
deleting buttons

[1To add a button to a toolbar:
1 Position the pointer on the toolbar and display the pop-up menu.

2 Select Customize.

The Customize dialog box displays. Theiconsthat display in the selected
palette and current toolbar panes depend on the palette and toolbar you

select.
Customize g|
Select palette
@ PainterBar O PowerBar O Cuskam

Selected palette:

Bt EERFRArmARENCDOOE & | Rest

AUE PN R RN - R R R TR N
=Ea-~-% %etm ~ —ooBa

= & (=R = |I| & ":'%EE<D>E§[E|X
L. L ..

,_
i

Current toolbar:

Brv -85 % <@g vaih

b

Description:

Create a computed field for today's date

3 Click the palette of buttonsyou want to usein the Select Pal ette group box.

4 Choose a button from the Selected Palette box and drag it to the position
you want in the Current Toolbar box.

The function of the button you selected displays in the Description at the
bottom of the dialog box. If you choose a button from the Custom pal ette,
another dialog box displays so you can define the button.

For more information, see “Adding a custom button” on page 51.

Users Guide 49

Using toolbars

[1ITo move a button on a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 IntheCurrent toolbar box, select the button and drag it to its new position.

[_TTo delete a button from a toolbar:
1 Position the pointer on the toolbar, display the pop-up menu, and select

Customize.
2 IntheCurrent toolbar box, select the button and drag it outside the Current
toolbar box.
Resetting a toolbar You can restore the original setup of buttons on atoolbar at any time.

[TTo reset atoolbar:
1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.
2 Click the Reset button, then Yes to confirm, then OK.

Clearing or deleting a Whenever you want, you can remove all buttons from atoolbar. If you do not
toolbar add new buttons to the empty toolbar, the toolbar is deleted. You can delete
both built-in toolbars and toolbars you have created.

To recreate a toolbar o _)
If you delete one of PowerBuilder’sbuilt-in toolbars, you can recreateit easily.

For example, to recreate the PowerBar, display the pop-up menu, select New,
and then select PowerBarl in the New Toolbar dialog box.

For information about creating new toolbars and about the meaning of
PowerBarl, see“ Creating new toolbars’ on page 53.

[TTo clear or delete a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Click the Clear button, then Yes to confirm.
The Current toolbar box in the Customize dialog box is emptied.
3 If youwant to add new buttons, select them.

4 Click OK to savethe toolbar if you added new buttons, or delete the
toolbar if you did not.

50 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

Adding a custom
button

Users Guide

You can add a custom button to atoolbar. A custom button can:

Invoke a PowerBuilder menu item

Run an executable (application) outside PowerBuilder
Run aquery or preview a DatawWindow object

Place a user object in awindow or in acustom user object

Assign adisplay format or create a computed field in a Datawindow
object

[ITo add a custom button:

1

Paosition the pointer on the toolbar, display the pop-up menu, and select
Customize.

Select Custom in the Select Palette group box.
The custom buttons display in the Selected Palette box.

Select a custom button and drag it to where you want it in the Current
Toolbar box.

TheToolbar Item Command dial og box displays. Different buttons display
in the dialog box depending on which toolbar you are customizing:

Toolbar, Item Command g|
Command Line:
Item Text:
Item Microhelp:
[run Minimized
Special Command
[Query...] [Report...]

Fill in the Command Line box using Table 2-2 on page 52.

In the Item Text box, specify the text associated with the button in two
parts separated by a comma: the text that displays on the button and text
for the button’s PowerTip:

ButtonText, PowerTip
For example:

Save, Save File

51

Using toolbars

52

If you specify only one piece of text, it isused for both the button text and

the PowerTip.

In the Item MicroHelp box, specify the text to appear as MicroHelp when
the pointer is on the button.

Table 2-2: Defining custom buttons

Button action

Toolbar Item Command dialog box entry

Invoke a PowerBuilder
menu item

Type @MenuBar Item.Menultem in the Command Line
box. For example, to makethe button mimic the Openitem
on the File menu, type:

@File.Open

If amenu label containsadot (“.”), you must include the
tilde (“~") asan escape character to indicate the dot is part
of the label and does not invoke a submenu item. For
example:

@Run.Attach to ~.NET ProcesSS~.~.~.
You can also use a number to refer to amenu item. The
first item in adrop-down or cascading menu is 1, the
second item is 2, and so on. Separator linesin the menu
count as items. This example creates abutton that pastes a
FOR...NEXT statement into a script:

@Edit .Paste Special.Statement.6

Run an executablefile
outside PowerBuilder

Typethe name of the executablefilein the Command Line
box. Specify the full path name if the executableis not in
the current search path.

To search for the file name, click the Browse button.

Run a query

Click the Query button and select the query from the
displayed list.

Preview aDataWindow
object

Click the Report button and select a DataWindow object
from the displayed list. You can then modify the
command-line arguments in the Command Line box.

Select a user object for
placement in awindow
or custom user object

(Window and User Object painters only) Click the
UserObject button and select the user object from the
displayed list.

Assign adisplay format
toacolumnina
Datawindow object

(Datawindow painter only) Click the Format button to
display the Display Formats dialog box. Select adatatype,
then choose an existing display format from the list or
define your own in the Format box.

For more about specifying display formats, see Chapter
22, “Displaying and Validating Data.”

PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

Button action | Toolbar Item Command dialog box entry
Createacomputedfield | (Datawindow painter only) Click the Function button to
in a Datawindow display the Function for Toolbar dialog box. Select the
object function from the list.

Modifying a custom button

[TITo modify a custom button:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Double-click the button in the Current toolbar box.
The Toolbar Item Command dial og box displays.
3 Makeyour changes, asdescribed in “ Adding acustom button” on page 51.

Creating new toolbars

PowerBuilder has built-in toolbars. When you start PowerBuilder, you see
what is called the PowerBar. In each painter, you also see one or more
PainterBars. But PowerBar and PainterBar are actually types of toolbars you
can create to make it easier to work in PowerBuilder.

PowerBars and A PowerBar isatool bar that always displaysin PowerBuilder, unlessyou hide
PainterBars it. A PainterBar is atoolbar that always displaysin the specific painter for
which it was defined, unless you hide it:

For this toolbar type | The default is named | And you can have up to
PowerBar PowerBarl Four PowerBars
PainterBar PainterBarl Eight PainterBarsin each
PainterBar2 painter
and so on
Where you create You can create anew PowerBar anywherein PowerBuilder, but to create anew

them PainterBar, you must bein the workspace of the painter for which you want to

define the PainterBar.

[ITo create a new toolbar:

1 Position the pointer on any toolbar, display the pop-up menu, and select
New.

The New Toolbar dialog box displays.

Users Guide 53

Customizing keyboard shortcuts

About the StyleBar
In paintersthat do not have a StyleBar, StyleBar ison thelist in the New

Toolbar dialog box. You can define atoolbar with the name StyleBar, but
you can add only painter-specific buttons, not style buttons, to it.

Select a PowerBar name or a PainterBar name and click OK.
The Customize dialog box displays with the Current toolbar box empty.

One at atime, drag the toolbar buttons you want from the Selected palette
box to the Current toolbar box and then click OK.

Customizing keyboard shortcuts

You can associate your own keyboard shortcuts with PowerBuilder menu
items. For example, if you have used another debugger, you may be
accustomed to using specific function keys or key combinationsto step into
and over functions. You can change the default keyboard shortcutsto associate
actionsin PowerBuilder’s Debugger with the keystrokes you are used to.

54

Tip

Creating keyboard shortcuts means you can use the keyboard instead of the
mousein many common situations, including changing workspaces, objects, or
connections. To do this, create shortcuts for the File>Recent menu items.

[TTo associate a keyboard shortcut with a menu item:

1

Select Tools>Keyboard Shortcuts from the menu bar.
The keyboard shortcuts for the current menu bar display.

Select amenu item with no shortcut or amenu item with adefault shortcut
that you want to change and then put the cursor in the Press Keys For
Shortcut box.

Press the keys you want to use for the shortcut.

PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

The new shortcut displaysin the text box. If you type a shortcut that is
aready being used, a message notifies you so you can type a different
shortcut or change the existing shortcut.

Press keys for shorkout:

Currently assigned to; Save

[TTo remove a keyboard shortcut associated with a menu item:
1 Select Tools>Keyboard Shortcuts from the menu bar.

2 Select the menu item with the shortcut you want to remove.
3 Click Remove.

You can reset keyboard shortcuts to the default shortcuts globally or for the
current painter only.

[TTo reset keyboard shortcuts to the default:
¢ Click the Reset button and respond to the prompt.

Changing fonts

Users Guide

Table 2-3 summarizes the various ways you can change the fonts used in
PowerBuilder.

Table 2-3: Changing the fonts used in PowerBuilder

Object, painter, or tool How to change fonts
A table's data, headings, and | Inthe Database painter, display the Properties view
labels for the table, and change the font properties on the

Data, Heading, and Label Font tabs.

Objectsin the User Object, Select objects and then modify settings in the
Window, and DataWindow StyleBar, or, in the Properties view for one or more

painters objects, change the font properties on Font tab page.
Application, Menu, and Select Tools>System Options from the menu bar
Library painters, System and change the font properties on the Editor Font
Tree, Output window, and Printer font tab pages.

Browser, and MicroHelp

55

Defining colors

Object, painter, or tool How to change fonts

Function painter, Script view, | Select Design>Options from the menu bar and
Interactive SQL view inthe | change the font properties on the System Font and
Database painter, Source Printer Font tab pages of the dialog box that
editor, file editor, and Debug | displays. In the Debug window, select

window (changes made for Debug>Options.

one of these apply to al)

Usethe Printer font tab to set fonts specifically for printing. If you need to print
multilanguage characters, make sure you use afont that is installed on your
printer.

Changes you make in the Tool s>System Options dialog box and from the
Design>Options menu selection are used the next time you open
PowerBuilder.

Defining colors

You can define custom colorsto usein most painters and in objects you create.

[ITo define custom colors:

1 Inapainter that uses custom colors, select Design>Custom Colors from
the menu bar.

Basic colors:

_
I
= N
o= .
HE N
NN
Custom colors:
I
Hue: Red:
L Sat:EI Green:
. Colorl3 alid Lum: Blue:
[Add to Custom Colors]

2 Defineyour custom colors:

56 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

Area of the
Color dialog box | What you do
Basic colors Click the basic color closest to the color you want to

define to move the pointer in the color matrix and slider
on the right.

Custom colors

palette

Modify an existing color—click a custom color, then
modify the color matrix and slider. Define a new color—
click an empty box, define the color, and click Add to
Custom Colors.

Color matrix Click in the color matrix to pick a color.

Color dlider Movethesdlider ontheright to adjust the color's attributes.
Add to Custom After you have designed the color, click thisbutton to add
Colors button the custom color to the Custom colors palette on the | eft.

How the PowerBuilder environment is managed

PowerBuilder configuration information is stored in both the PowerBuilder
initialization file (PB.INI) and the registry. When you start PowerBuilder, it
looks in the registry and PB.INI to set up your environment.

About the registry

Some PowerBuilder features require the use of the PB.INI file, but many
features use the registry for getting and storing configuration information.
Normally, you should not need to access or modify itemsin the registry

Users Guide

directly.

Information related to your preferences (such as the applications you have
created, the way you have arranged your viewsin the painters, and the shortcut
keys you have defined for PowerBuilder menu items) is stored in
HKEY_CURRENT_USER/Software/Sybase/Power Builder/12.0.

Installation-rel ated information is stored in
HKEY_LOCAL_ MACHINE/Software/Sybase/PowerBuilder/12.0.

57

How the PowerBuilder environment is managed

About the initialization file

Format of INI files

Specifying
preferences

Where the
initialization file is kept

58

PB.INI isatext file that contains variables that specify your PowerBuilder
preferences. These preferencesinclude information such asthe last workspace
you used and your startup preferences. When you perform certain actionsin
PowerBuilder, PowerBuilder writes your preferences to PB.INI automatically.

PB.INI uses the Windows INI file format. It has three types of elements:
* Section names, which are enclosed in square brackets
» Keywords, which are the names of preference settings

» Vaues, which are numeric or text strings, assigned as the value of the
associated keyword

A variable can be listed with no value specified, in which case the default is
used.

Some sections are a\ways present by default, but others are created only when
you specify different preferences. If you specify preferencesfor another painter
or tool, PowerBuilder creates a new section for it at the end of thefile.

Normally, you do not need to edit PB.INI. You can specify all your preferences
by taking an action, such as resizing awindow or opening a new application,
or by selecting Design>Options from one of the painters. If avariable does not
appear by default in the options sheet for the painter, you can use atext editor
to modify the variable in the appropriate section of PB.INI.

Editing the initialization file

Do not use atext editor to edit PB.INI or any preferences file accessed by
Profile functions while PowerBuilder or your application is running.
PowerBuilder caches the contents of initialization filesin memory and
overwrites your edited PB.INI when it exits, ignoring changes.

PB.INI isinstalled in the same directory as the PowerBuilder executable file,
but is copied to the C:\Documents and Settings\user Name\L ocal
Settings\Application Data\Sybase\PowerBuilder 12.0 for each PowerBuilder
user the first time the user opens PowerBuilder. PowerBuilder subsequently
uses the PB.INI copy each time the same user starts an instance of
PowerBuilder IDE.

PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder

Telling PowerBuilder
where your
initialization file is

How PowerBuilder
finds the initialization
file

If the initialization file
is missing

Users Guide

You can keep PB.INI in another location and tell PowerBuilder where to find
it by specifying the location in the System Options dialog box. You may want
to do thisif you use more than one version of PowerBuilder or if you are
running PowerBuilder over a network.

[—1ITo record your initialization path:

1 Select Tools>System Options from the menu bar.

2 Onthe General tab page, enter the path of your initidization filein the
Initialization Path text box.

PowerBuilder records the path in the Windows registry.

PowerBuilder looksinthe Windows Registry for apath to theinitializationfile,
and then looks for the file in the directory where PowerBuilder isinstalled. If
PowerBuilder cannot find PB.INI using the path in the Registry, it clears the
path value.

If PowerBuilder doesnot find PB.INI whenit startsup, it recreatesit. However,
if you want to retain any preferences you have set, such as database profiles,
keep a backup copy of PB.INI. The recreated file has the default preferences.

59

How the PowerBuilder environment is managed

60 PowerBuilder Classic

CHAPTER 3

About this chapter

Contents

Using Source Control

PowerBuilder provides a direct connection to external SCC-compliant
source control systems as well as to the PowerBuilder native (PBNative)
utility. This chapter describes how to work with source control.

Topic Page
About source control systems 61
Using a source control system with PowerBuilder 68
Source control operations in PowerBuilder 78
Initialization settings that affect source control 92
Modifying source-controlled targets and objects 97
Migrating existing projects under source control 100

About source control systems

What source control
systems do

Why use a source control
system

Users Guide

Thissection providesan overview of source control systemsand describes
the PowerBuilder interface (API) to such systems.

Source control systems (version control systems) track and store the
evolutionary history of software components. They are particularly useful
if you are working with other devel opers on alarge application, in that
they can prevent multiple devel opers from modifying the same
component at the same time. You can make sure you are working with the
latest version of a component or object by synchronizing the copy of the
object you are working on with the last version of the object checked into
the source control system.

Most source control systems provide disaster recovery protection and
functions to hel p manage complex development processes. With a source
control system, you can track the development history of objectsin your
PowerBuilder workspace, maintain archives, and restore previous
revisions of objectsif necessary.

61

About source control systems

Source control
interfaces

You work with a source control system through a source control interface.
PowerBuilder supports source control interfaces based on the Microsoft
Common Source Code Control Interface Specification, Version 0.99.0823. You
can use the PowerBuilder SCC API with any source control system that
implements features defined in the Microsoft specification.

PowerBuilder institutes source control at the object level. Thisgivesyou afiner
grain of control than if you copied your PBLsdirectly to source control outside
of the PowerBuilder SCC API.

No other interfaces
PowerBuilder does not support working with source control systems through

proprietary interfaces provided by source control vendors. To work with source
control systems from your PowerBuilder workspace, you must use the
PowerBuilder SCC API. PowerBuilder also uses this API to connect to the
PowerBuilder Native check in/check out utility that installs with the product.

Using your source control manager

62

The PowerBuilder SCC API workswith your source control system to perform
certain source control operations and functions described in the next section.
Other source control operations must be performed directly from the source
control management tool. After you have defined a source control connection
profile for your PowerBuilder workspace, you can open your source control
manager from the Library painter.

[_TTo start your source control manager from PowerBuilder

» Select Entry>Source Control>Run Source Control Manager from the
Library painter menu bar.

The menu item name varies depending on the source control system you
selected in the source control connection profile for your current
workspace. There is no manager tool for the PBNative check in/check out
utility.

For information on configuring a source control connection profile, see
“Setting up a connection profile” on page 69.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Which tool to use

Using PBNative

Connecting to
PBNative

Users Guide

The following table shows which source control functions you should perform
from your source control manager and which you can perform from
PowerBuilder:

Table 3-1: Where to perform source control operations
Tool or interface Use for this source control functionality

Source control manager Setting up a project*

Assigning access permissions

Retrieving earlier revisions of objects*

Assigning revision |abels*

Running reports*

Editing the PBG file for a source-controlled target*

PowerBuilder SCC API Setting up a connection profile

Viewing the status of source-controlled objects
Adding objects to source control

Checking objects out from source control

Checking objects in to source control

Clearing the checked-out status of objects
Synchronizing objects with the source control server
Refreshing the status of objects

Comparing local objects with source control versions
Displaying the source control version history
Removing objects from source control

* You can perform these source control operations from PowerBuilder for some source control
systems.

PowerBuilder provides minimal in-the-box source control through the
PBNative check in/check out utility. PBNative allows you to lock the current
version of PowerBuilder objects and prevents others from checking out these
objects while you are working on them. It provides minimal versioning
functionality, and does not alow you to add comments or labelsto objects that
you add or check in to the PBNative project directory.

You connect to PBNative from PowerBuilder in the same way you connect to
all other source control systems: through the PowerBuilder SCC API. You use
the same menu itemsto add, check out, check in, or get the latest version of
objects on the source control server. However, any menu item that calls a
source control management tool is unavailable when you select PBNative as
your source control system.

63

About source control systems

PRP files

Becausethereis no separate management tool for PBNative, if you need to edit
project PBG filesthat get out of sync, you can open them directly on the server
without checking them out of source control.

For more information about PBG files, see " Editing the PBG file for a source-
controlled target” on page 99.

PBNative creates files with an extra PRP extension for every object registered
in the server storage location. If an object with the same file name (minus the
additional extension) has been checked out, a PRP file provides the user name
of the person who has placed alock on the object. PRP files are created on the
server, not in the local path.

PowerBuilder also adds a version number to the PRP file for an object in the
PBNative archive directory when you register that object with PBNative
source control. PowerBuilder increments the version number when you check
inanew revision. Theversion number isvisiblein the Show History dial og box
that you open from the pop-up menu for the object, or in the Library painter
when you display the object version numbers.

For more information on the Show History dialog box, see “Displaying the
source control version history” on page 91. For information on displaying the
version number in the Library painter, see “ Controlling columns that display
inthe List view” on page 156.

Using Show Differences functionality with PBNative
PBNative has an option that allows you to see differences between an object on

the server and an object on the local computer using a 32-bit visual difference
utility that you must install separately. For information on setting up a visual
difference utility for use with PBNative, see “Comparing local objects with
source control versions’ on page 88.

Constraints of a multi-user environment

64

Any object added or checked into source control should be usable by al

devel opers who have access permissions to that object in source control. This
requires that the local paths for objects on different computers be the same in

relation to the local root directory where the PowerBuilder workspace resides.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Best practices The source control administrator should decide on adirectory hierarchy before
creating a source-controlled workspace. The following practices are highly
recommended for each target under source control:

Create atop-level root directory for the local project path on each
developer workstation.

This directory becomes the project path in the SCC repository. The local
workspace object (PBW), the offline status cache file (PBC), the source
control log file, and any Orcascript files used to rebuild and refresh the
source-controlled targets should be saved to this top-level directory on
local workstations

Create a unique subdirectory under the project path for each PBL in the
source-controlled targets

Thispractice avoidsissuesthat can ariseif you copy or move objectsfrom
one PBL to another in the same target.

Instruct each developer on the team to create a workspace object in the
top-level directory and, on the Source Control tab of the Properties of
Workspace dialog box, assign this directory as the "L ocal Project Path".
Each devel oper must also assign the corresponding top-level directory in
the SCC repository inthe "Project” text box of the Source Control tab for
the workspace

Add target files (PBT) to the project path directory or create unique
subdirectories under the project path for each target file

Project manager’s Before devel opers can start work on PowerBuilder objectsin a workspace

tasks

Users Guide

under source control, a project manager usually performs the following tasks:

Sets up source control projects (and archive databases)
Assigns each devel oper permission to access the new project
Sets up the directory structure for all targetsin a project

Ideadlly, the project manager should create a subdirectory for each target.
Whatever directory structure is used, it should be copied to all computers
used to check out source-controlled objects.

Distributes the initial set of PBLs and target (PBT) filesto all developers
working on the project or provides a network location from which these
files and their directory structure can be copied.

65

About source control systems

Developers’ tasks

66

PowerScript and .NET targetsrequirethat all PBLslisted inatarget library list
be present on the local computer. For source control purposes, al PBLsin a
target should be in the same local root path, although they could be saved in
separate subdirectories. PBWsand PBL s are not stored in source control unless
they are added from outside the PowerBuilder SCC API. They cannot be
checked into or out of source control using the PowerBuilder SCC API.

If you are sharing PBLs in multiple targets, you can include the shared PBLs
in aworkspace and in targets of their own, and create a separate source control
project for the shared objects. After adding (registering) the shared PBL
objectsto this project, you can copy the shared targets to other workspaces, but
the shared targets should not be registered with the corresponding projects for
these other workspaces. In this case, the icons indicating source control status
for the shared objects should be different depending on which workspaceisthe
current workspace.

For small projects, instead of requiring the project manager to distribute PBLs
and target files, developers can create targetsin their local workspaces having
the same name as targets under source control. After creating a source control
connection profile for the workspace, a developer can get the latest version of
al objects in the workspace targets from the associated project on the source
control server, overwriting any target and object filesin the local root path.
(Unfortunately, this does not work well for large PowerScript or .NET projects
with multiple PBLs and complicated inheritance schemes.)

Ongoing maintenance tasks of a project manager typically include:

» Distributing any target (PBT) files and PBLs that are added to the
workspace during the course of development, or maintaining them on a
network directory in an appropriate hierarchical file structure

» Making sure the PBL mapping files (PBGs) do not get out of sync

For information about the PBG files, see “Editing the PBG filefor a
source-controlled target” on page 99.

Connections from each development computer to the source control project
can be defined on the workspace after the initial setup tasks are performed.

Each user can define alocal root directory in aworkspace connection profile.
Although the local root directory can be anywhere on alocal computer, the
directory structure below the root directory must be the same on all computers
that are used to connect to the source control repository. Only relative path
names are used to describe the location of objects in the workspace below the
root directory level.

PowerBuilder Classic

CHAPTER 3 Using Source Control

After copying the directory structure for source-controlled PowerScript or
.NET targetsto the local root path, developers can add these targets to their
local workspaces. The target objects can be synchronized in PowerBuilder,
athough for certain complex targets, it might be better to do the initial
synchronization through the source control client tool or on a nightly build
computer before adding the targets to PowerBuilder. (Otherwise, the target
PBL s may need to be manually rebuilt and regenerated.)

For more information about getting the latest version of objectsin source
control, see “ Synchronizing objects with the source control server” on page
86.

Extension to the SCC API

Status determination
by version number

Overriding the version
number

Users Guide

PowerBuilder provides third-party SCC providers with an extension to the
SCC API that allows them to enhance the integration of their products with
PowerBuilder. Typicaly, calls to the SccDiff method are required to determine
if an object isout of sync with the SCC repository. (Thisis not appropriate for
Perforce or ClearCase.)

However, SCC providers can implement SccQuerylnfoEx as aprimary file
comparison method instead of SccDiff. The SccQueryinfoEx method returnsthe
most recent version number for each object requested. This allows
PowerBuilder to compare the version number associated with the object in the
PBL with the version number of thetip revisionin the SCC repository in order
to determine whether an object isin sync.

Since SccQueryInfoEx isamuch simpler request than SccDiff, the performance
of the PowerBuilder IDE improves noticeably when this featureis
implemented by the SCC provider. For these providers, the SccDiff call is used
as a backup strategy only when a version number is not returned on an object
in the repository. Also for these providers, the version number for registered
files can be displayed in the Library painter.

For more information on viewing the version number, see “Controlling
columns that display in the List view” on page 156.

Once the new APl method isimplemented in an SCC provider DLL and
exported, PowerBuilder automatically begins to use the SCCQueryinfoEx call
with that provider. The SccQueryinfoEx method is currently used by PBNative.

For source control systems that support the SccQueryinfoEx method, you can
manually override the version number of local files, but only for PowerScript
objects, and only when you are connected to source control.

67

Using a source control system with PowerBuilder

This can be useful with source control systems that allow you to check out a
version of an object that is not the tip revision. However, the source control
system alone decides the version number of the tip revision when you check a
file back into source control. It isthe version returned by the source control
system that gets added to the PBC file for the workspace and to the PBLsin the
local directory.

For more information about the PBC file, see “Working in offline mode” on
page 75.

You change the local version number for a source-controlled PowerScript
object in its Properties dialog box, which you access from the object’s pop-up
menu in the System Tree or the Library painter. If the source control system for
the workspace supports the SccQueryinfoEx method and you are connected to
source control, the Properties dialog box for a source-controlled PowerScript
object (other than a PBT) has an editable SCC Version text box. The SCC
Version text box is grayed if the source control system does not support the
SccQueryinfoEx method or if you are not connected to source control.

Local change only
The version number that you manually enter for an object is discarded on

check-in. Only the source control provider decides what number the tip
revision is assigned.

Using a source control system with PowerBuilder

68

PowerBuilder provides a direct connection to externa SCC-compliant source
control systems. It no longer requiresyou to register PowerBuilder objectsina
separate work PBL before you can check them into or out of the source control

system.

For information on migrating PowerBuilder applications and objects
previously checked into source control through aregistered PBL, see
“Migrating existing projects under source control” on page 100.

Before you can perform any source control operationsfrom PowerBuilder, you
must set up a source control connection profile for your PowerBuilder
workspace, either from the System Tree or from the Library painter. Even if
you use the PBNative check in/check out utility, you must access source-
controlled abjects through an SCC interface that you define in the Workspace
Properties dialog box.

PowerBuilder Classic

CHAPTER 3 Using Source Control

The source control connection profile assigns a PowerBuilder workspace to a
source control project. Setting up a source control project is usualy the job of
aproject manager or administrator. See“ Project manager’s tasks’ on page 65.

Creating a new source control project
Although you can create a project in certain source control systems directly

from PowerBuilder, it is usually best to create the project from the
administrative tool for your source control system before you create the
connection profilein PowerBuilder.

Setting up a connection profile

Local connection
options

Users Guide

In PowerBuilder you can set up a source control connection profile at the
workspace level only. Local and advanced connection options can be defined
differently on each computer for PowerBuilder workspaces that contain the
same targets.

Loca connection options allow you to create atrace log to record all source
control activity for your current workspace session. You can overwrite or
preserve an existing log file for each session.

You can also make sure acomment isincluded for every file checked into
source control from your local computer. If you select this connection option,
the OK button on the Check In dialog box is disabled until you type acomment
for all the objects you are checking in.

The following table lists the connection options you can use for each local
connection profile:

Table 3-2: Source control properties for a PowerBuilder workspace
Select this option To do this

Log All Source Management Enable trace logging. By default the log file
Activity (not selected by default) name is PBSCC120.LOG, which is saved in
your workspace directory, but you can select
adifferent path and file name.

Append To Log File (default Append source control activity information
selection when logging is enabled) to named log file when logging is enabled.
Overwrite Log File (not selected by | Overwrite the named log file with source
default) control activity of the current session when
logging is enabled.

69

Using a source control system with PowerBuilder

Select this option

To do this

Require Comments On Check In (not
selected by default; not available for
PBNative source control)

Disablethe OK button onthe Check In dialog
box until you type a comment.

This Project Requires That |
Sometimes Work Offline (not
selected by default)

Disable automatic connection to source
control when you open the workspace.

Delete PowerBuilder Generated
Object Files (not selected by default)

Remove object files (such as SRDs) from the
local directory after they are checked into
source control. This may increasse thetimeit
takes for PowerBuilder to refresh source
control status, but it minimizes the drive
space used by temporary files. You cannot
select thisoption for the Perforce, ClearCase,
or Continuus source control systems.

Perform Diff On Status Update

Permit display of out-of-sync icons for local
objects that are different from objects on the
source control server. Selecting this also
increases the time it takes to refresh source
control status. You cannot select this option
for Perforce.

Suppress prompts to overwrite
read-only files

Avoid message boxes warning that read-only
filesexist on your local project directory.

Show warning when opening objects
not checked out

Avoid message boxes when opening objects
that are still checked in to source control.

Status Refresh Rate (5 minutes by
default)

Specifies the minimum time elapsed before
PowerBuilder automatically requests
information from the source control server to
determineif objects are out of sync. Valid
values are between 1 and 59 minutes. Status
refresh rateisignored when you are working
offline.

Advanced connection
options

Advanced connection options depend on the source control system you are
using to store your workspace objects. Different options exist for different
source control systems.

70 PowerBuilder Classic

CHAPTER 3 Using Source Control

Applicability of advanced options
Some advanced options might not be implemented or might be rendered

inoperable by the PowerBuilder SCC API interface. For example, if an
advanced option allows you to make local files writable after an Undo Check
Out operation, PowerBuilder still creates read-only files when reverting an
object to the current version in source control. (PowerBuilder might even
delete these filesif you selected the Del ete PowerBuilder Generated Object
Files option.)

[_1ITo set up a connection profile:

1

Users Guide

Right-click the Workspace object in the System Tree (or in the Tree view
of the Library painter) and select Properties from the pop-up menu.

Select the Source Control tab from the Workspace Properties dialog box.

Select the system you want to use from the Source Control System
drop-down list.

Only source control systems that are defined in your registry
(HKEY_LOCAL_MACHINE\SOF TWARE\SourceCodeControl Provider\
InstalledSCCProviders) appear in the drop-down list.

Type in your user name for the source control system.

Some source control systems use alogin name from your registry rather
than the user namethat you enter here. For these systems (such as Perforce
or PVCS), you can leave thisfield blank.

Click the ellipsis button next to the Project text box.

A diaog box from your source control system displays. Typically it allows
you to select or create a source control project.

The dialog box displayed for PBNative is shown below:

PBNative Source Management Settings @

User Mame: jdee

Storage Location: Q

Local Path:

Ok Cancel
]

71

Using a source control system with PowerBuilder

6 Fill intheinformation required by your source control system and click
OK.

The Project field on the Source Control page of the Workspace Properties
dialog box istypically populated with the project name from the source
control system you selected. However, some source control systems (such
as Perforce or Vertical Sky) do not return a project name. For these
systems, you can leave thisfield blank.

7 Typeor select a path for the local root directory.

All thefiles that you check into and out of source control must reside in
this path or in a subdirectory of this path.

8 (Option) Select the options you want for your local workspace connection
to the source control server.

9 (Option) Click the Advanced button and make any changes you want to
have apply to advanced options defined for your source control system.

The Advanced button might be grayed if you are not first connected to a
source control server. If Advanced options are not supported for your
source control system, you see only a splash screen for the system you
selected and an OK button that you can click to return to the Workspace
Properties dialog box.

10 Click Apply or click OK.

Viewing the status of source-controlled objects

After aPowerBuilder workspaceis assigned to asource control project through
aconnection profile, iconsin the PowerBuilder System Tree display the source
control statusof all objectsin theworkspace. The sameiconsare al so displayed
for objectsin the Library painter if the workspace to which they belong is the
current workspace for PowerBuilder.

72 PowerBuilder Classic

CHAPTER 3 Using Source Control

Source control icons The icons and their meanings are described in Table 3-3 and Table 3-4.

Table 3-3: Source control status icons in PowerBuilder
Icon Source control status of object displaying icon
+ The object resides only locally and is not under source control.

The object isunder source control and is not checked out by anyone. The
object ontheloca computer isin sync with the object on the server unless
theicon for indeterminate status also appears next to the same object.

The object is checked out by the current user.

M The object is checked out by another user.

7 The current status of an object under source control has not been
determined. You are likely to see thisicon only if the Perform Diff On
Status Update check box is not selected and if diffs are not performed for
your source control system based on version number. Thisicon can appear
only in conjunction with the icon for aregistered object (green dot icon)
or for an object checked out by another user (red x icon).

The object on the local computer is registered to source control, but is out
2 of sync with the object on the server. Thisicon can also appear with the
icon for an object checked out by another user. The Perform Diff On Status
Update check box must be selected for thisicon to display.

Compound iconswith ared check mark can display only if your SCC provider
permits multiple user checkouts. These icons are described in the following
table:

Table 3-4: Source control status icons with multiple checkouts enabled

Icon Source control status of object displaying icon

The object is under source control and is checked out nonexclusively by
another user. PowerBuilder alows a concurrent checkout by the current
user.

e
*

The object is checked out by both the current user and another user.

<5

The object is checked out nonexclusively by another user and the version
in the current user’s local path is out of sync.

]

For more information on allowing multiple user checkouts, see “ Checking
objects out from source control” on page 80.

Users Guide 73

Using a source control system with PowerBuilder

Pop-up menus

Library painter Entry
menu

74

Pop-up menus for each object in the workspace change dynamically to reflect
the source control status of the object. For example, if the object isincludedin
a source-controlled workspace but has not been registered to source control,
the Add To Source Control menu item is visible and enabled in the object’s
pop-up menu. However, other source control menu items such as Check Inand
Show Differences are not visible until the object is added to source control.

Additional statusfunctionality is available from the Entry menu of the Library
painter. Depending on the source control system you are using, you can seethe
owner of an object and the name of the user who has the object checked out.
For most source control systems, you can seethelist of revisions, including any
branch revisions, as well as version labels for each revision.

Library painter selections

When a painter is open, menu commands apply to the current object or objects
in the painter, not the current object in the System Tree. Thiscan get confusing
with the Library painter in particular, since Library painter views list objects
only (much like the System Tree), and do not provide a more detailed visua
interface for viewing current selections, as other painters do.

[TTo view the status of source-controlled objects

1 InalLibrary painter view, select the object (or objects) whose status you
want to determine.

2 Select Entry>Source Control>Source Control Manager Properties.

A dialog box from your source control system displays. Typicaly it
indicatesif the selected fileis checked in, or the name of the user who has
the file checked out. It should also display the version number of the
selected object.

Displaying the version number in the Library painter
You can display the version number of all filesregistered in source control

directly in the Library painter. You add a Version Number column to the
Library painter List view by making sure the SCC Version Number option
is selected in the Options dialog box for the Library painter.

For more information, see “Controlling columns that display in the List
view” on page 156.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Working in offline mode

Viewing status
information offline

About the PBC file

Backing up the PBC
file

Users Guide

You can work offline and still see status information from the last time you
were connected to source control. However, you cannot perform any source
control operations while you are offline, and you cannot save changes to
source-controlled objectsthat you did not check out from source control before
you went offline.

To be able to work offline, you should select the option on the Source Control
page of the Workspace Properties dialog box that indicates you sometimes
work offline. If you select this option, adial og box displayseach time you open
theworkspace. Thedial og box promptsyou to select whether you want to work
online or offline.

For moreinformation about setting source control optionsfor your workspace,
see “ Setting up a connection profile” on page 69.

If you opt to work offline, PowerBuilder looks for (and imports) aPBC filein
the local root directory. The PBC fileis atext file that contains status
information from the last time a workspace was connected to source control.
PowerBuilder creates a PBC file only from aworkspace that is connected to
source control. Status information is added to the PBC file from expanded
object nodes (in the System Tree or in aLibrary painter view) at the time you
exit the workspace.

If aPBC file already existsfor aworkspacethat is connected to source control,
PowerBuilder merges status information from the current workspace session to
statusinformation already contained in the PBC file. Newer statusinformation
for an object replaces older status information for the same object, but older
status information is not overwritten for objects in nodes that were not
expanded during a subsegquent workspace session.

You can back up the PBC file with current checkout and version information
by selecting the Backup SCC Status Cache menu item from the Library painter
Entry>Source Control menu, or from the pop-up menu on the current
workspace item in the System Tree. The Library painter menu item isonly
enabled when the current workspace file is selected.

The Backup SCC Status Cache operation copies the entire contents of the
refresh status cache to the PBC file in the local project path whether the status
cacheisdirty or valid. To assureavalid status cache, you can perform aRefresh
Status operation on the entire workspace before backing up the SCC status
cache.

For information about refreshing the status cache, see “ Refreshing the status
of objects’ on page 87.

75

Using a source control system with PowerBuilder

Fine-tuning performance for batched source control requests

PowerBuilder uses an array of object file names that it passes to a source
control systemin each of its SCC API requests. The SCC specification doesnot
mention an upper limit to the number of filesthat can be passed in each request,
but the default implementation in PowerBuilder limits SCC server requeststo
batches of 25 objects.

A PB.INI file setting allows you to override the 25-file limit on file names sent
to the source control server in abatched request. You can make this changein
the Library section of the PB.INI file by adding the following instruction:

SccMaxArraySize=nn

where nn is the number of files you want PowerBuilder to include inits SCC
API batch calls. Like other settingsin the PB.INI file, the SccMaxArraySize
parameter is not case sensitive.

Configuring Java VM initialization

When you connect to asource control system, PowerBuilder instantiatesaJava
VM by default. For certain SCC programs, such as Borland's StarTeam or
Serena’s TrackerLink, the Java VM instantiated by PowerBuilder conflicts
with the Java VM instantiated by the SCC program. To prevent Java VM
conflicts, you must add the following section and parameter setting to the
PB.INI file:

[JavaVM]
CreateJavaVM=0

By adding this section and parameter setting to the PB.INI file, you prevent
PowerBuilder from instantiating a Java VM when it connects to a source
control system.

76 PowerBuilder Classic

CHAPTER 3 Using Source Control

Files available for source control

Users Guide

The following schema shows a directory structure for filesin the local
PowerBuilder workspace and on the source control server. File typesin the
local root path that can be copied to the source control server from
PowerBuilder are displayed in bold print. File types displayed in normal print
are not copied. Asterisks shown before afile extension indicate variable names
for files of the type indicated by the extension. The asterisk included in afile
extensionisaso avariable. The variablefor the extension depends on the type
of object exported fromaPBL, so it would be“w” for awindow, “u” for auser
object, and so on.

Figure 3-1: Directory structure in local path and source control server

Local Root Path Source Control Project
*PBW *PBET
* PBC (created if you indicate you “PBG
sometimes work offling; contains *5R"
source confrol status information) * PRF for PBMative only (one for
PBT {could b= in subdirectores) egach PBET, PBG, and SR file)
* PBL {not under source control)
*.PBG (created for each PEL in a Source control systems may attach
PowerScrpt or NET target that you their own archive extensions to each
check in to source control) object file in the source control
* 8R* (exporiad PowerBuilder objects) project.

Typically, the source control server files are stored in a database but preserve
thefile system structure. Filesin any deployment configuration directories can
be regenerated automatically by building and deploying the filesin the Source
directory.

Temporary files in local root path
When you add or check in a PowerScript object to source control,

PowerBuilder first exports the object as atemporary file (*.SR*) to your local
target directory. For some source control systems, you might choose to delete
temporary files from the local root path.

77

Source control operations in PowerBuilder

Source control operations in PowerBuilder

The following source control operations are described in this section:
* Adding objects to source control

» Checking objects out from source control

» Checking objects in to source control

» Clearing the checked-out status of objects

* Synchronizing objects with the source control server

* Refreshing the status of objects

* Comparing local objects with source control versions

» Displaying the source control version history

* Removing objects from source control

Source control operations on workspace and PBL files are performed on the
objects contained in the current workspace or in target PBL s, not on the actual
PBW and PBL files. The PBW and PBL files cannot be added to source control
through the PowerBuilder interface. Source control operations are not enabled
for target PBD files or for any of the objectsin target PBD files.

Adding objects to source control

What happens when
you add objects to
source control

78

You add an object to your source control project by selecting the Add To
Source Control menu item from the object’s pop-up menu in the System Tree
orinthe Library painter. You can also select an object in aLibrary painter view
and then select Entry>Source Control>Add To Source Control from the
Library painter menu bar.

When you add an object to source control, the icon in front of the object
changes from a plus sign to a green dot, indicating that the object on the local
computer isin sync with the object on the server.

PowerBuilder creates read-only object filesin thelocal root directory for each
PowerBuilder object that you add to source control. These files can be
automatically deleted if you selected the Delete PowerBuilder Generated
Object Files option as a source control connection property (although you
cannot do thisfor certain SCC systems such as Perforce or ClearCase).

Read-only attributes are not changed by PowerBuilder if you later remove a
workspace containing these files from source control.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Adding multiple
objects to source
control

Users Guide

If the object you select is a PowerBuilder workspace, a dialog box displays
listing all the objects for that workspace that are not currently under source
control (although the workspace PBW and target PBL s are not included in the
list). If the object you select is a PowerBuilder target, and at |east one of the
objectsin that target has not been registered with the current source control
project, PowerBuilder displays a dialog box that prompts you to:

e Select multiple files contained in the target
¢ Register thetarget file only

If you select the multiple files radio button, another dialog box displayswith a
list of objectsto add to source control. A check box next to each object letsyou
sel ect which objectsyou want to add to source control. By default, check boxes
are selected for all objectsthat are not in your source control project. They are
not selected for any object already under source control.

M Add to Source Control @

Files:

W work employees. phifemployvess, sra) S
[Wle:yworkiemployees, phlfm_emplovess_frame,sem)

[Wle:yworkiemployees, phlfm_smployess_shest,srm)
[Wle:yworkiemployees. phi{n_smployees_connectservice.sru)

[Wle:yworkiemployees. phiin_smployees_sheetmanagsr .stu)

[We:yworkiemployees, phifw_employess_about,srw)

[Wle:yworkiemployees. phiiw_employess_baseshest.srw)
[Wle:yworkiemployees, phifw_employess_frame, srw)
[Wle:workiemployees.phiiw_employess_shest1,srw) w

You can resize all source control dialog boxes listing multiplefiles by placing
acursor over the edge of adialog box until atwo-headed arrow displays, then
dragging the edge in the direction of one of the arrow heads.

Selecting multiple files from a PBL
If you select Add To Source Control for atarget PBL, you immediately see the

list of multiple files from that PBL in the Add To Source Control dialog box.
Thereis no need for an intervening dialog box asthereisfor atarget or
workspace, since you cannot register a PBL file to source control from the
PowerBuilder Ul—you can only register the objects contained in that PBL.

You can also select multiple objects to add to source control fromthe List view
of the Library painter (without selecting a workspace, target, or PBL).

79

Source control operations in PowerBuilder

Creating a mapping
file for target PBLs

The Add To Source Control menu item is disabled for al objects that are
registered in source control except workspaces and targets. If you select the
Add To Source Control menu item for aworkspace or target in which all the
objectsareaready registered to source control, PowerBuilder displaysthe Add
To Source Control dialog box with an empty list of files. You cannot add
objects to your source control project that are already registered with that
project.

When you add atarget or an object (in atarget that is not under source control)
to source control, PowerBuilder creates aPBG file. A PBG file maps objects
in atarget to a particular PBL in a PowerScript or .NET target. One PBG file
is created per PBL, so there can be multiple PBG filesfor these types of target.

If aPBG file already exists for atarget PBL containing the object you are
adding to source control, PowerBuilder checks the PBG file out of source
control and adds the name of the object to the names of objects already listed
in the PBG file. It then checks the PBG file back into source control.

The PBG files are used by PowerBuilder to make sure that objects are
distributed to the correct PBL s and targets when you check the objects out (or
get the latest versions of the objects) from source control.

If your source control system requires comments on registration and check-in,
you get separate message boxes for the PBG file and the objects that you are
adding to source control. If your source control system gives you the option of
adding the same comments to all the objects you are registering, you can still
get additional message boxes for PBG files, since PBG files are checked in
separately.

Becauseit is possible for PBG filesto get out of sync, it isimportant that the
project manager monitor these files to make sure they map al objects to the
correct PBLsand contain referencesto all objectsin the source control project.
However, you cannot explicitly check in or check out PBG files through the
PowerBuilder SCC API.

For more information on modifying PBG files, see“Editing the PBG filefor a
source-controlled target” on page 99.

Checking objects out from source control

What happens on

checking out an object

80

When you check out an object, PowerBuilder:

* Locksthe object in the archive so that no one else can modify it—unless
your source control system permits multiple user checkouts

PowerBuilder Classic

CHAPTER 3 Using Source Control

Checking out multiple
objects

Multiple user checkout

Users Guide

e Copiesthe object to the directory for the target to which it belongs

¢ For aPowerScript object, compiles the object and regeneratesit in the
target PBL to which it is mapped

« Displays acheck mark icon next to the object in your System Treeand in
your Library painter to show that the object has been checked out

If you select the Check Out menu item for a PowerBuilder target that is not
aready checked out, and at |east one of the objectsin that target isavailablefor
checkout, PowerBuilder displays a dialog box that prompts you to:

e Select multiple files contained in the target
¢ Check out the target file only

If you select the multiplefile option, or if the target fileis aready checked out,
the Check Out dialog box displays the list of objects from that target that are
available for checkout. A check box next to each object in the list lets you
choose which objects you want to check out. By default, check boxes are
selected for al objects that are not currently checked out of source contral.

The Deselect All buttonin the Check Out dial og box letsyou clear all the check
boxes with a single click. When none of the objectsin thelist is selected, the
button text becomes Select All, and you can click the button to select all the
objectsin thelist.

You can also select multiple objects (without selecting atarget) in theList view
of the Library painter. The PowerBuilder SCC API does not let you check out
an object that you or someone else has already checked out or that is not yet
registered with source control. If you use multiple object selection to select an
object that isalready checked out, PowerBuilder doesnot include thisobjectin
thelist view of the Check Out dialog box.

Checking out an object from a source control system usually prevents other
users from checking in modified versions of the same object. Some source
control systems, such as SerenaVersion Manager (formerly Merant PV CS) and
MK'S Source Integrity, permit multiple user checkouts. In these systems, you
can allow shared checkouts of the same object.

By default, PowerBuilder recognizes shared checkouts from SCC providers
that support multiple user checkouts. PowerBuilder shows ared check mark as
part of acompound icon to indicate that an object is checked out to another user
in ashared (nonexclusive) mode. You can check out an object in shared mode
even though another user has already checked the object out.

81

Source control operations in PowerBuilder

Creating a source
control branch

82

Managing multiple user check-ins
If you allow multiple user checkouts, the SCC administrator should publish a

procedure that describes how to merge changes to the same object by multiple
users. Merge functionality is not automatically supported by the SCC API, so
checking in an object in shared mode might require advanced check-in features
of the source control system. Merging changes might also require using the

source control administration utility instead of the PowerBuilder user interface.

If your SCC provider permits multiple user checkouts, you can still ensure that
an item checked out by a user is exclusively reserved for that user until the
object is checked back in, but only if you add the following instruction to the
Library section of the PB.INI file:

[Library]
SccMultiCheckout=0

After you add this PB.INI setting, or if your SCC provider does not support
multiple user checkouts, you will not see the compound icons with red check
marks, and all itemswill be checked out exclusively to asingle user. For source
control systemsthat support multiple user checkouts, you can re-enable shared
checkouts by setting the SccMultiCheckout valueto 1 or -1.

If your source control system supports branching and its SCC API letsyou
check out aversion of an object that is not the most recent version in source
control, you can select the version you want in the Advanced Check Out dialog
box (that you access by clicking the Advanced button in the Check Out dialog
box). When you select an earlier version, PowerBuilder displaysamessage box
telling you it will create a branch when you check the object back in. You can
click Yesto continue checking out the object or No to leave the object unlocked
in the source control project. If thisis part of a multiple object checkout, you
can select Yes To All or No To All.

If you want just a read-only copy of the latest version of an object
Instead of checking out an object and locking it in the source control system,

you can choose to get the latest version of the object with aread-only attribute.
See “ Synchronizing objects with the source control server” on page 86.

PowerBuilder Classic

CHAPTER 3 Using Source Control

[TTo check out an object from source control:

1 Right-click the object in the System Tree or in aLibrary painter view and
select Check Out from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Check Out from the Library painter menu.

The Check Out dialog box displays the name of the object you selected.
For PowerScript objects, the object listing includes the name of the PBL
that contains the selected object.

If you selected multiple objects, the Check Out dialog box displaysthelist
of objects available for checkout. You can also display alist of available
objectswhen you select atarget filefor checkout. A check mark next to an
object in the list marks the object as assigned for checkout.

2 Make sure that the check box is selected next to the object you want to
check out, and click OK.

Checking objects in to source control

Checking in multiple
objects

Users Guide

When you finish working with an object that you checked out, you must check
it back in so other developers can useit, or you must clear the object’s
checked-out status. You cannot check in objectsthat you have not checked out.

If you do not want to use the checked-out version
Instead of checking an entry back in, you can choose not to use the checked-out

version by clearing the checked-out status of the entry. See “Clearing the
checked-out status of objects’ next.

If you select the Check In menu item for a workspace, PowerBuilder lists all
the objects in the workspace that are available for check-in. If you select the
Check In menu item for a PowerBuilder target that is currently checked out to
you, and at least one of the objectsin that target is also checked out to you,
PowerBuilder displays a dialog box that prompts you to:

e Select multiple files contained in the target

e Check inthe target file only

83

Source control operations in PowerBuilder

If you select the multiplefileoption, or if thetarget fileisnot currently checked
out to you, the Check In dialog box displays the list of objects from that target
that are available for you to check in. A check box next to each object in the
list lets you choose which objects you want to check in. By default, check
boxes are selected for all objectsthat you currently have checked out of source
control.

The Deselect All button in the Check In dialog box lets you clear al the check
boxes with a single click. When none of the objectsin the list is selected, the
button text becomes Select All, and you can click the button to select al the
objectsinthelist.

You can also select multiple objects (without selecting aworkspace or target)
intheList view of the Library painter. The PowerBuilder SCC API doesnot et
you check in an object that you have not checked out of source control. If you
use multiple object selection to select an object that is not checked out to you,
PowerBuilder does not include this object in the list view of the Check In
dialog box.

[TTo check in objects to source control:

1 Right-click the object in the System Tree or in aLibrary painter view and
select Check In from the pop-up menu
or
Select the object in aLibrary painter view and select Entry>Source
Control>Check In from the Library painter menu.

The Check In dialog box displays the name of the object you selected. If
you selected multiple objects or aworkspace, the Check In dialog box
displaysthe list of objects available for check-in. You can also display a
list of available objectswhen you select atarget file. A check mark next to
an object in the list marks the object as assigned for check-in.

2 Make sure the check box is selected next to the object you want to check
inand click OK.

Clearing the checked-out status of objects

84

Sometimes you need to clear (revert) the checked-out status of an object
without checking it back into source control. Thisis usually the caseif you
modify the object but then decide not to use the changes you have made. When
you undo acheckout on an object, PowerBuilder replaces your local copy with
the latest version of the object on the source control server. For PowerScript
and .NET targets, it compiles and regenerates the object in itstarget PBL.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Clearing the status of
multiple objects

Users Guide

If you select the Undo Check Out menu item for a PowerBuilder target that is
checked out to you, and at least one of the objectsin that target is aso checked
out to you, PowerBuilder displays a dialog box that prompts you to:

e Select multiple files contained in the target
¢ Undo the checked-out status for the target file only

If you select the multiplefileoption, or if thetarget fileisnot currently checked
out to you, the Undo Check Out dialog box displaysthelist of objectsfrom that
target that arelocked by you in source control. A check box next to each object
in the list lets you choose the objects for which you want to undo the
checked-out status. By default, check boxes are selected for al objectsthat are
currently checked out to you from source control.

You can al so select multiple objects (without selecting a target) inthe List view
of the Library painter. The PowerBuilder SCC API does not let you undo the
checked-out status of an object that you have not checked out of source control.
If you use multiple object selection to select an object that is not checked out
to you, PowerBuilder does not include this object in the list view of the Undo
Check Out dialog box.

[TTo clear the checked-out status of entries:

1 Right-click the object in the System Tree or in aLibrary painter view and
select Undo Check Out from the pop-up menu
or
Select the object in aLibrary painter view and select Entry>Source
Control>Undo Check Out from the Library painter menu.

The Undo Check Out dialog box displays the name of the object you
selected. If you selected multiple objects, the Undo Check Out dialog box
displaysthelist of objectsin the selection that are currently checked out to
you. You can also display alist of objectsthat are checked out to you when
you select atarget file.

2 Make surethat the check box is selected next to the object whose
checked-out status you want to clear, and click OK.

85

Source control operations in PowerBuilder

Synchronizing objects with the source control server

You can synchronize local copies of PowerBuilder objects with the latest
versions of these objectsin source control without checking them out from the
source control system. The objects copied to your local computer areread-only.
The newly copied PowerScript objects are then compiled into their target
PBLs.

If there are exported PowerScript filesin your local path that are marked
read-only, and you did not select the Suppress Prompts To Overwrite
Read-Only Files option, your source control system might prompt you before
attempting to overwrite these files during synchronization. If you are
synchronizing multiple objects at the same time, you can select:

* YesToAll, to overwrite al filesin your selection

* NoToAll, tocancel the synchronization for all objectsin the selection that
have writablefilesin the local path

Synchronizing an object does not lock that object on the source control server.
After you synchronize local objectsto the latest version of these objectsin
source control, other devel opers can continue to perform source control
operations on these objects.

If you want only to check whether the status of the objects has changed on the
source control server, you can use the Refresh Status menu item from the
Library painter Entry menu or System Tree pop-up menus. The Refresh Status
command runs on a background thread. If you do not use the Refresh Status
feature before getting the latest versions of workspace or target objects, then
PowerBuilder has to obtain status and out-of-sync information from the SCC
provider in real time during a GetL atestVersion call.

For more information, see “Refreshing the status of objects’ on page 87.

[TTo synchronize a local object with the latest source control version:

1 Right-click the object in the System Tree or in aLibrary painter view and
select Get Latest Version from the pop-up menu
or
Select the object in aLibrary painter view and select Entry>Source
Control>Get Latest Version from the Library painter menu.

86 PowerBuilder Classic

CHAPTER 3 Using Source Control

The Get Latest Version dialog box displays the name of the object you
selected. If you selected multiple objectsin the Library painter List view,
the Get Latest Version dialog box lists al the objects in your selection. If
you selected a workspace, the Get Latest Version dialog box lists all the
objectsreferenced in the PBG files bel onging to your workspace. You can
also display alist of available objects (from the PBG files for atarget)
when you select the Get Latest Version menu item for atarget file.

A check mark next to an object in the list assigns the object for
synchronization. By default only objectsthat are currently out of sync are
selected in thislist. You can use the Select All button to select all the
objects for synchronization. If all objects are selected, the button text
becomes Deselect All. Its function also changes, allowing you to clear al
the selections with asingle click.

2 Make surethat the check box is selected next to the object for which you
want to get the latest version, and click OK.

Refreshing the status of objects

Users Guide

PowerBuilder uses the source control connection defined for a workspace to
check periodically on the status of all objectsin the workspace. You can set the
status refresh rate for a workspace on the Source Control page of the
Workspace Properties dialog box. You can aso select the Perform Diff on
Status Update option to detect any differences between objects in your local
directories and objects on the source control server.

For more information about source control options you can set on your
workspace, see “ Setting up a connection profile” on page 69.

PowerBuilder stores status information in memory, but it does not
automatically update the source control status of an object until a System Tree
or Library painter node containing that object has been expanded and the time
since the last status update for that object exceeds the status refresh rate.

Statusinformation can still get out of sync if multiple users access the same
source control project simultaneously and you do not refresh the view of your
System Tree or Library painter. By using the Refresh Status menu item, you
can force a status update for objectsin your workspace without waiting for the
refresh rate to expire, and without having to open and close tree view nodes
containing these objects.

87

Source control operations in PowerBuilder

The Refresh Status feature runsin the background on asecondary thread. This
allowsyou to continue working in PowerBuilder whilethe operation proceeds.
When the Refresh Status command is executed, your SCC status cacheis
populated with fresh status values. This allows subsequent operations like a
target-wide synchronization (through a GetL atestVersion call) to run much
faster.

[TTo refresh the status of objects:

1 Right-click the object in the System Tree or in aLibrary painter view and
select Refresh Status from the pop-up menu
or
Select the object in aLibrary painter view and select Entry>Source
Control>Refresh Status from the Library painter menu.

If the object you selected is not aworkspace, target, or PBL file, the object
statusis refreshed and any change is made visible by a changein the
source control icon next to the object. If you selected anobjectinaLibrary
painter view, the status of this object in the System Treeis also updated.

For information about the meaning of source control iconsin
PowerBuilder, see “Viewing the status of source-controlled objects’ on

page 72.

2 If the object you selected in step 1 is aworkspace or target file, select a
radio button to indicate whether you want to refresh the status of the
selected file only or of multiple files in the workspace or target.

3 Iftheobject you selectedin step LisaPBL, or if you selected the multiple
files option in step 2, make sure that the check box is selected next to the
object or objects whose status you want to refresh, and click OK.

Status is refreshed for every object selected in the Refresh Status dialog
box. Any changein statusis made visible by achangein the source control
icon next to the objects (in the sel ected workspace, target, or PBL) that are
refreshed.

Comparing local objects with source control versions

88

The PowerBuilder SCC API letsyou compare an object in your local directory
with aversion of the object in the source control archive (or project). By
default, the comparison is made with the latest version in the archive, although
most source control systems let you compare your local object to any version
in the archive. Using this feature, you can determine what changes have been
made to an object since it was last checked into source control.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Setting up PBNative
for object
comparisons

PBNative does not have its own visual difference utility, but it does allow you
to select onethat you have already installed. You must use only a 32-bit visual
difference utility for the object comparisons. You can select any or al of the

following options when you set up the utility to work with a PBNative

repository:

Table 3-5: Object comparison options for use with PBNative

Option

Select this if

Enclosefile namesin
double quotes

Your visual difference utility does not handle spacesin
file names.

Refer to local PBL entry
as argument #1

You do not want the visual difference utility to use the
repository object as the first file in a file comparison.

Generate short (8.3) file
names

Your visual difference utility does not handle long file
names.

Generate an extra space
prior to file arguments

Your visual difference utility requires an extra space
between filesthat arelisted asargumentswhen you open
the utility from a command line. This option was added
for backward compatibility only, as an extra space was
automatically added by PowerBuilder 8.

[_ITo set up PBNative for object comparisons

Users Guide

Right-click the Workspace object in the System Tree and click the Source
Control tab in the Workspace Properties dialog box.

PBNative should be your selection for the source control system, and you
must have a project and local root directory configured. If you are
connected already to source control, you can skip the next step.

The Connect button is disabled if you are already connected to source

The PBNative Options dialog box displays.

1

2 Click Connect.
control.

3 Click Advanced.

4

Typethe path to avisua difference utility followed by the argument string
required by your utility to perform a diff (comparison) on two objects.

89

Source control operations in PowerBuilder

Using Show
Differences to
compare objects

90

5

Typically, you would add two %s parameter markersto indicate where
PowerBuilder should perform automatic file name substitution. The
following figure shows a setting used to call the Microsoft winDiff utility:

PBNative Command Options g|
Wisual Diff Ukility
Command string ko invoke visual diff utility,
Use %5 %5 as parameters for the bwo files to compare,
Cancel
i indlFFiindiFF32. exe % %

Enclose file names in double quotes
[Irefer to local PEL entry as argument #1
[Generate short (8.3) file names

|:| Generate an extra space prior to file arguments

(Optional) Select any or all of the check box optionsin the PBNative
Command Options dialog box for your object comparisons.

Click OK twice.

You are now set to use your visua difference utility to compare objectson
the local computer and the server.

You can select Show Differences from a pop-up menu or from the Library
painter menu bar. If the object you want to compare has not been added to the
source control project defined for your workspace, the Show Differences menu
item is not available.

[ITo compare a local object with the latest source control version:

1

Right-click the object in the System Tree or in a Library painter view and
select Show Differences from the pop-up menu

or

Select the object in a Library painter view and select Entry>Source
Control>Show Differences from the Library painter menu bar.

A dialog box from your source control system displays.

PBNative connections
Skip the next step if you are using avisua difference utility with

PBNative. Thedifference utility displaysthefilesdirectly or indicates that
there are no differences between the files.

PowerBuilder Classic

CHAPTER 3 Using Source Control

2 Select the source control comparison options you want and click OK.

Some source control systems support additional comparison functions.
You may need to run the source control manager for these functions. See
your source control system documentation for more information.

Displaying the source control version history

For some source control systems, the PowerBuilder SCC API letsyou show the
version control history of an object in source control. Using this feature, you
can determine what changes have been made to an object since it was first
checked into source control.

The Show History menu item is not visible if the object for which you want to
display aversion history has not been added to the source control project
defined for your workspace. It isgrayed out if your source control system does
not support this functionality through the PowerBuilder SCC API.

[TTo display the source control version history:

1 Right-click the object in the System Tree or in aLibrary painter view and
select Show History from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Show History from the Library painter menu bar.

A dialog box from your source control system displays.
2 Select the source control options you want and click OK.

Some source control systems support additional tracing and reporting
functions for objectsin their archives. You may need to run the source
control manager for these functions. See your source control system
documentation for more information.

Removing objects from source control

The PowerBuilder SCC API lets you remove objects from source control,
although for some source control systems, you may have to use the source
control manager to delete the archives for the objects you remove. You cannot
remove an object that is currently checked out from source control.

Users Guide 91

Initialization settings that affect source control

You cannot delete a source-controlled object from alocal PowerBuilder
workspace before that object has been removed from source control. Thereis
no requirement, however, that the source control archive be deleted before you
delete the object from its PowerBuilder workspace.

[To remove objects from source control:

1 Select theobjectin aLibrary painter view and select Entry>Source
Control>Remove From Source Control from the Library painter menu.

The Remove From Source Control dialog box displays the name of the
object you selected.

If you selected multiple objects or aworkspace, the Remove From Source
Control dialog box displaysthelist of objectsin your selection that are not
currently checked out from source control. You can also display alist of
available objectswhen you select the Remove From Source Control menu
item for atarget file. A check mark next to an object in the list marks the
object as assigned for removal from source control.

2 Make sure that the check box is selected next to the object you want to
remove, and click OK.

Initialization settings that affect source control

Settings for managing In addition to the SccMaxArraySize described in “ Fine-tuning performance
gggg&gﬁ:”o' for batched source control requests’ on page 76, and SccMultiCheckout

described in “Multiple user checkout” on page 81, there are other PB.INI
parameters you can add that affect source control operations.

Table 3-6: PB.INI settings for source control purposes
PB.INI parameter | Permitted values | Description
SccCOImport e full During checkout the default behavior istoimport and compileonly
the objects being checked out. You can make the compile more
inclusive by adding this parameter to the initialization file and
assigning either the “full” or “inc” valuetoit. You can use the
¢ full outofdate | “gutofdate” value to avoid unnecessary import and compile
e inc outofdate | Operations.
For afuller description of the permitted values, see Table 3-7.

* inc

* outofdate

92 PowerBuilder Classic

CHAPTER 3 Using Source Control

PB.INI parameter

Permitted values

Description

SccUClmport

e full

* inc

* outofdate

e full outofdate

* inc outofdate

When you revert acheckout, the default behavior isto refresh and
compile only those objectsin the local project path that were
originaly checked out. You can make the compile more inclusive
by adding this parameter and assigning either the “full” or “inc”
valuetoit. You can use the “ outofdate” value to avoid unnecessary
import and compile operations.

For the meaning of the permitted values, see Table 3-7.

SccGLImport

e full

* inc

When you issue a GetL atestVersion call, the default behavior isto
refresh and compile only the objectsin the request. You can make
the compile moreinclusive by adding this parameter and assigning
apermitted valueto it.

For the meaning of the permitted values, see Table 3-7.

SccRBImport

e full

* inc

When you issue a checkout, get latest version, or undo checkout
call, images of the requested objects are exported to atemporary
directory. When refreshed objectsfail to compile, adialog box asks
whether you want to continue with or cancel the operation for all
objects that fail to compile.

If you select Cancel, the older images for the objects that fail to
compile are reimported from the temporary directory to the local
project path. Whenever object images are rolled back in this
manner, you can force an incremental or full compilation of the
entire target by adding the SccRBImport parameter and assigning
apermitted value to it.

For the meaning of the permitted values, see Table 3-7.

SccMaxArraySize

nn (positive integer)

Allows you to override the 25-file limit on file names sent to the
source control server in abatched request. For more information,
see “Fine-tuning performance for batched source control
requests’ on page 76.

SccCaseSensitive

oor1 (lisdefaultfor
Telelogic Synergy, O
for all other SCC
providers)

By default, PowerBuilder uses a case sensitivity setting that is
compatiblewith the SCC provider you are using. You can override
the default setting by adding this parameter and assigning a
different value. A value of 1 meansthat object names checked into
source control are case sensitive, and avalue of 0 means that they
are not case sensitive.

SccMultiCheckout

Users Guide

oor1(lisdefaultfor
SCC providers that
support multiuser
checkouts, O for
providers that do not
support multiuser
checkout)

If your SCC provider permits multiple user checkouts, you can use
thisinitialization parameter to ensure that an item checked out by
auser isexclusively reserved for that user until the object is
checked back in. For more information, see “Multiple user
checkout” on page 81.

93

Initialization settings that affect source control

PB.INI parameter

Permitted values

Description

SccCheckoutNoL ock

Permitted values for
Import parameters

94

oor1 (lisdefaultfor
MKS Source
Integrity, O for all
other providers

Based on known defaults for the SCC provider you are using,
PowerBuilder determines whether locks are added in source
control to objects that you check out. You can override the default
setting for some SCC providers by adding this parameter and
assigning adifferent value. If the SCC provider permits checkouts
of objects without locking them, avalue of 1 means that no locks
are added for objects that you check out. A value of 0 makes sure
that locks are added for these objects.

Table 3-7 describes the effect of permitted values for the SccCOImport,
SccUCImport, SccGLImport, and SccRBImport parameters in the PB.INI
initialization file. You can also add an import parameter without assigning it a
value. This has the same effect as the default behavior during checkout, undo
checkout, get latest version, and rollback operations.

Table 3-7: Permitted values for import parameters in the PB.INI file

Permitted
value

Description

full

Forces afull build of the target after the requested source control
operation is compl eted.

For SccCOImport and SccUClmport, you can combine the “full”

value with the “ outofdate” value to reduce the number of objects

imported from thelocal project path to the target PBLsbeforeafull
rebuild. You combine the values by separating them with asingle
space, as shown in the following example: sccuCImport= full

outofdate.

For SccRBImport, if rollback fails for any reason, the build
operation is not performed.

inc

Examines the entire target for additional objectsthat are
descendants of objects or have dependencies on the objectsthat are
includedintheinitial sourcecontrol request. The dependent objects
are compiled and regenerated as part of an incremental build, along
with the objectsin theinitial request.

For SccCOImport and SccUCImport, you can combine the “inc”
value with the “outofdate” value to reduce the number of objects
imported from the local project path to the target PBLs before an
incremental rebuild. You combine the values by separating them
with a single space, as shown in the following example:
SccUCImport= inc outofdate.

For SccRBImport, if rollback fails for any reason, the build
operation is not performed.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Settings for
troubleshooting
problems with source
control

PB.INI parameter

Permitted
value Description
outofdate Compares the exported object images to the source code in target

PBLs after aninitial checkout or undo checkout operation. If the
codeinthe PBLsisidentical totheobject images, the object images
are not imported. The source code for identical PBL objectsisaso
not compiled unless you also assign “full” or “inc” to the
SccCOImport or SccUCImport parameters.

The “outofdate” valueis not available for the SccGL Import and
SccRBImport parameters. Typically GetL atestVersion cals are
made for objects that are assumed to be out of sync, in which case
the out-of-date comparison is not expected to be useful. Also,
object images that have been rolled back should always be
reimported and compiled to assure the integrity of the target PBLs.

In addition to the initialization parameters that can help with managing source
control operations, there are also parameters you can use to troubleshoot
problems with source control. These parameters should not be used in normal
operations. They should be used only for diagnosing a problem with source
control. Table 3-8 describes these parameters.

Table 3-8: PB.INI settings for troubleshooting

Permitted values

Description

SccExtensions

Oor 1 (1isdefault)

Add this parameter and set it to 0 to disable SccQueryinfoEx calls
when your source control provider supports this extension to the
SCC API. You should do this either to

* Measure performance differences between SccDiff and
SccQuerylnfoEx calls.

¢ Test for incompatibilities between PowerBuilder clients and
SCC provider DLL implementations.

For more information about SccQueryinfoEx calls, see “ Extension
to the SCC API” on page 67.

SccLogLeve

1or 3 (1isdefault)

Add this parameter and set it to 3 to enable more detailed tracing of
SCC requests and the responses from the SCC provider. Increased
tracing detail requires more file input and output, so this setting
should be used only for diagnosing problems.

SccMultithread

Users Guide

Oor 1 (1isdefault)

Add this parameter and set it to 0 to disable multithreading.
Disabling multithreading can cause significant delays when first
connecting to source control or when expanding a node in the
PowerBuilder System Tree, so this setting should be used only to
diagnose integration issues with a specific provider or to work
around aknown defect.

95

Initialization settings that affect source control

PB.INI parameter

Permitted values | Description

SccDiffStrategy

Comparison strategies

96

nn (positive integer) | Depending on the capabilities of an SCC provider, different

strategies are used for determining whether a PBL object is out of
sync with object filesin the SCC repository. By default, a
comparison ismade by version number if the SCCQueryinfoEx API
extension is supported and the SccExtensions parameter is not set
to 0. Otherwise, a provider-specific backup strategy is used for the
object comparisons.

You can override the default comparison strategy by adding the
SceDiffStrategy parameter to theinitialization fileand assigning an
appropriate value to it. For more information, see “ Comparison
strategies’ next.

By default, PowerBuilder uses the SCCQueryinfoEx APl extension command
to compare objects in target PBLs with object filesin a source control
repository.

For more information on the SCCQueryinfoEx APl extension command, see
“Extension to the SCC API” on page 67.

A backup strategy is set for SCC providers that do not support the API
extension. The default backup strategy for all SCC providers except ClearCase
and Perforce isto issue an SceDiff command. For ClearCase, the backup
strategy comparesthe PBL object with the local project path object file. For Perforce
versions earlier than 2008, the strategy for comparing differences first examines the
SCC_STATUS OUTOFDATE bit returned by the SccQueryinfo command and
then compares the PBL object with the local project page object file.

You can override the default comparison strategy by adding the
SceDiffStrategy parameter to the initialization file and assigning avalue to it
from Table 3-9. You can also add the values together to use multiple
comparison strategies, as long as those strategies are supported by your SCC
provider.

Perforce 2008 and later]]
The Perforce client behavior changed with the 2008 version. SccQueryinfo

does not return information about added objects to a Perforce 2008 depot.
Therefore, for this SCC client, it is best to perform full synchronizations from
the Perforce management utility or by using the OrcaScript scc refresh target
<full> command. You also need to add the SccDiff Strategy parameter to the
initialization file and set its bit value to 08 to make sure that the source codein
the target PBLs match the object filesin the local project path.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Table 3-9: SccDiffStrategy values for object comparison strategies

Parameter value | Object comparison strategy

02 (default) Compares by version number (SCCQueryInfoEx) — not
supported by all vendors

04 Examines the SCC_STATUS_OUTOFDATE bit from the
SccQuerylinfo command to determine which objects are out of
sync

08 Compares the source code in the target PBLs with object files
in thelocal project path

16 Uses the SceDiff command in quiet mode

Modifying source-controlled targets and objects

Objectsin targets under source control must be managed differently than the
same objectsin targets that are not under source control.

Effects of source control on object management

You must check out atarget file from source control before you can modify its
properties. If objectsin asource-controlled target are not themselvesregistered
in source control, you can add them to or delete them from the local target
without checking out the target. However, you must remove a
source-controlled object from the source control system before you can delete
the same object from thelocal copy of thetarget (whether or not thetarget itself
is under source control).

Although you can add objects to a source-controlled target without checking
out the target from source control, you cannot add existing libraries to the
library list of a source-controlled target unless the target is checked out.

For information on removing an object from source control, see “Removing
objects from source control” on page 91.

Users Guide 97

Modifying source-controlled targets and objects

Opening objects checked in to source control

Although you can open objectsin a PowerBuilder painter when they are
checked in to source control, until you check them out again, any changes you
make to those objects cannot be saved. By default, when you try to open an
object under source control, PowerBuilder provides a warning message to let
you know when the object is not checked out. You can avoid this type of
warning message by clearing the “ Suppress prompts to overwrite read-only
files” check box on the Source Control tab of the Workspace Properties dialog
box.

If you did not change the default, you can till select a check box on the first
warning message that displays. After you select the “Do not display this
message again” check box in awarning message box and click Yes, the check
box on the Source Control tab is automatically cleared. This preventswarning
messages from displaying the next time you open objectsthat are checked into
source control. Although warning messages do not display, you still cannot
save any changes you make to these objects in a PowerBuilder painter.

Copy and move operations on source-controlled objects

98

You cannot copy a source-controlled object to adestination PBL in the same
directory asthe source PBL. Generally when you work with source control,
objectswith the same name should not exist in more than one PBL in the same
directory.

Moving an object that is not under source control to a destination PBL having
a source-controlled object with the same name is permitted only when the
second object is checked out of source control.

You cannot move an object from a source PBL if the object is under source
control, even when the object has been checked out. The right way to move an
object under source control is described bel ow.

[ITo move an object under source control from one PBL to another:

1 Export the object from the first PBL.
2 Remove the object from source control.
See “Removing objects from source control” on page 91.
3 Deletethe object from the first PBL.
4 Import the object into the second PBL.

PowerBuilder Classic

CHAPTER 3 Using Source Control

5 Register the object in source control once again.

Editing the PBG file for a source-controlled target

Users Guide

PowerBuilder creates and uses PBG filesto determineif any objectspresent on
a source control server are missing from local PowerScript or .NET targets.
Up-to-date PBG files insure that the latest objectsin source control are
availableto all developerson aproject, and that the objects are associated with
anamed PBL file.

Idedlly, PBG files are not necessary. If the source control system exposes the
latest additions of objectsin aproject through its SCC interface, PowerBuilder
can obtain the list of all objects added to a project since the last status refresh.
However, many source control systems do not support this, so PowerBuilder
usesthe PBG filesto make sureit has an up-to-date list of objects under source
control.

PBG files are registered and checked in to source control separately from all
other objectsin PowerBuilder. They are automatically updated to include new
objects that are added to source control, but they can easily get out of sync
when multiple users simultaneously register objectsto (or delete objects from)
the same source control project. For example, it is possible to add an object to
source control successfully yet have the check-in of the PBG file fail because
it islocked by another user.

You cannot see the PBG filesin the System Tree or Library painter unlessyou
set the root for these views to the file system. To edit PBG files manually, you
should check them out of source control using the source control manager and
open them in atext editor. (If you are using PBNative, you can edit PBG files
directly in the server storage location, without checking them out of source
control.)

99

Migrating existing projects under source control

You can manually add objects to the PBG file for a PowerBuilder library by
including anew line for each object after the @begin oObjects line. The
following is an example of the contents of a PBG file for aPBL that is saved
to asubdirectory (targetl) of the workspace associated with the source control
project:

-

Save Format v3,0{19990112)

@beqin Libraries

"ernployess.phl" ")

@end;

@begin Cbjects

"w_ernployees_basesheet.srw" "employees.pbl;
"m_employvees_frame.srm” "employess.pbl”;
"w_ernployess_frame.srw" "employees.pbl;
"m_emplovees_sheet.srm” "employees.pbl";
"w_ernployess_sbout.srw" "employees.phl”;
"w_ernployees_toolbars.srw" "ermployees.phl”;
"n_employess_sheetmanager.sru” "employees.phl”;
"ernployess.sra" "employees.pbl";

" aranlrvooe choot! e "aranlneooc Akl

Migrating existing projects under source control

Migrating from earlier
versions of
PowerBuilder

100

There are different strategies for migrating existing source control projects
from earlier versions of PowerBuilder. To migrate a target from
PowerBuilder 8 or later, you can check the target out from source control, then
add the target to a workspace in the new version of PowerBuilder. When the
Migrate Application dialog box prompts you to migrate the librariesin the
application library list, click OK to begin the migration.

If you change the directory hierarchy for target libraries in the new version of
PowerBuilder, you should use the Existing Application target wizard to create
anew target instead of adding and migrating a PowerBuilder 8 or later target.
If you keep the old target file (PBT) in the new target path, you must give the
new target a different name or the wizard will not be ableto create anew PBT.

For information on using the Existing Application target wizard, see “Using
the Existing Application target wizard” on page 102.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Migrating from
PowerBuilder 7 or
earlier

Users Guide

When you open a PowerBuilder 8 or later workspace in the current version of
PowerBuilder, adialog box prompts you to migrate the workspace targets. If
you select the No Prompting check box and click OK, the target libraries are
migrated without additional prompting, and the Migrate Application dialog
box never displays. You can then add the migrated target objects to source
control from the new version of PowerBuilder.

For more information about migration, see “Migrating targets’ on page 169.

Removing PowerBuilder 8
If you remove PowerBuilder 8 from a computer where you have aready

installed alater version of PowerBuilder, the setup program del etes the
PBNative registry entry. Subsequently, if you want to use PBNative source
control with PowerBuilder 12.0, you must reregister PBNAT120.DLL.
Attempting to use PBNative before reregistering the DLL produces an error
message that points out the problem and the solution. You can reregister the
DLL by opening a DOS command box, changing to the
Sybase\Shared\Power Builder directory, and entering the command
REGSVR32 PBNAT120.DLL.

Removing PowerBuilder 9 or later does not remove the DLL or the registry
entry for PBNative source control.

Migrating an application from PowerBuilder 7 or earlier requires a different
approach, since workspaces and targets were introduced with PowerBuilder 8.
You need to create a new workspace and appropriate targets for any
PowerBuilder 7 (or older) objects that you are migrating.

The strategies available to you or the project manager are:
e Using the Existing Application target wizard
* Importing source control filesto anew library

To use the first strategy, you must keep a copy of the old version of
PowerBuilder—at least until you have finished migrating all your
source-controlled PBLs.

101

Migrating existing projects under source control

Using the Existing Application target wizard

Source control in early
PowerBuilder versions

Deciding on a
directory hierarchy

102

Because workspaces and targets were not available in PowerBuilder prior to
version 8, you must use the Existing Application wizard to create targets for
applications that you built with PowerBuilder 7 or earlier PowerBuilder
versions. A source control project in PowerBuilder 7 (or earlier PowerBuilder
versions) was associated with a single application.

Beginning with PowerBuilder 8, source control isassociated with aworkspace
that can have multiple targets and applications.

If you keep acopy of your old version of PowerBuilder, you can check out your
application object and al other objects from source control to awork PBL. By
checking out the objects in the older version of PowerBuilder, you make sure
that no one else makes changes to the objects before you migrate them to the
current version of PowerBuilder.

You should decide on a directory hierarchy before you migrate. PowerBuilder
7 and earlier versionsrequired you to keep all source-controlledfilesinasingle
directory. Beginning with PowerBuilder 8, you can create subdirectories to
contain each PBL in your library list. Although thisisnot required, it is useful
in that it keeps objects from different PBL s separated in source control
subprojects.

You must also decide whether to add a new target to an existing PowerBuilder
workspace or to a new workspace that you create specifically for the target.
You can then use the Existing Application target wizard to create a new target
from the local copies of your registered PBLs (making sure to select al the
supporting PBLs for your application on the Set Library Search Path page of
the wizard). When you run the wizard, PowerBuilder prompts you to migrate
the PBLs you select.

After you have run the wizard and migrated all the source-controlled PBLS,
you can define the source control connection profilefor the workspaceto point
to the old source control project if you want to maintain it, or to a new source
control project if you do not. You can then check in or add the migrated objects
to source control and delete the work PBL containing the older versions of the
objects. You do not need a separate work PBL in PowerBuilder 9 or |ater.

[_ITo migrate a source control project using the Existing Application

wizard:

1 Fromyour old version of PowerBuilder, check out your objectsto awork
PBL.

PowerBuilder Classic

CHAPTER 3 Using Source Control

Decide on anew file hierarchy for the librariesin your application library
list.

You can keep all the libraries in the same directory if you want, but it can
be advantageous to create separate subdirectories for each library in the
list. If you plan to share libraries among different targets, you should
structure the directories so that the common libraries are in the local root
path of every target that uses them.

Create a new workspace in the new version of PowerBuilder, or open an
existing workspace in the new version of PowerBuilder.

Create anew target using the Existing Application wizard.
In the wizard, point to the PBL with an Application object and add all the
helper PBLsto the library search path.

PowerBuilder prompts you to migrate the PBLs.
Click Yesto migrate each library in the path.

Create asource connection profile for the workspace that pointsto the old
source control project or to a new project.

Check in the migrated objects to source control if you are using the old
source control project, or add the migrated objectsto source control if you
are using a new source control project.

Delete the work PBL whenever you want.

Importing source control files to a new library

Users Guide

You can use your source control manager to check out all the old PowerBuilder
objects to anamed directory or folder. If you plan to use the same project to
store your migrated objects, you must make sure that the manager locks the
files you check out of the source control archive.

You can create a new target using the Application target wizard in anew or
existing workspace. The Application wizard letsyou select or nameanew PBL
fileto associate with thetarget it creates. You can use the Target property sheet
to list any additional PBL s you want to associate with the target.

103

Migrating existing projects under source control

You can then import the files that you checked out of source control,
distributing them as needed to the libraries you associated with the new target.
After importing the files, you can migrate the target by right-clicking it in the
System Tree and selecting Migrate from the target pop-up menu. You should
also do afull build of the target. After you have migrated and built the target,
you can define the connection profile for the workspace to point to the old
source control project if you want to maintain it, or to a new source control
project if you do not.

104 PowerBuilder Classic

CHAPTER 4

About this chapter

Contents

PowerDesigner Integration

PowerBuilder provides a plug-in interface that you can useto link a
PowerBuilder target to a PowerDesigner object-oriented model. This
chapter describes how to enable the plug-in and use it to generate or
reverse-engineer PowerBuilder targets and objects.

Topic Page
About PowerDesigner and the PowerDesigner plug-in 105
What isan OOM? 107
Advantages of an OOM class diagram in PowerBuilder 108
Reverse-engineering a PowerBuilder target 110
Using PowerDesigner menu itemsin PowerBuilder 112
Class diagram menu commands 113
Checking the OOM model 116
Plug-in toolbars 116

About PowerDesigner and the PowerDesigner plug-in

About PowerDesigner

Users Guide

PowerDesigner is adata modeling tool that supports several types of
models and many programming languages. The following modules are
available for data modeling in PowerDesigner:

Conceptua DataModel (CDM) to model the overall logical structure
of adata application, independent of any software or data storage
structure considerations

Physical Data Model (PDM) to model the overall physical structure
of adatabase, taking into account DBM S software or data storage
structure considerations

Object Oriented Model (OOM) to model a software system using the
Unified Modeling Language (UML) notation, which can then be
generated as objects in a supported object-oriented language such as
Java or PowerScript

105

About PowerDesigner and the PowerDesigner plug-in

About the
PowerDesigner
plug-in

Enabling the plug-in

Repository and online
Help access

106

* BusinessProcessMode (BPM) to model the means by which one or more
processes are accomplished in operating business practices

* FreeModd (FEM) to create any kind of chart diagram, in a context-free
environment

PowerBuilder includes a plug-in that provides the class diagram functionality
of the PowerDesigner OOM directly inside the PowerBuilder development
environment.

When the PowerDesigner plug-in is enabled, you can link a PowerBuilder
target with aUML classdiagram through a process call ed reverse-engineering.
You can make modifications and adjustments to the class diagram and
immediately generate those changes back to the objects in the PowerBuilder
target library.

With the plug-in, you can also create a UML class diagram from scratch (or
open an existing OOM file) and generate a PowerBuilder target using
PowerDesigner menus in the PowerBuilder devel opment environment. The
plug-in facilitates synchronization between a class diagram and the
PowerBuilder target objects that it represents.

Requirement for enabling plug-in
You must install the PowerDesigner Object Oriented Model on your computer

before you can use the PowerDesigner plug-in for PowerBuilder. For alist of
PowerDesigner versions that are compatible with PowerBuilder, see the
PowerBuilder Release Bulletin.

You enable the PowerDesigner plug-in through the Plug-in Manager. The
Plug-in Manager displays when you select Tools>Plug-in Manager from the
PowerBuilder menu. You must select the PowerDesigner item and click OK to
enable the PowerDesigner plug-in.

After you enable the plug-in, you can connect to the PowerDesigner
Repository. The Repository isatool for storing versioned documents. It helps
you manage development in amultiuser environment. As in PowerDesigner,
you can right-click on amodel in thetree view of the Local tab and select menu
itemsfor Repository operations, such as Consolidate, Update from Repository,
or Compare with Repository.

When you open a class diagram painter, the Repository menu is added to the
main PowerBuilder menu.

If you installed online Help with PowerDesigner, that Help is also available to
the plug-in.

PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration

What is an OOM?

An OOM isastructure that provides a close description of a system using
Unified Modeling Language (UML) diagrams.

A diagram isagraphical view of amodel or package, which displays object
symbols. Diagramsallow you to split the display of large models and packages
in order to focus on certain objects or subject areas. They can aso be used to
view the symbols of the same objects, displayed with different kinds of
information. With the PowerDesigner plug-in for PowerBuilder, the class
diagramisthe singletype available. A class diagram describes the structure of
model elements.

You can create several diagramsin amodel or in a package. The diagram
window usually appearswith a specialized toolbar called thetool pal ette, from
which you can select tools to create objects in your models and packages.

All diagrams have a name and graphical contents. They are projections of the
model and they represent it from different angles. They are sorted
alphabetically in the PowerDesigner Browser except for the default diagram,
whichisthefirstin thelist. Each diagram hasits own icon to help you quickly
identify its typein the Browser. Figure 4-1 shows a class diagram in the
PowerDesigner Browser.

With the PowerDesigner plug-in for PowerBuilder, you can open a
PowerDesigner OOM filein PowerBuilder, but you see only the class diagrams
saved in the file. You can also save a class diagram that you create with the
plug-in and open that file directly in PowerDesigner.

Figure 4-1: PowerDesigner Browser displaying a class diagram

‘Workspace
=-2 e
EI@ phtutor
----- E'i ClazzDiagram_1
- Classes
{3 Associations
+-{E Generalizations
-3 Dependencies
=-(28 tutor_pb

----- E'i ClazzDiagram_1

@8 Classes

-7 Generalizations
----- E'i ClazzDiagram_1

§I Local I ! Hepositoryl

For more information about the OOM, see the PowerDesigner documentation
on the Product Manuals Web site at http://www.sybase.com/support/manuals/.

Users Guide 107

Advantages of an OOM class diagram in PowerBuilder

Advantages of an OOM class diagram in PowerBuilder

Purposes of a class
diagram

About the class
diagram display

108

The ability to represent a PowerBuilder application as aclass diagram is
especialy useful for design, documentation, and maintenance purposes. In
particular, if you are inheriting responsibility for alegacy application, perhaps
onethat was created by devel operswho are no longer inyour group, converting
it to a class diagram helps you to:

» Understand how the application was developed
» Seeagraphical display of the relationship between objects

» Improve existing code and regenerate any modified classes as objectsin
your PowerBuilder application

A classdiagram displays each PowerBuilder object with a class stereotype and
miniature icon, allowing instant recognition of the type of object it represents.
PowerBuilder objectsthat can be represented as classesinclude windows, user
objects, structure, function, and proxy objects. A class diagram illustrates
dependencies between classes (that is, PowerBuilder objects), such as those
between a menu or DataWindow and a user object, and it displays controls as
inner classes.

Each class in a class diagram can be displayed as a box with three parts,
corresponding to the classtype, itsattributes, and its operations. Operationsare
the equivalent of events on aPowerBuilder object. Figure 4-2 showsadiagram
for awindow class, w_products.

Figure 4-2: Window class in a plug-in class diagram

m <duind o=
w_products
+ <<property=> tag : string = "Maintain Products”

+ <<property=> width : integer = 2830

B dw_detail
B dw_master

Before you generate a PowerBuilder application from aclass diagram, you can
check whether or not the application model iswell defined. For more
information about checking the validity of aclass diagram, see “Checking the
OOM model” on page 116.

PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration

Plug-in options

Users Guide

The Plug-in Options dialog box lets you set automatic synchronization
between a PowerBuilder target and alinked OOM. It also lets you reload the
linked OOM automatically when you open the PowerBuilder workspace
containing the linked target. When you set these options, they are set
automatically for all subsequent PowerBuilder sessions. By default, the
automatic synchronization option is set to”false” and the automatic rel oad
option is set to “true’.

Synchronization is one-way only: changes that you make in the class diagram
are not automatically reflected in the linked PowerBuilder object. The
PowerBuilder target must be generated again to update it with changesthat you
make to the OOM. If automatic synchronizationis set to “true” and the linked
class diagram is not open in the background when you make a change to a
PowerBuilder object, the class diagram opens automatically to show the class
that is abstracted from the new or modified PowerBuilder object.

Automatic synchronization is not activated for copy, move, or import
operations. It is activated for additions, deletions, and attribute modifications.

Last opened versus last linked OOM file
A PowerDesigner general option lets you open the most recently used OOM

file rather than the last linked OOM file for a specific PowerBuilder target. If
you set this value for the plug-in, you also set it for PowerDesigner and vice
versa. This option is accessible from the Tools>General Options menu of the
plug-in, which is enabled whenever aclass diagram is open. You can set this
option to “false” to avoid loading an OOM file that has nothing to do with the
PowerBuilder targets that you open.

For more information about generating PowerBuilder targets or objects from
an OOM, see “Generating PowerBuilder objects’ on page 113.

[ITo set plug-in options

1 Openaclassdiagram in the PowerBuilder painter area.

2 Select Tools>Plug-in Options from the PowerBuilder menu or select the
Plug-in Options button on the plug-in View toolbar.

The Plug-in Options dialog box displays.

3 Clickintherow for the option you want to change and select the value you
want from the drop-down list that displays in the clicked row.

4 Click OK.

109

Reverse-engineering a PowerBuilder target

Reverse-engineering a PowerBuilder target

The Reverse Engineer
dialog box

110

Reverse-engineering is the process of examining and recovering data or source
code that is then used to build or update an OOM. You can reverse-engineer
PowerBuilder objectsto obtain adiagram of the class structure of those objects.

After you enable the PowerDesigner plug-in, the Reverse Engineer menu item
isadded to pop-up menus for targets. If you select thismenu item, the Reverse
Engineer dialog box prompts you to select PowerBuilder libraries and objects
from the current target. After you click OK in this dialog box, the objects you
select are abstracted as classes in aUML class diagram. Figure 4-3 shows the
Reverse Engineer dialog box.

Figure 4-3: Reverse Engineer dialog box

Il Reverse Engineer 1ol x|

Object Criented Model File Mame:
I My Documents)SybasetPowerBuilder 12,04 TutorialiSolutions\pbtutor, oom J

ICreate a new Object Oriented Model j

= (@ C:\Documents and SettingsiusernameliMy DocumentsiSybasePowe
50 CiiDocuments and SettingsiusernameiMy DocumentsiSybaseliPy
[l C:\Documents and SettingsiusernamelMy Documents!Sybase\Pr

4] | i
OF I Cancel | Help |

When objectsin aPowerBuilder target arereverse-engineered for thefirst time,
the target is linked with a generated class diagram and OOM file. By defaullt,
the generated OOM file name has the same hame as the target file, but with an
oom extension. For example, if the PowerBuilder target name is test.pbt, then
the file test.oomis generated in the same directory as the target file.

If an OOM is aready linked with the PowerBuilder target, you can determine
how changes to PowerBuilder objects will affect the linked OOM when you
reverse-engineer the target. The options you can select from are:

* Mergewith existing Object Oriented Model (default)
* Replace existing Object Oriented Model
* Replace selected packages and classes

* Replace selected classes

PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration

Changing the OOM
file name

Users Guide

If the target is not currently linked with an OOM, the only selectionis:

Create a new Object Oriented Model

Before you create an OOM file from a PowerBuilder target through reverse
engineering, you can change the name of the file and its directory, and you can
decidewhether to overwrite or merge the contents of the OOM with an existing
OOM file.

[1ITo change the OOM file name linked to the target

1

In the Reverse Engineer dialog box for the PowerBuilder target, click the
ellipsis button next to the Object Oriented Model File Name field.

The Plug-in Attributes of Target dialog box displays.
Modify the path and name of the oompath attribute and click OK.

If you select an existing file name, the Del ete Existing Object Oriented
Model File check box in the Reverse Engineer dialog box is not grayed.

(Optional) Select areverse-engineering option from the drop-down list.

If an OOM isaready linked to the PowerBuilder target and you leave the
default selection, new packages, classes, and attributes will be merged
with existing packages, classes, and attributesin thelinked OOM file. This
meansthat other classes and attributesin the existing OOM filewill not be
overwritten or deleted when you reverse-engineer the PowerBuilder
target.

Other selections allow you to merge the packages whil e replacing sel ected
classes and their attributes; replace sel ected packages and classes without
replacing nonsel ected packages and their classes; or replace the entire
OOM file.

4 Click OK to reverse-engineer the target.

111

Using PowerDesigner menu items in PowerBuilder

Using PowerDesigner menu items in PowerBuilder

After you generate and link a PowerBuilder target to an OOM through
reverse-engineering, PowerDesigner menu items are enabled in the pop-up
menus for objects in that target as described in Table 4-1.

Table 4-1: Items added to PowerBuilder object pop-up menus after

plug-in is enabled

Object Menu item added

Target Reverse Engineer, Open Class Diagram, Plug-in Attributes

Library Open Class Diagram

Object Find in Class Diagram

The Open Class Diagram menu item opens or changes focus to the class
diagram for the selected PowerBuilder library. The Find in Class Diagram
menu item opens or changes focus to the class diagram for the library
containing the selected object, then changes focus to the corresponding class
for that object in the class diagram. These menu items cause an error message
to display if the target is not linked to an OOM.

You link an OOM to a PowerBuilder target by reverse-engineering the target
or by selecting an OOM filein the Plug-in Attributes dialog box. You can open
this dialog box from the target pop-up menu or from the Reverse Engineer
dialog box.

For more information, see “Reverse-engineering a PowerBuilder target” on
page 110.

If alinked OOM is not present in the plug-in PowerDesigner browser, selecting
the Open Class Diagram or Find in Class Diagram menu item adds the OOM
to the Local tab of the browser in addition to opening the class diagram or
finding an object in the diagram.

112 PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration

Class diagram menu commands

Main menu items

Generating
PowerBuilder objects

Users Guide

Menuitemsinthe OOM plug-ininterface also help tointegrate PowerDesigner
with PowerBuilder. The PowerDesigner menu items do not display in
PowerBuilder unless a class diagram painter has focus. The following table
lists menu items that display when a class diagram has focus.

Table 4-2: PowerDesigner menu items that display for a class diagram
Plug-in menu PowerDesigner menu items added

File The Page Setup, Print Preview, and Print Selection menu
items are added for a class diagram. The Print, Save, and
Save As menu items are used by PowerBuilder objects or
plug-in class diagrams, depending on which painter has the

focus.
Edit All items from the PowerDesigner Edit menu.
View All items from PowerDesigner View menu except the

Browser, Output, and Result List menu items. In the plug-in,
the View>Diagram>New Diagram cascading menu itemsare

visible but not enabled.
Model All items from the PowerDesigner Model menu.
Symbol All items from the PowerDesigner Symbol menu.
Language Only the Edit Current Object Language and Generate
PowerBuilder menu items.
Repository All items from the PowerDesigner Repository menu.
Tools The Check Model, Compare Model, Merge Model,

Execute Commands>Edit/Run Script, Display Preferences,
General Preferences, and Model Options menu items. Menu
items for the PowerBuilder Tools menu are not removed
when a class diagram painter has focus.

Menu items in the File, Run, Window, and Help menus remain the same
whether a PowerBuilder object painter or a plug-in class diagram has focus.

You can generate a PowerBuilder target from an OOM by selecting Generate
PowerBuilder from the OOM Language menu. The Language menu isvisible
only if aclassdiagram is displayed and has focus.

The Generate PowerBuilder menu item opens the PowerBuilder Generation
dialog box, displayed in Figure 4-4. This dialog box prompts you to select
packages and classes to generate a PowerBuilder target. All PowerBuilder
painters must be closed before you click OK to generate the PowerBuilder
target from the OOM.

113

Class diagram menu commands

Figure 4-4: PowerBuilder Generation dialog box

Il PowerBuilder Generation gl =l
PowerBuilder Target File Mame:
I Ciworklsalesorder. pbt J
ICreate a new PowerBuilder Target j

¥ Check Madsd for PowerBuilder
™| Back up PovserBuilder Libraries (FEL -= FE_)
IMain Package:

Isalesorder j

= %‘} Ciiworklsalesorder, oom
- [FA(= salesorder

OF I Cancel | Help |

If the OOM is not aready linked to an existing PowerBuilder target, you have
only one option when generating the target:

» Create anew PowerBuilder target

If changes to the OOM will affect an existing PowerBuilder target when you
regenerate the target, the PowerBuilder Generation dialog box allows you to
select one of the following options:

» Replace selected PowerBuilder objects (default)
* Replace selected PowerBuilder libraries and objects
* Replace existing PowerBuilder target

By selecting the Check Model for PowerBuilder check box, you can verify the
validity of the model. You can also select a check box to back up existing
PowerBuilder libraries before the generation. (This check box is grayed when
aPowerBuilder target is not already linked to the current OOM.) Existing
PBLsare saved in their original directories with the extension PB_. If you are
generating a PowerBuilder target for the first time, you can select which
package in the OOM should be used to generate the target application.

114 PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration

Pop-up menu items

Users Guide

The following happens when you generate selected classes or packages:

Existing PowerBuilder objectsarereplaced by the code generated from the
corresponding class

Changes to existing PowerBuilder objects are rolled back if code
generation is not successful

The Workspace tab in the PowerBuilder System Tree is automatically
refreshed after generation of PowerBuilder objects

Anincremental build istriggered to ensure the PB Target isin good
condition

Pop-up menus for the plug-in are the same as in PowerDesigner, except that
plug-in classes have additional pop-up menu items.

The pop-up menu for aclassin an OOM class diagram has a PowerBuilder
menu item with subitems linking the class diagram to a PowerBuilder target:

PowerBuilder>Open Painter

This menu item opens the object corresponding to the selected classin its
PowerBuilder painter. Double-clicking aclassin the linked class diagram
achieves the same resullt.

PowerBuilder>Find in Workspace

Thismenu item placesfocus on the corresponding PowerBuilder object in
the Workspace tab of the System Tree.

The pop-up menu for the Workspace entry in the PowerDesigner Browser view
of the plug-in includes the following menu item that is not available in
PowerDesigner:

New >PowerBuilder Object-Oriented Model

This menu item for an OOM lets you create a new object-oriented model
for PowerBuilder. After you create an OOM for PowerBuilder, you can
select Generate PowerBuilder from the Language menu to generate a
PowerBuilder target.

115

Checking the OOM model

Checking the OOM model

When you create anew OOM in the plug-in, default properties and operations
are added to the application, window, and function classes, making it easier to
design and generate PowerBuilder code.

You can use the PowerDesigner Check Model featureto verify that an OOM is
valid before generating a PowerBuilder target from the model. If you run
Check Model in the plug-in, errors are reported for the following conditions:

» Class names that do not correspond to legal PowerBuilder object names
* Morethan one Application class in the same Class Diagram

* Morethan one operation in a Function class, or an operation hame that
differs from the Function class name

* Structure classes that contain identifiers or operations
* Top-level Class Diagram contains non-Package symbols

* Thereisno syntax (in the Script or Preview tab of the Class Properties
dialog box) for an object to be generated

» Control or binary classes can be generated as inner classes only

» The Datawindow compiler cannot compile the script of a class with the
Datawindow stereotype

Plug-in toolbars

PowerBars and
PainterBars

116

The PowerDesigner View toolbar is named PowerBar2 in the plug-in and the
PowerDesigner Repository toolbar is named PowerBar3. A PowerBar is
always present by default in a PowerBuilder session, even when a plug-in
painter is not open. PainterBars display only when the current PowerBuilder
painter is a class diagram.

PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration

Table 4-3 shows the names of PowerDesigner toolbars supported by the plug-
in and their corresponding namesin the PowerBuilder user interface.

Table 4-3: Plug-in names for PowerDesigner toolbars

Plug-in toolbar | Corresponding PowerDesigner toolbar
PainterBarl Standard

PainterBar2 Diagram

PainterBar3 Palette

PainterBar4 PowerBuilder

PowerBar2 View

PowerBar3 Repository

Figure 4-5 shows the Pal ette toolbar in the plug-in. Other PowerDesigner
toolbars are not currently supported by the PowerDesigner plug-in.

Figure 4-5: PowerDesigner palette toolbar in the plug-in
o @ @ @

Grabber ZoomIn Zoom Out penDingra Froperties

X [B2 2 & 5 %

Delete Package Class Interface eneralizatic ssociatior hagragatio

erfan
n Ry % 9

@ S
fompositio Jependenct Realization Inner Link Fils Mot: cnded Dep
= @© N~ N O o O
Title Text Line Are Rectangle Ellipse nded Recta
~ G
Palyline Polygon
Toolbar differences When you add classes to the class diagram using the plug-in’s PainterBar4

(PowerBuilder) toolbar, default properties are automatically assigned to the
new classes. If you add the same classes using the PowerBuilder toolbar in
PowerDesigner, default properties are not assigned.

The plug-in’s PowerBar2 (View) toolbar has an additional toolbar button that
opens the Plug-in Options dialog box. These options are available for the
plug-in, but not for PowerDesigner. You can a so access the Plug-in Options
dialog box from the Tools>Plug-in Options menu when a class diagram has
focus.

Users Guide 117

Plug-in toolbars

118 PowerBuilder Classic

PART 2 Working with Targets

This part describes how to work with targets in painters,
how to set properties for an application, and how to
manage PowerBuilder libraries.

CHAPTER 5

About this chapter

Contents

About targets

Users Guide

Working with Targets

This chapter describes working with application, component, and .NET
targets in the development environment. For more detailed information
about .NET targets, see Deploying Applications and Componentsto .NET.

Topic Page
About targets 121
Working in painters 122
About the Application painter 129
Specifying application properties 129
Writing application-level scripts 133
Specifying target properties 135
Looking at an application’s structure 138
Working with objects 140
Using the Source editor 146

A target can be used to create:

An executable application A collection of PowerBuilder windows
that perform related activities and that you deliver to users.

An executable application can be atraditional client/server
application that accesses a database server or an application that acts
asaclient in adistributed application and requests services from a
server application.

A server component A component containing one or more custom
class user objects that have methods to provide the required business
logic and the characteristics needed for deployment to a distributed
application server such as EA Server, JBoss, WebSphere, or

WebL ogic.

121

Working in painters

The Application object

* A .NET Windows Forms or Web Forms application, assembly, or
Web service An application or custom class user object to be deployed

to the .NET Framework.

Thefirst step in creating a new application or component is to use a Target
wizard, described in Chapter 1, “Working with PowerBuilder.”

Depending on the type of target you choose to create, the target can include
only an Application object or it can include additional objects. If the target
requires connection to a server or a SQL database, the Template Application
wizard also creates a Connection object.

All application, component, and .NET targetsinclude an Application object. It
isadiscrete object that is saved in a PowerBuilder library, just like awindow,
menu, function, or DataWindow object. When a user runs the application, the
scripts you write for events are triggered in the Application object.

When you open an Application object in PowerBuilder, you enter the
Application painter.

After you create the new target, you can open the Application object and work
inthe Application painter to define application-level properties (such aswhich
fonts are used by default for text) and application-level behavior (such aswhat
processing should occur when the application begins and ends).

Working in painters

Opening painters

Painters that edit
objects

122

In PowerBuilder, you edit objects such as applications, windows, menus,
Datawindow objects, and user objects in painters. In addition to painters that
edit objects, other painters such asthe Library painter and the Database painter
provide you with the ability to work with libraries and databases.

There are several waysto open painters that edit objects:

From here You can

PowerBar Click New or Inherit (to create new objects) or Open (to open
existing objects)

Library painter Double-click an object or select Edit from the object’s pop-up
menu

PowerBuilder Classic

CHAPTER 5 Working with Targets

Other painters

Painter summary

Users Guide

From here You can

System Tree Double-click an object or select Edit from the object’s pop-up
menu

Browser Select edit from an object’s pop-up menu

Most other painters are accessible from the New dialog box. Some are also
available on the PowerBar and from the Tools menu.

Select Target for Open

You may see the Select Target for Open dialog box if you usethe same PBL in
morethan onetarget. When you open an object inaPBL that isused in multiple
targets, PowerBuilder needs to set global properties for the specific target you
areworking on. If you open the object from the Workspace page when the root
is not set to the current workspace, PowerBuilder asks you which target you
want to openitin. A similar dialog box displays if you select Inherit,
Run/Preview, Regenerate, Print, or Search.

The PowerBuilder painters are:

Painter What you do

Application painter Specify application-level properties and scripts.

Database painter Maintain databases, control user access to databases,
manipulate data in databases, and create tables.

DataWindow painter Build intelligent objects called DatawWindow objects that

present information from the database.

Data Pipeline painter

Transfer data from one data source to another and save a
pipeline object for reuse.

Function painter

Build global functions to perform processing specific to
your application.

Library painter

Manage libraries, create anew library, and build dynamic
libraries.

Menu painter Build menus to be used in windows.

Project painter Create executable files, dynamic libraries, components,
and proxies.

Query painter Graphically define and save SQL SELECT statements for

reuse with DataWindow objects and pipelines.

SQL Select painter

Graphically define SQL SELECT statements for
DataWindow objects and pipelines.

123

Working in painters

Painter features

Painters that edit
objects

Other painters

Painter What you do

Structure painter Define global structures (groups of variables) for usein
your application.

User Object painter Build custom visual objects that you can save and use

(visudl) repeatedly in your application. A visual user object isa
reusable control or set of controls that has a certain
behavior.

User Object painter Build custom nonvisual objects that you can save and use

(nonvisual) repeatedly in your application. A nonvisual user object lets
you reuse a set of business rules or other processing that
acts as aunit but has no visual component.

Window painter Build the windows that will be used in the application.

Most painters that edit PowerBuilder objects have these features:

Feature Notes

Painter window with views | See“Viewsin paintersthat edit objects’ on page
124.

Unlimited undo/redo Undo and redo apply to all changes.

Drag-and-drop operations Most drag-and-drop operations change context or
copy objects.

To-Do List support When you areworking in apainter, alinked itemyou

add to the To-Do list can take you to the specific
location. See “Using the To-Do List” on page 30.
Save needed indicator When you make achange, PowerBuilder displaysan
asterisk after the object’s namein the painter’s Title
bar to remind you that the object needs to be saved.

Most of the paintersthat do not edit PowerBuilder objectshaveviewsand some
drag-and-drop operations.

Views in painters that edit objects

124

Each painter has a View menu that you use for opening views. The views you
can open depend on the painter you are working in. Every painter has adefault
arrangement of views. You can rearrange these views, choose to show or hide
views, and save arrangements that suit your working style. See “Using views
in painters’ on page 41.

PowerBuilder Classic

CHAPTER 5 Working with Targets

Layout view

Properties view

Users Guide

Many views are shared by some painters, but some views are specificto a
single painter. For example, the Layout, Properties, and Control List views are
shared by the Window, Visual User Object, and Application painters, but the
Design, Column Specifications, Data, Preview, Export/Import Template for
XML, and Export Templatefor XHTML viewsare specific to the Datawindow
painter. The WY SIWY G Menu and Tree Menu views are specific to the Menu
painter.

Thefollowing sections describe the viewsyou seein many painters. Viewsthat
are specific to asingle object type are described in the chapter for that object.

The Layout view shows a representation of the object and its controls. It is
where you place controls on an object and design the layout and appearance of
the object.

I =] m] .S
A
Sales Order ID: Order D ate:|00/00/00 Financial Co
Customer: | Sales Rep:

Fiegion: w

Product Ship Date Quantity Unit Price Total
00/00./00

00/00./00 ™

< ¥
Lavout 4close aEvent List 3Function List 3Declare Instance Variables

If the Properties view is displayed and you select a control in the Layout view
or the Control List view, the propertiesfor that control display inthe Properties
view. If you select several controlsinthe Layout view or the Control List view,
the properties common to the selected controls display in the Properties view.

The Properties view displays propertiesfor the object itself or for the currently
selected controls or nonvisual objectsin the object. You can see and changethe
values of propertiesin this view.

order inhericem] £3

General | Seroll | Tookbar | Other

Title
Add Sales Order
Tag

Menuhlame

Yisible
Enabled

ControlMenu
MaxBox
MinBox

F=lem oo

Properties AControl Lisk aMon-Yisual Object Lisk

v

125

Working in painters

Script view

126

The Propertiesview dynamically changeswhen you change sel ected objectsor
controlsin the Layout, Control List, and Non-Visual Object List views.

If you select several controlsin the Layout view or the Control List view, the
Properties view says group selected in the title bar and displays the properties
common to the selected controls.

In the Properties view pop-up menu, you can select Labels On Top or Labels
On Left to specify where the labels for the properties display. For help on
properties, select Help from the pop-up menu.

If the Properties view is displayed and you select a nonvisual object in the
Non-Visual Object List view, the propertiesfor that nonvisual object display in
the Properties view. If you select several nonvisual objects in the Non-Visual
Object List view, the properties common to the selected nonvisual objects
display in the Properties view.

The Script view iswhere you edit the scripts for events and functions, define
and modify user events and functions, declare variables and external functions,
and view the scripts for ancestor objects.

[#®5cript - usvent_dberr_message For u_dwstandard returns (Ancestor Script - Read Only) [m]

dw_master v || Bluevent_dberr_message (lon + || 2 u_dwstanc ~ | BN &
l* Event profile A
Marme: uevent_dberr_message
Applies to: u_dhwstandard
Kind: User

Processing: See below
*/
B e e
It Overvin "

i I b
3 »

Layout yuevent_dberr_message AEvent List jFunction List aDeclare Instance Variables

You can open the default script for an object or control by double-clickingitin
the System Tree or the Layout, Control List, or Non-Visual Object List views,
and you can insert the name of an object, control, property, or functionin a
script by dragging it from the System Tree.

For information about the Script view, see Chapter 7, “Writing Scripts.”

PowerBuilder Classic

CHAPTER 5 Working with Targets

Control List view

Event List view

Non-Visual Object List
view

Users Guide

The Control List view liststhe visual controls on the object. You can click the
Control column to sort the controls by control name or by hierarchy.

[Contral List =] I
Contral Ancestor
[EElch_cancel commandbutton
[EEch_ok commandbutton
q:lsIEJjassword singlelineedit
q:lsle_userid singlelineedit

A st_password skatickext

A st_userid skatickext

A st_welcome skatickext

& p_sports picture

w_welcome window

£ >

If you select one or more controlsin the Control List view, the controlsare also
selected in the Layout view. Selecting a control changes the Properties view
and double-clicking a control changes the Script view.

The Event List view displays the full event prototype of both the default and
user-defined events mapped to an object. Iconsidentify whether an event hasa
script, is a descendent event with a script, or is a descendent event with an
ancestor script and a script of its own.

—
[Event List

Blclose () returns long [pbrm_close] ~
Bopen () returns long [pbrm_open]
12lue_delete {) returns {none)
1=lue_insert {) returns {none)
Blue_postopen (3 returns (none)
1=lue_retrieve {) returns {none)
12lue_update ¢) returns {none)
activate {3 returns long [pb_activate]
clicked { unsignedlong flags, integer xpos, integer ypos 1 returns long [pbm_lbuttonclk]
closequery () returns long [pbm_closequery]
deactivate {) returns long [pbm_deactivate]
doubleclicked { unsignedlong flags, integer xpos, integer vpos 3 returns long [pbm_lbutt:
dragdrop dragobject source 3 returns long [pbr_dragdrop] w

< *

The Non-Visua Object List view isalist of nonvisual objects that have been
inserted in an Application object, window, or user object of any type. You can
sort controls by control name or ancestor.

Contral Ancestor

8 pipeline_1 pipeline
oleobject_1 oleobject
8 datastare_1 datastore
< ¥

127

Working in painters

Function List view

Structure List view

Structure view

128

The Function List view lists the system-defined functions and the object-level
functions you defined for the object. Icons identify whether afunction has a
script, is a descendant of afunction with a script, or is a descendant of a
function with an ancestor script and script of its own.

—
[Function List
BIf_center () returns inkeger ~
1zl of _refreshbars {) returns {none)
1zl of _resizebars {) returns {none)
1zl of _resizepanels {) returns {none)
arrangesheets { arrangetypes £ returns integer
changemenu § ref menum) returns integer
changemenu § ref menu m, integer w) returns integer
classname {3 returns string
closechannel { long b) returns integer
closeuserobject { dragobject o) returns integer

emmvmrnnbe § cbvimn = leme = enbwee ke

< >

Note that although the half-colored icon identifies the myfunc user-defined
function as having both an ancestor script and ascript of itsown, for afunction
this means that the function is overridden. Thisis different from the meaning
of ahalf-colored iconin the Event List view.

The Structure List view lists the object-level structures defined for the object.

[==I

[Structure List
B8 contact
Bf scores

| Layout yopen AEvent Lisk yFunction List yDeclare Instance Variables hStructure List

If you double-click a structure in the Structure List view, the structure's
definition displaysin the Structure view.

The Structure view iswhere you edit the definition of object-level structuresin
the Window, Menu, and User Object painters.

Tvpe ‘ariable Mame

skring w s_client

string w s_clientnotes

string W S_Server

string W s_servernokes
= |skring L2

PowerBuilder Classic

CHAPTER 5 Working with Targets

About the Application painter

Views in the
Application painter

Application painter
layout

Inserting nonvisual
objects

The Application painter has several views where you specify properties for
your application and how it behaves at start-up. Because the Application
painter isan environment for editing anonvisual object of type application, the
Application painter |ooks like the User Object painter for nonvisual user
objects and it has the same views. For details about the views, how you use
them, and how they are related, see “Viewsin painters that edit objects’ on
page 124.

Most of your work in the Application painter isdonein the Propertiesview and
the Script view to set application-level properties and code application-level
scripts. For information about specifying properties, see “ Specifying
application properties’ next. For information about coding in the Script view,
see Chapter 7, “Writing Scripts.”

You can automatically create nonvisual objectsin an application by inserting a
nonvisual object in the Application object. You do thisif you want the services
of anonvisual object available to your application. The nonvisual object you
insert can be a custom class or standard class user object.

You insert anonvisual object in an Application object in the same way you
insert one in a user object. For more information, see “Using class user
objects’ on page 386.

Specifying application properties

Users Guide

You specify application propertiesin the Application painter’s Propertiesview.

[—To specify application properties:

1 Inthe Application painter, if the Properties view is not open, select
View>Properties from the menu bar.

With the exception of the AppName property, the properties on the
General and Toolbar tab pages can be modified in the Properties view and
in scripts.

If you need help specifying propertiesin the Properties view, right-click
on the background of the Properties view and select Help from the pop-up
menu.

129

Specifying application properties

2 Select the General or Toolbar tab page, or, on the General tab page, click
the Additional Properties button to display the Application properties
dialog box.

The additiona properties on the Application properties dialog box can be
modified only in this dialog box. They cannot be modified in scripts.

3 Specify the properties:

To specify this Use this tab page
Display name General tab page
Application has toolbar text and toolbar tips Toolbar tab page
Default font for static text asit appearsin windows, Additional Properties
user objects, and DataWindow objects (Text Font)

Default font for data retrieved in a DataWindow object | Additional Properties
(Column Font)

Default font for column headersin tabular and grid Additional Properties

Datawindow objects (Header Font)

Default font for column labelsin freeform Additional Properties

DataWindow objects (Label Font)

Application icon Additional Properties
(Icon)

Global objectsfor the application Additional Properties
(Variable Types)

These sections have information about how you specify the following
application properties in the Application painter:

» “Specifying default text properties’ on page 130
» “Specifying anicon” on page 132
» “Specifying default global objects’ on page 132

Specifying default text properties

130

You probably want to establish astandard ook for the text in your application.
There are four kinds of text whose properties you can specify in the
Application painter: text, header, column, and label.

PowerBuilder provides default settings for the font, size, and style for each of
these and a default color for text and the background. You can change these
settings for an application in the Application painter and override the settings
for awindow, user object, or DataWindow object.

PowerBuilder Classic

CHAPTER 5 Working with Targets

Users Guide

Properties set in the Database painter override application properties
If extended attributes have been set for a database column in the Database

painter or Table painter, those font specifications override the fonts specified
in the Application painter.

[_ITo change the text defaults for an application:

1

In the Properties view, click Additional Properties and select one of the
following:

Text Font tab
Header Font tab
Column Font tab
Label Font tab

The tab you choose displays the current settings for the font, size, style,
and color. The text in the Sample box illustrates text with the current
settings.

Review the settings and make any necessary changes:
e To change the font, select afont from the Font list.

e Tochangethe size, select asize from the Sizelist or type avalid size
inthelist.

* Tochangethestyle, select astyle (Regular, Italic, Bold, or Bold Italic)
from the Font styles list.

* Tochangefont effects, select one or more from the Effects group box
(Strikeout and Underline).

¢ Tochangethetext color, select acolor from the Text Color list. (You
do not specify colors for data, headings, and labels here; instead, you
do that in the Datawindow painter.)

¢ To change the background color, select a color from the Background
list.

Using custom colors
When specifying atext color, you can choose a custom color. You can

define custom colorsin several painters, including the Window painter or
Datawindow painter.

When you have made all the changes, click OK.

131

Specifying application properties

Specifying an icon

Users can minimize your application at runtime. If you specify aniconin the
application painter, the icon will display when the application is minimized.

[_ITo associate an icon with an application:
1 Inthe Propertiesview, click Additional Properties and select the Icon tab.

2 Specify afile containing an icon (an 1CO file).

The button displays below the Browse button.

3 Click OK to associate the icon with the application.

Specifying default global objects
PowerBuilder provides five built-in global objects that are predefined in all

132

applications.
Global object | Description
SQLCA Transaction object, used to communicate with your database
SQLDA DynamicDescriptionArea, used in dynamic SQL
SQLSA DynamicStagingArea, used in dynamic SQL
Error Used to report errors during execution
Message Used to process messages that are not PowerBuilder-defined

events and to pass parameters between windows

You can create your own versions of these objects by creating a standard class
user object inherited from one of the built-in global objects. You can add
instance variables and functions to enhance the behavior of the global objects.

For more information, see Chapter 15, “Working with User Objects.”

After you do this, you can specify that you want to use your version of the
object in your application as the default, instead of the built-in version.

[_TTo specify the default global objects:
1 InthePropertiesview, click Additional Properties and select the Variable

Typestab.

The Variable Types property page displays.

2 Specify the standard class user object you defined in the corresponding

field.

PowerBuilder Classic

CHAPTER 5 Working with Targets

For example, if you defined a user object named mytrans that isinherited
from the built-in Transaction object, type mytrans in the box
corresponding to SQLCA.

Application g|

Text Font Column Font He:ader Font
Label Font Ican Variable Types

SQLCA:

vyt ans|

SQLDA:

dynamicdescriptionarea

SQL3A:

dynamicstagingarea

Error:

errar

Message:

message
[OF] [Cancel] [Apply] [Help

3 Click OK.

When you run your application, it will use the specified standard class user
objects as the default objects instead of the built-in globa objects.

Writing application-level scripts

When auser runs an application, an Open event istriggered in the Application
object. The script you write for the Open event initiates the activity in the
application. Typically it sets up the environment and opens the initial window.
For a server component, there may be no application-level scripts.

When auser ends an application, a Close event istriggered in the Application
object. The script you write for the Close event usually does al the cleanup
required, such as closing a database or writing a preferencesfile.

If there are serious errors during execution, a SystemError event istriggered in
the Application object.

Users Guide 133

Writing application-level scripts

Batch applications
If your application performs only batch processing, all processing takes place
in the script for the application Open event.

Table 5-1 lists all events that can occur in the Application object. The only
event that requires a script is Open.

Table 5-1: Events in the Application object

Event Occurs when
Open The user starts the application.
Close Theuser closestheapplication. Typically, youwriteascript for

this event that shuts everything down (such as closing the
database connection).

SystemError A serious error occurs at runtime (such as trying to open a
nonexistent window). If thereis no script for this event,
PowerBuilder displays a message box with the PowerBuilder
error number and message text. If thereis ascript,
PowerBuilder executes the script.

For more about error handling, see “Handling errors at
runtime” on page 910.

Idle The Idle PowerScript function has been called and the
specified number of seconds has elapsed with no mouse or
keyboard activity.

Setting application properties in scripts

134

The Application object has several properties that specify application-level
properties. For example, the property ToolbarText specifies whether text
displays on toolbarsin an MDI application.

You can reference these properties in any script in the application using this
syntax:

AppName.property

For example, to specify that text displays on toolbars in the Test application,
code thisin a script:

Test.ToolbarText = TRUE

If the script isin the Application object itself, you do not need to qualify the
property name with the application name.

PowerBuilder Classic

CHAPTER 5 Working with Targets

Application name cannot be changed
The name of an application is one of the Application object’s properties, but

you cannot change it.

For acomplete list of the properties of the Application object, see Objects and
Contrals.

Specifying target properties

To set propertiesfor atarget, right-click thetarget in the System Tree and select
Properties from the pop-up menu.

Close all painters
Thetab pagesin thetarget properties dialog box aredisabled if any paintersare

open.

All target types have Library List and Deploy tabs. If there is more than one
project in thetarget, you can use the Deploy tab page to specify which projects
should be deployed and in which order. For more information about setting
deploy properties for workspaces and targets, see “Building workspaces’ on
page 26.

Application server and EA Server component targets and .NET targets have a
Run tab, where you sel ect the project to be used for running and debugging the
target. .NET targets also have a .NET Assemblies tab that you use to import
.NET assembliesinto the target.

Specifying the target’s library search path

Users Guide

The objectsyou createin painters are stored in PowerBuilder libraries (PBLS).
You can use objectsfromonelibrary or multiplelibrariesin atarget. You define
each library the target uses in the library search path.

PowerBuilder usesthe search path to find referenced objects at runtime. When
anew object isreferenced, PowerBuilder looks through the librariesin the
order in which they are specified in the library search path until it finds the
object.

135

Specifying target properties

Onthe Library List tab page of the Target Properties dialog box, you can
modify the libraries associated with the current target.

[TTo specify the target’s library search path:

1 Inthe Workspace tab of the System Tree, right-click on the target
containing your application and select Library List from the pop-up menu.

The Target Properties dialog box displays the Library List tab page. The
libraries currently included in the library search path are displayed in the
list.

2 Do oneof the following:

* Enter the name of each library you want to include in the Library
Search Path list, separating the names with semicolons.

» Usethe Browse button to include other libraries in your search path.

You must specify libraries using an absolute path. To change the order of
libraries in the search path, use the pop-up menu to copy, cut, and paste
libraries.

Make sure the order is correct
When you select multiple libraries from the Select Library dialog box

using Shift+click or Ctrl+click, the first library you select appearslast in
the Library Search Path list and will be the last library searched.

To deletealibrary from the search path, select the library inthelist and use
the pop-up menu or press Delete.

3 Click OK.
PowerBuilder updates the search path for the target.

Where PowerBuilder maintains the library search path
PowerBuilder storesyour target’s library search path in the target (.pbt) filein

aline beginning with LibList; for example:

LibList "pbtutor.pbl;tutor pb.pbl";

136 PowerBuilder Classic

CHAPTER 5 Working with Targets

Importing .NET assemblies

System Tree display

Users Guide

You can import .NET assembliesinto .NET targetsfrom the .NET Assemblies
page in the Properties dialog box for the target. (Right-click on the target and
select .NET Assemblies from the pop-up menu.)

Click the Browse button to open the Browse for a.NET Assembly dialog box,
from which you can browseto import private assemblieswith the.dll, .tlb, .olb,
.0cx, or .exe extension. To import an assembly, select it and click Open. To
import multiple assemblies, you must select and import them one at atime.

Click the Add button to open the Import .NET Assembly dialog box, from
which you can import a shared assembly into your target. Assemblies must
have a strong name. A strong name includes the assembly’sidentity aswell as
apublickey and adigital signature. For moreinformation about assembliesand
strong names, see the Microsoft library at http://msdn2.microsoft.com/en-
us/library/wd40t7ad.aspx.

To import an assembly, select it and click OK. To import multiple assemblies,
you must select and import them one at atime.

You can also usethe Import .NET Assembly dial og box to import recently used
assemblies.

The System Tree shows the classes, methods, structures, and enumerationsfor
C# assemblies that you import into your .NET targets. However, a
language-related limitation affecting managed C++ assemblies prevents the
System Tree from displaying members of classes, structures, and enumeration
types. It aso causes managed C++ classes to display as structures.

By default, the full name of each classin an assembly is displayed in the
System Tree. If you prefer to show only the final name, add the following line
to the [PB] section of your pb.ini file:

SystemTree DotNetFullName=0

For example, with this setting the Microsoft.SqglServer.Server.DataAccessKind
classin System.Data.dll displays as DataAccessKind. You can right-click the
classand select Properties from the pop-up menu to display thefull class name.

137

Looking at an application’s structure

Looking at an application’s structure

If you are working with an application that references one or more objectsin
an application-level script, you can look at the application’s structure in the

Browser.

[—TTo display the application's structure:
1 Click the Browser button on the PowerBar.

2 Inthe Browser, select the Uses tab page and select Expand All from the

Application object’s pop-up menu.

PowerBuilder expands the display to show all the global objects that are
referenced in a script for the Application object. You can expand the

display further as needed.

Which objects are displayed

The Browser’s Uses tab page shows global objects that are referenced in your
application. It shows the same types of objects that you can seein the Library
painter. It does not show entities that are defined within other objects, such as

controls and object-level functions.

=IO x|
Target: I (@) pbkutor (C:\Documents and Settingsiusernameliy DUcuments\Sybase\PuwerBuiIderﬂ
Application I Drakawindow I Window I Menu I User Object I Function I Proxy I
Syskem I Enumerated I Struckure I Datatype I OLE Uses

% n_pbtutor_connectservice

=~ w_phbtutar_frame
El 8 _pbtutor_sheestmanager
w_pbtutor_basesheek
= m_pbtutor_frame
_pbtutor_Frame
wi_pbtuatar_toolbars

- w_pbtutor_abaout
1 w_welcome
H 8 rn_pbtutor_connectservice

Which references are displayed

The Browser displays the following types of references when the Application

object is expanded.

138

PowerBuilder Classic

CHAPTER 5 Working with Targets

Obijects referenced in
painters

Obijects directly
referenced in scripts

These are examples of objects referenced in painters:

If amenu is associated with awindow in the Window painter, the menu
displays when the window is expanded.

If aDatawindow object is associated with a Datawindow control in the
Window painter, the DataWindow object displays when the window is
expanded.

If awindow contains a custom user object that includes another user
object, the custom user object displayswhen the window is expanded, and
the other user object displays when the custom user object is expanded.

These are examples of objects referenced in scripts:

If awindow script contains the following statement, w_continue displays
when the window is expanded:

Open (w_continue)

Which referenced windows display in the Browser
Windows are considered referenced only when they are opened from

within ascript. A use of another window’s property or instance variable
will not cause the Browser to display the other window as a reference of
the window containing the script.

If amenu item script refers to the global function f_calc, f_calc displays
when the menu is expanded:

f calc(Enteredvalue)

If awindow uses a pop-up menu through the following statements, m_new
displays when the window is expanded:

m_new mymenu
mymenu = create m _new
mymenu.m_file.PopMenu (PointerX (), PointerY())

Which references are not displayed
The Browser does not display the following types of references.

Obijects referenced
through instance
variables or properties

Users Guide

These are examples of objects referenced through instance variables or
properties:

If w_go hasthis statement (and no other statement referencing w_emp),
w_emp does not display as areference for w_go:

w_emp.Title = "Managers"

139

Working with objects

Objects referenced These are examples of objects referenced dynamically through string

dynamically through variables;
string variables '

« If awindow script hasthefollowing statements, the window w_go doesnot
display when the window is expanded. The window w_go is named only
inastring:

window mywin
string winname = "w_go"
Open (mywin, winname)

* If theDatawindow object d_emp isassociated with a DataWindow control
dynamically through the following statement, d_emp does not display
when the window containing the DatawWindow control is expanded:

dw_info.DataObject = "d_emp"

Working with objects

In targets, you can:

* Create new objects

» Create new objects using inheritance
* Open existing objects

* Run or preview objects

After you create or open an object, the object displaysin its painter and you
work on it there.

Creating new objects
To create new objects, you use the New dialog box.

[To create a new object:
1 Do oneof thefollowing:

e Click the New button in the PowerBar.

140 PowerBuilder Classic

CHAPTER 5 Working with Targets

¢ Select File>New from the menu bar.

¢ OntheWorkspace tab of the System Tree, right-click on aworkspace
or target name and select New from the pop-up menu.

2 Inthe New dialog box, select the appropriate tab page for the object you
want to create.

You use icons on the PB Object tab page for creating new user objects,
windows, menus, structures, and functions.

3 Select aniconand click OK.

Creating new objects using inheritance

One of the most powerful features of PowerBuilder isinheritance. With
inheritance, you can create a new window, user object, or menu (a descendent
object) from an existing object (the ancestor object).

[To create a new object by inheriting it from an existing object:

1 Click the Inherit button in the PowerBar, or select File>Inherit from the
menu bar.

2 Inthe Inherit From Object dialog box, select the object type (menu, user
object, or window) from the Object Type drop-down list. Then select the
target aswell asthelibrary or libraries you want to look in. Finally, select
the object from which you want to inherit the new object.

“.- Inherit from Object g|
Target: (&) pbbutor (C:\Documents and SettingsiajaiMy Doc +
Libraties: C ments and Setkings)ajaliy D

Joc
siajaiMy Documents!Syba

Users Guide

Object

8 w_master

8 w_cusk_pck

omers

_detail_ancestar

Comments

Customer sheet window inheriting From w_master_detail,..
Mew ancestor basesheet for the w_customers and w_pr...

[w_pbtutor_about

[w_pbtutor_basesheet
[w_pbtutor_Frame

[w_pbtutor_toolbars
[w_products

1 w_welcome

Generated MDT About Box

Generated MDI Base Sheet Window

Generated MDI Frame

Generated MDI Toolbar Configuration

Product sheet window inheriting From w_master_detail_. ..
This is the login window, It requires the application user ...

Object Mame:

w_customers

Objects of Type: | 5 windows

o]

v Cancel

Help

K

141

Working with objects

Displaying objects from many libraries
To find an object more easily, you can select more than one library in the

Librarieslist. Use Ctrl+click to select additional libraries and Shift+click
to select arange.

3 Click OK.

The new abject, which is a descendant of the object you chose to inherit
from, opensin the appropriate painter.

For more information about inheritance, see Chapter 13, “Understanding
Inheritance.”

Naming conventions

Object naming
conventions

142

Asyou use PowerBuilder to develop your application, you create many
different components that require names. These components include objects
such aswindows and menus, controlsthat go into your windows, and variables
for your event and function scripts.

You should devise a set of naming conventions and follow them throughout
your project. When you are working in ateam, thisis critical to enforcing
consistency and enabling othersto understand your code. This section provides
tables of common naming conventions. PowerBuilder does not require you to
use these conventions, but they are followed in many PowerBuilder books and
examples.

All identifiersin PowerBuilder can be up to 255 characterslong. Thefirst few
charactersaretypically used to specify aprefix that identifiesthe kind of object
or variable, followed by an underscore character, followed by a string of
characters that uniquely describes this particular object or variable.

Table 5-2 shows common prefixes for objects that you create in PowerBuilder.

Table 5-2: Common prefixes for objects

Prefix Description

w_ Window

m_ Menu

d_ Datawindow

pipe_ Data Pipeline

a_ Query

n_or Standard class user object, where standardobject represents
n_standardobject_ the type of object; for example, n_trans

PowerBuilder Classic

CHAPTER 5 Working with Targets

Variable naming
conventions

Users Guide

Prefix Description
n_orn_cst Custom class user object
u_or Standard visual user object, where standardobject

u_standardobject_

represents the type of object; for example, u_cb

u

Custom visual user object

f

Global function

of

Object-level function

S_

Global structure

str_

Object-leve structure

ue_

User event

The prefix for variablestypically combines aletter that represents the scope of
the variable and aletter or letters that represent its datatype. Table 5-3 liststhe
prefixes used to indicate a variable's scope. Table 5-4 lists the prefixes for
standard datatypes, such as integer or string.

The variable might also be a PowerBuilder object or control. Table 5-5 lists
prefixesfor some common PowerBuilder system objects. For controls, you can
use the standard prefix that PowerBuilder uses when you add a control to a
window or visual user object. To see these prefixes, open the Window painter,
select Design>Options, and look at the Prefixes 1 and Prefixes 2 pages.

Table 5-3: Prefixes that indicate the scope of variables
Prefix Description

a Argument to an event or function
g Global variable

i Instance variable

I Local variable

s Shared variable

Table 5-4: Prefixes for standard datatypes
Prefix | Description

a Any

blb Blob

b Boolean
ch Character
d Date

dtm DateTime
dc Decimal
dbl Double

143

Working with objects

Prefix Description

e Enumerated

i Integer

| Long

r Real

S String

tm Time

ui UnsignedInteger

ul UnsignedLong
Table 5-5: Prefixes for selected PowerBuilder system objects
Prefix Description

ds DataStore

dw DataWindow

dwce DatawindowChild
dwo DWobject

env Environment

err Error

gr Graph

inet Inet

ir InternetResult

Ivi ListViewltem

mfd MailFileDescription
mm MailMessage

mr MailRecipient

ms MailSession

msg Message

nvo NonVisual Object
tr Transaction

tvi TreeViewltem

Opening existing objects

You can open existing obj ectsthrough the Open dialog box or directly from the
System Tree.

144

PowerBuilder Classic

CHAPTER 5 Working with Targets

Accessing recently
opened objects

Users Guide

[_ITo open existing objects:

1 Click the Open buttoninthe PowerBar or select File>Open from the menu
bar.

When using the System Tree]
To open an existing object directly from the System Tree, either

double-click on the object name or select Edit from the pop-up menu.

2 Inthe Open diaog box, select the object type from the Object Type
drop-down list. Then select the target aswell asthelibrary or librariesyou
want to look in. Finally select the object you want to open.

& Open g|
Target: (@) pbbutor (C:\Documents and SettingsiajalMy Doc +
Libraries: by ¢ \Documents and SettingshajaiMy Documents)Syb:
B Cii\Documents and SettingsiajalMy DocumentsiSyba
Object Comments -

8 w_cusk_pck

8 w_customers

[w_master_detail_ancestor
[w_pbtutor_about

[w_pbtutor_basesheet

[w_pbtutor_Frame

[w_pbtutor_toolbars

[w_products

1 w_welcome

Customer sheet window inheriting From w_master_detail,..
Mew ancestor basesheet for the w_customers and w_pr...
Generated MDT About Box

Generated MDI Base Sheet Window

Generated MDI Frame

Generated MDI Toolbar Configuration

Product sheet window inheriting From w_master_detail_. ..
This is the login window, It requires the application user ...

v
Object Mame: w_welcoms]|
Objects of Type: Al Objects v
Using: Painter .

Displaying objects from many libraries
To find an object more easily, you can select more than one library in the

Librarieslist. Use Ctrl+click to select additional libraries and Shift+click
to select arange.

3 Click OK.
The object opensin the appropriate painter.

You can quickly open recently opened objects by selecting File>Recent
Objects from the menu bar. The Recent Objects list includes the eight most
recently opened objects by default, but you can include up to 36 objects on the
list.

145

Using the Source editor

[_ITo modify the number of recent objects:
1 Select Tools>System Options from the menu bar.

2 OntheGeneral page of the System Optionsdial og box, modify the number
for the recent objectslist.

Running or previewing objects
Torunawindow or preview aDataWindow object, you use the Run dialog box.

Using the System Tree
Instead of using the Run dialog box, you can right-click the object in the

System Tree and select Run/Preview from the pop-up menu.

[—ITo run or preview an object:
1 Do oneof thefollowing:

» Click the Run/Preview Object button in the PowerBar.
» Select File>Run/Preview from the menu bar.

2 IntheRun dialog box, select the abject type from the Object Type
drop-down list.

Select the target as well as the library or libraries you want to look in.
4 Select the abject you want to run or preview and click OK.
The object runs or is previewed.

For more specific information on running awindow, see “ Running awindow”
on page 255. For information on using the DataWindow painter’s Preview
view, see Chapter 18, “Defining DataWindow Objects.”

Using the Source editor

You can use the Source editor to edit the source of most PowerScript objects
directly instead of making changesto an object in apainter. You cannot edit the
source of project or proxy objects. The Source editor makes it unnecessary to
export an object in order to edit it and then import it, as you do with thefile
editor.

146 PowerBuilder Classic

CHAPTER 5 Working with Targets

Users Guide

Caution: back up your objects
Although the Source editor provides a quick way to make global changes, you

should use it with caution, and you must be familiar with the syntax and
semantics of Power Script source code before using the Source editor to change
it.

Changes you make to an object’s source code using the Source editor take
effect immediately when you save the object, before the codeisvalidated. If an
error message displays in the Output window, you must fix the problem in the
Source editor before you close the editor. If you do not, you will not be able to
open the object in a painter.

Technical Support is not able to provide support if changes you make in the
Source editor render an object unusable. For this reason, Sybase strongly
recommends that you make backup copies of your PBL s or objects before you
edit objectsin the Source editor.

You can open an object in the Source editor in one of several ways:
* Usethe Open dialog box
» Sdlect the Edit Source menu item in the System Tree or Library painter

* Select the Edit Source menu item in the Output window for aline that
contains an error

Unlikethefile editor, the Source editor cannot be opened independently. It can
only be used in conjunction with an object defined within atarget in the current
workspace. You cannot open an object in the Source editor that is already open
in apainter.

When you export an object and view the exported file in the file editor, a
PBExportHeader line displays at the beginning of thefile. If you saved the
object with acomment from the object’s painter, a PBExportComment also
displays. The Source editor display isidentical to the display in the file editor
except that the PBExport lines are not present in the Source editor.

For more information on exporting objects, see “ Exporting and importing
entries’ on page 173.

147

Using the Source editor

148 PowerBuilder Classic

CHAPTER 6

About this chapter

Contents

About libraries

Assigning libraries

Users Guide

Working with Libraries

PowerBuilder stores al the PowerScript objects you createin libraries.

This chapter describes how to work with your libraries.

Topic Page
About libraries 149
Opening the Library painter 151
About the Library painter 152
Working with libraries 154
Searching targets, libraries, and objects 164
Optimizing libraries 166
Regenerating library entries 167
Rebuilding workspaces and targets 168
Migrating targets 169
Exporting and importing entries 173
Creating runtime libraries 176
Creating reports on library contents 177

Whenever you save an object, such as awindow or menu, in a painter,
PowerBuilder storesthe object in alibrary (a PBL file). Similarly,
whenever you open an object in a painter, PowerBuilder retrieves the

object from the library.

Application, component, and .NET targets can use as many libraries as
you want. Libraries can be on your own computer or on a server. When
you create atarget, you specify which librariesit uses. You can also
changethelibrary search path for atarget at any time during development.

For information about specifying the library search path, see* Specifying

the target’s library search path” on page 135.

149

About libraries

How the information is
saved

Using libraries

About library size

Every object issaved in two partsin alibrary:

« Sourceform Thisisasyntactic representation of the object, including
the script code.

» Object form Thisisabinary representation of the object, similar to an
object filein the C and C++ languages. PowerBuilder compiles an object
automatically every time you saveit.

Itis hard to predict the needs of aparticular application, so the organization of
atarget’s libraries generally evolves over the development cycle.
PowerBuilder lets you reorganize your libraries easily at any time.

For small applications, you might use only one library, but for larger
applications, you should split the application into different libraries.

There are no limits to how large libraries can be, but for performance and
convenience, you should follow these guidelines:

* Number of objects Itisagood ideanot to have more than 50 or 60
objectssavedinalibrary. Thisisstrictly for your convenience; the number
of objects does not affect performance. If you have many objectsina
library, list boxesthat list library objects become unmanageable and the
System Tree and Library painter become more difficult to use.

- Balance Managing alarge number of libraries with only afew objects
makes the library search path too long and can slow performance by
forcing PowerBuilder to look through many librariesto find an object. Try
to maintain a balance between the size and number of libraries.

Organizing libraries

Sharing objects with
others

150

You can organize your librariesany way you want. For example, you might put
al objectsof onetypeintheir ownlibrary, or divideyour target into subsystems
and place each subsystem in its own library.

PowerBuilder provides basic source control using the PBNative check
in/check out utility. PBNative alows you to lock the current version of
PowerBuilder objects and prevents others from checking out these objectsand
modifying them while you are working on them.

PowerBuilder Classic

CHAPTER 6 Working with Libraries

The project administrator must design a directory hierarchy for the project’s
workspace. The administrator might create a separate subdirectory for each
target in the workspace, or for each PBL in the workspace. After the
administrator sets up the project and registers every object in the workspace,
individual devel operscopy atemplate workspaceto their own computers, open
the workspace, and connect to source control.

PowerBuilder also provides a direct connection to external SCC-compliant
source control systems.

For more about using PBNative and other source control systems, see “Using
a source control system with PowerBuilder” on page 68.

Opening the Library painter

What you can do in
the Library painter

What you cannot doin
the Library painter

Users Guide

[ITo open the Library painter:

e Click the Library button in the PowerBar or select Tools>Library Painter.
Inthe Library painter, you can:

e Createanew library

¢ Create new objectsin targetsin your current workspace

« Copy, move, and delete objectsin any library

¢ Openobjectsin librariesthat are on alibrary list in the current Workspace
to edit them in the appropriate painters

* Migrate, rebuild, and regenerate libraries in the current Workspace

e Control modificationsto library objects by using check-out and check-in
or use version control systems

¢ Createaruntime library that includes objectsin the current library and
related resource objects

You cannot migrate or open objects in PowerBuilder libraries that are not on
thelibrary list. You aso cannot rename alibrary.

151

About the Library painter

About the Library painter

Views in the Library

painter

Using the System
Tree

About the Tree view

152

The Library painter has two views, the Tree view and the List view, that can
display all thefilesin your file system, not just PowerBuilder objects. You use
the painter primarily for displaying and working with workspaces, targets,
library files (PBLS), and the objects they contain.

The Tree and List views are available from the View menu. By default, the
Library painter displays one Tree view (on the left) and one List view (on the
right). When the Library painter opens, both the Tree view and the List view
display all the drives on your computer, including mapped network drives.

=% Library
|~ Code Examples A Mame WModification Date Compilation Date Size Camment ~
== Example App d_filker 5/8/2003 22:46:05 9202009 17:08:46 5610 Used in the Datavindow Buffers sxam
+ B phexamdl bl Eld_fullsales_orders 5/5/200322:46:05 9/202009 1708146 17122 Datawindow displaying data From Full_
=B phexamd2 phl d_graph_average_e... S/8/200322:46:05 9/2/2009 17:08:46 9362 2-D Bar Graph using shared Data: Sho
:—::t&:rata [E)d_graph_dynamic ... S[8[200322.46:04 9/2(2009 17:08:46 7600 Graph DataWindow For example to she
d_FuH sdles ord dfgraphfemployee;.‘ 5/5/2003 22:46:04 9/2{2009 17:08:46 9556 3-D Column Graph: Showing Employves
d:gra;h_av;raw d_graph_primary 5/8/2003 Z2:46:04 9/2/2009 17:08:46 15088 Primary Datawindow to share data to b
d_graph_dynan dfgraphfsa\ariesfh.‘. S[8/2003 22:46:04 9j2f2009 17:08:46 9522 2-D Pie Chart: Showing Total Salaries b
d_graph_emplor d_\tam_status 5/8/2003 22:46:04 9/2i2009 17:08:46 8460 Used to show the item status of columi
d_graph_primar d_items 5J5/2003 22:46:04 3j2[2009 17:08:46 9066 Grid DataWindow of all rows in the sale
d_graph_salarie d_\abeljrewew 5/G/2003 22:46:04 9/2f2009 17:05:46 5995 Label Datawindow used For the labels
d_item_status [E]d_Jarge_smal 5JB/2003 22:46:04 9j2[2009 17:08:46 16184 Show usage of DW Functions 'Largs' ar
d_items d_list_calls C/5/2003 22:46:04 9/2/2009 17:05:46 6734 Tabular Datawindaow to list the record:
d label preview | [E]d_manager_within_... 5/5/200322146:04 9j2/2009 17:06:46 6932 Department ID, Dept, Name, and Man.
d_large_small d_mapi_inbos SE[2003 22:46:04 9/2[2009 17:08:46 8332 Inbox used by the mapi examples
:!7Iist7ca\ls ~ d_menuitem_attributes 5/8/2003 22:46:04 9/2/2009 17:08:46 5578 FreeForm datawindow ko change ment »
< > < >

The Workspace tab page in the System Tree works like a Tree view in the
Library painter. You can perform most tasks in either the System Tree or the
Library painter Tree view, using the pop-up menu in the System Tree and the
pop-up menu, PainterBar, or menu bar in the Library painter. When you have
the System Treeand aLibrary painter open at the sametime, remember that the
PainterBar and menu bar apply only to the Library painter.

Each timeyou click the Library painter button on the PowerBar, PowerBuilder
opensanew instance of the Library painter. One advantage of using the System
Tree isthat thereis only one instance of it that you can display or hide by
clicking the System Tree button on the PowerBar.

The Treeview in the Library painter displays the drives and folders on the
computer and the workspaces, targets, libraries, objects, and filesthey contain.
You can expand drives, folders, and libraries to display their contents.

PowerBuilder Classic

CHAPTER 6 Working with Libraries

About the List view

Displaying items in the
Tree view and the List
view

Using custom layouts

Users Guide

The List view inthe Library painter displays the contents of a selected drive,
folder, or library and has columns with headers that provide extrainformation.
For libraries, the comment column displays any comment associated with the
library. For objectsin libraries, the columns display the object name,
modification date, size, and any comment associated with the object. You can
resize columns by moving the splitter bar between columns, and you can sort
acolumn’s contents by clicking the column header.

About sorting the Name column
When you click the Name column header repeatedly to sort, the sort happens

in four ways: by object type and then name, in both ascending and descending
order, and by object name, in both ascending and descending order. You might
not easily observe the four ways of sorting if all objects of the same type have
names that begin with the same character or set of characters.

Most of the time, you select alibrary in the Tree view and display the objects
inthat library inthe List view, but at any time, you can set a new root or move
back and forward in the history of your actionsin the List view and the Tree

view to display libraries or other items. For more information, see* Setting the
root” on page 162 and “Moving back, forward, and up onelevel” on page 163.

You might find that having more than one Tree view or List view makes your
work easier. Using the View menu, you can display as many Tree views and
List views as you need.

The following screen shows the Library painter with one Tree view and three
List views.

(3 documents [phtutor 8/27/2009 23:08:51 Generated MDI Application Object
-7 DothET d_custlist &/27/2009 23:08:52 This DataWindow objert retrieves customer
- [Help d_customer 8/27/2009 23:06:52 This DataWindow retrieves all columns For th
: S gf:::f:smmad m_ry_sheet 8/27/2009 23:08:52 Mew sheet menu for w_master_detal_ances
?él m pbtutar Frame 8/27/2009 23:08:53 Generated MDI Frame Menu b
#- [SDK < ¥
#-[C7 Snippets
H-C SYSaM2 0 ayees, pblin C:|Program Files|Sybasse|PowerBuider 12.0
#- [ThirdParkyLegal Mame Comment i
#-[7 TransThk m_employees_frame 9/Z(2009 17:06:96 Generated MDI Frame Menu
= (= Tutorial m_employees_shest 9/2(2009 17:08:46 Generated MDI Sheet Menu
== Solutions n_employees_conne.,, H2(2009 17:06:46 Genserated Database Connection Service
g‘ My'orkspace.pby 8 n_employees_sheet... 902/2009 17:08:46 Generated MDI Sheet Management
(®) pbtutar.pbt & wuo buttons 9/2/2009 17:08:46 v
+ B pbtutar.pbl < >
i D;jzﬁ_sta& [ltutor_pb.phd in Cr\Program Fi werBuilder 12.01TuboriaNSolutions
d_prodist ama Modification Diake Comment
d_product d,dddw,statas 8i5/2003 03:02:35 Report For DropDownDatabindow: Grid: State
B u_dwstandarc | [E]d_prodist B5(2003 03:02:35
-1 wpf_test [E1d_product /5/2003 03:02:35
#- [wpfsolutions 8 u_dwstandard 8l27)2009 23:08,., User-defined standard Datavwindow contral with
B8 kutor_pb.pbl ~
< 3 < >

153

Working with libraries

View synchronization

You can filter the objectsin each of the List views so that one List view shows
menus, another windows, and another user objects. For information about
filtering objectsin aview, see “Filtering the display of objects’ on page 157.

Toget thislayout inthe Library painter, use the View menu to display two more
List views and then manipul ate the views to fit this layout. For information
about opening and closing views, manipulating views, returning to the default
view layout, or saving your favorite layouts, see“Using views in painters’ on
page 41.

Tree and List views are synchronized with each other. When you are using
more than one Tree view or List view, changes you make in one type of view
arereflected in the last view you touched of the other type. For example, when
an item is selected in a Tree view, the contents of that item display in the List
view that you last touched. When you display new contentsin aList view by
double-clicking an item, that item is selected in the Tree view you last touched
(if it can be done without resetting the root).

Each List view inthe previous screen displaysthe contents of adifferent library
because three libraries were dragged from the Tree view and dropped in
different List views. For information about drag and drop, see “Displaying
libraries and objects’ on page 154.

Working with libraries

The Library painter is designed for working with PowerBuilder libraries.

Displaying libraries and objects

What you see in the
views

154

In the Tree view, you can expand items and seethe folders, libraries, or objects
they contain. The List view displays the contents of a selection in the Tree
view.

[To expand or collapse an item in the Tree view:

* Double-click theitem.

If the item contains libraries or objects, they display in the List view.

[TTo display the contents of an item in the List view:

* Sdect theitem inthe Tree view or double-click the item in the List view.

PowerBuilder Classic

CHAPTER 6 Working with Libraries

Using drag and drop
to expand items

You can drag and drop items to expand them and see the contents.

If you drag an item from a Tree view or List view to aList view, the List view
sets the item as the root and displays its contents.

If you drag anitemfromaTreeview or List view to aTreeview, the Treeview
expands to display the dragged item.

For example, you can drag alibrary from the Tree view and drop it in the List
view to quickly display the objectsthe library containsin the List view. If you
areusing one Treeview and multiple List views, you can drag aspecificlibrary
fromthe Tree view to each List view so each List view contains the contents of
aspecific library.

For information about using drag and drop to copy or move items, see
“Copying, moving, and deleting objects” on page 160.

Using the pop-up menu

Users Guide

Like other painters, the Library painter has a pop-up menu that provides
options that apply to the selected item in the Tree view or the List view. For
example, from alibrary’s pop-up menu, you can del ete, optimize, or search the
library, print the directory, specify the objects that display in the library, and
import objectsinto it.

The actions available from an object’s pop-up menu depend on the object type.
For PowerBuilder objects that you can work with in painters, you can edit the
object in a painter or in the Source editor, copy, move, or delete the object,
export it to atext file, search it, regenerate it, or send it to a printer. You can
also preview and inherit from some objects. For most of these actions, the
object must bein alibrary in your current workspace.

Actions available from the pop-up menus are al so avail able on the Entry menu
on the menu bar.

155

Working with libraries

Controlling columns that display in the List view

You can control whether to display the last modification date, compilation date,
size, SCC version number, and comments (if acomment was created when an
object or library was created) inthe List view.

The version number column in the Library painter list view remains blank if
the source control system for your workspace does not support the
PowerBuilder extension to the SCC API. If your source control system
supports this extension and if you are connected to source control, you can
override the SCC version number of a PowerScript object in the local copy
directory through the property sheet for that object.

For more information about listing the SCC version number and overriding it
through the PowerBuilder interface, see “ Extension to the SCC API” on page
67.

[_TTo control the display of columns in the List view:
1 Select Design>Options from the menu bar.

2 Onthe Genera tab page, select or clear these display items: Modification
Date, Compilation Date, Sizes, SCC Version Number, and Comments.

Selecting objects
In the List view, you can select one or more libraries or objects to act on.

[TITo select multiple entries:

* IntheListview, use Ctrl+click (for individual entries) and Shift+click (for
agroup of entries).

[TTo select all entries:

* IntheList view, select an object and click the Select All button on the
PainterBar.

156 PowerBuilder Classic

CHAPTER 6 Working with Libraries

Filtering the display of objects

Specifying which
objects display in all
libraries

Overriding the choices
you made for a
specific view

Users Guide

You can change what objects display in expanded libraries.

Settings are remembered
PowerBuilder records your preferences in the Library section of the

PowerBuilder initialization file so that the next time you open the Library
painter, the same information is displayed.

Inthe Tree and List views, the Library painter displays all objectsin libraries
that you expand, as well as targets, workspaces, folders, and files. You can
specify that the Library painter display only specific kinds of objects and/or
objects whose names match a specific pattern. For example, you can limit the
display to only DataWindow objects, or limit the display to windowsthat begin
withw_emp.

[TTo restrict which objects are displayed:

1 Select Design>Options from the menu bar and select the Include tab.
2 Specify the display criteria:

e Tolimit thedisplay to entriesthat contain specific text in their names,
enter the text in the Name box. You can use the wildcard characters
question mark (?) and asterisk (*) in the string. The ? represents one
character; an * represents any string of characters. The default is all
entries of the selected types.

« Tolimit the display to specific entry types, clear the check boxes for
the entry types that you do not want to display. The default isall
entries.

3 Click OK.
The Options dialog box closes.

4 Inthe Tree view, expand libraries or select alibrary to display the objects
that meet the criteria.

Ineither the Treeview or the List view, you can override your choice of objects
that display inall librariesby selecting alibrary, displaying thelibrary’spop-up
menu, and then clearing or selecting items on the list of objects.

157

Working with libraries

Creating and deleting libraries

A library is created automatically when you create a new target, but you can
create as many libraries as you need for your project in the Library painter.

[TTo create alibrary:
1 Click the Create button or select Entry>Library>Create from the menu bar.

The Create Library dialog box displays showing the current directory and
listing the librariesit contains.

2 Enter the name of thelibrary you are creating and specify the directory in
which you want to storeit.

Thefileis given the extension .PBL.
3 Click Save.
Thelibrary properties dialog box displays.
4 Enter any comments you want to associate with the library.

Adding comments to describe the purpose of alibrary isimportant if you
are working on alarge project with other developers.

5 Click OK.
PowerBuilder creates the library.

[TTo delete alibrary:

1 Ineither the Treeview or the List view, select the library you want to
delete.

2 Select Entry>Delete from the menu bar or select Del ete from the pop-up
menu.

Restriction
You cannot delete alibrary that isin the current target’slibrary search path.

The Delete Library dialog box displays showing the library you selected.
3 Click Yesto deletethe library.
Thelibrary and all its entries are deleted from the file system.

158 PowerBuilder Classic

CHAPTER 6 Working with Libraries

Creating and deleting libraries at runtime)))
You can use the LibraryCreate and LibraryDelete functions in scripts to create

and deletelibraries. For information about these functions, seethe Power Script
Reference.

Filtering the display of libraries and folders

In either the Tree view or the List view, you can control what displays when
you expand a drive or folder. An expanded drive or folder can display folders,
workspaces, targets, files, and libraries.

[_ITo control display of the contents of drives and folders:

¢ Ineither the Tree or List view, select adrive or folder, select Show from
the pop-up menu, and select or clear items from the cascading menu.

Working in the current library

In PowerBuilder, the current library isthe library that contains the object most
recently opened or edited. That library becomes the default for Open and
Inherit. If you click the Open or Inherit button in the PowerBar, the current
library isthe one selected in the Libraries list.

You can display the current library in the Library painter.

[TTo display objects in the current library:
1 Clickinthe Treeview or the List view.

2 Click the Display Most Recent Object button on the PainterBar or select
Most Recent Object from the View menu.

The library that contains the object you opened or edited last displaysin
the view you selected with the object highlighted.

Users Guide 159

Working with libraries

Opening and previewing objects
You can open and preview objects in the current workspace.

Opening PowerBuilder PowerBuilder objects, such aswindows and menus, are opened only if they are
objects inaPBL in the current workspace.

[_ITo open an object:
* Ineither the Tree view or the List view, double-click the object, or select
Edit from the object’s pop-up menu.

PowerBuilder takes you to the painter for that object and opens the object.
You can work on the object and save it as you work. When you closeiit,
you return to the Library painter.

Opening other objects The Library painter allows you to open most of the different file typesit
displays. When you double-click on an object, PowerBuilder attemptsto open
it using the following a gorithm:

1 PowerBuilder determinesif the object can be opened in the File editor. For
example, fileswith the extensions..txt, .ini, and .sr* openinthe File editor.

2 PowerBuilder determinesif the object can beopenedin apainter or HTML
editor.

3 PowerBuilder checksto seeif the object is associated with aprogramin
the HKEY_CLASSES ROOQOT section of the Windows registry and, if so,
launches the application.

Previewing You can run windows and preview DataWindow objects from the Library
PowerBuilder objects painter.

[_ITo preview an object in the Library painter:
* Select Run/Preview from the object’s pop-up menu.

Copying, moving, and deleting objects

Asthe needs of your target change, you can rearrange the objectsin libraries.
You can copy and move objects between libraries or delete objects that you no
longer need.

160 PowerBuilder Classic

CHAPTER 6 Working with Libraries

Users Guide

[_1ITo copy objects using drag and drop:

1
2

In the Tree view or the List view, select the objects you want to copy.

Drag the objectsto alibrary in either view. If the contents of alibrary are
displaying in the List view, you can drop it there.

PowerBuilder copiesthe objects. If an object with the same name already
exists, PowerBuilder prompts you and if you allow it, replaces it with the
copied object.

[_1To move objects using drag and drop:

1
2

Inthe Tree view or the List view, select the objects you want to move.

Press and hold Shift and drag the objectsto alibrary in either view. If the
contents of alibrary are displaying in the List view, you can drop it there.

PowerBuilder moves the objects and del etes them from the sourcelibrary.
If an obj ect with the same name already exists, PowerBuilder promptsyou
and if you allow it, replacesit with the moved object.

[TTo copy or move objects using a button or menu item:

1
2

Select the objects you want to copy or move to another library.
Do one of the following:

e Click the Copy button or the Move button.

* Select Copy or Move from the pop-up menu.

* Sdlect Entry>Library Iltem>Copy or Entry>Library ltem>Move from
the menu bar.

The Select Library dialog box displays.

Select the library to which you want to copy or move the objects and click
OK.

[TTo delete objects:

1
2

Select the objects you want to delete.

Do one of the following:

* Click the Delete button.

e Select Delete from the pop-up menu.

e Select Entry>Delete from the menu bar.
You are asked to confirm the first deletion.

161

Working with libraries

Being asked for confirmation
By default, PowerBuilder asks you to confirm each deletion. If you do not

want to have to confirm deletions, select Design>Options to open the
Optionsdialog box for the Library painter and clear the Confirm on Delete
check box in the General tab page.

PowerBuilder records this preference as the DeletePrompt variable in the
Library section of the PowerBuilder initiaization file.

3 Click Yesto delete the entry or Yes To All to delete al entries. Click No
to skip the current entry and go on to the next selected entry.

Setting the root

In either the Tree view or the List view, you can set the root location of the
view.

[ITo set the root of the current view:

1 Ineither view, select View>Set Root from the menu bar or select Set Root
from the pop-up menu to display the Set Root dialog box.

Set Root

Set root ko Path:

KOTWALKP
Current Waorkspace
S —

Library

2 If youwant theroot to be adirectory or library, type the path or browseto

the path.
Setting the root to the In the System Tree, the default root is the current workspace. If you prefer to
current workspace work in the Library painter, you may find it convenient to set the root to the

current workspace. Using the current workspace as your root is particularly
helpful if you areusing many librariesin variouslocations, because they areal
displayed in the same tree.

162 PowerBuilder Classic

CHAPTER 6 Working with Libraries

Moving back, forward, and up one level
You can also set anew root by moving back to where you were before, moving
forward to where you just were, or for the List view, moving up alevel.
[_1To move back, forward, or up one level:
¢ Do one of the following:

e Select View>Back, View>Forward, or View>Up One Level from the
menu bar.

e Select Back, Forward, or Up One Level from the pop-up menu.

The name of thelocation you are moving back to or forward to isappended
to Back and Forward.

Modifying comments

You can use comments to document your objects and libraries. For example,
you might use comments to describe how awindow is used, specify the
differences between descendent objects, or identify a PowerBuilder library.

You can associate comments with an object or library when you first saveitin
apainter and add or modify commentsin the System Tree or Library painter.
If you want to modify comments for a set of objects, you can do so quickly in
the List view.

[_ITo modify comments for multiple objects:
1 IntheList view, select the objects you want.

2 Select Entry>Properties from the menu bar or select Properties from the
pop-up menu.

PowerBuilder displays the Properties dialog box. The information that

displaysisfor one of the objects you selected. You can change existing
comments, or, if there are no comments, you can enter new descriptive
text.

3 Click OK when you have finished editing comments for this object.

If you do not want to change the comments for an object, click OK. The
next object displays.

Users Guide 163

Searching targets, libraries, and objects

4

Enter comments and click OK for each object until you have finished.

If you want to stop working on comments before you finish with the
objects you selected, click Cancel. The comments you have entered until
the most recent OK are retained and display in the List view.

[—ITo modify comments for a library:

1
2
3

Select the library you want.
Click the Properties button or select Library from the pop-up menu.

Add or modify the comments.

Searching targets, libraries, and objects

Global search of You can search atarget to locate where a specified text string is used. For
targets example, you could search for:

All scripts that use the SetTransObject function

All windows that contain the CommandButton cb_exit (all controls
contained inawindow are listed in thewindow definition’ssourceformin
the library so they can be searched for as text)

All Datawindow objects accessing the Employee table in the database

Working with targets
To see the pop-up menu that lets you perform operations on atarget, such as

search, build, and migrate, you must set the root of the System Tree or theview
inthe Library painter to the current workspace.

Searching selected You can aso select alibrary or one or more PowerBuilder objects to search.
libraries and objects The following procedure applies whatever the scope of your search is.

[TTo search atarget, library, or object for a text string:

1

164

Select the target, library, or objects you want to search.

You can select multiple objectsin the List view using Shift+click and
Ctrl+click.

Select Search from the pop-up menu or the PainterBar.

PowerBuilder Classic

CHAPTER 6 Working with Libraries

Users Guide

The Search Library Entries dialog box displays.

Search Library Entries g|
Search For:
[Iratch UpperfLowercase
Display Search In
Entry Mame Line Mumber Propetties
Control{Item Mame Line Where Found Scripts
Event Mame Variables

3 Enter the string you want to locate (the search string) in the Search For
box.

The string can be al or part of aword or phrase used in a property, script,
or variable. You cannot use wildcards in the search string.

4 Inthe Display group box, select theinformation you want to display in the
results of the search.

5 Inthe Search In group box, select the parts of the object that you want
PowerBuilder to inspect: properties, scripts, and/or variables.

6 Click OK.

PowerBuilder searchesthelibrariesfor matching entries. When the search
is complete, PowerBuilder displays the matching entriesin the Output
window.

For example, the following screen displaysthe results of asearch for the string
garbagecollect!

x| = search: Searching Target PE Ex or ‘garbagecollect’

------- 4 Matches Found On "garbagecollect™;
phexamwz, pbl{w_garbage_collectiue_displayleak.0006: GarbageCollectSetTimeLimit{il_Current)
phexamwz, pbl{w_garbage_collect).cb_ok.clicked. 0006: il_Current = GarbageCollectSet TimeLimit{ 100
phexamwz, pbl{w_garbage_collect).cb_ok.clicked.0008: il_Current = GarbageCollectSet TimeLimity 10000007
phexamwz, pbl{w_garbage_collect).cb_ok.clicked.0011: GarbageCollect()
---------- Done 4 Matches Found On "garbagecollect™:
---------- Finished Searching Target PE Examples for 'garbagecollect’

From the Output window, you can:
e Jump to the painter in which an entry was created

To do this, double-click the entry or select it and then select Edit from the
pop-up menu.

¢ Print the contents of the window

e Copy the search resultsto atext file

165

Optimizing libraries

Optimizing libraries

You should optimize your libraries regularly. Optimizing removes gapsin
libraries and defragments the storage of objects, thus improving performance.

Optimizing affects only layout on disk; it does not affect the contents of the
objects. Objects are not recompiled when you optimize alibrary.

Once a week)
For the best performance, you should optimize libraries you are actively

working on about once a week.

[_ITo optimize alibrary:
1 Ineither Treeview or List view, choose the library you want to optimize.

2 Select Entry>Library>Optimize from the menu bar or select Optimize
from the library’s pop-up menu.

PowerBuilder reorganizesthelibrary structure to optimize object and data
storage and index locations. Note that PowerBuilder does not change the
modification date for the library entries. PowerBuilder saves the
unoptimized version as a backup file in the same directory.

The optimized file is created with the default permissions for the drive
whereit isstored. On some systems new files are not shareable by default.
If you see“saveof object failed” or “link error messages after optimizing,”
check the permissions assigned to the PBL.

If you do not want a backup file)
If you do not want to save a backup copy of the library, clear the Save

Optimized Backups check box in the Library painter’s Design>Options
dialog box. If you clear this option, the new setting will remain in effect
until you change it.

166 PowerBuilder Classic

CHAPTER 6 Working with Libraries

Regenerating library entries

Regenerating
descendants

Users Guide

Occasionally you may need to update library entries by regenerating,
rebuilding, or migrating them. For example:

e When you modify an ancestor object, you can regener ate descendants so
they pick up the revisions to their ancestor.

* When you make extensive changes to atarget, you can rebuild entire
libraries so objects are regenerated sequentially based on interdependence.

* When you upgrade to anew version of PowerBuilder, you need to migrate
your targets.

When you regenerate an entry, PowerBuilder recompiles the source form
stored in the library and replaces the existing compiled form with the
recompiled form. You can regenerate entriesin the Library painter or by
selecting regenerate from the object’s pop-up menu in the System Tree.

You can also regenerate and rebuild from a command line. For more
information, see Appendix B, “The OrcaScript Language.”

[ITo regenerate library entries in the Library painter:
1 Select the entries you want to regenerate.

2 Click the Regenerate button or select Entry>Library Item>Regenerate
from the menu bar.

PowerBuilder uses the source to regenerate the library entry and replaces
the current compiled object with the regenerated object. The compilation
date and size are updated.

You can use the Browser to easily regenerate all descendants of a changed
ancestor object.

[_TTo regenerate descendants:
1 Click the Browser button in the PowerBar.
The Browser displays.
2 Select the tab for the object type you want to regenerate.

For example, if you want to regenerate all descendants of window
w_frame, click the Window tab.

3 Select the ancestor object and choose Show Hierarchy from its pop-up
menul.

167

Rebuilding workspaces and targets

The Regenerate item displays on the pop-up menu.

Target: | (@) phtutor (C:iProgram Files\Sybase|PowerBuilder 12 v

Syskem Enumerated Struckure Datakype OLE Uses
Application Datawindow Wwindaw Menu User Object: Function Prasy
5 w_cust_pct <H* Properties
5 w_customers E,E Events
8 y # Functions
= Edit e)
] w_pbtutor_about ;h- External Functions
[w_pbtutor_basesh| oy oFe Instance Variables
9 w_pbtutor_frame Iy Shared Yariables
E w_pbtutor_toolbar Expand Al Bf Structures
L w_products Regenerate
E w_welcome
Show Hierarchy
Document...

Help
Icon Legend - descrioes seeccea rropercy; Function, Event, or Variable,

4 Click the Regenerate item.
PowerBuilder regenerates all descendants of the selected ancestor.

For more about the Browser, see “Browsing the class hierarchy” on page 318.

Regenerate limitations
If you regenerate a group of objects, PowerBuilder will regenerate themin the

order in which they appear in the library, which might cause an error if an
object isgenerated beforeits ancestor. For this reason, you should use afull or
incremental build to update more than one object at atime.

Rebuilding workspaces and targets

168

When you make modifications to a target and need to update one or more
libraries, you should use arebuild option to update al the library objectsin the
correct sequence.

Working with targets
To see the pop-up menu that lets you perform operations on atarget such as

search, build, and migrate, you must set the root of the System Tree or the view
in the Library painter to the current workspace.

PowerBuilder Classic

CHAPTER 6 Working with Libraries

There are two methods to use when you rebuild a workspace or target:

« Incremental rebuild Updates al the objects and libraries that reference
objectsthat have been changed since the last time you built the workspace
or target

» Full rebuild Updates all the objects and librariesin your workspace or
target

[1ITo rebuild a workspace:

* Do one of the following:

e Sdlect Incremental Build Workspace or Full Build Workspace from
the PowerBar.

» Select the Workspacein the System Tree or Library painter and select
Incremental Build or Full Build from the pop-up menu.

[—1To rebuild a target:

* Do one of the following:

e Select thetarget in the Library painter and select
Entry>Target>Incremental Build or Entry>Target>Full Build from
the menu bar.

* Select thetarget in the System Tree or Library painter and select
Incremental Build or Full Build from the pop-up menu.

Migrating targets

Users Guide

When you upgrade to a new version of PowerBuilder, your existing targets
need to be migrated to the new version. Typically, when you open aworkspace
that contains targets that need to be migrated, or add a target that needs to be
migrated to your workspace, PowerBuilder promptsyou to migrate the targets.
However, there are some situations when you need to migrate a target
manually. For example, if you add alibrary that has not been migrated to a
target’slibrary list, you will not be able to open objectsin that library until the
target has been migrated.

You cannot migrate atarget that isnot in your current workspace and you must
set the root of the System Tree or the view in the Library painter to the current
workspace.

169

Migrating targets

Before you migrate

PowerBuilder libraries
and migration

When PBLs are
migrated

170

There are some steps you should take before you migrate a target:

* Usethe Migration Assistant to check for obsolete syntax or the use of
reserved wordsin your code

* Check the release notes for migration issues
» Make backup copies of the target and libraries

* Make surethat the libraries you will migrate are writable

Always back up your PBLs before migrating .
Make sure you make a copy of your PBLs before migrating. After migration,

you cannot open them in an earlier version of PowerBuilder.

The Migration Assistant is available on the Tool page of the New dialog box.
For help using the Migration Assistant, click the Help (?) button in the
upper-right corner of the window and click the field you need help with, or
click thefield and pressF1. If the Migration Assistant finds obsol ete code, you
canfix itinan earlier version of PowerBuilder to avoid errors when you
migrate to the current version.

PowerBuilder libraries (PBLs) contain a header, source code for the objectsin
the PBL, and binary code. There are two differences between PowerBuilder 10
and later PBLs and PBL s developed in earlier versions of PowerBuilder:

» Thesourcecodein PowerBuilder 10 and later PBLsisencoded in Unicode
(UTF-16LE, where LE standsfor little endian) instead of DBCS (versions
7, 8, and 9) or ANSI (version 6 and earlier).

e Theformat of the header lets PowerBuilder determine whether it uses
Unicode encoding. The header format for PowerBuilder 10 isthe same as
that used for PUL filesin PowerBuilder 6.5 and for PKL filesin
PocketBuilder. These files do not need to be converted to Unicode when
they are migrated to PowerBuilder 10 or later.

Before opening a PBL, PowerBuilder checks its header to determine whether
or not it uses Unicode encoding. PBLsare not converted to Unicode unlessyou
specifically request that they be migrated.

You cannot expand the icon for a PBL from PowerBuilder 9 or earlier in the
Library painter. To examine its contents, you must migrate it to PowerBuilder
10 or later.

PowerBuilder Classic

CHAPTER 6 Working with Libraries

The Migrate
Application dialog box

Users Guide

When you attempt to open a workspace that contains targets from a previous
release in PowerBuilder, the Targets to be Migrated dialog box displays. You
can migrate targets from this dialog box, or clear the No Prompting check box
to open the Migrate Application dialog box.

PowerBuilder dynamic libraries
If you plan to reference a PowerBuilder dynamic library (PBD) that was

encoded in ANSI formatting (for example, if it was created in PowerBuilder 9
or earlier), you must regenerate the PBD to use Unicode formatting. Dynamic
libraries that you create in PowerBuilder 10 or later use Unicode formatting
exclusively.

For information on creating PBDs, see “ Creating runtime libraries’” on page
176.

The Migrate Application dialog box lists each PBL that will be migrated and
lets you choose the type of messages that display during the migration process.

Migrate Application EJ

This application was created in a previous version and
requires migration to the current version,

Al libraries should be backed up prior o migration,
Library List to Migrate:

Ciworklejbclient. pbl;

C:\Program Files)Sybase!Shared\PowerBuilderipbejbe
Ciworklejbproxies. pbl;

Messages
Information

[
< 5 Obsolete

[] automatically conwert DECS string manipulation functions

If youclick OK, each PBL isfirst migrated to the new version of PowerBuilder.
If necessary, PowerBuilder converts source code from DBCS to Unicode.
PowerBuilder performsafull build and saves the source code back to the same
PBL files. Changes to scripts display in informational messages in the Output
window and are written to alog file for each PBL so that you can examine the
changes |later. Recommended changes are a so written to the log file.

171

Migrating targets

172

Migration from DBCS versions
The migration process automatically converts multibyte stringsin DBCS

applications to unicode strings. You do not need to select the Automatically
Convert DBCS String Manipulation Functions check box for this conversion.
If the migration encounters an invalid multibyte string, it setstheinvalid string
to aquestion mark and reportsthe error status. You can modify question marks
in the Unicode output string after the migration.

The following two lines from alog file indicate that the FromAnsi function is
obsolete and was replaced with the String function, and that an encoding
parameter should be added to an existing instance of the String function:

2006/01/27 08:20:11test.pbl(w_main).cb_1.clicked.4:
Information C0205: Function 'FromAnsi' is replaced with
function 'String'.

2006/01/27 08:20:11test.pbl(w main).cb 2.clicked.4:
Information C0206: Append extra argument
'EncodingAnsi!' to function 'String' for backward
compatibility.

The log file has the same name as the PBL with the string _mig appended and
the extension .log and iscreated in the samedirectory asthe PBL. If no changes
are made, PowerBuilder creates an empty logfile. If the PBL ismigrated more
than once, output is appended to the existing file.

PowerBuilder makes the following changes:

» The FromUnicode function is replaced with the String function and the
second argument EncodingUTF16LE! is added

* TheToUnicode function is replaced with the Blob function and the second
argument EncodingUTF16LE! is added

* TheFromAnsi functionis replaced with the String function and the second
argument EncodingAnsi! is added

» TheToAnsi function is replaced with the Blob function and the second
argument EncodingAnsi! is added

* AnAliasFor clause with the following format i s appended to declarations
of external functionsthat take strings, chars, or structures as arguments or
return any of these datatypes:

ALIAS FOR “functionname;ansi”

PowerBuilder Classic

CHAPTER 6 Working with Libraries

Adding PBLs to a
PowerBuilder target

If the declaration already has an Alias For clause, only the string ;ansi is
appended.

DBCS users only
If you select the Automatically Convert DBCS String Manipul ation Functions

check box, PowerBuilder automatically makes appropriate conversionsto
scripts in PowerBuilder 9 applications. For example, if you used the Lenw
function, itisconverted to Len, and if you used the Len function, it isconverted
to LenA. The changes are written to the Output window and the log file. This
box should be selected only in DBCS environments.

When you add PBL sfrom a previousrelease to a PowerBuilder target’slibrary
list, the PBLsdisplay inthe System Tree. The PBL s are not migrated when you
add themto thelibrary list. Their contents do not display because they have not
yet been converted. To display their contents, you must migrate the target.

You can migrate atarget from the Workspace tab of the System Tree by
selecting Migrate from the pop-up menu for the target. You can also migrate
targetsin the Library painter if they arein your current workspace.

[_ITo migrate a target in the Library painter:

1 Select the target you want to migrate and select Entry>Target>Migrate
from the menu bar.

The Migrate Application dialog box displays.

2 Select OK to migrate all objects and librariesin the target's path to the
current version.

Exporting and importing entries

Users Guide

You can export object definitions to text files. The text files contain all the
information that defines the objects. Thefilesare virtually identical
syntactically to the source forms that are stored in libraries for al objects.

You may want to export object definitions in the following situations:
e Youwant to store the objects astext files.
¢ You want to move objects to another computer as text files.

Later you can import the files back into PowerBuilder for storagein alibrary.

173

Exporting and importing entries

174

Caution
The primary use of the Export feature is exporting source code, modifying the

source. You can use the Source editor to modify the source code of an object
directly, but modifying source in an ASCII text file is not recommended for
most users. See “ Using the Source editor” on page 146.

[_ITo export entries to text files:
1 Select the Library entries you want to export.

You can select multiple entriesin the List view.
2 Do one of thefollowing:
» Select Export from the pop-up menu.
» Click the Export button on the PainterBar.
» Select Entry>Library Item>Export from the menu bar.

The Export Library Entry dialog box displays, showing the name of the
first entry selected for export in the File Name box and the name of the
current directory. The current directory is the target’s directory or the last
directory you selected for saving exported entries or saving afile using the
file editor.

PowerBuilder appends the file extension .srx, where X represents the
object type.

3 Specify the file name and directory for the export file. Do not change the
file extension from the one that PowerBuilder appended.

4 Select the encoding for the exported file.

The HEXASCII export format is used for source-controlled files. Unicode
strings are represented by hexadecimal/ASCII stringsin the exported file,
which has the letters HA at the beginning of the header to identify it asa
file that might contain such strings. You cannot import HEXASCII files
into a previous version of PowerBuilder.

5 Click OK.

PowerBuilder convertsthe entry to text, storesit with the specified name,
then displays the next entry you selected for export.

PowerBuilder Classic

CHAPTER 6 Working with Libraries

Users Guide

If afile already exists with the same name, PowerBuilder displays a
message asking whether you want to replace the file. If you say no, you
can change the name of the file and then export it, skip the file, or cancel
the export of the current file and any selected files that have not been
exported.

Repeat steps 3 through 5 until you have processed all the selected entries.

If the Library painter is set to display files, you can see the saved filesand
double-click them to open them in the File editor.

[—ITo import text files to library entries:

1

In the System Tree or Library painter, select the library into which you
want to import an object.

Select Import from the pop-up menu, or, in the Library painter only, click
the Import button on the PainterBar.

The Select Import Filesdial og box displays, showing the current directory
and alist of fileswith the extension .sr* in that directory. The current
directory isthe target’s directory or the last directory you selected for
saving exported entries or saving afile using the file editor.

Loak in: | (2 work v O ¥ El'

I)xmhweb uddiproxy.sru
d_event_list.srd

d_function_list,srd

d_object_list.srd

d_search_resulks,srd

defaulk.sra

4 >
File: name:
Files of type: | PB Export Files [*.5r) v

Select the files you want to import. Use Shift+click or Ctrl+click to select
multiplefiles.

Click Open.

PowerBuilder converts the specified text files to PowerBuilder format,
regenerates (recompiles) the objects, stores the entriesin the specified
library, and updates the entries’ timestamps.

If alibrary entry with the same name already exists, PowerBuilder
replacesit with the imported entry.

175

Creating runtime libraries

Caution

When you import an entry with the same name as an existing entry, the old
entry is deleted before the import takes place. If an import fails, the old

object will already be deleted.

Creating runtime libraries

If you want your deployed target to use dynamic
create them in the Library painter.

runtime libraries, you can

For information about using runtime libraries, see Chapter 34, “Creating
Executablesand Components.” That chapter also describesthe Project painter,
which you can use to create dynamic runtime libraries automatically.

[_TTo create aruntime library:
1 Select thelibrary you want to useto build aruntime library.

176

2 Select Entry>Library>Build Runtime Library from the menu bar, or select
Build Runtime Library from the library’s pop-up menu.

The Build Runtime Library dialog box displ
selected library.

ays, listing the name of the

Build Runtime Library g|
Mame: C:\Program Filesy...\Code ExamplesiExample Appipbexamfe.pbl
[rachine Code

Euild Type:
Incremental v
Hell
Executable Format: Optimization:
Resource File Mame:

3

If any of the objects in the source library use resources, specify a

PowerBuilder resourcefilein the Resource File Name box (see” Including

additional resources’ next).

PowerBuilder Classic

CHAPTER 6 Working with Libraries

4 Select other options as appropriate.

Most options are available only if you select Machine Code, which creates
aDLL file. The default is Pcode, which creates a PBD file. For more
information about build options, see “Executable application project
options” on page 954.

5 Click OK.

PowerBuilder closesthe dialog box and creates aruntime library with the
same name as the selected library and the extension .dll or .pbd.

Including additional resources

When building aruntime library, PowerBuilder does not inspect the objects; it
simply removes the source form of the objects. Therefore, if any of the objects
in the library use resources (pictures, icons, and pointers)—either specified in
apainter or assigned dynamically in a script—and you do not want to provide
these resources separately, you must list the resources in a PowerBuilder
resource file (PBR file). Doing so enables PowerBuilder to include the
resources in the runtime library when it buildsit.

For more on resource files, see “Using PowerBuilder resource files’ on page
960.

After you have defined the resource file, specify it in the Resource File Name
box to include the named resourcesin the runtime library.

Creating reports on library contents

Users Guide

You can generate three types of reports from the Library painter:
e The search results report

e Library entry reports

e Thelibrary directory report

The search results report contains the matching-entries information that
PowerBuilder displays after it completes a search, described in “ Searching
targets, libraries, and objects’ on page 164. The other two types of reports are
described in this section.

177

Creating reports on library contents

Creating library entry reports

Library entry reports provide information about selected entries in the current
target. You can use these reportsto get printed documentation about the objects
you have created in your target.

178

[_TITo create library entry reports:

1
2

Select the library entries you want information about in the List view.

Select Entry>Library Item>Print from the menu bar, or select Print from
the pop-up menu.

The Print Options dialog box displays.

Print Options §|

Sybase DataWwindow PS on FILE:

Application ‘WindowUser Object
- e

Explosion Properties
Scripts Picture
s
Menu Controls
p] '
Attributes Control Attributes Copies:
Scripts Control Scripts

If you have selected the Application object or one or more menus,
windows, or user objects to report on, select the information you want
printed for each of these object types.

For example, if you want all properties for selected windows to appear in
the report, make sure the Properties box is checked in the Window/User
Object group box.

The settings are saved
PowerBuilder records these settings in the Library section of the

PowerBuilder initialization file.

Click OK.

PowerBuilder generates the selected reports and sends them to the printer
specified in Printer Setup in the File menu.

PowerBuilder Classic

CHAPTER 6 Working with Libraries

Creating the library directory report

Thelibrary directory report lists al entriesin a selected library in your
workspace, showing the following information for al objectsin the library,
ordered by object type:

« Name of object
e Modification date and time
e Size (of compiled object)
Comments
[_ITo create the library directory report:
1 Select thelibrary that you want the report for.
The library must be in your current workspace.

2 Select Entry>Library>Print Directory from the menu bar, or select Print
Directory from the pop-up menu.

PowerBuilder sends the library directory report to the printer specified
under File>Printer Setup in the menu bar.

Users Guide 179

Creating reports on library contents

180 PowerBuilder Classic

PART 3

Coding Fundamentals

This part describes how to code your application. It covers
the basics of the PowerScript language, how to use the
Script view, and how to create functions, structures, and
user events to make your code more powerful and easier
to maintain.

CHAPTER 7 Writing Scripts

About this chapter PowerBuilder applications are event driven. You specify the processing
that takes place when an event occurs by writing a script. This chapter
describes how to use the Script view to write scripts using the Power Script

language.

Contents Topic Page
About the Script view 183
Opening Script views 185
Modifying Script view properties 186
Editing scripts 187
Using AutoScript 192
Getting context-sensitive Help 198
Compiling the script 199
Declaring variables and external functions 202

For more information For complete information about the PowerScript language, see the

Power Script Reference.

About the Script view

You use the Script view to code functions and events, define your own
functions and events, and declare variables and external functions.

Script views are part of the default layout in the Application, Window,
User Object, Menu, and Function painters. In Application, Window, and
User Object painters, theinitial layout has one Script view that displays
the default event script for the object and a second Script view set up for
declaring instance variables. You can open as many Script views as you
need, or perform all coding tasksin asingle Script view.

Users Guide 183

About the Script view

Title bar The Script view’stitle bar shows the name and return type of the current event
or function, aswell as the name of the current control for events and the
argument list for functions. If the Script view isbeing used to declare variables
or functions, the titlebar shows the type of declaration.

Drop-down lists There are three drop-down lists at the top of the Script view:

—

[P 5cript - uevent_dberr_message For u_dwstandard returns (Ancestor Script - Read Only) [m] B3 I

dw_master + | | Bluevent_dberr_message { lon + || 2 u_dwstanc + B

[#* Event profile -

MNare: uevent_dberr_message
Applies o) u_dwstandard
Kind: User

Processing: See below

*f

SRR LR

i /

£ Overview — f

I / ¥
< >

Layout yuevent_dberr_message 4Event List 4Function List hDeclare Instance Variables

In thefirst list, you can select the object, control, or menu item for which you
want to write a script. You can also select Functions to edit function scripts or
Declare to declare variables and external functions.

The second list lets you sel ect the event or function you want to edit or the kind
of declaration you want to make. A script icon next to an event nameindicates
there isa script for that event, and the icon’s appearance tells you more about

the script:
Table 7-1: Script icons in the Script view
If there is a script The script icon displays
For the current object or control With text
In an ancestor object or control only In color

In an ancestor aswell asin the object or control you | Half in color
are working with

The same script icons display in the Event List view.

Thethird list isavailable in descendent objects. It lists the current object and
al its ancestors so that you can view scriptsin the ancestor objects.

184 PowerBuilder Classic

CHAPTER 7 Writing Scripts

Toggle buttons for A Prototype window displays at the top of the Script view when you define a
\T/irr?é%t\)//vge and Error new function or event. An Error window displays at the bottom of the view

when there are compil ation errors. You can togglethe display of these windows
with the two toggle buttons to the right of the lists.

ol =| |=

.

For more information about the Prototype window, see Chapter 8, “Working
with User-Defined Functions,” and Chapter 9, “Working with User Events.”

Opening Script views

If there is no open Script view, selecting a menu or PainterBar item that
requires a Script view opens one automatically. If you want to edit more than
one script at atime, you can open additional Script viewsfrom the View menu.

[—ITo open a new Script view:
e Select View>Script from the menu bar.

[TITo edit a script for a control:

« Double-click ascriptable control, or select Script from the PainterBar or a
pop-up menu.

The Script view shows the default script for the contral. If the Script view
isin astacked pane and is hidden, it popsto the front. If thereis no open
Script view, PowerBuilder creates a new one.

Using drag and drop o
If aScript view isvisible, you can drag acontrol from the Control list view

to the Script view to edit a script for the control.

[To edit a script for a function or event:
» Double-click an item in the Event list or Function list views, or select the
function or event from the second drop-down list in an open Script view.

The Script view shows the script for the selected event or function. If the
Script view isin atabbed pane and is hidden, it pops to the front. If there
iS no open Script view, PowerBuilder creates a new one.

Users Guide 185

Modifying Script view properties

Modifying Script view properties
The Script view automatically:

» Color-codes scripts to identify datatypes, system-level functions,
flow-of-control statements, comments, and literals

* Indents the script based on flow-of-control statements

You can modify these and other properties.

Some properties are shared
Some properties you specify for the Script view also affect the file editor,

Source editor, Debugger, and the Interactive SQL and Activity Log viewsin
the Database painter.

[_TTo specify Script view properties:
1 Select Design>Options to display the Options dialog box for the painter.

The Optionsdialog box includes four tab pagesthat affect the Script view:
Script, Font, Coloring, and AutoScript.

2 Choosethe tab appropriate to the property you want to specify:

To specify Choose this tab
Tab size, automatic indenting, whether dashes are Script

alowed inidentifiers, and which compiler and database

messages display

Font family, size, and color for the Script view Font

Text and background coloring for PowerScript syntax Coloring
elements

Whether AutoScript is enabled and what kind of AutoScript
assistance it provides

186 PowerBuilder Classic

CHAPTER 7 Writing Scripts

Editing scripts

You can perform standard editing tasksin the Script view using the Edit menu,
the pop-up menu in the Script view, or the PainterBars. There are shortcuts for
many editing actions.

Setting up shortcuts
In apainter with a Script view, select Tools>K eyboard Shortcuts. Expand the

Edit menu to view existing shortcuts and set up your own shortcuts.

Limiting size of scripts

Printing scripts

Thereisaninternal limit on the size of compiled Pcode on any script. Pcodeis
the interpreted language into which scripts are compiled. A script that exceeds
thislimit can be compiled successfully, but the error “Maximum script size
exceeded” displayswhen you attempt to save the script. Note that the amount
of Pcode generated from a given script is not directly proportional to the
number of lines of code, so you might encounter thiserror in ascript with 1200
lines of code, but not in ascript with 1500 lines of code. To avoid receiving this
error, move code to functions that you post or trigger in the event script.

You can print a description of the object you are editing, including al its
scripts, by selecting File>Print from the menu bar. To print a specific script,
select FilesPrint Script.

Pasting information into scripts

Users Guide

You can paste the names of variables, functions, objects, controls, and other
items directly into your scripts. (You can also use AutoScript. See “Using
AutoScript” on page 192.) If what you paste includes commented text that you
need to replace, such as function arguments or clausesin a statement, you can
use Edit>Go To>Next Marker to move your cursor to the next commented item
in the template.

187

Editing scripts

Using the System
Tree

Using the Browser

188

Table 7-2: Pasting information into scripts

To paste Use
PowerBuilder objects and their System Tree
properties, functions, and events

Properties, datatypes, functions, Browser
structures, variables, and objects

Contents of clipboard Edit>Paste
Contents of Clipboard window Drag and drop

Objects, controls, arguments, and global
and instance variables

Paste buttons on PainterBar
or

Edit>Paste Special
PowerScript statements Paste Statement button

or

Edit>Paste Special>Statement
SQL statements Paste SQL button

or

Edit>Paste Special>SQL
Built-in, user-defined, and external Paste Function button
functions or

Edit>Paste Specia>Function
Preprocessor statements Edit>Paste Special>Preprocessor

Contents of text files

Edit>Paste Special>From File

Undoing a paste

If you paste information into your script by mistake, click the Undo button or

select Edit>Undo from the menu bar.

Some of these techniques are explained in the sections that follow.

To paste the name of a PowerBuilder object or of any of its properties,
functions, or events, select the item you want to paste on the Workspace tab of
the System Tree and drag it into your script.

You can use the Browser to paste the name of any property, datatype, function,
structure, variable, or object in the application.

PowerBuilder Classic

CHAPTER 7 Writing Scripts

Users Guide

Most tab pages in the Browser have two panes:

Target: | (@ phtutor (C:\Program FilestSybase\PowerBuilder 12

Syskem Enumerated Skructure Dakakype CLE Lses
Application Datawindow Windon Menu User Object Function Proxy
1 w_cust_pet <H# Properties
1 w_customers E,E Ewvents
1 w_master_detail_ancestor % Functions
1 w_pbtutor_about ";h- External Functions
1 w_pbtutor_basesheet (,'EE Instance Variables
imf_pbtutor_frarne l" n_pbtutor_sheetmanager inv_sheetmgt
1 w_pbtutor_toolbars U Shared Yariables
1 w_praducts B Structures
1 w_welcome

Icon Legend - describes selected Property, Function, Event, or Yariable,

The left pane displays a single type of object, such asawindow or menu. The
right pane displays the properties, events, functions, external functions,
instance variables, shared variables, and structures associated with the object.

Getting context-sensitive Help in the Browser]
To get context-sensitive Help for an object, control, or function, select Help

from its pop-up menu.

[ITo use the Browser to paste information into the Script view:
Click the Browser button in the PowerBar, or select Tools>Browser.

1
2 Select the target you want to browse.

3 Select the appropriate tab and then select the object in the left pane.
4

Select the category of information you want to display by expanding the
appropriate folder in the right pane.

(&)]

Select the information and click Copy.

In the Script view, move the cursor where you want to paste the
information and select any text you want to replace with the pasting.

7 Select Paste from the pop-up menu.

PowerBuilder displays the information at the insertion point in the script,
replacing any selected text.

For information about using the Browser to paste OLE object information into
a script, see Application Techniques.

189

Editing scripts

Pasting statements

Pasting SQL

190

You can paste atemplate for all basic forms of the following PowerScript
statements:

IF...THEN

DO...LOOP

FOR...NEXT

CHOOSE CASE
TRY...CATCH... FINALLY

When you paste these statements into a script, prototype values display in the
syntax to indicate conditions or actions. By default, the statements are pasted
in lowercase. To paste statements in uppercase, add the following line to the
[PB] section of the PB.INI file:

PastelLowercase=0

This setting al so affects AutoScript.

[TTo paste a PowerScript statement into the script:

1

Place the insertion point where you want to paste the statement in the
script.

Select the Paste Statement button from the PainterBar, or sel ect Edit>Paste
Specia>Statement from the menu bar.

Select the statement you want to paste from the cascading menu.
The statement prototype displays at the insertion point in the script.

Replace the prototype values with the conditions you want to test and the
actions you want to take based on the test results.

For more about Power Script statements, see the Power Script Reference.

You can paste a SQL statement into your script instead of typing the statement.

[TTo paste a SQL statement:

1

Place the insertion point where you want to paste the SQL statement in the
script.

Click the Paste SQL button in the PainterBar, or select Edit>Paste
Specia>SQL from the menu bar.

PowerBuilder Classic

CHAPTER 7 Writing Scripts

Pasting functions

Pasting contents of
files

Users Guide

3

Select the type of statement you want to insert from the cascading menu
by double-clicking the appropriate button.

The appropriate dialog box displays so that you can create the SQL
statement.

Create the statement, then return to the Script view.
The statement displays at the insertion point in the workspace.

For more about embedding SQL in scripts, see the Power Script Reference.

You can paste any function into a script.

[To paste a function into a script:

1
2

Place the insertion point where you want to paste the function in the script.

Click the Paste Function button in the PainterBar, or select
Edit>Paste Special>Function from the menu bar.

Choose the type of function you want to paste: built-in, user-defined, or
external.

Double-click the function you want from the list that displays.

PowerBuilder pastes the function into the script and places the cursor
within the parentheses so that you can define any needed arguments.

For more about pasting user-defined functions, see “ Pasting user-defined
functions’ on page 214. For more about external and built-in functions, see
Application Techniques.

If you have code that is common across different scripts, you can keep that
codein atext file, then pasteit into new scripts you write. For shorter snippets
of code, you can also use the Clip window. See“ The Clip window” on page 15.

[ITo import the contents of a file into the Script view:
1 Placetheinsertion point where you want the file contents pasted.

2 Select Edit>Paste Special>From File from the menu bar.

ThePaste From Filedia og box displays, listing al fileswith the extension
SCR. If necessary, navigate to the directory that contains the script you
want to paste.

Choose the file containing the code you want. You can change the type of
files displayed by changing the file specification in the File Name box.

PowerBuilder copies the file into the Script view at the insertion point.

191

Using AutoScript

Saving a script to afile
To save al or part of ascript to an external text file, select the code you want

to save and copy and paste it to the file editor. Use the extension .SCRto
identify it as PowerScript code. You might want to use thistechnique to save a
backup copy before you make major changes or so that you can usethe codein
other scripts.

Reverting to the unedited version of a script

You can discard the edits you have made to a script and revert to the unedited
version by selecting Edit>Revert Script from the menu.

Using AutoScript

192

AutoScript isatool designed to help you write PowerScript code more quickly
by providing alookup and paste service inside the Script view. It isan
aternative to using the paste tool bar buttons or the Browser—you do not need
to move your hands away from the keyboard to paste functions, events,
variables, properties, and templates for PowerBuilder TRY, DO, FOR, IF, and
CHOOSE statements into your script.

If you are not sure what the name or syntax of afunction is or what the names
of certain variables are, AutoScript can show you alist to choose from and
pastewhat you need right into the script. If you can remember part of the name,
start typing and select Edit>Activate AutoScript (or do nothing if automatic
pop-up isturned on). If you cannot remember the name at al, turn atomatic
pop-up on, place your cursor in white space, and select Edit>Activate
AutoScript.

Assign a shortcut key
If you plan to use AutoScript, assign ashortcut key to the Activate AutoScript

menu item. See “ Creating shortcut keys’ on page 195.

PowerBuilder Classic

CHAPTER 7 Writing Scripts

Where you use
AutoScript

Two ways to use
AutoScript

You can use AutoScript in three different contexts:

¢ When you can remember part of the name and you want AutoScript to
finish typing it for you or show you alist of alternatives.

¢ When you cannot remember the name or you just want alist. AutoScript
options can help you narrow thelist if you do not know the name but you
do know the type you are looking for. For example, you can choose to see
alist showing all variables, or only all local variables.

¢ When you want alist of the properties and/or functions and events that
apply to an identifier followed by adot.

For how to use AutoScript options, see “ Customizing AutoScript” on page
195.

AutoScript can pop up alist automatically when you pause while typing, or
when you request it:

e Turn automatic pop-up on to have AutoScript pop up thelist or complete
what you are typing when you pause for afew seconds after typing one or
more characters or an identifier followed by a dot. See “Using automatic
pop-up” on page 197.

¢ Invoke AutoScript when you need it by pressing the shortcut key you
assigned to the Edit>Activate AutoScript menu item when you have typed
one or more characters or an identifier followed by a dot. Pressing the
shortcut key activates AutoScript only once. It does not turn automatic

pop-up on.

For how to paste an item from the pop-up window into ascript, see “Using the
AutoScript pop-up window” next.

Using the AutoScript pop-up window

Users Guide

If there is more than one property, variable, method, or statement that could be
inserted, AutoScript pops up an alphabetical list of possible completions or
insertions. Anicon next to each item indicates its type. The following screen
includes an instance variable, events, properties, statements, and a function:

£ deactivate ()
xéi default
destructor []
= do loop until
= do loop while
= do until

E; do while

douh

d | gnedlong flags, integer xpos, integ
% drag [dragmodes m] -
U »

193

Using AutoScript

Case sensitivity

Pasting an item into
the script

If you do not want to
paste from the list

If nothing displays

194

If afunction is overloaded, each version displays on a different linein the
AutoScript pop-up window.

If you have started typing aword, only completions that begin with the string
you have already typed display in thelist.

If you have set the Pastel.owerCase PB.INI variable to 0 as described in
“Pasting statements’ on page 190, AutoScript always pastes uppercase
characters. Otherwise, AutoScript always pastes lowercase characters.

The case of any characters you have already typed is preserved. For example,
if you are using AutoScript to complete a function name and you want to use
mixed case, you can type up to the last uppercase letter before invoking
AutoScript. AutoScript completes the function name in lowercase characters
and pastes an argument template.

To pastean iteminto the script, press Tab or Enter or double-click theitem. Use
the arrow and page up and page down keysto scroll through thelist. If theitem
isafunction, event, or statement, the template that is pasted includes
descriptive comments that you replace with argument names, conditions, and
so forth. The first commented argument or statement is selected so that it is
easy to replace. You can jump to the next comment by selecting

Edit>Go To>Next Marker.

Go to next marker
You can use Edit>Go To>Next Marker to jJump to the next comment enclosed

by /+ and */ anywherein the Script view, not just in AutoScript templates. For
the stepsto create ashortcut for thismenu item, see Customizing AutoScript”
next.

Press the Backspace key or click anywhere outside the pop-up window to
dismissit without pasting into the script.

AutoScript does not pop up alist if the cursor isin acomment or string literal
orif anidentifier iscomplete. If neither of these conditions applies and nothing
displays when you select Edit>Activate AutoScript, there may be no
appropriate completionsin the current context. Check that the optionsyou need
are selected on the AutoScript options page as described in “ Customizing
AutoScript” next.

PowerBuilder Classic

CHAPTER 7 Writing Scripts

Customizing AutoScript

There are four ways to customize AutoScript:

Creating shortcut keys

Specifying what
displays in the list

Users Guide

Creating shortcut keys
Specifying what displaysin the list
Using automatic pop-up

Using AutoScript only with dot notation

AutoScript is easier to useif you create shortcuts for the menu items that you
use freguently.

[_ITo modify or create shortcut keys for using AutoScript:

1

Select Tools>Keyboard Shortcuts from the menu bar and expand the Edit
menu in the Keyboard Shortcuts dialog box.

Scroll down and select Activate AutoScript and type akey sequence, such
as Ctrl+space.

Expand the Go To menu, select Next Marker, and type a key sequence,
such as Ctrl+M.

After you click OK, the shortcuts display in the Edit menu.

You can select different items to include in three different contexts:

When you have started typing a variable or method name or the beginning
of a PowerScript statement

When you have typed the name of an object followed by a dot

When the cursor is at the beginning of anew line or in white space

To make these customizations, select Design>Options from the menu bar and
select the AutoScript tab.

Table 7-3 showswhat isincluded in thelist or pasted when you check each box.

Table 7-3: Setting options for AutoScript

Check box Displays

Arguments Arguments for the current function or event.

Local Variables Variables defined in the current script.

Instance Variables | Variables defined for and associated with an instance of the

current object or, after adot, variables associated with the object
preceding the dot.

Shared Variables | Variables defined for the current object and associated with all

instances of it.

195

Using AutoScript

196

Check box Displays

Global Variables | Variables defined for the current application.

Properties Propertiesfor the current object or, after adot, propertiesfor the
object preceding the dot. Includes controls on the current
window.

Methods Functions and events for the current object or, after adot,
functions and events for the object preceding the dot.

Statement PowerScript statement templates for each type of IF, FOR,

Templates CHOOSE CASE, TRY, or DO statement with comments
indicating what code should be inserted. This option is off by
default.

Turning options off reducesthe length of thelist that displayswhen you invoke
AutoScript sothat it isfaster and easi er to paste acompletion or insert codeinto
the script:

To show all variablesand methods when typing, check all the boxes except
Statement Templates in the Partial Name Resolution Include group box.
When you pause or press the Activate AutoScript shortcut key, the list
shows variables and methods that begin with the string you typed.

To quickly find functions on an object, clear al the boxes except Methods
in the After A Dot Include group box. When you type an instance name
followed by adot, only function and event names for the instance display.

To seealist of arguments and local variables when the cursor isin white
space, check the Arguments and Local Variables boxes in the When No
Context Include group box. When you press the Activate AutoScript
shortcut key, the list shows only arguments and local variables.

Using name completion shortens the list
You might not need to clear boxes on the AutoScript page to reduce the length

of thelist if you are using name completion and the Activate AutoScript
shortcut key to invoke A utoScript. For example, suppose you have created an
instance called inv_ncst_dssrv of the classn_cst_dssrv and you know the
function you want to use beginswith of_g. Typethe following into a script and
then press the Activate AutoScript shortcut key:

inv_ncst dssrv.of g

AutoScript displays a pop-up window showing only the functions on
n_cst_dssrv that begin with of_g.

PowerBuilder Classic

CHAPTER 7 Writing Scripts

Using automatic
pop-up

Using AutoScript only
with dot notation

Example

Users Guide

Most of thetimeyou will probably use ashortcut key to invoke AutoScript, but
you can aso have AutoScript pop up alist or paste a selection automatically
whenever you pause for several seconds while typing. To do so, check the
Automatic Popup box on the AutoScript options page. Automatic pop-up does
not operate when the cursor is at the beginning of aline or in white space.

Thisfeatureismost useful when you are entering new code. You can customize
the options in the Partial Name Resolution Include and After A Dot Include
group boxes to reduce the number of times AutoScript pops up.

When you are editing existing code, it is easier to work with automatic pop-up
off. AutoScript might pop up alist or paste atemplate for afunction when you
do not want it to. Using only the shortcut key to invoke AutoScript gives you
complete contral.

If you want AutoScript to work only when you have typed an identifier
followed by a dot, check the Activate Only After aDot box on the AutoScript
options page. The effect of checking this box applies whether or not you have
checked Automatic Popup. You might find it most useful when you have
checked Automatic Popup, becauseit providesanother way to limit the number
of times AutoScript pops up automatically.

The following simple example illustrates how AutoScript works with
automatic pop-up turned off and different settings for each context. The
example assumes that you have set up F8 as the Activate AutoScript shortcut
key. To set up the example:

e Createanew window and place on it a Datawindow control and a
CommandButton control.

* Sdect all the boxesin the Partial Name Resolution Include group box.
e Clear all the boxesin the After A Dot Include group box except Methods.

e Clear all the boxesin the When No Context Include group box except
Arguments and Local Variables.

e Clear both boxes in the Options group box.

197

Getting context-sensitive Help

Table 7-4: AutoScript example

Context

Do this

What happens

Partial name
resolution

In the Clicked event script
for cb_1, type 1long

11 _rtn. Onanew ling,
type 11 and press F8.

AutoScript pastes the local variable
II_rtn into the script because it isthe
only completion that begins with II.

Type= dand press F8.

Thelist displays al properties, events,
functions, variables, and statementsthat
begin with d.

Typew and press Tab or
Enter.

Thelist scrollsto dw_1 and AutoScript
pastesit into the script when you press
Tab or Enter.

After adot

Type a dot after dw_1 and
press F8.

The list shows all the functions and
events for a Datawindow control.

Type GetNextM and press
Tab or Enter.

AutoScript pastes therest of the
GetNextModified function name and
template into the script, retaining your
capitalization.

Select Edit>Go To>Next
Marker.

AutoScript selects the next function
argument so you can replace it.
Complete or comment out the
statement.

No context

In the empty ItemChanged
event for dw_1, declare
some local variables, press
Tab or Enter, and then press
F8.

Getting context-sensitive Help

In addition to accessing Help through the Help menu and F1 key, you can use
context-sensitive Help in the Script view to display Help for reserved words
and built-in functions.

[—To use context-sensitive Help:

1 Placetheinsertion point within areserved word (such as DO or CREATE)
or built-in function (such as Open or Retrieve).

2 Press Shift+F1.

198

Thelist displaysthelocal variables and
the arguments for the ItemChanged
event.

PowerBuilder Classic

CHAPTER 7 Writing Scripts

The Help window displays information about the reserved word or
function.

Copying Help text

You can copy text from the Help window into the Script view. Thisis an easy
way to get more information about arguments required by built-in functions.
You can also copy scriptsdirectly from code examples and modify them for use
in your application.

Compiling the script
Before you can execute a script, you must compileit.
[_1To compile a script:
* Click the Compile button, or select Edit>Compile from the menu bar.

PowerBuilder compiles the script and reports any problemsit finds, as
described in “Handling problems’ next.

PowerBuilder compiles automatically
When you attempt to open a different script in a Script view, PowerBuilder

compiles the current script. When you save the object, such as the window
containing acontrol you wrote a script for, PowerBuilder recompilesall scripts
in the object to make sure they are still valid. For example, PowerBuilder
checks that all objects that were referenced when you wrote the script still
exist.

Handling problems

If problems occur when a script is compiled, PowerBuilder displays messages
in a Message window below the script.

.(0003): Information C0146: The identifier 'error' conflicts with an existing gl

(00047 : Warning C0150: Function 'dhErrorCode' is obsolete. The database er
(0005) 1 Warning 0014 : Undefined variable: source

(0005): Error 0124 Il1legal expression on left side of assignment
(0012): Error C0052: Bad argument 1ist for function: messagebox

(0018): Error C0031: Syntax error

< | v

Users Guide 199

Compiling the script

Understanding errors

Understanding
warnings

200

There are three kinds of messages:

Errors
Warnings
Information messages

Errorsindicate serious problems that you must fix before a script will compile
and before you can close the Script view or open another script in the same
view. Errors are shown in the Message window as:

line number: Error error number:message

Warningsindicate problemsthat you should be aware of but that do not prevent
ascript from compiling.

There are three kinds of warnings.

Compiler warnings Compiler warnings inform you of syntactic problems,
such as undeclared variables. PowerBuilder |ets you compile a script that
contains compiler warnings, but you must fix the problem in the script before
you can save the object that the script is for, such as the window or menu.
Compiler warnings are shown in the Message window as:

line number: Warning warning number:message

Obsolete warnings Obsolete warnings inform you when you use any
obsolete functions or syntax in your script. Obsolete functions, although they
till compile and run, have been replaced by more efficient functions and will
be discontinued in a future release of PowerBuilder. You should replace all
references to obsol ete functions as soon as possible. Obsolete warnings are
shown in the Message window as:

line number: Warning warning number:message

Database warnings Database warnings come from the database manager
you are connected to. PowerBuilder connects to the database manager when
you compile a script containing embedded SQL. Typically, these warnings
arise because you are referencing a database you are not connected to.
Database warnings are shown in the M essage window as:

line number: Database warning number:message

PowerBuilder letsyou compile scriptswith database warningsand also letsyou
save the associated object. It does this because it does not know whether the
problem will apply during execution, since the execution environment might
be different from the compile-time environment.

You should study database warnings carefully to make sure the problems will
not occur at runtime.

PowerBuilder Classic

CHAPTER 7 Writing Scripts

Understanding
information messages

Displaying warnings
and messages

Fixing problems

Disabling database
connection when
compiling and building

Users Guide

Information messages are issued when thereis a potential problem. For
example, an information message is issued when you have used a global
variable name as alocal variable, because that might result in a conflict later.

Information messages are shown in the Message window as.
line number: Information number:message

To specify which messages display when you compile, select Design>Options
to open the Options dialog box, select the Script tab page, and check or clear
the Display Compiler Warnings, Display Obsolete M essages, Display
Information Messages, and Display Database Warnings check boxes. The
default isto display compiler and database warning messages. Error messages
always display.

To fix aproblem, click the message. The Script view scrolls to display the
statement that triggered the message. After you fix al the problems, compile
the script again.

To save a script with errors
Comment out the lines containing errors.

When PowerBuilder compiles an application that contains embedded SQL, it
connects to the database profile last used in order to check for database access
errors during the build process. For applications that use multiple databases,
this can result in spurious warnings during the build since the embedded SQL
can be validated only against that single last-used database and not against the
databases actually used by the application. In addition, an unattended build,
such asalengthy overnight rebuild, can stall if the database connection cannot
be made.

To avoid these issues, you can select the Disable Database Connection When
Compiling and Building check box on the General page of the System Options
dialog box.

Caution
Select the check box only when you want to compile without signing on to the

database. Compiling without connecting to a database prevents the build
process from checking for database errors and may therefore result in runtime
errors later.

201

Declaring variables and external functions

Declaring variables and external functions

The default layout in the Application, Window, and User Object painters
includes a Script view set up to declare variables. Keeping a separate Script
view open makesit easy to declare any variablesor external functionsyou need
to usein your code without closing and compiling the script.

[ITo declare variables and external functions:
1 Select [Declare] from thefirst list in the Script view.

2 Select the variable type (instance, shared, or global) or the function type
(local or global) from the second list.

3 Typethedeclaration in the Script view.

For more information about declaring variables, see the Power Script
Reference. For more information about declaring and using external functions,
see the Power Script Reference and Application Techniques.

202 PowerBuilder Classic

CHAPTER 8

About this chapter

Contents

Working with User-Defined
Functions

This chapter describes how to build and use user-defined functions.

Topic Page
About user-defined functions 203
Defining user-defined functions 205
Modifying user-defined functions 212
Using your functions 214

About user-defined functions

Global functions

Users Guide

The PowerScript language has many built-in functions, but you may find
that you need to code the same procedure over and over again. For
example, you may need to perform acertain calculation in several places
in an application or in different applications. In such asituation, create a
user-defined function to perform the processing.

A user-defined function is a collection of PowerScript statements that
perform some processing. After you define a user-defined function and
saveitinalibrary, any application accessing that library can usethe
function.

There are two kinds of user-defined functions, global and object-level
functions.

Global functions are not associated with any object in your application
and are always accessible anywhere in the application.

They correspond to the PowerBuilder built-in functions that are not
associated with an object, such as the mathematical and string-handling
functions. You define global functionsin the Function painter.

203

About user-defined functions

Obiject-level functions Object-level functions are defined for a window, menu, user object, or
application object. These functions are part of the object’s definition and can
always be used in scripts for the object itself. You can choose to make these
functions accessible to other scripts as well.

These functions correspond to built-in functions that are defined for specific
PowerBuilder objects such as windows or controls. You define object-level
functionsin a Script view for the object.

Deciding which kind you want

When you design your application, you need to decide how you will use the
functions you will define:

» If afunctionis genera purpose and applies throughout an application,
make it a global function.

» If afunction applies only to a particular kind of object, make it an
object-level function. You can still call the function from anywherein the
application, but the function acts only on a particular object type.

For example, suppose you want a function that returns the contents of a
SingleLineEdit control in one window to another window. Make it a
window-level function, defined in the window containing the
SingleLineEdit control. Then, anywhere in your application that you need
this value, call the window-level function.

Multiple objects can have functions with the same name
Two or more objects can have functions with the same name that do different

things. In object-oriented terms, thisis called polymorphism. For example,
each window type can have its own Initialize function that performs processing
uniqueto that window type. Thereisnever any ambiguity about which function
isbeing called, because you always specify the object’snamewhen you call an
object-level function.

Object-level functions can also be overloaded—two or more functions can
have the same name but different argument lists. Global functions cannot be
overloaded.

204 PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions

Defining user-defined functions

Although you define global functions in the Function painter and object-level
functionsin the painter for aspecific object, in both cases you define and code
the function in a Script view.

Users Guide

When you add a new function, a Prototype window displays above the script
areain the Script view. The fields in the Prototype window are in the same
order as the function’s signature:

The function’s access level, return type, and name
For each parameter, how it is passed, its datatype, and its name

The exceptions the function can throw, if any

state, integer ai_totalcust) returns decimal

{Functions) w || = uf _percentage { integer ai_c B =
Access Return Type Function Mame e
w | decimal w || uf_percentage
Pass By Argument Type Argument Mame
value ~ | inkeger w || ai_custbystate
value ~ | inkeger w || ai_totaloust
Throws: | exC_No_rows,exc_low_number W
Decimal my_result A
exC_no_rows le_nr
exc_low_number le_ex
ff5et denominator to zero to test error condition
S e e 1R imemesbmant mwenid 1 eese maeemambioes - Seoe b
< ¥

iLayout)\uFJjercentage Event List sFunction List yDeclare Instance Yariables

Thefollowing sections describe each of the stepsrequired to define and code a
new function:

0 N o o b~ W N P

Opening a Prototype window to add a new function.
Defining the access level (for object-level functions).
Defining areturn type.

Naming the function.

Defining arguments.

Defining a THROWS clause.

Coding the function.

Compiling and saving the function.

205

Defining user-defined functions

Opening a Prototype window to add a new function

How you create a new function depends on whether you are defining a global
function or an object-level function.

[_TTo create a new global function:
* Select File>New from the menu bar and select Function from the PB
Object tab.

The Function painter opens, displaying a Script view with an open
Prototype window in which you define the function.

[_TTo create a new object-level function:
1 Open the object for which you want to declare afunction.

You can declare functions for windows, menus, user objects, or
applications.

2 Select Insert>Function from the menu bar, or, in the Function List view,
select Add from the pop-up menu.

The Prototype window opensin a Script view or, if no Script view isopen,
inanew Script view.

Defining the access level

In the Prototype window, use the drop-down list labeled Access to specify
where you can call the function in the application.

For global functions Global functions can always be called anywhere in the application. In
PowerBuilder terms, they are public. When you are defining aglobal function,
you cannot modify the access level; thefield is read-only.

]for object-level You can restrict access to an object-level function by setting its access level.
unctions
Table 8-1: Access levels for object-level functions

Access Means you can call the function

Public In any script in the application.

Private Only in scriptsfor eventsin the object in which the function is defined.
You cannot call the function from descendants of the object.
Protected | Only in scripts for the object in which the function is defined and
scripts for that object’s descendants.

206 PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions

Defining a return

If afunction isto be used only internally within an object, you should define
its access as private or protected. This ensures that the function is never called
inappropriately from outside the object. In object-oriented terms, defining a
function as protected or private encapsulates the function within the object.

Transaction $9_I‘V9F components))
If you are defining functions for a custom class user object that you will use as

an EA Server or application server component, remember that only public
functions can appear in the interface for the component.

type

Many functions perform some processing and then return avaue. That value
can betheresult of the processing or aval ue that indicateswhether the function
executed successfully or not. To have your function return avalue, you need to
defineits return type, which specifies the datatype of the returned value.

You must code areturn statement in the function that specifies the value to
return. See “Returning avalue” on page 211. When you call the functionin a
script or another function, you can use an assignment statement to assign the
returned value to avariablein the calling script or function. You can al'so use
the returned value directly in an expression in place of avariable of the same

type.

[_ITo define a function’s return type:

Users Guide

e Select the return type from the Return Type drop-down list in the
Prototype window, or type in the name of an object type you have defined.

You can specify any PowerBuilder datatype, including the standard
datatypes, such asinteger and string, as well as objects and controls, such
as DataStore or MultiLineEdit.

You can also specify as the return type any object type that you have
defined. For example, if you defined a window named w_calculator and
want the function to process the window and return it, type
w_calculator in the Return Typelist. You cannot select w_calculator
from the list, because the list shows only built-in datatypes.

207

Defining user-defined functions

Examples of functions
returning values

[_TTo specify that a function does not return a value:

* Select (None) from the Return Type list.

Thistells PowerBuilder that the function does not return avalue. Thisis
similar to defining a procedure or a void function in some programming
languages.

The following examples show the return type you would specify for some
different functions:

Specify this
If you are defining return type
A mathematical function that does some processing and returnsa | real

real number
A function that takes astring as an argument and returnsthestring | string
in reverse order
A function that is passed an instance of window w_calculator, does | w_calculator
some processing (such as changing the window's color), then
returns the modified window

Naming the function

208

Name the function in the Function Name box. Function names can have up to
40 characters. For valid characters, see the Power Script Reference.

For abject-level functions, thefunction isadded to the Function List view when
you tab off the Function Name box. It is saved as part of the object whenever
you save the object.

Using a naming convention for user-defined functions makes them easy to
recognize and distinguish from built-in PowerScript functions. A commonly
used conventionisto preface all global function nameswith f_ and object-level
functions with of_, such as:

// global functions
f calc
f get result

// object-level functions
of refreshwindow
of checkparent

Built-in functions do not usually have underscores in their names, so this
convention makes it easy for you to identify functions as user defined.

PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions

Defining arguments

Passing arguments

Users Guide

Like built-in functions, user-defined functions can have any number of
arguments, including none. You declare the arguments and their types when
you define afunction.

In user-defined functions, you can pass arguments by reference, by value, or
read-only. You specify thisfor each argument in the Pass By list.

By reference When you pass an argument by reference, the function has
access to the original argument and can change it directly.

By value When you pass by value, you are passing the function atemporary
local copy of the argument. The function can ater the value of the local copy
within the function, but the value of the argument is not changed in the calling
script or function.

Read-only When you pass as read-only, the variable'svalue is available to
the function but it is treated as a constant. Read-only provides a performance
advantage over passing by value for string, blob, date, time, and datetime
arguments, because it does not create a copy of the data.

If the function takes no arguments
Leave theinitial argument shown in the Prototype window blank.

[TTo define arguments:

1 Declare whether the first argument is passed by reference, by value, or
read-only.

The order in which you specify arguments here is the order you use when
calling the function.

2 Declarethe argument’stype. You can specify any datatype, including:
e Built-in datatypes, such as integer and real
« Object types, such as window, or specific objects, such asw_emp
e User objects
e Controls, such as CommandButtons
Name the argument.

4 If you want to add another argument, press the Tab key or select Add
Parameter from the pop-up menu and repeat steps 1 to 3.

209

Defining user-defined functions

Passing arrays
You must include the square brackets in the array definition, for example,

price[10rprice[50], and the datatype of the array must be the datatype of
the argument. For information on arrays, see the Power Script Reference.

Defining a THROWS clause

When you need to
add a THROWS
clause

Adding a THROWS
clause

210

If you are using user-defined exceptions, you must define what exceptions
might be thrown from a user-defined function or event. You use the Throws
box to do this.

Any developers who call the function or event need to know what exceptions
can be thrown from it so that their code can handle the exceptions. If afunction
contains a THROW statement that is not surrounded by atry-catch block that
can deal with that type of exception, then the function must be declared to
throw that type of an exception or some ancestor of that exception type.

There are two exception types that inherit from the Throwabl e object:
Exception and RuntimeError. Typically, you add objects that inherit from
Exception to the THROWS clause of afunction. Exception objects are the
parents of all checked exceptions, which are exceptionsthat must be dealt with
when thrown and declared when throwing. You do not need to add Runtime
error objects to the THROWS clause, because they can occur at any time. You
can catch these errors in atry-catch block, but you are not required to.

You can add a THROWS clause to any PowerBuilder function or to any user
event that is not defined by an event ID. To do so, drag and drop it from the
System Tree, or type the name of the object in the box. If you type the names
of multiple user objectsin the Throws box, use acommato separate the object
names. When you drag and drop multiple user objects, PowerBuilder
automatically adds the comma separators.

The PowerBuilder compiler checks whether a user-defined exception thrown
on afunction call in ascript matches an exception in the THROWS clause for
that function. It promptsyou if thereisno matching exception in the THROWS
clause.

You can define a user-defined exception object, and inherit from it to define

more specific lower-level exceptions. If you add a high-level exception to the
throws clause, you can throw any lower-level exception in the script, but you
risk hiding any useful information obtainable from the lower-level exception.

For more information about exception handling, see Application Techniques.

PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions

Coding the function

What functions can
contain

Returning a value

Example

When you have finished defining the function prototype, you specify the code
for the function just as you specify the script for an event in the Script view.
For information about using the Script view, see Chapter 7, “Writing Scripts.”

User-defined functions can include PowerScript statements, embedded SQL
statements, and calls to built-in, user-defined, and external functions.

You can type the statements in the Script view or use the buttonsin the
PainterBar or items on the Edit>Paste Special menu to insert them into the
function. For moreinformation, see* Pasting information into scripts’ on page
187.

If you specified areturn type for your function in the Prototype window, you
must return avaluein the body of the function. To return avaluein afunction,
use the RETURN statement:

RETURN expression

where expression is the value you want returned by the function. The datatype
of the expression must be the datatype you specified for the return value for the
function.

Thefollowing function returnsthe result of dividing argl by arg2 if arg2 does
not equal zero. It returns—1 if arg2 equals zero:

IF arg2 <> 0 THEN
RETURN argl / arg2
ELSE
RETURN -1
END IF

Compiling and saving the function

Users Guide

When you finish building a function, compile it and saveit in alibrary. Then
you can useit in scripts or other user-defined functionsin any application that
includes the library containing the function in its library search path. You
compile the script and handle errors as described in “ Compiling the script” on
page 199.

211

Modifying user-defined functions

Modifying user-defined functions

You can change the definition of a user-defined function at any time. You
change the processing performed by the function by modifying the statements
inthe Script view. You can a so change the return type, argument list, or access
level for afunction.

Changing the
arguments

212

[TTo change a function’s return type, arguments, or access level:

1

3

Do one of the following:
* IntheFunction painter, open the global function.

* Open the abject that contains the object-level function you want to
edit and select the function from the Function list.

Make the changes you want in the Prototype window.
If the Prototype window is hidden, click the toggle button to display it.
Select File>Save from the menu bar.

[To change a function’s name:

1

If desired, modify the function’sreturn type, arguments, or accesslevel as
described in the previous procedure.

Do one of the following:

* IntheFunction painter, select File>Save As from the menu bar and
enter aname.

* Inthe Script view, enter anew name in the Function Name box.

When you tab off the box, the new function name displaysin the Function
List view.

You can change afunction’s arguments at any time using the pop-up menuin
the Prototype window:

Add an argument by selecting Add Parameter. Boxes for defining the new
argument display below the last argument in the list.

Insert an argument by moving the pointer to the argument before which
you want to insert the argument and selecting Insert Parameter. Boxes for
defining the new argument display above the selected argument.

Delete an argument by selecting it and clicking the Delete button.

PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions

Recompiling other
scripts

Seeing where a
function is used

Users Guide

To change the position of an argument]
To change the position of an argument, delete the argument and insert it asa

new argument in the correct position.

Changing arguments and the return type of a function affect scripts and other
functions that call the function. You should recompile any script in which the
function is used. This guarantees that the scripts and functions work correctly
during execution.

PowerBuilder provides browsing facilities to help you find where you have
referenced your functions. Inthe System Treeor Library painter, select atarget,
library, or object and select Search from the pop-up menu. You can aso search
multiple entries in the Library painter:

[_ITo determine which functions and scripts call a user-defined function:

1 OpentheLibrary painter.

2 Inalistview, select al the entriesyou want to search for referencesto the
user-defined function.

3 Select Entry>Search from the menu bar.
The Search Library Entries dialog box displays.

4 Specify the user-defined function as the search text and specify the types
of components you want to search.

5 Click OK.

PowerBuilder displays all specified components that reference the
function in the Output window. You can double-click alisted component
to open the appropriate painter.

For more about browsing library entities, see“ Searching targets, libraries, and
objects’ on page 164.

213

Using your functions

Using your functions

You use user-defined functions the same way you use built-in functions. You
can call them in event scripts or in other user-defined functions.

Pasting user-defined
functions

214

For complete information about calling functions, see Application Techniques.

When you build a script in the Script view, you can type the call to the
user-defined function. You can also paste the function into the script. Thereare
four ways to paste a user-defined function into a script:

Drag the function from the System Tree to the Script view.
Select Edit>Paste Specia >Function>User-defined from the menu bar.

Enable AutoScript, select the function’s signature in the list that displays
when you pause, and press Tab or Enter.

Select the function in the Browser and copy and pasteiit into the script.

Using the System Tree, AutoScript, or the Browser pastes the function’s
prototype arguments as well as its name into the script.

For more information about AutoScript, see “Using AutoScript” on page 192.

[—TTo paste a user-defined function into a script from the Browser:

1
2

Select Tools>Browser from the menu bar.
Do one of the following:
* Select aglobal function from the Function page.

» Select the object that contains the object-level function you want to
paste from the corresponding page (such as the Window page).

Double-click the Functions category in the right pane.

Select the function you want to paste and select Copy from its pop-up
menu.

In the Script view, move the insertion point to where you want to paste the
function and select Paste from the pop-up menu.

The function and its prototype parameters display at theinsertion pointin
your script.

Specify the required arguments.

PowerBuilder Classic

CHAPTER 9

About this chapter

Contents

Working with User Events

This chapter introduces user events, describes how to define them, and
discusses how to use them in an application.

Topic Page
About user events 215
Defining user events 218
Using a user event 221

About user events

Keystroke processing

Users Guide

Windows, user objects, controls, menus, and Application objects each
have a predefined set of events. In most cases, the predefined events are
al you need, but there are times when you want to declare your own user
event. You can use predefined event IDsto trigger auser event, or you can
trigger it exclusively from within your application scripts.

Features that you might want to add to your application by creating user
eventsinclude keystroke processing, providing multiple waysto perform
atask, and communication between a user object and a window.

Supposethat you want to modify theway keystrokesare processed in your
application. For example, in a Datawindow control, you want the user to
beableto pressthe Down Arrow and Up Arrow keysto scroll among radio
buttonsin a Datawindow column. Normally, pressing these keys moves
the focus to the next or preceding row.

To do this, you define user events corresponding to Windows events that
PowerBuilder does not define.

215

About user events

Multiple methods

Communication
between user object
and window

Suppose that you want to provide several ways to accomplish a certain task
within awindow. For example, you want the user to be able to update the
database by either clicking a button or selecting a menu item. In addition, you
want to provide the option of updating the database when the user closes the
window.

To do this, you define a user event to update the database.

Supposethat you have placed acustom visual user object in awindow and need
to communicate between the user object and the window. For information, see
“Communicating between a window and a user object” on page 389.

User events and event IDs

Event ID names

Event IDs associated
with Windows
messages

216

An event ID connects events related to user actions or system activity to a
system message. PowerBuilder defines (or maps) events to commonly used
event I Ds, and when it receives a system message, it uses the mapped event ID
to trigger an event.

User-defined events do not have to be mapped to an event ID. See “ Defining
user events’ on page 218.

The PowerBuilder naming convention for user event IDsis similar to the
convention Windows uses to name messages. All PowerBuilder event IDs
begin with pbm_.

Several Windows messages and notifications map to PowerBuilder event IDs.

For Windows messages that begin with wm_, the PowerBuilder event 1D
typically hasthe same namewith pbm_ substituted for wm_. For messagesfrom
controls, the PowerBuilder event ID typically has the same name but begins
with pbm_ and has the Windows prefix for the control added to the message
name. For example:

e wm_keydown maps to pbm_keydown
* bm_getcheck (a button control message) maps to pbm_bmgetcheck
* bn_clicked (abutton control notification message) maps to pom_bnclicked

To seealist of event IDsto which you can map a user-defined event, select
Insert>Event and display the Event ID drop-down list in the Prototype window
that displays.

PowerBuilder Classic

CHAPTER 9 Working with User Events

Event IDs associated
with PowerBuilder
events

Custom event IDs

Users Guide

Windows messages that are not mapped to a PowerBuilder event ID map to the
pbm_other event ID. The PowerBuilder Message object is populated with
information about system events that are not mapped to PowerBuilder event
IDs. For more information about the M essage object, see Objects and Controls
or Application Techniques.

For more information about Windows messages and natifications, see the
information about Windows controls and Windows management in the section
on user interface design and devel opment in the Microsoft MSDN Library at
http://msdn.microsoft.com/library/default.aspx.

PowerBuilder hasits own events, each of which hasan event ID. For example,
the PowerBuilder event DragDrop has the event ID pbm_dragdrop. The event
name and event 1D of the predefined PowerBuilder events are protected; they
cannot be modified. The event IDs for predefined events are shown in the
Event List view:

ist
activate {3 returns long [pb_activate] ~
clicked { unsignedlong flags, integer xpos, integer ypos 1 returns long [pbm_lbuttonclk]

close {3 returns long [pbm_close]

closequery () returns long [pbm_closequery]

deactivate {) returns long [pbm_deactivate]

doubleclicked { unsignedlong flags, integer xpos, integer vpos 3 returns long [pbm_lbuttondblclk]

dragdrop dragobject source 3 returns long [pbr_dragdrop]

dragenter { dragobject source) returns long [pbm_dragenter]

dragleave { dragobject source) returns long [pbm_dragleave]

dragwithin { dragobject source) returns long [pbm_dragwithin]

help { integer xpos, integer ypos) returns long [pbm_help]

hide {3 returns long [pbr_hidewindow]

hatlinkalarm) returns long [pbm_ddedata]

key { keycode key, unsignedlong kevflags) returns long [pbm_keydown]

mousedown { unsignedlong flags, integer xpos, integer vpos 3 returns long [pbm_lbuttondown]

mousemove { unsignedlong flags, integer xpos, integer vpos 3 returns long [pbm_mousemove]

mouseup { unsignedlong Flags, integer xpos, integer ypos 3 returns long [pbm_lbuttonup]

open {3 returns long [pbm_open]

other { unsignedlong wparam, long lparam 3 returns long [pbm_other]

rbuttondown § unsignedlong flags, integer xpos, integer vpos 3 returns long [pbm_rbuttondown]

remoteexec {) returns long [pbm_ddeexecute]

remotehotlinkstart {3 returns long [pbm_ddeadvise] “

Layout hopen E\Iu'ent List 4Function List xDeclare Instance Variables

Thelist of event IDsthat displaysin the Event ID drop-down list in the
Prototype window includes custom event 1Ds. Custom user events can be
mapped from Windows wm_user message humbers to pbm_customxx event
IDs.

Obsolete technique
This technique is not recommended and is considered to be obsolete. The

ability to use this technique has been retained for backward compatibility. If
you do not want to map a user event to a named pbm_ code, use an unmapped
user event as described in “ Unmapped user events’ on page 219.

217

Defining user events

These event IDs were intended for use with Datawindow controls, windows,
and user objects other than standard visual user objects, which behave like the
built-in controls they inherit from. They were not intended for use with
standard controls.

Defining custom user events for standard controls can cause unexpected
behavior because all standard controls respond to standard eventsin the range
0to 1023. Most controls also define their own range of custom events beyond
1023, corresponding to wm_user messages, and some controls have custom
events that overlap with the PowerBuilder custom events. The pbm_custom01
event D maps to wm_user+0, pbm_custom02 mapsto wm_user+1, and so on,
through pbm_custom75, which maps to wm_user+74.

Defining user events

218

In PowerBuilder, you can define both mapped and unmapped user events for
windows, user objects, controls, menus, and the Application object.

When you add anew event, a Prototype window displays above the script area
in the Script view. Most of the fields in the Prototype window are the same as
when you define a user-defined function. They are in the same order as the
event'ssignature: accesslevel, return type, and name; then for each parameter,
how it is passed, its datatype, and its name; and finally, the THROWS clause.
For information about filling in these fields, see “ Defining user-defined
functions” on page 205.

The access level for eventsis aways public.

¥ Script - us_postopen for w_pbtutor_baseshest returns {Anc -Read onlyy =] B3
w_cusk_pct ~ | | Bl us_postopen {) returns {nor || 2 w_pbtutor + |E =
Access Return Type Event Mame

({Mone) w || ue_postopen
Throws:
LIExternal EventID | {MNone) w

The Prototype window for user events has an additional field that you use if
you want to map the user event to an event ID.

PowerBuilder Classic

CHAPTER 9 Working with User Events

Mapped user events

Unmapped user
events

Users Guide

External check box
When you select the External check box, PowerBuilder sets the

| sExternal Event property of the ScriptDefinition object associated with the
event to “true”. This has no effect on your application in thisrelease. The
feature may be used in afuture release.

When a system message occurs, PowerBuilder triggers any user event that has
been mapped to the message and passes the appropriate values to the event
script as arguments. When you define a user event and map it to an event ID,
you must use the return value and arguments that are associated with the event
ID.

Unmapped user events are associ ated with a PowerBuilder activity and do not
have an event ID. When you define an unmapped user event, you specify the
arguments and return datatype; only your application scripts can trigger the
user event. For example, if you create an event called ue_update that updatesa
database, you might trigger or post the event in the Clicked event of an Update
command button.

[ITo define a mapped user event:

1 Open the object for which you want to define a user event.

2 If youwant to define auser event for acontrol on awindow or visual user
object, double-click the control to select it.

3 Sdlect Insert>Event from the menu bar, or, in the Event List view, select
Add from the pop-up menu.

The Prototype window opens in the Script view. If you display the Script
view's title bar, you see (untitled) because you have not named the
event yet. If there is no open Script view, anew view opens.

4 Namethe event and tab to the next field.

Event names can have up to 40 characters. For valid characters, see the
Power Script Reference.

To recognize user eventseasily, consider prefacing the namewith an easily
recognizable prefix such asue_.

When you tab to the next field, the user event is added to the Event List
view. It is saved as part of the object whenever you save the object.

5 Select an ID from the drop-down list at the bottom of the Prototype
window.

219

Defining user events

[_TTo define an unmapped user event:

1
2

7

Open the object for which you want to define a user event.

If you want to define auser event for acontrol on awindow or visual user
object, double-click the control to select it.

Select Insert>Event from the menu bar, or, in the Event List view, select
Add from the pop-up menu.

The Prototype window opensin the Script view. If you display the Script
view’'stitle bar, you see (untitled) becauseyou have not named the
event yet. If there is no open Script view, a new view opens.

Select areturn type and tab to the next field.

Defining return types for eventsis similar to defining them for functions.
See “Defining areturn type” on page 207.

When you can specify return type and arguments .
If you map the user event to an event 1D, you cannot change itsreturn type

or specify arguments.

Name the event and tab to the next field.

Event names can have up to 40 characters. For valid characters, see the
Power Script Reference.

To recognize user eventseasily, consider prefacing the namewith an easily
recognizable prefix such asue_.

When you tab to the next field, the user event is added to the Event List
view. It is saved as part of the object whenever you save the object.

If the event will take arguments, define arguments for the event.

Defining arguments for eventsis similar to defining them for functions.
See " Defining arguments” on page 209 and “ Changing the arguments’ on
page 212.

Optionally enter the name of exceptions that can be thrown by the event.

[—ITo open a user event for editing:

In the Event List view, double-click the event’s name.

[ITo delete a user event:

220

Inthe Event List view, select the user event’s name and select Delete from
the Edit menu or the pop-up menu.

PowerBuilder Classic

CHAPTER 9 Working with User Events

Using a user event

After you define a user event, you must write the script that PowerBuilder will
execute when that user event istriggered. If it isan unmapped user event, you
also write the code that will trigger the user event.

User events display in aphabetical order in the Event List view and the event
list box inthe Script view, along with the predefined events. Aswith predefined
events, the script tells PowerBuilder what processing to perform when the user
event occurs.

If the user event is not mapped to a Windows message (that is, if thereisno
event I1D associated with it), you must trigger the event in a script. You can

trigger the user event in an object using the EVENT syntax. For information
about calling events, see the Power Script Reference.

Examples of user event scripts

Example 1: mapped
user event for a
control

Users Guide

This section includes two examples that use a mapped user event and one
example that uses an unmapped user event. For more user event examples, see
“Communicating between awindow and a user object” on page 389.

Situation You have severa SingleLineEdit controlsin awindow and want
the Enter key to behave like the Tab key (if users press Enter, you want them
to tab to the next SingleLineEdit).

Solution Define auser event for each SingleLineEdit. Give the event any
name you want, such as ue_CheckKey. Map the event to the event ID
pbm_keydown. Write a script for the user event that tests for the key that was
pressed. If Enter was pressed, set the focusto the SingleLineEdit that you want
the user to go to.

For example, in the script for the user event for sle_1, you could code:

// Script for user event ue_ CheckKey

// which is mapped to pbm_ keydown.

IF KeyDown (KeyEnter!) THEN // Go to sle 2 if
sle_2.SetFocus() // Enter pressed.

END IF

Similarly, in the script for the user event for sle_2, you could code:

// Script for user event ue_ CheckKey,
// which is mapped to pbm_ keydown.

221

Using a user event

Example 2: mapped
user event for an edit
style

222

IF KeyDown (KeyEnter!) THEN // Go to sle 3 if
sle 3.SetFocus() // Enter pressed.
END IF

Situation You have a DataWindow control with a column that uses the
RadioButton edit style and you want to allow usersto scroll through the
RadioButtons when they press Down Arrow or Up Arrow (normally, pressing
Down Arrow or Up Arrow scrollsto the next or preceding row).

Solution Declare a user event for the DataWindow control that mapsto the
event ID pbm_dwnkey and write ascript likethe following for it. dwn standsfor
Datawindow notification.

Script is in a user event for a DataWindow control.
It is mapped to pbm dwnkey. If user is in column

number 6, which uses the RadioButton edit style, and
presses DownArrow, the cursor moves to the next item
in the RadioButton list, instead of going to the next
row in the DataWindow, which is the default behavior.
Pressing UpArrow moves to preceding RadioButton.

Note that the CHOOSE CASE below tests for data
values, not display values, for the RadioButtons.

int colnum = 6 // Column number
long rownum
rownum = dw_2.GetRow() // Current row

IF KeyDown (KeydownArrow!) AND &

This.GetColumn() = colnum THEN
CHOOSE CASE dw_2.GetItemString(rownum, colnum)
case "p" // First value in RB
This.SetItem(rownum, colnum,"L") // Next
case "L" // Second value in RB
This.SetItem(rownum, colnum,"A") // Next
case "A" // Last value in RB
This.SetItem(rownum, colnum,"P") // First
END CHOOSE
This.SetActionCode (1) // Ignore key press
END IF

//

The following code does same thing for UpArrow.

IF KeyDown (KeyupArrow!) AND &

This.GetColumn() = colnum THEN

PowerBuilder Classic

CHAPTER 9 Working with User Events

Example 3: unmapped
user event for menu
options

Users Guide

CHOOSE CASE dw_2.GetItemString (rownum, colnum)
case "P" // First value in RB
This.SetItem(rownum, colnum, "A") // Last
case "L" // Another value in RB
This.SetItem(rownum, colnum,"P")

case "A" // Last value in RB
This.SetItem(rownum, colnum,"L")
END CHOOSE
This.SetActionCode (1)
END IF
Situation Suppose you usethe same menuinall your windows, but you want

to enable or disable some menu items, in this case database update items,
depending on which window the user isin.

Solution Inthewindow that will bethe ancestor of all the sheet windowsthat
do not have database update capability, define an unmapped user event called
ue_ct_menu_enable. The event takes a boolean argument, ab_state, to set or
clear the enabled property on various menus. Thisis the script for the
ue_ct_menu_enable user event in the ancestor window:

// Enable / Disable Menu Options

im CurrMenu.m maint.m_add.enabled = Not ab_state

im CurrMenu.m maint.m_delete.enabled = Not ab_state
im CurrMenu.m maint.m_undelete.enabled = Not ab_state
im_ CurrMenu.m maint.m update.enabled = Not ab_ state
im CurrMenu.m maint.m close.enabled = ab_state

Then, in the script for the Activate event in the ancestor window, call the user
event and pass the value “true” for the boolean variable ab_state.

this.EVENT ue ct menu enable (TRUE)

Write asimilar script for the Deactivate event with the value “false” for
ab_state.

You can use this window as the ancestor of any sheet window in your
application that does not have database update capability. When thewindow is
active, the Add, Delete, Undelete, and Update menu items are grayed out.
When it is not active, the Closeitem is grayed out.

For windows that have database update capability, you can create a second
ancestor window that inherits from the ancestor window in which you defined
ue_ct_menu_enable. In the second ancestor window, you can override the
ue_ct_menu_enable event script so that the appropriate menu options are
enabled.

223

Using a user event

224 PowerBuilder Classic

charTer 10 Working with Structures

About this chapter This chapter describes how to build and use structures.

Contents Topic Page
About structures 225
Defining structures 226
Modifying structures 228
Using structures 229

About structures

A structure is acollection of one or more related variables of the same or
different datatypes grouped under asingle name. In some languages, such
as Pascal and COBOL, structures are called records.

Structures alow you to refer to related entities as a unit rather than
individually. For example, if you define the user’s 1D, address, access
level, and a picture (bitmap) of the employee as a structure called
s_employee, you can then refer to this collection of variables as
s_employee.

Two kinds There are two kinds of structures:

e Global structures, which are not associated with any object in your
application. You can declare aninstance of the structure and reference
theinstance in any script in your application.

¢ Object-level structures, which are associated with aparticular type of
window, menu, or user object, or with the Application object. These
structures can always be used in scripts for the object itself. You can
aso choose to make the structures accessible from other scripts.

Users Guide 225

Defining structures

Deciding which kind you want

When you design your application, think about how the structures you are
defining will be used:

If the structure is general -purpose and applies throughout the application,
make it aglobal structure.

If the structure applies only to a particular type of object, make it an
object-level structure.

Defining structures

Although you define object-level structuresin the painter for a specific object
and global structuresin the Structure painter, in both cases you define the
structurein a Structure view. The following sections describe each of the steps
you take to define anew structure:

Opening a Structure
view

226

1
2
3
4

Open a Structure view.

For object-level structures, name the structure.
Define the variables that make up the structure.
Save the structure.

How you open the Structure view depends on whether you are defining an
object-level structure or aglobal structure.

[_TTo define an object-level structure:

1

Open the object for which you want to declare the structure.

You can declare structures for windows, menus, user objects, or
applications.

Select Insert>Structure from the menu bar.

A Structure view opens.

—
=] (Untitled)
Structure Mame:
Type |Variable Mame |
= |skring L2

PowerBuilder Classic

CHAPTER 10 Working with Structures

Naming the structure

Defining the variables

Users Guide

[TTo define a global structure:

Select Structure from the Objects tab in the New dialog box.

The Structure painter opens. It has one view, the Structure view. In the
Structure painter, thereisno Structure Nametext box in the Structure view.

If you are defining an object-level structure, you nameit in the Structure Name
box in the Structure view. If you are defining a global structure, you name it
when you save the structure.

Structure names can have up to 40 characters. For information about valid
characters, see the Power Script Reference.

You might want to adopt a naming convention for structures so that you can
recognize them easily. A common convention isto preface all global structure
names with s_ and all object-level structure nameswith str_.

[TTo define the variables that compose the structure:

1

Enter the datatype of a variable that you want to include in the structure.

The default for the first variable is string; the default for subsequent
variables is the datatype of the previous variable. You can specify any
PowerBuilder datatype, including the standard datatypes such asinteger
and string, as well as objects and controls such as Window or
MultiLineEdit.

You can also specify any object typesthat you have defined. For example,
if you are using awindow named w_calculator that you have defined and
you want the structure to include the window, typew_calculator asthe
datatype. (You cannot select w_calculator fromthelist, sincethelist shows
only built-in datatypes.)

A structure as a variable
A variablein astructure can itself be a structure. Specify the structure’'s

name as the variable's datatype.

Specifying decimal places

If you select decimal asthe datatype, the default number of decimal places
is2. You can aso select decimal{ 2} or decimal{4} to specify 2 or 4
decimal places explicitly.

Enter the name of the variable.

Repeat until you have entered all the variables.

227

Modifying structures

Saving the structure How you save the structure depends on whether it is an object-level structure
or aglobal structure.

The names of object-level structures are added to the Structure List view and
display inthetitle bar of the Structure view as soon as you tab off the Structure
Name box. As you add variables to the structure, the changes are saved
automatically. When you save the object that contains the structure, the
structure is saved as part of the object in the library where the object resides.

Comments and object-level structures .
You cannot enter comments for an object-level structure, becauseit is not a

PowerBuilder object.

[_ITo name and save a global structure:
1 Select File>Save from the menu bar, or close the Structure painter.

The Save Structure dialog box displays.
2 Namethe structure.
See “Naming the structure” on page 227.
(Optional) Add comments to describe your structure.
4 Choose the library in which to save the structure.
Click OK.

PowerBuilder storesthe structurein the specified library. You can view the
structure as an independent entry in the Library painter.

Modifying structures

[_ITo modify a structure:
1 Do oneof thefollowing:

» IntheOpendialog box, select the global structure you want to modify.

» Openthe painter for the object that contains the object-level structure
and select the structure from the Structure List view.

If the Structure List view is not open, select it from the View menu.

228 PowerBuilder Classic

CHAPTER 10 Working with Structures

2 Review the variable information displayed in the Structure view and
modify the structure as necessary.

To insert avariable before an existing variable, highlight it and select
Insert>Row from the menu bar or Insert Row from the pop-up menu.

To delete avariable, select Delete Row from the pop-up menu.
3 Savethe modified structure.

Building a similar If you want to create a structure that is similar to one that already exists, you
structure can use the existing structure as a starting point and modify it.

[To build an object-level structure that is similar to an existing
object-level structure:

1 Select the existing structure in the Structure List view.
2 Select Duplicate from the pop-up menu.
3 Namethe new structure in the Structure Name box.
4 Modify variables as needed.
[To build a global structure that is similar to an existing global structure:
1 Open and modify the existing structure.

2 Select File>Save Asto savethe structure under another nameor in another
library.

Using structures
After you define the structure, you can:
« Reference an instance of the structure in scripts and functions
* Passthe structure to functions

» Display and paste information about structures by using the Browser

Users Guide 229

Using structures

Referencing structures

When you define astructure, you are defining anew datatype. You can usethis
new datatype in scripts and user-defined functions as long as the structure
definition is stored in alibrary in the application's library search path.

Referencing global
structures

Referencing

object-level structures

230

[ITo use a structure in a script or user-defined function:
1 Declareavariable of the structure type.

2 Reference the variable in the structure.

The variablesin a structure are similar to the properties of a PowerBuilder
object. To reference a global structure’s variable, use dot notation:

structure.variable

Example Assumethat s_empdata isaglobal structure with the variables
emp_id, emp_dept, emp_fname, emp_Iname, and emp_salary. To use this
structure definition, declare avariable of type s_empdata and use dot notation
to reference the structure’s variables, as shown in the following script:

s _empdata

lstr empl.
lstr empl.
lstr empl.
lstr empl.
lstr empl.

lstr empl, lstr emp2 // Declare 2 variables

// of type emp_ data.

emp_id = 100 // Assign values to the
emp_dept = 200 // structure variables.
emp_fname = "John"

emp_ lname = "Paul-Jones"

emp salary = 99908.23

// Retrieve the value of a structure variable.
lstr emp2.emp salary = lstr empl.emp salary * 1.05

// Use a structure variable in a
// PowerScript function.

MessageBox

("New Salary", &

String(lstr emp2.emp_salary, "S$###, ##0.00"))

You reference object-level structuresin scripts for the object itself exactly as
you do global structures: declare avariable of the structure type, then use dot

notation:

structure.variable

PowerBuilder Classic

CHAPTER 10 Working with Structures

Example Assume that the structure str_custdata is defined for the window
w_history and you are writing a script for a CommandButton in the window. To
use the structure definition in the script, you write:

str_custdata lstr_custl
lstr custl.name = "Joe"

No access to object-level structures outside the object
You cannot make object-level structures accessible outside the object because

object-level structures areimplicitly private.

Copyi ng structures
[—ITo copy the values of a structure to another structure of the same type:
¢ Assign the structure to be copied to the other structure using this syntax:
structl = struct2
PowerBuilder copies al the variable values from struct2 to structl.
Example These statements copy the valuesin Istr_emp2 to Istr_emp1:

str empdata lstr empl, lstr emp2

lstr_empl = lstr_emp2

Using structures with functions

You can pass structures as arguments in user-defined functions. Simply name
the structure as the datatype when defining the argument. Similarly,
user-defined functions can return structures. Name the structure as the return
type for the function.

You can also define external functions that take structures as arguments.
Example Assume the following:
¢ Reviseisan externa function that expects a structure as its argument.

e Istr_empdata is adeclared variable of a structure datatype.

Users Guide 231

Using structures

You can cal the function as follows:

Revise (lstr empdata)

Declare the function first
The external function must be declared before you can reference it in a script.

For more about passing arguments to external functions, see Application
Techniques.

Displaying and pasting structure information

You can display the names and variables of defined structuresin the Browser.
You can aso paste these entries into a script.

[TTo display information about a global structure in the Browser:
1 Select the Structure tab and select a structure.
2 Double-click the properties folder in the right pane.

The propertiesfolder expandsto show the structure variables as properties
of the structure.

[TITo display information about an object-level structure in the Browser:
1 Select thetab for the type of object for which the structure is defined.
2 Select the object that contains the structure.
3 Double-click the structure folder in the right pane.

The structure folder expands to display the structure variables using dot
notation.

[_TTo paste the information into a script:
1 Scrall to the structure variable you want to paste.
2 Select Copy from the variable's pop-up menu.

3 Insert the cursor in the script where you want to paste the variable and
select Paste from the pop-up menu.

The variable name displays at the insertion point in the script.

232 PowerBuilder Classic

PART 4

Working with Windows

This part describes how to create windows for your
application. It covers the properties of windows, the
controls you can place in windows, how to use inheritance
to save time and effort, and how to define menus. It also
introduces user objects.

ciarTer 11 Working with Windows

About this chapter This chapter describes how to build windows in the Window painter.

Contents Topic Page
About windows 235
Types of windows 237
About the Window painter 240
Building a new window 241
Viewing your work 250
Writing scriptsin windows 252
Running a window 255
Using inheritance to build a window 256

About windows

Windows form the interface between the user and a PowerBuilder
application. Windows can display information, request information from
auser, and respond to the user’s mouse or keyboard actions.

A window consists of:
e Propertiesthat define the window’s appearance and behavior
For example, awindow might have atitle bar or a minimize box.
* Events
Windows have events like other PowerBuilder objects.
e Controls placed in the window

At the window level When you create a window, you specify its properties in the Window
painter’s Properties view. You can also dynamically change window
properties in scripts during execution.

Users Guide 235

About windows

At the control level

You can write scripts for window events that specify what happens when a
window is manipulated. For example, you can connect to a database when a
window is opened by coding the appropriate statements in the script for the
window’s Open event.

You place PowerBuilder controls, such as CheckBox, CommandButton, or
MultiLineEdit controls, in the window to request and receive information from
the user and to present information to the user.

After you place acontrol in the window, you can define the style of the contral,
move and resize it, and build scripts to determine how the control responds to
events.

Designing windows

The Microsoft Windows operating environment has certain standards that
graphical applications are expected to conform to. Windows, menus, and
controls are supposed to ook and behave in predictable ways from application
to application.

This chapter describes some of the guidelines you should follow when
designing windows and applications, but afull discussion isbeyond the scope
of thisbook. You should acquire a book that specifically addresses design
guidelinesfor applications on the Windows platform and apply the ruleswhen
you use PowerBuilder to create your application.

Building windows

236

When you build a window, you:

» Specify the appearance and behavior of the window by setting its
properties

e Add controls to the window

* Build scripts that determine how to respond to events in the window and
its controls

To support these scripts, you can define new events for the window and its
controls, and declare functions, structures, and variables for the window.

PowerBuilder Classic

CHAPTER 11 Working with Windows

Two ways

For more information

There are two ways to build awindow. You can:
¢ Build anew window from scratch

You use this technique to create windows that are not based on existing
windows.

e Build awindow that inheritsits style, events, functions, structures,
variables, and scripts from an existing window

You use inheritance to create windows that are derived from existing
windows, thereby saving you time and coding.

For information on building windows from scratch, see “Building a new
window” on page 241.

For information on using inheritance to build awindow, see” Using inheritance
to build awindow” on page 256.

Types of windows

Main windows

Using main windows

Users Guide

PowerBuilder provides the following types of windows: main, pop-up, child,
response, Multiple Document Interface (MDI) frame, and MDI frame with
MicroHelp.

Main windows are standalone windows that are independent of all other
windows. They can overlap other windows and can be overlapped by other
windows.

You use amain window as the anchor for your application. The first window
your application opensisamain window unless you are building aMultiple

Document Interface (MDI) application, in which case the first window is an

MDI frame.

For more on building MDI applications, see Application Techniques.

Defineyour independent windows as main windows. For exampl e, assumethat
your application contains a calculator or scratch pad window that you want to
have always available to the user. Make it amain window, which can be
displayed at any time anywhere on the screen. Asa main window, it can
overlap other windows on the screen.

237

Types of windows

Pop-up windows

Using pop-up
windows

Explicitly naming a
parent

238

Pop-up windows are typically opened from another window, which in most
cases becomes the pop-up window’s parent.

Using the application’s Open event
If you open a pop-up window from the application’s Open event, the pop-up
window does not have a parent and works the same way amain window works.

A pop-up window can display outsideits parent window. It cannot be overlaid
by its parent. A pop-up window is hidden when its parent is minimized and
when its parent is closed. When you minimize a pop-up window, the icon for
the window displays at the bottom of the desktop.

Pop-up windows are often used as supporting windows. For example, say you
have awindow containing master information, such as film listings. You can
use a pop-up window to allow a user to see details of a particular entry.

In most cases, the window that opens a pop-up window becomesthat window's
parent. For example, if ascript in w_go has this statement, w_go is the parent
of w_popup:

Open (w_popup)

You can a so explicitly name a pop-up window’s parent when you use Openin
thisway:

Open (popupwindow, parentwindow)

For example, the following statement opens w_popup and makesw_parent its
parent:

Open (w_popup, w_parent)

However, there are also other considerations regarding which window
becomes the parent of an opened window.

For more information, see the Open function in the Power Script Reference.

PowerBuilder Classic

CHAPTER 11 Working with Windows

Child windows

Child windows are always opened from within a main or pop-up window,
which becomes the child window’s parent.

A child window exists only within its parent. You can move the child window
within the parent window, but not outside the parent. When you move aportion
of achild window beyond the parent, PowerBuilder clipsthe child so that only
the portion within the parent window is visible. When you move the parent
window, the child window moves with the parent and maintains the same
position relative to the parent.

Child windows cannot have menus and are never considered the active
window. They can have title bars and can be minimizable, maximizable, and
resizable. When they are maximized, they fill the space of their parent; when
they are minimized, their icon displays at the bottom of their parent.

Theinitial position of the child is relative to the parent and not to the entire
screen. A child window closes when you close its parent.

You will probably not use child windows very often. Typically, if you want to
display windows inside other windows, you will write MDI applications,
where much of the window management happens automatically.

For more on building MDI applications, see Application Techniques.

Response windows

Using response
windows

Using message boxes

Users Guide

Response windows request information from the user. They are always opened
from within another window (its parent). Typically, a response window is
opened after some event occurs in the parent window.

Response windows are application modal. That is, when a response window
displays, it isthe active window (it has focus) and no other window in the
application is accessible until the user responds to the response window. The
user can go to other applications, but when the user returns to the application,
the response window is still active. Response windows act like modal pop-up
windows.

For example, if you want to display a confirmation window when a user tries
to close awindow with unsaved changes, use a response window. The user is
not allowed to proceed until the response window is closed.

PowerBuilder also provides message boxes, which are predefined windows
that act like response windows in that they are application modal. You open
message boxes using the PowerScript MessageBox function.

239

About the Window painter

MDI frames

For more information, see MessageBox in the Power Script Reference.

An MDI window isaframewindow in which you can open multiple document
windows (sheets) and move among the sheets. There are two types of MDI
frame windows: MDI frame and MDI frame with MicroHelp.

For more on building MDI applications, see Application Techniques.

About the Window painter

Views in the Window
painter

Window painter
workspace

240

You design windows in the Window painter. The Window painter has several
views where you specify how awindow looks and how it behaves. The
Window painter looks similar to the User Object painter for visual user objects
and it has the same views. For details about the views, how you use them, and
how they are related, see “ Viewsin painters that edit objects’ on page 124.

The default layout for the Window painter workspace has two stacked panes
with the Script and Properties views at the top of the stacks.

Most of your work in the Window painter is donein three views:
» TheLayout view, where you design the appearance of the window

» The Properties view, where you set window properties and control
properties

» The Script view, where you modify behavior by coding window and
control scripts

PowerBuilder Classic

CHAPTER 11 Working with Windows

Thisillustration shows the Layout view at the top of one of the stacks.

= =]
[#]Layvout [®JFroperties - w_dwtostr inherited from w_c{ml £
PEL: oo) General | serall | Toolbar | Other
o[seleatPBL |10 | Title -
Datawindow © 0t Diatawindow ko Struckure
7 Obiject Type Tag
————:|® Stucture
Datatype: ooooooooooio 0 O Autoinstantiste NVD Menulame
Narme Type | 'P' f """ o (]
o HELS |l Ll [¥] visible
[+] Enabled

oo | Create Syt
- __ - [¥] ControlMenu

[MaxBox
© | Save Syntax |- §
.................................... MlnBox

Cammemt -« o v oov oo oLl)
A 2o :: X [clientEdge
e
v
.............. [rightTaLeft
< > — M,
Layout gclose yFwvent List yFunction List yDeclare Instance Yariables |4Properties 4Control List jMon-Yisual Object List

For information about specifying window properties, see “ Defining the
window's properties’ on page 242.

For information about adding controls and nonvisual objects to awindow, see
“Adding controls’ on page 248 and “ Adding nonvisual objects’ on page 249.

For information about coding in the Script view, see “Writing scriptsin
windows” on page 252 and Chapter 7, “Writing Scripts.”

Building a new window

This section describes how to build windows from scratch. You use this
technique to create windows that are not based on existing windows.

Creating a new window

[TTo create a new window:
1 Openthe New dialog box.
2 Onthe PB Object tab page, select Window.
3 Click OK.

Users Guide 241

Building a new window

The Window painter opens. The new window displays in the Window
painter’s Layout view and its default properties display in the Properties
view.

Defining the window's properties

Every window and control has a style that determines how it appears to the
user. You define awindow's style by choosing settingsin the Window painter’s
Properties view. A window's style encompasses its:

Type

Basic appearance

Initial position on the screen

Icon when minimized

Pointer

About defining a window’s style
When you define awindow’s style in the Window painter, you are actually

assigning values to the properties for the window. You can programmatically
change awindow’s style during execution by setting its propertiesin scripts.
For a complete list of window properties, see Objects and Controls.

[—TTo specify window properties:

1 Click the window’s background to display the window’s properties in the
Properties view.

Another way to display window properties
You can also select the window name in the Control List view.

2 Choose the tab appropriate to the property you want to specify:

To specify the window's Choose this tab
Name, type, state, color, and whether amenu is General
associated with it

Icon to represent the window when you minimize it Genera
Transparency General

Opening and closing animation styles General

Position and size when it displays at runtime Other

Default cursor whenever the mouse moves over the Other

window

242 PowerBuilder Classic

CHAPTER 11 Working with Windows

To specify the window's Choose this tab
Horizontal and vertical scroll bar placement Scrall
Toolbar placement Toolbar

Using the General property page

Use the General property page to specify the following window information:

Window type
Title bar text
Menu name
Coalor
Transparency
Animation

Specifying the Thefirst thing you should do is specify the type of window you are creating.
window's type
[_ITo specify the window’s type:
1 Inthe Properties view for the window, select the General tab.
2 Scroll down the property page and select the appropriate window type
from the Window Type drop-down list.

¥ Resizable
¥ | Barder
WindowT ype

I mainl j

mdil
mdihelp!
popup!
respongel

D ETER el

Depending on the type of window, PowerBuilder enables or disables certain
check boxes that specify other properties of the window. For example, if you
are creating amain window, the Title Bar check box isdisabled. Main windows
always have title bars, so you cannot clear the Title Bar check box.

Specifying other basic By selecting and clearing check boxes on the General property page, you can
window properties specify whether the window is resizable or minimizable, is enabled, has a
border, and so on.

Note the following:
¢ A main window must have atitle bar

¢ A child window cannot have a menu

Users Guide 243

Building a new window

* A response window cannot have a menu, Minimize box, or Maximize box

Associating a menu Many of your windows will have a menu associated with them.
with the window

[ITo associate a menu with the window:
1 Do oneof thefollowing:
» Enter the name of the menuin the Menu Nametext box on the General
property page

» Click the Browse button and select the menu from the Select Object
dialog box, which displays alist of all menus available to the
application

2 Click the Preview button in the PainterBar to see the menu.

For information about preview, see “Viewing your work” on page 250.

Changing the menu
You can change a menu associated with awindow during execution using the

ChangeMenu function. For more information, see the Power Script Reference.

Chloosing a window You can change the background color of your window.
color

[_TTo specify the color of awindow:
* Do oneof thefollowing:

» Specify the color of the window from the BackColor drop-down list
on the General property page

* If thewindow isan MDI window, specify acolor in the MDI Client
Color drop-down list

Changing default For main, child, pop-up, and response windows, thedefault color isButtonFace

window colors if you are defining a 3D window, and white if you are not. If you or the user
specified different display colorsin the Windows Control Panel, a 3D window
will display in the color that is set for the window background.

You can change the default for windows that are not 3D in the Application
painter Properties view. To do so, click the Additional Properties button on the
General page and modify the Background color on the Text Font tab page. New
windows that are not 3D will have the new color you specified.

For more about using colors in windows, including how to define your own
custom colors, see Chapter 12, “Working with Controls.”

244 PowerBuilder Classic

CHAPTER 11 Working with Windows

Choosing the window

icon

Specifying the
window’s
transparency

Opening and closing
windows with an
animated effect

If the window can be minimized, you can specify an icon to represent the
minimized window. If you do not choose an icon, PowerBuilder uses the
application icon for the minimized window.

[To choose the window icon:

1 Click the window’s background so the Properties view displays window
properties.

2 Select the Generd tab.

3 Choosetheiconfromthelcon drop-downlist or usethe Browse(...) button
to select anicon (.ICO) file.

Theicon you chose displaysin the Icon list.

Changing the icon at runtime
You can change the window icon at runtime by assigning in code the name of

theicon file to the window’s Icon property, window.|con.

You can specify avalue between 1 and 100% for the Transparency property of
awindow. Thisproperty isuseful if youwant anon-modal dialog box toremain
visible but become semi-transparent when it loses focus.

You can use a special effect when awindow opens or closes. Effectsinclude
fading in or out, opening from the center, and sliding or rolling from the top,
bottom, left, or right. You specify animation effects with the OpenAnimation,
CloseAnimation, and AnimationTime properties. Set the AnimationTime
property to between 1 and 5000 millisecondsto specify how long the animation
effect takes to complete.

For example, if your application displays a splash screen while the
application’s main window isinitializing, you can set the splash screen’s
CloseAnimation property to have the window fade out rather than just
disappearing when the applicationisinitialized or after atimeout by setting the
CloseAnimation property to FadeAnimation!.

Choosing the window's size and position

Users Guide

[TTo resize a window in the Layout view:

« Drag the edge of the window in the Window painter’s Layout view.

Resizing awindow is easiest using the Layout view, but you can also change
the window’s width and height propertiesin the Properties view.

245

Building a new window

[_TTo specify a window’s position and size:

1 Click the window's background so the Properties view displays window
properties.

2 Select the Other tab.

3 Enter valuesfor x and y locations in PowerBuilder units.

About x and y values])
For main, pop-up, response, and MDI frame windows, x and y locations

arerelativeto the upper-left corner of the screen. For child windows, x and
y are relative to the parent.

4 Enter values for width and height in PowerBuilder units.
The size of the window changesin the Layout view.

5 To seethe position of the window, click the Preview button in the
PainterBar (not the Preview button on the PowerBar).

6 Toreturn to PowerBuilder, close the window.
For information about preview, see “Viewing your work” on page 250.

About PowerBuilder All window measurements are in PowerBuilder units (PBUs). Using these

units units, you can build applications that look similar on different resolution
screens. A PBU isdefined in terms of logical inches. The size of alogical inch
isdefined by your operating system asaspecific number of pixels. The number
is dependent on the display device. Windows typically uses 96 pixels per
logical inch for small fonts and 120 pixels per logical inch for large fonts.

Almost all sizesin the Window painter and in scripts are expressed as
PowerBuilder units. The two exceptions are text size, which is expressed in
points, and grid size in the Window and DataWindow painters, which isin
pixels.

For more about PowerBuilder units, see the Power Script Reference.

Choosing the window's pointer
Thedefault pointer used when the mouseisover awindow isan arrow. You can
change this default on the Other page in the properties view.
[_ITo choose the window pointer:

1 Click the window's background so the Properties view displays window
properties.

246 PowerBuilder Classic

CHAPTER 11 Working with Windows

2 Select the Other tab.

3 At the bottom of the property page, choose the pointer from the Pointer
drop-down list or use the Browse(...) button to select a cursor (.CUR) file.

Specifying the pointer for a control
You can specify the pointer that displays when the mouseisover anindividua

control. Select the control to display the Properties view for the control, then
specify the Pointer property on the Other page.

Specifying window scrolling

Users Guide

If your window isresizable, it ispossiblethat not al thewindow’s contentswill
be visible during execution. In such cases, you should make the window
scrollable by providing vertical and horizontal scroll bars. You do this on the

Scroll property page.

By default, PowerBuilder controls scrolling when scroll bars are present. You
can control the amount of scrolling.

[TTo specify window scrolling:

1 Click the window’s background so the Properties view displays window

properties.

2 Select the Scroll tab.

3 Indicate which scroll barsyou want to display by selecting the HScrolIBar
and V ScrollBar check boxes.

4 Specify scrolling characteristics as follows:

Option

Meaning

UnitsPerLine

The number of PowerBuilder units to scroll up or down
when the user clicks the up or down arrow in the vertical
scroll bar. When thevalueis O (thedefault), it scrolls 1/100
the height of the window.

UnitsPerColumn

The number of PowerBuilder units to scroll right or left
when the user clickstheright or |eft arrow in the horizontal
scroll bar. When thevalueisO (the default), it scrolls 1/100
the width of the window.

ColumnsPerPage

The number of columns to scroll when the user clicksthe
horizontal scroll bar itself. When the value is O (the
default), it scrolls 10 columns.

247

Building a new window

Option | Meaning

LinesPerPage The number of lines to scroll when the user clicksthe
vertical scroll bar itself. When the value is O (the default),
it scrolls 10 lines.

Specifying toolbar properties

You can specify whether or not you want to display amenu toolbar (if the menu
you associate with your window assigns toolbar buttons to menu objects) in
your window. If you choose to display the toolbar, you can specify thelocation
for it.

[TTo specify toolbar properties:

Adding controls

248

1 Click the window's background so the Properties view displays window
properties.

2 Select the Toolbar tab.

3 Todisplay the toolbar with your window, select the ToolbarVisible check
box.

4 Set thelocation of the toolbar by selecting an alignment option from the
ToolbarAlignment drop-down list.

5 If you choose Float as your toolbar alignment, you must set the following
values:

e X andY coordinates for the toolbar
» Width and Height for the toolbar

For more information about defining toolbars, see Chapter 14, “Working with
Menus and Toolbars.”

When you build awindow, you place controls, such as CheckBox,
CommandButton, and MultiLineEdit controls, in the window to request and
receive information from the user and to present information to the user.

After you place a control in the window, you can define its style, move and
resizeit, and write scripts to determine how the control respondsto events.

For more information, see Chapter 12, “Working with Controls.”

PowerBuilder Classic

CHAPTER 11 Working with Windows

Adding nonvisual objects

You can automatically create nonvisual objectsin awindow by inserting a
nonvisual object in the window. You do thisif you want the services of a
nonvisual object availableto your window. The nonvisual object youinsert can
be a custom class or standard class user object.

You insert anonvisual object in awindow inthe same way youinsert onein a
user object. For more information, see “Using class user objects’ on page 386.

Saving the window

Naming the window

Users Guide

You can save the window you are working on at any time.

[ITo save a window:

1 Select File>Save from the menu bar.

If you have previously saved the window, PowerBuilder saves the new
version in the same library and returns you to the Window painter
workspace.

If you have not previously saved the window, PowerBuilder displays the
Save Window dialog box.

2 Name the window in the Windows text box (see below).
3 Typecommentsin the Comments text box to describe the window.

These comments display in the Select Window window and inthe Library
painter. It is agood ideato use comments so you and others can easily
remember the purpose of the window later.

4 Specify thelibrary where you want to save the window.
5 Click OK.

The window name can be any valid PowerBuilder identifier of up to 40
characters. For information about PowerBuilder identifiers, see the
Power Script Reference.

A commonly used convention isto preface all window nameswith w_ and use
asuffix that helpsyou identify the particular window. For example, you might
name a window that displays employee dataw_empdata.

249

Viewing your work

Viewing your work

While building awindow, you can preview it and print its definition.

Previewing a window

What you can do

What you cannot do

250

Asyou develop awindow, you can preview its appearance from the Window
painter. By previewing the window, you get a good idea of how it will look
during execution.

Preview button on the PainterBar and the PowerBar
You can preview awindow from the Window painter using the Preview button

on the PainterBar or by clicking the Preview button on the PowerBar. When
you use the Preview button on the PainterBar, you do not have to save the
window first, but you cannot trigger events as described below. For
information about previewing using the PowerBar button, see “Running a
window” on page 255.

[TTo preview a window:

* Click the Preview button in the PainterBar (not the PowerBar), or select
Design>Preview from the menu bar.

PowerBuilder minimizes and the window displayswith the propertiesyou
have defined, such astitle bar, menu, Minimize box, and so on.

While previewing the window, you can get asense of itslook and feel. You can:
* Movethewindow

* Resizeit (if itisresizable)

* Maximize, minimize, and restore it (if these properties were enabl ed)

* Tab from control to control

* Select controls

You cannot:

» Change properties of the window

Changes you make while previewing the window, such asresizing it, are
not saved.

PowerBuilder Classic

CHAPTER 11 Working with Windows

Trigger events

For example, clicking a CommandButton while previewing a window
does not trigger its Clicked event.

Connect to a database

[1To return to the Window painter:

Do one of the following:

* If theWindow hasacontrol menu, select Closefrom the control menu
or click the Close button in the upper right corner of the window.

e If thewindow isvisible, shut down the process.

* If thewindow is not visible, click PowerBuilder on the task bar and
then click the Terminate button.

Printing a window's definition
You can print awindow's definition for documentation purposes.

[TTo print information about the current window:

Users Guide

Select File>Print from the menu bar.

Information about the current window is sent to the printer specified in
Printer Setup. The information sent to the printer depends on variables
specified in the [Library] section of the PowerBuilder initialization file.

Print settings
You can view and change the print settings in the Library painter. Select

any PowerBuilder abject, then select Entry>Library Item>Print from the
menu bar.

251

Writing scripts in windows

Writing scripts in windows

You write scripts for window and control events. To support these scripts, you
can define:

* Window-level and control-level functions

* Instance variables for the window

About events for windows and controls

Defining your own
events

252

Windows have severa events including Open, which is triggered when the
window is opened (beforeit is displayed), and Close, which istriggered when
the window is closed. For example, you might connect to a database and
initialize some valuesin the window’'s Open event, and disconnect from a
database in the Close event.

Each type of control also hasits own set of events. Buttons, for example, have
Clicked events, which trigger when a user clicks the button. SingleLineEdits

and MultiLineEdits have Modified events, which trigger when the contents of
the edit control change.

You can also define your own events, called user events, for awindow or
control, then use the EVENT keyword to trigger your user event.

For example, assume that you offer the user several ways to update the
database from awindow, such as clicking abutton or selecting amenuitem. In
addition, when the user closes the window, you want to update the database
after asking for confirmation. You want the same type of processing to happen
after different system events.

You can define a user event for the window, write a script for that event, and
then everywhere you want that event triggered, use the EVENT keyword.

To learn how to use user events, see Chapter 9, “Working with User Events.”

PowerBuilder Classic

CHAPTER 11 Working with Windows

About functions for windows and controls

PowerBuilder provides built-in functions that act on windows and on different
types of controls. You can use these functions in scripts to manipulate your
windowsand controls. For example, to open awindow, you can usethe built-in
window-level function Open, or you can pass parameters between windows by
opening them with the function OpenwithParm and closing them with
CloseWithReturn.

You can define your own window-level functionsto make it easier to
manipulate your windows. For more information, see Chapter 8, “Working
with User-Defined Functions.”

About properties of windows and controls

Users Guide

In scripts, you can assign val ues to the properties of objects and controlsto
change their appearance or behavior. You can also test the values of properties
to obtain information about the object.

For example, you can change the text displayed in a StaticText control when
the user clicks a CommandButton, or use data entered in a SingleLineEdit to
determine what information is retrieved and displayed in a Datawindow
control.

To refer to properties of an object or control, use dot notation to identify the
object and the property:

object.property

control.property

Unless you identify the object or control when you refer to a property,
PowerBuilder assumes you are referring to a property of the object or control
the script is written for.

The reserved word Parent
Inthe script for awindow control, you can use the reserved word Parent to refer

to the window containing the control. For example, the following linein a
script for a CommandButton closes the window containing the button:

close (Parent)

Itiseasier toreuseascript if you use Parent instead of the name of the window.

All properties, events, and built-in functions for all PowerBuilder objects,
including windows, and each type of control are described in Objects and
Controls.

253

Writing scripts in windows

Declaring instance variables

Often, data needs to be accessible in several scripts within awindow. For
example, assume awindow displays information about one customer. You
might want several CommandB uttons to manipul ate the data, and the script for
each button needs to know the customer’s ID. There are severa waysto
accomplish this:

» Declare aglobal variable containing the current customer ID
All scriptsin the application have access to this variable.
» Declare an instance variable within the window

All scripts for the window and controlsin the window have accessto this
variable.

* Declare ashared variable within the window

All scripts for the window and its controls have accessto thisvariable. In
addition, all other windows of the same type have access to the same
variable.

When declaring variables, you need to consider what the scope of the variable
is. If the variable is meaningful only within awindow, declareit asa
window-level variable, generally an instance variable. If the variableis
meaningful throughout the entire application, make it aglobal variable.

For a compl ete description of the types of variables and how to declare them,
see the Power Script Reference.

Examples of statements

The following assignment statement in the script for the Clicked event for a
CommandButton changesthetext in the StaticText object st_greeting when the
button is clicked:

st greeting.Text = "Hello User"

Thefollowing statement tests the value entered in the SingleLineEdit sle_state
and displays the window w_statel if thetext is"AL":

if sle State.Text= "AL" then Open(w_statel)

254 PowerBuilder Classic

CHAPTER 11 Working with Windows

Running a window

Users Guide

During devel opment, you can test awindow without running the whole
application.

You can preview awindow from the Window painter using the Preview button
on the PainterBar or run the window by clicking the Preview button on the
PowerBar. The PowerTip text for this button iSRun/pPreview Object. For
information about previewing using the PainterBar button, see “ Previewing a
window” on page 250.

When you run the window using the PowerBar button, you must save the
window first. You can a'so trigger events and open other windows because the
window isfunctional.

[1To run a window:

Click the Preview button in the PowerBar (not the PainterBar).
In the Run/Preview dialog box, select Windows as the Objects of Type.
Select the target that includes the window you want to run.

Select the library that includes the window.

ga b W N B

Select the window you want to run and click OK.

You must save your work before running awindow. If you have not saved
your work, PowerBuilder prompts you to do so.

PowerBuilder runs the window.

You can trigger events, open other windows, connect to a database, and so on
when running awindow. Thewindow isfully functional. It hasaccessto global
variables that you have defined for the application and to built-in global
variables, such as SQLCA. The SystemError event is not triggered if thereis
an error, because SystemError is an Application object event.

[_1ITo return to the Window painter:

¢ Do one of the following:

* If theWindow hasacontrol menu, select Closefrom the control menu
or click the Close button in the upper right corner of the window.

* If thewindow is not visible, click PowerBuilder on the task bar and
then click the Terminate button

255

Using inheritance to build a window

Using inheritance to build a window

When you build awindow that inherits its definition—its style, events,
functions, structures, variables, controls, and scripts—from an existing
window, you save coding time. All you have to do is modify the inherited
definition to meet the requirements of the current situation.

This section provides an overview of using inheritance in the Window painter.
The issues concerning inheritance with windows are the same as the issues
concerning inheritance with user objects and menus. They are described in
more detail in Chapter 13, “Understanding | nheritance.”

Building two windows with similar definitions

256

Assume your application needs two windows with similar definitions. One
window, w_employee, needs:

» Atitle (Employee Data)
 Textthat saysselect a file:
* A drop-down list with alist of available employee files

* AnOpen button with a script that opensthe selected filein amultiline edit
box

* An Exit button with a script that asks the user to confirm closing the
window and then closes the window

The window looks like this:

B Employee Data g@@

Select a file:

¥

The only differences in the second window, w_customer, are that thetitleis
Customer Data, the drop-down list displays customer filesinstead of employee
files, and there is a Delete button so the user can deletefiles.

PowerBuilder Classic

CHAPTER 11 Working with Windows

Your choices

Using inheritance

To build these windows, you have three choices:

Build two new windows from scratch as described in “Building a new
window” on page 241

Build one window from scratch and then modify it and save it under
another name

Use inheritance to build two windows that inherit a definition from an
ancestor window

To build the two windows using inheritance, follow these steps:

1

Create an ancestor window, w_ancestor, that contains the text, drop-down
list, and the open and exit buttons, and save and closeit.

Note You cannot inherit awindow from an existing window when the
existing window is open, and you cannot open awindow when its ancestor
or descendant is open.

Select File>Inherit, select w_ancestor in the Inherit From dialog box, and
click OK.

Add the Employee Datatitle, specify that the DropDownListBox control
displays employee files, and save the window asw_employee.

Select File>Inherit, select w_ancestor in the Inherit From dialog box, and
click OK.

Add the Customer Datartitle, specify that the DropDownListBox control
displays customer files, add the Delete button, and save the window as
W_customer.

Advantages of using inheritance
Using inheritance has a number of advantages:

Users Guide

When you change the ancestor window, the changes are reflected in all
descendants of thewindow. You do not have to make changes manually in
the descendants as you would in a copy. This saves you coding time and
makes the application easier to maintain.

Each descendant inherits the ancestor's scripts, so you do not have to
re-enter the code to add to the script.

You get consistency in the code and in the application windows.

257

Using inheritance to build a window

When you use inheritance to build an object, everything in the ancestor object
isinherited in al its descendants. In the descendant, you can:

» Change the properties of the window

* Add controlsto the window and modify existing controls

* Size and position the window and the controlsin the window
* Build new scripts for events in the window or its controls

» Reference the ancestor's functions and events

» Reference the ancestor’s structures if the ancestor contains a public or
protected instance variable of the structure data type

» Access ancestor properties, such as instance variables, if the scope of the
property is public or protected

» Extend or override inherited scripts
» Declare functions, structures, and variables for the window
e Declare user events for the window and its controls

The only thing you cannot do is delete inherited controls. If you do not need an
inherited control, you can make it invisible in the descendent window.

Instance variables in descendants

If you create awindow by inheriting it from an existing window that has public
or protected instance variables with simple datatypes, the instance variables
display and can be modified in the descendent window’s Properties view. You
see them at the bottom of the General tab page. In thisillustration, the last two
properties are inherited instance variables.

™ Properties - w_inherited inherited From w_example_repart_sheet I

General | Seroll | Tookbar | Other

-

[euttan Face v
==
Icon
v|l]
ii_currentzoom
75 ¥

li_maxzoom

0 *

Properties AControl Lisk aMon-Yisual Object Lisk

258 PowerBuilder Classic

CHAPTER 11 Working with Windows

All public instance variables with simple datatypes such as integer, boolean,
character, date, string, and so on display. Instance variableswith the any or blob
datatype or instance variables that are objects or arrays do not display.

Control names in descendants

Users Guide

PowerBuilder uses this syntax to show names of inherited controls:
ancestorwindow::control

For example, if you select the Open button in w_customer, which isinherited
from w_ancestor, its name displays on the General page in the properties view
aSw_ancestor::cb open.

Names of controls must be unique in an inheritance hierarchy. For example,
you cannot have a CommandButton named cb_close defined in an ancestor and
adifferent CommandButton named cb_close defined in a child. You should
develop anaming convention for controls in windows that you plan to use as
ancestors.

259

Using inheritance to build a window

260 PowerBuilder Classic

CHAPTER 12

About this chapter

Contents

About controls

About window controls

Users Guide

Working with Controls

Users run your application primarily by interacting with the controls you

placein windows. This chapter describes the use of controls.

Topic Page
About controls 261
Inserting controls in awindow 262
Selecting controls 263
Defining a control’s properties 264
Naming controls 264
Changing text 267
Moving and resizing controls 268
Copying controls 271
Defining the tab order 272
Defining accelerator keys 274
Specifying accessibility of controls 275
Choosing colors 276
Using the 3D look 278
Using theindividua controls 279

You place controlsin awindow to reguest and receive information from
the user and to present information to the user. For acomplete list of
standard window controls, open awindow in the Window painter and

select Insert>Control.

If you often use acontrol or set of controlswith certain properties, such as
agroup of related radio buttons, you can create a visual user object that
contains the control or set of controls. For more about user objects, see

Chapter 15, “Working with User Objects.”

261

Inserting controls in a window

About events

All window controlshave events so that users can act on the controls. You write

scripts that determine the processing that takes place when an event occursin
the control.

Drawing controls are usually used only to make your window more attractive
or to group controls. Only constructor and destructor events are defined for
them, but you can define your own events if needed. The drawing controls are
Line, Oval, Rectangle, and RoundRectangle.

Inserting controls in a window

Duplicating controls

Inserting controls with
undefined content

262

You insert controlsin awindow in the Window painter.

[ITo insert a control in a window:

1 Select Insert>Control from the menu bar, or display the Controls
drop-down toolbar on the PainterBar.

2 Select the control you want to insert.

If you select User Object, the Select Object dialog box displayslisting all
user objects defined for the application. Select the library and the user
object and click OK.

3 IntheLayout view, click where you want the control.

After you insert the control, you can sizeit, moveit, define its appearance and
behavior, and create scripts for its events.

To place multiple controls of the same type in awindow, place acontrol in the
window and make sure it is selected. Then press Ctrl+T or select Duplicate
from the pop-up menu once for each duplicate control you want to placein the
window. The controls are placed one under another. You can drag them to other
locationsif you want.

When you insert a Datawindow, Picture, PictureButton, or PictureHyperLink
control in awindow, you are inserting only the control. You see only an empty
box for a Datawindow control, the dotted outline of a box for Picture and
PictureHyperLink controls, and alarge button resembling a CommandButton
for a PictureButton control. You must specify a Datawindow object or picture
later.

PowerBuilder Classic

CHAPTER 12 Working with Controls

Placing OLE controls

Dragging and dropping DataWindow objects
You caninsert aDataWindow control with apredefined Datawindow object in

awindow by dragging the DataWindow object from the System Tree to the
window’s Layout view.

You can place objects from applications that support OLE, such as Excel
worksheets and Visio drawings, in your windows. For information about using
OLE with PowerBuilder, see Application Techniques.

Selecting controls

Acting on multiple
controls

Information displayed
in the MicroHelp bar

Users Guide

You select controls so that you can changetheir propertiesor write scriptsusing
the Layout view or the Control List view.

[_TITo select a control:
e Clickthecontrol inthe Layout view, or click the control inthe Control List
view.

In the Layout view, the control displays with handles on it. Previously
selected controls are no longer selected.

You can act on al or multiple selected controls asa unit. For example, you can
move all of them or change the fonts for all the text displayed in the controls.

[_ITo select multiple controls:

* IntheLayout or Control List view, click thefirst control and then pressand
hold the Ctrl key and click additional controls.

[To select neighboring multiple controls:

* Inthe Layout view, press the left mouse button, drag the mouse over the
controls you want to select, and rel ease the mouse button.

Selecting all controls
You can select al controls by selecting Edit>Select All from the menu bar.

The name, x and y coordinates, width, and height of the selected control are
displayed in the MicroHelp bar. If you select multiple objects, Group
Selected displaysin the Name area and the coordinates and size do not

display.

263

Defining a control’s properties

Defining a control’s properties

About tab pages in the
Properties view

Getting Help on
properties

Just like the window object, each control has propertiesthat determine how the
control 1ooks and behaves at runtime (the control’s style).

You define a control's properties by using the Properties view for the control.
The properties and values displayed in the Properties view change dynamically
when you change the selected object or control. To see this, click the window
background to display the window propertiesin the Properties view and then
click acontrol in the window to display the control’s propertiesin the
Properties view.

[TTo define a control's properties:

1 Select the control.
The selected control’s properties display in the Properties view.
2 Usethetab pagesin the Properties view to change the control’s properties.

The Propertiesview presentsinformationin aconsistent arrangement of tabbed
property pages. You select itemson theindividual property pagesto changethe
control's definition.

All controls have a General property page, which contains much of the style
information (such asthe visibility of the control, whether it is enabled, and so
on) about the control. The General property pageis awaysthe first page.

You can get Help when you are defining properties. In any tab page in the
Propertiesview, right-click on the background and sel ect Help from the pop-up
menu. The Help displays information about the control with alink to an
alphabetical list of properties for the control.

Naming controls

264

When you placeacontrol in awindow, PowerBuilder assignsit aunique name.
The name is the concatenation of the default prefix for the control name and
the lowest 1- to 4-digit number that makes the name unique.

For example, assume the prefix for ListBoxesisIb_ and you add a ListBox to
the window:

» Ifthenamesib_1,1b_2,andIb_3 arecurrently used, the default nameisib_4

* IfIb_1andIb_3 arecurrently used but Ib_2 isnot, the default nameisib_2

PowerBuilder Classic

CHAPTER 12 Working with Controls

About the default prefixes

Each type of control hasadefault prefix for itsname. Table 12-1 liststheinitial
default prefix for each control (note that there is no prefix for awindow).

Users Guide

Table 12-1: Default prefixes for window control names

Control Prefix
Animation am_
CheckBox chx_
CommandButton ch_
Datawindow dw_
DatePicker dp_
DropDownListBox ddib_
DropDownPictureListBox ddplb_
EditMask em_
Graph or_
GroupBox gb_
HProgressBar hpb_
HScrollBar hsb_
HTrackBar htb
InkEdit ie_
InkPicture ip_
Line In_
ListBox Ib_
ListView Iv_
MonthCalendar mc
MultiLineEdit mle
OLE2.0 ole
Oval ov
Picture p_
PictureHyperLink phl_
PictureButton pb_
PictureListBox plb_
RadioButton rb_
Rectangle r_
RichTextEdit rte_
RoundRectangle m_
SingleLineEdit de_
StaticText st

265

Naming controls

Control Prefix
StaticHyperLink shl_
Tab tab_
TreeView tv_
User Object uo_

V ProgressBar vpb_
V ScrollBar vsh
VTrackBar vtb_

Changing the default prefixes

You can change the default prefixes for controls in the Window painter’s
Options dialog box. Select Design>Options from the menu bar to open the
Options dialog box. The changes you make are saved in the PowerBuilder
initialization file. For more about the PowerBuilder initialization file, see
“How the PowerBuilder environment is managed” on page 57.

Changing the name

266

You should change the default suffix to a suffix that is meaningful in your

application. For example, if you have command buttons that update and
retrieve database information, you might call them cb_update and cb_retrieve.
If you have many controls on awindow, using intuitive names makesit easier
for you and others to write and understand scripts for these controls.

Using application-based names instead of sequential numbers also minimizes
the likelihood that you will have name conflicts when you use inheritance to
create windows.

[_To change a control's name:

1
2

Select the control to display the control’s propertiesin the Properties view.

On the General tab page, select the application-specific suffix (for
example, the1 inthecb 1 command button name) and type a more
meaningful one.

You can use any valid PowerBuilder identifier with up to 255 characters.
For information about PowerBuilder identifiers, see the Power Script
Reference.

PowerBuilder Classic

CHAPTER 12 Working with Controls

Changing text

You can specify the text and text display characteristics for a control in the
Propertiesview for the control. You can also use the Window painter StyleBar
to change:

e Thetext itself
e Thefont, point size, and characteristics such as bold

e Theaignment of text within the control

CommandButton text
Text in CommandButtons is always center aligned.

The default text for most controls that have atext property iSsnone. To display
an empty StaticText or SingleLineEdit control, clear the Text box in the
Properties view or the StyleBar.

When you add text to acontrol’stext property, the width of the control changes
automatically to accommodate the text as you type it in the StyleBar, or when
you tab off the Text box in the Properties view.

[_ITo change text properties of controls:

1 Select one or more controls whose properties you want to change.

2 Specify changes in the Font tab page in the Properties view, or specify
changes using the StyleBar.

How text size is stored

Users Guide

A control'stext sizeis specified in the control’s TextSize property.
PowerBuilder saves the text size in points, using negative numbers.

For example, if you define the text size for the StaticText control st_prompt to
be 12 points, PowerBuilder sets the value of st_prompt’s TextSize property to
—12. PowerBuilder uses negative numbersto record point sizefor compatibility
with previous releases, which saved text size in pixels as positive numbers.

If you want to change the point size of text at runtime in a script, remember to
use a negative value. For example, to change the point size for st_prompt to 14
points, code:

st _prompt.TextSize = -14

267

Moving and resizing controls

You can specify text sizein pixelsif you want, by using positive numbers. The
following statement sets the text size to be 14 pixels:

st _prompt.TextSize = 14

Moving and resizing controls

There are several ways to move and resize controlsin the Layout view.

Moving and resizing controls using the mouse

To move a control, drag it with the mouse to where you want it.

To resize a control, select it, then grab an edge and drag the edge with the
mouse.

Moving and resizing controls using the keyboard

To move a control, select it, then press an arrow key to moveit in the
corresponding direction.

To resize a control, select it, and then press:

* Shift+Right Arrow to make the control wider

o Shift+Left Arrow to make the control narrower
* Shift+Down Arrow to make the control taller

* Shift+Up Arrow to make the control shorter

Aligning controls using the grid

268

The Window painter provides a grid to help you align controls at design time.
You can use the grid options to:

» Make controls snap to agrid position when you place them or move them
in awindow

* Show or hide the grid when the workspace displays
» Specify the height and width of the grid cells

PowerBuilder Classic

CHAPTER 12 Working with Controls

[TTo use the grid:
1 Choose Design>Options from the menu bar and select the General tab.

2 Do oneor more of the following:

e Select Snap to Grid to align controls with a horizontal and vertical
grid when you place or move them

e Select Show Grid to display the grid in the Layout view
o Specify the width of each cell inthe grid in pixelsin the X text box
« Specify the height of each cell inthe gridin pixelsinthe Y text box

Hiding the grid
Window painting is slower when the grid is displayed, so you might want to
display the grid only when necessary.

Aligning controls with each other

You can align selected controls by their left, right, top, or bottom edges or their
horizontal or vertical centers.

PainterBars in the Window painter
The Window painter has three PainterBars. PainterBarl includes buttons that

perform operations that are common to many painters, including save, cut,
copy, paste, and close. PainterBar2 includes buttons used with the Script view.
Pai nterBar3 contai ns buttons that manipul ate the display of the selected control
or controls. The tools used to align, resize, and adjust the space between
controls are on a drop-down toolbar on PainterBar3.

[TTo align controls:
1 Select the control whose position you want to use to aign the others.

PowerBuilder displays handles around the selected control.

2 Pressand hold the Ctrl key and click the controls you want to align with
thefirst one.

All the selected controls have handles on them.

Users Guide 269

Moving and resizing controls

3 Select Format>Align from the menu bar, or select the Layout drop-down
toolbar in PainterBar3.

4 Select the dimension aong which you want to align the controls.

PowerBuilder aligns al the selected controls with the first control
selected.

Equalizing the space between controls

You can manually move controls by dragging them with the mouse. You can
al so equalize the space around sel ected controls using the Format menu or the
Layout drop-down toolbar.

[_ITo equalize the space between controls:
1 Select the two controls whose spacing is correct.

To do s, select one control, then press and hold Ctrl and click the second
contral.

2 Press Ctrl and click to select the other controls whose spacing should
match that of the first two controls.

3 Select Format>Space from the menu bar, or select the Layout drop-down
toolbar in PainterBar3.

4 Select horizontal or vertical spacing.

Equalizing the size of controls

Using the Format menu or the Layout drop-down toolbar, you can adjust
selected controls so that they are all the same size as the first control selected.
You might do thisif you have several SingleLineEdit or CommandButton
controls on a window.

[TTo equalize the size of controls:
1 Select the control whose sizeis correct.

2 Pressand hold Ctrl and click to select the other controlsthat should be the
same size as the first control.

3 Select Format>Size from the menu bar, or select the Layout drop-down
toolbar in PainterBar3.

4 Select the size for width, height, or both width and height.

270 PowerBuilder Classic

CHAPTER 12 Working with Controls

Copying controls

You can copy controls within awindow or to other windows. All properties of
the control, as well as all of its scripts, are copied. You can use this technique
to make a copy of an existing control and change what you want in the copy.

[TTo copy a control:
1 Select the control.
2 Select Edit>Copy from the menu bar or press Ctrl+C.
The control is copied to a private PowerBuilder clipboard.
3 Do one of the following:

e To copy the control within the same window, select Edit>Paste
Controls from the menu bar or press Ctrl+V.

e To copy the control to another window, click the Open button in the
PowerBar and open the window in another instance of the Window
painter. M ake that window active and select Edit>Paste Controlsfrom
the menu bar or press Ctrl+V.

If the control you are pasting has the same name as a control that
aready existsin the window, the Paste Control Name Conflict dialog
box displays.

4 If prompted, change the name of the pasted control to be unique.

PowerBuilder pastes the control in the destination window at the same
location asin the source window. If you are pasting into the same window,
movethe pasted control soit doesnot overlay theoriginal control. You can
make whatever changes you want to the copy; the source control will be
unaffected.

Users Guide 271

Defining the tab order

Defining the tab order

When you place controlsin awindow, PowerBuilder assignsthem adefault tab
order, the default sequence in which focus moves from control to control when
the user presses the Tab key.

Tab order in user objects
When the user tabs to a custom user object in awindow and then presses the

Tab key, focus moves to the next control in the tab order for the user object.
After the user tabsto all the controlsin the tab order for the user object, focus
moves to the next control in the window tab order.

Establishing the default tab order

272

PowerBuilder uses the relative positions of controlsin awindow to establish
the default tab order. It looks at the positions in the following order:

* Thedistance of the control from the top of the window (YY)
» Thedistance of the control from the left edge of the window (X)

The control with the smallest Y distance isthefirst control in the default tab
order. If multiple controls have the same Y distance, PowerBuilder usesthe X
distance to determine the tab order among them.

Default tab values
The default tab value for drawing objects and RadioButtonsin a GroupBox is

0, which means the control is skipped when the user tabs from control to
control.

When you add a control to the window, PowerBuilder obtains the tab val ue of
the control that precedes the new control in the tab order and assigns the new
control the next number.

For example, if the tab values for controls A, B, and C are 30, 10, and 20
respectively and you add control D between controls A and B, PowerBuilder
assigns control D the tab value 40.

PowerBuilder Classic

CHAPTER 12 Working with Controls

Changing the window's tab order

Users Guide

[TTo change the tab order:
1 Select Format>Tab Order from the menu bar, or click the Tab Order button

on PainterBarl (next to the Preview button).

The current tab order displays. If thisisthe first time you have used Tab
Order for the window, the default tab order displays.

Usethemouse or the Tab key to movethe pointer to thetab value you want
to change.

Enter a new tab value from 0 to 9999.

The value 0 removes the control from the tab order. It does not matter
exactly what value you use, other than 0. Only the relative valueis
significant. For example, if you want the user to tab to control B after
control A but before control C, set the tab value for control B so it is
between the value for control A and the value for control C.

Tab tips
A tab order value of 0 does not prevent a control from being selected or

activated or from receiving keyboard events. To prevent a user from
activating a control with the mouse, clear the Enabled check box on its
General property page.

To permit tabbing in a group box, change the tab value of the GroupBox
control to 0, then assign nonzero tab values to the controlsin the group
box.

Repeat the procedure until you have the tab order you want.
Select Format>Tab Order or the Tab Order button again.

PowerBuilder saves the tab order.

273

Defining accelerator keys

Each time you select Tab Order, PowerBuilder renumbers the tab order values
toinclude any controlsthat have been added to the window and to allow space
to insert new controlsin the tab order. For example, if the original tab values
for controls A, B, and C were 10, 20, and 30, and you insert control D between
A and B and give it atab value of 15, when you select tab order again, the
controlsA, B, and C will have thetab values 10, 30, and 40, and control D will
have the tab value 20.

Defining accelerator keys

You can define accelerator keys for controls to allow users to change focus
from one control to another. An accelerator key is sometimes referred to asa
mnemonic access key.

Users press Alt followed by the accelerator key to use an accelerator. If the
currently selected control isnot an editable control (such as a SingleLineEdit,
MultiLineEdit, ListBox, or DropDownListBox), users only have to press the
accelerator key. They do not need to pressthe Alt key.

How you define accelerator keys depends on whether the type of control has
displayed text associated with it. If there is no displayed text, you must define
the accelerator key in the control itself and in alabel that identifies the control.

[TTo define an accelerator key for a CommandButton, CheckBox, or

274

RadioButton:
1 Click the control to display the control’s properties in the Properties view.

2 IntheText box onthe General page, precedetheletter that you want to use
as the accelerator key with an ampersand character (&).

When you perform your next action (such as tab to the next property or
select the window or a control in the Layout view), the property is set and
PowerBuilder displays an underline to indicate the accel erator key.

Displaying an ampersand
If you want to display an ampersand character in the text of acontrol, type
adouble ampersand. The first ampersand acts as an escape character.

PowerBuilder Classic

CHAPTER 12 Working with Controls

[TTo define an accelerator key for a SingleLineEdit, MultiLineEdit, ListBox,
or DropDownListBox:

1 Click the control to display the control’s properties in the Properties view.

2 Inthe Genera tab page, type the letter of the accelerator key in the
Accelerator box.

For example, if the control contains a user’s name and you want to make
Alt+N the accelerator for the control, typen inthe Accelerator box.

At thispoint you have defined the accel erator key, but the user has no way
of knowing it, so you need to |abel the control.

3 Place a StaticText control next to the control that was assigned the
accelerator key.

4 Click the StaticText control to display its propertiesin the Properties view.

5 Inthe Text box on the General page, precede theletter that you want to use
asthe accelerator key with an ampersand character (&).

For example, if the StaticText control will display the label Name, type
&Name in the Text box so that the letter N is underlined. Now your user
knows that there is an accelerator key associated with the control.

Specifying accessibility of controls
Controls have two boolean properties that affect accessibility of the control:
* Visble
e Enabled

Using the Visible property

If the Visible property of acontrol is selected, the control displaysin the
window. If you want a control to beinitially invisible, be sure the Visible
property isnot selected in the General tab pagein the control’s Propertiesview.

Hidden controls do not display by default in the Window painter’s Layout
view.

Users Guide 275

Choosing colors

[TTo display hidden controls in the Layout view:
» Select Design>Show Invisibles from the menu bar.
To display a control at runtime, assign the value “true” to the Visible property:

controlname.Visible = TRUE

Using the Enabled property

If the Enabled property is selected, the control is active. For example, an
enabled CommandButton can be clicked, a disabled CommandButton cannot.

If you want acontrol to display but beinactive, be surethe Enabled property is
not selected in the General tab page in the control’s Properties view. For
example, aCommandButton might be active only after the user has sel ected an
option. In this case, display the CommandButton initially disabled so that it
appears grayed out. Then, when the user selects the option, enable the
CommandButton in a script:

CommandButtonName.Enabled = TRUE

Choosing colors

The Window painter has two Color drop-down toolbars on PainterBar3 that
display colorsthat you can use for the background and foreground of
components of the window. Initially, the drop-down toolbars display these
color selections:

e 20 predefined colors
e 16 custom colors (labeled C)
e Thefull set of Windows system colors

Windows system The Windows system colors display in the same order asin the TextColor and
colors BackColor listsin the Properties view for a control. They are |abeled with
letters that indicate the type of display element they represent:

e W for windows
e T for text in windows, title bars, menus, buttons, and so on

» A for the application workspace

276 PowerBuilder Classic

CHAPTER 12 Working with Controls

Defining custom
colors

Users Guide

« B for button face, highlight, shadows, and borders
e Sfor scroll bars

e D for the desktop

e M for menu bars

* Ffor window frames

e Hfor highlight

e L forlinks

The Windows system colors are those defined by the user in the Windows
Control Pandl, so if you use these colors in your window, the window colors
will change to match the user’s settings at runtime.

You can define your own custom colors for use in windows, user objects, and
Datawindow objects.

[TITo define and maintain custom colors:
1 Select Design>Custom Colors from the menu bar.

The Color dialog box displays.

Custom colors:

YT TN _ ‘
FEr - F‘Ed'

Sat:EI Green:
ColorlSalid Lum: Blug: | 255

[Add to Custom Colors]

2 Click in an empty color box in thelist of custom colors.

3 Choose an existing color or create the color you want. You can start with
one of the basic colors and customize it in the palette to the right by
dragging the color indicator with the mouse. You can also specify precise
values to define the color.

277

Using the 3D look

Specifying foreground
and background
colors

When you have the color you want, click Add to Custom Colors.
The new color displaysin the list of custom colors.

Select the new color in the list of custom colors.

Click OK.

The new color displaysin the Color drop-down toolbars and is available
in al windows, user objects, and DataWindow objects you create.

PowerBuilder saves custom colorsin the[Colors] section of the PowerBuilder
initialization file, so they are available across sessions.

You can assign colors to controls using the Painterbar or the Properties view.
The pagein the Properties view that you use depends on the control. For some
controls you can change only the background color, and for others you can
change neither the foreground nor the background color. These controls
include CommandButton, PictureButton, PictureHyperLink, Picture,
ScrollBar, TrackBar, ProgressBar, and OLE controls.

[TTo assign a color using the PainterBar:

1
2

Select the control.

Select either the foreground or background color button from the
PainterBar.

Select a color from the drop-down toolbar.

Using the 3D look

Applications sometimes have a three-dimensional ook and feel. To use this
appearance for an application, select a 3D border for your SingleLineEdit
boxes and other controls and make the window background gray.

278

[TTo use the 3D look by default:

1

Select Design>Options from the menu bar.
The Options dialog box displays.
On the General property page, select Default to 3D.

When you build a new window, PowerBuilder automatically setsthe
window background color to gray and uses 3D borders when you place
controls.

PowerBuilder Classic

CHAPTER 12 Working with Controls

Mapping 3D colors for
pictures

PowerBuilder records this preference in the Default3D variable in the
[Window] section of the PowerBuilder initialization file, so the preferenceis
maintained across sessions.

You can make the background of Picture, PictureHyperlink, and PictureButton
controls blend in with the background of your window. This appliesto
whatever color scheme the user has selected on the Appearance page of the
Display Properties dialog box in the Windows Control Panel.

Usethisfeatureif you want to place acontrol containing a picture on awindow
and have the picture blend in with the background color of the window when
the window's background is using Button Face for a 3D effect. The control’s

picture takes on the 3D colors the user has selected.

The window’s background must be set to Button Face. To make the image
blend in with the window, give it a background color in the range between
RGB(160,160,160) and RGB(223,223,223), such as silver. Lighter shades of
gray map to the button highlight color and darker shades to the button shadow
color.

This option can affect other colors used in the bitmap. It does not affect the
control’s border settings, and it has no effect if there is no image associated
with the control.

Using the individual controls

Users Guide

There are four basic types of controls with different purposes.

Table 12-2: Summary of control types by function
Function Controls include

Invoke actions CommandButtons, PictureButtons, PictureHyperLinks,
StaticHyperLinks, Tabs, User Objects

Display or accept | ListBoxes, PictureListBoxes, DropDownListBoxes,

data, or both DropDownPicturelListBoxes, Datawindow controls, StaticText,
ListViews, TreeViews, RichTextEdit, Graphs, Pictures,
ProgressBars, ScrollBars, SingleLineEdits, MultiLineEdits,
EditMasks, Tabs, user objects, OLE controls, MonthCalendar,
DatePicker, InkEdit, and InkPicture controls

Indicate choices | RadioButtons, CheckBoxes (you can group these controlsin a
GroupBox), TrackBars

Decorative Line, Rectangle, RoundRectangle, Oval, Animation

279

Using the individual controls

How to use the
controls

Individual controls

280

You should use the controls only for the purpose shown in the table. For
example, users expect radio buttons for selecting an option. Do not use aradio
button aso to invoke an action, such as opening awindow or printing. Use a
command button for that.

There are, however, several exceptions: user objects can be created for any
purpose, and ListBoxes, ListViews, TreeViews, and Tabs are often used both
to display data and to invoke actions. For example, double-clicking a ListBox
item often causes some action to occur.

The following sections describe some features that are unique to individual
controls. The controls are listed in the order in which they display on the
Insert>Control menu and the drop-down controls palette:

e “CommandButton” on page 281

* “PictureButton” on page 282

* “CheckBox” on page 283

« “RadioButton” on page 284

o “SaticText” on page 285

o “StaticHyperLink” on page 286

* “Picture” on page 286

* “PictureHyperLink” on page 287

e “GroupBox” on page 287

« “Drawing controls’ on page 288

» “SingleLineEdit and MultiLineEdit” on page 288
« “EditMask” on page 289

e “HScrollBar and VScrollBar” on page 291

e “HTrackBar and VTrackBar” on page 292

* “HProgressBar and VProgressBar” on page 293
* “DropDownListBox” on page 293

* “DropDownPictureListBox” on page 294

« “ListBox” on page 295

e “PictureListBox” on page 296

e “ListView” on page 298

PowerBuilder Classic

CHAPTER 12 Working with Controls

« “TreeView” on page 301

e« “Tab” on page 304

« “MonthCaendar” on page 308

« “DatePicker” on page 309

« “Animation” on page 313

¢ “InkEdit and InkPicture” on page 313
Some controls are not covered in this chapter:

« Datawindow controls and objects. See Chapter 18, “ Defining
Datawindow Objects.”

¢ RichTextEdit controls. See Chapter 30, “Working with Rich Text.”

e User objects. See Chapter 15, “Working with User Objects.”

e Graph controls. See Chapter 26, “Working with Graphs.”

¢ OLE controls. See Chapter 31, “Using OLE in a DataWindow Object.”

CommandButton

CommandButtons are used to carry out actions. For example, you can use an
OK button to confirm a deletion or a Cancel button to cancel arequested
deletion. If there are many related CommandButtons, place them along the
right side of the window; otherwise, place them aong the bottom of the
window.

You cannot change the color or alignment of text in a CommandButton.

If clicking the button opens awindow that requires user interaction before any
other action takes place, use ellipsis points in the button text; for example,

“print...".

Specifying Default and Cancel buttons

You can specify that a CommandButton is the default button in awindow by
selecting Default in the General property page in the button’s Properties view.

Users Guide 281

Using the individual controls

When there is adefault CommandButton and the user presses the Enter key:

e If thefocusis not on another CommandButton, the default button’'s
Clicked event istriggered

» If thefocusison another CommandButton, the Clicked event of the button
with focusistriggered

Other controls affect default behavior
If the window does not contain an editable field, use the SetFocus function or

the tab order setting to make sure the default button behaves as described
above.

A bold border isplaced around the default CommandButton (or the button with
focusif the user explicitly tabs to a CommandButton).

You can define a CommandButton as being the cancel button by selecting
Cancel in the General property pagein the button’'s Properties view. If you
defineacancel CommandButton, the cancel button’s Clicked event istriggered
when the user presses the Esc key.

PictureButton

PictureButtons are identical to CommandButtons in their functionality. The
only differenceisthat you can specify a picture to display on the button. The
picture can be abitmap (BMP) file, aGIF or animated GIF file, aJPEG file, a
PNG file, arun-length encoded (RLE) file, or an Aldus-style Windows
metafile \WMF).

You can choose to display one pictureif the button is enabled and a different
pictureif the button is disabled.

Use these controls when you want to be able to represent the purpose of a
button by using a picture instead of text.

[_TTo specify a picture:
1 Select the PictureButton to display its properties in the Properties view.

2 Onthe Genera tab page, enter the name of the image file you want to
display when the button is enabled, or use the Browse button and choose
afile.

282 PowerBuilder Classic

CHAPTER 12 Working with Controls

3 Enter the name of the image file you want to display when the button is
disabled, or use the Browse Disabled button and choose afile.

If the PictureButton is defined as initially enabled, the enabled picture
displaysin the Layout view. If the PictureButton is defined asinitially
disabled, the disabled picture displaysin the Layout view.
[TTo specify button text alignment:
1 Select the PictureButton to display its propertiesin the Properties view.

2 Onthe General tab page, enter the text for the PictureButton in the Text
box.

3 UsetheHTextAlign and VTextAlign lists to choose how you want to
display the button text.

CheckBox

CheckBoxes are square boxes used to set independent options. When they are
selected, they contain acheck mark; when they are not selected, they areempty.

Show

[MName

¥ Department
¥ Jab Title
[T Salary

CheckBoxesareindependent of each other. You can group theminaGroupBox
or rectangle to make the window easier to understand and use, but that does not
affect the CheckBoxes' behavior; they are still independent.

Using three states CheckBoxes usually have two states: on and off. But sometimes you need to
represent athird state, such as Unknown. The third state displays as a grayed
box with a check mark.

[T On
[off
[7 Third State

Users Guide 283

Using the individual controls

[ITo enable the third state:

» Select the ThreeState property in the General page of the CheckBox
Properties view.

[_TTo specify that a CheckBox’s current state is the third state:

» Select the ThreeState and the ThirdState propertiesin the General page of
the CheckBox Properties view.

RadioButton

RadioButtons are round buttons that represent mutually exclusive options.
They always exist in groups. Exactly one RadioButton is selected in each
group.

When a RadioButton is selected, it has adark center; when it is not selected,
the center is blank.

In the following example, the text can be either plain, bold, or italic (plainis
selected):

Plain @ -

When the user clicks a RadioButton, it becomes selected and the previously
selected RadioButton in the group becomes desel ected.

Use RadioButtonsto represent the state of an option. Do not usethemtoinvoke
actions.

When a window opens, one RadioButton in a group must be selected. You
specify whichistheinitially selected RadioButton by selecting the Checked
property in the General property page in the RadioButton’s Properties view.

Grouping By default, all RadioButtonsin awindow arein one group, no matter what their
RadioButtons location in the window. Only one RadioButton can be selected at atime.

You use a GroupBox control to group related RadioButtons. All RadioButtons
inside a GroupBox are considered to be in one group. One button can be
selected in each group.

Style Size

Plain @ 14 O
Bold e @
ttalic 2 o2q e}

284 PowerBuilder Classic

CHAPTER 12 Working with Controls

The Automatic
property

StaticText

Indicating accelerator
keys

Indicating a border
style

Users Guide

When awindow contains several RadioButtonsthat are outside of aGroupBox,
the window acts as a GroupBox. Only one RadioButton can be active at atime
unless the check box for the Automatic property on the RadioButton’s General
property pageis cleared.

When the Automatic property is not set, you must use scripts to control when
abutton is selected. Multiple RadioButtons can be sel ected outside of agroup.

The Automatic property does not change how RadioButtons are processed
inside a GroupBoxX.

You use a StaticText control to display text to the user or to describe a control
that does not have text associated with it, such asalist box or edit control.

The user cannot change the text, but you can change the text for a StaticText
control in a script by assigning a string to the control's Text property.

StaticText controls have events associ ated with them, but you will probably
seldom write scriptsfor them because users do not expect to interact with static
text.

One use of aStaticText control istolabel alist box or edit control. If you assign
an accelerator key to alist box or edit control, you need to indicate the
accelerator key in the text that 1abels the control. Otherwise, the user would
have no way of knowing that an accel erator key isdefined for the control. This
technique is described in “ Defining accelerator keys’ on page 274.

You can select a border style using the BorderStyle property on the General
property page.

Selecting the Border property
The BorderStyle property will affect only the StaticText control if the Border

property check box is selected.

285

Using the individual controls

StaticHyperLink

Picture

A StaticHyperLink is display text that provides a hot link to a specified Web
page. When a user clicks the StaticHyperLink in awindow, the user’s Web
browser opens to display the page.

The StaticHyperLink control hasaURL property that specifiesthetarget of the
link. You specify the text and URL on the StaticHyperLink control’s General
tab page in the Properties view.

If you know that your users have browsers that support URL completion, you
can enter apartial address—for example, sybase . com instead of the complete
address, nttp://www.sybase.com.

When the StaticHyperLink control isin an MDI Frame window with
MicroHelp, the URL you specify displays in the status bar when the user’s
pointer is over the control.

A hand is the default pointer and blue underlined text is the default font. To
change the pointer, use the Other property page. To change the font, use the
Font property page.

Pictures are PowerBuilder-specific controls that display abitmap (BMP) file,
aGIF or animated GIF file, a JPEG file, a PNG file, a run-length encoded
(.RLE) file, or an Aldus-style Windows metéfile (WMF).

[TTo display a picture:

286

1 Placeapicture control in the window.

2 Inthe General tab page in the Properties view, enter in the PictureName
text box the name of thefile you want to display, or browse to select afile.

The picture displays.
You can choose to resize or invert the image.

If youtry toinsert avery large image into a picture control, theimage may fail
to display. The maximum size that will display depends on the version of
Windows, the graphics card and driver, and the available memory. Compressed
filesmust be decompressed to display. Failureto display ismost likely to occur
with JPEG files because the JPEG standard supports very high compression
and the decompressed content may be many times larger than the size of the
JPEG file.

PowerBuilder Classic

CHAPTER 12 Working with Controls

PictureHyperLink

GroupBox

Users Guide

Be careful about how you use picture controls. They can serve amost any
purpose. They have events, so users can click on them, but you can also use
them simply to display images. Be consistent in their use so users know what
they can do with them.

A PictureHyperLink is a picture that provides a hot link to a specified Web
page. When a user clicks the PictureHyperLink in awindow, the user’'s Web
browser opensto display the page.

The PictureHyperLink control hasa URL property that specifies the target of
the link. You specify the picture and URL in the PictureHyperLink control’s
Properties view in the General tab page. If you know that your users have
browsers that support URL completion, you can enter a partial address—for
example, sybase . com—instead of the complete address,
http://www.sybase.com.

When the PictureHyperLink control isin an MDI Frame window with
MicroHelp, the URL you specify appears in the status bar when the user’s
pointer is over the control.

A hand is the default pointer. To change the pointer, use the Other property
page.

The PictureHyperLink control is a descendant of the Picture control. Like a
Picture control, aPictureHyperLink control can display abitmap (BMP) file, a
GIF or animated GIF file, aJPEG file, aPNG file, arun-length encoded (RLE)
file, or an Aldus-style Windows metafile (WMF).

You display apicture in a PictureHyperLink control in the same way you
display apicture in a picture control. For more information, see “Picture” on
page 286.

You use a GroupBox to group a set of related controls. When a user tabs from
another control to a GroupBox, or selects a GroupBox, the first control in the
GroupBox getsfocus. To tab between controlsin aGroupBox, set thetab value
of the GroupBox to 0 and assign atab value to each control within it.

287

Using the individual controls

Drawing controls

All RadioButtonsin a GroupBox are considered to be in agroup. For more
information about using RadioButtons in GroupBoxes, see “ RadioButton” on
page 284.

PowerBuilder providesthefollowing drawing controls: Line, Oval, Rectangle,
and RoundRectangle. Drawing controls are usualy used only to enhance the
appearance of awindow or to group controls. However, constructor and
destructor events are avail able, and you can define your own unmapped events
for adrawing control. A drawing control does not receive Windows messages,
so a mapped event would not be useful.

You can use the foll owing functions to manipul ate drawing controls at runtime:
Hide
Move
Resize
Show

In addition, each drawing control has a set of properties that defineits
appearance. You can assign values to the propertiesin a script to change the
appearance of adrawing control.

Never in front
You cannot place a drawing control on top of another control that isnot a

drawing control, such as a GroupBox. Drawing controls always appear behind
other controls whether or not the Bring to Front or Send to Back items on the
pop-up menu are set. However, drawing controls can be on top of or behind
other drawing controls.

SingleLineEdit and MultiLineEdit

288

A SingleLineEdit isabox in which users can enter asingle line of text. A
MultiLineEdit is abox in which users can enter more than one line of text.

SingleLineEdits and MultiLineEdits are typically used for input and output of
data.

For these controls, you can specify many properties, including:

* Whether the box has a border (the Border property)

PowerBuilder Classic

CHAPTER 12 Working with Controls

EditMask

Users Guide

¢ Whether the box automatically scrolls as needed (AutoHScroll and, for
MultiLineEdits, AutoV Scroll)

¢ For SingleLineEdits, whether the box is a Password box so asterisks are
displayed instead of the actual entry (Password)

e Thecasein which to accept and display the entry (TextCase)

* Whether the selection displayswhen the control does not havefocus (Hide
Selection)

For more information about properties of these controls, right-click in any tab
page in the Properties view and select Help from the pop-up menu.

Sometimes users need to enter data that has afixed format. For example, U.S.
and Canadian phone numbers have athree-digit area code, followed by three
digits, followed by four digits. You can use an EditMask control that specifies
that format to make it easier for users to enter values. Think of an EditMask
control as asmart SingleLineEdit: it knows the format of the data that can be
entered.

An edit mask consists of special charactersthat determine what can be entered
inthebox. An edit mask can a so contain punctuation charactersto aid the user.

For example, to make it easier for users to enter phone numbers in the proper
format, you can specify the following mask, where # indicates a number:

(H###) HHH-HHHH

At runtime, the punctuation characters (the parentheses and dash) display inthe
box and the cursor jumps over them as the user types.

Masks in EditMask controlsin windows work in a similar way to masksin
display formats and in the EditMask edit style in DataWindow objects. For
more information about specifying masks, see the discussion of display
formatsin Chapter 22, “Displaying and Validating Data.”

Edit mask character for Arabic and Hebrew
The b mask character allows the entry of Arabic characters when you run

PowerBuilder on an Arabic-enabled version of Windows and Hebrew
characterswhen running on aHebrew-enabled version. It hasno effect on other
operating systems.

289

Using the individual controls

Validation for
EditMask controls

Keyboard behavior

Using a drop-down
calendar

290

[ITo use an EditMask control:

1 Select the EditMask to display its propertiesin the Properties view.
2 Name the control on the General property page.

3 Select the Mask tab.
4

In the MaskDataType drop-down list, specify the type of data that users
will enter into the control.

5 IntheMask edit box, type the mask.

You can click the button on the right and select masks. The maskshavethe
special characters used for the specified data type.

6 Specify other properties for the EditMask control.

For information on the other properties, right-click in any tab pagein the
Properties view and select Help from the pop-up menu.

Control size and text entry
The size of the EditMask control affectsits behavior. If the control istoo small

for the specified font size, users might not be able to enter text.

To correct this, either specify asmaller font size or resize the EditMask control.

The EditMask control checksthevalidity of adate when you enter it, but if you
change adate so that it isno longer valid, its validity is not checked when you
tab away from the control. For example, if you enter the date 12/31/2005in an
EditMask control withthe mask mm/dd/yyyy, you can deletethe 1in 12, so that
the date becomes 02/31/2005. To catch problemslike this, add validation code
to the LoseFocus event for the control.

Some keystrokes have specia behavior in EditMask controls. For more
information, see “The EditMask edit style” on page 638.

You can use adrop-down calendar that is similar to the DatePicker control in
EditMask controls that have a Date or DateTime edit mask. The user can
choose to edit the date in the control or to select a date from a drop-down
calendar.

To specify that an EditMask control uses a drop-down calendar to display and
set dates, select the Drop-down Calendar check box on the Mask page in the
Propertiesview. You can set display propertiesfor the calendar on the Calendar
page. Users navigate and select dates within the calendar asthey do in the
calendar in a DatePicker control.

PowerBuilder Classic

CHAPTER 12 Working with Controls

Using spin controls You can define an EditMask as a spin control, which is an edit control that
contains up and down arrows that users can click to cyclethrough fixed values.
For example, assume you want to allow your users to select how many copies
of areport to print. You could define an EditMask as aspin control that allows
users to select from arange of values.

Copies to print |4 E

[To define an EditMask as a spin control:

1 Namethe EditMask and provide the data type and mask, as described
above.

2 Select the Spin check box on the Mask property page.
3 Specify the needed information.

For example, to allow usersto select anumber from 1 to 20 in increments
of 1, specify aspin range of 1 to 20 and a spin increment of 1.

For more information on the options for spin controls, right-click in any tab
page in the Properties view and select Help from the pop-up menu.

HScrollBar and VScrollBar

You can place freestanding scroll bar controlswithin awindow. Typically, you
use these controls to do one of the following:

e Act asadlider control with which users can specify a continuous value
e Graphicaly display information to the user

You can set the position of the scroll box by specifying the value for the
control’s Position property. When the user drags the scroll box, the value of
Position is automatically updated.

Users Guide 291

Using the individual controls

HTrackBar and VTrackBar

HTrackBars and VTrackBars are bars with siders that move in discrete
increments. Like ascroll bar, you typically use atrack bar as a dider control
that allows users to specify avalue or see avalue you have displayed
graphically, but on adiscrete scale rather than a continuous scale. Clicking on
the slider movesit in discrete increments instead of continuously.

Typically ahorizontal trackbar has a series of tick marks along the bottom of
the channel and a vertical trackbar has tick marks on the right.

Select Report Size

Smaller I Larger

Use atrackbar when you want the user to select a discrete value. For example,
you might use atrackbar to enable a user to select atimer interval or the size
of awindow.

You can set properties such as minimum and maximum values, the frequency
of tick marks, and the location where tick marks display.

You can highlight arange of values in the trackbar with the SelectionRange
function. The range you select isindicated by ablack fill in the channel and an
arrow at each end of the range. Thisisuseful if you want to indicate arange of
preferred values. In ascheduling application, the sel ection range could indicate
ablock of timethat is unavailable. Setting a selection range does not prevent
the user from selecting a value either inside or outside the range.

Select Automatic Update Fregquency

Lower I I Higher

For best results, select a frequency
in the highlighted range.

You can see an exampl e of awindow with atrackbar in the PowerBuilder Code
Examples sample application in the Examples subdirectory in your
PowerBuilder directory. See the w_trackbars window in PBEXAMW3.PBL.

292 PowerBuilder Classic

CHAPTER 12 Working with Controls

HProgressBar and VProgressBar

HProgressBars and VProgressBars are rectangles that indicate the progress of
alengthy operation, such as an installation program that copies alarge number
of files. The progress bar gradually fills with the system highlight color asthe
operation progresses.

You can set the range and current position of the progress bar in the Properties
view using the MinPosition, MaxPosition, and Position properties. To specify
the size of each increment, set the SetStep property.

You can see an example of awindow with a progress bar in the PowerBuilder
Code Examples sample application in the Examples subdirectory in your
PowerBuilder directory. Seethew_progressbars window in PBEXAMW3.PBL.

DropDownListBox

Noneditable boxes

Users Guide

DropDownListBoxes combine the features of a SingleLineEdit and a ListBox.

1

Actors
Cinematograph
Directors

Eilms

«[]+

There are two types of DropDownL istBoxes:
¢ Noneditable
« Editable

If you want your user to choose only from afixed set of choices, make the
DropDownListBox noneditable.

In these boxes, the only valid values arethose in the list.

There are several ways for users to pick an item from a noneditable
DropDownListBox:

e Usethearrow keysto scroll through the list.

* Typeacharacter. TheListBox scrollstothefirst entry in thelist that begins
with the typed character. Typing the character again scrolls to the next
entry that beginswith the character, unless the character can be combined
with the first to match an entry.

e Click thedown arrow to theright of the edit control to display thelist, then
select the one you want.

293

Using the individual controls

Editable boxes

Populating the list

Specifying the size of
the drop-down box

Other properties

If you want to give users the option of specifying avauethat isnot in thelist,
make the DropDownListBox editable by selecting the AllowEdit check box on
the General tab page.

With editable DropDownListBoxes, you can choose to have the list always
display or not. For the latter type, the user can display thelist by clicking the
down arrow.

You specify thelistin aDropDownListBox the sameway asfor aListBox. For
information, see “ListBox” on page 295.

To indicate the size of the box that drops down, size the control in the Window
painter using the mouse. When the control is selected in the painter, the full
size—including the drop-down box—is shown.

Aswith ListBoxes, you can specify whether the list is sorted and whether the
edit control is scrollable.

For more information, right-click in any tab page in the Properties view and
select Help from the pop-up menu.

DropDownPictureListBox

Adding images to a
DropDownPictureList
Box

294

DropDownPictureL istBoxes are similar to DropDownListBoxes in the way
they present information. They differ in that DropDownListBoxesuse only text
to present information, whereas DropDownPictureListBoxesadd imagesto the
information.

*
ﬁ Actors |
ﬁ Cinematograph _
ﬁ Directors +

Everything that you can do with DropDownListBoxes you can do with
DropDownPictureListBoxes. For moreinformation, see“ DropDownListBox”
on page 293.

You can choose from a group of stock images provided by PowerBuilder, or
use any bitmap (BMP), icon (ICO), GIF, JPEG, or PNG file when you add
images to a DropDownPictureListBox. You use the same technique that you
use to add pictures to a PictureListBox. For more information, see “ Adding
imagesto a PictureListBox” on page 296.

PowerBuilder Classic

CHAPTER 12 Working with Controls

ListBox

Populating the list

Setting tab stops

Users Guide

A ListBox displays available choices. You can specify that ListBoxes have
scroll bars if more choices exist than can be displayed in the ListBox at one
time.

ListBoxes are an exception to the rule that a control should either invoke an
action or be used for viewing and entering data. ListBoxes can do both.
ListBoxes display data, but can also invoke actions. Typically in Windows
applications, clicking an item in the ListBox selects the item. Double-clicking
an item acts upon the item.

For example, in the PowerBuilder Open dialog box, clicking an object namein
alListBox selectsthe object. Double-clicking a name opensthe object’s painter.

PowerBuilder automatically selects (highlights) an item when a user selectsit
at runtime. If you want something to happen when users double-click anitem,
you must code a script for the control’s DoubleClicked event. The Clicked
event is always triggered before the DoubleClicked event.

To add itemsto a ListBox, select the ListBox to display its propertiesin the
Properties view, select the Itemstab, and enter the valuesfor thelist. Presstab
to go to the next line.

In the Items tab page, you can work with rowsin this way:

To do this Do this

Select arow Click the row button on the left or with the cursor in the edit box,
press Shift+Space

Delete arow Select therow and press Delete

Move arow Click therow button and drag the row where you want it or press
Shift+Space to select the row and then press Ctrl+Up Arrow or
Ctrl+Down Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu

Changing the list at runtime
To changetheitemsin thelist at runtime, use the functions Additem,

Deleteltem, and Insertitem.

You can set tab stops for text in ListBoxes (and in MultiLineEdits) by setting
the TabStop property on the General property page. You can define up to 16 tab
stops. The default is atab stop every eight characters.

295

Using the individual controls

Other properties

PictureListBox

Adding images to a
PictureListBox

296

You can also define tab stopsin a script. Hereis an example that defines two
tab stops and populates a ListBox:

// 1b_1 is the name of the ListBox.
string f1, £2, £3

£1 = nyv

f2 = "Emily"

f3 = "Foulkes"

// Define 1st tab stop at character 5.
lb_1.tabstop[l] = 5

// Define 2nd tab stop 10 characters after the 1st.
lb_1.tabstop[2] = 10

// Add an item, separated by tabs.

// Note that the ~t must have a space on either side
// and must be lowercase.

lb 1.AddItem(fl + " ~t " + f2 + " ~t " + £3)

Notethat this script will not work if it isin the window’s Open event, because
the controls have not yet been created. The best way to specify thisisin auser
event that is posted in the window’s Open event using the PostEvent function.

For ListBoxes, you can specify whether:

* Itemsinthe ListBox are displayed in sorted order

» ThelListBox alowsthe user to select multipleitems
» ThelListBox displays scroll bars if needed

For more information, right-click in any tab page in the Properties view for a
ListBox and select Help from the pop-up menu.

A PictureListBox, like a ListBox, displays available choices in both text and
images. You can specify that PictureListBoxes have scroll barsif more choices
exist than can be displayed in the PictureListBox at one time.

You can choose from a group of stock images provided by PowerBuilder, or
use any bitmap (BMP), icon (ICO), GIF, JPEG, or PNG file when you add
imagesto a PictureListBox.

Keep in mind, however, that the images should add meaning to the list of
choices. If you use alarge number of imagesin alist, they become
meaningless.

PowerBuilder Classic

CHAPTER 12 Working with Controls

Users Guide

You could, for example, useimagesin along list of employees to show the
department to which each employee belongs, so you might have alist with 20
or 30 employees, each associated with one of five images.

[ITo add an image to a PictureListBox:

1

5

Select the PictureListBox control to display its propertiesin the Properties
view, and then select the Pictures tab.

The Pictures property page displays.

Use the PictureName drop-down ListBox to select stock picturesto add to
the PictureListBox

or

Use the Browse button to select a bitmap (BMP), icon (1CO), GIF, JPEG
or PNG fileto include in the PictureListBox.

About cursor files
To use a cursor file, you must type the file name. You cannot select it.

Specify a picture mask color (the color that will be transparent for the
picture).

Specify the height and width for the image in pixels or accept the defaullts.

=
[®] Properties - plb_{ inherited from picturelistbox

General Fictures | Itemsl Fontl Dtherl

Picturet ame:
1| &) Customii28!

2| @ custamozn =

3

Ficturetd askColor
I [ISilver j
Picturetfidth

| Detaur |

FictureHeight

| Detaur [~

Repeat the procedure for the number of images you plan to use in your
PictureListBox.

297

Using the individual controls

6 Select the Itemstab and change the Picture Index for each item to the
appropriate number.

=
[®] Propertie= - plb_{ inherited from picturelistbox

Generall Fictures Items | Fontl Dtherl

Items

Text Picture Index
1| Happy 1
2| Sad 2
3
7 Click OK.

On the Items tab page, you can work with rowsin this way:

To Do this

Select arow Click the row button on the left, or with the cursor in the edit box,
press Shift+Space

Deletearow Select the row and press Delete

Move arow Click the row button and drag the row where you want it or press

Shift+Space to select the row and then press Ctrl+Up Arrow or
Ctrl+Down Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu

On the Pictures tab page, you can work with rowsin the same way, and also:

To Do this
Browse for a Select the row and click the Browse button or press F2
picture

For information about other properties, right-click in any tab page in the
Properties view and select Help from the pop-up menu.

ListView

A ListView control lets you display items and iconsin avariety of
arrangements. You can display large or small iconsin free-form lists. You can
add columns, pictures, and items to the ListView, and modify column
properties, using PowerScript functions such as AddColumn, AddLargePicture,
Setltem, SetColumn, and so on. For information about ListView functions, see
the online Help.

298 PowerBuilder Classic

CHAPTER 12 Working with Controls

The following illustration from the Code Examples application shows a
ListView control used in a sales order application.

* Products E' @' g'

Drag/Drop a product onto the order to add it. Double-click a product ta view it. BME to change the view.

IR OB B BN

Tank Top Weneck Crew Meck Cotton Cap Wool cap

Adding ListView items Adding images to a ListView control is the same as adding images to a

and pictures PictureListBox. The ListView control’s Properties view has two tab pages for
adding pictures: Large Picture (default size 32 by 32 pixels) and Small Picture
(16 by 16 pixels).

For moreinformation, see“ Adding imagesto a PictureListBox” on page 296.

[To add ListView items:

1 SelecttheListView control to display its propertiesin the Propertiesview
and then select the Items tab.

2 Enter the name of the ListView item and the picture index you want to
associate with it. This picture index corresponds to the images you select
on the Large Picture, Small Picture, and State property pages.

On the Items tab page, you can work with rows in this way:

To Do this

Select arow Click the row button on the left, or with the cursor in the edit
box, press Shift+Space
Delete arow Select the row and press Delete

Move arow Click the row button and drag the row where you want it, or
press Shift+Space to select the row and then press Ctrl+Up
Arrow or Ctrl+Down Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu

Note Setting the picture index for thefirst item to zero clears al the
settings on the tab page.

Users Guide 299

Using the individual controls

3 Setpropertiesfor theitem on the Large Picture, Small Picture, and/or State
tab pages as you did on the Items tab page.

On these pages, you can aso browse for a picture. To do so, click the
browse button or press F2.

4 Repeat until al the items are added to the ListView.

g:tg%osing a ListView You can display aListView in four styles:
e Largeicon
* Small icon
e List
* Report

[TTo select a ListView style:

1 SelecttheListView control to display its propertiesin the Properties view
and then select the General tab.

2 Select the type of view you want from the View drop-down list.

For more information about other properties, right-click in any tab page in the
Properties view and select Help from the pop-up menu.

Setting other You can set other ListView properties.
properties

[—TTo specify other ListView properties:
1 SelecttheListView control to display its propertiesin the Properties view.

2 Choosethe tab appropriate to the property you want to specify:

Choose
To specify this tab
The border style Genera
Whether the user can deleteitems Generd
Theimagesfor ListView itemsin Large Icon view Large Picture
Theimagesfor ListView itemsin Small Icon, list, and report | Small Picture
views
The state images for ListView items Sate
The names and associated picture index for ListView items Items
Thefont size, family, and color for ListView items Font
The size and position of the ListView Other

300 PowerBuilder Classic

CHAPTER 12 Working with Controls

TreeView

Adding TreeView
items and pictures

Users Guide

Choose
To specify this tab
The icon for the mouse pointer in the ListView Other

Theicon for adrag item, and whether the drag-and-drop must | Other
be performed programmatically

For moreinformation ontheListView control, see Application Techniques. For
information about its properties, see Objects and Controls.

You can use TreeView controlsin your application to represent relationships
among hierarchical data. An example of a TreeView implementation is

PowerBuilder’s Browser. The tab pagesin the Browser contain TreeView
controls.

-1ol x|
Target: I (@) pbtutor (C:\Documents and Settingsiusernametiy Documents'l,Sybase'l,PowerBuiIderj
Application | Databwindow | ‘Window | Menu | User Object | Function I Proxy I
Syskem | Enumerated | Struckure | Datakype | OLE Uses

----- n_pbtutor_connectservice
- w_pbtutor_frame
8 n_pbtutor_sheetmanager
5 w_pbtutar_baseshest
E| m_pbtutor_frame
m_pbtutor_frame
5 w_pbtutar_toolbars
5 w_pbtutor_about
E- w_welcome

[8 n_pbtutor_connectservice

A TreeView consists of TreeView items that are associated with one or more

pictures. You add images to a TreeView in the same way that you add images
to a PictureListBox.

For more information, see “ Adding images to aPictureListBox” on page 296.

Dynamically changing image size
The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties when you create a TreeView.

For more information about PictureHeight and PictureWidth, see the
Power Script Reference.

301

Using the individual controls

[1ITo add items to a TreeView:

Write ascript in the TreeView constructor event to create TreeView items.

For more information about populating a TreeView, see Application
Techniques and Objects and Controls.

Adding state pictures A state picture is an image that appears to the left of the TreeView item
to TreeView items

indicating that theitemisnot initsnormal mode. A state picture could indicate

that a TreeView item is being changed, or that it is performing aprocessandis
unavailable for action.

B-[F7 Composers

B-E7 Adams
- Mixon in China
&% Shaker Laops

&% The Art of the Fugue

[_TTo specify a state picture for a TreeView item:

1 Selectthe TreeView control to display its propertiesin the Properties view
and then select the State tab.

2 Do oneof the following:

* Usethe StatePictureName drop-down list to select stock pictures to
add to the TreeView.

» Usethe Browse button to select any bitmap (BMP), icon (1CO), GIF,

JPEG or PNG file.

To specify a cursor file)]
To use acursor file, you must type the file name. You cannot select it.

Working in the Properties view with the rows in the State or Pictures tab page

is the same as working with them in a ListView control. For information, see
“ListView” on page 298.

[TTo activate a state picture for a TreeView item:

* Writeascript that changes the image when appropriate.

For example, the following script gets the current TreeView item and
displaysthe state picture for it.

long 11 tvi
treeviewitem tvi

302 PowerBuilder Classic

CHAPTER 12 Working with Controls

11 tvi = tv_foo.finditem(currenttreeitem! , 0)

tv_foo.getitem(1ll tvi , tvi)
tvi.statepictureindex = 1
tv_foo.setitem(1ll_tvi, tvi)

For more information on the TreeView control, see Application
Techniques.

Setting other
properties

[_ITo specify other TreeView properties:

1 Selectthe TreeView control to display its propertiesin the Properties view
and then select the General tab.

2 Enter aname for the TreeView in the Name text box and specify other
properties as appropriate. Among the properties you can specify on the
General property page are:

The border style

Whether the TreeView has lines showing the item hierarchy

Whether the TreeView includes collapse and expand buttons

Whether the user can delete items

Whether the user can drag and drop itemsinto the TreeView

For more information, right-click in any tab page in the Properties view
and select Help from the pop-up menu.

3 For other options, choose the tab appropriate to the property you want to
specify:

To specify

Choose this tab

The images used to represent TreeView items

Pictures

The state images for the TreeView items State
The font size, family, and color for TreeView items Font

The size and position of the TreeView Other
The icon for the mouse pointer in the TreeView Other
Theicon for adrag item, and whether the Other

drag-and-drop must be performed programmatically

For more information on the TreeView control, see Application
Techniques. For information about its properties, see Objects and
Controls.

Users Guide

303

Using the individual controls

Tab

Selecting Tab controls
and tab pages

Adding tab pages to a
Tab control

304

A Tab control is acontainer for tab pages that display other controls. You can
add a Tab control to awindow in your application to present information that
can logically be grouped together but may also be divided into distinct
categories. An exampleisthe use of tab pagesin the Propertiesview for objects
in PowerBuilder. Each tab page has atab that displaysthelabel for the tab page
and is always visible, whichever tab page is selected.

When you add a Tab control to awindow, PowerBuilder creates a Tab control
with one tab page labeled “none’. The control is rectangul ar.

You may find that you select the control when you want to select the page and
vice versa. This Tab control has three tab pages. The TabPosition setting is
tabsontopandbottom!, so that the tab for the selected tab page and pages that
precede it in the tab order display at the top of the Tab contral.

This is a tab Click to select the control |

Click here to select the tab page

Also a tah.l

To select the Tab control, click any of the tabs where the label displays, or in
the area adjacent to the tabs, shown in gray here.

Toselect atab page, click itstab and then click anywhere on the tab page except
the tab itself. The handles at the corners of the white areaindicate that the tab
page is selected, not the Tab control.

To add anew Tab control to awindow, select |nsert>Control>Tab and click in
the window. The control hasonetab pagewhenit is created. Use thefollowing
procedure to add additional tab pages to the tab control.

[TTo create a new tab page within a Tab control:

1 Select the Tab control by clicking on the tab of the tab page or in the area
toitsright.

The handles that indicate that the Tab control is selected display at the
cornersof the Tab control. If you selected the tab page, the handles display
at the corners of the area under the tab.

PowerBuilder Classic

CHAPTER 12 Working with Controls

2 Choose Insert TabPage from the pop-up menu.

.
none | Script

Cut
Copy
Baste
Delete

Inzert TabPage
Insert Uger Object. ..

Bring to Eront
Send to Back

Froperties

3 Add controls to the new tab page.

Creating a reusable You can create reusabl e tab pages in the User Object painter by defining atab
tab page page with controls on it that isindependent of a Tab control. Then you can add
that tab page to one or more Tab controls.

[TTo define a tab page that is independent of a Tab control:

1 Click the New button on the PowerBar and use the Custom Visual icon on
the Object tab page to create a custom visual user object.

2 Sizetheuser object to match the size of the Tab controlsin which you will
useit.

3 Add the controls that you want to have appear on the tab page to the user
object.

4 Select the user object (not one of the controls you added) and specify the
information to be used by the tab page on the TabPage page in the
Properties view:

¢ Text—thetext to be displayed on the tab

¢ PictureName—a picture to appear on the tab with or instead of the
text

¢ PowerTipText—text for apop-up message that displayswhen the user
moves the cursor to the tab

¢ Colorsfor the tab and the text on the tab

5 Saveand close the user object.

Users Guide 305

Using the individual controls

Adding a reusable tab Onceyou have created auser object that can be used asatab page, you can add

page to a Tab control it to a Tab control. You cannot add the user object to a Tab control if the user
object is open, and, after you have added the user object to the control, you
cannot open the user object and the window that contains the Tab control at the
sametime.

[ITo add a tab page that exists as an independent user object to a Tab
control:

1 Inthe Window painter, right-click the Tab control.
2 Choose Insert User Object from the pop-up menu.
3 Select auser object that you have set up as atab page and click OK.

A tab page, inherited from the user object you selected, isinserted. You can
select thetab page, set itstab page properties, and write scriptsfor theinherited
user object just asyou do for tab pages defined within the Tab control, but you
cannot edit the content of the user object within the Tab control. If you want to
edit the controls, close the Window painter and go back to the User Object
painter to make changes.

Manipulating the Tab
control

[To change the name and properties of the Tab control:

1 Click any of thetabsin the Tab control to display the Tab control
properties in the Properties view.

2 Edit the properties.

For more information, right-click in the Properties view and select Help
from the pop-up menu.

[TTo change the scripts of the Tab control:

1 Withthe mouse pointer on one of the tabs, dou