
Users Guide
PowerBuilder®

12.0

DOCUMENT ID: DC00844-01-1200-02

LAST REVISED: January 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book .. xxv

PART 1 THE POWERBUILDER ENVIRONMENT

CHAPTER 1 Working with PowerBuilder ... 3
About PowerBuilder ... 3
Concepts and terms ... 4

Workspaces and targets.. 4
Objects .. 5
DataWindow objects.. 6
PowerBuilder libraries ... 6
Painters and editors .. 6
Events and scripts ... 6
Functions... 7
Properties .. 7
Source control ... 8
PowerBuilder extensions... 8

The PowerBuilder environment .. 9
The System Tree... 10
The PowerBar ... 12
The Clip window .. 15
The Output window ... 15

Creating and opening workspaces... 17
Creating a workspace.. 17
Opening a workspace.. 17

Using wizards ... 18
About wizards.. 18
Related wizard types ... 19

Creating a target .. 19
Target types ... 21

Application targets... 22
Component targets.. 23
.NET targets .. 24
Users Guide iii

Contents
Managing workspaces ... 25
Adding an existing target to a workspace................................ 25
Removing a target from a workspace...................................... 25
Specifying workspace properties... 26

Building workspaces .. 26
In the development environment ... 26
From a command line.. 27

Working with tools .. 28
Using the To-Do List.. 30
Using the file editor.. 32

Using online Help ... 33
Building an application ... 34

CHAPTER 2 Customizing PowerBuilder ... 37
Starting PowerBuilder with an open workspace............................. 37

Using options in the development environment 37
Using a workspace file .. 38
Using command line arguments.. 38

Changing default layouts.. 40
Arranging the System Tree, Output, and Clip windows........... 41
Using views in painters.. 41

Using toolbars .. 46
Toolbar basics ... 46
Drop-down toolbars ... 47
Controlling the display of toolbars ... 47
Moving toolbars using the mouse.. 48
Customizing toolbars... 49
Creating new toolbars ... 53

Customizing keyboard shortcuts .. 54
Changing fonts ... 55
Defining colors ... 56
How the PowerBuilder environment is managed 57

About the registry .. 57
About the initialization file.. 58

CHAPTER 3 Using Source Control.. 61
About source control systems .. 61

Using your source control manager .. 62
Using PBNative ... 63
Constraints of a multi-user environment.................................. 64
Extension to the SCC API ... 67

Using a source control system with PowerBuilder 68
Setting up a connection profile .. 69
iv PowerBuilder Classic

Contents
Viewing the status of source-controlled objects 72
Working in offline mode... 75
Fine-tuning performance for batched source control

requests.. 76
Configuring Java VM initialization ... 76
Files available for source control ... 77

Source control operations in PowerBuilder 78
Adding objects to source control ... 78
Checking objects out from source control 80
Checking objects in to source control...................................... 83
Clearing the checked-out status of objects 84
Synchronizing objects with the source control server 86
Refreshing the status of objects .. 87
Comparing local objects with source control versions............. 88
Displaying the source control version history 91
Removing objects from source control 91

Initialization settings that affect source control............................... 92
Modifying source-controlled targets and objects............................ 97

Effects of source control on object management 97
Opening objects checked in to source control......................... 98
Copy and move operations on source-controlled objects 98
Editing the PBG file for a source-controlled target 99

Migrating existing projects under source control 100
Using the Existing Application target wizard 102
Importing source control files to a new library 103

CHAPTER 4 PowerDesigner Integration .. 105
About PowerDesigner and the PowerDesigner plug-in................ 105
What is an OOM?... 107
Advantages of an OOM class diagram in PowerBuilder 108
Reverse-engineering a PowerBuilder target 110
Using PowerDesigner menu items in PowerBuilder..................... 112
Class diagram menu commands.. 113
Checking the OOM model.. 116
Plug-in toolbars .. 116

PART 2 WORKING WITH TARGETS

CHAPTER 5 Working with Targets ... 121
About targets.. 121
Working in painters .. 122

Opening painters ... 122
Painter summary ... 123
Users Guide v

Contents
Painter features ... 124
Views in painters that edit objects ... 124

About the Application painter ... 129
Specifying application properties ... 129

Specifying default text properties .. 130
Specifying an icon ... 132
Specifying default global objects ... 132

Writing application-level scripts .. 133
Setting application properties in scripts................................. 134

Specifying target properties ... 135
Specifying the target’s library search path 135
Importing .NET assemblies ... 137

Looking at an application’s structure.. 138
Which objects are displayed.. 138

Working with objects .. 140
Creating new objects... 140
Creating new objects using inheritance................................. 141
Naming conventions.. 142
Opening existing objects ... 144
Running or previewing objects .. 146

Using the Source editor.. 146

CHAPTER 6 Working with Libraries .. 149
About libraries .. 149

Using libraries.. 150
Organizing libraries ... 150

Opening the Library painter.. 151
About the Library painter.. 152
Working with libraries ... 154

Displaying libraries and objects... 154
Using the pop-up menu ... 155
Controlling columns that display in the List view 156
Selecting objects ... 156
Filtering the display of objects ... 157
Creating and deleting libraries... 158
Filtering the display of libraries and folders 159
Working in the current library .. 159
Opening and previewing objects ... 160
Copying, moving, and deleting objects.................................. 160
Setting the root .. 162
Moving back, forward, and up one level................................ 163
Modifying comments ... 163

Searching targets, libraries, and objects 164
Optimizing libraries... 166
vi PowerBuilder Classic

Contents
Regenerating library entries ... 167
Rebuilding workspaces and targets ... 168
Migrating targets .. 169
Exporting and importing entries ... 173
Creating runtime libraries ... 176

Including additional resources... 177
Creating reports on library contents ... 177

Creating library entry reports ... 178
Creating the library directory report....................................... 179

PART 3 CODING FUNDAMENTALS

CHAPTER 7 Writing Scripts .. 183
About the Script view ... 183
Opening Script views ... 185
Modifying Script view properties .. 186
Editing scripts... 187

Limiting size of scripts ... 187
Printing scripts... 187
Pasting information into scripts ... 187
Reverting to the unedited version of a script 192

Using AutoScript .. 192
Using the AutoScript pop-up window 193
Customizing AutoScript ... 195
Example .. 197

Getting context-sensitive Help ... 198
Compiling the script.. 199

Handling problems .. 199
Declaring variables and external functions 202

CHAPTER 8 Working with User-Defined Functions...................................... 203
About user-defined functions ... 203

Deciding which kind you want ... 204
Defining user-defined functions.. 205

Opening a Prototype window to add a new function 206
Defining the access level... 206
Defining a return type .. 207
Naming the function .. 208
Defining arguments ... 209
Defining a THROWS clause.. 210
Coding the function ... 211
Compiling and saving the function .. 211

Modifying user-defined functions ... 212
Users Guide vii

Contents
Using your functions... 214

CHAPTER 9 Working with User Events .. 215
About user events .. 215

User events and event IDs .. 216
Defining user events .. 218
Using a user event ... 221

Examples of user event scripts ... 221

CHAPTER 10 Working with Structures ... 225
About structures ... 225

Deciding which kind you want ... 226
Defining structures ... 226
Modifying structures ... 228
Using structures ... 229

Referencing structures .. 230
Copying structures .. 231
Using structures with functions.. 231
Displaying and pasting structure information 232

PART 4 WORKING WITH WINDOWS

CHAPTER 11 Working with Windows ... 235
About windows ... 235

Designing windows.. 236
Building windows... 236

Types of windows... 237
Main windows.. 237
Pop-up windows .. 238
Child windows ... 239
Response windows ... 239
MDI frames.. 240

About the Window painter .. 240
Building a new window... 241

Creating a new window ... 241
Defining the window's properties... 242
Adding controls.. 248
Adding nonvisual objects... 249
Saving the window .. 249

Viewing your work .. 250
Previewing a window... 250
Printing a window's definition .. 251
viii PowerBuilder Classic

Contents
Writing scripts in windows .. 252
About events for windows and controls................................. 252
About functions for windows and controls 253
About properties of windows and controls............................. 253
Declaring instance variables ... 254
Examples of statements .. 254

Running a window.. 255
Using inheritance to build a window... 256

Building two windows with similar definitions 256
Advantages of using inheritance ... 257
Instance variables in descendants .. 258
Control names in descendants.. 259

CHAPTER 12 Working with Controls.. 261
About controls .. 261
Inserting controls in a window .. 262
Selecting controls... 263
Defining a control’s properties.. 264
Naming controls ... 264

About the default prefixes.. 265
Changing the name ... 266

Changing text ... 267
How text size is stored .. 267

Moving and resizing controls.. 268
Moving and resizing controls using the mouse 268
Moving and resizing controls using the keyboard 268
Aligning controls using the grid ... 268
Aligning controls with each other... 269
Equalizing the space between controls 270
Equalizing the size of controls... 270

Copying controls .. 271
Defining the tab order... 272

Establishing the default tab order.. 272
Changing the window's tab order .. 273

Defining accelerator keys... 274
Specifying accessibility of controls... 275

Using the Visible property ... 275
Using the Enabled property ... 276

Choosing colors ... 276
Using the 3D look... 278
Using the individual controls .. 279

CommandButton ... 281
PictureButton... 282
CheckBox .. 283
Users Guide ix

Contents
RadioButton... 284
StaticText .. 285
StaticHyperLink ... 286
Picture ... 286
PictureHyperLink ... 287
GroupBox .. 287
Drawing controls.. 288
SingleLineEdit and MultiLineEdit... 288
EditMask.. 289
HScrollBar and VScrollBar .. 291
HTrackBar and VTrackBar .. 292
HProgressBar and VProgressBar ... 293
DropDownListBox.. 293
DropDownPictureListBox .. 294
ListBox... 295
PictureListBox ... 296
ListView... 298
TreeView ... 301
Tab .. 304
MonthCalendar.. 308
DatePicker... 309
Animation .. 313
InkEdit and InkPicture ... 313

CHAPTER 13 Understanding Inheritance ... 315
About inheritance ... 315
Creating new objects using inheritance 316
The inheritance hierarchy... 317
Browsing the class hierarchy ... 318
Working with inherited objects ... 320
Using inherited scripts.. 321

Viewing inherited scripts.. 322
Extending a script.. 323
Overriding a script ... 324
Calling an ancestor script .. 325
Calling an ancestor function .. 325

CHAPTER 14 Working with Menus and Toolbars .. 327
Menus and menu items.. 327
Using the Menu painter .. 329

Menu painter views ... 329
Menu styles ... 331
x PowerBuilder Classic

Contents
Building a new menu.. 333
Creating a new menu .. 333
Working with menu items .. 334
Saving the menu ... 340

Defining the appearance and behavior of menu items................. 341
Setting General properties for menu items............................ 341
Setting menu style properties for contemporary menus........ 344
Setting menu item style properties .. 346

Providing toolbars .. 347
How toolbars work... 348
Adding toolbars to a window ... 350
Selecting a toolbar style .. 350
Setting toolbar properties .. 351
Setting toolbar properties in the Window painter................... 355
Setting toolbar properties in the Application painter.............. 355

Writing scripts for menu items.. 356
Menu item events .. 356
Using functions and variables ... 358
Referring to objects in your application 359

Using inheritance to build a menu.. 360
Using the inherited information.. 361
Inserting menu items in a descendent menu......................... 362

Using menus in your applications .. 366
Adding a menu bar to a window .. 366
Displaying pop-up menus.. 367

CHAPTER 15 Working with User Objects .. 369
About user objects ... 369

Class user objects ... 370
Visual user objects .. 371
Building user objects ... 372

About the User Object painter.. 372
Building a new user object ... 374

Creating a new user object.. 374
Building a custom class user object 375
Building a standard class user object.................................... 375
Building a custom visual user object 376
Building an external visual user object 377
Building a standard visual user object................................... 378
Events in user objects ... 379
Saving a user object .. 380

Using inheritance to build user objects .. 382
Using the inherited information.. 383
Users Guide xi

Contents
Using user objects.. 384
Using visual user objects... 384
Using class user objects.. 386
Using global standard class user objects 387

Communicating between a window and a user object 389
Examples of user object controls affecting a window............ 391

PART 5 WORKING WITH DATABASES

CHAPTER 16 Managing the Database... 397
Working with database components .. 397
Managing databases.. 401
Using the Database painter.. 402

Modifying database preferences ... 405
Logging your work ... 406

Creating and deleting a SQL Anywhere database 407
Working with tables .. 408

Creating a new table from scratch... 408
Creating a new table from an existing table 410
Specifying column definitions .. 410
Specifying table and column properties 411
Altering a table .. 414
Cutting, copying, and pasting columns.................................. 416
Closing a table... 416
Dropping a table .. 417
Viewing pending SQL changes ... 417
Printing the table definition .. 418
Exporting table syntax ... 419
About system tables .. 419
Creating and editing temporary tables 420

Working with keys .. 422
Working with indexes ... 426
Working with database views... 428
Manipulating data... 433

Retrieving data .. 434
Modifying data ... 434
Sorting rows .. 435
Filtering rows ... 437
Viewing row information .. 438
Importing data ... 438
Printing data .. 439
Saving data ... 439
xii PowerBuilder Classic

Contents
Creating and executing SQL statements 440
Building and executing SQL statements 440
Customizing the editor... 444

Controlling access to the current database.................................. 444
Using the ASA MobiLink synchronization wizard 445

What the wizard generates.. 445
Wizard options... 447
Trying out MobiLink synchronization 449

Managing MobiLink synchronization on the server 450
Starting the MobiLink synchronization server........................ 451
Using Sybase Central.. 451

CHAPTER 17 Working with Data Pipelines.. 453
About data pipelines... 453

Defining a data pipeline... 454
Piping extended attributes... 455

Creating a data pipeline ... 456
Modifying the data pipeline definition ... 459

Choosing a pipeline operation... 461
Dependency of modifications on pipeline operation.............. 461
When execution stops ... 463
Piping blob data... 465
Changing the destination and source databases 467

Correcting pipeline errors... 468
Saving a pipeline.. 469
Using an existing pipeline .. 470
Pipeline examples .. 470

PART 6 WORKING WITH DATAWINDOWS

CHAPTER 18 Defining DataWindow Objects... 475
About DataWindow objects .. 475

DataWindow object examples ... 476
How to use DataWindow objects... 477

Choosing a presentation style.. 478
Using the Tabular style.. 479
Using the Freeform style ... 479
Using the Grid style ... 480
Using the Label style ... 480
Using the N-Up style ... 482
Using the Group style.. 483
Using the Composite style... 484
Using the Graph and Crosstab styles.................................... 485
Users Guide xiii

Contents
Using the OLE 2.0 style... 485
Using the RichText style.. 485
Using the TreeView style... 486

Building a DataWindow object ... 486
Selecting a data source.. 488
Using Quick Select ... 489

Selecting a table.. 490
Selecting columns ... 492
Specifying sorting criteria .. 492
Specifying selection criteria... 493

Using SQL Select ... 499
Selecting tables and views .. 500
Selecting columns ... 502
Displaying the underlying SQL statement 504
Joining tables .. 505
Using retrieval arguments ... 508
Using retrieval arguments ... 508
Specifying selection, sorting, and grouping criteria 509

Using Query ... 515
Using External.. 515
Using Stored Procedure... 516
Using a Web service data source .. 519
Choosing DataWindow object-wide options................................. 522
Generating and saving a DataWindow object 523

About the extended attribute system tables and
DataWindow objects... 523

Saving the DataWindow object ... 524
Modifying an existing DataWindow object............................. 525

Defining queries ... 526
Previewing the query... 526
Saving the query ... 527
Modifying a query .. 527

What's next... 528

CHAPTER 19 Enhancing DataWindow Objects.. 529
Working in the DataWindow painter ... 530

Understanding the DataWindow painter Design view 532
Using the DataWindow painter toolbars 534
Using the Properties view in the DataWindow painter 535
Selecting controls in the DataWindow painter....................... 535
Resizing bands in the DataWindow painter Design view 537
Using zoom in the DataWindow painter 537
Undoing changes in the DataWindow painter 537
xiv PowerBuilder Classic

Contents
Using the Preview view of a DataWindow object 538
Retrieving data .. 538
Modifying data ... 540
Viewing row information .. 542
Importing data into a DataWindow object.............................. 543
Using print preview.. 543
Printing data .. 545
Working in a grid DataWindow object 546

Saving data in an external file .. 548
Saving the data as PDF .. 549
Saving the data in HTML Table format.................................. 554
Working with PSR files .. 555

Modifying general DataWindow object properties........................ 556
Changing the DataWindow object style................................. 556
Setting colors in a DataWindow object.................................. 557
Setting gradients and background pictures in a

DataWindow object... 558
Setting transparency properties for a DataWindow object 559
Specifying properties of a grid DataWindow object 559
Specifying pointers for a DataWindow object 560
Defining print specifications for a DataWindow object 561
Modifying text in a DataWindow object 565
Defining the tab order in a DataWindow object 566
Naming controls in a DataWindow object.............................. 567
Using borders in a DataWindow object 568
Specifying variable-height bands in a DataWindow object.... 568
Modifying the data source of a DataWindow object 570

Storing data in a DataWindow object using the Data view........... 572
What happens at runtime .. 573

Retrieving data ... 574
Prompting for retrieval criteria in a DataWindow object 574
Retrieving rows as needed.. 575
Saving retrieved rows to disk .. 576

CHAPTER 20 Working with Controls in DataWindow Objects....................... 577
Adding controls to a DataWindow object 577

Adding columns to a DataWindow object.............................. 577
Adding text to a DataWindow object 578
Adding drawing controls to a DataWindow object 579
Adding a group box to a DataWindow object 580
Adding pictures to a DataWindow object............................... 580
Adding computed fields to a DataWindow object 581
Adding buttons to a DataWindow object 586
Adding graphs to a DataWindow object 591
Users Guide xv

Contents
Adding InkPicture controls to a DataWindow object.............. 591
Adding OLE controls to a DataWindow object 592
Adding reports to a DataWindow object 592
Adding tooltips to a DataWindow control............................... 592

Reorganizing controls in a DataWindow object............................ 593
Displaying boundaries for controls in a DataWindow

object .. 593
Using the grid and the ruler in a DataWindow object 593
Deleting controls in a DataWindow object............................. 594
Moving controls in a DataWindow object 594
Copying controls in a DataWindow object............................. 595
Resizing controls in a DataWindow object 595
Aligning controls in a DataWindow object 596
Equalizing the space between controls in a

DataWindow object... 596
Equalizing the size of controls in a DataWindow object 597
Sliding controls to remove blank space in a DataWindow

object .. 597
Positioning controls in a DataWindow object 599
Rotating controls in a DataWindow object 600

CHAPTER 21 Controlling Updates in DataWindow objects 603
About controlling updates... 603

What you can do ... 604
Specifying the table to update.. 605
Specifying the unique key columns.. 605
Specifying an identity column... 606
Specifying updatable columns ... 606
Specifying the WHERE clause for update/delete......................... 607
Specifying update when key is modified 609
Using stored procedures to update the database 610
Using a Web service to update the database 612

CHAPTER 22 Displaying and Validating Data .. 617
About displaying and validating data.. 617

Presenting the data ... 618
Validating data... 619

About display formats... 619
Working with display formats ... 620

Working with display formats in the Database painter 620
Working with display formats in the DataWindow painter 622

Defining display formats... 623
Number display formats .. 625
xvi PowerBuilder Classic

Contents
String display formats.. 627
Date display formats.. 627
Time display formats ... 629

About edit styles... 630
Working with edit styles.. 632

Working with edit styles in the Database painter................... 632
Working with edit styles in the DataWindow painter.............. 634

Defining edit styles ... 634
The Edit edit style.. 634
The DropDownListBox edit style ... 635
The CheckBox edit style.. 636
The RadioButtons edit style .. 637
The EditMask edit style ... 638
The DropDownDataWindow edit style................................... 642
The RichText edit style.. 644
The InkEdit edit style ... 645

Defining a code table ... 645
How code tables are implemented .. 646
How code tables are processed .. 647
Validating user input.. 648

About validation rules... 649
Understanding validation rules .. 649

Working with validation rules.. 650
Defining validation rules ... 651

Defining a validation rule in the Database painter................. 651
Defining a validation rule in the DataWindow painter............ 654

How to maintain extended attributes.. 657

CHAPTER 23 Filtering, Sorting, and Grouping Rows 659
Filtering rows.. 659
Sorting rows ... 662

Suppressing repeating values ... 663
Grouping rows.. 664

Using the Group presentation style 666
Defining groups in an existing DataWindow object 670

CHAPTER 24 Highlighting Information in DataWindow Objects 679
Highlighting information.. 679

Modifying properties when designing 679
Modifying properties at runtime ... 680

Modifying properties conditionally at runtime 683
Example 1: creating a gray bar effect.................................... 684
Example 2: rotating controls .. 685
Users Guide xvii

Contents
Example 3: highlighting rows of data..................................... 686
Example 4: changing the size and location of controls 688

Supplying property values.. 689
Background.Color.. 691
Border.. 691
Brush.Color ... 693
Brush.Hatch... 693
Color.. 694
Font.Escapement (for rotating controls) 695
Font.Height.. 696
Font.Italic... 697
Font.Strikethrough... 698
Font.Underline... 699
Font.Weight ... 699
Format ... 700
Height .. 700
Pen.Color .. 701
Pen.Style ... 701
Pen.Width.. 703
Pointer ... 703
Protect ... 704
Timer_Interval ... 704
Visible.. 704
Width ... 705
X.. 705
X1, X2.. 706
Y.. 706
Y1, Y2.. 707

Specifying colors .. 707

CHAPTER 25 Using Nested Reports ... 709
About nested reports.. 709
Creating a report using the Composite presentation style 713
Placing a nested report in another report..................................... 715

Placing a related nested report in another report 715
Placing an unrelated nested report in another report 718

Working with nested reports... 718
Adjusting nested report width and height 719
Changing a nested report from one report to another 720
Modifying the definition of a nested report 720
Adding another nested report to a composite report 721
Supplying retrieval arguments to relate a nested report

to its base report... 721
xviii PowerBuilder Classic

Contents
Specifying criteria to relate a nested report to its
base report ... 723

Using options for nested reports ... 724

CHAPTER 26 Working with Graphs.. 727
About graphs.. 727

Parts of a graph... 728
Types of graphs... 730
Using graphs in applications ... 734

Using graphs in DataWindow objects .. 735
Placing a graph in a DataWindow object............................... 735
Using the graph's Properties view... 736
Changing a graph's position and size.................................... 737
Associating data with a graph ... 738

Using the Graph presentation style.. 747
Defining a graph's properties ... 748

Using the General page in the graph's Properties view 748
Sorting data for series and categories................................... 750
Specifying text properties for titles, labels, axes, and

legends ... 750
Specifying overlap and spacing... 754
Specifying axis properties ... 754
Specifying a pointer... 757

Using graphs in windows ... 757

CHAPTER 27 Working with Crosstabs... 759
About crosstabs ... 759

Two types of crosstabs.. 762
Creating crosstabs ... 763
Associating data with a crosstab.. 764

Specifying the information ... 764
Viewing the crosstab ... 767
Specifying more than one row or column 769

Previewing crosstabs ... 770
Enhancing crosstabs.. 770

Specifying basic properties ... 771
Modifying the data associated with the crosstab................... 772
Changing the names used for the columns and rows 772
Defining summary statistics... 773
Cross-tabulating ranges of values... 776
Creating static crosstabs ... 779
Using property conditional expressions................................. 780
Users Guide xix

Contents
CHAPTER 28 Working with TreeViews ... 783
TreeView presentation style... 783
Creating a new TreeView DataWindow 785

TreeView creation process.. 785
Creating a TreeView DataWindow .. 785

Adding and deleting TreeView levels ... 790
Selecting a tree node and navigating the tree.............................. 791
Sorting rows in a TreeView DataWindow..................................... 792
TreeView DataWindow Design view .. 793
Setting properties for the TreeView DataWindow 794

Setting general TreeView properties 795
Setting TreeView level properties.. 797
Setting detail band properties.. 798

TreeView DataWindow examples .. 798
Data Explorer sample.. 799
Data Linker sample ... 802

CHAPTER 29 Exporting and Importing XML Data.. 805
About XML ... 805

Valid and well-formed XML documents................................. 806
XML syntax.. 807
XML parsing .. 808

XML support in the DataWindow painter...................................... 809
The Export/Import Template view for XML................................... 811

Creating templates .. 812
Saving templates... 814
Header and Detail sections ... 814

Editing XML templates ... 817
XML declaration .. 818
Document type declaration.. 819
Root element ... 820
Controls ... 821
DataWindow expressions.. 821
Attributes ... 822
Composite and nested reports .. 822
CDATA sections .. 824
Comments ... 824
Processing instructions ... 825

Exporting to XML.. 825
Setting data export properties ... 826
Selecting templates at runtime .. 835
xx PowerBuilder Classic

Contents
Importing XML.. 835
Importing with a template .. 836
Default data import .. 840
Tracing import ... 843

CHAPTER 30 Working with Rich Text .. 847
About rich text .. 847
Using the RichText presentation style.. 848

Creating the DataWindow object... 849
Formatting for RichText objects within the

DataWindow object... 853
Previewing and printing ... 858

Using the RichTextEdit control ... 859
Formatting keys and toolbars... 861

CHAPTER 31 Using OLE in a DataWindow Object.. 863
About using OLE in DataWindow objects 863
OLE objects and the OLE presentation style 865

Adding an OLE object to a DataWindow object 866
Using the OLE presentation style.. 867
Defining the OLE object .. 868
Specifying data for the OLE object.. 870
Previewing the DataWindow object....................................... 874
Activating and editing the OLE object 875
Changing the object in the control ... 876

Using OLE columns in a DataWindow object............................... 876
Creating an OLE column ... 877

PART 7 RUNNING YOUR APPLICATION

CHAPTER 32 Debugging and Running Applications...................................... 885
Overview of debugging and running applications 885
Debugging an application... 886

Starting the debugger.. 887
Setting breakpoints.. 889
Running in debug mode .. 893
Examining an application at a breakpoint.............................. 894
Stepping through an application.. 902
Debugging windows opened as local variables..................... 904
Just-in-time debugging .. 905
Using the DEBUG preprocessor symbol 906
Breaking into the debugger when an exception is thrown..... 907
Users Guide xxi

Contents
Running an application... 909
Running the application... 909
Handling errors at runtime... 910

CHAPTER 33 Tracing and Profiling Applications .. 917
About tracing and profiling an application 917
Collecting trace information.. 919

Tracing an entire application in PowerBuilder 921
Using a window ... 921
Collecting trace information using PowerScript functions 927

Analyzing trace information using profiling tools 930
Profiling Class View... 930
Profiling Routine View ... 932
Profiling Trace View .. 934
Setting call aggregation preferences..................................... 936

Analyzing trace information programmatically 936
Analyzing performance with a call graph model.................... 937
Analyzing structure and flow using a trace tree model.......... 940
Accessing trace data directly... 943

Generating a trace file without timing information 946

CHAPTER 34 Creating Executables and Components.................................... 949
About building PowerBuilder targets .. 949
Creating a project ... 951
Defining an executable application project................................... 953
Using dynamic libraries .. 957
Attaching or embedding manifest files ... 958
Distributing resources .. 959

Distributing resources separately .. 959
Using PowerBuilder resource files .. 960
What happens at runtime .. 961

Tracing execution... 961
Building an executable file and dynamic libraries 962

How PowerBuilder builds the project..................................... 963
How PowerBuilder searches for objects................................ 963
Listing the objects in a project ... 966

Building components, proxies, and .NET targets 967
xxii PowerBuilder Classic

Contents
PART 8 APPENDIXES

APPENDIX A The Extended Attribute System Tables 971
About the extended attribute system tables 971
The extended attribute system tables .. 972
Edit style types for the PBCatEdt table .. 975

CheckBox edit style (code 85)... 975
RadioButton edit style (code 86) ... 976
DropDownListBox edit style (code 87) 977
DropDownDataWindow edit style (code 88).......................... 978
Edit edit style (code 89)... 979
Edit Mask edit style (code 90) ... 981

APPENDIX B The OrcaScript Language .. 983
About OrcaScript.. 983
OrcaScript Commands... 985
Usage notes for OrcaScript commands and parameters 989

Index ... 997
Users Guide xxiii

Contents
xxiv PowerBuilder Classic

About This Book

Audience This book is for anyone who builds applications with PowerBuilder®. It
assumes that:

• You are familiar with user interface guidelines. If not, consult a book
that covers user interface conventions.

• You have a basic familiarity with SQL. If not, consult a book that
describes SQL statements.

How to use this book This book describes the PowerBuilder development environment. It
shows you how to use PowerBuilder user interface tools to build the
objects you need, including windows, menus, DataWindow® objects, and
user-defined objects, to create client/server and multitier applications.

Related documents Application Techniques presents information about programming
techniques and building multitier applications.

Deploying Applications and Components to .NET explains how to build
applications in PowerBuilder and deploy them as .NET Windows Forms
or ASP.NET applications. It also describes how to deploy custom class
user objects as .NET assemblies and Web services.

The DataWindow Programmers Guide explains how to use DataWindow
objects in different environments and presents programming techniques
related to DataWindows.

For a description of all the books in the PowerBuilder documentation set,
see the preface of the PowerBuilder Getting Started manual.

Two volumes The printed version of this book is divided into two volumes:

Volume 1 includes Chapters 1–17.
Volume 2 includes Chapters 18–34.

Other sources of
information

Use the Sybase® Getting Started CD and the Sybase Product
Documentation Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation
guides in PDF format. It is included with your software. To read or
print documents on the Getting Started CD, you need Adobe Acrobat
Reader, which you can download at no charge from the Adobe Web
site using a link provided on the CD.
Users Guide xxv

• The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Conventions The formatting conventions used in this manual are:

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

Formatting example Indicates

Retrieve and Update When used in descriptive text, this font indicates:

• Command, function, and method names

• Keywords such as true, false, and null

• Datatypes such as integer and char

• Database column names such as emp_id and
f_name

• User-defined objects such as dw_emp or
w_main

variable or file name When used in descriptive text and syntax
descriptions, oblique font indicates:

• Variables, such as myCounter

• Parts of input text that must be substituted, such
as pblname.pbd

• File and path names

File>Save Menu names and menu items are displayed in plain
text. The greater than symbol (>) shows you how
to navigate menu selections. For example,
File>Save indicates “select Save from the File
menu.”

dw_1.Update() Monospace font indicates:

• Information that you enter in a dialog box or on
a command line

• Sample script fragments

• Sample output fragments
xxvi PowerBuilder Classic

P A R T 1 The PowerBuilder
Environment

This part describes the basics of using PowerBuilder:
understanding and customizing the development
environment, creating workspaces and targets, and using
source control. It also describes the PowerDesigner
plug-in.

C H A P T E R 1 Working with PowerBuilder

About this chapter This chapter describes the basics of working in the PowerBuilder
development environment.

Contents

Before you begin If you are new to PowerBuilder, doing the tutorial in Getting Started will
help you become familiar with the development environment. The tutorial
guides you through the process of building a PowerBuilder application.

About PowerBuilder
PowerBuilder is an object-centric graphical application development
environment. Using PowerBuilder, you can easily develop many types of
applications and components. PowerBuilder provides all the tools you
need to build enterprise systems, such as order entry, accounting, and
manufacturing systems.

Topic Page

About PowerBuilder 3

Concepts and terms 4

The PowerBuilder environment 9

Creating and opening workspaces 17

Using wizards 18

Creating a target 19

Target types 21

Managing workspaces 25

Building workspaces 26

Working with tools 28

Using online Help 33

Building an application 34
Users Guide 3

Concepts and terms
Two-tier applications PowerBuilder applications can be traditional graphical client/server two-tier
applications that access server databases. A traditional client/server application
is a collection of windows that contain controls that users can interact with.
You can use standard controls—such as buttons, check boxes, drop-down lists,
and edit controls—as well as special PowerBuilder controls that make your
applications easy to develop and easy to use.

Multitier applications You can also build multitier applications with PowerBuilder. A multitier
application usually has a client application that requests services from a server
application or component. For example, your client application could request
services from a PowerBuilder component on an application server. The server
component often requests services from a server database and/or other server
components.

Web applications PowerBuilder applications can also be Web based. You can create a new
Web-based application for the Internet or Intranet, or adapt or extend an
existing PowerBuilder application for the Web.

Concepts and terms
This section discusses some basic concepts and terms you need to be familiar
with before you start using PowerBuilder to develop applications and
components.

Workspaces and targets
In PowerBuilder, you work with one or more targets in a workspace. You can
add as many targets to the workspace as you want, open and edit objects in
multiple targets, and build and deploy multiple targets at once.

A PowerBuilder target can be one of several types:

• Application target A client/server or multitier executable application.
Most of this book is concerned with building application targets. See
Chapter 5, “Working with Targets.”

• .NET target A .NET target that you can use to deploy applications as
.NET Windows Forms or ASP.NET applications or to deploy nonvisual
components as .NET assemblies or Web services. .NET targets are
described in detail in a separate book, Deploying Applications and
Components to .NET.
4 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
• An EAServer or Application Server Component target A component
that can be deployed to EAServer or another J2EE-compliant server. For
more information, see Application Techniques.

All of these targets can use PowerBuilder’s built-in language, PowerScript®.

You choose targets in the New dialog box. Here are the Target types that are
available in PowerBuilder:

For more information about creating a workspace and targets, see “Creating
and opening workspaces” on page 17 and “Creating a target” on page 19.

Objects
Your application is a collection of objects. For most targets, PowerBuilder
provides many types of objects, including graphical objects such as windows,
menus, and buttons, and nonvisual objects such as datastore, exception, and
timing objects.

As you work in your application, you create new objects and open existing
objects to continue work on their development.

For more information about creating, opening, and editing objects, see
“Working with objects” on page 140.
Users Guide 5

Concepts and terms
DataWindow objects
The applications you build are often centered around your organization’s data.
With PowerBuilder you can define DataWindow® objects to retrieve, display,
and manipulate data. For more information about DataWindow objects, see
Chapter 18, “Defining DataWindow Objects.”

PowerBuilder libraries
As you work in an application, component, or .NET target, the objects you
create are stored in one or more libraries (PBL files) associated with the
application. When you run your application, PowerBuilder retrieves the
objects from the library.

PowerBuilder provides a Library painter for managing your libraries. For
information about creating a new library and working with libraries in the
Library painter, see Chapter 6, “Working with Libraries.”

Painters and editors
Some of the editors you use to edit objects are called painters. For example, you
build a window in the Window painter. There you define the properties of the
window, add controls such as buttons and labels, and code the window and its
controls to work as your application requires.

PowerBuilder provides painters for windows, menus, DataWindow objects,
visual and nonvisual user-defined objects, functions, structures, databases, data
pipelines, and the application itself. For each of these object types, there is also
a Source editor in which you can modify code directly. See “Working in
painters” on page 122 and “Using the Source editor” on page 146.

There is also a file editor you can use to edit any file without leaving the
development environment. See “Using the file editor” on page 32.

Events and scripts
Applications are event-driven: users control the flow of the application by the
actions they take. When a user clicks a button, chooses an item from a menu,
or enters data into a text box, an event is triggered. You write scripts that
specify the processing that should happen when the event is triggered.
6 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
For example, buttons have a Clicked event. You write a script for a button’s
Clicked event that specifies what happens when the user clicks the button.
Similarly, edit controls have a Modified event that is triggered each time the
user changes a value in the control.

You write scripts using PowerScript, the PowerBuilder language, in a Script
view in the painter for the object you are working on. Scripts consist of
PowerScript functions, expressions, and statements that perform processing in
response to an event. The script for a button’s Clicked event might retrieve and
display information from the database; the script for an edit control’s Modified
event might evaluate the data and perform processing based on the data.

Scripts can also trigger events. For example, the script for a button’s Clicked
event might open another window, which triggers the Open event in that
window.

Functions
PowerScript provides a rich assortment of built-in functions you use to act
upon the objects and controls in your application. There are functions to open
a window, close a window, enable a button, retrieve data, update a database,
and so on.

You can also build your own functions to define processing unique to your
application.

Properties
All the objects and controls in an application or component have properties,
many of which you set as you develop your application. For example, you
specify a label for a button by setting its text property. You can set these
properties in painters or set them and modify them dynamically in scripts.
Users Guide 7

Concepts and terms
Source control
If you are working with other developers on a large application, you can make
sure you are working with the latest version of a component or object by
synchronizing the copy of the object you are working on with the last version
of the object checked into a source control system. PowerBuilder provides a
basic check in/check out utility as well as a standard application programming
interface to more sophisticated source control systems. For more information,
see Chapter 3, “Using Source Control.”

PowerBuilder extensions
You can use PowerBuilder extension objects in an application in the same way
as you would built-in PowerBuilder objects, with one difference—you must
import the file that contains the definition of the extension into a library in the
target. Some extensions are provided with PowerBuilder, but you can also
obtain them from third parties or build your own.

For more information about the extensions provided with PowerBuilder, see
the PowerBuilder Extension Reference. For how to build your own extensions,
see the PowerBuilder Native Interface Programmers Guide and Reference.
8 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
The PowerBuilder environment
When you start PowerBuilder for the first time, the Welcome to PowerBuilder
dialog box lets you create a new workspace with or without targets:

When PowerBuilder starts, it opens in a window that contains a menu bar and
the PowerBar at the top and the System Tree and Clip window on the left. The
remaining area will display the painters and editors you open when you start
working with objects.
Users Guide 9

The PowerBuilder environment
The System Tree
The System Tree provides an active resource of programming information you
use while developing targets. It lets you not only get information, but also drag
objects into painter views (such as the Script view or Layout view) for
immediate use.

The System Tree displays by default when you start PowerBuilder for the first
time. You can hide or display the System Tree using the System Tree button on
the PowerBar or by selecting Window>System Tree.

Using the Workspace
tab page

The System Tree has a single tab page that provides a view of the current
workspace. The Workspace tab page displays the current workspace and all its
targets. Most targets display the library list for the target and all the objects in
each PBL. The Workspace tab page in the System Tree works like a tree view
in the Library painter, but you can keep it open all the time to serve as the
control center of the development environment.

You can set the root of the Workspace page to your computer’s root directory,
the current selection, or any directory or library, as well as to the current
workspace.

Working with targets
To see the pop-up menu that lets you perform operations on a target such as
search, build, and migrate, you must set the root of the System Tree to the
current workspace.

The following illustration shows a workspace with two targets. The first target,
orders, has a second library in its library search path.
10 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
Current target The orders target is bold, indicating it is the current target, which means that it
is the default target used in the New dialog box and for Run and Debug. The
current target is set whenever you:

• Invoke an action in the System Tree, Library painter, or main menu that
affects a target or a child of a target, such as Build, Migrate, Run, or
Debug. Some actions, such as Search and Migrate, display a dialog box. If
you cancel the action by clicking the Cancel button in the dialog box, the
current target is not changed.

• Open an object painter.

• Change the active object painter.

If you prefer to set the current target explicitly using the Set as Current Target
pop-up menu item for the target in the System Tree or the File>Set Current
Target menu item, clear the Automatically Set Current Target check box on the
Workspaces tab page in the System Options dialog box. To open the System
Options dialog box, select Tools>System Options from the main menu.

Actions in the System
Tree

You can use the Workspace page as the hub of your PowerBuilder session.
Pop-up menus let you build and deploy targets and open and edit any object.
Double-clicking an event or function in the System Tree opens its script in the
Script view. Events with scripts have a different icon and are listed before
events without scripts.

Table 1-1 lists the actions you can take on each item that displays on the
Workspace page. You can also set properties for each item, choose which
object types display in the tree view, change the root of the Workspace page,
and reset the root to the current workspace.
Users Guide 11

The PowerBuilder environment
Table 1-1: Action items for objects in the System Tree

The PowerBar
Like the System Tree, the PowerBar provides a main control point for building
PowerBuilder applications. From the PowerBar you can create new objects and
applications, open existing objects, and debug and run the current application.

Item Menu action items

Workspace New (opens New dialog box), Add Target, Open Workspace,
Close, Incremental Build, Full Build, Deploy, Run, Debug,
Show, Properties.

Target New, Search, Set as Current Target, Remove Target, Library
List, .NET Assemblies, Migrate, Incremental Build, Full Build,
Deploy, Run, Debug, Show, Properties.

.NET Assemblies only displays for .NET targets.

PBL Search, Delete, Remove Library, Import, Import PB Extension,
Optimize, Build Runtime Library, Print Directory, Show,
Properties.

PBD Search, Delete, Remove Library, Print Directory, Show,
Properties

PowerBuilder
object

Edit, Edit Source, Search, Inherit from, Run/Preview, Copy,
Move, Delete, Regenerate, Export, Print, Properties.

Edit Source is not available for project and proxy objects. Inherit
from and Run/Preview are available only for some object types.
Source control items are available only if source control
information is associated with the target.

Functions and
events

Edit, Properties.

The Properties dialog box shows the prototype of the function or
event and its “signature.” The signature is a string that represents
the argument types, return types, and passing style. You use this
string when you write a PBNI extension that calls the function or
event. For more information, see the PBNI Programmers Guide
and Reference.

.NET assembly Show, Properties.

.NET assemblies can be added to the System Tree by selecting
them from the Properties dialog box for .NET targets.
12 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
While you are getting used to using PowerBuilder, you can display a label on
each button in a toolbar to remind you of its purpose. To do so, right-click any
toolbar button and select Show Text from the pop-up menu.

Table 1-2 lists the buttons from left to right on the PowerBar.

Table 1-2: PowerBar buttons and their uses

PowerBar
button What you can use it for

New Create new objects.

Inherit Create new windows, user objects, and menus by inheriting from
an existing object.

Open Open existing objects.

Run/Preview Run windows or preview DataWindows.

System Tree Work in the System Tree window, which can serve as the hub of
your development session. For more information see “The
System Tree” on page 10.

Output Window Examine the output of a variety of operations (migration, builds,
deployment, project execution, object saves, and searches). See
“The Output window” on page 15.

Next Error,
Previous Error

Navigate through the Output window.

To-Do List Keep track of development tasks you need to do for the current
application and use links to get you quickly to the place where
you complete the tasks.

Browser View information about system objects and objects in your
application, such as their properties, events, functions, and global
variables, and copy, export, or print the information.

Clip Window Store objects or code you use frequently. You can drag or copy
items to the Clip window to be saved and then drag or copy these
items to the appropriate painter view when you want to use them.
See “The Clip window” on page 15.

Library Manage your libraries using the Library painter.

DB Profile Define and use named sets of parameters to connect to a
particular database.

Application
Server Profile

Define the connection parameters for a particular server. You can
then use this predefined profile whenever you need to connect to
an application server.

Database Maintain databases and database tables, control user access to
databases, and manipulate data in databases using the Database
painter.

Edit Edit text files (such as source, resource, and initialization files)
in the file editor.
Users Guide 13

The PowerBuilder environment
Customizing the
PowerBar

You can customize the PowerBar. For example, you can choose whether to
move the PowerBar around, add buttons for operations you perform frequently,
and display text in the buttons.

For more information, see “Using toolbars” on page 46.

About PowerTips In the PowerBar, when you leave the mouse pointer over a button for a second
or two, PowerBuilder displays a brief description of the button, called a
PowerTip. PowerTips display in PowerBuilder wherever there are toolbar
buttons.

Incremental
Build Workspace

Update all the targets and objects in the workspace that have
changed since the last build.

Full Build
Workspace

Update all the targets and objects in the workspace.

Deploy
Workspace

Deploy all the targets in the workspace.

Skip, Stop Interrupt a build, deploy, or search operation. When a series of
operations is in progress, such as a full deploy of the workspace,
the Skip button lets you jump to the next operation. The Stop
button cancels all operations.

Debug Debug the current target. You can set breakpoints and watch
expressions, step through your code, examine and change
variables during execution, and view the call stack and objects in
memory.

Select & Debug Select a target and open the Debugger.

Run Run the current target just as your users would run it. For
standard PowerBuilder application targets, the application runs
in the development environment.

For .NET and server component targets, you must deploy the
target before you can run it for the first time, and you must
specify a client application for server components. If you have
made changes since you last deployed, you must redeploy to see
those changes when you click the Run button.

Select & Run Select a target and run it.

Exit Close PowerBuilder.

PowerBar
button What you can use it for
14 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
The Clip window
You can store code fragments you use frequently in the Clip window. You copy
text to the Clip window to save it and then drag or copy this text to the
appropriate Script view or editor when you want to use it.

Using the Clip window The Clip window displays a list of named clips, a preview of the information
contained in the clip, and a description. It provides buttons to move Clip
window contents to the clipboard, copy clipboard contents to the Clip window,
rename a clip, delete a clip, and modify the clip’s description. Clips you save
in one workspace are available in all your workspaces; you might want to use
a naming convention that reflects this.

For example, you might use standard error-checking code when you use the
ConnectToServer function to connect to EAServer. To copy it to the clipboard,
highlight the code in a Script view and select Copy from the pop-up menu. In
the Clip window, click the Paste icon, and name the clip. The Clip Description
dialog box opens so that you can enter a description. To change the description
later, select the clip’s name and click the Modify button.

You can drag the clip from the Clip window to any script in which you want to
connect to EAServer. You can also use the Copy icon to copy the clip to the
clipboard.

You can hide or display the Clip window using the Clip Window button on the
PowerBar or by selecting Window>Clip.

The Output window
The output of a variety of operations (migration, builds, deployment, project
execution, object saves, and searches) displays in the Output window.

When you start a new PowerBuilder session, the Output window has a single
tab, Default. New tabs are added as you perform operations.

Tab Contents

Default General information about the progress of full or
incremental builds and project deployment
Users Guide 15

The PowerBuilder environment
Using the Output
window

You can hide or display the Output window with the Output button on the
PowerBar or by selecting Window>Output.

You control operations in the window using the Skip, Stop, Next Error, and
Previous Error buttons or menu options.

Tabs display in the order in which they are created and remain in the Output
window for the rest of the PowerBuilder session. To clear the output from the
tabs automatically when you start a new build, make sure that the
Automatically Clear Output Window check box on the General page of the
System Options dialog box is selected. You can also clear and close tabs
manually from the pop-up menu.

When appropriate, lines in the Output window provide links that invoke the
correct painter when you double-click on that line. The pop-up menu also
provides the options Edit and Edit Source to open an object in a painter or the
Source editor. You can copy the contents of the current tab to the Windows
clipboard, save its contents to a text file, or print its contents to your default
printer.

Debug Debugger output, including the paths of assemblies
loaded to support .NET debugging

Errors Messages that indicate problems that prevent the build or
deploy process from completing successfully

Warnings Warning and informational messages

Search Output from search operations

Unsupported features For .NET targets, names and locations of features not
supported in the target type

Tab Contents
16 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
Creating and opening workspaces
Before you can begin any development in PowerBuilder, you need to create or
open a workspace.

Creating a workspace

❖ To create a new workspace:

1 Do one of the following:

• Click the New button in the PowerBar.

• Select File>New from the menu bar.

• In the Workspace tab of the System Tree, right-click the workspace
name and select New from the pop-up menu.

The New dialog box opens.

2 On the Workspace tab, select Workspace.

The New Workspace dialog box displays.

3 Enter a name for the workspace (.pbw) you want to create and click Save.

The workspace is created and the name of the new workspace displays in
the PowerBuilder title bar.

Opening a workspace
The next time you start PowerBuilder, it opens without opening a workspace.
You can change this behavior by modifying options on the Workspaces page of
the System Options dialog box or on the Welcome to PowerBuilder screen. For
example, you can have PowerBuilder open not only the workspace you used
most recently, but also the objects and scripts you worked on last. See “Starting
PowerBuilder with an open workspace” on page 37.

When PowerBuilder opens with an open workspace, it displays the name of the
current workspace in the title bar. The current workspace is also displayed in
the Workspace tab page in the System Tree. Although you can create multiple
workspaces, you can have only one workspace open at a time. You can change
workspaces at any time.
Users Guide 17

Using wizards
❖ To change workspaces:

1 Do one of the following:

• Select File>Open Workspace from the menu bar.

• In the Workspace tab of the System Tree, right-click on the workspace
name and select Open Workspace from the pop-up menu.

The Open Workspace dialog box displays.

2 From the list, select the workspace you want to open.

The workspace is changed and the name of the new workspace displays in
the PowerBuilder title bar.

❖ To change the workspace to a recent workspace:

• Select File>Recent Workspaces from the menu bar and select the
workspace.

The workspace list includes the eight most recently accessed workspaces.
You can include up to 36 workspaces on the list by selecting Tools>System
Options and modifying the number of items.

Using wizards
After you have created a workspace, you can add new or existing targets to it.
The first step in building a new PowerBuilder target is to use a Target wizard
to create the new target and name it.

About wizards
Wizards simplify the initial creation of applications and components. Using
your specifications, wizards can create multiple objects and in some cases
automatically generate complex code that you can modify as needed. The first
page in most wizards explains what the wizard builds. If you need help with the
information you need to give the wizard, click the Help [?] button in the upper
right corner of the window and then click the field you need help with, or click
the field and press F1.
18 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
You start wizards from the New dialog box, but not all the icons in the New
dialog box represent wizards. On the Project tab page, there are two versions
of some icons: one that starts a wizard, and one that takes you straight to the
Project painter.

Many wizards generate To-Do List entries to guide you through the rest of the
development of the application, object, or component. See “Using the To-Do
List” on page 30.

Related wizard types
Some of the wizards on the Target, PB Object, and Project tabs are related. For
example, if you want to develop and deploy EAServer components, you can
use the following:

• EAServer Component Target wizard To create a new target, a new
custom class user object, and the project object needed to generate the
EAServer component and deploy the component to EAServer

• EAServer Component Object wizard To create a new custom class
user object in an existing EAServer component target and create the
project object

• EAServer Component Project wizard To create a project object that
will generate an EAServer component from one or more existing custom
class user objects

For EAServer components and applications, you might also want to use the
Connection Object wizard, which builds a standard nonvisual user object,
inherited from the Connection object. Selections in this wizard allow you to set
properties for connecting to EAServer.

Creating a target
When you create a target, you are prompted for the name and location of a
Target (.pbt) file and one or more other objects. Target files are text files that
contain information about the target.
Users Guide 19

Creating a target
❖ To create a new target:

1 Do one of the following:

• Click the New button in the PowerBar.

• Select File>New from the menu bar.

• In the Workspace tab of the System Tree, highlight the workspace
name and select New from the pop-up menu.

The New dialog box opens.

2 On the Target tab page, select one of the Target wizards.

For more information about each type of Target wizard, see the sections
following these instructions.

3 Follow the instructions in the wizard, providing the information the wizard
needs.
20 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
In most wizards, you can review your choices on the summary page that
displays when you have finished entering information. This is a summary
page from the Template Application wizard:

Be sure the Generate To-Do List check box is checked if you want the
wizard to add items to the To-Do List to guide and facilitate your
development work.

4 When you are satisfied with your choices in the wizard, click Finish.

The objects are created in the target you specified. If you specified that
items were to be added to the To-Do List, you can see the items by clicking
the To-Do List button in the PowerBar.

As you develop the application, you can use linked items on the To-Do list
to open an object in the specific painter and view where you need to work.
See “Using the To-Do List” on page 30.

Target types
This section describes each of the targets you can build.
Users Guide 21

Target types
Application targets
There are three wizards for creating application targets:

• Application Target wizard

• Template Application Target wizard

• Existing Application Target wizard

Application Target
wizard

You use the Application Target wizard to create a new PowerScript-based
Application object and the library containing it. You must create any other
objects you need from scratch.

Template Application
Target wizard

You use the Template Application Target wizard to create a PowerScript-based
application, the library containing it, and a set of basic objects and scripts. If
the application requires a connection to EAServer or a SQL database, the
wizard automatically creates a Connection object.

In the Template Application wizard, you can choose one of two application
types: MDI Application and SDI Application.

MDI Application The wizard automatically generates the shell and scripts for
a basic Multiple Document Interface (MDI) application that includes these
objects:

Application object
Frame window
Frame menu
Base sheet window
Sheet menu
Sheet menu service object
Sheet windows
About window
Toolbar window
Connection service object (if database connection is needed)
Project object (optional; can build later using a Project wizard)

You can run the MDI application immediately by clicking the Run button on
the PowerBar. You can open sheets, display an About box, and select items
from menus. The To-Do List can help you use the application as a starting point
for continuing development of an MDI application.

SDI Application In the Template Application wizard, you can also choose to
create a Single Document Interface (SDI) application. An SDI application has
only one main window with a menu and an about window. If the application
requires a connection to EAServer or a SQL database, the wizard automatically
creates a Connection object.
22 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
For information about building MDI and SDI applications, see Application
Techniques.

Existing Application
Target wizard

You use the Existing Application Target wizard to add a target to your
workspace that uses an application you built in an earlier version of
PowerBuilder. After you complete the wizard, the Migrate Application dialog
box opens so you can migrate the application to this version.

Before you migrate Always make a backup copy of all the PBLs used in an
application before you migrate it to a new version of PowerBuilder.

You can use the Migration Assistant to check for obsolete syntax in your
application before you migrate; then you can make changes in the earlier
version of PowerBuilder and avoid some migration errors. The Migration
Assistant is particularly useful if you are migrating from PowerBuilder 6 or
earlier. Open the Migration Assistant from the Tool tab of the New dialog box,
and press F1 if you need Help in the wizard.

You should also check the release notes for the version of PowerBuilder that
you are using to find out if there are any migration issues that might affect you.

For more information about migrating targets, see “Migrating targets” on page
169.

For information about building standard PowerBuilder applications, see the
rest of this book and Application Techniques.

Component targets
EAServer Component
Target wizard

You use the EAServer Component Target wizard to create a new target
containing a custom class user object (to which you later add methods and
properties) with the characteristics required by an EAServer component object
that you can deploy to EAServer. If you want to create an EAServer component
in an existing EAServer component target, use the wizard on the PB Object
page.

Access to the EAServer component from a PowerBuilder client application is
gained through a Proxy object. You create a Proxy object using the EAServer
Proxy wizard on the Project tab page.
Users Guide 23

Target types
Application Server
Component Target
wizard

You use the Application Server Component Target wizard to create a new
target containing a custom class user object (to which you later add methods
and properties) with the characteristics required by an Application Server
component object that you can deploy to a J2EE-compliant application server.
To deploy the component to the application server, you must have the
PowerBuilder Application Server Plug-in, which is a separate Sybase product.

If you want to create an application server component in an existing application
server target, use the wizard on the PB Object page.

Access to the application server component from a PowerBuilder client
application is gained through a Proxy object. You create a Proxy object using
the Application Server Proxy wizard on the Project tab page.

.NET targets

.NET Web Forms
Application wizard

The .NET Web Forms Application wizard eases the task of deploying new or
existing PowerBuilder client-server applications to the Web and allows you to
use your PowerBuilder skills to create new Web applications that use ASP.NET
technology.

.NET Windows Forms
Application wizard

The .NET Windows Forms Application wizard builds a target that deploys a
PowerBuilder application as a .NET Windows Forms application. Applications
that have a rich user interface that relies on resources available on the client
computer, such as a complex MDI design, graphics, or animations, or that
perform intensive data entry or require a rapid response time, make good
candidates for deployment as PowerBuilder .NET Windows Forms
applications.

One of the choices you can make in the wizard is whether the application will
be deployed as a smart client application. A smart client application can work
either online (connected to distributed resources) or offline, and can take
advantage of “intelligent update” technology for deployment and maintenance.

.NET Web Service
and .NET Assembly
wizards

The PowerBuilder .NET Web Service and .NET Assembly wizards build
targets that deploy PowerBuilder custom class user objects as .NET Web
services or assemblies.

For more information about .NET targets, see Deploying Applications and
Components to .NET.
24 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
Managing workspaces

Adding an existing target to a workspace
Although you can have only one workspace open at a time, you can add as
many targets to the workspace as you want and open and edit objects in
multiple targets.

Working with targets that share PBLs
If a target shares PBLs with another target in the same workspace, as is the case
when you create a .NET target based on an existing application target, you
should work on only one target at a time. Objects are always opened in the
context of a specific target. When you open an object in a PBL that is used in
multiple targets, PowerBuilder needs to set global properties for the specific
target you are working on.

❖ To add an existing target to a workspace:

1 Right-click on the workspace displayed in the System Tree and select Add
Target from the pop-up menu.

The Add Target to Workspace dialog box displays.

2 Navigate to the directory containing the target you want to add and select
the target (.pbt) file.

3 Click Open.

The target is added to your current workspace.

Removing a target from a workspace
When you remove a target from the workspace, the .pbt file is not deleted.

❖ To remove a target from a workspace:

• Right-click on the target displayed in the System Tree and select Remove
Target from the pop-up menu.
Users Guide 25

Building workspaces
Specifying workspace properties
You specify workspace properties in the Properties of Workspace dialog box.

❖ To specify workspace properties:

1 In the Workspace tab of the System Tree, select Properties from the pop-up
menu for the workspace.

2 Select the Targets, Deploy Preview, or Source Control tab page.

3 Specify the properties as described in the following sections.

Specifying target order You can specify the targets and the order in which
those targets are built or deployed on the Targets tab page. All the targets
identified with the workspace are listed. Check the targets you want to include
in the workspace build or deploy. Use the arrows to change a target’s position
in the target order list.

Previewing deployment You can verify the targets and the order in which
those targets’ projects are built or deployed on the Deploy Preview tab page.
To make changes, you need to use the Targets page of the Workspace dialog
box.

Specifying source control properties You can specify which source
control system, if any, is used for this workspace, as well as other source
control properties. For more information, see Chapter 3, “Using Source
Control.”

Building workspaces
You can build and deploy workspaces while you are working in PowerBuilder,
and from a command line.

In the development environment
In the development environment, you can specify how you want the targets in
your workspace to be built and deployed. Then you can build individual targets
or all the targets in the workspace. Table 1-3 summarizes where you set up
build and deploy options, and how you start builds.
26 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
Table 1-3: Building and deploying targets and workspaces

From a command line
When you deploy or build a workspace from a command line, PowerBuilder
starts, completes the build, and exits as soon as the operation is completed. To
retain a log file for the session, you can send the contents of the Output window
to a file. Table 1-4 shows command-line options for building and deploying
targets and workspaces.

Table 1-4: Command-line options for building and deploying

To do this Do this

Set deploy options for
most targets

Select Properties from the pop-up menu for the target and
select the Deploy tab. Check the box next to a project to
build it when you select Deploy from the target’s pop-up
menu. Use the arrows to set the order in which projects
are built.

Set options for each project in the target in the Project
painter.

Set build and deploy
options for the
workspace

Select Properties from the pop-up menu for the
workspace and select the order in which targets should be
built. You can check which projects and deploy
configurations are currently selected on the Deploy
Preview page.

Build, migrate, or deploy
a selected target

Select Incremental Build, Full Build, Migrate, or Deploy
from the pop-up menu for the target. Deploy builds the
projects in the target in the order listed on the Deploy
page of the target’s properties dialog box.

Build or deploy all the
targets in the workspace

Select Incremental Build, Full Build, or Deploy from the
pop-up menu for the workspace, from the Run menu, or
from the PowerBar.

Option Description

/workspace workspacepath Open the workspace workspacepath

/target targetpath Open the target targetpath

/deploy Deploy the workspace and exit

/fullbuild Fully build the workspace and exit

/incrementalbuild Incrementally build the workspace and exit

/output outputpath Log the contents of the Output window to outputpath
Users Guide 27

Working with tools
As with other command-line options, you need only use the initial letter or
letters of the option name as long as the option is uniquely identified. The
deploy, fullbuild, and incrementalbuild options can be used only with the
workspace option. You need to create projects and specify build and deploy
options for the workspace in PowerBuilder before you start a build from the
command line. Deploy builds the projects in the target in the order listed on the
Deploy page of the target’s properties dialog box.

Example This example assumes that the location of the PowerBuilder executable file is
in your system path. It opens the workspace called CDShop, builds and deploys
the targets in the workspace according to your specifications in the workspace
and target properties, records the content of the Output window in the file
D:\tmp\cdshop.out, and exits PowerBuilder:

pb120 /w D:\CDShop\CDShop.pbw /d /out D:\tmp\cdshop.out

The output from all the tab pages in the Output window and from all the
projects is included in the output file.

There are additional command-line options you can use to start PowerBuilder.
See “Using command line arguments” on page 38.

Working with tools
PowerBuilder provides a variety of tools to help you with your development
work. There are several ways to open tools:

• Click a button in the PowerBar for the tool you want

• Select the tool from the Tools menu

• Open the New dialog box and select the tool you want on the Tool tab page

Table 1-5 lists the tools available in the PowerBar. Some of these tools are also
listed on the Tools menu.

Table 1-5: Tools available in the PowerBar

Tool What you use the tool for

To-Do List Keep track of development tasks you need to do for the current
target and create links to get you quickly to the place where you
need to complete the tasks. For information, see “Using the To-
Do List” on page 30.
28 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
Table 1-6 lists the tools you can launch from the Tool tab page in the New
dialog box. You can also launch the Library painter and File Editor from this
dialog box.

Table 1-6: Additional tools available in the New dialog box

Browser View information about system objects and objects in your
target, such as properties, events, functions, and global variables,
and copy, export, or print the information. For information, see
“Browsing the class hierarchy” on page 318.

Library painter Manage libraries, create a new library, build dynamic libraries,
and use source control.

Database profiles Define and use named sets of parameters to connect to a
particular database. For information, see Connecting to Your
Database.

Application
Server profiles

Define and use named sets of parameters to connect to a
particular application server. For information, see Connecting to
Your Database.

Database painter For information, see Chapter 16, “Managing the Database.”

File Editor Edit text files such as source, resource, and initialization files.
For information, see “Using the file editor” on page 32.

Debugger Set breakpoints and watch expressions, step through your
application, examine and change variables during execution, and
view the call stack and objects in memory. For information, see
Chapter 32, “Debugging and Running Applications.”

Tool What you use the tool for

Migration Assistant Scans PowerBuilder libraries and highlights usage of
obsolete functions and events. For information, see the
Migration Assistant online Help.

DataWindow Syntax Helps construct the syntax required by Modify, Describe,
and SyntaxFromSQL functions. For information, see
DataWindow Syntax online Help.

Profiling Class View,
Profiling Routine View,
and Profiling Trace View

Use trace information to create a profile of your
application. For information, see Chapter 33, “Tracing
and Profiling Applications.”

Web DataWindow
JavaScript Generator

Generate a JavaScript file that contains DataWindow
methods you want to associate with a specific
DataWindow object. For information, see the
DataWindow Programmers Guide.

Tool What you use the tool for
Users Guide 29

Working with tools
Using the To-Do List
The To-Do List displays a list of development tasks you need to do. You can
create tasks for any target in the workspace or for the workspace itself. A
drop-down list at the top of the To-Do List lets you choose which tasks to
display. To open the To-Do List, click the To-Do List button in the PowerBar
or select Tools>To-Do List from the menu bar.

To-Do List entries The entries on the To-Do list are created:

• Automatically by most PowerBuilder wizards to guide you through the
continued development of objects of different types that you will need to
build the application or component specified by the wizard

• At any time by you when you are working in a painter and want a link to
a task that you want to remember to complete

Some To-Do List entries created by wizards are hot-linked to get you quickly
to the painter (and the specific object you need) or to a wizard. You can also
create an entry yourself that links to the PowerBuilder painter where you are
working so you can return to the object or script (event/function and line) you
were working on when you made the entry. When you move the pointer over
entries on the To-Do list, the pointer changes to a hand when it is over a linked
entry.
30 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
For example, if you generate an MDI application with the Template
Application wizard, one of the linked entries on the To-Do List reminds you to
register new sheets with the sheet manager service, which is a nonvisual user
object created by the wizard. Double-clicking this entry automatically opens
the Window painter and the Script view where you register new sheets.

Exporting and
importing lists

You can export or import a To-Do List by selecting Export or Import from the
pop-up menu. Doing this is useful if you want to move from one computer to
another or you need to work with To-Do Lists as part of some other system
such as a project management system.

Linked entries
If you import a list from another workspace or target, or from a previous
version of PowerBuilder, linked entries will display in the list but the links will
not be active.

Working with entries
on the To-Do List

Table 1-7 tells you how to work with entries on the To-Do List.

Table 1-7: Using the To-Do List

To Do this

See linked entries Move the pointer over the entries. A hand displays when
the entry you are over is linked.

Use a linked entry to get
to a painter or wizard

Double-click the linked entry or select it and then select
Go To Link from the pop-up menu.

Add an entry with no link Select Add from the pop-up menu.

Add a linked entry to a
painter that edits objects

With the painter open, select Add Linked from the pop-
up menu.
Users Guide 31

Working with tools
Using the file editor
One of the tools on the PowerBar and Tools menu is a text editor that is always
available. Using the editor, you can view and modify text files (such as
initialization files and tab-separated files with data) without leaving
PowerBuilder. Among the features the file editor provides are find and replace,
undo, importing and exporting text files, and dragging and dropping text.

Setting file editing
properties

The file editor has font properties and an indentation property that you can
change to make files easier to read. If you do not change any properties, files
have black text on a white background and a tab stop setting of 3 for
indentation. Select Design>Options from the menu bar to change the tab stop
and font settings.

Add an entry for a
specific target

If the To-Do List is open, select the target from the
drop-down list at the top of the To-Do List and add the
entry.

If the To-Do List is closed, select a target in the System
Tree, open the To-Do List, and add the entry.

Add an entry for the
workspace

Select Current Workspace from the drop-down list at the
top of the To-Do List and add the entry.

Change the list that
displays

Select a specific target or Current Workspace from the
drop-down list at the top of the To-Do List. To display
tasks for all targets and the workspace, select All Items.

Change an entry’s
position on the list

Drag the entry to the position you want.

Edit or delete an entry Select Edit or Delete from the pop-up menu.

Delete checked entries or
all entries

Select Delete Checked or Delete All from the pop-up
menu.

Check or uncheck an
entry

Click in the margin to the left of the entry or select an
entry and then select Check/Uncheck from the pop-up
menu.

Export a To-Do List Select Export from the pop-up menu, name the To-Do
List text file, and click Save.

Import a To-Do List Select Import from the pop-up menu, navigate to an
exported To-Do List text file, and click Open.

To Do this
32 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
Editor properties apply elsewhere
When you set properties for the file editor, the settings also apply to the
Function painter, the Script view, the Source editor, the Interactive SQL view
in the Database painter, and the Debug window.

Dragging and
dropping text

To move text, simply select it, drag it to its new location, and drop it. To copy
text, press the Ctrl key while you drag and drop the text.

Using online Help
Online help includes most of the PowerBuilder manuals and reference books
in the Microsoft HTML Help format, as well as context-sensitive help for many
windows and controls in the IDE.

Accessing Help Table 1-8 lists the ways you can access Help.

Table 1-8: Accessing online Help

Sybooks CD and Web
site

PowerBuilder books are also provided on the Sybase Product Manuals Web
site. For more information, see “Other sources of information” on page xxv.

Approach What it does

Use the Help menu on the
menu bar

Displays the Help contents, the What’s New in
PowerBuilder Help, or Help for the current painter.

In a wizard, click the Help
button [?] in the upper right
corner of the window

The pointer displays with a question mark so you can
get context-sensitive Help. Point and click in a field
you need Help on.

In the Properties view in a
painter, select Help from the
pop-up menu on any tab
page

Displays a Help topic from which you can get Help on
the properties, events, and functions for the object or
control whose properties are displaying in the
Properties view.

Add a Help button to the
PowerBar and use it

Displays the Help contents.

Press F1 Displays the Help contents.

Press Shift+F1 in the Script
view or Function painter

Displays context-sensitive Help about the function,
event, or keyword under the cursor.

Select Help from the pop-up
menu in the Browser

Displays Help for the Browser or for the selected
object, control, or function.

Click the Help button in a
dialog box

Displays information about that dialog box.
Users Guide 33

Building an application
Building an application
This section describes the basic steps you follow when building a traditional
client/server application. After completing step 1, you can define the objects
used in your application in any order as you need them.

❖ To build a traditional client/server application:

1 Create the application (using a New wizard) and specify the library list for
the application.

When you use a Start wizard, you create the Application object, which is
the entry point into the application. The Application object contains the
name of the application and specifies the application-level scripts.

See Chapter 5, “Working with Targets,” and Part 3, “Coding
Fundamentals.”

2 Create windows.

Place controls in the window and build scripts that specify the processing
that will occur when events are triggered.

See Chapter 11, “Working with Windows.”

3 Create menus.

Menus in your windows can include a menu bar, drop-down menus,
cascading menus, and pop-up menus. You define the menu items and write
scripts that execute when the items are selected.

See Chapter 14, “Working with Menus and Toolbars.”

4 Create user objects.

If you want to be able to reuse components that are placed in windows,
define them as user objects and save them in a library. Later, when you
build a window, you can simply place the user object on the window
instead of having to redefine the components.

See Chapter 15, “Working with User Objects.”

5 Create functions, structures, and events.

To support your scripts, you define functions to perform processing unique
to your application and structures to hold related pieces of data. You can
also define your own user events.

See Chapter 8, “Working with User-Defined Functions,” Chapter 9,
“Working with User Events,” and Chapter 10, “Working with Structures.”
34 PowerBuilder Classic

CHAPTER 1 Working with PowerBuilder
6 Create DataWindow objects.

Use these objects to retrieve data from the database, format and validate
data, analyze data through graphs and crosstabs, and update the database.

See Chapter 18, “Defining DataWindow Objects” and the DataWindow
Programmers Guide.

7 Test and debug your application.

You can run your application at any time. If you discover problems, you
can debug your application by setting breakpoints, stepping through your
code, and looking at variable values during execution. You can also create
a trace file when you run your application and use PowerBuilder’s
profiling tools to analyze the application’s performance and logical flow.

See Chapter 32, “Debugging and Running Applications,” and Chapter 33,
“Tracing and Profiling Applications.”

8 Prepare an executable.

When your application is complete, you prepare an executable version to
distribute to your users.

See Chapter 34, “Creating Executables and Components.”

Using other books This book tells you how to use PowerBuilder painters and tools.

For programming techniques for building applications and components for
deployment to the .NET Framework, see Deploying Applications and
Components to .NET.

For programming techniques for building applications and building clients and
components for application servers, see Application Techniques.

For programming techniques related to DataWindows, including using the
Web DataWindow, see the DataWindow Programmers Guide.
Users Guide 35

Building an application
36 PowerBuilder Classic

C H A P T E R 2 Customizing PowerBuilder

About this chapter This chapter describes how you can customize the PowerBuilder
development environment to suit your needs and get the most out of
PowerBuilder’s productivity features.

Contents

Starting PowerBuilder with an open workspace
When you start PowerBuilder, you might want to resume work on an
existing project. You can have PowerBuilder open the workspace that you
used last, and even open the painters you had open, with the last Script
view you touched open at the code you were working on.

Using options in the development environment
There are three options on the Workspaces page of the System Options
dialog box that you can use to determine what displays when you start
PowerBuilder.

❖ To open the System Options dialog box:

• Select Tools>System Options from the menu bar.

Opening just the
workspace

If you want PowerBuilder to open the last workspace you used at startup,
select the Workspaces page and then check Reopen Workspace on Startup.

Topic Page

Starting PowerBuilder with an open workspace 37

Changing default layouts 40

Using toolbars 46

Customizing keyboard shortcuts 54

Changing fonts 55

Defining colors 56

How the PowerBuilder environment is managed 57
Users Guide 37

Starting PowerBuilder with an open workspace
Opening the
workspace, painters,
and scripts

If you want PowerBuilder to open the last workspace you used and the painters
and editors you were using, check Reopen Workspace on Startup and Reload
Painters When Opening Workspace. When you open PowerBuilder, any
painters and editors that were open when you closed PowerBuilder are
reloaded. If you edited a script before closing PowerBuilder, the Script view is
scrolled to show the last line you edited.

Opening with no
workspace

If you want PowerBuilder to open without loading a workspace, clear Reopen
Workspace on Startup. If you want the painters and editors that were open
when you last used a workspace to be reloaded when you reopen it, clear
Reopen Workspace on Startup and check Reload Painters When Opening
Workspace.

Displaying the
Welcome dialog box

If you want to see the Welcome to PowerBuilder dialog box when you start
PowerBuilder, check Show Start Dialog at Startup with no Workspace and
clear Reopen Workspace on Startup. The Welcome to PowerBuilder dialog box
is shown in “The PowerBuilder environment” on page 9.

Using a workspace file
Double-click a workspace file in Windows Explorer. Workspaces have a .pbw
extension. PowerBuilder starts with the workspace open.

Using command line arguments
You can start PowerBuilder from a command line (or the Windows Run dialog
box) and optionally open a workspace, target, and/or painter. These are the
painters and tools you can open:

Application painter
Database painter
Data Pipeline painter
DataWindow painter
Debugger
File Editor
Function painter
Library painter
Menu painter
Query painter
Structure painter
User Object painter
Window painter
38 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
The syntax is:

directory\pb120.exe {/workspace workspacepath} {/target targetpath}
{/painter paintername} {/output outputpath}

where directory is the fully qualified name of the directory containing
PowerBuilder.

You can also add one or more of the following options to the command line
after /painter paintername to open a specific object or create a new one:

{/library libraryname} {/object objectname} {/inherit objectname} {/new}
{/run} {/runonly} {/argument arguments}

The syntax statements show the long form of option names. You need only use
the initial letter or letters of the option name as long as the option is uniquely
identified, as shown in Table 2-1.

Table 2-1: Command-line options for opening PowerBuilder

Option Description

/W workspacepath Opens the workspace workspacepath. The default is the most
recently used workspace if you have selected the Reopen
Workspace on Startup check box in the System Options dialog
box. If you have not selected this check box, you must specify
the /W option before specifying any other options.

/T targetpath Opens the target targetpath.

/P paintername Opens the painter paintername. The default is the window that
displays when you begin a new PowerBuilder session.

The painter name must uniquely identify the painter. You do
not have to enter the entire name. For example, you can enter
q to open the Query painter and datab to open the Database
painter. If you enter the full name, omit any spaces in the name
(enter UserObject and DataPipeline, for example).

The painter name is not case sensitive. To open the file editor,
you could set paintername to FI or fileeditor.

Except for the /W, /T, and /L switches, other switches must
follow /P paintername on the command line, as shown in the
examples after the table.

/OU outputpath Logs the contents of the Output window to outputpath.

/L libraryname Identifies the library that contains the object you want to open.

/O objectname Identifies the object, such as a DataWindow object or window,
you want to open.

/I objectname Identifies the object you want to inherit from.

/N Creates a new DataWindow object.

/R Runs the DataWindow object specified with /O and allows
designing.
Users Guide 39

Changing default layouts
Examples The following examples assume that the location of the PowerBuilder
executable file is in your system path.

This example starts a PowerBuilder session by opening the Window painter in
the Client PBL in the Math workspace. The output of the session is sent to a
file called math.log. The workspace file, the PBL, and the log file are all in the
current directory:

pb120 /w Math.pbw /l Client.pbl /p window /out math.log

Enter this command to start PowerBuilder and open the DataWindow object
called d_emp_report in the workspace Emp.pbw:

pb120 /w D:\pbws\Emp.pbw /P dataw /O d_emp_report

Building from the command line
You can also build and deploy a workspace from the command line. For more
information, see “Building workspaces” on page 26.

Changing default layouts
You can change the layout of the PowerBuilder main window in several ways.
This section describes:

• Showing or hiding the System Tree, Output, and Clip windows and
changing their locations

• Showing or hiding views in painters and changing their locations

You can also show or hide toolbars, change their locations, and add custom
buttons. See “Using toolbars” on page 46.

/RO Runs the DataWindow object specified with /O but does not
allow designing.

/A arguments Provides arguments for the specified DataWindow object.

Option Description
40 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
Arranging the System Tree, Output, and Clip windows
Hiding windows The System Tree, Output, and Clip windows can all be hidden at any time by

clicking their buttons on the PowerBar.

Moving windows You can dock the System Tree, Output, and Clip windows at the top, bottom,
left, or right of the PowerBuilder main window by dragging the double bar at
the top or side of the windows.

Using the full width or
height of the main
window

Windows docked at the top or bottom of the main window occupy the full
width of the frame. You can change this default by clearing the Horizontal
Dock Windows Dominate check box on the General page System Options
dialog box. The following screen shows the Clip and Output windows docked
at the bottom of the window. The Horizontal Dock Windows Dominate check
box has been cleared so that the System Tree occupies the full height of the
window:

Using views in painters
Most of the PowerBuilder painters have views. Each view provides a specific
way of viewing or modifying the object you are creating or a specific kind of
information related to that object. Having multiple views available in a painter
window means you can work on more than one task at a time. In the Window
painter, for example, you can select a control in the Layout view to modify its
properties, and double-click the control to edit its scripts.
Users Guide 41

Changing default layouts
Views are displayed in panes in the painter window. Some views are stacked in
a single pane. At the bottom of the pane there is a tab for each view in the stack.
Clicking the tab for a view pops that view to the top of the stack.

Each painter has a default layout, but you can display the views you choose in
as many panes as you want to and save the layouts you like to work with. For
some painters, all available views are included in the default layout; for others,
only a few views are included.

Each pane has:

• A title bar you can display temporarily or permanently

• A handle in the top-left corner you can use to drag the pane to a new
location

• Splitter bars between the pane and each adjacent pane

Displaying the title bar

For most views, a title bar does not permanently display at the top of a pane
because it is often unnecessary, but you can display a title bar for any pane
either temporarily or permanently.

❖ To display a title bar:

1 Place the pointer on the splitter bar at the top of the pane.

The title bar displays.

2 To display the title bar permanently, click the pushpin at the left of the title
bar or select Pinned from its pop-up menu.

Click the pushpin again or select Pinned again on the pop-up menu to hide
the title bar.

After you display a title bar either temporarily or permanently, you can use the
title bar’s pop-up menu.

❖ To maximize a pane to fill the workspace:

• Select Maximize from the title bar’s pop-up menu or click the Maximize
button on the title bar

❖ To restore a pane to its original size:

• Select Restore from the title bar’s pop-up menu or click the Restore button
on the title bar
42 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
Moving and resizing panes and views

You can move a pane or a view to any location in the painter window. You
might find it takes a while to get used to moving panes and views around, but
if you do not like a layout, you can always revert to the default layout and start
again. To restore the default layout, select View>Layouts>Default.

To move a pane, select and drag the title bar of the view that is at the top of the
stack. If the pane contains stacked views, all views in the stack move together.
To move one of the views out of the stack, drag the tab for the view you want
to move.

❖ To move a pane:

1 Place the pointer anywhere on the title bar of the view at the top of the
stack, hold down the left mouse button, and start moving the pane.

A gray outline appears around the pane:

2 Drag the outline to the new location.

The outline changes size as you drag it. When the pointer is over the
middle of a pane, the outline fills the pane. As you drag the pointer toward
any border, the outline becomes a narrow rectangle adjacent to that border.
When the pointer is over a splitter bar between two panes, rows, or
columns, the outline straddles the splitter bar:

When you move the pointer to a corner
When you move the pointer to a corner, you will find that you have many
places where you can drop the outline. To see your options, move the
pointer around in all directions in the corner and see where the outline
displays as you move it.
Users Guide 43

Changing default layouts
3 Release the mouse button to drop the outline in the new location:

❖ To move a view in a stacked pane:

• Place the pointer anywhere on the view’s tab, hold down the left mouse
button, and start moving the view.

You can now move the view as in the previous procedure. If you want to
rearrange the views in a pane, you can drag the view to the left or right
within the same pane.

❖ To resize a pane:

• Drag the splitter bars between panes.

Floating and docking views

Panes are docked by default within a painter window, but some tasks may be
easier if you float a pane. A floating pane can be moved outside the painter’s
window or even outside the PowerBuilder window.

When you open another painter
If you have a floating pane in a painter and then open another painter, the
floating pane temporarily disappears. It reappears when the original painter is
selected.

❖ To float a view in its own pane:

• Select Float from the title bar’s pop-up menu.

❖ To float a view in a stacked pane:

• Select Float from the tab’s pop-up menu.

To move a pane here Drop the outline here

Between two panes On the splitter bar between the panes

Between a border and a pane At the side of the pane nearest the border

Into a new row On the splitter bar between two rows or at the
top or bottom of the painter window

Into a new column On the splitter bar between two columns or at
the left or right edge of the painter window

Onto a stack of panes On the middle of the pane (if the pane was not
already tabbed, tabs are created)
44 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
❖ To dock a floating view:

• Select Dock from the title bar’s pop-up menu.

Adding and removing views

You may want to add additional views to the painter window. You can open
only one instance of some views, but you can open as many instances as you
need of others, such as the Script view. If there are some views you rarely use,
you can move them into a stacked pane or remove them. When removing a
view in a stacked pane, make sure you remove the view and not the pane.

❖ To add a new view to the painter window:

1 Select View from the menu bar and then select the view you want to add.

The view displays in a new pane in a new row.

2 Move the pane where you want it.

For how to move panes, see “Moving and resizing panes and views” on
page 43.

❖ To remove a view in its own pane from the painter window:

1 If the view’s title bar is not displayed, display it by placing the pointer on
the splitter bar at the top of the pane.

2 Click the Close button on the title bar.

❖ To remove a view in a stacked pane from the painter window:

• Select the tab for the view and select Close from its pop-up menu.

❖ To remove a stacked pane from the painter window:

1 If the title bar of the top view in the stack is not displayed, display it by
placing the pointer on the splitter bar at the top of the pane.

2 Click the Close button on the title bar.

Saving a layout

When you have rearranged panes in the painter window, PowerBuilder saves
the layout in the registry. The next time you open the painter window, your last
layout displays. You can also save customized layouts so that you can switch
from one to another for different kinds of activities.
Users Guide 45

Using toolbars
❖ To save customized layouts for a painter window:

1 Select View>Layouts>Manage from the menu bar.

2 Click the New Layout button (second from the left at the top of the dialog
box).

3 Type an appropriate name in the text box and click OK.

You can restore the default layout at any time by selecting
View>Layout>Default.

Using toolbars
Toolbars provide buttons for the most common tasks in PowerBuilder. You can
move (dock) toolbars, customize them, and create your own.

Toolbar basics
PowerBuilder uses three toolbars: the PowerBar, PainterBar, and StyleBar:

This toolbar Has buttons for And (unless hidden) displays

PowerBar Opening painters and tools Always

PainterBar Performing tasks in the
current painter

In each painter or editor; some
painters have more than one
PainterBar

StyleBar Changing properties of text,
such as font and alignment

In appropriate painters
46 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
Drop-down toolbars
To reduce the size of toolbars, some toolbar buttons have a down arrow on the
right that you can click to display a drop-down toolbar containing related
buttons.

For example, the down arrow next to the Text button in the DataWindow
painter displays the Controls drop-down toolbar, which has a button for each
control you can place on a DataWindow object.

Default button replaced
The button you select from a drop-down toolbar replaces the default button on
the main toolbar. For example, if you select the Picture button from the
Controls drop-down toolbar, it replaces the Text button in the PainterBar.

Controlling the display of toolbars
You can control:

• Whether to display individual toolbars and where

• Whether to display text on the buttons

• Whether to display PowerTips

Choosing to display text and PowerTips affects all toolbars.

❖ To control a toolbar using the pop-up menu:

1 Position the pointer on a toolbar and display the pop-up menu.

2 Click the items you want.

A check mark means the item is currently selected.
Users Guide 47

Using toolbars
❖ To control a toolbar using the Toolbars dialog box:

1 Select Tools>Toolbars from the menu bar.

The Toolbars dialog box displays.

2 Click the toolbar you want to work with (the current toolbar is highlighted)
and the options you want.

PowerBuilder saves your toolbar preferences in the registry and the
PowerBuilder initialization file.

Moving toolbars using the mouse
You can use the mouse to move a toolbar.

❖ To move a toolbar with the mouse:

1 Position the pointer on the grab bar at the left of the toolbar or on any
vertical line separating groups of buttons.

2 Press and hold the left mouse button.

3 Drag the toolbar and drop it where you want it.

As you move the mouse, an outlined box shows how the toolbar will
display when you drop it. You can line it up along any frame edge or float
it in the middle of the frame.

Docking toolbars

When you first start PowerBuilder, all the toolbars display one above another
at the top left of the workspace. When you move a toolbar, you can dock
(position) it:

• At the top or bottom of the workspace, at any point from the left edge to
the right edge

• At the left or right of the workspace, at any point from the top edge to the
bottom edge

• To the left or right of, or above or below, another toolbar
48 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
Customizing toolbars
You can customize toolbars with PowerBuilder buttons and with buttons that
invoke other applications, such as a clock or text processor.

Adding, moving, and
deleting buttons

You can add, move, and delete buttons in any toolbar.

❖ To add a button to a toolbar:

1 Position the pointer on the toolbar and display the pop-up menu.

2 Select Customize.

The Customize dialog box displays. The icons that display in the selected
palette and current toolbar panes depend on the palette and toolbar you
select.

3 Click the palette of buttons you want to use in the Select Palette group box.

4 Choose a button from the Selected Palette box and drag it to the position
you want in the Current Toolbar box.

The function of the button you selected displays in the Description at the
bottom of the dialog box. If you choose a button from the Custom palette,
another dialog box displays so you can define the button.

For more information, see “Adding a custom button” on page 51.
Users Guide 49

Using toolbars
❖ To move a button on a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 In the Current toolbar box, select the button and drag it to its new position.

❖ To delete a button from a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 In the Current toolbar box, select the button and drag it outside the Current
toolbar box.

Resetting a toolbar You can restore the original setup of buttons on a toolbar at any time.

❖ To reset a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Click the Reset button, then Yes to confirm, then OK.

Clearing or deleting a
toolbar

Whenever you want, you can remove all buttons from a toolbar. If you do not
add new buttons to the empty toolbar, the toolbar is deleted. You can delete
both built-in toolbars and toolbars you have created.

To recreate a toolbar
If you delete one of PowerBuilder’s built-in toolbars, you can recreate it easily.
For example, to recreate the PowerBar, display the pop-up menu, select New,
and then select PowerBar1 in the New Toolbar dialog box.

For information about creating new toolbars and about the meaning of
PowerBar1, see “Creating new toolbars” on page 53.

❖ To clear or delete a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Click the Clear button, then Yes to confirm.

The Current toolbar box in the Customize dialog box is emptied.

3 If you want to add new buttons, select them.

4 Click OK to save the toolbar if you added new buttons, or delete the
toolbar if you did not.
50 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
Adding a custom
button

You can add a custom button to a toolbar. A custom button can:

• Invoke a PowerBuilder menu item

• Run an executable (application) outside PowerBuilder

• Run a query or preview a DataWindow object

• Place a user object in a window or in a custom user object

• Assign a display format or create a computed field in a DataWindow
object

❖ To add a custom button:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Select Custom in the Select Palette group box.

The custom buttons display in the Selected Palette box.

3 Select a custom button and drag it to where you want it in the Current
Toolbar box.

The Toolbar Item Command dialog box displays. Different buttons display
in the dialog box depending on which toolbar you are customizing:

4 Fill in the Command Line box using Table 2-2 on page 52.

5 In the Item Text box, specify the text associated with the button in two
parts separated by a comma: the text that displays on the button and text
for the button’s PowerTip:

ButtonText, PowerTip

For example:

Save, Save File
Users Guide 51

Using toolbars
If you specify only one piece of text, it is used for both the button text and
the PowerTip.

6 In the Item MicroHelp box, specify the text to appear as MicroHelp when
the pointer is on the button.

Table 2-2: Defining custom buttons

Button action Toolbar Item Command dialog box entry

Invoke a PowerBuilder
menu item

Type @MenuBarItem.MenuItem in the Command Line
box. For example, to make the button mimic the Open item
on the File menu, type:

@File.Open

If a menu label contains a dot (“.”), you must include the
tilde (“~”) as an escape character to indicate the dot is part
of the label and does not invoke a submenu item. For
example:

@Run.Attach to ~.NET Process~.~.~.

You can also use a number to refer to a menu item. The
first item in a drop-down or cascading menu is 1, the
second item is 2, and so on. Separator lines in the menu
count as items. This example creates a button that pastes a
FOR...NEXT statement into a script:

@Edit.Paste Special.Statement.6

Run an executable file
outside PowerBuilder

Type the name of the executable file in the Command Line
box. Specify the full path name if the executable is not in
the current search path.

To search for the file name, click the Browse button.

Run a query Click the Query button and select the query from the
displayed list.

Preview a DataWindow
object

Click the Report button and select a DataWindow object
from the displayed list. You can then modify the
command-line arguments in the Command Line box.

Select a user object for
placement in a window
or custom user object

(Window and User Object painters only) Click the
UserObject button and select the user object from the
displayed list.

Assign a display format
to a column in a
DataWindow object

(DataWindow painter only) Click the Format button to
display the Display Formats dialog box. Select a data type,
then choose an existing display format from the list or
define your own in the Format box.

For more about specifying display formats, see Chapter
22, “Displaying and Validating Data.”
52 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
Modifying a custom button

❖ To modify a custom button:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Double-click the button in the Current toolbar box.

The Toolbar Item Command dialog box displays.

3 Make your changes, as described in “Adding a custom button” on page 51.

Creating new toolbars
PowerBuilder has built-in toolbars. When you start PowerBuilder, you see
what is called the PowerBar. In each painter, you also see one or more
PainterBars. But PowerBar and PainterBar are actually types of toolbars you
can create to make it easier to work in PowerBuilder.

PowerBars and
PainterBars

A PowerBar is a toolbar that always displays in PowerBuilder, unless you hide
it. A PainterBar is a toolbar that always displays in the specific painter for
which it was defined, unless you hide it:

Where you create
them

You can create a new PowerBar anywhere in PowerBuilder, but to create a new
PainterBar, you must be in the workspace of the painter for which you want to
define the PainterBar.

❖ To create a new toolbar:

1 Position the pointer on any toolbar, display the pop-up menu, and select
New.

The New Toolbar dialog box displays.

Create a computed field
in a DataWindow
object

(DataWindow painter only) Click the Function button to
display the Function for Toolbar dialog box. Select the
function from the list.

Button action Toolbar Item Command dialog box entry

For this toolbar type The default is named And you can have up to

PowerBar PowerBar1 Four PowerBars

PainterBar PainterBar1
PainterBar2
and so on

Eight PainterBars in each
painter
Users Guide 53

Customizing keyboard shortcuts
About the StyleBar
In painters that do not have a StyleBar, StyleBar is on the list in the New
Toolbar dialog box. You can define a toolbar with the name StyleBar, but
you can add only painter-specific buttons, not style buttons, to it.

2 Select a PowerBar name or a PainterBar name and click OK.

The Customize dialog box displays with the Current toolbar box empty.

3 One at a time, drag the toolbar buttons you want from the Selected palette
box to the Current toolbar box and then click OK.

Customizing keyboard shortcuts
You can associate your own keyboard shortcuts with PowerBuilder menu
items. For example, if you have used another debugger, you may be
accustomed to using specific function keys or key combinations to step into
and over functions. You can change the default keyboard shortcuts to associate
actions in PowerBuilder’s Debugger with the keystrokes you are used to.

Tip
Creating keyboard shortcuts means you can use the keyboard instead of the
mouse in many common situations, including changing workspaces, objects, or
connections. To do this, create shortcuts for the File>Recent menu items.

❖ To associate a keyboard shortcut with a menu item:

1 Select Tools>Keyboard Shortcuts from the menu bar.

The keyboard shortcuts for the current menu bar display.

2 Select a menu item with no shortcut or a menu item with a default shortcut
that you want to change and then put the cursor in the Press Keys For
Shortcut box.

3 Press the keys you want to use for the shortcut.
54 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
The new shortcut displays in the text box. If you type a shortcut that is
already being used, a message notifies you so you can type a different
shortcut or change the existing shortcut.

❖ To remove a keyboard shortcut associated with a menu item:

1 Select Tools>Keyboard Shortcuts from the menu bar.

2 Select the menu item with the shortcut you want to remove.

3 Click Remove.

You can reset keyboard shortcuts to the default shortcuts globally or for the
current painter only.

❖ To reset keyboard shortcuts to the default:

• Click the Reset button and respond to the prompt.

Changing fonts
Table 2-3 summarizes the various ways you can change the fonts used in
PowerBuilder.

Table 2-3: Changing the fonts used in PowerBuilder

Object, painter, or tool How to change fonts

A table’s data, headings, and
labels

In the Database painter, display the Properties view
for the table, and change the font properties on the
Data, Heading, and Label Font tabs.

Objects in the User Object,
Window, and DataWindow
painters

Select objects and then modify settings in the
StyleBar, or, in the Properties view for one or more
objects, change the font properties on Font tab page.

Application, Menu, and
Library painters, System
Tree, Output window,
Browser, and MicroHelp

Select Tools>System Options from the menu bar
and change the font properties on the Editor Font
and Printer font tab pages.
Users Guide 55

Defining colors
Use the Printer font tab to set fonts specifically for printing. If you need to print
multilanguage characters, make sure you use a font that is installed on your
printer.

Changes you make in the Tools>System Options dialog box and from the
Design>Options menu selection are used the next time you open
PowerBuilder.

Defining colors
You can define custom colors to use in most painters and in objects you create.

❖ To define custom colors:

1 In a painter that uses custom colors, select Design>Custom Colors from
the menu bar.

2 Define your custom colors:

Function painter, Script view,
Interactive SQL view in the
Database painter, Source
editor, file editor, and Debug
window (changes made for
one of these apply to all)

Select Design>Options from the menu bar and
change the font properties on the System Font and
Printer Font tab pages of the dialog box that
displays. In the Debug window, select
Debug>Options.

Object, painter, or tool How to change fonts
56 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
How the PowerBuilder environment is managed
PowerBuilder configuration information is stored in both the PowerBuilder
initialization file (PB.INI) and the registry. When you start PowerBuilder, it
looks in the registry and PB.INI to set up your environment.

About the registry
Some PowerBuilder features require the use of the PB.INI file, but many
features use the registry for getting and storing configuration information.
Normally, you should not need to access or modify items in the registry
directly.

Information related to your preferences (such as the applications you have
created, the way you have arranged your views in the painters, and the shortcut
keys you have defined for PowerBuilder menu items) is stored in
HKEY_CURRENT_USER/Software/Sybase/PowerBuilder/12.0.

Installation-related information is stored in
HKEY_LOCAL_MACHINE/Software/Sybase/PowerBuilder/12.0.

Area of the
Color dialog box What you do

Basic colors Click the basic color closest to the color you want to
define to move the pointer in the color matrix and slider
on the right.

Custom colors
palette

Modify an existing color—click a custom color, then
modify the color matrix and slider. Define a new color—
click an empty box, define the color, and click Add to
Custom Colors.

Color matrix Click in the color matrix to pick a color.

Color slider Move the slider on the right to adjust the color's attributes.

Add to Custom
Colors button

After you have designed the color, click this button to add
the custom color to the Custom colors palette on the left.
Users Guide 57

How the PowerBuilder environment is managed
About the initialization file
PB.INI is a text file that contains variables that specify your PowerBuilder
preferences. These preferences include information such as the last workspace
you used and your startup preferences. When you perform certain actions in
PowerBuilder, PowerBuilder writes your preferences to PB.INI automatically.

Format of INI files PB.INI uses the Windows INI file format. It has three types of elements:

• Section names, which are enclosed in square brackets

• Keywords, which are the names of preference settings

• Values, which are numeric or text strings, assigned as the value of the
associated keyword

A variable can be listed with no value specified, in which case the default is
used.

Some sections are always present by default, but others are created only when
you specify different preferences. If you specify preferences for another painter
or tool, PowerBuilder creates a new section for it at the end of the file.

Specifying
preferences

Normally, you do not need to edit PB.INI. You can specify all your preferences
by taking an action, such as resizing a window or opening a new application,
or by selecting Design>Options from one of the painters. If a variable does not
appear by default in the options sheet for the painter, you can use a text editor
to modify the variable in the appropriate section of PB.INI.

Editing the initialization file
Do not use a text editor to edit PB.INI or any preferences file accessed by
Profile functions while PowerBuilder or your application is running.
PowerBuilder caches the contents of initialization files in memory and
overwrites your edited PB.INI when it exits, ignoring changes.

Where the
initialization file is kept

PB.INI is installed in the same directory as the PowerBuilder executable file,
but is copied to the C:\Documents and Settings\userName\Local
Settings\Application Data\Sybase\PowerBuilder 12.0 for each PowerBuilder
user the first time the user opens PowerBuilder. PowerBuilder subsequently
uses the PB.INI copy each time the same user starts an instance of
PowerBuilder IDE.
58 PowerBuilder Classic

CHAPTER 2 Customizing PowerBuilder
Telling PowerBuilder
where your
initialization file is

You can keep PB.INI in another location and tell PowerBuilder where to find
it by specifying the location in the System Options dialog box. You may want
to do this if you use more than one version of PowerBuilder or if you are
running PowerBuilder over a network.

❖ To record your initialization path:

1 Select Tools>System Options from the menu bar.

2 On the General tab page, enter the path of your initialization file in the
Initialization Path text box.

PowerBuilder records the path in the Windows registry.

How PowerBuilder
finds the initialization
file

PowerBuilder looks in the Windows Registry for a path to the initialization file,
and then looks for the file in the directory where PowerBuilder is installed. If
PowerBuilder cannot find PB.INI using the path in the Registry, it clears the
path value.

If the initialization file
is missing

If PowerBuilder does not find PB.INI when it starts up, it recreates it. However,
if you want to retain any preferences you have set, such as database profiles,
keep a backup copy of PB.INI. The recreated file has the default preferences.
Users Guide 59

How the PowerBuilder environment is managed
60 PowerBuilder Classic

C H A P T E R 3 Using Source Control

About this chapter PowerBuilder provides a direct connection to external SCC-compliant
source control systems as well as to the PowerBuilder native (PBNative)
utility. This chapter describes how to work with source control.

Contents

About source control systems
This section provides an overview of source control systems and describes
the PowerBuilder interface (API) to such systems.

What source control
systems do

Source control systems (version control systems) track and store the
evolutionary history of software components. They are particularly useful
if you are working with other developers on a large application, in that
they can prevent multiple developers from modifying the same
component at the same time. You can make sure you are working with the
latest version of a component or object by synchronizing the copy of the
object you are working on with the last version of the object checked into
the source control system.

Why use a source control
system

Most source control systems provide disaster recovery protection and
functions to help manage complex development processes. With a source
control system, you can track the development history of objects in your
PowerBuilder workspace, maintain archives, and restore previous
revisions of objects if necessary.

Topic Page

About source control systems 61

Using a source control system with PowerBuilder 68

Source control operations in PowerBuilder 78

Initialization settings that affect source control 92

Modifying source-controlled targets and objects 97

Migrating existing projects under source control 100
Users Guide 61

About source control systems
Source control
interfaces

You work with a source control system through a source control interface.
PowerBuilder supports source control interfaces based on the Microsoft
Common Source Code Control Interface Specification, Version 0.99.0823. You
can use the PowerBuilder SCC API with any source control system that
implements features defined in the Microsoft specification.

PowerBuilder institutes source control at the object level. This gives you a finer
grain of control than if you copied your PBLs directly to source control outside
of the PowerBuilder SCC API.

No other interfaces
PowerBuilder does not support working with source control systems through
proprietary interfaces provided by source control vendors. To work with source
control systems from your PowerBuilder workspace, you must use the
PowerBuilder SCC API. PowerBuilder also uses this API to connect to the
PowerBuilder Native check in/check out utility that installs with the product.

Using your source control manager
The PowerBuilder SCC API works with your source control system to perform
certain source control operations and functions described in the next section.
Other source control operations must be performed directly from the source
control management tool. After you have defined a source control connection
profile for your PowerBuilder workspace, you can open your source control
manager from the Library painter.

❖ To start your source control manager from PowerBuilder

• Select Entry>Source Control>Run Source Control Manager from the
Library painter menu bar.

The menu item name varies depending on the source control system you
selected in the source control connection profile for your current
workspace. There is no manager tool for the PBNative check in/check out
utility.

For information on configuring a source control connection profile, see
“Setting up a connection profile” on page 69.
62 PowerBuilder Classic

CHAPTER 3 Using Source Control
Which tool to use The following table shows which source control functions you should perform
from your source control manager and which you can perform from
PowerBuilder:

Table 3-1: Where to perform source control operations

* You can perform these source control operations from PowerBuilder for some source control
systems.

Using PBNative
PowerBuilder provides minimal in-the-box source control through the
PBNative check in/check out utility. PBNative allows you to lock the current
version of PowerBuilder objects and prevents others from checking out these
objects while you are working on them. It provides minimal versioning
functionality, and does not allow you to add comments or labels to objects that
you add or check in to the PBNative project directory.

Connecting to
PBNative

You connect to PBNative from PowerBuilder in the same way you connect to
all other source control systems: through the PowerBuilder SCC API. You use
the same menu items to add, check out, check in, or get the latest version of
objects on the source control server. However, any menu item that calls a
source control management tool is unavailable when you select PBNative as
your source control system.

Tool or interface Use for this source control functionality

Source control manager Setting up a project*
Assigning access permissions
Retrieving earlier revisions of objects*
Assigning revision labels*
Running reports*
Editing the PBG file for a source-controlled target*

PowerBuilder SCC API Setting up a connection profile
Viewing the status of source-controlled objects
Adding objects to source control
Checking objects out from source control
Checking objects in to source control
Clearing the checked-out status of objects
Synchronizing objects with the source control server
Refreshing the status of objects
Comparing local objects with source control versions
Displaying the source control version history
Removing objects from source control
Users Guide 63

About source control systems
Because there is no separate management tool for PBNative, if you need to edit
project PBG files that get out of sync, you can open them directly on the server
without checking them out of source control.

For more information about PBG files, see “Editing the PBG file for a source-
controlled target” on page 99.

PRP files PBNative creates files with an extra PRP extension for every object registered
in the server storage location. If an object with the same file name (minus the
additional extension) has been checked out, a PRP file provides the user name
of the person who has placed a lock on the object. PRP files are created on the
server, not in the local path.

PowerBuilder also adds a version number to the PRP file for an object in the
PBNative archive directory when you register that object with PBNative
source control. PowerBuilder increments the version number when you check
in a new revision. The version number is visible in the Show History dialog box
that you open from the pop-up menu for the object, or in the Library painter
when you display the object version numbers.

For more information on the Show History dialog box, see “Displaying the
source control version history” on page 91. For information on displaying the
version number in the Library painter, see “Controlling columns that display
in the List view” on page 156.

Using Show Differences functionality with PBNative
PBNative has an option that allows you to see differences between an object on
the server and an object on the local computer using a 32-bit visual difference
utility that you must install separately. For information on setting up a visual
difference utility for use with PBNative, see “Comparing local objects with
source control versions” on page 88.

Constraints of a multi-user environment
Any object added or checked into source control should be usable by all
developers who have access permissions to that object in source control. This
requires that the local paths for objects on different computers be the same in
relation to the local root directory where the PowerBuilder workspace resides.
64 PowerBuilder Classic

CHAPTER 3 Using Source Control
Best practices The source control administrator should decide on a directory hierarchy before
creating a source-controlled workspace. The following practices are highly
recommended for each target under source control:

• Create a top-level root directory for the local project path on each
developer workstation.

This directory becomes the project path in the SCC repository. The local
workspace object (PBW), the offline status cache file (PBC), the source
control log file, and any Orcascript files used to rebuild and refresh the
source-controlled targets should be saved to this top-level directory on
local workstations

• Create a unique subdirectory under the project path for each PBL in the
source-controlled targets

This practice avoids issues that can arise if you copy or move objects from
one PBL to another in the same target.

• Instruct each developer on the team to create a workspace object in the
top-level directory and, on the Source Control tab of the Properties of
Workspace dialog box, assign this directory as the "Local Project Path".
Each developer must also assign the corresponding top-level directory in
the SCC repository in the "Project" text box of the Source Control tab for
the workspace

• Add target files (PBT) to the project path directory or create unique
subdirectories under the project path for each target file

Project manager’s
tasks

Before developers can start work on PowerBuilder objects in a workspace
under source control, a project manager usually performs the following tasks:

• Sets up source control projects (and archive databases)

• Assigns each developer permission to access the new project

• Sets up the directory structure for all targets in a project

Ideally, the project manager should create a subdirectory for each target.
Whatever directory structure is used, it should be copied to all computers
used to check out source-controlled objects.

• Distributes the initial set of PBLs and target (PBT) files to all developers
working on the project or provides a network location from which these
files and their directory structure can be copied.
Users Guide 65

About source control systems
PowerScript and .NET targets require that all PBLs listed in a target library list
be present on the local computer. For source control purposes, all PBLs in a
target should be in the same local root path, although they could be saved in
separate subdirectories. PBWs and PBLs are not stored in source control unless
they are added from outside the PowerBuilder SCC API. They cannot be
checked into or out of source control using the PowerBuilder SCC API.

If you are sharing PBLs in multiple targets, you can include the shared PBLs
in a workspace and in targets of their own, and create a separate source control
project for the shared objects. After adding (registering) the shared PBL
objects to this project, you can copy the shared targets to other workspaces, but
the shared targets should not be registered with the corresponding projects for
these other workspaces. In this case, the icons indicating source control status
for the shared objects should be different depending on which workspace is the
current workspace.

For small projects, instead of requiring the project manager to distribute PBLs
and target files, developers can create targets in their local workspaces having
the same name as targets under source control. After creating a source control
connection profile for the workspace, a developer can get the latest version of
all objects in the workspace targets from the associated project on the source
control server, overwriting any target and object files in the local root path.
(Unfortunately, this does not work well for large PowerScript or .NET projects
with multiple PBLs and complicated inheritance schemes.)

Ongoing maintenance tasks of a project manager typically include:

• Distributing any target (PBT) files and PBLs that are added to the
workspace during the course of development, or maintaining them on a
network directory in an appropriate hierarchical file structure

• Making sure the PBL mapping files (PBGs) do not get out of sync

For information about the PBG files, see “Editing the PBG file for a
source-controlled target” on page 99.

Connections from each development computer to the source control project
can be defined on the workspace after the initial setup tasks are performed.

Developers’ tasks Each user can define a local root directory in a workspace connection profile.
Although the local root directory can be anywhere on a local computer, the
directory structure below the root directory must be the same on all computers
that are used to connect to the source control repository. Only relative path
names are used to describe the location of objects in the workspace below the
root directory level.
66 PowerBuilder Classic

CHAPTER 3 Using Source Control
After copying the directory structure for source-controlled PowerScript or
.NET targets to the local root path, developers can add these targets to their
local workspaces. The target objects can be synchronized in PowerBuilder,
although for certain complex targets, it might be better to do the initial
synchronization through the source control client tool or on a nightly build
computer before adding the targets to PowerBuilder. (Otherwise, the target
PBLs may need to be manually rebuilt and regenerated.)

For more information about getting the latest version of objects in source
control, see “Synchronizing objects with the source control server” on page
86.

Extension to the SCC API
Status determination
by version number

PowerBuilder provides third-party SCC providers with an extension to the
SCC API that allows them to enhance the integration of their products with
PowerBuilder. Typically, calls to the SccDiff method are required to determine
if an object is out of sync with the SCC repository. (This is not appropriate for
Perforce or ClearCase.)

However, SCC providers can implement SccQueryInfoEx as a primary file
comparison method instead of SccDiff. The SccQueryInfoEx method returns the
most recent version number for each object requested. This allows
PowerBuilder to compare the version number associated with the object in the
PBL with the version number of the tip revision in the SCC repository in order
to determine whether an object is in sync.

Since SccQueryInfoEx is a much simpler request than SccDiff, the performance
of the PowerBuilder IDE improves noticeably when this feature is
implemented by the SCC provider. For these providers, the SccDiff call is used
as a backup strategy only when a version number is not returned on an object
in the repository. Also for these providers, the version number for registered
files can be displayed in the Library painter.

For more information on viewing the version number, see “Controlling
columns that display in the List view” on page 156.

Once the new API method is implemented in an SCC provider DLL and
exported, PowerBuilder automatically begins to use the SCCQueryInfoEx call
with that provider. The SccQueryInfoEx method is currently used by PBNative.

Overriding the version
number

For source control systems that support the SccQueryInfoEx method, you can
manually override the version number of local files, but only for PowerScript
objects, and only when you are connected to source control.
Users Guide 67

Using a source control system with PowerBuilder
This can be useful with source control systems that allow you to check out a
version of an object that is not the tip revision. However, the source control
system alone decides the version number of the tip revision when you check a
file back into source control. It is the version returned by the source control
system that gets added to the PBC file for the workspace and to the PBLs in the
local directory.

For more information about the PBC file, see “Working in offline mode” on
page 75.

You change the local version number for a source-controlled PowerScript
object in its Properties dialog box, which you access from the object’s pop-up
menu in the System Tree or the Library painter. If the source control system for
the workspace supports the SccQueryInfoEx method and you are connected to
source control, the Properties dialog box for a source-controlled PowerScript
object (other than a PBT) has an editable SCC Version text box. The SCC
Version text box is grayed if the source control system does not support the
SccQueryInfoEx method or if you are not connected to source control.

Local change only
The version number that you manually enter for an object is discarded on
check-in. Only the source control provider decides what number the tip
revision is assigned.

Using a source control system with PowerBuilder
PowerBuilder provides a direct connection to external SCC-compliant source
control systems. It no longer requires you to register PowerBuilder objects in a
separate work PBL before you can check them into or out of the source control
system.

For information on migrating PowerBuilder applications and objects
previously checked into source control through a registered PBL, see
“Migrating existing projects under source control” on page 100.

Before you can perform any source control operations from PowerBuilder, you
must set up a source control connection profile for your PowerBuilder
workspace, either from the System Tree or from the Library painter. Even if
you use the PBNative check in/check out utility, you must access source-
controlled objects through an SCC interface that you define in the Workspace
Properties dialog box.
68 PowerBuilder Classic

CHAPTER 3 Using Source Control
The source control connection profile assigns a PowerBuilder workspace to a
source control project. Setting up a source control project is usually the job of
a project manager or administrator. See “Project manager’s tasks” on page 65.

Creating a new source control project
Although you can create a project in certain source control systems directly
from PowerBuilder, it is usually best to create the project from the
administrative tool for your source control system before you create the
connection profile in PowerBuilder.

Setting up a connection profile
In PowerBuilder you can set up a source control connection profile at the
workspace level only. Local and advanced connection options can be defined
differently on each computer for PowerBuilder workspaces that contain the
same targets.

Local connection
options

Local connection options allow you to create a trace log to record all source
control activity for your current workspace session. You can overwrite or
preserve an existing log file for each session.

You can also make sure a comment is included for every file checked into
source control from your local computer. If you select this connection option,
the OK button on the Check In dialog box is disabled until you type a comment
for all the objects you are checking in.

The following table lists the connection options you can use for each local
connection profile:

Table 3-2: Source control properties for a PowerBuilder workspace

Select this option To do this

Log All Source Management
Activity (not selected by default)

Enable trace logging. By default the log file
name is PBSCC120.LOG, which is saved in
your workspace directory, but you can select
a different path and file name.

Append To Log File (default
selection when logging is enabled)

Append source control activity information
to named log file when logging is enabled.

Overwrite Log File (not selected by
default)

Overwrite the named log file with source
control activity of the current session when
logging is enabled.
Users Guide 69

Using a source control system with PowerBuilder
Advanced connection
options

Advanced connection options depend on the source control system you are
using to store your workspace objects. Different options exist for different
source control systems.

Require Comments On Check In (not
selected by default; not available for
PBNative source control)

Disable the OK button on the Check In dialog
box until you type a comment.

This Project Requires That I
Sometimes Work Offline (not
selected by default)

Disable automatic connection to source
control when you open the workspace.

Delete PowerBuilder Generated
Object Files (not selected by default)

Remove object files (such as SRDs) from the
local directory after they are checked into
source control. This may increase the time it
takes for PowerBuilder to refresh source
control status, but it minimizes the drive
space used by temporary files. You cannot
select this option for the Perforce, ClearCase,
or Continuus source control systems.

Perform Diff On Status Update Permit display of out-of-sync icons for local
objects that are different from objects on the
source control server. Selecting this also
increases the time it takes to refresh source
control status. You cannot select this option
for Perforce.

Suppress prompts to overwrite
read-only files

Avoid message boxes warning that read-only
files exist on your local project directory.

Show warning when opening objects
not checked out

Avoid message boxes when opening objects
that are still checked in to source control.

Status Refresh Rate (5 minutes by
default)

Specifies the minimum time elapsed before
PowerBuilder automatically requests
information from the source control server to
determine if objects are out of sync. Valid
values are between 1 and 59 minutes. Status
refresh rate is ignored when you are working
offline.

Select this option To do this
70 PowerBuilder Classic

CHAPTER 3 Using Source Control
Applicability of advanced options
Some advanced options might not be implemented or might be rendered
inoperable by the PowerBuilder SCC API interface. For example, if an
advanced option allows you to make local files writable after an Undo Check
Out operation, PowerBuilder still creates read-only files when reverting an
object to the current version in source control. (PowerBuilder might even
delete these files if you selected the Delete PowerBuilder Generated Object
Files option.)

❖ To set up a connection profile:

1 Right-click the Workspace object in the System Tree (or in the Tree view
of the Library painter) and select Properties from the pop-up menu.

2 Select the Source Control tab from the Workspace Properties dialog box.

3 Select the system you want to use from the Source Control System
drop-down list.

Only source control systems that are defined in your registry
(HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\
InstalledSCCProviders) appear in the drop-down list.

4 Type in your user name for the source control system.

Some source control systems use a login name from your registry rather
than the user name that you enter here. For these systems (such as Perforce
or PVCS), you can leave this field blank.

5 Click the ellipsis button next to the Project text box.

A dialog box from your source control system displays. Typically it allows
you to select or create a source control project.

The dialog box displayed for PBNative is shown below:
Users Guide 71

Using a source control system with PowerBuilder
6 Fill in the information required by your source control system and click
OK.

The Project field on the Source Control page of the Workspace Properties
dialog box is typically populated with the project name from the source
control system you selected. However, some source control systems (such
as Perforce or Vertical Sky) do not return a project name. For these
systems, you can leave this field blank.

7 Type or select a path for the local root directory.

All the files that you check into and out of source control must reside in
this path or in a subdirectory of this path.

8 (Option) Select the options you want for your local workspace connection
to the source control server.

9 (Option) Click the Advanced button and make any changes you want to
have apply to advanced options defined for your source control system.

The Advanced button might be grayed if you are not first connected to a
source control server. If Advanced options are not supported for your
source control system, you see only a splash screen for the system you
selected and an OK button that you can click to return to the Workspace
Properties dialog box.

10 Click Apply or click OK.

Viewing the status of source-controlled objects
After a PowerBuilder workspace is assigned to a source control project through
a connection profile, icons in the PowerBuilder System Tree display the source
control status of all objects in the workspace. The same icons are also displayed
for objects in the Library painter if the workspace to which they belong is the
current workspace for PowerBuilder.
72 PowerBuilder Classic

CHAPTER 3 Using Source Control
Source control icons The icons and their meanings are described in Table 3-3 and Table 3-4.

Table 3-3: Source control status icons in PowerBuilder

Compound icons with a red check mark can display only if your SCC provider
permits multiple user checkouts. These icons are described in the following
table:

Table 3-4: Source control status icons with multiple checkouts enabled

For more information on allowing multiple user checkouts, see “Checking
objects out from source control” on page 80.

Icon Source control status of object displaying icon

The object resides only locally and is not under source control.

The object is under source control and is not checked out by anyone. The
object on the local computer is in sync with the object on the server unless
the icon for indeterminate status also appears next to the same object.

 The object is checked out by the current user.

The object is checked out by another user.

The current status of an object under source control has not been
determined. You are likely to see this icon only if the Perform Diff On
Status Update check box is not selected and if diffs are not performed for
your source control system based on version number. This icon can appear
only in conjunction with the icon for a registered object (green dot icon)
or for an object checked out by another user (red x icon).

The object on the local computer is registered to source control, but is out
of sync with the object on the server. This icon can also appear with the
icon for an object checked out by another user. The Perform Diff On Status
Update check box must be selected for this icon to display.

Icon Source control status of object displaying icon

The object is under source control and is checked out nonexclusively by
another user. PowerBuilder allows a concurrent checkout by the current
user.

The object is checked out by both the current user and another user.

The object is checked out nonexclusively by another user and the version
in the current user’s local path is out of sync.
Users Guide 73

Using a source control system with PowerBuilder
Pop-up menus Pop-up menus for each object in the workspace change dynamically to reflect
the source control status of the object. For example, if the object is included in
a source-controlled workspace but has not been registered to source control,
the Add To Source Control menu item is visible and enabled in the object’s
pop-up menu. However, other source control menu items such as Check In and
Show Differences are not visible until the object is added to source control.

Library painter Entry
menu

Additional status functionality is available from the Entry menu of the Library
painter. Depending on the source control system you are using, you can see the
owner of an object and the name of the user who has the object checked out.
For most source control systems, you can see the list of revisions, including any
branch revisions, as well as version labels for each revision.

Library painter selections
When a painter is open, menu commands apply to the current object or objects
in the painter, not the current object in the System Tree. This can get confusing
with the Library painter in particular, since Library painter views list objects
only (much like the System Tree), and do not provide a more detailed visual
interface for viewing current selections, as other painters do.

❖ To view the status of source-controlled objects

1 In a Library painter view, select the object (or objects) whose status you
want to determine.

2 Select Entry>Source Control>Source Control Manager Properties.

A dialog box from your source control system displays. Typically it
indicates if the selected file is checked in, or the name of the user who has
the file checked out. It should also display the version number of the
selected object.

Displaying the version number in the Library painter
You can display the version number of all files registered in source control
directly in the Library painter. You add a Version Number column to the
Library painter List view by making sure the SCC Version Number option
is selected in the Options dialog box for the Library painter.

For more information, see “Controlling columns that display in the List
view” on page 156.
74 PowerBuilder Classic

CHAPTER 3 Using Source Control
Working in offline mode
Viewing status
information offline

You can work offline and still see status information from the last time you
were connected to source control. However, you cannot perform any source
control operations while you are offline, and you cannot save changes to
source-controlled objects that you did not check out from source control before
you went offline.

To be able to work offline, you should select the option on the Source Control
page of the Workspace Properties dialog box that indicates you sometimes
work offline. If you select this option, a dialog box displays each time you open
the workspace. The dialog box prompts you to select whether you want to work
online or offline.

For more information about setting source control options for your workspace,
see “Setting up a connection profile” on page 69.

About the PBC file If you opt to work offline, PowerBuilder looks for (and imports) a PBC file in
the local root directory. The PBC file is a text file that contains status
information from the last time a workspace was connected to source control.
PowerBuilder creates a PBC file only from a workspace that is connected to
source control. Status information is added to the PBC file from expanded
object nodes (in the System Tree or in a Library painter view) at the time you
exit the workspace.

If a PBC file already exists for a workspace that is connected to source control,
PowerBuilder merges status information from the current workspace session to
status information already contained in the PBC file. Newer status information
for an object replaces older status information for the same object, but older
status information is not overwritten for objects in nodes that were not
expanded during a subsequent workspace session.

Backing up the PBC
file

You can back up the PBC file with current checkout and version information
by selecting the Backup SCC Status Cache menu item from the Library painter
Entry>Source Control menu, or from the pop-up menu on the current
workspace item in the System Tree. The Library painter menu item is only
enabled when the current workspace file is selected.

The Backup SCC Status Cache operation copies the entire contents of the
refresh status cache to the PBC file in the local project path whether the status
cache is dirty or valid. To assure a valid status cache, you can perform a Refresh
Status operation on the entire workspace before backing up the SCC status
cache.

For information about refreshing the status cache, see “Refreshing the status
of objects” on page 87.
Users Guide 75

Using a source control system with PowerBuilder
Fine-tuning performance for batched source control requests
PowerBuilder uses an array of object file names that it passes to a source
control system in each of its SCC API requests. The SCC specification does not
mention an upper limit to the number of files that can be passed in each request,
but the default implementation in PowerBuilder limits SCC server requests to
batches of 25 objects.

A PB.INI file setting allows you to override the 25-file limit on file names sent
to the source control server in a batched request. You can make this change in
the Library section of the PB.INI file by adding the following instruction:

SccMaxArraySize=nn

where nn is the number of files you want PowerBuilder to include in its SCC
API batch calls. Like other settings in the PB.INI file, the SccMaxArraySize
parameter is not case sensitive.

Configuring Java VM initialization
When you connect to a source control system, PowerBuilder instantiates a Java
VM by default. For certain SCC programs, such as Borland’s StarTeam or
Serena’s TrackerLink, the Java VM instantiated by PowerBuilder conflicts
with the Java VM instantiated by the SCC program. To prevent Java VM
conflicts, you must add the following section and parameter setting to the
PB.INI file:

[JavaVM]
CreateJavaVM=0

By adding this section and parameter setting to the PB.INI file, you prevent
PowerBuilder from instantiating a Java VM when it connects to a source
control system.
76 PowerBuilder Classic

CHAPTER 3 Using Source Control
Files available for source control
The following schema shows a directory structure for files in the local
PowerBuilder workspace and on the source control server. File types in the
local root path that can be copied to the source control server from
PowerBuilder are displayed in bold print. File types displayed in normal print
are not copied. Asterisks shown before a file extension indicate variable names
for files of the type indicated by the extension. The asterisk included in a file
extension is also a variable. The variable for the extension depends on the type
of object exported from a PBL, so it would be “w” for a window, “u” for a user
object, and so on.

Figure 3-1: Directory structure in local path and source control server

Typically, the source control server files are stored in a database but preserve
the file system structure. Files in any deployment configuration directories can
be regenerated automatically by building and deploying the files in the Source
directory.

Temporary files in local root path
When you add or check in a PowerScript object to source control,
PowerBuilder first exports the object as a temporary file (*.SR*) to your local
target directory. For some source control systems, you might choose to delete
temporary files from the local root path.
Users Guide 77

Source control operations in PowerBuilder
Source control operations in PowerBuilder
The following source control operations are described in this section:

• Adding objects to source control

• Checking objects out from source control

• Checking objects in to source control

• Clearing the checked-out status of objects

• Synchronizing objects with the source control server

• Refreshing the status of objects

• Comparing local objects with source control versions

• Displaying the source control version history

• Removing objects from source control

Source control operations on workspace and PBL files are performed on the
objects contained in the current workspace or in target PBLs, not on the actual
PBW and PBL files. The PBW and PBL files cannot be added to source control
through the PowerBuilder interface. Source control operations are not enabled
for target PBD files or for any of the objects in target PBD files.

Adding objects to source control
You add an object to your source control project by selecting the Add To
Source Control menu item from the object’s pop-up menu in the System Tree
or in the Library painter. You can also select an object in a Library painter view
and then select Entry>Source Control>Add To Source Control from the
Library painter menu bar.

What happens when
you add objects to
source control

When you add an object to source control, the icon in front of the object
changes from a plus sign to a green dot, indicating that the object on the local
computer is in sync with the object on the server.

PowerBuilder creates read-only object files in the local root directory for each
PowerBuilder object that you add to source control. These files can be
automatically deleted if you selected the Delete PowerBuilder Generated
Object Files option as a source control connection property (although you
cannot do this for certain SCC systems such as Perforce or ClearCase).

Read-only attributes are not changed by PowerBuilder if you later remove a
workspace containing these files from source control.
78 PowerBuilder Classic

CHAPTER 3 Using Source Control
Adding multiple
objects to source
control

If the object you select is a PowerBuilder workspace, a dialog box displays
listing all the objects for that workspace that are not currently under source
control (although the workspace PBW and target PBLs are not included in the
list). If the object you select is a PowerBuilder target, and at least one of the
objects in that target has not been registered with the current source control
project, PowerBuilder displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Register the target file only

If you select the multiple files radio button, another dialog box displays with a
list of objects to add to source control. A check box next to each object lets you
select which objects you want to add to source control. By default, check boxes
are selected for all objects that are not in your source control project. They are
not selected for any object already under source control.

You can resize all source control dialog boxes listing multiple files by placing
a cursor over the edge of a dialog box until a two-headed arrow displays, then
dragging the edge in the direction of one of the arrow heads.

Selecting multiple files from a PBL
If you select Add To Source Control for a target PBL, you immediately see the
list of multiple files from that PBL in the Add To Source Control dialog box.
There is no need for an intervening dialog box as there is for a target or
workspace, since you cannot register a PBL file to source control from the
PowerBuilder UI—you can only register the objects contained in that PBL.

You can also select multiple objects to add to source control from the List view
of the Library painter (without selecting a workspace, target, or PBL).
Users Guide 79

Source control operations in PowerBuilder
The Add To Source Control menu item is disabled for all objects that are
registered in source control except workspaces and targets. If you select the
Add To Source Control menu item for a workspace or target in which all the
objects are already registered to source control, PowerBuilder displays the Add
To Source Control dialog box with an empty list of files. You cannot add
objects to your source control project that are already registered with that
project.

Creating a mapping
file for target PBLs

When you add a target or an object (in a target that is not under source control)
to source control, PowerBuilder creates a PBG file. A PBG file maps objects
in a target to a particular PBL in a PowerScript or .NET target. One PBG file
is created per PBL, so there can be multiple PBG files for these types of target.

If a PBG file already exists for a target PBL containing the object you are
adding to source control, PowerBuilder checks the PBG file out of source
control and adds the name of the object to the names of objects already listed
in the PBG file. It then checks the PBG file back into source control.

The PBG files are used by PowerBuilder to make sure that objects are
distributed to the correct PBLs and targets when you check the objects out (or
get the latest versions of the objects) from source control.

If your source control system requires comments on registration and check-in,
you get separate message boxes for the PBG file and the objects that you are
adding to source control. If your source control system gives you the option of
adding the same comments to all the objects you are registering, you can still
get additional message boxes for PBG files, since PBG files are checked in
separately.

Because it is possible for PBG files to get out of sync, it is important that the
project manager monitor these files to make sure they map all objects to the
correct PBLs and contain references to all objects in the source control project.
However, you cannot explicitly check in or check out PBG files through the
PowerBuilder SCC API.

For more information on modifying PBG files, see “Editing the PBG file for a
source-controlled target” on page 99.

Checking objects out from source control
What happens on
checking out an object

When you check out an object, PowerBuilder:

• Locks the object in the archive so that no one else can modify it—unless
your source control system permits multiple user checkouts
80 PowerBuilder Classic

CHAPTER 3 Using Source Control
• Copies the object to the directory for the target to which it belongs

• For a PowerScript object, compiles the object and regenerates it in the
target PBL to which it is mapped

• Displays a check mark icon next to the object in your System Tree and in
your Library painter to show that the object has been checked out

Checking out multiple
objects

If you select the Check Out menu item for a PowerBuilder target that is not
already checked out, and at least one of the objects in that target is available for
checkout, PowerBuilder displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Check out the target file only

If you select the multiple file option, or if the target file is already checked out,
the Check Out dialog box displays the list of objects from that target that are
available for checkout. A check box next to each object in the list lets you
choose which objects you want to check out. By default, check boxes are
selected for all objects that are not currently checked out of source control.

The Deselect All button in the Check Out dialog box lets you clear all the check
boxes with a single click. When none of the objects in the list is selected, the
button text becomes Select All, and you can click the button to select all the
objects in the list.

You can also select multiple objects (without selecting a target) in the List view
of the Library painter. The PowerBuilder SCC API does not let you check out
an object that you or someone else has already checked out or that is not yet
registered with source control. If you use multiple object selection to select an
object that is already checked out, PowerBuilder does not include this object in
the list view of the Check Out dialog box.

Multiple user checkout Checking out an object from a source control system usually prevents other
users from checking in modified versions of the same object. Some source
control systems, such as Serena Version Manager (formerly Merant PVCS) and
MKS Source Integrity, permit multiple user checkouts. In these systems, you
can allow shared checkouts of the same object.

By default, PowerBuilder recognizes shared checkouts from SCC providers
that support multiple user checkouts. PowerBuilder shows a red check mark as
part of a compound icon to indicate that an object is checked out to another user
in a shared (nonexclusive) mode. You can check out an object in shared mode
even though another user has already checked the object out.
Users Guide 81

Source control operations in PowerBuilder
Managing multiple user check-ins
If you allow multiple user checkouts, the SCC administrator should publish a
procedure that describes how to merge changes to the same object by multiple
users. Merge functionality is not automatically supported by the SCC API, so
checking in an object in shared mode might require advanced check-in features
of the source control system. Merging changes might also require using the
source control administration utility instead of the PowerBuilder user interface.

If your SCC provider permits multiple user checkouts, you can still ensure that
an item checked out by a user is exclusively reserved for that user until the
object is checked back in, but only if you add the following instruction to the
Library section of the PB.INI file:

[Library]
SccMultiCheckout=0

After you add this PB.INI setting, or if your SCC provider does not support
multiple user checkouts, you will not see the compound icons with red check
marks, and all items will be checked out exclusively to a single user. For source
control systems that support multiple user checkouts, you can re-enable shared
checkouts by setting the SccMultiCheckout value to 1 or -1.

Creating a source
control branch

If your source control system supports branching and its SCC API lets you
check out a version of an object that is not the most recent version in source
control, you can select the version you want in the Advanced Check Out dialog
box (that you access by clicking the Advanced button in the Check Out dialog
box). When you select an earlier version, PowerBuilder displays a message box
telling you it will create a branch when you check the object back in. You can
click Yes to continue checking out the object or No to leave the object unlocked
in the source control project. If this is part of a multiple object checkout, you
can select Yes To All or No To All.

If you want just a read-only copy of the latest version of an object
Instead of checking out an object and locking it in the source control system,
you can choose to get the latest version of the object with a read-only attribute.
See “Synchronizing objects with the source control server” on page 86.
82 PowerBuilder Classic

CHAPTER 3 Using Source Control
❖ To check out an object from source control:

1 Right-click the object in the System Tree or in a Library painter view and
select Check Out from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Check Out from the Library painter menu.

The Check Out dialog box displays the name of the object you selected.
For PowerScript objects, the object listing includes the name of the PBL
that contains the selected object.

If you selected multiple objects, the Check Out dialog box displays the list
of objects available for checkout. You can also display a list of available
objects when you select a target file for checkout. A check mark next to an
object in the list marks the object as assigned for checkout.

2 Make sure that the check box is selected next to the object you want to
check out, and click OK.

Checking objects in to source control
When you finish working with an object that you checked out, you must check
it back in so other developers can use it, or you must clear the object’s
checked-out status. You cannot check in objects that you have not checked out.

If you do not want to use the checked-out version
Instead of checking an entry back in, you can choose not to use the checked-out
version by clearing the checked-out status of the entry. See “Clearing the
checked-out status of objects” next.

Checking in multiple
objects

If you select the Check In menu item for a workspace, PowerBuilder lists all
the objects in the workspace that are available for check-in. If you select the
Check In menu item for a PowerBuilder target that is currently checked out to
you, and at least one of the objects in that target is also checked out to you,
PowerBuilder displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Check in the target file only
Users Guide 83

Source control operations in PowerBuilder
If you select the multiple file option, or if the target file is not currently checked
out to you, the Check In dialog box displays the list of objects from that target
that are available for you to check in. A check box next to each object in the
list lets you choose which objects you want to check in. By default, check
boxes are selected for all objects that you currently have checked out of source
control.

The Deselect All button in the Check In dialog box lets you clear all the check
boxes with a single click. When none of the objects in the list is selected, the
button text becomes Select All, and you can click the button to select all the
objects in the list.

You can also select multiple objects (without selecting a workspace or target)
in the List view of the Library painter. The PowerBuilder SCC API does not let
you check in an object that you have not checked out of source control. If you
use multiple object selection to select an object that is not checked out to you,
PowerBuilder does not include this object in the list view of the Check In
dialog box.

❖ To check in objects to source control:

1 Right-click the object in the System Tree or in a Library painter view and
select Check In from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Check In from the Library painter menu.

The Check In dialog box displays the name of the object you selected. If
you selected multiple objects or a workspace, the Check In dialog box
displays the list of objects available for check-in. You can also display a
list of available objects when you select a target file. A check mark next to
an object in the list marks the object as assigned for check-in.

2 Make sure the check box is selected next to the object you want to check
in and click OK.

Clearing the checked-out status of objects
Sometimes you need to clear (revert) the checked-out status of an object
without checking it back into source control. This is usually the case if you
modify the object but then decide not to use the changes you have made. When
you undo a checkout on an object, PowerBuilder replaces your local copy with
the latest version of the object on the source control server. For PowerScript
and .NET targets, it compiles and regenerates the object in its target PBL.
84 PowerBuilder Classic

CHAPTER 3 Using Source Control
Clearing the status of
multiple objects

If you select the Undo Check Out menu item for a PowerBuilder target that is
checked out to you, and at least one of the objects in that target is also checked
out to you, PowerBuilder displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Undo the checked-out status for the target file only

If you select the multiple file option, or if the target file is not currently checked
out to you, the Undo Check Out dialog box displays the list of objects from that
target that are locked by you in source control. A check box next to each object
in the list lets you choose the objects for which you want to undo the
checked-out status. By default, check boxes are selected for all objects that are
currently checked out to you from source control.

You can also select multiple objects (without selecting a target) in the List view
of the Library painter. The PowerBuilder SCC API does not let you undo the
checked-out status of an object that you have not checked out of source control.
If you use multiple object selection to select an object that is not checked out
to you, PowerBuilder does not include this object in the list view of the Undo
Check Out dialog box.

❖ To clear the checked-out status of entries:

1 Right-click the object in the System Tree or in a Library painter view and
select Undo Check Out from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Undo Check Out from the Library painter menu.

The Undo Check Out dialog box displays the name of the object you
selected. If you selected multiple objects, the Undo Check Out dialog box
displays the list of objects in the selection that are currently checked out to
you. You can also display a list of objects that are checked out to you when
you select a target file.

2 Make sure that the check box is selected next to the object whose
checked-out status you want to clear, and click OK.
Users Guide 85

Source control operations in PowerBuilder
Synchronizing objects with the source control server
You can synchronize local copies of PowerBuilder objects with the latest
versions of these objects in source control without checking them out from the
source control system. The objects copied to your local computer are read-only.
The newly copied PowerScript objects are then compiled into their target
PBLs.

If there are exported PowerScript files in your local path that are marked
read-only, and you did not select the Suppress Prompts To Overwrite
Read-Only Files option, your source control system might prompt you before
attempting to overwrite these files during synchronization. If you are
synchronizing multiple objects at the same time, you can select:

• Yes To All, to overwrite all files in your selection

• No To All, to cancel the synchronization for all objects in the selection that
have writable files in the local path

Synchronizing an object does not lock that object on the source control server.
After you synchronize local objects to the latest version of these objects in
source control, other developers can continue to perform source control
operations on these objects.

If you want only to check whether the status of the objects has changed on the
source control server, you can use the Refresh Status menu item from the
Library painter Entry menu or System Tree pop-up menus. The Refresh Status
command runs on a background thread. If you do not use the Refresh Status
feature before getting the latest versions of workspace or target objects, then
PowerBuilder has to obtain status and out-of-sync information from the SCC
provider in real time during a GetLatestVersion call.

For more information, see “Refreshing the status of objects” on page 87.

❖ To synchronize a local object with the latest source control version:

1 Right-click the object in the System Tree or in a Library painter view and
select Get Latest Version from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Get Latest Version from the Library painter menu.
86 PowerBuilder Classic

CHAPTER 3 Using Source Control
The Get Latest Version dialog box displays the name of the object you
selected. If you selected multiple objects in the Library painter List view,
the Get Latest Version dialog box lists all the objects in your selection. If
you selected a workspace, the Get Latest Version dialog box lists all the
objects referenced in the PBG files belonging to your workspace. You can
also display a list of available objects (from the PBG files for a target)
when you select the Get Latest Version menu item for a target file.

A check mark next to an object in the list assigns the object for
synchronization. By default only objects that are currently out of sync are
selected in this list. You can use the Select All button to select all the
objects for synchronization. If all objects are selected, the button text
becomes Deselect All. Its function also changes, allowing you to clear all
the selections with a single click.

2 Make sure that the check box is selected next to the object for which you
want to get the latest version, and click OK.

Refreshing the status of objects
PowerBuilder uses the source control connection defined for a workspace to
check periodically on the status of all objects in the workspace. You can set the
status refresh rate for a workspace on the Source Control page of the
Workspace Properties dialog box. You can also select the Perform Diff on
Status Update option to detect any differences between objects in your local
directories and objects on the source control server.

For more information about source control options you can set on your
workspace, see “Setting up a connection profile” on page 69.

PowerBuilder stores status information in memory, but it does not
automatically update the source control status of an object until a System Tree
or Library painter node containing that object has been expanded and the time
since the last status update for that object exceeds the status refresh rate.

Status information can still get out of sync if multiple users access the same
source control project simultaneously and you do not refresh the view of your
System Tree or Library painter. By using the Refresh Status menu item, you
can force a status update for objects in your workspace without waiting for the
refresh rate to expire, and without having to open and close tree view nodes
containing these objects.
Users Guide 87

Source control operations in PowerBuilder
The Refresh Status feature runs in the background on a secondary thread. This
allows you to continue working in PowerBuilder while the operation proceeds.
When the Refresh Status command is executed, your SCC status cache is
populated with fresh status values. This allows subsequent operations like a
target-wide synchronization (through a GetLatestVersion call) to run much
faster.

❖ To refresh the status of objects:

1 Right-click the object in the System Tree or in a Library painter view and
select Refresh Status from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Refresh Status from the Library painter menu.

If the object you selected is not a workspace, target, or PBL file, the object
status is refreshed and any change is made visible by a change in the
source control icon next to the object. If you selected an object in a Library
painter view, the status of this object in the System Tree is also updated.

For information about the meaning of source control icons in
PowerBuilder, see “Viewing the status of source-controlled objects” on
page 72.

2 If the object you selected in step 1 is a workspace or target file, select a
radio button to indicate whether you want to refresh the status of the
selected file only or of multiple files in the workspace or target.

3 If the object you selected in step 1 is a PBL, or if you selected the multiple
files option in step 2, make sure that the check box is selected next to the
object or objects whose status you want to refresh, and click OK.

Status is refreshed for every object selected in the Refresh Status dialog
box. Any change in status is made visible by a change in the source control
icon next to the objects (in the selected workspace, target, or PBL) that are
refreshed.

Comparing local objects with source control versions
The PowerBuilder SCC API lets you compare an object in your local directory
with a version of the object in the source control archive (or project). By
default, the comparison is made with the latest version in the archive, although
most source control systems let you compare your local object to any version
in the archive. Using this feature, you can determine what changes have been
made to an object since it was last checked into source control.
88 PowerBuilder Classic

CHAPTER 3 Using Source Control
Setting up PBNative
for object
comparisons

PBNative does not have its own visual difference utility, but it does allow you
to select one that you have already installed. You must use only a 32-bit visual
difference utility for the object comparisons. You can select any or all of the
following options when you set up the utility to work with a PBNative
repository:

Table 3-5: Object comparison options for use with PBNative

❖ To set up PBNative for object comparisons

1 Right-click the Workspace object in the System Tree and click the Source
Control tab in the Workspace Properties dialog box.

PBNative should be your selection for the source control system, and you
must have a project and local root directory configured. If you are
connected already to source control, you can skip the next step.

2 Click Connect.

The Connect button is disabled if you are already connected to source
control.

3 Click Advanced.

The PBNative Options dialog box displays.

4 Type the path to a visual difference utility followed by the argument string
required by your utility to perform a diff (comparison) on two objects.

Option Select this if

Enclose file names in
double quotes

Your visual difference utility does not handle spaces in
file names.

Refer to local PBL entry
as argument #1

You do not want the visual difference utility to use the
repository object as the first file in a file comparison.

Generate short (8.3) file
names

Your visual difference utility does not handle long file
names.

Generate an extra space
prior to file arguments

Your visual difference utility requires an extra space
between files that are listed as arguments when you open
the utility from a command line. This option was added
for backward compatibility only, as an extra space was
automatically added by PowerBuilder 8.
Users Guide 89

Source control operations in PowerBuilder
Typically, you would add two %s parameter markers to indicate where
PowerBuilder should perform automatic file name substitution. The
following figure shows a setting used to call the Microsoft WinDiff utility:

5 (Optional) Select any or all of the check box options in the PBNative
Command Options dialog box for your object comparisons.

6 Click OK twice.

You are now set to use your visual difference utility to compare objects on
the local computer and the server.

Using Show
Differences to
compare objects

You can select Show Differences from a pop-up menu or from the Library
painter menu bar. If the object you want to compare has not been added to the
source control project defined for your workspace, the Show Differences menu
item is not available.

❖ To compare a local object with the latest source control version:

1 Right-click the object in the System Tree or in a Library painter view and
select Show Differences from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Show Differences from the Library painter menu bar.

A dialog box from your source control system displays.

PBNative connections
Skip the next step if you are using a visual difference utility with
PBNative. The difference utility displays the files directly or indicates that
there are no differences between the files.
90 PowerBuilder Classic

CHAPTER 3 Using Source Control
2 Select the source control comparison options you want and click OK.

Some source control systems support additional comparison functions.
You may need to run the source control manager for these functions. See
your source control system documentation for more information.

Displaying the source control version history
For some source control systems, the PowerBuilder SCC API lets you show the
version control history of an object in source control. Using this feature, you
can determine what changes have been made to an object since it was first
checked into source control.

The Show History menu item is not visible if the object for which you want to
display a version history has not been added to the source control project
defined for your workspace. It is grayed out if your source control system does
not support this functionality through the PowerBuilder SCC API.

❖ To display the source control version history:

1 Right-click the object in the System Tree or in a Library painter view and
select Show History from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Show History from the Library painter menu bar.

A dialog box from your source control system displays.

2 Select the source control options you want and click OK.

Some source control systems support additional tracing and reporting
functions for objects in their archives. You may need to run the source
control manager for these functions. See your source control system
documentation for more information.

Removing objects from source control
The PowerBuilder SCC API lets you remove objects from source control,
although for some source control systems, you may have to use the source
control manager to delete the archives for the objects you remove. You cannot
remove an object that is currently checked out from source control.
Users Guide 91

Initialization settings that affect source control
You cannot delete a source-controlled object from a local PowerBuilder
workspace before that object has been removed from source control. There is
no requirement, however, that the source control archive be deleted before you
delete the object from its PowerBuilder workspace.

❖ To remove objects from source control:

1 Select the object in a Library painter view and select Entry>Source
Control>Remove From Source Control from the Library painter menu.

The Remove From Source Control dialog box displays the name of the
object you selected.

If you selected multiple objects or a workspace, the Remove From Source
Control dialog box displays the list of objects in your selection that are not
currently checked out from source control. You can also display a list of
available objects when you select the Remove From Source Control menu
item for a target file. A check mark next to an object in the list marks the
object as assigned for removal from source control.

2 Make sure that the check box is selected next to the object you want to
remove, and click OK.

Initialization settings that affect source control
Settings for managing
source control
operations

In addition to the SccMaxArraySize described in “Fine-tuning performance
for batched source control requests” on page 76, and SccMultiCheckout
described in “Multiple user checkout” on page 81, there are other PB.INI
parameters you can add that affect source control operations.

Table 3-6: PB.INI settings for source control purposes

PB.INI parameter Permitted values Description

SccCOImport • full

• inc

• outofdate

• full outofdate

• inc outofdate

During checkout the default behavior is to import and compile only
the objects being checked out. You can make the compile more
inclusive by adding this parameter to the initialization file and
assigning either the “full” or “inc” value to it. You can use the
“outofdate” value to avoid unnecessary import and compile
operations.

For a fuller description of the permitted values, see Table 3-7.
92 PowerBuilder Classic

CHAPTER 3 Using Source Control
SccUCImport • full

• inc

• outofdate

• full outofdate

• inc outofdate

When you revert a checkout, the default behavior is to refresh and
compile only those objects in the local project path that were
originally checked out. You can make the compile more inclusive
by adding this parameter and assigning either the “full” or “inc”
value to it. You can use the “outofdate” value to avoid unnecessary
import and compile operations.

For the meaning of the permitted values, see Table 3-7.

SccGLImport • full

• inc

When you issue a GetLatestVersion call, the default behavior is to
refresh and compile only the objects in the request. You can make
the compile more inclusive by adding this parameter and assigning
a permitted value to it.

For the meaning of the permitted values, see Table 3-7.

SccRBImport • full

• inc

When you issue a checkout, get latest version, or undo checkout
call, images of the requested objects are exported to a temporary
directory. When refreshed objects fail to compile, a dialog box asks
whether you want to continue with or cancel the operation for all
objects that fail to compile.

If you select Cancel, the older images for the objects that fail to
compile are reimported from the temporary directory to the local
project path. Whenever object images are rolled back in this
manner, you can force an incremental or full compilation of the
entire target by adding the SccRBImport parameter and assigning
a permitted value to it.

For the meaning of the permitted values, see Table 3-7.

SccMaxArraySize nn (positive integer) Allows you to override the 25-file limit on file names sent to the
source control server in a batched request. For more information,
see “Fine-tuning performance for batched source control
requests” on page 76.

SccCaseSensitive 0 or 1 (1 is default for
Telelogic Synergy, 0
for all other SCC
providers)

By default, PowerBuilder uses a case sensitivity setting that is
compatible with the SCC provider you are using. You can override
the default setting by adding this parameter and assigning a
different value. A value of 1 means that object names checked into
source control are case sensitive, and a value of 0 means that they
are not case sensitive.

SccMultiCheckout 0 or 1 (1 is default for
SCC providers that
support multiuser
checkouts, 0 for
providers that do not
support multiuser
checkout)

If your SCC provider permits multiple user checkouts, you can use
this initialization parameter to ensure that an item checked out by
a user is exclusively reserved for that user until the object is
checked back in. For more information, see “Multiple user
checkout” on page 81.

PB.INI parameter Permitted values Description
Users Guide 93

Initialization settings that affect source control
Permitted values for
Import parameters

Table 3-7 describes the effect of permitted values for the SccCOImport,
SccUCImport, SccGLImport, and SccRBImport parameters in the PB.INI
initialization file. You can also add an import parameter without assigning it a
value. This has the same effect as the default behavior during checkout, undo
checkout, get latest version, and rollback operations.

Table 3-7: Permitted values for import parameters in the PB.INI file

SccCheckoutNoLock 0 or 1 (1 is default for
MKS Source
Integrity, 0 for all
other providers

Based on known defaults for the SCC provider you are using,
PowerBuilder determines whether locks are added in source
control to objects that you check out. You can override the default
setting for some SCC providers by adding this parameter and
assigning a different value. If the SCC provider permits checkouts
of objects without locking them, a value of 1 means that no locks
are added for objects that you check out. A value of 0 makes sure
that locks are added for these objects.

PB.INI parameter Permitted values Description

Permitted
value Description

full Forces a full build of the target after the requested source control
operation is completed.

For SccCOImport and SccUCImport, you can combine the “full”
value with the “outofdate” value to reduce the number of objects
imported from the local project path to the target PBLs before a full
rebuild. You combine the values by separating them with a single
space, as shown in the following example: SccUCImport= full
outofdate.

For SccRBImport, if rollback fails for any reason, the build
operation is not performed.

inc Examines the entire target for additional objects that are
descendants of objects or have dependencies on the objects that are
included in the initial source control request. The dependent objects
are compiled and regenerated as part of an incremental build, along
with the objects in the initial request.

For SccCOImport and SccUCImport, you can combine the “inc”
value with the “outofdate” value to reduce the number of objects
imported from the local project path to the target PBLs before an
incremental rebuild. You combine the values by separating them
with a single space, as shown in the following example:
SccUCImport= inc outofdate.

For SccRBImport, if rollback fails for any reason, the build
operation is not performed.
94 PowerBuilder Classic

CHAPTER 3 Using Source Control
Settings for
troubleshooting
problems with source
control

In addition to the initialization parameters that can help with managing source
control operations, there are also parameters you can use to troubleshoot
problems with source control. These parameters should not be used in normal
operations. They should be used only for diagnosing a problem with source
control. Table 3-8 describes these parameters.

Table 3-8: PB.INI settings for troubleshooting

outofdate Compares the exported object images to the source code in target
PBLs after an initial checkout or undo checkout operation. If the
code in the PBLs is identical to the object images, the object images
are not imported. The source code for identical PBL objects is also
not compiled unless you also assign “full” or “inc” to the
SccCOImport or SccUCImport parameters.

The “outofdate” value is not available for the SccGLImport and
SccRBImport parameters. Typically GetLatestVersion calls are
made for objects that are assumed to be out of sync, in which case
the out-of-date comparison is not expected to be useful. Also,
object images that have been rolled back should always be
reimported and compiled to assure the integrity of the target PBLs.

Permitted
value Description

PB.INI parameter Permitted values Description

SccExtensions 0 or 1 (1 is default) Add this parameter and set it to 0 to disable SccQueryInfoEx calls
when your source control provider supports this extension to the
SCC API. You should do this either to

• Measure performance differences between SccDiff and
SccQueryInfoEx calls.

• Test for incompatibilities between PowerBuilder clients and
SCC provider DLL implementations.

For more information about SccQueryInfoEx calls, see “Extension
to the SCC API” on page 67.

SccLogLevel 1 or 3 (1 is default) Add this parameter and set it to 3 to enable more detailed tracing of
SCC requests and the responses from the SCC provider. Increased
tracing detail requires more file input and output, so this setting
should be used only for diagnosing problems.

SccMultithread 0 or 1 (1 is default) Add this parameter and set it to 0 to disable multithreading.
Disabling multithreading can cause significant delays when first
connecting to source control or when expanding a node in the
PowerBuilder System Tree, so this setting should be used only to
diagnose integration issues with a specific provider or to work
around a known defect.
Users Guide 95

Initialization settings that affect source control
Comparison strategies By default, PowerBuilder uses the SCCQueryInfoEx API extension command
to compare objects in target PBLs with object files in a source control
repository.

For more information on the SCCQueryInfoEx API extension command, see
“Extension to the SCC API” on page 67.

A backup strategy is set for SCC providers that do not support the API
extension. The default backup strategy for all SCC providers except ClearCase
and Perforce is to issue an SccDiff command. For ClearCase, the backup
strategy compares the PBL object with the local project path object file. For Perforce
versions earlier than 2008, the strategy for comparing differences first examines the
SCC_STATUS_OUTOFDATE bit returned by the SccQueryInfo command and
then compares the PBL object with the local project page object file.

You can override the default comparison strategy by adding the
SccDiffStrategy parameter to the initialization file and assigning a value to it
from Table 3-9. You can also add the values together to use multiple
comparison strategies, as long as those strategies are supported by your SCC
provider.

Perforce 2008 and later
The Perforce client behavior changed with the 2008 version. SccQueryInfo
does not return information about added objects to a Perforce 2008 depot.
Therefore, for this SCC client, it is best to perform full synchronizations from
the Perforce management utility or by using the OrcaScript scc refresh target
<full> command. You also need to add the SccDiffStrategy parameter to the
initialization file and set its bit value to 08 to make sure that the source code in
the target PBLs match the object files in the local project path.

SccDiffStrategy nn (positive integer) Depending on the capabilities of an SCC provider, different
strategies are used for determining whether a PBL object is out of
sync with object files in the SCC repository. By default, a
comparison is made by version number if the SCCQueryInfoEx API
extension is supported and the SccExtensions parameter is not set
to 0. Otherwise, a provider-specific backup strategy is used for the
object comparisons.

You can override the default comparison strategy by adding the
SccDiffStrategy parameter to the initialization file and assigning an
appropriate value to it. For more information, see “Comparison
strategies” next.

PB.INI parameter Permitted values Description
96 PowerBuilder Classic

CHAPTER 3 Using Source Control
Table 3-9: SccDiffStrategy values for object comparison strategies

Modifying source-controlled targets and objects
Objects in targets under source control must be managed differently than the
same objects in targets that are not under source control.

Effects of source control on object management
You must check out a target file from source control before you can modify its
properties. If objects in a source-controlled target are not themselves registered
in source control, you can add them to or delete them from the local target
without checking out the target. However, you must remove a
source-controlled object from the source control system before you can delete
the same object from the local copy of the target (whether or not the target itself
is under source control).

Although you can add objects to a source-controlled target without checking
out the target from source control, you cannot add existing libraries to the
library list of a source-controlled target unless the target is checked out.

For information on removing an object from source control, see “Removing
objects from source control” on page 91.

Parameter value Object comparison strategy

02 (default) Compares by version number (SCCQueryInfoEx) — not
supported by all vendors

04 Examines the SCC_STATUS_OUTOFDATE bit from the
SccQueryInfo command to determine which objects are out of
sync

08 Compares the source code in the target PBLs with object files
in the local project path

16 Uses the SccDiff command in quiet mode
Users Guide 97

Modifying source-controlled targets and objects
Opening objects checked in to source control
Although you can open objects in a PowerBuilder painter when they are
checked in to source control, until you check them out again, any changes you
make to those objects cannot be saved. By default, when you try to open an
object under source control, PowerBuilder provides a warning message to let
you know when the object is not checked out. You can avoid this type of
warning message by clearing the “Suppress prompts to overwrite read-only
files” check box on the Source Control tab of the Workspace Properties dialog
box.

If you did not change the default, you can still select a check box on the first
warning message that displays. After you select the “Do not display this
message again” check box in a warning message box and click Yes, the check
box on the Source Control tab is automatically cleared. This prevents warning
messages from displaying the next time you open objects that are checked in to
source control. Although warning messages do not display, you still cannot
save any changes you make to these objects in a PowerBuilder painter.

Copy and move operations on source-controlled objects
You cannot copy a source-controlled object to a destination PBL in the same
directory as the source PBL. Generally when you work with source control,
objects with the same name should not exist in more than one PBL in the same
directory.

Moving an object that is not under source control to a destination PBL having
a source-controlled object with the same name is permitted only when the
second object is checked out of source control.

You cannot move an object from a source PBL if the object is under source
control, even when the object has been checked out. The right way to move an
object under source control is described below.

❖ To move an object under source control from one PBL to another:

1 Export the object from the first PBL.

2 Remove the object from source control.

See “Removing objects from source control” on page 91.

3 Delete the object from the first PBL.

4 Import the object into the second PBL.
98 PowerBuilder Classic

CHAPTER 3 Using Source Control
5 Register the object in source control once again.

Editing the PBG file for a source-controlled target
PowerBuilder creates and uses PBG files to determine if any objects present on
a source control server are missing from local PowerScript or .NET targets.
Up-to-date PBG files insure that the latest objects in source control are
available to all developers on a project, and that the objects are associated with
a named PBL file.

Ideally, PBG files are not necessary. If the source control system exposes the
latest additions of objects in a project through its SCC interface, PowerBuilder
can obtain the list of all objects added to a project since the last status refresh.
However, many source control systems do not support this, so PowerBuilder
uses the PBG files to make sure it has an up-to-date list of objects under source
control.

PBG files are registered and checked in to source control separately from all
other objects in PowerBuilder. They are automatically updated to include new
objects that are added to source control, but they can easily get out of sync
when multiple users simultaneously register objects to (or delete objects from)
the same source control project. For example, it is possible to add an object to
source control successfully yet have the check-in of the PBG file fail because
it is locked by another user.

You cannot see the PBG files in the System Tree or Library painter unless you
set the root for these views to the file system. To edit PBG files manually, you
should check them out of source control using the source control manager and
open them in a text editor. (If you are using PBNative, you can edit PBG files
directly in the server storage location, without checking them out of source
control.)
Users Guide 99

Migrating existing projects under source control
You can manually add objects to the PBG file for a PowerBuilder library by
including a new line for each object after the @begin Objects line. The
following is an example of the contents of a PBG file for a PBL that is saved
to a subdirectory (target1) of the workspace associated with the source control
project:

Migrating existing projects under source control
Migrating from earlier
versions of
PowerBuilder

There are different strategies for migrating existing source control projects
from earlier versions of PowerBuilder. To migrate a target from
PowerBuilder 8 or later, you can check the target out from source control, then
add the target to a workspace in the new version of PowerBuilder. When the
Migrate Application dialog box prompts you to migrate the libraries in the
application library list, click OK to begin the migration.

If you change the directory hierarchy for target libraries in the new version of
PowerBuilder, you should use the Existing Application target wizard to create
a new target instead of adding and migrating a PowerBuilder 8 or later target.
If you keep the old target file (PBT) in the new target path, you must give the
new target a different name or the wizard will not be able to create a new PBT.

For information on using the Existing Application target wizard, see “Using
the Existing Application target wizard” on page 102.
100 PowerBuilder Classic

CHAPTER 3 Using Source Control
When you open a PowerBuilder 8 or later workspace in the current version of
PowerBuilder, a dialog box prompts you to migrate the workspace targets. If
you select the No Prompting check box and click OK, the target libraries are
migrated without additional prompting, and the Migrate Application dialog
box never displays. You can then add the migrated target objects to source
control from the new version of PowerBuilder.

For more information about migration, see “Migrating targets” on page 169.

Removing PowerBuilder 8
If you remove PowerBuilder 8 from a computer where you have already
installed a later version of PowerBuilder, the setup program deletes the
PBNative registry entry. Subsequently, if you want to use PBNative source
control with PowerBuilder 12.0, you must reregister PBNAT120.DLL.
Attempting to use PBNative before reregistering the DLL produces an error
message that points out the problem and the solution. You can reregister the
DLL by opening a DOS command box, changing to the
Sybase\Shared\PowerBuilder directory, and entering the command
REGSVR32 PBNAT120.DLL.

Removing PowerBuilder 9 or later does not remove the DLL or the registry
entry for PBNative source control.

Migrating from
PowerBuilder 7 or
earlier

Migrating an application from PowerBuilder 7 or earlier requires a different
approach, since workspaces and targets were introduced with PowerBuilder 8.
You need to create a new workspace and appropriate targets for any
PowerBuilder 7 (or older) objects that you are migrating.

The strategies available to you or the project manager are:

• Using the Existing Application target wizard

• Importing source control files to a new library

To use the first strategy, you must keep a copy of the old version of
PowerBuilder—at least until you have finished migrating all your
source-controlled PBLs.
Users Guide 101

Migrating existing projects under source control
Using the Existing Application target wizard
Source control in early
PowerBuilder versions

Because workspaces and targets were not available in PowerBuilder prior to
version 8, you must use the Existing Application wizard to create targets for
applications that you built with PowerBuilder 7 or earlier PowerBuilder
versions. A source control project in PowerBuilder 7 (or earlier PowerBuilder
versions) was associated with a single application.

Beginning with PowerBuilder 8, source control is associated with a workspace
that can have multiple targets and applications.

If you keep a copy of your old version of PowerBuilder, you can check out your
application object and all other objects from source control to a work PBL. By
checking out the objects in the older version of PowerBuilder, you make sure
that no one else makes changes to the objects before you migrate them to the
current version of PowerBuilder.

Deciding on a
directory hierarchy

You should decide on a directory hierarchy before you migrate. PowerBuilder
7 and earlier versions required you to keep all source-controlled files in a single
directory. Beginning with PowerBuilder 8, you can create subdirectories to
contain each PBL in your library list. Although this is not required, it is useful
in that it keeps objects from different PBLs separated in source control
subprojects.

You must also decide whether to add a new target to an existing PowerBuilder
workspace or to a new workspace that you create specifically for the target.
You can then use the Existing Application target wizard to create a new target
from the local copies of your registered PBLs (making sure to select all the
supporting PBLs for your application on the Set Library Search Path page of
the wizard). When you run the wizard, PowerBuilder prompts you to migrate
the PBLs you select.

After you have run the wizard and migrated all the source-controlled PBLs,
you can define the source control connection profile for the workspace to point
to the old source control project if you want to maintain it, or to a new source
control project if you do not. You can then check in or add the migrated objects
to source control and delete the work PBL containing the older versions of the
objects. You do not need a separate work PBL in PowerBuilder 9 or later.

❖ To migrate a source control project using the Existing Application
wizard:

1 From your old version of PowerBuilder, check out your objects to a work
PBL.
102 PowerBuilder Classic

CHAPTER 3 Using Source Control
2 Decide on a new file hierarchy for the libraries in your application library
list.

You can keep all the libraries in the same directory if you want, but it can
be advantageous to create separate subdirectories for each library in the
list. If you plan to share libraries among different targets, you should
structure the directories so that the common libraries are in the local root
path of every target that uses them.

3 Create a new workspace in the new version of PowerBuilder, or open an
existing workspace in the new version of PowerBuilder.

4 Create a new target using the Existing Application wizard.
In the wizard, point to the PBL with an Application object and add all the
helper PBLs to the library search path.

PowerBuilder prompts you to migrate the PBLs.

5 Click Yes to migrate each library in the path.

6 Create a source connection profile for the workspace that points to the old
source control project or to a new project.

7 Check in the migrated objects to source control if you are using the old
source control project, or add the migrated objects to source control if you
are using a new source control project.

8 Delete the work PBL whenever you want.

Importing source control files to a new library
You can use your source control manager to check out all the old PowerBuilder
objects to a named directory or folder. If you plan to use the same project to
store your migrated objects, you must make sure that the manager locks the
files you check out of the source control archive.

You can create a new target using the Application target wizard in a new or
existing workspace. The Application wizard lets you select or name a new PBL
file to associate with the target it creates. You can use the Target property sheet
to list any additional PBLs you want to associate with the target.
Users Guide 103

Migrating existing projects under source control
You can then import the files that you checked out of source control,
distributing them as needed to the libraries you associated with the new target.
After importing the files, you can migrate the target by right-clicking it in the
System Tree and selecting Migrate from the target pop-up menu. You should
also do a full build of the target. After you have migrated and built the target,
you can define the connection profile for the workspace to point to the old
source control project if you want to maintain it, or to a new source control
project if you do not.
104 PowerBuilder Classic

C H A P T E R 4 PowerDesigner Integration

About this chapter PowerBuilder provides a plug-in interface that you can use to link a
PowerBuilder target to a PowerDesigner object-oriented model. This
chapter describes how to enable the plug-in and use it to generate or
reverse-engineer PowerBuilder targets and objects.

Contents

About PowerDesigner and the PowerDesigner plug-in
About PowerDesigner PowerDesigner is a data modeling tool that supports several types of

models and many programming languages. The following modules are
available for data modeling in PowerDesigner:

• Conceptual Data Model (CDM) to model the overall logical structure
of a data application, independent of any software or data storage
structure considerations

• Physical Data Model (PDM) to model the overall physical structure
of a database, taking into account DBMS software or data storage
structure considerations

• Object Oriented Model (OOM) to model a software system using the
Unified Modeling Language (UML) notation, which can then be
generated as objects in a supported object-oriented language such as
Java or PowerScript

Topic Page

About PowerDesigner and the PowerDesigner plug-in 105

What is an OOM? 107

Advantages of an OOM class diagram in PowerBuilder 108

Reverse-engineering a PowerBuilder target 110

Using PowerDesigner menu items in PowerBuilder 112

Class diagram menu commands 113

Checking the OOM model 116

Plug-in toolbars 116
Users Guide 105

About PowerDesigner and the PowerDesigner plug-in
• Business Process Model (BPM) to model the means by which one or more
processes are accomplished in operating business practices

• Free Model (FEM) to create any kind of chart diagram, in a context-free
environment

About the
PowerDesigner
plug-in

PowerBuilder includes a plug-in that provides the class diagram functionality
of the PowerDesigner OOM directly inside the PowerBuilder development
environment.

When the PowerDesigner plug-in is enabled, you can link a PowerBuilder
target with a UML class diagram through a process called reverse-engineering.
You can make modifications and adjustments to the class diagram and
immediately generate those changes back to the objects in the PowerBuilder
target library.

With the plug-in, you can also create a UML class diagram from scratch (or
open an existing OOM file) and generate a PowerBuilder target using
PowerDesigner menus in the PowerBuilder development environment. The
plug-in facilitates synchronization between a class diagram and the
PowerBuilder target objects that it represents.

Requirement for enabling plug-in
You must install the PowerDesigner Object Oriented Model on your computer
before you can use the PowerDesigner plug-in for PowerBuilder. For a list of
PowerDesigner versions that are compatible with PowerBuilder, see the
PowerBuilder Release Bulletin.

Enabling the plug-in You enable the PowerDesigner plug-in through the Plug-in Manager. The
Plug-in Manager displays when you select Tools>Plug-in Manager from the
PowerBuilder menu. You must select the PowerDesigner item and click OK to
enable the PowerDesigner plug-in.

Repository and online
Help access

After you enable the plug-in, you can connect to the PowerDesigner
Repository. The Repository is a tool for storing versioned documents. It helps
you manage development in a multiuser environment. As in PowerDesigner,
you can right-click on a model in the tree view of the Local tab and select menu
items for Repository operations, such as Consolidate, Update from Repository,
or Compare with Repository.

When you open a class diagram painter, the Repository menu is added to the
main PowerBuilder menu.

If you installed online Help with PowerDesigner, that Help is also available to
the plug-in.
106 PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration
What is an OOM?
An OOM is a structure that provides a close description of a system using
Unified Modeling Language (UML) diagrams.

A diagram is a graphical view of a model or package, which displays object
symbols. Diagrams allow you to split the display of large models and packages
in order to focus on certain objects or subject areas. They can also be used to
view the symbols of the same objects, displayed with different kinds of
information. With the PowerDesigner plug-in for PowerBuilder, the class
diagram is the single type available. A class diagram describes the structure of
model elements.

You can create several diagrams in a model or in a package. The diagram
window usually appears with a specialized toolbar called the tool palette, from
which you can select tools to create objects in your models and packages.

All diagrams have a name and graphical contents. They are projections of the
model and they represent it from different angles. They are sorted
alphabetically in the PowerDesigner Browser except for the default diagram,
which is the first in the list. Each diagram has its own icon to help you quickly
identify its type in the Browser. Figure 4-1 shows a class diagram in the
PowerDesigner Browser.

With the PowerDesigner plug-in for PowerBuilder, you can open a
PowerDesigner OOM file in PowerBuilder, but you see only the class diagrams
saved in the file. You can also save a class diagram that you create with the
plug-in and open that file directly in PowerDesigner.

Figure 4-1: PowerDesigner Browser displaying a class diagram

For more information about the OOM, see the PowerDesigner documentation
on the Product Manuals Web site at http://www.sybase.com/support/manuals/.
Users Guide 107

Advantages of an OOM class diagram in PowerBuilder
Advantages of an OOM class diagram in PowerBuilder
Purposes of a class
diagram

The ability to represent a PowerBuilder application as a class diagram is
especially useful for design, documentation, and maintenance purposes. In
particular, if you are inheriting responsibility for a legacy application, perhaps
one that was created by developers who are no longer in your group, converting
it to a class diagram helps you to:

• Understand how the application was developed

• See a graphical display of the relationship between objects

• Improve existing code and regenerate any modified classes as objects in
your PowerBuilder application

About the class
diagram display

A class diagram displays each PowerBuilder object with a class stereotype and
miniature icon, allowing instant recognition of the type of object it represents.
PowerBuilder objects that can be represented as classes include windows, user
objects, structure, function, and proxy objects. A class diagram illustrates
dependencies between classes (that is, PowerBuilder objects), such as those
between a menu or DataWindow and a user object, and it displays controls as
inner classes.

Each class in a class diagram can be displayed as a box with three parts,
corresponding to the class type, its attributes, and its operations. Operations are
the equivalent of events on a PowerBuilder object. Figure 4-2 shows a diagram
for a window class, w_products.

Figure 4-2: Window class in a plug-in class diagram

Before you generate a PowerBuilder application from a class diagram, you can
check whether or not the application model is well defined. For more
information about checking the validity of a class diagram, see “Checking the
OOM model” on page 116.
108 PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration
Plug-in options The Plug-in Options dialog box lets you set automatic synchronization
between a PowerBuilder target and a linked OOM. It also lets you reload the
linked OOM automatically when you open the PowerBuilder workspace
containing the linked target. When you set these options, they are set
automatically for all subsequent PowerBuilder sessions. By default, the
automatic synchronization option is set to”false” and the automatic reload
option is set to “true”.

Synchronization is one-way only: changes that you make in the class diagram
are not automatically reflected in the linked PowerBuilder object. The
PowerBuilder target must be generated again to update it with changes that you
make to the OOM. If automatic synchronization is set to “true” and the linked
class diagram is not open in the background when you make a change to a
PowerBuilder object, the class diagram opens automatically to show the class
that is abstracted from the new or modified PowerBuilder object.

Automatic synchronization is not activated for copy, move, or import
operations. It is activated for additions, deletions, and attribute modifications.

Last opened versus last linked OOM file
A PowerDesigner general option lets you open the most recently used OOM
file rather than the last linked OOM file for a specific PowerBuilder target. If
you set this value for the plug-in, you also set it for PowerDesigner and vice
versa. This option is accessible from the Tools>General Options menu of the
plug-in, which is enabled whenever a class diagram is open. You can set this
option to “false” to avoid loading an OOM file that has nothing to do with the
PowerBuilder targets that you open.

For more information about generating PowerBuilder targets or objects from
an OOM, see “Generating PowerBuilder objects” on page 113.

❖ To set plug-in options

1 Open a class diagram in the PowerBuilder painter area.

2 Select Tools>Plug-in Options from the PowerBuilder menu or select the
Plug-in Options button on the plug-in View toolbar.

The Plug-in Options dialog box displays.

3 Click in the row for the option you want to change and select the value you
want from the drop-down list that displays in the clicked row.

4 Click OK.
Users Guide 109

Reverse-engineering a PowerBuilder target
Reverse-engineering a PowerBuilder target
Reverse-engineering is the process of examining and recovering data or source
code that is then used to build or update an OOM. You can reverse-engineer
PowerBuilder objects to obtain a diagram of the class structure of those objects.

The Reverse Engineer
dialog box

After you enable the PowerDesigner plug-in, the Reverse Engineer menu item
is added to pop-up menus for targets. If you select this menu item, the Reverse
Engineer dialog box prompts you to select PowerBuilder libraries and objects
from the current target. After you click OK in this dialog box, the objects you
select are abstracted as classes in a UML class diagram. Figure 4-3 shows the
Reverse Engineer dialog box.

Figure 4-3: Reverse Engineer dialog box

When objects in a PowerBuilder target are reverse-engineered for the first time,
the target is linked with a generated class diagram and OOM file. By default,
the generated OOM file name has the same name as the target file, but with an
oom extension. For example, if the PowerBuilder target name is test.pbt, then
the file test.oom is generated in the same directory as the target file.

If an OOM is already linked with the PowerBuilder target, you can determine
how changes to PowerBuilder objects will affect the linked OOM when you
reverse-engineer the target. The options you can select from are:

• Merge with existing Object Oriented Model (default)

• Replace existing Object Oriented Model

• Replace selected packages and classes

• Replace selected classes
110 PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration
If the target is not currently linked with an OOM, the only selection is:

• Create a new Object Oriented Model

Changing the OOM
file name

Before you create an OOM file from a PowerBuilder target through reverse
engineering, you can change the name of the file and its directory, and you can
decide whether to overwrite or merge the contents of the OOM with an existing
OOM file.

❖ To change the OOM file name linked to the target

1 In the Reverse Engineer dialog box for the PowerBuilder target, click the
ellipsis button next to the Object Oriented Model File Name field.

The Plug-in Attributes of Target dialog box displays.

2 Modify the path and name of the oompath attribute and click OK.

If you select an existing file name, the Delete Existing Object Oriented
Model File check box in the Reverse Engineer dialog box is not grayed.

3 (Optional) Select a reverse-engineering option from the drop-down list.

If an OOM is already linked to the PowerBuilder target and you leave the
default selection, new packages, classes, and attributes will be merged
with existing packages, classes, and attributes in the linked OOM file. This
means that other classes and attributes in the existing OOM file will not be
overwritten or deleted when you reverse-engineer the PowerBuilder
target.

Other selections allow you to merge the packages while replacing selected
classes and their attributes; replace selected packages and classes without
replacing nonselected packages and their classes; or replace the entire
OOM file.

4 Click OK to reverse-engineer the target.
Users Guide 111

Using PowerDesigner menu items in PowerBuilder
Using PowerDesigner menu items in PowerBuilder
After you generate and link a PowerBuilder target to an OOM through
reverse-engineering, PowerDesigner menu items are enabled in the pop-up
menus for objects in that target as described in Table 4-1.

Table 4-1: Items added to PowerBuilder object pop-up menus after
plug-in is enabled

The Open Class Diagram menu item opens or changes focus to the class
diagram for the selected PowerBuilder library. The Find in Class Diagram
menu item opens or changes focus to the class diagram for the library
containing the selected object, then changes focus to the corresponding class
for that object in the class diagram. These menu items cause an error message
to display if the target is not linked to an OOM.

You link an OOM to a PowerBuilder target by reverse-engineering the target
or by selecting an OOM file in the Plug-in Attributes dialog box. You can open
this dialog box from the target pop-up menu or from the Reverse Engineer
dialog box.

For more information, see “Reverse-engineering a PowerBuilder target” on
page 110.

If a linked OOM is not present in the plug-in PowerDesigner browser, selecting
the Open Class Diagram or Find in Class Diagram menu item adds the OOM
to the Local tab of the browser in addition to opening the class diagram or
finding an object in the diagram.

Object Menu item added

Target Reverse Engineer, Open Class Diagram, Plug-in Attributes

Library Open Class Diagram

Object Find in Class Diagram
112 PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration
Class diagram menu commands
Main menu items Menu items in the OOM plug-in interface also help to integrate PowerDesigner

with PowerBuilder. The PowerDesigner menu items do not display in
PowerBuilder unless a class diagram painter has focus. The following table
lists menu items that display when a class diagram has focus.

Table 4-2: PowerDesigner menu items that display for a class diagram

Menu items in the File, Run, Window, and Help menus remain the same
whether a PowerBuilder object painter or a plug-in class diagram has focus.

Generating
PowerBuilder objects

You can generate a PowerBuilder target from an OOM by selecting Generate
PowerBuilder from the OOM Language menu. The Language menu is visible
only if a class diagram is displayed and has focus.

The Generate PowerBuilder menu item opens the PowerBuilder Generation
dialog box, displayed in Figure 4-4. This dialog box prompts you to select
packages and classes to generate a PowerBuilder target. All PowerBuilder
painters must be closed before you click OK to generate the PowerBuilder
target from the OOM.

Plug-in menu PowerDesigner menu items added

File The Page Setup, Print Preview, and Print Selection menu
items are added for a class diagram. The Print, Save, and
Save As menu items are used by PowerBuilder objects or
plug-in class diagrams, depending on which painter has the
focus.

Edit All items from the PowerDesigner Edit menu.

View All items from PowerDesigner View menu except the
Browser, Output, and Result List menu items. In the plug-in,
the View>Diagram>New Diagram cascading menu items are
visible but not enabled.

Model All items from the PowerDesigner Model menu.

Symbol All items from the PowerDesigner Symbol menu.

Language Only the Edit Current Object Language and Generate
PowerBuilder menu items.

Repository All items from the PowerDesigner Repository menu.

Tools The Check Model, Compare Model, Merge Model,
Execute Commands>Edit/Run Script, Display Preferences,
General Preferences, and Model Options menu items. Menu
items for the PowerBuilder Tools menu are not removed
when a class diagram painter has focus.
Users Guide 113

Class diagram menu commands
Figure 4-4: PowerBuilder Generation dialog box

If the OOM is not already linked to an existing PowerBuilder target, you have
only one option when generating the target:

• Create a new PowerBuilder target

If changes to the OOM will affect an existing PowerBuilder target when you
regenerate the target, the PowerBuilder Generation dialog box allows you to
select one of the following options:

• Replace selected PowerBuilder objects (default)

• Replace selected PowerBuilder libraries and objects

• Replace existing PowerBuilder target

By selecting the Check Model for PowerBuilder check box, you can verify the
validity of the model. You can also select a check box to back up existing
PowerBuilder libraries before the generation. (This check box is grayed when
a PowerBuilder target is not already linked to the current OOM.) Existing
PBLs are saved in their original directories with the extension PB_. If you are
generating a PowerBuilder target for the first time, you can select which
package in the OOM should be used to generate the target application.
114 PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration
The following happens when you generate selected classes or packages:

• Existing PowerBuilder objects are replaced by the code generated from the
corresponding class

• Changes to existing PowerBuilder objects are rolled back if code
generation is not successful

• The Workspace tab in the PowerBuilder System Tree is automatically
refreshed after generation of PowerBuilder objects

• An incremental build is triggered to ensure the PB Target is in good
condition

Pop-up menu items Pop-up menus for the plug-in are the same as in PowerDesigner, except that
plug-in classes have additional pop-up menu items.

The pop-up menu for a class in an OOM class diagram has a PowerBuilder
menu item with subitems linking the class diagram to a PowerBuilder target:

• PowerBuilder>Open Painter

This menu item opens the object corresponding to the selected class in its
PowerBuilder painter. Double-clicking a class in the linked class diagram
achieves the same result.

• PowerBuilder>Find in Workspace

This menu item places focus on the corresponding PowerBuilder object in
the Workspace tab of the System Tree.

The pop-up menu for the Workspace entry in the PowerDesigner Browser view
of the plug-in includes the following menu item that is not available in
PowerDesigner:

• New >PowerBuilder Object-Oriented Model

This menu item for an OOM lets you create a new object-oriented model
for PowerBuilder. After you create an OOM for PowerBuilder, you can
select Generate PowerBuilder from the Language menu to generate a
PowerBuilder target.
Users Guide 115

Checking the OOM model
Checking the OOM model
When you create a new OOM in the plug-in, default properties and operations
are added to the application, window, and function classes, making it easier to
design and generate PowerBuilder code.

You can use the PowerDesigner Check Model feature to verify that an OOM is
valid before generating a PowerBuilder target from the model. If you run
Check Model in the plug-in, errors are reported for the following conditions:

• Class names that do not correspond to legal PowerBuilder object names

• More than one Application class in the same Class Diagram

• More than one operation in a Function class, or an operation name that
differs from the Function class name

• Structure classes that contain identifiers or operations

• Top-level Class Diagram contains non-Package symbols

• There is no syntax (in the Script or Preview tab of the Class Properties
dialog box) for an object to be generated

• Control or binary classes can be generated as inner classes only

• The DataWindow compiler cannot compile the script of a class with the
DataWindow stereotype

Plug-in toolbars
PowerBars and
PainterBars

The PowerDesigner View toolbar is named PowerBar2 in the plug-in and the
PowerDesigner Repository toolbar is named PowerBar3. A PowerBar is
always present by default in a PowerBuilder session, even when a plug-in
painter is not open. PainterBars display only when the current PowerBuilder
painter is a class diagram.
116 PowerBuilder Classic

CHAPTER 4 PowerDesigner Integration
Table 4-3 shows the names of PowerDesigner toolbars supported by the plug-
in and their corresponding names in the PowerBuilder user interface.

Table 4-3: Plug-in names for PowerDesigner toolbars

Figure 4-5 shows the Palette toolbar in the plug-in. Other PowerDesigner
toolbars are not currently supported by the PowerDesigner plug-in.

Figure 4-5: PowerDesigner palette toolbar in the plug-in

Toolbar differences When you add classes to the class diagram using the plug-in’s PainterBar4
(PowerBuilder) toolbar, default properties are automatically assigned to the
new classes. If you add the same classes using the PowerBuilder toolbar in
PowerDesigner, default properties are not assigned.

The plug-in’s PowerBar2 (View) toolbar has an additional toolbar button that
opens the Plug-in Options dialog box. These options are available for the
plug-in, but not for PowerDesigner. You can also access the Plug-in Options
dialog box from the Tools>Plug-in Options menu when a class diagram has
focus.

Plug-in toolbar Corresponding PowerDesigner toolbar

PainterBar1 Standard

PainterBar2 Diagram

PainterBar3 Palette

PainterBar4 PowerBuilder

PowerBar2 View

PowerBar3 Repository
Users Guide 117

Plug-in toolbars
118 PowerBuilder Classic

P A R T 2 Working with Targets

This part describes how to work with targets in painters,
how to set properties for an application, and how to
manage PowerBuilder libraries.

C H A P T E R 5 Working with Targets

About this chapter This chapter describes working with application, component, and .NET
targets in the development environment. For more detailed information
about .NET targets, see Deploying Applications and Components to .NET.

Contents

About targets
A target can be used to create:

• An executable application A collection of PowerBuilder windows
that perform related activities and that you deliver to users.

An executable application can be a traditional client/server
application that accesses a database server or an application that acts
as a client in a distributed application and requests services from a
server application.

• A server component A component containing one or more custom
class user objects that have methods to provide the required business
logic and the characteristics needed for deployment to a distributed
application server such as EAServer, JBoss, WebSphere, or
WebLogic.

Topic Page

About targets 121

Working in painters 122

About the Application painter 129

Specifying application properties 129

Writing application-level scripts 133

Specifying target properties 135

Looking at an application’s structure 138

Working with objects 140

Using the Source editor 146
Users Guide 121

Working in painters
• A .NET Windows Forms or Web Forms application, assembly, or
Web service An application or custom class user object to be deployed
to the .NET Framework.

The first step in creating a new application or component is to use a Target
wizard, described in Chapter 1, “Working with PowerBuilder.”

Depending on the type of target you choose to create, the target can include
only an Application object or it can include additional objects. If the target
requires connection to a server or a SQL database, the Template Application
wizard also creates a Connection object.

The Application object All application, component, and .NET targets include an Application object. It
is a discrete object that is saved in a PowerBuilder library, just like a window,
menu, function, or DataWindow object. When a user runs the application, the
scripts you write for events are triggered in the Application object.

When you open an Application object in PowerBuilder, you enter the
Application painter.

After you create the new target, you can open the Application object and work
in the Application painter to define application-level properties (such as which
fonts are used by default for text) and application-level behavior (such as what
processing should occur when the application begins and ends).

Working in painters
In PowerBuilder, you edit objects such as applications, windows, menus,
DataWindow objects, and user objects in painters. In addition to painters that
edit objects, other painters such as the Library painter and the Database painter
provide you with the ability to work with libraries and databases.

Opening painters
Painters that edit
objects

There are several ways to open painters that edit objects:

From here You can

PowerBar Click New or Inherit (to create new objects) or Open (to open
existing objects)

Library painter Double-click an object or select Edit from the object’s pop-up
menu
122 PowerBuilder Classic

CHAPTER 5 Working with Targets
Other painters Most other painters are accessible from the New dialog box. Some are also
available on the PowerBar and from the Tools menu.

Select Target for Open
You may see the Select Target for Open dialog box if you use the same PBL in
more than one target. When you open an object in a PBL that is used in multiple
targets, PowerBuilder needs to set global properties for the specific target you
are working on. If you open the object from the Workspace page when the root
is not set to the current workspace, PowerBuilder asks you which target you
want to open it in. A similar dialog box displays if you select Inherit,
Run/Preview, Regenerate, Print, or Search.

Painter summary
The PowerBuilder painters are:

System Tree Double-click an object or select Edit from the object’s pop-up
menu

Browser Select edit from an object’s pop-up menu

From here You can

Painter What you do

Application painter Specify application-level properties and scripts.

Database painter Maintain databases, control user access to databases,
manipulate data in databases, and create tables.

DataWindow painter Build intelligent objects called DataWindow objects that
present information from the database.

Data Pipeline painter Transfer data from one data source to another and save a
pipeline object for reuse.

Function painter Build global functions to perform processing specific to
your application.

Library painter Manage libraries, create a new library, and build dynamic
libraries.

Menu painter Build menus to be used in windows.

Project painter Create executable files, dynamic libraries, components,
and proxies.

Query painter Graphically define and save SQL SELECT statements for
reuse with DataWindow objects and pipelines.

SQL Select painter Graphically define SQL SELECT statements for
DataWindow objects and pipelines.
Users Guide 123

Working in painters
Painter features
Painters that edit
objects

Most painters that edit PowerBuilder objects have these features:

Other painters Most of the painters that do not edit PowerBuilder objects have views and some
drag-and-drop operations.

Views in painters that edit objects
Each painter has a View menu that you use for opening views. The views you
can open depend on the painter you are working in. Every painter has a default
arrangement of views. You can rearrange these views, choose to show or hide
views, and save arrangements that suit your working style. See “Using views
in painters” on page 41.

Structure painter Define global structures (groups of variables) for use in
your application.

User Object painter
(visual)

Build custom visual objects that you can save and use
repeatedly in your application. A visual user object is a
reusable control or set of controls that has a certain
behavior.

User Object painter
(nonvisual)

Build custom nonvisual objects that you can save and use
repeatedly in your application. A nonvisual user object lets
you reuse a set of business rules or other processing that
acts as a unit but has no visual component.

Window painter Build the windows that will be used in the application.

Painter What you do

Feature Notes

Painter window with views See “Views in painters that edit objects” on page
124.

Unlimited undo/redo Undo and redo apply to all changes.

Drag-and-drop operations Most drag-and-drop operations change context or
copy objects.

To-Do List support When you are working in a painter, a linked item you
add to the To-Do list can take you to the specific
location. See “Using the To-Do List” on page 30.

Save needed indicator When you make a change, PowerBuilder displays an
asterisk after the object’s name in the painter’s Title
bar to remind you that the object needs to be saved.
124 PowerBuilder Classic

CHAPTER 5 Working with Targets
Many views are shared by some painters, but some views are specific to a
single painter. For example, the Layout, Properties, and Control List views are
shared by the Window, Visual User Object, and Application painters, but the
Design, Column Specifications, Data, Preview, Export/Import Template for
XML, and Export Template for XHTML views are specific to the DataWindow
painter. The WYSIWYG Menu and Tree Menu views are specific to the Menu
painter.

The following sections describe the views you see in many painters. Views that
are specific to a single object type are described in the chapter for that object.

Layout view The Layout view shows a representation of the object and its controls. It is
where you place controls on an object and design the layout and appearance of
the object.

If the Properties view is displayed and you select a control in the Layout view
or the Control List view, the properties for that control display in the Properties
view. If you select several controls in the Layout view or the Control List view,
the properties common to the selected controls display in the Properties view.

Properties view The Properties view displays properties for the object itself or for the currently
selected controls or nonvisual objects in the object. You can see and change the
values of properties in this view.
Users Guide 125

Working in painters
The Properties view dynamically changes when you change selected objects or
controls in the Layout, Control List, and Non-Visual Object List views.

If you select several controls in the Layout view or the Control List view, the
Properties view says group selected in the title bar and displays the properties
common to the selected controls.

In the Properties view pop-up menu, you can select Labels On Top or Labels
On Left to specify where the labels for the properties display. For help on
properties, select Help from the pop-up menu.

If the Properties view is displayed and you select a nonvisual object in the
Non-Visual Object List view, the properties for that nonvisual object display in
the Properties view. If you select several nonvisual objects in the Non-Visual
Object List view, the properties common to the selected nonvisual objects
display in the Properties view.

Script view The Script view is where you edit the scripts for events and functions, define
and modify user events and functions, declare variables and external functions,
and view the scripts for ancestor objects.

You can open the default script for an object or control by double-clicking it in
the System Tree or the Layout, Control List, or Non-Visual Object List views,
and you can insert the name of an object, control, property, or function in a
script by dragging it from the System Tree.

For information about the Script view, see Chapter 7, “Writing Scripts.”
126 PowerBuilder Classic

CHAPTER 5 Working with Targets
Control List view The Control List view lists the visual controls on the object. You can click the
Control column to sort the controls by control name or by hierarchy.

If you select one or more controls in the Control List view, the controls are also
selected in the Layout view. Selecting a control changes the Properties view
and double-clicking a control changes the Script view.

Event List view The Event List view displays the full event prototype of both the default and
user-defined events mapped to an object. Icons identify whether an event has a
script, is a descendent event with a script, or is a descendent event with an
ancestor script and a script of its own.

Non-Visual Object List
view

The Non-Visual Object List view is a list of nonvisual objects that have been
inserted in an Application object, window, or user object of any type. You can
sort controls by control name or ancestor.
Users Guide 127

Working in painters
Function List view The Function List view lists the system-defined functions and the object-level
functions you defined for the object. Icons identify whether a function has a
script, is a descendant of a function with a script, or is a descendant of a
function with an ancestor script and script of its own.

Note that although the half-colored icon identifies the myfunc user-defined
function as having both an ancestor script and a script of its own, for a function
this means that the function is overridden. This is different from the meaning
of a half-colored icon in the Event List view.

Structure List view The Structure List view lists the object-level structures defined for the object.

If you double-click a structure in the Structure List view, the structure’s
definition displays in the Structure view.

Structure view The Structure view is where you edit the definition of object-level structures in
the Window, Menu, and User Object painters.
128 PowerBuilder Classic

CHAPTER 5 Working with Targets
About the Application painter
Views in the
Application painter

The Application painter has several views where you specify properties for
your application and how it behaves at start-up. Because the Application
painter is an environment for editing a nonvisual object of type application, the
Application painter looks like the User Object painter for nonvisual user
objects and it has the same views. For details about the views, how you use
them, and how they are related, see “Views in painters that edit objects” on
page 124.

Application painter
layout

Most of your work in the Application painter is done in the Properties view and
the Script view to set application-level properties and code application-level
scripts. For information about specifying properties, see “Specifying
application properties” next. For information about coding in the Script view,
see Chapter 7, “Writing Scripts.”

Inserting nonvisual
objects

You can automatically create nonvisual objects in an application by inserting a
nonvisual object in the Application object. You do this if you want the services
of a nonvisual object available to your application. The nonvisual object you
insert can be a custom class or standard class user object.

You insert a nonvisual object in an Application object in the same way you
insert one in a user object. For more information, see “Using class user
objects” on page 386.

Specifying application properties
You specify application properties in the Application painter’s Properties view.

❖ To specify application properties:

1 In the Application painter, if the Properties view is not open, select
View>Properties from the menu bar.

With the exception of the AppName property, the properties on the
General and Toolbar tab pages can be modified in the Properties view and
in scripts.

If you need help specifying properties in the Properties view, right-click
on the background of the Properties view and select Help from the pop-up
menu.
Users Guide 129

Specifying application properties
2 Select the General or Toolbar tab page, or, on the General tab page, click
the Additional Properties button to display the Application properties
dialog box.

The additional properties on the Application properties dialog box can be
modified only in this dialog box. They cannot be modified in scripts.

3 Specify the properties:

These sections have information about how you specify the following
application properties in the Application painter:

• “Specifying default text properties” on page 130

• “Specifying an icon” on page 132

• “Specifying default global objects” on page 132

Specifying default text properties
You probably want to establish a standard look for the text in your application.
There are four kinds of text whose properties you can specify in the
Application painter: text, header, column, and label.

PowerBuilder provides default settings for the font, size, and style for each of
these and a default color for text and the background. You can change these
settings for an application in the Application painter and override the settings
for a window, user object, or DataWindow object.

To specify this Use this tab page

Display name General tab page

Application has toolbar text and toolbar tips Toolbar tab page

Default font for static text as it appears in windows,
user objects, and DataWindow objects

Additional Properties
(Text Font)

Default font for data retrieved in a DataWindow object Additional Properties
(Column Font)

Default font for column headers in tabular and grid
DataWindow objects

Additional Properties
(Header Font)

Default font for column labels in freeform
DataWindow objects

Additional Properties
(Label Font)

Application icon Additional Properties
(Icon)

Global objects for the application Additional Properties
(Variable Types)
130 PowerBuilder Classic

CHAPTER 5 Working with Targets
Properties set in the Database painter override application properties
If extended attributes have been set for a database column in the Database
painter or Table painter, those font specifications override the fonts specified
in the Application painter.

❖ To change the text defaults for an application:

1 In the Properties view, click Additional Properties and select one of the
following:

Text Font tab
Header Font tab
Column Font tab
Label Font tab

The tab you choose displays the current settings for the font, size, style,
and color. The text in the Sample box illustrates text with the current
settings.

2 Review the settings and make any necessary changes:

• To change the font, select a font from the Font list.

• To change the size, select a size from the Size list or type a valid size
in the list.

• To change the style, select a style (Regular, Italic, Bold, or Bold Italic)
from the Font styles list.

• To change font effects, select one or more from the Effects group box
(Strikeout and Underline).

• To change the text color, select a color from the Text Color list. (You
do not specify colors for data, headings, and labels here; instead, you
do that in the DataWindow painter.)

• To change the background color, select a color from the Background
list.

Using custom colors
When specifying a text color, you can choose a custom color. You can
define custom colors in several painters, including the Window painter or
DataWindow painter.

3 When you have made all the changes, click OK.
Users Guide 131

Specifying application properties
Specifying an icon
Users can minimize your application at runtime. If you specify an icon in the
application painter, the icon will display when the application is minimized.

❖ To associate an icon with an application:

1 In the Properties view, click Additional Properties and select the Icon tab.

2 Specify a file containing an icon (an ICO file).

The button displays below the Browse button.

3 Click OK to associate the icon with the application.

Specifying default global objects
PowerBuilder provides five built-in global objects that are predefined in all
applications.

You can create your own versions of these objects by creating a standard class
user object inherited from one of the built-in global objects. You can add
instance variables and functions to enhance the behavior of the global objects.

For more information, see Chapter 15, “Working with User Objects.”

After you do this, you can specify that you want to use your version of the
object in your application as the default, instead of the built-in version.

❖ To specify the default global objects:

1 In the Properties view, click Additional Properties and select the Variable
Types tab.

The Variable Types property page displays.

2 Specify the standard class user object you defined in the corresponding
field.

Global object Description

SQLCA Transaction object, used to communicate with your database

SQLDA DynamicDescriptionArea, used in dynamic SQL

SQLSA DynamicStagingArea, used in dynamic SQL

Error Used to report errors during execution

Message Used to process messages that are not PowerBuilder-defined
events and to pass parameters between windows
132 PowerBuilder Classic

CHAPTER 5 Working with Targets
For example, if you defined a user object named mytrans that is inherited
from the built-in Transaction object, type mytrans in the box
corresponding to SQLCA.

3 Click OK.

When you run your application, it will use the specified standard class user
objects as the default objects instead of the built-in global objects.

Writing application-level scripts
When a user runs an application, an Open event is triggered in the Application
object. The script you write for the Open event initiates the activity in the
application. Typically it sets up the environment and opens the initial window.
For a server component, there may be no application-level scripts.

When a user ends an application, a Close event is triggered in the Application
object. The script you write for the Close event usually does all the cleanup
required, such as closing a database or writing a preferences file.

If there are serious errors during execution, a SystemError event is triggered in
the Application object.
Users Guide 133

Writing application-level scripts
Batch applications
If your application performs only batch processing, all processing takes place
in the script for the application Open event.

Table 5-1 lists all events that can occur in the Application object. The only
event that requires a script is Open.

Table 5-1: Events in the Application object

Setting application properties in scripts
The Application object has several properties that specify application-level
properties. For example, the property ToolbarText specifies whether text
displays on toolbars in an MDI application.

You can reference these properties in any script in the application using this
syntax:

AppName.property

For example, to specify that text displays on toolbars in the Test application,
code this in a script:

Test.ToolbarText = TRUE

If the script is in the Application object itself, you do not need to qualify the
property name with the application name.

Event Occurs when

Open The user starts the application.

Close The user closes the application. Typically, you write a script for
this event that shuts everything down (such as closing the
database connection).

SystemError A serious error occurs at runtime (such as trying to open a
nonexistent window). If there is no script for this event,
PowerBuilder displays a message box with the PowerBuilder
error number and message text. If there is a script,
PowerBuilder executes the script.

For more about error handling, see “Handling errors at
runtime” on page 910.

Idle The Idle PowerScript function has been called and the
specified number of seconds has elapsed with no mouse or
keyboard activity.
134 PowerBuilder Classic

CHAPTER 5 Working with Targets
Application name cannot be changed
The name of an application is one of the Application object’s properties, but
you cannot change it.

For a complete list of the properties of the Application object, see Objects and
Controls.

Specifying target properties
To set properties for a target, right-click the target in the System Tree and select
Properties from the pop-up menu.

Close all painters
The tab pages in the target properties dialog box are disabled if any painters are
open.

All target types have Library List and Deploy tabs. If there is more than one
project in the target, you can use the Deploy tab page to specify which projects
should be deployed and in which order. For more information about setting
deploy properties for workspaces and targets, see “Building workspaces” on
page 26.

Application server and EAServer component targets and .NET targets have a
Run tab, where you select the project to be used for running and debugging the
target. .NET targets also have a .NET Assemblies tab that you use to import
.NET assemblies into the target.

Specifying the target’s library search path
The objects you create in painters are stored in PowerBuilder libraries (PBLs).
You can use objects from one library or multiple libraries in a target. You define
each library the target uses in the library search path.

PowerBuilder uses the search path to find referenced objects at runtime. When
a new object is referenced, PowerBuilder looks through the libraries in the
order in which they are specified in the library search path until it finds the
object.
Users Guide 135

Specifying target properties
On the Library List tab page of the Target Properties dialog box, you can
modify the libraries associated with the current target.

❖ To specify the target’s library search path:

1 In the Workspace tab of the System Tree, right-click on the target
containing your application and select Library List from the pop-up menu.

The Target Properties dialog box displays the Library List tab page. The
libraries currently included in the library search path are displayed in the
list.

2 Do one of the following:

• Enter the name of each library you want to include in the Library
Search Path list, separating the names with semicolons.

• Use the Browse button to include other libraries in your search path.

You must specify libraries using an absolute path. To change the order of
libraries in the search path, use the pop-up menu to copy, cut, and paste
libraries.

Make sure the order is correct
When you select multiple libraries from the Select Library dialog box
using Shift+click or Ctrl+click, the first library you select appears last in
the Library Search Path list and will be the last library searched.

To delete a library from the search path, select the library in the list and use
the pop-up menu or press Delete.

3 Click OK.

PowerBuilder updates the search path for the target.

Where PowerBuilder maintains the library search path
PowerBuilder stores your target’s library search path in the target (.pbt) file in
a line beginning with LibList; for example:

LibList "pbtutor.pbl;tutor_pb.pbl";
136 PowerBuilder Classic

CHAPTER 5 Working with Targets
Importing .NET assemblies
You can import .NET assemblies into .NET targets from the .NET Assemblies
page in the Properties dialog box for the target. (Right-click on the target and
select .NET Assemblies from the pop-up menu.)

Click the Browse button to open the Browse for a .NET Assembly dialog box,
from which you can browse to import private assemblies with the .dll, .tlb, .olb,
.ocx, or .exe extension. To import an assembly, select it and click Open. To
import multiple assemblies, you must select and import them one at a time.

Click the Add button to open the Import .NET Assembly dialog box, from
which you can import a shared assembly into your target. Assemblies must
have a strong name. A strong name includes the assembly’s identity as well as
a public key and a digital signature. For more information about assemblies and
strong names, see the Microsoft library at http://msdn2.microsoft.com/en-
us/library/wd40t7ad.aspx.

To import an assembly, select it and click OK. To import multiple assemblies,
you must select and import them one at a time.

You can also use the Import .NET Assembly dialog box to import recently used
assemblies.

System Tree display The System Tree shows the classes, methods, structures, and enumerations for
C# assemblies that you import into your .NET targets. However, a
language-related limitation affecting managed C++ assemblies prevents the
System Tree from displaying members of classes, structures, and enumeration
types. It also causes managed C++ classes to display as structures.

By default, the full name of each class in an assembly is displayed in the
System Tree. If you prefer to show only the final name, add the following line
to the [PB] section of your pb.ini file:

SystemTree_DotNetFullName=0

For example, with this setting the Microsoft.SqlServer.Server.DataAccessKind
class in System.Data.dll displays as DataAccessKind. You can right-click the
class and select Properties from the pop-up menu to display the full class name.
Users Guide 137

Looking at an application’s structure
Looking at an application’s structure
If you are working with an application that references one or more objects in
an application-level script, you can look at the application’s structure in the
Browser.

❖ To display the application's structure:

1 Click the Browser button on the PowerBar.

2 In the Browser, select the Uses tab page and select Expand All from the
Application object’s pop-up menu.

PowerBuilder expands the display to show all the global objects that are
referenced in a script for the Application object. You can expand the
display further as needed.

Which objects are displayed
The Browser’s Uses tab page shows global objects that are referenced in your
application. It shows the same types of objects that you can see in the Library
painter. It does not show entities that are defined within other objects, such as
controls and object-level functions.

Which references are displayed

The Browser displays the following types of references when the Application
object is expanded.
138 PowerBuilder Classic

CHAPTER 5 Working with Targets
Objects referenced in
painters

These are examples of objects referenced in painters:

• If a menu is associated with a window in the Window painter, the menu
displays when the window is expanded.

• If a DataWindow object is associated with a DataWindow control in the
Window painter, the DataWindow object displays when the window is
expanded.

• If a window contains a custom user object that includes another user
object, the custom user object displays when the window is expanded, and
the other user object displays when the custom user object is expanded.

Objects directly
referenced in scripts

These are examples of objects referenced in scripts:

• If a window script contains the following statement, w_continue displays
when the window is expanded:

Open(w_continue)

Which referenced windows display in the Browser
Windows are considered referenced only when they are opened from
within a script. A use of another window’s property or instance variable
will not cause the Browser to display the other window as a reference of
the window containing the script.

• If a menu item script refers to the global function f_calc, f_calc displays
when the menu is expanded:

f_calc(EnteredValue)

• If a window uses a pop-up menu through the following statements, m_new
displays when the window is expanded:

m_new mymenu
mymenu = create m_new
mymenu.m_file.PopMenu(PointerX(), PointerY())

Which references are not displayed

The Browser does not display the following types of references.

Objects referenced
through instance
variables or properties

These are examples of objects referenced through instance variables or
properties:

If w_go has this statement (and no other statement referencing w_emp),
w_emp does not display as a reference for w_go:

w_emp.Title = "Managers"
Users Guide 139

Working with objects
Objects referenced
dynamically through
string variables

These are examples of objects referenced dynamically through string
variables:

• If a window script has the following statements, the window w_go does not
display when the window is expanded. The window w_go is named only
in a string:

window mywin
string winname = "w_go"
Open(mywin,winname)

• If the DataWindow object d_emp is associated with a DataWindow control
dynamically through the following statement, d_emp does not display
when the window containing the DataWindow control is expanded:

dw_info.DataObject = "d_emp"

Working with objects
In targets, you can:

• Create new objects

• Create new objects using inheritance

• Open existing objects

• Run or preview objects

After you create or open an object, the object displays in its painter and you
work on it there.

Creating new objects
To create new objects, you use the New dialog box.

❖ To create a new object:

1 Do one of the following:

• Click the New button in the PowerBar.
140 PowerBuilder Classic

CHAPTER 5 Working with Targets
• Select File>New from the menu bar.

• On the Workspace tab of the System Tree, right-click on a workspace
or target name and select New from the pop-up menu.

2 In the New dialog box, select the appropriate tab page for the object you
want to create.

You use icons on the PB Object tab page for creating new user objects,
windows, menus, structures, and functions.

3 Select an icon and click OK.

Creating new objects using inheritance
One of the most powerful features of PowerBuilder is inheritance. With
inheritance, you can create a new window, user object, or menu (a descendent
object) from an existing object (the ancestor object).

❖ To create a new object by inheriting it from an existing object:

1 Click the Inherit button in the PowerBar, or select File>Inherit from the
menu bar.

2 In the Inherit From Object dialog box, select the object type (menu, user
object, or window) from the Object Type drop-down list. Then select the
target as well as the library or libraries you want to look in. Finally, select
the object from which you want to inherit the new object.
Users Guide 141

Working with objects
Displaying objects from many libraries
To find an object more easily, you can select more than one library in the
Libraries list. Use Ctrl+click to select additional libraries and Shift+click
to select a range.

3 Click OK.

The new object, which is a descendant of the object you chose to inherit
from, opens in the appropriate painter.

For more information about inheritance, see Chapter 13, “Understanding
Inheritance.”

Naming conventions
As you use PowerBuilder to develop your application, you create many
different components that require names. These components include objects
such as windows and menus, controls that go into your windows, and variables
for your event and function scripts.

You should devise a set of naming conventions and follow them throughout
your project. When you are working in a team, this is critical to enforcing
consistency and enabling others to understand your code. This section provides
tables of common naming conventions. PowerBuilder does not require you to
use these conventions, but they are followed in many PowerBuilder books and
examples.

All identifiers in PowerBuilder can be up to 255 characters long. The first few
characters are typically used to specify a prefix that identifies the kind of object
or variable, followed by an underscore character, followed by a string of
characters that uniquely describes this particular object or variable.

Object naming
conventions

Table 5-2 shows common prefixes for objects that you create in PowerBuilder.

Table 5-2: Common prefixes for objects

Prefix Description

w_ Window

m_ Menu

d_ DataWindow

pipe_ Data Pipeline

q_ Query

n_ or
n_standardobject_

Standard class user object, where standardobject represents
the type of object; for example, n_trans
142 PowerBuilder Classic

CHAPTER 5 Working with Targets
Variable naming
conventions

The prefix for variables typically combines a letter that represents the scope of
the variable and a letter or letters that represent its datatype. Table 5-3 lists the
prefixes used to indicate a variable’s scope. Table 5-4 lists the prefixes for
standard datatypes, such as integer or string.

The variable might also be a PowerBuilder object or control. Table 5-5 lists
prefixes for some common PowerBuilder system objects. For controls, you can
use the standard prefix that PowerBuilder uses when you add a control to a
window or visual user object. To see these prefixes, open the Window painter,
select Design>Options, and look at the Prefixes 1 and Prefixes 2 pages.

Table 5-3: Prefixes that indicate the scope of variables

Table 5-4: Prefixes for standard datatypes

n_ or n_cst Custom class user object

u_ or
u_standardobject_

Standard visual user object, where standardobject
represents the type of object; for example, u_cb

u_ Custom visual user object

f_ Global function

of_ Object-level function

s_ Global structure

str_ Object-level structure

ue_ User event

Prefix Description

Prefix Description

a Argument to an event or function

g Global variable

i Instance variable

l Local variable

s Shared variable

Prefix Description

a Any

blb Blob

b Boolean

ch Character

d Date

dtm DateTime

dc Decimal

dbl Double
Users Guide 143

Working with objects
Table 5-5: Prefixes for selected PowerBuilder system objects

Opening existing objects
You can open existing objects through the Open dialog box or directly from the
System Tree.

e Enumerated

i Integer

l Long

r Real

s String

tm Time

ui UnsignedInteger

ul UnsignedLong

Prefix Description

ds DataStore

dw DataWindow

dwc DataWindowChild

dwo DWobject

env Environment

err Error

gr Graph

inet Inet

ir InternetResult

lvi ListViewItem

mfd MailFileDescription

mm MailMessage

mr MailRecipient

ms MailSession

msg Message

nvo NonVisualObject

tr Transaction

tvi TreeViewItem

Prefix Description
144 PowerBuilder Classic

CHAPTER 5 Working with Targets
❖ To open existing objects:

1 Click the Open button in the PowerBar or select File>Open from the menu
bar.

When using the System Tree
To open an existing object directly from the System Tree, either
double-click on the object name or select Edit from the pop-up menu.

2 In the Open dialog box, select the object type from the Object Type
drop-down list. Then select the target as well as the library or libraries you
want to look in. Finally select the object you want to open.

Displaying objects from many libraries
To find an object more easily, you can select more than one library in the
Libraries list. Use Ctrl+click to select additional libraries and Shift+click
to select a range.

3 Click OK.

The object opens in the appropriate painter.

Accessing recently
opened objects

You can quickly open recently opened objects by selecting File>Recent
Objects from the menu bar. The Recent Objects list includes the eight most
recently opened objects by default, but you can include up to 36 objects on the
list.
Users Guide 145

Using the Source editor
❖ To modify the number of recent objects:

1 Select Tools>System Options from the menu bar.

2 On the General page of the System Options dialog box, modify the number
for the recent objects list.

Running or previewing objects
To run a window or preview a DataWindow object, you use the Run dialog box.

Using the System Tree
Instead of using the Run dialog box, you can right-click the object in the
System Tree and select Run/Preview from the pop-up menu.

❖ To run or preview an object:

1 Do one of the following:

• Click the Run/Preview Object button in the PowerBar.

• Select File>Run/Preview from the menu bar.

2 In the Run dialog box, select the object type from the Object Type
drop-down list.

3 Select the target as well as the library or libraries you want to look in.

4 Select the object you want to run or preview and click OK.

The object runs or is previewed.

For more specific information on running a window, see “Running a window”
on page 255. For information on using the DataWindow painter’s Preview
view, see Chapter 18, “Defining DataWindow Objects.”

Using the Source editor
You can use the Source editor to edit the source of most PowerScript objects
directly instead of making changes to an object in a painter. You cannot edit the
source of project or proxy objects. The Source editor makes it unnecessary to
export an object in order to edit it and then import it, as you do with the file
editor.
146 PowerBuilder Classic

CHAPTER 5 Working with Targets
Caution: back up your objects
Although the Source editor provides a quick way to make global changes, you
should use it with caution, and you must be familiar with the syntax and
semantics of PowerScript source code before using the Source editor to change
it.

Changes you make to an object’s source code using the Source editor take
effect immediately when you save the object, before the code is validated. If an
error message displays in the Output window, you must fix the problem in the
Source editor before you close the editor. If you do not, you will not be able to
open the object in a painter.

Technical Support is not able to provide support if changes you make in the
Source editor render an object unusable. For this reason, Sybase strongly
recommends that you make backup copies of your PBLs or objects before you
edit objects in the Source editor.

You can open an object in the Source editor in one of several ways:

• Use the Open dialog box

• Select the Edit Source menu item in the System Tree or Library painter

• Select the Edit Source menu item in the Output window for a line that
contains an error

Unlike the file editor, the Source editor cannot be opened independently. It can
only be used in conjunction with an object defined within a target in the current
workspace. You cannot open an object in the Source editor that is already open
in a painter.

When you export an object and view the exported file in the file editor, a
PBExportHeader line displays at the beginning of the file. If you saved the
object with a comment from the object’s painter, a PBExportComment also
displays. The Source editor display is identical to the display in the file editor
except that the PBExport lines are not present in the Source editor.

For more information on exporting objects, see “Exporting and importing
entries” on page 173.
Users Guide 147

Using the Source editor
148 PowerBuilder Classic

C H A P T E R 6 Working with Libraries

About this chapter PowerBuilder stores all the PowerScript objects you create in libraries.
This chapter describes how to work with your libraries.

Contents

About libraries
Whenever you save an object, such as a window or menu, in a painter,
PowerBuilder stores the object in a library (a PBL file). Similarly,
whenever you open an object in a painter, PowerBuilder retrieves the
object from the library.

Assigning libraries Application, component, and .NET targets can use as many libraries as
you want. Libraries can be on your own computer or on a server. When
you create a target, you specify which libraries it uses. You can also
change the library search path for a target at any time during development.

For information about specifying the library search path, see “Specifying
the target’s library search path” on page 135.

Topic Page

About libraries 149

Opening the Library painter 151

About the Library painter 152

Working with libraries 154

Searching targets, libraries, and objects 164

Optimizing libraries 166

Regenerating library entries 167

Rebuilding workspaces and targets 168

Migrating targets 169

Exporting and importing entries 173

Creating runtime libraries 176

Creating reports on library contents 177
Users Guide 149

About libraries
How the information is
saved

Every object is saved in two parts in a library:

• Source form This is a syntactic representation of the object, including
the script code.

• Object form This is a binary representation of the object, similar to an
object file in the C and C++ languages. PowerBuilder compiles an object
automatically every time you save it.

Using libraries
It is hard to predict the needs of a particular application, so the organization of
a target’s libraries generally evolves over the development cycle.
PowerBuilder lets you reorganize your libraries easily at any time.

About library size For small applications, you might use only one library, but for larger
applications, you should split the application into different libraries.

There are no limits to how large libraries can be, but for performance and
convenience, you should follow these guidelines:

• Number of objects It is a good idea not to have more than 50 or 60
objects saved in a library. This is strictly for your convenience; the number
of objects does not affect performance. If you have many objects in a
library, list boxes that list library objects become unmanageable and the
System Tree and Library painter become more difficult to use.

• Balance Managing a large number of libraries with only a few objects
makes the library search path too long and can slow performance by
forcing PowerBuilder to look through many libraries to find an object. Try
to maintain a balance between the size and number of libraries.

Organizing libraries
You can organize your libraries any way you want. For example, you might put
all objects of one type in their own library, or divide your target into subsystems
and place each subsystem in its own library.

Sharing objects with
others

PowerBuilder provides basic source control using the PBNative check
in/check out utility. PBNative allows you to lock the current version of
PowerBuilder objects and prevents others from checking out these objects and
modifying them while you are working on them.
150 PowerBuilder Classic

CHAPTER 6 Working with Libraries
The project administrator must design a directory hierarchy for the project’s
workspace. The administrator might create a separate subdirectory for each
target in the workspace, or for each PBL in the workspace. After the
administrator sets up the project and registers every object in the workspace,
individual developers copy a template workspace to their own computers, open
the workspace, and connect to source control.

PowerBuilder also provides a direct connection to external SCC-compliant
source control systems.

For more about using PBNative and other source control systems, see “Using
a source control system with PowerBuilder” on page 68.

Opening the Library painter
❖ To open the Library painter:

• Click the Library button in the PowerBar or select Tools>Library Painter.

What you can do in
the Library painter

In the Library painter, you can:

• Create a new library

• Create new objects in targets in your current workspace

• Copy, move, and delete objects in any library

• Open objects in libraries that are on a library list in the current Workspace
to edit them in the appropriate painters

• Migrate, rebuild, and regenerate libraries in the current Workspace

• Control modifications to library objects by using check-out and check-in
or use version control systems

• Create a runtime library that includes objects in the current library and
related resource objects

What you cannot do in
the Library painter

You cannot migrate or open objects in PowerBuilder libraries that are not on
the library list. You also cannot rename a library.
Users Guide 151

About the Library painter
About the Library painter
Views in the Library
painter

The Library painter has two views, the Tree view and the List view, that can
display all the files in your file system, not just PowerBuilder objects. You use
the painter primarily for displaying and working with workspaces, targets,
library files (PBLs), and the objects they contain.

The Tree and List views are available from the View menu. By default, the
Library painter displays one Tree view (on the left) and one List view (on the
right). When the Library painter opens, both the Tree view and the List view
display all the drives on your computer, including mapped network drives.

Using the System
Tree

The Workspace tab page in the System Tree works like a Tree view in the
Library painter. You can perform most tasks in either the System Tree or the
Library painter Tree view, using the pop-up menu in the System Tree and the
pop-up menu, PainterBar, or menu bar in the Library painter. When you have
the System Tree and a Library painter open at the same time, remember that the
PainterBar and menu bar apply only to the Library painter.

Each time you click the Library painter button on the PowerBar, PowerBuilder
opens a new instance of the Library painter. One advantage of using the System
Tree is that there is only one instance of it that you can display or hide by
clicking the System Tree button on the PowerBar.

About the Tree view The Tree view in the Library painter displays the drives and folders on the
computer and the workspaces, targets, libraries, objects, and files they contain.
You can expand drives, folders, and libraries to display their contents.
152 PowerBuilder Classic

CHAPTER 6 Working with Libraries
About the List view The List view in the Library painter displays the contents of a selected drive,
folder, or library and has columns with headers that provide extra information.
For libraries, the comment column displays any comment associated with the
library. For objects in libraries, the columns display the object name,
modification date, size, and any comment associated with the object. You can
resize columns by moving the splitter bar between columns, and you can sort
a column’s contents by clicking the column header.

About sorting the Name column
When you click the Name column header repeatedly to sort, the sort happens
in four ways: by object type and then name, in both ascending and descending
order, and by object name, in both ascending and descending order. You might
not easily observe the four ways of sorting if all objects of the same type have
names that begin with the same character or set of characters.

Displaying items in the
Tree view and the List
view

Most of the time, you select a library in the Tree view and display the objects
in that library in the List view, but at any time, you can set a new root or move
back and forward in the history of your actions in the List view and the Tree
view to display libraries or other items. For more information, see “Setting the
root” on page 162 and “Moving back, forward, and up one level” on page 163.

Using custom layouts You might find that having more than one Tree view or List view makes your
work easier. Using the View menu, you can display as many Tree views and
List views as you need.

The following screen shows the Library painter with one Tree view and three
List views.
Users Guide 153

Working with libraries
You can filter the objects in each of the List views so that one List view shows
menus, another windows, and another user objects. For information about
filtering objects in a view, see “Filtering the display of objects” on page 157.

To get this layout in the Library painter, use the View menu to display two more
List views and then manipulate the views to fit this layout. For information
about opening and closing views, manipulating views, returning to the default
view layout, or saving your favorite layouts, see “Using views in painters” on
page 41.

View synchronization Tree and List views are synchronized with each other. When you are using
more than one Tree view or List view, changes you make in one type of view
are reflected in the last view you touched of the other type. For example, when
an item is selected in a Tree view, the contents of that item display in the List
view that you last touched. When you display new contents in a List view by
double-clicking an item, that item is selected in the Tree view you last touched
(if it can be done without resetting the root).

Each List view in the previous screen displays the contents of a different library
because three libraries were dragged from the Tree view and dropped in
different List views. For information about drag and drop, see “Displaying
libraries and objects” on page 154.

Working with libraries
The Library painter is designed for working with PowerBuilder libraries.

Displaying libraries and objects
What you see in the
views

In the Tree view, you can expand items and see the folders, libraries, or objects
they contain. The List view displays the contents of a selection in the Tree
view.

❖ To expand or collapse an item in the Tree view:

• Double-click the item.

If the item contains libraries or objects, they display in the List view.

❖ To display the contents of an item in the List view:

• Select the item in the Tree view or double-click the item in the List view.
154 PowerBuilder Classic

CHAPTER 6 Working with Libraries
Using drag and drop
to expand items

You can drag and drop items to expand them and see the contents.

If you drag an item from a Tree view or List view to a List view, the List view
sets the item as the root and displays its contents.

If you drag an item from a Tree view or List view to a Tree view, the Tree view
expands to display the dragged item.

For example, you can drag a library from the Tree view and drop it in the List
view to quickly display the objects the library contains in the List view. If you
are using one Tree view and multiple List views, you can drag a specific library
from the Tree view to each List view so each List view contains the contents of
a specific library.

For information about using drag and drop to copy or move items, see
“Copying, moving, and deleting objects” on page 160.

Using the pop-up menu
Like other painters, the Library painter has a pop-up menu that provides
options that apply to the selected item in the Tree view or the List view. For
example, from a library’s pop-up menu, you can delete, optimize, or search the
library, print the directory, specify the objects that display in the library, and
import objects into it.

The actions available from an object’s pop-up menu depend on the object type.
For PowerBuilder objects that you can work with in painters, you can edit the
object in a painter or in the Source editor, copy, move, or delete the object,
export it to a text file, search it, regenerate it, or send it to a printer. You can
also preview and inherit from some objects. For most of these actions, the
object must be in a library in your current workspace.

Actions available from the pop-up menus are also available on the Entry menu
on the menu bar.
Users Guide 155

Working with libraries
Controlling columns that display in the List view
You can control whether to display the last modification date, compilation date,
size, SCC version number, and comments (if a comment was created when an
object or library was created) in the List view.

The version number column in the Library painter list view remains blank if
the source control system for your workspace does not support the
PowerBuilder extension to the SCC API. If your source control system
supports this extension and if you are connected to source control, you can
override the SCC version number of a PowerScript object in the local copy
directory through the property sheet for that object.

For more information about listing the SCC version number and overriding it
through the PowerBuilder interface, see “Extension to the SCC API” on page
67.

❖ To control the display of columns in the List view:

1 Select Design>Options from the menu bar.

2 On the General tab page, select or clear these display items: Modification
Date, Compilation Date, Sizes, SCC Version Number, and Comments.

Selecting objects
In the List view, you can select one or more libraries or objects to act on.

❖ To select multiple entries:

• In the List view, use Ctrl+click (for individual entries) and Shift+click (for
a group of entries).

❖ To select all entries:

• In the List view, select an object and click the Select All button on the
PainterBar.
156 PowerBuilder Classic

CHAPTER 6 Working with Libraries
Filtering the display of objects
You can change what objects display in expanded libraries.

Settings are remembered
PowerBuilder records your preferences in the Library section of the
PowerBuilder initialization file so that the next time you open the Library
painter, the same information is displayed.

Specifying which
objects display in all
libraries

In the Tree and List views, the Library painter displays all objects in libraries
that you expand, as well as targets, workspaces, folders, and files. You can
specify that the Library painter display only specific kinds of objects and/or
objects whose names match a specific pattern. For example, you can limit the
display to only DataWindow objects, or limit the display to windows that begin
with w_emp.

❖ To restrict which objects are displayed:

1 Select Design>Options from the menu bar and select the Include tab.

2 Specify the display criteria:

• To limit the display to entries that contain specific text in their names,
enter the text in the Name box. You can use the wildcard characters
question mark (?) and asterisk (*) in the string. The ? represents one
character; an * represents any string of characters. The default is all
entries of the selected types.

• To limit the display to specific entry types, clear the check boxes for
the entry types that you do not want to display. The default is all
entries.

3 Click OK.

The Options dialog box closes.

4 In the Tree view, expand libraries or select a library to display the objects
that meet the criteria.

Overriding the choices
you made for a
specific view

In either the Tree view or the List view, you can override your choice of objects
that display in all libraries by selecting a library, displaying the library’s pop-up
menu, and then clearing or selecting items on the list of objects.
Users Guide 157

Working with libraries
Creating and deleting libraries
A library is created automatically when you create a new target, but you can
create as many libraries as you need for your project in the Library painter.

❖ To create a library:

1 Click the Create button or select Entry>Library>Create from the menu bar.

The Create Library dialog box displays showing the current directory and
listing the libraries it contains.

2 Enter the name of the library you are creating and specify the directory in
which you want to store it.

The file is given the extension .PBL.

3 Click Save.

The library properties dialog box displays.

4 Enter any comments you want to associate with the library.

Adding comments to describe the purpose of a library is important if you
are working on a large project with other developers.

5 Click OK.

PowerBuilder creates the library.

❖ To delete a library:

1 In either the Tree view or the List view, select the library you want to
delete.

2 Select Entry>Delete from the menu bar or select Delete from the pop-up
menu.

Restriction
You cannot delete a library that is in the current target’s library search path.

The Delete Library dialog box displays showing the library you selected.

3 Click Yes to delete the library.

The library and all its entries are deleted from the file system.
158 PowerBuilder Classic

CHAPTER 6 Working with Libraries
Creating and deleting libraries at runtime
You can use the LibraryCreate and LibraryDelete functions in scripts to create
and delete libraries. For information about these functions, see the PowerScript
Reference.

Filtering the display of libraries and folders
In either the Tree view or the List view, you can control what displays when
you expand a drive or folder. An expanded drive or folder can display folders,
workspaces, targets, files, and libraries.

❖ To control display of the contents of drives and folders:

• In either the Tree or List view, select a drive or folder, select Show from
the pop-up menu, and select or clear items from the cascading menu.

Working in the current library
In PowerBuilder, the current library is the library that contains the object most
recently opened or edited. That library becomes the default for Open and
Inherit. If you click the Open or Inherit button in the PowerBar, the current
library is the one selected in the Libraries list.

You can display the current library in the Library painter.

❖ To display objects in the current library:

1 Click in the Tree view or the List view.

2 Click the Display Most Recent Object button on the PainterBar or select
Most Recent Object from the View menu.

The library that contains the object you opened or edited last displays in
the view you selected with the object highlighted.
Users Guide 159

Working with libraries
Opening and previewing objects
You can open and preview objects in the current workspace.

Opening PowerBuilder
objects

PowerBuilder objects, such as windows and menus, are opened only if they are
in a PBL in the current workspace.

❖ To open an object:

• In either the Tree view or the List view, double-click the object, or select
Edit from the object’s pop-up menu.

PowerBuilder takes you to the painter for that object and opens the object.
You can work on the object and save it as you work. When you close it,
you return to the Library painter.

Opening other objects The Library painter allows you to open most of the different file types it
displays. When you double-click on an object, PowerBuilder attempts to open
it using the following algorithm:

1 PowerBuilder determines if the object can be opened in the File editor. For
example, files with the extensions .txt, .ini, and .sr* open in the File editor.

2 PowerBuilder determines if the object can be opened in a painter or HTML
editor.

3 PowerBuilder checks to see if the object is associated with a program in
the HKEY_CLASSES_ROOT section of the Windows registry and, if so,
launches the application.

Previewing
PowerBuilder objects

You can run windows and preview DataWindow objects from the Library
painter.

❖ To preview an object in the Library painter:

• Select Run/Preview from the object’s pop-up menu.

Copying, moving, and deleting objects
As the needs of your target change, you can rearrange the objects in libraries.
You can copy and move objects between libraries or delete objects that you no
longer need.
160 PowerBuilder Classic

CHAPTER 6 Working with Libraries
❖ To copy objects using drag and drop:

1 In the Tree view or the List view, select the objects you want to copy.

2 Drag the objects to a library in either view. If the contents of a library are
displaying in the List view, you can drop it there.

PowerBuilder copies the objects. If an object with the same name already
exists, PowerBuilder prompts you and if you allow it, replaces it with the
copied object.

❖ To move objects using drag and drop:

1 In the Tree view or the List view, select the objects you want to move.

2 Press and hold Shift and drag the objects to a library in either view. If the
contents of a library are displaying in the List view, you can drop it there.

PowerBuilder moves the objects and deletes them from the source library.
If an object with the same name already exists, PowerBuilder prompts you
and if you allow it, replaces it with the moved object.

❖ To copy or move objects using a button or menu item:

1 Select the objects you want to copy or move to another library.

2 Do one of the following:

• Click the Copy button or the Move button.

• Select Copy or Move from the pop-up menu.

• Select Entry>Library Item>Copy or Entry>Library Item>Move from
the menu bar.

The Select Library dialog box displays.

3 Select the library to which you want to copy or move the objects and click
OK.

❖ To delete objects:

1 Select the objects you want to delete.

2 Do one of the following:

• Click the Delete button.

• Select Delete from the pop-up menu.

• Select Entry>Delete from the menu bar.

You are asked to confirm the first deletion.
Users Guide 161

Working with libraries
Being asked for confirmation
By default, PowerBuilder asks you to confirm each deletion. If you do not
want to have to confirm deletions, select Design>Options to open the
Options dialog box for the Library painter and clear the Confirm on Delete
check box in the General tab page.

PowerBuilder records this preference as the DeletePrompt variable in the
Library section of the PowerBuilder initialization file.

3 Click Yes to delete the entry or Yes To All to delete all entries. Click No
to skip the current entry and go on to the next selected entry.

Setting the root
In either the Tree view or the List view, you can set the root location of the
view.

❖ To set the root of the current view:

1 In either view, select View>Set Root from the menu bar or select Set Root
from the pop-up menu to display the Set Root dialog box.

2 If you want the root to be a directory or library, type the path or browse to
the path.

Setting the root to the
current workspace

In the System Tree, the default root is the current workspace. If you prefer to
work in the Library painter, you may find it convenient to set the root to the
current workspace. Using the current workspace as your root is particularly
helpful if you are using many libraries in various locations, because they are all
displayed in the same tree.
162 PowerBuilder Classic

CHAPTER 6 Working with Libraries
Moving back, forward, and up one level
You can also set a new root by moving back to where you were before, moving
forward to where you just were, or for the List view, moving up a level.

❖ To move back, forward, or up one level:

• Do one of the following:

• Select View>Back, View>Forward, or View>Up One Level from the
menu bar.

• Select Back, Forward, or Up One Level from the pop-up menu.

The name of the location you are moving back to or forward to is appended
to Back and Forward.

Modifying comments
You can use comments to document your objects and libraries. For example,
you might use comments to describe how a window is used, specify the
differences between descendent objects, or identify a PowerBuilder library.

You can associate comments with an object or library when you first save it in
a painter and add or modify comments in the System Tree or Library painter.
If you want to modify comments for a set of objects, you can do so quickly in
the List view.

❖ To modify comments for multiple objects:

1 In the List view, select the objects you want.

2 Select Entry>Properties from the menu bar or select Properties from the
pop-up menu.

PowerBuilder displays the Properties dialog box. The information that
displays is for one of the objects you selected. You can change existing
comments, or, if there are no comments, you can enter new descriptive
text.

3 Click OK when you have finished editing comments for this object.

If you do not want to change the comments for an object, click OK. The
next object displays.
Users Guide 163

Searching targets, libraries, and objects
4 Enter comments and click OK for each object until you have finished.

If you want to stop working on comments before you finish with the
objects you selected, click Cancel. The comments you have entered until
the most recent OK are retained and display in the List view.

❖ To modify comments for a library:

1 Select the library you want.

2 Click the Properties button or select Library from the pop-up menu.

3 Add or modify the comments.

Searching targets, libraries, and objects
Global search of
targets

You can search a target to locate where a specified text string is used. For
example, you could search for:

• All scripts that use the SetTransObject function

• All windows that contain the CommandButton cb_exit (all controls
contained in a window are listed in the window definition’s source form in
the library so they can be searched for as text)

• All DataWindow objects accessing the Employee table in the database

Working with targets
To see the pop-up menu that lets you perform operations on a target, such as
search, build, and migrate, you must set the root of the System Tree or the view
in the Library painter to the current workspace.

Searching selected
libraries and objects

You can also select a library or one or more PowerBuilder objects to search.
The following procedure applies whatever the scope of your search is.

❖ To search a target, library, or object for a text string:

1 Select the target, library, or objects you want to search.

You can select multiple objects in the List view using Shift+click and
Ctrl+click.

2 Select Search from the pop-up menu or the PainterBar.
164 PowerBuilder Classic

CHAPTER 6 Working with Libraries
The Search Library Entries dialog box displays.

3 Enter the string you want to locate (the search string) in the Search For
box.

The string can be all or part of a word or phrase used in a property, script,
or variable. You cannot use wildcards in the search string.

4 In the Display group box, select the information you want to display in the
results of the search.

5 In the Search In group box, select the parts of the object that you want
PowerBuilder to inspect: properties, scripts, and/or variables.

6 Click OK.

PowerBuilder searches the libraries for matching entries. When the search
is complete, PowerBuilder displays the matching entries in the Output
window.

For example, the following screen displays the results of a search for the string
garbagecollect:

From the Output window, you can:

• Jump to the painter in which an entry was created

To do this, double-click the entry or select it and then select Edit from the
pop-up menu.

• Print the contents of the window

• Copy the search results to a text file
Users Guide 165

Optimizing libraries
Optimizing libraries
You should optimize your libraries regularly. Optimizing removes gaps in
libraries and defragments the storage of objects, thus improving performance.

Optimizing affects only layout on disk; it does not affect the contents of the
objects. Objects are not recompiled when you optimize a library.

Once a week
For the best performance, you should optimize libraries you are actively
working on about once a week.

❖ To optimize a library:

1 In either Tree view or List view, choose the library you want to optimize.

2 Select Entry>Library>Optimize from the menu bar or select Optimize
from the library’s pop-up menu.

PowerBuilder reorganizes the library structure to optimize object and data
storage and index locations. Note that PowerBuilder does not change the
modification date for the library entries. PowerBuilder saves the
unoptimized version as a backup file in the same directory.

The optimized file is created with the default permissions for the drive
where it is stored. On some systems new files are not shareable by default.
If you see “save of object failed” or “link error messages after optimizing,”
check the permissions assigned to the PBL.

If you do not want a backup file
If you do not want to save a backup copy of the library, clear the Save
Optimized Backups check box in the Library painter’s Design>Options
dialog box. If you clear this option, the new setting will remain in effect
until you change it.
166 PowerBuilder Classic

CHAPTER 6 Working with Libraries
Regenerating library entries
Occasionally you may need to update library entries by regenerating,
rebuilding, or migrating them. For example:

• When you modify an ancestor object, you can regenerate descendants so
they pick up the revisions to their ancestor.

• When you make extensive changes to a target, you can rebuild entire
libraries so objects are regenerated sequentially based on interdependence.

• When you upgrade to a new version of PowerBuilder, you need to migrate
your targets.

When you regenerate an entry, PowerBuilder recompiles the source form
stored in the library and replaces the existing compiled form with the
recompiled form. You can regenerate entries in the Library painter or by
selecting regenerate from the object’s pop-up menu in the System Tree.

You can also regenerate and rebuild from a command line. For more
information, see Appendix B, “The OrcaScript Language.”

❖ To regenerate library entries in the Library painter:

1 Select the entries you want to regenerate.

2 Click the Regenerate button or select Entry>Library Item>Regenerate
from the menu bar.

PowerBuilder uses the source to regenerate the library entry and replaces
the current compiled object with the regenerated object. The compilation
date and size are updated.

Regenerating
descendants

You can use the Browser to easily regenerate all descendants of a changed
ancestor object.

❖ To regenerate descendants:

1 Click the Browser button in the PowerBar.

The Browser displays.

2 Select the tab for the object type you want to regenerate.

For example, if you want to regenerate all descendants of window
w_frame, click the Window tab.

3 Select the ancestor object and choose Show Hierarchy from its pop-up
menu.
Users Guide 167

Rebuilding workspaces and targets
The Regenerate item displays on the pop-up menu.

4 Click the Regenerate item.

PowerBuilder regenerates all descendants of the selected ancestor.

For more about the Browser, see “Browsing the class hierarchy” on page 318.

Regenerate limitations
If you regenerate a group of objects, PowerBuilder will regenerate them in the
order in which they appear in the library, which might cause an error if an
object is generated before its ancestor. For this reason, you should use a full or
incremental build to update more than one object at a time.

Rebuilding workspaces and targets
When you make modifications to a target and need to update one or more
libraries, you should use a rebuild option to update all the library objects in the
correct sequence.

Working with targets
To see the pop-up menu that lets you perform operations on a target such as
search, build, and migrate, you must set the root of the System Tree or the view
in the Library painter to the current workspace.
168 PowerBuilder Classic

CHAPTER 6 Working with Libraries
There are two methods to use when you rebuild a workspace or target:

• Incremental rebuild Updates all the objects and libraries that reference
objects that have been changed since the last time you built the workspace
or target

• Full rebuild Updates all the objects and libraries in your workspace or
target

❖ To rebuild a workspace:

• Do one of the following:

• Select Incremental Build Workspace or Full Build Workspace from
the PowerBar.

• Select the Workspace in the System Tree or Library painter and select
Incremental Build or Full Build from the pop-up menu.

❖ To rebuild a target:

• Do one of the following:

• Select the target in the Library painter and select
Entry>Target>Incremental Build or Entry>Target>Full Build from
the menu bar.

• Select the target in the System Tree or Library painter and select
Incremental Build or Full Build from the pop-up menu.

Migrating targets
When you upgrade to a new version of PowerBuilder, your existing targets
need to be migrated to the new version. Typically, when you open a workspace
that contains targets that need to be migrated, or add a target that needs to be
migrated to your workspace, PowerBuilder prompts you to migrate the targets.
However, there are some situations when you need to migrate a target
manually. For example, if you add a library that has not been migrated to a
target’s library list, you will not be able to open objects in that library until the
target has been migrated.

You cannot migrate a target that is not in your current workspace and you must
set the root of the System Tree or the view in the Library painter to the current
workspace.
Users Guide 169

Migrating targets
Before you migrate There are some steps you should take before you migrate a target:

• Use the Migration Assistant to check for obsolete syntax or the use of
reserved words in your code

• Check the release notes for migration issues

• Make backup copies of the target and libraries

• Make sure that the libraries you will migrate are writable

Always back up your PBLs before migrating
Make sure you make a copy of your PBLs before migrating. After migration,
you cannot open them in an earlier version of PowerBuilder.

The Migration Assistant is available on the Tool page of the New dialog box.
For help using the Migration Assistant, click the Help (?) button in the
upper-right corner of the window and click the field you need help with, or
click the field and press F1. If the Migration Assistant finds obsolete code, you
can fix it in an earlier version of PowerBuilder to avoid errors when you
migrate to the current version.

PowerBuilder libraries
and migration

PowerBuilder libraries (PBLs) contain a header, source code for the objects in
the PBL, and binary code. There are two differences between PowerBuilder 10
and later PBLs and PBLs developed in earlier versions of PowerBuilder:

• The source code in PowerBuilder 10 and later PBLs is encoded in Unicode
(UTF-16LE, where LE stands for little endian) instead of DBCS (versions
7, 8, and 9) or ANSI (version 6 and earlier).

• The format of the header lets PowerBuilder determine whether it uses
Unicode encoding. The header format for PowerBuilder 10 is the same as
that used for PUL files in PowerBuilder 6.5 and for PKL files in
PocketBuilder. These files do not need to be converted to Unicode when
they are migrated to PowerBuilder 10 or later.

When PBLs are
migrated

Before opening a PBL, PowerBuilder checks its header to determine whether
or not it uses Unicode encoding. PBLs are not converted to Unicode unless you
specifically request that they be migrated.

You cannot expand the icon for a PBL from PowerBuilder 9 or earlier in the
Library painter. To examine its contents, you must migrate it to PowerBuilder
10 or later.
170 PowerBuilder Classic

CHAPTER 6 Working with Libraries
When you attempt to open a workspace that contains targets from a previous
release in PowerBuilder, the Targets to be Migrated dialog box displays. You
can migrate targets from this dialog box, or clear the No Prompting check box
to open the Migrate Application dialog box.

PowerBuilder dynamic libraries
If you plan to reference a PowerBuilder dynamic library (PBD) that was
encoded in ANSI formatting (for example, if it was created in PowerBuilder 9
or earlier), you must regenerate the PBD to use Unicode formatting. Dynamic
libraries that you create in PowerBuilder 10 or later use Unicode formatting
exclusively.

For information on creating PBDs, see “Creating runtime libraries” on page
176.

The Migrate
Application dialog box

The Migrate Application dialog box lists each PBL that will be migrated and
lets you choose the type of messages that display during the migration process.

If you click OK, each PBL is first migrated to the new version of PowerBuilder.
If necessary, PowerBuilder converts source code from DBCS to Unicode.
PowerBuilder performs a full build and saves the source code back to the same
PBL files. Changes to scripts display in informational messages in the Output
window and are written to a log file for each PBL so that you can examine the
changes later. Recommended changes are also written to the log file.
Users Guide 171

Migrating targets
Migration from DBCS versions
The migration process automatically converts multibyte strings in DBCS
applications to unicode strings. You do not need to select the Automatically
Convert DBCS String Manipulation Functions check box for this conversion.
If the migration encounters an invalid multibyte string, it sets the invalid string
to a question mark and reports the error status. You can modify question marks
in the Unicode output string after the migration.

The following two lines from a log file indicate that the FromAnsi function is
obsolete and was replaced with the String function, and that an encoding
parameter should be added to an existing instance of the String function:

2006/01/27 08:20:11test.pbl(w_main).cb_1.clicked.4:
Information C0205: Function 'FromAnsi' is replaced with
function 'String'.

2006/01/27 08:20:11test.pbl(w_main).cb_2.clicked.4:
Information C0206: Append extra argument
'EncodingAnsi!' to function 'String' for backward
compatibility.

The log file has the same name as the PBL with the string _mig appended and
the extension .log and is created in the same directory as the PBL. If no changes
are made, PowerBuilder creates an empty log file. If the PBL is migrated more
than once, output is appended to the existing file.

PowerBuilder makes the following changes:

• The FromUnicode function is replaced with the String function and the
second argument EncodingUTF16LE! is added

• The ToUnicode function is replaced with the Blob function and the second
argument EncodingUTF16LE! is added

• The FromAnsi function is replaced with the String function and the second
argument EncodingAnsi! is added

• The ToAnsi function is replaced with the Blob function and the second
argument EncodingAnsi! is added

• An Alias For clause with the following format is appended to declarations
of external functions that take strings, chars, or structures as arguments or
return any of these datatypes:

ALIAS FOR “functionname;ansi”
172 PowerBuilder Classic

CHAPTER 6 Working with Libraries
If the declaration already has an Alias For clause, only the string ;ansi is
appended.

DBCS users only
If you select the Automatically Convert DBCS String Manipulation Functions
check box, PowerBuilder automatically makes appropriate conversions to
scripts in PowerBuilder 9 applications. For example, if you used the LenW
function, it is converted to Len, and if you used the Len function, it is converted
to LenA. The changes are written to the Output window and the log file. This
box should be selected only in DBCS environments.

Adding PBLs to a
PowerBuilder target

When you add PBLs from a previous release to a PowerBuilder target’s library
list, the PBLs display in the System Tree. The PBLs are not migrated when you
add them to the library list. Their contents do not display because they have not
yet been converted. To display their contents, you must migrate the target.

You can migrate a target from the Workspace tab of the System Tree by
selecting Migrate from the pop-up menu for the target. You can also migrate
targets in the Library painter if they are in your current workspace.

❖ To migrate a target in the Library painter:

1 Select the target you want to migrate and select Entry>Target>Migrate
from the menu bar.

The Migrate Application dialog box displays.

2 Select OK to migrate all objects and libraries in the target's path to the
current version.

Exporting and importing entries
You can export object definitions to text files. The text files contain all the
information that defines the objects. The files are virtually identical
syntactically to the source forms that are stored in libraries for all objects.

You may want to export object definitions in the following situations:

• You want to store the objects as text files.

• You want to move objects to another computer as text files.

Later you can import the files back into PowerBuilder for storage in a library.
Users Guide 173

Exporting and importing entries
Caution
The primary use of the Export feature is exporting source code, modifying the
source. You can use the Source editor to modify the source code of an object
directly, but modifying source in an ASCII text file is not recommended for
most users. See “Using the Source editor” on page 146.

❖ To export entries to text files:

1 Select the Library entries you want to export.

You can select multiple entries in the List view.

2 Do one of the following:

• Select Export from the pop-up menu.

• Click the Export button on the PainterBar.

• Select Entry>Library Item>Export from the menu bar.

The Export Library Entry dialog box displays, showing the name of the
first entry selected for export in the File Name box and the name of the
current directory. The current directory is the target’s directory or the last
directory you selected for saving exported entries or saving a file using the
file editor.

PowerBuilder appends the file extension .srx, where x represents the
object type.

3 Specify the file name and directory for the export file. Do not change the
file extension from the one that PowerBuilder appended.

4 Select the encoding for the exported file.

The HEXASCII export format is used for source-controlled files. Unicode
strings are represented by hexadecimal/ASCII strings in the exported file,
which has the letters HA at the beginning of the header to identify it as a
file that might contain such strings. You cannot import HEXASCII files
into a previous version of PowerBuilder.

5 Click OK.

PowerBuilder converts the entry to text, stores it with the specified name,
then displays the next entry you selected for export.
174 PowerBuilder Classic

CHAPTER 6 Working with Libraries
If a file already exists with the same name, PowerBuilder displays a
message asking whether you want to replace the file. If you say no, you
can change the name of the file and then export it, skip the file, or cancel
the export of the current file and any selected files that have not been
exported.

6 Repeat steps 3 through 5 until you have processed all the selected entries.

If the Library painter is set to display files, you can see the saved files and
double-click them to open them in the File editor.

❖ To import text files to library entries:

1 In the System Tree or Library painter, select the library into which you
want to import an object.

2 Select Import from the pop-up menu, or, in the Library painter only, click
the Import button on the PainterBar.

The Select Import Files dialog box displays, showing the current directory
and a list of files with the extension .sr* in that directory. The current
directory is the target’s directory or the last directory you selected for
saving exported entries or saving a file using the file editor.

3 Select the files you want to import. Use Shift+click or Ctrl+click to select
multiple files.

4 Click Open.

PowerBuilder converts the specified text files to PowerBuilder format,
regenerates (recompiles) the objects, stores the entries in the specified
library, and updates the entries’ timestamps.

If a library entry with the same name already exists, PowerBuilder
replaces it with the imported entry.
Users Guide 175

Creating runtime libraries
Caution
When you import an entry with the same name as an existing entry, the old
entry is deleted before the import takes place. If an import fails, the old
object will already be deleted.

Creating runtime libraries
If you want your deployed target to use dynamic runtime libraries, you can
create them in the Library painter.

For information about using runtime libraries, see Chapter 34, “Creating
Executables and Components.” That chapter also describes the Project painter,
which you can use to create dynamic runtime libraries automatically.

❖ To create a runtime library:

1 Select the library you want to use to build a runtime library.

2 Select Entry>Library>Build Runtime Library from the menu bar, or select
Build Runtime Library from the library’s pop-up menu.

The Build Runtime Library dialog box displays, listing the name of the
selected library.

3 If any of the objects in the source library use resources, specify a
PowerBuilder resource file in the Resource File Name box (see “Including
additional resources” next).
176 PowerBuilder Classic

CHAPTER 6 Working with Libraries
4 Select other options as appropriate.

Most options are available only if you select Machine Code, which creates
a DLL file. The default is Pcode, which creates a PBD file. For more
information about build options, see “Executable application project
options” on page 954.

5 Click OK.

PowerBuilder closes the dialog box and creates a runtime library with the
same name as the selected library and the extension .dll or .pbd.

Including additional resources
When building a runtime library, PowerBuilder does not inspect the objects; it
simply removes the source form of the objects. Therefore, if any of the objects
in the library use resources (pictures, icons, and pointers)—either specified in
a painter or assigned dynamically in a script—and you do not want to provide
these resources separately, you must list the resources in a PowerBuilder
resource file (PBR file). Doing so enables PowerBuilder to include the
resources in the runtime library when it builds it.

For more on resource files, see “Using PowerBuilder resource files” on page
960.

After you have defined the resource file, specify it in the Resource File Name
box to include the named resources in the runtime library.

Creating reports on library contents
You can generate three types of reports from the Library painter:

• The search results report

• Library entry reports

• The library directory report

The search results report contains the matching-entries information that
PowerBuilder displays after it completes a search, described in “Searching
targets, libraries, and objects” on page 164. The other two types of reports are
described in this section.
Users Guide 177

Creating reports on library contents
Creating library entry reports
Library entry reports provide information about selected entries in the current
target. You can use these reports to get printed documentation about the objects
you have created in your target.

❖ To create library entry reports:

1 Select the library entries you want information about in the List view.

2 Select Entry>Library Item>Print from the menu bar, or select Print from
the pop-up menu.

The Print Options dialog box displays.

3 If you have selected the Application object or one or more menus,
windows, or user objects to report on, select the information you want
printed for each of these object types.

For example, if you want all properties for selected windows to appear in
the report, make sure the Properties box is checked in the Window/User
Object group box.

The settings are saved
PowerBuilder records these settings in the Library section of the
PowerBuilder initialization file.

4 Click OK.

PowerBuilder generates the selected reports and sends them to the printer
specified in Printer Setup in the File menu.
178 PowerBuilder Classic

CHAPTER 6 Working with Libraries
Creating the library directory report
The library directory report lists all entries in a selected library in your
workspace, showing the following information for all objects in the library,
ordered by object type:

• Name of object

• Modification date and time

• Size (of compiled object)

• Comments

❖ To create the library directory report:

1 Select the library that you want the report for.

The library must be in your current workspace.

2 Select Entry>Library>Print Directory from the menu bar, or select Print
Directory from the pop-up menu.

PowerBuilder sends the library directory report to the printer specified
under File>Printer Setup in the menu bar.
Users Guide 179

Creating reports on library contents
180 PowerBuilder Classic

P A R T 3 Coding Fundamentals

This part describes how to code your application. It covers
the basics of the PowerScript language, how to use the
Script view, and how to create functions, structures, and
user events to make your code more powerful and easier
to maintain.

C H A P T E R 7 Writing Scripts

About this chapter PowerBuilder applications are event driven. You specify the processing
that takes place when an event occurs by writing a script. This chapter
describes how to use the Script view to write scripts using the PowerScript
language.

Contents

For more information For complete information about the PowerScript language, see the
PowerScript Reference.

About the Script view
You use the Script view to code functions and events, define your own
functions and events, and declare variables and external functions.

Script views are part of the default layout in the Application, Window,
User Object, Menu, and Function painters. In Application, Window, and
User Object painters, the initial layout has one Script view that displays
the default event script for the object and a second Script view set up for
declaring instance variables. You can open as many Script views as you
need, or perform all coding tasks in a single Script view.

Topic Page

About the Script view 183

Opening Script views 185

Modifying Script view properties 186

Editing scripts 187

Using AutoScript 192

Getting context-sensitive Help 198

Compiling the script 199

Declaring variables and external functions 202
Users Guide 183

About the Script view
Title bar The Script view’s title bar shows the name and return type of the current event
or function, as well as the name of the current control for events and the
argument list for functions. If the Script view is being used to declare variables
or functions, the titlebar shows the type of declaration.

Drop-down lists There are three drop-down lists at the top of the Script view:

In the first list, you can select the object, control, or menu item for which you
want to write a script. You can also select Functions to edit function scripts or
Declare to declare variables and external functions.

The second list lets you select the event or function you want to edit or the kind
of declaration you want to make. A script icon next to an event name indicates
there is a script for that event, and the icon’s appearance tells you more about
the script:

Table 7-1: Script icons in the Script view

The same script icons display in the Event List view.

The third list is available in descendent objects. It lists the current object and
all its ancestors so that you can view scripts in the ancestor objects.

If there is a script The script icon displays

For the current object or control With text

In an ancestor object or control only In color

In an ancestor as well as in the object or control you
are working with

Half in color
184 PowerBuilder Classic

CHAPTER 7 Writing Scripts
Toggle buttons for
Prototype and Error
windows

A Prototype window displays at the top of the Script view when you define a
new function or event. An Error window displays at the bottom of the view
when there are compilation errors. You can toggle the display of these windows
with the two toggle buttons to the right of the lists.

For more information about the Prototype window, see Chapter 8, “Working
with User-Defined Functions,” and Chapter 9, “Working with User Events.”

Opening Script views
If there is no open Script view, selecting a menu or PainterBar item that
requires a Script view opens one automatically. If you want to edit more than
one script at a time, you can open additional Script views from the View menu.

❖ To open a new Script view:

• Select View>Script from the menu bar.

❖ To edit a script for a control:

• Double-click a scriptable control, or select Script from the PainterBar or a
pop-up menu.

The Script view shows the default script for the control. If the Script view
is in a stacked pane and is hidden, it pops to the front. If there is no open
Script view, PowerBuilder creates a new one.

Using drag and drop
If a Script view is visible, you can drag a control from the Control list view
to the Script view to edit a script for the control.

❖ To edit a script for a function or event:

• Double-click an item in the Event list or Function list views, or select the
function or event from the second drop-down list in an open Script view.

The Script view shows the script for the selected event or function. If the
Script view is in a tabbed pane and is hidden, it pops to the front. If there
is no open Script view, PowerBuilder creates a new one.
Users Guide 185

Modifying Script view properties
Modifying Script view properties
The Script view automatically:

• Color-codes scripts to identify datatypes, system-level functions,
flow-of-control statements, comments, and literals

• Indents the script based on flow-of-control statements

You can modify these and other properties.

Some properties are shared
Some properties you specify for the Script view also affect the file editor,
Source editor, Debugger, and the Interactive SQL and Activity Log views in
the Database painter.

❖ To specify Script view properties:

1 Select Design>Options to display the Options dialog box for the painter.

The Options dialog box includes four tab pages that affect the Script view:
Script, Font, Coloring, and AutoScript.

2 Choose the tab appropriate to the property you want to specify:

To specify Choose this tab

Tab size, automatic indenting, whether dashes are
allowed in identifiers, and which compiler and database
messages display

Script

Font family, size, and color for the Script view Font

Text and background coloring for PowerScript syntax
elements

Coloring

Whether AutoScript is enabled and what kind of
assistance it provides

AutoScript
186 PowerBuilder Classic

CHAPTER 7 Writing Scripts
Editing scripts
You can perform standard editing tasks in the Script view using the Edit menu,
the pop-up menu in the Script view, or the PainterBars. There are shortcuts for
many editing actions.

Setting up shortcuts
In a painter with a Script view, select Tools>Keyboard Shortcuts. Expand the
Edit menu to view existing shortcuts and set up your own shortcuts.

Limiting size of scripts
There is an internal limit on the size of compiled Pcode on any script. Pcode is
the interpreted language into which scripts are compiled. A script that exceeds
this limit can be compiled successfully, but the error “Maximum script size
exceeded” displays when you attempt to save the script. Note that the amount
of Pcode generated from a given script is not directly proportional to the
number of lines of code, so you might encounter this error in a script with 1200
lines of code, but not in a script with 1500 lines of code. To avoid receiving this
error, move code to functions that you post or trigger in the event script.

Printing scripts
You can print a description of the object you are editing, including all its
scripts, by selecting File>Print from the menu bar. To print a specific script,
select File>Print Script.

Pasting information into scripts
You can paste the names of variables, functions, objects, controls, and other
items directly into your scripts. (You can also use AutoScript. See “Using
AutoScript” on page 192.) If what you paste includes commented text that you
need to replace, such as function arguments or clauses in a statement, you can
use Edit>Go To>Next Marker to move your cursor to the next commented item
in the template.
Users Guide 187

Editing scripts
Table 7-2: Pasting information into scripts

Undoing a paste
If you paste information into your script by mistake, click the Undo button or
select Edit>Undo from the menu bar.

Some of these techniques are explained in the sections that follow.

Using the System
Tree

To paste the name of a PowerBuilder object or of any of its properties,
functions, or events, select the item you want to paste on the Workspace tab of
the System Tree and drag it into your script.

Using the Browser You can use the Browser to paste the name of any property, datatype, function,
structure, variable, or object in the application.

To paste Use

PowerBuilder objects and their
properties, functions, and events

System Tree

Properties, datatypes, functions,
structures, variables, and objects

Browser

Contents of clipboard Edit>Paste

Contents of Clipboard window Drag and drop

Objects, controls, arguments, and global
and instance variables

Paste buttons on PainterBar
or
Edit>Paste Special

PowerScript statements Paste Statement button
or
Edit>Paste Special>Statement

SQL statements Paste SQL button
or
Edit>Paste Special>SQL

Built-in, user-defined, and external
functions

Paste Function button
or
Edit>Paste Special>Function

Preprocessor statements Edit>Paste Special>Preprocessor

Contents of text files Edit>Paste Special>From File
188 PowerBuilder Classic

CHAPTER 7 Writing Scripts
Most tab pages in the Browser have two panes:

The left pane displays a single type of object, such as a window or menu. The
right pane displays the properties, events, functions, external functions,
instance variables, shared variables, and structures associated with the object.

Getting context-sensitive Help in the Browser
To get context-sensitive Help for an object, control, or function, select Help
from its pop-up menu.

❖ To use the Browser to paste information into the Script view:

1 Click the Browser button in the PowerBar, or select Tools>Browser.

2 Select the target you want to browse.

3 Select the appropriate tab and then select the object in the left pane.

4 Select the category of information you want to display by expanding the
appropriate folder in the right pane.

5 Select the information and click Copy.

6 In the Script view, move the cursor where you want to paste the
information and select any text you want to replace with the pasting.

7 Select Paste from the pop-up menu.

PowerBuilder displays the information at the insertion point in the script,
replacing any selected text.

For information about using the Browser to paste OLE object information into
a script, see Application Techniques.
Users Guide 189

Editing scripts
Pasting statements You can paste a template for all basic forms of the following PowerScript
statements:

• IF...THEN

• DO...LOOP

• FOR...NEXT

• CHOOSE CASE

• TRY...CATCH... FINALLY

When you paste these statements into a script, prototype values display in the
syntax to indicate conditions or actions. By default, the statements are pasted
in lowercase. To paste statements in uppercase, add the following line to the
[PB] section of the PB.INI file:

PasteLowercase=0

This setting also affects AutoScript.

❖ To paste a PowerScript statement into the script:

1 Place the insertion point where you want to paste the statement in the
script.

2 Select the Paste Statement button from the PainterBar, or select Edit>Paste
Special>Statement from the menu bar.

3 Select the statement you want to paste from the cascading menu.

The statement prototype displays at the insertion point in the script.

4 Replace the prototype values with the conditions you want to test and the
actions you want to take based on the test results.

For more about PowerScript statements, see the PowerScript Reference.

Pasting SQL You can paste a SQL statement into your script instead of typing the statement.

❖ To paste a SQL statement:

1 Place the insertion point where you want to paste the SQL statement in the
script.

2 Click the Paste SQL button in the PainterBar, or select Edit>Paste
Special>SQL from the menu bar.
190 PowerBuilder Classic

CHAPTER 7 Writing Scripts
3 Select the type of statement you want to insert from the cascading menu
by double-clicking the appropriate button.

The appropriate dialog box displays so that you can create the SQL
statement.

4 Create the statement, then return to the Script view.

The statement displays at the insertion point in the workspace.

For more about embedding SQL in scripts, see the PowerScript Reference.

Pasting functions You can paste any function into a script.

❖ To paste a function into a script:

1 Place the insertion point where you want to paste the function in the script.

2 Click the Paste Function button in the PainterBar, or select
Edit>Paste Special>Function from the menu bar.

3 Choose the type of function you want to paste: built-in, user-defined, or
external.

4 Double-click the function you want from the list that displays.

PowerBuilder pastes the function into the script and places the cursor
within the parentheses so that you can define any needed arguments.

For more about pasting user-defined functions, see “Pasting user-defined
functions” on page 214. For more about external and built-in functions, see
Application Techniques.

Pasting contents of
files

If you have code that is common across different scripts, you can keep that
code in a text file, then paste it into new scripts you write. For shorter snippets
of code, you can also use the Clip window. See “The Clip window” on page 15.

❖ To import the contents of a file into the Script view:

1 Place the insertion point where you want the file contents pasted.

2 Select Edit>Paste Special>From File from the menu bar.

The Paste From File dialog box displays, listing all files with the extension
SCR. If necessary, navigate to the directory that contains the script you
want to paste.

3 Choose the file containing the code you want. You can change the type of
files displayed by changing the file specification in the File Name box.

PowerBuilder copies the file into the Script view at the insertion point.
Users Guide 191

Using AutoScript
Saving a script to a file
To save all or part of a script to an external text file, select the code you want
to save and copy and paste it to the file editor. Use the extension .SCR to
identify it as PowerScript code. You might want to use this technique to save a
backup copy before you make major changes or so that you can use the code in
other scripts.

Reverting to the unedited version of a script
You can discard the edits you have made to a script and revert to the unedited
version by selecting Edit>Revert Script from the menu.

Using AutoScript
AutoScript is a tool designed to help you write PowerScript code more quickly
by providing a lookup and paste service inside the Script view. It is an
alternative to using the paste toolbar buttons or the Browser—you do not need
to move your hands away from the keyboard to paste functions, events,
variables, properties, and templates for PowerBuilder TRY, DO, FOR, IF, and
CHOOSE statements into your script.

If you are not sure what the name or syntax of a function is or what the names
of certain variables are, AutoScript can show you a list to choose from and
paste what you need right into the script. If you can remember part of the name,
start typing and select Edit>Activate AutoScript (or do nothing if automatic
pop-up is turned on). If you cannot remember the name at all, turn atomatic
pop-up on, place your cursor in white space, and select Edit>Activate
AutoScript.

Assign a shortcut key
If you plan to use AutoScript, assign a shortcut key to the Activate AutoScript
menu item. See “Creating shortcut keys” on page 195.
192 PowerBuilder Classic

CHAPTER 7 Writing Scripts
Where you use
AutoScript

You can use AutoScript in three different contexts:

• When you can remember part of the name and you want AutoScript to
finish typing it for you or show you a list of alternatives.

• When you cannot remember the name or you just want a list. AutoScript
options can help you narrow the list if you do not know the name but you
do know the type you are looking for. For example, you can choose to see
a list showing all variables, or only all local variables.

• When you want a list of the properties and/or functions and events that
apply to an identifier followed by a dot.

For how to use AutoScript options, see “Customizing AutoScript” on page
195.

Two ways to use
AutoScript

AutoScript can pop up a list automatically when you pause while typing, or
when you request it:

• Turn automatic pop-up on to have AutoScript pop up the list or complete
what you are typing when you pause for a few seconds after typing one or
more characters or an identifier followed by a dot. See “Using automatic
pop-up” on page 197.

• Invoke AutoScript when you need it by pressing the shortcut key you
assigned to the Edit>Activate AutoScript menu item when you have typed
one or more characters or an identifier followed by a dot. Pressing the
shortcut key activates AutoScript only once. It does not turn automatic
pop-up on.

For how to paste an item from the pop-up window into a script, see “Using the
AutoScript pop-up window” next.

Using the AutoScript pop-up window
If there is more than one property, variable, method, or statement that could be
inserted, AutoScript pops up an alphabetical list of possible completions or
insertions. An icon next to each item indicates its type. The following screen
includes an instance variable, events, properties, statements, and a function:
Users Guide 193

Using AutoScript
If a function is overloaded, each version displays on a different line in the
AutoScript pop-up window.

If you have started typing a word, only completions that begin with the string
you have already typed display in the list.

Case sensitivity If you have set the PasteLowerCase PB.INI variable to 0 as described in
“Pasting statements” on page 190, AutoScript always pastes uppercase
characters. Otherwise, AutoScript always pastes lowercase characters.

The case of any characters you have already typed is preserved. For example,
if you are using AutoScript to complete a function name and you want to use
mixed case, you can type up to the last uppercase letter before invoking
AutoScript. AutoScript completes the function name in lowercase characters
and pastes an argument template.

Pasting an item into
the script

To paste an item into the script, press Tab or Enter or double-click the item. Use
the arrow and page up and page down keys to scroll through the list. If the item
is a function, event, or statement, the template that is pasted includes
descriptive comments that you replace with argument names, conditions, and
so forth. The first commented argument or statement is selected so that it is
easy to replace. You can jump to the next comment by selecting
Edit>Go To>Next Marker.

Go to next marker
You can use Edit>Go To>Next Marker to jump to the next comment enclosed
by /* and */ anywhere in the Script view, not just in AutoScript templates. For
the steps to create a shortcut for this menu item, see “Customizing AutoScript”
next.

If you do not want to
paste from the list

Press the Backspace key or click anywhere outside the pop-up window to
dismiss it without pasting into the script.

If nothing displays AutoScript does not pop up a list if the cursor is in a comment or string literal
or if an identifier is complete. If neither of these conditions applies and nothing
displays when you select Edit>Activate AutoScript, there may be no
appropriate completions in the current context. Check that the options you need
are selected on the AutoScript options page as described in “Customizing
AutoScript” next.
194 PowerBuilder Classic

CHAPTER 7 Writing Scripts
Customizing AutoScript
There are four ways to customize AutoScript:

• Creating shortcut keys

• Specifying what displays in the list

• Using automatic pop-up

• Using AutoScript only with dot notation

Creating shortcut keys AutoScript is easier to use if you create shortcuts for the menu items that you
use frequently.

❖ To modify or create shortcut keys for using AutoScript:

1 Select Tools>Keyboard Shortcuts from the menu bar and expand the Edit
menu in the Keyboard Shortcuts dialog box.

2 Scroll down and select Activate AutoScript and type a key sequence, such
as Ctrl+space.

3 Expand the Go To menu, select Next Marker, and type a key sequence,
such as Ctrl+M.

After you click OK, the shortcuts display in the Edit menu.

Specifying what
displays in the list

You can select different items to include in three different contexts:

• When you have started typing a variable or method name or the beginning
of a PowerScript statement

• When you have typed the name of an object followed by a dot

• When the cursor is at the beginning of a new line or in white space

To make these customizations, select Design>Options from the menu bar and
select the AutoScript tab.

Table 7-3 shows what is included in the list or pasted when you check each box.

Table 7-3: Setting options for AutoScript

Check box Displays

Arguments Arguments for the current function or event.

Local Variables Variables defined in the current script.

Instance Variables Variables defined for and associated with an instance of the
current object or, after a dot, variables associated with the object
preceding the dot.

Shared Variables Variables defined for the current object and associated with all
instances of it.
Users Guide 195

Using AutoScript
Turning options off reduces the length of the list that displays when you invoke
AutoScript so that it is faster and easier to paste a completion or insert code into
the script:

• To show all variables and methods when typing, check all the boxes except
Statement Templates in the Partial Name Resolution Include group box.
When you pause or press the Activate AutoScript shortcut key, the list
shows variables and methods that begin with the string you typed.

• To quickly find functions on an object, clear all the boxes except Methods
in the After A Dot Include group box. When you type an instance name
followed by a dot, only function and event names for the instance display.

• To see a list of arguments and local variables when the cursor is in white
space, check the Arguments and Local Variables boxes in the When No
Context Include group box. When you press the Activate AutoScript
shortcut key, the list shows only arguments and local variables.

Using name completion shortens the list
You might not need to clear boxes on the AutoScript page to reduce the length
of the list if you are using name completion and the Activate AutoScript
shortcut key to invoke AutoScript. For example, suppose you have created an
instance called inv_ncst_dssrv of the class n_cst_dssrv and you know the
function you want to use begins with of_g. Type the following into a script and
then press the Activate AutoScript shortcut key:

inv_ncst_dssrv.of_g

AutoScript displays a pop-up window showing only the functions on
n_cst_dssrv that begin with of_g.

Global Variables Variables defined for the current application.

Properties Properties for the current object or, after a dot, properties for the
object preceding the dot. Includes controls on the current
window.

Methods Functions and events for the current object or, after a dot,
functions and events for the object preceding the dot.

Statement
Templates

PowerScript statement templates for each type of IF, FOR,
CHOOSE CASE, TRY, or DO statement with comments
indicating what code should be inserted. This option is off by
default.

Check box Displays
196 PowerBuilder Classic

CHAPTER 7 Writing Scripts
Using automatic
pop-up

Most of the time you will probably use a shortcut key to invoke AutoScript, but
you can also have AutoScript pop up a list or paste a selection automatically
whenever you pause for several seconds while typing. To do so, check the
Automatic Popup box on the AutoScript options page. Automatic pop-up does
not operate when the cursor is at the beginning of a line or in white space.

This feature is most useful when you are entering new code. You can customize
the options in the Partial Name Resolution Include and After A Dot Include
group boxes to reduce the number of times AutoScript pops up.

When you are editing existing code, it is easier to work with automatic pop-up
off. AutoScript might pop up a list or paste a template for a function when you
do not want it to. Using only the shortcut key to invoke AutoScript gives you
complete control.

Using AutoScript only
with dot notation

If you want AutoScript to work only when you have typed an identifier
followed by a dot, check the Activate Only After a Dot box on the AutoScript
options page. The effect of checking this box applies whether or not you have
checked Automatic Popup. You might find it most useful when you have
checked Automatic Popup, because it provides another way to limit the number
of times AutoScript pops up automatically.

Example
The following simple example illustrates how AutoScript works with
automatic pop-up turned off and different settings for each context. The
example assumes that you have set up F8 as the Activate AutoScript shortcut
key. To set up the example:

• Create a new window and place on it a DataWindow control and a
CommandButton control.

• Select all the boxes in the Partial Name Resolution Include group box.

• Clear all the boxes in the After A Dot Include group box except Methods.

• Clear all the boxes in the When No Context Include group box except
Arguments and Local Variables.

• Clear both boxes in the Options group box.
Users Guide 197

Getting context-sensitive Help
Table 7-4: AutoScript example

Getting context-sensitive Help
In addition to accessing Help through the Help menu and F1 key, you can use
context-sensitive Help in the Script view to display Help for reserved words
and built-in functions.

❖ To use context-sensitive Help:

1 Place the insertion point within a reserved word (such as DO or CREATE)
or built-in function (such as Open or Retrieve).

2 Press Shift+F1.

Context Do this What happens

Partial name
resolution

In the Clicked event script
for cb_1, type long
ll_rtn. On a new line,
type ll and press F8.

AutoScript pastes the local variable
ll_rtn into the script because it is the
only completion that begins with ll.

Type = d and press F8. The list displays all properties, events,
functions, variables, and statements that
begin with d.

Type w and press Tab or
Enter.

The list scrolls to dw_1 and AutoScript
pastes it into the script when you press
Tab or Enter.

After a dot Type a dot after dw_1 and
press F8.

The list shows all the functions and
events for a DataWindow control.

Type GetNextM and press
Tab or Enter.

AutoScript pastes the rest of the
GetNextModified function name and
template into the script, retaining your
capitalization.

Select Edit>Go To>Next
Marker.

AutoScript selects the next function
argument so you can replace it.
Complete or comment out the
statement.

No context In the empty ItemChanged
event for dw_1, declare
some local variables, press
Tab or Enter, and then press
F8.

The list displays the local variables and
the arguments for the ItemChanged
event.
198 PowerBuilder Classic

CHAPTER 7 Writing Scripts
The Help window displays information about the reserved word or
function.

Copying Help text
You can copy text from the Help window into the Script view. This is an easy
way to get more information about arguments required by built-in functions.
You can also copy scripts directly from code examples and modify them for use
in your application.

Compiling the script
Before you can execute a script, you must compile it.

❖ To compile a script:

• Click the Compile button, or select Edit>Compile from the menu bar.

PowerBuilder compiles the script and reports any problems it finds, as
described in “Handling problems” next.

PowerBuilder compiles automatically
When you attempt to open a different script in a Script view, PowerBuilder
compiles the current script. When you save the object, such as the window
containing a control you wrote a script for, PowerBuilder recompiles all scripts
in the object to make sure they are still valid. For example, PowerBuilder
checks that all objects that were referenced when you wrote the script still
exist.

Handling problems
If problems occur when a script is compiled, PowerBuilder displays messages
in a Message window below the script.
Users Guide 199

Compiling the script
There are three kinds of messages:

Errors
Warnings
Information messages

Understanding errors Errors indicate serious problems that you must fix before a script will compile
and before you can close the Script view or open another script in the same
view. Errors are shown in the Message window as:

line number: Error error number:message

Understanding
warnings

Warnings indicate problems that you should be aware of but that do not prevent
a script from compiling.

There are three kinds of warnings.

Compiler warnings Compiler warnings inform you of syntactic problems,
such as undeclared variables. PowerBuilder lets you compile a script that
contains compiler warnings, but you must fix the problem in the script before
you can save the object that the script is for, such as the window or menu.
Compiler warnings are shown in the Message window as:

line number: Warning warning number:message

Obsolete warnings Obsolete warnings inform you when you use any
obsolete functions or syntax in your script. Obsolete functions, although they
still compile and run, have been replaced by more efficient functions and will
be discontinued in a future release of PowerBuilder. You should replace all
references to obsolete functions as soon as possible. Obsolete warnings are
shown in the Message window as:

line number: Warning warning number:message

Database warnings Database warnings come from the database manager
you are connected to. PowerBuilder connects to the database manager when
you compile a script containing embedded SQL. Typically, these warnings
arise because you are referencing a database you are not connected to.
Database warnings are shown in the Message window as:

line number: Database warning number:message

PowerBuilder lets you compile scripts with database warnings and also lets you
save the associated object. It does this because it does not know whether the
problem will apply during execution, since the execution environment might
be different from the compile-time environment.

You should study database warnings carefully to make sure the problems will
not occur at runtime.
200 PowerBuilder Classic

CHAPTER 7 Writing Scripts
Understanding
information messages

Information messages are issued when there is a potential problem. For
example, an information message is issued when you have used a global
variable name as a local variable, because that might result in a conflict later.

Information messages are shown in the Message window as:

line number: Information number:message

Displaying warnings
and messages

To specify which messages display when you compile, select Design>Options
to open the Options dialog box, select the Script tab page, and check or clear
the Display Compiler Warnings, Display Obsolete Messages, Display
Information Messages, and Display Database Warnings check boxes. The
default is to display compiler and database warning messages. Error messages
always display.

Fixing problems To fix a problem, click the message. The Script view scrolls to display the
statement that triggered the message. After you fix all the problems, compile
the script again.

To save a script with errors
Comment out the lines containing errors.

Disabling database
connection when
compiling and building

When PowerBuilder compiles an application that contains embedded SQL, it
connects to the database profile last used in order to check for database access
errors during the build process. For applications that use multiple databases,
this can result in spurious warnings during the build since the embedded SQL
can be validated only against that single last-used database and not against the
databases actually used by the application. In addition, an unattended build,
such as a lengthy overnight rebuild, can stall if the database connection cannot
be made.

To avoid these issues, you can select the Disable Database Connection When
Compiling and Building check box on the General page of the System Options
dialog box.

Caution
Select the check box only when you want to compile without signing on to the
database. Compiling without connecting to a database prevents the build
process from checking for database errors and may therefore result in runtime
errors later.
Users Guide 201

Declaring variables and external functions
Declaring variables and external functions
The default layout in the Application, Window, and User Object painters
includes a Script view set up to declare variables. Keeping a separate Script
view open makes it easy to declare any variables or external functions you need
to use in your code without closing and compiling the script.

❖ To declare variables and external functions:

1 Select [Declare] from the first list in the Script view.

2 Select the variable type (instance, shared, or global) or the function type
(local or global) from the second list.

3 Type the declaration in the Script view.

For more information about declaring variables, see the PowerScript
Reference. For more information about declaring and using external functions,
see the PowerScript Reference and Application Techniques.
202 PowerBuilder Classic

C H A P T E R 8 Working with User-Defined
Functions

About this chapter This chapter describes how to build and use user-defined functions.

Contents

About user-defined functions
The PowerScript language has many built-in functions, but you may find
that you need to code the same procedure over and over again. For
example, you may need to perform a certain calculation in several places
in an application or in different applications. In such a situation, create a
user-defined function to perform the processing.

A user-defined function is a collection of PowerScript statements that
perform some processing. After you define a user-defined function and
save it in a library, any application accessing that library can use the
function.

There are two kinds of user-defined functions, global and object-level
functions.

Global functions Global functions are not associated with any object in your application
and are always accessible anywhere in the application.

They correspond to the PowerBuilder built-in functions that are not
associated with an object, such as the mathematical and string-handling
functions. You define global functions in the Function painter.

Topic Page

About user-defined functions 203

Defining user-defined functions 205

Modifying user-defined functions 212

Using your functions 214
Users Guide 203

About user-defined functions
Object-level functions Object-level functions are defined for a window, menu, user object, or
application object. These functions are part of the object’s definition and can
always be used in scripts for the object itself. You can choose to make these
functions accessible to other scripts as well.

These functions correspond to built-in functions that are defined for specific
PowerBuilder objects such as windows or controls. You define object-level
functions in a Script view for the object.

Deciding which kind you want
When you design your application, you need to decide how you will use the
functions you will define:

• If a function is general purpose and applies throughout an application,
make it a global function.

• If a function applies only to a particular kind of object, make it an
object-level function. You can still call the function from anywhere in the
application, but the function acts only on a particular object type.

For example, suppose you want a function that returns the contents of a
SingleLineEdit control in one window to another window. Make it a
window-level function, defined in the window containing the
SingleLineEdit control. Then, anywhere in your application that you need
this value, call the window-level function.

Multiple objects can have functions with the same name
Two or more objects can have functions with the same name that do different
things. In object-oriented terms, this is called polymorphism. For example,
each window type can have its own Initialize function that performs processing
unique to that window type. There is never any ambiguity about which function
is being called, because you always specify the object’s name when you call an
object-level function.

Object-level functions can also be overloaded—two or more functions can
have the same name but different argument lists. Global functions cannot be
overloaded.
204 PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions
Defining user-defined functions
Although you define global functions in the Function painter and object-level
functions in the painter for a specific object, in both cases you define and code
the function in a Script view.

When you add a new function, a Prototype window displays above the script
area in the Script view. The fields in the Prototype window are in the same
order as the function’s signature:

• The function’s access level, return type, and name

• For each parameter, how it is passed, its datatype, and its name

• The exceptions the function can throw, if any

The following sections describe each of the steps required to define and code a
new function:

1 Opening a Prototype window to add a new function.

2 Defining the access level (for object-level functions).

3 Defining a return type.

4 Naming the function.

5 Defining arguments.

6 Defining a THROWS clause.

7 Coding the function.

8 Compiling and saving the function.
Users Guide 205

Defining user-defined functions
Opening a Prototype window to add a new function
How you create a new function depends on whether you are defining a global
function or an object-level function.

❖ To create a new global function:

• Select File>New from the menu bar and select Function from the PB
Object tab.

The Function painter opens, displaying a Script view with an open
Prototype window in which you define the function.

❖ To create a new object-level function:

1 Open the object for which you want to declare a function.

You can declare functions for windows, menus, user objects, or
applications.

2 Select Insert>Function from the menu bar, or, in the Function List view,
select Add from the pop-up menu.

The Prototype window opens in a Script view or, if no Script view is open,
in a new Script view.

Defining the access level
In the Prototype window, use the drop-down list labeled Access to specify
where you can call the function in the application.

For global functions Global functions can always be called anywhere in the application. In
PowerBuilder terms, they are public. When you are defining a global function,
you cannot modify the access level; the field is read-only.

For object-level
functions

You can restrict access to an object-level function by setting its access level.

Table 8-1: Access levels for object-level functions

Access Means you can call the function

Public In any script in the application.

Private Only in scripts for events in the object in which the function is defined.
You cannot call the function from descendants of the object.

Protected Only in scripts for the object in which the function is defined and
scripts for that object’s descendants.
206 PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions
If a function is to be used only internally within an object, you should define
its access as private or protected. This ensures that the function is never called
inappropriately from outside the object. In object-oriented terms, defining a
function as protected or private encapsulates the function within the object.

Transaction server components
If you are defining functions for a custom class user object that you will use as
an EAServer or application server component, remember that only public
functions can appear in the interface for the component.

Defining a return type
Many functions perform some processing and then return a value. That value
can be the result of the processing or a value that indicates whether the function
executed successfully or not. To have your function return a value, you need to
define its return type, which specifies the datatype of the returned value.

You must code a return statement in the function that specifies the value to
return. See “Returning a value” on page 211. When you call the function in a
script or another function, you can use an assignment statement to assign the
returned value to a variable in the calling script or function. You can also use
the returned value directly in an expression in place of a variable of the same
type.

❖ To define a function’s return type:

• Select the return type from the Return Type drop-down list in the
Prototype window, or type in the name of an object type you have defined.

You can specify any PowerBuilder datatype, including the standard
datatypes, such as integer and string, as well as objects and controls, such
as DataStore or MultiLineEdit.

You can also specify as the return type any object type that you have
defined. For example, if you defined a window named w_calculator and
want the function to process the window and return it, type
w_calculator in the Return Type list. You cannot select w_calculator
from the list, because the list shows only built-in datatypes.
Users Guide 207

Defining user-defined functions
❖ To specify that a function does not return a value:

• Select (None) from the Return Type list.

This tells PowerBuilder that the function does not return a value. This is
similar to defining a procedure or a void function in some programming
languages.

Examples of functions
returning values

The following examples show the return type you would specify for some
different functions:

Naming the function
Name the function in the Function Name box. Function names can have up to
40 characters. For valid characters, see the PowerScript Reference.

For object-level functions, the function is added to the Function List view when
you tab off the Function Name box. It is saved as part of the object whenever
you save the object.

Using a naming convention for user-defined functions makes them easy to
recognize and distinguish from built-in PowerScript functions. A commonly
used convention is to preface all global function names with f_ and object-level
functions with of_, such as:

// global functions
f_calc
f_get_result

// object-level functions
of_refreshwindow
of_checkparent

Built-in functions do not usually have underscores in their names, so this
convention makes it easy for you to identify functions as user defined.

If you are defining
Specify this
return type

A mathematical function that does some processing and returns a
real number

real

A function that takes a string as an argument and returns the string
in reverse order

string

A function that is passed an instance of window w_calculator, does
some processing (such as changing the window's color), then
returns the modified window

w_calculator
208 PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions
Defining arguments
Like built-in functions, user-defined functions can have any number of
arguments, including none. You declare the arguments and their types when
you define a function.

Passing arguments In user-defined functions, you can pass arguments by reference, by value, or
read-only. You specify this for each argument in the Pass By list.

By reference When you pass an argument by reference, the function has
access to the original argument and can change it directly.

By value When you pass by value, you are passing the function a temporary
local copy of the argument. The function can alter the value of the local copy
within the function, but the value of the argument is not changed in the calling
script or function.

Read-only When you pass as read-only, the variable’s value is available to
the function but it is treated as a constant. Read-only provides a performance
advantage over passing by value for string, blob, date, time, and datetime
arguments, because it does not create a copy of the data.

If the function takes no arguments
Leave the initial argument shown in the Prototype window blank.

❖ To define arguments:

1 Declare whether the first argument is passed by reference, by value, or
read-only.

The order in which you specify arguments here is the order you use when
calling the function.

2 Declare the argument’s type. You can specify any datatype, including:

• Built-in datatypes, such as integer and real

• Object types, such as window, or specific objects, such as w_emp

• User objects

• Controls, such as CommandButtons

3 Name the argument.

4 If you want to add another argument, press the Tab key or select Add
Parameter from the pop-up menu and repeat steps 1 to 3.
Users Guide 209

Defining user-defined functions
Passing arrays
You must include the square brackets in the array definition, for example,
price[]or price[50], and the datatype of the array must be the datatype of
the argument. For information on arrays, see the PowerScript Reference.

Defining a THROWS clause
If you are using user-defined exceptions, you must define what exceptions
might be thrown from a user-defined function or event. You use the Throws
box to do this.

When you need to
add a THROWS
clause

Any developers who call the function or event need to know what exceptions
can be thrown from it so that their code can handle the exceptions. If a function
contains a THROW statement that is not surrounded by a try-catch block that
can deal with that type of exception, then the function must be declared to
throw that type of an exception or some ancestor of that exception type.

There are two exception types that inherit from the Throwable object:
Exception and RuntimeError. Typically, you add objects that inherit from
Exception to the THROWS clause of a function. Exception objects are the
parents of all checked exceptions, which are exceptions that must be dealt with
when thrown and declared when throwing. You do not need to add Runtime
error objects to the THROWS clause, because they can occur at any time. You
can catch these errors in a try-catch block, but you are not required to.

Adding a THROWS
clause

You can add a THROWS clause to any PowerBuilder function or to any user
event that is not defined by an event ID. To do so, drag and drop it from the
System Tree, or type the name of the object in the box. If you type the names
of multiple user objects in the Throws box, use a comma to separate the object
names. When you drag and drop multiple user objects, PowerBuilder
automatically adds the comma separators.

The PowerBuilder compiler checks whether a user-defined exception thrown
on a function call in a script matches an exception in the THROWS clause for
that function. It prompts you if there is no matching exception in the THROWS
clause.

You can define a user-defined exception object, and inherit from it to define
more specific lower-level exceptions. If you add a high-level exception to the
throws clause, you can throw any lower-level exception in the script, but you
risk hiding any useful information obtainable from the lower-level exception.

For more information about exception handling, see Application Techniques.
210 PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions
Coding the function
When you have finished defining the function prototype, you specify the code
for the function just as you specify the script for an event in the Script view.
For information about using the Script view, see Chapter 7, “Writing Scripts.”

What functions can
contain

User-defined functions can include PowerScript statements, embedded SQL
statements, and calls to built-in, user-defined, and external functions.

You can type the statements in the Script view or use the buttons in the
PainterBar or items on the Edit>Paste Special menu to insert them into the
function. For more information, see “Pasting information into scripts” on page
187.

Returning a value If you specified a return type for your function in the Prototype window, you
must return a value in the body of the function. To return a value in a function,
use the RETURN statement:

RETURN expression

where expression is the value you want returned by the function. The datatype
of the expression must be the datatype you specified for the return value for the
function.

Example The following function returns the result of dividing arg1 by arg2 if arg2 does
not equal zero. It returns –1 if arg2 equals zero:

IF arg2 <> 0 THEN
RETURN arg1 / arg2

ELSE
RETURN -1

END IF

Compiling and saving the function
When you finish building a function, compile it and save it in a library. Then
you can use it in scripts or other user-defined functions in any application that
includes the library containing the function in its library search path. You
compile the script and handle errors as described in “Compiling the script” on
page 199.
Users Guide 211

Modifying user-defined functions
Modifying user-defined functions
You can change the definition of a user-defined function at any time. You
change the processing performed by the function by modifying the statements
in the Script view. You can also change the return type, argument list, or access
level for a function.

❖ To change a function’s return type, arguments, or access level:

1 Do one of the following:

• In the Function painter, open the global function.

• Open the object that contains the object-level function you want to
edit and select the function from the Function list.

2 Make the changes you want in the Prototype window.

If the Prototype window is hidden, click the toggle button to display it.

3 Select File>Save from the menu bar.

❖ To change a function’s name:

1 If desired, modify the function’s return type, arguments, or access level as
described in the previous procedure.

2 Do one of the following:

• In the Function painter, select File>Save As from the menu bar and
enter a name.

• In the Script view, enter a new name in the Function Name box.

When you tab off the box, the new function name displays in the Function
List view.

Changing the
arguments

You can change a function’s arguments at any time using the pop-up menu in
the Prototype window:

• Add an argument by selecting Add Parameter. Boxes for defining the new
argument display below the last argument in the list.

• Insert an argument by moving the pointer to the argument before which
you want to insert the argument and selecting Insert Parameter. Boxes for
defining the new argument display above the selected argument.

• Delete an argument by selecting it and clicking the Delete button.
212 PowerBuilder Classic

CHAPTER 8 Working with User-Defined Functions
To change the position of an argument
To change the position of an argument, delete the argument and insert it as a
new argument in the correct position.

Recompiling other
scripts

Changing arguments and the return type of a function affect scripts and other
functions that call the function. You should recompile any script in which the
function is used. This guarantees that the scripts and functions work correctly
during execution.

Seeing where a
function is used

PowerBuilder provides browsing facilities to help you find where you have
referenced your functions. In the System Tree or Library painter, select a target,
library, or object and select Search from the pop-up menu. You can also search
multiple entries in the Library painter:

❖ To determine which functions and scripts call a user-defined function:

1 Open the Library painter.

2 In a List view, select all the entries you want to search for references to the
user-defined function.

3 Select Entry>Search from the menu bar.

The Search Library Entries dialog box displays.

4 Specify the user-defined function as the search text and specify the types
of components you want to search.

5 Click OK.

PowerBuilder displays all specified components that reference the
function in the Output window. You can double-click a listed component
to open the appropriate painter.

For more about browsing library entities, see “Searching targets, libraries, and
objects” on page 164.
Users Guide 213

Using your functions
Using your functions
You use user-defined functions the same way you use built-in functions. You
can call them in event scripts or in other user-defined functions.

For complete information about calling functions, see Application Techniques.

Pasting user-defined
functions

When you build a script in the Script view, you can type the call to the
user-defined function. You can also paste the function into the script. There are
four ways to paste a user-defined function into a script:

• Drag the function from the System Tree to the Script view.

• Select Edit>Paste Special>Function>User-defined from the menu bar.

• Enable AutoScript, select the function’s signature in the list that displays
when you pause, and press Tab or Enter.

• Select the function in the Browser and copy and paste it into the script.

Using the System Tree, AutoScript, or the Browser pastes the function’s
prototype arguments as well as its name into the script.

For more information about AutoScript, see “Using AutoScript” on page 192.

❖ To paste a user-defined function into a script from the Browser:

1 Select Tools>Browser from the menu bar.

2 Do one of the following:

• Select a global function from the Function page.

• Select the object that contains the object-level function you want to
paste from the corresponding page (such as the Window page).

3 Double-click the Functions category in the right pane.

4 Select the function you want to paste and select Copy from its pop-up
menu.

5 In the Script view, move the insertion point to where you want to paste the
function and select Paste from the pop-up menu.

The function and its prototype parameters display at the insertion point in
your script.

6 Specify the required arguments.
214 PowerBuilder Classic

C H A P T E R 9 Working with User Events

About this chapter This chapter introduces user events, describes how to define them, and
discusses how to use them in an application.

Contents

About user events
Windows, user objects, controls, menus, and Application objects each
have a predefined set of events. In most cases, the predefined events are
all you need, but there are times when you want to declare your own user
event. You can use predefined event IDs to trigger a user event, or you can
trigger it exclusively from within your application scripts.

Features that you might want to add to your application by creating user
events include keystroke processing, providing multiple ways to perform
a task, and communication between a user object and a window.

Keystroke processing Suppose that you want to modify the way keystrokes are processed in your
application. For example, in a DataWindow control, you want the user to
be able to press the Down Arrow and Up Arrow keys to scroll among radio
buttons in a DataWindow column. Normally, pressing these keys moves
the focus to the next or preceding row.

To do this, you define user events corresponding to Windows events that
PowerBuilder does not define.

Topic Page

About user events 215

Defining user events 218

Using a user event 221
Users Guide 215

About user events
Multiple methods Suppose that you want to provide several ways to accomplish a certain task
within a window. For example, you want the user to be able to update the
database by either clicking a button or selecting a menu item. In addition, you
want to provide the option of updating the database when the user closes the
window.

To do this, you define a user event to update the database.

Communication
between user object
and window

Suppose that you have placed a custom visual user object in a window and need
to communicate between the user object and the window. For information, see
“Communicating between a window and a user object” on page 389.

User events and event IDs
An event ID connects events related to user actions or system activity to a
system message. PowerBuilder defines (or maps) events to commonly used
event IDs, and when it receives a system message, it uses the mapped event ID
to trigger an event.

User-defined events do not have to be mapped to an event ID. See “Defining
user events” on page 218.

Event ID names

The PowerBuilder naming convention for user event IDs is similar to the
convention Windows uses to name messages. All PowerBuilder event IDs
begin with pbm_.

Event IDs associated
with Windows
messages

Several Windows messages and notifications map to PowerBuilder event IDs.

For Windows messages that begin with wm_, the PowerBuilder event ID
typically has the same name with pbm_ substituted for wm_. For messages from
controls, the PowerBuilder event ID typically has the same name but begins
with pbm_ and has the Windows prefix for the control added to the message
name. For example:

• wm_keydown maps to pbm_keydown

• bm_getcheck (a button control message) maps to pbm_bmgetcheck

• bn_clicked (a button control notification message) maps to pbm_bnclicked

To see a list of event IDs to which you can map a user-defined event, select
Insert>Event and display the Event ID drop-down list in the Prototype window
that displays.
216 PowerBuilder Classic

CHAPTER 9 Working with User Events
Windows messages that are not mapped to a PowerBuilder event ID map to the
pbm_other event ID. The PowerBuilder Message object is populated with
information about system events that are not mapped to PowerBuilder event
IDs. For more information about the Message object, see Objects and Controls
or Application Techniques.

For more information about Windows messages and notifications, see the
information about Windows controls and Windows management in the section
on user interface design and development in the Microsoft MSDN Library at
http://msdn.microsoft.com/library/default.aspx.

Event IDs associated
with PowerBuilder
events

PowerBuilder has its own events, each of which has an event ID. For example,
the PowerBuilder event DragDrop has the event ID pbm_dragdrop. The event
name and event ID of the predefined PowerBuilder events are protected; they
cannot be modified. The event IDs for predefined events are shown in the
Event List view:

Custom event IDs The list of event IDs that displays in the Event ID drop-down list in the
Prototype window includes custom event IDs. Custom user events can be
mapped from Windows wm_user message numbers to pbm_customxx event
IDs.

Obsolete technique
This technique is not recommended and is considered to be obsolete. The
ability to use this technique has been retained for backward compatibility. If
you do not want to map a user event to a named pbm_ code, use an unmapped
user event as described in “Unmapped user events” on page 219.
Users Guide 217

Defining user events
These event IDs were intended for use with DataWindow controls, windows,
and user objects other than standard visual user objects, which behave like the
built-in controls they inherit from. They were not intended for use with
standard controls.

Defining custom user events for standard controls can cause unexpected
behavior because all standard controls respond to standard events in the range
0 to 1023. Most controls also define their own range of custom events beyond
1023, corresponding to wm_user messages, and some controls have custom
events that overlap with the PowerBuilder custom events. The pbm_custom01
event ID maps to wm_user+0, pbm_custom02 maps to wm_user+1, and so on,
through pbm_custom75, which maps to wm_user+74.

Defining user events
In PowerBuilder, you can define both mapped and unmapped user events for
windows, user objects, controls, menus, and the Application object.

When you add a new event, a Prototype window displays above the script area
in the Script view. Most of the fields in the Prototype window are the same as
when you define a user-defined function. They are in the same order as the
event’s signature: access level, return type, and name; then for each parameter,
how it is passed, its datatype, and its name; and finally, the THROWS clause.
For information about filling in these fields, see “Defining user-defined
functions” on page 205.

The access level for events is always public.

The Prototype window for user events has an additional field that you use if
you want to map the user event to an event ID.
218 PowerBuilder Classic

CHAPTER 9 Working with User Events
External check box
When you select the External check box, PowerBuilder sets the
IsExternalEvent property of the ScriptDefinition object associated with the
event to “true”. This has no effect on your application in this release. The
feature may be used in a future release.

Mapped user events When a system message occurs, PowerBuilder triggers any user event that has
been mapped to the message and passes the appropriate values to the event
script as arguments. When you define a user event and map it to an event ID,
you must use the return value and arguments that are associated with the event
ID.

Unmapped user
events

Unmapped user events are associated with a PowerBuilder activity and do not
have an event ID. When you define an unmapped user event, you specify the
arguments and return datatype; only your application scripts can trigger the
user event. For example, if you create an event called ue_update that updates a
database, you might trigger or post the event in the Clicked event of an Update
command button.

❖ To define a mapped user event:

1 Open the object for which you want to define a user event.

2 If you want to define a user event for a control on a window or visual user
object, double-click the control to select it.

3 Select Insert>Event from the menu bar, or, in the Event List view, select
Add from the pop-up menu.

The Prototype window opens in the Script view. If you display the Script
view’s title bar, you see (Untitled) because you have not named the
event yet. If there is no open Script view, a new view opens.

4 Name the event and tab to the next field.

Event names can have up to 40 characters. For valid characters, see the
PowerScript Reference.

To recognize user events easily, consider prefacing the name with an easily
recognizable prefix such as ue_.

When you tab to the next field, the user event is added to the Event List
view. It is saved as part of the object whenever you save the object.

5 Select an ID from the drop-down list at the bottom of the Prototype
window.
Users Guide 219

Defining user events
❖ To define an unmapped user event:

1 Open the object for which you want to define a user event.

2 If you want to define a user event for a control on a window or visual user
object, double-click the control to select it.

3 Select Insert>Event from the menu bar, or, in the Event List view, select
Add from the pop-up menu.

The Prototype window opens in the Script view. If you display the Script
view’s title bar, you see (Untitled) because you have not named the
event yet. If there is no open Script view, a new view opens.

4 Select a return type and tab to the next field.

Defining return types for events is similar to defining them for functions.
See “Defining a return type” on page 207.

When you can specify return type and arguments
If you map the user event to an event ID, you cannot change its return type
or specify arguments.

5 Name the event and tab to the next field.

Event names can have up to 40 characters. For valid characters, see the
PowerScript Reference.

To recognize user events easily, consider prefacing the name with an easily
recognizable prefix such as ue_.

When you tab to the next field, the user event is added to the Event List
view. It is saved as part of the object whenever you save the object.

6 If the event will take arguments, define arguments for the event.

Defining arguments for events is similar to defining them for functions.
See “Defining arguments” on page 209 and “Changing the arguments” on
page 212.

7 Optionally enter the name of exceptions that can be thrown by the event.

❖ To open a user event for editing:

• In the Event List view, double-click the event’s name.

❖ To delete a user event:

• In the Event List view, select the user event’s name and select Delete from
the Edit menu or the pop-up menu.
220 PowerBuilder Classic

CHAPTER 9 Working with User Events
Using a user event
After you define a user event, you must write the script that PowerBuilder will
execute when that user event is triggered. If it is an unmapped user event, you
also write the code that will trigger the user event.

User events display in alphabetical order in the Event List view and the event
list box in the Script view, along with the predefined events. As with predefined
events, the script tells PowerBuilder what processing to perform when the user
event occurs.

If the user event is not mapped to a Windows message (that is, if there is no
event ID associated with it), you must trigger the event in a script. You can
trigger the user event in an object using the EVENT syntax. For information
about calling events, see the PowerScript Reference.

Examples of user event scripts
This section includes two examples that use a mapped user event and one
example that uses an unmapped user event. For more user event examples, see
“Communicating between a window and a user object” on page 389.

Example 1: mapped
user event for a
control

Situation You have several SingleLineEdit controls in a window and want
the Enter key to behave like the Tab key (if users press Enter, you want them
to tab to the next SingleLineEdit).

Solution Define a user event for each SingleLineEdit. Give the event any
name you want, such as ue_CheckKey. Map the event to the event ID
pbm_keydown. Write a script for the user event that tests for the key that was
pressed. If Enter was pressed, set the focus to the SingleLineEdit that you want
the user to go to.

For example, in the script for the user event for sle_1, you could code:

// Script for user event ue_CheckKey
// which is mapped to pbm_keydown.
IF KeyDown(KeyEnter!) THEN // Go to sle_2 if

sle_2.SetFocus() // Enter pressed.
END IF

Similarly, in the script for the user event for sle_2, you could code:

// Script for user event ue_CheckKey,
// which is mapped to pbm_keydown.
Users Guide 221

Using a user event
IF KeyDown(KeyEnter!) THEN // Go to sle_3 if
sle_3.SetFocus() // Enter pressed.

END IF

Example 2: mapped
user event for an edit
style

Situation You have a DataWindow control with a column that uses the
RadioButton edit style and you want to allow users to scroll through the
RadioButtons when they press Down Arrow or Up Arrow (normally, pressing
Down Arrow or Up Arrow scrolls to the next or preceding row).

Solution Declare a user event for the DataWindow control that maps to the
event ID pbm_dwnkey and write a script like the following for it. dwn stands for
DataWindow notification.

// Script is in a user event for a DataWindow control.
// It is mapped to pbm_dwnkey. If user is in column
// number 6, which uses the RadioButton edit style, and
// presses DownArrow, the cursor moves to the next item
// in the RadioButton list, instead of going to the next
// row in the DataWindow, which is the default behavior.
// Pressing UpArrow moves to preceding RadioButton.
//
// Note that the CHOOSE CASE below tests for data
// values, not display values, for the RadioButtons.

int colnum = 6 // Column number
long rownum
rownum = dw_2.GetRow() // Current row

IF KeyDown(KeydownArrow!) AND &
This.GetColumn() = colnum THEN
CHOOSE CASE dw_2.GetItemString(rownum, colnum)

case "P" // First value in RB
This.SetItem(rownum, colnum,"L") // Next

case "L" // Second value in RB
This.SetItem(rownum, colnum,"A") // Next

case "A" // Last value in RB
This.SetItem(rownum, colnum,"P") // First

END CHOOSE
This.SetActionCode(1) // Ignore key press

END IF
// The following code does same thing for UpArrow.
IF KeyDown(KeyupArrow!) AND &

This.GetColumn() = colnum THEN
222 PowerBuilder Classic

CHAPTER 9 Working with User Events
CHOOSE CASE dw_2.GetItemString(rownum, colnum)
case "P" // First value in RB

This.SetItem(rownum, colnum,"A") // Last
case "L" // Another value in RB

This.SetItem(rownum, colnum,"P")
case "A" // Last value in RB

This.SetItem(rownum, colnum,"L")
END CHOOSE
This.SetActionCode(1)

END IF

Example 3: unmapped
user event for menu
options

Situation Suppose you use the same menu in all your windows, but you want
to enable or disable some menu items, in this case database update items,
depending on which window the user is in.

Solution In the window that will be the ancestor of all the sheet windows that
do not have database update capability, define an unmapped user event called
ue_ct_menu_enable. The event takes a boolean argument, ab_state, to set or
clear the enabled property on various menus. This is the script for the
ue_ct_menu_enable user event in the ancestor window:

// Enable / Disable Menu Options
im_CurrMenu.m_maint.m_add.enabled = Not ab_state
im_CurrMenu.m_maint.m_delete.enabled = Not ab_state
im_CurrMenu.m_maint.m_undelete.enabled = Not ab_state
im_CurrMenu.m_maint.m_update.enabled = Not ab_state
im_CurrMenu.m_maint.m_close.enabled = ab_state

Then, in the script for the Activate event in the ancestor window, call the user
event and pass the value “true” for the boolean variable ab_state.

this.EVENT ue_ct_menu_enable (TRUE)

Write a similar script for the Deactivate event with the value “false” for
ab_state.

You can use this window as the ancestor of any sheet window in your
application that does not have database update capability. When the window is
active, the Add, Delete, Undelete, and Update menu items are grayed out.
When it is not active, the Close item is grayed out.

For windows that have database update capability, you can create a second
ancestor window that inherits from the ancestor window in which you defined
ue_ct_menu_enable. In the second ancestor window, you can override the
ue_ct_menu_enable event script so that the appropriate menu options are
enabled.
Users Guide 223

Using a user event
224 PowerBuilder Classic

C H A P T E R 1 0 Working with Structures

About this chapter This chapter describes how to build and use structures.

Contents

About structures
A structure is a collection of one or more related variables of the same or
different datatypes grouped under a single name. In some languages, such
as Pascal and COBOL, structures are called records.

Structures allow you to refer to related entities as a unit rather than
individually. For example, if you define the user’s ID, address, access
level, and a picture (bitmap) of the employee as a structure called
s_employee, you can then refer to this collection of variables as
s_employee.

Two kinds There are two kinds of structures:

• Global structures, which are not associated with any object in your
application. You can declare an instance of the structure and reference
the instance in any script in your application.

• Object-level structures, which are associated with a particular type of
window, menu, or user object, or with the Application object. These
structures can always be used in scripts for the object itself. You can
also choose to make the structures accessible from other scripts.

Topic Page

About structures 225

Defining structures 226

Modifying structures 228

Using structures 229
Users Guide 225

Defining structures
Deciding which kind you want
When you design your application, think about how the structures you are
defining will be used:

• If the structure is general-purpose and applies throughout the application,
make it a global structure.

• If the structure applies only to a particular type of object, make it an
object-level structure.

Defining structures
Although you define object-level structures in the painter for a specific object
and global structures in the Structure painter, in both cases you define the
structure in a Structure view. The following sections describe each of the steps
you take to define a new structure:

1 Open a Structure view.

2 For object-level structures, name the structure.

3 Define the variables that make up the structure.

4 Save the structure.

Opening a Structure
view

How you open the Structure view depends on whether you are defining an
object-level structure or a global structure.

❖ To define an object-level structure:

1 Open the object for which you want to declare the structure.

You can declare structures for windows, menus, user objects, or
applications.

2 Select Insert>Structure from the menu bar.

A Structure view opens.
226 PowerBuilder Classic

CHAPTER 10 Working with Structures
❖ To define a global structure:

• Select Structure from the Objects tab in the New dialog box.

The Structure painter opens. It has one view, the Structure view. In the
Structure painter, there is no Structure Name text box in the Structure view.

Naming the structure If you are defining an object-level structure, you name it in the Structure Name
box in the Structure view. If you are defining a global structure, you name it
when you save the structure.

Structure names can have up to 40 characters. For information about valid
characters, see the PowerScript Reference.

You might want to adopt a naming convention for structures so that you can
recognize them easily. A common convention is to preface all global structure
names with s_ and all object-level structure names with str_.

Defining the variables

❖ To define the variables that compose the structure:

1 Enter the datatype of a variable that you want to include in the structure.

The default for the first variable is string; the default for subsequent
variables is the datatype of the previous variable. You can specify any
PowerBuilder datatype, including the standard datatypes such as integer
and string, as well as objects and controls such as Window or
MultiLineEdit.

You can also specify any object types that you have defined. For example,
if you are using a window named w_calculator that you have defined and
you want the structure to include the window, type w_calculator as the
datatype. (You cannot select w_calculator from the list, since the list shows
only built-in datatypes.)

A structure as a variable
A variable in a structure can itself be a structure. Specify the structure’s
name as the variable's datatype.

Specifying decimal places
If you select decimal as the datatype, the default number of decimal places
is 2. You can also select decimal{2} or decimal{4} to specify 2 or 4
decimal places explicitly.

2 Enter the name of the variable.

3 Repeat until you have entered all the variables.
Users Guide 227

Modifying structures
Saving the structure How you save the structure depends on whether it is an object-level structure
or a global structure.

The names of object-level structures are added to the Structure List view and
display in the title bar of the Structure view as soon as you tab off the Structure
Name box. As you add variables to the structure, the changes are saved
automatically. When you save the object that contains the structure, the
structure is saved as part of the object in the library where the object resides.

Comments and object-level structures
You cannot enter comments for an object-level structure, because it is not a
PowerBuilder object.

❖ To name and save a global structure:

1 Select File>Save from the menu bar, or close the Structure painter.

The Save Structure dialog box displays.

2 Name the structure.

See “Naming the structure” on page 227.

3 (Optional) Add comments to describe your structure.

4 Choose the library in which to save the structure.

5 Click OK.

PowerBuilder stores the structure in the specified library. You can view the
structure as an independent entry in the Library painter.

Modifying structures
❖ To modify a structure:

1 Do one of the following:

• In the Open dialog box, select the global structure you want to modify.

• Open the painter for the object that contains the object-level structure
and select the structure from the Structure List view.

If the Structure List view is not open, select it from the View menu.
228 PowerBuilder Classic

CHAPTER 10 Working with Structures
2 Review the variable information displayed in the Structure view and
modify the structure as necessary.

To insert a variable before an existing variable, highlight it and select
Insert>Row from the menu bar or Insert Row from the pop-up menu.

To delete a variable, select Delete Row from the pop-up menu.

3 Save the modified structure.

Building a similar
structure

If you want to create a structure that is similar to one that already exists, you
can use the existing structure as a starting point and modify it.

❖ To build an object-level structure that is similar to an existing
object-level structure:

1 Select the existing structure in the Structure List view.

2 Select Duplicate from the pop-up menu.

3 Name the new structure in the Structure Name box.

4 Modify variables as needed.

❖ To build a global structure that is similar to an existing global structure:

1 Open and modify the existing structure.

2 Select File>Save As to save the structure under another name or in another
library.

Using structures
After you define the structure, you can:

• Reference an instance of the structure in scripts and functions

• Pass the structure to functions

• Display and paste information about structures by using the Browser
Users Guide 229

Using structures
Referencing structures
When you define a structure, you are defining a new datatype. You can use this
new datatype in scripts and user-defined functions as long as the structure
definition is stored in a library in the application's library search path.

❖ To use a structure in a script or user-defined function:

1 Declare a variable of the structure type.

2 Reference the variable in the structure.

Referencing global
structures

The variables in a structure are similar to the properties of a PowerBuilder
object. To reference a global structure’s variable, use dot notation:

structure.variable

Example Assume that s_empdata is a global structure with the variables
emp_id, emp_dept, emp_fname, emp_lname, and emp_salary. To use this
structure definition, declare a variable of type s_empdata and use dot notation
to reference the structure’s variables, as shown in the following script:

s_empdata lstr_emp1, lstr_emp2 // Declare 2 variables
// of type emp_data.

lstr_emp1.emp_id = 100 // Assign values to the
lstr_emp1.emp_dept = 200 // structure variables.
lstr_emp1.emp_fname = "John"
lstr_emp1.emp_lname = "Paul-Jones"
lstr_emp1.emp_salary = 99908.23

// Retrieve the value of a structure variable.
lstr_emp2.emp_salary = lstr_emp1.emp_salary * 1.05

// Use a structure variable in a
// PowerScript function.
MessageBox ("New Salary", &

String(lstr_emp2.emp_salary,"$###,##0.00"))

Referencing
object-level structures

You reference object-level structures in scripts for the object itself exactly as
you do global structures: declare a variable of the structure type, then use dot
notation:

structure.variable
230 PowerBuilder Classic

CHAPTER 10 Working with Structures
Example Assume that the structure str_custdata is defined for the window
w_history and you are writing a script for a CommandButton in the window. To
use the structure definition in the script, you write:

str_custdata lstr_cust1
lstr_cust1.name = "Joe"

No access to object-level structures outside the object
You cannot make object-level structures accessible outside the object because
object-level structures are implicitly private.

Copying structures

❖ To copy the values of a structure to another structure of the same type:

• Assign the structure to be copied to the other structure using this syntax:

struct1 = struct2

PowerBuilder copies all the variable values from struct2 to struct1.

Example These statements copy the values in lstr_emp2 to lstr_emp1:

str_empdata lstr_emp1, lstr_emp2
...
lstr_emp1 = lstr_emp2

Using structures with functions
You can pass structures as arguments in user-defined functions. Simply name
the structure as the datatype when defining the argument. Similarly,
user-defined functions can return structures. Name the structure as the return
type for the function.

You can also define external functions that take structures as arguments.

Example Assume the following:

• Revise is an external function that expects a structure as its argument.

• lstr_empdata is a declared variable of a structure datatype.
Users Guide 231

Using structures
You can call the function as follows:

Revise(lstr_empdata)

Declare the function first
The external function must be declared before you can reference it in a script.

For more about passing arguments to external functions, see Application
Techniques.

Displaying and pasting structure information
You can display the names and variables of defined structures in the Browser.
You can also paste these entries into a script.

❖ To display information about a global structure in the Browser:

1 Select the Structure tab and select a structure.

2 Double-click the properties folder in the right pane.

The properties folder expands to show the structure variables as properties
of the structure.

❖ To display information about an object-level structure in the Browser:

1 Select the tab for the type of object for which the structure is defined.

2 Select the object that contains the structure.

3 Double-click the structure folder in the right pane.

The structure folder expands to display the structure variables using dot
notation.

❖ To paste the information into a script:

1 Scroll to the structure variable you want to paste.

2 Select Copy from the variable’s pop-up menu.

3 Insert the cursor in the script where you want to paste the variable and
select Paste from the pop-up menu.

The variable name displays at the insertion point in the script.
232 PowerBuilder Classic

P A R T 4 Working with Windows

This part describes how to create windows for your
application. It covers the properties of windows, the
controls you can place in windows, how to use inheritance
to save time and effort, and how to define menus. It also
introduces user objects.

C H A P T E R 1 1 Working with Windows

About this chapter This chapter describes how to build windows in the Window painter.

Contents

About windows
Windows form the interface between the user and a PowerBuilder
application. Windows can display information, request information from
a user, and respond to the user’s mouse or keyboard actions.

A window consists of:

• Properties that define the window’s appearance and behavior

For example, a window might have a title bar or a minimize box.

• Events

Windows have events like other PowerBuilder objects.

• Controls placed in the window

At the window level When you create a window, you specify its properties in the Window
painter’s Properties view. You can also dynamically change window
properties in scripts during execution.

Topic Page

About windows 235

Types of windows 237

About the Window painter 240

Building a new window 241

Viewing your work 250

Writing scripts in windows 252

Running a window 255

Using inheritance to build a window 256
Users Guide 235

About windows
You can write scripts for window events that specify what happens when a
window is manipulated. For example, you can connect to a database when a
window is opened by coding the appropriate statements in the script for the
window’s Open event.

At the control level You place PowerBuilder controls, such as CheckBox, CommandButton, or
MultiLineEdit controls, in the window to request and receive information from
the user and to present information to the user.

After you place a control in the window, you can define the style of the control,
move and resize it, and build scripts to determine how the control responds to
events.

Designing windows
The Microsoft Windows operating environment has certain standards that
graphical applications are expected to conform to. Windows, menus, and
controls are supposed to look and behave in predictable ways from application
to application.

This chapter describes some of the guidelines you should follow when
designing windows and applications, but a full discussion is beyond the scope
of this book. You should acquire a book that specifically addresses design
guidelines for applications on the Windows platform and apply the rules when
you use PowerBuilder to create your application.

Building windows
When you build a window, you:

• Specify the appearance and behavior of the window by setting its
properties

• Add controls to the window

• Build scripts that determine how to respond to events in the window and
its controls

To support these scripts, you can define new events for the window and its
controls, and declare functions, structures, and variables for the window.
236 PowerBuilder Classic

CHAPTER 11 Working with Windows
Two ways There are two ways to build a window. You can:

• Build a new window from scratch

You use this technique to create windows that are not based on existing
windows.

• Build a window that inherits its style, events, functions, structures,
variables, and scripts from an existing window

You use inheritance to create windows that are derived from existing
windows, thereby saving you time and coding.

For more information For information on building windows from scratch, see “Building a new
window” on page 241.

For information on using inheritance to build a window, see “Using inheritance
to build a window” on page 256.

Types of windows
PowerBuilder provides the following types of windows: main, pop-up, child,
response, Multiple Document Interface (MDI) frame, and MDI frame with
MicroHelp.

Main windows
Main windows are standalone windows that are independent of all other
windows. They can overlap other windows and can be overlapped by other
windows.

You use a main window as the anchor for your application. The first window
your application opens is a main window unless you are building a Multiple
Document Interface (MDI) application, in which case the first window is an
MDI frame.

For more on building MDI applications, see Application Techniques.

Using main windows Define your independent windows as main windows. For example, assume that
your application contains a calculator or scratch pad window that you want to
have always available to the user. Make it a main window, which can be
displayed at any time anywhere on the screen. As a main window, it can
overlap other windows on the screen.
Users Guide 237

Types of windows
Pop-up windows
Pop-up windows are typically opened from another window, which in most
cases becomes the pop-up window’s parent.

Using the application’s Open event
If you open a pop-up window from the application’s Open event, the pop-up
window does not have a parent and works the same way a main window works.

A pop-up window can display outside its parent window. It cannot be overlaid
by its parent. A pop-up window is hidden when its parent is minimized and
when its parent is closed. When you minimize a pop-up window, the icon for
the window displays at the bottom of the desktop.

Using pop-up
windows

Pop-up windows are often used as supporting windows. For example, say you
have a window containing master information, such as film listings. You can
use a pop-up window to allow a user to see details of a particular entry.

Explicitly naming a
parent

In most cases, the window that opens a pop-up window becomes that window's
parent. For example, if a script in w_go has this statement, w_go is the parent
of w_popup:

Open(w_popup)

You can also explicitly name a pop-up window’s parent when you use Open in
this way:

Open (popupwindow, parentwindow)

For example, the following statement opens w_popup and makes w_parent its
parent:

Open(w_popup, w_parent)

However, there are also other considerations regarding which window
becomes the parent of an opened window.

For more information, see the Open function in the PowerScript Reference.
238 PowerBuilder Classic

CHAPTER 11 Working with Windows
Child windows
Child windows are always opened from within a main or pop-up window,
which becomes the child window’s parent.

A child window exists only within its parent. You can move the child window
within the parent window, but not outside the parent. When you move a portion
of a child window beyond the parent, PowerBuilder clips the child so that only
the portion within the parent window is visible. When you move the parent
window, the child window moves with the parent and maintains the same
position relative to the parent.

Child windows cannot have menus and are never considered the active
window. They can have title bars and can be minimizable, maximizable, and
resizable. When they are maximized, they fill the space of their parent; when
they are minimized, their icon displays at the bottom of their parent.

The initial position of the child is relative to the parent and not to the entire
screen. A child window closes when you close its parent.

You will probably not use child windows very often. Typically, if you want to
display windows inside other windows, you will write MDI applications,
where much of the window management happens automatically.

For more on building MDI applications, see Application Techniques.

Response windows
Response windows request information from the user. They are always opened
from within another window (its parent). Typically, a response window is
opened after some event occurs in the parent window.

Response windows are application modal. That is, when a response window
displays, it is the active window (it has focus) and no other window in the
application is accessible until the user responds to the response window. The
user can go to other applications, but when the user returns to the application,
the response window is still active. Response windows act like modal pop-up
windows.

Using response
windows

For example, if you want to display a confirmation window when a user tries
to close a window with unsaved changes, use a response window. The user is
not allowed to proceed until the response window is closed.

Using message boxes PowerBuilder also provides message boxes, which are predefined windows
that act like response windows in that they are application modal. You open
message boxes using the PowerScript MessageBox function.
Users Guide 239

About the Window painter
For more information, see MessageBox in the PowerScript Reference.

MDI frames
An MDI window is a frame window in which you can open multiple document
windows (sheets) and move among the sheets. There are two types of MDI
frame windows: MDI frame and MDI frame with MicroHelp.

For more on building MDI applications, see Application Techniques.

About the Window painter
Views in the Window
painter

You design windows in the Window painter. The Window painter has several
views where you specify how a window looks and how it behaves. The
Window painter looks similar to the User Object painter for visual user objects
and it has the same views. For details about the views, how you use them, and
how they are related, see “Views in painters that edit objects” on page 124.

Window painter
workspace

The default layout for the Window painter workspace has two stacked panes
with the Script and Properties views at the top of the stacks.

Most of your work in the Window painter is done in three views:

• The Layout view, where you design the appearance of the window

• The Properties view, where you set window properties and control
properties

• The Script view, where you modify behavior by coding window and
control scripts
240 PowerBuilder Classic

CHAPTER 11 Working with Windows
This illustration shows the Layout view at the top of one of the stacks.

For information about specifying window properties, see “Defining the
window's properties” on page 242.

For information about adding controls and nonvisual objects to a window, see
“Adding controls” on page 248 and “Adding nonvisual objects” on page 249.

For information about coding in the Script view, see “Writing scripts in
windows” on page 252 and Chapter 7, “Writing Scripts.”

Building a new window
This section describes how to build windows from scratch. You use this
technique to create windows that are not based on existing windows.

Creating a new window

❖ To create a new window:

1 Open the New dialog box.

2 On the PB Object tab page, select Window.

3 Click OK.
Users Guide 241

Building a new window
The Window painter opens. The new window displays in the Window
painter’s Layout view and its default properties display in the Properties
view.

Defining the window's properties
Every window and control has a style that determines how it appears to the
user. You define a window's style by choosing settings in the Window painter’s
Properties view. A window's style encompasses its:

Type
Basic appearance
Initial position on the screen
Icon when minimized
Pointer

About defining a window’s style
When you define a window’s style in the Window painter, you are actually
assigning values to the properties for the window. You can programmatically
change a window’s style during execution by setting its properties in scripts.
For a complete list of window properties, see Objects and Controls.

❖ To specify window properties:

1 Click the window’s background to display the window’s properties in the
Properties view.

Another way to display window properties
You can also select the window name in the Control List view.

2 Choose the tab appropriate to the property you want to specify:

To specify the window's Choose this tab

Name, type, state, color, and whether a menu is
associated with it

General

Icon to represent the window when you minimize it General

Transparency General

Opening and closing animation styles General

Position and size when it displays at runtime Other

Default cursor whenever the mouse moves over the
window

Other
242 PowerBuilder Classic

CHAPTER 11 Working with Windows
Using the General property page

Use the General property page to specify the following window information:

Window type
Title bar text
Menu name
Color
Transparency
Animation

Specifying the
window's type

The first thing you should do is specify the type of window you are creating.

❖ To specify the window’s type:

1 In the Properties view for the window, select the General tab.

2 Scroll down the property page and select the appropriate window type
from the WindowType drop-down list.

Depending on the type of window, PowerBuilder enables or disables certain
check boxes that specify other properties of the window. For example, if you
are creating a main window, the Title Bar check box is disabled. Main windows
always have title bars, so you cannot clear the Title Bar check box.

Specifying other basic
window properties

By selecting and clearing check boxes on the General property page, you can
specify whether the window is resizable or minimizable, is enabled, has a
border, and so on.

Note the following:

• A main window must have a title bar

• A child window cannot have a menu

Horizontal and vertical scroll bar placement Scroll

Toolbar placement Toolbar

To specify the window's Choose this tab
Users Guide 243

Building a new window
• A response window cannot have a menu, Minimize box, or Maximize box

Associating a menu
with the window

Many of your windows will have a menu associated with them.

❖ To associate a menu with the window:

1 Do one of the following:

• Enter the name of the menu in the Menu Name text box on the General
property page

• Click the Browse button and select the menu from the Select Object
dialog box, which displays a list of all menus available to the
application

2 Click the Preview button in the PainterBar to see the menu.

For information about preview, see “Viewing your work” on page 250.

Changing the menu
You can change a menu associated with a window during execution using the
ChangeMenu function. For more information, see the PowerScript Reference.

Choosing a window
color

You can change the background color of your window.

❖ To specify the color of a window:

• Do one of the following:

• Specify the color of the window from the BackColor drop-down list
on the General property page

• If the window is an MDI window, specify a color in the MDI Client
Color drop-down list

Changing default
window colors

For main, child, pop-up, and response windows, the default color is ButtonFace
if you are defining a 3D window, and white if you are not. If you or the user
specified different display colors in the Windows Control Panel, a 3D window
will display in the color that is set for the window background.

You can change the default for windows that are not 3D in the Application
painter Properties view. To do so, click the Additional Properties button on the
General page and modify the Background color on the Text Font tab page. New
windows that are not 3D will have the new color you specified.

For more about using colors in windows, including how to define your own
custom colors, see Chapter 12, “Working with Controls.”
244 PowerBuilder Classic

CHAPTER 11 Working with Windows
Choosing the window
icon

If the window can be minimized, you can specify an icon to represent the
minimized window. If you do not choose an icon, PowerBuilder uses the
application icon for the minimized window.

❖ To choose the window icon:

1 Click the window’s background so the Properties view displays window
properties.

2 Select the General tab.

3 Choose the icon from the Icon drop-down list or use the Browse (...) button
to select an icon (.ICO) file.

The icon you chose displays in the Icon list.

Changing the icon at runtime
You can change the window icon at runtime by assigning in code the name of
the icon file to the window’s Icon property, window.Icon.

Specifying the
window’s
transparency

You can specify a value between 1 and 100% for the Transparency property of
a window. This property is useful if you want a non-modal dialog box to remain
visible but become semi-transparent when it loses focus.

Opening and closing
windows with an
animated effect

You can use a special effect when a window opens or closes. Effects include
fading in or out, opening from the center, and sliding or rolling from the top,
bottom, left, or right. You specify animation effects with the OpenAnimation,
CloseAnimation, and AnimationTime properties. Set the AnimationTime
property to between 1 and 5000 milliseconds to specify how long the animation
effect takes to complete.

For example, if your application displays a splash screen while the
application’s main window is initializing, you can set the splash screen’s
CloseAnimation property to have the window fade out rather than just
disappearing when the application is initialized or after a timeout by setting the
CloseAnimation property to FadeAnimation!.

Choosing the window's size and position

❖ To resize a window in the Layout view:

• Drag the edge of the window in the Window painter’s Layout view.

Resizing a window is easiest using the Layout view, but you can also change
the window’s width and height properties in the Properties view.
Users Guide 245

Building a new window
❖ To specify a window’s position and size:

1 Click the window’s background so the Properties view displays window
properties.

2 Select the Other tab.

3 Enter values for x and y locations in PowerBuilder units.

About x and y values
For main, pop-up, response, and MDI frame windows, x and y locations
are relative to the upper-left corner of the screen. For child windows, x and
y are relative to the parent.

4 Enter values for width and height in PowerBuilder units.

The size of the window changes in the Layout view.

5 To see the position of the window, click the Preview button in the
PainterBar (not the Preview button on the PowerBar).

6 To return to PowerBuilder, close the window.

For information about preview, see “Viewing your work” on page 250.

About PowerBuilder
units

All window measurements are in PowerBuilder units (PBUs). Using these
units, you can build applications that look similar on different resolution
screens. A PBU is defined in terms of logical inches. The size of a logical inch
is defined by your operating system as a specific number of pixels. The number
is dependent on the display device. Windows typically uses 96 pixels per
logical inch for small fonts and 120 pixels per logical inch for large fonts.

Almost all sizes in the Window painter and in scripts are expressed as
PowerBuilder units. The two exceptions are text size, which is expressed in
points, and grid size in the Window and DataWindow painters, which is in
pixels.

For more about PowerBuilder units, see the PowerScript Reference.

Choosing the window's pointer

The default pointer used when the mouse is over a window is an arrow. You can
change this default on the Other page in the properties view.

❖ To choose the window pointer:

1 Click the window’s background so the Properties view displays window
properties.
246 PowerBuilder Classic

CHAPTER 11 Working with Windows
2 Select the Other tab.

3 At the bottom of the property page, choose the pointer from the Pointer
drop-down list or use the Browse (...) button to select a cursor (.CUR) file.

Specifying the pointer for a control
You can specify the pointer that displays when the mouse is over an individual
control. Select the control to display the Properties view for the control, then
specify the Pointer property on the Other page.

Specifying window scrolling

If your window is resizable, it is possible that not all the window’s contents will
be visible during execution. In such cases, you should make the window
scrollable by providing vertical and horizontal scroll bars. You do this on the
Scroll property page.

By default, PowerBuilder controls scrolling when scroll bars are present. You
can control the amount of scrolling.

❖ To specify window scrolling:

1 Click the window’s background so the Properties view displays window
properties.

2 Select the Scroll tab.

3 Indicate which scroll bars you want to display by selecting the HScrollBar
and VScrollBar check boxes.

4 Specify scrolling characteristics as follows:

Option Meaning

UnitsPerLine The number of PowerBuilder units to scroll up or down
when the user clicks the up or down arrow in the vertical
scroll bar. When the value is 0 (the default), it scrolls 1/100
the height of the window.

UnitsPerColumn The number of PowerBuilder units to scroll right or left
when the user clicks the right or left arrow in the horizontal
scroll bar. When the value is 0 (the default), it scrolls 1/100
the width of the window.

ColumnsPerPage The number of columns to scroll when the user clicks the
horizontal scroll bar itself. When the value is 0 (the
default), it scrolls 10 columns.
Users Guide 247

Building a new window
Specifying toolbar properties

You can specify whether or not you want to display a menu toolbar (if the menu
you associate with your window assigns toolbar buttons to menu objects) in
your window. If you choose to display the toolbar, you can specify the location
for it.

❖ To specify toolbar properties:

1 Click the window’s background so the Properties view displays window
properties.

2 Select the Toolbar tab.

3 To display the toolbar with your window, select the ToolbarVisible check
box.

4 Set the location of the toolbar by selecting an alignment option from the
ToolbarAlignment drop-down list.

5 If you choose Float as your toolbar alignment, you must set the following
values:

• X and Y coordinates for the toolbar

• Width and Height for the toolbar

For more information about defining toolbars, see Chapter 14, “Working with
Menus and Toolbars.”

Adding controls
When you build a window, you place controls, such as CheckBox,
CommandButton, and MultiLineEdit controls, in the window to request and
receive information from the user and to present information to the user.

After you place a control in the window, you can define its style, move and
resize it, and write scripts to determine how the control responds to events.

For more information, see Chapter 12, “Working with Controls.”

LinesPerPage The number of lines to scroll when the user clicks the
vertical scroll bar itself. When the value is 0 (the default),
it scrolls 10 lines.

Option Meaning
248 PowerBuilder Classic

CHAPTER 11 Working with Windows
Adding nonvisual objects
You can automatically create nonvisual objects in a window by inserting a
nonvisual object in the window. You do this if you want the services of a
nonvisual object available to your window. The nonvisual object you insert can
be a custom class or standard class user object.

You insert a nonvisual object in a window in the same way you insert one in a
user object. For more information, see “Using class user objects” on page 386.

Saving the window
You can save the window you are working on at any time.

❖ To save a window:

1 Select File>Save from the menu bar.

If you have previously saved the window, PowerBuilder saves the new
version in the same library and returns you to the Window painter
workspace.

If you have not previously saved the window, PowerBuilder displays the
Save Window dialog box.

2 Name the window in the Windows text box (see below).

3 Type comments in the Comments text box to describe the window.

These comments display in the Select Window window and in the Library
painter. It is a good idea to use comments so you and others can easily
remember the purpose of the window later.

4 Specify the library where you want to save the window.

5 Click OK.

Naming the window The window name can be any valid PowerBuilder identifier of up to 40
characters. For information about PowerBuilder identifiers, see the
PowerScript Reference.

A commonly used convention is to preface all window names with w_ and use
a suffix that helps you identify the particular window. For example, you might
name a window that displays employee data w_empdata.
Users Guide 249

Viewing your work
Viewing your work
While building a window, you can preview it and print its definition.

Previewing a window
As you develop a window, you can preview its appearance from the Window
painter. By previewing the window, you get a good idea of how it will look
during execution.

Preview button on the PainterBar and the PowerBar
You can preview a window from the Window painter using the Preview button
on the PainterBar or by clicking the Preview button on the PowerBar. When
you use the Preview button on the PainterBar, you do not have to save the
window first, but you cannot trigger events as described below. For
information about previewing using the PowerBar button, see “Running a
window” on page 255.

❖ To preview a window:

• Click the Preview button in the PainterBar (not the PowerBar), or select
Design>Preview from the menu bar.

PowerBuilder minimizes and the window displays with the properties you
have defined, such as title bar, menu, Minimize box, and so on.

What you can do While previewing the window, you can get a sense of its look and feel. You can:

• Move the window

• Resize it (if it is resizable)

• Maximize, minimize, and restore it (if these properties were enabled)

• Tab from control to control

• Select controls

What you cannot do You cannot:

• Change properties of the window

Changes you make while previewing the window, such as resizing it, are
not saved.
250 PowerBuilder Classic

CHAPTER 11 Working with Windows
• Trigger events

For example, clicking a CommandButton while previewing a window
does not trigger its Clicked event.

• Connect to a database

❖ To return to the Window painter:

• Do one of the following:

• If the Window has a control menu, select Close from the control menu
or click the Close button in the upper right corner of the window.

• If the window is visible, shut down the process.

• If the window is not visible, click PowerBuilder on the task bar and
then click the Terminate button.

Printing a window's definition
You can print a window's definition for documentation purposes.

❖ To print information about the current window:

• Select File>Print from the menu bar.

Information about the current window is sent to the printer specified in
Printer Setup. The information sent to the printer depends on variables
specified in the [Library] section of the PowerBuilder initialization file.

Print settings
You can view and change the print settings in the Library painter. Select
any PowerBuilder object, then select Entry>Library Item>Print from the
menu bar.
Users Guide 251

Writing scripts in windows
Writing scripts in windows
You write scripts for window and control events. To support these scripts, you
can define:

• Window-level and control-level functions

• Instance variables for the window

About events for windows and controls
Windows have several events including Open, which is triggered when the
window is opened (before it is displayed), and Close, which is triggered when
the window is closed. For example, you might connect to a database and
initialize some values in the window’s Open event, and disconnect from a
database in the Close event.

Each type of control also has its own set of events. Buttons, for example, have
Clicked events, which trigger when a user clicks the button. SingleLineEdits
and MultiLineEdits have Modified events, which trigger when the contents of
the edit control change.

Defining your own
events

You can also define your own events, called user events, for a window or
control, then use the EVENT keyword to trigger your user event.

For example, assume that you offer the user several ways to update the
database from a window, such as clicking a button or selecting a menu item. In
addition, when the user closes the window, you want to update the database
after asking for confirmation. You want the same type of processing to happen
after different system events.

You can define a user event for the window, write a script for that event, and
then everywhere you want that event triggered, use the EVENT keyword.

To learn how to use user events, see Chapter 9, “Working with User Events.”
252 PowerBuilder Classic

CHAPTER 11 Working with Windows
About functions for windows and controls
PowerBuilder provides built-in functions that act on windows and on different
types of controls. You can use these functions in scripts to manipulate your
windows and controls. For example, to open a window, you can use the built-in
window-level function Open, or you can pass parameters between windows by
opening them with the function OpenWithParm and closing them with
CloseWithReturn.

You can define your own window-level functions to make it easier to
manipulate your windows. For more information, see Chapter 8, “Working
with User-Defined Functions.”

About properties of windows and controls
In scripts, you can assign values to the properties of objects and controls to
change their appearance or behavior. You can also test the values of properties
to obtain information about the object.

For example, you can change the text displayed in a StaticText control when
the user clicks a CommandButton, or use data entered in a SingleLineEdit to
determine what information is retrieved and displayed in a DataWindow
control.

To refer to properties of an object or control, use dot notation to identify the
object and the property:

object.property

control.property

Unless you identify the object or control when you refer to a property,
PowerBuilder assumes you are referring to a property of the object or control
the script is written for.

The reserved word Parent
In the script for a window control, you can use the reserved word Parent to refer
to the window containing the control. For example, the following line in a
script for a CommandButton closes the window containing the button:

close(Parent)

It is easier to reuse a script if you use Parent instead of the name of the window.

All properties, events, and built-in functions for all PowerBuilder objects,
including windows, and each type of control are described in Objects and
Controls.
Users Guide 253

Writing scripts in windows
Declaring instance variables
Often, data needs to be accessible in several scripts within a window. For
example, assume a window displays information about one customer. You
might want several CommandButtons to manipulate the data, and the script for
each button needs to know the customer’s ID. There are several ways to
accomplish this:

• Declare a global variable containing the current customer ID

All scripts in the application have access to this variable.

• Declare an instance variable within the window

All scripts for the window and controls in the window have access to this
variable.

• Declare a shared variable within the window

All scripts for the window and its controls have access to this variable. In
addition, all other windows of the same type have access to the same
variable.

When declaring variables, you need to consider what the scope of the variable
is. If the variable is meaningful only within a window, declare it as a
window-level variable, generally an instance variable. If the variable is
meaningful throughout the entire application, make it a global variable.

For a complete description of the types of variables and how to declare them,
see the PowerScript Reference.

Examples of statements
The following assignment statement in the script for the Clicked event for a
CommandButton changes the text in the StaticText object st_greeting when the
button is clicked:

st_greeting.Text = "Hello User"

The following statement tests the value entered in the SingleLineEdit sle_state
and displays the window w_state1 if the text is "AL":

if sle_State.Text= "AL" then Open(w_state1)
254 PowerBuilder Classic

CHAPTER 11 Working with Windows
Running a window
During development, you can test a window without running the whole
application.

You can preview a window from the Window painter using the Preview button
on the PainterBar or run the window by clicking the Preview button on the
PowerBar. The PowerTip text for this button is Run/Preview Object. For
information about previewing using the PainterBar button, see “Previewing a
window” on page 250.

When you run the window using the PowerBar button, you must save the
window first. You can also trigger events and open other windows because the
window is functional.

❖ To run a window:

1 Click the Preview button in the PowerBar (not the PainterBar).

2 In the Run/Preview dialog box, select Windows as the Objects of Type.

3 Select the target that includes the window you want to run.

4 Select the library that includes the window.

5 Select the window you want to run and click OK.

You must save your work before running a window. If you have not saved
your work, PowerBuilder prompts you to do so.

PowerBuilder runs the window.

You can trigger events, open other windows, connect to a database, and so on
when running a window. The window is fully functional. It has access to global
variables that you have defined for the application and to built-in global
variables, such as SQLCA. The SystemError event is not triggered if there is
an error, because SystemError is an Application object event.

❖ To return to the Window painter:

• Do one of the following:

• If the Window has a control menu, select Close from the control menu
or click the Close button in the upper right corner of the window.

• If the window is not visible, click PowerBuilder on the task bar and
then click the Terminate button

.

Users Guide 255

Using inheritance to build a window
Using inheritance to build a window
When you build a window that inherits its definition—its style, events,
functions, structures, variables, controls, and scripts—from an existing
window, you save coding time. All you have to do is modify the inherited
definition to meet the requirements of the current situation.

This section provides an overview of using inheritance in the Window painter.
The issues concerning inheritance with windows are the same as the issues
concerning inheritance with user objects and menus. They are described in
more detail in Chapter 13, “Understanding Inheritance.”

Building two windows with similar definitions
Assume your application needs two windows with similar definitions. One
window, w_employee, needs:

• A title (Employee Data)

• Text that says Select a file:

• A drop-down list with a list of available employee files

• An Open button with a script that opens the selected file in a multiline edit
box

• An Exit button with a script that asks the user to confirm closing the
window and then closes the window

The window looks like this:

The only differences in the second window, w_customer, are that the title is
Customer Data, the drop-down list displays customer files instead of employee
files, and there is a Delete button so the user can delete files.
256 PowerBuilder Classic

CHAPTER 11 Working with Windows
Your choices To build these windows, you have three choices:

• Build two new windows from scratch as described in “Building a new
window” on page 241

• Build one window from scratch and then modify it and save it under
another name

• Use inheritance to build two windows that inherit a definition from an
ancestor window

Using inheritance To build the two windows using inheritance, follow these steps:

1 Create an ancestor window, w_ancestor, that contains the text, drop-down
list, and the open and exit buttons, and save and close it.

Note You cannot inherit a window from an existing window when the
existing window is open, and you cannot open a window when its ancestor
or descendant is open.

2 Select File>Inherit, select w_ancestor in the Inherit From dialog box, and
click OK.

3 Add the Employee Data title, specify that the DropDownListBox control
displays employee files, and save the window as w_employee.

4 Select File>Inherit, select w_ancestor in the Inherit From dialog box, and
click OK.

5 Add the Customer Data title, specify that the DropDownListBox control
displays customer files, add the Delete button, and save the window as
w_customer.

Advantages of using inheritance
Using inheritance has a number of advantages:

• When you change the ancestor window, the changes are reflected in all
descendants of the window. You do not have to make changes manually in
the descendants as you would in a copy. This saves you coding time and
makes the application easier to maintain.

• Each descendant inherits the ancestor's scripts, so you do not have to
re-enter the code to add to the script.

• You get consistency in the code and in the application windows.
Users Guide 257

Using inheritance to build a window
When you use inheritance to build an object, everything in the ancestor object
is inherited in all its descendants. In the descendant, you can:

• Change the properties of the window

• Add controls to the window and modify existing controls

• Size and position the window and the controls in the window

• Build new scripts for events in the window or its controls

• Reference the ancestor's functions and events

• Reference the ancestor’s structures if the ancestor contains a public or
protected instance variable of the structure data type

• Access ancestor properties, such as instance variables, if the scope of the
property is public or protected

• Extend or override inherited scripts

• Declare functions, structures, and variables for the window

• Declare user events for the window and its controls

The only thing you cannot do is delete inherited controls. If you do not need an
inherited control, you can make it invisible in the descendent window.

Instance variables in descendants
If you create a window by inheriting it from an existing window that has public
or protected instance variables with simple datatypes, the instance variables
display and can be modified in the descendent window’s Properties view. You
see them at the bottom of the General tab page. In this illustration, the last two
properties are inherited instance variables.
258 PowerBuilder Classic

CHAPTER 11 Working with Windows
All public instance variables with simple datatypes such as integer, boolean,
character, date, string, and so on display. Instance variables with the any or blob
data type or instance variables that are objects or arrays do not display.

Control names in descendants
PowerBuilder uses this syntax to show names of inherited controls:

ancestorwindow::control

For example, if you select the Open button in w_customer, which is inherited
from w_ancestor, its name displays on the General page in the properties view
as w_ancestor::cb_open.

Names of controls must be unique in an inheritance hierarchy. For example,
you cannot have a CommandButton named cb_close defined in an ancestor and
a different CommandButton named cb_close defined in a child. You should
develop a naming convention for controls in windows that you plan to use as
ancestors.
Users Guide 259

Using inheritance to build a window
260 PowerBuilder Classic

C H A P T E R 1 2 Working with Controls

About this chapter Users run your application primarily by interacting with the controls you
place in windows. This chapter describes the use of controls.

Contents

About controls
About window controls You place controls in a window to request and receive information from

the user and to present information to the user. For a complete list of
standard window controls, open a window in the Window painter and
select Insert>Control.

If you often use a control or set of controls with certain properties, such as
a group of related radio buttons, you can create a visual user object that
contains the control or set of controls. For more about user objects, see
Chapter 15, “Working with User Objects.”

Topic Page

About controls 261

Inserting controls in a window 262

Selecting controls 263

Defining a control’s properties 264

Naming controls 264

Changing text 267

Moving and resizing controls 268

Copying controls 271

Defining the tab order 272

Defining accelerator keys 274

Specifying accessibility of controls 275

Choosing colors 276

Using the 3D look 278

Using the individual controls 279
Users Guide 261

Inserting controls in a window
About events All window controls have events so that users can act on the controls. You write
scripts that determine the processing that takes place when an event occurs in
the control.

Drawing controls are usually used only to make your window more attractive
or to group controls. Only constructor and destructor events are defined for
them, but you can define your own events if needed. The drawing controls are
Line, Oval, Rectangle, and RoundRectangle.

Inserting controls in a window
You insert controls in a window in the Window painter.

❖ To insert a control in a window:

1 Select Insert>Control from the menu bar, or display the Controls
drop-down toolbar on the PainterBar.

2 Select the control you want to insert.

If you select User Object, the Select Object dialog box displays listing all
user objects defined for the application. Select the library and the user
object and click OK.

3 In the Layout view, click where you want the control.

After you insert the control, you can size it, move it, define its appearance and
behavior, and create scripts for its events.

Duplicating controls To place multiple controls of the same type in a window, place a control in the
window and make sure it is selected. Then press Ctrl+T or select Duplicate
from the pop-up menu once for each duplicate control you want to place in the
window. The controls are placed one under another. You can drag them to other
locations if you want.

Inserting controls with
undefined content

When you insert a DataWindow, Picture, PictureButton, or PictureHyperLink
control in a window, you are inserting only the control. You see only an empty
box for a DataWindow control, the dotted outline of a box for Picture and
PictureHyperLink controls, and a large button resembling a CommandButton
for a PictureButton control. You must specify a DataWindow object or picture
later.
262 PowerBuilder Classic

CHAPTER 12 Working with Controls
Dragging and dropping DataWindow objects
You can insert a DataWindow control with a predefined DataWindow object in
a window by dragging the DataWindow object from the System Tree to the
window’s Layout view.

Placing OLE controls You can place objects from applications that support OLE, such as Excel
worksheets and Visio drawings, in your windows. For information about using
OLE with PowerBuilder, see Application Techniques.

Selecting controls
You select controls so that you can change their properties or write scripts using
the Layout view or the Control List view.

❖ To select a control:

• Click the control in the Layout view, or click the control in the Control List
view.

In the Layout view, the control displays with handles on it. Previously
selected controls are no longer selected.

Acting on multiple
controls

You can act on all or multiple selected controls as a unit. For example, you can
move all of them or change the fonts for all the text displayed in the controls.

❖ To select multiple controls:

• In the Layout or Control List view, click the first control and then press and
hold the Ctrl key and click additional controls.

❖ To select neighboring multiple controls:

• In the Layout view, press the left mouse button, drag the mouse over the
controls you want to select, and release the mouse button.

Selecting all controls
You can select all controls by selecting Edit>Select All from the menu bar.

Information displayed
in the MicroHelp bar

The name, x and y coordinates, width, and height of the selected control are
displayed in the MicroHelp bar. If you select multiple objects, Group
Selected displays in the Name area and the coordinates and size do not
display.
Users Guide 263

Defining a control’s properties
Defining a control’s properties
Just like the window object, each control has properties that determine how the
control looks and behaves at runtime (the control’s style).

You define a control's properties by using the Properties view for the control.
The properties and values displayed in the Properties view change dynamically
when you change the selected object or control. To see this, click the window
background to display the window properties in the Properties view and then
click a control in the window to display the control’s properties in the
Properties view.

❖ To define a control's properties:

1 Select the control.

The selected control’s properties display in the Properties view.

2 Use the tab pages in the Properties view to change the control’s properties.

About tab pages in the
Properties view

The Properties view presents information in a consistent arrangement of tabbed
property pages. You select items on the individual property pages to change the
control's definition.

All controls have a General property page, which contains much of the style
information (such as the visibility of the control, whether it is enabled, and so
on) about the control. The General property page is always the first page.

Getting Help on
properties

You can get Help when you are defining properties. In any tab page in the
Properties view, right-click on the background and select Help from the pop-up
menu. The Help displays information about the control with a link to an
alphabetical list of properties for the control.

Naming controls
When you place a control in a window, PowerBuilder assigns it a unique name.
The name is the concatenation of the default prefix for the control name and
the lowest 1- to 4-digit number that makes the name unique.

For example, assume the prefix for ListBoxes is lb_ and you add a ListBox to
the window:

• If the names lb_1, lb_2, and lb_3 are currently used, the default name is lb_4

• If lb_1 and lb_3 are currently used but lb_2 is not, the default name is lb_2
264 PowerBuilder Classic

CHAPTER 12 Working with Controls
About the default prefixes
Each type of control has a default prefix for its name. Table 12-1 lists the initial
default prefix for each control (note that there is no prefix for a window).

Table 12-1: Default prefixes for window control names

Control Prefix

Animation am_

CheckBox cbx_

CommandButton cb_

DataWindow dw_

DatePicker dp_

DropDownListBox ddlb_

DropDownPictureListBox ddplb_

EditMask em_

Graph gr_

GroupBox gb_

HProgressBar hpb_

HScrollBar hsb_

HTrackBar htb_

InkEdit ie_

InkPicture ip_

Line ln_

ListBox lb_

ListView lv_

MonthCalendar mc_

MultiLineEdit mle_

OLE 2.0 ole_

Oval ov_

Picture p_

PictureHyperLink phl_

PictureButton pb_

PictureListBox plb_

RadioButton rb_

Rectangle r_

RichTextEdit rte_

RoundRectangle rr_

SingleLineEdit sle_

StaticText st_
Users Guide 265

Naming controls
Changing the default prefixes

You can change the default prefixes for controls in the Window painter’s
Options dialog box. Select Design>Options from the menu bar to open the
Options dialog box. The changes you make are saved in the PowerBuilder
initialization file. For more about the PowerBuilder initialization file, see
“How the PowerBuilder environment is managed” on page 57.

Changing the name
You should change the default suffix to a suffix that is meaningful in your
application. For example, if you have command buttons that update and
retrieve database information, you might call them cb_update and cb_retrieve.
If you have many controls on a window, using intuitive names makes it easier
for you and others to write and understand scripts for these controls.

Using application-based names instead of sequential numbers also minimizes
the likelihood that you will have name conflicts when you use inheritance to
create windows.

❖ To change a control's name:

1 Select the control to display the control’s properties in the Properties view.

2 On the General tab page, select the application-specific suffix (for
example, the 1 in the cb_1 command button name) and type a more
meaningful one.

You can use any valid PowerBuilder identifier with up to 255 characters.
For information about PowerBuilder identifiers, see the PowerScript
Reference.

StaticHyperLink shl_

Tab tab_

TreeView tv_

User Object uo_

VProgressBar vpb_

VScrollBar vsb_

VTrackBar vtb_

Control Prefix
266 PowerBuilder Classic

CHAPTER 12 Working with Controls
Changing text
You can specify the text and text display characteristics for a control in the
Properties view for the control. You can also use the Window painter StyleBar
to change:

• The text itself

• The font, point size, and characteristics such as bold

• The alignment of text within the control

CommandButton text
Text in CommandButtons is always center aligned.

The default text for most controls that have a text property is none. To display
an empty StaticText or SingleLineEdit control, clear the Text box in the
Properties view or the StyleBar.

When you add text to a control’s text property, the width of the control changes
automatically to accommodate the text as you type it in the StyleBar, or when
you tab off the Text box in the Properties view.

❖ To change text properties of controls:

1 Select one or more controls whose properties you want to change.

2 Specify changes in the Font tab page in the Properties view, or specify
changes using the StyleBar.

How text size is stored
A control's text size is specified in the control’s TextSize property.
PowerBuilder saves the text size in points, using negative numbers.

For example, if you define the text size for the StaticText control st_prompt to
be 12 points, PowerBuilder sets the value of st_prompt’s TextSize property to
–12. PowerBuilder uses negative numbers to record point size for compatibility
with previous releases, which saved text size in pixels as positive numbers.

If you want to change the point size of text at runtime in a script, remember to
use a negative value. For example, to change the point size for st_prompt to 14
points, code:

st_prompt.TextSize = -14
Users Guide 267

Moving and resizing controls
You can specify text size in pixels if you want, by using positive numbers. The
following statement sets the text size to be 14 pixels:

st_prompt.TextSize = 14

Moving and resizing controls
There are several ways to move and resize controls in the Layout view.

Moving and resizing controls using the mouse
To move a control, drag it with the mouse to where you want it.

To resize a control, select it, then grab an edge and drag the edge with the
mouse.

Moving and resizing controls using the keyboard
To move a control, select it, then press an arrow key to move it in the
corresponding direction.

To resize a control, select it, and then press:

• Shift+Right Arrow to make the control wider

• Shift+Left Arrow to make the control narrower

• Shift+Down Arrow to make the control taller

• Shift+Up Arrow to make the control shorter

Aligning controls using the grid
The Window painter provides a grid to help you align controls at design time.
You can use the grid options to:

• Make controls snap to a grid position when you place them or move them
in a window

• Show or hide the grid when the workspace displays

• Specify the height and width of the grid cells
268 PowerBuilder Classic

CHAPTER 12 Working with Controls
❖ To use the grid:

1 Choose Design>Options from the menu bar and select the General tab.

2 Do one or more of the following:

• Select Snap to Grid to align controls with a horizontal and vertical
grid when you place or move them

• Select Show Grid to display the grid in the Layout view

• Specify the width of each cell in the grid in pixels in the X text box

• Specify the height of each cell in the grid in pixels in the Y text box

Hiding the grid
Window painting is slower when the grid is displayed, so you might want to
display the grid only when necessary.

Aligning controls with each other
You can align selected controls by their left, right, top, or bottom edges or their
horizontal or vertical centers.

PainterBars in the Window painter
The Window painter has three PainterBars. PainterBar1 includes buttons that
perform operations that are common to many painters, including save, cut,
copy, paste, and close. PainterBar2 includes buttons used with the Script view.
PainterBar3 contains buttons that manipulate the display of the selected control
or controls. The tools used to align, resize, and adjust the space between
controls are on a drop-down toolbar on PainterBar3.

❖ To align controls:

1 Select the control whose position you want to use to align the others.

PowerBuilder displays handles around the selected control.

2 Press and hold the Ctrl key and click the controls you want to align with
the first one.

All the selected controls have handles on them.
Users Guide 269

Moving and resizing controls
3 Select Format>Align from the menu bar, or select the Layout drop-down
toolbar in PainterBar3.

4 Select the dimension along which you want to align the controls.

PowerBuilder aligns all the selected controls with the first control
selected.

Equalizing the space between controls
You can manually move controls by dragging them with the mouse. You can
also equalize the space around selected controls using the Format menu or the
Layout drop-down toolbar.

❖ To equalize the space between controls:

1 Select the two controls whose spacing is correct.

To do so, select one control, then press and hold Ctrl and click the second
control.

2 Press Ctrl and click to select the other controls whose spacing should
match that of the first two controls.

3 Select Format>Space from the menu bar, or select the Layout drop-down
toolbar in PainterBar3.

4 Select horizontal or vertical spacing.

Equalizing the size of controls
Using the Format menu or the Layout drop-down toolbar, you can adjust
selected controls so that they are all the same size as the first control selected.
You might do this if you have several SingleLineEdit or CommandButton
controls on a window.

❖ To equalize the size of controls:

1 Select the control whose size is correct.

2 Press and hold Ctrl and click to select the other controls that should be the
same size as the first control.

3 Select Format>Size from the menu bar, or select the Layout drop-down
toolbar in PainterBar3.

4 Select the size for width, height, or both width and height.
270 PowerBuilder Classic

CHAPTER 12 Working with Controls
Copying controls
You can copy controls within a window or to other windows. All properties of
the control, as well as all of its scripts, are copied. You can use this technique
to make a copy of an existing control and change what you want in the copy.

❖ To copy a control:

1 Select the control.

2 Select Edit>Copy from the menu bar or press Ctrl+C.

The control is copied to a private PowerBuilder clipboard.

3 Do one of the following:

• To copy the control within the same window, select Edit>Paste
Controls from the menu bar or press Ctrl+V.

• To copy the control to another window, click the Open button in the
PowerBar and open the window in another instance of the Window
painter. Make that window active and select Edit>Paste Controls from
the menu bar or press Ctrl+V.

If the control you are pasting has the same name as a control that
already exists in the window, the Paste Control Name Conflict dialog
box displays.

4 If prompted, change the name of the pasted control to be unique.

PowerBuilder pastes the control in the destination window at the same
location as in the source window. If you are pasting into the same window,
move the pasted control so it does not overlay the original control. You can
make whatever changes you want to the copy; the source control will be
unaffected.
Users Guide 271

Defining the tab order
Defining the tab order
When you place controls in a window, PowerBuilder assigns them a default tab
order, the default sequence in which focus moves from control to control when
the user presses the Tab key.

Tab order in user objects
When the user tabs to a custom user object in a window and then presses the
Tab key, focus moves to the next control in the tab order for the user object.
After the user tabs to all the controls in the tab order for the user object, focus
moves to the next control in the window tab order.

Establishing the default tab order
PowerBuilder uses the relative positions of controls in a window to establish
the default tab order. It looks at the positions in the following order:

• The distance of the control from the top of the window (Y)

• The distance of the control from the left edge of the window (X)

The control with the smallest Y distance is the first control in the default tab
order. If multiple controls have the same Y distance, PowerBuilder uses the X
distance to determine the tab order among them.

Default tab values
The default tab value for drawing objects and RadioButtons in a GroupBox is
0, which means the control is skipped when the user tabs from control to
control.

When you add a control to the window, PowerBuilder obtains the tab value of
the control that precedes the new control in the tab order and assigns the new
control the next number.

For example, if the tab values for controls A, B, and C are 30, 10, and 20
respectively and you add control D between controls A and B, PowerBuilder
assigns control D the tab value 40.
272 PowerBuilder Classic

CHAPTER 12 Working with Controls
Changing the window's tab order

❖ To change the tab order:

1 Select Format>Tab Order from the menu bar, or click the Tab Order button
on PainterBar1 (next to the Preview button).

The current tab order displays. If this is the first time you have used Tab
Order for the window, the default tab order displays.

2 Use the mouse or the Tab key to move the pointer to the tab value you want
to change.

3 Enter a new tab value from 0 to 9999.

The value 0 removes the control from the tab order. It does not matter
exactly what value you use, other than 0. Only the relative value is
significant. For example, if you want the user to tab to control B after
control A but before control C, set the tab value for control B so it is
between the value for control A and the value for control C.

Tab tips
A tab order value of 0 does not prevent a control from being selected or
activated or from receiving keyboard events. To prevent a user from
activating a control with the mouse, clear the Enabled check box on its
General property page.

To permit tabbing in a group box, change the tab value of the GroupBox
control to 0, then assign nonzero tab values to the controls in the group
box.

4 Repeat the procedure until you have the tab order you want.

5 Select Format>Tab Order or the Tab Order button again.

PowerBuilder saves the tab order.
Users Guide 273

Defining accelerator keys
Each time you select Tab Order, PowerBuilder renumbers the tab order values
to include any controls that have been added to the window and to allow space
to insert new controls in the tab order. For example, if the original tab values
for controls A, B, and C were 10, 20, and 30, and you insert control D between
A and B and give it a tab value of 15, when you select tab order again, the
controls A, B, and C will have the tab values 10, 30, and 40, and control D will
have the tab value 20.

Defining accelerator keys
You can define accelerator keys for controls to allow users to change focus
from one control to another. An accelerator key is sometimes referred to as a
mnemonic access key.

Users press Alt followed by the accelerator key to use an accelerator. If the
currently selected control is not an editable control (such as a SingleLineEdit,
MultiLineEdit, ListBox, or DropDownListBox), users only have to press the
accelerator key. They do not need to press the Alt key.

How you define accelerator keys depends on whether the type of control has
displayed text associated with it. If there is no displayed text, you must define
the accelerator key in the control itself and in a label that identifies the control.

❖ To define an accelerator key for a CommandButton, CheckBox, or
RadioButton:

1 Click the control to display the control’s properties in the Properties view.

2 In the Text box on the General page, precede the letter that you want to use
as the accelerator key with an ampersand character (&).

When you perform your next action (such as tab to the next property or
select the window or a control in the Layout view), the property is set and
PowerBuilder displays an underline to indicate the accelerator key.

Displaying an ampersand
If you want to display an ampersand character in the text of a control, type
a double ampersand. The first ampersand acts as an escape character.
274 PowerBuilder Classic

CHAPTER 12 Working with Controls
❖ To define an accelerator key for a SingleLineEdit, MultiLineEdit, ListBox,
or DropDownListBox:

1 Click the control to display the control’s properties in the Properties view.

2 In the General tab page, type the letter of the accelerator key in the
Accelerator box.

For example, if the control contains a user’s name and you want to make
Alt+N the accelerator for the control, type n in the Accelerator box.

At this point you have defined the accelerator key, but the user has no way
of knowing it, so you need to label the control.

3 Place a StaticText control next to the control that was assigned the
accelerator key.

4 Click the StaticText control to display its properties in the Properties view.

5 In the Text box on the General page, precede the letter that you want to use
as the accelerator key with an ampersand character (&).

For example, if the StaticText control will display the label Name, type
&Name in the Text box so that the letter N is underlined. Now your user
knows that there is an accelerator key associated with the control.

Specifying accessibility of controls
Controls have two boolean properties that affect accessibility of the control:

• Visible

• Enabled

Using the Visible property
If the Visible property of a control is selected, the control displays in the
window. If you want a control to be initially invisible, be sure the Visible
property is not selected in the General tab page in the control’s Properties view.

Hidden controls do not display by default in the Window painter’s Layout
view.
Users Guide 275

Choosing colors
❖ To display hidden controls in the Layout view:

• Select Design>Show Invisibles from the menu bar.

To display a control at runtime, assign the value “true” to the Visible property:

controlname.Visible = TRUE

Using the Enabled property
If the Enabled property is selected, the control is active. For example, an
enabled CommandButton can be clicked, a disabled CommandButton cannot.

If you want a control to display but be inactive, be sure the Enabled property is
not selected in the General tab page in the control’s Properties view. For
example, a CommandButton might be active only after the user has selected an
option. In this case, display the CommandButton initially disabled so that it
appears grayed out. Then, when the user selects the option, enable the
CommandButton in a script:

CommandButtonName.Enabled = TRUE

Choosing colors
The Window painter has two Color drop-down toolbars on PainterBar3 that
display colors that you can use for the background and foreground of
components of the window. Initially, the drop-down toolbars display these
color selections:

• 20 predefined colors

• 16 custom colors (labeled C)

• The full set of Windows system colors

Windows system
colors

The Windows system colors display in the same order as in the TextColor and
BackColor lists in the Properties view for a control. They are labeled with
letters that indicate the type of display element they represent:

• W for windows

• T for text in windows, title bars, menus, buttons, and so on

• A for the application workspace
276 PowerBuilder Classic

CHAPTER 12 Working with Controls
• B for button face, highlight, shadows, and borders

• S for scroll bars

• D for the desktop

• M for menu bars

• F for window frames

• H for highlight

• L for links

The Windows system colors are those defined by the user in the Windows
Control Panel, so if you use these colors in your window, the window colors
will change to match the user’s settings at runtime.

Defining custom
colors

You can define your own custom colors for use in windows, user objects, and
DataWindow objects.

❖ To define and maintain custom colors:

1 Select Design>Custom Colors from the menu bar.

The Color dialog box displays.

2 Click in an empty color box in the list of custom colors.

3 Choose an existing color or create the color you want. You can start with
one of the basic colors and customize it in the palette to the right by
dragging the color indicator with the mouse. You can also specify precise
values to define the color.
Users Guide 277

Using the 3D look
4 When you have the color you want, click Add to Custom Colors.

The new color displays in the list of custom colors.

5 Select the new color in the list of custom colors.

6 Click OK.

The new color displays in the Color drop-down toolbars and is available
in all windows, user objects, and DataWindow objects you create.

PowerBuilder saves custom colors in the [Colors] section of the PowerBuilder
initialization file, so they are available across sessions.

Specifying foreground
and background
colors

You can assign colors to controls using the Painterbar or the Properties view.
The page in the Properties view that you use depends on the control. For some
controls you can change only the background color, and for others you can
change neither the foreground nor the background color. These controls
include CommandButton, PictureButton, PictureHyperLink, Picture,
ScrollBar, TrackBar, ProgressBar, and OLE controls.

❖ To assign a color using the PainterBar:

1 Select the control.

2 Select either the foreground or background color button from the
PainterBar.

3 Select a color from the drop-down toolbar.

Using the 3D look
Applications sometimes have a three-dimensional look and feel. To use this
appearance for an application, select a 3D border for your SingleLineEdit
boxes and other controls and make the window background gray.

❖ To use the 3D look by default:

1 Select Design>Options from the menu bar.

The Options dialog box displays.

2 On the General property page, select Default to 3D.

When you build a new window, PowerBuilder automatically sets the
window background color to gray and uses 3D borders when you place
controls.
278 PowerBuilder Classic

CHAPTER 12 Working with Controls
PowerBuilder records this preference in the Default3D variable in the
[Window] section of the PowerBuilder initialization file, so the preference is
maintained across sessions.

Mapping 3D colors for
pictures

You can make the background of Picture, PictureHyperlink, and PictureButton
controls blend in with the background of your window. This applies to
whatever color scheme the user has selected on the Appearance page of the
Display Properties dialog box in the Windows Control Panel.

Use this feature if you want to place a control containing a picture on a window
and have the picture blend in with the background color of the window when
the window's background is using Button Face for a 3D effect. The control’s
picture takes on the 3D colors the user has selected.

The window’s background must be set to Button Face. To make the image
blend in with the window, give it a background color in the range between
RGB(160,160,160) and RGB(223,223,223), such as silver. Lighter shades of
gray map to the button highlight color and darker shades to the button shadow
color.

This option can affect other colors used in the bitmap. It does not affect the
control’s border settings, and it has no effect if there is no image associated
with the control.

Using the individual controls
There are four basic types of controls with different purposes.

Table 12-2: Summary of control types by function

Function Controls include

Invoke actions CommandButtons, PictureButtons, PictureHyperLinks,
StaticHyperLinks, Tabs, User Objects

Display or accept
data, or both

ListBoxes, PictureListBoxes, DropDownListBoxes,
DropDownPictureListBoxes, DataWindow controls, StaticText,
ListViews, TreeViews, RichTextEdit, Graphs, Pictures,
ProgressBars, ScrollBars, SingleLineEdits, MultiLineEdits,
EditMasks, Tabs, user objects, OLE controls, MonthCalendar,
DatePicker, InkEdit, and InkPicture controls

Indicate choices RadioButtons, CheckBoxes (you can group these controls in a
GroupBox), TrackBars

Decorative Line, Rectangle, RoundRectangle, Oval, Animation
Users Guide 279

Using the individual controls
How to use the
controls

You should use the controls only for the purpose shown in the table. For
example, users expect radio buttons for selecting an option. Do not use a radio
button also to invoke an action, such as opening a window or printing. Use a
command button for that.

There are, however, several exceptions: user objects can be created for any
purpose, and ListBoxes, ListViews, TreeViews, and Tabs are often used both
to display data and to invoke actions. For example, double-clicking a ListBox
item often causes some action to occur.

Individual controls The following sections describe some features that are unique to individual
controls. The controls are listed in the order in which they display on the
Insert>Control menu and the drop-down controls palette:

• “CommandButton” on page 281

• “PictureButton” on page 282

• “CheckBox” on page 283

• “RadioButton” on page 284

• “StaticText” on page 285

• “StaticHyperLink” on page 286

• “Picture” on page 286

• “PictureHyperLink” on page 287

• “GroupBox” on page 287

• “Drawing controls” on page 288

• “SingleLineEdit and MultiLineEdit” on page 288

• “EditMask” on page 289

• “HScrollBar and VScrollBar” on page 291

• “HTrackBar and VTrackBar” on page 292

• “HProgressBar and VProgressBar” on page 293

• “DropDownListBox” on page 293

• “DropDownPictureListBox” on page 294

• “ListBox” on page 295

• “PictureListBox” on page 296

• “ListView” on page 298
280 PowerBuilder Classic

CHAPTER 12 Working with Controls
• “TreeView” on page 301

• “Tab” on page 304

• “MonthCalendar” on page 308

• “DatePicker” on page 309

• “Animation” on page 313

• “InkEdit and InkPicture” on page 313

Some controls are not covered in this chapter:

• DataWindow controls and objects. See Chapter 18, “Defining
DataWindow Objects.”

• RichTextEdit controls. See Chapter 30, “Working with Rich Text.”

• User objects. See Chapter 15, “Working with User Objects.”

• Graph controls. See Chapter 26, “Working with Graphs.”

• OLE controls. See Chapter 31, “Using OLE in a DataWindow Object.”

CommandButton
CommandButtons are used to carry out actions. For example, you can use an
OK button to confirm a deletion or a Cancel button to cancel a requested
deletion. If there are many related CommandButtons, place them along the
right side of the window; otherwise, place them along the bottom of the
window.

You cannot change the color or alignment of text in a CommandButton.

If clicking the button opens a window that requires user interaction before any
other action takes place, use ellipsis points in the button text; for example,
“Print...”.

Specifying Default and Cancel buttons

You can specify that a CommandButton is the default button in a window by
selecting Default in the General property page in the button’s Properties view.
Users Guide 281

Using the individual controls
When there is a default CommandButton and the user presses the Enter key:

• If the focus is not on another CommandButton, the default button’s
Clicked event is triggered

• If the focus is on another CommandButton, the Clicked event of the button
with focus is triggered

Other controls affect default behavior
If the window does not contain an editable field, use the SetFocus function or
the tab order setting to make sure the default button behaves as described
above.

A bold border is placed around the default CommandButton (or the button with
focus if the user explicitly tabs to a CommandButton).

You can define a CommandButton as being the cancel button by selecting
Cancel in the General property page in the button’s Properties view. If you
define a cancel CommandButton, the cancel button’s Clicked event is triggered
when the user presses the Esc key.

PictureButton
PictureButtons are identical to CommandButtons in their functionality. The
only difference is that you can specify a picture to display on the button. The
picture can be a bitmap (BMP) file, a GIF or animated GIF file, a JPEG file, a
PNG file, a run-length encoded (RLE) file, or an Aldus-style Windows
metafile (WMF).

You can choose to display one picture if the button is enabled and a different
picture if the button is disabled.

Use these controls when you want to be able to represent the purpose of a
button by using a picture instead of text.

❖ To specify a picture:

1 Select the PictureButton to display its properties in the Properties view.

2 On the General tab page, enter the name of the image file you want to
display when the button is enabled, or use the Browse button and choose
a file.
282 PowerBuilder Classic

CHAPTER 12 Working with Controls
3 Enter the name of the image file you want to display when the button is
disabled, or use the Browse Disabled button and choose a file.

If the PictureButton is defined as initially enabled, the enabled picture
displays in the Layout view. If the PictureButton is defined as initially
disabled, the disabled picture displays in the Layout view.

❖ To specify button text alignment:

1 Select the PictureButton to display its properties in the Properties view.

2 On the General tab page, enter the text for the PictureButton in the Text
box.

3 Use the HTextAlign and VTextAlign lists to choose how you want to
display the button text.

CheckBox
CheckBoxes are square boxes used to set independent options. When they are
selected, they contain a check mark; when they are not selected, they are empty.

CheckBoxes are independent of each other. You can group them in a GroupBox
or rectangle to make the window easier to understand and use, but that does not
affect the CheckBoxes’ behavior; they are still independent.

Using three states CheckBoxes usually have two states: on and off. But sometimes you need to
represent a third state, such as Unknown. The third state displays as a grayed
box with a check mark.
Users Guide 283

Using the individual controls
❖ To enable the third state:

• Select the ThreeState property in the General page of the CheckBox
Properties view.

❖ To specify that a CheckBox’s current state is the third state:

• Select the ThreeState and the ThirdState properties in the General page of
the CheckBox Properties view.

RadioButton
RadioButtons are round buttons that represent mutually exclusive options.
They always exist in groups. Exactly one RadioButton is selected in each
group.

When a RadioButton is selected, it has a dark center; when it is not selected,
the center is blank.

In the following example, the text can be either plain, bold, or italic (plain is
selected):

When the user clicks a RadioButton, it becomes selected and the previously
selected RadioButton in the group becomes deselected.

Use RadioButtons to represent the state of an option. Do not use them to invoke
actions.

When a window opens, one RadioButton in a group must be selected. You
specify which is the initially selected RadioButton by selecting the Checked
property in the General property page in the RadioButton’s Properties view.

Grouping
RadioButtons

By default, all RadioButtons in a window are in one group, no matter what their
location in the window. Only one RadioButton can be selected at a time.

You use a GroupBox control to group related RadioButtons. All RadioButtons
inside a GroupBox are considered to be in one group. One button can be
selected in each group.
284 PowerBuilder Classic

CHAPTER 12 Working with Controls
The Automatic
property

When a window contains several RadioButtons that are outside of a GroupBox,
the window acts as a GroupBox. Only one RadioButton can be active at a time
unless the check box for the Automatic property on the RadioButton’s General
property page is cleared.

When the Automatic property is not set, you must use scripts to control when
a button is selected. Multiple RadioButtons can be selected outside of a group.

The Automatic property does not change how RadioButtons are processed
inside a GroupBox.

StaticText
You use a StaticText control to display text to the user or to describe a control
that does not have text associated with it, such as a list box or edit control.

The user cannot change the text, but you can change the text for a StaticText
control in a script by assigning a string to the control's Text property.

StaticText controls have events associated with them, but you will probably
seldom write scripts for them because users do not expect to interact with static
text.

Indicating accelerator
keys

One use of a StaticText control is to label a list box or edit control. If you assign
an accelerator key to a list box or edit control, you need to indicate the
accelerator key in the text that labels the control. Otherwise, the user would
have no way of knowing that an accelerator key is defined for the control. This
technique is described in “Defining accelerator keys” on page 274.

Indicating a border
style

You can select a border style using the BorderStyle property on the General
property page.

Selecting the Border property
The BorderStyle property will affect only the StaticText control if the Border
property check box is selected.
Users Guide 285

Using the individual controls
StaticHyperLink
A StaticHyperLink is display text that provides a hot link to a specified Web
page. When a user clicks the StaticHyperLink in a window, the user’s Web
browser opens to display the page.

The StaticHyperLink control has a URL property that specifies the target of the
link. You specify the text and URL on the StaticHyperLink control’s General
tab page in the Properties view.

If you know that your users have browsers that support URL completion, you
can enter a partial address—for example, sybase.com instead of the complete
address, http://www.sybase.com.

When the StaticHyperLink control is in an MDI Frame window with
MicroHelp, the URL you specify displays in the status bar when the user’s
pointer is over the control.

A hand is the default pointer and blue underlined text is the default font. To
change the pointer, use the Other property page. To change the font, use the
Font property page.

Picture
Pictures are PowerBuilder-specific controls that display a bitmap (BMP) file,
a GIF or animated GIF file, a JPEG file, a PNG file, a run-length encoded
(.RLE) file, or an Aldus-style Windows metafile (WMF).

❖ To display a picture:

1 Place a picture control in the window.

2 In the General tab page in the Properties view, enter in the PictureName
text box the name of the file you want to display, or browse to select a file.

The picture displays.

You can choose to resize or invert the image.

If you try to insert a very large image into a picture control, the image may fail
to display. The maximum size that will display depends on the version of
Windows, the graphics card and driver, and the available memory. Compressed
files must be decompressed to display. Failure to display is most likely to occur
with JPEG files because the JPEG standard supports very high compression
and the decompressed content may be many times larger than the size of the
JPEG file.
286 PowerBuilder Classic

CHAPTER 12 Working with Controls
Be careful about how you use picture controls. They can serve almost any
purpose. They have events, so users can click on them, but you can also use
them simply to display images. Be consistent in their use so users know what
they can do with them.

PictureHyperLink
A PictureHyperLink is a picture that provides a hot link to a specified Web
page. When a user clicks the PictureHyperLink in a window, the user’s Web
browser opens to display the page.

The PictureHyperLink control has a URL property that specifies the target of
the link. You specify the picture and URL in the PictureHyperLink control’s
Properties view in the General tab page. If you know that your users have
browsers that support URL completion, you can enter a partial address—for
example, sybase.com—instead of the complete address,
http://www.sybase.com.

When the PictureHyperLink control is in an MDI Frame window with
MicroHelp, the URL you specify appears in the status bar when the user’s
pointer is over the control.

A hand is the default pointer. To change the pointer, use the Other property
page.

The PictureHyperLink control is a descendant of the Picture control. Like a
Picture control, a PictureHyperLink control can display a bitmap (BMP) file, a
GIF or animated GIF file, a JPEG file, a PNG file, a run-length encoded (RLE)
file, or an Aldus-style Windows metafile (WMF).

You display a picture in a PictureHyperLink control in the same way you
display a picture in a picture control. For more information, see “Picture” on
page 286.

GroupBox
You use a GroupBox to group a set of related controls. When a user tabs from
another control to a GroupBox, or selects a GroupBox, the first control in the
GroupBox gets focus. To tab between controls in a GroupBox, set the tab value
of the GroupBox to 0 and assign a tab value to each control within it.
Users Guide 287

Using the individual controls
All RadioButtons in a GroupBox are considered to be in a group. For more
information about using RadioButtons in GroupBoxes, see “RadioButton” on
page 284.

Drawing controls
PowerBuilder provides the following drawing controls: Line, Oval, Rectangle,
and RoundRectangle. Drawing controls are usually used only to enhance the
appearance of a window or to group controls. However, constructor and
destructor events are available, and you can define your own unmapped events
for a drawing control. A drawing control does not receive Windows messages,
so a mapped event would not be useful.

You can use the following functions to manipulate drawing controls at runtime:

Hide
Move
Resize
Show

In addition, each drawing control has a set of properties that define its
appearance. You can assign values to the properties in a script to change the
appearance of a drawing control.

Never in front
You cannot place a drawing control on top of another control that is not a
drawing control, such as a GroupBox. Drawing controls always appear behind
other controls whether or not the Bring to Front or Send to Back items on the
pop-up menu are set. However, drawing controls can be on top of or behind
other drawing controls.

SingleLineEdit and MultiLineEdit
A SingleLineEdit is a box in which users can enter a single line of text. A
MultiLineEdit is a box in which users can enter more than one line of text.

SingleLineEdits and MultiLineEdits are typically used for input and output of
data.

For these controls, you can specify many properties, including:

• Whether the box has a border (the Border property)
288 PowerBuilder Classic

CHAPTER 12 Working with Controls
• Whether the box automatically scrolls as needed (AutoHScroll and, for
MultiLineEdits, AutoVScroll)

• For SingleLineEdits, whether the box is a Password box so asterisks are
displayed instead of the actual entry (Password)

• The case in which to accept and display the entry (TextCase)

• Whether the selection displays when the control does not have focus (Hide
Selection)

For more information about properties of these controls, right-click in any tab
page in the Properties view and select Help from the pop-up menu.

EditMask
Sometimes users need to enter data that has a fixed format. For example, U.S.
and Canadian phone numbers have a three-digit area code, followed by three
digits, followed by four digits. You can use an EditMask control that specifies
that format to make it easier for users to enter values. Think of an EditMask
control as a smart SingleLineEdit: it knows the format of the data that can be
entered.

An edit mask consists of special characters that determine what can be entered
in the box. An edit mask can also contain punctuation characters to aid the user.

For example, to make it easier for users to enter phone numbers in the proper
format, you can specify the following mask, where # indicates a number:

(###) ###-####

At runtime, the punctuation characters (the parentheses and dash) display in the
box and the cursor jumps over them as the user types.

Masks in EditMask controls in windows work in a similar way to masks in
display formats and in the EditMask edit style in DataWindow objects. For
more information about specifying masks, see the discussion of display
formats in Chapter 22, “Displaying and Validating Data.”

Edit mask character for Arabic and Hebrew
The b mask character allows the entry of Arabic characters when you run
PowerBuilder on an Arabic-enabled version of Windows and Hebrew
characters when running on a Hebrew-enabled version. It has no effect on other
operating systems.
Users Guide 289

Using the individual controls
❖ To use an EditMask control:

1 Select the EditMask to display its properties in the Properties view.

2 Name the control on the General property page.

3 Select the Mask tab.

4 In the MaskDataType drop-down list, specify the type of data that users
will enter into the control.

5 In the Mask edit box, type the mask.

You can click the button on the right and select masks. The masks have the
special characters used for the specified data type.

6 Specify other properties for the EditMask control.

For information on the other properties, right-click in any tab page in the
Properties view and select Help from the pop-up menu.

Control size and text entry
The size of the EditMask control affects its behavior. If the control is too small
for the specified font size, users might not be able to enter text.

To correct this, either specify a smaller font size or resize the EditMask control.

Validation for
EditMask controls

The EditMask control checks the validity of a date when you enter it, but if you
change a date so that it is no longer valid, its validity is not checked when you
tab away from the control. For example, if you enter the date 12/31/2005 in an
EditMask control with the mask mm/dd/yyyy, you can delete the 1 in 12, so that
the date becomes 02/31/2005. To catch problems like this, add validation code
to the LoseFocus event for the control.

Keyboard behavior Some keystrokes have special behavior in EditMask controls. For more
information, see “The EditMask edit style” on page 638.

Using a drop-down
calendar

You can use a drop-down calendar that is similar to the DatePicker control in
EditMask controls that have a Date or DateTime edit mask. The user can
choose to edit the date in the control or to select a date from a drop-down
calendar.

To specify that an EditMask control uses a drop-down calendar to display and
set dates, select the Drop-down Calendar check box on the Mask page in the
Properties view. You can set display properties for the calendar on the Calendar
page. Users navigate and select dates within the calendar as they do in the
calendar in a DatePicker control.
290 PowerBuilder Classic

CHAPTER 12 Working with Controls
Using spin controls You can define an EditMask as a spin control, which is an edit control that
contains up and down arrows that users can click to cycle through fixed values.
For example, assume you want to allow your users to select how many copies
of a report to print. You could define an EditMask as a spin control that allows
users to select from a range of values.

❖ To define an EditMask as a spin control:

1 Name the EditMask and provide the data type and mask, as described
above.

2 Select the Spin check box on the Mask property page.

3 Specify the needed information.

For example, to allow users to select a number from 1 to 20 in increments
of 1, specify a spin range of 1 to 20 and a spin increment of 1.

For more information on the options for spin controls, right-click in any tab
page in the Properties view and select Help from the pop-up menu.

HScrollBar and VScrollBar
You can place freestanding scroll bar controls within a window. Typically, you
use these controls to do one of the following:

• Act as a slider control with which users can specify a continuous value

• Graphically display information to the user

You can set the position of the scroll box by specifying the value for the
control’s Position property. When the user drags the scroll box, the value of
Position is automatically updated.
Users Guide 291

Using the individual controls
HTrackBar and VTrackBar
HTrackBars and VTrackBars are bars with sliders that move in discrete
increments. Like a scroll bar, you typically use a track bar as a slider control
that allows users to specify a value or see a value you have displayed
graphically, but on a discrete scale rather than a continuous scale. Clicking on
the slider moves it in discrete increments instead of continuously.

Typically a horizontal trackbar has a series of tick marks along the bottom of
the channel and a vertical trackbar has tick marks on the right.

Use a trackbar when you want the user to select a discrete value. For example,
you might use a trackbar to enable a user to select a timer interval or the size
of a window.

You can set properties such as minimum and maximum values, the frequency
of tick marks, and the location where tick marks display.

You can highlight a range of values in the trackbar with the SelectionRange
function. The range you select is indicated by a black fill in the channel and an
arrow at each end of the range. This is useful if you want to indicate a range of
preferred values. In a scheduling application, the selection range could indicate
a block of time that is unavailable. Setting a selection range does not prevent
the user from selecting a value either inside or outside the range.

You can see an example of a window with a trackbar in the PowerBuilder Code
Examples sample application in the Examples subdirectory in your
PowerBuilder directory. See the w_trackbars window in PBEXAMW3.PBL.
292 PowerBuilder Classic

CHAPTER 12 Working with Controls
HProgressBar and VProgressBar
HProgressBars and VProgressBars are rectangles that indicate the progress of
a lengthy operation, such as an installation program that copies a large number
of files. The progress bar gradually fills with the system highlight color as the
operation progresses.

You can set the range and current position of the progress bar in the Properties
view using the MinPosition, MaxPosition, and Position properties. To specify
the size of each increment, set the SetStep property.

You can see an example of a window with a progress bar in the PowerBuilder
Code Examples sample application in the Examples subdirectory in your
PowerBuilder directory. See the w_progressbars window in PBEXAMW3.PBL.

DropDownListBox
DropDownListBoxes combine the features of a SingleLineEdit and a ListBox.

There are two types of DropDownListBoxes:

• Noneditable

• Editable

Noneditable boxes If you want your user to choose only from a fixed set of choices, make the
DropDownListBox noneditable.

In these boxes, the only valid values are those in the list.

There are several ways for users to pick an item from a noneditable
DropDownListBox:

• Use the arrow keys to scroll through the list.

• Type a character. The ListBox scrolls to the first entry in the list that begins
with the typed character. Typing the character again scrolls to the next
entry that begins with the character, unless the character can be combined
with the first to match an entry.

• Click the down arrow to the right of the edit control to display the list, then
select the one you want.
Users Guide 293

Using the individual controls
Editable boxes If you want to give users the option of specifying a value that is not in the list,
make the DropDownListBox editable by selecting the AllowEdit check box on
the General tab page.

With editable DropDownListBoxes, you can choose to have the list always
display or not. For the latter type, the user can display the list by clicking the
down arrow.

Populating the list You specify the list in a DropDownListBox the same way as for a ListBox. For
information, see “ListBox” on page 295.

Specifying the size of
the drop-down box

To indicate the size of the box that drops down, size the control in the Window
painter using the mouse. When the control is selected in the painter, the full
size—including the drop-down box—is shown.

Other properties As with ListBoxes, you can specify whether the list is sorted and whether the
edit control is scrollable.

For more information, right-click in any tab page in the Properties view and
select Help from the pop-up menu.

DropDownPictureListBox
DropDownPictureListBoxes are similar to DropDownListBoxes in the way
they present information. They differ in that DropDownListBoxes use only text
to present information, whereas DropDownPictureListBoxes add images to the
information.

Everything that you can do with DropDownListBoxes you can do with
DropDownPictureListBoxes. For more information, see “DropDownListBox”
on page 293.

Adding images to a
DropDownPictureList
Box

You can choose from a group of stock images provided by PowerBuilder, or
use any bitmap (BMP), icon (ICO), GIF, JPEG, or PNG file when you add
images to a DropDownPictureListBox. You use the same technique that you
use to add pictures to a PictureListBox. For more information, see “Adding
images to a PictureListBox” on page 296.
294 PowerBuilder Classic

CHAPTER 12 Working with Controls
ListBox
A ListBox displays available choices. You can specify that ListBoxes have
scroll bars if more choices exist than can be displayed in the ListBox at one
time.

ListBoxes are an exception to the rule that a control should either invoke an
action or be used for viewing and entering data. ListBoxes can do both.
ListBoxes display data, but can also invoke actions. Typically in Windows
applications, clicking an item in the ListBox selects the item. Double-clicking
an item acts upon the item.

For example, in the PowerBuilder Open dialog box, clicking an object name in
a ListBox selects the object. Double-clicking a name opens the object’s painter.

PowerBuilder automatically selects (highlights) an item when a user selects it
at runtime. If you want something to happen when users double-click an item,
you must code a script for the control’s DoubleClicked event. The Clicked
event is always triggered before the DoubleClicked event.

Populating the list To add items to a ListBox, select the ListBox to display its properties in the
Properties view, select the Items tab, and enter the values for the list. Press tab
to go to the next line.

In the Items tab page, you can work with rows in this way:

Changing the list at runtime
To change the items in the list at runtime, use the functions AddItem,
DeleteItem, and InsertItem.

Setting tab stops You can set tab stops for text in ListBoxes (and in MultiLineEdits) by setting
the TabStop property on the General property page. You can define up to 16 tab
stops. The default is a tab stop every eight characters.

To do this Do this

Select a row Click the row button on the left or with the cursor in the edit box,
press Shift+Space

Delete a row Select the row and press Delete

Move a row Click the row button and drag the row where you want it or press
Shift+Space to select the row and then press Ctrl+Up Arrow or
Ctrl+Down Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu
Users Guide 295

Using the individual controls
You can also define tab stops in a script. Here is an example that defines two
tab stops and populates a ListBox:

// lb_1 is the name of the ListBox.
string f1, f2, f3
f1 = "1"
f2 = "Emily"
f3 = "Foulkes"
// Define 1st tab stop at character 5.
lb_1.tabstop[1] = 5
// Define 2nd tab stop 10 characters after the 1st.
lb_1.tabstop[2] = 10
// Add an item, separated by tabs.
// Note that the ~t must have a space on either side
// and must be lowercase.
lb_1.AddItem(f1 + " ~t " + f2 + " ~t " + f3)

Note that this script will not work if it is in the window’s Open event, because
the controls have not yet been created. The best way to specify this is in a user
event that is posted in the window’s Open event using the PostEvent function.

Other properties For ListBoxes, you can specify whether:

• Items in the ListBox are displayed in sorted order

• The ListBox allows the user to select multiple items

• The ListBox displays scroll bars if needed

For more information, right-click in any tab page in the Properties view for a
ListBox and select Help from the pop-up menu.

PictureListBox
A PictureListBox, like a ListBox, displays available choices in both text and
images. You can specify that PictureListBoxes have scroll bars if more choices
exist than can be displayed in the PictureListBox at one time.

Adding images to a
PictureListBox

You can choose from a group of stock images provided by PowerBuilder, or
use any bitmap (BMP), icon (ICO), GIF, JPEG, or PNG file when you add
images to a PictureListBox.

Keep in mind, however, that the images should add meaning to the list of
choices. If you use a large number of images in a list, they become
meaningless.
296 PowerBuilder Classic

CHAPTER 12 Working with Controls
You could, for example, use images in a long list of employees to show the
department to which each employee belongs, so you might have a list with 20
or 30 employees, each associated with one of five images.

❖ To add an image to a PictureListBox:

1 Select the PictureListBox control to display its properties in the Properties
view, and then select the Pictures tab.

The Pictures property page displays.

2 Use the PictureName drop-down ListBox to select stock pictures to add to
the PictureListBox
or
Use the Browse button to select a bitmap (BMP), icon (ICO), GIF, JPEG,
or PNG file to include in the PictureListBox.

About cursor files
To use a cursor file, you must type the file name. You cannot select it.

3 Specify a picture mask color (the color that will be transparent for the
picture).

4 Specify the height and width for the image in pixels or accept the defaults.

5 Repeat the procedure for the number of images you plan to use in your
PictureListBox.
Users Guide 297

Using the individual controls
6 Select the Items tab and change the Picture Index for each item to the
appropriate number.

7 Click OK.

On the Items tab page, you can work with rows in this way:

On the Pictures tab page, you can work with rows in the same way, and also:

For information about other properties, right-click in any tab page in the
Properties view and select Help from the pop-up menu.

ListView
A ListView control lets you display items and icons in a variety of
arrangements. You can display large or small icons in free-form lists. You can
add columns, pictures, and items to the ListView, and modify column
properties, using PowerScript functions such as AddColumn, AddLargePicture,
SetItem, SetColumn, and so on. For information about ListView functions, see
the online Help.

To Do this

Select a row Click the row button on the left, or with the cursor in the edit box,
press Shift+Space

Delete a row Select the row and press Delete

Move a row Click the row button and drag the row where you want it or press
Shift+Space to select the row and then press Ctrl+Up Arrow or
Ctrl+Down Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu

To Do this

Browse for a
picture

Select the row and click the Browse button or press F2
298 PowerBuilder Classic

CHAPTER 12 Working with Controls
The following illustration from the Code Examples application shows a
ListView control used in a sales order application.

Adding ListView items
and pictures

Adding images to a ListView control is the same as adding images to a
PictureListBox. The ListView control’s Properties view has two tab pages for
adding pictures: Large Picture (default size 32 by 32 pixels) and Small Picture
(16 by 16 pixels).

For more information, see “Adding images to a PictureListBox” on page 296.

❖ To add ListView items:

1 Select the ListView control to display its properties in the Properties view
and then select the Items tab.

2 Enter the name of the ListView item and the picture index you want to
associate with it. This picture index corresponds to the images you select
on the Large Picture, Small Picture, and State property pages.

On the Items tab page, you can work with rows in this way:

Note Setting the picture index for the first item to zero clears all the
settings on the tab page.

To Do this

Select a row Click the row button on the left, or with the cursor in the edit
box, press Shift+Space

Delete a row Select the row and press Delete

Move a row Click the row button and drag the row where you want it, or
press Shift+Space to select the row and then press Ctrl+Up
Arrow or Ctrl+Down Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu
Users Guide 299

Using the individual controls
3 Set properties for the item on the Large Picture, Small Picture, and/or State
tab pages as you did on the Items tab page.

On these pages, you can also browse for a picture. To do so, click the
browse button or press F2.

4 Repeat until all the items are added to the ListView.

Choosing a ListView
style

You can display a ListView in four styles:

• Large icon

• Small icon

• List

• Report

❖ To select a ListView style:

1 Select the ListView control to display its properties in the Properties view
and then select the General tab.

2 Select the type of view you want from the View drop-down list.

For more information about other properties, right-click in any tab page in the
Properties view and select Help from the pop-up menu.

Setting other
properties

You can set other ListView properties.

❖ To specify other ListView properties:

1 Select the ListView control to display its properties in the Properties view.

2 Choose the tab appropriate to the property you want to specify:

To specify
Choose
this tab

The border style General

Whether the user can delete items General

The images for ListView items in Large Icon view Large Picture

The images for ListView items in Small Icon, list, and report
views

Small Picture

The state images for ListView items State

The names and associated picture index for ListView items Items

The font size, family, and color for ListView items Font

The size and position of the ListView Other
300 PowerBuilder Classic

CHAPTER 12 Working with Controls
For more information on the ListView control, see Application Techniques. For
information about its properties, see Objects and Controls.

TreeView
You can use TreeView controls in your application to represent relationships
among hierarchical data. An example of a TreeView implementation is
PowerBuilder’s Browser. The tab pages in the Browser contain TreeView
controls.

Adding TreeView
items and pictures

A TreeView consists of TreeView items that are associated with one or more
pictures. You add images to a TreeView in the same way that you add images
to a PictureListBox.

For more information, see “Adding images to a PictureListBox” on page 296.

Dynamically changing image size
The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties when you create a TreeView.

For more information about PictureHeight and PictureWidth, see the
PowerScript Reference.

The icon for the mouse pointer in the ListView Other

The icon for a drag item, and whether the drag-and-drop must
be performed programmatically

Other

To specify
Choose
this tab
Users Guide 301

Using the individual controls
❖ To add items to a TreeView:

• Write a script in the TreeView constructor event to create TreeView items.

For more information about populating a TreeView, see Application
Techniques and Objects and Controls.

Adding state pictures
to TreeView items

A state picture is an image that appears to the left of the TreeView item
indicating that the item is not in its normal mode. A state picture could indicate
that a TreeView item is being changed, or that it is performing a process and is
unavailable for action.

❖ To specify a state picture for a TreeView item:

1 Select the TreeView control to display its properties in the Properties view
and then select the State tab.

2 Do one of the following:

• Use the StatePictureName drop-down list to select stock pictures to
add to the TreeView.

• Use the Browse button to select any bitmap (BMP), icon (ICO), GIF,
JPEG or PNG file.

To specify a cursor file
To use a cursor file, you must type the file name. You cannot select it.

Working in the Properties view with the rows in the State or Pictures tab page
is the same as working with them in a ListView control. For information, see
“ListView” on page 298.

❖ To activate a state picture for a TreeView item:

• Write a script that changes the image when appropriate.

For example, the following script gets the current TreeView item and
displays the state picture for it.

long ll_tvi
treeviewitem tvi
302 PowerBuilder Classic

CHAPTER 12 Working with Controls
ll_tvi = tv_foo.finditem(currenttreeitem! , 0)
tv_foo.getitem(ll_tvi , tvi)
tvi.statepictureindex = 1
tv_foo.setitem(ll_tvi, tvi)

For more information on the TreeView control, see Application
Techniques.

Setting other
properties

❖ To specify other TreeView properties:

1 Select the TreeView control to display its properties in the Properties view
and then select the General tab.

2 Enter a name for the TreeView in the Name text box and specify other
properties as appropriate. Among the properties you can specify on the
General property page are:

• The border style

• Whether the TreeView has lines showing the item hierarchy

• Whether the TreeView includes collapse and expand buttons

• Whether the user can delete items

• Whether the user can drag and drop items into the TreeView

For more information, right-click in any tab page in the Properties view
and select Help from the pop-up menu.

3 For other options, choose the tab appropriate to the property you want to
specify:

For more information on the TreeView control, see Application
Techniques. For information about its properties, see Objects and
Controls.

To specify Choose this tab

The images used to represent TreeView items Pictures

The state images for the TreeView items State

The font size, family, and color for TreeView items Font

The size and position of the TreeView Other

The icon for the mouse pointer in the TreeView Other

The icon for a drag item, and whether the
drag-and-drop must be performed programmatically

Other
Users Guide 303

Using the individual controls
Tab
A Tab control is a container for tab pages that display other controls. You can
add a Tab control to a window in your application to present information that
can logically be grouped together but may also be divided into distinct
categories. An example is the use of tab pages in the Properties view for objects
in PowerBuilder. Each tab page has a tab that displays the label for the tab page
and is always visible, whichever tab page is selected.

When you add a Tab control to a window, PowerBuilder creates a Tab control
with one tab page labeled “none”. The control is rectangular.

Selecting Tab controls
and tab pages

You may find that you select the control when you want to select the page and
vice versa. This Tab control has three tab pages. The TabPosition setting is
tabsontopandbottom!, so that the tab for the selected tab page and pages that
precede it in the tab order display at the top of the Tab control.

To select the Tab control, click any of the tabs where the label displays, or in
the area adjacent to the tabs, shown in gray here.

To select a tab page, click its tab and then click anywhere on the tab page except
the tab itself. The handles at the corners of the white area indicate that the tab
page is selected, not the Tab control.

Adding tab pages to a
Tab control

To add a new Tab control to a window, select Insert>Control>Tab and click in
the window. The control has one tab page when it is created. Use the following
procedure to add additional tab pages to the tab control.

❖ To create a new tab page within a Tab control:

1 Select the Tab control by clicking on the tab of the tab page or in the area
to its right.

The handles that indicate that the Tab control is selected display at the
corners of the Tab control. If you selected the tab page, the handles display
at the corners of the area under the tab.
304 PowerBuilder Classic

CHAPTER 12 Working with Controls
2 Choose Insert TabPage from the pop-up menu.

3 Add controls to the new tab page.

Creating a reusable
tab page

You can create reusable tab pages in the User Object painter by defining a tab
page with controls on it that is independent of a Tab control. Then you can add
that tab page to one or more Tab controls.

❖ To define a tab page that is independent of a Tab control:

1 Click the New button on the PowerBar and use the Custom Visual icon on
the Object tab page to create a custom visual user object.

2 Size the user object to match the size of the Tab controls in which you will
use it.

3 Add the controls that you want to have appear on the tab page to the user
object.

4 Select the user object (not one of the controls you added) and specify the
information to be used by the tab page on the TabPage page in the
Properties view:

• Text—the text to be displayed on the tab

• PictureName—a picture to appear on the tab with or instead of the
text

• PowerTipText—text for a pop-up message that displays when the user
moves the cursor to the tab

• Colors for the tab and the text on the tab

5 Save and close the user object.
Users Guide 305

Using the individual controls
Adding a reusable tab
page to a Tab control

Once you have created a user object that can be used as a tab page, you can add
it to a Tab control. You cannot add the user object to a Tab control if the user
object is open, and, after you have added the user object to the control, you
cannot open the user object and the window that contains the Tab control at the
same time.

❖ To add a tab page that exists as an independent user object to a Tab
control:

1 In the Window painter, right-click the Tab control.

2 Choose Insert User Object from the pop-up menu.

3 Select a user object that you have set up as a tab page and click OK.

A tab page, inherited from the user object you selected, is inserted. You can
select the tab page, set its tab page properties, and write scripts for the inherited
user object just as you do for tab pages defined within the Tab control, but you
cannot edit the content of the user object within the Tab control. If you want to
edit the controls, close the Window painter and go back to the User Object
painter to make changes.

Manipulating the Tab
control

❖ To change the name and properties of the Tab control:

1 Click any of the tabs in the Tab control to display the Tab control
properties in the Properties view.

2 Edit the properties.

For more information, right-click in the Properties view and select Help
from the pop-up menu.

❖ To change the scripts of the Tab control:

1 With the mouse pointer on one of the tabs, double-click the Tab control, or
display the pop-up menu and select Script.

2 Select a script and edit it.

❖ To resize a Tab control:

• Grab a border of the control and drag it to the new size.

The Tab control and all tab pages are sized as a group.
306 PowerBuilder Classic

CHAPTER 12 Working with Controls
❖ To move a Tab control:

• With the mouse pointer on one of the tabs, hold down the left mouse button
and drag to move the control to the new position.

The Tab control and all tab pages are moved as a group.

❖ To delete a Tab control:

• With the mouse pointer on one of the tabs, select Cut or Delete from the
pop-up menu.

Manipulating the tab
pages

❖ To view a different tab page:

• Click on the page’s tab.

The selected tab page is brought to the front. The tabs are rearranged
according to the TabPosition setting you have chosen.

❖ To change the name and properties of a tab page:

1 Select the tab.

It might move to the position for a selected tab based on the TabPosition
setting. For example, if TabPosition is set to tabsonbottomandtop! and a
tab displays at the top, it moves to the bottom when you select it.

2 Click anywhere on the tab page except the tab.

3 Edit the properties.

❖ To change the scripts of the tab page:

1 Select the tab.

It may move to the position for a selected tab based on the Tab Position
setting.

2 Click anywhere on the tab page except the tab.

3 Select Script from the tab page’s pop-up menu.

4 Select a script and edit it.

❖ To delete a tab page from a Tab control:

• With the mouse pointer anywhere on the tab page except the tab, select Cut
or Delete from the pop-up menu.
Users Guide 307

Using the individual controls
Managing controls on
tab pages

❖ To add a control to a tab page:

• Choose a control from the toolbar or the Control menu and click on the tab
page, just as you would add a control to a window.

You can add controls only to a tab page created within the Tab control. To
add controls to an independent tab page, open it in the User Object painter.

❖ To move a control from one tab page to another:

• Cut or copy the control and paste it on the destination tab page.

The source and destination tab pages must be embedded tab pages, not
independent ones created in the User Object painter.

❖ To move a control between a tab page and the window containing the
Tab control:

• Cut or copy the control and paste it on the destination window or tab page.

Moving the control between a tab page and the window changes the control’s
parent, which affects scripts that refer to the control.

For more information on the Tab control, see the chapter on using tabs in a
window in Application Techniques.

MonthCalendar
A MonthCalendar control lets you display a calendar to your users to make it
easy for them to view and set date information. You can size the calendar to
show from one to twelve months. The following illustration shows a calendar
with three months. Today’s date is September 3, 2009, and the date November
28 has been selected.
308 PowerBuilder Classic

CHAPTER 12 Working with Controls
If a user selects a date or a range of dates in the calendar, you can use the
GetSelectedDate or GetSelectedRange functions to obtain them. You use the
SetSelectedDate and SetSelectedRange functions to select dates
programmatically.

You can also:

• Set and get minimum and maximum dates that can be displayed in the
calendar

• Display dates in bold

• Get the number of months currently displayed with the start and end dates

• Set and get the date the calendar uses as the current date

• Use properties to customize the appearance of the calendar

Users can navigate through the calendar using the arrow keys in the top
corners. You can specify how many months should scroll for each click using
the ScrollRate property. If users click on the name of the month in the title bar,
a drop-down list displays, allowing them to navigate to another month in the
same year. Clicking on the year in the title bar displays a spin control that lets
users navigate quickly to a different year.

DatePicker
The DatePicker control provides an easy way for a user to select a single date.
The user can choose to edit the date in the control or to select a date from a
drop-down calendar. The calendar is similar to the MonthCalendar control,
which can be used to select a range of dates. As an alternative to the drop-down
calendar, you can set the ShowUpDown property to display up and down
arrows that allow users to specify one element of the date at a time.
Users Guide 309

Using the individual controls
The drop-down calendar can only be used to select a date. The up and down
arrows lets users specify a time as well as a date. The following illustration
shows three DatePicker controls. The controls on the left have the
ShowUpDown property set. One uses the standard date format, and the other
uses a custom format that displays the date and time. The control on the right
uses the default drop-down calendar option and the standard long date format.

You can set initial properties for the appearance and behavior of the control in
the Properties view. Properties that apply to the drop-down calendar portion of
the control are similar to the properties that apply to the MonthCalendar control
and display on the Calendar page in the Properties view. For example, you can
choose which day of the week displays as the first day in the week, whether the
current date is circled, and whether a “Today Section” showing the current date
displays at the bottom of the calendar.

Specifying a format You can choose to display the date in the DatePicker control as a long date, a
short date, a time, or with a custom format. To set a custom format in the
painter, select dtfCustom! from the Format list and type the format in the
Custom Format field. For example, the second control on the left in the
previous illustration uses the custom format yyyy/MM/dd HH:mm:ss. The
uppercase H for the hour format specifies a 24-hour clock. The following
statements set the Format property to use a custom format and set the
CustomFormat property to show the full name of the month, the day of the
month followed by a comma, and the four-digit year:

dp_1.Format = dtfCustom!
dp_1.CustomFormat = "MMMM dd, yyyy"

For a complete list of formats you can use, see the description of the
CustomFormat property in the online Help.

Specifying maximum
and minimum dates

The MaxDate and MinDate properties determine the range of dates that a user
can enter or pick in the control. If you set a restricted range, the calendar
displays only the months in the range you set, and if users type a date outside
the range into the control, the date reverts to its previous value.
310 PowerBuilder Classic

CHAPTER 12 Working with Controls
Editing modes When a user tabs into a DatePicker control, the control is in normal editing
mode and behaves in much the same way as an EditMask control with a Date
or DateTime mask. Users can edit the part of the date (year, month, day, hour,
minutes, or seconds) that has focus using the up/down arrow keys on the
keyboard or, for numeric fields, the number keys. Use the left/right arrow keys
to move between parts of the date.

If the control has a drop-down calendar, users can navigate from one month or
year to another using the controls in the calendar and click to select a date. If
the ShowUpDown option is set, users can change the selected part of the date
or time with the up and down keys in the control. To navigate in the drop-down
calendar, a user can:

• Click the arrows in the top corners to move from month to month

• Click the month to display a list of months, then click a month to select it

• Click the year to display a spin control, then use the spin control’s arrows
to select a year

• Click a date to select the date and close the calendar

• Press the Esc key to close the calendar without changing the selection

Allowing users to edit
the date directly

You can give users a third way to change the date by setting the AllowEdit
property to “true”. The user can then press F2 or click in the control to select
all the text in the control for editing. When the control loses focus, the control
returns to normal editing mode and the UserString event is fired. The
UserString event lets you test whether the text the user entered in the control is
a valid date and set the value to the new date if it is valid. If it is valid, you can
use the event’s dtm by reference argument to set the value to the new date. This
code in the UserString event tests whether the date is valid and within range:

Date d
DateTime dt

IF IsDate(userstr) THEN
d = Date(usrstr)
IF (this.maxdate >= d and this.mindate <= d) THEN

dtm = DateTime(dt)
ELSE

MessageBox("Date is out of range", userstr)
END IF

ELSE
MessageBox("Date is invalid", userstr)

END IF
Users Guide 311

Using the individual controls
The Value property The Value property contains the date and time to which the control is set. If you
do not specify a date, the Value property defaults to the current date and time.
You can set the property in the painter or in a script. If you change the value at
runtime, the display is updated automatically. The Value property has two parts
that can be obtained from the DateValue and TimeValue properties. These
properties should be used only to obtain the date and time parts of the Value
property; they cannot be used to set a date or time. The Text property and the
GetText function return the Value property as a string formatted according to
your format property settings.

You can use the SetValue function to set the Value property in a control using
separate date and time values or a single DateTime value. This example sets the
property control using separate date and time values:

date d
time t

d=date("2007/12/27")
t=time("12:00:00")

dp_1.SetValue(d, t)

This example sets the Value property using a DateTime value:

date d
time t
datetime dt
dt = DateTime(d, t)

dp_1.SetValue(dt)

Localizing the
DatePicker control

The DatePicker control is designed to work in different locales. The string
values in the DatePicker control support non-English characters and the names
of months and days of the week in the calendar display in the local language.
You can set the FirstDayOfWeek property on the Calendar page in the
Properties view to have the drop-down calendar use Monday or any other day
of the week as the first day.

The MaxDate and MinDate properties and the date part of the Value property
use the Short Date format specified in the regional settings in the Windows
control panel of the local computer, and the time part uses the local computer’s
time format. The three predefined display formats—long date, short date, and
time—also depend on the local computer’s regional settings.
312 PowerBuilder Classic

CHAPTER 12 Working with Controls
Animation
Animation controls can display Audio-Video Interleaved (AVI) clips. An AVI
clip is a series of bitmap frames that can be played like a movie. The clip can
come from an uncompressed AVI file or from an AVI file compressed using
run-length encoding (BI_RLE8). If you use an AVI file that has a sound
channel, the sound is not played.

You might display an AVI clip to show the user that some activity is occurring
while a lengthy operation such as a search or full build is completing. To
specify which AVI clip to use, specify the AVI file name in the control’s
AnimationName property. If you want the control to display only when an
event in your application starts to play the application, set its Border and
Visible properties to “false” and its Transparent property to “true”.

InkEdit and InkPicture
InkEdit and InkPicture provide the ability to capture ink input from users of
Tablet PCs.

The InkEdit control captures and recognizes handwriting and optionally
converts it to text. The InkPicture control captures signatures, drawings, and
other annotations that do not need to be recognized as text. You can place a
background image in an InkPicture control, and capture and save a user’s
annotations to the picture.

The ink controls are fully functional on Tablet PCs. On other computers, the
InkEdit control behaves like a multiline edit control. If the Microsoft Tablet PC
Software Development Kit (SDK) 1.7 is installed on the computer, InkPicture
controls can accept ink input from the mouse.

InkEdit control The InkEdit control on a Tablet PC is like a MultiLineEdit control that has the
added ability to accept ink input. On other PCs, the InkEdit control behaves as
a normal MultiLineEdit control and cannot collect ink.

On a Tablet PC, the InkEdit control collects ink from a user in the form of
handwriting and can handle single or multiple lines of text. It also recognizes
gestures, which are specific pen strokes that represent a keyboard action such
as backspace, space, or tab. The InkEdit control can convert ink to text, or leave
it as handwriting.
Users Guide 313

Using the individual controls
InkPicture control The InkPicture control behaves like a Picture control that accepts annotation.
The InkPicture control does not convert ink to text. You can associate a picture
with the control so that the user can draw annotations on the picture, then save
the ink, the picture, or both. If you want to use the control to capture and save
signatures, you usually do not associate a picture with it.

You might use an InkPicture control to display an image of a process flow chart
or a floor plan of a building, and capture suggested changes that users enter in
the form of ink. Using an image of a garden, for example, a user could mark
trees and shrubs to be removed and indicate where new plants should be added.

You can save the background image, the ink annotations, or both, to a file or to
a blob.
314 PowerBuilder Classic

C H A P T E R 1 3 Understanding Inheritance

About this chapter This chapter describes how to use inheritance to build PowerBuilder
objects.

Contents

About inheritance
One of the most powerful features of PowerBuilder is inheritance. It
enables you to build windows, user objects, and menus that derive from
existing objects.

Using inheritance has a number of advantages:

• When you change an ancestor object, the changes are reflected in all
the descendants. You do not have to make manual changes in the
descendants, as you would in a copy. This saves you coding time and
makes the application easier to maintain.

• The descendant inherits the ancestor’s scripts, so you do not have to
re-enter the code to add to the script.

• You gain consistency in the code and objects in your applications.

This chapter describes how inheritance works in PowerBuilder and how
to use it to maximize your productivity.

Topic Page

About inheritance 315

Creating new objects using inheritance 316

The inheritance hierarchy 317

Browsing the class hierarchy 318

Working with inherited objects 320

Using inherited scripts 321
Users Guide 315

Creating new objects using inheritance
Opening ancestors and descendants
To enforce consistency, PowerBuilder does not let you open an ancestor object
until you have closed any descendants that are open, or open a descendent
object when its ancestor is open.

Creating new objects using inheritance
You use the Inherit From Object dialog box to create a new window, user
object, or menu using inheritance.

❖ To create a new object using inheritance:

1 Click the Inherit button in the PowerBar, or select File>Inherit from the
menu.

2 In the Inherit From Object dialog box, select the object type (menu, user
object, or window) from the Objects of Type drop-down list, and then
select the target as well as the library or libraries you want to look in.
Finally, select the object from which you want to inherit the new object.

Displaying objects from many libraries
To find an object more easily, you can select more than one library in the
Libraries list. Use Ctrl+click to toggle selected libraries and Shift+click to
select a range.

3 Click OK.

The new object, which is a descendant of the object you chose to inherit
from, opens in the appropriate painter.
316 PowerBuilder Classic

CHAPTER 13 Understanding Inheritance
The inheritance hierarchy
When you build an object that inherits from another object, you are creating a
hierarchy (or tree structure) of ancestor objects and descendent objects.
Chapter 11, “Working with Windows,” uses the example of creating two
windows, w_customer and w_employee, that inherit their properties from a
common ancestor, w_ancestor. In this example, w_employee and w_customer
are the descendants.

The object at the top of the hierarchy is a base class object, and the other objects
are descendants of this object. Each descendant inherits information from its
ancestor. The base class object typically performs generalized processing, and
each descendant modifies the inherited processing as needed.

Multiple descendants An object can have an unlimited number of descendants, and each descendant
can also be an ancestor. For example, if you build three windows that are direct
descendants of the w_ancestor window and three windows that are direct
descendants of the w_employee window, the hierarchy looks like this:

Figure 13-1: Object hierarchy example
Users Guide 317

Browsing the class hierarchy
Browsing the class hierarchy
PowerBuilder provides a Browser that can show the hierarchy of the built-in
PowerBuilder system objects and the hierarchy of ancestor and descendent
windows, menus, and user objects you create. In object-oriented terms, these
are called class hierarchies: each PowerBuilder object defines a class.

Regenerating objects
The Browser also provides a convenient way to regenerate objects and their
descendants. For more information, see “Regenerating library entries” on page
167.

❖ To browse the class hierarchy of PowerBuilder system objects:

1 Click the Browser button in the PowerBar.

2 Choose the System tab to show the built-in PowerBuilder objects.

3 In the left pane, scroll down the object list and select the powerobject.

4 Display the pop-up menu for the powerobject and choose Show Hierarchy.

5 Select Expand All from the pop-up menu and scroll to the top.

The hierarchy for the built-in PowerBuilder objects displays.
318 PowerBuilder Classic

CHAPTER 13 Understanding Inheritance
Getting context-sensitive Help in the Browser
To get context-sensitive Help for an object, control, or function, select
Help from its pop-up menu.

❖ To display the class hierarchy for other object types:

1 Choose the Menu, Window, or User Object tab.

If you choose any other object type, there is no inheritance for the object
type, so you cannot display a class hierarchy.

2 In the left pane, select an object and choose Show Hierarchy from its
pop-up menu.

3 Select an object and choose Expand All from its pop-up menu.

PowerBuilder shows the selected object in the current application.
Descendent objects are shown indented under their ancestors.

For example, if your application uses the PBDOM PowerBuilder extension
object, the pbdom_object displays on the User Object page. You can select
Show Hierarchy and Expand All from its pop-up menu to display its
descendent objects.
Users Guide 319

Working with inherited objects
Working with inherited objects
This section describes:

• Working in a descendent object

• Working in an ancestor object

• Resetting properties in a descendant

Working in a
descendent object

You can change descendent objects to meet specialized needs. For example,
you can:

• Change properties of the descendent object

• Change properties of inherited controls in the object

• Add controls to a descendent window or user object

• Add menu items to a menu

You cannot copy a control on a descendent window or visual user object if the
control inherits from the ancestor object, because the resulting inheritance
hierarchy cannot be maintained consistently. You can copy a control on a
descendent object if the control does not inherit from the object’s ancestor.

For specifics about what you can do in inherited windows, user objects, and
menus, see Chapter 11, “Working with Windows,” Chapter 15, “Working with
User Objects,” and Chapter 14, “Working with Menus and Toolbars.”

Working in an
ancestor object

When you use inheritance to build an object, the descendant is dependent on
the definition of the ancestor. Therefore you should not delete the ancestor
without deleting the descendants. You should also be careful when you change
the definition of an ancestor object. You may want to regenerate descendent
objects if you do any of the following:

• Delete or change the name of an instance variable in the ancestor

• Modify a user-defined function in the ancestor

• Delete a user event in an ancestor

• Rename or delete a control in an ancestor

When you regenerate the descendants, the compiler will flag any references it
cannot resolve so you can fix them. For information about regenerating objects,
see Chapter 6, “Working with Libraries.”
320 PowerBuilder Classic

CHAPTER 13 Understanding Inheritance
About local changes
If you change a property in an ancestor object, the property also changes in all
descendants—if you have not already changed that property in a descendant, in
which case the property in the descendant stays the same. In other words, local
changes always override inherited properties.

Using inherited scripts
In the hierarchy formed by ancestors and descendants, each descendant inherits
its event scripts from its immediate ancestor. If an inherited event does not have
a script, you can write a script for the event in the descendant. If the inherited
event does have a script, the ancestor script will execute in the descendant
unless you extend the script or override it. You can:

• Extend the ancestor script—build a script that executes after the ancestor
script

• Override the ancestor script—build a script that executes instead of the
ancestor script

You cannot delete or modify an ancestor script from within a descendant.

Extending or
overriding a script

The Extend Ancestor Script item on the Edit menu or the pop-up menu in the
Script view determines whether the script is extended or overridden. If the
menu item is selected (a check mark displays next to it), the ancestor script is
extended. If there is no check mark, the ancestor script is overridden.

When there is no script for the descendant, the Extend Ancestor Script menu
item is selected and disabled. You cannot clear the menu item unless you add
a script to the descendant. When you have added a script, the menu item is
enabled and you can choose to override the ancestor script by clearing the
menu item, or to extend it by leaving the menu item selected.

If you delete the script in the descendant
If, after adding a script to the descendant and clearing the Extend Ancestor
Script menu item, you delete the script, the menu item returns to its default
state: selected and disabled. A message displays in the status bar warning you
that this has occurred. If you then add a new script, the menu item is reenabled.
You must remember to clear the Extend Ancestor Script menu item if you want
to override the ancestor script.
Users Guide 321

Using inherited scripts
Executing code before
the ancestor script

To write a script that executes before the ancestor script, first override the
ancestor script and then in the descendent script explicitly call the ancestor
script at the appropriate place. For more information, see “Calling an ancestor
script” on page 325.

Getting the return
value of the ancestor
script

To get the return value of an ancestor script, you can use the
AncestorReturnValue variable. This variable is always available in descendent
scripts that extend an ancestor script. It is also available if you override the
ancestor script and use the CALL syntax to call the ancestor event script. For
more information, see Application Techniques.

Viewing inherited scripts
If an inherited object or control has a script defined only in an ancestor, no
script displays in the Script view.

Script icons in the
second drop-down list

The second drop-down list in the Script view indicates which events have
scripts written for an ancestor as follows:

• If the event has a script in an ancestor only, the script icon next to the event
name in the second drop-down list is displayed in color.

• If the event has a script in an ancestor as well as in the object you are
working with, the script icon is displayed half in color.

Script icons in the
third drop-down list

The third drop-down list in the Script view shows the current object followed
by each of its ancestors in ascending order. The icons next to object names
indicate whether the object has a script for the event selected in the second
drop-down list as follows:

• If an object is the highest class in the hierarchy to have a script, a
transparent script icon displays next to its name. No icon displays next to
the names of any of its ancestors.

• If an object does not have a script for the event but it has an ancestor that
has a script for the event, the script icon next to its name is displayed in
color.

• If an object has a script for the event, and it has an ancestor that also has a
script for the event, the script icon next to its name is displayed half in
color.
322 PowerBuilder Classic

CHAPTER 13 Understanding Inheritance
❖ To view an ancestor script:

1 In the Script view for an inherited object, select the object itself or a
control in the first drop-down list, and the event whose script you want to
see in the second drop-down list.

The Script view does not display the script for the ancestor. No script
displays.

2 In the third drop-down list in the Script view, select an ancestor object that
has a script for the selected event.

The Script view displays any script defined in the ancestor object.

3 To climb the inheritance hierarchy, in the third drop-down list, select the
script for the grandparent of the current object, great-grandparent, and so
on until you display the scripts you want.

The Script view displays the scripts for each of the ancestor objects. You
can traverse the entire inheritance hierarchy using the third drop-down list.

Extending a script
When you extend an ancestor script for an event, PowerBuilder executes the
ancestor script, then executes the script for the descendant when the event is
triggered.

❖ To extend an ancestor script:

1 In the first drop-down list in the Script view, select the object or a control,
and in the second drop-down list, select the event for which you want to
extend the script.

2 Make sure that Extend Ancestor Script on the Edit menu or the pop-up
menu in the Script view is selected.

Extending the ancestor script is the default.

3 In the Script view, enter the appropriate statements.

You can call the script for any event in any ancestor as well as call any
user-defined functions that have been defined for the ancestor. For
information about calling an ancestor script or function, see “Calling an
ancestor script” on page 325 and “Calling an ancestor function” on page
325.
Users Guide 323

Using inherited scripts
Example of extending
a script

If the ancestor script for the Clicked event in a button beeps when the user
clicks the button without selecting an item in a list, you might extend the script
in the descendant to display a message box in addition to beeping.

Overriding a script

❖ To override an ancestor script:

1 In the first drop-down list in the Script view, select the object or a control,
and in the second drop-down list, select the event for which you want to
override the script.

2 Code a script for the event in the descendant.

You can call the script for any event in any ancestor as well as call any
user-defined functions that have been defined for the ancestor.

For information about calling an ancestor script or function, see “Calling
an ancestor script” on page 325 and “Calling an ancestor function” on
page 325.

Override but not execute
To override a script for the ancestor but not execute a script in the
descendant, enter only a comment in the Script view.

3 Select Extend Ancestor Script on the Edit menu or the pop-up menu to
clear the check mark.

Clearing the Extend Ancestor Script item means that you are overriding
the script.

At runtime, PowerBuilder executes the descendent script when the event is
triggered. The ancestor script is not executed.

Example of overriding
a script

If the script for the Open event in the ancestor window displays employee files
and you want to display customer files in the descendent window, select
Override Ancestor Script and create a new script for the Open event in the
descendant to display customer files.
324 PowerBuilder Classic

CHAPTER 13 Understanding Inheritance
Calling an ancestor script
When you write a script for a descendent object or control, you can call scripts
written for any ancestor. You can refer by name to any ancestor of the
descendent object in a script, not just the immediate ancestor (parent). To
reference the immediate ancestor (parent), you can use the Super reserved
word.

For more information about calling scripts for an event in an ancestor window,
user object, or menu, and about the Super reserved word, see the PowerScript
Reference.

Calling an ancestor function
When you write a script for a descendent window, user object, or menu, you
can call user-defined functions that have been defined for any of its ancestors.
To call the first function up the inheritance hierarchy, just call the function as
usual:

function (arguments)

If there are several versions of the function up the inheritance hierarchy and
you do not want to call the first one up, you need to specify the name of the
object defining the function you want:

ancestorobject::function (arguments)

This syntax works only in scripts for the descendent object itself, not in scripts
for controls or user objects in the descendent object or in menu item scripts. To
call a specific version of an ancestor user-defined function in a script for a
control, user object, or menu item in a descendent object, do the following:

1 Define an object-level user-defined function in the descendent object that
calls the ancestor function.

2 Call the function you just defined in the descendent script.

For more information about calling an ancestor function, see the PowerScript
Reference.
Users Guide 325

Using inherited scripts
326 PowerBuilder Classic

C H A P T E R 1 4 Working with Menus and
Toolbars

About this chapter By adding customized menus and toolbars to your applications, you can
make it easy and intuitive for your users to select commands and options.
This chapter describes how to define and use menus and toolbars.

Contents

Menus and menu items
Usually, all windows in an application have menus except child and
response windows. Menus are lists of related commands or options (menu
items) that a user can select in the currently active window. Each choice
in a menu is called a menu item. Menu items display in a menu bar or in
drop-down or cascading menus.

About Menu objects
Each item in a menu is defined as a Menu object in PowerBuilder. You can
see the Menu object in the list of objects in the Browser’s System tab.

Topic Page

Menus and menu items 327

Using the Menu painter 329

Building a new menu 333

Defining the appearance and behavior of menu items 341

Providing toolbars 347

Writing scripts for menu items 356

Using inheritance to build a menu 360

Using menus in your applications 366
Users Guide 327

Menus and menu items
Using menus You can use menus you build in PowerBuilder in two ways:

• In the menu bar of windows Menu bar menus are associated with a
window in the Window painter and display whenever the window is
opened.

• As pop-up menus Pop-up menus display only when a script executes
the PopMenu function.

Both uses are described in this chapter.

Designing menus PowerBuilder gives you complete freedom in designing menus, but you should
follow conventions to make your applications easy to use. For example, you
should keep menus simple and consistent; group related items in a drop-down
menu; make sparing use of cascading menus and restrict them to one or two
levels.

This chapter describes some guidelines you should follow when designing
menus. A full discussion of menu design is beyond the scope of this book. You
should acquire a book that specifically addresses design guidelines for
graphical applications and apply the rules when you use PowerBuilder to create
your menus.

Building menus When you build a menu, you:

• Specify the appearance and behavior of the menu items by setting their
properties.

• Build scripts that determine how to respond to events in the menu items.
To support these scripts, you can declare functions, structures, and
variables for the menu.

There are two ways to build a menu. You can:

• Build a new menu from scratch. See “Building a new menu” on page 333.

• Build a menu that inherits its style, functions, structures, variables, and
scripts from an existing menu. You use inheritance to create menus that are
derived from existing menus, thereby saving yourself coding and time. See
“Using inheritance to build a menu” on page 360.
328 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Using the Menu painter
The Menu painter has several views where you can specify menu items and
how they look and behave. For general information about views, how you use
them, and how they are related, see “Views in painters that edit objects” on
page 124.

In addition to customizing the style of a menu in the Menu painter, you can also
customize the style of a toolbar associated with a menu. For information, see
“Providing toolbars” on page 347.

Menu painter views
You use two views to specify menu items that display in the menu bar and
under menu bar items:

Table 14-1: Views in the Menu painter

The Tree Menu view and the WYSIWYG Menu view are equivalent. You can
use either view to insert new menu items on the menu bar or on drop-down or
cascading menus, or to modify existing menu items. The menus in both views
change when you make a change in either view.

You specify menu properties in two views:

Table 14-2: Views in the Menu painter

This view Displays

Tree Menu view All the menu items at the same time when the tree is fully
expanded. To fully expand the tree or collapse the expanded
tree, press Ctrl+Shift+*.

WYSIWYG Menu
view

The menu as you will see it and use it in your application, with
the exception of invisible menu items that do display.

This view Displays

Properties view
(for the top-level
menu object)

General and Appearance tab pages for setting menu-wide
properties

Properties view
(for submenu
items)

General and Toolbar tab pages for setting properties for
submenu items and toolbars
Users Guide 329

Using the Menu painter
Views for the top level
menu object

This Menu painter layout is for the top level menu object, m_pbapp_frame.
The Tree Menu view is in the top left and the WYSIWYG Menu view is in the
top middle. The General and Appearance tab pages display in the Properties
view on the right. For more information about these properties, see “Setting
menu style properties for contemporary menus” on page 344.
330 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Views for submenu
items

This Menu painter layout is for a menu item under the top level, in this case the
Open menu item. The Tree Menu view is in the top left and the WYSIWYG
Menu view is in the top middle. The General and Toolbar tab pages display in
the Properties view on the right. For more information about these properties,
see “Setting General properties for menu items” on page 341.

Menu styles
A menu can have a contemporary or traditional style.

Menu style Description

Contemporary A 3D-style menu similar to Microsoft Office 2003 and Visual
Studio 2005 menus

Traditional Window default menu style which has a flat appearance
Users Guide 331

Using the Menu painter
Menus that you import or migrate from earlier versions of PowerBuilder have
the traditional style, and new menus use the traditional menu style by default.
The new contemporary menu style has a three-dimensional menu appearance
that can include images and menu title bands. With a contemporary menu, you
can set the MenuAnimation, MenuImage, and MenuTitleText at runtime using
scripts.

You select a menu style on the Appearance tab of the Properties view for the
top-level menu object in the Menu painter. You must select the top-level menu
object in the Tree Menu view of the Menu painter to display its Properties view.

❖ To specify the menu style:

1 Select the top-level menu object.

2 In the Appearance tab page, select the menu style you want,
contemporarymenu! or traditionalmenu!

If you select contemporarymenu! in the Menu Style drop-down list, you can
customize the display properties for that style and have them apply to all menu
items in the current menu. If you select traditionalmenu! the rest of the
menu style properties are grayed.

Images for menus and
toolbars

Contemporary menus can include images. You can use icons, bitmaps, GIF
files, and JPEG files for both contemporary menus and traditional and
contemporary toolbars.

All stock icons have a transparent background. Other icon and GIF files with
transparent backgrounds are always displayed with a transparent background.
If you want a bitmap to display with a transparent background, the bitmap must
use button face as its background color. This applies whatever the background
color of the menu or toolbar is set to. There is currently no property that allows
you to specify that an image has a transparent background.
332 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
When an icon file
includes several
images

With the contemporary menu style and toolbar style, when an icon file includes
several images, PowerBuilder uses the following image selection rules:

Building a new menu
This section describes how to build menus that are not based on existing
menus. To create a new menu using inheritance, see “Using inheritance to
build a menu” on page 360.

Creating a new menu
You build a new menu by creating a new Menu object and then working on it
in the Menu painter.

❖ To create a new menu:

1 Click the New button in the PowerBar.

2 On the PB Object tab page, select Menu.

3 Click OK.

The Menu painter opens and displays the Tree Menu view and the WYSIWYG
view for defining the menu, and the General and Appearance tab pages for
setting menu and toolbar properties. For information about menu and toolbar
properties, see “Defining the appearance and behavior of menu items” on page
341.

If the images . . . PowerBuilder displays . . .

Are all the same size 8 bit, 16 bit, 24 bit, 32 bit, and 4 bit images in that
order.

Include 16 bit*16 bit images
and also other sized images

16 bit*16 bit images.

Do not include 16 bit*16 bit
images

The image with the image size closest to 16 bit. For
example, if one icon file contains 24*24 bit images
and another icon file contains 32*32 bit images, then
PowerBuilder selects the 24*24 bit images.

Are greater than 16 bit
images

The image as 16*16 bit or 32*32 bit. If the icon
image is 16*16, then it displays as 16*16. If the icon
image is larger than 16*16, it will be displayed as
32*32.
Users Guide 333

Building a new menu
Because you are creating a new menu and have not added menu items yet, the
only content in the Tree Menu view and the WYSIWYG view is an untitled
top-level tree view item in the TreeMenu view.

Font size of the menu bar and menu text
You can change the value of the TextSize property for submenu items, but not
for the main menu bar. The main menu bar has a fixed height that you cannot
change.

Working with menu items
A menu consists of at least one menu item on the menu bar and menu items in
a drop-down menu. You can add menu items in three places:

• To the menu bar

• To a drop-down menu

• To a cascading menu

Using the pop-up menu
The procedures in this section use the Insert and Edit menus on the
PowerBuilder main menu to insert and edit menu items. You can also use the
equivalent items on the selected object’s pop-up menu.

How menu items are named

When you add a menu item, PowerBuilder gives it a default name, which
displays in the Name box in the Properties view. This is the name by which you
refer to a menu item in a script.

About the default
menu item names

The default name is a concatenation of the default prefix for menus, m_, and
the valid PowerBuilder characters and symbols in the text you typed for the
menu item. If there are no valid characters or symbols in the text you typed for
the menu item, PowerBuilder creates a unique name m_n, where n is the lowest
number that can be combined with the prefix to create a unique name.

Prefix might be different
The default prefix is different if it has been changed in the Design>Options
dialog box.
334 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
The complete menu item name (prefix and suffix) can be up to 79 characters.
If the prefix and suffix exceed this size, PowerBuilder uses only the first 79
characters without displaying a warning message.

Duplicate menu item
names

Menu items in the Tree Menu view and WYSIWYG Menu view can have the
same names, but they cannot have the same name in the Properties view. If you
try to add a menu item using the same name as an existing menu item,
PowerBuilder displays a dialog box that suggests a unique name for the menu
item. For example, you might already have an Options item on the Edit menu
with the default name m_options. If you add an Options item to another menu,
PowerBuilder cannot give it the name m_options.

Menu item names are
locked by default

After you add a menu item, the name that PowerBuilder assigns to the menu
item is locked. Even if you later change the text that displays for the menu item,
PowerBuilder does not rename the menu item. This allows you to change the
text that displays in a menu without having to revise all your scripts that
reference the menu item. (Remember, you reference a menu item through the
name that PowerBuilder assigns to it.)

To rename a menu item after changing the text that displays for it, you can
unlock the name.

❖ To have PowerBuilder rename a menu item:

1 On the General property page in the Properties view, clear the Lock Name
check box.

2 Change the text that displays for the menu item.

Inserting menu items

There are three choices on the Insert menu: Menu Item, Menu Item At End, and
Submenu Item. Use the first two to insert menu items in the same menu as the
selected item, and use Insert>Submenu Item to create a new drop-down or
cascading menu for the selected item.

For example, suppose you have created a File menu on the menu bar with two
menu items: Open and Exit. Here are the results of some insert operations:

• Select File and select Insert>Menu Item At End

A new item is added to the menu bar after the File menu.

• Select Open and select Insert>Menu Item

A new item is added to the File menu above Open.
Users Guide 335

Building a new menu
• Select Open and select Insert>Menu Item At End

A new item is added to the File menu after Exit.

• Select Open and select Insert>Submenu Item

A new cascading menu is added to the Open menu item.

Getting the menu
started

The first thing you do with a new menu is add the first item to the menu bar.
After doing so, you can continue adding new items to the menu bar or to the
menu bar item you just created. As you work, the changes you make display in
both the WYSIWYG and Tree Menu views.

The first procedure in this section describes how to add a single first item to the
menu bar. Use this procedure if you want to add the menu bar item and then
work on its drop-down menu. Use the second procedure to add multiple items
to the menu bar quickly.

❖ To insert the first menu bar item in a new menu:

1 Select the first menu item, and then select Insert>Submenu Item from the
PowerBuilder menu bar.

PowerBuilder displays an empty box on the menu bar in the WYSIWYG
Menu view and as a sub-item in the Tree Menu view.

2 Type the text you want for the menu item and press Enter.

❖ To insert multiple menu bar items in a new menu:

1 Select Insert>Submenu Item.

PowerBuilder displays an empty box on the menu bar in the WYSIWYG
Menu view and as a submenu item in the Tree Menu view.

2 Type the text you want for the menu item and press Tab.

PowerBuilder displays a new empty box on the menu bar in the
WYSIWYG Menu view and as a submenu item in the Tree Menu view.

3 Repeat step 2 until you have added all the menu bar items you need.

4 Press Enter to save the last menu bar item.

Adding additional
menu items

After you have created the first menu bar item, you can add more items to the
menu bar or start building drop-down and cascading menus.
336 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
❖ To insert additional menu items on the menu bar:

1 Do one of the following:

• With any menu bar item selected, select Insert>Menu Item At End to
add an item to the end of the menu bar.

• Select a menu bar item and select Insert>Menu Item to add a menu bar
item before the selected menu bar item.

2 Type the text you want for the menu bar item, and then press Enter.

❖ To add a drop-down menu to an item on the menu bar:

1 Select the item in the menu bar for which you want to create a drop-down
menu.

2 Select Insert>Submenu Item.

PowerBuilder displays an empty box.

3 Type the text you want for the menu item, and then press Tab.

4 Repeat Step 3 until you have added all the items you want on the
drop-down menu.

5 Press Enter to save the last drop-down menu item.

❖ To add a cascading menu to an item in a drop-down menu:

1 Select the item in a drop-down menu for which you want to create a
cascading menu.

2 Select Insert>Submenu Item.

PowerBuilder displays an empty box.

3 Type the text you want for the menu item, and then press Tab.

4 Repeat step 3 until you have added all the items you want on the cascading
menu.

5 Press Enter to save the last cascading menu item.

❖ To add an item to the end of any menu:

1 Select any item on the menu.

2 Select Insert>Menu Item At End.

PowerBuilder displays an empty box.

3 Type the text you want for the second menu item in the box and press
Enter.
Users Guide 337

Building a new menu
❖ To insert an item in any existing menu:

1 Select the item that should follow the new menu item.

2 Select Insert>Menu Item.

An empty box displays above the item you selected.

3 Type the text you want for the menu item and press Enter.

Creating separation lines in menus

You should separate groups of related menu items with lines.

❖ To create a line between items on a menu:

1 Insert a new menu item where you want the separation line to display.

2 Type a single dash (-) as the menu item text and press Enter.

A separation line displays.

Duplicating menu items

You might save time creating new menu items if you duplicate existing menu
items. A duplicate menu item has the same properties and script as the original
menu item. You might be able to modify a long script slightly to make it work
for your duplicate menu item.

❖ To duplicate a menu item or a submenu item:

1 Select the menu item or the submenu item to duplicate.

2 Select Edit>Duplicate or press Ctrl+T.

The duplicate item displays at the same level of the menu, following the
item you selected. The name of the duplicate menu item is unique.

3 Change the text of the duplicate menu item.

4 Modify the properties and script associated with the duplicate item as
needed.
338 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Changing menu item text

It is often necessary to change the text of a menu item, and if you duplicate a
menu item, you need to change the text of the duplicate item.

❖ To change the text of a menu item:

1 Do one of the following:

• Click the item to select it, then click it again.

• Select the item and select Edit>Menu Item Text.

• Select the item and open the general page in the Properties view.

2 Type the new text for the menu item in the box in the WYSIWYG Menu
or Tree Menu view or in the Text box in the Properties view.

Selecting menu items

You can select multiple menu items to move them, delete them, or change their
common properties.

❖ To select multiple individual menu items:

• Press Ctrl and select each item you want.

❖ To select a range of menu items at the same level in the menu:

• Select the first item, press Shift, and select the last item.

Navigating in the menu

As you work in a menu, you can move to another menu item by selecting it.
You can also use the Right Arrow, Left Arrow, Up Arrow, and Down Arrow
keys on the keyboard to navigate.

Moving menu items

The easiest way to change the order of items in the menu bar or in a drop-down
or cascading menu is to drag the item you want to move and drop it where you
want it to be. You can drag items at the same level in a menu structure or to
another level. For example, you can drag an item in the menu bar to a
drop-down menu or an item in a cascading menu to the menu bar.
Users Guide 339

Building a new menu
WYSIWYG Menu and Tree Menu views
You can use drag and drop within each view. You can also drag from one view
and drop in another.

❖ To move a menu item or submenu item using drag and drop:

1 Select the item.

2 Press and hold the left mouse button and drag the item to a new location.

A feedback line appears at the new location to indicate where to drop the
item.

3 Release the mouse button to drop the menu item.

The menu item displays in the new location.

Dragging to copy
To copy a menu item by dragging it, press and hold the Ctrl key while you drag
and drop the item. A copied menu item has the same properties and scripts as
the original menu item.

You can also copy or move a menu item by selecting the item and using the Cut,
Copy, and Paste items on the Edit menu or the pop-up menu.

Deleting menu items

❖ To delete a menu item:

1 Select the menu item you want to delete.

2 Click the Delete button in the PainterBar or select Edit>Delete from the
menu bar.

Saving the menu
You can save the menu you are working on at any time. When you save a menu,
PowerBuilder saves the compiled menu items and scripts in the library you
specify.
340 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
❖ To save a menu:

1 Select File>Save from the menu bar.

If you have previously saved the menu, PowerBuilder saves the new
version in the same library and returns you to the Menu painter. If you have
not previously saved the menu, PowerBuilder displays the Save Menu
dialog box.

2 Name the menu in the Menus box (see “Naming the menu” next).

3 Write comments to describe the menu.

These comments display in the Select Menu dialog box and in the Library
painter. It is a good idea to use comments so you and others can easily
remember the purpose of the menu later.

4 Specify the library in which to save the menu and click OK.

Naming the menu The menu name can be any valid PowerBuilder identifier of up to 40
characters. For information about PowerBuilder identifiers, see the
PowerScript Reference.

A common convention is to use m_ as a standard prefix, and a suffix that helps
you identify the particular menu. For example, you might name a menu used in
a sales application m_sales.

Defining the appearance and behavior of menu items
By setting menu properties, you can customize the display of menus in
applications that you create with PowerBuilder. You use the Menu painter to
change the appearance and behavior of your menu and menu items by choosing
different settings in the tab pages in the Properties view. For a list of all menu
item properties, see Objects and Controls.

Setting General properties for menu items
This section describes the properties you can set when you select a menu item
and then select the General tab page in the Properties view.
Users Guide 341

Defining the appearance and behavior of menu items
Creating MicroHelp
and tags

MicroHelp is a brief text description of the menu item that displays on the
status bar at the bottom of a Multiple Document Interface (MDI) application
window. Type the text you want to display in the MicroHelp box. For examples
of MicroHelp text, select an item from a menu in PowerBuilder and look at the
text that displays in the status bar.

A tag is a text string that you can associate with an object and use in any way
you want.

For information about defining MicroHelp text and tag properties, see the
chapter on building MDI applications in Application Techniques.

Setting the
appearance of a menu
item

On the General tab page in the Properties view, you can also specify how a
menu item appears at runtime.

Table 14-3: Setting display properties for menu items

The settings you specify here determine how the menu items display by
default. You can change the values of the properties in scripts at runtime.

Property Meaning

Visible Whether the menu item is visible. An invisible menu item still
displays in the WYSIWYG and Tree Menu views, but at runtime,
it will not display. In WYSIWYG Menu view, an invisible item
has faded and dotted text.

Enabled Whether the menu item can be selected.

Checked Whether the menu item displays with a check mark next to it.

Default Whether the menu item text is bold. In a pop-up menu, Default
indicates what action occurs if the user double-clicks instead of
right-clicks on an item. In dragging, Default indicates what
happens when an item is dragged with the left mouse button
instead of the right mouse button.

ShiftToRight Whether the menu item shifts to the right (or down for a
drop-down or cascading menu) when you add menu items in a
menu that is inherited from this menu. Selecting this property
allows you to insert menu items in descendent menus, instead of
being able to add them only to the end.

For more information, see “Inserting menu items in a descendent
menu” on page 362.

MergeOption The way menus are modified when an OLE object is activated.
Options are: File, Edit, Window, Help, Merge, Exclude.

For more information, see the chapter about using OLE in an
application in Application Techniques.

MenuItemType Whether the menu item you are creating is Normal, About, Exit,
or Help type.
342 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Assigning accelerator
and shortcut keys

Every menu item should have an accelerator key, also called a mnemonic
access key, which allows users to select the item from the keyboard by pressing
Alt+key when the menu is displayed. Accelerator keys display with an
underline in the menu item text.

You can also define shortcut keys, which are combinations of keys that a user
can press to select a menu item whether or not the menu is displayed.

For example, in the following menu all menu items have accelerator keys: the
accelerator key is N for New, O for Open, and so on. New, Open, Close, and
Print each have shortcut keys: the Ctrl key in combination with another key or
keys.

You should adopt conventions for using accelerator and shortcut keys in your
applications. All menu items should have accelerator keys, and commonly
used menu items should have shortcut keys.

If you specify the same shortcut for more than one MenuItem, the command
that occurs later in the menu hierarchy is executed.

Some shortcut key combinations, such as Ctrl+C, Ctrl+V, and Ctrl+X, are
commonly used by many applications. Avoid using these combinations when
you assign shortcut keys for your application.

❖ To assign an accelerator key:

• Type an ampersand (&) before the letter in the menu item text that you
want to designate as the accelerator key.

For example, &File designates the F in File as an accelerator key and
Ma&ximize designates the x in Maximize as an accelerator key.

Displaying an ampersand in the text
If you want an ampersand to display in the menu text, type two
ampersands. For example, Fish&&Chips displays as Fish&Chips with no
accelerator key. To display Fish&Chips as the menu text with the C
underlined as the accelerator, type Fish&&&Chips.
Users Guide 343

Defining the appearance and behavior of menu items
❖ To assign a shortcut key:

1 Select the menu item to which you want to assign a shortcut key.

2 Select the General tab in the Properties view.

3 Select a key from the Shortcut Key drop-down list.

4 Select Shortcut Alt, Shortcut Ctrl, and/or Shortcut Shift to create a key
combination.

PowerBuilder displays the shortcut key next to the menu item name.

Setting menu style properties for contemporary menus
Menus with a contemporary style have a three-dimensional menu appearance
and can include bitmap and menu title bands. The following figure shows a
contemporary style menu:

After you select the contemporary style, you can modify other menu style
properties on the top-level menu object and on all lower-level menu items.
Since it is important to maintain a consistent look across each menu and
toolbar, very few style properties are modifiable at the menu item level.

If you select the traditional menu style
If you select traditionalmenu! for the top-level menu object, you cannot
modify any of the menu style properties.
344 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
You can modify menu style properties only at design time. After you select the
contemporary menu style for a top-level menu object, you can select values for
other style properties to manipulate a menu’s visual appearance. The following
properties are modifiable for the top-level menu object only; you cannot
modify them for individual menu items:

Property Datatype Use to assign

MenuStyle Enumerated Overall menu style. Values are:
contemporarymenu! and traditionalmenu!

MenuTextColor Long Menu text color. (Default is the Windows
menu text color.)

MenuBackColor Long Background color of the menu.

MenuHighlightColor Long Menu highlight color. (Default is the default
Windows highlight color.)

FaceName String Font face name.

TextSize Integer Font character size in points for menu items.
(Does not apply to the main menu bar which
has a fixed height.)

Bold Boolean Bold font.

Italic Boolean Italic font.

Underline Boolean Underline font.

TitleBackColor Long Background color of the title panel.

BitmapBackColor Long Background color of the bitmap band of the
menu. (Default is silver.)

MenuBitmaps Boolean Bitmap band for the menu.

BitmapGradient Boolean Background of the bitmap band to a
gradient style.

MenuTitles Boolean Menu title band.

TitleGradient Boolean Background gradient style for the title
panel.
Users Guide 345

Defining the appearance and behavior of menu items
Setting menu item style properties
Menu items have style properties that you set at design time. You cannot use
these style properties with a traditional style menu. Unlike the style properties
on the Menu object that display on the Appearance tab of the Properties view,
the fields where you set these properties are located on the General tab of the
Properties view for each menu item.

You select or enter values for the menu item style properties on the General tab
of the Properties view for each menu item. You can make selections for the
MenuAnimation and MenuImage properties only if the MenuBitmaps check
box for the current menu object is selected. The MenuBitmaps check box is
selected by default for the contemporary menu style.

You can enter text for the MenuTitleText property only if the MenuTitles check
box for the current menu object is selected.

Property Datatype Use to assign

MenuAnimation Boolean Visual sizing cue to the menu item bitmap
when the associated menu item is selected.
This property is ignored if the MenuImage
property is not assigned.

MenuImage String Bitmap image to be used with the menu
item. This property is ignored if the
MenuBitmaps property for the menu object
is not selected or is set to “false”.

MenuTitleText String Label for menu item that has a cascading
submenu. The label text is set vertically in a
column to the left of the submenu items and
the bitmaps for submenu items, if any. If the
vertical label text is longer than the height of
all the submenu items, the label text is cut
from the end. This property is ignored if the
MenuTitles property for the menu object is
not selected.
346 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Providing toolbars
To make your application easier to use, you can add toolbars with buttons that
users can click as a shortcut for choosing an item from a menu. In
PowerBuilder, you can associate a toolbar with the window types listed in
Table 14-4.

Table 14-4: Window types that can use toolbars

Creating windows in
PowerBuilder

You can create a main window, an MDI window, or an MDI Help window in
PowerBuilder by clicking the New button in the PowerBar and selecting
Window on the PB Object tab page. The new window’s type is Main by default.
To change it to MDI or MDI Help, select the window type on the General page
in the Properties view.

Window type Description

Main window A main window is a standalone window that can be
independent of all other windows. You use the main window
as the anchor for your application. The first window your
application opens is a main window (unless you are building
an MDI application, in which case the first window is an MDI
frame window).

MDI window A window in a Multiple Document Interface application, an
application in which users work within a frame window that
lets them perform activities on multiple sheets of information.
This is useful in applications where users require the ability to
do several different things at a time. An MDI frame window
has a menu bar, a client area, sheets, and (usually) a toolbar. An
MDI sheet window is a window that can be opened in the client
area of an MDI frame.

MDI Help window An MDI window with a status area that can display
MicroHelp.
Users Guide 347

Providing toolbars
In MDI windows, you can associate a toolbar with the MDI frame and a toolbar
with the active sheet. This screen shows New, Print, and Exit buttons on the
toolbar associated with the MDI Frame, and window management buttons on
the toolbar associated with the sheet. The toolbar associated with the MDI
frame is called the FrameBar. The toolbar associated with the active sheet is
called the SheetBar.

This section provides you with the information you need to create and use
toolbars. For information about customizing toolbar behavior and saving and
restoring toolbar settings, see Application Techniques.

How toolbars work
Toolbars you add to a window behave like the toolbars provided in the
PowerBuilder development environment:

• Users can choose whether or not to display text in a toolbar, use
PowerTips, float the toolbar, move the toolbar around the frame, and dock
it underneath or beside any other toolbar. No coding is required to support
these basic toolbar operations.

• Toolbar buttons map directly to menu items. Clicking a toolbar button is
the same as clicking its corresponding menu item (or pressing the
accelerator key for that item).
348 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
• Toolbars work only in MDI frame, MDI sheet, and Main windows. If you
open a pop-up window with a menu that has a toolbar, the toolbar does not
display.

• If both the MDI sheet and the frame have toolbars and the sheet is open,
then the menu that is displayed is the menu for the sheet, but both toolbars
appear and are operative.

• If the currently active sheet does not have a menu, then the menu and
toolbar for the frame remain in place and are operative. This can be
confusing to your user, because the displayed menu is not for the active
sheet. If any sheet has a menu, then all sheets should probably have menus.

Menus with multiple
toolbars

A single menu can have more than one toolbar. When you associate a menu that
has multiple toolbars with a window, PowerBuilder displays all the toolbars
when you open the window. This screen shows a sheet open in an MDI frame,
with one FrameBar and two SheetBars:

You can work with the toolbars independently. For example, you can float any
of the toolbars, move them around the window, and dock them at different
locations within the window.

The button associated with a menu item can appear on only one toolbar at a
time. To indicate which toolbar a menu item’s button belongs to, you set the
ToolbarItemBarIndex property for the menu item. All items that have the same
index number appear on the same toolbar.
Users Guide 349

Providing toolbars
Adding toolbars to a window
PowerBuilder provides an easy way to add toolbars to a window: when you are
defining an item in the Menu painter for a menu that will be associated with an
MDI frame window, an MDI sheet, or a main window, you simply specify that
you want the menu item to display in the toolbar with a specific picture. At
runtime, PowerBuilder automatically generates a toolbar for the window
containing the menu.

❖ To add toolbars to a window:

1 In the Menu painter, specify the display characteristics of the menu items
you want to display in the toolbar.

For details, see “Toolbar item display characteristics” next.

2 (Optional) In the Menu painter, specify drop-down toolbars for menu
items.

3 In the Window painter, associate the menu with the window and turn on
the display of the toolbar.

4 (Optional) In the Window painter, specify other properties, such as the size
and location of a floating toolbar, on the Toolbar property page.

Selecting a toolbar style
You select a toolbar style on the Appearance tab of the Properties view for the
top-level menu object in the Menu painter.

A toolbar can have a contemporary or traditional style.

Toolbars that you import or migrate from earlier versions of PowerBuilder
have the traditional style, and new toolbars use the traditional toolbar style by
default.

Menu style Description

Contemporary A 3D-style toolbar similar to Microsoft Office 2003 and Visual
Studio 2005 toolbars

Traditional A more traditional and older toolbar style
350 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
❖ To specify the toolbar style:

1 Select the top-level menu object.

2 At the bottom of the Appearance tab page, select the toolbar style you
want, contemporarytoolbar! or traditionaltoolbar!

If you select traditionaltoolbar! in the Toolbar Style drop-down list, the
rest of the toolbar style properties are grayed. If you select
contemporarytoolbar! style, you can customize the display properties for
that style and have them apply to all menu items with associated toolbar
buttons in the current menu.

Selecting the toolbar button style property Unless you are using the
traditional toolbar style for the current menu object, you can select the
ToolbarAnimation check box on the Toolbar tab or the Properties view for each
menu item. If you do not select an image for the ToolbarItemName property of
a menu item, the selection you make for the ToolbarAnimation property is
ignored.

Setting toolbar properties
You can customize the display of toolbars in applications that you create with
PowerBuilder by setting toolbar properties.
Users Guide 351

Providing toolbars
Toolbar style properties

In addition to customizing the style of a menu, you can customize the style of
a toolbar associated with the menu. For example, the following picture shows
a contemporary style toolbar with an expanded toolbar cascade and a
highlighted Exit button:

Toolbar style properties Toolbars have style properties that you can change
at design time on the top-level menu object. You can modify these properties
only if you select contemporarytoolbar! as the toolbar style for the
top-level menu object.

Toolbar item style property You can select the ToolbarAnimation property
for a menu item toolbar button. This property offsets the button image by two
pixels to the upper left when a user positions the cursor over the button. You
cannot assign this property at the menu object or toolbar level. You must assign
it to individual toolbar items (buttons) at design time. This property has a
Boolean datatype. You can select it on the Toolbar tab for each menu item
below the top-level menu object. With a contemporary menu, you can set the
ToolbarAnimation property at runtime at runtime using scripts.

The customizable menu and toolbar styles can be used for MDI and main
windows. Pop-up menus can also use menu style properties. The styles do not
affect existing PowerBuilder applications that use a traditional style. You can,
however, update an existing PowerBuilder application to use the new style
properties.

Property Datatype Use to assign

ToolbarBackColor Long Background color of the menu toolbar.

ToolbarGradient Boolean Gradient of the menu toolbar background.

ToolbarHighlightColor Long Highlight color for the toolbar buttons when
they are selected.

ToolbarStyle Enumerated Overall style of the menu toolbar. Values
are: contemporarytoolbar! and
traditionaltoolbar!

ToolbarTextColor Long Color of the text in the menu toolbar.
352 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Toolbar item display characteristics

In the Menu painter, you specify the menu items you want to display in the
toolbar, the text for the toolbar button and tip, the pictures to use to represent
the menu items, and other characteristics of the toolbar.

❖ To specify the display characteristics of a toolbar item:

1 Open the menu in the Menu painter and select the menu item you want to
display in the toolbar.

2 Select the Toolbar property page and set properties of the toolbar item as
shown in Table 14-5.

Table 14-5: Toolbar properties in the Menu painter

Property What to specify

ToolbarItemText Specify two different text values for the toolbar button
and PowerTip with a comma-delimited string, as follows:

Text in button, PowerTip

ToolbarItemName Choose a stock picture from the drop-down list or browse
to select a bitmap, GIF, JPEG or icon file. If you choose a
stock picture, PowerBuilder uses the up version when the
item is not clicked and the down version when the item is
clicked. (The up version appears raised and the down
version appears lowered.) For the best result, use 16*16
icons on a toolbar. If you are specifying a file, the picture
should be 16 pixels wide and 16 pixels high.

ToolbarItemDownName Specify a different picture to display when the item is
clicked (optional).

ToolbarItemVisible Clear if you want the toolbar button to be hidden. The
default is visible.

ToolbarItemDown Check if you want the down version of the button to
display initially.

ToolbarAnimation If you want the toolbar image to be animated when
selected, select the check box.

ToolbarItemSpace Specify any integer if you want to leave space before the
picture in the toolbar. Experiment with values to get the
spacing the way you want it. If you leave the value at 0,
there will be no spacing before the picture. (Spacing is
used only when the toolbar is not displaying text.)

ToolbarItemOrder Specify the order in which the item displays in the toolbar.
If you leave the value 0, PowerBuilder places the item in
the order in which it goes through the menu to build the
toolbar.
Users Guide 353

Providing toolbars
Menu items can have
drop-down toolbars

A menu item can have a toolbar button associated with it that displays a
drop-down toolbar. When the user clicks on the button, PowerBuilder displays
a drop-down toolbar that shows all of the toolbar buttons for menu items
defined at the next level. For example, if you define a drop-down toolbar for
the File menu item, the drop-down toolbar will show the buttons defined for
the items on the File menu (such as New, Open, Close, and Exit).

PowerBuilder displays a drop-down toolbar at runtime by default if the Object
Type of the menu item is MenuCascade. You can specify programmatically
whether submenu items display in a drop-down toolbar or as normal toolbar
items by setting the DropDown property of the menu item. For example, if you
want a descendent menu item to have a drop-down toolbar, but not its ancestor,
clear the DropDown check box on the ancestor’s Toolbar property page, and
set the DropDown property of the descendent menu item to “true” in a script.

❖ To specify a drop-down toolbar for a menu item:

1 In the Menu painter, select the menu item for which you want to add a
drop-down toolbar.

2 On the Toolbar property page, change the Object Type to MenuCascade.

3 (Optional) Specify the number of columns you want to display in the
Columns box.

The default is a single column. If there are many items on the submenu, as
there are on the toolbar item for inserting controls in the Window painter,
you will probably want to specify three or four columns.

ToolbarItemBarIndex Specify a number other than 1 if you want multiple
toolbars to display for this menu. The number you specify
determines which toolbar the current menu item appears
on. All items that have the same index number appear on
the same toolbar.

ObjectType Specify Menu or MenuCascade.

Columns (This property displays only if you choose MenuCascade
in the ObjectType drop-down list.) Indicate the number of
columns you want to display in the cascading toolbar.

Drop Down (This property displays only if you choose MenuCascade
in the ObjectType drop-down list.) If you want the button
to be a drop-down toolbar button, select the check box.

Property What to specify
354 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Setting toolbar properties in the Window painter
In the Window painter, you associate the menu with the window on the
window’s General property page. The window displays the toolbar by default.
If you do not want the toolbar to display, clear the ToolbarVisible check box on
the window’s Toolbar property page. You can also specify the toolbar’s
alignment and position on this property page.

Setting toolbar properties in the Application painter
You can specify global properties for all toolbars in your application on the
Toolbar property page in the Application painter or by setting properties of the
Application object in a script. Typically you set these in the application’s Open
event, but you can set them anywhere.

Table 14-6: Toolbar properties in the Application painter

Specifying the text in
the toolbar’s pop-up
menu

By default, PowerBuilder provides a pop-up menu for the toolbar, which users
can use to manipulate the toolbar. It is similar to the pop-up menu you use to
manipulate the PowerBar and PainterBar.

You can change the text that displays in this menu, but you cannot change the
functionality of the menu items in the menu. Typically, you do this when you
are building an application in a language other than English.

Property Meaning

ToolbarFrameTitle The text that displays as the title for the FrameBar when it is
floating.

ToolbarSheetTitle The text that displays as the title for the SheetBar when it is
floating.

ToolbarPopMenuText (String) Text to display on the pop-up menu for toolbars (see
below).

ToolbarUserControl (Boolean) If TRUE (default), users can use the toolbar pop-
up menu to hide or show the toolbars, move toolbars, or
show text. If FALSE, users cannot manipulate the toolbar.

ToolbarText (Boolean) If TRUE, text displays in the buttons. If FALSE
(the default), text does not display.

ToolbarTips (Boolean) If TRUE (default), PowerTips display when text is
not displayed in the buttons. If FALSE, PowerTips do not
display.
Users Guide 355

Writing scripts for menu items
You change the text as follows:

• The first two items in the pop-up menu display the titles set in
ToolbarFrameTitle and ToolbarSheetTitle (defaults: FrameBar and
SheetBar).

• The remaining text items are specified by the property
ToolbarPopMenuText. To specify values for this property, use a
comma-delimited list of values to replace the text “Left,” “Top,” “Right,”
“Bottom,” “Floating,” “Show Text,” and “Show PowerTips”:

ToolbarPopMenuText = "left, top, right, bottom, floating, showText,
showPowerTips"

For example, to change the text for the toolbar pop-up menu to German and
have hot keys underlined for each, you would specify the following:

ToolbarPopMenuText = "&Links, &Oben, &Rechts, " + &
"&Unten, &Frei positionierbar, &Text anzeigen, " &
+ "&PowerTips anzeigen"

Writing scripts for menu items
You write scripts for menu items in the Script view. The scripts specify what
happens when users select a menu item.

❖ To write a script for a menu item:

• Double-click the menu item or select Script from the menu item’s pop-up
menu.

The Script view displays for the clicked event, which is the default event
for a menu item.

Menu item events
Menu items have the following events:

• Clicked Typically, your application will contain Clicked scripts for each
menu item in a drop-down or cascading menu. For example, the script for
the Clicked event for the Open menu item on the File menu opens a file.
356 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
• Help You can provide Help on a menu item when a user presses the F1
key, or when the user clicks the context Help button [?] on the title bar of
the window with which the menu is associated, and then clicks on a menu
item.

• Selected You will probably use few Selected scripts since users do not
expect things to happen when they simply highlight a menu item. One use
of Selected scripts is to change MicroHelp displayed in an MDI
application as the user scrolls through a menu.

About the Clicked
event

The Clicked event is triggered whenever:

• The user clicks the menu item

• The user selects (highlights) the menu item using the keyboard and then
presses ENTER

• The user presses the shortcut key for the menu item

• The menu containing the menu item is displayed and the user presses the
accelerator key Alt+key

• A script executes the PopMenu function and displays a pop-up menu

A menu item responds to a mouse-click or the keyboard only if both its Visible
and Enabled properties are set to “true”.

If the menu item has a drop-down or cascading menu under it, the script for its
Clicked event (if any) is executed when the mouse button is pressed, and then
the drop-down or cascading menu displays. If the menu item does not have a
menu under it, the script for the Clicked event is executed when the mouse
button is released.

Using the Clicked event to specify menu item properties
When the user clicks an item on the menu bar to display a drop-down menu,
the Clicked event for the menu item on the menu bar is triggered and then the
drop-down menu is displayed.

You can use the menu bar’s Clicked event to specify the properties of the menu
items in the drop-down menu. For example, if you want to disable items in a
drop-down menu, you can disable them in the script for the Clicked event for
the menu item in the menu bar.

About the Help event The Help event is triggered when the user presses F1 or clicks the context Help
button [?] on a window’s title bar and then points and clicks on a menu item.

About the Selected
event

The Selected event is triggered when the user selects a menu item.
Users Guide 357

Writing scripts for menu items
Using functions and variables
You can use functions and variables in your scripts.

Using functions PowerBuilder provides built-in functions that act on menu items. You can use
these functions in scripts to manipulate menu items at runtime. For example, to
hide a menu, you can use the built-in Hide function.

For a complete list of the menu-level built-in functions, look at the Function
List view or use the Browser.

Defining menu-level functions
You can define your own menu-level functions to make it easier to manipulate
your menus. One way you can do this is in the Function List view, by selecting
Add from the pop-up menu.

For more information, see Chapter 8, “Working with User-Defined
Functions.”

Using variables Scripts for menu items have access to all global variables declared for the
application. You can also declare local variables, which are accessible only in
the script where they are declared.

You can declare instance variables for the menu when you have data that needs
to be accessible to scripts in several menu items in a menu. Instance variables
are accessible to all menu items in the menu.

For a complete description of variables and how to declare them, see the
PowerScript Reference.

Defining menu-level
structures

If you need to manipulate a collection of related variables, you can define
menu-level structures using the Structure view. You do this by displaying the
Structure List view and then selecting Add from the pop-up menu. The
Structure and Structure List views are not part of the default layout.

For more information, see Chapter 10, “Working with Structures.”
358 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Referring to objects in your application
You can refer to any object in the application in scripts for menu items. You
must fully qualify the reference, using the object name, as follows.

Referring to windows When referring to a window, you simply name the window. When referring to
a property in a window, you must always qualify the property with the
window’s name:

window.property

For example, this statement moves the window w_cust from within a menu
item script:

w_cust.Move(300, 300)

This statement minimizes w_cust:

w_cust.WindowState = Minimized!

You can use the reserved word ParentWindow to refer to the window that the
menu is associated with at runtime. For example, the following statement
closes the window the menu is associated with:

Close(ParentWindow)

You can also use ParentWindow to refer to properties of the window a menu is
associated with, but not to refer to properties of controls or user objects in the
window.

For example, the following statement is valid, because it refers to properties of
the window itself:

ParentWindow.Height = ParentWindow.Height/2

But the following statement is invalid, because it refers to a control in the
window:

ParentWindow.sle_result.Text = "Statement invalid"

Referring to controls
and user objects in
windows

When referring to a control or user object, you must always qualify the control
or user object with the name of the window:

window.control.property

window.userobject.property

For example, this statement enables a CommandButton in window w_cust from
a menu item script:

w_cust.cb_print.Enabled = TRUE
Users Guide 359

Using inheritance to build a menu
Referring to menu
items

When referring to a menu item, use this syntax:

menu.menu item

menu.menu item.property

Reference within the same menu
When referring to a menu item within the same menu, you do not have to
qualify the reference with the menu name.

When referring to a menu item in a drop-down or cascading menu, you must
specify each menu item on the path to the menu item you are referencing,
separating the names with periods.

For example, to place a check mark next to the menu item m_bold, which is on
a drop-down menu under m_text in the menu saved in the library as m_menu,
use this statement:

m_menu.m_text.m_bold.Check()

If the previous script is for a menu item in the same menu (m_menu), you do
not need to qualify the menu item with the name of the menu:

m_text.m_bold.Check()

Using inheritance to build a menu
When you build a menu that inherits its style, events, functions, structures,
variables, and scripts from an existing menu, you save coding time. All you
have to do is modify the descendent object to meet the requirements of the
current situation.

❖ To use inheritance to build a descendent menu:

1 Click the Inherit button on the PowerBar.

2 In the Inherit From Object dialog box, select Menus from the Object Type
drop-down list, the library or libraries you want to look in, and the menu
you want to use to create the descendant, and click OK.

Displaying menus from many libraries
To find a menu more easily, you can select more than one library in the
Application Libraries list. Use Ctrl+click to toggle selected libraries and
Shift+click to select a range.
360 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
The selected menu displays in the WYSIWYG Menu view and the Tree
Menu view in the Menu painter. The title in the painter’s title bar indicates
that the menu is a descendant.

3 Make the changes you want to the descendent menu as described in the
next section.

4 Save the menu under a new name.

Using the inherited information
When you build and save a menu, PowerBuilder treats the menu as a unit that
includes:

• All menu items and their scripts

• Any variables, functions, and structures declared for the menu

When you use inheritance to build a menu, everything in the ancestor menu is
inherited in all of its descendants.

What you can do You can do the following in a descendent menu:

• Add menu items to the end of a menu

• Insert menu items in a menu (with some restrictions)

For more information, see “Where you can insert menu items in a
descendent menu” on page 363.

• Modify existing menu items

For example, you can change the text displayed for a menu item or change
its initial appearance, such as making it disabled or invisible.

• Build scripts for menu items that do not have scripts in the ancestor menu

• Extend or override inherited scripts

• Declare functions, structures, and variables for the menu

What you cannot do You cannot do the following in a descendent menu:

• Change the order of inherited menu items

• Delete an inherited menu item

• Insert menu items between inherited menu items that do not have the
ShiftToRight property set (see “Modifying the ShiftToRight property” on
page 362)
Users Guide 361

Using inheritance to build a menu
• Change the name of an inherited menu item

• Change the type of an inherited menu item

Hiding a menu item
If you do not need a menu item in a descendent menu, you can hide it by
clearing the visible property in the Properties view or by using the Hide
function.

About menu item
names in a
descendant

PowerBuilder uses the following syntax to show names of inherited menu
items:

AncestorMenuName::MenuItemName

For example, in a menu inherited from m_update_file, you see
m_update_file::m_file for the m_file menu item, which is defined in
m_update_file.

The inherited menu item name is also locked, so you cannot change it.

Understanding
inheritance

The issues concerning inheritance with menus are similar to the issues
concerning inheritance with windows and user objects. For information, see
Chapter 13, “Understanding Inheritance.”

Inserting menu items in a descendent menu
Modifying the
ShiftToRight property

When defining a descendent menu, you might want to insert menu items in the
middle of the menu bar or in the middle of a drop-down or cascading menu. To
do this, you set the ShiftToRight property in a menu item’s Properties view on
the General property page.

If the ancestor menu has no menu items with ShiftToRight set, you can add a
new menu item to the end of the descendent menu. To add new menu items
elsewhere in the menu, set the ShiftToRight property for the descendent menu
items that will follow the new menu item.

The ShiftToRight property is used for menu items on the menu bar (where
items need to shift right if a new item is inserted) and for menu items in a
drop-down or cascading menu (where items might need to shift down if a new
item is inserted). The property name is ShiftToRight, but it means shift down
in drop-down or cascading menus.
362 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Where you set the
ShiftToRight property

You set the ShiftToRight property in an ancestor menu only if you know that
you will always want a group of menu items to shift right (or down) when you
inherit from the menu and add a new menu item. For example, if you have File,
Edit, Window, and Help menus on the menu bar, set the ShiftToRight property
for the Window and Help menu items if you are going to inherit from this
menu, because Window and Help are usually the last items on a menu bar.

Where you can insert
menu items in a
descendent menu

In a descendent menu, a group of menu items can be one of four types. Each
type has an insertion rule.

Table 14-7: Insertion rules for groups of menu items

The “Example with no ShiftToRight in ancestor” on page 364 and the
“Example with ShiftToRight in ancestor” on page 365 demonstrate some of
these rules.

How to insert menu
items in a descendent
menu

If you can insert a menu item in a descendent menu, the Insert Menu Item
option on the Insert menu and the pop-up menu is enabled. The Insert Menu
Item is enabled if ShiftToRight is set in the selected item that will follow the
item you are inserting and all menu items following it.

To insert a menu item in a descendant, you use the same method you use to
insert an item in a new menu, whether the menu item is on the menu bar or on
a drop-down or cascading menu. For information about inserting menu items,
see “Working with menu items” on page 334.

The following examples illustrate where you can insert menu items in a
descendent menu and demonstrate the rules that govern where you can insert
them.

Type of group Insertion rule

Inherited menu items without
ShiftToRight set

You cannot insert a new menu item before
any of these menu items

Inherited menu items with
ShiftToRight set in ancestor

You can insert before the first menu item in
the group but not before the others

New items without ShiftToRight set You can insert a new menu item before any
of these menu items

New items with ShiftToRight set You can insert a new menu item before any
of these menu items
Users Guide 363

Using inheritance to build a menu
Example with no
ShiftToRight in
ancestor

Suppose you have a menu with File, Edit, Window, and Help items on the menu
bar. The menu is inherited from an ancestor frame menu with no items set as
ShiftToRight in the ancestor.

Here is how you might add some new menu items. Since ShiftToRight is not
set anywhere at first, you can add a menu item only to the end.

1 Select any item in the menu bar and select Insert>Menu Item At End.

2 Name the new menu item New1 and press Enter.

The New1 menu item is added to the right of the Help menu.

Now add a new Menu item before the New1 menu item. You can do this
without setting ShiftToRight on New1, because New1 is a new menu item
in the inherited menu.

3 Select Insert Menu Item from the pop-up menu for New1.

4 Name the new menu item New2 and press Enter.

Now add a new Menu item before the Help menu item. You cannot do this
unless you set ShiftToRight on the Help menu item, the New2 Menu item,
and the New1 menu item, because Help is an inherited menu item without
ShiftToRight set in the ancestor menu. For Help to shift right, New2 and
New1 must also be able to shift right.

5 Select the Help menu item and in the Properties view, select the
ShiftToRight property, and then do the same for New1 and New2.

Order for setting ShiftToRight for the three menu items
You can set ShiftToRight in any order, but you see the items shifting only
if you set ShiftToRight from left to right.

Now you can add a new menu item before the Help menu item.
364 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
6 Select the Help menu item, then select Insert New Item from the pop-up
menu, name the new item New3, and then press Enter.

If you want to add a new Menu item before the New3 menu item, you can
do it without setting ShiftToRight on New3, because New3 is a new menu
item and ShiftToRight is set in all items that follow.

However, if you want to add a new menu item before the Window menu
item, you cannot do this by working only in the descendent menu because
the Window menu item is an ancestor menu item and ShiftToRight is not
set in the ancestor. To be able to do this, you must set Window as
ShiftToRight in the ancestor.

Example with
ShiftToRight in
ancestor

In this example, the inherited menu has the same four menu bar items, but
ShiftToRight has been set in the Window and Help menu items in the ancestor
menu. Suppose you want to insert a new menu item before the Help menu item
and the Window menu item.

1 Select the Help menu item and display the pop-up menu.

The Insert Menu Item option is disabled because the Help item is not the
first item in a group of ancestor menu items (Window and Help) with
ShiftToRight set in the ancestor.

2 Select the Window menu item and display the pop-up menu.

The Insert Menu Item option is enabled because the Window item is the
first item in a group of ancestor menu items with ShiftToRight set in the
ancestor.

3 Select Insert Menu Item At End from the pop-up menu to insert a new
menu item after Help, name it New1, and press Enter.

The New1 item’s ShiftToRight property is set automatically.

Now the Window, Help, and New1 items are set ShiftToRight. You can
insert a new item before Window and New1, but not before Help. This is
because the Window and Help menu items are a group for which
ShiftToRight is set in the ancestor.

You cannot insert a new item before the Edit menu item because Edit is in
a group (File and Edit) that are inherited items with no ShiftToRight set in
the ancestor.
Users Guide 365

Using menus in your applications
4 Select the Edit menu item, select ShiftToRight in the Properties view, and
then add a new menu item.

You could also have set the ShiftToRight property in the ancestor menu,
but it is easier to work just in the descendant.

Using menus in your applications
You can use menus in two ways:

• Place them in the menu bar of a window

• Display a menu as a pop-up menu

Adding a menu bar to a window
To have a menu bar display when a window is opened by a user, you associate
a menu with the window in the Window painter.

❖ To associate a menu with a window:

1 Click the Open button in the PowerBar, select the window with which you
want to associate the menu, and open the window.

2 Do one of the following:

• In the Properties view for the window, enter the name of the menu in
the MenuName text box on the General tab page.

• Click the Browse button and select the menu from the Select Object
dialog box, which lists all menus available to the application.

In the Select Object dialog box, you can search for a menu by clicking the
Browse button.

3 Click Save to associate the selected menu with the window.
366 PowerBuilder Classic

CHAPTER 14 Working with Menus and Toolbars
Identifying menu items
in window scripts

You reference menu items in scripts in windows and controls using the
following syntax:

menu.menu item

You must always fully qualify the menu item with the name of the menu.

When referring to a menu item in a drop-down or cascading menu, you must
specify each menu item on the path to the menu item you are referencing,
separating the names with periods.

For example, to refer to the Enabled property of menu item m_open, which is
under the menu bar item m_file in the menu saved in the library as m_menu, use:

m_menu.m_file.m_open.Enabled

Changing a window's
menu at runtime

You can use the ChangeMenu function in a script to change the menu associated
with a window at runtime.

Displaying pop-up menus
To display a pop-up menu in a window, use the PopMenu function to identify
the menu and the location at which you want to display the menu.

If the menu is
associated with the
window

If the menu is currently associated with the window, you can simply call the
PopMenu function.

The following statement in a CommandButton script displays m_appl.m_help
as a pop-up menu at the current pointer position, assuming menu m_appl is
already associated with the window:

m_appl.m_help.PopMenu(PointerX(), PointerY())

If the menu is not
associated with the
window

If the menu is not already associated with the window, you must create an
instance of the menu before you can display it as a pop-up menu.

The following statements create an instance of the menu m_new, then pop up
the menu mymenu.m_file at the pointer location, assuming m_new is not
associated with the window containing the script:

m_new mymenu
mymenu = create m_new
mymenu.m_file.PopMenu(PointerX(), PointerY())
Users Guide 367

Using menus in your applications
368 PowerBuilder Classic

C H A P T E R 1 5 Working with User Objects

About this chapter One of the features of object-oriented programming is reusability: you
define a component once, then reuse it as many times as you need to
without any additional work. User objects are one of the best ways to take
advantage of reusability in PowerBuilder. This chapter describes how to
define and use user objects.

Contents

About user objects
Applications often have features in common. For example, you might
often reuse features like the following:

• A processing package that calculates commissions or performs
statistical analysis

• A Close button that performs a certain set of operations and then
closes the window

• DataWindow controls that perform standard error checking

• A list that includes all departments

• A predefined file viewer that you plug into a window

If you find yourself using the same application feature repeatedly, you
should define a user object: you define the user object once in the User
Object painter and use it as many times as you need.

Topic Page

About user objects 369

About the User Object painter 372

Building a new user object 374

Using inheritance to build user objects 382

Using user objects 384

Communicating between a window and a user object 389
Users Guide 369

About user objects
There are two main types of user objects: class and visual. Class user objects
are also called nonvisual objects.

Examples of user objects
The PowerBuilder Code Examples contain many interesting user objects in
PBEXAMUO.PBL. Take a look at them to get an appreciation for the power of
user objects.

Class user objects
A class user object lets you reuse a set of business rules or other processing that
acts as a unit but has no visual component. For example, you might define a
class that calculates sales commissions or performs statistical analysis.
Whenever you need to do this type of processing, you instantiate the user
object in a script and call its functions.

You build class user objects in the User Object painter, specifying instance
variables and object-level functions. Then you create an instance of the class
user object in your application, thereby making its processing available.

There are two kinds of class user objects:

• Custom class

• Standard class

Custom class user
objects

Custom class user objects are objects of your own design that encapsulate
properties and functions not visible to the user. They are not derived from
PowerBuilder objects. You define them to create units of processing that have
no visual component.

For example, to calculate commissions in an application, you can define an
n_CalculateCommission custom class user object that contains properties and
user-defined functions that do the processing to calculate commissions.

Whenever you need to use this processing, you create an instance of the user
object in a script, which then has access to the logic in the user object.

When you build components that you will deploy to a transaction server, you
use custom class user objects. For more information, see Application
Techniques.
370 PowerBuilder Classic

CHAPTER 15 Working with User Objects
Standard class user
objects

A standard class user object inherits its definition from one built-in, nonvisual
PowerBuilder object, such as the Transaction object or Error object. You
modify the definition to make the object specific to your application, and
optionally add instance variables and functions to enhance the behavior of the
built-in object. Once you define a standard class user object, you can go to the
Application painter and specify that you want to use it instead of the
corresponding built-in system object in your application.

One important use of a standard class user object is employing one inherited
from the built-in Transaction object to do database remote procedure calls from
within an application.

Visual user objects
A visual user object is a reusable control or set of controls that has a certain
behavior. You define it in the User Object painter, where you place controls in
the user object and write scripts for those controls. Then you can place the user
object in windows you build in your applications as often as needed.

There are three types of visual user objects:

• Custom visual Most useful if you frequently group controls together in
a window and always use the controls to perform the same processing.

• External visual Useful when you have a custom DLL.

• Standard visual Most useful if you frequently use a PowerBuilder
control to perform the same processing.

Custom visual user
objects

Custom visual user objects are objects that have several controls that function
as a unit. You can think of a custom visual user object as a window that is a
single unit and is used as a control.

Assume you frequently use a group of buttons, each of which performs
standard processing. If you build a custom user object that contains all the
buttons, you can place the buttons in the window as a unit when you place the
user object in a window.

External visual user
objects

External visual user objects contain controls from objects in the underlying
windowing system that were created outside PowerBuilder. You can use a
custom DLL in PowerBuilder to create an external user object.

You must know what classes the DLL supports, the messages or events the
DLL responds to, and the style bits that you can set in the DLL.
Users Guide 371

About the User Object painter
Standard visual user
objects

A standard visual user object inherits its definition from one standard
PowerBuilder control. You modify the definition to make the control specific
to your applications.

Assume you frequently use a CommandButton named Close to display a
message box and then close the parent window. If you build a standard visual
user object that derives from a CommandButton to perform this processing,
you can use the user object whenever you want to display a message box and
then close a window.

Building user objects
You can build a user object from scratch, or you can create a user object that
inherits its style, events, functions, structures, variables, and scripts from an
existing user object.

For information on building a user object from scratch, see “Building a new
user object” on page 374. To find out more about creating a user object based
on an existing PowerBuilder object, see “Using inheritance to build user
objects” on page 382.

About the User Object painter
The User Object painter has five implementations, depending on the type of
user object you are working with. It has several views where you specify how
the user object behaves and, for custom visual and standard visual user objects,
how it looks. For details about the views, how you use them, and how they are
related, see “Views in painters that edit objects” on page 124.
372 PowerBuilder Classic

CHAPTER 15 Working with User Objects
Views for visual user
objects

In this User Object painter for a custom visual user object, the Layout view and
Script view have been arranged to display at the same time:

Most of your work in the User Object painter for visual objects is done in three
views:

• The Layout view, where you design the appearance of the user object

• The Properties view, where you set user object properties and control
properties

• The Script view, where you modify behavior by coding user object and
control scripts

In the Layout view, you add controls to a visual user object in the same way
you add controls to a window.

For information about specifying user object properties, see “Building a new
user object” on page 374. For information about using the Script view, see
Chapter 7, “Writing Scripts.”

Views for nonvisual
user objects

You do not need the Layout and Control List views for nonvisual user objects,
but otherwise, you use all the views that you use for visual objects.

Nonvisual user objects require no layout design work, but working in the User
Object painter on the behavior of a nonvisual object is otherwise similar to
working on the behavior of a visual user object.
Users Guide 373

Building a new user object
Building a new user object
This section describes how to build a user object from scratch. You use this
technique to create user objects that are not based on existing user objects.

Creating a new user object

❖ To create a new user object:

1 Open the New dialog box.

2 On PB Object tab page, select the kind of user object you want to create.

The five user object choices display at the top of the tab page:

3 Click OK.

What you do next depends on the type of user object you selected. For all
user objects except Standard Class and Standard Visual, the User Object
painter opens.

The remainder of this section describes how to build each type of user
object.
374 PowerBuilder Classic

CHAPTER 15 Working with User Objects
Building a custom class user object
On the PB Object tab page of the New dialog box, if you select Custom Class
and click OK, the User Object painter for custom class user objects opens.

❖ To build the custom class user object:

1 Declare functions, structures, or variables you need for the user object.

2 Create and compile scripts for the user object.

Custom class user objects have built-in constructor and destructor events.

3 Save the user object.

See “Saving a user object” on page 380.

Using AutoInstantiate You can create custom class user objects that are autoinstantiated, which
provides you with the ability to define methods.

Autoinstantiated user objects do not require explicit CREATE or DESTROY
statements when you use them. They are instantiated when you call them in a
script and destroyed automatically.

❖ To define an autoinstantiated custom class user object:

• In the Properties view, select the AutoInstantiate check box.

For more information about autoinstantiation, see the PowerScript Reference.

Using the EAServer
Project property

In the Properties view, if you specify an EAServer or Application Server
project that will be used to generate an EAServer or Application Server
component (a custom class user object with the characteristics needed for
deployment to an application server), live editing is enabled. When live editing
is enabled in the User Object painter, PowerBuilder builds the project for an
application server component each time you save the user object.

For information about EAServer components and live editing, see Application
Techniques.

Building a standard class user object
On the PB Object tab page of the New dialog box, if you select Standard Class
and click OK, the Select Standard Class Type dialog box displays.
Users Guide 375

Building a new user object
❖ To build the standard class user object:

1 In the Select Standard Class Type dialog box, select the built-in system
object that you want your user object to inherit from and click OK.

2 Declare functions, structures, or variables you need for the user object.

For a list of properties and functions
Use the Browser to list the built-in properties inherited from the selected
system object. Use the Function List view or the Browser to list the
functions inherited from the selected system object.

3 Declare any user events needed for the user object.

For information about user events, see “Communicating between a
window and a user object” on page 389.

4 In the Script view, create and compile scripts for the user object.

Class user objects have built-in constructor and destructor events.

5 Save the user object.

See “Saving a user object” on page 380.

Building a custom visual user object
On the PB Object tab page of the New dialog box, if you select Custom Visual
and click OK, the User Object painter for custom visual user objects opens. It
looks like the Window painter, but the empty box that displays in the Layout
view is the new custom visual user object.

Building a custom visual user object is similar to building a window, described
in Chapter 11, “Working with Windows.” The views available in the Window
painter and the User Object painter for custom visual user objects are the same.

❖ To build the custom visual user object:

1 Place the controls you want in the custom visual user object.

2 Work with the custom visual user object as you would with a window in
the Window painter:

• Define the properties of the controls

• Declare functions, structures, or variables as necessary
376 PowerBuilder Classic

CHAPTER 15 Working with User Objects
• Declare any events needed for the user object or its controls

For information about user events, see “Communicating between a
window and a user object” on page 389.

• In the Script view, create and compile the scripts for the user object or
its controls

You can write scripts for each control in a custom visual user object.

For more information on events associated with custom visual user
objects, see “Events in user objects” on page 379.

3 Save the user object.

See “Saving a user object” on page 380.

Building an external visual user object
On the PB Object tab page of the New dialog box, if you select External Visual
and click OK, the User Object painter for external visual user objects opens.

❖ To build an external visual user object:

1 In the Properties view, click the Browse button next to the LibraryName
box.

2 In the Select Custom Control DLL dialog box, select the DLL that defines
the user object and click OK.

3 In the Properties view, enter the following information, as necessary, and
click OK:

• The class name registered in the DLL

Information about the class name is usually provided by the vendor of
the purchased DLL.

• Text in the Text box

This will be displayed only if the object has a text style property.

• Display properties (border and scroll bars)

• Decimal values for the style bits associated with the class

Information about style bits is usually provided by the vendor of the
purchased DLL. PowerBuilder will OR these values with the values
selected in the display properties for the control.
Users Guide 377

Building a new user object
4 Declare any functions, structures, or variables you need to declare for the
user object.

You can declare functions, structures, and variables for the user object in
the Script view. Information about functions is usually provided by the
vendor of the purchased DLL.

5 Declare any needed events for the user object.

For information about user events, see “Communicating between a
window and a user object” on page 389.

6 In the Script view, create and compile the scripts for the user object.

For more information on events associated with external visual user
objects, see “Events in user objects” on page 379.

7 Save the user object.

See “Saving a user object” on page 380.

Building a standard visual user object
On the PB Object tab page of the New dialog box, if you select Standard Visual
and click OK, the Select Standard Visual Type dialog box displays.

❖ To build a standard visual user object:

1 In the Select Standard Visual Type dialog box, select the PowerBuilder
control you want to use to build your standard visual user object and click
OK.

The selected control displays in the workspace. Your visual user object
will have the properties and events associated with the PowerBuilder
control you are modifying.

2 Work with the control as you do in the Window painter:

• Review the default properties and make any necessary changes

• Declare functions, structures, or variables as necessary

You can declare these in the Script view.
378 PowerBuilder Classic

CHAPTER 15 Working with User Objects
• Declare any user events needed for the user object

For information about user events, see “Communicating between a
window and a user object” on page 389.

• Create and compile the scripts for the user object

Standard visual user objects have the same events as the
PowerBuilder control you modified to create the object.

3 Save the user object.

See “Saving a user object” on page 380.

Events in user objects
When you build a user object, you can write scripts for any event associated
with that user object.

Events in class user
objects

Most custom class user objects have only constructor and destructor events.
Activate and deactivate events are created for EAServer and Application
Server custom class user objects that you create using the Target or PB Object
wizards in the New dialog box. For more information, see Application
Techniques.

Table 15-1: Events for custom class user objects

Standard class user objects have the same events as the PowerBuilder system
object from which they inherit.

Event Occurs when

Constructor The user object is created

Destructor The user object is destroyed

Activate The user object is activated in an application server (EAServer
component wizard only)

Deactivate The user object is deactivated in an application server (EAServer
component wizard only)
Users Guide 379

Building a new user object
Events in visual user
objects

Standard visual user objects have the same events as the PowerBuilder control
from which they inherit. Custom and external visual user objects have a
common set of events.

Table 15-2: Events for custom and external visual user objects

For more about drag and drop, see Application Techniques.

Saving a user object

❖ To save a user object:

1 In the User Object painter, select File>Save from the menu bar or click the
Save button in the painter bar.

If you have previously saved the user object, PowerBuilder saves the new
version in the same library and returns you to the User Object painter.

If you have not previously saved the user object, PowerBuilder displays
the Save User Object dialog box.

2 Enter a name in the User Objects box.

For naming considerations, see “Naming the user object” next.

3 Enter comments to describe the user object.

These display in the Select User Object dialog box and in the Library
painter, and will document the purpose of the user object.

Event Occurs when

Constructor Immediately before the Open event of the window and when the
user object is dynamically placed in a window

Destructor Immediately after the Close event of the window and when the
user object is dynamically removed from a window

DragDrop A dragged object is dropped on the user object

DragEnter A dragged object enters the user object

DragLeave A dragged object leaves the user object

DragWithin A dragged object is moved within the user object

Help A user presses the F1 key or clicks the context Help button [?] on
the title bar of the window with which the menu is associated and
then points and clicks on a menu item

Other A Windows message occurs that is not a PowerBuilder event

RButtonDown The right mouse button is pressed
380 PowerBuilder Classic

CHAPTER 15 Working with User Objects
4 Specify the library in which to save the user object.

To make a user object available to all applications, save it in a common
library and include the library in the library search path for each
application.

5 Click OK to save the user object.

Validation for server components
In the User Object painter for a custom class user object, the Design menu has
EAServer/Application Server Validation and .NET Web Service Validation
items. If you are select a validation menu item for one of these component
types to enable validation, a check displays next to the menu item. When you
save the object, you might see some error messages.

For information about EAServer validation, see Application Techniques.

Naming the user object

A user object name can be any valid PowerBuilder identifier up to 40
characters. For information about PowerBuilder identifiers, see the
PowerScript Reference.

Naming conventions You should adopt naming conventions to make it easy to understand a user
object's type and purpose.

One convention you could follow is to use u_ as the prefix for visual user
objects and n_ as the prefix for class (nonvisual) user objects. For standard
classes, include the standard prefix for the object or control from which the
class inherits in the name. For external user objects, include ex_ in the name,
and for custom class user objects, include cst_ in the name.

Table 15-3 shows some examples of this convention.

Table 15-3: Suggested naming conventions for user objects

Type of user
object Format Example

Standard visual u_control_purpose u_cb_close, a CommandButton that
closes a window

Custom visual u_purpose u_toolbar, a toolbar

External visual u_ex_purpose u_ex_sound, outputs sound
Users Guide 381

Using inheritance to build user objects
For a list of naming conventions, see “Naming conventions” in Chapter 5,
“Working with Targets.”

Using inheritance to build user objects
When you build a user object that inherits its definition (properties, events,
functions, structures, variables, controls, and scripts) from an existing user
object, you save coding time. All you must do is modify the inherited definition
to meet the requirements of the current application.

For example, suppose your application has a user object u_file_view that has
three CommandButtons:

• List—displays a list of files in a list

• Open—opens the selected file and displays the file in a MultiLineEdit
control

• Close—displays a message box and then closes the window

If you want to build another user object that is exactly like the existing
u_file_view except that it has a fourth CommandButton, you can use inheritance
to build the new user object, and then all you need to do is add the fourth
CommandButton.

❖ To use inheritance to build a descendent user object:

1 Click the Inherit button in the PowerBar, or select File>Inherit from the
menu bar.

2 In the Inherit From Object dialog box, select User Objects from the
Objects of Type drop-down list.

Standard class n_systemobject_purpose n_trans_test, derived from the
Transaction object and used for testing

Custom class n_cst_purpose n_cst_commission, calculates
commissions

Type of user
object Format Example
382 PowerBuilder Classic

CHAPTER 15 Working with User Objects
3 Select the target as well as the library or libraries you want to look in.

Displaying user objects from many libraries
To find a user object more easily, you can select more than one library in
the Libraries list. Use Ctrl+click to toggle selected libraries and
Shift+click to select a range.

4 Select the user object you want to use to create the descendant, and click
OK.

The selected object displays in the User Object painter and the title bar
indicates that the object is a descendant.

5 Make any changes you want to the user object.

6 Save the user object with a new name.

Using the inherited information
When you build and save a user object, PowerBuilder treats the object as a unit
that includes:

• The object (and any controls within the object if it is a custom visual user
object)

• The object’s properties, events, and scripts

• Any variables, functions, or structures declared for the object

When you use inheritance to build a new user object, everything in the ancestor
user object is inherited in the direct descendant and in its descendants in turn.

Ancestor’s instance
variables display

If you create a user object by inheriting it from a custom class or standard class
user object that has public or protected instance variables with simple
datatypes, the instance variables display and can be modified in the descendent
user object’s Properties view.

All public instance variables with simple datatypes such as integer, boolean,
character, date, string, and so on display in the descendant. Instance variables
with the any or blob datatype or instance variables that are objects or arrays do
not display.

What you can do in
the descendant

You can do the following in a descendent user object:

• Change the values of the properties and the variables

• Build scripts for events that do not have scripts in the ancestor
Users Guide 383

Using user objects
• Extend or override the inherited scripts

• Add controls (in custom visual user objects)

• Reference the ancestor’s functions and events

• Reference the ancestor’s structures if the ancestor contains a public or
protected instance variable of the structure datatype

• Access ancestor properties, such as instance variables, if the scope of the
property is public or protected

• Declare variables, events, functions, and structures for the descendant

What you cannot do in
the descendant

In a descendent user object, you cannot delete controls inherited from a custom
visual user object. If you do not need a control in a descendent user object, you
can make it invisible.

Understanding
inheritance

The issues concerning inheritance with user objects are the same as the issues
concerning inheritance with windows and menus. See Chapter 13,
“Understanding Inheritance,” for more information.

Using user objects
Once you have built a user object, you are ready to use it in an application. This
section describes how to use:

• Visual user objects

• Class user objects

Using visual user objects
You use visual user objects by placing them in a window or in a custom visual
user object. The techniques are similar whether you are working in the Window
painter or the User Object painter.

❖ To place a user object:

1 Open the window or custom visual user object in which you want to place
the visual user object.

2 Click the User Object button in the PainterBar, or select Insert>Control
from the menu bar and then select User Object.
384 PowerBuilder Classic

CHAPTER 15 Working with User Objects
3 Select the user object you want to use and click the location where you
want the user object to display.

PowerBuilder creates a descendent user object that inherits its definition
from the selected user object and places it in the window or user object.

Dragging the user object from the System Tree
You can drag a user object from the System Tree to the Layout view in the
Window painter.

What you can do After you place a user object in a window or a custom visual user object, you
can name it, size it, position it, write scripts for it, and do anything else you can
do with a control.

When you place the user object in a window, PowerBuilder assigns it a unique
name, just as it does when you place a control. The name is a concatenation of
the default prefix for a user object control (initially, uo_) and a default suffix,
which is a number that makes the name unique.

You should change the default suffix to a suffix that has meaning for the user
object in your application.

For more information about naming, see “Naming controls” on page 264.

Writing scripts When you place a user object in a window or a custom user object, you are
actually creating a descendant of the user object. All scripts defined for the
ancestor user object are inherited. You can choose to override or extend those
scripts.

For more information, see “Using inherited scripts” on page 321.

You place a user object as a unit in a window (or another user object). You
cannot write scripts for individual controls in a custom user object after placing
it in a window or custom user object; you do that only when you are defining
the user object itself.

Placing a user object
at runtime

You can add a user object to a window at runtime using the PowerScript
functions OpenUserObject and OpenUserObjectWithParm in a script. You can
remove a user object from a window using the CloseUserObject function.
Users Guide 385

Using user objects
Using class user objects
How you insert a
nonvisual object

There are two ways to use a class user object when the user object is not
autoinstantiating: you can create an instance of it in a script, or you can insert
the user object in a window or user object using the Insert menu.

For more information on autoinstantiation, see “Using AutoInstantiate” on
page 375.

The nonvisual object you insert can be a custom class user object or a standard
class user object of most types.

❖ To instantiate a class user object:

1 In the window or user object in which you want to use the class user object,
declare a variable of the user object type and create an instance of it using
the CREATE statement. For example:

// declared instance variable:
// n_myobject invo_myobject
invo_myobject = CREATE n_myobject

2 Use the user object’s properties and functions to do the required
processing.

3 When you have finished using the user object, destroy it using the
DESTROY statement.

If you select Autoinstantiate in the properties of the class user object, you
cannot use the CREATE and DESTROY statements.

❖ To insert a class user object:

1 Open the window or user object in which you want to insert the class user
object.

2 Select Insert>Object from the menu bar.

3 Select User Object (at the bottom of the list) and then select the class user
object you want to insert.

PowerBuilder inserts the selected class user object.

4 Modify the properties and code the events of the nonvisual object as
needed.

When the user object is created in an application, the nonvisual object it
contains is created automatically. When the user object is destroyed, the
nonvisual object is destroyed automatically.
386 PowerBuilder Classic

CHAPTER 15 Working with User Objects
Using the Non-Visual
Object List view

You can use the same technique to insert standard class user objects. Since all
class user objects are nonvisual, you cannot see them, but if you look at the
Non-Visual Object List view, you see all the class user objects that exist in your
user object.

Using the Non-Visual Object List view’s pop-up menu, you can display a class
user object’s properties in the Properties view, display the Script view for the
object to code its behavior, or delete the object.

Using global standard class user objects
Five of the standard class user object types are inherited from predefined global
objects used in all PowerBuilder applications:

Transaction (SQLCA)
DynamicDescriptionArea (SQLDA)
DynamicStagingArea (SQLSA)
Error
Message

Replacing the built-in
global object

If you want your standard class user object to replace the built-in global object,
you tell PowerBuilder to use your user object instead of the built-in system
object that it inherits from. You will probably use this technique if you have
built a user object inheriting from the Error or Message object.

❖ To replace the built-in global object with a standard class user object:

1 Open the Application object.

2 In the Properties view, click the Additional Properties button on the
General tab page.

3 In the Application properties dialog box, select the Variable Types tab.
Users Guide 387

Using user objects
4 Specify the standard class user object you defined in the corresponding
field and click OK.

After you have specified your user object as the default global object, it
replaces the built-in object and is created automatically when the application
starts up. You do not create it (or destroy it) yourself.

The properties and functions defined in the user object are available anywhere
in the application. Reference them using dot notation, just as you access those
of other PowerBuilder objects such as windows.

Supplementing the
built-in global object

You can use a user object inherited from one of these global objects by
inserting one in your user object as described in “Using class user objects” on
page 386. If you do, your user object is used in addition to the built-in global
object variable. Typically you use this technique with user objects inherited
from the Transaction object. You now have access to two Transaction objects:
the built-in SQLCA and the one you defined.

For more information For more information about using the Error object, see “Using the Error
object” on page 910.

For information about using the Message object, and about creating your own
Transaction object to support database remote procedure calls, see Application
Techniques.
388 PowerBuilder Classic

CHAPTER 15 Working with User Objects
For more information about the DynamicDescriptionArea and
DynamicStagingArea objects used in dynamic SQL, see the PowerScript
Reference.

Communicating between a window and a user object
Often you need to exchange information between a window and a visual user
object in the window. Consider these situations:

• You have a set of buttons in a custom user object. Each of the buttons acts
upon a file that is listed in a SingleLineEdit control in the window (but not
in the user object).

You need to pass the contents of the SingleLineEdit control from the
window to the user object.

• You have a user object color toolbar. When the user clicks one of the colors
in the user object, a control in the window changes to that color.

You need to pass the color from the user object to the window control.

This section discusses two techniques for handling this communication and
presents a simple example.

Table 15-4: Techniques for communicating information in a window

Communication with both techniques can be either synchronous (using Send
for functions and the EVENT keyword for events) or asynchronous (using Post
for functions and the POST keyword for events).

Technique Advantages Disadvantages

Functions Easy to use

Supports parameters and return types,
so is not prone to errors

Supports data encapsulation and
information hiding

Best for complex operations

Creates overhead, might be
unnecessary for simple
operations

User events Very flexible and powerful Uses no type checking, so
is prone to error
Users Guide 389

Communicating between a window and a user object
Directly referencing
properties

Instead of using functions or user events, it is possible to reference properties
of a user object directly. If you have a user object control, uo_1, associated with
a custom user object that has a SingleLineEdit, sle_1, you can use the following
in a script for the window:

uo_1.sle_1.Text = "new text"

However, it is better to communicate with user objects through functions and
user events, as described below, in order to maintain a clean interface between
your user object and the rest of your application.

The functions
technique

Exchanging information using functions is straightforward. After a user object
calls a function, any return value is available to any control within that object.

For how to use this technique, see “Example 1: using functions” on page 392.

❖ To pass information from a window to a user object:

1 Define a public, user object-level function that takes as arguments the
information needed from the window.

2 Place the user object in the window.

3 When appropriate, call the function from a script in the window, passing
the needed information as arguments.

❖ To pass information from a user object to a window:

1 Define a public, window-level function that takes as parameters the
information needed from the user object.

2 Place the user object in the window.

3 When appropriate, call the function from a script in the user object,
passing the needed information as parameters.

The user events
technique

You can define user-defined events, also called user events, to communicate
between a window and a user object. You can declare user events for any
PowerBuilder object or control.

A custom visual user object often requires a user event. After you place a
custom visual user object in a window or in another custom user object, you
can write scripts only for events that occur in the user object itself. You cannot
write scripts for events in the controls in the user object.

You can, however, define user events for the user object, and trigger those
events in scripts for the controls contained in that user object. In the Window
painter, you write scripts for the user events, referencing components of the
window as needed.
390 PowerBuilder Classic

CHAPTER 15 Working with User Objects
For more information about user events, see Chapter 9, “Working with User
Events,” and Application Techniques. For instructions for using this technique,
see “Example 2: using user events” on page 393.

❖ To define and trigger a user event in a visual user object:

1 In the User Object painter, select the user object.

Make sure no control in the user object is selected.

2 In the Event List view, select Add from the pop-up menu.

3 In the Prototype window that displays, define the user event.

For how to do so, see “Defining user events” on page 218.

4 Use the Event keyword in scripts for a control to trigger the user event in
the user object:

userobject.Event eventname ()

For example, the following statement in the Clicked event of a
CommandButton contained in a custom visual user object triggers the
Max_requested event in the user object:

Parent.Event Max_requested()

This statement uses the pronoun Parent, referring to the custom visual user
object itself, to trigger the Max_requested event in that user object.

5 Implement these user events in the Window painter.

❖ To implement the user event in the window:

1 Open the window.

2 In the Window painter, select Insert>Control from the menu bar and place
the custom visual user object in the window.

3 Double-click the user object and then in the Script view, write scripts for
the user events you defined in the User Object painter.

Examples of user object controls affecting a window
To illustrate these techniques, consider a simple custom visual user object,
uo_minmax, that contains two buttons, Maximize and Minimize.
Users Guide 391

Communicating between a window and a user object
If the user clicks the Maximize button in an application window containing this
user object, the current window becomes maximized. If the user clicks
Minimize, the window closes to an icon.

Because the user object can be associated with any window, the scripts for the
buttons cannot reference the window that has the user object. The user object
must get the name of the window so that the buttons can reference the window.

“Example 1: using functions” next shows how PowerBuilder uses functions to
pass a window name to a user object, allowing controls in the user object to
affect the window the user object is in.

“Example 2: using user events” on page 393 shows how PowerBuilder uses
unmapped user events to allow controls in a user object to affect the window
the user object is in.

Example 1: using
functions

1 In the Script view in the User Object painter, define an instance variable,
mywin, of type window.

window mywin

This variable will hold the name of the window that has the user object.

2 Define a user object-level function, f_setwin, with:

• Public access

• No return value

• One argument, win_param, of type window and passed by value

3 Type the following script for the function:

mywin = win_param

When f_setwin is called, the window name passed in win_param will be
assigned to mywin, where user object controls can reference the window
that has the user object.

4 Write scripts for the two buttons:

• cb_max: mywin.WindowState = Maximized!

• cb_min: mywin.WindowState = Minimized!

5 Save the user object as uo_minmax and close the User Object painter.

6 Open the window, drag uo_minmax onto the window in the Layout view,
and name it uo_func in the Properties view.
392 PowerBuilder Classic

CHAPTER 15 Working with User Objects
7 In the Open event for the window, call the user object-level function,
passing the name of the window:

uo_func.f_setwin(This)

The pronoun This refers to the window’s name, which will be passed to the
user object's f_setwin function.

What happens When the window opens, it calls the user object-level
function f_setwin, which passes the window name to the user object. The user
object stores the name in its instance variable mywin. When the user clicks a
button control in the user object, the control references the window through
mywin.

Example 2: using user
events

1 In the Script view in the User Object painter, define two unmapped user
events for the user object: Max_requested and Min_requested.

Leave the Event ID fields blank to define them as unmapped.

2 Trigger user events of the user object in the scripts for the Clicked event
of each CommandButton:

• cb_max: Parent.Event Max_requested()

• cb_min: Parent.Event Min_requested()

3 Save the user object and name it uo_event and close the User Object
painter.

4 Open the window and in the Window painter, select Insert>Object from
the menu bar and then place uo_event in the window.

5 Double-click uo_event to display its Script view.

The two new user events display in the second drop-down list in the Script
view.

6 Write scripts for the two user events:

• max_requested: Parent.WindowState = Maximized!

• min_requested: Parent.WindowState = Minimized!

These scripts reference the window containing the user object with the
pronoun Parent.

What happens When a user clicks a button, the Clicked event script for that
button triggers a user event in its parent, the user object. The user object script
for that event modifies its parent, the window.
Users Guide 393

Communicating between a window and a user object
394 PowerBuilder Classic

P A R T 5 Working with Databases

This part describes how to use PowerBuilder to manage
your database and how to use the Data Pipeline painter to
copy data from one database to another.

Users Guide 397

C H A P T E R 1 6 Managing the Database

About this chapter This chapter describes how to manage a database from within
PowerBuilder.

Contents

Before you begin You work with relational databases in PowerBuilder. If you are not
familiar with relational databases, you might want to consult an
introductory text.

Working with database components
A database is an electronic storage place for data. Databases are designed
to ensure that data is valid and consistent and that it can be accessed,
modified, and shared.

A database management system (DBMS) governs the activities of a
database and enforces rules that ensure data integrity. A relational DBMS
stores and organizes data in tables.

Topic Page

Working with database components 397

Managing databases 401

Using the Database painter 402

Creating and deleting a SQL Anywhere database 407

Working with tables 408

Working with keys 422

Working with indexes 426

Working with database views 428

Manipulating data 433

Creating and executing SQL statements 440

Controlling access to the current database 444

Using the ASA MobiLink synchronization wizard 445

Managing MobiLink synchronization on the server 450

Working with database components

398 PowerBuilder Classic

How you work with
databases in
PowerBuilder

You can use PowerBuilder to work with the following database components:

• Tables and columns

• Keys

• Indexes

• Database views

• Extended attributes

• Additional database components

Tables and columns A database usually has many tables, each of which contains rows and columns
of data. Each row in a table has the same columns, but a column’s value for a
particular row could be empty or NULL if the column’s definition allows it.

Tables often have relationships with other tables. For example, in the EAS
Demo DB included with PowerBuilder, the Department table has a Dept_id
column, and the Employee table also has a Dept_id column that identifies the
department in which the employee works. When you work with the Department
table and the Employee table, the relationship between them is specified by a
join of the two tables.

Keys Relational databases use keys to ensure database integrity.

Primary keys A primary key is a column or set of columns that uniquely
identifies each row in a table. For example, two employees may have the same
first and last names, but they have unique ID numbers. The Emp_id column in
the Employee table is the primary key column.

Foreign keys A foreign key is a column or set of columns that contains
primary key values from another table. For example, the Dept_id column is the
primary key column in the Department table and a foreign key in the Employee
table.

Key icons In PowerBuilder, columns defined as keys are displayed with key
icons that use different shapes and colors for primary and foreign.
PowerBuilder automatically joins tables that have a primary/foreign key
relationship, with the join on the key columns.

CHAPTER 16 Managing the Database

Users Guide 399

In the following illustration there is a join on the dept_id column, which is a
primary key for the department table and a foreign key for the employee table:

For more information, see “Working with keys” on page 422.

Indexes An index is a column or set of columns you identify to improve database
performance when searching for data specified by the index. You index a
column that contains information you will need frequently. Primary and
foreign keys are special examples of indexes.

You specify a column or set of columns with unique values as a unique index,
represented by an icon with a single key.

You specify a column or set of columns that has values that are not unique as a
duplicate index, represented by an icon with two file cabinets.

For more information, see “Working with indexes” on page 426.

Database views If you often select data from the same tables and columns, you can create a
database view of the tables. You give the database view a name, and each time
you refer to it the associated SELECT command executes to find the data.

Database views are listed in the Objects view of the Database painter and can
be displayed in the Object Layout view, but a database view does not physically
exist in the database in the same way that a table does. Only its definition is
stored in the database, and the view is re-created whenever the definition is
used.

Database administrators often create database views for security purposes. For
example, a database view of an Employee table that is available to users who
are not in Human Resources might show all columns except Salary.

For more information, see “Working with database views” on page 428.

Working with database components

400 PowerBuilder Classic

Extended attributes Extended attributes enable you to store information about a table’s columns in
special system tables. Unlike tables, keys, indexes, and database views (which
are DBMS-specific), extended attributes are PowerBuilder-specific. The most
powerful extended attributes determine the edit style, display format, and
validation rules for the column.

For more information about extended attributes, see “Specifying column
extended attributes” on page 412. For more information about the extended
attribute system tables, see Appendix A, “The Extended Attribute System
Tables.”

Additional database
components

Depending on the database to which you are connected and on your user
privileges, you may be able to view or work with a variety of additional
database components through PowerBuilder. These components might
include:

Driver information
Groups
Metadata types
Procedures and functions
Users
Logins
Triggers
Events
Web services

For example, driver information is relevant to ODBC connections. It lists all
the ODBC options associated with the ODBC driver, allowing you to
determine how the ODBC interface will behave for a given connection. Login
information is listed for Adaptive Server® Enterprise database connections.
Information about groups and users is listed for several of the databases and
allows you to add new users and groups and maintain passwords for existing
users.

You can drag most items in these folders to the Object Details view to display
their properties. You can also drag procedures, functions, triggers, and events
to the ISQL view.

Trigger information is listed for Adaptive Server Enterprise and SQL
Anywhere tables. A trigger is a special form of stored procedure that is
associated with a specific database table. Triggers fire automatically whenever
someone inserts, updates or deletes rows of the associated table. Triggers can
call procedures and fire other triggers, but they have no parameters and cannot
be invoked by a CALL statement. You use triggers when referential integrity
and other declarative constraints are insufficient.

CHAPTER 16 Managing the Database

Users Guide 401

Events can be used in a SQL Anywhere database to automate database
administration tasks, such as sending a message when disk space is low. Event
handlers are activated when a provided trigger condition is met. If any events
are defined for a SQL Anywhere connection, they display in the Events folder
for the connection in the Objects view.

Managing databases
PowerBuilder supports many database management systems (DBMSs). For the
most part, you work the same way in PowerBuilder for each DBMS, but
because each DBMS provides some unique features (which PowerBuilder
makes use of), there are some issues that are specific to a particular DBMS. For
complete information about using your DBMS, see Connecting to Your
Database.

What you can do Using the Database painter, you can do the following in any DBMS to which
you have been given access by the database administrator:

• Modify local table and column properties

• Retrieve, change, and insert data

• Create new local tables or modify existing tables

Setting the database
connection

When you open a painter that communicates with the database (such as the
Database painter or DataWindow painter), PowerBuilder connects you to the
database you used last if you are not already connected. If the connection to the
default database fails, the painter still opens.

If you do not want to connect to the database you used last, you can deselect
the Connect to Default Profile option in the Database Preferences dialog box.

Changing the
database connection

You can change to a different database at any time. You can have several
database connections open at a time, although only one connection can be
active. The database components for each open connection are listed in the
Objects view.

The Database painter title bar displays the number of open connections and
which is active. The title bar for each view displays the connection with which
it is currently associated. You can change the connection associated with a view
by dragging the profile name for a different connection onto the view.

For more about changing the database you are connected to, see Connecting to
Your Database.

Using the Database painter

402 PowerBuilder Classic

Creating and deleting
databases

When you are connected to SQL Anywhere, you can create a new database or
delete an existing database using the Database painter.

For all other DBMSs, creating and deleting a database is an administrative task
that you cannot do within PowerBuilder.

Using the Database painter
To open the Database painter, click the Database button in the PowerBar.

About the painter Like the other PowerBuilder painters, the Database painter contains a menu
bar, customizable PainterBars, and several views. All database-related tasks
that you can do in PowerBuilder can be done in the Database painter.

Views in the Database
painter

Table 16-1 lists the views available in the Database painter.

Table 16-1: Database painter views

View Description

Activity Log Displays the SQL syntax generated by the actions you
execute.

Columns Used to create and/or modify a table’s columns.

Extended Attributes Lists the display formats, edit styles, and validation rules
defined for the selected database connection.

Interactive SQL Used to build, execute, or explain SQL.

CHAPTER 16 Managing the Database

Users Guide 403

Dragging and
dropping

You can select certain database objects from the Objects view and drag them
to the Object Details, Object Layout, Columns, and/or ISQL views. Position
the pointer on the database object’s icon and drag it to the appropriate view.

Table 16-2: Using drag and drop in the Database painter

Database painter
tasks

Table 16-3 describes how to do some basic tasks in the Database painter. Most
of these tasks begin in the Objects view. Many can be accomplished by
dragging and dropping objects into different views. If you prefer, you can use
buttons or menu selections from the menu bar or from pop-up menus.

Object Details Displays an object’s properties. For some objects, its
properties are read-only; for others, properties can be
modified. This view is analogous to the Properties view in
other painters.

Object Layout Displays a graphical representation of tables and their
relationships.

Objects Lists database interfaces and profiles. For an active database
connection, might also list all or some of the following
objects associated with that database: groups, metadata
types, procedures and functions, tables, columns, primary
and foreign keys, indexes, users, views, driver information,
events, triggers, and utilities (the database components
listed depend on the database and your user privileges).

Results Displays data in a grid, table, or freeform format.

View Description

Object Can be dragged to

Driver, group, metadata type, procedure or function,
table, column, user, primary or foreign key, index, event
trigger

Object Details view

Table or view Object Layout view

Table or column Columns view

Procedure or view ISQL view

Using the Database painter

404 PowerBuilder Classic

Table 16-3: Common tasks in the Database painter

To Do this

Modify a database profile Highlight a database profile and select Properties from
the Object or pop-up menu or use the Properties button.

You can use the Import and Export Profiles menu
selections to copy profiles. For more information, see
the section on importing and exporting database profiles
in Connecting to Your Database.

Connect to a database Highlight a database profile and then select Connect
from the File or pop-up menu or use the Connect button.
With File>Recent Connections, you can review and
return to earlier connections. You can also make
database connections using the Database Profile button.

Create new profiles,
tables, views, columns,
keys, indexes, or groups

Highlight the database object and select New from the
Object or pop-up menu or use the Create button.

Modify database objects Drag the object to the Object Details view.

Graphically display tables Drag the table icon from the list in the Objects view to
the Object Layout view, or highlight the table and select
Add To Layout from the Object or pop-up menu.

Manipulate data Highlight the table and select Grid, Tabular, or Freeform
from the Object>Data menu or the pop-up menu Edit
Data item, or use the appropriate Data Manipulation
button.

Build, execute or explain
SQL

Use the ISQL view to build SQL statements. Use the
Paste SQL button to paste SELECT, INSERT, UPDATE,
and DELETE statements or type them directly into the
view’s workspace. To execute or explain SQL, select
Execute SQL and Explain SQL from the Design or
pop-up menu. (Explain SQL functionality is available
for Sybase databases only.)

Define or modify
extended attributes

Select from the Object>Insert menu the type of extended
attribute you want to define or modify, or highlight the
extended attribute from the list in the Extended
Attributes view and select New or Properties from the
pop-up menu.

Specify extended
attributes for a column

Drag the column to the Object Details view and select
the Extended Attributes tab.

Access database utilities Double-click a utility in the Objects view to launch it.

Log your work Select Design>Start Log from the menu bar. To see the
SQL syntax generated, display the Activity Log view.

CHAPTER 16 Managing the Database

Users Guide 405

Modifying database preferences
To modify database preferences, select Design>Options from the menu bar.
Some preferences are specific to the database connection; others are specific to
the Database painter.

Preferences on the
General property page

The Connect To Default Profile, Shared Database Profiles, Keep Connection
Open, Use Extended Attributes, and Read Only preferences are specific to the
database connection.

The remaining preferences are specific to the Database painter. For information
about modifying these preferences, see Connecting to Your Database.

Table 16-4: Database painter preferences

Preferences on the
Object Colors property
page

You can set colors separately for each component of the Database painter’s
graphical table representation: the table header, columns, indexes, primary key,
foreign keys, and joins. Set a color preference by selecting a color from a
drop-down list.

You can design custom colors that you can use when you select color
preferences. To design custom colors, select Design>Custom Colors from the
menu bar and work in the Custom Colors dialog box.

Database
preference

What PowerBuilder does with the specified
preference

Columns in the
Table List

When PowerBuilder displays tables graphically, eight table
columns display unless you change the number of columns.

SQL Terminator
Character

PowerBuilder uses the semicolon as the SQL statement
terminator unless you enter a different terminator character in
the box. Make sure that the character you choose is not
reserved for another use by your database vendor. For example,
using the slash character (/) causes compilation errors with
some DBMSs.

Refresh Table List When PowerBuilder first displays a table list, PowerBuilder
retrieves the table list from the database and displays it. To save
time, PowerBuilder saves this list internally for reuse to avoid
regeneration of very large table lists. The table list is refreshed
every 30 minutes (1800 seconds) unless you specify a different
refresh rate.

Using the Database painter

406 PowerBuilder Classic

Logging your work
As you work with your database, you generate SQL statements. As you define
a new table, for example, PowerBuilder builds a SQL CREATE TABLE
statement internally. When you save the table, PowerBuilder sends the SQL
statement to the DBMS to create the table. Similarly, when you add an index,
PowerBuilder builds a CREATE INDEX statement.

You can see all SQL generated in a Database painter session in the Activity Log
view. You can also save this information to a file. This allows you to have a
record of your work and makes it easy to duplicate the work if you need to
create the same or similar tables in another database.

❖ To start logging your work:

1 Open the Database painter.

2 Select Start Log from the Design menu or the pop-up menu in the Activity
Log view.

PowerBuilder begins sending all generated syntax to the Activity Log
view.

❖ To stop the log:

• Select Stop Log from the Design menu or the pop-up menu in the Activity
Log view.

PowerBuilder stops sending the generated syntax to the Activity Log view.
Your work is no longer logged.

❖ To save the log to a permanent text file:

1 Select Save or Save As from the File menu.

2 Name the file and click Save. The default file extension is SQL, but you
can change that if you want to.

Submitting the log to your DBMS
You can open a saved log file and submit it to your DBMS in the ISQL view.
For more information, see “Building and executing SQL statements” on page
440.

CHAPTER 16 Managing the Database

Users Guide 407

Creating and deleting a SQL Anywhere database
In PowerBuilder you work within an existing database. With one exception,
creating or deleting a database is an administrative task that is not performed
directly in PowerBuilder. The one exception is that you can create and delete a
local SQL Anywhere database from within PowerBuilder.

For information about creating and deleting other databases, see your DBMS
documentation.

❖ To create a local SQL Anywhere database:

1 From the Objects view, launch the Create ASA Database utility included
with the ODBC interface.

The Create Adaptive Server Anywhere Database dialog box displays.

2 In the Database Name box, specify the file name and path of the database
you are creating.

If you do not provide a file extension, the database file name is given the
extension DB.

3 Define other properties of the database as needed.

If you are using a non-English database, you can specify a code page in the
Collation Sequence box.

For complete information about filling in the dialog box, click the Help
button in the dialog box.

4 Click OK.

When you click OK, PowerBuilder does the following:

• Creates a database with the specified name in the specified directory
or folder. If a database with the same name exists, you are asked
whether you want to replace it.

• Adds a data source to the ODBC.INI key in the registry. The data
source has the same name as the database unless one with the same
name already exists, in which case a suffix is appended.

• Creates a database profile and adds it to the registry. The profile has
the same name as the database unless one with the same name already
exists, in which case a suffix is appended.

• Connects to the new database.

Working with tables

408 PowerBuilder Classic

❖ To delete a local SQL Anywhere database:

1 Open the Database painter.

2 From the Objects view, launch the Delete ASA Database utility included
with the ODBC interface.

3 Select the database you want to delete and select Open.

4 Click Yes to delete the database.

When you click Yes, PowerBuilder deletes the specified database.

Working with tables
When you open the Database painter, the Object view lists all tables in the
current database that you have access to (including tables that were not created
using PowerBuilder). You can create a new table or alter an existing table. You
can also modify table properties and work with indexes and keys.

Creating a new table from scratch
In PowerBuilder, you can create a new table in any database to which
PowerBuilder is connected.

❖ To create a table in the current database:

1 Do one of the following:

• Click the Create Table button.

• Right-click in the Columns view and select New Table from the pop-
up menu.

• Right-click Tables in the Objects view and select New Table from the
pop-up menu.

• Select Insert>Table from the Object menu.

The new table template displays in the Columns view. What you see in the
view is DBMS-dependent. You use this template to specify each column
in the table. The insertion point is in the Column Name box for the first
column.

CHAPTER 16 Managing the Database

Users Guide 409

2 Enter the required information for this column.

For what to enter in each field, see “Specifying column definitions” on
page 410.

As you enter information, use the Tab key to move from place to place in
the column definition. After defining the last item in the column
definition, press the Tab key to display the work area for the next column.

3 Repeat step 2 for each additional column in your table.

4 (Optional) Select Object>Pending Syntax from the menu bar or select
Pending Syntax from the pop-up menu to see the pending SQL syntax.

If you have not already named the table, you must provide a name in the
dialog box that displays. To hide the SQL syntax and return to the table
columns, select Object>Pending Syntax from the menu bar.

5 Click the Save button or select Save from the File or pop-up menu, then
enter a name for the table in the Create New Table dialog box.

PowerBuilder submits the pending SQL syntax statements it generated to
the DBMS, and the table is created. The new table is displayed in the
Object Layout view.

About saving the table
If you make changes after you save the table and before you close it, you
see the pending changes when you select Pending SQL again. When you
click Save again, PowerBuilder submits a DROP TABLE statement to the
DBMS, recreates the table, and applies all changes that are pending.
Clicking Save many times can be time consuming when you are working
with large tables, so you might want to save only when you have finished.

6 Specify extended attributes for the columns.

For what to enter in each field, see “Specifying column extended
attributes” on page 412.

Working with tables

410 PowerBuilder Classic

Creating a new table from an existing table
You can create a new table that is similar to an existing table very quickly by
using the Save Table As menu option.

❖ To create a new table from an existing table:

1 Open the existing table in the Columns view by dragging and dropping it
or selecting Alter Table from the pop-up menu.

2 Right-click in the Columns view and select Save Table As from the pop-up
menu.

3 Enter a name for the new table and then the owner’s name, and click OK.

The new table appears in the Object Layout view and the Columns view.

4 Make whatever changes you want to the table definition.

5 Save the table.

6 Make changes to the table’s properties in the Object Details view.

For more information about modifying table properties, see “Specifying
table and column properties” on page 411.

Specifying column definitions
When you create a new table, you must specify a definition for each column.
The fields that display for each column in the Columns view depend on your
DBMS. You might not see all of the following fields, and the values that you
can enter are dependent on the DBMS.

For more information, see your DBMS documentation.

Table 16-5: Defining columns in the Columns view in the Database
painter

Field What you enter

Column Name (Required) The name by which the column will be identified.

Data Type (Required) Select a datatype from the drop-down list. All
datatypes supported by the current DBMS are displayed in the list.

Width For datatypes with variable widths, the number of characters in
the field.

Dec For numeric datatypes, the number of decimal places to display.

CHAPTER 16 Managing the Database

Users Guide 411

Specifying table and column properties
After you create and save a table, you can specify the properties of the table
and of any or its columns. Table properties include the fonts used for headers,
labels, and data, and a comment that you can associate with the table. Column
properties include the text used for headers and labels, display formats,
validation rules, and edit styles used for data (also known as a column’s
extended attributes), and a comment you can associate with the column.

Specifying table properties

In addition to adding a comment to associate with the table, you can choose the
fonts that will be used to display information from the table in a DataWindow
object. You can specify the font, point size, color, and style.

❖ To specify table properties:

1 Do one of the following:

• Highlight the table in either the Objects view or the Object Layout
view and select Properties from the Object or pop-up menu.

• Click the Properties button.

• Drag and drop the table to the Object Details view.

The properties for the table display in the Object Details view.

2 Select a tab and specify properties:

Null Select Yes or No from the Null drop-down list to specify whether
NULLs are allowed in the column. Specifying No means the
column cannot have null values; users must supply a value. No is
the default in a new table.

Default The value that will be placed in a column in a row that you insert
into a DataWindow object. The drop-down list has built-in
choices, but you can type any other value. For an explanation of
the built-in choices, see your DBMS documentation.

Field What you enter

Select this tab To modify this property

General Comments associated with the table

Data Font Font for data retrieved from the database and displayed in
the Results view by clicking a Data Manipulation button

Working with tables

412 PowerBuilder Classic

3 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you made in the Object Details view are immediately saved
to the table definition.

Specifying column extended attributes

In addition to adding a comment to associate with a column, you can specify
extended attributes for each column. An extended attribute is information
specific to PowerBuilder that enhances the definition of the column.

❖ To specify extended attributes:

1 Do one of the following:

• Highlight the column in either the Objects view or the Object Layout
view and select Properties from the Object or pop-up menu.

• Click the Properties button.

• Drag and drop the column to the Object Details view.

2 Select a tab and specify extended attribute values:

Heading Font Font for column identifiers used in grid, tabular, and n-up
DataWindow objects displayed in the Results view by
clicking a Data Manipulation button

Label Font Font for column identifiers used in freeform
DataWindow objects displayed in the Results view by
clicking a Data Manipulation button

Select this tab To modify this property

Select this tab To modify these extended attributes

General Column comments.

Headers Label text used in free-form DataWindow objects.

Header text used in tabular, grid, or n-up DataWindow
objects.

Display How the data is formatted in a DataWindow object as well
as display height, width, and position. For example, you
can associate a display format with a Revenue column so
that its data displays with a leading dollar sign and negative
numbers display in parentheses.

CHAPTER 16 Managing the Database

Users Guide 413

3 Right-click on the Column property sheet and select Save Changes from
the pop-up menu.

Any changes you made in the property sheet are immediately saved to the
table definition.

Overriding definitions
In the DataWindow painter, you can override the extended attributes specified
in the Database painter for a particular DataWindow object.

How the information is
stored

Extended attributes are stored in the PowerBuilder system tables in the
database. PowerBuilder uses the information to display, present, and validate
data in the Database painter and in DataWindow objects. When you create a
view in the Database painter, the extended attributes of the table columns used
in the view are used by default.

About display formats,
edit styles, and
validation rules

In the Database painter, you create display formats, edit styles, and validation
rules. Whatever you create is then available for use with columns in tables in
the database. You can see all the display formats, edit styles, and validation
rules defined for the database in the Extended Attributes view.

For more information about defining, maintaining, and using these extended
attributes, see Chapter 22, “Displaying and Validating Data.”

About headings and
labels

By default, PowerBuilder uses the column names as labels and headings,
replacing any underscore characters with spaces and capitalizing each word in
the name. For example, the default heading for the column Dept_name is Dept
Name. To define multiple-line headings, press Ctrl+Enter to begin a new line.

Validation Criteria that a value must pass to be accepted in a
DataWindow object. For example, you can associate a
validation rule with a Salary column so that you can enter
a value only within a particular range.

The initial value for the column. You can select a value
from the drop-down list. The initial value must be the same
datatype as the column, must pass validation, and can be
NULL only if NULL is allowed for the column.

Edit Style How the column is presented in a DataWindow object. For
example, you can display column values as radio buttons or
in a drop-down list.

Select this tab To modify these extended attributes

Working with tables

414 PowerBuilder Classic

Specifying additional properties for character columns

You can also set two additional properties for character columns on the Display
property page: Case and Picture.

Specifying the
displayed case

You can specify whether PowerBuilder converts the case of characters for a
column in a DataWindow object.

❖ To specify how character data should be displayed:

• On the Display property page, select a value in the Case drop-down list:

Specifying a column
as a picture

You can specify that a character column can contain names of picture files.

❖ To specify that column values are names of picture files:

1 On the Display property page, select the Picture check box.

When the Picture check box is selected, PowerBuilder expects to find
picture file names in the column and displays the contents of the picture
file—not the name of the file—in reports and DataWindow objects.

Because PowerBuilder cannot determine the size of the image until
runtime, it sets both display height and display width to 0 when you select
the Picture check box.

2 Enter the size and the justification for the picture (optional).

Altering a table
After a table is created, how you can alter the table depends on your DBMS.

You can always:

• Add or modify PowerBuilder-specific extended attributes for columns

• Delete an index and create a new index

You can never:

• Insert a column between two existing columns

Value Meaning

Any Characters are displayed as they are entered

UPPER Characters are converted to uppercase

lower Characters are converted to lowercase

CHAPTER 16 Managing the Database

Users Guide 415

• Prohibit null values for an appended column

• Alter an existing index

Some DBMSs let you do the following, but others do not:

• Append columns that allow null values

• Increase or decrease the number of characters allowed for data in an
existing column

• Allow null values

• Prohibit null values in a column that allowed null values

Database painter is DBMS aware
The Database painter grays out or notifies you about actions that your DBMS
prohibits.

For complete information about what you can and cannot do when you modify
a table in your DBMS, see your DBMS documentation.

❖ To alter a table:

1 Highlight the table and select Alter Table from the pop-up menu.

Opening multiple instances of tables

You can open another instance of a table by selecting Columns from the
View menu. Doing this is helpful when you want to use the Database
painter’s cut, copy, and paste features to cut or copy and paste between
tables.

The table definition displays in the Columns view (this screen shows the
Employee table).

Working with tables

416 PowerBuilder Classic

2 Make the changes you want in the Columns view or in the Object Details
view.

3 Select Save Table or Save Changes.

PowerBuilder submits the pending SQL syntax statements it generated to
the DBMS, and the table is modified.

Cutting, copying, and pasting columns
In the Database painter, you can use the Cut, Copy, and Paste buttons in the
PainterBar (or Cut, Copy, and Paste from the Edit or pop-up menu) to cut, copy,
and paste one column at a time within a table or between tables.

❖ To cut or copy a column within a table:

1 Put the insertion point anywhere in the column you want to cut or copy.

2 Click the Cut or Copy button in the PainterBar.

❖ To paste a column within a table:

1 Put the insertion point in the column you want to paste to.

If you are changing an existing table, put the insertion point in the last
column of the table. If you try to insert a column between two columns,
you get an error message. To an existing table, you can only append a
column. If you are defining a new table, you can paste a column anywhere.

2 Click the Paste button in the PainterBar.

❖ To paste a column to a different table:

1 Open another instance of the Columns view and use Alter Table to display
an existing table or click New to create a new table.

2 Put the insertion point in the column you want to paste to.

3 Click the Paste button in the PainterBar.

Closing a table
You can remove a table from a view by selecting Close or Reset View from its
pop-up menu. This action only removes the table from the Database painter
view. It does not drop (remove) the table from the database.

CHAPTER 16 Managing the Database

Users Guide 417

Dropping a table
Dropping removes the table from the database.

❖ To drop a table:

1 Select Drop Table from the table’s pop-up menu or select Object>Delete
from the menu bar.

2 Click Yes.

Deleting orphaned
table information

If you drop a table outside PowerBuilder, information remains in the system
tables about the table, including extended attributes for the columns.

❖ To delete orphaned table information from the extended attribute system
tables:

• Select Design>Synch Extended Attributes from the menu bar and click
Yes.

If you try to delete orphaned table information and there is none, a
message tells you that synchronization is not necessary.

Viewing pending SQL changes
As you create or alter a table definition, you can view the pending SQL syntax
changes that will be made when you save the table definition.

❖ To view pending SQL syntax changes:

• Right-click the table definition in the Columns view and select Pending
Syntax from the pop-up menu.

PowerBuilder displays the pending changes to the table definition in SQL
syntax:

The SQL statements execute only when you save the table definition or
reset the view and then tell PowerBuilder to save changes.

Working with tables

418 PowerBuilder Classic

Copying, saving, and
printing pending SQL
changes

When you are viewing pending SQL changes, you can:

• Copy pending changes to the clipboard

• Save pending changes to a file

• Print pending changes

To copy, save, or print only part of the SQL syntax
Select the part of the SQL syntax you want before you copy, save, or print.

❖ To copy the SQL syntax to the clipboard:

• In the Pending Syntax view, click the Copy button or select Select All and
then Copy from the pop-up menu.

❖ To save SQL syntax for execution at a later time:

1 In the Pending Syntax view, Select File>Save As.

The Save Syntax to File dialog box displays.

2 Navigate to the folder where you want to save SQL, name the file, and then
click the Save button.

At a later time, you can import the SQL file into the Database painter and
execute it.

❖ To print pending table changes:

• While viewing the pending SQL syntax, click the Print button or select
Print from the File menu.

❖ To display columns in the Columns view:

• Select Object>Pending Syntax from the menu bar.

Printing the table definition
You can print a report of the table’s definition at any time, whether or not the
table has been saved. The Table Definition Report contains information about
the table and each column in the table, including the extended attributes for
each column.

❖ To print the table definition:

• Select Print or Print Definition from the File or pop-up menu or click the
Print button.

CHAPTER 16 Managing the Database

Users Guide 419

Exporting table syntax
You can export the syntax for a table to the log. This feature is useful when you
want to create a backup definition of the table before you alter it or when you
want to create the same table in another DBMS.

To export to another DBMS, you must have the PowerBuilder interface for that
DBMS.

❖ To export the syntax of an existing table to a log:

1 Select the table in the Objects or Object Layout view.

2 Select Export Syntax from the Object menu or the pop-up menu.

If you selected a table and have more than one DBMS interface installed,
the DBMS dialog box displays. If you selected a view, PowerBuilder
immediately exports the syntax to the log.

3 Select the DBMS to which you want to export the syntax.

4 If you selected ODBC, specify a data source in the Data Sources dialog
box.

5 Supply any information you are prompted for.

PowerBuilder exports the syntax to the log. Extended attribute
information (such as validation rules used) for the selected table is also
exported. The syntax is in the format required by the DBMS you selected.

For more information about the log, see “Logging your work” on page
406.

About system tables
Two kinds of system tables exist in the database:

• System tables provided by your DBMS (for more information, see your
DBMS documentation)

• PowerBuilder extended attribute system tables

About PowerBuilder
system tables

PowerBuilder stores extended attribute information you provide when you
create or modify a table (such as the text to use for labels and headings for the
columns, validation rules, display formats, and edit styles) in system tables.
These system tables contain information about database tables and columns.
Extended attribute information extends database definitions.

Working with tables

420 PowerBuilder Classic

In the Employee table, for example, one column name is Emp_lname. A label
and a heading for the column are defined for PowerBuilder to use in
DataWindow objects. The column label is defined as Last Name:. The
column heading is defined as Last Name. The label and heading are stored in
the PBCatCol table in the extended attribute system tables.

The extended attribute system tables are maintained by PowerBuilder and only
PowerBuilder users can enter information into them. Table 16-6 lists the
extended attribute system tables. For more information, see Appendix A, “The
Extended Attribute System Tables.”

Table 16-6: Extended attribute system tables

Opening and
displaying system
tables

You can open system tables like other tables in the Database painter.

By default, PowerBuilder shows only user-created tables in the Objects view.
If you highlight Tables and select Show System Tables from the pop-up menu,
PowerBuilder also displays system tables.

Creating and editing temporary tables
You can create and edit temporary tables in the Database painter, SQL Select
painter, or DataWindow painter when you use the ASE or SYC native driver to
connect to an Adaptive Server database, or the SNC native driver to connect to
a Microsoft SQL Server 2005 database. Temporary tables persist for the
duration of a database connection, residing in a special database called
“tempdb”.

Creating temporary
tables

You add a temporary table to the tempdb database by right-clicking the
Temporary Tables icon in the Objects view and selecting New. The table is
designated as a temporary table by assigning a name that starts with the #
character. When you save the table, the Create New Temporary Table dialog
box displays. The # character is added automatically.

If there is no Temporary Tables icon in the Objects view, right-click the Tables
icon and select New. Assign a table name prefaced with the # character.

This system table Stores this extended attribute information

PBCatCol Column data such as name, header and label for reports and
DataWindow objects, and header and label positions

PBCatEdt Edit style names and definitions

PBCatFmt Display format names and definitions

PBCatTbl Table data such as name, fonts, and comments

PBCatVld Validation rule names and definitions

CHAPTER 16 Managing the Database

Users Guide 421

For SNC, use # for a local temporary table or ## for a global temporary table.
Temporary tables must start with the # character. Local temporary tables are
visible only in the user’s current connection and are deleted when the user
disconnects. Global temporary tables are visible to any user connected to the
instance of SQL Server, and they are deleted when all users referencing the
table disconnect.

Working with
temporary tables

After you create a temporary table, you can create indexes and a primary key
for the table from the pop-up menu for the table in the Object Layout view. If
you define a unique index or primary key, you can perform insert, update, and
delete operations in DataWindow objects.

Selecting Edit Data from the pop-up menu of a temporary table retrieves data
that you store in that table. You can also select Drop Table, Add to Layout,
Export Syntax, and properties from the pop-up menu in the Objects view.

Accessing temporary
tables at runtime

You can create DataWindow objects that access temporary tables in a
PowerBuilder runtime application, but your application must first explicitly
create the temporary tables, along with the appropriate keys and indexes, using
the same database transaction object used by the DataWindow.

You can use the EXECUTE IMMEDIATE PowerScript syntax to create temporary
tables at runtime:

string s1, s2, s3, s4
s1 = 'create table dbo.#temptab1 (id int not null, ' &

+ 'lname char(20) not null) '
s2 = 'alter table dbo.#temptab1 add constraint idkey' &

+ ' primary key clustered (id) '
s3 = 'create nonclustered index nameidx on ' &

+ 'dbo.#temptab1 (lname) '
s4 = 'insert into #temptab1 select emp_id, ' &

+ 'emp_lname from qadb_emp'
execute immediate :s1 using sqlca;
if sqlca.sqlcode = 0 then

execute immediate :s2 using sqlca;
execute immediate :s3 using sqlca;
execute immediate :s4 using sqlca;

else
messagebox("Create error", sqlca.sqlerrtext)

end if

Working with keys

422 PowerBuilder Classic

Working with keys
If your DBMS supports primary and foreign keys, you can work with the keys
in PowerBuilder.

Why you should use
keys

If your DBMS supports them, you should use primary and foreign keys to
enforce the referential integrity of your database. That way you can rely on the
DBMS to make sure that only valid values are entered for certain columns
instead of having to write code to enforce valid values.

For example, say you have two tables called Department and Employee. The
Department table contains the column Dept_Head_ID, which holds the ID of the
department’s manager. You want to make sure that only valid employee IDs are
entered in this column. The only valid values for Dept_Head_ID in the
Department table are values for Emp_ID in the Employee table.

To enforce this kind of relationship, you define a foreign key for Dept_Head_ID
that points to the Employee table. With this key in place, the DBMS disallows
any value for Dept_Head_ID that does not match an Emp_ID in the Employee
table.

For more about primary and foreign keys, consult a book about relational
database design or your DBMS documentation.

What you can do in
the Database painter

You can work with keys in the following ways:

• Look at existing primary and foreign keys

• Open all tables that depend on a particular primary key

• Open the table containing the primary key used by a particular foreign key

• Create, alter, and drop keys

For the most part, you work with keys the same way for each DBMS that
supports keys, but there are some DBMS-specific issues. For complete
information about using keys with your DBMS, see your DBMS
documentation.

Viewing keys Keys can be viewed in several ways:

• In the expanded tree view of a table in the Objects view

• As icons connected by lines to a table in the Object Layout view

In the following picture, the Department table has two keys:

• A primary key (on dept_id)

CHAPTER 16 Managing the Database

Users Guide 423

• A foreign key (on dept_head_id)

If you cannot see the lines
If the color of your window background makes it difficult to see the lines for
the keys and indexes, you can set the colors for each component of the
Database painter’s graphical table representation, including keys and indexes.
For information, see “Modifying database preferences” on page 405.

Opening related
tables

When working with tables containing keys, you can easily open related tables.

❖ To open the table that a particular foreign key references:

1 Display the foreign key pop-up menu.

2 Select Open Referenced Table.

❖ To open all tables referencing a particular primary key:

1 Display the primary key pop-up menu.

2 Select Open Dependent Table(s).

PowerBuilder opens and expands all tables in the database containing
foreign keys that reference the selected primary key.

Defining primary keys If your DBMS supports primary keys, you can define them in PowerBuilder.

❖ To create a primary key:

1 Do one of the following:

• Highlight the table for which you want to create a primary key and
click the Create Primary Key drop-down toolbar button in
PainterBar1.

• Select Object>Insert>Primary Key from the main menu or
New>Primary Key from the pop-up menu.

• Expand the table’s tree view, right-click Primary Key, and select New
Primary Key from the pop-up menu.

The Primary Key properties display in the Object Details view.

Working with keys

424 PowerBuilder Classic

2 Select one or more columns for the primary key.

Columns that are allowed in a primary key
Only a column that does not allow null values can be included as a column
in a primary key definition. If you choose a column that allows null values,
you get a DBMS error when you save the table. In DBMSs that allow
rollback for Data Definition Language (DDL), the table definition is rolled
back. In DBMSs that do not allow rollback for DDL, the Database painter
is refreshed with the current definition of the table.

3 Specify any information required by your DBMS.

Naming a primary key
Some DBMSs allow you to name a primary key and specify whether it is
clustered or not clustered. For these DBMSs, the Primary Key property
page has a way to specify these properties.

For DBMS-specific information, see your DBMS documentation.

4 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you made in the view are immediately saved to the table
definition.

Completing the primary key
Some DBMSs automatically create a unique index when you define a primary
key so that you can immediately begin to add data to the table. Others require
you to create a unique index separately to support the primary key before
populating the table with data.

To find out what your DBMS does, see your DBMS documentation.

Defining foreign keys If your DBMS supports foreign keys, you can define them in PowerBuilder.

❖ To create a foreign key:

1 Do one of the following:

• Highlight the table and click the Create Foreign Key drop-down
toolbar button in PainterBar1.

CHAPTER 16 Managing the Database

Users Guide 425

• Select Object>Insert>Foreign Key from the main menu or
New>Foreign Key from the pop-up menu.

• Expand the table’s tree view and right-click on Foreign Keys and
select New Foreign Key from the pop-up menu.

The Foreign Key properties display in the Object Details view. Some of
the information is DBMS-specific.

2 Name the foreign key in the Foreign Key Name box.

3 Select the columns for the foreign key.

4 On the Primary Key tab page, select the table and column containing the
Primary key referenced by the foreign key you are defining.

Key definitions must match exactly
The definition of the foreign key columns must match the primary key
columns, including datatype, precision (width), and scale (decimal
specification).

5 On the Rules tab page, specify any information required by your DBMS.

For example, you might need to specify a delete rule by selecting one of
the rules listed for On Delete of Primary Table Row.

For DBMS-specific information, see your DBMS documentation.

6 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you make in the view are immediately saved to the table
definition.

Modifying keys You can modify a primary key in PowerBuilder.

❖ To modify a primary key:

1 Do one of the following:

• Highlight the primary key listed in the table’s expanded tree view and
click the Properties button.

• Select Properties from the Object or pop-up menu.

• Drag the primary key icon and drop it in the Object Details view.

2 Select one or more columns for the primary key.

Working with indexes

426 PowerBuilder Classic

3 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you make in the view are immediately saved to the table
definition.

Dropping a key You can drop keys (remove them from the database) from within
PowerBuilder.

❖ To drop a key:

1 Highlight the key in the expanded tree view for the table in the Objects
view or right-click the key icon for the table in the Object Layout view.

2 Select Drop Primary Key or Drop Foreign Key from the key’s pop-up
menu.

3 Click Yes.

Working with indexes
You can create as many single- or multi-valued indexes for a database table as
you need, and you can drop indexes that are no longer needed.

Update limitation
You can update a table in a DataWindow object only if it has a unique index or
primary key.

Creating an index In SQL Anywhere databases
In SQL Anywhere databases, you should not define an index on a column that
is defined as a foreign key, because foreign keys are already optimized for
quick reference.

❖ To create an index:

1 Do one of the following:

• Highlight the table for which you want to create an index and click the
Create Index drop-down toolbar button in PainterBar1.

CHAPTER 16 Managing the Database

Users Guide 427

• Select Object>Insert>Index from the main menu or New>Index from
the pop-up menu.

• Expand the table’s tree view, right-click on Indexes, and select New
Index from the pop-up menu.

The Index’s properties display in the Object Details view.

2 Enter a name for the index in the Index box.

3 Select whether or not to allow duplicate values for the index.

4 Specify any other information required for your database.

For example, in Adaptive Server Enterprise specify whether the index is
clustered, and in SQL Anywhere specify the order of the index.

5 Click the names of the columns that make up the index.

6 Select Save Changes from the pop-up menu.

7 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you made in the view are immediately saved to the table
definition.

Modifying an index You can modify an index.

❖ To modify an index:

1 Do one of the following:

• Highlight the index listed in the table’s expanded tree view and click
the Properties button.

• Select Properties from the Object or pop-up menu.

• Drag the index icon and drop it in the Object Details view.

2 In the Object Details view, select or deselect columns as needed.

3 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you made in the view are immediately saved to the table
definition.

Working with database views

428 PowerBuilder Classic

Dropping an index Dropping an index removes it from the database.

❖ To drop an index from a table:

1 In the Database painter workspace, display the pop-up menu for the index
you want to drop.

2 Select Drop Index and click Yes.

Working with database views
A database view gives a different (and usually limited) perspective of the data
in one or more tables. Although you see existing database views listed in the
Objects view, a database view does not physically exist in the database as a
table does. Each time you select a database view and use the view’s data,
PowerBuilder executes a SQL SELECT statement to retrieve the data and
creates the database view.

For more information about using database views, see your DBMS
documentation.

Using database views
in PowerBuilder

You can define and manipulate database views in PowerBuilder. Typically you
use database views for the following reasons:

• To give names to frequently executed SELECT statements.

• To limit access to data in a table. For example, you can create a database
view of all the columns in the Employee table except Salary. Users of the
database view can see and update all information except the employee’s
salary.

• To combine information from multiple tables for easy access.

In PowerBuilder, you can create single- or multiple-table database views. You
can also use a database view when you define data to create a new database
view.

You define, open, and manipulate database views in the View painter, which is
similar to the SQL Select painter. For more information about the SQL Select
painter, see “Selecting a data source” on page 488.

CHAPTER 16 Managing the Database

Users Guide 429

Updating database views
Some database views are logically updatable and others are not. Some DBMSs
do not allow any updating of views. For the rules your DBMS follows, see your
DBMS documentation.

❖ To open a database view:

1 In the Objects view, expand the list of Views for your database.

2 Highlight the view you want to open and select Add To Layout from the
pop-up menu, or drag the view’s icon to the Object Layout view.

❖ To create a database view:

1 Click the Create View button, or select View or New View from the
Object>Insert or pop-up menu.

The Select Tables dialog box displays, listing all tables and views that you
can access in the database.

2 Select the tables and views from which you will create the view by doing
one of the following:

• Click the name of each table or view you want to open in the list
displayed in the Select Tables dialog box, then click the Open button
to open them. The Select Tables dialog box closes.

• Double-click the name of each table or view you want to open. Each
object is opened immediately. Then click the Cancel button to close
the Select Tables dialog box.

Working with database views

430 PowerBuilder Classic

Representations of the selected tables and views display in the View
painter workspace:

3 Select the columns to include in the view and include computed columns
as needed.

4 Join the tables if there is more than one table in the view.

For information, see “Joining tables” on page 431.

5 Specify criteria to limit rows retrieved (Where tab), group retrieved rows
(Group tab), and limit the retrieved groups (Having tab), if appropriate.

For information, see the section on using the SQL Select painter in
“Selecting a data source” on page 488. The View painter and the SQL
Select painter are similar.

6 When you have completed the view, click the Return button.

7 Name the view.

Include view or some other identifier in the view’s name so that you will
be able to distinguish it from a table in the Select Tables dialog box.

8 Click the Create button.

PowerBuilder generates a CREATE VIEW statement and submits it to the
DBMS. The view definition is created in the database. You return to the
Database painter workspace with the new view displayed in the
workspace.

CHAPTER 16 Managing the Database

Users Guide 431

Displaying a database
view’s SQL statement

You can display the SQL statement that defines a database view. How you do
it depends on whether you are creating a new view in the View painter or want
to look at the definition of an existing view.

❖ To display the SQL statement from the View painter:

• Select the Syntax tab in the View painter.

PowerBuilder displays the SQL it is generating. The display is updated
each time you change the view.

❖ To display the SQL statement from the Database painter:

• Highlight the name of the database view in the Objects view and select
Properties from the pop-up menu, or drag the view’s icon to the Object
Details view.

The completed SELECT statement used to create the database view
displays in the Definition field on the General page:

View dialog box is read-only
You cannot alter the view definition in the Object Details view. To alter a
view, drop it and create another view.

Joining tables If the database view contains more than one table, you should join the tables on
their common columns. When the View painter is first opened for a database
view containing more than one table, PowerBuilder makes its best guess as to
the join columns, as follows:

• If there is a primary/foreign key relationship between the tables,
PowerBuilder automatically joins them.

• If there are no keys, PowerBuilder tries to join tables based on common
column names and types.

Working with database views

432 PowerBuilder Classic

❖ To join tables:

1 Click the Join button.

2 Click the columns on which you want to join the tables.

In the following screen, the Employee and Department tables are joined on
the dept_id column:

3 To create a join other than the equality join, click the join representation in
the workspace.

The Join dialog box displays:

4 Select the join operator you want from the Join dialog box.

If your DBMS supports outer joins, outer join options also display in the
Join dialog box. For example, in the preceding dialog box (which uses the
Employee and Department tables), you can choose to include rows from
the Employee table where there are no matching departments, or rows
from the Department table where there are no matching employees.

For more about outer joins, see “Using ANSI outer joins” on page 506.

CHAPTER 16 Managing the Database

Users Guide 433

Dropping a database
view

Dropping a database view removes its definition from the database.

❖ To drop a view:

1 In the Objects view, select the database view you want to drop.

2 Click the Drop Object button or select Drop View from the pop-up menu.

PowerBuilder prompts you to confirm the drop, then generates a DROP
VIEW statement and submits it to the DBMS.

Exporting view syntax You can export the syntax for a view to the log. This feature is useful when you
want to create a backup definition of the view before you alter it or when you
want to create the same view in another DBMS.

❖ To export the syntax of an existing view to a log:

1 Select the view in the painter workspace.

2 Select Export Syntax from the Object menu or the pop-up menu.

For more information about the log, see “Logging your work” on page
406.

Manipulating data
As you work on the database, you often want to look at existing data or create
some data for testing purposes. You might also want to test display formats,
validation rules, and edit styles on real data.

PowerBuilder provides data manipulation for such purposes. With data
manipulation, you can:

• Retrieve and manipulate database information

• Save the contents of the database in a variety of formats (such as Excel,
PDF, or XML)

Manipulating data

434 PowerBuilder Classic

Retrieving data

❖ To retrieve data:

1 In the Database painter, select the table or database view whose data you
want to manipulate.

2 Do one of the following:

• Click one of the three Data Manipulation buttons (Grid, Tabular, or
Freeform) in the PainterBar.

• Select Data or Edit Data from the Object or pop-up menu and choose
one of the edit options from the cascading menu that displays.

All rows are retrieved and display in the Results view. As the rows are
being retrieved, the Retrieve button changes to a Cancel button. You can
click the Cancel button to stop the retrieval.

Exactly what you see in the Results view depends on the formatting style you
picked. What you see is actually a DataWindow object. The formatting style
you picked corresponds to a type of DataWindow object (grid, tabular, or
freeform). In a grid display, you can drag the mouse on a column's border to
resize the column.

This window is in the grid format:

Only a few rows of data display at a time. You can use the First, Prior, Next,
and Last buttons or the pop-up menu to move from page to page.

Modifying data
You can add, modify, or delete rows. When you have finished manipulating the
data, you can apply the changes to the database.

CHAPTER 16 Managing the Database

Users Guide 435

If looking at data from a view
Some views are logically updatable and others are not. Some DBMSs do not
allow any updating of views.

For the rules your DBMS follows regarding updating of views, see your DBMS
documentation.

❖ To modify data:

1 Do one of the following:

• To modify existing data, tab to a field and enter a new value.

• To add a row, click the Insert Row button and enter data in the new
row.

• To delete a row, click the Delete Row button.

When you add or modify data, the data uses the validation rules, display
formats, and edit styles that you or others have defined for the table in the
Database painter.

2 Click the Save Changes button or select Rows>Update to apply changes
to the database.

Sorting rows
You can sort the data, but any sort criteria you define are for testing only and
are not saved with the table or passed to the DataWindow painter.

❖ To sort the rows:

1 Select Rows>Sort from the menu bar.

The Specify Sort Columns dialog box displays.

Manipulating data

436 PowerBuilder Classic

2 Drag the columns you want to sort on from the Source Data box to the
Columns box:

A check box with a check mark in it displays under the Ascending heading
to indicate that the values will be sorted in ascending order. To sort in
descending order, clear the check box.

Precedence of sorting
The order in which the columns display in the Columns box determines the
precedence of the sorting. For example, in the preceding dialog box, rows
would be sorted by department ID. Within department ID, rows would be
sorted by state.

To change the precedence order, drag the column names in the Column
box into the order you want.

3 (Optional) Double-click an item in the Columns box to specify an
expression to sort on.

The Modify Expression dialog box displays.

4 Specify the expression.

For example, if you have two columns, Revenues and Expenses, you can
sort on the expression Revenues – Expenses.

5 Click OK to return to the Specify Sort Columns dialog box with the
expression displayed.

If you change your mind
You can remove a column or expression from the sorting specification by
simply dragging it and releasing it outside the Columns box.

6 When you have specified all the sort columns and expressions, click OK.

CHAPTER 16 Managing the Database

Users Guide 437

Filtering rows
You can limit which rows are displayed by defining a filter.

The filters you define are for testing only and are not saved with the table or
passed to the DataWindow painter.

❖ To filter the rows:

1 Select Rows>Filter from the menu bar.

The Specify Filter dialog box displays.

2 Enter a boolean expression that PowerBuilder will test against each row:

If the expression evaluates to TRUE, the row is displayed. You can paste
functions, columns, and operators in the expression.

3 Click OK.

PowerBuilder filters the data. Only rows meeting the filter criteria are
displayed.

❖ To remove the filter:

1 Select Rows>Filter from the menu bar.

The Specify Filter dialog box displays, showing the current filter.

2 Delete the filter expression, then click OK.

Filtered rows and updates
Filtered rows are updated when you update the database.

Manipulating data

438 PowerBuilder Classic

Viewing row information
You can display information about the data you have retrieved.

❖ To display row information:

• Select Rows>Described from the menu bar.

The Describe Rows dialog box displays showing the number of:

• Rows that have been deleted in the Database painter but not yet
deleted from the database

• Rows displayed in Preview

• Rows that have been filtered

• Rows that have been modified in the Database painter but not yet
modified in the database

All row counts are zero until you retrieve the data from the database or add a
new row. The count changes when you modify the displayed data or test filter
criteria.

Importing data
You can import data from an external source and then save the imported data
in the database.

❖ To import data:

1 Select Rows>Import from the menu bar.

The Select Import File dialog box displays.

2 Specify the file from which you want to import the data.

The types of files you can import into the Database painter are shown in
the Files of Type drop-down list.

3 Click Open.

PowerBuilder reads the data from the file. You can click the Save Changes
button or select Rows>Update to add the new rows to the database.

CHAPTER 16 Managing the Database

Users Guide 439

Printing data
You can print the data displayed by selecting File>Print from the menu bar.
Before printing, you can also preview the output on the screen.

❖ To preview printed output before printing:

1 Select File>Print Preview from the menu bar.

Preview displays the data as it will print. To display rulers around the page
borders in Print Preview, select File>Print Preview Rulers.

2 To change the magnification used in Print Preview, select File>Print
Preview Zoom from the menu bar.

The Zoom dialog box displays.

3 Select the magnification you want and click OK.

Preview zooms in or out as appropriate.

4 When you have finished looking at the print layout, select File>Print
Preview from the menu bar again.

Saving data
You can save the displayed data in an external file.

❖ To save the data in an external file:

1 Select File>Save Rows As from the menu bar.

The Save Rows As dialog box displays.

2 Choose a format for the file.

You can select from several formats, including Powersoft report (PSR),
XML, PDF, and HTML.

If you want the column headers saved in the file, select a file format that
includes headers, such as Excel With Headers. When you select a with
headers format, the names of the database columns (not the column labels)
will also be saved in the file.

For more information, see “Saving data in an external file” on page 548.

Creating and executing SQL statements

440 PowerBuilder Classic

3 For TEXT, CSV, SQL, HTML, and DIF formats, select an encoding for the
file.

You can select ANSI/DBCS, Unicode LE (Little-Endian), Unicode BE
(Big-Endian), or UTF8.

4 Name the file and save it.

PowerBuilder saves all displayed rows in the file; all columns in the
displayed rows are saved. Filtered rows are not saved.

Creating and executing SQL statements
The Database painter’s Interactive SQL view is a SQL editor in which you can
enter and execute SQL statements. The view provides all editing capabilities
needed for writing and modifying SQL statements. You can cut, copy, and
paste text; search for and replace text; and create SQL statements. You can also
set editing properties to make reading your SQL files easier.

Building and executing SQL statements
You can use the Interactive SQL view to build SQL statements and execute
them immediately. The view acts as a notepad in which you can enter SQL
statements.

Creating stored procedures

You can use the Interactive SQL view to create stored procedures or triggers,
but make sure that the Database painter’s SQL statement terminator character
is not the same as the terminator character used in the stored procedure
language of your DBMS.

About the statement
terminator

By default, PowerBuilder uses the semicolon as the SQL statement terminator.
You can override the semicolon by specifying a different terminator character
in the Database painter. To change the terminator character, select
Design>Options from the Database painter’s menu bar.

 Make sure that the character you choose is not reserved for another use by your
database vendor. For example, using the slash character (/) causes compilation
errors with some DBMSs.

CHAPTER 16 Managing the Database

Users Guide 441

Controlling comments

By default, PowerBuilder strips off comments when it sends SQL to the
DBMS. You can have comments included by clearing the check mark next to
Strip Comments in the pop-up menu of the Interactive SQL view.

Entering SQL

You can enter a SQL statement in four ways:

• Pasting the statement

• Typing the statement in the view

• Opening a text file containing the SQL

• Dragging a procedure or function from the Objects view

Pasting SQL You can paste SELECT, INSERT, UPDATE, and DELETE statements to the view.
Depending on which kind of statement you want to paste, PowerBuilder
displays dialog boxes that guide you through painting the full statement.

❖ To paste a SQL statement to the workspace:

1 Click the Paste SQL button in the PainterBar, or select Paste Special>SQL
from the Edit or pop-up menu, then the statement type (Select, Insert,
Update, or Delete).

The Select Table(s) dialog box displays.

2 Select the table(s) you will reference in the SQL statement.

You go to the Select, Insert, Update, or Delete painter, depending on the
type of SQL statement you are pasting. The Insert, Update, and Delete
painters are similar to the Select painter, but only the appropriate tabs
display in the SQL toolbox at the bottom of the workspace.

For more information about the SQL Select painter, see “Selecting a data
source” on page 488.

3 Do one of the following:

• For a SELECT statement, define the statement exactly as in the SQL
Select painter when building a view.

You choose the columns to select. You can define computed columns,
specify sorting and joining criteria, and WHERE, GROUP BY, and
HAVING criteria. For more information, see “Working with database
views” on page 428.

Creating and executing SQL statements

442 PowerBuilder Classic

• For an INSERT statement, type the values to insert into each column.
You can insert as many rows as you want.

• For an UPDATE statement, specify the new values for the columns in
the Update Column Values dialog box. Then specify the WHERE
criteria to indicate which rows to update.

• For a DELETE statement, specify the WHERE criteria to indicate
which rows to delete.

4 When you have finished creating the SQL statement, click the Return
button in the PainterBar in the Select, Insert, Update, or Delete painter.

You return to the Database painter with the SQL statement pasted into the
ISQL view.

Typing SQL Rather than paste, you can simply type one or more SQL statements directly in
the ISQL view.

You can enter most statements supported by your DBMS. This includes
statements you can paint as well as statements you cannot paint, such as a
database stored procedure or CREATE TRIGGER statement.

You cannot enter certain statements that could destabilize the PowerBuilder
development environment. These include the SET statement and the USE
database statement. However, you might want to use a SET statement to
change a default setting in the development environment, such as SET
NOCOUNT ON or SET ANSI_WARNINGS OFF. You can enable SET commands
in the ISQL view for database interfaces that support them by adding the
following line to the [Database] section in your PB.INI file:

EnableSet=1

Sybase Adaptive Server Enterprise stored procedures
When you use the Database painter to execute a Sybase Adaptive Server
Enterprise system stored procedure, you must start the syntax with the keyword
EXEC or EXECUTE. For example, enter EXEC SP_LOCK. You cannot execute
the stored procedure simply by entering its name.

CHAPTER 16 Managing the Database

Users Guide 443

Importing SQL from a
text file

You can import SQL that has been saved in a text file into the Database painter.

❖ To read SQL from a file:

1 Put the insertion point where you want to insert the SQL.

2 Select Paste Special>From File from the Edit or pop-up menu.

3 Select the file containing the SQL, and click OK.

Dragging a procedure
or function from the
Objects view

From the tree view in the Objects view, you can select an existing procedure or
function that contains a SQL statement you want to enter, and drag it to the
Interactive SQL view.

Explaining SQL

Sometimes there is more than one way to code SQL statements to obtain the
results you want. If you connect to a Sybase database using a Sybase native
driver, or to a SQL Anywhere database using the ODBC driver, you can select
Explain SQL on the Design menu to help you choose the most efficient coding
method. Explain SQL displays information about the path that PowerBuilder
will use to execute the statements in the SQL Statement Execution Plan dialog
box. This is most useful when you are retrieving or updating data in an indexed
column or using multiple tables.

DBMS-specific information
The information displayed in the SQL Statement Execution Plan dialog box
depends on your DBMS. For more about the SQL execution plan, see your
DBMS documentation.

Executing SQL

When you have the SQL statements you want in the workspace, you can submit
them to the DBMS.

❖ To execute the SQL:

• Click the Execute button, or select Design>Execute SQL from the menu
bar.

If the SQL retrieves data, the data appears in grid format in the Results view. If
there is a database error, you see a message box describing the problem.

For a description of what you can do with the data, see “Manipulating data” on
page 433.

Controlling access to the current database

444 PowerBuilder Classic

Customizing the editor
The Interactive SQL view provides the same editing capabilities as the file
editor. It also has Script, Font, and Coloring properties that you can change to
make SQL files easier to read. With no change in properties, SQL files have
black text on a white background and a tab stop setting of 3 for indentation.

Setting Script and
Font properties

Select Design>Options from the menu bar to open the Database Preferences
dialog box. The Script and Font properties are the same as those you can set for
the file editor.

For more information, see “Using the file editor” on page 32.

Editor properties apply elsewhere
When you set Script and Font properties for the Database painter, the settings
also apply to the Script view, the file editor, and the Debug window.

Setting Coloring
properties

You can set the text color and background color for SQL styles (such as
datatypes and keywords) so that the style will stand out and the SQL code will
be more readable. You set Coloring properties on the Coloring tab page.

Enabling syntax coloring
Be sure the Enable Syntax Coloring check box is selected before you set colors
for SQL styles. You can turn off all Coloring properties by clearing the check
box.

Controlling access to the current database
The Database painter’s Design menu provides access to a series of dialog boxes
you can use to control access to the current database. In some DBMSs, for
example, you can assign table access privileges to users and groups.

Which menu items display on the Design menu and which dialog boxes display
depend on your DBMS.

For information about support for security options in your DBMS, see
Connecting to Your Database and your DBMS documentation.

CHAPTER 16 Managing the Database

Users Guide 445

Using the ASA MobiLink synchronization wizard
About MobiLink MobiLink™ is a session-based synchronization system that allows two-way

synchronization between a main database, called the consolidated database,
and multiple remote databases. The ASA MobiLink Synchronization wizard
on the Database tab of the New dialog box creates objects that facilitate control
of database synchronization from a PowerBuilder application.

This section describes the MobiLink synchronization wizard and the objects it
creates. For more detailed information about synchronization from
PowerBuilder applications, including information about creating consolidated
and remote databases, as well as synchronization objects without using the
wizard, see the chapter on MobiLink synchronization in Application
Techniques.

What the wizard generates
You use the ASA MobiLink Synchronization wizard to create a nonvisual user
object and a global external function that invokes the MobiLink dbmlsync
executable. By default, the wizard also adds two windows and a second global
function, but these objects are optional.

The wizard-generated objects make it easier to add database synchronization
capabilities to a PowerBuilder target. A structure that inherits from the
PowerBuilder SyncParm object is also instantiated by default by one of the
wizard-generated global functions. The SyncParm structure is used to hold
sensitive database connection parameters entered by an end user in the
synchronization options window.

Table 16-7 shows objects that can be generated by the wizard, listed by their
default names, where appname stands for the name of the current application.

Table 16-7: Objects generated by MobiLink Synchronization wizard

Default name Description

nvo_appname_mlsync An instance of the MLSync standard class user object
that starts synchronization from the remote client.

gf_appname_sync Global function that instantiates
nvo_appname_mlsync to start the synchronization.
This function includes the logic to start the
synchronization with or without a feedback window.

w_appname_syncprogress Optional feedback window that can be used to
display synchronization status to the client.

Using the ASA MobiLink synchronization wizard

446 PowerBuilder Classic

Using a desktop
database profile

Some information that you enter in the wizard is optional, but other
information is required. The wizard prompts you for a database profile, which
it uses to establish a connection to a remote database on the development
computer. If you are not testing a connection on the desktop, you can select the
option to proceed without a database connection and ignore the database
profile field.

A database profile is required for automatic retrieval of publication names in
the database. A publication is a database object describing data to be
synchronized. A publication, along with a synchronization user name and a
synchronization subscription, is required for MobiLink synchronization.

Selecting publication
names

The wizard lets you select multiple publication names if they exist in the
remote database defined by the connection profile. There must be subscriptions
associated with the publication in order for them to display in the publication
selection list.

If you selected the option to proceed without a database connection, the wizard
prompts you to type a publication name (or a comma-separated list of
publication names) in the MobiLink Client Publication wizard page instead of
prompting you to select publication names retrieved from the database.

For more information about publications, see MobiLink - Client Administration
on the Technical Library CD or the SQL Anywhere online Help.

Overriding registry
settings on the client
computer

By default, information you enter in the wizard is saved in properties of the
nvo_appname_mlsync user object that the wizard generates. This information
includes values that you select for MobiLink logging and command line
options and the MobiLink server and port. Prior to synchronization, the values
of these properties can be modified with values entered by an application user
in the w_appname_sync_options Options window.

The first time synchronization is run, user object property values are entered
into the client computer registry. The next time the application is run, this
information is available for retrieval from the registry.

gf_appname_configure_sync Optional global function that calls the
w_appname_sync_options window, which allows
the user to configure the dbmlsync client before
invoking the dbmlsync executable.

w_appname_sync_options Window that allows the application user to change
connection arguments at runtime.

Default name Description

CHAPTER 16 Managing the Database

Users Guide 447

The ASA MobiLink Synchronization wizard has an optional Override Registry
Settings screen that allows you to override client registry settings. When you
enable runtime overrides to the client registry settings, you must assign a build
number to the objects generated by the wizard.

The build number you assign can be any positive numeric value. To override
the registry settings, the build number you assign must be higher than the build
number in the registry, if there is one. Registry settings will be used if the build
number in the registry is equal to or lower than the build number in the
ObjectRevision property of the nvo_appname_mlsync user object that the
wizard generates.

Security measure
For security reasons, the MobiLink user name and password, and the
authentication parameters and encryption key database settings are never saved
to the registry.

The Override Registry Settings page of the wizard displays only if you do not
change the radio button option to prompt the application user for password and
runtime changes on the previous wizard page (Optional Runtime
Configuration Objects). If, however, you change the radio button selection to
disallow runtime overrides to the synchronization, the wizard does not display
the Override Registry Settings page and does not generate the
w_appname_sync_options Options window.

Wizard options
Except for the object name settings, Table 16-8 lists the ASA MobiLink
Synchronization wizard options.

Table 16-8: ASA MobiLink Synchronization wizard options

Option Description

Destination library Lets you select the target PBL file where you want to
generate the MobiLink synchronization objects.

Desktop database
connection

Lets you select a PowerBuilder database profile or
proceed without a database connection.

Publication name Lets you select a publication (or multiple publications) if
you specified a database profile for a desktop database
connection. If you did not, you can type the name of a
publication you want to synchronize.

Using the ASA MobiLink synchronization wizard

448 PowerBuilder Classic

Override registry settings Lets you override client registry settings with values that
you (or application users) select for MobiLink logging
and command line options, and the MobiLink server and
port for the application

Client logging options Specifies what information gets written to the
synchronization log and whether you save the
information to a log file.

Additional command line
options

Adds the options you specify to the command line for
starting the MobiLink synchronization client. You can
click the Usage button to see a list of valid options.

Extended options Adds extended options you specify. You do not need to
enter the “-e” switch for extended options in this field.
You can click the Usage button to see a list of valid
extended options.

Single quotes must be used for any extended option
values requiring quotation marks. You must separate
multiple options with semicolons; for example:

scn=on;adr='host=localhost;port=2439'

Host Sets the host information for connecting to the MobiLink
synchronization server. If you enter a value for this field,
it overrides any value set in synchronization
subscriptions and in the Extended Options field.

Port Sets the port for connecting to the MobiLink
synchronization server. The default port for MobiLink is
2439. The value you enter for this field overrides any
value set in synchronization subscriptions and in the
Extended Options field.

Option Description

CHAPTER 16 Managing the Database

Users Guide 449

Trying out MobiLink synchronization
This section describes how to try out the ASA MobiLink Synchronization
wizard in a sample application. To get started, create a new workspace and a
template application. You do not need to create a SQL database connection, but
you do need to create a project.

Before you use the wizard to generate objects for the application, you need to
set up a remote database and add at least one publication, user, and subscription
to it, and create a PowerBuilder database profile for the remote database. To
test the synchronization objects from your application, you need to set up a
consolidated database. You can create your own remote and consolidated
databases, as described in the chapter on MobiLink synchronization in
Application Techniques.

To test the synchronization objects, complete the following steps:

1 Run the wizard.

2 Call synchronization objects from your application.

3 Deploy the application and database files.

4 Start the MobiLink server.

5 Run the application.

Run the wizard You start the wizard from the Database tab of the New dialog box. The wizard
prompts you for a database profile and a publication, although you can enter
this information at a later time after you generate synchronization objects.

❖ To run the MobiLink synchronization wizard

1 Select File>New from the PowerBuilder menu bar.

2 Click the Database tab, select the ASA MobiLink Synchronization wizard,
and click OK.

3 Follow the instructions in the wizard, providing the information the wizard
needs.

For help using the wizard, place the mouse pointer in any wizard field and
press F1.

On the last page of the wizard, make sure the Generate To-Do List check
box is selected if you want the wizard to add items to the To-Do List to
guide and facilitate your development work.

Managing MobiLink synchronization on the server

450 PowerBuilder Classic

4 When you are satisfied with your choices in the wizard, click Finish.

The wizard generates objects that you can use for database
synchronization.

Call synchronization
objects from your
application

Open a menu for your application in the Menu painter and add two submenu
items to the File menu, called Synchronize and Sync Options. Add the following
code to the Clicked event of the Synchronize menu item (appname is the name
of your application):

syncparm s_opt
gf_appname_sync(s_opt)

Add the following code to the Clicked event of the Sync Options menu item:

gf_appname_configure_sync()

Deploy the application
and database files

Use the Project painter to deploy the application to the desktop and copy this
to all computers that will be connecting remotely to the MobiLink server. You
need to copy the remote database to all end-user computers, and either register
the database as an ODBC database or include connection parameters in a data
source name (DSN) file.

For information on additional files and registry entries required on end-user
computers, see the chapter on MobiLink synchronization in Application
Techniques.

Start the MobiLink
server

Select MobiLink Synchronization Server from the Utilities folder in the
Database painter. Fill in the required information and click OK to start the
server.

For more information, see “Starting the MobiLink synchronization server”
next.

Run the application Run the application on the remote computer and select the File>Synchronize
and File>Sync Options menu items to test their operation.

Managing MobiLink synchronization on the server
You can start the MobiLink synchronization server and Sybase Central from
the PowerBuilder UI.

CHAPTER 16 Managing the Database

Users Guide 451

Starting the MobiLink synchronization server
Before you synchronize remote databases with the consolidated database, you
must start the MobiLink synchronization server. You can start the server from
the Database or the Database Profile painter in PowerBuilder.

❖ To start the MobiLink synchronization server:

1 From the Objects view of the Database painter or from the Database
Profile painter, expand the ODBC Utilities folder and click MobiLink
Synchronization server.

The MobiLink Synchronization Server Options dialog box displays.

2 Select the MobiLink version and enter the ODBC connection string for
your consolidated database.

The values that populate the MobiLink version drop-down list come from
the SQL Anywhere versions listed in the
hkey_local_machine\software\odbc\odbcinst.ini registry key.

The ODBC connection string should not contain any blank spaces that are
not part of the data source name. The following is an example of an ODBC
connection string for the SQL Anywhere demonstration database:

DSN=SQL Anywhere 11 Demo;UID=dba;PWD=sql

3 Define other options as needed.

For information about filling in specific fields in the dialog box, click the
Help button in the dialog box. The Usage button opens a dialog box with
information about command line options.

4 Click OK.

When you click OK, PowerBuilder starts the MobiLink Synchronization
server.

Using Sybase Central
You can use Sybase Central to manage MobiLink synchronization and create
synchronization scripts that are held in the consolidated database. You can also
use the SQL Anywhere plug-in to Sybase Central to add publications,
synchronization users, and synchronization subscriptions to remote databases.

Managing MobiLink synchronization on the server

452 PowerBuilder Classic

❖ To start Sybase Central

• From the Objects view of the Database painter or from the Database
Profile painter, expand the ODBC Utilities folder, and click Sybase
Central.

Sybase Central displays.

❖ To work with the consolidated database in Sybase Central

• Select Connections>Connect with MobiLink 11 from the Sybase Central
menu, enter connection parameters in the Connect to Consolidated
Database dialog box, and click OK.

You can use Sybase Central to add scripts for database tables and select
synchronization events that cause the script to be executed.

❖ To work with remote databases in Sybase Central

• Select Connections>Connect with SQL Anywhere 11 from the Sybase
Central menu, enter connection parameters in the Connect dialog box, and
click OK.

If you open the Publications and MobiLink Users folders in Sybase
Central, you can add publications and synchronization users for the remote
database.

After you add a publication and a synchronization user, you can create a
synchronization subscription by linking a publication to a synchronization
user.

For more information, see the chapter on MobiLink synchronization in the
Application Techniques and the SQL Anywhere online Help. You can also use
the Help menu for the SQL Anywhere and MobiLink plug-ins to Sybase
Central.

Users Guide 453

C H A P T E R 1 7 Working with Data Pipelines

About this chapter This chapter describes how to use the Data Pipeline painter to create data
pipelines, which let you reproduce database data in various ways.

Contents

About data pipelines
The Data Pipeline painter gives you the ability to reproduce data quickly
within a database, across databases, or even across DBMSs. To do that,
you create a data pipeline which, when executed, pipes the data as
specified in the definition of the data pipeline.

What you can do With the Data Pipeline painter, you can perform some tasks that would
otherwise be very time consuming. For example, you can:

• Pipe data (and extended attributes) from one or more tables to a table
in the same DBMS or a different DBMS

• Pipe an entire database, a table at a time, to another DBMS (and if
needed, pipe the database’s extended attribute system tables)

• Create a table with the same design as an existing table but with no
data

• Pipe corporate data from a database server to a SQL Anywhere
database on your computer so you can work on the data and report on
it without needing access to the network

Topic Page

About data pipelines 453

Creating a data pipeline 456

Modifying the data pipeline definition 459

Correcting pipeline errors 468

Saving a pipeline 469

Using an existing pipeline 470

Pipeline examples 470

About data pipelines

454 PowerBuilder Classic

• Upload local data that changes daily to a corporate database

• Create a new table when a change (such as allowing or disallowing NULLs
or changing primary key or index assignments) is disallowed in the
Database painter

Piping data in applications
You can also create applications that pipe data. For more information, see
Application Techniques.

Source and
destination databases

You can use the Data Pipeline painter to pipe data from one or more tables in a
source database to one table in a destination database.

You can pipe all data or selected data in one or more tables. For example, you
can pipe a few columns of data from one table or data selected from a
multitable join. You can also pipe from a view or a stored procedure result set
to a table.

When you pipe data, the data in the source database remains in the source
database and is reproduced in a new or existing table in the destination
database.

Although the source and destination can be the same database, they are usually
different ones, and they can even have different DBMSs. For example, you can
pipe data from an Adaptive Server Enterprise database to a SQL Anywhere
database on your computer.

Defining a data pipeline
When you use the Data Pipeline painter to create a pipeline, you define the:

• Source database

• Destination database

• Source of data

• Pipeline operation

• Destination table

After you create a pipeline, you can execute it immediately. If you want, you
can also save it as a named object to use and reuse. Saving a pipeline enables
you to pipe the data that might have changed since the last pipeline execution
or to pipe the data to other databases later.

CHAPTER 17 Working with Data Pipelines

Users Guide 455

Datatype support Each DBMS supports certain datatypes. When you pipe data from one DBMS
to another, PowerBuilder makes a best guess at the appropriate destination
datatypes. You can correct PowerBuilder’s best guess in your pipeline
definition as needed.

The Data Pipeline painter supports the piping of columns of any datatype,
including columns with blob data. For information about piping a column that
has a blob datatype, see “Piping blob data” on page 465.

Piping extended attributes
The first time PowerBuilder connects to a database, it creates five system tables
called the extended attribute system tables. These system tables initially
contain default extended attribute information for tables and columns. In
PowerBuilder, you can create extended attribute definitions such as column
headers and labels, edit styles, display formats, and validation rules.

For more information about the extended attribute system tables, see Appendix
A, “The Extended Attribute System Tables.”

Piping extended
attributes
automatically

When you pipe data, you can specify that you want to pipe the extended
attributes associated with the columns you are piping. You do this by selecting
the Extended Attributes check box in the Data Pipeline painter workspace:

When the Extended Attributes check box is selected, the extended attributes
associated with the source database’s selected columns automatically go into
the extended attribute system tables of the destination database, with one
exception. When you pipe a column that has an edit style, display format, or
validation rule associated with it, the style, rule, or format is not piped if one
with the same name exists in the extended attribute system tables of the
destination database. In this situation, the column uses the style, rule, or format
already present in the destination database.

Creating a data pipeline

456 PowerBuilder Classic

For example, for the Phone column in the Employee table, the display format
with the name Phone_format would be piped unless a display format with the
name Phone_format already exists in the destination database. If such a display
format exists, the Phone column would use the Phone_format display format in
the destination database.

Piping the extended
attribute system tables

Selecting the Extended Attributes check box never results in the piping of
named display formats, edit styles, and validation rules that are stored in the
extended attribute system tables but are not associated with columns in tables
you are piping. If you want such extended attribute definitions from one
database to exist in another database, you can pipe the appropriate extended
attribute system table or a selected row or rows from the table.

Piping an entire
database

If you want to reproduce an entire database, you can pipe all database tables
and extended attribute system tables, one table at a time.

Creating a data pipeline
You have a number of choices when creating a data pipeline. This section leads
you through them.

❖ To create a data pipeline:

1 Click the New button in the PowerBar and then select the Database tab
page.

2 Select Data Pipeline and click OK.

The New Data Pipeline dialog box displays.

CHAPTER 17 Working with Data Pipelines

Users Guide 457

The Source Connection and Destination Connection boxes display
database profiles that have been defined. The last database you connected
to is selected as the source. The first database on the destination list is
selected as the destination.

If you do not see the connections you need
To create a pipeline, the databases you want to use for your source and
destination must each have a database profile defined. If you do not see
profiles for the databases you want to use, select Cancel in the New Data
Pipeline dialog box and then define those profiles. For information about
defining profiles, see “Changing the destination and source databases” on
page 467.

3 Select a data source.

The data source determines how PowerBuilder retrieves data when you
execute a pipeline:

4 Select the source and destination connections and click OK.

5 Define the data to pipe.

How you do this depends on what data source you chose in step 3, and is
similar to the process used to define a data source for a DataWindow
object. For complete information about using each data source and
defining the data, see Chapter 18, “Defining DataWindow Objects.”

When you finish defining the data to pipe, the Data Pipeline painter
workspace displays the pipeline definition, which includes a pipeline
operation, a check box for specifying whether to pipe extended attributes,
and source and destination items.

Data source Use it if

Quick Select The data is from tables that have a primary/foreign key
relationship and you need only to sort and limit data

SQL Select You want more control over the SQL SELECT statement
generated for the data source or your data is from tables that
are not connected through a key

Query The data has been defined as a query

Stored Procedure The data is defined in a stored procedure

Creating a data pipeline

458 PowerBuilder Classic

The pipeline definition is PowerBuilder’s best guess based on the source
data you specified.

6 Modify the pipeline definition as needed.

For information, see "Modifying the data pipeline definition" next.

7 (Optional) Modify the source data as needed. To do so, click the Data
button in the PainterBar, or select Design>Edit Data Source from the menu
bar.

For information about working in the Select painter, see Chapter 18,
“Defining DataWindow Objects.”

When you return to the Data Pipeline painter workspace, PowerBuilder
reminds you that the pipeline definition will change. Click OK to accept
the definition change.

8 If you want to try the pipeline now, click the Execute button or select
Design>Execute from the menu bar.

PowerBuilder retrieves the source data and executes the pipeline. If you
specified retrieval arguments in the Select painter, PowerBuilder first
prompts you to supply them.

At runtime, the number of rows read and written, the elapsed execution
time, and the number of errors display in MicroHelp. You can stop
execution yourself or PowerBuilder might stop execution if errors occur.

For information about execution and how rows are committed to the
destination table, see “When execution stops” on page 463.

CHAPTER 17 Working with Data Pipelines

Users Guide 459

9 Save the pipeline definition if appropriate.

For information, see “Saving a pipeline” on page 469.

Seeing the results of piping data
You can see the results of piping data by connecting to the destination
database and opening the destination table.

Modifying the data pipeline definition
After you create a pipeline definition, you can modify it in a variety of ways.
The changes you make depend on what pipeline operation you select, the
destination DBMS, and what you are trying to accomplish by executing the
pipeline.

Table 17-1 lists properties you can modify that apply to the destination table.
These properties display at the top of the Data Pipeline painter workspace.

Table 17-1: Pipeline properties for the destination table

Item Description Default How to edit

Table Name of the destination table. If source and destination are
different, name of first table
specified in the source data
or name of the stored
procedure. If the same,
_copy is appended.

For Create or Replace, enter
a name.

For Refresh, Append, or
Update, select a name from
the drop-down list.

Options Pipeline operation: Create, Replace,
Refresh, Append, or Update.

Create - Add Table. Select an option from the
drop-down list. See
Table 17-3 on page 461.

Commit Number of rows piped to the
destination database before
PowerBuilder commits the rows to the
database.

100 rows. Select a number, All, or
None from the drop-down
list.

Key Key name for the table in the
destination database.

If the source is only one
table, the table name is
followed by _x.

(Create or Replace only)
Enter a name.

Max Errors Number of errors allowed before the
pipeline stops.

100 errors. Select a number or No Limit
from the drop-down list.

Extended
Attributes

(Create and Replace only) Specifies
whether or not the extended attributes
of the selected source columns are
piped to the extended attribute system
tables of the destination database.

Not checked. Click the check box.

Modifying the data pipeline definition

460 PowerBuilder Classic

Table 17-2 lists properties that you can modify that apply to the destination
table’s columns and keys. These properties display under the properties that
apply to the table itself and most can be modified only for the Create and
Replace pipeline operations.

Column names and datatypes that cannot be modified
You cannot modify the source column names and datatypes that display at the
left of the workspace.

Table 17-2: Pipeline properties for the destination table’s columns and
keys

Item Description Default How to edit

Destination
Name

Column name Source column name. Enter a name.

Type Column datatype If the DBMS is unchanged,
source column datatype. If the
DBMS is different, a
best-guess datatype.

Select a type from the
drop-down list.

Key Whether the column is a key
column (check means yes)

Source table’s key columns (if
the source is only one table and
all key columns were selected).

Select or clear check boxes.

Width Column width Source column width. Enter a number.

Dec Decimal places for the column Source column decimal places. Enter a number.

Nulls Whether NULL is allowed for
the column (check means yes)

Source column value. Select or clear check boxes.

Initial Value Column initial value Source column initial value. (If
no initial value, character
columns default to spaces and
numeric columns default to 0.)

Select an initial value from the
drop-down list.

Default
Value

Column default value None. Default values stored in
the source database are not
piped to the destination
database.

Select a default value from the
drop-down list or enter a
default value. Keyword values
depend on destination DBMS.

CHAPTER 17 Working with Data Pipelines

Users Guide 461

Choosing a pipeline operation
When PowerBuilder pipes data, what happens in the destination database
depends on which pipeline operation you choose in the Options drop-down list
at the top of the workspace.

Table 17-3: Effect of pipeline operations on the destination database

Dependency of modifications on pipeline operation
The modifications you can make in the workspace depend on the pipeline
operation you have chosen.

When using
Create or Replace

When you select the Create - Add Table option (the default) or the Replace -
Drop/Add Table option, you can:

• Change the destination table definition.

Follow the rules of the destination DBMS.

Pipeline operation Effect on destination database

Create - Add Table A new table is created and rows selected from the
source tables are inserted.

If a table with the specified name already exists in
the destination database, a message displays and
you must select another option or change the table
name.

Replace - Drop/Add Table An existing table with the specified table name is
dropped, a new table is created, and rows selected
from the source tables are inserted.

If no table exists with the specified name, a table is
created.

Refresh - Delete/Insert Rows All rows of data in an existing table are deleted,
and rows selected from the source tables are
inserted.

Append - Insert Rows All rows of data in an existing table are preserved,
and new rows selected from the source tables are
inserted.

Update - Update/Insert Rows Rows in an existing table that match the key
criteria values in the rows selected from the source
tables are updated, and rows that do not match the
key criteria values are inserted.

Modifying the data pipeline definition

462 PowerBuilder Classic

• Specify or clear a key name and/or key columns.

Specify key columns by selecting one or more check boxes to define a
unique identifier for rows. Neither a key name nor key columns are
required.

• Allow or disallow NULLs for a column.

If NULL is allowed, no initial value is allowed. If NULL is not allowed, an
initial value is required. The words spaces (a string filled with spaces) and
today (today’s date) are initial value keywords.

• Modify the Commit and Max Errors values.

• Specify an initial value and a default value.

If you have specified key columns and a key name and if the destination DBMS
supports primary keys, the Data Pipeline painter creates a primary key for the
destination table. If the destination DBMS does not support primary keys, a
unique index is created.

For Oracle databases
PowerBuilder generates a unique index for Oracle databases.

If you try to use the Create option, but a table with the specified name already
exists in the destination database, PowerBuilder tells you, and you must select
another option or change the table name.

When you use the Replace option, PowerBuilder warns you that you are
deleting a table, and you can choose another option if needed.

When using Refresh
and Append

For the Refresh - Delete/Insert Rows or Append - Insert Rows options, the
destination table must already exist. You can:

• Select an existing table from the Table drop-down list.

• Modify the Commit and Max Errors values.

• Change the initial value for a column.

CHAPTER 17 Working with Data Pipelines

Users Guide 463

When using Update For the Update - Update/Insert Rows option, the destination table must already
exist. You can:

• Select an existing table from the Table drop-down list.

• Modify the Commit and Max Errors values.

• Change the Key columns in the destination table’s primary key or unique
index, depending on what the DBMS supports. Key columns must be
selected; the key determines the UPDATE statement’s WHERE clause.

• Change the initial value for a column.

Bind variables and the Update option
If the destination database supports bind variables, the Update option takes
advantage of them to optimize pipeline execution.

When execution stops
Execution of a pipeline can stop for any of these reasons:

• You click the Cancel button

During the execution of a pipeline, the Execute button in the PainterBar
changes to a Cancel button.

• The error limit is reached

If there are rows that cannot be piped to the destination table for some reason,
those error rows display once execution stops. You can correct error rows or
return to the workspace to change the pipeline definition and then execute it
again. For information, see “Correcting pipeline errors” on page 468.

Whether rows are committed

When rows are piped to the destination table, they are first inserted and then
either committed or rolled back. Whether rows are committed depends on:

• What the Commit and Max Errors values are

• When errors occur during execution

• Whether you click the Cancel button or PowerBuilder stops execution

Modifying the data pipeline definition

464 PowerBuilder Classic

When you stop
execution

When you click Cancel, if the Commit value is a number, every row that was
piped is committed. If the Commit value is All or None, every row that was
piped is rolled back.

For example, if you click the Cancel button when the 24th row is piped and the
Commit value is 20, then:

1 20 rows are piped and committed.

2 3 rows are piped and committed.

3 Piping stops.

If the Commit value is All or None, 23 rows are rolled back.

When PowerBuilder
stops execution

PowerBuilder stops execution if the error limit is reached. Table 17-4 shows
how the Commit and Max Errors values affect the number of rows that are
piped and committed.

Table 17-4: Rows committed when PowerBuilder stops execution

For example, if an error occurs when the 24th row is piped and the Commit
value is 10 and the Max Errors value is 1, then:

1 10 rows are piped and committed.

2 10 rows are piped and committed.

3 3 rows are piped and committed.

4 Piping stops.

If the Commit value is All or None, 23 rows are rolled back.

Commit value Max Errors value Result

A number n No limit or a number
m

Rows are piped and committed n
rows at a time until the Max Errors
value is reached.

All or None No limit Every row that pipes without error is
committed.

All or None A number n If the number of errors is less than n,
all rows are committed.

If the number of errors is equal to n,
every row that was piped is rolled
back. No changes are made.

CHAPTER 17 Working with Data Pipelines

Users Guide 465

About transactions A transaction is a logical unit of work done by a DBMS, within which either
all the work in the unit must be completed or none of the work in the unit must
be completed. If the destination DBMS does not support transactions or is not
in the scope of a transaction, each row that is inserted or updated is committed.

About the All and
None commit values

In the Data Pipeline painter, the Commit values All and None have the same
meaning.

The None commit value is most useful at runtime. For example, some
PowerBuilder applications require either all piped rows to be committed or no
piped rows to be committed if an error occurs. Specifying None allows the
application to control the committing and rolling back of piped rows by means
of explicit transaction processing, such as the issuing of commits and rollbacks
in pipeline scripts using COMMIT and ROLLBACK statements.

Piping blob data
Blob data is data that is a binary large-object such as a Microsoft Word
document or an Excel spreadsheet. A data pipeline can pipe columns
containing blob data.

The name of the datatype that supports blob data varies by DBMS. Table 17-5
shows some examples.

Table 17-5: Examples of datatypes that support blob data

For information about the datatype that supports blob data in your DBMS, see
your DBMS documentation.

DBMS Datatypes that support blob data

Sybase SQL Anywhere LONG BINARY,
LONG VARCHAR (if more than 32 KB)

Sybase Adaptive Server
Enterprise

IMAGE,
TEXT

Microsoft SQL Server IMAGE,
TEXT

Oracle RAW,
LONG RAW

Informix BYTE,
TEXT

Modifying the data pipeline definition

466 PowerBuilder Classic

Adding blob columns
to a pipeline definition

When you select data to pipe, you cannot select a blob column as part of the
data source because blobs cannot be handled in a SELECT statement. After the
pipeline definition is created, you add blob columns, one at a time, to the
definition.

❖ To add a blob column to a pipeline definition:

1 Select Design>Database Blob from the menu bar.

If the Database Blob menu item is disabled
The Database Blob menu item is disabled if the pipeline definition does
not contain a unique key for at least one source table, or if the pipeline
operation is Refresh, Append, or Update and the destination table has no
blob columns.

The Database Binary/Text Large Object dialog box displays. The Table
box has a drop-down list of tables in the pipeline source that have a
primary key and contain blob columns.

2 In the Table box, select the table that contains the blob column you want
to add to the pipeline definition.

For example, in the EAS Demo DB, the ole table contains a blob column
named Object with the large binary datatype.

3 In the Large Binary/Text Column box, select a column that has a blob
datatype.

4 In the Destination Column box, change the name of the destination column
for the blob if you want to.

If you want to add the column and see changes you make without closing
the dialog box, click Apply after each change.

5 When you have specified the blob source and destination as needed, click
OK.

❖ To edit the source or destination name of the blob column in the pipeline
definition:

• Display the blob column’s pop-up menu and select Properties.

❖ To delete a blob column from the pipeline definition:

• Display the blob column’s pop-up menu and select Clear.

CHAPTER 17 Working with Data Pipelines

Users Guide 467

Executing a pipeline
with blob columns

After you have completed the pipeline definition by adding one or more blob
columns, you can execute the pipeline. When you do, rows are piped a block
at a time, depending on the Commit value. For a given block, Row 1 is inserted,
then Row 1 is updated with Blob 1, then Row 1 is updated with Blob 2, and so
on. Then Row 2 is inserted, and so on until the block is complete.

If a row is not successfully piped, the blob is not piped. Blob errors display, but
the blob itself does not display. When you correct a row and execute the
pipeline, the pipeline pipes the blob.

Changing the destination and source databases
Changing the
destination

When you create a pipeline, you can change the destination database. If you
want to pipe the same data to more than one destination, you can change the
destination database again and re-execute.

❖ To change the destination database:

• Click the Destination button in the PainterBar, or select File>Destination
Connect from the menu bar.

Changing the source Normally you would not change the source database, because your pipeline
definition is dependent on it, but if you need to (perhaps because you are no
longer connected to that source), you can.

❖ To change the source database:

• Select File>Source Connect from the menu bar.

Source changes when active profile changes
When you open a pipeline in the Data Pipeline painter, the source database
becomes the active connection. If you change the active connection in the
Database painter when the Data Pipeline painter is open, the source database in
the Data Pipeline painter changes to the new active connection automatically.

Working with
database profiles

At any time in the Data Pipeline painter, you can edit an existing database
profile or create a new one.

❖ To edit or create a database profile:

• Click the Database Profile button in the PainterBar and then click the Edit
button or the New button.

For information about how to edit or define a database profile, see
Connecting to Your Database.

Correcting pipeline errors

468 PowerBuilder Classic

Correcting pipeline errors
If the pipeline cannot pipe certain rows to the destination table for some reason,
PowerBuilder displays the following information for the error rows:

• Name of the table in the destination database

• Pipeline operation you chose in the Option box

• Error messages to identify the problem with each row

• Data values in the error rows

• Source and destination column information

The following screen shot displays this information:

What you can do You can correct the error rows by changing one or more of their column values
so the destination table will accept them, or you can ignore the error rows and
return to the Data Pipeline painter workspace. If you return to the workspace,
you cannot redisplay the error rows without re-executing the pipeline.

Before you return to the workspace
You might want to print the list of errors or save them in a file. Select File>Print
or File>Save As from the menu bar.

❖ To return to the Data Pipeline painter workspace without correcting
errors:

• Click the Design button.

CHAPTER 17 Working with Data Pipelines

Users Guide 469

❖ To correct pipeline errors:

1 Change data values for the appropriate columns in the error rows.

2 Click the Update DB button, or select Design>Update Database from the
menu bar.

PowerBuilder pipes rows in which errors were corrected to the destination
table and displays any remaining errors.

3 Repeat steps 1 and 2 until all errors are corrected.

The Data Pipeline painter workspace displays.

Viewing an error
message

Sometimes you cannot see an entire error message because the column is not
wide enough. Move the pointer to the error message and press the Right Arrow
key to scroll through it. You can also drag the Error Message column border to
the width needed.

Making the error messages shorter
For ODBC data sources, you can set the MsgTerse database parameter in the
destination database profile to make the error messages shorter. If you type
MsgTerse = 'Yes', then the SQLSTATE error number does not display. For
more information on the MsgTerse parameter, see the online Help.

Saving a pipeline
When you have generated a pipeline definition in the Data Pipeline painter
workspace, you should save the pipeline. You can then reuse it later.

❖ To save a pipeline:

• Click the Save button, or select File>Save from the menu bar.

For a new pipeline When you save a pipeline for the first time, you must specify a name. The name
can be any valid identifier with up to 80 characters. A common convention is
to prefix the name with the string pipe_. You can also specify the library in
which the pipeline is saved.

Using an existing pipeline

470 PowerBuilder Classic

Using an existing pipeline
If you save a pipeline, you can modify and execute it any time. You can also
pipe data that might have changed since the last pipeline execution or pipe data
to other databases.

❖ To use an existing pipeline:

1 Click the Open button in the PowerBar.

2 In the Open dialog box, select the Pipelines object type in the Object Type
drop-down list, select the library, select the pipeline you want to execute,
and click OK.

In the Open dialog box, pipelines in the selected libraries are listed. If you
do not see the pipeline you want, close the dialog box and add the library
you need to the target’s library search path.

3 If you want to change the pipeline operation, select a new option from the
Options drop-down list in the workspace.

4 Modify the pipeline definition as needed.

5 Execute and/or save the pipeline.

Pipeline examples
Updating data in a
destination table

You might want to pipe data and then update the data often.

❖ To update a destination table:

1 Click the Pipeline button, select an existing pipeline that you executed
before, and click OK.

The pipeline definition displays. Since this pipeline has been executed
before, the table exists in the destination database.

2 Select the Update option in the pipeline definition.

3 Execute the pipeline.

The destination table is updated with current data from the source
database.

CHAPTER 17 Working with Data Pipelines

Users Guide 471

Reproducing a table
definition with no data

You can force a pipeline to create a table definition and not pipe data. To do
this, you must use Quick Select, SQL Select, or Query as the data source. It is
easiest to do it using SQL Select.

❖ To reproduce a table definition with no data:

1 Click the Pipeline button, click New, select SQL Select as the data source
and specify the source and destination databases, and click OK.

2 In the Select painter, open the table you want to reproduce and select all
columns.

3 On the Where tab page, type an expression that will never evaluate to true,
such as 1 = 2.

4 Click the SQL Select button to create the pipeline definition.

5 Select the Extended Attributes check box.

6 Click the Execute button to execute the pipeline.

The table definition is piped to the destination database, but no rows of
data are piped. You can open the new table in the Database painter and
then click the Grid, Table, or Freeform button to view the data. As
specified, there is no data.

If you use a data source other than SQL Select, you can follow the previous
procedure, but you need to edit the data source of the pipeline to open the Select
painter in step 2.

Piping a table to many
databases

In the Data Pipeline painter workspace, you can execute a pipeline many times
with a different destination database each time.

❖ To pipe a table to many databases:

1 Select File>Destination Connect from the menu bar to change the
destination to the database you want.

2 Execute the pipeline.

3 Repeat steps 1 and 2 for each database you want.

Pipeline examples

472 PowerBuilder Classic

P A R T 6 Working with
DataWindows

This part describes how to build DataWindow objects to
retrieve, present, and manipulate data in your
applications.

Users Guide 475

C H A P T E R 1 8 Defining DataWindow Objects

About this chapter The applications you build are centered around your organization’s data.
This chapter describes how to define DataWindow objects to display and
manipulate the data.

Contents

About DataWindow objects
A DataWindow object is an object you use to retrieve, present, and
manipulate data from a relational database or other data source (such as an
Excel worksheet or Web service).

DataWindow objects have knowledge about the data they are retrieving.
You can specify display formats, presentation styles, and other data
properties so that users can make the most meaningful use of the data.

Topic Page

About DataWindow objects 475

Choosing a presentation style 478

Building a DataWindow object 486

Selecting a data source 488

Using Quick Select 489

Using SQL Select 499

Using Query 515

Using External 515

Using Stored Procedure 516

Using a Web service data source 519

Choosing DataWindow object-wide options 522

Generating and saving a DataWindow object 523

Defining queries 526

What's next 528

About DataWindow objects

476 PowerBuilder Classic

DataWindow object examples
You can display the data in the format that best presents the data to your users.

Edit styles If a column can take only a small number of values, you can have the data
appear as radio buttons in a DataWindow object so that users know what their
choices are.

Display formats If a column displays phone numbers, salaries, or dates, you can specify the
format appropriate to the data.

Validation rules If a column can take numbers only in a specific range, you can specify a simple
validation rule for the data, without writing any code, to make sure users enter
valid data.

Enhancing
DataWindow objects

If you want to enhance the presentation and manipulation of data in a
DataWindow object, you can include computed fields, pictures, and graphs that
are tied directly to the data retrieved by the object.

CHAPTER 18 Defining DataWindow Objects

Users Guide 477

How to use DataWindow objects
Before you can use a DataWindow object, you need to build the object. To do
that you can go to the DataWindow painter, which lets you create and edit
DataWindow objects. It also lets you make PSR (Powersoft report) files, which
you might also want to use in applications. A PSR file contains a report
definition—essentially a nonupdatable DataWindow object—as well as the
data contained in that report when the PSR file was created.

This section describes the overall process for creating and using DataWindow
objects. You can use DataWindow objects in client/server, Web-based, and
multitier applications. For more information about using DataWindow objects
in different kinds of applications and writing code that interacts with
DataWindow objects, see the DataWindow Programmers Guide.

❖ To use DataWindow objects in an application:

1 Create the DataWindow object using one of the DataWindow wizards on
the DataWindow tab page of the New dialog box.

The wizard helps you define the data source, presentation style, and other
basic properties of the object, and the DataWindow object displays in the
DataWindow painter. In this painter, you define additional properties for
the DataWindow object, such as display formats, validation rules, and
sorting and filtering criteria.

For more information about creating a DataWindow object, see “Building
a DataWindow object” on page 486.

2 Place a DataWindow control in a window or user object.

It is through this control that your application communicates with the
DataWindow object you created in the DataWindow painter.

3 Associate the DataWindow control with the DataWindow object.

4 Write scripts in the Window painter to manipulate the DataWindow
control and its contents.

For example, you use the PowerScript Retrieve method to retrieve data
into the DataWindow control.

You can write scripts for the DataWindow control to deal with error
handling, sharing data between DataWindow controls, and so on.

Choosing a presentation style

478 PowerBuilder Classic

Reports versus
DataWindow objects

Reports and DataWindow objects are the same objects. You can open and
modify both in the DataWindow painter. However, a report is not updatable and
can only be used to present data. For information about how you can specify
whether users can update the data in a DataWindow object, see Chapter 21,
“Controlling Updates in DataWindow objects.”

Choosing a presentation style
The presentation style you select for a DataWindow object determines the
format PowerBuilder uses to display the DataWindow object in the Design
view. You can use the format as displayed or modify it to meet your needs.

When you create a DataWindow object, you can choose from the presentation
styles listed in the following table.

Table 18-1: DataWindow presentation styles

Using this
DataWindow
wizard You create a new DataWindow object

Composite That includes other DataWindow objects

Crosstab With summary data in a spreadsheet-like grid

Freeform With the data columns going down the page and labels next to
each column

Graph With data displayed in a graph

Grid With data in row and column format with grid lines separating
rows and columns

Group With data in rows that are divided into groups

Label That presents data as labels

N-Up With two or more rows of data next to each other

OLE 2.0 That is a single OLE object

RichText That combines input fields that represent database columns with
formatted text

Tabular With data columns going across the page and headers above each
column

TreeView With data grouped in rows in a TreeView; the TreeView displays
the data hierarchically in a way that allows you to expand and
collapse it

CHAPTER 18 Defining DataWindow Objects

Users Guide 479

Using the Tabular style
The Tabular presentation style presents data with the data columns going
across the page and headers above each column. As many rows from the
database will display at one time as can fit in the DataWindow object. You can
reorganize the default layout any way you want by moving columns and text:

Using the Freeform style
The Freeform presentation style presents data with the data columns going
down the page and labels next to each column. You can reorganize the default
layout any way you want by moving columns and text. The Freeform style is
often used for data entry forms.

Choosing a presentation style

480 PowerBuilder Classic

Using the Grid style
The Grid presentation style shows data in row-and-column format with grid
lines separating rows and columns. With other styles, you can move text,
values, and other objects around freely in designing the report. With the grid
style, the grid lines create a rigid structure of cells.

An advantage of the Grid style is that users can reorder and resize columns at
runtime.

Original Grid report This grid report shows employee information. Several of the columns have a
large amount of extra white space:

Grid report with
modified column
widths

This grid report was created from the original one by decreasing the width of
some columns:

Using the Label style
The Label presentation style shows data as labels. With this style you can
create mailing labels, business cards, name tags, index cards, diskette labels,
file folder labels, and many other types of labels.

CHAPTER 18 Defining DataWindow Objects

Users Guide 481

Mailing labels

Business cards

Name tags

Specifying label
properties

If you choose the Label style, you are asked to specify the properties for the
label after specifying the data source. You can choose from a list of predefined
label types or enter your own specifications manually.

Where label
definitions come from

PowerBuilder gets the information about the predefined label formats from a
preferences file called pblab120.ini.

Choosing a presentation style

482 PowerBuilder Classic

Using the N-Up style
The N-Up style presents two or more rows of data next to each other. It is
similar to the Label style in that you can have information from several rows
in the database across the page. However, the information is not meant to be
printed on labels. The N-Up presentation style is useful if you have periodic
data; you can set it up so that each period repeats in a row.

After you select a data source, you are asked how many rows to display across
the page.

For each column in the data source, PowerBuilder defines n columns in the
DataWindow object (column_1 to column_n), where n is the number of rows
you specified.

Table example For a table of daily stock prices, you can define the DataWindow object as five
across, so each row in the DataWindow object displays five days’ prices
(Monday through Friday). Suppose you have a table with two columns, day and
price, that record the closing stock price each day for three weeks.

In the following n-up DataWindow object, 5 was selected as the number of
rows to display across the page, so each line in the DataWindow object shows
five days’ stock prices. A computed field was added to get the average closing
price in the week:

About computed fields in n-up DataWindow objects
You use subscripts, such as price[0], to refer to particular rows in the detail
band in n-up DataWindow objects.

For more information, see Chapter 19, “Enhancing DataWindow Objects.”

CHAPTER 18 Defining DataWindow Objects

Users Guide 483

Here is the DataWindow object in the Preview view:

Another way to get multiple-column DataWindow objects
In an n-up DataWindow object, the data is displayed across and then down. If
you want your data to go down the page and then across in multiple columns,
as in a phone list, you should create a standard tabular DataWindow object,
then specify newspaper columns.

For more information on newspaper columns, see Chapter 19, “Enhancing
DataWindow Objects.”

Using the Group style
The Group presentation style provides an easy way to create grouped
DataWindow objects, where the rows are divided into groups, each of which
can have statistics calculated for it. Using this style generates a tabular
DataWindow object that has grouping properties defined.

This Group style report groups by department and lists employees and salaries.
It also includes a subtotal and a grand total for the salary column:

Choosing a presentation style

484 PowerBuilder Classic

For more about the Group presentation style, see Chapter 23, “Filtering,
Sorting, and Grouping Rows.”

Using the Composite style
The Composite presentation style allows you to combine multiple
DataWindow objects in the same object. It is particularly handy if you want to
print more than one DataWindow object on a page.

This composite report consists of three nested tabular reports. One of the
tabular reports includes a graph:

For more about the Composite presentation style, see Chapter 25, “Using
Nested Reports.”

CHAPTER 18 Defining DataWindow Objects

Users Guide 485

Using the Graph and Crosstab styles
In addition to the (preceding) text-based presentation styles, PowerBuilder
provides two styles that allow you to display information graphically: Graph
and Crosstab.

There is a graph report in the composite report in “Using the Composite style”
on page 484. This crosstab report counts the number of employees that fit into
each cell. For example, there are three employees in department 100 who make
between $30,000 and $39,999:

For more information about these two presentation styles, see Chapter 26,
“Working with Graphs,” and Chapter 27, “Working with Crosstabs.”

Using the OLE 2.0 style
The OLE presentation style lets you link or embed an OLE object in a
DataWindow object.

For information about the OLE 2.0 presentation style, see Chapter 31, “Using
OLE in a DataWindow Object.”

Using the RichText style
The RichText presentation style lets you combine input fields that represent
database columns with formatted text.

For more information about the RichText presentation style, see Chapter 30,
“Working with Rich Text.”

Building a DataWindow object

486 PowerBuilder Classic

Using the TreeView style
The TreeView presentation style provides an easy way to create DataWindow
objects that display hierarchical data in a TreeView, where the rows are divided
into groups that can be expanded and collapsed. Icons (+ or –) show whether
the state of a group in the TreeView is expanded or collapsed, and lines connect
parents and their children.

This TreeView style report groups by manager ID and state and lists employee
information and salaries:

For more about the TreeView presentation style, see Chapter 28, “Working
with TreeViews.”

Building a DataWindow object
You use a wizard to build a new DataWindow object. To create a DataWindow
object or use the DataWindow painter, you must be connected to the database
whose data you will be accessing. When you open the DataWindow painter or
select a data source in the wizard, PowerBuilder connects you to the DBMS
and database you used last. If you need to connect to a different database, do
so before working with a DataWindow object.

CHAPTER 18 Defining DataWindow Objects

Users Guide 487

Column limit
There is a limit of 1000 on the number of columns in a DataWindow object.

For information about changing your database connection, see Connecting to
Your Database.

❖ To create a new DataWindow object:

1 Select File>New from the menu bar and select the DataWindow tab.

2 If there is more than one target in the workspace, select the target where
you want the DataWindow to be created from the drop-down list at the
bottom of the dialog box.

3 Choose a presentation style for the DataWindow object.

The presentation style determines how the data is displayed. See
“Choosing a presentation style” on page 478. When you choose the
presentation style, the appropriate DataWindow object wizard starts.

4 If you want data to be retrieved in the Preview view when the
DataWindow object opens, select the Retrieve on Preview check box.

5 Define the data source.

See “Selecting a data source” on page 488.

6 Choose options for the DataWindow object and click Next.

See “Choosing DataWindow object-wide options” on page 522.

7 Review your specifications and click Finish.

The DataWindow object displays in the Design view.

8 Save the DataWindow object in a library.

Selecting a data source

488 PowerBuilder Classic

Selecting a data source
The data source you choose determines how you select the data that will be
used in the DataWindow object.

About the term data source
The term data source used here refers to how you use the DataWindow painter
to specify the data to retrieve into the DataWindow object. Data source can also
refer to where the data comes from, such as a SQL Anywhere data source
(meaning a database file) or an XML data source (meaning an XML file).
Connecting to Your Database uses the term data source in this second sense.

If the data is in the
database

If the data for the DataWindow object will be retrieved from a database, choose
one of the data sources from Table 18-2.

Table 18-2: Data source choices for data from a database

If the data is not in a
database

Web Service data source Select the Web Service data source if you want to
populate the DataWindow object with data you obtain from a Web service.

For more information, see “Using a Web service data source” on page 519.

External data source Select the External data source if:

• The DataWindow object will be populated programmatically.

• Data will be imported from a DDE application.

• Data will be imported from an external file, such as an XML,
comma-separated values (CSV), tab-separated text (TXT), or dBASE
(DBF) file.

You can also use an ODBC driver to access data from a file.

For more information, see Connecting to Your Database.

Data source Use when

Quick Select The data is from a single table (or from tables that are related
through foreign keys) and you need only to choose columns,
selection criteria, and sorting.

SQL Select You want more control over the SQL SELECT statement
generated for the data source or your data is from tables that
are not connected through a key. For example, you need to
specify grouping, computed columns, or retrieval arguments
within the SQL SELECT statement.

Query The data has been defined as a query.

Stored Procedure The data is defined in a stored procedure.

CHAPTER 18 Defining DataWindow Objects

Users Guide 489

After you choose a data source in the various DataWindow wizards, you
specify the data. The data source you choose determines what displays in the
wizards and how you define the data.

Why use a
DataWindow if the
data is not from a
DBMS

Even when the data is not coming from the database, there are many times
when you want to take advantage of the intelligence of a DataWindow object:

• Data Validation You have full access to validation rules for data

• Display Formats You can use any existing display formats to present the
data, or create your own

• Edit Styles You can use any existing edit styles, such as radio buttons
and edit masks, to present the data, or create your own

Using Quick Select
The easiest way to define a data source is using Quick Select.

❖ To define the data using Quick Select:

1 Click Quick Select in the Choose Data Source dialog box in the wizard and
click Next.

2 Select the table that you will use in the DataWindow object.

For more information, see “Selecting a table” next.

3 Select the columns to be retrieved from the database.

For more information, see “Selecting columns” on page 492.

4 (Optional) Sort the rows before you retrieve data.

For more information, see “Specifying sorting criteria” on page 492.

5 (Optional) Select what data to retrieve.

For more information, see “Specifying selection criteria” on page 493.

6 Click the OK button in the Quick Select dialog box.

You return to the wizard to complete the definition of the DataWindow
object.

Using Quick Select

490 PowerBuilder Classic

Quick Select
limitations

When you choose Quick Select as your data source, you cannot:

• Specify grouping before rows are retrieved

• Include computed columns

• Specify retrieval arguments for the SELECT statement that are supplied at
runtime.

To use these options when you create a DataWindow object, choose SQL
Select as your data source. If you decide later that you want to use retrieval
arguments, you can define them by modifying the data source. For more
information, see Chapter 19, “Enhancing DataWindow Objects.”

Selecting a table
When you choose Quick Select, the Quick Select dialog box displays. The
Tables box lists tables and views in the current database.

Displaying table comments
To display a comment about a table, position the pointer on the table and click
the right mouse button or select the table.

Which tables and
views display?

The DBMS determines what tables and views display. For some DBMSs, all
tables and views display, whether or not you have authorization. If you select
a table or view you are not authorized to access, the DBMS issues a message.

For ODBC databases, the tables and views that display depend on the driver for
the data source. SQL Anywhere does not restrict the display, so all tables and
views display, whether or not you have authorization.

CHAPTER 18 Defining DataWindow Objects

Users Guide 491

Tables with key
relationships

When you select a table, the table’s column names display in the Columns box,
and any tables having a key relationship with the selected table display in the
Tables box. These tables are indented and marked with an arrow to show their
relationship to the selected table. You can select any of these related tables if
you want to include columns from them in the DataWindow object.

Meaning of the up and
down arrows

An arrow displays next to a table to indicate its relationship to the selected
table. The arrow always points in the many direction of the relationship—
toward the selected table (up) if the selected table contains a foreign key in the
relationship and away from the selected table (down) if the selected table
contains a primary key in the relationship:

In this preceding illustration, the selected table is sales_order. The Up arrows
indicate that a foreign key in the sales_order table is mapped to the primary key
in the customer and fin_code tables. The Down arrow indicates that the
sales_order_items table contains a foreign key mapped to the primary key in
the sales_order table.

Using Quick Select

492 PowerBuilder Classic

How columns from
additional tables
display

The column names of selected tables display in the Columns box. If you select
more than one table, the column names are identified as:

tablename.columnname

For example, department.dept_name and employee.emp_id display when the
Employee table and the Department table are selected.

To return to the original table list
Click the table you first selected at the top of the table list.

Selecting columns
You can select columns from the primary table and from its related tables.
Select the table whose columns you want to use in the Tables box, and add
columns from the Columns box:

• To add a column, select it in the Columns box.

• To add all the columns that display in the Columns box, click Add All.

• To remove a column, deselect it in the Columns box.

• To view comments that describe a table or column, position the pointer on
a table or column name, and press and hold the right mouse button.

As you select columns, they display in the grid at the bottom of the dialog box
in the order in which you select them. If you want the columns to display in a
different order in the DataWindow object, select a column name you want to
move in the grid and drag it to the new location.

Specifying sorting criteria
In the grid at the bottom of the Quick Select dialog box, you can specify if you
want the retrieved rows to be sorted. As you specify sorting criteria,
PowerBuilder builds an ORDER BY clause for the SELECT statement.

CHAPTER 18 Defining DataWindow Objects

Users Guide 493

❖ To sort retrieved rows on a column:

1 Click in the Sort row for the column you want to sort on.

PowerBuilder displays a drop-down list:

2 Select the sorting order for the rows: Ascending or Descending.

Multilevel sorts You can specify as many columns for sorting as you want. PowerBuilder
processes the sorting criteria left to right in the grid: the first column with
Ascending or Descending specified becomes the highest level sorting column,
the next column with Ascending or Descending specified becomes the next
level sorting column, and so on.

If you want to do a multilevel sort that does not match the column order in the
grid, drag the columns to the correct order and then specify the columns for
sorting.

Specifying selection criteria
You can enter selection criteria in the grid to specify which rows to retrieve.
For example, instead of retrieving data about all employees, you might want to
limit the data to employees in Sales and Marketing, or to employees in Sales
who make more than $80,000.

As you specify selection criteria, PowerBuilder builds a WHERE clause for the
SELECT statement.

❖ To specify selection criteria:

1 Click the Criteria row below the first column for which you want to select
the data to retrieve.

2 Enter an expression, or if the column has an edit style, select or enter a
value.

If the column is too narrow for the criterion, drag the grid line to enlarge
the column. This enlargement does not affect the column size in a
DataWindow object.

3 Enter additional expressions until you have specified the data you want to
retrieve.

Using Quick Select

494 PowerBuilder Classic

About edit styles
If a column has an edit style associated with it in the extended attribute system
tables (that is, the association was made in the Database painter), if possible,
the edit style is used in the grid. Drop-down list boxes are used for columns
with code tables and columns using the CheckBox and RadioButton edit styles.

SQL operators
supported in Quick
Select

You can use these SQL relational operators in the retrieval criteria:

Table 18-3: SQL relational operators used in retrieval criteria

Because = is the default operator, you can enter the value 100 instead of = 100,
or the value New Hampshire instead of = New Hampshire.

Comparison operators You can use the LIKE, NOT LIKE, IN, and NOT IN operators to compare
expressions.

Use LIKE to search for strings that match a predetermined pattern. Use NOT
LIKE to find strings that do not match a predetermined pattern. When you use
LIKE or NOT LIKE, you can use wildcards:

• The percent sign (%), like the wildcard asterisk (*) used in many
applications, matches multiple characters. For example, Good% matches all
names that begin with Good.

• The underscore character (_) matches a single character. For example,
Good _ _ _ matches all seven-letter names that begin with Good.

Use IN to compare and include a value that is in a set of values. Use NOT IN to
compare and include values that are not in a set of values. For example, the
following clause selects all employees in department 100, 200, or 500:

SELECT * from employee
WHERE dept_id IN (100, 200, 500)

Operator Meaning

= Is equal to (default operator)

> Is greater than

< Is less than

< > Is not equal to

> = Is greater than or equal to

< = Is less than or equal to

LIKE Matches this pattern

NOT LIKE Does not match this pattern

IN Is in this set of values

NOT IN Is not in this set of values

CHAPTER 18 Defining DataWindow Objects

Users Guide 495

Using NOT IN in this clause would exclude employees in those departments.

Connection operators You can use the OR and AND logical operators to connect expressions.

PowerBuilder makes some assumptions based on how you specify selection
criteria. When you specify:

• Criteria for more than one column on one line

PowerBuilder assumes a logical AND between the criteria. A row from the
database is retrieved if all criteria in the line are met.

• Two or more lines of selection criteria

PowerBuilder assumes a logical OR. A row from the database is retrieved
if the criterion in any of the lines is met.

To override these defaults, begin an expression with the AND or OR operator:

This technique is particularly handy when you want to retrieve a range of
values in a column. See example 6 below.

SQL expression examples

The first six examples in this section all refer to a grid that contains three
columns from the employee table: emp_id, dept_id, and salary.

Example 1 The expression <50000 in the Criteria row in the salary column in the grid
retrieves information for employees whose salaries are less than $50,000.

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
employee.dept_id,
employee.salary

FROM employee
WHERE employee.salary < '50000'

Operator Meaning

OR The row is selected if one expression OR another expression is true

AND The row is selected if one expression AND another expression are true

Using Quick Select

496 PowerBuilder Classic

Example 2 The expression 100 in the Criteria row in the DeptId column in the grid
retrieves information for employees who belong to department 100.

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
employee.dept_id,
employee.salary

FROM employee
WHERE employee.dept_id ='100'

Example 3 The expression >300 in the Criteria row in the EmpId column and the
expression <50000 in the Criteria row in the Salary column in the grid retrieve
information for any employee whose employee ID is greater than 300 and
whose salary is less than $50,000.

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
employee.dept_id,
employee.salary

FROM employee
WHERE (employee.emp_id >'300') AND

employee.salary <'50000'

CHAPTER 18 Defining DataWindow Objects

Users Guide 497

Example 4 The expressions 100 in the Criteria row and >300 in the Or row for the DeptId
column, together with the expression <50000 in the Criteria row in the Salary
column, retrieve information for employees who belong to:

• Department 100 and have a salary less than $50,000

or

• A department whose ID is greater than 300, no matter what their salaries

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
employee.dept_id,
employee.salary

FROM employee
WHERE (employee.dept_id = '100') AND

(emplyee.salary < '50000')OR
(employee.dept_id > '300')

Example 5 The expression IN(100,200) in the Criteria row in the DeptId column in the
grid retrieves information for employees who are in department 100 or 200.

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
employee.dept_id,
employee.salary

FROM employee
WHERE employee.dept_id IN ('100,200')

Using Quick Select

498 PowerBuilder Classic

Example 6 This example shows the use of the word AND in the Or criteria row. In the
Criteria row, >=500 is in the EmpId column and >=30000 is in the Salary
column. In the Or row, AND <=1000 is in the EmpId column and AND <=50000
is in the Salary column. These criteria retrieve information for employees who
have an employee ID from 500 to 1000 and a salary from $30,000 to $50,000.

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
employee.dept_id,
employee.salary

FROM employee
WHERE (((employee.emp_id >='500') AND

(employee.salary >='30000') AND
(employee.emp_id <='1000') AND
(employee.salary <='50000')))

Example 7 In a grid with three columns: emp_last_name, emp_first_name, and salary, the
expressions LIKE C% in the Criteria row and LIKE G% in the Or row in the
emp_last_name column retrieve information for employees who have last
names that begin with C or G.

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_last_name,
employee.emp_first_name,
employee.salary

FROM employee
WHERE (((employee.emp_last_name LIKE 'C%'))OR

((employee.emp_last_name LIKE 'G%')))

CHAPTER 18 Defining DataWindow Objects

Users Guide 499

Providing SQL
functionality to users

You can allow your users to specify selection criteria in a DataWindow object
using these techniques at runtime:

• You can automatically pop up a window prompting users to specify
criteria each time, just before data is retrieved.

For more information, see Chapter 19, “Enhancing DataWindow
Objects.”

• You can place the DataWindow object in query mode using the Modify
method.

For more information, see the DataWindow Programmers Guide.

Using SQL Select
In specifying data for a DataWindow object, you have more options for
specifying complex SQL statements when you use SQL Select as the data
source. When you choose SQL Select, you go to the SQL Select painter, where
you can paint a SELECT statement that includes the following:

• More than one table

• Selection criteria (WHERE clause)

• Sorting criteria (ORDER BY clause)

• Grouping criteria (GROUP BY and HAVING clauses)

• Computed columns

• One or more arguments to be supplied at runtime

Saving your work as a query
While in the SQL Select painter, you can save the current SELECT statement
as a query by selecting File>Save As from the menu bar. Doing so allows you
to easily use this data specification again in other DataWindows.

For more information about queries, see “Defining queries” on page 526.

Using SQL Select

500 PowerBuilder Classic

❖ To define the data using SQL Select:

1 Click SQL Select in the Choose Data Source dialog box in the wizard and
click Next.

The Select Tables dialog box displays.

2 Select the tables and/or views that you will use in the DataWindow object.

For more information, see “Selecting tables and views” next.

3 Select the columns to be retrieved from the database.

For more information, see “Selecting columns” on page 502.

4 Join the tables if you have selected more than one.

For more information, see “Joining tables” on page 505.

5 Select retrieval arguments if appropriate.

For more information, see “Using retrieval arguments” on page 508.

6 Limit the retrieved rows with WHERE, ORDER BY, GROUP BY, and
HAVING criteria, if appropriate.

For more information, see “Specifying selection, sorting, and grouping
criteria” on page 509.

7 If you want to eliminate duplicate rows, select Distinct from the Design
menu. This adds the DISTINCT keyword to the SELECT statement.

8 Click the Return button on the PainterBar.

You return to the wizard to complete the definition of the DataWindow
object.

Selecting tables and views
After you have chosen SQL Select, the Select Tables dialog box displays in
front of the Table Layout view of the SQL Select painter. What tables and
views display in the dialog box depends on the DBMS. For some DBMSs, all
tables and views display, whether or not you have authorization. Then, if you
select a table or view you are not authorized to access, the DBMS issues a
message.

For ODBC databases, the tables and views that display depend on the driver for
the data source. SQL Anywhere does not restrict the display, so all tables and
views display, whether or not you have authorization.

CHAPTER 18 Defining DataWindow Objects

Users Guide 501

❖ To select the tables and views:

• Do one of the following:

• Click the name of each table or view you want to open.

Each table you select is highlighted. (To deselect a table, click it
again.) Click the Open button to close the Select Tables dialog box.

• Double-click the name of each table or view you want to open.

Each object opens immediately behind the Select Tables dialog box.
Click the Cancel button to close the Select Tables dialog box.

Representations of the selected tables and views display. You can move or size
each table to fit the space as needed.

Below the Table Layout view, several tabbed views also display by default.
You use the views (for example, Compute, Having, Group) to specify the SQL
SELECT statement in more detail. You can turn the views on and off from the
View menu on the menu bar.

Specifying what is
displayed

You can display the label and datatype of each column in the tables (the label
information comes from the extended attribute system tables). If you need
more space, you can choose to hide this information.

❖ To hide or display comments, datatypes, and labels:

1 Position the pointer on any unused area of the Table Layout view and
select Show from the pop-up menu.

A cascading menu displays.

2 Select or clear Datatypes, Labels, or Comments as needed.

Colors in the SQL
Select painter

The colors used by the SQL Select painter to display the Table Layout view
background and table information are specified in the Database painter. You
can also set colors for the text and background components in the table header
and detail areas.

For more information about specifying colors in the Database painter, see
“Modifying database preferences” on page 405.

Using SQL Select

502 PowerBuilder Classic

Adding and removing
tables and views

You can add tables and views to your Table Layout view at any time.

Table 18-4: Adding tables and views in the SQL Select painter

You can also remove individual tables and views from the Table Layout view,
or clear them all at once and begin selecting a new set of tables.

How PowerBuilder
joins tables

If you select more than one table in the SQL Select painter, PowerBuilder joins
columns based on their key relationship.

For information about joins, see “Joining tables” on page 505.

Selecting columns
You can click each column you want to include from the table representations
in the Table Layout view. PowerBuilder highlights selected columns and places
them in the Selection List at the top of the SQL Select painter.

❖ To reorder the selected columns:

• Drag a column in the Selection List with the mouse. Release the mouse
button when the column is in the proper position in the list.

❖ To select all columns from a table:

• Move the pointer to the table name and select Select All from the pop-up
menu.

❖ To include computed columns:

1 Click the Compute tab to make the Compute view available (or select
View>Compute if the Compute view is not currently displayed).

Each row in the Compute view is a place for entering an expression that
defines a computed column.

To do this Do this

Add tables or views Click the Tables button in the PainterBar and select
tables or views to add

Remove a table or view Display its pop-up menu and select Close

Remove all tables and views Select Design>Undo All from the menu bar

CHAPTER 18 Defining DataWindow Objects

Users Guide 503

2 Enter one of the following:

• An expression for the computed column. For example: salary/12

• A function supported by your DBMS. For example, the following is a
SQL Anywhere function:

substr("employee"."emp_fname",1,2)

You can display the pop-up menu for any row in the Compute view. Using
the pop-up menu, you can select and paste the following into the
expression:

• Names of columns in the tables used in the DataWindow or pipeline

• Any retrieval arguments you have specified

• Functions supported by the DBMS

About these functions
The functions listed here are provided by your DBMS. They are not
PowerBuilder functions. This is so because you are now defining a
SELECT statement that will be sent to your DBMS for processing.

3 Press the Tab key to get to the next row to define another computed
column, or click another tab to make additional specifications.

PowerBuilder adds the computed columns to the list of columns you have
selected.

About computed
columns and
computed fields

Computed columns you define in the SQL Select painter are added to the SQL
statement and used by the DBMS to retrieve the data. The expression you
define here follows your DBMS’s rules.

You can also choose to define computed fields, which are created and
processed dynamically by PowerBuilder after the data has been retrieved from
the DBMS. There are advantages to doing this. For example, work is offloaded
from the database server, and the computed fields update dynamically as data
changes in the DataWindow object. (If you have many rows, however, this
updating can result in slower performance.) For more information, see Chapter
19, “Enhancing DataWindow Objects.”

Using SQL Select

504 PowerBuilder Classic

Displaying the underlying SQL statement
As you specify the data for the DataWindow object in the SQL Select painter,
PowerBuilder generates a SQL SELECT statement. It is this SQL statement that
will be sent to the DBMS when you retrieve data into the DataWindow object.
You can look at the SQL as it is being generated while you continue defining
the data for the DataWindow object.

❖ To display the SQL statement:

• Click the Syntax tab to make the Syntax view available, or select
View>Syntax if the Syntax view is not currently displayed.

You may need to use the scroll bar to see all parts of the SQL SELECT
statement. This statement is updated each time you make a change.

Editing the SELECT
statement
syntactically

Instead of modifying the data source graphically, you can directly edit the
SELECT statement in the SQL Select painter.

Converting from syntax to graphics
If the SQL statement contains unions or the BETWEEN operator, it may not be
possible to convert the syntax back to graphics mode. In general, once you
convert the SQL statement to syntax, you should maintain it in syntax mode.

❖ To edit the SELECT statement:

1 Select Design>Convert to Syntax from the menu bar.

PowerBuilder displays the SELECT statement in a text window.

2 Edit the SELECT statement.

3 Do one of the following:

• Select Design>Convert to Graphics from the menu bar to return to the
SQL Select painter.

• Click the Return button to return to the wizard if you are building a
new DataWindow object, or to the DataWindow painter if you are
modifying an existing DataWindow object.

CHAPTER 18 Defining DataWindow Objects

Users Guide 505

Joining tables
If the DataWindow object will contain data from more than one table, you
should join the tables on their common columns. If you have selected more
than one table, PowerBuilder joins columns according to whether they have a
key relationship:

• Columns with a primary/foreign key relationship are joined automatically.

• Columns with no key relationship are joined, if possible, based on
common column names and types.

PowerBuilder links joined tables in the SQL Select painter Table Layout view.
PowerBuilder joins can differ depending on the order in which you select the
tables, and sometimes the PowerBuilder best-guess join is incorrect, so you
may need to delete a join and manually define a join.

❖ To delete a join:

1 Click the join operator connecting the tables.

The Join dialog box displays.

2 Click Delete.

❖ To join tables:

1 Click the Join button in the PainterBar.

2 Click the columns on which you want to join the tables.

3 To create a join other than an equality join, click the join operator in the
Table Layout view.

The Join dialog box displays:

Using SQL Select

506 PowerBuilder Classic

4 Select the join operator you want and click OK.

If your DBMS supports outer joins, outer join options also display in the
Join dialog box.

Using ANSI outer joins

All PowerBuilder database interfaces provide support for ANSI SQL-92 outer
join SQL syntax generation. PowerBuilder supports both left and right outer
joins in graphics mode in the SQL Select painter, and full outer and inner joins
in syntax mode. Depending on your database interface, you might need to set
the OJSyntax DBParm to enable ANSI outer joins. For more information, see
OJSyntax in the online Help.

The syntax for ANSI outer joins is generated according to the following BNF
(Backus Naur form):

OUTER-join ::=
table-reference {LEFT | RIGHT} OUTER JOIN table-reference ON
search-condition

table-reference ::=
table_view_name [correlation_name] | OUTER-join

Order of evaluation
and nesting

In ANSI SQL-92, when nesting joins, the result of the first outer join
(determined by order of ON conditions) is the operand of the outer join that
follows it. In PowerBuilder, an outer join is considered to be nested if the
table-reference on the left of the JOIN has been used before within the same
outer join nested sequence.

The order of evaluation for ANSI syntax nested outer joins is determined by
the order of the ON search conditions. This means that you must create the
outer joins in the intended evaluation order and add nested outer joins to the
end of the existing sequence, so that the second table-reference in the outer join
BNF above will always be a table_view_name.

Nesting example For example, if you create a left outer join between a column in Table1 and a
column in Table2, then join the column in Table2 to a column in Table3, the
product of the outer join between Table1 and Table2 is the operand for the outer
join with Table3.

CHAPTER 18 Defining DataWindow Objects

Users Guide 507

For standard database connections, the default generated syntax encloses the
outer joins in escape notation {oj ...} that is parsed by the driver and
replaced with DBMS-specific grammar:

SELECT Table1.col1, Table2.col1, Table3.col1
FROM {oj {oj Table1 LEFT OUTER JOIN Table2 ON Table1.col1 =
Table2.col1}
LEFT OUTER JOIN Table3 ON Table2.col1 = Table3.col1}

Table references Table references are considered equal when the table names are equal and there
is either no alias (correlation name) or the same alias for both. Reusing the
operand on the right is not allowed, because ANSI does not allow referencing
the table_view_name twice in the same statement without an alias.

Determining left and
right outer joins

When you create a join condition, the table you select first in the painter is the
left operand of the outer join. The table that you select second is the right
operand. The condition you select from the Joins dialog box determines
whether the join is a left or right outer join.

For example, suppose you select the dept_id column in the employee table, then
select the dept_id column in the department table, then choose the following
condition:

employee.dept_id = department.dept_id and rows from
department that have no employee

The syntax generated is:

SELECT employee.dept_id, department.dept_id
FROM {oj "employee" RIGHT OUTER JOIN "department" ON
"employee"."dept_id" = "department"."dept_id"}

If you select the condition, rows from employee that have no
department, you create a left outer join instead.

Equivalent statements
The syntax generated when you select table A then table B and create a left
outer join is equivalent to the syntax generated when you select table B then
table A and create a right outer join.

For more about outer joins, see your DBMS documentation.

Using SQL Select

508 PowerBuilder Classic

Using retrieval arguments
If you know which rows will be retrieved into the DataWindow object at
runtime—that is, if you can fully specify the SELECT statement without having
to provide a variable—you do not need to specify retrieval arguments.

Adding retrieval
arguments

If you decide later that you need arguments, you can return to the SQL Select
painter to define the arguments.

Defining retrieval arguments in the DataWindow painter
You can select View>Column Specifications from the menu bar. In the Column
Specification view, a column of check boxes next to the columns in the data
source lets you identify the columns users should be prompted for. This, like
the Retrieval Arguments prompt, calls the Retrieve method.

See Chapter 19, “Enhancing DataWindow Objects.”

Using retrieval arguments
If you want the user to be prompted to identify which rows to retrieve, you can
define retrieval arguments when defining the SQL SELECT statement. For
example, consider these situations:

• Retrieving the row in the Employee table for an employee ID entered into
a text box. You must pass that information to the SELECT statement as an
argument at runtime.

• Retrieving all rows from a table for a department selected from a
drop-down list. The department is passed as an argument at runtime.

Using retrieval arguments at runtime
If a DataWindow object has retrieval arguments, call the Retrieve method
of the DataWindow control to retrieve data at runtime and pass the
arguments in the method.

❖ To define retrieval arguments:

1 In the SQL Select painter, select Design>Retrieval Arguments from the
menu bar.

2 Enter a name and select a datatype for each argument.

CHAPTER 18 Defining DataWindow Objects

Users Guide 509

You can enter any valid SQL identifier for the argument name. The
position number identifies the argument position in the Retrieve method
you code in a script that retrieves data into the DataWindow object.

3 Click Add to define additional arguments as needed and click OK when
done.

Specifying an array as
a retrieval argument

You can specify an array of values as your retrieval argument. Choose the type
of array from the Type drop-down list in the Specify Retrieval Arguments
dialog box. You specify an array if you want to use the IN operator in your
WHERE clause to retrieve rows that match one of a set of values. For example:

SELECT * from employee

WHERE dept_id IN (100, 200, 500)

retrieves all employees in department 100, 200, or 500. If you want your user
to specify the list of departments to retrieve, you define the retrieval argument
as a number array (such as 100, 200, 500).

In the code that does the retrieval, you declare an array and reference it in the
Retrieve method., as in:

int x[3]
// Now populate the array with values
// such as x[1] = sle_dept.Text, and so on,
// then retrieve the data, as follows.
dw_1.Retrieve(x)

PowerBuilder passes the appropriate comma-delimited list to the method (such
as 100, 200, 500 if x[1] = 100, x[2] = 200, and x[3] = 500).

When building the SELECT statement, you reference the retrieval arguments in
the WHERE or HAVING clause, as described in the next section.

Specifying selection, sorting, and grouping criteria
In the SELECT statement associated with a DataWindow object, you can add
selection, sorting, and grouping criteria that are added to the SQL statement
and processed by the DBMS as part of the retrieval.

Table 18-5: Adding selection, sorting, and grouping criteria to the
SELECT statement

To do this Use this clause

Limit the data that is retrieved from the database WHERE

Sort the retrieved data before it is brought into the
DataWindow object

ORDER BY

Using SQL Select

510 PowerBuilder Classic

Dynamically selecting, sorting, and grouping data
Selection, sorting, and grouping criteria that you define in the SQL Select
painter are added to the SQL statement and processed by the DBMS as part of
the retrieval. You can also define selection, sorting, and grouping criteria that
are created and processed dynamically by PowerBuilder after data has been
retrieved from the DBMS.

For more information, see Chapter 23, “Filtering, Sorting, and Grouping
Rows.”

Referencing retrieval
arguments

If you have defined retrieval arguments, you reference them in the WHERE or
HAVING clause. In SQL statements, variables (called host variables) are always
prefaced with a colon to distinguish them from column names.

For example, if the DataWindow object is retrieving all rows from the
Department table where the dept_id matches a value provided by the user at
runtime, your WHERE clause will look something like this:

WHERE dept_id = :Entered_id

where Entered_id was defined previously as an argument in the Specify
Retrieval Arguments dialog box.

Referencing arrays
Use the IN operator and reference the retrieval argument in the WHERE or
HAVING clause.

For example, if you reference an array defined as deptarray, the expression in
the WHERE view might look like this:

"employee.dept_id" IN (:deptarray)

You need to supply the parentheses yourself.

Defining WHERE
criteria

You can limit the rows that are retrieved into the DataWindow object by
specifying selection criteria that correspond to the WHERE clause in the
SELECT statement.

Group the retrieved data before it is brought into the
DataWindow object

GROUP BY

Limit the groups specified in the GROUP BY clause HAVING

To do this Use this clause

CHAPTER 18 Defining DataWindow Objects

Users Guide 511

For example, if you are retrieving information about employees, you can limit
the employees to those in Sales and Marketing, or to those in Sales and
Marketing who make more than $50,000.

❖ To define WHERE criteria:

1 Click the Where tab to make the Where view available (or select
View>Where if the Where view is not currently displayed).

Each row in the Where view is a place for entering an expression that
limits the retrieval of rows.

2 Click in the first row under Column to display columns in a drop-down
list, or select Columns from the pop-up menu.

3 Select the column you want to use in the left-hand side of the expression.

The equality (=) operator displays in the Operator column.

Using a function or retrieval argument in the expression
To use a function, select Functions from the pop-up menu and click a listed
function. These are the functions provided by the DBMS.

To use a retrieval argument, select Arguments from the pop-up menu. You
must have defined a retrieval argument already.

4 (Optional) Change the default equality operator.

Enter the operator you want, or click to display a list of operators and
select an operator.

5 Under Value, specify the right-hand side of the expression. You can:

• Type a value.

• Paste a column, function, or retrieval argument (if there is one) by
selecting Columns, Functions, or Arguments from the pop-up menu.

• Paste a value from the database by selecting Value from the pop-up
menu, then selecting a value from the list of values retrieved from the
database. (It may take some time to display values if the column has
many values in the database.)

• Define a nested SELECT statement by selecting Select from the pop-
up menu. In the Nested Select dialog box, you can define a nested
SELECT statement. Click Return when you have finished.

6 Continue to define additional WHERE expressions as needed.

Using SQL Select

512 PowerBuilder Classic

For each additional expression, select a logical operator (AND or OR) to
connect the multiple boolean expressions into one expression that
PowerBuilder evaluates as true or false to limit the rows that are retrieved.

7 Define sorting (Sort view), grouping (Group view), and limiting (Having
view) criteria as appropriate.

8 Click the Return button to return to the DataWindow painter.

Defining ORDER BY
criteria

You can sort the rows that are retrieved into the DataWindow object by
specifying columns that correspond to the ORDER BY clause in the SELECT
statement.

For example, if you are retrieving information about employees, you can sort
on department, and then within each department, you can sort on employee ID.

❖ To define ORDER BY criteria:

1 Click the Sort tab to make the Sort view available (or select View>Sort if
the Sort view is not currently displayed).

The columns you selected display in the order of selection. You might
need to scroll to see your selections.

2 Drag the first column you want to sort on to the right side of the Sort view.

This specifies the column for the first level of sorting. By default, the
column is sorted in ascending order. To specify descending order, clear the
Ascending check box.

3 Continue to specify additional columns for sorting in ascending or
descending order as needed.

You can change the sorting order by dragging the selected column names
up or down. With the following sorting specification, rows will be sorted
first by department ID, then by employee ID:

4 Define limiting (Where view), grouping (Group view), and limiting
groups (Having view) criteria as appropriate.

5 Click the SQL Select button to return to the DataWindow painter.

CHAPTER 18 Defining DataWindow Objects

Users Guide 513

Defining GROUP BY
criteria

You can group the retrieved rows by specifying groups that correspond to the
GROUP BY clause in the SELECT statement. This grouping happens before the
data is retrieved into the DataWindow object. Each group is retrieved as one
row into the DataWindow object.

For example, if in the SELECT statement you group data from the Employee
table by department ID, you will get one row back from the database for every
department represented in the Employee table. You can also specify computed
columns, such as total and average salary, for the grouped data. This is the
corresponding SELECT statement:

SELECT dept_id, sum(salary), avg(salary)
FROM employee
GROUP BY dept_id

If you specify this with the Employee table in the EAS Demo DB, you get five
rows back, one for each department.

For more about GROUP BY, see your DBMS documentation.

❖ To define GROUP BY criteria:

1 Click the Group tab to make the Group view available (or select
View>Group if the Group view is not currently displayed).

The columns in the tables you selected display in the left side of the Group
view. You might need to scroll to see your selections.

2 Drag the first column you want to group onto the right side of the Group
view.

This specifies the column for grouping. Columns are grouped in the order
in which they are displayed in the right side of the Group view.

3 Continue to specify additional columns for grouping within the first
grouping column as needed.

To change the grouping order, drag the column names in the right side to
the positions you want.

Using SQL Select

514 PowerBuilder Classic

4 Define sorting (Sort view), limiting (Where view), and limiting groups
(Having view) criteria as appropriate.

5 Click the Return button to return to the DataWindow painter.

Defining HAVING
criteria

If you have defined groups, you can define HAVING criteria to restrict the
retrieved groups. For example, if you group employees by department, you can
restrict the retrieved groups to departments whose employees have an average
salary of less than $50,000. This corresponds to:

SELECT dept_id, sum(salary), avg(salary)
FROM employee
GROUP BY dept_id
HAVING avg(salary) < 50000

If you specify this with the Employee table in the EAS Demo DB, you will get
three rows back, because there are three departments that have average salaries
less than $50,000.

❖ To define HAVING criteria:

• Click the Having tab to make the Having view available (or select
View>Having if the Having view is not currently displayed).

Each row in the Having view is a place for entering an expression that
limits which groups are retrieved. For information on how to define
criteria in the Having view, see the procedure in “Defining WHERE
criteria” on page 510.

CHAPTER 18 Defining DataWindow Objects

Users Guide 515

Using Query
When you choose Query as the data source, you select a predefined SQL
SELECT statement (a query) as specifying the data for your DataWindow
object.

❖ To define the data using Query:

1 While using any of the DataWindow wizards, click Query in the Choose
Data Source dialog box, and click Next.

The Select Query dialog box displays.

2 Type the name of a query or use the Browse button to find the query, then
click Next.

3 Finish interacting with the DataWindow object wizard as needed for the
presentation style you are using.

To learn how to create queries, see “Defining queries” on page 526.

Using External
If the data for the DataWindow object does not come from a database (either
through a native Sybase database interface or through a standard database
interface), specify External as the data source. You then specify the data
columns and their types so PowerBuilder can build the appropriate
DataWindow object to hold the data. These columns make up the result set.
PowerBuilder places the columns you specified in the result set in the
DataWindow object.

❖ To define the data using External:

1 Click External in the Choose Data Source dialog box in the wizard and
click Next.

The Define Result Set dialog box displays for you to specify the first
column in the result set.

2 Enter the name and type of the column.

Available datatypes are listed in the drop-down list. The number datatype
is equivalent to the PowerBuilder double datatype.

Using Stored Procedure

516 PowerBuilder Classic

3 Click Add to enter the name and type of any additional columns you want
in the result set.

4 Click Next when you have added all the columns you want.

What you do next In code, you need to tell PowerBuilder how to get data into the DataWindow
object in your application. Typically, you import data at runtime using a
method (such as ImportFile or ImportString) or do some data manipulation and
use the SetItem method to populate the DataWindow.

For more about these methods, see the online help.

You can also import data values from an external file into the DataWindow
object or report.

❖ To import the data values from an external file:

1 Make sure the Preview view of the DataWindow object is selected.

2 Select Rows>Import from the menu bar.

The Select Import File dialog box displays.

3 Select the type of files to list from the List Files of Type drop-down list (an
XML, CSV, TXT, or DBF file).

4 Enter the name of the import file and click OK.

Alternatively, you can select the name from the file list. Use the Drives
drop-down list and the Directories box as needed to display the list of files
that includes the one you want.

Using Stored Procedure
A stored procedure is a set of precompiled and preoptimized SQL statements
that performs some database operation. Stored procedures reside where the
database resides, and you can access them as needed.

Defining data using a
stored procedure

You can specify a stored procedure as the data source for a DataWindow object
if your DBMS supports stored procedures.

For information on support for stored procedures, see your database
documentation.

CHAPTER 18 Defining DataWindow Objects

Users Guide 517

If the Stored Procedure icon is not displayed
The icon for the Stored Procedure data source displays in the Choose Data
Source dialog box in the DataWindow object wizards only if the database to
which you are connected supports stored procedures.

❖ To define the data using Stored Procedure:

1 Select Stored Procedure in the Choose Data Source dialog box in the
wizard and click Next.

The Select Stored Procedure dialog box displays a list of the stored
procedures in the current database.

2 Select a stored procedure from the list.

To list system procedures, select the System Procedure check box.

The syntax of the selected stored procedure displays below the list of
stored procedures.

3 Specify how you want the result set description built:

• To build the result set description automatically, clear the Manual
Result Set check box and click Next.

PowerBuilder executes the stored procedure and builds the result set
description for you.

• To define the result set description manually, select the Manual Result
Set check box and click Next.

In the Define Stored Procedure Result Set dialog box:

• Enter the name and type of the first column in the result set.

• To add additional columns, click Add.

Your preference is saved
PowerBuilder records your preference for building result set descriptions
for stored procedure DataWindow objects in the variable
Stored_Procedure_Build in the PowerBuilder initialization file. If this
variable is set to 1, PowerBuilder will automatically build the result set; if
the variable is set to 0, you are prompted to define the result set
description.

4 Continue in the DataWindow wizard as needed for the presentation style
you are using.

Using Stored Procedure

518 PowerBuilder Classic

When you have finished interacting with the wizard, you go to the
DataWindow painter with the columns specified in the result set placed in
the DataWindow object.

For information about defining retrieval arguments for DataWindow
objects, see Chapter 19, “Enhancing DataWindow Objects.”

For information about using a stored procedure to update the database, see
“Using stored procedures to update the database” on page 610.

Editing a result set
description

After you create a result set that uses a stored procedure, you can edit the result
set description from the DataWindow painter.

❖ To edit the result set description:

1 Select Design>Data Source from the menu bar.

This displays the Column Specification view if it is not already displayed.

2 Select Stored Procedure from the Column Specification view’s pop-up
menu.

The Modify Stored Procedure dialog box displays.

3 Edit the Execute statement, select another stored procedure, or add
arguments.

The syntax is:

execute sp_procname;num arg1 = :arg1, arg2 = :arg2..., argn =:argn

where sp_procname is the name of the stored procedure, num is the stored
procedure group suffix, and arg1, arg2, and argn are the stored
procedure’s arguments.

The group suffix is an optional integer used in some DBMSs to group
procedures of the same name so that they can be dropped together with a
single DROP PROCEDURE statement. For other DBMSs the number is
ignored.

4 When you have defined the entire result set, click OK.

You return to the DataWindow painter with the columns specified in the
result set placed in the DataWindow object.

For information about defining retrieval arguments for DataWindow
objects, see Chapter 19, “Enhancing DataWindow Objects.”

CHAPTER 18 Defining DataWindow Objects

Users Guide 519

Using a Web service data source
Presentation style
requirement

You can use a Web service as the data source for a DataWindow having any of
the following DataWindow presentation styles:

Support for a Web service data source is not available for RichText and OLE
presentation styles, and it is only available in the Enterprise edition of
PowerBuilder.

Using the
DataWindow wizard

After you select a supported DataWindow presentation style from the
DataWindow tab of the New dialog box, you select a data source for the
DataWindow.

When you select Web Service as the data source and click Next, the
DataWindow wizard opens a page that prompts you to select a WSDL file. The
file you select should be in a publicly accessible location for all members of the
development team. You can enter the URL to a WSDL, ASMX, or XML file,
or you can browse a mapped drive for these types of files.

The Choose WSDL File page of the DataWindow wizard also lets you name
the assembly file that the wizard will create. The assembly file serves as an
interface between the DataWindow and the Web service. If you do not name
the assembly file, the wizard will select a name for you based on the name of
the WSDL file entry.

The next step to access a Web service data source is to select a service
described in the WSDL, and then one of its public methods. You must then
select a parameter for the DataWindow to use as the result set for the method.

A DataWindow typically obtains its data from an array of structures. Because
a Web service method can pass an array of structures in one of its arguments
rather than in a return value, the wizard prompts you to select one of the
method’s arguments or its return value as the designated result set for the
method. If you want data for a single row and column only, you can select a
parameter that has a simple datatype. You can also select a parameter that is an
array of simple datatypes rather than an array of structures.

Composite Graph Label TreeView

Crosstab Grid N-Up

Freeform Group Tabular

Using a Web service data source

520 PowerBuilder Classic

You complete the wizard as you would when using any other type of data
source for your DataWindow. After you complete the wizard, the DataWindow
displays in the DataWindow painter. However, there is no equivalent to the
SQL painter for a DataWindow with a Web service data source. For this type
of DataWindow, you cannot select Design>Data Source from the DataWindow
painter menu to change selected columns or modify the DataWindow syntax.

Runtime requirements on a deployment computer
To run the Web service DataWindow application from a deployment computer,
the assembly file that you generate with the wizard must be copied along with
the application executable and required PowerBuilder runtime DLLs for Web
service applications. For information on the required DLLs and the Runtime
Packager tool that you can use to deploy them, see “Deploying Applications
and Components” in Application Techniques.

For information on rebuilding an assembly generated by the DataWindow
wizard, see “Regenerating an assembly” on page 615.

Datatype mappings Table 18-6 lists .NET datatypes and the DataWindow datatypes to which they
map when you use a .NET Web service as a data source. Arrays are also
supported for these datatypes except for System.Byte.

Table 18-6: Datatype mapping for .NET datatypes

.NET datatype DataWindow datatype

System.Boolean long (Handled as a boolean at runtime.)

System.Byte ulong

System.DateTime datetime (Minimum and maximum dates for .NET can be
outside the range of dates supported by PowerBuilder.
PowerBuilder does not support dates prior to the year
1000 or after the year 3000.)

System.Decimal decimal

System.Double number

System.Int16 long

System.Int32 long

System.Int64 decimal

System.SByte long

System.Single real

System.String string(40)

System.UInt16 ulong

System.UInt32 ulong

System.UInt64 decimal

CHAPTER 18 Defining DataWindow Objects

Users Guide 521

The DataWindow can also use a Web service data source that has structures for
parameters, as long as the structures are composed of the simple datatypes that
can be mapped to DataWindow datatypes. An array of structures can be
mapped to n rows with x columns where n is the size of the array and x is the
number of members in the structure. Nested structures are not supported.

Using parameters by
reference

For a Web service that you create from a PowerBuilder nonvisual object, a
result set must be passed by reference, but it cannot be passed in a method
return value. You must use a method argument to pass the result set and then
select that argument in any DataWindow object that uses the method as its data
source.

A parameter passed by reference is a bidirectional [IN,OUT] parameter by
definition. The Web Service DataWindow wizard lets you select a Web service
method [OUT] or [IN,OUT] parameter, instead of the method return value, to
pass a result set to a DataWindow object. However, the parameter you select
cannot be used for both a return value and a retrieval argument by the same
DataWindow object.

Database-related
functions and events

In the Web Service DataWindow, some database or transaction-related
functions and events are not supported and meaningless because the Web
Service DataWindow has no direct relation to the database. The following
functions cannot be used with the Web Service DataWindow: GetSQLPreview,
GetSQLSelect, SetSQLPreview, SetSQLSelect, SetTrans, and SetTransObject.

The DBError event is also not supported for the Web Service DataWindow.
Instead, you can use the WSError error event to handle errors during retrieve,
insert, or update operations.

Using the
WSConnection object

Some Web services support or require a user ID and password, and other
session-related properties like firewall settings. The WSConnection object can
provide this information for your DataWindow connections.

You use an instance of the WSConnection object to connect to a Web service
by calling the SetWSObject method.

The following code instantiates a WSConnection object with user-related and
authentication information, then sets the object as the connection object for a
Web service data source:

int ii_return
wsconnection ws_1
ws_1 = create wsconnection
ws_1.username = "johndoe"
ws_1.password = "mypassword"
ws_1.endpoint = "myendpoint"
ws_1.authenticationmode = "basic"

Choosing DataWindow object-wide options

522 PowerBuilder Classic

ws_1.usewindowsintegratedauthentication = true
ii_return = dw_1.setwsobject (ws_1)

For more information about setting properties for a Web service connection,
see WSConnection and SetWSObject in the online Help.

For more information about updating the database with a Web service
DataWindow, see “Using a Web service to update the database” on page 612.

Choosing DataWindow object-wide options
You can set the default options, such as colors and borders, that PowerBuilder
uses in creating the initial draft of a DataWindow object.

DataWindow generation options are for styles that use a layout made up of
bands, which include Freeform, Grid, Label, N-Up, Tabular, Group, TreeView,
and Crosstab. PowerBuilder maintains a separate set of options for each of
these styles.

When you first create any of these style DataWindow objects, you can choose
options in the wizard and save your choices as the future defaults for the style.

❖ To specify default colors and borders for a style:

1 Select Design>Options from the menu bar.

The DataWindow Options dialog box displays.

2 Select the Generation tab page if it is not on top.

3 Select the presentation style you want from the Presentation Style drop-
down list.

The values for properties shown on the page are for the currently selected
presentation style.

4 Change one or more of the following properties:

Property Meaning for the DataWindow object

Background color The default color for the background.

Text border and color The default border and color used for labels and
headings.

CHAPTER 18 Defining DataWindow Objects

Users Guide 523

5 Click OK.

About color selections
If you select Window Background, Application Workspace, Button Face, or
Window Text from the Color drop-down list, the DataWindow object uses the
colors specified in the Windows Control Panel on the computer on which the
DataWindow object is running.

Your choices are
saved

PowerBuilder saves your generation option choices as the defaults to use when
creating a DataWindow object with the same presentation style.

Generating and saving a DataWindow object
When you have finished interacting with the wizard, PowerBuilder generates
the DataWindow object and opens the DataWindow painter.

When generating the DataWindow object, PowerBuilder might use
information from a set of tables called the extended attribute system tables. If
this information is available, PowerBuilder uses it.

About the extended attribute system tables and DataWindow
objects

The extended attribute system tables are a set of tables maintained by the
Database painter. They contain information about database tables and
columns. Extended attribute information extends database definitions by
recording information that is relevant to using database data in screens and
reports.

Column border and color The default border and color used for data values.

Wrap Height (Freeform
only)

The height of the detail band.

When the value is None, the number of columns
selected determines the height of the detail band.
The columns display in a single vertical line.

When the value is set to a number, the detail band
height is set to the number specified and columns
wrap within the detail band.

Property Meaning for the DataWindow object

Generating and saving a DataWindow object

524 PowerBuilder Classic

For example, labels and headings you defined for columns in the Database
painter are used in the generated DataWindow object. Similarly, if you
associated an edit style with a column in the Database painter, that edit style is
automatically used for the column in the DataWindow object.

When generating a DataWindow object, PowerBuilder uses the following
information from the extended attribute system tables:

If there is no extended attribute information for the database tables and
columns you are using, you can set the text for headings and labels, the fonts,
and the display formats in the DataWindow painter. The difference is that you
have to do this individually for every DataWindow object that you create using
the data.

If you want to change something that came from the extended attribute system
tables, you can change it in the DataWindow painter. The changes you make in
the DataWindow painter apply only to the DataWindow object you are working
on.

The advantage of using the extended attribute system tables is that it saves time
and ensures consistency. You only have to specify the information once, in the
database. Since PowerBuilder uses the information whenever anyone creates a
new DataWindow object with the data, it is more likely that the appearance and
labels of data items will be consistent.

For more information about the extended attribute system tables, see Chapter
16, “Managing the Database,” and Appendix A, “The Extended Attribute
System Tables.”

Saving the DataWindow object
When you have created a DataWindow object, you should save it. The first
time you save it you give it a name. As you work, you should save your
DataWindow object frequently so that you do not lose changes.

For PowerBuilder uses

Tables Fonts specified for labels, headings, and data

Columns Text specified for labels and headings
Display formats
Validation rules
Edit styles

CHAPTER 18 Defining DataWindow Objects

Users Guide 525

❖ To save the DataWindow object:

1 Select File>Save from the menu bar.

If you have previously saved the DataWindow object, PowerBuilder saves
the new version in the same library and returns you to the DataWindow
painter.

If you have not previously saved the DataWindow object, PowerBuilder
displays the Save DataWindow dialog box.

2 (Optional) Enter comments in the Comments box to describe the
DataWindow object.

3 Enter a name for the DataWindow object in the DataWindows box.

4 Specify the library in which the DataWindow object is to be saved and
click OK.

Naming the DataWindow object

The DataWindow object name can be any valid PowerBuilder identifier up to
255 contiguous characters. A common convention is to prefix the name of the
DataWindow object with d_.

For information about PowerBuilder identifiers, see the PowerScript
Reference.

Modifying an existing DataWindow object

❖ To modify an existing DataWindow object:

1 Select File>Open from the menu bar.

The Open dialog box displays.

2 Select the object type and the library.

PowerBuilder lists the DataWindow objects in the current library.

3 Select the object you want.

PowerBuilder opens the DataWindow painter and displays the
DataWindow object. You can also open a DataWindow object by double-
clicking it in the System Tree, or, if it has been placed in a window or
visual user object, selecting Modify DataWindow from the control’s
pop-up menu.

Defining queries

526 PowerBuilder Classic

To learn how you can modify an existing DataWindow object, see Chapter
19, “Enhancing DataWindow Objects.”

Defining queries
A query is a SQL SELECT statement created in the Query painter and saved
with a name so that it can be used repeatedly as the data source for a
DataWindow object.

Queries save time, because you specify all the data requirements just once. For
example, you can specify the columns, which rows to retrieve, and the sorting
order in a query. Whenever you want to create a DataWindow object using that
data, simply specify the query as the data source.

❖ To define a query:

1 Select File>New from the menu bar.

2 In the New dialog box, select the Database tab.

3 Select the Query icon and click OK.

4 Select tables in the Select Tables dialog box and click Open.

You can select columns, define sorting and grouping criteria, define
computed columns, and so on, exactly as you do when creating a
DataWindow object using the SQL Select data source.

For more about defining the SELECT statement, see “Using SQL Select” on
page 499.

Previewing the query
While creating a query, you can preview it to make sure it is retrieving the
correct rows and columns.

❖ To preview a query:

1 Select Design>Preview from the menu bar.

PowerBuilder retrieves the rows satisfying the currently defined query in
a grid-style DataWindow object.

2 Manipulate the retrieved data as you do in the Database painter in the
Output view.

CHAPTER 18 Defining DataWindow Objects

Users Guide 527

You can sort and filter the data, but you cannot insert or delete a row or
apply changes to the database. For more about manipulating data, see
Chapter 16, “Managing the Database.”

3 When you have finished previewing the query, click the Close button in
the PainterBar to return to the Query painter.

Saving the query

❖ To save a query:

1 Select File>Save Query from the menu bar.

If you have previously saved the query, PowerBuilder saves the new
version in the same library and returns you to the Query painter. If you
have not previously saved the query, PowerBuilder displays the Save
Query dialog box.

2 Enter a name for the query in the Queries box (see “Naming the query”
next).

3 (Optional) Enter comments to describe the query.

These comments display in the Library painter. It is a good idea to use
comments to remind yourself and others of the purpose of the query.

4 Specify the library in which to save the query, and click OK.

Naming the query The query name can be any valid PowerBuilder identifier up to 255 characters.
When you name queries, use a unique name to identify each one. A common
convention is to use a two-part name: a standard prefix that identifies the object
as a query (such as q_) and a unique suffix. For example, you might name a
query that displays employee data q_emp_data. For information about
PowerBuilder identifiers, see the PowerScript Reference.

Modifying a query

❖ To modify a query:

1 Select File>Open from the menu bar.

2 Select the Queries object type and then the query you want to modify, and
click OK.

3 Modify the query as needed.

What's next

528 PowerBuilder Classic

What's next
After you have generated your DataWindow object, you will probably want to
preview it to see how it looks. After that, you might want to enhance the
DataWindow object in the DataWindow painter before using it. PowerBuilder
provides many ways for you to make a DataWindow object easier to use and
more informative for users. See Chapter 19, “Enhancing DataWindow
Objects,” next.

Users Guide 529

C H A P T E R 1 9 Enhancing DataWindow Objects

About this chapter Before you put a DataWindow object into production, you can enhance it
to make it easier to use and interpret data. You do that in the DataWindow
painter. This chapter describes basic enhancements you can make to a
DataWindow object.

Contents

Related topics Other ways to enhance DataWindow objects are covered in later chapters:

Topic Page

Working in the DataWindow painter 530

Using the Preview view of a DataWindow object 538

Saving data in an external file 548

Modifying general DataWindow object properties 556

Storing data in a DataWindow object using the Data view 572

Retrieving data 574

Chapter Explains how to

Chapter 20, “Working with
Controls in DataWindow Objects”

Add controls to a DataWindow object
and reorganize, position, and rotate them

Chapter 22, “Displaying and
Validating Data”

Specify display formats, edit styles, and
validation rules for column data

Chapter 23, “Filtering, Sorting, and
Grouping Rows”

Limit which rows are displayed, the
order in which they are displayed, and
whether they are divided into groups

Chapter 24, “Highlighting
Information in DataWindow
Objects”

Highlight data by using conditional
expressions to modify the properties of
controls in DataWindow objects

Chapter 25, “Using Nested
Reports”

Place reports inside DataWindow
objects

Chapter 26, “Working with Graphs” Use graphs to visually present
information retrieved in a DataWindow
object

Chapter 27, “Working with
Crosstabs”

Use crosstabs to present analyses of data
retrieved in a DataWindow object

Working in the DataWindow painter

530 PowerBuilder Classic

Working in the DataWindow painter
The DataWindow painter provides views related to the DataWindow object
you are working on. Interacting with these views is how you work in the
DataWindow painter.

The following picture shows a DataWindow object in the DataWindow painter
with the default layout.

Design view The Design view at the top left shows a representation of the DataWindow
object and its controls. You use this view to design the layout and appearance
of the DataWindow object. Changes you make are immediately shown in the
Preview view and the Properties view.

Chapter 28, “Working with
TreeViews”

Use TreeViews to group data and display
it hierarchically in a way that allows you
to expand and collapse it

Chapter 21, “Controlling Updates
in DataWindow objects”

Control update capabilities

Chapter Explains how to

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 531

Preview view The Preview view in the middle on the left shows the DataWindow object with
data as it will appear at runtime. If the Print Preview toggle (File>Print
Preview) is selected, you see the DataWindow object as it would appear when
printed with an optional blue outline that shows where the page margins are
located.

Export/Import
Template view
for XML

The Export/Import Template view for XML at the bottom left shows a default
template for exporting and importing data in XML format. You can define
custom templates for import and export. The templates are saved with the
DataWindow object. For more information, see Chapter 29, “Exporting and
Importing XML Data.”

Export Template view
for XHTML

The Export Template view for XHTML (not shown; see XHTML tab at the
bottom left) shows a default template for exporting data in XHTML format.
You can define custom XHTML export templates for customizing XML Web
DataWindow generation. The templates are saved with the DataWindow
object. For more information, see the DataWindow Programmers Guide.

Properties view The Properties view at the top right displays the properties for the currently
selected control(s) in the DataWindow object, for the currently selected band
in the DataWindow object, or for the DataWindow object itself. You can view
and change the values of properties in this view.

Control List view The Control List in the stacked pane at the bottom right view lists all controls
in the DataWindow object. Selecting controls in this view selects them in the
Design view and the Properties view. You can also sort controls by Control
Name, Type, or Tag.

Data view The Data view in the stacked pane at the bottom right displays the data that can
be used to populate a DataWindow object and allows manipulation of that data.

Column Specifications
view

The Column Specifications view in the stacked pane at the bottom right shows
a list of the columns in the data source. For the columns, you can add, modify,
and delete initial values, validation expressions, and validation messages. You
can also specify that you want a column to be included in a prompt for retrieval
criteria during data retrieval. To add a column to the DataWindow object, you
can drag and drop the column from the Column Specifications view to the
Design view. For external or stored procedure data sources, you can add,
delete, and edit columns (column name, type, and length).

Working in the DataWindow painter

532 PowerBuilder Classic

Understanding the DataWindow painter Design view
For most presentation styles, the DataWindow painter Design view is divided
into areas called bands. Each band corresponds to a section of the displayed
DataWindow object.

DataWindow objects with these presentation styles are divided into four bands:
header, detail, summary, and footer. Each band is identified by a bar containing
the name of the band above the bar and an Arrow pointing to the band.

These bands can contain any information you want, including text, drawing
controls, graphs, and computed fields containing aggregate totals.

The following picture shows the Design view for a tabular DataWindow object.

Table 19-1: Bands in the DataWindow painter Design view

The header band

The header band contains heading information that is displayed at the top of
every screen or page. The presentation style determines the contents of the
header band:

• If the presentation style is Tabular, Grid, or N-Up, the headings defined for
the columns in the Database painter display in the header band and the
columns display on a single line across the detail band

• If the presentation style is Freeform, the header band is empty and labels
display in the detail band next to each column

Band Used to display

Header Information at the top of every screen or page, such as the name of the
report or current date

Detail Data from the database or other data source

Summary Summary information that displays after all the data, such as totals and
counts

Footer Information displayed at the bottom of every page or screen, such as
page number and page count

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 533

You can specify additional heading information (such as a date) in the header
band and you can include pictures, graphic controls, and color to enhance the
appearance of the band.

Displaying the current date
To include the current date in the header, you place a computed field that uses
the Today DataWindow expression function in the header band. For
information, see “Adding computed fields to a DataWindow object” on page
581.

The detail band

The detail band displays the retrieved data. It is also where the user enters new
data and updates existing data. The number of rows of data that display in the
DataWindow object at one time is determined by the following expression:

(Height of the DataWindow object – Height of headers and footers) /
Height of the detail band

The presentation style determines the contents of the detail band:

• If the presentation style is Tabular, Grid, N-Up, or Label, the detail band
displays column names, representing the columns

• If the presentation style is Freeform, the labels defined for the columns in
the Database painter display in the detail band with boxes for the data to
the right

How PowerBuilder names the columns in the Design view
If the DataWindow object uses one table, the names of the columns in the
Design view are the same as the names in the table.

If the DataWindow object uses more than one table, the names of the columns
in the Design view are tablename_columnname. PowerBuilder prefaces the
name of the column with the table name to prevent ambiguity, since different
tables can have columns with the same name.

When you design the detail band of a DataWindow object, you can specify
display and validation information for each column of the DataWindow object
and add other controls, such as text, pictures, graphs, and drawing controls.

Working in the DataWindow painter

534 PowerBuilder Classic

The summary and footer bands

You use the summary and footer bands of the DataWindow object the same
way you use summary pages and page footers in a printed report:

• The contents of the summary band display at the end, after all the detail
rows; this band often summarizes information in the DataWindow object

• The contents of the footer band display at the bottom of each screen or
page of the DataWindow object; this band often displays the page number
and name of the report

Using the DataWindow painter toolbars
The DataWindow painter contains three customizable PainterBars and a
StyleBar.

For more information about using toolbars, see “Using toolbars” on page 46.

PainterBars The PainterBars include buttons for standard operations (such as Save, Print,
and Undo on PainterBar1), for common formatting operations (such as
Currency, Percent, and Tab Order on PainterBar2), and for database operations
(such as Retrieve and Insert Row on PainterBar3).

They also include six drop-down toolbars, which are indicated by a small black
triangle on the right part of a button. Table 19-2 lists the drop-down toolbars
that are available. The Controls toolbar is on PainterBar1. The other drop-down
toolbars are on PainterBar2.

Table 19-2: Drop-down toolbars in the DataWindow painter

StyleBar The StyleBar includes buttons for applying properties (such as bold) to selected
text elements.

 Toolbar Used to

Background Color Specify the background color of one or more selected controls.

Borders Specify borders for one or more selected controls.

Controls Specify controls to add to a DataWindow object.

Foreground Color Specify the foreground color of one or more selected controls.
In a text control, the foreground color specifies the color of the
text.

Layout Specify the alignment, sizing, and spacing of selected controls.

Slide Specify sliding for controls.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 535

Using the Properties view in the DataWindow painter
Each part of the DataWindow object (such as text, columns, computed fields,
bands, graphs, even the DataWindow object itself) has a set of properties
appropriate to the part. The properties display in the Properties view.

You can use the Properties view to modify the parts of the DataWindow object.

❖ To use the Properties view to modify the parts of the DataWindow object:

1 Position the mouse over the part you want to modify.

2 Display the part’s pop-up menu and select Properties.

If it is not already displayed, the Properties view displays. The view
displays the properties of the currently selected control(s), the band, or the
DataWindow object itself. The contents of the Properties view change as
different controls are selected (made current).

For example, the Properties view for a column has tabbed property pages of
information that you access by clicking the appropriate tab. If you want to
choose an edit style for the column, you click the Edit tab. This brings the Edit
page to the front of the Properties view.

Selecting controls in the DataWindow painter
The DataWindow painter provides several ways to select controls to act on.
You can select multiple controls and act on all the selected controls as a unit.
For example, you can move all of them or change the fonts used to display text
for all of them.

Lasso selection
Use lasso selection when possible because it is fast and easy. Lasso selection is
another name for the method described below for selecting neighboring
multiple controls.

❖ To select one control in a DataWindow object in the Design view:

• Click it.

The control displays with handles on it. Previously selected controls are no
longer selected.

Working in the DataWindow painter

536 PowerBuilder Classic

❖ To select neighboring multiple controls in a DataWindow object in the
Design view (lasso selection):

1 Press and hold the left mouse button at one corner of the neighboring
controls.

2 Drag the mouse over the controls you want to select.

A bounding box (the lasso) displays.

3 Release the mouse button.

All the controls in the bounding box are selected.

❖ To select non-neighboring multiple controls in a DataWindow object in
the Design view:

1 Click the first control.

2 Press and hold the Ctrl key and click additional controls.

All the controls you click are selected.

❖ To select controls by type in the DataWindow object:

• Do one of the following:

• Select Edit>Select>Select All to select all controls

• Select Edit>Select>Select Text to select all text

• Select Edit>Select>Select Columns to select all columns

❖ To select controls by position in the DataWindow object:

• Do one of the following:

• Select Edit>Select>Select Above to select all controls above the
currently selected control

• Select Edit>Select>Select Below to select all controls below it

• Select Edit>Select>Select Left to select all controls to the left of it

• Select Edit>Select>Select Right to select all controls to the right of it

❖ To select controls in a DataWindow object in the Control List view:

1 Select View>Control List from the menu bar.

2 Click a control in the list.

3 Press and hold the Ctrl key and click additional controls if desired.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 537

Displaying information
about the selected
control

The name, x and y coordinates, width, and height of the selected control are
displayed in the MicroHelp bar. If multiple controls are selected, Group
Selected displays in the Name area and the coordinates and size do not display.

Resizing bands in the DataWindow painter Design view
You can change the size of any band in the DataWindow object.

❖ To resize a band in the DataWindow painter Design view:

• Position the pointer on the bar representing the band and drag the bar up
or down to shrink or enlarge the band.

Using zoom in the DataWindow painter
You can zoom the display in and out in four views in the DataWindow painter:
the Design view, Preview view, Data view, and Column Specifications view.
For example, if you are working with a large DataWindow object, you can
zoom out the Design view so you can see all of it on your screen, or you can
zoom in on a group of controls to better see their details.

❖ To zoom the display in the DataWindow painter:

1 Select the view you want to zoom (click in the view).

You can zoom the Design view, Preview view, Data view, and Column
Specifications view.

2 Select Design>Zoom from the menu bar.

3 Select a built-in zoom percentage, or set a custom zoom percentage by
typing an integer in the Custom box.

Undoing changes in the DataWindow painter
You can undo your change by pressing Ctrl+Z or selecting Edit>Undo from the
menu bar. Undo requests affect all views.

Using the Preview view of a DataWindow object

538 PowerBuilder Classic

Using the Preview view of a DataWindow object
You use the Preview view of a DataWindow object to view it as it will appear
with data and test the processing that takes place in it.

❖ To display the Preview view of a DataWindow object open in the
DataWindow painter:

1 If the Preview view is not already displayed, select View>Preview from
the menu bar.

In the Preview view, the bars that indicate the bands do not display, and, if
you selected Retrieve on Preview in the DataWindow wizard,
PowerBuilder retrieves all the rows from the database. You are prompted
to supply arguments if you defined retrieval arguments.

In external DataWindow objects
If the DataWindow object uses the External data source, no data is
retrieved. You can import data, as described in “Importing data into a
DataWindow object” on page 543.

In DataWindow objects that have stored data
If the DataWindow object has stored data in it, no data is retrieved from
the database.

As the rows are being retrieved, the Retrieve button in the PainterBar
changes to a Cancel button. You can click the Cancel button to stop the
retrieval.

2 Test your DataWindow object.

For example, modify some data, update the database, re-retrieve rows, and
so on, as described below.

Retrieving data
Where PowerBuilder
gets data

PowerBuilder follows this order of precedence to supply the data in your
DataWindow object:

1 If you have saved data in the DataWindow object, PowerBuilder uses the
saved rows from the DataWindow object and does not retrieve data from
the database.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 539

2 PowerBuilder uses the data in the cache, if there is any.

3 If there is no data in the cache yet, PowerBuilder retrieves data from the
database automatically, with one exception. If the Retrieve on Preview
option is off, you have to request retrieval explicitly, as described next.

Previewing without
retrieving data

If you do not want PowerBuilder to retrieve data from the database
automatically when the Preview view opens, you can clear the Retrieve on
Preview option. The Preview view shows the DataWindow object without
retrieving data.

❖ To be able to preview without retrieving data automatically:

1 Select Design>Options from the menu bar.

The DataWindow Options dialog box displays.

2 Clear the Retrieve on Preview check box on the General page.

When this check box is cleared, your request to preview the DataWindow
object does not result in automatic data retrieval from the database.

Retrieve on Preview check box is available in the DataWindow wizards
During the initial creation of a DataWindow object, you can set the Retrieve on
Preview option.

PowerBuilder uses
data caching

When PowerBuilder first retrieves data, it stores the data internally. When it
refreshes the Preview view, PowerBuilder displays the stored data instead of
retrieving rows from the database again. This can save you a lot of time, since
data retrieval can be time consuming.

How using data from
the cache affects you

Because PowerBuilder accesses the cache and does not automatically retrieve
data every time you preview, you might not have what you want when you
preview. The data you see in preview and the data in the database can be out of
sync.

For example, if you are working with live data that changes frequently or with
statistics based on changing data and you spend time designing the
DataWindow object, the data you are looking at may no longer match the
database. In this case, retrieve again just before printing.

Explicitly retrieving
data

You can explicitly request retrieval at any time.

❖ To retrieve rows from the database:

• Do one of the following:

• Click the Retrieve button in the PainterBar.

Using the Preview view of a DataWindow object

540 PowerBuilder Classic

• Select Rows>Retrieve from the menu bar.

• Select Retrieve from the Preview view’s pop-up menu.

Supplying argument values or criteria
If the DataWindow object has retrieval arguments or is set up to prompt
for criteria, you are prompted to supply values for the arguments or to
specify criteria.

PowerBuilder retrieves the rows. As PowerBuilder retrieves, the Retrieve
button changes to a Cancel button. You can click the Cancel button to stop
the retrieval at any time.

Sharing data with the
Data view

The Data view displays data that can be used to populate a DataWindow object.
When the ShareData pop-up menu item in the Data view is checked, changes
you make in the Data view are reflected in the Preview view and vice versa.

Other options that
affect retrieval

These other options can affect retrieval:

• Retrieve Rows As Needed Lets you specify that only the rows needed
to display the current portion of the DataWindow object should be
retrieved. When you scroll downward, additional rows are retrieved. This
can speed up reporting in certain situations.

See “Retrieving rows as needed” on page 575.

• Retrieve Rows to Disk Lets you specify that PowerBuilder should save
retrieved data on your hard disk in a temporary file rather than keep the
data in memory. When you preview the DataWindow object,
PowerBuilder swaps rows of data from the temporary file into memory as
needed.

For information, see “Saving retrieved rows to disk” on page 576.

Modifying data
You can add, modify, or delete rows in the Preview view. When you have
finished manipulating the data, you can apply the changes to the database.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 541

Changing input
language

You (and your users) can add or modify data in a DataWindow object in
multiple input languages. If you use multiple input languages, you can display
a Language bar on your desktop to change the current input language. In a
DataWindow object, the input language in effect the first time a column gets
focus becomes the default input language for that column. If you subsequently
change the input language when that column has focus, the new input language
becomes the default for that column. This behavior does not apply to columns
that have the RightToLeft property set.

If looking at data from a view or from more than one table
By default, you cannot update data in a DataWindow object that contains a
view or more than one table. For more about updating DataWindow objects,
see Chapter 21, “Controlling Updates in DataWindow objects.”

❖ To modify existing data:

• Tab to the field and enter a new value.

The Preview view uses validation rules, display formats, and edit styles
that you have defined for the columns, either in the Database painter or in
this particular DataWindow object.

To save the changes to the database, you must apply them, as described next.

❖ To add a row:

1 Click the Insert Row button.

PowerBuilder creates a blank row.

2 Enter data for a row.

To save the changes to the database, you must apply them, as described below.

Adding a row in an application
Clicking the Insert Row button in the Preview view is equivalent to calling the
InsertRow method and then the ScrollToRow method at runtime.

❖ To delete a row:

• Click the Delete Row button.

PowerBuilder removes the row from the display.

Using the Preview view of a DataWindow object

542 PowerBuilder Classic

To save the changes to the database, you must apply them, as described below.

Deleting a row in an application
Clicking the Delete Row button in the Preview view is equivalent to calling the
DeleteRow method at runtime.

❖ To apply changes to the database:

• Click the Update Database button.

PowerBuilder updates the table with all the changes you have made.

Applying changes in an application
Clicking the Update Database button in the Preview view is equivalent to
calling the Update method at runtime.

Selecting Save is equivalent to calling the Update method at runtime.

Viewing row information
You can display information about the data you have retrieved.

❖ To display the row information:

• Select Rows>Described from the menu bar.

The Describe Rows dialog box displays, showing the number of:

• Rows that have been deleted in the painter but not yet deleted from the
database

• Rows displayed in the Preview view

• Rows that have been filtered

• Rows that have been modified in the painter but not yet modified in
the database

All row counts are zero until you retrieve the data from the database or add a
new row. The count changes when you modify the displayed data or test filter
criteria.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 543

Importing data into a DataWindow object
You can import and display data from an external source and save the imported
data in the database.

❖ To import data into a DataWindow object:

1 Select Rows>Import from the menu bar.

2 Specify the file from which you want to import the data.

The types of files that you can import into the painter display in the List
Files of Type drop-down list.

3 Click Open.

PowerBuilder reads the data from the file into the DataWindow painter.
You can then click the Update Database button in the PainterBar to add the
new rows to the database.

Data from file must match DataWindow definition
When importing data from a file, the datatypes of the data must match, column
for column, all the columns in the DataWindow definition (the columns
specified in the SELECT statement), not just the columns that are displayed in
the DataWindow object.

For information about importing XML data, see Chapter 29, “Exporting and
Importing XML Data.”

Using print preview
You can print the data displayed in the Preview view. Before printing, you can
preview the output on the screen. Your computer must have a default printer
specified, otherwise properties handled by the printer driver, such as page
orientation, are ignored.

❖ To preview printed output before printing:

• Be sure the Preview view is selected (current) and then select File>Print
Preview from the menu bar.

Print Preview displays the DataWindow object as it will print.

Using the Preview view of a DataWindow object

544 PowerBuilder Classic

Using the IntelliMouse pointing device
Using the IntelliMouse pointing device, users can scroll a DataWindow object
by rotating the wheel. Users can also zoom a DataWindow object larger or
smaller by holding down the Ctrl key while rotating the wheel.

Controlling the display
of rulers

You can choose whether to display rulers around page borders.

❖ To control the display of rulers in Print Preview:

• Select/deselect File>Print Preview Rulers from the menu bar.

Changing margins You can dynamically change margins while previewing a DataWindow object.

❖ To change the margins in Print Preview:

• Drag the margin boundaries on the rulers.

The following picture shows the left and top margin boundaries. There are also
boundaries for the right and bottom margins. The picture shows the outline of
the margin. If you do not want to see the outline, clear the Print Preview Shows
Outline check box on the Print Specifications page in the Properties view.

Changing margins at runtime
Using the Modify method, you can display a DataWindow object in print
preview at runtime. While in print preview, users can also change margins by
dragging boundaries. A user event in the DataWindow control
(pbm_dwnprintmarginchange) is triggered when print margins are changed.
Changing margins can affect the page count, so if you use the Describe method
to display the page count in your application (for example, in MicroHelp), you
must code a script for the user event to recalculate the page count.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 545

Zooming the page You can reduce or enlarge the amount of the page that displays in the Print
Preview view. This does not affect the printed output.

❖ To zoom the page on the display screen:

1 Select File>Print Preview Zoom from the menu bar.

2 Select the magnification you want and click OK.

The display of the page zooms in or out as appropriate. The size of the
contents of the page changes proportionately as you zoom. This type of
zooming affects your display but does not affect printing.

Zooming the contents In addition to zooming the display on the screen, you can also zoom the
contents, affecting the amount of material that prints on a page.

❖ To zoom the contents of a DataWindow object with respect to the printed
page:

1 Select Design>Zoom from the menu bar.

2 Select the magnification you want and click OK.

The contents of the page zooms in or out as appropriate. If you enlarge the
contents so they no longer fit, PowerBuilder creates additional pages as
needed.

Printing data
You can print a DataWindow object while the Preview view is displayed. You
can print all pages, a range of pages, only the current page, or only odd or even
pages. You can also specify whether you want multiple copies, collated copies,
and printing to a file.

Avoiding large rows To avoid multiple blank pages and other anomalies in printed reports, no row
in the DataWindow object should be larger than the size of the target page. The
page boundary is often reached in long text columns with AutoSizeHeight on.
It can also be reached when detail rows are combined with page and group
headers and trailers, or when they contain multiple nested DataWindow objects
or a column that has been resized to be larger than the page.

When a row contains large multiline edit columns, it can be broken into a series
of rows, each containing one text line. These text lines become the source for
a nested DataWindow object. The nested DataWindow object determines how
many of its rows fit in the remaining page space.

Using the Preview view of a DataWindow object

546 PowerBuilder Classic

Page break before
last row

The summary band in a report is always printed on the same page as the last
row of data. This means that you sometimes find a page break before the last
row of data even if there is sufficient space to print the row. If you want the last
row to print on the same page as the preceding rows, the summary band must
be made small enough to fit on the page as well.

To change printers or
settings before
printing

You can choose File>Printer Setup from the menu bar.

❖ To print a DataWindow object:

1 Select File>PrintReport from the menu bar to display the Print dialog box.

2 Specify the number of copies to print.

3 Specify the pages: select All or Current Page, or type page numbers and/or
page ranges in the Pages box.

4 Specify all pages, even pages, or odd pages in the Print drop-down list.

5 If you want to print to a file rather than to the printer, select the Print to
File check box.

6 If you want to change the collating option, clear or select the Collate
Copies check box and click OK.

If you specified print to file, the Print to File dialog box displays.

7 Enter a file name and click OK.

The extension PRN indicates that the file is prepared for the printer.
Change the drive, the directory, or both, if you want.

Working in a grid DataWindow object
If you are viewing a grid-style DataWindow object in the Preview view, you
can make the following changes. Whatever you do in the Preview view is
reflected in the Design view:

• Resize columns

• Reorder columns

• Split the display into two horizontal scrolling regions

You can use this feature to keep one or more columns stationary on the
screen while scrolling through other columns.

• Copy data to the clipboard

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 547

These features are also available to your users
Users of your application can also manipulate columns in these ways in a grid
DataWindow object at runtime.

❖ To resize a column in a grid DataWindow object:

1 Position the mouse pointer at a column boundary in the header.

The pointer changes to a two-headed arrow.

2 Press and hold the left mouse button and drag the mouse to move the
boundary.

3 Release the mouse button when the column is the correct width.

❖ To reorder columns in a grid DataWindow object:

1 Press and hold the left mouse button on a column heading.

PowerBuilder selects the column and displays a line representing the
column border.

2 Drag the mouse left or right to move the column.

3 Release the mouse button.

❖ To use split horizontal scrolling in a grid DataWindow object:

1 To divide the grid into two regions that can scroll independently of each
other, position the mouse pointer at the left end of the horizontal scroll bar.

The pointer changes to a two-headed arrow.

2 Press and hold the left mouse button and drag the mouse to the right to
create a new horizontal scrolling border.

3 Release the mouse button.

You now have two independent scrolling regions in the grid DataWindow
object.

Saving data in an external file

548 PowerBuilder Classic

❖ To copy data to the clipboard from a grid DataWindow object:

1 Select the cells whose data you want to copy to the clipboard:

• To select an entire column, click its header.

• To select neighboring columns, press and hold Shift, then click the
headers.

• To select non-neighboring columns, press and hold Ctrl, then click the
headers.

• To select cells, press the left mouse button on the bottom border of a
cell and drag the mouse.

Selected cells are highlighted.

2 Select Edit>Copy from the menu bar.

The contents of the selected cells are copied to the clipboard. If you copied
the contents of more than one column, the data is separated by tabs.

Saving data in an external file
While previewing, you can save the data retrieved in an external file. Note that
the data and headers (if specified) are saved. Information in the footer or
summary bands is not saved unless you are saving as PDF or as a PSR file.

❖ To save the data in a DataWindow object in an external file:

1 Select File>Save Rows As from the menu bar.

The Save As dialog box displays.

2 Choose a format for the file from the Save As Type drop-down list.

If you want the column headers saved in the file, select a file format that
includes headers (such as Excel With Headers). When you select a with
headers format, the names of the database columns (not the column labels)
are also saved in the file.

When you choose a format, PowerBuilder supplies the appropriate file
extension.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 549

3 For TEXT, CSV, SQL, HTML, and DIF formats, select an encoding for the
file.

You can select ANSI/DBCS, Unicode LE (Little-Endian), Unicode BE
(Big-Endian), or UTF8.

4 Name the file and click Save.

PowerBuilder saves all displayed rows in the file; all columns in the
displayed rows are saved. Filtered rows are not saved.

The rest of this section provides more information about saving data in PDF,
HTML, and PSR formats.

For more information about saving data as XML, see Chapter 29, “Exporting
and Importing XML Data.”

Saving the data as PDF
PowerBuilder provides two ways to save a DataWindow object or DataStore in
Portable Document Format (PDF).

Using Ghostscript By default, when you select File>Save Rows As and select PDF as the file type,
the data is printed to a PostScript file and automatically distilled to PDF using
Ghostscript. This option provides a robust solution that can save most types of
DataWindow objects.

Installing Ghostscript and PostScript drivers
For licensing reasons, Ghostscript and the PostScript drivers required to use the
distill method are not installed with PowerBuilder. You (and your users) must
download and install them before you can use this technique. See “System
requirements for the distill method” on page 551.

Using XSL-FO and
Java printing

Building on the ability to save data as XML, PowerBuilder can also save the
DataWindow object’s data and presentation to PDF by generating XSL
Formatting Objects (XSL-FO). This option provides a platform-independent
solution by rendering the DataWindow using a Java process rather than the
Microsoft GDI. It also offers the possibility of customizing the PDF file at the
XSL-FO stage. Saving as PDF using XSL-FO is particularly useful if you want
to print DataWindow objects in EAServer on a UNIX operating system by
using Java printing. The Ghostscript method is not supported on UNIX.

Saving data in an external file

550 PowerBuilder Classic

The XSL (Extensible Stylesheet Language) W3C Recommendation has two
parts, XSLT and XSL-FO. XSLT provides the transformation typically used to
present XML documents as HTML in a browser. XSL-FO provides extensive
formatting capabilities that are not dependent on the output format.

For more information about XSL, see the latest version of the Extensible
Stylesheet Language (XSL) at http://www.w3.org/TR/xsl/.

Limitations The Ghostscript method currently does not support OLE and RichText
DataWindow objects. The XSL-FO method currently does not support OLE,
RichText, graph, and composite DataWindow objects.

Saving as PDF using the distill method

If you want to save to PDF using the distill method, you do not need to change
any properties. The distill method is used by default when you select Save
Rows As from the File menu in the DataWindow painter and select PDF as the
file type, or when you use the SaveAs method with PDF! as the file type.

PowerBuilder uses a PostScript printer driver specifically designed for
distilling purposes to configure the PDF output. You can choose to use a
different PostScript printer driver if you want to customize your PostScript
settings for generating PDF.

In the DataWindow
painter

To use a custom PostScript printer driver, you must set some properties.

❖ To save customized distilled PDF output in the DataWindow painter:

1 Select the Data Export tab in the Properties view for the DataWindow
object.

2 Select PDF from the Format to Configure drop-down list, select Distill!
from the Method drop-down list, and select the Distill Custom PostScript
check box.

3 Select the Print Specifications tab and specify the name of the printer
whose settings you want to use in the Printer Name box.

4 Save the DataWindow object, then select File>Save Rows As, select PDF
as the Save As Type, specify a file name, and click Save.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 551

In a script The properties you set in the DataWindow painter are saved with the
DataWindow object and are used by default when your application runs, but for
more control, specify the properties in a script before saving the DataWindow
object. To specify a custom printer driver in a script, set the
Export.PDF.Distill.CustomPostScript property to Yes and specify a printer
with the DataWindow.Printer property:

int li_ret

dw_1.Object.DataWindow.Export.PDF.Method = Distill!
dw_1.Object.DataWindow.Printer = "\\prntsrvr\pr-6"
dw_1.Object.DataWindow.Export.PDF. &

Distill.CustomPostScript="Yes"

li_ret = dw_1.SaveAs("custom.PDF", PDF!, true)

System requirements
for the distill method

Users must have administrative privileges to create a PDF file.

To support saving as PDF using Ghostscript, you must download and install
Ghostscript files on your system as described in the chapter on deploying
applications and components in Application Techniques. You also need to
install PostScript driver files.

If you have installed a PostScript printer on your computer, the PostScript
driver files required to create PDF files, PSCRIPT5.DLL, PS5UI.DLL, and
pscript.ntf, are already installed, typically in
C:\WINDOWS\system32\spool\drivers\w32x86 on Windows XP or
C:\Windows\System32\DriverStore\FileRepository\ntprint.inf_1a216484\Amd
64 on a 64-bit Vista system. You must use the version of these files that is
appropriate to the operating system where the PDF file is created. You should
copy the files to the Sybase\Shared\PowerBuilder\drivers directory.

If you have never installed a PostScript printer, use the Printers and Faxes
option in the Windows control panel to install a generic PostScript printer. If
the Pscript5.dll has never been installed, you may be prompted to insert the
Windows install CD.

Other related files are installed in Sybase\Shared\PowerBuilder\drivers.

Saving as PDF fails at runtime on Windows 2003 Server. This is caused by a
Group Policy that by default disallows installation of printers that use
kernel-mode drivers. Kernel-mode drivers have access to system-wide
memory, and poorly written drivers can cause system failures. To allow
installation of kernel-mode drivers, follow these steps:

1 Select Run from the Windows Start menu.

2 In the Open box, type gpedit.msc and click OK.

Saving data in an external file

552 PowerBuilder Classic

3 In the Group Policy console, expand Computer Configuration,
Administrative Templates, and Printers.

4 Disable “Disallow Installation of Printers Using Kernel-Mode Drivers.”

When you deploy applications that use the ability to save as PDF with the
distill method, you must make sure your users have installed Ghostscript and
have access to the drivers directory.

See the chapter on deployment in Application Techniques for more information
about redistributing these files.

Saving as PDF using XSL-FO

If you want to save to PDF using XSL-FO, you must set one or more properties
before saving.

In the DataWindow
painter

In the DataWindow painter, you set PDF export properties on the Data Export
page in the Properties view.

❖ To save PDF output using XSL-FO in the DataWindow painter:

1 Select the Data Export tab in the Properties view for the DataWindow
object.

2 Select PDF from the Format to Configure drop-down list and select
XSLFOP! from the Method drop-down list.

3 (Optional) If you want simultaneously to send the output directly to a
printer using the Java printing option of the Apache FOP processor, select
the Print Using XSLFOP check box.

4 Save the DataWindow object, then select File>Save Rows As, select PDF
as the Save As Type, specify a file name, and click Save.

PowerBuilder saves the data in the DataWindow object to the file you
specified. If you selected the Print Using XSLFOP check box, it also sends
the PDF file to the default printer for your system.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 553

In a script In a script, set the Export.PDF.Method property to XSLFOP! before saving the
DataWindow object as PDF using the SaveAs method with the SaveAsType
PDF!. To send the PDF file directly to the default printer, set the
Export.PDF.XSLFOP.Print property to 1 or Yes before saving:

int li_ret
dw_1.Modify("DataWindow.Export.PDF.Method = XSLFOP! ")
dw_1.Modify("DataWindow.Export.PDF.xslfop.print='1'")
li_ret = dw_1.SaveAs("printed.pdf", PDF!, true)

Saving as XSL-FO

You can also save a DataWindow object as XSL-FO, then use the processor of
your choice to convert the XSL-FO string to the format you want, applying
your own customizations to the conversion. Processors such as the Apache
XSL Formatting Objects processor (FOP) can convert XSL-FO documents
into several output formats including PDF, PCL, and AWT.

In the DataWindow painter, select File>Save Rows As and select XSL-FO as
the file type. In a script, you can use the SaveAs method with the SaveAsType
XSLFO!.

For a DataWindow named dwemp, the following command lines show the FOP
syntax for producing a PDF, a print preview rendered on screen (-awt), and
printable output rendered and sent to a printer (-print):

Fop dwemp.fo dwemp.pdf
Fop dwemp.fo -awt
Fop dwemp.fo -print

For more information about using FOP, see the FOP page of the Apache XML
Project Web site at http://xml.apache.org/fop/.

System requirements for XSL-FO

The Apache XSL Formatting Objects processor (FOP) and the Sun JDK are
installed with PowerBuilder to support saving as XSL-FO, saving as PDF
using XSL-FO, and Java printing. Both are installed in the
Sybase\Shared\PowerBuilder directory.

When you deploy applications that use XSL-FO or Java printing, your users
must have the FOP directory and the Java Runtime Environment installed on
their computers. For more information, see the chapter on deploying your
applications in Application Techniques.

Saving data in an external file

554 PowerBuilder Classic

On Windows DBCS platforms, you also need to install a file that supports
DBCS characters to the Windows font directory, for example,
C:\WINDOWS\fonts. To use these fonts, the userconfig.xml file in the FOP conf
directory must be modified to give the full path name of the files you use, for
example:

<font metrics-
file="C:\Program%20Files\Sybase\Shared\PowerBuilder\fo
p-0.20.4\conf\cyberbit.xml" kerning="yes" embed-
file="C:\WINNT\Fonts\Cyberbit.ttf">

For more information about configuring fonts, see the Apache Web site at
http://xml.apache.org/fop.

Saving the data in HTML Table format
HTML Table format is one of the formats in which you can choose to save data.
When you save in HTML Table format, PowerBuilder saves a style sheet along
with the data. If you use this format, you can open the saved file in a browser
such as Internet Explorer. Once you have the file in HTML Table format, you
can continue to enhance the file in HTML.

About the results Some presentation styles translate better into HTML than others. The Tabular,
Group, Freeform, Crosstab, and Grid presentation styles produce good results.
The Composite, RichText, OLE 2.0, and Graph presentation styles and nested
reports produce HTML tables based on the result set (data) only and not on the
presentation style. DataWindows with overlapping controls in them might not
produce the results you want.

❖ To save a report as an HTML table:

1 Open a DataWindow object.

2 Open the Preview view if it is not already open.

3 Select File>Save Rows As from the menu bar.

4 Choose the HTML Table format for the file from the Save As Type
drop-down list.

5 Name the file.

PowerBuilder creates a file using the name you supplied and the extension
htm.

6 Open a Web browser.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 555

7 Use the browser’s file open command to open the HTML file.

For more information about working with DataWindow objects and HTML,
see the DataWindow Programmers Guide.

Working with PSR files
A PSR file is a special file with the extension PSR created by PowerBuilder,
InfoMaker, or DataWindow Designer.

Windows and PSR files
When PowerBuilder is installed, the PSR file type is registered with Windows.

A PSR file contains a DataWindow definition (source and object) as well as the
data contained in the DataWindow object when the PSR file was created.

Figure 19-1: PSR file

About reports
A report is the same as a nonupdatable DataWindow object. For more
information, see “Reports versus DataWindow objects” on page 478.

You can use a PSR file to save a complete report (report design and data). This
can be especially important if you need to keep a snapshot of data taken against
a database that changes frequently.

PowerBuilder creates a PSR file when you save data in the Powersoft report
file format. See “Saving data in an external file” on page 548. PSR files are
used primarily by InfoMaker, a reporting tool. When an InfoMaker user opens
a PSR file, InfoMaker displays the report in the Report painter. If InfoMaker is
not already running, opening a PSR file automatically starts InfoMaker.

To open a PSR file in PowerBuilder, open any DataWindow object, then select
File>Open File and select the PSR file.

Modifying general DataWindow object properties

556 PowerBuilder Classic

Modifying general DataWindow object properties
This section describes the general DataWindow object properties that you can
modify.

Changing the DataWindow object style
The general style properties for a DataWindow object include:

• The unit of measure used in the DataWindow object

• A timer interval for events in the DataWindow object

• A background color for the DataWindow object

PowerBuilder assigns defaults when it generates the basic DataWindow object.
You can change the defaults.

❖ To change the default style properties:

1 Position the pointer in the background of the DataWindow object, display
the pop-up menu, and select Properties.

The Properties view displays with the General page on top.

2 Click the unit of measure you want to use to specify distances when
working with the DataWindow object:

• PowerBuilder units (PBUs) Normalized units

• Pixels (smallest element on the display monitor)

• Thousandths of an inch

• Thousandths of a centimeter

Choosing the unit of measure
If you plan to print the contents of the DataWindow object at runtime,
change the unit of measure to inches or centimeters to make it easier to
specify the margin measurements.

3 Specify the number of milliseconds you want between internal timer
events in the DataWindow object.

This value determines how often PowerBuilder updates the time fields in
the DataWindow object. (Enter 60,000 milliseconds to specify one
minute.)

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 557

4 If the DataWindow contains buttons, set the ShowBackColorOnXP
property to make sure that the background color you select for the buttons
displays on systems using the XP style.

5 On the Background page, select a background color from the Color drop-
down list. The default color is the window background color.

Setting colors in a DataWindow object
You can set different colors for each element of a DataWindow object to
enhance the display of information.

❖ To set a solid background color in a DataWindow object:

1 Position the mouse on an empty spot in the DataWindow object, display
the pop-up menu, and select Properties.

2 On the Background page in the Properties view for the DataWindow
object, select Solid from the Brush Mode drop-down list and a color from
the Color drop-down list.

❖ To set a solid color for a band in a DataWindow object:

1 Position the mouse pointer on the bar that represents the band, display the
pop-up menu, then select Properties.

2 On the Background page in the Properties view, select Solid from the
Brush Mode drop-down list and a color from the Color drop-down list.

The choice you make here overrides the background color for the
DataWindow object.

❖ To set solid colors in controls in a DataWindow object:

• Position the mouse pointer on the control, display the pop-up menu, then
select Properties.

You can set colors in the Background page in the Properties view.

For controls that use text, you can set colors for text on the Font page in
the Properties view. For drawing controls, you can set colors on the
General or Background page in the Properties view.

Modifying general DataWindow object properties

558 PowerBuilder Classic

Setting gradients and background pictures in a DataWindow object
You can use the background effects to give the DataWindow object more visual
interest. For example, you can set a vertical gradient on a header band to
differentiate it from the other bands in the DataWindow object:

❖ To set a gradient background in a DataWindow object:

1 Position the mouse on an empty spot in the DataWindow object, display
the pop-up menu, and select Properties.

2 On the Background page in the Properties view for the DataWindow
object, select a type of gradient from the Brush Mode drop-down list.

3 Select the primary (background) color from the Color drop-down list.

4 Select the secondary (gradient) color from the Gradient group Color
drop-down list.

❖ To set a picture as the background in a DataWindow object:

1 Position the mouse on an empty spot in the DataWindow object, display
the pop-up menu, and select Properties.

2 On the Background page in the Properties view for the DataWindow
object, select Picture from the Brush Mode drop-down list.

3 Specify the image file in the File field in the Picture group.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 559

4 From the Tile Mode drop-down list, select the style you want to use.

Selections from the drop-down list allow you to display the picture in its
original size, stretch the picture in different directions, or tile multiple
copies of the picture in a variety of possible patterns.

Setting transparency properties for a DataWindow object
You can change the transparency settings for colors and pictures.

❖ To set the transparency of a gradient in a DataWindow object:

1 Position the mouse on an empty spot in the DataWindow object, display
the pop-up menu, and select Properties.

2 On the Background page in the Properties view for the DataWindow
object, locate the Gradient group.

3 Move the Gradient group Transparency slider until the gradient
(secondary) color is set to the desired transparency.

You can see the appearance in the Design view. The more transparent the
gradient color is, the more you will see the primary (background) color.

❖ To set the transparency of a background picture in a DataWindow object:

1 Position the mouse on an empty spot in the DataWindow object, display
the pop-up menu, and select Properties.

2 On the Background page in the Properties view for the DataWindow
object, locate the Picture group.

3 Move the Picture group Transparency slider until the image is set to the
desired transparency.

You can see the appearance in the Design view.

Specifying properties of a grid DataWindow object
In grid DataWindow objects, you can specify:

• When grid lines are displayed

• How users can interact with the DataWindow object at runtime

Modifying general DataWindow object properties

560 PowerBuilder Classic

❖ To specify basic grid DataWindow object properties:

1 Position the mouse pointer on the background in a grid DataWindow
object, display the pop-up menu, and select Properties.

2 Select the options you want in the Grid section on the General page in the
Properties view as described in Table 19-3.

Table 19-3: Options for grid DataWindow objects

Specifying pointers for a DataWindow object
Just as with colors, you can specify different pointers to use when the mouse is
over a particular area of the DataWindow object. For example, you might want
to change the pointer when the mouse is over a column whose data cannot be
changed.

❖ To change the mouse pointer used at runtime:

1 Position the mouse over the element of the DataWindow object whose
pointer you want to define, display the pop-up menu, and select Properties
to display the appropriate Properties view.

You can set a pointer for the entire DataWindow object, specific bands,
and specific controls.

2 Select the Pointer tab.

3 Either choose the pointer from the Stock Pointers list or, if you have a file
containing pointer definitions (CUR files), enter a pointer file name.

You can use the Browse button to search for the file.

4 Click OK.

Option Result

On Grid lines always display

Off Grid lines never display (users cannot resize columns at
runtime)

Display Only Grid lines display only when the DataWindow object displays
online

Print Only Grid lines display only when the contents of the DataWindow
object are printed

Column Moving Columns can be moved at runtime

Mouse Selection Data can be selected at runtime (and, for example, copied to the
clipboard)

Row Resize Rows can be resized at runtime

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 561

Defining print specifications for a DataWindow object
When you are satisfied with the look of the DataWindow object, you can define
its print specifications.

❖ To define print specifications for a DataWindow object:

1 In the DataWindow painter, select Properties from the DataWindow
object’s pop-up menu.

2 In the Units box on the General page, select a unit of measure.

It is easier to specify the margins when the unit of measure is inches or
centimeters.

3 Select the Print Specifications tab.

The Print Specifications properties use the units of measure you specified
on the General page.

4 Specify print specifications for the current DataWindow object.

See Table 19-4 for more information.

Modifying general DataWindow object properties

562 PowerBuilder Classic

Table 19-4: Setting print specifications for DataWindow objects

Setting Description

Document Name Specify a name to be used in the print queue to identify the
report.

Printer Name Specify the name of a printer to which this report should be
sent. If this box is empty, the report is sent to the default
system printer. If the specified printer cannot be found, the
report is sent to the default system printer if the Can Use
Default Printer check box is selected. If the specified
printer cannot be found and the Can Use Default Printer
check box is not selected, an error is returned.

Margins Specify top, bottom, left, and right margins. You can also
change margins in the Preview view while you are actually
looking at data. If you change margins in the Preview view,
the changes are reflected here on the Print Specifications
page.

Paper Orientation Choose one of the following:

• Default: Uses the default printer setup.

• Portrait: Prints the contents of the DataWindow object
across the width of the paper.

• Landscape: Prints the contents of the DataWindow
object across the length of the paper.

Paper Size Choose a paper size or leave blank to use the default.

Paper Source Choose a paper source or leave blank to use the default.

Prompt Before Printing Select to display the standard Print Setup dialog box each
time users make a print request.

Can Use Default
Printer

Clear this check box if a printer has been specified in the
Printer Name box and you do not want the report to be sent
to the default system printer if the specified printer cannot
be found. This box is checked by default if a printer name
is specified.

Display Buttons - Print
Preview

Select to display Button controls in Print Preview. The
default is to hide them.

Display Buttons - Print Select to display Button controls when you print the report.
The default is to hide them.

Clip Text Select to clip static text to the dimensions of a text field
when the text field has no visible border setting. The text is
always clipped if the text field has visible borders.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 563

Printing with newspaper-style columns

When you define a DataWindow object, you can specify that it print in multiple
columns across the page, like a newspaper. A typical use of newspaper-style
columns is a phone list, where you want to have more than one column of
names on a printed page.

Use Print Preview to see the printed output
Newspaper-style columns are used only when the DataWindow object is
printed. They do not appear when a DataWindow object runs (or in Preview).
Therefore, to see them in PowerBuilder, use Print Preview in the DataWindow
painter.

❖ To define newspaper-style columns for a DataWindow object:

1 Build a tabular DataWindow object with the data you want.

2 Select Properties from the DataWindow object’s pop-up menu.

3 Select the Print Specifications tab.

Override Print Job When you print a series of reports using the PrintOpen,
PrintDataWindow, and PrintClose methods, all the reports
in the print job use the layout, fonts, margins, and other
print specifications defined for the computer. Select this
check box to override the default print job settings and use
the print settings defined for this report.

Collate Copies Select to collate copies when printing. Collating increases
print time because the print operation is repeated to
produce collated sets.

Print Preview Shows
Outline

Select to display a blue outline to show the location of the
margins.

Print Shows
Background

Whether the background settings of the DataWindow and
controls are included when the DataWindow is printed.

Preview Shows
Background

Whether the background settings of the DataWindow and
controls display in the print preview.

Newspaper Columns
Across and Width

If you want a multiple-column report where the data fills
one column on a page, then the second, and so on, as in a
newspaper, select the number and width of the columns in
the Newspaper Columns boxes. See “Printing with
newspaper-style columns” next.

Setting Description

Modifying general DataWindow object properties

564 PowerBuilder Classic

4 Specify the number of columns across the page and the width of columns
in the Newspaper Columns Across and Newspaper Columns Width
properties.

5 For each control in the DataWindow object that you do not want to have
appear multiple times on the page (such as headers), select Properties from
the control’s pop-up menu and select the HideSnaked check box on the
General page in the Properties view.

Example This example describes how to create a newspaper-style DataWindow object
using the Employee table in the EAS Demo DB.

1 Create a tabular DataWindow object, selecting the last name, first name,
and phone number columns, and add a title, page number, and date.

The Emp_Fname column and the text control holding a comma are defined
as Slide Left, so they display just to the right of the Emp_Lname column.

2 On the Print Specifications page of the DataWindow object’s Properties
view, specify two columns across and a column width of 3.5 inches in the
Newspaper Columns boxes. (Make sure that Units is set to inches on the
General property page.)

3 To view the DataWindow object as it will be printed, place the pointer in
the Preview view and select File>Print Preview.

The DataWindow object displays the result set in two columns. Everything
above the column headers (which includes page number, title, and date)
also shows twice because of the 2-column specification. This information
should appear only once per page.

4 To specify that page number, title, and date appear only once on the page,
you need to suppress printing after the first column. For each of these
controls, select Properties from the control’s pop-up menu. Then set the
HideSnaked property.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 565

The finished DataWindow object has one set of page heading information and
two columns of column header and detail information.

Modifying text in a DataWindow object
When PowerBuilder initially generates the basic DataWindow object, it uses
the following attributes and fonts:

• For the text and alignment of column headings and labels, PowerBuilder
uses the extended column attributes made in the Database painter.

• For fonts, PowerBuilder uses the definitions made in the Database painter
for the table. If you did not specify fonts for the table, PowerBuilder uses
the defaults set in the Application painter.

You can override any of these defaults in a particular DataWindow object.

❖ To change text in a DataWindow object:

1 Select the text.

The first box in the StyleBar is now active.

2 Type the new text.

Use ~n~r to embed a newline character in the text.

❖ To change the text properties for a text control in a DataWindow object:

1 Select the text control.

2 Do one of the following:

Modifying general DataWindow object properties

566 PowerBuilder Classic

• Change the text properties in the StyleBar.

• Select the Font page in the control’s Properties view and change the
properties there.

Defining the tab order in a DataWindow object
When PowerBuilder generates the basic DataWindow object, it assigns
columns a default tab order, the default sequence in which focus moves from
column to column when a user presses the Tab key at runtime. PowerBuilder
assigns tab values in increments of 10 in left-to-right and top-to-bottom order.

Tab order is not used in the Design view
Tab order is used when a DataWindow object runs, but it is not used in the
DataWindow painter Design view. In the Design view, the Tab key moves to
the controls in the DataWindow object in the order in which the controls were
placed in the Design view.

If the DataWindow
object contains
columns from more
than one table

If you are defining a DataWindow object with more than one table,
PowerBuilder assigns each column a tab value of 0, meaning the user cannot
tab to the column. This is because, by default, multitable DataWindow objects
are not updatable—users cannot modify data in them. You can change the tab
values to nonzero values to allow tabbing in these DataWindow objects.

For more about controlling updates in a DataWindow object, see Chapter 21,
“Controlling Updates in DataWindow objects.”

Tab order changes have no effect in grid DataWindow objects
In a grid DataWindow object, the tab sequence is always left to right (except
on right-to-left operating systems). Changing the tab value to any number other
than 0 has no effect.

❖ To change the tab order:

1 Select Format>Tab Order from the menu bar or click the Tab Order button
on PainterBar2.

The current tab order displays.

2 Use the mouse or the Tab key to move the pointer to the tab value you want
to change.

3 Enter a new tab value in the range 0 to 9999.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 567

0 removes the column from the tab order (the user cannot tab to the
column). It does not matter exactly what value you use (other than 0); all
that matters is relative value. For example, if you want the user to tab to
column B after column A but before column C, set the tab value for
column B so it is between the value for column A and the value for column
C.

4 Repeat the procedure until you have the tab order you want.

5 Select Format>Tab Order from the menu bar or click the Tab Order button
again.

PowerBuilder saves the tab order.

Each time you select Tab Order, PowerBuilder reassigns tab values to include
any columns that have been added to the DataWindow object and to allow
space to insert new columns in the tab order.

Changing tab order at runtime
To change tab order programmatically at runtime, use the SetTabOrder method.

Naming controls in a DataWindow object
You use names to identify columns and other controls in validation rules,
filters, PowerScript functions, and DataWindow expression functions.

The DataWindow painter automatically generates names for all controls in a
DataWindow object. To name columns, labels, and headings, the DataWindow
painter uses database and extended attribute information. To name all other
controls, it uses a system of prefixes. You can control the prefixes used for
automatic name generation and you can specify the name of any control
explicitly.

❖ To specify prefixes for naming controls systematically in a DataWindow
object:

1 Select Design>Options from the menu bar and then select the Prefixes tab.

2 Change prefixes as desired and click OK.

❖ To specify a name of a control in a DataWindow object:

1 Select Properties from the control’s pop-up menu and then select the
General tab in the Properties view.

2 Type the name in the Name box.

Modifying general DataWindow object properties

568 PowerBuilder Classic

Using borders in a DataWindow object
You can place borders around text, columns, graphs, and crosstabs to enhance
their appearance. PowerBuilder provides six types of borders: Underline, Box,
ResizeBorder, ShadowBox, Raised, and Lowered:

Border appearance varies
Changing the border style may not have the same effect on all Windows
operating systems and display settings.

❖ To add a border to a control in a DataWindow object:

1 Select one or more controls.

2 Select the border you want from the Border drop-down toolbar in the
PainterBar.

PowerBuilder places the border around the selected controls.

You can also specify a border for one or more controls in the Properties view
on the General page.

Specifying variable-height bands in a DataWindow object
Sometimes DataWindow objects contain columns whose data is of variable
length. For example, a Memo column in a table might be a character column
that can take up to several thousand characters. Reserving space for that much
information for the column in the detail band would make the detail band’s
height very large, meaning users could see few rows at a time.

The detail band can resize based on the data in the Memo column. If the Memo
column has only one line of text, the detail band should be one line. If the
Memo column has 20 lines of text, the detail band should be 20 lines high.

To provide a band that resizes as needed, specify that the variable-length
columns and the band have Autosize Height. All bands in the DataWindow can
be resized, but nested report overflow is supported only in the Detail band. If
autosizing would preclude the display of at least one Detail band row per page,
other bands cannot be autosized. Autosizing is not supported with the Graph,
RichText, OLE, or Label presentation styles.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 569

❖ To create a resizable band in a DataWindow object:

1 Select Properties from the pop-up menu of a column that should resize
based on the amount of data.

2 Select the Autosize Height check box on the Position page.

3 Clear the Auto Horizontal Scroll check box on the Edit page.

PowerBuilder wraps text in the Preview view instead of displaying text on
one scrollable line.

4 Repeat steps 1 to 3 for any other columns that should resize.

5 Select Properties from the band’s pop-up menu.

6 Select the Autosize Height check box on the General page.

In the Preview view, the band resizes based on the contents of the columns you
defined as having their height sized automatically.

Using the RowHeight
function with Autosize
Height

When a detail band has Autosize Height set to “true”, you should avoid using
the RowHeight DataWindow expression function to set the height of any
element in the row. Doing so can result in a logical inconsistency between the
height of the row and the height of the element. If you need to use RowHeight,
you must set the Y coordinate of the element to 0 on the Position page in the
Properties view, otherwise the bottom of the element might be clipped. You
must do this for every element that uses such an expression. If you move any
elements in the band, make sure that their Y coordinates are still set to 0.

You should not use an expression whose runtime value is greater than the value
returned by RowHeight. For example, you should not set the height of a column
to rowheight() + 30. Such an expression produces unpredictable results at
runtime.

Clipping columns
You can have Autosize Height columns without an Autosize Height detail
band. If such a column expands beyond the size of the detail band in the
Preview view, it is clipped.

Modifying general DataWindow object properties

570 PowerBuilder Classic

Modifying the data source of a DataWindow object
When modifying a DataWindow object, you might realize that you have not
included all the columns you need, or you might need to define retrieval
arguments. You can modify the data source from the DataWindow painter.
How you do it depends on the data source.

Modifying SQL SELECT statements

If the data source is SQL (such as Quick Select, SQL Select, or Query), you can
graphically modify the SQL SELECT statement.

❖ To modify a SQL data source:

1 Select Design>Data Source from the menu bar.

PowerBuilder returns you to the SQL Select painter. (If you used Quick
Select to define the data source, this might be the first time you have seen
the SQL Select painter.)

2 Modify the SELECT statement graphically using the same techniques as
when creating it.

For more information, see “Using SQL Select” on page 499.

Modifying the statement syntactically
Select Design>Convert to Syntax from the menu bar to modify the
SELECT statement syntactically.

3 Click the Return button to return to the painter.

Some changes you make (such as adding or removing columns) require
PowerBuilder to modify the update capabilities of the DataWindow object.

For more information about controlling updates in a DataWindow object, see
Chapter 21, “Controlling Updates in DataWindow objects.”

Changing the table
If you change the table referenced in the SELECT statement, PowerBuilder
maintains the columns in the Design view (now from a different table) only if
they match the datatypes and order of the columns in the original table.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 571

Modifying the retrieval
arguments

You can add, modify, or delete retrieval arguments when modifying your data
source.

❖ To modify the retrieval arguments:

1 In the SQL Select painter, select Design>Retrieval Arguments from the
menu bar.

The Specify Retrieval Arguments dialog box displays, listing the existing
arguments.

2 Add, modify, or delete the arguments.

3 Click OK.

You return to the SQL Select painter, or to the text window displaying the
SELECT statement if you are modifying the SQL syntactically.

4 Reference any new arguments in the WHERE or HAVING clause of the
SELECT statement.

For more information about retrieval arguments, see Chapter 18, “Defining
DataWindow Objects.”

Modifying the result set

If the data source is External or Stored Procedure, you can modify the result set
description.

❖ To modify a result set:

1 If the Column Specification view is not open, select View>Column
Specifications from the menu bar.

2 Review the specifications and make any necessary changes.

If the data source is a
stored procedure

If you are modifying the result set for a DataWindow object whose data source
is a stored procedure, the pop-up menu for the Column Specification view
contains the menu item Stored Procedure.

Select Stored Procedure from the Column Specification view’s pop-up menu
to edit the Execute statement, select another stored procedure, or add retrieval
arguments. For more information about editing the Execute statement, see
“Using Stored Procedure” on page 516.

Storing data in a DataWindow object using the Data view

572 PowerBuilder Classic

Storing data in a DataWindow object using the Data
view

Usually you retrieve data into a DataWindow object from the database, because
the data is changeable and you want the latest information. However,
sometimes the data you display in a DataWindow object never changes (as in
a list of states or provinces), and sometimes you need a snapshot of the data at
a certain point in time. In these situations, you can store the data in the
DataWindow object itself. You do not need to go out to the database or other
data source to display the data.

The most common reason to store data in a DataWindow object is for use as a
drop-down DataWindow where the data is not coming from a database. For
example, you might want to display a list of postal codes for entering values in
a State or Province column in a DataWindow object. You can store those codes
in a DataWindow object and use the DropDownDataWindow edit style for the
column.

For more information about using the DropDownDataWindow edit style, see
Chapter 22, “Displaying and Validating Data.”

❖ To store data in a DataWindow object:

1 If the Data view is not already displayed, select View>Data from the menu
bar.

In the default layout for the DataWindow painter, the Data view displays
in a stacked pane under the Properties view. All columns defined for the
DataWindow object are listed at the top.

2 Do any of the following:

• Click the Insert Row button in the PainterBar to create an empty row
and type a row of data. You can enter as many rows as you want.

• Click the Retrieve button in the PainterBar to retrieve all the rows of
data from the database. You can delete rows you do not want to save
or manually add new rows.

• Click the Delete button in the PainterBar to delete unwanted rows.

Data changes are local to the DataWindow object
Adding or deleting data here does not change the data in the database. It
only determines what data will be stored with the DataWindow object
when you save it. The Update DB button is disabled.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 573

3 When you have finished, save the DataWindow object.

When you save the DataWindow object, the data is stored in the DataWindow
object.

Sharing data with the
Preview view

To see changes you make in the Data view reflected in the Preview view, select
ShareData from the pop-up menu in the Data view. The Preview view shows
data from the storage buffer associated with the Data view.

Saving the
DataWindow object
without data

If you saved the DataWindow object with data to obtain a snapshot, you usually
need to save it again without data. To do so, select Delete All Rows from the
pop-up menu in the Data view before saving.

Sharing DataWindow objects with other developers
Storing data in a DataWindow object is a good way to share data and its
definition with other developers. They can simply open the DataWindow
object on their computers to get the data and all its properties.

What happens at runtime
Data stored in a DataWindow object is stored within the actual object itself, so
when a window opens showing such a DataWindow, the data is already there.
There is no need to issue Retrieve to get the data.

PowerBuilder never retrieves data into a drop-down DataWindow that already
contains data. For all other DataWindow objects, if you retrieve data into a
DataWindow object stored with data, PowerBuilder handles it the same as a
DataWindow object that is not stored with data: PowerBuilder gets the latest
data by retrieving rows from the database.

Retrieving data

574 PowerBuilder Classic

Retrieving data
In a DataWindow object, you can prompt for retrieval criteria, retrieve rows as
needed, and save retrieved rows to disk.

Prompting for retrieval criteria in a DataWindow object
You can define your DataWindow object so that it always prompts for retrieval
criteria just before it retrieves data. PowerBuilder allows you to prompt for
criteria when retrieving data for a DataWindow control, but not for a DataStore
object.

❖ To prompt for retrieval criteria in a DataWindow object:

1 If the Column Specifications view is not already displayed, select
View>Column Specifications from the menu bar.

In the default layout for the DataWindow painter, the Column
Specifications view displays in a stacked pane under the Properties view.
All columns defined for the DataWindow object are listed in the view.

2 Select the Prompt check box next to each column for which you want to
specify retrieval criteria at runtime.

When you specify prompting for criteria, PowerBuilder displays the Specify
Retrieval dialog box just before a retrieval is to be done. (It is the last thing that
happens before the SQLPreview event.)

Each column you selected in the Column Specification view displays in the
grid. Users can specify criteria here exactly as in the grid in the Quick Select
dialog box. Criteria specified here are added to the WHERE clause for the SQL
SELECT statement defined for the DataWindow object.

Testing in PowerBuilder
You can test the prompting for criteria by retrieving data in the Preview view
of the DataWindow object.

CHAPTER 19 Enhancing DataWindow Objects

Users Guide 575

Using edit styles If a column uses a code table or the RadioButton, CheckBox, or
DropDownListBox edit style, an arrow displays in the column header and users
can select a value from a drop-down list when specifying criteria:

If you do not want the drop-down list used for a column for specifying retrieval
criteria to display, select the Override Edit check box on the General page of
the column’s Properties view.

Forcing the entry of
criteria

If you have specified prompting for criteria for a column, you can force the
entry of criteria for the column by selecting the Equality Required check box
on the Behavior page of the column’s Properties view. PowerBuilder
underlines the column header in the grid during prompting. Selection criteria
for the specified column must be entered, and the = operator must be used.

For more information The section “Using Quick Select” on page 489 describes in detail how you and
your users can specify selection criteria in the grid.

The chapter on dynamic DataWindow objects in the DataWindow
Programmers Guide describes how to write code to allow users to specify
retrieval criteria at runtime.

Retrieving rows as needed
If a DataWindow object retrieves hundreds of rows, there can be a noticeable
delay at runtime while all the rows are retrieved and before control returns to
the user. For these DataWindow objects, PowerBuilder can retrieve only as
many rows as it has to before displaying data and returning control to the user.

For example, if a DataWindow object displays only 10 rows at a time,
PowerBuilder only needs to retrieve 10 or more rows before presenting the
data. Then, as users page through the data, PowerBuilder continues to retrieve
what is necessary to display the new information. There may be slight pauses
while PowerBuilder retrieves the additional rows, but these pauses are usually
preferable to waiting a long time to start working with data.

Retrieving data

576 PowerBuilder Classic

❖ To specify that a DataWindow object retrieve only as many rows as it
needs to:

• Select Rows>Retrieve Options>Rows As Needed from the menu bar.

With this setting, PowerBuilder presents data and returns control to the
user when it has retrieved enough rows to display in the DataWindow
object.

Retrieve Rows As Needed is overridden if you have specified sorting or have
used aggregate functions, such as Avg and Sum, in the DataWindow object.
This is because PowerBuilder must retrieve every row before it can sort or
perform aggregates.

In a multiuser situation, Retrieve Rows As Needed might lock other people out
of the tables.

Saving retrieved rows to disk
If you want to maximize the amount of memory available to PowerBuilder and
other running applications, PowerBuilder can save retrieved data on your hard
disk in a temporary file rather than keep the data in memory. PowerBuilder
swaps rows of data from the temporary file into memory as needed to display
data.

❖ To maximize available memory by saving retrieved rows to disk:

• Select Rows>Retrieve Options>Rows to Disk from the menu bar.

With this setting, when displaying data, PowerBuilder swaps rows of data
from the temporary file into memory instead of keeping all the retrieved
rows of data in memory.

Users Guide 577

C H A P T E R 2 0 Working with Controls in
DataWindow Objects

About this chapter One of the ways you can enhance a DataWindow object is to add controls,
such as columns, drawing objects, buttons, and computed fields. You can
also change the layout of the DataWindow object by reorganizing,
positioning, and rotating controls. This chapter shows you how.

Contents

Adding controls to a DataWindow object
This section describes adding controls to enhance your DataWindow
object.

Adding columns to a DataWindow object
You can add columns that are included in the data source to a DataWindow
object. When you first create a DataWindow object, each of the columns
in the data source is automatically placed in the DataWindow object.
Typically, you would add a column to restore one that you had deleted
from the DataWindow object, or to display the column more than once in
the DataWindow object.

Topic Page

Adding controls to a DataWindow object 577

Reorganizing controls in a DataWindow object 593

Positioning controls in a DataWindow object 599

Rotating controls in a DataWindow object 600

Adding controls to a DataWindow object

578 PowerBuilder Classic

Adding columns not previously retrieved to the data source
To specify that you want to retrieve a column not previously retrieved (that is,
add a column to the data source), you must modify the data source.

See “Modifying the data source of a DataWindow object” on page 570.

❖ To add a column from the data source to a DataWindow object:

1 Select Insert>Control>Column from the menu bar.

2 Click where you want to place the column.

The Select Column dialog box displays, listing all columns included in the
data source of the DataWindow object.

3 Select the column and click OK.

Insert columns instead
of copying them

If you want to add a column from the DataWindow definition to a
DataWindow, always use Insert>Control>Column. You might see unexpected
results if you copy a column from one DataWindow object to another if they
both reference the same column but the column order is different. This is
because copying a column copies a reference to the column’s id in the
DataWindow definition.

Suppose d_first and d_second both have first_name and last_name columns, but
first_name is column 1 in d_first and column 2 in d_second. If you delete the
first_name column in d_second and paste column 1 from d_first in its place,
both columns in d_second display the last_name column in the Preview view,
because both columns now have a column id of 1.

Adding text to a DataWindow object
When PowerBuilder generates a basic DataWindow object from a presentation
style and data source, it places columns and their headings in the DataWindow
painter. You can add text anywhere you want to make the DataWindow object
easier to understand.

❖ To add text to a DataWindow object:

1 Select Insert>Control>Text from the menu bar.

2 Click where you want the text.

PowerBuilder places the text control in the Design view and displays the
word text.

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 579

3 Type the text you want.

4 (Optional) Change the font, size, style, and alignment for the text using the
StyleBar.

Displaying an ampersand character
If you want to display an ampersand character, type a double ampersand in the
Text field. A single ampersand causes the next character to display with an
underscore because it is used to indicate accelerator keys.

About the default font
and style

When you place text in a DataWindow object, PowerBuilder uses the font and
style (such as boldface) defined for the application’s text in the Application
painter. You can override the text properties for any text in a DataWindow
object.

For more about changing the application’s default text font and style, see
Chapter 5, “Working with Targets.”

Adding drawing controls to a DataWindow object
You can add the following drawing controls to a DataWindow object to
enhance its appearance:

Rectangle
RoundRectangle
Line
Oval

❖ To place a drawing control in a DataWindow object:

1 Select the drawing control from the Insert>Control menu.

2 Click where you want the control to display.

3 Resize or move the drawing control as needed.

4 Use the drawing control’s Properties view to change its properties as
needed.

For example, you might want to specify a fill color for a rectangle or
thickness for a line.

Adding controls to a DataWindow object

580 PowerBuilder Classic

Adding a group box to a DataWindow object
To visually enhance the layout of a DataWindow object, you can add a group
box. A group box is a static frame used to group and label a set of controls in a
DataWindow object. The following example shows two group boxes in a report
(nonupdatable DataWindow object). The Address group box groups address
information and the Phone/Fax group box groups telephone numbers.

❖ To add a group box to a DataWindow object:

1 Select Insert>Control>GroupBox from the menu bar and click in the
Design view.

2 Click where you want the control to display.

3 With the group box selected, type the text to display in the frame in.

4 Move and resize the group box as appropriate.

Adding pictures to a DataWindow object
You can place pictures, such as your company logo, in a DataWindow object
to enhance its appearance. If you place a picture in the header, summary, or
footer band of the DataWindow object, the picture displays each time the
content of that band displays. If you place the picture in the detail band of the
DataWindow object, it displays in each row.

❖ To place a picture in a DataWindow object:

1 Select Insert>Control>Picture from the menu bar.

2 Click where you want the picture to display.

The Select Picture dialog box displays.

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 581

3 Use the Browse button to find the file or enter a file name in the File Name
box. Then click Open.

The picture must be a bitmap (BMP), runlength-encoded (RLE), Windows
metafile (WMF), Graphics Interchange Format (GIF), or Joint
Photographic Experts Group (JPEG) file.

4 Display the pop-up menu and select Original Size to display the image in
its original size.

You can use the mouse to change the size of the image in the DataWindow
painter.

5 Select the Invert Image check box on the Appearance page in the
Properties view to display the picture with its colors inverted.

Tips for using pictures To display a different picture for each row of data, retrieve a column containing
picture file names from the database. For more information, see “Specifying
additional properties for character columns” on page 414.

To compute a picture name at runtime, use the Bitmap function in the
expression defining a computed field. If you change the image in the Picture
control in a DataWindow object, you need to reset the original size property.
The property automatically reverts to the default setting when you change the
image.

To use a picture to indicate that a row has focus at runtime, use the
SetRowFocusIndicator function.

Adding computed fields to a DataWindow object
You can use computed fields in any band of the DataWindow object. Typical
uses with examples include:

• Calculations based on column data that change for each retrieved row

If you retrieve yearly salary, you can define a computed field in the detail
band that displays monthly salary: Salary / 12.

• Summary statistics of the data

In a grouped DataWindow object, you can use a computed field to
calculate the totals of a column, such as salary, for each group: sum
(salary for group 1).

Adding controls to a DataWindow object

582 PowerBuilder Classic

• Concatenated fields

If you retrieve first name and last name, you can define a computed field
that concatenates the values so they appear with only one space between
them: Fname + " " + Lname.

• System information

You can place the current date and time in a DataWindow object’s header
using the built-in functions Today() and Now() in computed fields.

Computed columns versus computed fields

When creating a DataWindow object, you can define computed columns and
computed fields as follows:

• In the SQL Select painter, you can define computed columns when you are
defining the SELECT statement that will be used to retrieve data into the
DataWindow object.

• In the DataWindow painter, you can define computed fields after you have
defined the SELECT statement (or other data source).

The difference
between the two ways

When you define the computed column in the SQL Select painter, the value is
calculated by the DBMS when the data is retrieved. The computed column’s
value does not change until data has been updated and retrieved again.

When you define the computed field in the DataWindow painter, the value of
the column is calculated in the DataWindow object after the data has been
retrieved. The value changes dynamically as the data in the DataWindow
object changes.

Example Consider a DataWindow object with four columns: Part number, Quantity,
Price, and Cost. Cost is computed as Quantity * Price.

If Cost is defined as a computed column in the SQL Select painter, the SELECT
statement is as follows:

SELECT part.part_num,
part.part_qty,
part.part_price,
part.part_qty * part.part_price
FROM part;

Part # Quantity Price Cost

101 100 1.25 125.00

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 583

If the user changes the price of a part in the DataWindow object in this
scenario, the cost does not change in the DataWindow object until the database
is updated and the data is retrieved again. The user sees a display with the
changed price but the unchanged, incorrect cost.

If Cost is defined as a computed field in the DataWindow object, the SELECT
statement is as follows, with no computed column:

SELECT part.part_num,
part.part_qty,
part.part_price
FROM part;

The computed field is defined in the DataWindow object as Quantity *
Price.

In this scenario, if the user changes the price of a part in the DataWindow
object, the cost changes immediately.

Recommendation If you want your DBMS to do the calculations on the server before bringing
data down and you do not need the computed values to be updated dynamically,
define the computed column as part of the SELECT statement.

If you need computed values to change dynamically, define computed fields in
the DataWindow painter Design view, as described next.

Defining a computed field in the DataWindow painter Design view

❖ To define a computed field in the DataWindow painter Design view:

1 Select Insert>Control>Computed Field from the menu bar.

2 Click where you want to place the computed field.

If the calculation is to be based on column data that changes for each row,
make sure you place the computed field in the detail band.

The Modify Expression dialog box displays, listing:

• DataWindow expression functions you can use in the computed field

Part # Quantity Price Cost

101 100 2.50 125.00

Part # Quantity Price Cost

101 100 2.50 250.00

Adding controls to a DataWindow object

584 PowerBuilder Classic

• The columns in the DataWindow object

• Operators and parentheses

3 Enter the expression that defines the computed field as described in
“Entering the expression” next.

4 (Optional) Click Verify to test the expression.

PowerBuilder analyzes the expression.

5 Click OK.

Entering the
expression

You can enter any valid DataWindow expression when defining a computed
field. You can paste operators, columns, and DataWindow expression
functions into the expression from information in the Modify Expression
dialog box. Use the + operator to concatenate strings.

You can use any built-in or user-defined global function in an expression. You
cannot use object-level functions.

DataWindow expressions
You are entering a DataWindow expression, not a SQL expression processed
by the DBMS, so the expression follows the rules for DataWindow
expressions. For complete information about DataWindow expressions, see the
DataWindow Reference.

Referring to next and
previous rows

You can refer to other rows in a computed field. This is particularly useful in
N-Up DataWindow objects when you want to refer to another row in the detail
band. Use this syntax:

ColumnName[x]

where x is an integer. 0 refers to the current row (or first row in the detail band),
1 refers to the next row, –1 refers to the previous row, and so on.

Examples Table 20-1 shows some examples of computed fields.

Table 20-1: Computed field examples

To display Enter this expression In this band

Current date at top of each page Today() Header

Current time at top of each page Now() Header

Current page at bottom of each page Page() Footer

Total page count at bottom of each
page

PageCount() Footer

Concatenation of Fname and Lname
columns for each row

Fname + " " + Lname Detail

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 585

For complete information about the functions you can use in computed fields
in the DataWindow painter, see the DataWindow Reference.

Menu options and
buttons for common
functions

PowerBuilder provides a quick way to create computed fields that summarize
values in the detail band, display the current date, or show the current page
number.

❖ To summarize values:

1 Select one or more columns in the DataWindow object’s detail band.

2 Select one of the options at the bottom of the cascading menu: Average,
Count, or Sum.

The same options are available at the bottom of the Controls drop-down
toolbar on the PainterBar.

PowerBuilder places a computed field in the summary band or in the group
trailer band if the DataWindow object is grouped. The band is resized
automatically to hold the computed field. If there is already a computed
field that matches the one being generated, it is skipped.

❖ To insert a computed field for the current date or page number:

1 Select Insert>Control from the menu bar.

2 Select Today() or Page n of n from the options at the bottom of the
cascading menu.

The same options are available at the bottom of the Controls drop-down
toolbar on the PainterBar.

3 Click anywhere in the DataWindow object.

If you selected Today, PowerBuilder inserts a computed field containing
this expression: Today(). For Page n of n, the computed field contains this
expression: 'Page ' + page() + ' of ' + pageCount().

Monthly salary if Salary column
contains annual salary

Salary / 12 Detail

Four asterisks if the value of the
Salary column is greater than $50,000

IF(Salary> 50000,

"****", "")

Detail

Average salary of all retrieved rows Avg(Salary) Summary

Count of retrieved rows, assuming
each row contains a value for EmpID

Count(EmpID) Summary

To display Enter this expression In this band

Adding controls to a DataWindow object

586 PowerBuilder Classic

Adding custom
buttons that place
computed fields

You can add buttons to the PainterBar in the DataWindow painter that place
computed fields using any of the aggregate functions, such as Max, Min, and
Median.

❖ To customize the PainterBar with custom buttons for placing computed
fields:

1 Place the mouse pointer over the PainterBar and select Customize from the
pop-up menu.

The Customize dialog box displays.

2 Click Custom in the Select palette group to display the set of custom
buttons.

3 Drag a custom button into the Current toolbar group and release it.

The Toolbar Item Command dialog box displays.

4 Click the Function button.

The Function For Toolbar dialog box displays.

5 Select a function and click OK.

You return to the Toolbar Item Command dialog box.

6 Specify text and microhelp that displays for the button, and click OK.

PowerBuilder places the new button in the PainterBar. You can click it to
add a computed field to your DataWindow object the same way you use
the built-in Sum button.

Adding buttons to a DataWindow object
Buttons make it easy to provide command button actions in a DataWindow
object. No coding is required. The use of Button controls in the DataWindow
object, instead of CommandButton controls in a window, ensures that actions
appropriate to the DataWindow object are included in the object itself.

The Button control is a command or picture button that can be placed in a
DataWindow object. When clicked at runtime, the button activates either a
built-in or user-supplied action.

For example, you can place a button in a report and specify that clicking it
opens the Filter dialog box, where users can specify a filter to be applied to the
currently retrieved data.

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 587

❖ To add a button to a DataWindow object:

1 Select Insert>Control>Button from the menu bar.

2 Click where you want the button to display.

You may find it useful to put a Delete button or an Insert button in the
detail band. Clicking a Delete button in the detail band will delete the row
next to the button clicked. Clicking an Insert button in the detail band will
insert a row following the current row.

Be careful when putting buttons in the detail band
Buttons in the detail band repeat for every row of data, which is not always
desirable. Buttons in the detail band are not visible during retrieval, so a
Cancel button in the detail band would be unavailable when needed.

3 With the button still selected, type the text to display on the button in the
PainterBar or on the General page of the Properties view.

4 Select the action you want to assign to the button from the Action
drop-down list on the General page of the Properties view.

For information about actions, see “Actions assignable to buttons in
DataWindow objects” on page 589.

5 If you want to add a picture to the button, select the Action Default Picture
check box or enter the name of the Picture file to display on the button.

If you plan to use the DataWindow object as a Web DataWindow, you can
use images for default buttons provided in the dwaction.jar file. For more
information, see the DataWindow Programmers Guide.

6 If you want to suppress event processing when the button is clicked at
runtime, select the Suppress Event check box.

When this option has been selected for the button and the button is clicked
at runtime, only the action assigned to the button and the Clicked event are
executed. The ButtonClicking and the ButtonClicked events are not
triggered.

What happens if
Suppress Event is off

If Suppress Event is off and the button is clicked, the Clicked and
ButtonClicking events are fired. Code in the ButtonClicking event (if any) is
executed. Note that the Clicked event is executed before the ButtonClicking
event.

• If the return code from the ButtonClicking event is 0, the action assigned
to the button is executed and then the ButtonClicked event is executed.

Adding controls to a DataWindow object

588 PowerBuilder Classic

• If the return code from the ButtonClicking event is 1, neither the action
assigned to the button nor the ButtonClicked event are executed.

Do not use a message box in the Clicked event
If you call the MessageBox function in the Clicked event, the action assigned
to the button is executed, but the ButtonClicking and ButtonClicked events are
not executed.

Example For an example of a DataWindow object that uses buttons, see the
d_button_report object in the Code Examples application.

This DataWindow object has several buttons that have default actions, and two
that have user-defined actions. In the Properties view in the DataWindow
painter, these buttons are named cb_help and cb_exit. Suppress Event is off for
all buttons.

In the Window painter, the Clicked and ButtonClicking events for the
DataWindow control that contains d_button_report are not scripted. This is the
ButtonClicked event script:

stringls_Object
stringls_win

ls_Object = String(dwo.name)

If ls_Object = "cb_exit" Then
Close(Parent)

ElseIf ls_Object = "cb_help" Then
ls_win = parent.ClassName()
f_open_help(ls_win)

End If

This script is triggered when any button in the DataWindow object is clicked.

Controlling the display of buttons in print preview and in printed output

You can choose whether to display buttons in print preview or in printed
output. You control this in the Properties view for the DataWindow object (not
the Properties view for the button).

❖ To control the display of buttons in a DataWindow object in print preview
and on printed output:

1 Display the DataWindow object’s Properties view with the Print
Specification page on top.

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 589

2 Select the Display Buttons – Print check box.

The buttons are included in the printed output when the DataWindow
object is printed.

3 Select the Display Buttons – Print Preview check box.

The buttons display on the screen when viewing the DataWindow object
in print preview.

Actions assignable to buttons in DataWindow objects

Table 20-2 shows the actions you can assign to a button in a DataWindow
object. Each action is associated with a numeric value (the Action
DataWindow object property) and a return code (the actionreturncode event
argument).

The following code in the ButtonClicked event displays the value returned by
the action:

MessageBox("Action return code", actionreturncode)

Table 20-2: Button actions for DataWindow objects

Action Effect Value Action return code

User Defined
(default)

Allows the developer to program the
ButtonClicked event with no intervening
action occurring.

0 The return code from the user's coded
event script.

Retrieve (Yield) Retrieves rows from the database. Before
retrieval occurs, the option to yield is
turned on; this will allow the Cancel action
to take effect during a long retrieve.

1 Number of rows retrieved.

-1 if retrieve fails.

Retrieve Retrieves rows from the database. The
option to yield is not automatically turned
on.

2 Number of rows retrieved.

-1 if retrieve fails.

Cancel Cancels a retrieval that has been started
with the option to yield.

3 0

Page Next Scrolls to the next page. 4 The row displayed at the top of the
DataWindow control when the scrolling
is complete or attempts to go past the
first row.

-1 if an error occurs.

Adding controls to a DataWindow object

590 PowerBuilder Classic

Page Prior Scrolls to the prior page. 5 The row displayed at the top of the
DataWindow control when the scrolling
is complete or attempts to go past the
first row.

-1 if an error occurs.

Page First Scrolls to the first page. 6 1 if successful.

-1 if an error occurs.

Page Last Scrolls to the last page. 7 The row displayed at the top of the
DataWindow control when the scrolling
is complete or attempts to go past the
first row.

-1 if an error occurs.

Sort Displays Sort dialog box and sorts as
specified.

8 1 if successful.

-1 if an error occurs.

Filter Displays Filter dialog box and filters as
specified.

9 Number of rows filtered.

Number < 0 if an error occurs.

Delete Row If button is in detail band, deletes row
associated with button; otherwise, deletes
the current row.

10 1 if successful.

-1 if an error occurs.

Append Row Inserts row at the end. 11 Row number of newly inserted row.

Insert Row If button is in detail band, inserts row using
row number associated with the button;
otherwise, inserts row using the current
row.

12 Row number of newly inserted row.

Update Saves changes to the database. If the
update is successful, a Commit will be
issued; if the update fails, a Rollback will
be issued.

13 1 if successful.

-1 if an error occurs.

Save Rows As Displays Save As dialog box and saves
rows in the format specified.

14 Number of rows filtered.

Number < 0 if an error occurs.

Print Prints one copy of the DataWindow object. 15 0

Preview Toggles between preview and print
preview.

16 0

Preview With
Rulers

Toggles between rulers on and off. 17 0

Query Mode Toggles between query mode on and off. 18 0

Query Sort Allows user to specify sorting criteria
(forces query mode on).

19 0

Query Clear Removes the WHERE clause from a query
(if one was defined).

20 0

Action Effect Value Action return code

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 591

Adding graphs to a DataWindow object
Graphs are one of the best ways to present information. For example, if your
application displays sales information over the course of a year, you can easily
build a graph in a DataWindow object to display the information visually.

PowerBuilder offers many types of graphs and provides you with the ability to
control the appearance of a graph to best meet your application’s needs.

For information on using graphs, see Chapter 26, “Working with Graphs.”

Adding InkPicture controls to a DataWindow object
The InkPicture control is designed for use on a Tablet PC and provides the
ability to capture ink input from users of Tablet PCs. The control captures
signatures, drawings, and other annotations that do not need to be recognized
as text.

The InkPicture control is fully functional on Tablet PCs. If the Microsoft Tablet
PC Software Development Kit (SDK) 1.7 is installed on other computers,
InkPicture controls in DataWindow objects can accept ink input from the
mouse.

For more information about ink controls and the Tablet PC, and to download
the Tablet PC SDK, go to Microsoft Tablet PC Web site at
http://msdn.microsoft.com/en-us/library/ms840465.aspx.

You use an InkPicture control with a table that has a blob column to store the
ink data, and optionally a second blob column to provide a background image.

The InkPicture control behaves like a Picture control that accepts annotation.
You can associate a picture with the control so that the user can draw
annotations on the picture, then save the ink, the picture, or both. If you want
to use the control to capture and save signatures, you usually do not associate
a picture with it.

To add an InkPicture control to a DataWindow object, select
Insert>Control>InkPicture from the menu. A dialog box displays to let you
specify a blob column to store the ink data and another to use as a background
image. After you specify the columns in the dialog box, the InkPicture control
displays in the DataWindow and its Properties view includes a Definition tab
page where you can view or change the column definitions.

Adding controls to a DataWindow object

592 PowerBuilder Classic

If you insert the InkPicture control into a N-Up DataWindow object, you
should specify the Row In Detail so the correct image displays. For example,
if you have three rows in the detail band, you might enter 1 for the ink picture
associated with the first, 2 for the second, and 3 for the third.

InkPicture controls are not supported in Crosstab DataWindows.

Adding OLE controls to a DataWindow object
You can add the following to a DataWindow object:

• A column that contains a database binary large object (a blob object) using
OLE 2.0

• OLE 2.0 objects

For information on using OLE in a DataWindow object, see Chapter 31,
“Using OLE in a DataWindow Object.”

Adding reports to a DataWindow object
You can nest reports (nonupdatable DataWindow objects) in a DataWindow
object.

For information on nesting reports, see Chapter 25, “Using Nested Reports.”

Adding tooltips to a DataWindow control
Tooltips display text when the pointer pauses over a DataWindow column or
control. This text can be used to explain the purpose of the column or control.
To use this feature, select the column or control for which you want to create a
tooltip and then select the Tooltip tab in the Properties view. You can use the
tab to specify:

• Text for the tooltip

• Title for the tooltip

• Color of the background and text

• Icon for the tooltip

• Delay before the tooltip appears and disappears

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 593

• Whether the tooltip appears as a rectangle or callout bubble

For more information, see Tooltip.property in the online Help.

Reorganizing controls in a DataWindow object
You can change the layout and appearance of the controls in a DataWindow
object.

Displaying boundaries for controls in a DataWindow object
When reorganizing controls in the Design view, it is sometimes helpful to see
how large all the controls are. That way you can easily check for overlapping
controls and make sure that the spacing around controls is what you want.

❖ To display control boundaries in a DataWindow object:

1 Select Design>Options from the menu bar.

The DataWindow Options dialog box displays.

2 Select the Show Edges check box.

PowerBuilder displays the boundaries of each control in the DataWindow
object.

Boundaries display only in the Design view
The boundaries displayed for controls are for use only in the Design view. They
do not display in a running DataWindow object or in a printed report.

Using the grid and the ruler in a DataWindow object
The DataWindow painter provides a grid and a ruler to help you align controls.

❖ To use the grid and the ruler:

1 Select Design>Options from the menu bar.

The DataWindow Options dialog box displays. The Alignment Grid box
contains the alignment grid options.

Reorganizing controls in a DataWindow object

594 PowerBuilder Classic

2 Use the options as needed:

Your choices for the grid and the ruler are saved and used the next time you
start PowerBuilder.

Deleting controls in a DataWindow object

❖ To delete controls in a DataWindow object:

1 Select the controls you want to delete.

2 Select Edit>Delete from the menu bar or press the Delete key.

Moving controls in a DataWindow object
In all presentation
styles except Grid

In all presentation styles except Grid, you can move all the controls (such as
headings, labels, columns, graphs, and drawing controls) anywhere you want.

❖ To move controls in a DataWindow object:

1 Select the controls you want to move.

2 Do one of the following:

• Drag the controls with the mouse.

• Press an arrow key to move the controls in one direction.

In grid DataWindow
objects

You can reorder columns in a grid DataWindow object at runtime.

See “Working in a grid DataWindow object” on page 546.

Option Meaning

Snap to Grid Make controls snap to a grid position when you place them
or move them.

Show Grid Show or hide the grid when the workspace displays.

X Specify the size (width) of the grid cells.

Y Specify the size (height) of the grid cells.

Show Ruler Show a ruler. The ruler uses the units of measurement
specified in the Style dialog box. See “Changing the
DataWindow object style” on page 556.

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 595

Copying controls in a DataWindow object
You can copy controls within a DataWindow object and to other DataWindow
objects. All properties of the controls are copied.

❖ To copy a control in a DataWindow object:

1 Select the control.

2 Select Edit>Copy from the menu bar.

The control is copied to a private PowerBuilder clipboard.

3 Copy (paste) the control to the same DataWindow object or to another one:

• To copy the control within the same DataWindow object, select
Edit>Paste from the menu bar.

• To copy the control to another DataWindow object, open the desired
DataWindow object and paste the control.

PowerBuilder pastes the control at the same location as in the source
DataWindow object. If you are pasting into the same DataWindow object,
you should move the pasted control so it does not cover the original
control. PowerBuilder displays a message box if the control you are
pasting is not valid in the destination DataWindow object.

Resizing controls in a DataWindow object
You can resize a control using the mouse or the keyboard. You can also resize
multiple controls to the same size using the Layout drop-down toolbar on
PainterBar2.

Using the mouse To resize a control using the mouse, select it, then grab an edge and drag it with
the mouse.

Using the keyboard To resize a control using the keyboard, select it and then do the following:

In grid DataWindow
objects

You can resize columns in grid DataWindow objects.

To make the control Press

Wider Shift+Right Arrow

Narrower Shift+Left Arrow

Taller Shift+Down Arrow

Shorter Shift+Up Arrow

Reorganizing controls in a DataWindow object

596 PowerBuilder Classic

❖ To resize a column in a grid DataWindow object:

1 Position the mouse pointer at a column boundary.

The pointer changes to a two-headed arrow.

2 Press and hold the left mouse button and drag the mouse to move the
boundary.

3 Release the mouse button when the column is the correct width.

Aligning controls in a DataWindow object
Often you want to align several controls or make them all the same size. You
can use the grid to align the controls or you can have PowerBuilder align them
for you.

❖ To align controls in a DataWindow object:

1 Select the control whose position you want to use to align the others.

PowerBuilder displays handles around the selected control.

2 Extend the selection by pressing and holding the Ctrl key and clicking the
controls you want to align with the first one.

All the controls have handles on them.

3 Select Format>Align from the menu bar.

4 From the cascading menu, select the dimension along which you want to
align the controls.

For example, to align the controls along the left side, select the first choice
on the cascading menu. You can also use the Layout drop-down toolbar on
PainterBar2 to align controls.

PowerBuilder moves all the selected controls to align with the first one.

Equalizing the space between controls in a DataWindow object
If you have a series of controls and the spacing is fine between two of them but
wrong for the rest, you can easily equalize the spacing around all the controls.

❖ To equalize the space between controls in a DataWindow object:

1 Select the two controls whose spacing is correct.

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 597

To do so, click one control, then press Ctrl and click the second control.

2 Select the other controls whose spacing match that of the first two
controls. To do so, press Ctrl and click each control.

3 Select Format>Space from the menu bar.

4 From the cascading menu, select the dimension whose spacing you want
to equalize.

You can also use the Layout drop-down toolbar on PainterBar2 to space
controls.

Equalizing the size of controls in a DataWindow object
Suppose you have several controls in a DataWindow object and want their
sizes to be the same. You can accomplish this manually or by using the Format
menu.

❖ To equalize the size of controls in a DataWindow object:

1 Select the control whose size is correct.

2 Press Ctrl and click to select the other controls whose size should match
that of the first control.

3 Select Format>Size from the menu bar.

4 From the cascading menu, select the dimension whose size you want to
equalize.

You can also use the Layout drop-down toolbar on PainterBar2 to size
controls.

Sliding controls to remove blank space in a DataWindow object
You can specify that you want to eliminate blank lines or spaces in a
DataWindow object by sliding columns and other controls to the left or up if
there is blank space. You can use this feature to remove blank lines in mailing
labels or to remove extra spaces between fields (such as first and last name).

Slide is used by default in nested reports
PowerBuilder uses slide options automatically when you nest a report to ensure
that the reports are positioned properly.

Reorganizing controls in a DataWindow object

598 PowerBuilder Classic

❖ To use sliding columns or controls in a DataWindow object:

1 Select Properties from the control’s pop-up menu and then select the
Position tab in the Properties view.

2 Select the Slide options you want:

You can also use the drop-down toolbar on PainterBar2 to slide controls.

If you are sliding columns up
Even blank columns have height; if you want columns to slide up, you need to
specify as Autosize Height all columns above them that might be blank and that
you want to slide other columns up through.

Example In a mailing label that includes first and last names, as well as address
information, you can use sliding to combine the columns appropriately.

In the following label, emp_lname, the comma, state, and zip_code are
specified as slide left. Edges are shown to indicate the spacing between the
columns. Notice that there is a small amount of space between controls. This
space is necessary for Slide Left to work properly:

When you preview (run) the DataWindow object, the last name, comma, state,
and zip code slide left to remove the blank space:

Option Description

Slide Left Slide the column or control to the left if there is nothing
to the left. Be sure the control does not overlap the
control to the left. Sliding left will not work if the
controls overlap.

Slide Up - All Above Slide the column or control up if there is nothing in the
row above. The row above must be completely empty
for the column or control to slide up.

Slide Up - Directly
Above

Slide the column or control up if there is nothing
directly above it in the row above.

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 599

Positioning controls in a DataWindow object
Table 20-3 shows the properties for each control in a DataWindow object that
determine how it is positioned within the DataWindow object.

Table 20-3: Position properties for controls in a DataWindow object

Default positioning PowerBuilder uses the defaults shown in Table 20-4 when you place a new
control in a DataWindow object.

Table 20-4: Default position properties for controls in a DataWindow
object

❖ To change the position of a control in a DataWindow object:

1 Select Properties from the control’s pop-up menu and then select the
Position tab.

2 From the Layer option drop-down list, select Background, Band, or
Foreground.

3 Select Resizable or Moveable as appropriate.

Property Meaning

Background Control is behind other controls. It is not restricted to one band. This
is useful for adding a watermark (such as the word
CONFIDENTIAL) to the background of a report.

Band Control is placed within one band. It cannot extend beyond the
band’s border.

Foreground Control is in front of other controls. It is not restricted to one band.

Moveable Control can be moved at runtime and in preview. This is useful for
designing layout.

Resizable Control can be resized at runtime and in preview. This is useful for
designing layout.

HideSnaked Control appears only in the first column on the page; in subsequent
columns the control does not appear. This is only for newspaper
columns, where the entire DataWindow object snakes from column
to column (set on the General page of the Properties view).

Control Default positioning

Graph Foreground, movable, resizable

All other controls Band, not movable, not resizable

Rotating controls in a DataWindow object

600 PowerBuilder Classic

Rotating controls in a DataWindow object
Controls that display text such as text controls and computed fields can be
rotated from the original baseline of the text. The Escapement property on the
Font property page for the control lets you specify the amount of rotation, also
known as escapement.

Several other properties of a rotated control affect its final placement when the
DataWindow object runs. The location of the control in Design view, the
amount of rotation specified for it, and the location of the text within the
control (for example, centered text as opposed to left-aligned text) all
contribute to what you see in the DataWindow object Preview view.

The following procedure includes design practices that help ensure that you get
the final results you want. As you become more experienced, you can drop or
alter some of the steps. The procedure recommends making the control
movable in the Preview view, which is often helpful.

❖ To rotate a control in a DataWindow object:

1 Select the control in the Design view.

2 Make it movable (Position property page>Moveable check box).

3 In Design view, enlarge the area in which the control is placed.

For example, in a grid DataWindow object, make the band deeper and
move the control down into the center of the band.

4 Display the Modify expression dialog box for the Escapement property.
(Click the button next to the Escapement property on the Font property
page.)

5 Specify the amount of rotation you want as an integer in tenths of a degree.
(For example, 450 means 45 degrees of rotation; 0 means horizontal or no
rotation.)

CHAPTER 20 Working with Controls in DataWindow Objects

Users Guide 601

The origin of rotation is the center of the top border of the box containing
the text. It is often helpful to use left-aligned text (General property
page>Alignment>Left) because it makes it easier to position the control
correctly. This example shows left-aligned text within two controls, a text
control and a computed field.

If the box that contains the text overlaps the border of the page or the
border of a label in a DataWindow object with the Label presentation style,
the origin of rotation is the center of the portion of the top border that is
within the page or label, and the portion that is outside the page or label is
cut off. This can cause the text in the box to run to a second line when it is
rotated. If you want the text to display close to the border, you can add one
or more line breaks (“~r~n”) before the text and adjust the size of the box.

6 To display the current rotation in Preview, close the Preview view and
reopen it (View>Preview on the menu bar).

7 Drag and drop the control in the Design view until it is where you want it.

8 In the Design view, select the control that is being rotated and deselect the
Moveable check box.

Rotating controls in a DataWindow object

602 PowerBuilder Classic

If you are using a conditional expression for rotation
If you are specifying different rotations depending on particular conditions,
you might need to add conditions to the x and y properties for the control to
move the control conditionally to match the various amounts of rotation. An
alternative to moving the control around is to have multiple controls positioned
exactly as you want them, taking into account the different amounts of rotation.
Then you can add a condition to the visible property of each control to ensure
that the correctly rotated control shows.

Users Guide 603

C H A P T E R 2 1 Controlling Updates in
DataWindow objects

About this chapter When PowerBuilder generates the basic DataWindow object, it defines
whether the data is updatable. This chapter describes the default settings
and how you can modify them.

Contents

About controlling updates
When PowerBuilder generates the basic DataWindow object, it defines
whether the data is updatable by default as follows:

• If the DataWindow object contains columns from a single table and
includes that table’s key columns, PowerBuilder defines all columns
as updatable and specifies a nonzero tab order for each column,
allowing users to tab to the columns.

• If the DataWindow object contains columns from two or more tables
or from a view, PowerBuilder defines all columns as not being
updatable and sets all tab orders to zero, preventing users from
tabbing to them.

You can accept the default settings or modify the update characteristics for
a DataWindow object.

Topic Page

About controlling updates 603

Specifying the table to update 605

Specifying the unique key columns 605

Specifying an identity column 606

Specifying updatable columns 606

Specifying the WHERE clause for update/delete 607

Specifying update when key is modified 609

Using stored procedures to update the database 610

Using a Web service to update the database 612

About controlling updates

604 PowerBuilder Classic

If using a Stored Procedure or External data source
If the data source is Stored Procedure or External, you can use the
GetNextModified method to write your own update script. For more
information, see the DataWindow Reference.

What you can do
You can:

• Allow updates in a DataWindow object associated with multiple tables or
a view; you can define one of the tables as being updatable

• Prevent updates in a DataWindow object associated with one table

• Prevent updates to specific columns in a DataWindow object that is
associated with an updatable table

• Specify which columns uniquely identify a row to be updated

• Specify which columns will be included in the WHERE clause of the
UPDATE or DELETE statement PowerBuilder generates to update the
database

• Specify whether PowerBuilder generates an UPDATE statement, or a
DELETE then an INSERT statement, to update the database when users
modify the values in a key column

Updatability of views
Some views are logically updatable; some are not. For the rules your DBMS
follows for updating views, see your DBMS documentation.

❖ To specify update characteristics for a DataWindow object:

1 Select Rows>Update Properties from the menu bar.

The Specify Update Properties dialog box displays.

2 To prevent updates to the data, make sure the Allow Updates box is not
selected.

To allow updates, select the Allow Updates box and specify the other
settings as described below.

3 Click OK.

CHAPTER 21 Controlling Updates in DataWindow objects

Users Guide 605

Changing tab values PowerBuilder does not change the tab values associated with columns after you
change the update characteristics of the DataWindow object. If you have
allowed updates to a table in a multitable DataWindow object, you should
change the tab values for the updatable columns so that users can tab to them.

For more information, see “Defining the tab order in a DataWindow object”
on page 566.

Specifying the table to update
Each DataWindow object can update one table, which you select from the
Table to Update box in the Specify Update Properties dialog box.

Specifying the unique key columns
The Unique Key Columns box in the Specify Update Properties dialog box
specifies which columns PowerBuilder uses to identify a row being updated.
PowerBuilder uses the column or columns you specify here as the key columns
when generating the WHERE clause to update the database (as described
below):

The key columns you select here must uniquely identify a row in the table.
They can be the table’s primary key, though they don’t have to be.

Using the primary key
Clicking the Primary Key button cancels any changes in the Unique Key
Columns box and highlights the primary key for the updatable table.

Specifying an identity column

606 PowerBuilder Classic

Specifying an identity column
Many DBMSs allow you to specify that the value for a column in a new row is
to be automatically assigned by the DBMS. This kind of column is called an
identity column. Different DBMSs provide different types of identity columns.

 For example, some DBMSs allow you to define autoincrement columns so that
the column for a new row is automatically assigned a value one greater than
that of the previous highest value. You could use this feature to specify that an
order number be automatically incremented when someone adds a new order:

By specifying an identity column in the Specify Update Properties dialog box,
you tell PowerBuilder to bring back the value of a new row’s identity column
after an insert in the DataWindow object so that users can see it.

For information about identity columns in your DBMS, see your DBMS
documentation.

Specifying updatable columns
You can make all or some of the columns in a table updatable.

Updatable columns are displayed highlighted. Click a nonupdatable column to
make it updatable. Click an updatable column to make it nonupdatable.

Changing tab values If you have changed the updatability of a column, you should change its tab
value. If you have allowed a column to be updated, you should change its tab
value to a nonzero number so users can tab to it.

CHAPTER 21 Controlling Updates in DataWindow objects

Users Guide 607

Specifying the WHERE clause for update/delete
Sometimes multiple users are accessing the same tables at the same time. In
these situations, you need to decide when to allow your application to update
the database. If you allow your application to always update the database, it
could overwrite changes made by other users:

You can control when updates succeed by specifying which columns
PowerBuilder includes in the WHERE clause in the UPDATE or DELETE
statement used to update the database:

UPDATE table...
SET column = newvalue
WHERE col1 = value1
AND col2 = value2 ...

DELETE
FROM table
WHERE col1 = value1
AND col2 = value2 ...

Using timestamps
Some DBMSs maintain timestamps so you can ensure that users are working
with the most current data. If the SELECT statement for the DataWindow object
contains a timestamp column, PowerBuilder includes the key column and the
timestamp column in the WHERE clause for an UPDATE or DELETE statement
regardless of which columns you specify in the Where Clause for
Update/Delete box.

If the value in the timestamp column changes (possibly due to another user
modifying the row), the update fails.

To see whether you can use timestamps with your DBMS, see Connecting to
Your Database.

Choose one of the options in Table 21-1 in the Where Clause for Update/Delete
box. The results are illustrated by an example following the table.

Specifying the WHERE clause for update/delete

608 PowerBuilder Classic

Table 21-1: Specifying the WHERE clause for UPDATE and DELETE

Example Consider this situation: a DataWindow object is updating the Employee table,
whose key is Emp_ID; all columns in the table are updatable. Suppose the user
has changed the salary of employee 1001 from $50,000 to $65,000. This is
what happens with the different settings for the WHERE clause columns:

• If you choose Key Columns for the WHERE clause, the UPDATE statement
looks like this:

UPDATE Employee
SET Salary = 65000
WHERE Emp_ID = 1001

Option Result

Key Columns The WHERE clause includes the key columns only. These are the
columns you specified in the Unique Key Columns box.

The values in the originally retrieved key columns for the row are
compared against the key columns in the database. No other
comparisons are done. If the key values match, the update
succeeds.

Caution
Be very careful when using this option. If you tell PowerBuilder
only to include the key columns in the WHERE clause and someone
else modified the same row after you retrieved it, their changes will
be overwritten when you update the database (see the example
following this table).

Use this option only with a single-user database or if you are using
database locking. In other situations, choose one of the other two
options described in this table.

Key and
Updatable
Columns

The WHERE clause includes all key and updatable columns.

The values in the originally retrieved key columns and the
originally retrieved updatable columns are compared against the
values in the database. If any of the columns have changed in the
database since the row was retrieved, the update fails.

Key and
Modified
Columns

The WHERE clause includes all key and modified columns.

The values in the originally retrieved key columns and the modified
columns are compared against the values in the database. If any of
the columns have changed in the database since the row was
retrieved, the update fails.

CHAPTER 21 Controlling Updates in DataWindow objects

Users Guide 609

This statement will succeed regardless of whether other users have
modified the row since your application retrieved the row. For example, if
another user had modified the salary to $70,000, that change will be
overwritten when your application updates the database.

• If you choose Key and Modified Columns for the WHERE clause, the
UPDATE statement looks like this:

UPDATE Employee
SET Salary = 65000
WHERE Emp_ID = 1001

AND Salary = 50000

Here the UPDATE statement is also checking the original value of the
modified column in the WHERE clause. The statement will fail if another
user changed the salary of employee 1001 since your application retrieved
the row.

• If you choose Key and Updatable Columns for the WHERE clause, the
UPDATE statement looks like this:

UPDATE Employee
SET Salary = 65000
WHERE Emp_ID = 1001

AND Salary = 50000
AND Emp_Fname = original_value
AND Emp_Lname = original_value
AND Status = original_value
...

Here the UPDATE statement is checking all updatable columns in the
WHERE clause. This statement will fail if any of the updatable columns for
employee 1001 have been changed since your application retrieved the
row.

Specifying update when key is modified
The Key Modification property determines the SQL statements PowerBuilder
generates whenever a key column—a column you specified in the Unique Key
Columns box—is changed. The options are:

• Use DELETE then INSERT (default)

• Use UPDATE

Using stored procedures to update the database

610 PowerBuilder Classic

How to choose a
setting

Consider the following when choosing the Key Modification setting:

• If multiple rows are changed, DELETE and INSERT always work. In some
DBMSs, UPDATE fails if the user modifies two keys and sets the value in
one row to the original value of the other row.

• You might choose the setting here based on your DBMS triggers. For
example, if there is an Insert trigger, select Use Delete then Insert.

• If only one row can be modified by the user before the database is updated,
use UPDATE because it is faster.

Using stored procedures to update the database
Updates to the database can be performed using stored procedures.

Why use stored
procedures?

The DataWindow control submits updates to the database by dynamically
generating INSERT, DELETE, and UPDATE SQL statements after determining
the status of each row in the DataWindow object. You can also define
procedural SQL statements in a stored procedure for use by all applications
accessing a database. Using stored procedures to perform database updates
allows you to enhance database security, integrity, and performance. Since
stored procedures provide for conditional execution, you can also use them to
enforce additional business rules.

Updating using stored
procedures

The Stored Procedure Update dialog box only allows you to associate an
existing stored procedure with your DataWindow object. The stored procedure
must have been previously defined in the database.

CHAPTER 21 Controlling Updates in DataWindow objects

Users Guide 611

❖ To use stored procedures to update the database

1 In the DataWindow painter, select Rows>Stored Procedure Update to
display the Stored Procedure Update dialog box.

2 Select the tab for the SQL update method (Delete, Insert, or Update) with
which you want to associate a stored procedure.

3 Click the Procedure button, select the stored procedure you want to have
execute when the SQL update method is generated, and click OK.

The parameters used in the stored procedure are displayed in the Argument
Name list in the order in which they are defined in the procedure. Column
Name lists the columns used in your DataWindow object.

4 Associate a column in the DataWindow object or an expression with a
procedure parameter.

If a stored procedure uses parameters that are not matched to column
names, you can substitute the value from a DataWindow object computed
field or expression.

Matching a column to a procedure parameter
You must be careful to correctly match a column in the DataWindow
object to a procedure parameter, since PowerBuilder is able to verify only
that datatypes match.

5 If the parameter is to receive a column value, indicate whether the
parameter will receive the updated column value entered through the
DataWindow object or retain the original column value from the database.

Typically, you select Use Original when the parameter is used in a WHERE
clause in an UPDATE or DELETE SQL statement. If you do not select Use
Original, the parameter will use the new value entered for that column.
Typically, you would use the new value when the parameter is used in an
INSERT or UPDATE SQL statement.

What happens when
the stored procedure
is executed

The stored procedure you associate with a SQL update method in the Stored
Procedure Update dialog box is executed when the DataWindow control calls
the Update method. The DataWindow control examines the table in the
DataWindow object, determines the appropriate SQL statement for each row,
and submits the appropriate stored procedure (as defined in the Stored
Procedure Update dialog box) with the appropriate column values substituted
for the procedure arguments.

If a stored procedure for a particular SQL update method is not defined, the
DataWindow control submits the appropriate SQL syntax.

Using a Web service to update the database

612 PowerBuilder Classic

Return values from procedures cannot be handled by the DataWindow control.
The Update method returns 1 if it succeeds and -1 if an error occurs. Additional
information is returned to SQLCA.

Using Describe and
Modify

You can use the DataWindow Describe and Modify methods to access
DataWindow property values including the stored procedures associated with
a DataWindow object. For information, see the DataWindow object property
Table.property in the DataWindow Reference.

Restrictions on the
use of Modify

Since a database driver can only report stored procedure names and parameter
names and position, it cannot verify that changes made to stored procedures are
valid. Consequently, if you use Modify to change a stored procedure, be careful
that you do not inadvertently introduce changes into the database.

In addition, using Modify to enable a DataWindow object to use stored
procedures to update the database when it is not already using stored
procedures requires that the type qualifier be specified first. Calling the type
qualifier ensures that internal structures are built before subsequent calls to
Modify. If a new method or method arguments are specified without a preceding
definition of type, Modify fails.

Using a Web service to update the database
You can use a DataWindow with a Web service data source to update a
database. Support for updating data requires one or more WSDL files that
describe methods and parameters that can be called by the DataWindow engine
for insert, delete, or update operations.

Generating or
selecting an assembly

The WSDL files are not required on runtime computers. They are used to
generate assembly files that are deployed with the application. If you have an
existing assembly file that allows you to update data in your DataWindow
objects, you can select that assembly instead of generating a new one from the
Web Services Update dialog box. You can generate or select separate
assemblies for insert, delete, and update operations.

CHAPTER 21 Controlling Updates in DataWindow objects

Users Guide 613

Insert, delete, and
update operations

The insert, delete, and update operations imply different things depending on
the original data source. When you insert a DataWindow row for an RDBMS,
a new row is added to the database; when the data source is an array of
structures, a new structure instance is added to the array; and when the data
source is an array of simple types, a new instance of the simple type is added
to the array. The delete operation removes a database row or an instance in an
array, and the update operation modifies a database row or an instance in an
array.

For each operation, you must map DataWindow column values or expressions
to Web service input parameters. At runtime when performing one of these
operations, the DataWindow binds column or expression values to parameters
as instructed and calls the Web service method. The DataWindow engine does
not know what actually happens in the Web service component (that is, how
the component implements the update), only whether it returns a success or
failure message.

Figure 21-1 displays the Web Service Update dialog box. You use this dialog
box to bind to Web service parameters to DataWindow columns or expressions.
Unlike the retrieve call, DataWindow update operations can handle
bidirectional parameters. However, you can select an expression or computed
column only for an update method input parameter.

Figure 21-1: Web Service Update dialog box

❖ To use a Web service to update the database

1 In the DataWindow painter, select Rows>Web Service Update to display
the Web Service Update dialog box.

Using a Web service to update the database

614 PowerBuilder Classic

2 Select the tab for the Web service update method (Update, Insert, or
Delete) with which you want to associate a Web service.

3 Click the browse button next to the WSDL Filename text box to browse to
a WSDL file describing the Web service you want to use to update the
DataWindow, and click OK.

You use a WSDL file to generate an assembly that you can deploy with
your Web service DataWindow application. You can override the default
assembly name that will be generated if you enter an existing assembly in
the following step of this procedure.

If you already have an assembly that you want to use to update the
DataWindow, you can skip the current step and select the assembly that
you want in step 4.

You can use the Reset button to clear all entries in the Web Service Update
dialog box.

4 (Optional) Type an assembly name in the Assembly Name text box to
override a default assembly name that you want to generate from a WSDL
file, or browse to an existing assembly file that describes the Web service
you want to use to update the DataWindow, and click OK.

Although you can browse to any mapped directory to find an assembly file
for update operations, you must make sure to copy the assembly under the
current target directory. All assemblies for retrieving and updating a Web
service DataWindow must be deployed to the same directory as the
application executable file, or retrieve and update operations will not be
able to work at runtime.

5 Click Generate if you want to generate and load an assembly file, or click
Load if you entered an existing assembly file name in step 4.

After you click Generate, an assembly file is created with a default name
from the WSDL file or from a name that you entered in the previous step.

After you generate the assembly from a WSDL file or load an existing
assembly, the Web services in that file are added to the Web Service Name
drop-down list and the methods for the Web services are added to the
Method Name drop-down list.

6 Select a Web service name and method name from the list of Web services
and methods.

The parameters used in the Web service method are displayed in the
Argument Name list in the order in which they are defined. Column Name
lists the columns used in your DataWindow object.

CHAPTER 21 Controlling Updates in DataWindow objects

Users Guide 615

7 Associate a column in the DataWindow object or an expression with a
method parameter.

If a Web service method uses parameters that are not matched to column
names, you can substitute the value from a DataWindow object computed
field or expression.

Matching a column to a Web service method parameter
You must be careful to correctly match a column in the DataWindow
object to a method parameter, since PowerBuilder is able to verify only
that datatypes match.

8 If the parameter is to receive a column value, indicate whether the
parameter will receive the updated column value entered through the
DataWindow object or retain the original column value from the database.

Typically, you select Use Original when the Web service parameter is used
in the WHERE clause of an UPDATE or DELETE SQL statement for a Web
service method. If you do not select Use Original, the parameter uses the
new value entered for that column. Typically, you would use the new value
when the Web service parameter is needed for an INSERT SQL statement
for the method, or if it is set in an UPDATE SQL statement.

Regenerating an
assembly

If you need to regenerate an assembly for a DataWindow that uses a Web
service data source for retrieval, update, insert, or delete operations, you must
add the following line to the [DataWindow] section of the PB.INI file:

GenerateWSAssembliesOnCompile=YES

After you set this property in the PB.INI file, PowerBuilder regenerates the
assembly on each compilation of the target containing the DataWindow.

Using the WSError
event

Because a DataWindow with a Web service data source does not pass back
failure messages in a return code during retrieve, insert, or update operations,
you must use the WSError event to obtain such error information.

For more information on the WSError event, see WSError in the DataWindow
Reference or in the online Help.

Using a Web service to update the database

616 PowerBuilder Classic

Users Guide 617

C H A P T E R 2 2 Displaying and Validating Data

About this chapter This chapter describes how to customize your DataWindow object by
modifying the display values in columns and specifying validation rules.

Contents

About displaying and validating data
When PowerBuilder generates a basic DataWindow object, it uses the
extended attributes defined for the data and stored in the extended
attribute system tables.

For more information about the extended attribute system tables, see
Appendix A, “The Extended Attribute System Tables.”

In the Database painter, you can create the extended attribute definitions
that specify a column’s display format, edit style, and validation rules.

In the DataWindow painter, you can override these extended attribute
definitions for a column in a DataWindow object. These overrides do not
change the information stored with the column definition in the extended
attribute system tables.

Topic Page

About displaying and validating data 617

About display formats 619

Working with display formats 620

Defining display formats 623

About edit styles 630

Working with edit styles 632

Defining edit styles 634

Defining a code table 645

About validation rules 649

Working with validation rules 650

Defining validation rules 651

How to maintain extended attributes 657

About displaying and validating data

618 PowerBuilder Classic

Presenting the data
When you generate a new DataWindow object, PowerBuilder presents the data
according to the properties already defined for a column, such as a column’s
display format and edit style.

Display formats Display formats embellish data values while still displaying them as letters,
numbers, and special characters. Using display formats, for example, you can:

• Change the color of numbers to display a negative value

• Add parentheses and dashes to format a telephone number

• Add a dollar sign and period to indicate a currency format

For information, see “About display formats” on page 619.

Edit styles Edit styles usually take precedence over display formats and specify how
column data is presented. For example, using edit styles, you can:

• Display valid values in a drop-down list

• Indicate that a single value is selected by a check box

• Indicate which of a group of values is selected with radio buttons

Edit styles affect not only the way data displays, they also affect how the user
interacts with the data at runtime.

For more information, see “About edit styles” on page 630.

About display format
masks and EditMask
masks

The differences between display format masks and EditMask masks can be
confusing. A display format mask determines the appearance of the column
when the focus is off the column, or when the DataWindow object is in print
preview mode. When you apply an EditMask edit style, the mask you use
determines the appearance of the column when focus is on the column.

If you want data to display differently depending on whether the focus is on or
off the column, specify an edit mask (on the Edit property page for the column)
as well as a display format (on the Format property page for the column), then
check the Use Format check box on the Format property page. The Use Format
check box displays only when an edit mask has been specified.

If you want the data to display in the same way whether focus is on or off the
column and you have defined an edit mask, you do not need to define a display
format. The edit mask is used for display if the Use Format box is not checked
(the default).

CHAPTER 22 Displaying and Validating Data

Users Guide 619

Validating data
When data is entered in the Database painter or in a DataWindow object,
PowerBuilder evaluates the data against validation rules defined for that
column. If the data is valid, PowerBuilder accepts the entry; otherwise,
PowerBuilder displays an error message and does not accept the entry.

For more information, see “About validation rules” on page 649.

About display formats
You can use display formats to customize the display of column data in a
DataWindow object. Display formats are masks in which certain characters
have special significance. For example, you can display currency values
preceded by a dollar sign, show dates with month names spelled out, and use a
special color for negative numbers. PowerBuilder comes with many predefined
display formats. You can use them as is or define your own.

Here the Phone, Salary, and Start Date columns use display formats so the data
is easier to interpret:

Display formats not used for data entry
When users tab to a column containing a display format, PowerBuilder
removes the display format and displays the raw value for users to edit.

If you want to provide formatting used for data entry, you need to specify edit
masks, as described in “The EditMask edit style” on page 638.

Working with display formats

620 PowerBuilder Classic

Working with display formats
You work with display formats in the Database painter and the DataWindow
painter.

What you do in the
Database painter

In the Database painter, you can:

• Create, modify, and delete named display formats

The named display formats are stored in the extended attribute system
tables. When you have defined a display format, it can be used by any
column of the appropriate datatype in the database.

• Assign display formats to columns and remove them from columns

These formats are used by default when you place the column in a
DataWindow object in the DataWindow painter.

What you do in the
DataWindow painter

In the DataWindow painter, you can:

• Accept the default display format assigned to a column in the Database
painter

• Override the default display format with another named format stored in
the extended attribute system tables

• Create an ad hoc, unnamed format to use with one specific column

Display formats and
the extended attribute
system tables

When you have placed a column in a DataWindow object and have given it a
display format (either the default format from the assignment made in the
Database painter for the column or a format assigned in the DataWindow
painter), there is no longer any link to the named format in the extended
attribute system tables.

If the definition of the display format later changes in the extended attribute
system tables, the format for the column in a DataWindow object does not
change. If you want to use the modified format, you can reapply it to the
column in the DataWindow painter.

Working with display formats in the Database painter
Typically, you define display formats and associate them with columns in the
Database painter, because display formats are properties of the data itself. Once
you have associated a display format with a column in the Database painter, it
is used by default each time the column is placed in a DataWindow object.

CHAPTER 22 Displaying and Validating Data

Users Guide 621

Edit style takes precedence
If a column has an associated edit style, the edit style takes precedence over a
display format unless you use an EditMask edit style and check the Use Format
box on the Format property page.

For more information, see “About edit styles” on page 630.

❖ To create a new display format:

1 In the Database painter, open the Extended Attributes view, right-click
Display Formats, and select Add from the pop-up menu.

The Display Format view displays.

2 Name the display format and specify a datatype.

3 Define the display format using masks.

For information, see “Defining display formats” on page 623.

You can use this display format with any column of the appropriate datatype in
the database.

❖ To modify an existing display format:

1 In the Database painter, open the Extended Attributes view.

2 In the Extended Attributes view, open the list of display formats.

3 Position the pointer on the display format you want to modify, display the
pop-up menu, and select Properties.

4 In the Display Format view, modify the display format as desired.

For information, see “Defining display formats” on page 623.

❖ To associate a display format with a column in the Database painter:

1 In the Database painter Objects view, position the pointer on the column,
select Properties from the pop-up menu, and select the Display tab in the
Properties view.

2 Select a format from the list in the Display Format box.

The column now has the selected format associated with it in the extended
attribute system tables.

Working with display formats

622 PowerBuilder Classic

❖ To remove a display format from a column in the Database painter:

1 In the Database painter Objects view, position the pointer on the column,
select Properties from the pop-up menu, and select the Display tab in the
Properties view.

2 Select (None) from the list in the Display Format box.

The display format is no longer associated with the column.

Working with display formats in the DataWindow painter
Display formats you assign to a column in the Database painter are used by
default when you place the column in a DataWindow object. You can override
the default format in the DataWindow painter by choosing another format from
the extended attribute system tables or defining an ad hoc format for one
specific column.

About computed fields
You can assign display formats to computed fields using the same techniques
as for columns in a table.

❖ To specify a display format for a column in the DataWindow painter:

1 In the DataWindow painter, move the pointer to the column, select
Properties from the column’s pop-up menu, and then select the Format tab.

Information appropriate to the datatype of the selected column displays.
The currently used format displays in the Format box. All formats for the
datatype defined in the extended attribute system tables are listed in the
pop-up list (displayed by clicking the button).

2 Do one of the following:

• Delete the display format.

• Select a format in the extended attribute system tables from the
pop-up list.

• Create a format for the column by typing it in the Format box. For
more information, see “Defining display formats” next.

CHAPTER 22 Displaying and Validating Data

Users Guide 623

Format not saved in the extended attribute system tables
If you create a format here, it is used only for the current column and is not
saved in the extended attribute system tables.

Shortcuts
To assign the Currency or Percent display format to a numeric column in a
report, select the column, then click the Currency or Percent button in the
PainterBar or select Format>Currency or Format>Percent from the menu bar.

Customizing the
toolbar

You can add buttons to the PainterBar that assign a specified display format to
selected columns in reports.

For more information, see “Customizing toolbars” on page 49.

Defining display formats
Display formats are represented through masks, where certain characters have
special significance. PowerBuilder supports four kinds of display formats,
each using different mask characters:

Numbers
Strings
Dates
Times

For example, in a string format mask, each @ represents a character in the
string and all other characters represent themselves. You can use the following
mask to display phone numbers:

(@@@) @@@-@@@@

Combining formats You can include different types of display format masks in a single format. Use
a space to separate the masks. For example, the following format section
includes a date and time format:

mmmm/dd/yyyy h:mm

Using sections Each type of display format can have multiple sections, with each section
corresponding to a form of the number, string, date, or time. Only one section
is required; additional sections are optional and should be separated with
semicolons (;). You cannot use sections in edit masks. Semicolons can be used
only in display formats.

Defining display formats

624 PowerBuilder Classic

The following format specifies different displays for positive and negative
numbers—negative numbers are displayed in parentheses:

$#,##0;($#,##0)

Using keywords Enclose display format keywords in square brackets. For example, you can use
the keyword [General] when you want PowerBuilder to determine the
appropriate format for a number.

Using colors You can define a color for each display format section by specifying a color
keyword before the format. The color keyword is the name of the color, or a
number that represents the color, enclosed in square brackets: [RED] or [255].
The number is usually used only when a color is required that is not provided
by name. The named color keywords are:

[BLACK]
[BLUE]
[CYAN]
[GREEN]
[MAGENTA]
[RED]
[WHITE]
[YELLOW]

The formula for combining primary color values into a number is:

256*256*blue + 256*green + red=number

where the amount of each primary color is specified as a value from 0 to 255.
For example, to specify cyan, substitute 255 for blue, 255 for green, and 0 for
red. The result is 16776960.

If you want to add text to a numeric display format and use a color attribute,
you must include the escape character (\) before each literal in the mask. For
example:

[red]\D\e\p\t\: ###

Table 22-1 lists the blue, green, and red values you can use in the formula to
create other colors.

Table 22-1: Numeric values used to create colors

Blue Green Red Number Color

0 0 255 255 Red

0 255 0 65280 Green

0 128 0 32768 Dark green

255 0 0 16711680 Blue

0 255 255 65535 Yellow

CHAPTER 22 Displaying and Validating Data

Users Guide 625

Using special
characters

To include a character in a mask that has special meaning in a display format,
such as [, precede the character with a backslash (\). For example, to display a
single quotation mark, enter \'.

Setting display
formats at runtime

In scripts, you can use GetFormat to get the current format for a column and
SetFormat to change the format for a column at runtime.

Number display formats
A number display format can have up to four sections. Only the first is
required. The three other sections determine how the data displays if its value
is negative, zero, or NULL. The sections are separated by semi-colons:

Positive-format;negative-format;zero-format;null-format

Special characters Table 22-2 lists characters that have special meaning in number display
formats.

Table 22-2: Characters with special meaning in display formats

Percent signs, decimal points, parentheses, and spaces display as entered in the
mask.

Use at least one 0
In general, a number display format should include at least one 0. If users enter
0 in a field with the mask ###, the field will appear to be blank if you do not
provide a zero-format section. If the mask is ###.##, only the period displays.
If you want two decimal places to display even if both are 0, use the mask
##0.00.

0 128 128 32896 Brown

255 255 0 16776960 Cyan

192 192 192 12632256 Light gray

Blue Green Red Number Color

Character Meaning

A number

0 A required number; a number will display for every 0 in the mask

Defining display formats

626 PowerBuilder Classic

Number keywords You can use the following keywords as number display formats when you want
PowerBuilder to determine an appropriate format to use:

• [General]

• [Currency]

Note that [Currency(7)] and [Currency(n)] are legal edit masks, but they are not
legal display formats.

Percentages Use caution when defining an edit mask for a percentage. When you enter a
number in a column with a percent edit mask and tab off the column,
PowerBuilder divides the number by 100 and stores the result in the buffer. For
example, if you enter 23, PowerBuilder passes .23 to the buffer. When you
retrieve from the database, PowerBuilder multiplies the number by 100 and, if
the mask is ##0%, displays 23%.

The datatype for the column must be numeric or decimal to handle the result of
a division by 100. If the column has an integer datatype, a percentage entered
as 333 is retrieved from the database as 300, and 33 is retrieved as 0.

If you use an edit mask with decimals, such as ##0.00%, the datatype must
have enough decimal places to handle the division. For example, if you enter
33.33, the datatype for the column must have at least four decimal places
because the result of the division is .3333. If the datatype has only three
decimal places, the percentage is retrieved as 33.30.

Examples Table 22-3 shows how the values 5, –5, and .5 display when different format
masks are applied.

Table 22-3: Number display format examples

Format 5 -5 .5

[General] 5 -5 0.5

0 5 -5 1

0.00 5.00 -5.00 0.50

#,##0 5 -5 1

#,##0.00 5.00 -5.00 0.50

$#,##0;($#,##0) $5 ($5) $1

$#,##0;-$#,##0 $5 -$5 $1

$#,##0;[RED]($#,##0) $5 ($5) $1

[Currency] $5.00 ($5.00) $0.50

$#,##0.00;($#,##0.00) $5.00 ($5.00) $0.50

$#,##0.00;[RED]($#,##0.00) $5.00 ($5.00) $0.50

##0% 500% -500% 50%

CHAPTER 22 Displaying and Validating Data

Users Guide 627

String display formats
String display formats can have two sections. The first is required and contains
the format for strings; the second is optional and specifies how to represent
NULLs:

string-format;null-format

In a string format mask, each at-sign (@) represents a character in the string
and all other characters represent themselves.

Special characters for string edit masks
String edit masks use different special characters. See “The EditMask edit
style” on page 638.

Example This format mask:

[red](@@@) @@@-@@@@

displays the string 800YESCELT in red as:

(800) YES-CELT

Date display formats
Date display formats can have two sections. The first is required and contains
the format for dates; the second is optional and specifies how to represent
NULLs:

date-format;null-format

##0.00% 500.00% -500.00% 50.00%

0.00E+00 5.00E+00 -5.00E+00 5.00E-01

Format 5 -5 .5

Defining display formats

628 PowerBuilder Classic

Special characters Table 22-4 shows characters that have special meaning in date display formats.

Table 22-4: Characters with special meaning in data display formats

Colons, slashes, and spaces display as entered in the mask.

About 2-digit years
If users specify a 2-digit year in a DataWindow object, PowerBuilder assumes
the date is the 20th century if the year is greater than or equal to 50. If the year
is less than 50, PowerBuilder assumes the 21st century. For example:

• 1/1/85 is interpreted as January 1, 1985.

• 1/1/40 is interpreted as January 1, 2040.

Date keywords You can use the following keywords as date display formats when you want
PowerBuilder to determine an appropriate format to use:

• [ShortDate]

• [LongDate]

The format used is determined by the regional settings for date in the registry.
Note that [Date] is not a valid display format.

Examples Table 22-5 shows how the date Friday, January 30, 1998, displays when
different format masks are applied.

Character Meaning Example

d Day number with no leading zero 9

dd Day number with leading zero if appropriate 09

ddd Day name abbreviation Mon

dddd Day name Monday

m Month number with no leading zero 6

mm Month number with leading zero if appropriate 06

mmm Month name abbreviation Jun

mmmm Month name June

yy Two-digit year 97

yyyy Four-digit year 1997

CHAPTER 22 Displaying and Validating Data

Users Guide 629

Table 22-5: Date display format examples

Time display formats
Time display formats can have two sections. The first is required and contains
the format for times; the second is optional and specifies how to represent
NULLs:

time-format;null-format

Special characters Table 22-6 shows characters that have special meaning in time display formats.

Table 22-6: Characters with special meaning in time display formats

Colons, slashes, and spaces display as entered in the mask.

24-hour format is the default
Times display in 24-hour format unless you specify AM/PM, am/pm, A/P, or
a/p.

Format Displays

[red]m/d/yy 1/30/98 in red

d-mmm-yy 30-Jan-98

dd-mmmm 30-January

mmm-yy Jan-98

dddd, mmm d, yyyy Friday, Jan 30, 1998

Character Meaning

h Hour with no leading zero (for example, 1)

hh Hour with leading zero if appropriate (for example, 01)

m Minute with no leading zero (must follow h or hh)

mm Minute with leading zero if appropriate (must follow h or hh)

s Second with no leading zero (must follow m or mm)

ss Second with leading zero (must follow m or mm)

ffffff Microseconds with no leading zeros. You can enter one to six f’s; each
f represents a fraction of a second (must follow s or ss)

AM/PM Two-character, uppercase abbreviation (AM or PM as appropriate)

am/pm Two-character, lowercase abbreviation (am or pm as appropriate)

A/P One-character, uppercase abbreviation (A or P as appropriate)

a/p One-character, lowercase abbreviation (a or p as appropriate)

About edit styles

630 PowerBuilder Classic

Time keyword You can use the following keyword as a time display format to specify the
format specified in the Windows control panel:

• [Time]

Examples Table 22-7 shows how the time 9:45:33:234567 PM displays when different
format masks are applied.

Table 22-7: Time display format examples

About edit styles
You can define edit styles for columns. Edit styles specify how column data is
presented in DataWindow objects. Unlike display formats, edit styles do not
only affect the display of data; they also affect how users interact with the data
at runtime. Once you define an edit style, it can be used by any column of the
appropriate datatype in the database.

When edit styles are
used

If both a display format and an edit style have been assigned to a column, the
edit style is always used, with one exception. When you assign an EditMask
edit style to a column, you can check the Use Format check box on the Format
property page for the column to use the edit mask format when focus is on the
column, and the display format mask when focus is off the column.

Format Displays

h:mm AM/PM 9:45 PM

hh:mm A/P 09:45 P

h:mm:ss am/pm 9:45:33 pm

h:mm 21:45

h:mm:ss 21:45:33

h:mm:ss:f 21:45:33:2

h:mm:ss:fff 21:45:33:234

h:mm:ss:ffffff 21:45:33:234567

m/d/yy h:mm 1/30/98 21:45

CHAPTER 22 Displaying and Validating Data

Users Guide 631

Edit styles Table 22-8 shows the available edit styles.

Table 22-8: Edit styles

For example, suppose you have a column Status that takes one of three values:
the letters A, T, and L, each representing a status (Active, Terminated, or On
Leave). If you assign it the RadioButton edit style, userscan simply click a
button instead of having to type A, T, or L. You do not have to create a
validation rule to validate typed input.

Edit style What the edit style does Example

Edit box (default) Displays a value in the box

For data entry, type a value

DropDownListBox Displays a value from the
drop-down list

For data entry, select or enter
a value

CheckBox Displays a check box selected
or cleared

For data entry, select or clear
the check box

RadioButtons Displays radio buttons, one of
which is selected

For data entry, select one of
the radio buttons

EditMask Displays formatted data

For data entry, type a value

DropDownDataWindow Displays a value from a
drop-down DataWindow

For data entry, select a value

RichText Allows display of data in rich
text formats.

InkEdit On Tablet PCs, displays an
InkEdit control so the user can
enter data with the stylus.

Working with edit styles

632 PowerBuilder Classic

Working with edit styles
You work with edit styles in the Database painter and DataWindow painter.

What you do in the
Database painter

In the Database painter, you can:

• Create, modify, and delete named edit styles

The edit styles are stored in the extended attribute system tables. Once you
define an edit style, it can be used by any column of the appropriate
datatype in the database.

• Assign edit styles to columns

These styles are used by default when you place the column in a
DataWindow object in the DataWindow painter.

What you do in the
DataWindow painter

In the DataWindow painter, you can:

• Accept the default edit style assigned to a column in the Database painter

• Override the default edit style with another named style stored in the
extended attribute system tables

• Create an ad hoc, unnamed edit style to use with one specific column

Edit styles and the
extended attribute
system tables

When you have placed a column in a DataWindow object and have given it an
edit style (either the default style from the assignment made in the Database
painter for the column or a style assigned in the DataWindow painter),
PowerBuilder records the name and definition of the edit style in the
DataWindow object.

However, if the definition of the edit style later changes in the extended
attribute system tables, the edit style for the column in a DataWindow object
will not change automatically. You can update the column by reassigning the
edit style to it in the DataWindow object.

Working with edit styles in the Database painter
Typically, you define edit styles in the Database painter, because edit styles are
properties of the data itself. Once defined in the Database painter, the styles are
used by default each time the column is placed in a DataWindow object.

CHAPTER 22 Displaying and Validating Data

Users Guide 633

❖ To create a new edit style:

1 In the Database painter, select Object>Insert>Edit Style from the menu
bar.

2 In the Object Details view, select the edit style type from the Style
drop-down list.

3 Specify the properties of the edit style.

For information, see “Defining edit styles” on page 634.

You can use the new edit style with any column of the appropriate datatype
in the database.

❖ To modify an existing edit style:

1 In the Database painter, open the Extended Attributes view.

2 In the Extended Attributes view, open the list of edit styles.

3 Position the pointer on the Edit style you want to modify, display the
pop-up menu, then select Properties.

4 In the Object Details view, modify the edit style as desired and click OK.

For information, see “Defining edit styles” on page 634.

You can use the modified edit style with any column of the appropriate
datatype in the database.

❖ To associate an edit style with a column in the Database painter:

1 In the Database painter (Objects view), position the pointer on the column,
select Properties from the pop-up menu, then select the Edit Style tab in
the Properties view.

2 Select a style for the appropriate datatype from the list in the Style Name
box.

PowerBuilder associates the selected edit style with the column in the
extended attribute system tables.

❖ To remove an edit style from a column in the Database painter:

1 In the Database painter (Objects view), position the pointer on the column,
select Properties from the pop-up menu, then select the Edit Style tab in
the Properties view.

2 Select (None) from the list in the Style Name box.

The edit style is no longer associated with the column.

Defining edit styles

634 PowerBuilder Classic

Working with edit styles in the DataWindow painter
An edit style you assign to a column in the Database painter is used by default
when you place the column in a DataWindow object. You can override the edit
style in the DataWindow painter by choosing another edit style from the
extended attribute system tables or defining an ad hoc style for one specific
column.

❖ To specify an edit style for a column:

1 In the DataWindow painter, move the pointer to the column, select
Properties from the column’s pop-up menu, and then select the Edit tab.

2 Select the type of edit style you want from the Style Type drop-down list.

The information in the Edit page changes to be appropriate to the type of
edit style you selected.

3 Do one of the following:

• Select an edit style from the Style Name list.

• Create an ad hoc edit style for the column, as described in “Defining
edit styles” next.

Defining edit styles
This section describes how to specify each type of edit style.

The Edit edit style
By default, columns use the Edit edit style, which displays data in an edit
control. You can customize the appearance and behavior of the edit control by
modifying a column’s Edit edit style.

To do so, select Edit in the Style Type drop-down list and specify the properties
for that style:

• To restrict the number of characters users can enter, enter a value in the
Limit box.

• To convert the case of characters upon display, enter an appropriate value
in the Case box.

CHAPTER 22 Displaying and Validating Data

Users Guide 635

• To have entered values display as asterisks for sensitive data, check the
Password box.

• To allow users to tab to the column but not change the value, check the
Display Only box.

• To define a code table to determine which values are displayed to users and
which values are stored in the database, check the Use Code Table box and
enter display and data values for the code table.

See “Defining a code table” on page 645.

❖ To use the Edit edit style:

1 Select Edit from the Style Type list, if it is not already selected.

2 Select the properties you want.

Date columns and regional settings
Using the Edit edit style, or no edit style, with a date column can cause serious
data entry and validation problems if a user’s computer is set up to use a
nonstandard date style, such as yyyy/dd/mm. For example, if you enter
2001/03/05 in the Retrieval Arguments dialog box for a date column when the
mask is yyyy/dd/mm, the date is interpreted as March 5 instead of May 3. To
ensure that the order of the day and month is interpreted correctly, use an
EditMask edit style.

The DropDownListBox edit style
You can use the DropDownListBox edit style to have columns display as
drop-down lists at runtime:

Typically, this edit style is used with code tables, where you can specify display
values (which users see) and shorter data values (which are stored in the
database).

Defining edit styles

636 PowerBuilder Classic

In the DropDownListBox edit style, the display values of the code table display
in the ListBox portion of the DropDownListBox. The data values are the values
that are put in the DataWindow buffer (and sent to the database when an Update
is issued) when the user selects an item in the ListBox portion of the drop-down
list.

In the preceding example, when users see the value Business Services, the
corresponding data value could be 200.

❖ To use the DropDownListBox edit style:

1 Select DropDownListBox from the Style Type list.

2 Select the appropriate properties.

3 Enter the value you want to have appear in the Display Value box and the
corresponding data value in the Data Value box.

At runtime You can define and modify a code table for a column in a script by using the
SetValue method at runtime. To obtain the value of a column at runtime, use the
GetValue method. To clear the code table of values, use the ClearValues
method.

For more about code tables, see “Defining a code table” on page 645.

The CheckBox edit style
If a column can take only one of two (or perhaps three) values, you might want
to display the column as a check box; users can select or clear the check box to
specify a value. In the following entry from a DataWindow object, users can
simply check or clear a box to indicate whether an employee has health
insurance:

❖ To use the CheckBox edit style:

1 Select CheckBox from the Style Type list and specify properties for that
style.

2 In the Text box, enter the text you want displayed next to the check box.

Using accelerator keys
If the CheckBox has an accelerator key, enter an ampersand (&) before the
letter in the text that represents the accelerator key.

CHAPTER 22 Displaying and Validating Data

Users Guide 637

3 In the Data Value For boxes, enter the values you want put in the
DataWindow buffer when the CheckBox is checked (on) or unchecked
(off).

If you selected the 3 States box, an optional third state box (other) appears,
for the case when the condition is neither on nor off.

What happens The value you enter in the Text box becomes the display value, and values
entered for On, Off, and Other become the data values.

When users check or clear the check box at runtime, PowerBuilder enters the
appropriate data value in its buffer. When the Update method is called,
PowerBuilder sends the corresponding data values to the database.

Centering check
boxes without text

You may find it useful to center check boxes used for columns of information.
First make the text control used for the column header and the column control
the same size and left aligned. Then you can center the check boxes and the
column header.

❖ To center check boxes without text:

1 In the Edit property page for the column, make sure the Left Text check
box is not selected and that the Text box where you specify associated text
is empty.

2 In the General property page, specify centering (Alignment>Center) or
specify centering using the StyleBar.

The RadioButtons edit style
If a column can take one of a small number of values, you might want to
display the column as radio buttons:

❖ To use the RadioButtons edit style:

1 Select RadioButtons from the Style Type list and specify properties for
that style.

2 Specify how many radio buttons will display in the Columns Across box.

3 Enter a set of display and data values for each button you want to display.

Defining edit styles

638 PowerBuilder Classic

The display values you enter become the text of the buttons; the data
values are put in the DataWindow buffer when the button is clicked.

Using accelerator keys
To use an accelerator key on a radio button, enter an ampersand (&) in the
Display Value before the letter that will be the accelerator key.

What happens Users select values by clicking a radio button. When the Update method is
issued, the data values are sent to the database.

The EditMask edit style
Sometimes users need to enter data that has a fixed format. For example, in
North America phone numbers have a 3-digit area code, followed by three
digits, followed by four digits. You can define an edit mask that specifies the
format to make it easier for users to enter values:

Edit masks consist of special characters that determine what can be entered in
the column. They can also contain punctuation characters to aid users.

For example, to make it easier for users to enter phone numbers in the proper
format, specify this mask:

(###) ###-####

At runtime, the punctuation characters display in the box and the cursor jumps
over them as the user types:

Special characters
and keywords

Most edit masks use the same special characters as display formats, and there
are special considerations for using numeric, string, date, and time masks. For
information, see “Defining display formats” on page 623.

The special characters you can use in string edit masks are different from those
you can use in string display formats.

CHAPTER 22 Displaying and Validating Data

Users Guide 639

Table 22-9: Special characters for string edit masks

If you use the “#” or “a” special characters in a mask, Unicode characters,
spaces, and other characters that are not alphanumeric do not display.

Semicolons invalid in EditMask edit styles
In a display format, you can use semicolons to separate sections in number,
date, time, and string formats. You cannot use semicolons in an EditMask edit
style.

Keyboard behavior Note the following about how certain keystrokes behave in edit masks:

• Both Backspace and Shift + Backspace delete the preceding character.

• Delete deletes everything that is selected.

• Non-numeric edit masks treat any characters that do not match the mask
pattern as delimiters.

Also, note certain behavior in Date edit masks:

• Entering zero for the day or month causes the next valid date to be entered.
For example, if the edit mask is DD/MM/YY, typing 00/11/01 results in
01/11/01. You can override this behavior in the development
environment by adding the following lines to your PB.INI file:

[Edit Mask Behaviors]
AutocompleteDates=no

For deployed applications, the date is completed automatically unless you
provide a file called PB.INI in the same directory as the executable file that
contains these lines. Note that this section must be in a file called PB.INI.
Adding the section to a different INI file shipped with the application will
have no effect.

Character Meaning

! Uppercase – displays all characters with letters in uppercase

^ Lowercase – displays all characters with letters in lowercase

Number – displays only numbers

a Alphanumeric – displays only letters and numbers

X Any character – displays all characters

Defining edit styles

640 PowerBuilder Classic

• You cannot use a partial mask, such as dd or mmm, in a date edit mask.
Any mask that does not include any characters representing the year will
be replaced by a mask that does.

• The strings 00/00/00 or 00/00/0000 are interpreted as the NULL value for
the column.

Using the Mask
pop-up menu

Click the button to the right of the Mask box on the Mask property page to
display a list that contains complete masks that you can click to add to the mask
box, as well as special characters that you can use to construct your own mask.
For example, the menu for a Date edit mask contains complete masks such as
mm/dd/yy and dd/mmm/yyyy. It also has components such as dd and jjj (for a
Julian day). You might use these to construct a mask like dd-mm-yy, typing in
the hyphens as separators.

Using masks with “as
is” characters

You can define a mask that contains “as is” characters that always appear in the
control or column. For example, you might define a numeric mask such as
Rs0000.00 to represent Indian rupees in a currency column.

However, you cannot enter a minus sign to represent negative numbers in a
mask that contains “as is” characters, and the # special character is treated as a
0 character. As a result, if you specify a mask such as ###,##0.00EUR, a value
such as 45,000 Euros would display with a leading zero: 045,000.00EUR. Note
that you must always specify a mask that has enough characters to display all
possible data values. If the mask does not have enough characters, for example
if the mask is #,##0.00 and the value is 45000, the result is unpredictable.

The preferred method of creating a currency editmask is to use the predefined
[currency(7)] - International mask. You can change the number in
parentheses, which is the number of characters in the mask including two
decimal places. When you use this mask, PowerBuilder uses the currency
symbol and format defined in the regional settings section of the Windows
control panel. You can enter negative values in a column that uses a currency
mask.

CHAPTER 22 Displaying and Validating Data

Users Guide 641

Using spin controls You can define an edit mask as a spin control, a box that contains up and down
arrows that users can click to cycle through fixed values. For example, you can
set up a code table that provides the valid entries in a column; users simply
click an arrow to select an entry. Used this way, a spin control works like a
drop-down list that displays one value at a time:

For more about code tables, see “Defining a code table” on page 645.

❖ To use an EditMask edit style:

1 Select EditMask in the Style Type box if it is not already selected.

2 Define the mask in the Mask box. Click the special characters in the
pop-up menu to use them in the mask. To display the pop-up menu, click
the button to the right of the Mask box.

3 Specify other properties for the edit mask.

When you use your EditMask, check its appearance and behavior. If
characters do not appear as you expect, you might want to change the font
size or the size of the EditMask.

Using a drop-down
calendar

You can use a drop-down calendar option on any DataWindow column with an
EditMask edit style and a Date, DateTime, or TimeStamp datatype. The
DDCalendar EditMask property allows for separate selections of the calendar
month, year, and date. This option can be set in a check box on the Edit page
of the DataWindow painter Properties view when a column with the EditMask
edit style is selected. It can also be set in code, as in this example for the
birth_date column:

dw1.Modify("birth_date.EditMask.DDCalendar=’Yes’")

If you do not include script for client formatting in a Web DataWindow, the
drop-down calendar uses a default edit mask to display the column data based
on the client computer’s default localization settings. To make sure that dates
selected with the drop-down calendar option are displayed with the desired edit
mask, specify that the Client Formatting option be included with the static
JavaScript generated and deployed for the DataWindow.

Defining edit styles

642 PowerBuilder Classic

To conserve bandwidth, JavaScript for client formatting is not included by
default. To include this script, select the Client Formatting check box on the
Web Generation tab of the DataWindow Properties view.

The drop-down calendar option is supported in all Web DataWindow rendering
formats (HTML, XHTML, and XML).

The DropDownDataWindow edit style
Sometimes another data source determines which data is valid for a column.

Consider this situation: the Department table includes two columns, Dept_id
and Dept_name, to record your company’s departments. The Employee table
records your employees. The Department column in the Employee table can
have any of the values in the Dept_id column in the Department table.

As new departments are added to your company, you want the DataWindow
object containing the Employee table to automatically provide the new
departments as choices when users enter values in the Department column.

In situations such as these, you can specify the DropDownDataWindow edit
style for a column: it is populated from another DataWindow object. When
users go to the column, the contents of the DropDownDataWindow display,
showing the latest data:

❖ To use the DropDownDataWindow edit style:

1 Create a DataWindow object that contains the columns in the detail band
whose values you want to use in the column.

You will often choose at least two columns: one column that contains
values that the user sees and another column that contains values to be
stored in the database. In the example above, you would create a
DataWindow object containing the dept_id and dept_name columns in the
Department table. Assume this DataWindow object is named
d_dddw_dept.

CHAPTER 22 Displaying and Validating Data

Users Guide 643

2 For the column in a second DataWindow getting its data from the
d_dddw_dept DataWindow object, select the DropDownDW edit style.

In the example, you would specify the DropDownDataWindow edit style
for the dept_id column that you want to display with the department name
as well as the department ID:

3 Click the browse button next to the DataWindow box and select the
DataWindow object that contains the data for the column from the list (in
the example, d_dddw_dept). The list includes all the DataWindow objects
in the current target.

4 In the Display Column box, select the column containing the values that
will display in the DataWindow object (in the example, dept_name).

5 In the Data Column box, select the column containing the values that will
be stored in the database (in the example, dept_id).

6 Specify other properties for the edit style.

What happens At runtime, when data is retrieved into the DataWindow object, the column
whose edit style is DropDownDataWindow will itself be populated as data is
retrieved into the DataWindow object serving as the drop-down DataWindow
object.

Defining edit styles

644 PowerBuilder Classic

When the user goes to the column and drops it down, the contents of the
drop-down DataWindow object display. When the user selects a display value,
the corresponding data value is stored in the DataWindow buffer and is stored
in the database when an Update is issued.

Limit on size of data value
The data value for a column that uses the DropDownDataWindow edit style is
limited to 511 characters.

The RichText edit style
You can use the RichText edit style to display column data in a rich text format,
and to use different fonts and colors in the same data field.

Columns that you format with the RichText edit style require considerably
more storage space than columns with plain text edit styles. Therefore you
should set a minimum of 1 KB for the column width. Otherwise, you can use
the RichText edit style with columns that have large text datatypes.

Maximum text length
By default, the maximum text length for a DataWindow column is 32 KB.
However, for most database drivers, you can set this length to a higher value.
For the PowerBuilder ODBC driver, you can set the maximum text length in
the pbodbxxx.ini file, where xxx is the PowerBuilder version number. If you
add "PBMaxTextSize=1024000" to the section of the INI file for the database
to which you are connecting, you change the maximum text length for a
DataWindow column to 1 MB.

By default, whenever a column with the RichText edit style is edited in the
Preview view or at runtime, a font toolbar displays. The font toolbar disappears
when the column loses focus. The following picture shows the default font
toolbar available for columns with the RichText edit style:

You can modify the RichTextToolbarActivation constant on a DataWindow
control to display the font toolbar whenever a DataWindow object containing
columns with the RichText edit style has focus—whether or not this type of
column is selected. You can also modify the constant so that the font toolbar
never appears.

CHAPTER 22 Displaying and Validating Data

Users Guide 645

For more information, see RichTextToolbarActivation in the online Help.

The RichText edit style is not available for columns in a DataWindow object
with the Graph, OLE, or RichText presentation styles.

The InkEdit edit style
The InkEdit edit style is designed for use on a Tablet PC and provides the
ability to capture ink input from users of Tablet PCs.

You can specify InkEdit as a style type on the Edit page in the Properties view
for columns. When the column gets focus, an InkEdit control displays so that
the user can enter text with the stylus or mouse. The text is recognized and
displayed, then sent back to the database when the column loses focus.

The InkEdit edit style is fully functional on Tablet PCs. On other computers, it
behaves like the Edit edit style.

For more information about ink controls and the Tablet PC, and to download
the Tablet PC SDK, go to the Microsoft Tablet PC Web site at
http://msdn.microsoft.com/en-us/library/ms950406.aspx.

Defining a code table
To reduce storage needs, frequently you might want to store short, encoded
values in the database, but these encoded values might not be meaningful to
users. To make DataWindow objects easy to use, you can define code tables.

Each row in a code table is a pair of corresponding values: a display value and
a data value. The display values are those users see at runtime. The data values
are those that are saved in the database.

Limit on size of data value
The data value you specify for the Checkbox, DropDownListBox, Edit,
EditMask, and RadioButtons edit styles is limited to 255 characters.

Defining a code table

646 PowerBuilder Classic

How code tables are implemented
You can define a code table as a property of the following column edit styles:

Edit
DropDownListBox
RadioButtons
DropDownDataWindow
EditMask, using spin control

The steps to specify the code table property for each edit style are similar: you
begin by defining a new edit style in the Database painter. Once you select an
edit style, use the specific procedure that follows to define the code table
property.

For how to create an edit style, see “About edit styles” on page 630.

Allowing null values
An internal PowerBuilder code, NULL!, indicates null values are allowed. To
use this code, specify NULL! as the data value, then specify a display format
for nulls for the column.

❖ To define a code table as a property of the Edit edit style:

1 Select the Use Code Table check box.

2 Enter the display and data values for the code table.

3 If you want to restrict input in the column to values in the code table, select
the Validate check box.

For more information, see “Validating user input” on page 648.

❖ To define a code table as a property of the DropDownListBox edit style:

1 Enter the display and data values for the code table.

2 If you want to restrict input in the column to values in the code table, clear
the Allow Editing check box.

For more information, see “Validating user input” on page 648.

❖ To define a code table as a property of the RadioButtons edit style:

• Enter the display and data values for the code table.

CHAPTER 22 Displaying and Validating Data

Users Guide 647

❖ To define a code table as a property of the DropDownDataWindow edit
style:

1 Specify the column that provides the display values in the Display Column
box.

2 Specify the column that provides the data values in the Data Column box.

3 If you want to restrict input in the column to values in the code table, clear
the Allow Editing check box.

❖ To define a code table as a property of the EditMask edit style:

1 Select the Spin Control check box.

2 Select the Code Table check box.

3 Enter the display and data values for the code table.

How code tables are processed
When data is retrieved into a DataWindow object column with a code table,
processing begins at the top of the data value column. If the data matches a data
value, the corresponding display value displays. If there is no match, the actual
value displays.

Consider the example in Table 22-10.

Table 22-10: Data values and display values

If the data is MA or ma, the corresponding display value (Massachusetts)
displays. If the data is Ma, there is no match, so Ma displays.

Case sensitivity
Code table processing is case sensitive.

Display values Data values

Massachusetts MA

Massachusetts ma

ma MA

Mass MA

Rhode Island RI

RI RI

Defining a code table

648 PowerBuilder Classic

If the code table is in a DropDownListBox edit style, and if the column has a
code table that contains duplicate display values, then each value displays only
once. Therefore, if this code table is defined for a column in a DataWindow
object that has a DropDownListBox edit style, Massachusetts and Rhode
Island display in the ListBox portion of the DropDownListBox.

Validating user input
When users enter data into a column in a DataWindow object, processing
begins at the top of the display value column of the associated code table.

If the data matches a display value, the corresponding data value is put in the
internal buffer. For each display value, the first data value is used. Using the
sample code table, if the user enters Massachusetts, ma, or Mass, the data value
is MA.

You can specify that only the values in the code table are acceptable:

• For a column using the Edit edit style, select the Validate check box.

If you have requested validation for the Edit edit style, an ItemError event
is triggered whenever a user enters a value not in the code table.
Otherwise, the entered value is validated using the column’s validation
rule, if any, and put in the DataWindow buffer.

• For the DropDownListBox and DropDownDataWindow edit styles, clear
the Allow Editing check box: users cannot type a value.

Although users cannot type a value when Allow Editing is false, they can
search for a row in the drop-down list or DataWindow by typing in the
initial character for the row display value. The search is case sensitive. For
the DropDownDataWindow edit style, the initial character for a search
cannot be an asterisk or a question mark. This restriction does not apply to
the DropDownListBox edit style.

When the code table processing is complete, the ItemChanged or ItemError
event is triggered.

Code table data
The data values in the code table must pass validation for the column and must
have the same datatype as the column.

CHAPTER 22 Displaying and Validating Data

Users Guide 649

About validation rules
When users enter data in a DataWindow object, you want to be sure the data is
valid before using it to update the database. Validation rules provide one way
to do this.

You usually define validation rules in the Database painter. To use a validation
rule, you associate it with a column in the Database painter or DataWindow
painter.

Another technique
You can also perform data validation through code tables, which are
implemented through a column’s edit style.

For more information, see “About edit styles” on page 630.

Understanding validation rules
Validation rules are criteria that a DataWindow object uses to validate data
entered into a column by users. They are PowerBuilder-specific and therefore
not enforced by the DBMS.

Validation rules assigned in the Database painter are used by default when you
place columns in a DataWindow object. You can override the default rules in
the DataWindow painter.

A validation rule is an expression that evaluates to either “true” or “false”. If
the expression evaluates to “true” for an entry into a column, PowerBuilder
accepts the entry. If the expression evaluates to “false”, the entry is not
accepted and the ItemError event is triggered. By default, PowerBuilder
displays a message box to the user. You can customize the message displayed
when a value is rejected.

You can also code the ItemError event to cause different processing to happen.

For more information, see the chapter on using DataWindow objects in the
DataWindow Programmers Guide.

Working with validation rules

650 PowerBuilder Classic

At runtime
In scripts, you can use the GetValidate method to obtain the validation rule for
a column and the SetValidate method to change the validation rule for a
column.

For information about the GetValidate and SetValidate methods, see the online
help.

Working with validation rules
You work with validation rules in the Database painter and DataWindow
painter.

What you do in the
Database painter

In the Database painter, you can:

• Create, modify, and delete named validation rules

The validation rules are stored in the extended attribute system tables.
Once you define a validation rule, it can be used by any column of the
appropriate datatype in the database.

• Assign validation rules to columns and remove them from columns

These rules are used by default when you place the column in a
DataWindow object in the DataWindow painter.

What you do in the
DataWindow painter

In the DataWindow painter, you can:

• Accept the default validation rule assigned to a column in the Database
painter

• Create an ad hoc, unnamed rule to use with one specific column

Validation rules and
the extended attribute
system tables

Once you have placed a column that has a validation rule from the extended
attribute system tables in a DataWindow object, there is no longer any link to
the named rule in the extended attribute system tables.

If the definition of the validation rule later changes in the extended attribute
system tables, the rule for the column in a DataWindow object will not change.

CHAPTER 22 Displaying and Validating Data

Users Guide 651

Defining validation rules
Typically, you define validation rules in the Database painter, because
validation rules are properties of the data itself. Once defined in the Database
painter, the rules are used by default each time the column is placed in a
DataWindow object. You can also define a validation rule in the DataWindow
painter that overrides the rule defined in the Database painter.

Defining a validation rule in the Database painter
This section describes the ways you can manipulate validation rules in the
Database painter.

❖ To create a new validation rule

1 In the Extended Attributes view in the Database painter, right-click
Validation Rules and select New from the pop-up menu.

The Validation Rule view displays in the Properties view.

2 Assign a name to the rule, select the datatype of the columns to which it
applies, and customize the error message (if desired).

For information, see “Customizing the error message” on page 654.

3 Click the Definition tab and define the expression for the rule.

For information, see “Defining the expression” on page 652.

You can use this rule with any column of the appropriate datatype in the
database.

Defining validation rules

652 PowerBuilder Classic

❖ To modify a validation rule:

1 In the Database painter, open the Extended Attributes view.

2 In the Extended Attributes view, open the list of validation rules.

3 Double-click the validation rule you want to modify.

4 In the Validation Rule view, modify the validation rule as desired.

For information, see “Defining the expression” on page 652 and
“Customizing the error message” on page 654.

❖ To associate a validation rule with a column in the Database painter:

1 In the Database painter (Objects view), position the pointer on the column,
select Properties from the column’s pop-up menu, and select the
Validation tab.

2 Select a validation rule from the Validation Rule drop-down list.

The column now has the selected validation rule associated with it in the
extended attribute system tables. Whenever you use this column in a
DataWindow object, it will use this validation rule unless you override it
in the DataWindow painter.

❖ To remove a validation rule from a column in the Database painter:

1 In the Database painter (Objects view), position the pointer on the column,
select Properties from its pop-up menu, and select the Validation tab in the
Properties view.

2 Select (None) from the list in the Validation Rule drop-down list.

The validation rule is no longer associated with the column.

Defining the expression

A validation rule is a boolean expression. PowerBuilder applies the boolean
expression to an entered value. If the expression returns “true”, the value is
accepted. Otherwise, the value is not accepted and an ItemError event is
triggered.

What expressions can
contain

You can use any valid DataWindow expression in validation rules.

Validation rules can include most DataWindow expression functions. A
DataWindow object that will be used in PowerBuilder can also include
user-defined functions. DataWindow expression functions are displayed in the
Functions list and can be pasted into the definition.

CHAPTER 22 Displaying and Validating Data

Users Guide 653

For information about these functions, see the DataWindow Reference.

Use the notation @placeholder (where placeholder is any group of characters)
to indicate the current column in the rule. When you define a validation rule in
the Database painter, PowerBuilder stores it in the extended attribute system
tables with the placeholder name. At runtime, PowerBuilder substitutes the
value of the column for placeholder.

Pasting the
placeholder

The @col can be easily used as the placeholder. A button in the Paste area is
labeled with @col. You can click the button to paste the @col into the
validation rule.

An example For example, to make sure that both Age and Salary are greater than zero using
a single validation rule, define the validation rule as follows:

@col > 0

Then associate the validation rule with both the Age and Salary columns. At
runtime, PowerBuilder substitutes the appropriate values for the column data
when the rule is applied.

Using match values for character columns

If you are defining the validation rule for a character column, you can use the
Match button on the Definition page of the Validation Rule view. This button
lets you define a match pattern for matching the contents of a column to a
specified text pattern (for example, ^[0-9]+$ for all numbers and ^[A-Za-z]+$
for all letters).

❖ To specify a match pattern for character columns:

1 Click the Match button on the Definition page of the Validation Rule view.

The Match Pattern dialog box displays.

2 Enter the text pattern you want to match the column to, or select a
displayed pattern.

3 (Optional) Enter a test value and click the Test button to test the pattern.

4 Click OK when you are satisfied that the pattern is correct.

For more on the Match function and text patterns, see the DataWindow
Reference.

Defining validation rules

654 PowerBuilder Classic

Customizing the error message

When you define a validation rule, PowerBuilder automatically creates the
error message that displays by default when users enter an invalid value:

'Item ~'' + @Col + '~' does not pass validation test.'

You can edit the string expression to create a custom error message.

Different syntax in the
DataWindow painter

If you are working in the DataWindow painter, you can enter a string
expression for the message, but you do not use the @ sign for placeholders. For
example, this is the default message:

'Item ~'' + ColumnName + '~' does not pass validation test.'

A validation rule for the Salary column in the Employee table might have the
following custom error message associated with it:

Please enter a salary greater than $10,000.

If users enter a salary less than or equal to $10,000, the custom error message
displays.

Specifying initial values

As part of defining a validation rule, you can supply an initial value for a
column.

❖ To specify an initial value for a column in the Database painter:

1 Select Properties from the column’s pop-up menu and select the Validation
tab.

2 Specify a value in the Initial Value box.

Defining a validation rule in the DataWindow painter
Validation rules you assign to a column in the Database painter are used by
default when you place the column in a DataWindow object. You can override
the validation rule in the DataWindow painter by defining an ad hoc rule for
one specific column.

❖ To specify a validation rule for a column in the DataWindow painter:

1 In the DataWindow painter, select View>Column Specifications from the
menu bar.

CHAPTER 22 Displaying and Validating Data

Users Guide 655

The Column Specification view displays.

2 Create or modify the validation expression. To display the Modify
Expression dialog box, display the pop-up menu for the box in which you
want to enter a Validation Expression and select Expression. Follow the
directions in “Specifying the expression” next.

3 (Optional) Enter a string or string expression to customize the validation
error message.

For more information, see “Customizing the error message” on page 654.

4 (Optional) Enter an initial value.

Used for current column only
If you create a validation rule here, it is used only for the current column
and is not saved in the extended attribute system tables.

Specifying the expression

Since a user might have just entered a value in the column, validation rules
refer to the current data value, which you can obtain through the GetText
DataWindow expression function.

Using GetText ensures that the most recent data entered in the current column
is evaluated.

PowerBuilder does the conversion for you
If you have associated a validation rule for a column in the Database painter,
PowerBuilder automatically converts the syntax to use GetText when you place
the column in a DataWindow object.

GetText returns a string. Be sure to use a data conversion function (such as
Integer or Real) if you want to compare the entered value with a datatype other
than string.

For more on the GetText function and text patterns, see the DataWindow
Reference.

Defining validation rules

656 PowerBuilder Classic

Referring to other
columns

You can refer to the values in other columns by specifying their names in the
validation rule. You can paste the column names in the rule using the Columns
box.

Examples

Here are some examples of validation rules.

Example 1 To check that the data entered in the current column is a positive
integer, use this validation rule:

Integer(GetText()) > 0

Example 2 If the current column contains the discounted price and the
column named Full_Price contains the full price, you could use the following
validation rule to evaluate the contents of the column using the Full_Price
column:

Match(GetText(),"^[0-9]+$") AND
Real(GetText()) < Full_Price

To pass the validation rule, the data must be all digits (must match the text
pattern ^[0-9]+$) and must be less than the amount in the Full_Price column.

Notice that to compare the numeric value in the column with the numeric value
in the Full_Price column, the Real function was used to convert the text to a
number.

Example 3 In your company, a product price and a sales commission are
related in the following way:

• If the price is greater than or equal to $1000, the commission is between
10 percent and 20 percent

• If the price is less than $1000, the commission is between 4 percent and 9
percent

The Sales table has two columns, Price and Commission. The validation rule for
the Commission column is:

(Number(GetText()) >= If(price >= 1000, .10, .04))
AND
(Number(GetText()) <= If(price >= 1000, .20, .09))

A customized error message for the Commission column is:

"Price is " + if(price >= 1000,
"greater than or equal to","less than") +
" 1000. Commission must be between " +
If(price >= 1000,".10", ".04") + " and " +

CHAPTER 22 Displaying and Validating Data

Users Guide 657

If(price >= 1000, ".20.", ".09.")

How to maintain extended attributes
PowerBuilder provides facilities you can use to create, modify, and delete
display formats, edit styles, and validation rules independently of their
association with columns. The following procedure summarizes how you do
this.

❖ To maintain display formats, edit styles, and validation rules:

1 Open the Database painter.

2 Select View>Extended Attributes.

The Extended Attributes view displays listing all the entities in the
extended attribute system tables.

3 Do one of the following:

• To create a new entity, display the pop-up menu for the type you want
to add, then select New.

• To modify an entity, display its pop-up menu, then select Properties.

• To delete an entity, display its pop-up menu, then select Delete.

Caution
If you delete a display format, edit style, or validation rule, it is removed
from the extended attribute system tables. Columns in the database are no
longer associated with the entity.

How to maintain extended attributes

658 PowerBuilder Classic

Users Guide 659

C H A P T E R 2 3 Filtering, Sorting, and Grouping
Rows

About this chapter This chapter describes how you can customize your DataWindow object
by doing the following in the DataWindow painter:

• Defining filters to limit which of the retrieved rows are displayed in
the DataWindow object

• Sorting rows after they have been retrieved from the database

• Displaying the rows in groups and calculating statistics on each group

Contents

Filtering rows
You can use WHERE and HAVING clauses and retrieval arguments in the
SQL SELECT statement for the DataWindow object to limit the data that
is retrieved from the database. This reduces retrieval time and space
requirements at runtime.

However, you may want to further limit the data that displays in the
DataWindow object. For example, you might want to:

• Retrieve many rows and initially display only a subset (perhaps
allowing the user to specify a different subset of rows to display at
runtime)

• Limit the data that is displayed using DataWindow expression
functions (such as If) that are not valid in the SELECT statement

Topic Page

Filtering rows 659

Sorting rows 662

Grouping rows 664

Filtering rows

660 PowerBuilder Classic

Using filters In the DataWindow painter, you can define filters to limit the rows that display
at runtime. Filters can use most DataWindow expression functions or user-
defined functions.

Filters do not affect which rows are retrieved
A filter operates against the retrieved data. It does not re-execute the SELECT
statement.

Defining a filter

❖ To define a filter:

1 In the DataWindow painter, select Rows>Filter from the menu bar.

The Specify Filter dialog box displays:

2 In the Specify Filter dialog box, enter a boolean expression that
PowerBuilder will test against each retrieved row.

If the expression evaluates to true, the row is displayed. You can specify
any valid expression in a filter. Filters can use any non-object-level
PowerScript function, including user-defined functions. You can paste
commonly used functions, names of columns, computed fields, retrieval
arguments, and operators into the filter.

International considerations
The formatting that you enter for numbers and currency in filter
expressions display the same way in any country. Changing the regional
settings of the operating system does not modify the formatting displayed
for numbers and currency at runtime.

CHAPTER 23 Filtering, Sorting, and Grouping Rows

Users Guide 661

For information about expressions for filters, see the DataWindow
Reference.

3 (Optional) Click Verify to make sure the expression is valid.

4 Click OK.

Only rows meeting the filter criteria are displayed in the Preview view.

Filtered rows and updates
Modifications of filtered rows are applied to the database when you issue
an update request.

Removing a filter

❖ To remove a filter:

1 Select Rows>Filter from the menu bar.

2 Delete the filter expression from the Specify Filter dialog box, then click
OK.

Examples of filters Assume that a DataWindow object retrieves employee rows and three of the
columns are Salary, Status, and Emp_Lname. Table 23-1 shows some examples
of filters you might use.

Table 23-1: Sample filters

Setting filters
dynamically

You can use the SetFilter and Filter methods in a script to dynamically modify a
filter that was set in the DataWindow painter. For information about SetFilter
and Filter, see the online help.

To display these rows Use this filter

Employees with salaries over $50,000 Salary > 50000

Active employees Status = 'A'

Active employees with salaries over
$50,000

Salary > 50000 AND Status = 'A'

Employees whose last names begin
with H

left(Emp_Lname, 1) = 'H'

Sorting rows

662 PowerBuilder Classic

Sorting rows
You can use an ORDER BY clause in the SQL SELECT statement for the
DataWindow object to sort the data that is retrieved from the database. If you
do this, the DBMS itself does the sorting and the rows are brought into
PowerBuilder already sorted.

However, you might want to sort the rows after they are retrieved. For example,
you might want to:

• Offload the processing from the DBMS

• Sort on an expression, which might not be allowed in the SELECT
statement but is allowed in PowerBuilder

❖ To sort the rows:

1 Select Rows>Sort from the menu bar.

2 Drag to the Columns box the columns on which you want to sort the rows,
and specify whether you want to sort in ascending or descending order.

The order of the columns determines the precedence of the sort. To reorder
the columns, drag them up or down in the list. To delete a column from the
sort columns list, drag the column outside the dialog box.

3 You can also specify expressions to sort on: for example, if you have two
columns, Revenues and Expenses, you can sort on the expression
Revenues – Expenses.

To specify an expression to sort on, double-click a column name in the
Columns box, modify the expression in the Modify Expression dialog box,
and click OK.

CHAPTER 23 Filtering, Sorting, and Grouping Rows

Users Guide 663

You return to the Specify Sort Columns dialog box with the expression
displayed.

If you change your mind
You can remove a column or expression from the sorting specification by
simply dragging it and releasing it outside the Columns box.

4 Click OK when you have specified all the sort columns and expressions.

Suppressing repeating values
When you sort on a column, there might be several rows with the same value
in one column. You can choose to suppress the repeating values in that column.

When you suppress a repeating value, the value displays at the start of each
new page and, if you are using groups, each time a value changes in a higher
group.

For example, if you have sorted employees by department ID, you can suppress
all but the first occurrence of each department ID in the DataWindow object:

Grouping rows

664 PowerBuilder Classic

❖ To suppress repeating values:

1 Select Rows>Suppress Repeating Values from the menu bar.

The Specify Repeating Value Suppression List dialog box displays:

2 Drag the columns whose repeated values you want to suppress from the
Source Data box to the Suppression List box, and click OK.

If you change your mind
You can remove a column from the suppression list simply by dragging it
and releasing it outside the Suppression List box.

Grouping rows
You can group related rows together and, optionally, calculate statistics for
each group separately. For example, you might want to group employee
information by department and get total salaries for each department.

How groups are
defined

Each group is defined by one or more DataWindow object columns. Each time
the value in a grouping column changes, a break occurs and a new section
begins.

For each group, you can:

• Display the rows in each section

• Specify the information you want to display at the beginning and end of
each section

• Specify page breaks after each break in the data

• Reset the page number after each break

CHAPTER 23 Filtering, Sorting, and Grouping Rows

Users Guide 665

Grouping example The following DataWindow object retrieves employee information. It has one
group defined, Dept_ID, so it groups rows into sections according to the value
in the Dept_ID column. In addition, it displays:

• Department ID before the first row for that department

• Totals and averages for salary and salary plus benefits (a computed
column) for each department

• Grand totals for the company at the end

The following screenshot shows the DataWindow object.

Grouping rows

666 PowerBuilder Classic

How to do it You can create a grouped DataWindow object in three ways:

• Use the Group presentation style to create a grouped DataWindow object
from scratch (“Using the Group presentation style” next).

• Take an existing tabular DataWindow object and define grouping
(“Defining groups in an existing DataWindow object” on page 670).

• Use the TreeView presentation style (Chapter 28, “Working with
TreeViews”).

Making the
DataWindow control
large enough

If a DataWindow object has grouped rows, each page contains all group
headers (including zero-height headers) at the top of the page. Your
DataWindow control must be large enough to accommodate all the group
headers that display on each page of the report.

The last row of a group displays on the same page as that row’s group trailer
and each applicable higher-level group trailer. If the DataWindow object has a
summary band, it displays on the same page as the last row of the report. If the
control is not large enough, you might see anomalies when scrolling through
the DataWindow object, particularly in the last row of the report, which needs
room to display the report’s header band, all group headers, all group trailers,
the summary band, and the footer band.

If you cannot increase the height of the DataWindow control so that it has room
for all the headers and trailers, you can change the design of the DataWindow
object so that they require less space.

Scrolling through a
grouped DataWindow

When you scroll through a grouped DataWindow object, you might see the
group header repeated where you do not expect it. This is because the data is
paginated in a fixed layout based on the size of the DataWindow control. You
can scroll to a point that shows the bottom half of one page and the top of the
next. When you use the arrow keys to page through the data, you scroll one row
at a time.

Using the Group presentation style
One of the DataWindow object presentation styles, Group, is a shortcut to
creating a grouped DataWindow object. It generates a tabular DataWindow
object that has one group level and some other grouping properties defined.
You can then further customize the DataWindow object.

❖ To create a basic grouped DataWindow object using the Group
presentation style:

1 Select File>New from the menu bar.

CHAPTER 23 Filtering, Sorting, and Grouping Rows

Users Guide 667

The New dialog box displays.

2 Choose the DataWindow tab page and the Group presentation style, and
click OK.

3 Choose a data source and define the data.

You are prompted to define the grouping column(s).

4 Drag the column(s) you want to group on from the Source Data box to the
Columns box.

Multiple columns and multiple group levels
You can specify more than one column, but all columns apply to group
level one. You can define one group level at this point. Later you can
define additional group levels.

In the following example, grouping will be by department, as specified by
the dept_id column:

If you want to use an expression, you can define it when you have
completed the wizard. See “Using an expression for a group” on page 669.

5 Click Next.

PowerBuilder suggests a header based on your data source. For example,
if your data comes from the Employee table, PowerBuilder uses the name
Employee in the suggested header.

6 Specify the Page Header text.

Grouping rows

668 PowerBuilder Classic

7 If you want a page break each time a grouping value changes, select the
New Page On Group Break box.

8 If you want page numbering to restart at 1 each time a grouping value
changes, select the Reset Page Number On Group Break box and the New
Page On Group Break box.

9 Click Next.

10 Select Color and Border settings and click Next.

11 Review your specification and click Finish.

The DataWindow object displays with the basic grouping properties set.

This is an example of a Group style DataWindow object:

What PowerBuilder
does

As a result of your specifications, PowerBuilder generates a tabular
DataWindow object and:

• Creates group header and trailer bands

• Places the column you chose as the grouping column in the group header
band

• Sorts the rows by the grouping column

• Places the page header and the date (as a computed field) in the header
band

• Places the page number and page count (as computed fields) in the footer
band

• Creates sum-computed fields for all numeric columns (the fields are
placed in the group trailer and summary bands)

CHAPTER 23 Filtering, Sorting, and Grouping Rows

Users Guide 669

Here is the preceding DataWindow object in the Preview view:

Using an expression
for a group

If you want to use an expression for one or more column names in a group, you
can enter an expression as the Group Definition on the General page in the
Properties view after you have finished using the Group wizard.

❖ To use an expression for a group:

1 Open the Properties view and select the group header band in the Design
view.

2 Click the ellipsis button next to the Group Definition box on the General
page to open the Specify Group Columns dialog box.

3 In the Columns box, double-click the column that you want to use in an
expression.

The Modify Expression dialog box opens. You can specify more than one
grouping item expression for a group. A break occurs whenever the value
concatenated from each column/expression changes.

What you can do You can use any of the techniques available in a tabular DataWindow object to
modify and enhance the grouped DataWindow object, such as moving controls,
specifying display formats, and so on. In particular, see “Defining groups in an
existing DataWindow object” next to learn more about the bands in a grouped
DataWindow object and how to add features especially suited for grouped
DataWindow objects (for example, add a second group level, define additional
summary statistics, and so on).

Grouping rows

670 PowerBuilder Classic

DataWindow Object is not updatable by default
When you generate a DataWindow object using the Group presentation style,
PowerBuilder makes it not updatable by default. If you want to be able to
update the database through the grouped DataWindow object, you must modify
its update characteristics. For more information, see Chapter 21, “Controlling
Updates in DataWindow objects.”

Defining groups in an existing DataWindow object
Instead of using the Group presentation style to create a grouped DataWindow
object from scratch, you can take an existing tabular DataWindow object and
define groups in it.

❖ To add grouping to an existing DataWindow object:

1 Start with a tabular DataWindow object that retrieves all the columns you
need.

2 Specify the grouping columns.

3 Sort the rows.

4 (Optional) Rearrange the DataWindow object.

5 (Optional) Add summary statistics.

6 (Optional) Sort the groups.

Steps 2 through 6 are described next.

Specifying the grouping columns

❖ To specify the grouping columns:

1 In the DataWindow painter, Select Rows>Create Group from the menu
bar.

The Specify Group Columns dialog box displays.

2 Specify the group columns, as described in “Using the Group presentation
style” on page 666.

3 Set the Reset Page Count and New Page on Group Break properties on the
General page in the Properties view.

CHAPTER 23 Filtering, Sorting, and Grouping Rows

Users Guide 671

Creating subgroups After defining your first group, you can define subgroups, which are groups
within the group you just defined.

❖ To define subgroups:

1 Select Rows>Create Group from the menu bar and specify the
column/expression for the subgroup.

2 Repeat step 1 to define additional subgroups if you want.

You can specify as many levels of grouping as you need.

How groups are
identified

PowerBuilder assigns each group a number (or level) when you create the
group. The first group you specify becomes group 1, the primary group. The
second group becomes group 2, a subgroup within group 1, and so on.

For example, suppose you define two groups. The first group uses the dept_id
column and the second group uses the status column.

The rows are grouped first by department (group 1). Within department, rows
are grouped by status (group 2). If you specify page breaks for the groups, a
page break will occur when any of these values changes.

You use the group’s number to identify it when defining summary statistics for
the group. This is described in “Adding summary statistics” on page 673.

Sorting the rows

PowerBuilder does not sort the data when it creates a group. Therefore, if the
data source is not sorted, you must sort the data by the same columns (or
expressions) specified for the groups.

For example, if you are grouping by dept_id then status, select Rows>Sort from
the menu bar and specify dept_id and then status as sorting columns:

Grouping rows

672 PowerBuilder Classic

You can also sort on additional rows. For example, if you want to sort by
employee ID within each group, specify emp_id as the third sorting column.

For more information about sorting, see “Sorting rows” on page 662.

Rearranging the DataWindow object

When you create a group, PowerBuilder creates two new bands for each group:

• A group header band

• A group trailer band

The bar identifying the band contains:

• The number of the group

• The name of the band

• The name of each column that defines the group

• An arrow pointing to the band

You can include any control in the DataWindow object (such as columns, text,
and computed fields) in the header and trailer bands of a group.

Using the group
header band

The contents of the group header band display at the top of each page and after
each break in the data.

Typically, you use this band to identify each group. You might move the
grouping column from the detail band to the group header band, since it now
serves to identify one group rather than each row.

For example, if you group the rows by department and include the department
in the group header, the department will display before the first line of data
each time the department changes.

CHAPTER 23 Filtering, Sorting, and Grouping Rows

Users Guide 673

At runtime, you see this:

Suppressing group
headers

If you do not want a group header to display at the top of each page when you
print or display a report, select the Suppress Group Header check box on the
General property page for the header. If none of the headers are suppressed,
they all display at the top of each page. When a page break coincides with a
group break, the group header and any group headers that follow it display
even if the Suppress Group Header property is set, but higher level headers are
suppressed if the property is set for those headers.

For example, suppose a report has three groups: division, sales region, and
sales manager. If all three group headers are suppressed, and a sales region
group break coincides with a page break, the division header is suppressed but
the sales region and sales manager headers display.

Using the group trailer
band

The contents of the group trailer display after the last row for each value that
causes a break.

In the group trailer band, you specify the information you want displayed after
the last line of identical data for each value in the group. Typically, you include
summary statistics here, as described next.

Adding summary statistics

One of the advantages of creating a grouped DataWindow object is that you can
have PowerBuilder calculate statistics for each group. To do that, you place
computed fields that reference the group. Typically, you place these computed
fields in the group’s trailer band.

❖ To add a summary statistic:

1 Select Insert>Control>Computed Field from the menu bar.

Grouping rows

674 PowerBuilder Classic

2 Click in the Design view where you want the statistic.

The Modify Expression dialog box displays.

3 Specify the expression that defines the computed field (see below).

4 Click OK.

A shortcut to sum values
If you want to sum a numeric column, select the column in Design view and
click the Sum button in the Controls drop-down toolbar. PowerBuilder
automatically places a computed field in the appropriate band.

Specifying the
expression

Typically, you use aggregate and other functions in your summary statistic.
PowerBuilder lists functions you can use in the Functions box in the Modify
Expression dialog box. When you are defining a computed field in a group
header or trailer band, PowerBuilder automatically lists forms of the functions
that reference the group:

You can paste these templates into the expression, then replace the #x that is
pasted in as the function argument with the appropriate column or expression.

For example, to count the employees in each department (group 1), specify this
expression in the group trailer band:

Count(Emp_Id for group 1)

To get the average salary of employees in a department, specify:

Avg(Salary for group 1)

To get the total salary of employees in a department, specify:

Sum(Salary for group 1)

CHAPTER 23 Filtering, Sorting, and Grouping Rows

Users Guide 675

The group trailer band in this example shows the average and total salary for
the group.

At runtime, the average and total salaries are calculated and displayed:

Sorting the groups

You can sort the groups in a DataWindow object. For example, in a
DataWindow object showing employee information grouped by department,
you might want to sort the departments (the groups) by total salary.

Typically, this involves aggregate functions, as described in “Adding summary
statistics” on page 673. In the department salary example, you would sort the
groups using the aggregate function Sum to calculate total salary in each
department.

❖ To sort the groups:

1 Place the mouse pointer on the group header bar (not inside the band) until
the pointer becomes a double-headed arrow.

Grouping rows

676 PowerBuilder Classic

2 Click.

The General property page for the group displays in the Properties view.

3 Click the ellipsis button next to the Group Sort property.

The Specify Sort Columns dialog box displays.

4 Drag the column you want to sort the groups by from the Source Data box
into the Columns box.

If you chose a numeric column, PowerBuilder uses the Sum function in the
expression; if you chose a non-numeric column, PowerBuilder uses the
Count function.

For example, if you chose the Salary column, PowerBuilder specifies that
the groups will be sorted by the expression sum(salary for group 1):

5 Select ascending or descending sort as appropriate.

CHAPTER 23 Filtering, Sorting, and Grouping Rows

Users Guide 677

6 If you want to modify the expression to sort on, double-click the column
in the Columns box.

The Modify Expression dialog box displays.

7 Specify the expression to sort on.

For example, to sort the department group (the first group level) on
average salary, specify avg(salary for group 1).

8 Click OK.

You return to the Specify Sort Columns dialog box with the expression
displayed.

9 Click OK again.

At runtime, the groups will be sorted on the expression you specified.

Grouping rows

678 PowerBuilder Classic

Users Guide 679

C H A P T E R 2 4 Highlighting Information in
DataWindow Objects

About this chapter This chapter describes how you modify the way information displays in
DataWindow objects and reports based on the conditions you specify. The
conditions are usually related to data values, which are not available until
runtime.

Contents

Highlighting information
Every control in a DataWindow object has a set of properties that
determines what the control looks like and where it is located. For
example, the values in a column of data display in a particular font and
color, in a particular location, with or without a border, and so on.

Modifying properties when designing
You define the appearance and behavior of controls in DataWindow
objects in the DataWindow painter. As you do that, you are specifying the
controls’ properties. For example, when you place a border around a
column, you are setting that column’s Border property.

In most cases, the appearance and behavior of controls is fixed; you do not
want them to change at runtime. When you make headings bold when
designing them, you want them to be bold at all times.

Topic Page

Highlighting information 679

Modifying properties conditionally at runtime 683

Supplying property values 689

Specifying colors 707

Highlighting information

680 PowerBuilder Classic

In the following DataWindow object, the Salary Plus Benefits column has a
Shadow box border around every data value in the column. To display the
border, you set the border property for the column:

Modifying properties at runtime
In some cases, however, you might want some properties of controls in
DataWindow objects to be driven by the data, which is not known when you
are defining the DataWindow object in the painter. For these situations you can
define property conditional expressions, which are expressions that are
evaluated at runtime.

You can use these expressions to conditionally and dynamically modify the
appearance and behavior of your DataWindow object at runtime. The results of
the expressions set the values of properties of controls in the DataWindow
object.

In the following DataWindow object, the Salary Plus Benefits column has a
Shadow box border highlighting each data value that is greater than $60,000:

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 681

To control the display of the border, you define a property conditional
expression for the column’s Border property. When users run the DataWindow
object, PowerBuilder changes the border of individual data values based on the
condition (value greater than $60,000).

Defining an
expression

The following illustration shows the Salary_Plus_Benefits column selected in
the Design view. To the right of the Design view, the Properties view shows
properties for the column, including the Border property. Next to the Border
property is a button for accessing the dialog box where you enter the
expression. The button displays an equals sign with a slash through it when no
expression has been entered, and an equals sign without a slash when it has.

In this example the Border property is set to NoBorder in the Properties view.
However, the expression defined for the property overrides that setting at
runtime.

A closer look at the
expression

The expression you enter almost always begins with If. Then you specify three
things: the condition, what happens if it is true, and what happens if it is false.
Parentheses surround the three things and commas separate them:

If(expression, true, false)

The following expression is used in the example. Because the expression is for
the Border property, the values for true and false indicate particular borders.
The value 1 means Shadow box border and the value 0 means no border:

If(salary_plus_benefits > 60000, 1, 0)

Highlighting information

682 PowerBuilder Classic

When users run the DataWindow object, PowerBuilder checks the value in the
computed column called salary_plus_benefits to see if it is greater than 60,000.
If it is (true), PowerBuilder displays the value with the Shadow box border. If
not (false), PowerBuilder displays the value with no border.

About specifying
properties

Usually you specify a number to indicate what you want for a particular
property. For example, the following list shows all of the borders you can
specify and the numbers you use. If you want the border property to be Shadow
box, you specify 1 in the If statement, for either true or false.

0—None
1—Shadow box
2—Box
3—Resize
4—Underline
5—3D Lowered
6—3D Raised

In the Properties view, the list of choices for setting a property includes the
values that correspond to choices in parentheses. This makes it easier to define
an expression for a property; you do not need to look up the values. For
example, if you want to specify the ResizeBorder in your expression, you use
the number 3, as shown in the drop-down list.

For details on the values of properties that can be set using expressions, see
“Supplying property values” on page 689.

For complete information about what the valid values are for all properties
associated with a DataWindow object, see the discussion of DataWindow
object properties in the DataWindow Reference or online Help.

About modifying
properties
programmatically

You can also programmatically modify the properties of controls in a
DataWindow object at runtime. For more information, see the DataWindow
Reference and the DataWindow Programmers Guide.

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 683

Modifying properties conditionally at runtime
“Modifying properties at runtime” on page 680 described how you can use
conditional expressions that are evaluated at runtime to highlight information
in a DataWindow object. This section presents a procedure for modifying
properties at runtime and some examples.

❖ To modify properties conditionally at runtime:

1 Position the pointer on the control, band, or DataWindow object
background whose properties you want to modify at runtime.

2 Select Properties from the pop-up menu, then select the page that contains
the property you want to modify at runtime.

3 Click the button next to the property you want to change.

4 Scroll the list of functions in the Functions box until you see the IF
function, and then select it:

5 Replace the b (boolean) with your condition (for example, salary>40000).

You can select columns and functions and use the buttons to add the
symbols shown on them.

6 Replace the t (true) with the value to use for the property if the condition
is true.

Values to use for properties are usually numbers. They are different for
each property. For more information about property values that can be set
on the Expressions page, see “Supplying property values” on page 689.

Modifying properties conditionally at runtime

684 PowerBuilder Classic

Set Font.Weight property to 700 for bold
Font properties such as Italic, Strikethrough, and Underline take a boolean
value, but to specify a value for bold, you use the Font.Weight property,
which takes a range of values. For values and an example, see
“Font.Weight” on page 699.

For complete information about what the valid values are for all properties
of controls in the DataWindow object, see the discussion of DataWindow
object properties in the DataWindow Reference or online Help.

7 Replace the f (false) with the value to use for the property if the condition
is false.

8 Click OK.

For examples, see “Example 1: creating a gray bar effect” next, “Example 2:
rotating controls” on page 685, “Example 3: highlighting rows of data” on
page 686, and “Example 4: changing the size and location of controls” on page
688.

Example 1: creating a gray bar effect
The following DataWindow object shows alternate rows with a light gray bar.
The gray bars make it easier to track data values across the row:

To create the gray bar effect:

1 Add a rectangle control to the detail band and size it so that it surrounds
the controls you want highlighted.

To make sure that you have selected the detail band, select the Position tab
in the Properties view and select Band from the Layer drop-down list.

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 685

2 To make it easier to see what you are doing in the Design view, select the
General tab and set the Brush Color to White and the Pen Color to Black.
A narrow black line forms a boundary around the rectangle.

3 Select Send to Back from the rectangle’s pop-up menu.

4 To hide the border of the rectangle, set the Pen Style to No Visible Line.

5 Click the button next to the Brush Color property on the General page.

6 In the Modify Expression dialog box, enter the following expression for
the Brush.Color property:

If(mod(getrow(),2)=1, rgb(255, 255, 255), rgb(240,
240, 240))

The mod function takes the row number (getrow()), divides it by 2, then
returns the remainder. The remainder can be either 0 or 1. If the row
number is odd, mod returns 1; if the row number is even, mod returns 0.

The expression mod(getrow(),2)=1 distinguishes odd rows from even
rows.

The rgb function specifies maximum amounts of red, green, and blue: rgb
(255, 255, 255). Specifying 255 for red, green, and blue results in the
color white.

If the row number is odd (the condition evaluates as true), the rectangle
displays as white. If the row number is even (the condition evaluates as
false), the rectangle displays as light gray (rgb (240, 240, 240)).

Example 2: rotating controls
The following DataWindow object shows the column headers for Health
Insurance, Life Insurance, and Day Care rotated 45 degrees.

Modifying properties conditionally at runtime

686 PowerBuilder Classic

To rotate each of these three text controls:

1 Select one of the controls, then use Ctrl + click to select the other two
controls.

The Properties view changes to show the properties that are common to all
selected controls.

2 On the Font page in the Properties view, click the button next to the
Escapement property.

3 Enter the number 450 in the Modify Expression dialog box and click OK.

The value entered for font escapement is in tenths of degrees, so the
number 450 means 45 degrees. You do not have to specify a condition.
Typically, you do not specify a condition for control rotation.

The rotation of the controls does not change in the Design view.

4 To see the change, close and reopen the Preview view.

Example 3: highlighting rows of data
The following DataWindow object is an employee phone list for a company in
Massachusetts. Out-of-state (not in Massachusetts) employees are shown in
bold and preceded by two asterisks (**):

This DataWindow object uses newspaper columns. To understand how to
create this DataWindow object without highlighting data, see “Printing with
newspaper-style columns” on page 563.

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 687

In the Design view, the detail band includes four controls: the employee last
name, a comma, the employee first name, and the phone number:

To make these controls display in bold with two asterisks if the employee is not
from Massachusetts:

1 Select one of the controls, then use Ctrl + click to select the other three
controls.

The Properties view changes to show the properties that are common to all
selected controls.

2 On the Font page in the Properties view, click the button next to the Bold
property.

3 Enter the following expression in the Modify Expression dialog box and
click OK:

If(state = 'MA', 400, 700)

The expression states that if the value of the state column is MA, use 400
as the font weight. This means employees from Massachusetts display in
the normal font. For any state except MA, use 700 as the font weight. This
means all other employees display in bold font.

Logic that relies on the state column
To use logic that relies on the state column, you need to include the column
in the data source. You can add the column after creating the DataWindow
object by modifying the data source. Notice that the state column does not
actually appear anywhere in the DataWindow object. Values must be
available but do not need to be included in the DataWindow object.

4 To insert two asterisks (**) in front of the employee name if the employee
is not from Massachusetts, add a text control to the left of the employee
name with the two asterisks in bold.

5 With the text control selected, click the button next to its Visible property
on the General page in the Properties view.

6 In the Modify Expression dialog box that displays, enter the following
expression and click OK:

If(state = 'MA', 0, 1)

Modifying properties conditionally at runtime

688 PowerBuilder Classic

This expression says that if the state of the employee is MA (the true
condition), the Visible property of the ** control is off (indicated by 0). If
the state of the employee is not MA (the false condition), the Visible
property of the ** control is on (indicated by 1). The asterisks are visible
next to that employee’s name.

Tip
You can use underlines, italics, strikethrough, borders, and colors to
highlight information.

Example 4: changing the size and location of controls
The following DataWindow object shows city and state columns enclosed in a
rectangle and underlined. The columns change location if the current row
contains data for a customer from the state of New York. The rectangle and the
line change both location and size.

This example shows how to move the rectangle and line. The process for
columns is similar.

In the Design view, the rectangle and line display in one location, with a single
set of dimensions. The expressions you specify are used only in Preview view
and at runtime and all have the following syntax:

If (state='NY', true value, false value)

The false value is the same as the value in Design view. All of the values used
in this example are in PowerBuilder Units (PBUs), the default unit of measure
used for the DataWindow object.

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 689

To change properties of the rectangle and the line for rows with the state
column equal to New York:

1 Select the rectangle, display the Position page in the Properties view, and
specify expressions for the following properties:

2 Select the line, display the Position page in the Properties view, and
specify expressions for the following properties:

3 On the General page for the line, specify this expression for Pen Width:

if (state = 'NY', 10, 4)

At runtime, the rectangle is taller and narrower, and the line is shorter and
has a wider pen width.

Supplying property values
Each property has its own set of property values that you can use to specify the
true and false conditions in the If expression. Usually you specify a number to
indicate what you want. For example, if you are working with the Border
property, you use the number 0, 1, 2, 3, 4, 5, or 6 to specify a border.

Table 24-1 summarizes the properties available. A detailed description of each
property follows the table. For a complete list of properties for each control,
see the online Help.

Property Expression

X if (state = 'NY', 2890, 1865)

Width if (state = 'NY', 500, 1000)

Height if (state = 'NY', 160, 120)

Property Expression

X1 if (state = 'NY', 2890, 1865)

Y1 if (state = 'NY', 168, 132)

X2 if (state = 'NY', 3400, 2865)

Y2 if (state = 'NY', 168, 132)

Supplying property values

690 PowerBuilder Classic

Valid values of properties are shown in parentheses in the Properties
view wherever possible.
For example, the drop-down list showing border selections includes the correct
number for specifying each border in parentheses after the name of the border
(ShadowBox (1), Underline (4)).

Table 24-1: Properties for controls in the DataWindow painter

Property
Painter option in
Properties view Description

Background.Color Background Color on
Background page or Font page

Background color of a control

Border Border on General page Border of a control

Brush.Color Brush Color on General page Color of a graphic control

Brush.Hatch Brush Hatch on General page Pattern used to fill a graphic control

Color Text Color on Font page; Color
on General page; Line Color on
General page

Color of text for text controls, columns, and computed
fields; background color for the DataWindow object;
line color for graphs

Font.Escapement
(for rotating controls)

Escapement on Font page Rotation of a control

Font.Height Size on Font page Height of text

Font.Italic Italic on Font page Use of italic font for text

Font.Strikethrough Strikeout on Font page Use of strikethrough for text

Font.Underline Underline on Font page Use of underlining for text

Font.Weight Bold on Font page Weight (for example, bold) of text font

Format Format on Format page Display format for columns and computed fields

Height Height on Position page Height of a control

Pen.Color Pen Color on General page Color of a line or the line surrounding a graphic control

Pen.Style Pen Style on General page Style of a line or the line surrounding a graphic control

Pen.Width Pen Width on General page Width of a line or the line surrounding a graphic control

Pointer Pointer on Pointer page Image to be used for the pointer

Protect Protect on General page Whether a column can be edited

Timer_Interval Timer Interval on General page How often time fields are to be updated

Visible Visible on General page Whether a control is visible

Width Width on Position page Width of a control

X X on Position page X position of a control

X1, X2 X1, X2 on Position page X coordinates of either end of a line

Y Y on Position page Y position of a control relative to the band in which it is
located

Y1, Y2 Y1, Y2 on Position page Y coordinates of either end of a line

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 691

Background.Color
Description Setting for the background color of a control.

In the painter Background Color on the Background page or Font page in the Properties view.

Value A number that specifies the control’s background color.

For information on specifying colors, see “Specifying colors” on page 707.

The background color of a line is the color that displays between the segments
of the line when the pen style is not solid.

If Background.Mode is transparent (1), Background.Color is ignored.

Example The following statement specifies that if the person represented by the current
row uses the day care benefit, the background color of the control is set to light
gray (15790320). If not, the background color is set to white (16777215):

If(bene_day_care = 'Y', 15790320, 16777215)

In this example, the condition is applied to the Background.Color property for
three controls: the emp_id column, the emp_fname column, and the emp_lname
column.

The following is a portion of the resulting DataWindow object. Notice that the
employee ID, first name, and last name have a gray background if the
employee uses the day care benefit:

Border
Description The type of border for the control.

In the painter Border on the General page in the Properties view.

Supplying property values

692 PowerBuilder Classic

Value A number that specifies the type of border. Values are:

0—None
1—Shadow box
2—Box
3—Resize
4—Underline
5—3D Lowered
6—3D Raised

Example The following statement specifies that if the person represented by the current
row has a status of L (on leave), the status column displays with a Shadow box
border:

If(status = 'L', 1, 0)

In this example, the condition is applied to the Border property of the status
column.

The following is a portion of the resulting DataWindow object. Notice that the
status On Leave displays with a Shadow box border:

About the value L and the value On Leave
The status column uses an edit style. The internal value for on leave is L and
the display value is On Leave. The conditional expression references the
internal value L, which is the actual value stored in the database. The
DataWindow object shows the value On Leave, which is the display value
assigned to the value L in the code table for the Status edit style.

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 693

Brush.Color
Description Setting for the fill color of a graphic control.

In the painter Brush Color on the General page in the Properties view.

Value A number that specifies the color that fills the control.

For information on specifying colors, see “Specifying colors” on page 707.

Example See the example for “Brush.Hatch” next.

Brush.Hatch
Description Setting for the fill pattern of a graphic control.

In the painter Brush Hatch on the General page in the Properties view.

Value A number that specifies the pattern that fills the control. Values are:

0—Horizontal
1—Bdiagonal (lines from lower left to upper right)
2—Vertical
3—Cross
4—Fdiagonal (lines from upper left to lower right)
5—DiagCross
6—Solid
7—Transparent
8—Background (use the values on the Background tab)

Example In this example, statements check the employee’s start date to see if the month
is the current month or the month following the current month. Properties of a
rectangle control placed behind the row of data are changed to highlight
employees with months of hire that match the current month or the month
following the current month.

The Design view includes columns of data and a rectangle behind the data. The
rectangle has been changed to black in the following picture to make it stand
out:

Supplying property values

694 PowerBuilder Classic

The following statement is for the Brush.Color property of the rectangle. If the
month of the start date matches the current month or the next one, Brush.Color
is set to light gray (12632256). If not, it is set to white (16777215), which
means it will not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1),
12632256, 16777215)

The following statement is for the Brush.Hatch property of the rectangle. If the
month of the start date matches the current month or the next one, Brush.Hatch
is set to Bdiagonal (1). If not, it is set to Transparent (7), which means it will
not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1),
1, 7)

Expressions are also provided for Pen.Color and Pen.Style.

For more about these properties and a picture, see “Pen.Style” on page 701.

Color
Description The color of text for text controls, columns, and computed fields; background

color for the DataWindow object; line color for graphs.

In the painter In the Properties view, Text Color on the Font property page; Color on the
Background property page; Line Color on the General property page.

Value A number that specifies the color used for text.

For information on specifying colors, see “Specifying colors” on page 707.

Example The following statement is for the Color property of the emp_id, emp_fname,
emp_lname, and emp_birth_date columns:

If(month(birth_date) = month (today()), 255, 0)

If the employee has a birthday in the current month, the information for the
employee displays in red (255). Otherwise, the information displays in black
(0).

The Font.Underline property has the same conditional expression defined for
it so that the example shows clearly on paper when printed in black and white.

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 695

Font.Escapement (for rotating controls)
Description The angle of rotation from the baseline of the text.

In the painter Escapement on the Font page in the Properties view.

Value An integer in tenths of degrees. For example, 450 means 45 degrees. 0 is
horizontal.

The alignment of the text affects the point of rotation.

Left(0)—Rotates on the bottom left of the control
Right(1)—Rotates on the top right of the control
Center(2)—Rotates on the center of the control

Example To enter rotation for a control, select the control in the Design view and click
the button next to the Escapement property in the Properties view. In the dialog
box that displays, enter the number of tenths of degrees.

The following picture shows the Design view with a number of text controls.
Each text control shows the Font.Escapement value entered and the number of
degrees of rotation. In the Design view, you do not see rotation; it looks as if
the controls are all mixed up. Two controls seem to overlie each other:

The next picture shows the same controls at runtime. Each control is rotated
appropriately, based on the Font.Escapement and Alignment values:

Supplying property values

696 PowerBuilder Classic

How to position controls that are rotated
Make the controls movable. To do so, display each control and select the
Moveable check box in the Position page. Then in the Preview view, click the
rotated text control until a gray box displays (try the center of the text). Drag
the rotated control where you want it. In the Design view, the controls will be
wherever you dragged them. They may look incorrectly positioned in the
Design view, but they will be correctly positioned when you run the
DataWindow object. When you are satisfied with the positioning, you can clear
the Moveable check box for the controls to ensure that they stay where you
want them.

Font.Height
Description The height of the text.

In the painter Size on the Font page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PowerBuilder units, thousandths of an inch (1000 = 1 inch),
thousandths of a centimeter (1000 = 1 centimeter), or pixels. To specify size in
points, specify a negative number.

Example The following statement is specified for the Font.Height property of a text
control. Note that the DataWindow object is defined as using thousandths of an
inch as its unit of measure. The statement says that if the control is in the first
row, show the text 1/2-inch high (500 1/1000ths of an inch) and if it is not the
first, show the text 1/5-inch high (200 1/1000ths of an inch):

If(GetRow() = 1, 500, 200)

The boundaries of the control might need to be extended to allow for the
increased size of the text. At runtime, the first occurrence of the text control is
big (1/2 inch); subsequent ones are small (1/5 inch).

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 697

Font.Italic
Description A number that specifies whether the text should be italic.

In the painter Italic on the Font page in the Properties view.

Value Values are:

0—Not italic
1—Italic

Example The following statements are specified for the Font.Italic, Font.Underline, and
Font.Weight properties, respectively. If the employee has health insurance, the
employee’s information displays in italics. If not, the employee’s information
displays in bold and underlined:

If(bene_health_ins = 'Y', 1, 0)
If(bene_health_ins = 'N', 1, 0)
If(bene_health_ins = 'N', 700, 400)

Statements are specified in this way for four controls: the emp_id column, the
emp_fname column, the emp_lname column, and the emp_salary column. In
the resulting DataWindow object, those with health insurance display in italics.
Those without health insurance are emphasized with bold and underlining:

Supplying property values

698 PowerBuilder Classic

Font.Strikethrough
Description A number that specifies whether the text should be crossed out.

In the painter Strikeout on the Font page in the Properties view.

Value Values are:

0—Not crossed out
1—Crossed out

Example The following statement is for the Font.Strikethrough property of the emp_id,
emp_fname, emp_lname, and emp_salary columns. The status column must be
included in the data source even though it does not appear in the DataWindow
object itself. The statement says that if the employee's status is L, which means
On Leave, cross out the text in the control:

If(status = 'L', 1, 0)

An extra text control is included to the right of the detail line. It becomes visible
only if the status of the row is L (see “Visible” on page 704).

The following is a portion of the resulting DataWindow object. It shows two
employees who are On Leave. The four columns of information show as
crossed out:

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 699

Font.Underline
Description A number that specifies whether the text should be underlined.

In the painter Underline on the Font page in the Properties view.

Value Values are:

0—Not underlined
1—Underlined

Example The following statement, when applied to the Font.Underline property of
columns of employee information, causes the information to be underlined if
the employee does not have health insurance:

If(bene_health_ins = 'N', 1, 0)

For pictures of this example, see “Font.Italic” on page 697.

Font.Weight
Description The weight of the text.

In the painter Bold on the Font page in the Properties view.

Value Values are:

100—Thin
200—Extra light
300—Light
400—Normal
500—Medium
600—Semibold
700—Bold
800—Extrabold
900—Heavy

Most commonly used values
The most commonly used values are 400 (Normal) and 700 (Bold). Your
printer driver might not support all of the settings.

Example The following statement, when applied to the Font.Weight property of columns
of employee information, causes the information to be displayed in bold if the
employee does not have health insurance:

If(bene_health_ins = 'N', 700, 400)

For pictures of this example, see “Font.Italic” on page 697.

Supplying property values

700 PowerBuilder Classic

Format
Description The display format for a column.

In the painter Format on the Format page in the Properties view.

Values A string specifying the display format.

Example The following statement, when applied to the Format property of the Salary
column, causes the column to display the word Overpaid for any salary
greater than $60,000 and Underpaid for any salary under $60,000:

If(salary>60000, 'Overpaid', 'Underpaid')

Edit Mask edit style change
The Edit Mask edit style assigned to the salary column had to be changed.
Because edit styles take precedence over display formats, it was necessary to
change the edit style assigned to the salary column (an Edit Mask edit style) to
the Edit edit style.

Height
Description The height of the column or other control.

In the painter Height on the Position page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PowerBuilder units, thousandths of an inch (1000 = 1 inch),
thousandths of a centimeter (1000 = 1 centimeter), or pixels.

Example The following statement causes the height of a rectangle to be 160
PowerBuilder units if the state column for the row has the value NY.
Otherwise, the rectangle is 120 PowerBuilder units high:

if (state = 'NY', 160, 120)

For more details and pictures, see “Example 4: changing the size and location
of controls” on page 688.

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 701

Pen.Color
Description The color of the line or the outline of a graphic control.

In the painter Pen Color on the General page in the Properties view.

Value A number that specifies the color of the line or outline.

For information on specifying colors, see “Specifying colors” on page 707.

Example See the example for the Pen.Style property, next.

Pen.Style
Description The style of the line or the outline of a graphic control.

In the painter Pen Style on the General page in the Properties view.

Value Values are:

0—Solid
1—Dash
2—Dotted
3—Dash-dot pattern
4—Dash-dot-dot pattern
5—Null (no visible line)

Example In this example, statements check the employee’s start date to see if the month
is the current month or the month following the current month. Properties of a
rectangle control placed behind the row of data are changed to highlight
employees with months of hire that match the current month or the month
following the current month.

The Design view includes columns of data and a rectangle behind the data. The
rectangle has been changed to black in the following picture to make it stand
out:

Supplying property values

702 PowerBuilder Classic

The following statement is for the Pen.Color property of the line around the
edge of the rectangle. If the month of the start date matches the current month
or the next one, Pen.Color is set to light gray (12632256). If not, it is set to
white (16777215), which means it will not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1),
12632256, 16777215)

The following statement is for the Pen.Style property of the rectangle. If the
month of the start date matches the current month or the next one, Pen.Style is
set to Solid (0). If not, it is set to NULL (5), which means it will not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1),
0, 5)

Expressions are also defined for Brush.Color and Brush.Hatch.

For more about these properties, see “Brush.Hatch” on page 693.

The following is a portion of the resulting DataWindow object. A rectangle
with light gray cross-hatching highlights employees whose reviews are due
soon. The line enclosing the rectangle is Light Gray and uses the pen style
Solid (0):

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 703

Pen.Width
Description The width of the line or the outline of a graphic control.

In the painter Pen Width on the General page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PowerBuilder units, thousandths of an inch (1000 = 1 inch),
thousandths of a centimeter (1000 = 1 centimeter), or pixels.

Example The following statement causes the width of a line to be 10 PowerBuilder units
if the state column for the row has the value NY. Otherwise, the line is 4
PowerBuilder units wide:

If(state = 'NY', 10, 4)

For more details and pictures, see “Example 4: changing the size and location
of controls” on page 688.

Pointer
Description The image used for the mouse pointer when the pointer is over the specified

control.

In the painter Pointer on the Pointer page in the Properties view.

Value A string that specifies a value of the Pointer enumerated data type or the name
of a cursor file (CUR) used for the pointer.

Values of the Pointer enumerated data type are:

Arrow!
Cross!
HourGlass!
IBeam!
Icon!
Size!
SizeNESW!
SizeNS!
SizeNWSE!
SizeWE!
UpArrow!

Supplying property values

704 PowerBuilder Classic

Example The following condition, entered for the Pointer property of every control in a
row of expense data, changes the pointer to a column every time the value in
the expense column exceeds $100,000. Note that the pointer has no meaning in
a printed report. The pointer is for use on the screen display of a DataWindow
object:

If(expense 100000, 'pbcolumn.cur', 'arrow!')

Protect
Description The protection setting of a column.

In the painter Protect on the General page in the Properties view.

Value Values are:

0—False, the column is not protected
1—True, the column is protected

Timer_Interval
Description The number of milliseconds between the internal timer events.

In the painter Timer Interval on the General page in the Properties view.

Value The default is 0 (which is defined to mean 60,000 milliseconds or one minute).

Visible
Description Whether the control is visible in the DataWindow object.

In the painter Visible on the General page in the Properties view.

Value Values are:

0—Not visible
1—Visible

Example The following statement is for the Visible property of a text control with the
words On Leave located to the right of columns of employee information. The
statement says that if the current employee’s status is L, which means On
Leave, the text control is visible. Otherwise, it is invisible:

If(status = 'L', 1, 0)

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 705

The status column must be retrieved
The status column must be included in the data source even though it does not
appear in the DataWindow object itself.

The Design view includes the text control at the right-hand end of the detail
line. The text control is visible at runtime only if the value of the status column
for the row is L.

In the resulting DataWindow object, the text control is visible only for the two
employees on leave. For a picture, see “Font.Strikethrough” on page 698.

Width
Description The width of the control.

In the painter Width on the Position page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PowerBuilder units, thousandths of an inch (1000 = 1 inch),
thousandths of a centimeter (1000 = 1 centimeter), or pixels.

Example The following statement causes the width of a rectangle to be 500
PowerBuilder units if the state column for the row has the value NY.
Otherwise, the rectangle is 1000 PowerBuilder units wide:

if (state = 'NY', 500, 1000)

For more details and pictures, see “Example 4: changing the size and location
of controls” on page 688.

X
Description The distance of the control from the left edge of the DataWindow object. At

runtime, the distance from the left edge of the DataWindow object is calculated
by adding the margin to the x value.

In the painter X on the Position page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PowerBuilder units, thousandths of an inch (1000 = 1 inch),
thousandths of a centimeter (1000 = 1 centimeter), or pixels.

Supplying property values

706 PowerBuilder Classic

Example The following statement causes a rectangle to be located 6.250 inches from the
left if the state column for the row has the value NY. Otherwise, the rectangle
is 4.000 inches from the left:

If(state = 'NY', 6250, 4000)

For more details and pictures, see “Example 4: changing the size and location
of controls” on page 688.

X1, X2
Description The distance of each end of the line from the left edge of the DataWindow

object as measured in the Design view. At runtime, the distance from the left
edge of the DataWindow object is calculated by adding the margin to the x1
and x2 values.

In the painter X1, X2 on the Position page in the Properties view.

Value Integers in the unit of measure specified for the DataWindow object. Units of
measure include PowerBuilder units, thousandths of an inch (1000 = 1 inch),
thousandths of a centimeter (1000 = 1 centimeter), or pixels.

Example The following statements for the X1 and X2 properties of a line cause the line
to extend from 6.250 to 7.150 inches from the left if the state column for the
row has the value NY. Otherwise, the line extends from 4.000 to 6.000 inches
from the left:

If(state = 'NY', 6250, 4000)
If(state = 'NY', 7150, 6000)

For more details and pictures, see “Example 4: changing the size and location
of controls” on page 688.

Y
Description The distance of the control from the top of the band in which the control is

located.

In the painter Y on the Position page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PowerBuilder units, thousandths of an inch (1000 = 1 inch),
thousandths of a centimeter (1000 = 1 centimeter), or pixels.

CHAPTER 24 Highlighting Information in DataWindow Objects

Users Guide 707

Example For information, see “Example 4: changing the size and location of controls”
on page 688.

Y1, Y2
Description The distance of each end of the specified line from the top of the band in which

the line is located.

In the painter Y1, Y2 on the Position page in the Properties view.

Value Integers in the unit of measure specified for the DataWindow object. Units of
measure include PowerBuilder units, thousandths of an inch (1000 = 1 inch),
thousandths of a centimeter (1000 = 1 centimeter), or pixels.

Example The following statements for the Y1 and Y2 properties of a line cause the line
to be located .400 inches (Y1 and Y2 equal .400 inches) from the top of the
detail band, if the state column for the row has the value NY. Otherwise, the
line is located .250 inches (Y1 and Y2 equal .250 inches) from the top of the
detail band:

If(state = 'NY', 400, 250)
If(state = 'NY', 400, 250)

For more details and pictures, see “Example 4: changing the size and location
of controls” on page 688.

Specifying colors
You specify a color by specifying a number that represents the color. You can
specify the number explicitly or by using an expression that includes the RGB
(r, g, b) function.

For the numbers and expressions that specify common colors, see Table 24-2
on page 708.

How the number is
calculated

The formula for combining color values into a number is:

red + 256*green + 256*256*blue

where the amount of each primary color (red, green, and blue) is specified as a
value from 0 to 255.

The RGB function calculates the number from the amounts of red, green, and
blue specified.

Specifying colors

708 PowerBuilder Classic

Sample numeric
calculation

To create cyan, you use blue and green, but no red. If you wanted to create the
most saturated (bright) cyan, you would use maximum amounts of blue and
green in the formula, which is indicated by the number 255 for each. The
following statements show the calculation:

red + 256*green + 256*256*blue

0 + 256*255 + 256*256*255

0 + 65280 + 16711680

16776960

Sample expression
using the RGB
function

The following expression specifies the brightest cyan:

RGB (0,255,255)

Notice that the expression specifies the maximum for green and blue (255) and
0 for red. The expression returns the value 16776960. To specify cyan, entering
the expression RGB(0, 255, 255) is the same as entering the number 16776960.

Numbers and
expressions to enter
for the common colors

Table 24-2 shows the numbers and expressions to enter for some common
colors. The number and expression for a color are equivalent. You can use
either.

Table 24-2: Numbers and expressions for common colors

Color Expression to enter
Number
to enter How the number is calculated

Black RGB (0, 0, 0) 0 0 (no color)

Blue RGB (0, 0, 255) 16711680 256*256*255 (blue only)

Cyan RGB (0, 255, 255) 16776960 256*255 + 256*256*255 (green and blue)

Dark Green RGB (0, 128, 0) 32768 256*128 (green only)

Green RGB (0, 255, 0) 65280 256*255 (green only)

Light Gray RGB (192, 192, 192) 12632256 192 + 256*192 + 256*256*192
(some red, green, and blue in equal amounts)

Lighter Gray RGB (224, 224, 224) 14737632 224 + 256*224 + 256*256*224
(some red, green, and blue in equal amounts)

Lightest Gray RGB (240, 240, 240) 15790320 240 + 256*240 + 256*256*240
(some red, green, and blue in equal amounts)

Magenta RGB (255, 0, 255) 16711935 255 + 256*256*255 (red and blue)

Red RGB (255, 0, 0) 255 255 (red only)

White RGB (255, 255, 255) 16777215 255 + 256*255 + 256*256*255 (red, green, and blue
in equal amounts at the maximum of 255)

Yellow RGB (255, 255, 0) 65535 255 + 256*255 (red and green)

Users Guide 709

C H A P T E R 2 5 Using Nested Reports

About this chapter This chapter provides information about creating reports that have other
reports nested in them.

Contents

About reports and
DataWindow objects

A report is the same as a nonupdatable DataWindow object.

This chapter shows the process of nesting reports using the Report painter
in InfoMaker, but you can do the same things in the DataWindow painter
with the same results.

About nested reports
A nested report is a report within another report.

There are two ways to create reports containing nested reports:

• Create a composite report using the Composite presentation style

• Place a nested report in another report

About creating a
composite report

You can choose the Composite presentation style to create a new report
that consists entirely of one or more nested reports. This type of report is
called a composite report. A composite report is a container for other
reports.

You can use composite reports to print more than one report on a page.

Topic Page

About nested reports 709

Creating a report using the Composite presentation style 713

Placing a nested report in another report 715

Working with nested reports 718

About nested reports

710 PowerBuilder Classic

Composite report For example, the following composite report consists of three tabular reports.
One of the tabular reports includes a graph:

Composite report in
the Design view

In the Design view, you see three boxes that represent the individual tabular
reports that are included in the composite report. The only additional controls
in this example are a title, date, and page number:

CHAPTER 25 Using Nested Reports

Users Guide 711

About placing a
nested report within
another report

You can place one or more reports within another report. The report you place
is called the nested report. You can place a nested report in any type of report
except crosstab. Most of the time you will place nested reports in freeform or
tabular reports.

Often, the information in the nested report depends on information in the report
in which it is placed (the base report). The nested report and the base report are
related to each other by some common data. The base report and the nested
report have a master/detail relationship.

Freeform report with a
related nested report

For example, the following freeform report lists all information about a
customer and then includes a related nested report (which happens to be a
tabular report). The related nested report lists every order that the customer has
ever placed. The base report supplies the customer ID to the nested report,
which requires a customer ID as a retrieval argument. This is an example of a
master/detail relationship—one customer has many orders:

About nested reports

712 PowerBuilder Classic

What you see in the
Design view

In the Design view, you see everything in the base report plus a box that
represents the related nested report:

The difference
between nested and
composite reports

There are two important differences between nesting using the Composite style
and nesting a report within a base report.

Data sources The composite report does not have a data source—it is just a
container for nested reports. In contrast, a base report with a nested report in it
has a data source. The nested report has its own data source.

Related nesting The composite report cannot be used to relate reports to
each other in the database sense. One report cannot feed a value to another
report, which is what happens in a master/detail report. If you want to relate
reports to each other so that you can create a master/detail report, you need to
place a nested report within a base report.

How retrieval works When you preview (run) a composite report, PowerBuilder retrieves all the
rows for one nested report, and then for another nested report, and so on until
all retrieval is complete. Your computer must have a default printer specified,
because composite reports are actually displayed in print preview mode.

When you preview (run) a report with another related report nested in it,
PowerBuilder retrieves all the rows in the base report first. Then PowerBuilder
retrieves the data for all nested reports related to the first row. Next,
PowerBuilder retrieves data for nested reports related to the second row, and so
on, until all retrieval is complete for all rows in the base report.

For information about efficiency and retrieval, see “Supplying retrieval
arguments to relate a nested report to its base report” on page 721.

CHAPTER 25 Using Nested Reports

Users Guide 713

Limitations on nesting
reports

For the most part you can nest the various types of report styles. However,
limitations apply to two of them.

Crosstabs You cannot place a crosstab with retrieval arguments within
another report as a related nested report. However, you can include a crosstab
in a Composite report.

RichText reports You cannot nest a RichText report in any way. You cannot
place a RichText report in another report, and you cannot include a RichText
report in a Composite report.

Creating a report using the Composite presentation
style

❖ To create a report using the Composite presentation style:

1 Select File>New from the menu bar.

The New Report dialog box displays.

2 Choose the DataWindow tab page and the Composite presentation style,
and click OK.

The wizard displays all reports (DataWindow objects) that are in the
current target's library search path.

3 Click the reports you want to include in the composite report and then
click Next.

The wizard lists your choices.

4 Click Finish.

PowerBuilder places boxes for the selected reports in the Design view. In
this example, you see three reports:

Creating a report using the Composite presentation style

714 PowerBuilder Classic

5 Select File>Save from the menu bar and assign a name to the composite
report.

6 Look at the Preview view of the report:

Notice that you are in print preview (which is read-only).

Working with composite reports
Many of the options available for working with reports, such as
Rows>Filter, Rows>Import, and Rows>Sort, are disabled for a composite
report. If you want to use any of these options, you need to access the
nested report(s), where these options are available.

7 Continue to enhance the composite report (for example, add a date and
title).

CHAPTER 25 Using Nested Reports

Users Guide 715

Placing a nested report in another report
When you place a nested report in another report, the two reports can be
independent of each other, or they can be related in the database sense by
sharing some common data such as a customer number or a department
number. If the reports are related, you need to do some extra things to both the
base report and the related nested report.

Usually, when you place a report within a report rather than create a composite
report, you want to relate the reports. Those instructions are first.

Placing a related nested report in another report
Typically, a related nested report provides the details for a master report. For
example, a master report might provide information about customers. A related
nested report placed in the master report could provide information about all
the orders that belong to each customer.

❖ To place a related nested report in another report:

1 Create the nested report (DataWindow object) that you plan to place in the
base report.

2 Define a retrieval argument for the nested report.

For example, suppose the nested report lists orders and you want to list
orders for a particular customer. To define a retrieval argument, you
would:

• Select Design>Data Source to go to the SQL Select painter.

• Select Design>Retrieval Arguments from the menu bar in the SQL
Select painter.

• Define a retrieval argument in the Specify Retrieval Arguments
dialog box. In the example, customerID is the name assigned to the
retrieval argument.

3 Specify the retrieval argument in a WHERE clause for the SELECT
statement.

Placing a nested report in another report

716 PowerBuilder Classic

The WHERE clause in this example tells the DBMS to retrieve rows where
the value in the column cust_id equals the value of the argument
:customerid:

At this point, when you run the report to retrieve data, you are prompted
to enter a value for :customerid. Later in these steps, you will specify that
the base report supply the values for :customerid instead of prompting for
values.

4 Open or create the report you want to have as the base report.

In the example, the base report is one that lists customers and has a place
for the order history of each customer:

5 Select Insert>Control>Report from the menu bar.

6 In the Design view, click where you want to place the report.

The Select Report dialog box displays, listing defined reports
(DataWindow objects) in the current target’s library search path.

7 Select the report you want, and click OK.

A box representing the report displays in the Design view.

CHAPTER 25 Using Nested Reports

Users Guide 717

8 With the report still selected, select the General page of the Properties
view.

The Arguments box lists arguments defined for the nested report and
provides a way for you to specify how information from the base report
will be used to supply the values of arguments to the nested report.

9 Supply the base report column or the expression that will supply the
argument’s value. To do this, click the button in the Expression column.

The Modify Expression dialog box displays. In this dialog box, you can
easily select one of the columns or develop an expression. In the example,
the column named id from the base report will supply the value for the
argument :customerid in the nested report.

10 Select File>Save from the menu bar and assign a name to the report.

11 In the Preview view, you can see what your report looks like:

Working with nested reports

718 PowerBuilder Classic

Placing an unrelated nested report in another report
When you place an unrelated nested report in a base report, the entire nested
report appears with each row of the base report.

❖ To place an unrelated nested report in another report:

1 Create or open the report you want as the base report.

2 Select Insert>Control>Report from the menu bar.

3 In the Design view, click where you want to place the report.

The Select Report dialog box displays, listing defined reports
(DataWindow objects) in the current target’s library search path.

4 Select the report you want to nest in the base report, and click OK.

A box representing the nested report displays in the Design view.

5 Select File>Save from the menu bar and if the base report is newly created,
assign a name to it.

Working with nested reports
When you use nested reports either in composite reports or in other base
reports, several enhancements and options are available. An easy way to see
what you can do is to select the nested report and look at the Properties view
for it.

Many of the options in the Properties view are described in Chapter 19,
“Enhancing DataWindow Objects.” For example, using borders on nested
reports is like using borders on any control.

This section describes activities that apply only to nested reports or that have
special meaning for nested reports. It covers:

• “Adjusting nested report width and height” next

• “Changing a nested report from one report to another” on page 720

• “Modifying the definition of a nested report” on page 720

• “Adding another nested report to a composite report” on page 721

CHAPTER 25 Using Nested Reports

Users Guide 719

• “Supplying retrieval arguments to relate a nested report to its base report”
on page 721

• “Specifying criteria to relate a nested report to its base report” on page
723

• “Using options for nested reports” on page 724

Adjusting nested report width and height
When you preview a report with nested reports, the width of the nested report
may be unacceptable. This can happen, for example, if you change the design
of the nested report or if you use newspaper columns in a nested report. The
width of the nested report is not adjusted to fit its contents at runtime; if the
report is too narrow, some columns may be truncated. For example, if the size
of the nested report is set to 6 inches wide in the parent report, columns in the
nested report that exceed that width are not displayed in the parent report.

❖ To adjust report width:

1 In the Design view, position the pointer near a vertical edge of the nested
report and press the left mouse button.

2 Drag the edge to widen the nested report.

3 Check the new width in the Preview view.

When you Print preview a DataWindow that contains a nested N-Up report
with newspaper columns across the page, you might find that blank pages
display (and print) when the nested report in the detail band fills the page. This
is because any white space at the bottom of the band is printed to a second page.
You can usually solve this problem by dragging up the detail band to eliminate
the white space between the nested report and the band, or even to overlap the
bottom of the representation of the nested report.

Working with nested reports

720 PowerBuilder Classic

Changing a nested report from one report to another
You can change the nested report that is used. For example, you may work on
several versions of a nested report and need to update the version of the nested
report that the composite or base report uses.

❖ To change the nested report to a different report:

1 Select the nested report in the Design view.

2 In the Properties view, General property page, click the button next to the
Report box.

3 Select the report you want to use, and click OK.

The name of the report that displays in the box in the Design view changes
to the new one.

Modifying the definition of a nested report
You can modify the definition of the nested report. You can do this directly
from the composite report or base report that contains the nested report.

❖ To modify the definition of a nested report from the composite report or
base report:

1 Position the pointer on the nested report whose definition you want to
modify, and display the pop-up menu.

2 Select Modify Report from the pop-up menu.

The nested report opens and displays in the painter. Both the composite or
base report and the nested report are open.

3 Modify the report.

4 Select File>Close from the menu bar.

You are prompted to save your changes.

5 Click OK.

You return to the composite report or to the base report that includes the
nested report.

CHAPTER 25 Using Nested Reports

Users Guide 721

Adding another nested report to a composite report
After you have created a composite report, you might want to add another
report. The following procedure describes how. For information on adding a
nested report to a report that is not a composite report, see “Placing a related
nested report in another report” on page 715 or “Placing an unrelated nested
report in another report” on page 718.

❖ To add another nested report to a composite report:

1 Open the composite report.

2 Select Insert>Control>Report from the menu bar.

3 Click in the Design view where you want to place the report.

The Select Report dialog box displays, listing defined reports
(DataWindow objects) in the current target’s library search path.

4 Select the report you want and click OK.

A box representing the report displays in the Design view.

Supplying retrieval arguments to relate a nested report to its base
report

The most efficient way to relate a nested report to its base report is to use
retrieval arguments. If your nested report has arguments defined, you use the
procedure described in this section to supply the retrieval argument value from
the base report to the nested report. (The procedure described is part of the
whole process covered in “Placing a related nested report in another report”
on page 715.)

Why retrieval
arguments are
efficient

Some DBMSs have the ability to bind input variables in the WHERE clause of
the SELECT statement. When you use retrieval arguments, a DBMS with this
capability sets up placeholders in the WHERE clause and compiles the SELECT
statement once. PowerBuilder retains this compiled form of the SELECT
statement for use in subsequent retrieval requests.

Requirements for
reusing the compiled
SELECT statement

To enable PowerBuilder to retain and reuse the compiled SELECT statement:

• The database interface must support binding of input variables.

• You must enable binding support by setting the DisableBind database
parameter to 0, which is the default.

Working with nested reports

722 PowerBuilder Classic

• You must enable caching in the database profile. Set the SQLCache
database parameter to the number of levels of nesting plus 5.

For more information, see the description of the SQLCache and
DisableBind database parameters in the online Help.

Nested reports in composite reports
If the base report is a composite report, you need to define retrieval arguments
for the composite report before you can supply them to the nested report.

In the Properties view for the composite report, select the General page. Then
define the retrieval arguments that the nested report needs, taking care to
specify the correct type.

❖ To supply a retrieval argument value from the base report to the nested
report:

1 Make sure that the nested report has been set up to take one or more
retrieval arguments.

See “Placing a nested report in another report” on page 715.

2 Select the nested report and then select the General page of the Properties
view.

The Arguments box lists arguments defined for the nested report and
provides a way for you to specify how information from the base report
will supply the value of the argument to the nested report.

3 Supply the base report column or the expression that will supply the
argument’s value. To do this, click the button in the Expression column.

CHAPTER 25 Using Nested Reports

Users Guide 723

The Modify Expression dialog box displays. In this dialog box, you can
easily select one of the columns or develop an expression. In the example,
the column named id from the base report will supply the value for the
argument :customerid in the nested report.

When you run the report now, you are not prompted for retrieval argument
values for the nested report. The base report supplies the retrieval
argument values automatically.

Specifying criteria to relate a nested report to its base report
If you do not have arguments defined for the nested report and if database
efficiency is not an issue, you can place a nested report in another report and
specify criteria to pass values to the related nested report.

How the DBMS
processes SQL if you
use the specify criteria
technique

If you use the specify criteria technique, the DBMS repeatedly recompiles the
SELECT statement and then executes it. The recompilation is necessary for
each possible variation of the WHERE clause.

❖ To specify criteria to relate a nested report to its base report:

1 Select the nested report and then select the Criteria page in the Properties
view.

The Criteria property page provides a way for you to specify how
information from the base report will supply the retrieval criteria to the
nested report.

2 Click the button next to the criteria box.

The Specify Retrieval Criteria dialog box displays.

3 Enter the retrieval criteria and click OK.

The rules for specifying criteria are the same as for specifying criteria in
the Quick Select data source. Multiple criteria in one line are ANDed
together. Criteria entered on separate lines are ORed together.

In this example, the customer ID (the id column) is the retrieval criterion
being supplied to the nested report.

Working with nested reports

724 PowerBuilder Classic

Notice that the id column is preceded by a colon (:), which is required:

When you run the report now, PowerBuilder retrieves rows in the nested
report based on the criteria you have specified. In the example, the
customer ID column in the base report determines which rows from the
sales_order table are included for each customer.

Using options for nested reports
Using the Autosize
Height option

Autosize Height should be on for all nested reports except graphs. This option
ensures that the height of the nested report can change to accommodate the
rows that are returned.

This option is on by default for all nested reports except graphs. Usually there
is no reason to change it. If you do want to force a nested report to have a fixed
height, you can turn this option off.

Note that all bands in the DataWindow also have an Autosize Height option.
The option is off by default and must be on for the Autosize Height option for
the nested report to work properly.

❖ To change the Autosize Height option for a nested report:

1 In the Design view, select the nested report.

2 In the Properties view, select the Position properties page.

3 Select/clear the Autosize Height check box.

Handling large rows
To avoid multiple blank pages or other anomalies in printed reports, never
create a DataWindow object with a data row greater than the size of the target
page. To handle large text-string columns, break the large string into a series of
small strings. The smaller strings are used to populate individual data rows
within a nested report instead of using a single text column with an autosized
height.

CHAPTER 25 Using Nested Reports

Users Guide 725

Using the Slide
options

PowerBuilder determines the appropriate Slide options when positioning the
nested report(s) and assigns default values. Usually, you should not change the
default values:

• The Slide Left option is on by default for grid and crosstab style reports
and off by default for all others. Having Slide Left on for grid and crosstab
ensures that these reports break horizontally on whole columns and not in
the middle of a column.

• The Slide Up All Above and Directly Above options ensure that the nested
report uses just as much vertical space as it needs. One of these options is
on by default for all nested reports.

For more information, see “Sliding controls to remove blank space in a
DataWindow object” on page 597.

Using the New Page
option (composite
only)

The New Page option forces a new page for a nested report used in a composite
report. By default, this option is off.

❖ To specify that a nested report in a composite report should begin on a
new page:

1 In the Design view, select the nested report.

2 In the Properties view, select the General properties page.

3 Select the New Page check box.

Using the Trail Footer
option (composite
only)

The Trail Footer option controls the placement of the footer for the last page of
a nested report in a composite report. By default, this option is on. The footer
appears directly under the contents of the nested report and not at the bottom
of the page.

❖ To specify that the footer should appear at the bottom of the page:

1 In the Design view, select the nested report.

2 In the Properties view, select the General properties page.

3 Clear the Trail Footer check box.

4 The footer appears at the bottom of the page on all pages of the nested
report, including the last page. Note that if another nested report begins on
the same page, the footer from the earlier report might be misleading or
confusing.

Working with nested reports

726 PowerBuilder Classic

Users Guide 727

C H A P T E R 2 6 Working with Graphs

About this chapter This chapter describes how to build and use graphs in PowerBuilder.

Contents

About graphs
Often the best way to display information is graphically. Instead of
showing users a series of rows and columns of data, you can present
information as a graph in a DataWindow object or window. For example,
in a sales application, you might want to present summary information in
a column graph.

PowerBuilder provides many types of graphs and allows you to customize
your graphs in many ways. Probably most of your use of graphs will be in
a DataWindow object. The source of the data for your graphs will be the
database.

You can also use graphs as standalone controls in windows (and user
objects) and populate the graphs with data through scripts.

The way you define graphs is the same whether you are using them in a
DataWindow object or directly in a window. However, the way you
manipulate graphs in a DataWindow object is different from the way you
manipulate them in a window.

Before using graphs in an application, you need to understand the parts of
a graph and the kinds of graphs that PowerBuilder provides.

Topic Page

About graphs 727

Using graphs in DataWindow objects 735

Using the Graph presentation style 747

Defining a graph's properties 748

Using graphs in windows 757

About graphs

728 PowerBuilder Classic

Parts of a graph
Here is a column graph created in PowerBuilder that contains most major parts
of a graph. It shows quarterly sales of three products: Stellar, Cosmic, and
Galactic printers:

How data is represented

Graphs display data points. To define graphs, you need to know how the data
is represented. PowerBuilder organizes data into three components.

Table 26-1: Components of a graph

Component Meaning

Series A set of data points Each set of related data points makes up one
series. In the preceding graph, there is a series for Stellar sales,
another series for Cosmic sales, and another series for Galactic
sales. Each series in a graph is distinguished by color, pattern, or
symbol.

Categories The major divisions of the data Series data are divided into
categories, which are often non-numeric. In the preceding graph, the
series are divided into four categories: Q1, Q2, Q3, and Q4.
Categories represent values of the independent variable(s).

Values The values for the data points (dependent variables).

CHAPTER 26 Working with Graphs

Users Guide 729

Organization of a graph

Table 26-2 lists the parts of a typical graph.

Table 26-2: Organization of a graph

Part of graph What it is

Title An optional title for the graph. The title appears at the top of the
graph.

Value axis The axis of the graph along which the values of the dependent
variable(s) are plotted. In a column graph, as shown in the
preceding graph, the Value axis corresponds to the y axis in an XY
presentation. In other types of graphs, such as a bar graph, the
Value axis can be along the x dimension.

Category axis The axis along which are plotted the major divisions of the data,
representing the independent variable(s). In the preceding graph,
the Category axis corresponds to the x axis. It plots four categories:
Q1, Q2, Q3, and Q4. These form the major divisions of data in the
graph.

Series A set of data points. There are three series in the preceding graph:
Stellar, Cosmic, and Galactic. In bar and column charts, each series
is represented by bars or columns of one color or pattern.

Series axis The axis along which the series are plotted in three-dimensional
(3D) graphs.

Legend An optional listing of the series. The preceding graph contains a
legend that shows how each series is represented in the graph.

About graphs

730 PowerBuilder Classic

Types of graphs
PowerBuilder provides many types of graphs for you to choose from. You
choose the type on the Define Graph Style page in the DataWindow wizard or
in the General page in the Properties view for the graph.

Area, bar, column, and line graphs

Area, bar, column, and line graphs are conceptually very similar. They differ
only in how they physically represent the data values—whether they use areas,
bars, columns, or lines to represent the values. All other properties are the
same. Typically you use area and line graphs to display continuous data and use
bar and column graphs to display noncontinuous data.

The only difference between a bar graph and a column graph is the orientation:
in column graphs, values are plotted along the y axis and categories are plotted
along the x axis. In bar graphs, values are plotted along the x axis and
categories are plotted along the y axis.

CHAPTER 26 Working with Graphs

Users Guide 731

Pie graphs

Pie graphs typically show one series of data points with each data point shown
as a percentage of a whole. The following pie graph shows the sales for Stellar
printers for each quarter. You can easily see the relative values in each quarter.
(PowerBuilder automatically calculates the percentages of each slice of the
pie.)

You can have pie graphs with more than one series if you want; the series are
shown in concentric circles. Multiseries pie graphs can be useful in comparing
series of data.

Scatter graphs

Scatter graphs show xy data points. Typically you use scatter graphs to show
the relationship between two sets of numeric values. Non-numeric values, such
as string and DateTime datatypes, do not display correctly.

Scatter graphs do not use categories. Instead, numeric values are plotted along
both axes—as opposed to other graphs, which have values along one axis and
categories along the other axis.

For example, the following data shows the effect of speed on the mileage of a
sedan:

Speed Mileage

10 12

20 18

30 21

40 23

50 26

About graphs

732 PowerBuilder Classic

Here is the data in a scatter graph:

You can have multiple series of data in a scatter graph. You might want to plot
mileage versus speed for several makes of cars in the same graph.

Three-dimensional graphs
Traditional 3D graphs You can also create 3-dimensional (3D) graphs of area, bar, column, line, and

pie graphs. In 3D graphs (except for 3D pie graphs), series are plotted along a
third axis (the Series axis) instead of along the Category axis. You can specify
the perspective to use to show the third dimension:

60 26

70 24

80 20

Speed Mileage

CHAPTER 26 Working with Graphs

Users Guide 733

DirectX 3D graphs DirectX 3D rendering allows you to display the 3D graphs (Pie3D, Bar3D,
Column3D, Line3D, and Area3D) with a more sophisticated look. You can use
data item or series transparency with the DirectX graph styles to improve the
presentation of data.

The DirectX graph rendering style is supported for standalone graph controls
and for graph controls in a DataWindow object. PowerBuilder uses the
following functions to support the DirectX graph styles:

DirectX runtime The DirectX 3D rendering depends on the DirectX runtime.
The first time you select the Render3D check box on the General tab of the
Properties view for a 3D graph, PowerBuilder launches the DirectX installer.
If you opt out of the installation, the Render3D property is ignored. End users
of PowerBuilder applications must also have the DirectX runtime installed on
their computers.

If you install DirectX on the runtime computer, but selecting the Render3D
check box does not change the appearance of the graph, it is possible that the
graphics card does not support DirectX.

You can check whether DirectX is supported by running dxdiag.exe. This file
is typically installed in the Windows\System32 directory. The Display tab of the
DirectX Diagnostic Tool that opens when you run dxdiag.exe indicates whether
Direct3D is enabled.

GetDataLabelling SetDataLabelling

GetDataTransparency SetDataTransparency

GetSeriesLabelling SetSeriesLabelling

GetSeriesTransparency SetSeriesTransparency

About graphs

734 PowerBuilder Classic

Stacked graphs

In bar and column graphs, you can choose to stack the bars and columns. In
stacked graphs, each category is represented as one bar or column instead of as
separate bars or columns for each series:

Using graphs in applications
You can use graphs in DataWindow objects and in windows. You specify the
properties of a graph, such as its type and title, the same way in a DataWindow
object as in a window.

Using graphs in user objects
You can also use graphs in user objects. Everything in this chapter about using
graphs in windows also applies to using graphs in user objects.

The major differences between using a graph in a DataWindow object and
using a graph in a window (or user object) are:

• Specifying the data for the graph

In DataWindow objects, you associate columns in the database with the
axes of a graph. In windows, you write scripts containing PowerScript
functions to populate a graph.

• Specifying the location of the graph

In DataWindow objects, you can place a graph in the foreground and allow
users to move and resize the graph at runtime, or you can place a graph in
a band and prevent movement. In windows, graphs are placed like all other
window controls.

CHAPTER 26 Working with Graphs

Users Guide 735

Using graphs in DataWindow objects
Graphs are used most often in DataWindow objects—the data for the graph
comes from tables in the database.

Graphs in
DataWindow objects
are dynamic

Graphs in DataWindow objects are tied directly to the data that is in the
DataWindow object. As the data changes, the graph is automatically updated
to reflect the new values.

Two techniques You can use graphs in DataWindow objects in two ways:

• By including a graph as a control in a DataWindow object

The graph enhances the display of information in a DataWindow object,
such as a tabular or freeform DataWindow object. This technique is
described in “Placing a graph in a DataWindow object” next.

• By using the Graph presentation style

The entire DataWindow object is a graph. The underlying data is not
visible. This technique is described in “Using the Graph presentation
style” on page 747.

Placing a graph in a DataWindow object

❖ To place a graph in a DataWindow object:

1 Open or create the DataWindow object that will contain the graph.

2 Select Insert>Control>Graph from the menu bar.

3 Click where you want the graph.

Using graphs in DataWindow objects

736 PowerBuilder Classic

PowerBuilder displays the Graph Data dialog box:

4 Specify which columns contain the data and the type of graph you want,
and click OK.

For more information, see “Associating data with a graph” on page 738.

The Design view now contains a representation of the graph:

5 Specify the graph’s properties in the Properties view.

Using the graph's Properties view
A graph has a Properties view in which you can specify the data as well as the
other properties of the graph.

❖ To display the graph’s Properties view:

• Select Properties from the graph’s pop-up menu.

CHAPTER 26 Working with Graphs

Users Guide 737

The Properties view for a graph has several property pages in which you
specify information about the graph. Table 26-3 lists the property pages that
contain properties that are specific to graphs, and describes what each property
page specifies.

Table 26-3: Property page for graphs

Changing a graph's position and size
When you first place a graph in a DataWindow object, it is in the foreground—
it sits above the bands in the DataWindow object. Unless you change this
setting, the graph displays in front of any retrieved data.

The initial graph is also moveable and resizable, so users have complete
flexibility as to the size and location of a graph at runtime. You can change
these properties.

❖ To specify a graph’s position and size:

1 Select Properties from the graph’s pop-up menu and then select the
Position page or the General page in the Properties view.

Property page What it specifies

Axis Labels, scale, information about major and minor divisions for
the category axes.

Data Where to get the graph's data.

General Various general graph properties, including border, graph colors,
whether to size the graph to the full screen display, suppression in
newspaper columns.

Graph type, title, legend location.

For 3D graphs, perspective, rotation, elevation, and render3D.

For bar graphs, overlap, spacing and depth of bars.

Pointer The pointer to use when the mouse is positioned over the graph.

Position The x,y location of the upper left corner of the graph, its width
and height, sliding options, the layer in which the graph is to be
positioned.

Whether the graph can be resized and moved at runtime.

Text Text properties for text controls that display on the graph,
including title, axis text, axis label, and legend.

Text properties include font, font style, font size, alignment,
rotation, color, display expression, display format.

Other Descriptions and label for use by assistive technology tools.

Using graphs in DataWindow objects

738 PowerBuilder Classic

2 Select the settings for the following options on the Position property page:

Table 26-4: Settings on the Position property page for graphs

3 Select the settings for the following options on the General property page:

Table 26-5: Size and position settings on the General property page

Associating data with a graph
When using a graph in a DataWindow object, you associate axes of the graph
with columns in the DataWindow object.

The only way to get data into a graph in a DataWindow object is through
columns in the DataWindow object. You cannot add, modify, or delete data in
the graph except by adding, modifying, or deleting data in the DataWindow
object.

Setting Meaning

Layer Background — The graph displays behind other elements in
the DataWindow object.

Band — The graph displays in one particular band. If you
choose this setting, you should resize the band to fit the graph.
Often you will want to place a graph in the Footer band. As
users scroll through rows in the DataWindow object, the
graph remains at the bottom of the screen as part of the footer.

Foreground — (Default) The graph displays above all other
elements in the DataWindow object. Typically, if you choose
this setting, you also make the graph movable so it will not
obscure data while users display the DataWindow object.

Moveable The graph can be moved in the Preview view and at runtime.

Resizable The graph can be resized in the Preview view and at runtime.

Slide Left,
Slide Up

The graph slides to the left or up to remove extra white space.
For more information, see “Sliding controls to remove blank
space in a DataWindow object” on page 597.

X, Y The location of the upper-left corner of the graph.

Width, Height The width and height of the graph.

Setting Meaning

Size To Display The graph fills the DataWindow object and resizes when
users resize the DataWindow object. This setting is used with
the Graph presentation style.

HideSnaked Do not repeat graph after the first column in a DataWindow
object using newspaper-style columns.

CHAPTER 26 Working with Graphs

Users Guide 739

You can graph data from any columns retrieved into the DataWindow object.
The columns do not have to be displayed.

About the examples
The process of specifying data for a graph is illustrated below using the Printer
table in the EAS Demo DB.

❖ To specify data for a graph:

1 If you are creating a new graph, the Graph Data dialog box displays.
Otherwise, select Properties from the graph’s pop-up menu and select the
Data page in the Properties view.

2 Fill in the boxes as described in the sections that follow, and click OK.

Specifying which rows to include in a graph

The Rows drop-down list allows you to specify which rows of data are graphed
at any one time:

Table 26-6: Specifying which rows to include in a graph

If you select Group
If you are graphing data in the current group in a grouped DataWindow object
and have several groups displayed at the same time, you should localize the
graph in a group-related band in the Design view. This makes clear which
group the graph represents. Usually, the group header band is the most
appropriate band.

Setting Meaning

All Graphs the data from all the rows that have been retrieved but not filtered
or deleted (that is, the rows in the primary buffer of the DataWindow
object)

Page Graphs only the data from the rows that are currently displayed on the
page

Group n Graphs only the data in the specified group (in a grouped DataWindow
object)

Using graphs in DataWindow objects

740 PowerBuilder Classic

Specifying the categories

Specify the column or expression whose values determine the categories. In the
Graph Data page in the Graph dialog box and on the Data page in the Properties
view, you can select a column name from a drop-down list.

There is an entry along the Category axis for each different value of the column
or expression you specify.

Using display values of data
If you are graphing columns that use code tables, when data is stored with a
data value but displayed to users with more meaningful display values, by
default the graph uses the column’s data values. To have the graph use a
column's display values, use the LookupDisplay DataWindow expression
function when specifying Category or Series. LookupDisplay returns a string
that matches the display value for a column:

LookupDisplay (column)

For more about code tables, see “Defining a code table” on page 645. For more
about LookupDisplay, see the DataWindow Reference.

Specifying the values

PowerBuilder populates the Value drop-down list. The list includes the names
of all the retrieved columns as well as the following aggregate functions:

• Count for all non-numeric columns

• Sum for all numeric columns

Select an item from the drop-down list or type an expression (in the Properties
view). For example, if you want to graph the sum of units sold, you can specify:

sum(units for graph)

CHAPTER 26 Working with Graphs

Users Guide 741

To graph 110 percent of the sum of units sold, you can specify:

sum(units*1.1 for graph)

Specifying the series

Graphs can have one or more series.

Single-series graphs If you want only one series (that is, if you want to graph all retrieved rows as
one series of values), leave the Series box empty.

Multiple-series graphs If you want to graph more than one series, select the Series check box and
specify the column that will provide the series values. You can select column
names from the drop-down list.

There is a set of data points for each different value of the column you specify
here. For example, if you specify a column that has 10 values, then your graph
will have 10 series: one set of data points for each different value of the
column.

Using expressions You can also specify expressions for Series (on the Data page of the Properties
view). For example, you could specify the following for Series:

Units / 1000

In this case, if a table had unit values of 10,000, 20,000, and 30,000, the graph
would show series values of 10, 20, and 30.

Specifying multiple
entries

You can specify more than one of the retrieved columns to serve as series.
Separate multiple entries by commas.

You must specify the same number of entries in the Value box as you do in the
Series box. The first value in the Value box corresponds to the first series
identified in the Series box, the second value corresponds to the second series,
and so on. The example about graphing actual and projected sales in
“Examples” on page 742 illustrates this technique.

Using graphs in DataWindow objects

742 PowerBuilder Classic

Examples

This section shows how to specify the data for several different graphs of the
data in the Printer table in the EAS Demo DB. The table records quarterly unit
sales of three printers by three sales representatives.

Table 26-7: The Printer table in the EAS Demo DB

Graphing total sales To graph total sales of printers in each quarter, retrieve all the columns into a
DataWindow object and create a graph with the following settings on the Data
page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph)

Leave the Series check box and text box empty.

Rep Quarter Product Units

Simpson Q1 Stellar 12

Jones Q1 Stellar 18

Perez Q1 Stellar 15

Simpson Q1 Cosmic 33

Jones Q1 Cosmic 5

Perez Q1 Cosmic 26

Simpson Q1 Galactic 6

Jones Q1 Galactic 2

Perez Q1 Galactic 1

… … … …

Simpson Q4 Stellar 30

Jones Q4 Stellar 24

Perez Q4 Stellar 36

Simpson Q4 Cosmic 60

Jones Q4 Cosmic 52

Perez Q4 Cosmic 48

Simpson Q4 Galactic 3

Jones Q4 Galactic 3

Perez Q4 Galactic 6

CHAPTER 26 Working with Graphs

Users Guide 743

The Quarter column serves as the category. Because the Quarter column has
four values (Q1, Q2, Q3, and Q4), there will be four categories along the
Category axis. You want only one series (total sales in each quarter), so you can
leave the Series box empty, or type a string literal to identify the series in a
legend. Setting Value to sum(units for graph) graphs total sales in each
quarter.

Here is the resulting column graph. PowerBuilder automatically generates the
category text based on the data in the table:

In the preceding graph, there is one set of data points (one series) across four
quarters (the category values).

The following is a pie graph, which has exactly the same properties as the
preceding column graph except for the type, which is Pie:

In pie graphs, categories are shown in the legend.

Using graphs in DataWindow objects

744 PowerBuilder Classic

Graphing unit sales of
each printer

To graph total quarterly sales of each printer, retrieve all the columns into a
DataWindow object and create a graph with the following settings on the Data
page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph)

• Select the Series check box

• Set Series to product

You want a different series for each printer, so the column Product serves as the
series. Because the Product column has three values (Cosmic, Galactic, and
Stellar), there will be three series in the graph. As in the first example, you want
a value for each quarter, so the Quarter column serves as the category, and you
want to graph total sales in each quarter, so the Value box is specified as
sum(units for graph).

Here is the resulting graph. PowerBuilder automatically generates the category
and series labels based on the data in the table. The series labels display in the
graph’s legend:

Graphing unit sales by
representative

To graph quarterly sales made by each representative, create a graph with the
following settings on the Data page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph)

• Select the Series check box

• Set Series to rep

CHAPTER 26 Working with Graphs

Users Guide 745

Here is the resulting graph:

Graphing unit sales by
representative and
total sales

To graph quarterly sales made by each representative, plus total sales for each
printer, create a graph with the following settings on the Data page in the
Properties view:

• Set Rows to All

• Set Category to quarter, "Total"

• Set Value to sum(units for graph), sum(units for graph)

• Select the Series check box

• Set Series to rep, rep

Here you have two types of categories: the first is Quarter, which shows
quarterly sales, as in the previous graph. You also want a category for total
sales. There is no corresponding column in the DataWindow object, so you can
simply type the literal “Total” to identify the category. You separate multiple
entries with a comma.

For each of these category types, you want to graph the sum of units sold for
each representative, so the Value and Series values are repeated.

Using graphs in DataWindow objects

746 PowerBuilder Classic

Here is the resulting graph:

Notice that PowerBuilder uses the literal “Total” supplied in the Category box
in the Graph Data window as a value in the Category axis.

Graphing actual and
projected sales

To graph total quarterly sales of all printers and projected sales for next year,
create a graph with the following settings on the Data page in the Properties
view (you assume that sales will increase by 10% next year):

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph), sum(units*1.1 for graph)

• Select the Series check box

• Set Series to 'Actual','Projected'

You are using labels to identify two series, Actual and Projected. Note the
single quotation marks around the literals. For Values, you enter the
expressions that correspond to Actual and Projected sales. For Actual, you use
the same expression as in the examples above, sum(units for graph). For
Projected sales, you multiply each unit sale by 1.1 to get the 10 percent
increase. Therefore, the second expression is sum(units*1.1 for graph).

CHAPTER 26 Working with Graphs

Users Guide 747

Here is the resulting graph. PowerBuilder uses the literals you typed for the
series as the series labels in the legend:

Using the Graph presentation style
Instead of embedding a graph in a DataWindow object, you can use the Graph
presentation style to create a DataWindow object that is only a graph—the
underlying data is not displayed.

One advantage of the Graph presentation style is that the graph resizes
automatically if users resize the DataWindow control associated with the graph
DataWindow object at runtime.

❖ To use the Graph presentation style:

1 Select File>New from the menu bar.

The New dialog box displays.

2 Select the DataWindow tab.

3 Select the Graph presentation style, then click OK.

4 On the Choose Data Source for Graph DataWindow page, specify the data
you want retrieved into the DataWindow object.

For more information, see Chapter 18, “Defining DataWindow Objects.”

Defining a graph's properties

748 PowerBuilder Classic

5 On the Define Graph Data page, enter the definitions for the series,
categories, and values, as described in “Associating data with a graph” on
page 738, and click Next.

Note that when using the Graph presentation style, the graph always
graphs all rows; you cannot specify page or group.

6 On the Define Graph Style page, enter a title for the graph, select a graph
type, and click Next.

7 On the Ready to Create Graph DataWindow page, review your
specifications and click Finish.

A model of the graph displays in the Design view.

8 Specify the properties of the graph, as described in “Defining a graph's
properties” next.

9 Save the DataWindow object in a library.

10 Associate the graph DataWindow object with a DataWindow control on a
window or user object.

At runtime, the graph fills the entire control and resizes when the control
is resized.

Defining a graph's properties
This section describes properties of a graph that are used regardless of whether
the graph is in a DataWindow object or in a window. To define the properties
of a graph, you use the graph’s Properties view. For general information about
the property pages, see “Using the graph's Properties view” on page 736.

Using the General page in the graph's Properties view
You name a graph and define its basic properties on the General page in the
graph’s Properties view.

❖ To specify the basic properties of a graph:

• Select Properties from the graph’s pop-up menu and then select the
General page in the Properties view.

CHAPTER 26 Working with Graphs

Users Guide 749

About the model
graph in the Design
view

As you modify a graph’s properties, PowerBuilder updates the model graph
shown in the Design view so that you can get an idea of the graph’s basic
layout:

• PowerBuilder uses the graph title and axis labels you specify.

• PowerBuilder uses sample data (not data from your DataWindow object)
to illustrate series, categories, and values.

In Preview view, PowerBuilder displays the graph with data.

Naming a graph You can modify graphs at runtime. To reference a graph in code, you use its
name. By default, the graph is named gr_n.

❖ To name a graph:

• On the General properties page for the graph, assign a meaningful name to
the graph in the Name box.

Defining a graph's title The title displays at the top of the graph.

❖ To specify a graph's title:

• On the General properties page for the graph, enter a title in the Title box.

Multiline titles
You can force a new line in a title by embedding ~n.

For information about specifying properties for the title text, see “Specifying
text properties for titles, labels, axes, and legends” on page 750.

Specifying the type of
graph

You can change the graph type at any time in the development environment (To
change the type at runtime, modify a graph’s GraphType property.)

❖ To specify the graph type:

• On the General properties page for the graph, select a graph type from the
Graph Type drop-down list.

Using legends A legend provides a key to your graph’s series.

❖ To include a legend for a series in a graph:

• On the General properties page for the graph, specify where you want the
legend to appear by selecting a value in the Legend drop-down list.

For information on specifying text properties for the legend, see “Specifying
text properties for titles, labels, axes, and legends” on page 750.

Defining a graph's properties

750 PowerBuilder Classic

Specifying point of
view in 3D graphs

If you are defining a 3D graph, you can specify the point of view that
PowerBuilder uses when displaying the graph.

❖ To specify a 3D graph’s point of view:

1 On the General properties page for the graph, adjust the point of view
along the three dimensions of the graph:

• To change the perspective, move the Perspective slider.

• To rotate the graph, move the Rotation slider.

• To change the elevation, move the Elevation slider.

2 Define the depth of the graph (the percent the depth is of the width of the
graph) by using the Depth slider.

Sorting data for series and categories
You can specify how to sort the data for series and categories. By default, the
data is sorted in ascending order.

❖ To specify how to sort the data for series and categories in a graph:

1 Select Properties from the graph’s pop-up menu and then select the Axis
page in the Properties view.

2 Select the axis for which you want to specify sorting.

3 Scroll to Sort, the last option on the Axis page, and select Ascending,
Descending, or Unsorted.

Specifying text properties for titles, labels, axes, and legends
A graph can have four text elements:

Title
Labels for the axes
Text that shows the values along the axes
Legend

CHAPTER 26 Working with Graphs

Users Guide 751

You can specify properties for each text element.

❖ To specify text properties for the title, labels, axis values, and legend of
a graph:

1 Select Properties from the graph’s pop-up menu and then select the Text
page in the Properties view.

2 Select a text element from the list in the Text Object drop-down list.

3 Specify the font and its characteristics.

Using Auto Size With Auto Size in effect, PowerBuilder resizes the text appropriately whenever
the graph is resized. With Auto Size disabled, you specify the font size of a text
element explicitly.

❖ To have PowerBuilder automatically size a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Select the Autosize check box (this is the default).

Defining a graph's properties

752 PowerBuilder Classic

❖ To specify a font size for a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Clear the Autosize check box.

3 Select the Font size in the Size drop-down list.

Rotating text For all the text elements, you can specify the number of degrees by which you
want to rotate the text.

❖ To specify rotation for a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Specify the rotation you want in the Escapement box using tenths of a
degree (450 means 45 degrees).

Changes you make here are shown in the model graph in the Design view and
in the Preview view.

Using display formats

❖ To use a display format for a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Type a display format in the Format box or choose one from the pop-up
menu. To display the pop-up menu, click the button to the right of the
Format box.

Modifying display
expressions

You can specify an expression for the text that is used for each graph element.
The expression is evaluated at execution time.

❖ To specify an expression for a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Click the button next to the Display Expression box.

The Modify Expression dialog box displays.

3 Specify the expression.

You can paste functions, column names, and operators. Included with
column names in the Columns box are statistics about the columns, such
as counts and sums.

4 Click OK to return to the graph’s Properties view.

CHAPTER 26 Working with Graphs

Users Guide 753

Example By default, when you generate a pie graph, PowerBuilder puts the title at the
top and labels each slice of the pie with the percentage each slice represents of
the whole. Percentages are accurate to two decimal places.

The following graph has been enhanced as follows:

• The current date displays in the title

• The percentages are rounded to integers

• The raw data for each slice is shown in addition to the percentages

To accomplish this, the display expressions were modified for the title and pie
graph labels:

Element Original expression Modified expression

Title title title + " as of " +
date(today())

Pie graph
labels

if(seriescount > 1,
series, string
(percentofseries,
"0.00%"))

if(seriescount > 1, series,
string(percentofseries,"0%
") + " (" + value + ")")

Defining a graph's properties

754 PowerBuilder Classic

Specifying overlap and spacing
With bar and column charts, you can specify the properties in Table 26-8.

Table 26-8: Overlap and spacing properties for bar and column charts

❖ To specify overlap and spacing for the bars or columns in a graph:

1 Select Properties from the graph’s pop-up menu and then select the Graph
tab.

2 Specify a percentage for Overlap (% of width) and Spacing (% of width).

Specifying axis properties
Graphs have two or three axes. You specify the axes’ properties in the Axis
page in the graph’s Properties view.

❖ To specify properties for an axis of a graph:

1 Select Properties from the graph’s pop-up menu and then select the Axis
page in the Properties view.

2 Select the Category, the Value, or the Series axis from the Axis drop-down
list.

If you are not working with a 3D graph, the Series Axis options are
disabled.

3 Specify the properties as described next.

Specifying text
properties

You can specify the characteristics of the text that displays for each axis. Table
26-9 shows the two kinds of text associated with an axis.

Table 26-9: Text types associated with each axis of a graph

Property Meaning

Overlap The percentage by which bars or columns overlap each other.
The default is 0 percent, meaning no overlap.

Spacing The amount of space to leave between bars or columns. The
default is 100 percent, which leaves a space equal to the width of
a bar or column.

Type of text Meaning

Text Text that identifies the values for an axis.

Label Text that describes the axis. You specify the label text in a painter.
You can use ~n to embed a new line within a label.

CHAPTER 26 Working with Graphs

Users Guide 755

For information on specifying properties for the text, see “Specifying text
properties for titles, labels, axes, and legends” on page 750.

Specifying datatypes The data graphed along the Value, Category, and Series axes has an assigned
datatype. The Series axis always has the datatype String. The Value and
Category axes can have the datatypes listed in Table 26-10.

Table 26-10: Datatypes for Value and Category axes

For graphs in DataWindow objects, PowerBuilder automatically assigns the
datatypes based on the datatype of the corresponding column; you do not
specify them.

For graphs in windows, you specify the datatypes yourself. Be sure you specify
the appropriate datatypes so that when you populate the graph (using the
AddData method), the data matches the datatype.

Scaling axes You can specify the properties listed in Table 26-11 to define the scaling used
along numeric axes.

Table 26-11: Properties for scaling on numeric axes

Axis Possible datatypes

Both axes (for scatter graph) Number, Date, Time

Value (other graph types) Number, Date, DateTime, Time

Category (other graph types) String, Number, Date, DateTime, Time

Property Meaning

Autoscale If selected (the default), PowerBuilder automatically assigns a
scaling for the numbers along the axis.

RoundTo,
RoundToUnit

Specifies how to round the end points of the axis (note that this
just rounds the range displayed along the axis; it does not round
the data itself).

You can specify a number and a unit. The unit is based on the
datatype; you can specify Default as the unit to have
PowerBuilder decide for you. For example, if the Value axis is a
Date column, you can specify that you want to round the end
points of the axis to the nearest five years. In this case, if the
largest data value is the year 1993, the axis extends up to 1995,
which is 1993 rounded to the next highest five-year interval.

MinimumValue,
MaximumValue

The smallest and largest numbers to appear on the axis (disabled
if you have selected Autoscale).

ScaleType Specifies linear or logarithmic scaling (common or natural).

ScaleValue Specifies whether values are displayed as actual values or as a
cumulative value, a percentage, or a cumulative percentage.

Defining a graph's properties

756 PowerBuilder Classic

Using major and
minor divisions

You can divide axes into divisions. Each division is identified by a tick mark,
which is a short line that intersects an axis. In the Sales by Printer graphs shown
in “Examples” on page 742, the graph’s Value axis is divided into major
divisions of 50 units each. PowerBuilder divides the axes automatically into
major divisions.

❖ To define divisions for an axis of a graph:

1 To divide an axis into a specific number of major divisions, type the
number of divisions you want in the MajorDivisions box.

Leave the number 0 to have PowerBuilder automatically create divisions.
PowerBuilder labels each tick mark in major divisions. If you do not want
each tick mark labeled, enter a value in the DisplayEveryNLabels box. For
example, if you enter 2, PowerBuilder labels every second tick mark for
the major divisions.

2 To use minor divisions, which are divisions within each major division,
type the appropriate number in the MinorDivisions box. To use no minor
divisions, leave the number 0.

When using logarithmic axes
If you want minor divisions, specify 1; otherwise, specify 0.

Representing
divisions with grid and
drop lines

You can specify lines to represent the divisions as described in Table 26-12 and
illustrated in Figure 26-1.

Table 26-12: Representing graph divisions with grid and drop lines

Line Meaning

Grid line A line that extends from a tick mark across the graph. Grid lines make
graphs easier to read.

Drop line A line that extends vertically from a data point to its axis (not available
for all graph types).

CHAPTER 26 Working with Graphs

Users Guide 757

Figure 26-1: Grid and drop lines in a graph

Using line styles You can define line styles for the components of a graph listed in Table 26-13.

Table 26-13: Components of a graph that can have line styles

Specifying a pointer
You can specify a pointer to use when the mouse is over a graph at runtime.

❖ To specify a pointer for a graph:

1 Select Properties from the graph’s pop-up menu and then select the Pointer
page in the Properties view.

2 Select a stock pointer from the list, or select a CUR file containing a
pointer.

Using graphs in windows
In addition to using graphs in DataWindow objects, you can also place graphs
directly in windows and visual user objects. You define properties for a graph
control in the Window painter and use scripts to populate the graph with data
and to modify properties for the graph at runtime.

Component Meaning

PrimaryLine The axis itself

SecondaryLine The axis parallel to and opposite the primary axis

OriginLine A grid line that represents the value zero

Frame The frame for the axis in 3D graphs (disabled for 2D graphs)

Using graphs in windows

758 PowerBuilder Classic

This section describes procedures unique to using graphs in windows and
visual user objects. For general graph properties, see “Defining a graph's
properties” on page 748.

Placing a graph in a
window

This procedure for placing a graph in a window in the Window painter can also
be used for placing a graph on a user object in the User Object painter.

❖ To place a graph in a window:

1 Open the Window painter and select the window that will contain the
graph.

2 Select Insert>Control>Graph from the menu bar.

3 Click where you want the graph.

PowerBuilder displays a model of the graph in the window.

4 Specify properties for the graph, such as type, title, text properties, and
axis properties.

See “Defining a graph's properties” on page 748.

5 Write one or more scripts to populate the graph with data.

See the chapter on manipulating graphs in Application Techniques.

Using the graph’s
Properties view in the
Window painter

A graph’s Properties view in the Window and User Object painters is similar
to the one in the DataWindow painter except that the Properties view in the
Window and User Object painter:

• Does not have buttons for specifying property conditional expressions
next to properties

• Does not have Data, Position, and Pointer property pages

• Does have an Other page, which you use to specify drag-and-drop,
position, and pointer properties for the graph control

For more information, see “Using the graph's Properties view” on page 736.

Users Guide 759

C H A P T E R 2 7 Working with Crosstabs

About this chapter This chapter describes how to build crosstabs.

Contents

About crosstabs
Cross tabulation is a useful technique for analyzing data. By presenting
data in a spreadsheet-like grid, a crosstab lets users view summary data
instead of a long series of rows and columns. For example, in a sales
application you might want to summarize the quarterly unit sales of each
product.

In PowerBuilder, you create crosstabs by using the Crosstab presentation
style. When data is retrieved into the DataWindow object, the crosstab
processes all the data and presents the summary information you have
defined for it.

An example Crosstabs are easiest to understand through an example. Consider the
Printer table in the EAS Demo DB. It records quarterly unit sales of
printers made by sales representatives in one year. (This is the same data
used to illustrate graphs in Chapter 26, “Working with Graphs.”)

Topic Page

About crosstabs 759

Creating crosstabs 763

Associating data with a crosstab 764

Previewing crosstabs 770

Enhancing crosstabs 770

About crosstabs

760 PowerBuilder Classic

Table 27-1: The Printer table in the EAS Demo DB

This information can be summarized in a crosstab. Here is a crosstab that
shows unit sales by printer for each quarter:

Rep Quarter Product Units

Simpson Q1 Stellar 12

Jones Q1 Stellar 18

Perez Q1 Stellar 15

Simpson Q1 Cosmic 33

Jones Q1 Cosmic 5

Perez Q1 Cosmic 26

Simpson Q1 Galactic 6

Jones Q1 Galactic 2

Perez Q1 Galactic 1

. . . .

. . . .

. . . .

Simpson Q4 Stellar 30

Jones Q4 Stellar 24

Perez Q4 Stellar 36

Simpson Q4 Cosmic 60

Jones Q4 Cosmic 52

Perez Q4 Cosmic 48

Simpson Q4 Galactic 3

Jones Q4 Galactic 3

Perez Q4 Galactic 6

CHAPTER 27 Working with Crosstabs

Users Guide 761

The first-quarter sales of Cosmic printers displays in the first data cell. (As you
can see from the data in the Printer table shown before the crosstab, in Q1
Simpson sold 33 units, Jones sold 5 units, and Perez sold 26 units—totaling 64
units.) PowerBuilder calculates each of the other data cells the same way.

To create this crosstab, you only have to tell PowerBuilder which database
columns contain the raw data for the crosstab, and PowerBuilder does all the
data summarization automatically.

What crosstabs do Crosstabs perform two-dimensional analysis:

• The first dimension is displayed as columns across the crosstab.

In the preceding crosstab, the first dimension is the quarter, whose values
are in the Quarter column in the database table.

• The second dimension is displayed as rows down the crosstab.

In the preceding crosstab, the second dimension is the type of printer,
whose values are in the Product column in the database table.

Each cell in a crosstab is the intersection of a column (the first dimension) and
a row (the second dimension). The numbers that appear in the cells are
calculations based on both dimensions. In the preceding crosstab, it is the sum
of unit sales for the quarter in the corresponding column and printer in the
corresponding row.

Crosstabs also include summary statistics. The preceding crosstab totals the
sales for each quarter in the last row and the total sales for each printer in the
last column.

How crosstabs are
implemented in
PowerBuilder

Crosstabs in PowerBuilder are implemented as grid DataWindow objects.
Because crosstabs are grid DataWindow objects, users can resize and reorder
columns at runtime (if you let them).

Import methods return empty result
A crosstab report takes the original result set that was retrieved from the
database, sorts it, summarizes it, and generates a new summary result set to fit
the design of the crosstab. The ImportFile, ImportClipboard, and ImportString
methods can handle only the original result set, and they return an empty result
when used with a crosstab report.

About crosstabs

762 PowerBuilder Classic

Two types of crosstabs
There are two types of crosstabs:

• Dynamic

• Static

Dynamic crosstabs With dynamic crosstabs, PowerBuilder builds all the columns and rows in the
crosstab dynamically when you run the crosstab. The number of columns and
rows in the crosstab match the data that exists at runtime.

Using the preceding crosstab as an example, if a new printer was added to the
database after the crosstab was saved, there would be an additional row in the
crosstab when it is run. Similarly, if one of the quarter’s results was deleted
from the database after the crosstab was saved, there would be one less column
in the crosstab when it is run.

By default, crosstabs you build are dynamic.

Static crosstabs Static crosstabs are quite different from dynamic crosstabs. With static
crosstabs, PowerBuilder establishes the columns in the crosstab based on the
data in the database when you define the crosstab. (It does this by retrieving
data from the database when you initially define the crosstab.) No matter what
values are in the database when you later run the crosstab, the crosstab always
has the same columns as when you defined it.

Using the preceding crosstab as an example, if there were four quarters in the
database when you defined and saved the crosstab, there would always be four
columns (Q1, Q2, Q3, and Q4) in the crosstab at runtime, even if the number
of columns changed in the database.

Advantages of
dynamic crosstabs

Dynamic crosstabs are used more often than static crosstabs, for the following
reasons:

• You can define dynamic crosstabs very quickly because no database
access is required at definition time.

• Dynamic crosstabs always use the current data to build the columns and
rows in the crosstab. Static crosstabs show a snapshot of columns as they
were when the crosstab was defined.

• Dynamic crosstabs are easy to modify: all properties for the dynamically
built columns are replicated at runtime automatically. With static
crosstabs, you must work with one column at a time.

CHAPTER 27 Working with Crosstabs

Users Guide 763

Creating crosstabs
❖ To create a crosstab:

1 Select File>New from the menu bar.

The New dialog box displays.

2 Select the DataWindow tab.

3 Select the Crosstab presentation style, then click OK.

4 On the Choose Data Source for Crosstab DataWindow page, specify the
data you want retrieved into the DataWindow object.

For more information, see Chapter 18, “Defining DataWindow Objects.”

5 In the Define Crosstab Rows, Columns, Values page, enter the definitions
for the columns, rows, and cell values in the crosstab.

See “Associating data with a crosstab” on page 764.

6 Click Next.

7 Choose Color and Border settings and click Next.

8 Review your specifications and click Finish.

PowerBuilder creates the crosstab.

9 (Optional) Specify other properties of the crosstab.

See “Enhancing crosstabs” on page 770.

10 Save the DataWindow object in a library.

Associating data with a crosstab

764 PowerBuilder Classic

Associating data with a crosstab
You associate crosstab columns, rows, and cell values with columns in a
database table or other data source.

❖ To associate data with a crosstab:

1 If you are defining a new crosstab, the Define Crosstab Rows, Columns,
Values dialog box displays after you specify the data source.

2 Specify the database columns that will populate the columns, rows, and
values in the crosstab, as described below.

3 To build a dynamic crosstab, make sure the Rebuild columns at runtime
check box is selected.

For information about static crosstabs, see “Creating static crosstabs” on
page 779.

4 Click Next.

Specifying the information
To define the crosstab, drag the column names from the Source Data box in the
Crosstab Definition dialog box (or Wizard page) into the Columns, Rows, or
Values box, as appropriate.

If you change your mind or want to edit the DataWindow object later, select
Design>Crosstab from the menu bar and drag the column name out of the
Columns, Row, or Values box and drop it. Then specify a different column.

CHAPTER 27 Working with Crosstabs

Users Guide 765

Dynamic crosstab
example

The process is illustrated using the following dynamic crosstab. The columns
in the database are Rep, Quarter, Product, and Units. The crosstab shows the
number of printers sold by Quarter:

Specifying the
columns

You use the Columns box to specify one or more of the retrieved columns to
provide the columns in the crosstab. When users run the crosstab, there is one
column in the crosstab for each unique value of the database column(s) you
specify here.

❖ To specify the crosstab’s columns:

• Drag the database column from the Source Data box into the Columns
box.

Using the printer example, to create a crosstab where the quarters form the
columns, specify Quarter as the Columns value. Because there are four values
in the table for Quarter (Q1, Q2, Q3, and Q4), there are four columns in the
crosstab.

Specifying the rows You use the Rows box to specify one or more of the retrieved columns to
provide the rows in the crosstab. When users run the crosstab, there is one row
in the crosstab for each unique value of the database column(s) you specify
here.

❖ To specify the crosstab’s rows:

• Drag the database column from the Source Data box into the Rows box.

Using the printer example, to create a crosstab where the printers form the
rows, specify Product as the Rows value. Because there are three products
(Cosmic, Galactic, and Stellar), at runtime there are three rows in the crosstab.

Associating data with a crosstab

766 PowerBuilder Classic

Columns that use code tables
If you specify columns in the database that use code tables, where data is stored
with a data value but displayed with more meaningful display values, the
crosstab uses the column’s display values, not the data values. For more
information about code tables, see Chapter 22, “Displaying and Validating
Data.”

Specifying the values Each cell in a crosstab holds a value. You specify that value in the Values box.
Typically you specify an aggregate function, such as Sum or Avg, to summarize
the data. At runtime, each cell has a calculated value based on the function you
provide here and the column and row values for the particular cell.

❖ To specify the crosstab’s values:

1 Drag the database column from the Source Data box into the Values box.

PowerBuilder displays an aggregate function for the value. If the column
is numeric, PowerBuilder uses Sum. If the column is not numeric,
PowerBuilder uses Count.

2 If you want to use an aggregate function other than the one suggested by
PowerBuilder, double-click the item in the Values box and edit the
expression. You can use any of the other aggregate functions supported in
the DataWindow painter, such as Max, Min, and Avg.

Using the printer example, you would drag the Units column into the Values
box and accept the expression sum(units for crosstab).

Using expressions Instead of simply specifying database columns, you can use any valid
DataWindow expression to define the columns, rows, and values used in the
crosstab. You can use any non-object-level DataWindow expression function
in the expression.

For example, say a table contains a date column named SaleDate, and you want
a column in the crosstab for each month. You could enter the following
expression for the Columns definition:

Month(SaleDate)

The Month function returns the integer value (1–12) for the specified month.
Using this expression, you get columns labeled 1 through 12 in the crosstab.
Each database row for January sales is evaluated in the column under 1, each
database row for February sales is evaluated in the column under 2, and so on.

CHAPTER 27 Working with Crosstabs

Users Guide 767

❖ To specify an expression for columns, rows, or values:

1 In the Crosstab Definition dialog box (or wizard page), double-click the
item in the Columns, Rows, or Values box.

The Modify Expression dialog box displays.

2 Specify the expression and click OK.

Viewing the crosstab
After you have specified the data for the crosstab’s columns, rows, and values,
PowerBuilder displays the crosstab definition in the Design view.

For example, to create the dynamic crosstab shown as the “Dynamic crosstab
example” on page 765, you would:

1 Drag the quarter column from the Source Data box to the Columns box.

2 Drag the product column from the Source Data box to the Rows box.

3 Drag the units column from the Source Data box to the Values box and
accept the expression sum(units for crosstab).

4 Select the Rebuild columns at runtime check box.

Associating data with a crosstab

768 PowerBuilder Classic

In the Design view, the crosstab looks like this:

Notice that in the Design view, PowerBuilder shows the quarter entries using
the symbolic notation @quarter (with dynamic crosstabs, the actual data
values are not known at definition time). @quarter is resolved into the actual
data values (in this case, Q1, Q2, Q3, and Q4) when the crosstab runs.

The crosstab is generated with summary statistics: the rows and columns are
totaled for you.

At this point, the crosstab looks like this in the Preview view with data
retrieved:

• Because quarter was selected as the Columns definition, there is one
column in the crosstab for each unique quarter (Q1, Q2, Q3, and Q4).

• Because product was selected as the Rows definition, there is one row in
the crosstab for each unique product (Cosmic, Galactic, and Stellar).

• Because sum(units for crosstab) was selected as the Values
definition, each cell contains the total unit sales for the corresponding
quarter (the Columns definition) and product (the Rows definition).

• PowerBuilder displays the grand totals for each column and row in the
crosstab.

CHAPTER 27 Working with Crosstabs

Users Guide 769

Specifying more than one row or column
Typically you specify one database column as the Columns definition and one
database column for the Rows definition, as in the printer crosstab. But you can
specify as many columns (or expressions) as you want.

For example, consider a crosstab that has the same specification as the crosstab
in “Viewing the crosstab” on page 767, except that two database columns,
quarter and rep, have been dragged to the Columns box.

PowerBuilder displays this in the Design view:

This is what you see at runtime:

For each quarter, the crosstab shows sales of each printer by each sales
representative.

Previewing crosstabs

770 PowerBuilder Classic

Previewing crosstabs
When you have defined the crosstab, you can see it with data in the Preview
view.

❖ To preview the crosstab:

1 If the Preview view is not open, select View>Preview from the menu bar
to display the Preview view.

2 Click on the Preview view to be sure it is current.

3 Select Rows>Retrieve from the menu bar.

PowerBuilder retrieves the rows and performs the cross tabulation on the
data.

Retrieve on Preview makes retrieval happen automatically
If the crosstab definition specifies Retrieve on Preview, retrieval happens
automatically when the Preview view first displays.

4 Continue enhancing your DataWindow object and retrieve again when
necessary to see the results of your enhancements.

Enhancing crosstabs
When you have provided the data definitions, the crosstab is functional, but
you can enhance it before using it. Because a crosstab is a grid DataWindow
object, you can enhance a crosstab using the same techniques you use in other
DataWindow objects. For example, you can:

• Sort or filter rows

• Change the column headers

• Specify fonts, colors, mouse pointers, and borders

• Specify column display formats

For more on these and the other standard enhancements you can make to
DataWindow objects, see Chapter 19, “Enhancing DataWindow Objects.”

CHAPTER 27 Working with Crosstabs

Users Guide 771

The rest of this section covers topics either unique to crosstabs or especially
important when working with crosstabs:

• “Specifying basic properties” next

• “Modifying the data associated with the crosstab” on page 772

• “Changing the names used for the columns and rows” on page 772

• “Defining summary statistics” on page 773

• “Cross-tabulating ranges of values” on page 776

• “Creating static crosstabs” on page 779

• “Using property conditional expressions” on page 780

Specifying basic properties
Crosstabs are implemented as grid DataWindow objects, so you can specify the
following grid properties for a crosstab:

• When grid lines are displayed

• How users can interact with the crosstab at runtime

❖ To specify the crosstab’s basic properties:

1 In the Properties view, select the General tab.

2 Specify basic crosstab properties.

Table 27-2 lists basic crosstab properties.

Table 27-2: Basic properties for crosstabs

Option Result

Display On – Grid lines always display.

Off – Grid lines never display (columns cannot be resized at
runtime).

Display Only – Grid lines display only when the crosstab
displays online.

Print Only – Grid lines display only when the contents of the
crosstab are printed.

Column Moving Columns can be moved at runtime.

Mouse Selection Data can be selected at runtime (and, for example, copied to
the clipboard).

Row Resize Rows can be resized at runtime.

Enhancing crosstabs

772 PowerBuilder Classic

Modifying the data associated with the crosstab
When you initially define the crosstab, you associate the crosstab rows and
columns with columns in a database table or other data source. You can change
the associated data at any time in the Crosstab Definition dialog box.

❖ To open the Crosstab Definition dialog box:

1 Position the mouse below the footer band in the workspace and display the
pop-up menu.

2 Select Crosstab from the pop-up menu.

The Crosstab Definition dialog box displays.

❖ To modify the data associated with a crosstab:

1 In the Crosstab Definition dialog box, fill in the boxes for Columns, Rows,
and Values as described in “Associating data with a crosstab” on page
764.

2 Click OK.

Changing the names used for the columns and rows
Sometimes names of columns in the database might not be meaningful. You
can change the names that are used to label rows and columns in crosstabs so
that the data is easier to understand.

❖ To change the names used in crosstabs:

1 In the Crosstab Definition dialog box, double-click the name of the
column in the Source Data box.

The New Name dialog box displays:

2 Specify the name you want used to label the corresponding column. You
can have multiple-word labels by using underscores: underscores are
replaced by spaces in the Design view and at runtime.

3 Click OK.

PowerBuilder changes the column name in the Source Data box and
anywhere else the column is used.

Example For example, if you want the product column to be labeled Printer Model,
double-click product in the Crosstab Definition dialog box and specify
printer_model in the New Name dialog box.

CHAPTER 27 Working with Crosstabs

Users Guide 773

When the crosstab runs, you see this:

Defining summary statistics
When you generate a crosstab, the columns and rows are automatically totaled
for you. You can include other statistical summaries in crosstabs as well. To do
that, you place computed fields in the workspace.

❖ To define a column summary:

1 Enlarge the summary band to make room for the summaries.

2 Select Insert>Control>Computed Field from the menu bar.

3 Click the cell in the summary band where you want the summary to
display.

The Modify Expression dialog box displays.

4 Define the computed field.

For example, if you want the average value for a column, specify
avg(units for all), where units is the column providing the values in
the crosstab.

Enhancing crosstabs

774 PowerBuilder Classic

For example, this is a crosstab that has been enhanced to show averages and
maximum values for each column. This is the Design view:

This is the crosstab at runtime:

❖ To define a row summary:

1 Select Insert>Control>Computed Field from the menu bar.

2 Click the empty cell to the right of the last column in the detail band.

The Modify Expression dialog box displays.

3 Define the computed field. You should use one of the crosstab functions,
described next.

CHAPTER 27 Working with Crosstabs

Users Guide 775

Using crosstab functions

There are nine special functions you can use only in crosstabs: CrosstabAvg,
CrosstabAvgDec, CrosstabCount, CrosstabMax, CrosstabMaxDec, CrosstabMin,
CrosstabMinDec, CrosstabSum, and CrosstabSumDec.

These functions are listed in the Functions box when you define a computed
field in a crosstab:

Each of these functions returns the corresponding statistic about a row in the
crosstab (average, count, maximum value, minimum value, or sum). You place
computed fields using these functions in the detail band in the Design view.
Use the functions with the Dec suffix when you want to return a decimal
datatype.

By default, PowerBuilder places CrosstabSum and CrosstabSumDec in the
detail band, which returns the total for the corresponding row.

How to specify the
functions

Each of these functions takes one numeric argument, which refers to the
expression defined for Values in the Crosstab Definition dialog box. The first
expression for Values is numbered 1, the second is numbered 2, and so on.

Generally, crosstabs have only one expression for Values, so the argument for
the crosstab functions is 1. So, for example, if you defined sum(units for
crosstab) as your Values expression, PowerBuilder places
CrosstabSum(1) in the detail band.

If you want to cross-tabulate both total unit sales and a projection of future
sales, assuming a 20 percent increase in sales (that is, sales that are 1.2 times
the actual sales), you define two expressions for Values:

sum(units for crosstab)
sum(units * 1.2 for crosstab)

Enhancing crosstabs

776 PowerBuilder Classic

Here CrosstabSum(1) returns the total of sum(units for crosstab) for
the corresponding row. CrosstabSum(2) returns the total for sum(units *
1.2 for crosstab).

For more information For complete information about defining computed fields, see Chapter 19,
“Enhancing DataWindow Objects.”

For more about the crosstab functions, see the DataWindow Reference.

Cross-tabulating ranges of values
You can build a crosstab where each row tabulates a range of values, instead
of one discrete value, and you can make each column in the crosstab
correspond to a range of values.

For example, in cross-tabulating departmental salary information, you might
want one row in the crosstab to count all employees making between $30,000
and $40,000, the next row to count all employees making between $40,000 and
$50,000, and so on.

❖ To cross-tabulate ranges of values:

1 Determine the expression that results in the raw values being converted
into one of a small set of fixed values.

Each of those values will form a row or column in the crosstab.

2 Specify the expression in the Columns or Rows box in the Crosstab
Definition dialog box.

You choose the box depending on whether you want the columns or rows
to correspond to the range of values.

3 In the Values column, apply the appropriate aggregate function to the
expression.

Example This is best illustrated with an example.

You want to know how many employees in each department earn between
$30,000 and $40,000, how many earn between $40,000 and $50,000, how
many earn between $50,000 and $60,000, and so on. To do this, you want a
crosstab where each row corresponds to a $10,000 range of salary.

CHAPTER 27 Working with Crosstabs

Users Guide 777

The first step is to determine the expression that, given a salary, returns the next
smaller salary that is a multiple of $10,000. For example, given a salary of
$34,000, the expression would return $30,000, and given a salary of $47,000,
the expression would return $40,000. You can use the Int function to
accomplish this, as follows:

int(salary/10000) * 10000

That expression divides the salary by 10,000 and takes the integer portion, then
multiplies the result by 10,000. So for $34,000, the expression returns $30,000,
as follows:

34000/10000 = 3.4
int(3.4) = 3
3 * 10000 = 30000

With this information you can build the crosstab. The following uses the
Employee table in the EAS Demo DB:

1 Build a crosstab and retrieve the dept_id and salary columns.

2 In the Crosstab Definition dialog box, drag the dept_id column to the
Columns box.

3 Drag the salary column to the Rows box and to the Values box and edit the
expressions.

In the Rows box, use:

int(salary/10000) * 10000

In the Values box, use:

count(int(salary/10000) * 10000 for crosstab)

For more on providing expressions in a crosstab, see “Using expressions”
on page 766.

4 Click OK.

Enhancing crosstabs

778 PowerBuilder Classic

This is the result in the Design view:

This is the crosstab at runtime:

You can see, for example, that 2 people in department 400 and 5 in department
500 earn between $20,000 and $30,000.

Displaying blank
values as zero

In the preceding crosstab, several of the cells in the grid are blank. There are
no employees in some salary ranges, so the value of those cells is null. To make
the crosstab easier to read, you can add a display format to fields that can have
null values so that they display a zero.

CHAPTER 27 Working with Crosstabs

Users Guide 779

❖ To display blank values in a crosstab as zero:

1 Select the column you want to modify and click the Format tab in the
Properties view.

2 Replace [General] in the Format box with ###0;###0;0;0.

The fourth section in the mask causes a null value to be represented as
zero.

Creating static crosstabs
By default, crosstabs are dynamic: when you run them, PowerBuilder retrieves
the data and dynamically builds the columns and rows based on the retrieved
data. For example, if you define a crosstab that computes sales of printers and
a new printer type is entered in the database after you define the crosstab, you
want the new printer to be in the crosstab. That is, you want PowerBuilder to
build the rows and columns dynamically based on current data, not the data that
existed when the crosstab was defined.

Occasionally, however, you might want a crosstab to be static. That is, you
want its columns to be established when you define the crosstab. You do not
want additional columns to display in the crosstab at runtime; no matter what
the data looks like, you do not want the number of columns to change. You
want only the updated statistics for the predefined columns. The following
procedure shows how to do that.

❖ To create a static crosstab:

1 In the wizard page or in the Crosstab Definition dialog box, clear the
Rebuild columns at runtime check box.

2 Define the data for the crosstab as usual, and click OK.

What happens With the check box cleared, instead of immediately building the crosstab’s
structure, PowerBuilder first retrieves the data from the database. Using the
retrieved data, PowerBuilder then builds the crosstab structure and displays the
workspace. It places all the values for the column specified in the Columns box
in the workspace. These values become part of the crosstab’s definition.

Enhancing crosstabs

780 PowerBuilder Classic

For example, in the following screenshot, the four values for Quarter (Q1, Q2,
Q3, and Q4) are displayed in the Design view:

At runtime, no matter what values are in the database for the column, the
crosstab shows only the values that were specified when the crosstab was
defined. In the printer example, the crosstab always has the four columns it had
when it was first defined.

Making changes You can modify the properties of any of the columns in a static crosstab. You
can modify the properties of each column individually, since each column is
displayed in the workspace as part of the crosstab’s definition. For example, in
the printer crosstab you can directly modify the way values are presented in
each individual quarter, since each quarter is represented in the Design view.
(The values are shown as units, units_1, units_2, and units_3.)

Using property conditional expressions
As with other DataWindow objects, you can specify property conditional
expressions to modify properties at runtime. You can use them with either
dynamic or static crosstabs. With dynamic crosstabs, you specify an expression
once for a column or value, and PowerBuilder assigns the appropriate
properties when it builds the individual columns at runtime. With static
crosstabs, you have to specify an expression for each individual column or
value, because the columns are already specified at definition time.

CHAPTER 27 Working with Crosstabs

Users Guide 781

Example In the following crosstab, an expression has been specified for Units:

The expression is for the Font.Weight property of the units column:

if (units > 100, 700, 400)

The expression specifies to use bold font (weight = 700) if the number of units
is greater than 100. Otherwise, use normal font (weight = 400).

This is the crosstab at runtime:

Values larger than 100 are shown in bold.

For more information about property conditional expressions, see Chapter 24,
“Highlighting Information in DataWindow Objects.”

Enhancing crosstabs

782 PowerBuilder Classic

Users Guide 783

C H A P T E R 2 8 Working with TreeViews

About this chapter This chapter describes how to build and use DataWindow objects in
PowerBuilder using the TreeView presentation style.

Contents

TreeView presentation style
The TreeView presentation style provides an easy way to create
DataWindow objects that display hierarchical data in a TreeView, where
the rows are divided into groups that can be expanded and collapsed.

The TreeView DataWindow displays a hierarchy of nodes, similar to the
way:

• The left pane of Windows Explorer displays folders and files

• The PowerBuilder System Tree displays workspaces and their
contents

In the TreeView DataWindow, each parent node contains other nodes
called child nodes. You can display parent nodes—nodes that contain
child nodes—in expanded or collapsed form.

With the TreeView DataWindow presentation style, you can group data in
a hierarchy that allows users to browse the data and expand nodes to view
details. Each TreeView level or node has an icon that users can click to
expand or collapse the node.

Topic Page

TreeView presentation style 783

Creating a new TreeView DataWindow 785

Adding and deleting TreeView levels 790

Selecting a tree node and navigating the tree 791

Sorting rows in a TreeView DataWindow 792

TreeView DataWindow Design view 793

Setting properties for the TreeView DataWindow 794

TreeView DataWindow examples 798

TreeView presentation style

784 PowerBuilder Classic

You use the TreeView DataWindow wizard to create a TreeView DataWindow
object. For information, see “Creating a new TreeView DataWindow” on page
785.

Example This sample TreeView DataWindow uses the department and employee tables
in the EAS Demo DB database and has two TreeView levels. The first level is
the department name. The second level is the city where each employee
resides. The detail data for each employee is grouped in TreeView leaf nodes
under these two levels.

Similarities to the
Group presentation
style

Creating and using a TreeView DataWindow is similar to creating and using a
Group DataWindow. However, with the TreeView DataWindow, you can click
the state icon to expand and collapse nodes.

The state icon in a TreeView DataWindow is a plus sign (+) when the node is
collapsed and a minus sign (-) when the node is expanded. When a node is
expanded, connecting lines display by default to show more detail and indicate
how the parent data connects with the child data. When a node is collapsed,
only the parent data displays; the detail data does not.

CHAPTER 28 Working with TreeViews

Users Guide 785

Creating a new TreeView DataWindow
You use the TreeView wizard and the DataWindow painter to create a
TreeView DataWindow.

TreeView creation process
A TreeView DataWindow has multiple levels, each of which is a node in the
TreeView. You use the TreeView wizard to create a TreeView DataWindow,
but the wizard produces a DataWindow that includes only the top level of the
TreeView.

Creating a complete TreeView DataWindow involves three steps:

1 Using the TreeView DataWindow wizard to create the top level (level 1)
of the TreeView DataWindow.

2 Using the DataWindow painter to add additional levels to the TreeView
DataWindow.

3 Setting TreeView DataWindow properties to customize the TreeView
style.

For information about adding and deleting TreeView levels, see “Adding and
deleting TreeView levels” on page 790. For information about setting
properties in the DataWindow painter, see “Setting properties for the TreeView
DataWindow” on page 794.

You can use TreeView DataWindow methods to expand and collapse TreeView
nodes, and you can write code for TreeView DataWindow events that are fired
when a node is expanded or collapsed. For detailed information about using
TreeView DataWindow properties, methods, and events, see the DataWindow
Reference or the online Help.

Creating a TreeView DataWindow

❖ To create a TreeView DataWindow:

1 Select File>New from the menu bar and select the DataWindow tab.

2 If there is more than one target in the workspace, select the target where
you want to create the DataWindow from the drop-down list at the bottom
of the dialog box.

Creating a new TreeView DataWindow

786 PowerBuilder Classic

3 Choose the TreeView presentation style for the DataWindow and click
OK.

4 Select the data source you want to use.

You are prompted to specify the data.

5 Define the tables and columns you want to use.

You are prompted to specify the TreeView grouping columns.

Multiple columns and multiple TreeView levels
You can specify more than one column, but all columns apply to TreeView
level one. At this point, you can define only one TreeView level. You
define additional levels later.

CHAPTER 28 Working with TreeViews

Users Guide 787

In the following example, TreeView grouping will be by department, as
specified by the dept_id column:

If you want to use an expression, you can define it when you have
completed the wizard. See “Using an expression for a column name” on
page 789.

The sample DataWindow shown in “Example” on page 784 uses the
department and employee tables in the EAS Demo DB database.

6 Specify the column or columns that will be at the top level (level 1) of the
TreeView DataWindow.

The sample DataWindow uses the department name as the top level. If you
want to display both the department ID and department name, you specify
that both columns are at the top level.

7 If you want the TreeView DataWindow to display grid lines, select the
Grid Style check box.

When you select the Grid Style check box, the TreeView DataWindow
displays grid lines for rows and columns. You can drag the grid lines to
resize rows and columns.

8 Click Next.

9 Modify the default color and border settings if needed, and then click
Next.

10 Review the TreeView DataWindow characteristics.

11 Click Finish.

Creating a new TreeView DataWindow

788 PowerBuilder Classic

The DataWindow painter Design view displays. For information about the
Design view, see “TreeView DataWindow Design view” on page 793. For
information about adding additional levels, see “Adding and deleting
TreeView levels” on page 790.

What PowerBuilder
does

As a result of your specifications, PowerBuilder generates a TreeView
DataWindow object and creates:

• A TreeView header band with controls that include the heading text of the
detail band columns

• The first TreeView level band with the TreeView level columns you chose
in the wizard

• The detail (leaf node) band that includes all the column controls except for
first-level columns you selected in the wizard

• A level 1 trailer band.

• A summary band, and a footer band.

Here is the sample TreeView DataWindow object in the Design view:

If you selected the Grid Style check box, vertical and horizontal grid lines
display:

CHAPTER 28 Working with TreeViews

Users Guide 789

Here is the sample TreeView DataWindow object in the Preview view:

Using an expression
for a column name

If you want to use an expression for one or more column names in a TreeView,
you can enter it as the TreeView definition on the General page in the
Properties view after you finish using the TreeView wizard.

❖ To use an expression for a TreeView column name:

1 Open the Properties view and click the TreeView level band in the Design
view.

2 Click the ellipsis button next to the TreeView Level Definition box on the
General page in the Properties view to open the Specify Group Columns
dialog box.

3 In the Columns box, double-click the column you want to use in an
expression.

The Modify Expression dialog box opens. You can specify more than one
grouping item expression for a group. A break occurs whenever the value
concatenated from each column/expression changes.

What you can do All of the techniques available in a tabular DataWindow object, such as moving
controls and specifying display formats, are available for modifying and
enhancing TreeView DataWindow objects. See “Adding and deleting
TreeView levels” next to read more about the bands in a TreeView
DataWindow object and see how to add features especially suited for TreeView
DataWindow objects, such as additional TreeView levels or summary
statistics.

Adding and deleting TreeView levels

790 PowerBuilder Classic

DataWindow Object is not updatable by default
When you generate a DataWindow object using the TreeView presentation
style, PowerBuilder makes it not updatable by default. If you want to be able
to update the database through the TreeView DataWindow object, you must
modify its update characteristics. For more information, see Chapter 21,
“Controlling Updates in DataWindow objects.”

Adding and deleting TreeView levels
You add and delete TreeView levels using the Rows menu in the DataWindow
painter.

❖ To create an additional level in a TreeView DataWindow:

1 Open the TreeView DataWindow if it is not already open.

2 Select Rows>Create TreeView Level from the menu bar.

The Specify Group Columns dialog box displays.

3 Specify the columns you want to set as the next TreeView level by
dragging them from the Source Data pane to the Columns pane.

In the sample DataWindow shown in “Example” on page 784, the second
level has a single column, the employee_city column.

4 Click OK.

The new TreeView level and a Trailer band for that level are created in the
TreeView Design view. For information on how to set properties for a
TreeView level, see “Setting TreeView level properties” on page 797.

CHAPTER 28 Working with TreeViews

Users Guide 791

❖ To delete a level in a TreeView DataWindow:

1 Select Rows>Delete TreeView Level from the menu bar.

2 Select the number of the level to delete from the list of levels that displays.

The level in the TreeView DataWindow is deleted immediately.

If you delete a level by mistake
If you unintentionally delete a level, close the TreeView DataWindow
without saving changes, then reopen it and continue working.

Selecting a tree node and navigating the tree
You can select a tree node in the TreeView DataWindow in the following ways:

• Use the SelectTreeNode method to select a tree node.

• Set the Select Node By Mouse property to “true” and then click a tree node
to select it with the mouse.

After you select a tree node in the TreeView DataWindow, you can navigate
the tree using the up, down, left, and right keys.

Use this key To do this

Up Select a tree node prior to the currently selected node.

Down Select a tree node next to the currently selected node.

Sorting rows in a TreeView DataWindow

792 PowerBuilder Classic

For detailed information about TreeView DataWindow properties, methods
and events, see the DataWindow Reference or the online Help.

Sorting rows in a TreeView DataWindow
❖ To sort the rows within levels in a TreeView DataWindow:

1 Select Rows>Sort from the menu bar.

2 Drag the columns that you want to sort the rows on from the Source Data
box to the Columns box.

The order of the columns determines the precedence of the sort. The sort order
is ascending by default. To sort in descending order, clear the Ascending check
box.

For example, the sample DataWindow shown in “Example” on page 784 has
department name as the first level and the employee’s city of residence as the
second level.

Left Collapse the currently selected node. If the current tree node is a
leaf node or the node has been collapsed, the DataWindow just
scrolls to the left, which is its normal behavior.

Right Expand the currently selected node. If the current tree node is a leaf
node or the node has been expanded, the DataWindow just scrolls
to the right, which is its normal behavior.

Use this key To do this

CHAPTER 28 Working with TreeViews

Users Guide 793

Other actions you can
take

To reorder the columns, drag them up or down in the list. To delete a column
from the sort columns list, drag the column outside the dialog box. To specify
an expression to sort on, double-click a column name in the Columns box and
modify the expression in the Modify Expression dialog box.

TreeView DataWindow Design view
The Design view for the TreeView DataWindow differs from the traditional
Design view for most DataWindow presentation styles.

The Design view has a header band, a TreeView level band for each added
level, a detail band, a Trailer band for each level, a summary band, and a footer
band.

By default, the controls in the header band are the heading text of the detail
band columns, and the controls in the detail (leaf node) band are all the column
controls except for the first-level columns (in the 1:Treeview level band) that
you selected when you used the TreeView wizard. Columns that you specify as
additional levels remain in the detail band.

The minimum height of each TreeView level band is the height of the tree node
icon.

Icons in the Design
view

There are three icons in the Design view that represent the locations of nodes,
icons, and connecting lines in the tree to help you design the DataWindow.
Columns must always display to the right of the state and tree node icons:

• A square icon with a plus sign (+) in each TreeView level band represents
the position of the state icon, the icon that indicates whether a node is
expanded or collapsed. On the XP platform, the plus (+) and minus (-)
icons have the Windows XP style.

Setting properties for the TreeView DataWindow

794 PowerBuilder Classic

• A shaded square icon in the detail band and in each TreeView level band
represents the position of the image you specify as a tree node icon.

• When there is no tree node icon specified, a shaded square icon in the
detail band and in each TreeView level band represents where the
connecting line ends.

The position of all the icons changes when you change the indent value.

For more information about specifying icons and the indent value, see “Setting
properties for the TreeView DataWindow.”

Setting properties for the TreeView DataWindow
You can set three types of properties for the TreeView DataWindow:

• General properties

• TreeView level properties

• Detail band properties

CHAPTER 28 Working with TreeViews

Users Guide 795

Specifying images for
tree node icons

In the sample DataWindow shown in “Creating a new TreeView
DataWindow” on page 785, different tree node icons display for collapsed and
expanded levels. The icons are also different for each level. You specify images
for these icons as TreeView level band properties.

The sample DataWindow also displays a tree node icon next to every row in
the detail band. You specify an image for this icon as a detail band property.

Tree node icons do not display by default. After specifying images for icons,
select the Use Tree Node Icon general property.

Setting general TreeView properties
You set most TreeView DataWindow properties on the General page in the
Properties view for the DataWindow object.

The properties that are specific to a TreeView DataWindow are the TreeView
properties and the Grid properties. The grid-related properties display only if
you select the Grid Style check box when you define the TreeView
DataWindow.

Setting properties for the TreeView DataWindow

796 PowerBuilder Classic

Property Description

Display On – Grid lines always display.

Off – Grid lines never display (columns cannot be
resized at runtime).

Display Only – Grid lines display only when the
DataWindow object displays online.

Print Only – Grid lines display only when the
contents of the DataWindow object are printed.

Column Moving Columns can be moved at runtime.

Mouse Selection Data can be selected at runtime and, for example,
copied to the clipboard.

Row Resize Rows can be resized at runtime.

Indent Value The indent value of the child node from its parent in
the units specified for the DataWindow. The indent
value defines the position of the state icon. The X
position of the state icon is the X position of its parent
plus the indent value.

Expand To Level By Default Expand to TreeView level 1, 2, or 3.

State Icon Align Mode Align the state icon in the middle (0), at the top (1),
or at the bottom (2).

Show Lines Whether lines display that connect parent nodes and
child nodes. If you want to display lines that connect
the rows in the detail band to their parent, select
Connect Leaf Nodes.

Connect Leaf Nodes Whether lines display that connect the leaf nodes in
the detail band rows.

Use Tree Node Icon Whether an icon for the tree node displays. This
applies to icons in the level and detail bands. For how
to specify icon images, see “Setting TreeView level
properties” and “Setting detail band properties”
next.

Select Node By Mouse Whether a Tree node is selected by clicking the Tree
node with the mouse.

CHAPTER 28 Working with TreeViews

Users Guide 797

Setting TreeView level properties
In the Properties view for a band, you can specify expanded and collapsed
icons for each TreeView level. You access the Properties view by clicking the
bar identifying the band for that level in the Design view in the DataWindow
painter. You can also access the Properties view from the Rows menu, or by
clicking any of the icons in the Design view that represent the locations of
nodes, icons, and connecting lines. (See “Icons in the Design view” on page
793.)

❖ To modify properties for a level in a TreeView DataWindow:

1 Select Rows>Edit TreeView Level from the menu bar and then select the
number of the level from the list of levels, or click the bar identifying the
band for that level or any of the icons in that band.

2 Use the DataWindow TreeView Level properties view that displays to edit
the properties for the level you selected.

The properties that are specific to a TreeView level band are at the bottom of
the Properties view:

Property Description

Tree Node Icon File The file name of the tree node icon in a TreeView
level band when it is in the expanded state.

Collapsed Tree Node Icon
File

The file name of the tree node icon in a TreeView
level band when it is in the collapsed state.

TreeView DataWindow examples

798 PowerBuilder Classic

You set the tree node icon file name separately for each TreeView level band.
You can use a quoted expression for the tree node icon file.

Setting detail band properties
You can specify an icon for the rows in the detail band by clicking the detail
band in the DataWindow painter to display the Properties view.

If you want to hide tree nodes in the detail band, set the Height property to 0.
The only property that is specific to the TreeView DataWindow is located at
the bottom of the Properties view:

For more information For reference information about TreeView DataWindow properties, methods
and events, see the DataWindow Reference or the online Help.

TreeView DataWindow examples
The examples in this section demonstrate how you might use the TreeView
DataWindow.

• The Data Explorer uses a TreeView DataWindow to display sales-related
data in a Windows Explorer-like interface and allows users to update the
data.

Property Description

Tree Node Icon File The file name of the tree node icon in the detail
band. You can use a quoted expression.

CHAPTER 28 Working with TreeViews

Users Guide 799

• The Data Linker uses a TreeView DataWindow on the left for data
navigation, linked to four DataWindows on the right for updating the data.
The Data Linker demonstrates populating a TreeView DataWindow with
data and linking each TreeView level to a separate DataWindow.

Tables and database Both examples use the employee, sales_order, sales_order_items, customer,
and product tables in the EAS Demo DB database.

TreeView
DataWindows

The TreeView DataWindows are d_sales_report and d_sales_report2. Each
TreeView DataWindow has three TreeView levels:

• The first level (level 1) is the sales representative's name.

You create the first level using the TreeView DataWindow wizard.

• The second level (level 2) is the name of the customer’s company.

You create the second level using the Rows>Create TreeView Level menu
item in the DataWindow painter.

• The third level (level 3) is the sales order ID.

You also create the third level using the Rows>Create TreeView Level
menu item in the DataWindow painter.

Data Explorer sample
Clicking on each TreeView level displays details in a DataWindow on the right.
For example, if you click a name in the TreeView DataWindow on the left,
detailed customer data displays in the DataWindow on the right.

TreeView DataWindow examples

800 PowerBuilder Classic

You can click on any TreeView level in the Data Explorer. If you click a
company name in the TreeView DataWindow on the left (for example, Able
Inc., under Catherine Pickett), order information displays on the right.

If you click an order ID in the TreeView DataWindow on the left (for example,
order ID 2400, under Bilhome Industries, under Alison Clark), the customer
order information displays on the right.

CHAPTER 28 Working with TreeViews

Users Guide 801

Data Explorer
TreeView
DataWindow

Here is the TreeView DataWindow used in the Data Explorer.

One TreeView DataWindow
The Data Explorer uses one TreeView DataWindow, but DataWindows that are
not TreeView DataWindows also support the Data Explorer’s functionality.

Data Explorer code The code in the Clicked event uses GetBandAtPointer to determine which
DataWindow to display. Clicking on some editable items in the detail
DataWindow opens a window in which you can manipulate the data.

The PopMenu menu object has two menu items that call the CollapseAll and
ExpandAll methods to collapse or expand all the nodes in the TreeView.

TreeView DataWindow examples

802 PowerBuilder Classic

Data Linker sample
When you first run the Data Linker, no data displays on the right side of the
window.

To use the Data Linker, you first expand an employee name and a company’s
data in the TreeView DataWindow.

Expanding the TreeView displays the company names, the orders for the
company you select, and in the detail band, the icon and name for each item in
the order.

You can click on each of the TreeView levels in order, and then click in the
detail band to display the details in the four DataWindows on the right.

CHAPTER 28 Working with TreeViews

Users Guide 803

For example, if you click first on Catherine Pickett, then on Avon Inc., then on
2073, and last on Baseball Cap, the data in each of the related DataWindows
displays on the right. You can also update the data in each of the DataWindows.

Data Linker TreeView
DataWindow

Here is the TreeView DataWindow used in the Data Linker sample.

TreeView DataWindow examples

804 PowerBuilder Classic

One TreeView DataWindow
The Data Linker uses one TreeView DataWindow, but other DataWindows that
are not TreeView DataWindows also support the Data Linker’s functionality.

Data Linker code The code in the Clicked event uses GetBandAtPointer to determine which
DataWindow to display.

Users Guide 805

C H A P T E R 2 9 Exporting and Importing XML
Data

About this chapter The row data in a DataWindow can be exported and imported in the
Extensible Markup Language (XML). This chapter describes how to
create and use templates that control the export and import of data in XML
format.

Contents

About XML
Like Hypertext Markup Language (HTML), Extensible Markup
Language (XML) is a subset of Standardized General Markup Language
(SGML) and has been designed specifically for use on the Web. XML is
defined in the W3C Recommendation published by the World Wide Web
Consortium. The latest version of this document is available at
http://www.w3.org/TR/REC-xml.

XML is more complete and disciplined than HTML, and it is also a
framework for creating markup languages—it allows you to define your
own application-oriented markup tags.

XML provides a set of rules for structuring data. Like HTML, XML uses
tags and attributes, but the tags are used to delimit pieces of data, allowing
the application that receives the data to interpret the meaning of each tag.
These properties make XML particularly suitable for data interchange
across applications, platforms, enterprises, and the Web. The data can be
structured in a hierarchy that includes nesting.

Topic Page

About XML 805

XML support in the DataWindow painter 809

The Export/Import Template view for XML 811

Editing XML templates 817

Exporting to XML 825

Importing XML 835

About XML

806 PowerBuilder Classic

An XML document is made up of declarations, elements, comments, character
references, and processing instructions, indicated in the document by explicit
markup.

The simple XML document that follows contains an XML declaration
followed by the start tag of the root element, <d_dept_list>, nested row and
column elements, and finally the end tag of the root element. The root element
is the starting point for the XML processor.

<?xml version="1.0">
<d_dept_list>

<d_dept_list_row>
<dept_id>100</dept_id>
<dept_name>R &D</dept_name>
<dept_head_id>501</dept_head_id>

</d_dept_list_row>
...

</d_dept_list>

This section contains a brief overview of XML rules and syntax. For a good
introduction to XML, see XML in 10 points at http://www.w3.org/XML/1999/XML-
in-10-points. For more detailed information, see the W3C XML page at
http://www.w3.org/XML/, the XML Cover Pages at
http://xml.coverpages.org/xml.html, or one of the many books about XML.

Valid and well-formed XML documents
An XML document must be valid, well-formed, or both.

Valid documents To define a set of tags for use in a particular application, XML uses a separate
document named a document type definition (DTD). A DTD states what tags
are allowed in an XML document and defines rules for how those tags can be
used in relation to each other. It defines the elements that are allowed in the
language, the attributes each element can have, and the type of information
each element can hold. Documents can be verified against a DTD to ensure that
they follow all the rules of the language. A document that satisfies a DTD is
said to be valid.

If a document uses a DTD, the DTD must immediately follow the declaration.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 807

XML Schema provides an alternative mechanism for describing and validating
XML data. It provides a richer set of datatypes than a DTD, as well as support
for namespaces, including the ability to use prefixes in instance documents and
accept unknown elements and attributes from known or unknown namespaces.
For more information, see the W3C XML Schema page at
http://www.w3.org/XML/Schema.

Well-formed
documents

The second way to specify XML syntax is to assume that a document is using
its language properly. XML provides a set of generic syntax rules that must be
satisfied, and as long as a document satisfies these rules, it is said to be
well-formed. All valid documents must be well-formed.

Processing well-formed documents is faster than processing valid documents
because the parser does not have to verify against the DTD or XML schema.
When valid documents are transmitted, the DTD or XML schema must also be
transmitted if the receiver does not already possess it. Well-formed documents
can be sent without other information.

XML documents should conform to a DTD or XML schema if they are going
to be used by more than one application. If they are not valid, there is no way
to guarantee that various applications will be able to understand each other.

XML syntax
There are a few more restrictions on XML than on HTML; they make parsing
of XML simpler.

Tags cannot be
omitted

Unlike HTML, XML does not allow you to omit tags. This guarantees that
parsers know where elements end.

The following example is acceptable HTML, but not XML:

<table>
<tr>

<td>Dog</td>
<td>Cat
<td>Mouse

</table>

To change this into well-formed XML, you need to add all the missing end
tags:

<table>
<tr>

<td>Dog</td>
<td>Cat</td>

About XML

808 PowerBuilder Classic

<td>Mouse</td>
</tr>

</table>

Representing empty
elements

Empty elements cannot be represented in XML in the same way they are in
HTML. An empty element is one that is not used to mark up data, so in HTML,
there is no end tag. There are two ways to handle empty elements:

• Place a dummy tag immediately after the start tag. For example:

• Use a slash character at the end of the initial tag:

This tells a parser that the element consists only of one tag.

XML is case sensitive XML is case sensitive, which allows it to be used with non-Latin alphabets.
You must ensure that letter case matches in start and end tags: <MyTag> and
</Mytag> belong to two different elements.

White space White space within tags in XML is unchanged by parsers.

All elements must be
nested

All XML elements must be properly nested. All child elements must be closed
before their parent elements close.

XML parsing
There are two major types of application programming interfaces (APIs) that
can be used to parse XML:

• Tree-based APIs map the XML document to a tree structure. The major
tree-based API is the Document Object Model (DOM) maintained by
W3C. A DOM parser is particularly useful if you are working with a
deeply-nested document that must be traversed multiple times.

For more information about the DOM parser, see the W3C Document
Object Model page at http://www.w3c.org/DOM.

 PowerBuilder provides the PowerBuilder Document Object Model
(PBDOM) extension to enable you to manipulate complex XML
documents. For more information about PBDOM, see Application
Techniques and the PowerBuilder Extension Reference.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 809

• Event-based APIs use callbacks to report events, such as the start and end
of elements, to the calling application, and the application handles those
events. These APIs provide faster, lower-level access to the XML and are
most efficient when extracting data from an XML document in a single
traversal.

For more information about the best-known event-driven parser, SAX
(Simple API for XML), see the SAX page at http://sax.sourceforge.net/.

Xerces parser PowerBuilder includes software developed by the Apache Software
Foundation (http://www.apache.org/). The XML services for DataWindow
objects are built on the Apache Xerces-C++ parser, which conforms to both
DOM and SAX specifications and is portable across Windows and UNIX
platforms. For more information about SAX, see the Xerces C++ Parser page
at http://xerces.apache.org/xerces-c/index.html.

XML support in the DataWindow painter
PowerBuilder supports both the export and import of XML in DataStore and
DataWindow objects using XML template objects. You construct XML
templates for export and import graphically in the Export/Import Template
view for XML. Each template you create is encapsulated in the DataWindow
object. A template enables you to specify the XML logical structure of how the
row data iterates inside the root element of the XML document.

The possible uses of this feature include the following:

• You can code events in data entry or data reporting applications to export
selected data values, or the entire contents of a DataWindow object, to a
structured XML document. The structure of the XML document can be
customized for use by other internal or external applications, processes, or
systems.

• You can add a method to a custom class user object that uses DataStore
objects for server-side database processing or middle-tier management of
a client-side DataWindow object. The method would export data to XML,
which could then be processed by a different component or subsystem,
such as an Enterprise JavaBeans component or a Web service.

• A similar method could be added to a Web application that uses a Web
DataWindow. The method might be invoked by a user action, such as
selecting checkout in a shopping cart application.

XML support in the DataWindow painter

810 PowerBuilder Classic

XML services
In addition to the support for XML in the DataWindow painter, PowerBuilder
also provides the PowerBuilder Document Object Model (PBDOM). For more
information, see the chapter on XML services in Application Techniques.

Export templates An XML export template lets you customize the XML that is generated.

You can specify optional XML and document type declarations that precede
the root element in the exported XML, as well as the logical structure and
nesting level of iterative DataWindow row data inside the root element. The
children of the root element can contain elements, character references, and
processing instructions as well as the row data, using explicit markup. For
more information, see “Header and Detail sections” on page 814.

If the exported XML is used by different applications or processes, you can
define a separate export template for each use.

Import templates You need to create an import template if you want to import data that does not
match the DataWindow column definition or is associated with a schema, or if
you want to import attribute values.

Only the mapping of column names to element and attribute names is used for
import. All other information in the template is ignored.

Validating XML XML export and import do not validate the data after export or before import.
You can use the XMLParseFile and XMLParseString functions to validate an
XML file or string against a DTD or XML schema before proceeding with
additional processing.

If no DTD or schema is included or referenced, XMLParseFile and
XMLParseString check whether the content is well-formed XML.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 811

The Export/Import Template view for XML
You define and edit templates for export and import in the Export/Import
Template view for XML in the DataWindow painter. The view uses a tree view
to represent the template.

When you create a new DataWindow object, PowerBuilder displays a default
template in the Export/Import Template view. You can edit only one template
at a time in the view, but you can create multiple templates and save them with
the DataWindow object. Each template is uniquely associated with the
DataWindow object open in the painter.

The default template has one element for each column in the DataWindow
object.

Creating, opening,
and saving templates

From the pop-up menu for the Export/Import Template view (with nothing
selected), you can create new templates with or without default contents, open
an existing template, save the current template, or delete the current template.
You can only open and edit templates that are associated with the current
DataWindow object.

The Export/Import Template view for XML

812 PowerBuilder Classic

Representing tree
view items

Each item in the template displays as a single tree view item with an image and
font color that denotes its type. The end tags of elements and the markup
delimiters used in an XML document do not display.

Table 29-1 shows the icons used in the Export/Import Template view.

Table 29-1: Icons used in the Export/Import Template view

Creating templates
To create a template, select the New menu item or the New Default menu item
from the pop-up menu in the Export/Import Template view.

Creating new base
templates

The New menu item creates a template that is empty except for the XML
declaration, the root element, and the first element of the row data section,
referred to as the Detail Start element. The name of the root element is the same
as the name of the DataWindow object, and the default name for the Detail
Start element is the name of the root element with _row appended.

For example, if the DataWindow object is named d_name, the default template
has this structure:

<?xml version="1.0"?>
<d_name>

<d_name_row>
</d_name_row>

</d_name>

Icon Description

XML declaration or document type declaration

Root or child element

Group header element

DataWindow column reference

Static text control reference

Computed field or DataWindow expression reference

Literal text

Comment

Processing instruction

CDATA section

Nested report

CHAPTER 29 Exporting and Importing XML Data

Users Guide 813

Creating new default
templates

The New Default menu item creates a template with the same contents as the
New menu item, as well as a flat structure of child elements of the Detail Start
element. A child element is created for each DataWindow column name, in the
order in which the columns appear in the SELECT statement, with the
exception of blob and computed columns. The default tag for the element is the
column’s name.

If the names of the column and the control are the same, the content of the child
element displays with a control reference icon. If there is no control name that
matches the column name, the content of the child element displays using the
DataWindow expression icon. For example, consider a DataWindow object in
which the dept_id column is used as a retrieval argument and does not display:

The SQL syntax is:

SELECT "employee"."dept_id",
"employee"."emp_lname",
"employee"."emp_fname",
"employee"."salary"

FROM "employee"
WHERE employee.dept_id = :deptnum

ORDER BY "employee"."emp_lname" ASC

In the default template, dept_id uses the DataWindow expression icon. All the
other columns used the column control reference icon.

The Export/Import Template view for XML

814 PowerBuilder Classic

Saving templates
To save a new template, select Save from the pop-up menu in the
Export/Import Template view, and give the template a name and optionally a
comment that identifies its use.

The template is stored inside the DataWindow object in the PBL.

After saving a template with a DataWindow object, you can see its definition
in the Source editor for the DataWindow object. For example, this is part of the
source for a DataWindow that has two templates. The templates have required
elements only:

export.xml(usetemplate="t_address"
template=(comment="Employee Phone Book"

name="t_phone" xml="<d_emplist><d_emplist_row
__pbband=~"detail~"/></d_emplist>")

template=(comment="Employee Address Book"
name="t_address" xml="<d_emplist><d_emplist_row
__pbband=~"detail~"/></d_emplist>"))

Header and Detail sections
An XML template has a Header section and a Detail section, separated
graphically by a line across the tree view.

The items in the Header section are generated only once when the DataWindow
is exported to XML, unless the DataWindow is a group DataWindow. For
group DataWindow objects, you can choose to generate the contents of the
header section iteratively for each group. For more information, see
“Generating group headers” on page 827.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 815

The Detail section contains the row data, and is generated iteratively for each
row in the DataWindow object.

The Detail Start
element

A line across the Export/Import Template view separates the Header section
from the Detail section. The first element after this line, d_dept_list_row in the
previous screenshot, is called the Detail Start element.

There can be only one Detail Start element, and it must be inside the
document’s root element. By default, the first child of the root element is the
Detail Start element. It usually wraps a whole row, separating columns across
rows. When the DataWindow is exported to XML, this element and all children
and/or siblings after it are generated iteratively for each row. Any elements in
the root element above the separator line are generated only once, unless the
DataWindow is a group DataWindow and the Iterate Group Headers check box
has been selected.

The Detail Start element can be a nested (or multiply-nested) child of an
element from the Header section, permitting a nested detail. This might be
useful for DataStores being packaged for submission to external processes,
such as B2B, that require company and/or document information, date, or other
master data preceding the detail.

Moving the separator You can change the location of the separator line by selecting the element that
you want as the Detail Start element and selecting Starts Detail from its pop-up
menu. The separator line is redrawn above the new Detail Start element. When
you export the data, the Detail Start element and the children and siblings after
it are generated iteratively for each row.

If no Detail Start element is specified (that is, if the Starts Detail option has
been deselected), the template has only a Header section. When you export the
data, only one iteration of row data is generated.

The Export/Import Template view for XML

816 PowerBuilder Classic

Header section

The Header section can contain the items listed in Table 29-2. Only the root
element is required:

Table 29-2: Items permitted in the Header section of an XML document

Detail section in root element
The root element displays in the Header section, but the entire content of the
Detail section is contained in the root element.

Detail section

The Detail section, which holds the row data, can contain the items listed in
Table 29-3.

Table 29-3: Items permitted in the Detail section of an XML document

Item Details

XML declaration This must be the first item in the tree view if it exists. See
“XML declaration” on page 818.

Document type
declaration

If there is an XML declaration, the document type
declaration must appear after the XML declaration and
any optional processing instructions and comments, and
before the root element. Otherwise, this must be the first
item in the tree view. See “Document type declaration”
on page 819.

Comments See “Comments” on page 824.

Processing instructions See “Processing instructions” on page 825.

Root element (start tag) See “Root element” on page 820.

Group header elements See “Generating group headers” on page 827.

Child elements Child elements in the Header section cannot be iterative
except in the case of group DataWindows.

Item Details

Detail Start element See “The Detail Start element” on page 815.

Child or sibling elements
to the Detail Start
element

To add a sibling to the Detail Start element, add a child to
its parent (the root element by default).

Control references These references are in text format and can include
references to column, text, computed field, and report
controls. See “Controls” on page 821. Nested report
controls can only be referenced as child elements. See
“Composite and nested reports” on page 822.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 817

Editing XML templates

Using templates for data import
If you use a template created for data export, DataWindow expressions, text,
comments, and processing instructions are ignored when data is imported. If
you are creating a template specifically for import, do not add any of these
items. You need only map column names to element and attribute names.

Every item in the Export/Import Template view has a pop-up menu from which
you can perform actions appropriate to that item, such as editing or deleting the
item, adding or editing attributes, adding child elements or other items, and
inserting elements, processing instructions, CDATA sections, and so forth,
before the current item.

DataWindow
expressions

See “DataWindow expressions” on page 821.

Literal text Literal text does not correspond to a control in the
DataWindow object.

Comments See “Comments” on page 824.

Processing instructions See “Processing instructions” on page 825.

CDATA sections See “CDATA sections” on page 824.

Attributes You can assign attributes to all element types. See
“Attributes” on page 822.

Item Details

Editing XML templates

818 PowerBuilder Classic

If an element has no attributes, you can edit its tag in the Export/Import
Template view by selecting it and left-clicking the tag or pressing F2. Literal
text nodes can be edited in the same way. You can delete items (and their
children) by pressing the Delete key.

The examples in this section show the delimiters used in the XML document.
When you edit the template in dialog boxes opened from the Export/Import
Template view for XML, you do not need to type these delimiters in text boxes.

The rest of this section describes some of the items in the template. For more
information, see the XML specification at http://www.w3.org/TR/REC-xml.

XML declaration
The XML declaration specifies the version of XML being used. You may need
to change this value for a future version of XML. It can also contain an
encoding declaration and a standalone document declaration. From the pop-up
menu, you can edit the declaration, and, if the document is well-formed, delete
it. If you have deleted the XML declaration, you can insert one from the Insert
Before item on the pop-up menu for the next item in the template.

Encoding declaration The encoding declaration specifies the character-set encoding used in the
document, such as UTF-16 or ISO-10646-UCS-4.

If there is no encoding declaration, the value defaults to UTF-16LE encoding
in ASCII environments. In DBCS environments, the default is the default
system encoding on the computer where the XML document is generated. This
ensures that the document displays correctly as a plain text file. However, since
the DBCS data is serialized to Unicode, XML documents that use UTF-16LE,
UTF-16 Big Endian, or UTF-16 Little Endian can all be parsed or generated
correctly on DBCS systems.

Several other encodings are available, including ASCII, UCS4 Big Endian,
UCS4 Little Endian, EBCDIC code pages IBM037 and IBM1140, ISO Latin-1,
and Latin 1 Windows (code page 1252). You can select these values from a
drop-down list box in the XML Declaration dialog box.

Standalone document
declaration

The standalone document declaration specifies whether the document contains
no external markup that needs to be processed and can therefore stand alone
(Yes), or that there are, or might be, external markup declarations in the
document (No). The value in the default template is No, and if there is no
standalone document declaration, the value is assumed to be No.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 819

Example This is an XML declaration that specifies XML version 1.0, UTF-16LE
encoding, and that the document can stand alone:

<?xml version="1.0" encoding="UTF-16LE"
standalone="yes"?>

Document type declaration
The document type declaration contains or points to markup declarations that
provide a grammar for a class of documents. This grammar is known as a
document type definition, or DTD. The document type declaration defines
constraints on the sequence and nesting of tags, attribute values, names and
formats of external references, and so forth. You can edit the document type
declaration to change its name, but the name must always be the same as the
name of the root element. Changing the name in either the document type
declaration or the root element automatically changes the name in the other.

Adding DTDs You can add an identifier pointing to an external DTD subset, and you can add
an internal DTD subset. If you supply both external and internal subsets, entity
and attribute-list declarations in the internal subset take precedence over those
in the external subset.

Public identifiers An external identifier can include a public identifier that an XML processor
can use to generate an alternative URI. If an alternative URI cannot be
generated, the URI provided in the system identifier is used. External
identifiers without a public identifier are preceded by the keyword SYSTEM.
External identifiers with a public identifier are preceded by the keyword
PUBLIC.

Exporting metadata
If you specify a system or public identifier and/or an internal subset in the
Document Type Declaration dialog box, a DTD cannot be generated when the
data is exported to XML. A MetaDataType of XMLDTD! is ignored. For more
information about the properties that control the export of metadata, see
“Exporting metadata” on page 831.

Examples These are examples of valid document type declarations.

An external system identifier:

<!DOCTYPE d_dept_listing SYSTEM "d_dept_listing.dtd">

Editing XML templates

820 PowerBuilder Classic

An external system identifier with a public identifier:

<!DOCTYPE d_test PUBLIC "-//MyOrg//DTD Test//EN"
"http://www.mysite.org/mypath/mytest.dtd">

An external system identifier with an internal DTD. The internal DTD is
enclosed in square brackets:

<!DOCTYPE d_orders
SYSTEM "http://www.acme.com/dtds/basic.dtd"[
<!ELEMENT Order (Date, CustID, OrderID, Items*)>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT CustID (#PCDATA)>
<!ELEMENT OrderID (#PCDATA)>
<!ELEMENT Items (ItemID, Quantity)>
<!ELEMENT ItemID (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>

]>

Root element
You can change the name of the root element, add attributes and children, and
insert comments, instructions, and, if they do not already exist, XML and/or
document type declarations before it.

Changing the name of the root element changes the name of its start and end
tags. You can change the name using the Edit menu item, or in the Element
Attributes dialog box. Changing the name of the document type declaration, if
it exists, also changes the name of the root element, and vice versa. The root
element name is always the same as the document type declaration name.

You can add the following kinds of children to the root element:

• Elements

• Text

• Control references

• DataWindow expressions (including column references)

• CDATA sections

• Comments

• Processing instructions

CHAPTER 29 Exporting and Importing XML Data

Users Guide 821

Controls
Adding a DataWindow control reference opens a dialog box containing a list
of the columns, computed fields, report controls, and text controls in the
document.

Control references can also be added to empty attribute values or element
contents using drag-and-drop from the Control List view. Column references
can also be added using drag-and-drop from the Column Specifications view.

Drag-and-drop cannot replace
You cannot drag-and-drop an item on top of another item to replace it. For
example, if you want to replace one control reference with another control
reference, or with a DataWindow expression, you first need to delete the
control reference you want to replace.

DataWindow expressions
Adding a DataWindow expression opens the Modify Expression dialog box.
This enables you to create references to columns from the data source of the
DataWindow object. One use of this feature is to return a fragment of XML to
embed, providing another level of dynamic XML generation.

Using Date and
DateTime with strings

If you use a control reference or a DataWindow expression that does not
include a string to represent Date and DateTime columns in a template, the
XML output conforms to ISO 8601 date and time formats. For example,
consider a date that displays as 12/27/2004 in the DataWindow object, using
the display format mm/dd/yyyy. If the export template does not use an
expression that includes a string, the date is exported to XML as 2004-12-27.

However, if the export template uses an expression that combines a column
with a Date or DateTime datatype with a string, the entire expression is
exported as a string and the regional settings in the Windows registry are used
to format the date and time.

Using the previous example, if the short date format in the registry is
MM/dd/yy, and the DataWindow expression is: "Start Date is " +
start_date, the XML output is Start Date is 12/27/04.

Editing XML templates

822 PowerBuilder Classic

Attributes
Controls or expressions can also be referenced for element attribute values.
Select Edit/Add Attribute from the pop-up menu for elements to edit an
existing attribute or add a new one.

For each attribute specified, you can select a control reference from the
drop-down list or enter a literal text value. A literal text value takes precedence
over a control reference. You can also use the expression button to the right of
the Text box to enter an expression.

The expression button and entry operates similarly to DataWindow object
properties in the Properties view. The button shows an equals sign if an
expression has been entered, and a not-equals sign if not. A control reference
or text value specified in addition to the expression is treated as a default value.
In the template, this combination is stored with the control reference or text
value, followed by a tab, preceding the expression. For example:

attribute_name=~"text_val~~tdw_expression~"

Composite and nested reports
Report controls can be referenced in the Detail section of export templates as
children of an element.

Nested reports supported for XML export only
Import does not support nested reports. If you attempt to import data in any
format, including XML, CSV, DBF, and TXT, that contains a nested report, the
nested report is not imported and the import may fail with errors.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 823

Composite reports For composite reports that use the Composite presentation style, the default
template has elements that reference each of its nested reports.

If a composite DataWindow contains two reports that have columns with
identical names, you must use the procedure that follows if you want to
generate an XML document with a DTD or schema. If you do not follow the
procedure, you will receive a parsing error such as “Element
‘identical_column_name’ has already been declared.”

1 Create a template in the first report and select this template in the Use
Template list on the Data Export property page.

2 Create a template in the second report.

3 If any element name is used in the template in the first report, change it to
another name in the template in the second report.

4 Select the template for the second report in the Use Template list.

5 Generate the XML document.

These steps are necessary because you cannot use a given element name more
than once in a valid DTD or schema.

Nested reports For report controls added to the detail band of a base report that is related to the
inserted report with retrieval arguments or criteria, the report control is
available to the export template in two ways:

• Select an element in the template or add a new element, then select Add
Child>DataWindow Control Reference. Any report controls inserted in
the detail band are available for selection in the dialog box that displays.

• Drag a report control from the Control List view and drop it on an existing
empty element.

When you export XML using a template that has a reference to a report control,
the export template assigned to the nested report with the Use Template
property is used, if it exists, to expand the XML for the nested report. If no
template is specified for the nested report, the default template is used.

The relationship between the nested report and the base report, for example a
Master/Detail relationship, is reflected in the exported XML.

Editing XML templates

824 PowerBuilder Classic

CDATA sections
You can export the name of a column in a CDATA section using the syntax
<![CDATA[columnname]]>. You can export the value of a column using the
syntax <![CDATA[~t columnname]]>. The ~t is used to introduce a
DataWindow expression, in the same way that it is used in the Modify method.
You can also use an expression such as ~t columnname*columnname to export
a computed value to the XML.

You can import a value into a column using the syntax <![CDATA[
columnname]]>. Note that this syntax in a template has different results for
import and export: it imports the column value but exports the column name.

You cannot import an XML file that has a ~t expression in a CDATA section.

Everything else inside a CDATA section is ignored by the parser. If text
contains characters such as less than or greater than signs (< or >) or
ampersands (&) that are significant to the parser, it should be defined as a
CDATA section. A CDATA section starts with <![CDATA[and ends with]]>.
CDATA sections cannot be nested, and there can be no white space characters
inside the]]> delimiter—for example, you cannot put a space between the two
square brackets.

Example <![CDATA[
do not parse me

]]>

This syntax in an export template exports the value of the column emp_salary:

<![CDATA[~t emp_salary]]>

This syntax in an import template imports the value of the column emp_salary:

<![CDATA[emp_salary]]>

Comments
Comments can appear anywhere in a document outside other markup. They
can also appear within the document type declaration in specific locations
defined by the XML specification.

Comments begin with <!-- and end with -->. You cannot use the string --
(a double hyphen) in a comment, and parameter entity references are not
recognized in comments.

Example <!-- this is a comment -->

CHAPTER 29 Exporting and Importing XML Data

Users Guide 825

Processing instructions
Processing instructions (PIs) enable you to provide information to the
application that uses the processed XML. Processing instructions are enclosed
in <? and ?> delimiters and must have a name, called the target, followed by
optional data that is processed by the application that uses the XML. Each
application that uses the XML must process the targets that it recognizes and
ignore any other targets.

The XML declaration at the beginning of an XML document is an example of
a processing instruction. You cannot use the string xml as the name of any other
processing instruction target.

Example In this example, usething is the name of the target, and thing=this.thing
is the data to be processed by the receiving application:

<?usething thing=this.thing?>

Exporting to XML
You can export the data in a DataWindow or DataStore object to XML using
any of the techniques used for exporting to other formats such as PSR or
HTML:

• Using the SaveAs method:

ds1.SaveAs("C:\TEMP\Temp.xml", Xml!, true)

• Using PowerScript dot notation or the Describe method:

ls_xmlstring =
dw1.Object.DataWindow.Data.XMLls_xmlstring =
dw1.Describe(DataWindow.Data.XML)

• Using the Save Rows As menu item in the DataWindow painter.

With the Preview view open, select File>Save Rows As, select XML from
the Files of Type drop-down list, provide a file name, and click Save. You
can use this in the development environment to preview the XML that will
be generated at runtime.

When you export data, PowerBuilder uses an export template to specify the
content of the generated XML.

Exporting to XML

826 PowerBuilder Classic

Default export format
If you have not created or assigned an export template, PowerBuilder uses a
default export format. This is the same format used when you create a new
default export template. See “Creating templates” on page 812.

OLE DataWindow objects cannot be exported using a template. You must use
the default format.

Setting data export properties
The Data Export page in the Properties view lets you set properties for
exporting data to XML.

In addition to the properties that you can set oin this page, PowerBuilder
provides two properties that you can use to let the user of an application select
an export template at runtime. See “Selecting templates at runtime” on page
835.

The Use Template property

The names of all templates that you create and save for the current
DataWindow object display in the Use Template drop-down list.

The template you select from the list is used to conform the XMLgenerated by
any of the methods for saving as XML to the specifications defined in the
named template. Selecting a template from the list box sets the DataWindow
object’s Export.XML.UseTemplate property. You can also modify the value of
the UseTemplate property dynamically in a script. For example, an XML
publishing engine would change templates dynamically to create different
presentations of the same data.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 827

When you open a DataWindow, the Export/Import Template view displays the
template specified in the DataWindow’s Use Template property. (If the view is
not visible in the current layout, select View>Export/Import Template>XML
from the menu bar.) If the property has not been set, the first saved template
displays or, if there are no saved templates, the default structured template
displays as a basis for editing.

Template used when
saving

When the DataWindow is saved as XML, PowerBuilder uses the template
specified in the Use Template property. If the property has not been set,
PowerBuilder uses the default template.

When you are working on a template, you might want to see the result of your
changes. The template specified in the Use Template property might not be the
template currently displayed in the Export/Import Template view, so you
should check the value of the Use Template property to be sure you get the
results you expect.

❖ To save to XML using the current template:

1 Right-click in the Export/Import template view and select Save or Save As
from the pop-up menu to save the current template.

2 On the Data Export page in the properties view, select the current template
from the Use Template drop-down list.

3 Select File>Save Rows As, select XML from the Files of Type drop-down
list, enter a file name, and click Save.

Generating group headers

To generate the contents of the header section iteratively for each group in a
group DataWindow, check the Iterate Header for Groups check box, or set the
Export.XML.HeadGroups DataWindow property. This property is on by
default.

Exporting to XML

828 PowerBuilder Classic

For example, consider a group DataWindow object that includes the columns
sales_order_id and sales_order_order_date. The following screenshot shows
the template for this DataWindow object:

The root element in the Header section of the template, Orders, has a child
element, Order. Order has an id attribute whose value is a control reference to
the column sales_order_id. Order also has a child element, OrderDate, that
contains a column reference to the sales_order_order_date column. These
elements make up the header section that will be iterated for each group.

The Detail Start element, Item, has an id attribute whose value is a control
reference to the column sales_order_items_line_id. It also has three child
elements that contain column references to the line items for product ID,
quantity, and ship date.

When the DataWindow is exported with the Export.XML.HeadGroups
property on, the order ID and date iterate for each group. The following XML
output shows the first three iterations of the group header:

<?xml version="1.0" encoding="UTF-16LE"
standalone="no"?>
<Orders>

<Order id="2001">
<OrderDate>2002-03-14</OrderDate>

<Item id="1">
<Product>300</Product>
<Quantity>12</Quantity>
<ShipDate>2005-09-15</ShipDate>

</Item>
<Item id="2">

<Product>301</Product>
<Quantity>12</Quantity>
<ShipDate>2005-09-14</ShipDate>

</Item>
<Item id="3">

<Product>302</Product>
<Quantity>12</Quantity>

CHAPTER 29 Exporting and Importing XML Data

Users Guide 829

<ShipDate>2005-09-14</ShipDate>
</Item>

</Order>
<Order id="2002">

<OrderDate>2002-03-18</OrderDate>
<Item id="2">

<Product>401</Product>
<Qty>24</Qty>
<ShipDate>2002-09-18</ShipDate>

</Item>
<Item id="1">

<Product>400</Product>
<Qty>24</Qty>
<ShipDate>2002-09-18</ShipDate>

</Item>
</Order>
<Order id="2003">

<OrderDate>2002-03-21</OrderDate>
<Item id="3">

<Product>400</Product>
<Qty>12</Qty>
<ShipDate>2002-09-23</ShipDate>

</Item>
...

For DataWindow objects with more than one group, when you generate a new
default template, each group after the first is identified with a special icon and
a check on the pop-up menu next to the Starts Group Header item.

When the Iterate Header for Groups check box is selected, each XML fragment
in the header section between a Group Header element and the next Group
Header element or Detail Start element is iterated.

Exporting to XML

830 PowerBuilder Classic

In the template shown in the previous illustration, sales are grouped by
customer ID, then by order ID. The customer group header has attributes for
the customer’s ID and first and last names. The order group header has
attributes for the order ID and date. The following illustration shows the
DataWindow in the Design view:

The following XML output shows the first iteration of the customer group
header and the first and second iterations of the order group header:

<?xml version="1.0" encoding="UTF-16LE" standalone="no"?>
<d_customer>

<customer id="101" fname="Michaels" lname="Devlin">
<order id="2001" date="1996-03-14">

<order_item>
<sales_order_items_line_id>1</sales_order_items_line_id>
<sales_order_items_prod_id>300</sales_order_items_prod_id>
<sales_order_items_quantity>12</sales_order_items_quantity>

</order_item>
<order_item>

<sales_order_items_line_id>2</sales_order_items_line_id>
<sales_order_items_prod_id>301</sales_order_items_prod_id>
<sales_order_items_quantity>12</sales_order_items_quantity>

</order_item>
<order_item>

<sales_order_items_line_id>3</sales_order_items_line_id>
<sales_order_items_prod_id>302</sales_order_items_prod_id>
<sales_order_items_quantity>12</sales_order_items_quantity>

</order_item>
</order>
<order id="2005" date="1996-03-24">

<order_item>
<sales_order_items_line_id>1</sales_order_items_line_id>
<sales_order_items_prod_id>700</sales_order_items_prod_id>
<sales_order_items_quantity>12</sales_order_items_quantity>

</order_item>
</order>

CHAPTER 29 Exporting and Importing XML Data

Users Guide 831

Formatting the exported XML

By default, the XML is exported without formatting. If you want to view or
verify the exported XML in a text editor, check the Include Whitespace check
box or set the Export.XML.IncludeWhitespace property in a script. Turning
this property on causes the export process to insert tabs, carriage returns, and
linefeed characters into the XML so that it is easier to read. Most of the
examples in this chapter were exported with this property turned on.

Do not import formatted XML
You should not try to import XML formatted with white space characters,
because the white space between data element tags is considered to be part of
the element.

Exporting metadata

You can specify that metadata in the form of a DTD or schema should be
exported when you save the DataWindow object. You can choose to save the
metadata with the XML or in a separate file.

If you export metadata as a schema, you can associate it with a namespace. See
“Associating a namespace with an exported schema” on page 833.

To specify how metadata should be saved, select a value from the Meta Data
Type drop-down list or set the Export.XML.MetaDataType property. The
possible values are:

• XMLNone!—No metadata is generated

• XMLSchema!—An XML schema is generated

• XMLDTD!—A DTD is generated

If the data item for a column is null or an empty string, an empty element is
created. If you select XMLSchema!, child elements with null data items are
created with the content "xsi:nil='true'".

The metadata is saved into the exported XML itself or into an associated file,
depending on the setting in the SaveMeta Data drop-down list or the
Export.XML.SaveMetaData property. The possible values are:

• MetaDataInternal!—The metadata is saved into the generated XML
document or string. To save metadata using the .Data.XML expression
syntax, you must use this value.

Exporting to XML

832 PowerBuilder Classic

• MetaDataExternal!—The metadata is saved as an external file with the
same name as the XML document but with the extension .xsd (for a
schema) or .dtd (for a DTD). A reference to the name of the metadata file
is included in the output XML document.

Example: internal
metadata

For example, if you select XMLDTD! and MetaDataInternal!, the header and
first row of the exported XML would look like this for a simple grid
DataWindow for the contact table in the EAS Demo DB. The Include
Whitespace property has also been selected and the file name is
dtdinternal.xml:

<?xml version="1.0" encoding="UTF-16LE"
standalone="yes"?>
<!DOCTYPE dtdinternal [<!ELEMENT dtdinternal
(dtdinternal_row*)>
<!ELEMENT dtdinternal_row (id, last_name, first_name,
title, street, city, state, zip, phone, fax)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
]>
<dtdinternal>

<dtdinternal_row>
<id>1</id>
<last_name>Hildebrand</last_name>
<first_name>Jane</first_name>
<title>ma</title>
<street>1280 Washington St.</street>
<city>Emeryville</city>
<state>MI</state>
<zip>94608</zip>
<phone>5105551309</phone>
<fax>5105554209</fax>

</dtdinternal_row>

Example: external
metadata

If you select MetaDataExternal! instead, the generated XML in
dtdexternal.xml looks like this:

<?xml version="1.0" encoding="UTF-16LE"?>
<!DOCTYPE dtdexternal SYSTEM "dtdexternal.dtd">

CHAPTER 29 Exporting and Importing XML Data

Users Guide 833

<dtdexternal>
<dtdexternal_row>

<id>1</id>
<last_name>Hildebrand</last_name>
<first_name>Jane</first_name>
<title>ma</title>
<street>1280 Washington St.</street>
<city>Emeryville</city>
<state>MI</state>
<zip>94608</zip>
<phone>5105551309</phone>
<fax>5105554209</fax>

</dtdexternal_row>

The DTD is in dtdexternal.dtd:

<?xml version="1.0" encoding="UTF-16LE"?><!ELEMENT
dtdexternal (dtdexternal_row*)>
<!ELEMENT dtdexternal_row (id, last_name, first_name,
title, street, city, state, zip, phone, fax)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT fax (#PCDATA)>

MetaDataExternal! not supported for dot notation
The metadata cannot be saved in an external file if you use dot notation to
generate the XML.

Associating a
namespace with an
exported schema

If you export metadata in the form of a schema, you can associate a namespace
with the schema. To do so, right-click the root element in the Export/Import
template view and select Schema Options from the pop-up menu. In the dialog
box, specify the namespace prefix and URI.

When the Meta Data Type property is XMLSchema! and the Save Meta Data
property is MetaDataInternal!, so that the XML schema is generated inline, you
can specify a name for the root element. If the root element name is specified,
it appears in the generated XML.

Exporting to XML

834 PowerBuilder Classic

In the following example, the root element name is Contacts, the namespace
prefix is po, and the URI is http://www.example.com/PO1.

The example shows the header and the first row of the generated XML:

<?xml version="1.0" encoding="UTF-16LE"
standalone="no"?>
<Contacts>

<xs:schema xmlns:po="http://www.example.com/PO1"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.example.com/PO1"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="d_contact_list">
<xs:complexType>

<xs:sequence>
<xs:element ref="d_contact_list_row"

maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="d_contact_list_row">
<xs:complexType>

<xs:sequence>
<xs:element ref="id"/>
<xs:element ref="last_name"/>
<xs:element ref="first_name"/>
<xs:element ref="city"/>
<xs:element ref="state"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="id" type="xs:int"/>
<xs:element name="last_name" type="xs:string"/>
<xs:element name="first_name" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="state" type="xs:string"/>

</xs:schema>
<po:d_contact_list xmlns:po=

"http://www.example.com/PO1" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">

<po:d_contact_list_row>
<po:id>1</po:id>
<po:last_name>Hildebrand</po:last_name>
<po:first_name>Jane</po:first_name>
<po:city>Emeryville</po:city>
<po:state>MI</po:state>

CHAPTER 29 Exporting and Importing XML Data

Users Guide 835

</po:d_contact_list_row>

By default, the generated XML is not associated with a namespace.

Selecting templates at runtime
Two DataWindow properties, Export.XML.TemplateCount and
Export.XML.Template[].Name, enable you to provide a list of templates from
which the user of the application can select at runtime.

The TemplateCount property gets the number of templates associated with a
DataWindow object. You can use this number as the upper limit in a FOR loop
that populates a drop-down list with the template names. The FOR loop uses
the Template[].Name property.

string ls_template_count, ls_template_name
long i

ls_template_count=dw_1.Describe
("DataWindow.Export.XML.TemplateCount")

for i=1 to Long(ls_template_count)
ls_template_name=

dw_1.Object.DataWindow.Export.XML.Template[i].Name
ddlb_1.AddItem(ls_template_name)

next

Before generating the XML, set the export template using the text in the
drop-down list box.

dw_1.Object.DataWindow.Export.XML.UseTemplate=
ddlb_1.text

Importing XML
You can select XML as a file type in the dialog box that displays when you
select Rows>Import in the DataWindow painter. (The Preview view must be
open to enable the Rows>Import menu item.)

You can also import data from an XML document or string using the ImportFile,
ImportString, or ImportClipboard methods. These methods have an optional first
parameter that enables you to specify the type of data to be imported.

Importing XML

836 PowerBuilder Classic

Data can be imported with or without a template. To import data without a
template, the data must correspond to the DataWindow column definition. The
text content of the XML elements must match the column order, column type,
and validation requirements of the DataWindow columns.

Composite, OLE, and Graph DataWindow objects
Composite, OLE, and Graph DataWindow objects cannot be imported using a
template. You must use the default format. Graph controls must also be
imported using the default format.

Importing with a template
If the XML document or string from which you want to import data does not
correspond to the DataWindow column definition, or if you want to import
attribute values, you must use a template.

If a schema is associated with the XML to be imported, you must create a
template that reflects the schema.

For complex, nested XML with row data in an iterative structure, you may need
to design a structure that uses several linked DataWindow definitions to import
the data. Each DataWindow must define the structure of a block of iterative
data with respect to the root element. Importing the data into the DataWindow
objects would require multiple import passes using different import templates.

For data that does not conform to an iterative row data structure or has
additional complexities, you can use the PBDOM parser to handle the data on
a node-by-node basis. For more information, see Application Techniques and
the PowerBuilder Extension Reference.

Defining import
templates

The XML import template can be defined in the Export/Import Template view
for XML. If you are defining a template for use only as an import template, do
not include DataWindow expressions, text, comments, and processing
instructions. These items are ignored when data is imported.

Only mappings from DataWindow columns to XML elements and attributes
that follow the Starts Detail marker in the template are used for import.
Element and attribute contents in the header section are also ignored. If the
Starts Detail marker does not exist, all element and attribute to column
mappings within the template are used for import. For more information about
the Starts Detail marker, see “The Detail Start element” on page 815.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 837

Matching template
structure to XML

An XML import template must map the XML element and attribute names in
the XML document to DataWindow column names, and it must reflect the
nesting of elements and attributes in the XML.

The order of elements and attributes with column reference content in the
template does not have to match the order of columns within the DataWindow,
because import values are located by name match and nesting depth within the
XML. However, the order of elements and attributes in the template must
match the order in which elements and attributes occur in the XML. Each
element or attribute that has column reference content in the template must
occur in each row in the XML document or string. The required elements and
attributes in the XML can be empty.

If an element or attribute does not occur in the XML document, the
DataWindow import column remains empty.

The data for the DataWindow is held in the columns of the data table. Some
data columns, such as those used for computed fields, may not have an
associated control. To import data into a column that has no control reference,
add a child DataWindow expression that contains the column name.

Remove tab characters
When you select a column name in the DataWindow expression dialog box, tab
characters are added before and after the name. You should remove these
characters before saving the expression.

Importing data with
group headers

For XML import using a template, element and attribute contents in the header
section are ignored. However, if the Starts Detail marker does not exist, all
element and attribute to column mappings within the template are used for
import. This has the following implications for DataWindow objects with
group headers:

• If data is imported to a Group DataWindow using a template that has a
Starts Detail marker, the group header data is not imported because import
starts importing from the Starts Detail location.

• If the Group DataWindow has one group and the import template has no
Starts Detail marker, all the data is imported successfully.

Nested groups cannot be imported
If the Group DataWindow has nested groups, the data cannot be imported
successfully even if the Starts Detail marker in the import template is turned
off.

Importing XML

838 PowerBuilder Classic

Restrictions DataWindow columns cannot be referenced twice for import. A second column
reference to a DataWindow column within an XML import template is ignored.

An XML element or attribute name whose content references a DataWindow
column for import must be unique within the level of nesting. It cannot occur
twice in the template at the same nesting level.

Setting the import
template

The names of all templates for the current DataWindow object display in the
Use Template drop-down list on the Data Import page in the Properties view.

Using export templates for import
If you have already defined an export template for a DataWindow object, you
can use it as an import template, but only the mapping of column names to
element attribute names is used for import. All other information in the
template is ignored.

The template you select in the list box is used to conform the XML imported
to the specifications defined in the named template. Selecting a template from
the list sets the DataWindow object’s Import.XML.UseTemplate property. You
can also modify the value of the Import.XML.UseTemplate property
dynamically in a script.

The Data Import page also contains a property that enables you to create a trace
log of the import. See “Tracing import” on page 843.

Example

This example uses a DataWindow object that includes the columns emp_id,
emp_fname, emp_lname, and dept_id. The template used in this example
includes only these columns. Any other columns in the DataWindow remain
empty when you import using this template.

To illustrate how template import works, create a new template that has one
element in the header section, called before_detail_marker. This element
contains a column reference to the emp_id column.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 839

The Detail Start element, employee, has an attribute, dept_id, whose value is a
control reference to the column dept_id. It also has three children:

• The emp_id element contains a column reference to the emp_id column.

• The emp_fname element contains static text.

• The name element has two children, emp_fname and emp_lname, that
contain column references to those columns.

The template exports and imports the dept_id DataWindow column using the
attribute of the employee element. It exports and imports the emp_id,
emp_fname, and emp_lname columns using the column references in the
elements. The following shows the beginning of the XML exported using this
template:

<?xml version="1.0" encoding="UTF-16LE"
standalone="no"?>

<employee_list>
<before_detail_marker>102</before_detail_marker>
<employee dept_id="100">

<emp_id>102</emp_id>
<emp_fname>static text content</emp_fname>
<name>
<emp_fname>Fran</emp_fname>
<emp_lname>Whitney</emp_lname>

</name>
</employee>
<employee dept_id="100">

<emp_id>105</emp_id>
<emp_fname>static text content</emp_fname>
<name>
<emp_fname>Matthew</emp_fname>
<emp_lname>Cobb</emp_lname>

</name>

Importing XML

840 PowerBuilder Classic

</employee>
...

The exported XML can be reimported into the DataWindow columns dept_id,
emp_id, emp_fname, and emp_lname. Before importing, you must set the
import template on the Data Import page in the Properties view or in a script
using the DataWindow object’s Import.XML.UseTemplate property.

The following items are exported, but ignored on import:

• The before_detail_marker element is ignored because it is in the header
section.

• The first occurrence of the element tag name emp_fname is ignored
because it does not contain a mapping to a DataWindow column name.

If you change the nesting of the emp_fname and emp_lname elements inside
the name element, the import fails because the order of the elements and the
nesting in the XML and the template must match.

Default data import
When there is no import template assigned to a DataWindow object with the
UseTemplate property, PowerBuilder attempts to import the data using the
default mechanism described in this section.

Elements that contain
text

The text between the start and end tags for each element can be imported if the
XML document data corresponds to the DataWindow column definition. For
example, this is the case if the XML was exported from PowerBuilder using
the default XML export template.

The text content of the XML elements must match the column order, column
type, and validation requirements of the DataWindow columns. (The same
restriction applies when you import data from a text file with the ImportFile
method).

All element text contents are imported in order of occurrence. Any possible
nesting is disregarded. The import process ignores tag names of the elements,
attributes, and any other content of the XML document.

Empty elements Empty elements (elements that have no content between the start and end tags)
are imported as empty values into the DataWindow column. If the element text
contains only white space, carriage returns, and new line or tab characters, the
element is treated as an empty element.

Any attributes of empty elements are ignored.

CHAPTER 29 Exporting and Importing XML Data

Users Guide 841

Elements with
non-text content

If the element has no text content, but does contain comments, processing
instructions, or any other content, it is not regarded as an empty element and is
skipped for import.

Example with no empty elements

The three XML documents that follow all show the same result when you
select Rows>Import in the DataWindow painter of if ImportFile is called with
or without default arguments for start and end column, start and end row, and
DataWindow start column.

The DataWindow object has five columns: emp_id, emp_fname, emp_lname,
phone, and birth_date.

Example 1 This example contains two rows, each with five elements that match the
column order, type, and validation requirements for the DataWindow object.

<?xml version="1.0"?>
<d_emp_birth_listing>

<d_emp_birth_row>
<element_1>105</element_1>
<element_2>Matthew</element_2>
<element_3>Cobb</element_3>
<element_4>6175553840</element_4>
<element_5>04/12/1960</element_5>

</d_emp_birth_row>
<d_emp_birth_row>

<element_1>148</element_1>
<element_2>Julie</element_2>
<element_3>Jordan</element_3>
<element_4>6175557835</element_4>
<element_5>11/12/1951</element_5>

</d_emp_birth_row>
</d_emp_birth_listing>

Importing XML

842 PowerBuilder Classic

Example 2 In this example, the elements are not contained in rows, but they still match the
DataWindow object.

<?xml version="1.0"?>
<root_element>

<element_1>105</element_1>
<element_2>Matthew</element_2>
<element_3>Cobb</element_3>
<element_4>6175553840</element_4>
<element_5>04/12/1960</element_5>
<element_6>148</element_6>
<element_7>Julie</element_7>
<element_8>Jordan</element_8>
<element_9>6175557835</element_9>
<element_10>11/12/1951</element_10>

</root_element>

Example 3 The comments and processing instructions in this example are not imported.
The nesting of the <first> and <last> elements within the <Name> element is
ignored.

<?xml version="1.0"?>
<root_element>
<!-- some comment -->
<row_element><?process me="no"?>105<name Title="Mr">
<first>Matthew</first>
<last>Cobb</last>
</name>
<!-- another comment -->
<phone>6175553840</phone>
<birthdate>04/12/1960</birthdate>
</row_element>
<row_element>148<name Title="Ms">
<first>Julie</first>
<last>Jordan</last>
</name>
<phone>6175557835</phone>
<birthdate>11/12/1951</birthdate>
</row_element>
</root_element>

Result All three XML documents produce this result:

emp_id emp_fname emp_lname phone birth_date

105 Matthew Cobb 6175553840 04/12/1960

148 Julie Jordan 6175557835 11/12/1951

CHAPTER 29 Exporting and Importing XML Data

Users Guide 843

Example with empty elements
Example 4 This example uses the same DataWindow object, but there are two empty

elements in the XML document. The first has no content, and the second has
an attribute but no content. Both are imported as empty elements.

<?xml version="1.0"?>
<root_element>
<!-- some comment -->
<row_element>
<?process me="no"?>105<name Title="Mr">
<first>Matthew</first>
<!-- another comment -->
<last>Cobb</last>
</name>
<empty></empty>
<birthdate>04/12/1960</birthdate>
</row_element>
<row_element>148<name Title="Ms">
<empty attribute1 = "blue"></empty>
<last>Jordan</last>
</name>
<phone>6175557835</phone>
<birthdate>11/12/1951</birthdate>
</row_element>
</root_element>

Result The XML document produces this result:

Tracing import
When you import data from XML with or without a template, you can create a
trace log to verify that the import process worked correctly. The trace log
shows whether a template was used and if so which template, and it shows
which elements and rows were imported.

To create a trace log, select the Trace XML Import check box on in the Data
Import page in the Properties view and specify the name and location of the log
file in the Trace File Name box. If you do not specify a name for the trace file,
PowerBuilder generates a trace file with the name pbxmtrc.log in the current
directory.

emp_id emp_fname emp_lname phone birth_date

105 Matthew Cobb 04/12/1960

148 Jordan 6175557835 11/12/1951

Importing XML

844 PowerBuilder Classic

You can also use the Import.XML.Trace and Import.XML.TraceFile
DataWindow object properties.

If you use ImportClipboard or ImportString to import the data, you must specify
XML! as the importtype argument. For example:

ImportString(XML!, ls_xmlstring)

If you omit the importtype argument, the trace file is not created. You do not
need to specify the importtype argument if you use ImportFile.

Example: default
import

The following trace log shows a default import of the department table in the
EAS Demo database:

/*--*/
/* 09/10/2005 18:26 */
/*--*/
CREATING SAX PARSER.
NO XML IMPORT TEMPLATE SET - STARTING XML DEFAULT
IMPORT.
DATAWINDOW ROWSIZE USED FOR IMPORT: 3

ELEMENT: dept_id: 100
ELEMENT: dept_name: R & D
ELEMENT: dept_head_id: 501
--- ROW
ELEMENT: dept_id: 200
ELEMENT: dept_name: Sales
ELEMENT: dept_head_id: 902
--- ROW
ELEMENT: dept_id: 300
ELEMENT: dept_name: Finance
ELEMENT: dept_head_id: 1293
--- ROW
ELEMENT: dept_id: 400
ELEMENT: dept_name: Marketing
ELEMENT: dept_head_id: 1576
--- ROW
ELEMENT: dept_id: 500
ELEMENT: dept_name: Shipping
ELEMENT: dept_head_id: 703
--- ROW

CHAPTER 29 Exporting and Importing XML Data

Users Guide 845

Example: template
import

The following trace log shows a template import of the department table. The
template used is named t_1. Notice that the DataWindow column dept_id is
referenced twice, as both an attribute and a column. The second occurrence is
ignored for the template import, as described in “Restrictions” on page 838.
The Detail Start element has an implicit attribute named __pbband which is
also ignored.

/*---*/
/* 09/10/2005 18:25 */
/*---*/
CREATING SAX PARSER.
USING XML IMPORT TEMPLATE: t_1

XML NAMES MAPPING TO DATAWINDOW IMPORT COLUMNS:
ATTRIBUTE: /d_dept/d_dept_row NAME: '__pbband'
>>> RESERVED TEMPLATE NAME - ITEM WILL BE IGNORED
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id'
DATAWINDOW COLUMN: 1, NAME: 'dept_id'
ELEMENT: /d_dept/d_dept_row/dept_id_xml_name
>>> DUPLICATE DATAWINDOW COLUMN REFERENCE: 1, NAME: 'dept_id' - ITEM WILL
BE IGNORED
ELEMENT: /d_dept/d_dept_row/dept_head_id
DATAWINDOW COLUMN: 3, NAME: 'dept_head_id'
ELEMENT: /d_dept/d_dept_row/dept_name
DATAWINDOW COLUMN: 2, NAME: 'dept_name'

ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 100
ELEMENT: /d_dept/d_dept_row/dept_head_id: 501
ELEMENT: /d_dept/d_dept_row/dept_name: R & D
--- ROW
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 200
ELEMENT: /d_dept/d_dept_row/dept_head_id: 902
ELEMENT: /d_dept/d_dept_row/dept_name: Sales
--- ROW
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 300
ELEMENT: /d_dept/d_dept_row/dept_head_id: 1293
ELEMENT: /d_dept/d_dept_row/dept_name: Finance
--- ROW
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 400
ELEMENT: /d_dept/d_dept_row/dept_head_id: 1576
ELEMENT: /d_dept/d_dept_row/dept_name: Marketing
--- ROW
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 500
ELEMENT: /d_dept/d_dept_row/dept_head_id: 703
ELEMENT: /d_dept/d_dept_row/dept_name: Shipping
--- ROW

Importing XML

846 PowerBuilder Classic

Users Guide 847

C H A P T E R 3 0 Working with Rich Text

About this chapter This chapter explains how to create DataWindow objects using the
RichText presentation style and how to use the RichTextEdit control.

Contents

About rich text
Rich text format (RTF) is a standard for specifying formatting instructions
and document content in a single ASCII document. An editor that supports
rich text format interprets the formatting instructions and displays
formatted content. If you look at rich text in a plain ASCII editor, you see
complex instructions that are not very readable. The actual text of the
document is obscured by the formatting instructions:

{\par}\pard\ql{\f2\fs18\cf0\up0\dn0 A RichText
piece of text}

The same sample displayed without the commands looks like this:

A RichText piece of text

Elements of rich text Rich text in PowerBuilder can have:

• Margins and tab settings for each paragraph

• Character formatting such as italic, bold, underline, or superscripts
for each character

• Named input fields associated with database columns or other data

• Bitmaps

• A header and footer for the document

Topic Page

About rich text 847

Using the RichText presentation style 848

Using the RichTextEdit control 859

Formatting keys and toolbars 861

Using the RichText presentation style

848 PowerBuilder Classic

The user can use toolbars, editing keys, and a pop-up menu to specify
formatting. A print preview lets users view a reduced image of the document
to see how it fits on the page.

Rich text support in
PowerBuilder

In PowerBuilder you can use rich text as a DataWindow presentation style. You
can also add a RichTextEdit control to a window or visual user object.

What is not supported PowerBuilder supports version 1.6 of the RTF standard, except for the
following features:

Formatted tables
Drawing objects

Using the RichText presentation style
The RichText presentation style allows you to combine input fields that
represent database columns with formatted text. This presentation style is
useful for display-only reports, especially mail-merge documents. However, if
you want to use the RichText DataWindow object for data entry, you can
specify validation rules and display formats for the input fields.

In the Design view, you see the text along with placeholders called input fields:

{FNAME} {LNAME}
{COMPANY_NAME}
{ADDRESS}
{CITY}, {STATE} {ZIP}

Dear {FNAME}:
. . .

In the Preview view, the text is the same, but PowerBuilder replaces the input
fields with values from the database:

Beth Reiser
AMF Corp.
1033 Whippany Road
New York, NY 10154

Dear Beth:
. . .

CHAPTER 30 Working with Rich Text

Users Guide 849

Document template The formatted text acts like a document template. There is only one copy of the
text. As the user scrolls from row to row, the data for the current row is inserted
in the input fields and the user sees the document with the current data. If the
user edits the text, the changes show up in every row of data.

Input fields In the RichText presentation style, an input field is associated with a column or
computed field. It gets its value from the retrieved data or from the computed
field’s expression.

If an input field is not a computed field and its name does not match a column,
there is no way to specify data for the input field.

There can be more than one copy of an input field in the rich text. In the sample
above, there are two instances of the field FNAME. Each instance of the field
displays the same data.

Unavailable settings Not all the settings available in other DataWindow styles are available. You
cannot apply code tables and edit styles, such as a DropDownDataWindow or
EditMask, to input fields. You cannot use slide left and slide up settings to
reposition input fields automatically. However, you can set the LineRemove
property at runtime to achieve a similar effect.

Creating the DataWindow object

❖ To create a RichText DataWindow object:

1 In the New dialog box, select RichText from the DataWindow tab and
click OK.

2 Select data for the DataWindow object as you do for any DataWindow
object.

If you want data to be retrieved into the Preview view automatically, select
the Retrieve on Preview check box. For more information, see “Building
a DataWindow object” on page 486.

Using the RichText presentation style

850 PowerBuilder Classic

3 Specify settings for the DataWindow object on the Specify RichText
Settings screen, click Next, and then click Finish.

Available settings Table 30-1 describes the types of settings you can make for the RichText
DataWindow object in the wizard.

Table 30-1: Wizard settings for RichText DataWindow objects

You can specify With these settings

Tools available to the user Rich text bars: Tool, Status, Ruler,
and PopUp Menu

Whether there will be a header and footer for
the printed DataWindow object

Header/Footer

Whether users are prevented from editing
input fields and text

Display Only

Colors for the whole background and the
background of input fields

Background Color: General and
Input Field

CHAPTER 30 Working with Rich Text

Users Guide 851

Editing the content After you click Finish in the wizard, you see input fields with their labels in the
detail band in the Design view:

You can:

• Begin editing text in the detail, header, or footer bands, building a report
around the input fields. You can delete, move, copy, and paste text and
input fields as needed.

• Include a rich text file you have already prepared. If you include a rich text
file created in PowerBuilder that contains input fields, those names should
match the columns selected in the DataWindow object.

For information about creating rich text files, see Application Techniques.

• Add computed fields that will appear as input fields in the report and
whose values come from the computed field expression.

This sample shows how you might rearrange the input fields in a sales letter:

Using the RichText presentation style

852 PowerBuilder Classic

Editing text You can add text by typing directly in the Design view. You do not have to
create text objects as you do for other DataWindow object styles. The
DataWindow painter’s StyleBar lets you apply formatting to selected text. The
RichText toolbars are not available in the painter.

Preview mode and editing text
You cannot edit text in the Preview view, but you can edit it when you preview
the DataWindow object by selecting File>Run/Preview from the menu bar. It
may seem convenient to edit text in Preview mode because the toolbars are
available. However, any changes you make to the text when previewing are
temporary. They are discarded as soon as you return to the Design view.

Inserting a file If you have a rich text file, you can include it in the DataWindow object. In the
Design view, you can insert text from a file into the detail, header, or footer
band.

❖ To insert a file:

1 Click in the text in any band to set the insertion point for the file.

2 Right-click in the Design view and select Insert File from the pop-up
menu.

3 In the file selection dialog box, select the file you want to insert.

Only the body of the file is used. If the file has a header or footer, it is ignored.

Headers and footers You decide whether your RichText DataWindow object has a header and footer
by checking Header/Footer in the wizard or Rich Text Object dialog box
(described in "Formatting for RichText objects within the DataWindow
object" next). The decision to include a header and footer must be made at
design time; it cannot be changed at runtime.

To display a page number or a date in the header or footer, you can insert the
predefined computed fields Page n of n or Today(). You do not need to write
scripts to set the values of these fields for each page, as you do for the
RichTextEdit control.

CHAPTER 30 Working with Rich Text

Users Guide 853

Formatting for RichText objects within the DataWindow object
Each type of object in a RichText DataWindow object has its own dialog box.
When you select Properties from the pop-up menu, the dialog box you get
depends on what is selected.

Properties and Control List views
The Properties and Control List views are not available for RichText
DataWindow objects. The painter uses the same property sheets as are
available to users when they run the DataWindow object, and controls in
RichText DataWindow objects cannot be manipulated in the same way as in
other DataWindow objects.

Most of the objects in a RichText DataWindow object correspond to familiar
objects like bitmaps, columns, and computed fields. You can also specify
formatting for a temporary selected text object. In a RichText DataWindow
object, the objects are:

• The whole document

• Selected text and paragraphs

• Input fields (associated with columns or computed fields)

• Pictures

This section describes how to select each type of object and access its dialog
box. The user can access the property sheets too if you enable the Popup Menu
option on the Rich Text Object’s General dialog box.

The whole RichText DataWindow

Settings for the whole RichText DataWindow object include the values you
specified in the wizard, as well as:

• Whether pictures are displayed or represented by empty frames

• Whether newly entered text will wrap within the display

• Whether various nonprinting characters, such as tabs, returns, and spaces,
are visible

• Standard DataWindow object settings such as units of measurement and
the pointer

• Print specifications

Using the RichText presentation style

854 PowerBuilder Classic

Use the following procedure to change settings:

❖ To set values for the RichText DataWindow object:

1 Make sure nothing is selected in the Design view by clicking to set the
insertion point.

2 Right-click in the Design view and select Properties from the pop-up
menu.

3 Click Help to get more information about a specific setting.

Selected text and paragraphs

You can specify detailed font formatting for selected text. The selected text can
be one character or many paragraphs.

If an input field is part of the selection, the font settings apply to it, too. A
picture that is part of the selection ignores settings for the selected text object.

❖ To specify formatting for selected text:

1 Select the text you want to format.

2 Right-click in the Design view and select Properties from the pop-up
menu.

The Selected Text Object dialog box displays. You can set:

• Paragraph alignment The alignment setting on the Selected Text
page applies to all paragraphs in the selection.

• Font formatting Settings on the Font page apply to text in the
selection, including input fields.

Paragraphs There are also settings for selected paragraphs. You can display the Paragraph
dialog box by pressing Ctrl+Shift+S. The user can double-click the ruler bar or
press the key combination to display the same dialog box.

Default font The user can change the default font by double-clicking on the toolbar or
pressing Ctrl+Shift+D. You cannot change the default font in the painter.

Input fields

An input field can be either a column or a computed field. Before you retrieve
data, its value is shown as two question marks (??).

The text can include many copies of a named input field. The same data will
appear in each instance of the input field.

CHAPTER 30 Working with Rich Text

Users Guide 855

Column input fields The columns you select for the DataWindow object become input fields in the
rich text. Because the input field’s name matches the column name,
PowerBuilder displays the column’s data in the input field.

If an input field exists in the text, you can copy and paste it to create another
copy. If you need to recreate a column input field that you deleted, use this
procedure.

❖ To insert a column input field in the text:

1 Select Insert>Control>Column from the menu bar.

2 Click in the text where you want the column input field to appear.

PowerBuilder displays a list of the columns selected for the DataWindow
object.

3 Select a column for the input field.

Properties for input
fields

You select an input field by clicking inside it. A computed input field is
selected when the whole field is highlighted.

❖ To set properties for an input field:

1 Click in the input field in Design view.

2 Display the pop-up menu and select Properties.

3 On the Font page, specify text formatting.

4 On the Format page, specify a display format.

5 On the Validation page, specify a validation rule for the column.

If there are multiple copies of an input field, the validation and format settings
apply to all the copies. Background color on the Font page applies to all input
fields. Other settings on the Font page apply to individual instances.

The user cannot change the format or validation rule. At runtime, these pages
are not available in the dialog box.

Computed field input fields When you display the dialog box for a
computed field, the settings are a little different. You can specify the input field
name and its expression on the Compute page and there is no validation.

Data Value in preview For both columns and computed fields, you see a
value in the Data Value box when you preview the DataWindow object. The
user sees a value in the Data Value box when the current row has a value. For
columns, users can change the value.

Using the RichText presentation style

856 PowerBuilder Classic

Computed fields Computed fields have an expression that specifies the value of the computed
field. In rich text, they are represented as input fields, too. You specify a name
and an expression. The data value comes from evaluating the expression and
cannot be edited.

❖ To define a computed field:

1 Select Insert>Control>Computed Field.

Predefined computed fields
You can also select one of the predefined computed fields at the bottom of
the menu. PowerBuilder provides several predefined computed fields, but
in a RichText DataWindow object, only the page number (Page n of n) and
today’s date (Today()) are available.

2 Click in the text where you want the computed field to appear.

If you do not select a predefined computed field, PowerBuilder displays
the dialog box for the computed field:

3 On the Compute page, name the computed field and specify its expression.

4 (Optional) On the Font page, specify text formatting.

5 (Optional) On the Format page, specify a display format.

CHAPTER 30 Working with Rich Text

Users Guide 857

If there are multiple copies of a computed field input field, the expression and
format settings apply to all the copies. Font settings apply to individual
instances. For more about computed field expressions and display formats, see
Chapter 19, “Enhancing DataWindow Objects.”

Pictures
Inserting a picture You can include bitmaps (BMP, GIF, JPG, RLE, or WMF files) in a RichText

DataWindow.

❖ To insert a picture in the rich text:

1 Select Insert>Control>Picture from the menu bar.

2 Click in the text where you want the picture to appear.

PowerBuilder displays the Select Picture dialog box.

3 Select the file containing the picture.

Specifying picture size A picture is selected when you can see a dashed outline in Design or Preview
view. When the picture is part of a text selection, it displays with inverted
colors.

You can change the size of a picture as a percentage of the original picture size.
The allowable range for a size percent change is between 10 and 250 percent.

❖ To specify size settings for the picture:

1 Click on the picture in the Design or Preview view so you see its
dashed-outline frame.

2 Right-click in the Design or Preview view and select Properties from the
pop-up menu.

The Rich Text - Picture Object dialog box displays.

3 Change the percent of the original picture size in the Width and Height text
boxes.

The picture expands or contracts according to the size percentage you
selected.

Using the RichText presentation style

858 PowerBuilder Classic

Previewing and printing
To see what the RichText DataWindow object looks like with data, you can
preview it in the Preview view or in preview mode.

❖ To preview the DataWindow object in preview mode:

1 Select File>Run/Preview from the menu bar, or click the Run/Preview
button on the PowerBar.

2 Select Rows>Retrieve from the menu bar.

Retrieve on Preview
If the RichText definition specifies Retrieve on Preview, data is retrieved
automatically when you open the Preview view or preview the
DataWindow object in preview mode.

Changes in preview Data While previewing the DataWindow object in preview mode, or when
focus is in the Preview view, you can use the scroll buttons in the Preview
toolbar to move from row to row, and you can change data in the input fields.
If you choose the Save Changes button on the toolbar, you will update the data
in the database.

Text Any changes you make to the rich text in the Preview view will not be
reflected in the Design view. Any changes that you want to keep must be made
in the Design view, not in preview.

If the Display Only setting is checked, you cannot change text or data in the
Preview view.

Print Preview Print Preview displays a reduced view of one row of data as it would appear
when printed.

❖ To see the DataWindow object in Print Preview:

1 Click in the Preview view to make it the current view.

2 Select File>Print Preview.

In Print Preview, you can test different margin settings and scroll through the
pages of the document.

You cannot scroll to view other rows of data.

Any changes you make to settings in Print Preview are discarded when you
return to the Design view.

CHAPTER 30 Working with Rich Text

Users Guide 859

Setting margins
To specify permanent margin settings for the RichText DataWindow object,
use the Print Specifications page of the Rich Text Object dialog box.

Using the RichTextEdit control
You can add a RichTextEdit control to a window to enhance your application
with word processing capabilities.

Users can enter text in a RichTextEdit control, format it, save it to a file, and
print it. You can also enable a pop-up menu from which users can control the
appearance of the control and import documents.

❖ To add a RichTextEdit control to a window:

• In the Window painter, select Insert>Control>RichTextEdit and click the
window.

Controlling the
appearance of a
RichTextEdit control

You modify the appearance of a RichTextEdit control by setting its properties.
Some of the properties you can set are:

• The toolbars that appear in the control

• The visibility of nonprinting characters and graphics

❖ To control the appearance of a RichTextEdit control:

1 Select the control, then select the Document tab in the Properties view.

2 Choose the appropriate properties to display toolbars.

3 Choose the appropriate properties if you want to display nonprinting
characters such as tabs, spaces, and returns.

For information about other options on the Document properties page,
select Help from the property page’s pop-up menu.

Making a RichTextEdit
control read-only

There are times when you might want to import a file into the RichTextEdit
control and not give the user the opportunity to alter it. You can make a control
read-only by setting the Enabled and Popup Menu properties.

Using the RichTextEdit control

860 PowerBuilder Classic

❖ To make a RichTextEdit control read-only:

1 Select the control, then select the General tab in the Properties view.

2 Make sure the Enabled check box is cleared.

3 Select the Document tab.

4 Make sure the PopMenu check box is cleared.

Enabling the pop-up
menu

If you enable the pop-up menu property, users can customize the appearance of
the RichTextEdit control.

From the pop-up menu, users can:

• Perform editing tasks (cut, copy, paste, and clear)

• Insert a file into the RichTextEdit control

• Display and modify the Rich Text Object dialog box

The General property page on the user’s Rich Text Object dialog box
presents many of the same options as the Document property page in the
development environment.

For more information about the RichTextEdit control, see the chapter on
implementing rich text in Application Techniques.

CHAPTER 30 Working with Rich Text

Users Guide 861

Formatting keys and toolbars
When the toolbar is visible, you can use its buttons to format text. The changes
you make in preview are temporary.

The keystrokes listed in the following tables also assign formatting to selected
text.

Keyboard shortcuts do not work in the painter
These keystrokes work only when you are running the DataWindow object or
the window containing the RichTextEdit control. In PowerBuilder, only
keyboard shortcuts defined for menu items in the painter can be used.

Table 30-2: Keyboard shortcuts for RichText DataWindow objects

Category Action Key

Using the
clipboard

Cut Ctrl+X

Paste Ctrl+V,
Shift+Insert

Copy Ctrl+C

Undo Ctrl+Z

Assigning font
attributes

Bold Ctrl+B

Italic Ctrl+I

Underline Ctrl+U

Subscript Ctrl+=

Superscript Ctrl+Shift+=

Strikeout Ctrl+U

Change font Ctrl+Shift+U

Setting line
spacing

Single space Ctrl+1

Double space Ctrl+2

One and a half space Ctrl+5

Aligning text Justify Ctrl+J

Center Ctrl+E

Left Ctrl+L

Right Ctrl+R

Set paragraph formatting Ctrl+Shift+S

Editing Insert a new paragraph Enter

Insert an empty line Ctrl+N

Delete character to right of insertion point Delete

Delete character to left of insertion point Backspace

Formatting keys and toolbars

862 PowerBuilder Classic

Navigating and
selecting text

Table 30-3: Keyboard shortcuts for navigating and selecting text

Input fields Select the input field at the insertion point Enter

Activate the input field at the insertion point Space

When input field is active, accept data and exit
field

Enter

When input field is active, exit field without
changing data

Esc

Move to next input field Ctrl+Tab

Move to previous input field Shift+Ctrl+Tab

Miscellaneous Select All Ctrl+A

Print Ctrl+P

Undo Ctrl+Z

Toggle display of nonprinting characters Ctrl+*

Toggle preview mode Ctrl+F2

Category Action Key

Move or select Navigating key Selection key

A character to the right or left Right Arrow or
Left Arrow

Shift+Right Arrow or
Shift+Left Arrow

A word to the right or left Ctrl+Right Arrow or
Ctrl+Left Arrow

Ctrl+Shift+Right Arrow or
Ctrl+Shift+Left Arrow

A line up or down Up Arrow or
Down Arrow

Shift+Up Arrow or
Shift+Down Arrow

To start of line Home Shift+Home

To end of line End Shift+End

To start of document Ctrl+Home Ctrl+Shift+Home

To end of document Ctrl+End Ctrl+Shift+End

To next input field Ctrl+Tab

To previous input field Shift+Ctrl+Tab

Users Guide 863

C H A P T E R 3 1 Using OLE in a DataWindow
Object

About this chapter This chapter describes how to use OLE in DataWindow objects.

Contents

About using OLE in DataWindow objects
A DataWindow object can include a control that is a container for an OLE
object. The container stores information about the application that created
the object and it can launch the application to display or modify the OLE
object.

The container can fill the whole DataWindow object, when you create a
new DataWindow object using the OLE presentation style, or it can exist
alongside other controls in a DataWindow object, when you add an OLE
object to an existing DataWindow object. You can also read OLE data
from a blob column in a database and display the objects in the
DataWindow object.

You can use OLE objects in DataWindow objects in the following ways:

• OLE object in a DataWindow object The OLE object is displayed
in its container control with the DataWindow data and other controls,
such as bitmaps or text. You can associate it with data in a particular
row, the rows on a page, or with all rows. You choose which columns
in the DataWindow object are transferred to the OLE object. You can
add an OLE container control to a DataWindow object that uses any
presentation style that supports multiple DataWindow objects. (This
does not include the graph and RichText presentation styles.)

Topic Page

About using OLE in DataWindow objects 863

OLE objects and the OLE presentation style 865

Using OLE columns in a DataWindow object 876

About using OLE in DataWindow objects

864 PowerBuilder Classic

• OLE presentation style The OLE presentation style is similar to an
OLE object in a DataWindow object. The difference is that the OLE
container is the only control in the DataWindow object. The underlying
data is not presented in column controls and there are no other controls,
such as bitmaps or text. The OLE object is always associated with all the
rows in the DataWindow object.

• OLE database blob column OLE objects that are stored in the database
in a blob column are displayed in each row of the DataWindow object.

You can also add ActiveX controls (also called OLE custom controls or OCXs)
to DataWindow objects. ActiveX controls range from simple visual displays,
such as meters and clocks, to more complex controls that perform spell
checking or image processing.

The behavior of OLE objects in DataWindow objects is similar to the behavior
of OLE controls in windows.

For more information about linked and embedded objects and automation, see
the chapter on using OLE in an application in Application Techniques.

Activating OLE
objects

When you are working in the DataWindow painter, you can start the server
application for an OLE object by selecting Open from the pop-up menu. Once
the server application has started, you can use the tools provided by the server
to edit the initial presentation of the object.

If the OLE object is associated with all rows retrieved and is in the foreground
or background layer, not the band layer, users can activate the object. If the
object is associated with a single row or page or is in the band layer, users can
see the object but cannot activate it. DataWindows created using the OLE
presentation style are always associated with all rows.

Unlike OLE objects, ActiveX controls are always active. They do not contain
objects that need to be opened or activated.

Editing OLE objects When an OLE object is activated, you can edit the presentation of the data.
Changes made to DataWindow data affect the OLE object. Changes made to
the OLE object do not affect the data the DataWindow object retrieved.

Each OLE object stored in the database in a blob column can be activated and
changed. When the DataWindow object updates the database, the changes are
saved.

What's next Whether you are inserting an OLE object into a DataWindow object or using
the OLE presentation style, you use the same procedures to define, preview,
and specify data for the OLE object. Because of their similarities, the next
section discusses both OLE objects in DataWindow objects and the OLE
presentation style. The last section discusses OLE database blob columns.

CHAPTER 31 Using OLE in a DataWindow Object

Users Guide 865

OLE objects and the OLE presentation style
Whether you insert an OLE object into a DataWindow object or create a new
DataWindow object using the OLE presentation style, you are working with an
OLE container object within the DataWindow object.

Similarities They have these characteristics in common:

• Icon or contents The DataWindow object can display the OLE object
as an icon, or it can display an image of the contents when display of
contents is supported by the server.

• Data from the DataWindow object You specify which DataWindow
columns you want to transfer to the OLE object. The data that is sent to the
OLE server replaces the OLE object template specified in the painter.

Differences The OLE object in a DataWindow object and the OLE presentation style have
these main differences:

• Associating the object with rows When the OLE object is added to a
DataWindow object, you can associate it with individual rows, groups of
rows, or all rows. In the presentation style, the OLE object is always
associated with all rows.

• Properties view The Properties view for an OLE object has different
pages and some different properties from the OLE DataWindow object.
For example, the Properties view for an OLE object in a DataWindow
object does not contain detailed print specification settings because these
are set in the DataWindow object’s own Properties view. However, it does
have settings related to the position of the OLE object within the
DataWindow object.

Not all servers are appropriate
The features of the OLE server application determine whether it can provide
useful information in a DataWindow object.

If the server does not support display of contents, it is not useful for objects
associated with rows. The user sees only the icon. Some servers support the
display of contents, but the view is scaled too small to be readable even when
the object is activated.

OLE objects and the OLE presentation style

866 PowerBuilder Classic

In this section This section includes procedures for:

• Adding an OLE object to a DataWindow object

• Using the OLE presentation style

• Defining the OLE object

• Previewing the DataWindow object

• Specifying DataWindow data for the OLE object

Adding an OLE object to a DataWindow object
To add an OLE object to a DataWindow object, you begin by specifying where
you want the OLE object and opening the Insert Object dialog box so you can
define the OLE object.

Adding an ActiveX control
Adding an ActiveX control to a DataWindow object is similar to adding an
OLE object. Both exist within the DataWindow object with other controls,
such as columns, computed fields, and text controls. Use the following
procedure whether you want to add an OLE object or an ActiveX control to an
existing DataWindow object.

❖ To place an OLE object in a DataWindow object:

1 Open the DataWindow object that will contain the OLE object.

2 Select Insert>Control>OLE Object from the menu bar, or from the toolbar,
click the Object drop-down arrow and select the OLE button (not OLE
Database Blob).

3 Click where you want to place the OLE object.

PowerBuilder displays the Insert Object dialog box.

To use the Insert Object dialog box, see “Defining the OLE object” on
page 868.

CHAPTER 31 Using OLE in a DataWindow Object

Users Guide 867

Using the OLE presentation style
Use the OLE presentation style to create a DataWindow object that consists of
a single OLE object. The following procedure creates the new DataWindow
object and opens the Insert Object dialog box.

❖ To create a new DataWindow object using the OLE presentation style:

1 In the New dialog box, select OLE 2.0 from the DataWindow tab and click
OK.

2 Select data for the DataWindow object as you do for any DataWindow
object.

For more information about selecting data, see Chapter 18, “Defining
DataWindow Objects.”

3 Specify how the OLE object will use the DataWindow object’s data on the
Specify OLE Data page:

You can drag the columns you want the OLE object to use to the Target
Data box. You can also control the grouping of data and edit the expression
for a column. If necessary, you can change these specifications later.

For more information, see “Specifying data for the OLE object” on page
870.

4 Click Next, and then click Finish.

PowerBuilder displays the Insert Object dialog box in which you define
the OLE object.

To use the Insert Object dialog box, see "Defining the OLE object" next.

OLE objects and the OLE presentation style

868 PowerBuilder Classic

Defining the OLE object
You define the OLE object in the Insert Object dialog box. It has three tab
pages:

This section contains procedures for each of these selections.

Create New Use the following procedure if you want to embed a new OLE server object.

❖ To embed a new OLE server object using the Create New tab:

1 Select the Create New tab.

2 In the Object Type box, highlight the OLE server you want to use.

You can click Browse to get information about the server from the registry.

3 Optionally display the OLE object as an icon by doing one of the
following:

• Check Display as Icon to display the server application’s default icon
in the control.

• Check Display as Icon and then select Change Icon to supply a
nondefault icon and icon label.

4 Click OK.

The OLE object is inserted in your DataWindow object and the OLE
server is activated. Depending on the OLE server and whether or not you
have already specified how the OLE object will use the DataWindow
object’s data, the object may be empty or may show an initial presentation
of the OLE object. Close the server application and, if you are inserting an
OLE object in a DataWindow object, specify the object’s properties (see
“Specifying properties for OLE objects” on page 870).

If you want to Select this tab page

Embed an OLE server object in the DataWindow object Create New

Link or embed the contents of an existing file as an OLE
object so that it can be activated using the application that
created it

Create From File

Insert an ActiveX control in the DataWindow object Insert Control

CHAPTER 31 Using OLE in a DataWindow Object

Users Guide 869

Create From File Use the following procedure if you want to link or embed the contents of an
existing file as an OLE object so that it can be activated using the application
that created it. Most of the steps in this procedure are the same as those for
embedding a new OLE server object.

A server application must be available
You (and the user) must have an application that can act as a server for the type
of object you link or embed. For example, if you insert a BMP file, it displays
because an application that can handle bitmaps is installed with Windows. If
you insert a GIF or JPEG file, it displays only if you have a third-party graphics
application installed.

❖ To link or embed an existing object using the Create From File tab:

1 Select the Create From File tab.

2 Specify the file name in the File Name box. If you do not know the name
of the file, click the Browse button and select a file in the dialog box.

3 To create a link to the file, rather than embed a copy of the object in the
control, select the Link check box.

4 Click OK.

The OLE object is inserted in your DataWindow object and the OLE
server is activated. Depending on the OLE server and whether or not you
have already specified how the OLE object will use the DataWindow
object’s data, the object might be empty or might show an initial
presentation of the OLE object. Close the server application and, if you are
inserting an OLE object in a DataWindow object, specify the object’s
properties (see “Specifying properties for OLE objects” on page 870).

Insert Control Use the following procedure if you want to insert an ActiveX control (OLE
custom control) in the DataWindow object.

❖ To insert an ActiveX control using the Insert Control tab:

1 Select the Insert Control tab.

2 In the Control Type box, highlight the ActiveX control you want to use, or,
if the ActiveX control you want has not been registered, click Register
New.

If you select an existing ActiveX control, you can click Browse to get
more information about it. ActiveX controls are self documenting.
PowerBuilder gets the property, event, and function information from the
ActiveX control itself from the registry.

OLE objects and the OLE presentation style

870 PowerBuilder Classic

If you click Register New, you are prompted for the file that contains the
registration information for the ActiveX control.

3 Click OK.

4 If you did not specify how the OLE object will use the DataWindow
object’s data when you created the DataWindow object, do so on the Data
property page.

If you have inserted an ActiveX control that does not display data, such as
the Clock control, you do not need to transfer data to it.

For more information, see “Specifying data for the OLE object” on page
870.

Specifying properties
for OLE objects

For OLE objects, you need to specify how the OLE object will use the
DataWindow object’s data. If you used the OLE presentation style, you did this
when you created the DataWindow object.

If you are inserting an OLE object in an existing DataWindow object, you can
also associate the object with the current row. If you are using the OLE
presentation style, the OLE object is always associated with all rows.

❖ To specify properties for an OLE object:

1 Select the Data property page in the Properties view.

2 Specify how the OLE object will use the DataWindow object's data.

For more information, see "Specifying data for the OLE object" next.

3 (Optional) To associate the object with the current row, select the Position
property page and change the value in the Layer box to Band.

4 Click OK when you have finished.

Specifying data for the OLE object
You set data specifications for an OLE object in a DataWindow object on the
Data property page in the Properties view. You can also use the Data property
page to modify the data specifications you made in the wizard for a
DataWindow object using the OLE presentation style.

What the data is for When an OLE object is part of a DataWindow object, you can specify that
some or all of the data the DataWindow object retrieves be transferred to the
OLE object too. You can specify expressions instead of the actual columns so
that the data is grouped, aggregated, or processed in some way before being
transferred.

CHAPTER 31 Using OLE in a DataWindow Object

Users Guide 871

The way the OLE object uses the data depends on the server. For example, data
transferred to Microsoft Excel is displayed as a spreadsheet. Data transferred
to Microsoft Graph populates its datasheet, which becomes the data being
graphed.

Some ActiveX controls do not display data, so you would not transfer any data
to them. For an ActiveX control such as Visual Speller, you would use
automation to process text when the user requests it.

Group By and Target
Data boxes

Two boxes on the Data property page list data columns or expressions:

• Group By Specifies how PowerBuilder groups the data it transfers to the
OLE object. Aggregation functions in the target data expressions use the
groupings specified here.

• Target Data Specifies the data that you want to transfer to the OLE
object.

Populating the Group
By and Target Data
boxes

If you are using the OLE presentation style, you populated the Group By and
Target Data boxes when you created the DataWindow object. If you placed an
OLE object in an existing DataWindow object, the boxes are empty. You use
the browse buttons next to the Group By and Target Data boxes to open dialog
boxes where you can select the data you want to use or modify your selections.

Modifying source data
You cannot modify the source data for the DataWindow object on the Data
property page. Select Design>Data Source from the menu bar if you need to
modify the data source.

❖ To select or modify how data will be grouped in the OLE object:

1 Click the Browse button next to the Group By box.

2 In the Modify Group By dialog box, drag one or more columns from the
Source Data box to the Group By box.

You can rearrange columns and specify an expression instead of the
column name if you need to. For more information, see the next procedure.

❖ To select or modify which data columns display in the OLE object:

1 Click the Browse button next to the Target Data box.

2 In the Modify Target Data dialog box, drag one or more columns from the
Source Data box to the Target Data box.

The same source column can appear in both the Group By and Target Data
box.

OLE objects and the OLE presentation style

872 PowerBuilder Classic

3 If necessary, change the order of columns by dragging them up or down
within the Target Data box.

The order of the columns and expressions is important to the OLE server.
You need to know how the server will use the data to choose the order.

4 Double-click an item in the Target Data box to specify an expression
instead of a column.

In the Modify Expression dialog box, you can edit the expression or use
the Functions or Columns boxes and the operator buttons to select
elements of the expression. For example, you may want to specify an
aggregation function for a column. Use the range for object if you use
an aggregation function; for example, sum (salary for object).

For more information about using operators, expressions, and functions,
see the DataWindow Reference.

Example of a completed Data property page This example of the Data
property page specifies two columns to transfer to Microsoft Graph: city and
salary. Graph expects the first column to be the categories and the second
column to be the data values. The second column is an aggregate so that the
graph will show the sum of all salaries in each city:

Specifying a value for
Rows

The last setting on the Data property page specifies how the OLE object is
associated with rows in the DataWindow object. The selection (all rows,
current row, or page) usually corresponds with the band where you placed the
OLE object, as explained in this table. If you used the OLE presentation style
to create the DataWindow object, this setting does not display on the property
page: the OLE object is always associated with all the rows in the DataWindow
object.

CHAPTER 31 Using OLE in a DataWindow Object

Users Guide 873

Table 31-1: Associating an OLE object with rows in the DataWindow

Range of rows and activating the object
When the range of rows is Current Row or Page, the user cannot activate the
OLE object. The user can see contents of the object in the form of an image
presented by the server but cannot activate it.

If you want the user to activate the object, Rows must be set to All and Layer
on the Position property page must be Foreground or Background.

Additional settings in
the Properties view

The Options property page in the OLE object’s Properties view has some
additional settings. They are similar to the settings you can make for the OLE
control in a window. These settings display on the General property page for
OLE DataWindow objects. Table 31-2 describes the settings you can make.

Table 31-2: Settings on the OLE object’s Options property page

Range of rows When to use it

All When the OLE object is in the summary, header, or footer band,
or the foreground or background layer.

Rows must be All and Layer must be Foreground or Background
if you want the user to be able to activate the object.

Target data for all rows is transferred to the object.

Current Row When the OLE object is in the detail band.

There is an instance of the OLE object for every row. Target data
for a single row is transferred to each object.

Because ActiveX controls must be in the foreground or
background layer, they cannot be associated with individual rows
in the detail band.

Page When the OLE object is in the group header or trailer,
foreground, or background.

Target data for the rows on the current page is transferred to the
OLE object.

Property Effect

Client Name A name for the OLE object that some server applications use
in the title bar of their window.

Corresponds to the ClientName DataWindow property.

OLE objects and the OLE presentation style

874 PowerBuilder Classic

Previewing the DataWindow object
Previewing the DataWindow object lets you see how the OLE object displays
the data from the DataWindow object. You can preview in the Preview view or
in preview mode

❖ To preview the DataWindow object with the OLE object in preview mode:

1 Select File>Run/Preview from the menu bar, or click the Run/Preview
button on the PowerBar.

2 Select Rows>Retrieve from the menu bar.

The DataWindow object retrieves rows from the database and replaces the
initial presentation of the OLE object with an image of the data that the
OLE server provides.

Activation How the OLE object is activated. Choices are:

• Double click When the user double-clicks on the object,
the server application is activated.

• Manual The object can only be activated
programmatically.

The object can always be activated programmatically,
regardless of the Activation setting.

Contents Whether the object in the OLE container is linked or
embedded. The default is Any, which allows either method.

Display Type What the OLE container displays. You can choose:

• Manual Display a representation of the object, reduced
to fit within the container.

• Icon Display the icon associated with the data. This is
usually an icon provided by the server application.

Link Update When the object in the OLE container is linked, the method
for updating link information. Choices are:

• Automatic If the link is broken and PowerBuilder
cannot find the linked file, it displays a dialog box in
which the user can specify the file.

• Manual If the link is broken, the object cannot be
activated.

You can let the user re-establish the link in a script using
the UpdateLinksDialog function.

Property Effect

CHAPTER 31 Using OLE in a DataWindow Object

Users Guide 875

3 If you associated the OLE object with all rows, activate the OLE object by
double-clicking on it.

Although you can edit the presentation or the data in the server, your
changes do not affect the DataWindow object’s data.

You cannot always activate the OLE object
If the OLE object is associated with individual rows in the detail band or
with the page, you (and the user) cannot activate it; you can only view it.

4 Close the preview window.

Closing the preview window or the Preview view deactivates the OLE
object.

Activating and editing the OLE object
In the Design view PowerBuilder stores an initial presentation of the OLE object that it displays

before data is retrieved and in newly inserted rows. When you activate the OLE
object in the Design view, you are editing the initial presentation of the OLE
object. Any changes you make and save affect only this initial presentation.
After rows are retrieved and data transferred to the OLE object, an object built
using the data replaces the initial presentation.

In preview or at
execution time

PowerBuilder displays the initial presentation of the OLE object while it is
retrieving rows and then replaces it with the retrieved data.

 After you activate the OLE object in preview or at execution time, you can edit
the presentation of the data. However, you cannot save these changes. The
object is recreated whenever data from retrieved rows is transferred to the OLE
object.

For more information, see “Activating OLE objects” on page 864.

Saving as a PSR
You can save the object with its data by saving the DataWindow object as a
Powersoft report (PSR). Select File>Save As File or File>Save Rows As from
the menu bar.

Using OLE columns in a DataWindow object

876 PowerBuilder Classic

❖ To activate the OLE object in the container in the Design view:

• Select Open from the container’s pop-up menu.

Selecting Open from an ActiveX control’s pop-up menu has no effect.
ActiveX controls are always active.

Changing the object in the control
In the DataWindow painter, you can change or remove the OLE object in the
OLE container object.

❖ To delete the OLE object in the container:

• Select Delete from the container’s pop-up menu.

The container object is now empty and cannot be activated.

❖ To change the OLE object in the container:

1 Select Insert from the container’s pop-up menu.

PowerBuilder displays the Insert Object dialog box.

2 Choose one of the tabs and specify the type of object you want to insert,
as you did when you defined the object.

3 Click OK.

Using OLE columns in a DataWindow object
You can create OLE columns in a DataWindow object. An OLE column allows
you to:

• Store blob (binary large-object) data, such as Microsoft Excel worksheets
or Microsoft Word documents, in the database

• Retrieve blob data from a database into a DataWindow object

• Use an OLE server application, such as Microsoft Excel or Microsoft
Word, to modify the data

• Store the modified data back in the database

CHAPTER 31 Using OLE in a DataWindow Object

Users Guide 877

You can modify the document in the server, then update the data in the
DataWindow object. When the database is updated, the OLE column, which
contains the modified document, is stored in the database.

Database support for OLE columns
If your database supports a blob datatype, then you can implement OLE
columns in a DataWindow object. The name of the datatype that supports blob
data varies. For information on which datatypes your DBMS supports, see your
DBMS documentation.

Creating an OLE column
This section describes how to create an OLE column in a DataWindow object.
The steps are illustrated using a table that you can create in the Database
painter. It must contain at least two columns, id and object:

• The id column is an integer and serves as the table’s key.

• The object column is a blob datatype and contains OLE objects associated
with several OLE servers.

❖ To create the database table:

1 In the Database painter, create a table to hold the blob (binary large-object)
data.

The table must have at least two columns: a key column and a column with
the blob datatype. The actual datatype you choose depends on your DBMS.
For example, in SQL Anywhere, choose long binary as the datatype for the
blob column. For information about datatypes, see your DBMS
documentation.

2 Define the blob columns as allowing NULLs (this allows you to store a row
that does not contain a blob).

Adding a blob column
to the DataWindow
object

The following procedure describes how to add a blob column to a DataWindow
object.

❖ To add a blob column to a new DataWindow object:

1 Create a new DataWindow object.

Using OLE columns in a DataWindow object

878 PowerBuilder Classic

2 Specify the table containing the blob as the data source for the
DataWindow object.

Be sure to include the key column in the data source. You cannot include
the blob column in the data source; if you try, a message tells you that its
datatype requires the use of an embedded SQL statement. You add the blob
column later in the DataWindow painter workspace. (If you use Quick
Select, the blob column is not listed in the dialog box.)

3 Select Insert>Control>OLE Database Blob and click where you want the
blob column in the Design view.

The Database Binary/Text Large Object dialog box displays:

Setting properties for
the blob column

The following procedure describes the properties you need to set for the blob
column.

❖ To set properties for a blob column:

1 (Optional) Enter the client class in the Client Class box. The default is
DataWindow.

This value is used in some OLE server applications to build the title that
displays at the top of the server window.

2 (Optional) Enter the client name in the Client Name box. The default is
Untitled.

This value is used in some OLE server applications to build the title that
displays in the title bar of the server window.

CHAPTER 31 Using OLE in a DataWindow Object

Users Guide 879

3 In the Table box, select the database table that contains the blob database
column you want to place in the DataWindow object.

The names of the columns in the selected table display in the Large
Binary/Text Columns list.

4 In the Large Binary/Text Columns box, select the column that contains the
blob datatype from the list.

5 If necessary, change the default key clause in the Key Clause box.

PowerBuilder uses the key clause to build the WHERE clause of the
SELECT statement used to retrieve and update the blob column in the
database. It can be any valid WHERE clause.

Use colon variables to specify DataWindow columns. For example, if you
enter this key clause:

id = :id

the WHERE clause will be:

WHERE id = :id

6 Identify the OLE server application by doing one of the following:

• If you always want to open the same file in the OLE server
application, enter the name of the file in the File Template box.

For example, to specify a particular Microsoft Word document, enter
the name of the DOC file. If the file is not on the current path, enter
the fully qualified name.

Use the Browse button to find the file
If you do not know the name of the file you want to use, click the
Browse button to display a list of available files. Select the file you
want from the resulting window.

• If you do not want to open the same file each time, select an OLE
server application from the OLE Class: Description drop-down list.

When the server does not match the OLE blob data
If you specify a server that does not match the OLE blob object or if
your database contains objects belonging to different servers, the
OLE mechanism can usually handle the situation. It looks for the
server specified in the object and starts it instead of the server you
specified.

Using OLE columns in a DataWindow object

880 PowerBuilder Classic

7 Enter text or an expression that evaluates to a string in the Client Name
Expression box.

The server might use this expression in the title of the window in the OLE
server application. The expression you specify can identify the current row
in the DataWindow object.

Use an expression to make sure the name is unique
To make sure the name is unique, you should use an expression. For
example, you might enter the following expression to identify a document
(where id is the integer key column):

"Document " + String(id)

8 Click OK.

PowerBuilder closes the dialog box. The blob column is represented by a
box labeled Blob in the Design view.

9 Save the DataWindow object.

The following screenshot shows what a completed Definition page for a Blob
object in a table called ole looks like in the Properties view:

Making the blob
column visible

If the blob column is invisible in the DataWindow object until you activate the
OLE server, you can make it easy to find the blob column by adding a border
to the object.

Previewing an OLE
column

Before using the DataWindow object in an application, you should preview it
in the Preview view or in preview mode to see how it works.

CHAPTER 31 Using OLE in a DataWindow Object

Users Guide 881

❖ To preview an OLE column in preview mode:

1 Select File>Run/Preview from the menu bar and select the DataWindow
object.

2 Click the Insert Row button.

PowerBuilder adds a blank row.

3 In the blank row, enter a value in the key column.

4 Double-click the column that contains the blob datatype.

The OLE server application starts and displays the file you specified in the
File Template box, or an empty workspace if you specified only the OLE
server name.

5 Review the file in the OLE server application and make changes if you
want.

When you use an OLE column to access an OLE server application, the
server application adds an item to its File menu that allows you to update
the data in the server application and in the client (the DataWindow
object). The text of the menu item depends on the OLE server application.
In most applications, it is Update.

6 Select the menu item in the OLE server that updates the OLE client with
the modifications.

In the example, you would select Update from the File menu in Microsoft
Word. The OLE server application sends the updated information to the
DataWindow object.

7 Close the file in the server application (typically by selecting Close from
the File menu).

8 To save the blob data in the database, click the Save Changes button in the
PainterBar.

The new row, including the key value and the blob, is stored in the
database.

Later, after you retrieve the rows from the database, you can view and edit the
blob by double-clicking it, which invokes the OLE server application and
opens the stored document. If you make changes and then update the database,
all the modified OLE columns are stored in the database.

Using OLE columns in a DataWindow object

882 PowerBuilder Classic

P A R T 7 Running Your Application

This part describes the ways in which your application can
be run. The first chapter describes how to run your
application from within PowerBuilder: in debug mode,
where you can set breakpoints and examine the state of
your application as it executes, and in regular mode,
where the application runs until you stop it or an error
occurs. The second chapter describes how to collect trace
information so that you can analyze performance and
evaluate your application’s structure. The third chapter
describes how to build your application for distribution to
users.

C H A P T E R 3 2 Debugging and Running
Applications

About this chapter This chapter describes how to debug and run an application in
PowerBuilder. The chapter also lists the errors that can occur at runtime.

Contents

Overview of debugging and running applications
After you build all or part of an application and compile and save its
objects, you can run the application. The PowerBuilder development
environment provides two ways to run an application: in debug mode and
in regular mode.

Debug mode In debug mode, you can insert breakpoints (stops) in scripts and functions,
single-step through code, and display the contents of variables to locate
logic errors that will result in errors at runtime.

Regular mode In regular mode, the application responds to user interaction and runs until
the user stops it or until a runtime error occurs. This is the mode you and
your users will use to run the completed application.

You can also collect trace information while you run your application in
regular mode, then use the trace data to profile your application. For more
information, see Chapter 33, “Tracing and Profiling Applications.”

This chapter describes:

• Running applications in debug mode

• Running applications in regular mode

Topic Page

Overview of debugging and running applications 885

Debugging an application 886

Running an application 909
Users Guide 885

Debugging an application
Debugging an application
Sometimes an application does not behave the way you think it will. Perhaps a
variable is not being assigned the value you expect, or a script does not perform
as desired. In these situations, you can examine your application by running it
in debug mode.

When you run the application in debug mode, PowerBuilder stops execution
before it executes a line containing a breakpoint (stop). You can then step
through the application and examine its state.

Debugging components and .NET applications
Before you can debug a server component or .NET application, you must
deploy it. For more information about debugging server components, see
Application Techniques. For information about debugging .NET applications
and components, see Deploying Applications and Components to .NET.

❖ To debug an application:

1 Open the debugger.

2 Set breakpoints at places in the application where you have a problem.

3 Run the application in debug mode.

4 When execution is suspended at a breakpoint, look at the values of
variables, examine the properties of objects in memory and the call stack,
or change the values of variables.

5 Step through the code line by line.

6 As needed, add or modify breakpoints as you run the application.

7 When you uncover a problem, fix your code and run it in the debugger
again.

Debugging distributed and .NET applications
Before you can debug a PowerBuilder component deployed to an application
server or an application or component deployed to the .NET Framework, you
must deploy it. For more information, see the chapter on building EAServer
components in Application Techniques and the section on debugging .NET
applications in Deploying Applications and Components to .NET.
886 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
Starting the debugger

❖ To open the debugger:

• Do one of the following:

• In the System Tree, highlight a target and select Debug from the
pop-up menu

• Click the Debug or Select and Debug button on the PowerBar

• Select Run>Debug or Run>Select and Debug from the menu bar

The Debug button opens the debugger for the the current target. The
current target displays in bold in the System Tree and its name displays in
the Debug button tool tip. The Select and Debug button opens a dialog box
that lets you select the target to be debugged.

Views in the debugger The debugger contains several views. Each view shows a different kind of
information about the current state of your application or the debugging
session. Table 32-1 summarizes what each view shows and what you can do
from that view.

Table 32-1: Views in the debugger

View What it shows What you can do

Breakpoints A list of breakpoints with
indicators showing whether
the breakpoints are
currently active or inactive

Set, enable, disable, and clear
breakpoints, set a condition for a
breakpoint, and show source for a
breakpoint in the Source view.

Call Stack The sequence of function
calls leading up to the
function that was executing
at the time of the
breakpoint, shown as the
script and line number from
which the function was
called

Examine the context of the
application at any line in the call
stack.

Instances Instances of remote objects
and their current status

Change the context of the
debugging session to a different
instance. This view has content
only if you are debugging a remote
component.
Users Guide 887

Debugging an application
Changing Variable
views

The default debugger layout contains a separate view for each variable type in
a stacked pane. You can combine two or more Variables views in a single pane.
For example, you might want to combine local and global variables in a single
view that you keep at the top of the stacked pane.

❖ To display multiple variable types in a single view:

1 Display the pop-up menu for a pane that contains a Variables view you
want to change.

2 Click the names of the variable types you want to display.

A check mark displays next to selected variable types. The pop-up menu
closes each time you select a variable type or clear a check mark, so you
need to reopen the menu to select an additional variable type.

Objects in
Memory

An expandable list of
objects currently in
memory

View the names and memory
locations of instances of each
memory object and property
values of each instance. This view
is not used if you are debugging a
remote component.

Source The full text of a script Go to a specific line in a script,
find a string, open another script,
including ancestor and descendent
scripts, manage breakpoints, and
use TipWatch and QuickWatch.

Source Browser An expandable hierarchy of
objects in your application

Select any script in your
application and display it in the
Source view.

Source History A list of the scripts that
have been displayed in the
Source view

Select any script in the Source
History and display it in the
Source view.

Variables An expandable list of all the
variables in scope

Select which kinds of variables are
shown in the view, change the
value of a variable, and set a
breakpoint when a variable
changes. You cannot change the
value of a variable in a remote
component.

Watch A list of variables you have
selected to watch as the
application proceeds

Change the value of a variable, set
a breakpoint when a variable
changes, and add an arbitrary
expression to the Watch view.

View What it shows What you can do
888 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
When you select or clear variable types, the tab for the pane changes to
show the variable types displayed on that pane.

Setting breakpoints
A breakpoint is a point in your application code where you want to interrupt
the normal execution of the application while you are debugging. If you
suspect a problem is occurring in a particular script or function call, set a
breakpoint at the beginning of the script or at the line where the function is
called.

When you close the debugger, any breakpoints you set are written to a file
called targetname.usr.opt in the same directory as the target, where targetname
is the name of the target. The breakpoints are available when you reopen the
debugger. When you clear breakpoints, they are permanently removed from the
usr.opt file (if it is not marked readonly).

Sharing targets
If multiple developers use the same target without using source control (a
practice that is not recommended) individual developers can save the
breakpoints they set in a separate file by adding the following entry to the [pb]
section of their pb.ini file:

UserOptionFileExt=abc

where abc might be the developer’s name or initials. Breakpoints set by the
developer would be saved in a file called appname_abc.usr.opt.

Setting a simple
breakpoint

This procedure describes setting a breakpoint in the Source view in the
debugger. You can also set a breakpoint by selecting Add Breakpoint from the
pop-up menu in the Script view when you are not running the debugger.

❖ To set a breakpoint on a line in a script:

1 Display the script in a Source view and place the cursor where you want
to set the breakpoint.

For how to change the script shown in the Source view, see “Using the
Source view” on page 900.
Users Guide 889

Debugging an application
2 Double-click the line or select Add Breakpoint from the pop-up menu.

PowerBuilder sets a breakpoint and a red circle displays at the beginning
of the line. If you select a line that does not contain executable code,
PowerBuilder sets the breakpoint at the beginning of the next executable
statement.

Setting special
breakpoints

Breakpoints can be triggered when a statement has been executed a specified
number of times (an occasional breakpoint), when a specified expression is
true (a conditional breakpoint), or when the value of a variable changes.

You use the Edit Breakpoints dialog box to set and edit occasional and
conditional breakpoints. You can also use it to set a breakpoint when the value
of a variable changes. The Edit Breakpoints dialog box opens when you:

• Click the Edit Stop button on the PainterBar

• Select Breakpoints from the pop-up menu in the Source, Variables, Watch,
or Breakpoints view

• Select Edit>Breakpoints from the menu bar

• Double-click a line in the Breakpoints view

Setting occasional
and conditional
breakpoints

If you want to check the progress of a loop without interrupting execution in
every iteration, you can set an occasional breakpoint that is triggered only after
a specified number of iterations. To specify that execution stops only when
conditions you specify are met, set a conditional breakpoint. You can also set
both occasional and conditional breakpoints at the same location.

• If you specify an occurrence Each time PowerBuilder passes through
the specified location, it increments a counter by one. When the counter
reaches the number specified, it triggers the breakpoint and resets the
counter to zero.

• If you specify a condition Each time PowerBuilder passes through the
specified location, it evaluates the expression. When the expression is true,
it triggers the breakpoint.

• If you specify both an occurrence and a condition Each time
PowerBuilder passes through the specified location, it evaluates the
expression. When the expression is true, it increments the counter. When
the counter reaches the number specified, it triggers the breakpoint and
resets the counter to zero.
890 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
For example, if you specify an occurrence of 3 and the condition
notisNull(val), PowerBuilder checks whether val is NULL each time
the statement is reached. The breakpoint is triggered on the third
occurrence of a non-NULL val, then again on the sixth occurrence, and so
forth.

❖ To set an occasional or conditional breakpoint:

1 On the Location tab in the Edit Breakpoints dialog box, specify the script
and line number where you want the breakpoint.

You can select an existing location or select New to enter a new location.

Set a simple breakpoint first
You must specify a line that contains executable code. Set a simple
breakpoint on the line before opening the Edit Breakpoints dialog box to
ensure the format and line number are correct.

2 Specify an integer occurrence, a condition, or both.

The condition must be a valid boolean PowerScript expression (if it is not,
the breakpoint is always triggered). PowerBuilder displays the breakpoint
expression in the Edit Breakpoints dialog box and in the Breakpoints view.
When PowerBuilder reaches the location where the breakpoint is set, it
evaluates the breakpoint expression and triggers the breakpoint only when
the expression is true.

Setting a breakpoint
when a variable
changes

You can interrupt execution every time the value of a variable changes. The
variable must be in scope when you set the breakpoint.

❖ To set a breakpoint when a variable changes:

• Do one of the following:

• Select the variable in the Variables view or Watch view and select
Break on Change from the pop-up menu.

• Drag the variable from the Variables view or Watch view to the
Breakpoints view.

• Select New on the Variable tab in the Edit Breakpoints dialog box and
specify the name of a variable in the Variable box.

The new breakpoint displays in the Breakpoints view and in the Edit
Breakpoints dialog box if it is open. PowerBuilder watches the variable at
runtime and interrupts execution when the value of the variable changes.
Users Guide 891

Debugging an application
Disabling and clearing
breakpoints

If you want to bypass a breakpoint for a specific debugging session, you can
disable it and then enable it again later. If you no longer need a breakpoint, you
can clear it.

❖ To disable a breakpoint:

• Do one of the following:

• Click the red circle next to the breakpoint in the Breakpoints view or
Edit Breakpoints dialog box

• Select Disable Breakpoint from the pop-up menu in the Source view

• Select Disable from the pop-up menu in the Breakpoints view

The red circle next to the breakpoint is replaced with a white circle.

You can enable a disabled breakpoint from the pop-up menus or by
clicking the white circle.

Disabling all breakpoints
To disable all breakpoints, select Disable All from the pop-up menu in the
Breakpoints view.

❖ To clear a breakpoint:

• Do one of the following:

• Double-click the line containing the breakpoint in the Source view

• Select Clear Breakpoint from the pop-up menu in the Source view

• Select Clear from the pop-up menu in the Breakpoints view

• Select the breakpoint in the Edit Breakpoints dialog box and select
Clear

The red circle next to the breakpoint disappears.

Clearing all breakpoints
To clear all breakpoints, select Clear All in the Edit Breakpoints dialog box or
from the pop-up menu in the Breakpoints view.
892 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
Running in debug mode
After you have set some breakpoints, you can run the application in debug
mode. The application executes normally until it reaches a statement
containing a breakpoint. At this point it stops so that you can examine the
application. After you do so, you can single-step through the application,
continue execution until execution reaches another breakpoint, or stop the
debugging run so that you can close the debugger and change the code.

❖ To run an application in debug mode:

1 If necessary, open the debugger by clicking the Debug or Select and Debug
button.

The Debug button opens the debugger for the target you last ran or
debugged. Use the Select and Debug button if you want to debug a
different target in the workspace.

2 Click the Start button in the PainterBar or select Debug>Start from the
menu bar.

The application starts and runs until it reaches a breakpoint. PowerBuilder
displays the debugger, with the line containing the breakpoint displayed in
the Source view. The yellow arrow cursor indicates that this line contains
the next statement to be executed. You can now examine the application
using debugger views and tools.

For more information, see “Examining an application at a breakpoint” on
page 894 and “Stepping through an application” on page 902.

❖ To continue execution from a breakpoint:

• Click the Continue button in the PainterBar or select Debug>Continue
from the menu bar

Execution begins at the statement indicated by the yellow arrow cursor
and continues until the next breakpoint is hit or until the application
terminates normally.

❖ To terminate a debugging run at a breakpoint:

• Click the Stop Debugging button in the PainterBar or select Debug>Stop
from the menu bar

PowerBuilder resets the state of the application and all the debugger views
to their state at the beginning of the debugging run. You can now begin
another run in debug mode, or close the debugger.
Users Guide 893

Debugging an application
Cleaning up
When you terminate a debugging run or close the debugger without
terminating the run, PowerBuilder executes the application’s close event and
destroys any objects, such as autoinstantiated local variables, that it would have
destroyed if the application had continued to run and exited normally.

Examining an application at a breakpoint
When an application is suspended at a breakpoint, use QuickWatch, TipWatch,
and the Variables, Watch, Call Stack, and Objects in Memory views to examine
its state.

About icons used in debugging views
The Variables, Watch, and Objects in Memory views use many of the icons
used in the PowerBuilder Browser as well as some additional icons: I
represents an Instance; F, a field; A, an array; and E, an expression.

Examining variable values

The debugger provides three different ways to examine the values of variables:
TipWatch, QuickWatch, and the Variables view.

TipWatch TipWatch is a quick way to get the current value of a variable of a simple
datatype. When execution stops at a breakpoint, you can place the edit cursor
over a variable in the Source view to display a pop-up tip window that shows
the current value of that variable. You can also select a simple expression to
display its current value.

TipWatch has some limitations: if the variable you select is an object type, the
tip window shows only an internal identifier. For array types, it shows {...}
to indicate that more information is available. To show complete information
for object type and array type variables, use QuickWatch instead.

TipWatch does not evaluate function, assignment, or variable value
modification expressions. If TipWatch cannot parse the string you select, the
pop-up window does not display.
894 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
Remote debugging
When you are debugging a remote component, Tip Watch does not evaluate
expressions or indirect variables.

QuickWatch QuickWatch provides the current value of simple variables and detailed
information about object variables, including the values of all fields in the
variable. QuickWatch can also evaluate function expressions, and you can use
it to change the values of variables, evaluate expressions, and add variables and
expressions to the Watch view.

Exercise caution when evaluating expressions
QuickWatch evaluates all kinds of expressions, including functions, in local
debugging. If you select a function and activate QuickWatch, the function is
executed. This may have unexpected results. For example, if you select
dw_1.print() and activate QuickWatch, the DataWindow is printed.

❖ To open the QuickWatch dialog box:

• When execution stops at a breakpoint, move the edit cursor to a variable
or select an expression in the Source view, and do one of the following:

• Select QuickWatch from the Debug or pop-up menu

• Press Shift+F9

❖ To change the value of a variable from the QuickWatch dialog box:

1 Select an item in the tree view and do one of the following:

• Click Change Value

• Double-click the tree view item

2 In the Modify Variable dialog box, type a new value for the variable in the
New Value box, or select the Null check box to set the value of the variable
to null, and click OK.

3 Close the QuickWatch dialog box and continue debugging the application
with the variable set to the new value.

❖ To evaluate an expression in the QuickWatch dialog box and add it to
the Watch view:

1 Change the variable or expression in the Expression box.

2 Click Reevaluate to display the new value in the tree view.

3 (Optional) Click Add Watch to add the expression to the Watch view.
Users Guide 895

Debugging an application
Remote debugging
When you are debugging a remote component, expressions and indirect
variables are not evaluated, and you cannot modify variable values.

Using Variables views Each Variables view shows one or more types of variables in an expandable
outline. Double-click the variable names or click on the plus and minus signs
next to them to expand and contract the hierarchy. If you open a new Variables
view, it shows all variable types.

Table 32-2: Variable views in the debugger

.NET targets
Variables that have been declared or declared and initialized but not used in a
.NET application are discarded when the application is deployed to .NET. As
a result, information about unused variables is not displayed in the debugger..

Variable type What the Variables view shows

Local Values of variables that are local to the current script or function

Global Values of all global variables defined for the application and
properties of all objects (such as windows) that are open

Instance Properties of the current object instance (the object to which the
current script belongs) and values of instance variables defined for
the current object

Parent Properties of the parent of the current instance

Shared Objects, such as application, window, and menu objects, that have
been opened and the shared variables associated with them
896 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
About Instance and
Parent variables

In the following illustration, an application has stopped at a breakpoint in the
script for the Clicked event for the Close menu item on a frame’s File menu.
The Instance Variables view shows the properties of the current instance of the
Close menu item. The Parent Variables view shows the properties of its parent,
an instance of the File menu. Navigating through the hierarchy in the Global
Variables view shows the same objects.

Watching variables and expressions

The Watch view lets you monitor the values of selected variables and
expressions as the application runs.

If the variable or expression is in scope, the Watch view shows its value. Empty
quotes indicate that the variable is in scope but has not been initialized. A pair
of glasses in the Watch view indicates that the variable or expression is not in
scope.
Users Guide 897

Debugging an application
Setting variables and
expressions in the
Watch view

You can select variables you want to watch as the application runs by copying
them from a Variables view. You can also set a watch on any PowerScript
expression. When you close the debugger, any watch variables and expressions
you set are saved.

Using QuickWatch
You can also add variables and expressions to the Watch view from the
QuickWatch dialog box. See “QuickWatch” on page 895.

❖ To add a variable to the Watch view:

1 Select the variable in the Variables view.

2 Do one of the following:

• Drag the variable to the Watch view

• Click the Add Watch button on the PainterBar

• Select Debug>Add Watch from the menu bar

PowerBuilder adds the variable to the watch list.

❖ To add an expression to the Watch view:

1 Select Insert from the pop-up menu.

2 Type any valid PowerScript expression in the New Expression dialog box
and click OK.

PowerBuilder adds the expression to the watch list.

❖ To edit a variable in the Watch view:

1 Select the variable you want to edit.

2 Double-click the variable, or select Edit Variable from the pop-up menu.

3 Type the new value for the variable in the Modify Variable dialog box and
click OK.

❖ To edit an expression in the Watch view:

1 Select the expression you want to edit.

2 Double-click the expression, or select Edit Expression from the pop-up
menu.

3 Type the new expression in the Edit Expression dialog box and click OK.
898 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
❖ To clear variables and expressions from the Watch view:

1 Select the variable or expression you want to delete.

2 Do one of the following:

• Select Clear from the pop-up menu

• Click the Remove Watch button on the PainterBar

• Select Debug>Remove Watch from the menu bar

❖ To clear all variables and expressions from the Watch view:

• Select Clear All from the pop-up menu

Monitoring the call stack

The Call Stack view shows the sequence of function calls leading up to the
script or function that was executing at the time of the breakpoint. Each line in
the Call Stack view displays the name of the script and the line number from
which the call was made. The yellow arrow shows the script and line where
execution was suspended.

You can examine the context of the application at any line in the call stack.

❖ To show a different context from the Call Stack view:

1 Select a line in the Call Stack view.

2 Do one of the following:

• Double-click the line

• Select Set Context from the pop-up menu

• Drag the line into the Source view

A green arrow indicates the script that you selected. The Source view
shows the script and line number you selected, and the Variables and
Watch views show the variables and expressions in scope in that context.
Users Guide 899

Debugging an application
Examining objects in memory

The Objects in Memory view shows an expandable list of objects currently in
memory. Double-click the name of an object or click the plus sign next to it to
view the names and memory locations of instances of each object and property
values of each instance.

Using the Source view

The Source view displays the full text of a script. As you run or step through
the application, the Source view is updated to show the current script with a
yellow arrow indicating the next statement to be executed.

Multiple Source views You can open more than one source view. If there are multiple source views
open, only the first one opened is updated to show the current script when the
context of an application changes.

Copying from the
Source view

When text is selected in the Source view, you can select Copy from the pop-up
menu in the Source view to copy the string to the clipboard. You can then paste
the string into another dialog box to search for the string, insert a watch, or add
a conditional breakpoint.

Changing the Source
view

From the pop-up menu, you can navigate backward and forward through the
scripts that have been opened so far, open ancestor and dependent scripts, and
go to a specific line in the current script. There are several other ways to change
the script from other views or from the menu bar.

❖ To change the script displayed in a Source view:

• Do one of the following:

• Drag the name of a script to the Source view from the Call Stack,
Source Browser, or Source History views

• Select a line and then select Open Source from the pop-up menu in the
Breakpoints, Source Browser, or Source History views

• Select Edit>Select Script from the menu bar
900 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
❖ To find a specified string in the Source view:

1 Select Find from the pop-up menu, or select Edit>Find from the menu bar.

The Find Text dialog box opens.

2 Type the string in the Find box and check the search options you want.

Using the Source Browser view

The Source Browser shows all the objects in your application in an expandable
hierarchy. It provides a view of the structure of the application and a quick way
to open any script in the Source view.

❖ To open a script from the Source Browser:

1 Double-click the object that the script belongs to or click the plus sign next
to the object to expand it.

2 Do one of the following:

• Double-click the script

• Select the script and select Open Source from the pop-up menu

• Drag the script onto a Source view

When you double-click or select Open Source, a new Source view opens
if there was none open. If several Source views are open, the script
displays in the view that was used last.

Using the Source History view

The Source History view lists all the scripts that have been opened in the
current debugging session. Use the same techniques as in the Source Browser
view to display a selected script in the Source view.

Source History limit
The Source History view shows up to 100 scripts and is not cleared at the end
of each debugging run. It is cleared when you close the debugger, or you can
clear the list from the pop-up menu.
Users Guide 901

Debugging an application
Stepping through an application
When you have stopped execution at a breakpoint, you can use several
commands to step through your application code and use the views to examine
the effect of each statement. As you step through the code, the debugger views
change to reflect the current context of your application and a yellow arrow
cursor indicates the next statement to be executed.

Updating the Source view
When the context of your application changes to another script, the Source
view is updated with the new context. If you have multiple Source views open,
only the first one opened is updated.

Single-stepping
through an application

You can use either Step In or Step Over to step through an application one
statement at a time. They have the same result except when the next statement
contains a call to a function. Use Step In if you want to step into a function and
examine the effects of each statement in the function. Use Step Over to execute
the function as a single statement.

❖ To step through an application entering functions:

• Click the Step In button in the PainterBar, or select Debug>Step In from
the menu bar.

❖ To step through an application without entering functions:

• Click the Step Over button in the PainterBar, or select Debug>Step Over
from the menu bar.

Using shortcut keys
To make it easier to step through your code, the debugger has standard
keyboard shortcuts for Step In, Step Out, Step Over, Run To Cursor, and
Continue. If you prefer to use different shortcut key combinations, select
Tools>Keyboard Shortcuts to define your own.

Stepping out of a
function

If you step into a function where you do not need to step into each statement,
use Step Out to continue execution until the function returns.

❖ To step out of a function:

• Click the Step Out button in the PainterBar, or select Debug>Step Out
from the menu bar.
902 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
Stepping through
multiple statements

As you step through an application, you might reach sections of code that you
are not interested in examining closely. The code might contain a large loop, or
it might be well-tested code that you are confident is free of errors. You can use
Run To Cursor to select a statement further down in a script or in a subsequent
script where you want execution to stop.

❖ To step through multiple statements:

1 Click on the line in the script where you want to resume single stepping.

2 Click the Run To Cursor button in the PainterBar, or select Debug>Run To
Cursor from the menu bar.

PowerBuilder executes all intermediate statements and the yellow arrow
cursor displays at the line where you set the cursor.

Bypassing statements You can use Set Next Statement to bypass a section of code that contains a bug,
or to test part of an application using specific values for variables. Execution
continues from the statement where you place the cursor. Be cautious when you
use Set Next Statement, because results may be unpredictable if, for example,
you skip code that initializes a variable.

❖ To set the next statement to be executed:

1 Click on the line in the script where you want to continue execution.

2 Click the Set Next Statement button in the PainterBar, or select
Debug>Set Next Statement from the menu bar.

3 If necessary, change the values of variables.

4 Continue execution using Continue, Step In, or Step Over.

If you select Continue, PowerBuilder begins execution at the statement
you specified and continues to the next breakpoint. If you select Step In or
Step Over, PowerBuilder sets the next statement and displays the yellow
arrow cursor at the line where you set the cursor.

Changing a variable’s
value

As you step through the application, you can change the values of variables that
are in scope. You may want to do this to examine different flows through the
application, to simulate a condition that is difficult to reach in normal testing,
or if you are skipping code that sets a variable’s value.

Limitations
You cannot change the values of enumerated variables, and you cannot change
the value of any variable when you are debugging a remote component.
Users Guide 903

Debugging an application
❖ To change the value of a variable:

1 Select the variable in the Variables view or the Watch view.

2 From the pop-up menu, select Edit Variable.

3 Type a value for the variable or select the Null check box and click OK.

The value you enter must conform to the type of the variable. If the
variable is a string, do not enclose the string in quotes. When you continue
execution, the new value is used.

Fixing your code If you find an error in a script or function during a debugging session, you must
close the debugger before you fix it. After you have fixed the problem, you can
reopen the debugger and run the application again in debug mode. The
breakpoints and watchpoints set in your last session are still defined.

Debugging windows opened as local variables
One way to open a window is by declaring a local variable of type window and
opening it through a string. For example:

window mywin
string named_window
named_window = sle_1.Text
Open(mywin, named_window)

The problem Normally, you cannot debug windows opened this way after the script ends
because the local variable (mywin in the preceding script) goes out of scope
when the script ends.

The solution If you want to debug windows opened this way, you can declare a global
variable of type window and assign it the local variable. If, for example,
GlobalWindow is a global window of type window, you could add the following
line to the end of the preceding script:

GlobalWindow = mywin

You can look at and modify the opened window through the global variable.
When you have finished debugging the window, you can remove the global
variable and the statement assigning the local to the global.
904 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
Just-in-time debugging
If you are running your application in regular mode (using the Run button) and
you notice that the application is behaving incorrectly, just-in-time debugging
lets you switch to debug mode without terminating the application.

When you open the debugger while running an application, the application
does not stop executing. The Source, Variables, Call Stack, and Objects in
Memory views are all empty because the debugger does not have any context.
To suspend execution and examine the context in a problem area, open an
appropriate script and set breakpoints, then initiate the action that calls the
script.

If just-in-time debugging is enabled and a system error occurs while an
application is running in regular mode, the debugger opens automatically,
showing the context where the error occurred.

You can also use the DebugBreak function to break into the debugger.

You must enable just-in-time debugging before you run your application to
take advantage of this feature.

❖ To enable just-in-time debugging:

1 Select Tools>System Options.

2 Check the Just In Time Debugging check box and click OK.

❖ To debug an application while running in regular mode:

1 Enable just-in-time debugging.

2 Run the application.

3 Click the PowerBuilder button on the Windows Taskbar.

4 Click the Debug button in the dialog box that displays.

5 Open a script in the Source view and set breakpoints.

The application is suspended when it hits a breakpoint and the Source,
Variable, Call Stack, and Objects in Memory views show the current
context. You can now debug the application.
Users Guide 905

Debugging an application
Using the DEBUG preprocessor symbol
You can use the syntax #IF DEFINED followed by a predefined preprocessor
symbol to mark a block of code for specialized processing before it is
compiled. The block of conditional code is automatically parsed by a
PowerBuilder preprocessor before it is passed to the compiler. Most of the
predefined preprocessor symbols are used only for .NET targets, but the
DEBUG symbol can be used in standard PowerBuilder targets as well.

The symbol is useful if you want to add code to your application to help you
debug while you are testing the application. For example, you might add a
block like the following:

#if defined DEBUG then
MessageBox("Debugging","Ctr value is " + string(i))

#end if

When you run or debug the application in the development environment, the
code is always parsed and you always see the message box. When you run the
executable file, the code is parsed only if the DEBUG symbol is enabled on the
General page in the Project painter. While you are still testing the application,
turning the DEBUG symbol can help you find differences in behavior in the
development environment and the executable file.

Although you would not typically enable the DEBUG symbol in a release
build, if a problem is reported in a production application, you can redeploy the
release build with the DEBUG symbol enabled to help determine the nature or
location of the problem.

Adding breakpoints in
a DEBUG block

When you use the DEBUG symbol, you can add breakpoints in the DEBUG
block only for lines of code that are not in an ELSE clause that removes the
DEBUG condition. If you attempt to add a breakpoint in the ELSE clause, the
debugger automatically switches the breakpoint to the last line of the clause
defining the DEBUG condition. Consider this code:

#if defined DEBUG then
/*debugging code*/

#else
/* other action*/

#end if

In this example, if you add a breakpoint to the line /* other action*/, the
breakpoint would automatically switch to the line /*debugging code*/.
906 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
Code in ELSE clause is parsed
Note that any code that you place in the ELSE clause will be parsed by the
compiler when you build an executable file with the DEBUG symbol disabled.

Pasting a DEBUG
block into a script

You can use the Paste Special>Preprocessor>#If Defined DEBUG Then pop-up
menu item in the Script view to paste a template into a script.

Limitations Conditional compilation is not supported in DataWindow syntax, structure or
menu objects. You cannot edit the source code for an object to include
conditional compilation blocks that span function, event, or variable definition
boundaries.

You must rebuild your application after you add a DEBUG conditional block.

Breaking into the debugger when an exception is thrown
When an application throws an exception while it is being debugged, the
debugger sees the exception before the program has a chance to handle it.The
debugger can allow the program to continue or it can handle the exception.
This is usually referred to as the debugger’s first chance to handle the
exception. If the debugger does not handle the exception, the program sees the
exception. If the program does not handle the exception, the debugger gets a
second chance to handle it.
Users Guide 907

Debugging an application
You can control whether the debugger handles first chance exceptions in the
Exception Setting dialog box. To open the dialog box, open the Debugger and
select Exceptions from the Debug menu. By default, all exceptions inherit from
their parent and all are set to Continue. In the following illustration, the
DivideByZeroError and DWRuntimeError exceptions have been set to “Break
into the debugger.”

When one of these exceptions is thrown, a dialog box displays so that you can
choose whether to open the debugger (Break) or pass the exception to the
program (Ignore).
908 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
Running an application
When the application seems to be working correctly, you are ready to run it in
regular mode. In regular mode, the application responds to user interaction and
continues to run until the user exits the application or a runtime error occurs.
You can rely on the default runtime error reporting by PowerBuilder or write a
script that specifies your own error processing. You can also generate a
diagnostic trace of your application's execution.

For how to analyze your application’s logic and performance, see Chapter 33,
“Tracing and Profiling Applications.”

Running distributed and .NET applications
Before you can run a PowerBuilder component deployed to an application
server or an application or component deployed to the .NET Framework, you
must deploy it. For more information, see the chapter on building EAServer
components in Application Techniques and Deploying Applications and
Components to .NET.

Running the application

❖ To run an application:

• Do one of the following:

• In the System Tree, highlight a target and select Run from the pop-up
menu

• Click the Run or Select and Run button on the PowerBar

• Select Run>Run or Run>Select and Run from the menu bar

The Run button runs the current target. The current target displays in bold
in the System Tree and its name displays in the Run button tool tip. The
Select and Run button opens a dialog box that lets you select the target to
run.

PowerBuilder becomes minimized and a button displays on the Taskbar.
Your application executes.

❖ To stop a running application:

• End the application normally, or double-click the minimized
PowerBuilder button or icon to open a response window from which you
can terminate the application.
Users Guide 909

Running an application
Handling errors at runtime
A serious error at runtime (such as attempting to access a window that has not
been opened) will trigger the SystemError event in the Application object if
you have not added exception handling code to take care of the error.

If there is no
SystemError script

If you do not write a SystemError script to handle these errors, PowerBuilder
displays a message box containing the following information:

• The number and text of the error message

• The line number, event, and object in which the error occurred

There is also an OK button that closes the message box and stops the
application.

If there is a
SystemError script

If there is a script for the SystemError event, PowerBuilder executes the script
and does not display the message box. Whether or not you have added
TRY/CATCH blocks to your code to trap errors, it is a good idea to build an
application-level script for the SystemError event to trap and process any
runtime errors that have not been handled, as described in "Using the Error
object" next.

For more information about handling exceptions, see Application Techniques.

Using the Error object In the script for the SystemError event, you can access the built-in Error object
to determine which error occurred and where it occurred. The Error object
contains the properties shown in Table 32-3.

Table 32-3: Properties of the Error object

Property Data type Description

Number Integer Identifies the PowerBuilder error.

Text String Contains the text of the error message.

WindowMenu String Contains the name of the window or menu in
which the error occurred.

Object String Contains the name of the object in which the
error occurred. If the error occurred in a window
or menu, the Object property will be the same as
the WindowMenu property

ObjectEvent String Contains the event for which the error occurred.

Line Integer Identifies the line in the script at which the error
occurred.
910 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
Defining your own Error object
You can customize your own version of the Error object by defining a class
user object inherited from the built-in Error object. You can add properties and
define object-level functions for your Error object to allow for additional
processing. In the Application painter, you can then specify that you want to
use your user object inherited from Error as the global Error object in your
application. For more information, see “Building a standard class user object”
on page 375.

Runtime error
numbers

Table 32-4 lists the runtime error numbers returned in the Number property of
the Error object and the meaning of each number:

Table 32-4: PowerBuilder runtime errors

Number Meaning

1 Divide by zero.

2 Null object reference.

3 Array boundary exceeded.

4 Enumerated value is out of range for function.

5 Negative value encountered in function.

6 Invalid DataWindow row/column specified.

7 Unresolvable external when linking reference.

8 Reference of array with null subscript.

9 DLL function not found in current application.

10 Unsupported argument type in DLL function.

11 Object file is out of date and must be converted to current version.

12 DataWindow column type does not match GetItem type.

13 Unresolved property reference.

14 Error opening DLL library for external function.

15 Error calling external function name.

16 Maximum string size exceeded.

17 DataWindow referenced in DataWindow object does not exist.

18 Function does not return value.

19 Cannot convert name in Any variable to name.

20 Database command not successfully prepared.

21 Bad runtime function reference.

22 Unknown object type.

23 Cannot assign object of type name to variable of type name.

24 Function call does not match its definition.

25 Double or Real expression has overflowed.
Users Guide 911

Running an application
26 Field name assignment not supported.

27 Cannot take a negative to a noninteger power.

28 VBX Error: name.

29 Nonarray expected in ANY variable.

30 External object does not support data type name.

31 External object data type name not supported.

32 Name not found calling external object function name.

33 Invalid parameter type calling external object function name.

34 Incorrect number of parameters calling external object function name.

35 Error calling external object function name.

36 Name not found accessing external object property name.

37 Type mismatch accessing external object property name.

38 Incorrect number of subscripts accessing external object property name.

39 Error accessing external object property name.

40 Mismatched ANY datatypes in expression.

41 Illegal ANY data type in expression.

42 Specified argument type differs from required argument type at runtime
in DLL function name.

43 Parent object does not exist.

44 Function has conflicting argument or return type in ancestor.

45 Internal table overflow; maximum number of objects exceeded.

46 Null object reference cannot be assigned or passed to a variable of this
type.

47 Array expected in ANY variable.

48 Size mismatch in array-to-object conversion.

49 Type mismatch in array-to-object conversion.

50 Distributed Service Error: name.

51 Bad argument list for function/event: name.

52 Distributed Communications Error: name.

53 The server name could not be located. It was probably not started.

54 The server name is rejecting new messages. It is in the process of
shutting down.

55 The request caused an abnormal termination. The connection has been
closed.

56 A message was not fully transmitted.

57 This connection object is not connected to a server.

58 Object instance does not exist.

Number Meaning
912 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
59 Invalid column range.

60 Invalid row range.

61 Invalid conversion of number dimensional array to object.

62 The server name is busy and not accepting new connections.

63 Function/event with no return value used in expression.

64 Object array expected on left side of assignment.

65 Dynamic function not found. Possible causes include: pass by
value/reference mismatch.

66 Invalid subscript for array index operation.

67 Null object reference cannot be assigned or passed to an autoinstantiate.

68 Null object reference cannot be passed to external DLL function name.

69 Function name cannot be called from a secured runtime session.

70 External DLL function name cannot be called from a secured runtime
session.

71 General protection fault occurred.

72 name failed with an operating system error code of number.

73 Reference parameters cannot be passed to an asynchronous
shared/remote object method.

74 Reference parameters cannot be passed to a shared object method.

75 The server has forced the client to disconnect.

76 Passing null as a parameter to external function name.

77 Object passed to shared/remote object method is not a nonvisual user
object.

78 Listening works only in the Enterprise version of PowerBuilder.

79 The argument to name must be an array.

80 The server has timed out the client connection.

81 Function argument file creator must be a four-character string.

82 Function argument file type must be a four-character string.

83 Attempt to invoke a function or event that is not accessible.

84 Wrong number of arguments passed to function/event call.

85 Error in reference argument passed in function/event call.

86 Ambiguous function/event reference.

87 The connection to the server has been lost.

88 Cannot ask for ClassDefinition Information on open painter: name.

89 5.0 style proxy objects are not supported. Copy the new style proxy that
was generated at migration time.

90 Cannot assign array of type name to variable of type array of name.

Number Meaning
Users Guide 913

Running an application
Some errors terminate the application immediately. They do not trigger the
SystemError event.

91 Cannot convert name in Any variable to name. Possible cause:
uninitialized value.

92 Required property name is missing.

93 CORBA User Exception: exceptionname.

94 CORBA System Exception: exceptionname.

95 CORBA Objects cannot be created locally.

96 Exception Thrown has not been handled.

97 Cannot save name because of a circular reference problem. Possible
causes:

1 This object references another class, which in turn references this
object.

2 Some other circular reference is pointing back to this object, causing
a deadlock condition.

Suggested actions:

1 Temporarily remove the circular reference from the referenced
object.

2 Make your required changes to this object to refer to that object.

3 Add back the circular reference you removed in step 1.

4 Perform a full rebuild (recommended).

98 Obsolete object reference.

99 Error calling method of a PBNI object.

100 Error loading library containing a PBNI object.

101 Error unloading library containing a PBNI object.

102 Error creating a PBNI object.

103 Error destroying a PBNI object.

104 Error calling PowerBuilder system function functionname.

105 Executing a HALT statement in a server component is strictly forbidden.

106 Function is reserved or not yet implemented.

107 Argument is out of range.

108 Not enough memory to execute the operation.

109 Cannot assign a null value to array variables.

Number Meaning
914 PowerBuilder Classic

CHAPTER 32 Debugging and Running Applications
SystemError event
scripts

A typical script for the SystemError event includes a CHOOSE CASE control
structure to handle specific errors. To stop the application, include a HALT
statement in the SystemError script.

Caution
You can continue your application after a SystemError event, but doing so can
cause unpredictable and undesirable effects. Where the application will resume
depends on what caused the error. Typically, you are better off reporting the
problem to the user, then stopping the application with HALT.

❖ To test the SystemError event script:

1 Assign values to the properties of the Error object with the PopulateError
function.

2 Call the SignalError function to trigger the SystemError event.

The script for the SystemError event executes.
Users Guide 915

Running an application
916 PowerBuilder Classic

C H A P T E R 3 3 Tracing and Profiling
Applications

About this chapter This chapter describes how to generate trace information that you can use
to improve your application’s performance.

Contents

About tracing and profiling an application
You use tracing and profiling to debug and tune an application. When you
run an application, you can generate an execution trace file. You use the
trace file to create a profile of your application.

The profile shows you which functions and events were called by which
other functions and events, how often they were called, when garbage
collection occurred, when objects were created and destroyed, and how
long each activity took to complete. This information helps you find errors
in the application’s logic and identify areas that you should rewrite to
improve performance.

PBDebug tracing
You can also generate a simple text trace file without timer values by
checking Enable PBDebug Tracing in the System Options dialog box.

For more about PBDebug, see “Generating a trace file without timing
information” on page 946.

Topic Page

About tracing and profiling an application 917

Collecting trace information 919

Analyzing trace information using profiling tools 930

Analyzing trace information programmatically 936

Generating a trace file without timing information 946
Users Guide 917

About tracing and profiling an application
When you can trace
an application

You can create a trace file when you run an application in the PowerBuilder
environment, and when you run an executable outside PowerBuilder. For
machine-code executable files, the trace file is generated only if you check the
Trace Information check box when you build the executable.

When you run an application with tracing turned on, PowerBuilder records a
timer value in a data file every time a specific activity occurs. You control when
logging begins and ends and which activities are recorded.

Creating profiles After you have generated a trace file, you can create several different profiles
or views of the application by extracting different types of information from the
trace file.

PowerBuilder provides three profiling tools that create profiles (views) of the
application for you, but you can also create your own analysis tools.

Using profiling to tune
an application

Examining the profiles generated by the profiling tools tells you where the
application is spending the most time. You can also find routines that are being
called too often, routines being called that you did not expect to call, or routines
that are not being called at all. Follow these suggestions for tuning an
application:

• The database connection process is often slow. Although you might not be
able to speed this up, you might be able to enhance the user’s perception
of performance by moving the database connection process to a different
place in your application.

• Use profiling to tune algorithms. Algorithmic fixes will yield greater
performance enhancements than changing single lines of code.

• Optimizing an inefficient function is not as effective as removing
unneeded calls to that function.

• Focus on optimizing the routines that are called most often.

• If you cannot speed up a routine, consider adding some user feedback,
such as updating MicroHelp or displaying a progress bar.
918 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
Collecting trace information
There are three ways to collect trace information. You can use:

• The Profiling tab on the System Options dialog box

• A window similar to the Profiling tab

• Trace objects and functions

Use the Profiling tab if you want to trace an entire application run in the
development environment. For more information, see “Tracing an entire
application in PowerBuilder” on page 921.

Use a window or trace objects and functions if you want to create a trace file
for selected parts of the application or the entire application, either in the
development environment or when running an executable file. See “Using a
window” on page 921 and “Collecting trace information using PowerScript
functions” on page 927.

Collection time
The timer values in the trace file exclude the time taken to collect the trace data.
Because an application can be idle (while displaying a MessageBox, for
example), percentage metrics are most meaningful when you control tracing
programmatically, which can help minimize idle time. Percentages are less
meaningful when you create a trace file for a complete application.

Whichever method you use, you can specify:

• The name and location of the trace file and optional labels for blocks of
trace data

• The kind of timer used in the trace file

• The activities you want recorded in the trace file

Trace file names and
labels

The default name of the trace file is the name of the application with the
extension PBP. The trace file is saved in the directory where the PBL or
executable file resides and overwrites any existing file of the same name. If you
run several different tests on the same application, you should change the trace
file name for each test.

You can also associate a label with the trace data. If you are tracing several
different parts of an application in a single test run, you can associate a different
label with the trace data (the trace block) for each part of the application.
Users Guide 919

Collecting trace information
Timer kinds There are three kinds of timer: clock, process, and thread. If your analysis does
not require timing information, you can omit timing information from the trace
file to improve performance.

If you do not specify a timer kind, the time at which each activity begins and
ends is recorded using the clock timer, which measures an absolute time with
reference to an external activity, such as the computer’s start-up time. The
clock timer measures time in microseconds. Depending on the speed of your
computer's central processing unit, the clock timer can offer a resolution of less
than one microsecond. A timer’s resolution is the smallest unit of time the timer
can measure.

You can also use process or thread timers, which measure time in microseconds
with reference to when the process or thread being executed started. You
should always use the thread timer for distributed applications. Both process
and thread timers exclude the time taken by any other running processes or
threads so that they give you a more accurate measurement of how long the
process or thread is taking to execute, but both have a lower resolution than the
clock timer.

Trace activities You can choose to record in the trace file the time at which any of the following
activities occurs. If you are using the System Options dialog box or a window,
you select the check boxes for the activities you want. If you are using
PowerScript functions to collect trace information, you use the TraceActivity
enumerated type to identify the activity.

Table 33-1: Trace activities

Trace Activities
check box What is recorded

TraceActivity
value

Routine Entry/Exit Routine entry or exit ActRoutine!

Routine Line Hits Execution of any line in any routine ActLine!

Embedded SQL Use of an embedded SQL verb ActESQL!

Object Creation/
Destruction

Object creation or destruction ActObjectCreate!,
ActObjectDestroy!

User Defined
Activities

A user-defined activity that records an
informational message

ActUser!

System Errors A system error or warning ActError!

Garbage
Collection

Garbage collection ActGarbageCollect!

Not available Routine entry and exit, embedded SQL
verbs, object creation and destruction,
and garbage collection

ActProfile!

Not available All except ActLine! ActTrace!
920 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
When you begin and end tracing, an activity of type ActBegin! is automatically
recorded in the trace file. User-defined activities, which you use to log
informational messages to the trace file, are the only trace activities enabled by
default.

Tracing an entire application in PowerBuilder
Use the Profiling tab on the System Options dialog box if you want to collect
trace data for an entire application run in the PowerBuilder development
environment.

❖ To trace an entire application in PowerBuilder:

1 Select Tools>System Options from the PowerBar and select the Profiling
tab.

2 Specify a name for the trace file, select the trace options you want, and
click OK.

When you run the application, the activities you selected are logged in the
trace file.

Using a window
You can create a window that is similar to the Profiling tab on the System
Options dialog box and add it to any application that is under development, so
that you can start and stop tracing when testing specific actions.

The w_starttrace window is available in the PowerBuilder Profiler sample in
the Profiler section of the PowerBuilder Samples and Utilities page at
http://www.sybase.com/detail?id=1058501. This sample also shows the code
used to create the profiling tools described in “Analyzing trace information
using profiling tools” on page 930.
Users Guide 921

Collecting trace information
The w_starttrace window lets you specify a trace file name, label, and timer
kind, as well as which activities you want to trace:

The following instance variables are defined for the window:

TimerKind itk_kind
string is_title = 'Trace Options '
string is_starttext

The open event for the window sets some defaults:

application lapp_current
lapp_current = getapplication()
itk_kind = Clock!
is_starttext = cb_startstop.text
sle_filename.text = classname(lapp_current)+'.pbp'

The following code shows the script for the Clicked event of the Start Trace
button. The text for the button is set to Start Trace in the painter. When the user
clicks Start Trace, the button label changes to Stop Trace. The Clicked event
script checks the text on the button before either starting or stopping tracing.
This script uses the functions described in “Collecting trace information using
PowerScript functions” on page 927:

// instance variables:
// errorreturn le_errorreturn
integer li_key

// Check that the button label is Start Trace
// and a trace file name has been entered
if this.text = is_starttext then
922 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
if len(trim(sle_filename.text)) = 0 then
 messagebox(parent.title, &

'Trace file name is required',information!)
 sle_filename.setfocus()
 return

end if

// If Prompt for overwrite is checked and the
// file exists, pop up a response window
if cbx_prompt.checked and &

fileexists(sle_filename.text) then
li_key = messagebox(parent.title, &

'OK to overwrite '+sle_filename.text, &
question!,okcancel!,1)

if li_key = 2 then return
end if

// Open the trace file
TraceOpen(sle_filename.text, itk_kind)

// Enable tracing for checked activities
// For each activity, check for errors and close
// the trace file if an error occurs
if cbx_embeddedsql.checked then

le_errorreturn = TraceEnableActivity(ActESql!)
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn, &
'TraceEnableActivity(ActESql!)')

 le_errorreturn = Traceclose()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceClose')
end if
return

end if
end if

if cbx_routineentry.checked then
le_errorreturn =TraceEnableActivity(ActRoutine!)
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn, &
'TraceEnableActivity(ActRoutine!)')

Traceclose()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceClose')
end if
return
Users Guide 923

Collecting trace information
end if
end if

if cbx_userdefined.checked then
le_errorreturn = TraceEnableActivity(ActUser!)
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn, &
'TraceEnableActivity(ActUser!)')

Traceclose()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceClose')
end if
return

end if
end if

if cbx_systemerrors.checked then
le_errorreturn = TraceEnableActivity(ActError!)
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn, &
'TraceEnableActivity(ActError!)')

Traceclose()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceClose')
end if
return

end if
end if

if cbx_routineline.checked then
le_errorreturn = TraceEnableActivity(ActLine!)
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn, &
' TraceEnableActivity(ActLine!)')

Traceclose()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceClose')
end if
return

end if
end if
if cbx_objectcreate.checked then

le_errorreturn = &
TraceEnableActivity(ActObjectCreate!)

if le_errorreturn <> Success! then
of_errmsg(le_errorreturn, &
924 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
'TraceEnableActivity(ActObject!)')
Traceclose()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceClose')
end if
return

end if
le_errorreturn = &

TraceEnableActivity(ActObjectDestroy!)
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn, &
 'TraceEnableActivity(ActObjectDestroy!)')
Traceclose()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceClose')
end if
return

end if
end if

if cbx_garbagecoll.checked then
le_errorreturn = &

TraceEnableActivity(ActGarbageCollect!)
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn, &
'TraceEnableActivity(ActGarbageCollect!)')
Traceclose()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceClose')
end if
return

end if
end if

// Start tracing
le_errorreturn =TraceBegin(sle_tracelabel.text)
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceBegin')
return

end if

// Change the title of the window and the
// text of the Start Trace button
parent.title = is_title + '(Tracing)'
this.text = 'Stop &Tracing'
Users Guide 925

Collecting trace information
// If the button label is Stop Trace, stop tracing
// and close the trace file
else

le_errorreturn =TraceEnd()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceEnd')
return

end if

le_errorreturn =TraceClose()
if le_errorreturn <> Success! then

of_errmsg(le_errorreturn,'TraceClose')
end if
this.text = is_starttext
parent.title = is_title

end if

of_errmsg function The window uses two functions to handle error messages. The of_errmsg
function displays a message box:

// of_errmsg
Messagebox(this.title,'Error executing '+ as_msg + &

'. Error code : '+ of_converterror(ae_error))

of_converterror
function

The of_converterror function converts the ErrorReturn parameter to a string:

// of_converterror: convert enumerated type
// ErrorReturn parameter to text.
String ls_result
choose case a_error

Case Success!
ls_result = "Success!"

Case FileCloseError!
ls_result = "FileCloseError!"

Case FileOpenError!
ls_result = "FileOpenError!"

Case FileReadError!
ls_result = "FileReadError!"

Case FileWriteError!
ls_result = "FileWriteError!"

Case FileNotOpenError!
ls_result = "FileNotOpenError!"

Case FileAlreadyOpenError!
ls_result = "FileAlreadyOpenError!"

Case FileInvalidFormatError!
ls_result = "FileInvalidFormatError!"

Case FileNotSetError!
ls_result = "FileNotSetError!"
926 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
Case EventNotExistError!
ls_result = "EventNotExistError!"

Case EventWrongPrototypeError!
ls_result = "EventWrongPrototypeError!"

Case ModelNotExistsError!
ls_result = "ModelNotExistsError!"

Case ModelExistsError!
ls_result = "ModelExistsError!"

Case TraceStartedError!
ls_result = "TraceStartedError!"

Case TraceNotStartedError!
ls_result = "TraceNotStartedError!"

Case TraceNoMoreNodes!
ls_result = "TraceNoMoreNodes!"

Case TraceGeneralError!
ls_result = "TraceGeneralError!"

Case FeatureNotSupportedError!
ls_result = "FeatureNotSupportedError!"

Case else
ls_result = "Unknown Error Code"

end choose
return ls_result

Collecting trace information using PowerScript functions
You use the PowerScript system functions listed in Table 33-2 to collect
information in a trace file. Each of these functions returns a value of type
ErrorReturn, an enumerated datatype.

Table 33-2: PowerScript trace functions

Use this PowerScript
function To do this

TraceOpen Open a named trace file and set the timer kind.

TraceEnableActivity Enable logging of the specified activity.

TraceBegin Start logging all enabled activities. You can pass an
optional label for the trace block.

TraceError Log a severity level and error message to the trace file.

TraceUser Log a reference number and informational message to the
trace file.

TraceEnd Stop logging all enabled activities.

TraceDisableActivity Disable logging of the specified activity.

TraceClose Close the open trace file.
Users Guide 927

Collecting trace information
In general, you call the functions in the order shown in the table. That is, you
must call TraceOpen before you call any other trace functions. You call
TraceClose when you have finished tracing.

TraceEnableActivity and TraceDisableActivity can be called only when a trace
file is open but tracing has not begun or has stopped—that is, before you call
TraceBegin or after you call TraceEnd.

TraceUser and TraceError can be called only when the trace file is open and
tracing is active—that is, after you call TraceBegin and before you call
TraceEnd.

About TraceUser and
TraceError

You can use TraceUser to record specific events in the trace file, such as the
beginning and end of a body of code. You can also record the execution of a
statement you never expected to reach, such as the DEFAULT statement in a
CHOOSE CASE block. TraceError works just like TraceUser, but you can use it
to signal more severe problems.

Both TraceUser and TraceError take a number and text string as arguments. You
can use a simple text string that states what activity occurred, or you can build
a string that provides more diagnostic information by including some context,
such as the current values of variables. Run the application with only ActUser!
or ActError! tracing turned on and then use the Profiling Trace View to
pinpoint problems quickly.

Example: trace data
collection

In this example, the user selects a timer kind from a drop-down list and enters
a name for the trace file in a single-line edit box. Typically you would use the
ErrorReturn return value from every trace call to return an error message if the
call fails. For brevity, the example shows this only for the TraceOpen call.

Several trace activities are disabled for a second trace block. The activities that
are not specifically disabled remain enabled until TraceClose is called.

ErrorReturn le_err
integer li_key
TimerKind ltk_kind

CHOOSE CASE ddlb_timerkind.Text
CASE "None"

ltk_kind = TimerNone!
CASE "Clock"

ltk_kind = Clock!
CASE "Process"

ltk_kind = Process!
CASE "Thread"

ltk_kind = Thread!
END CHOOSE
928 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
// Open the trace file and return an error message
// if the open fails
le_err = TraceOpen(sle_fileName.Text, ltk_kind)
IF le_err <> Success! THEN &

of_errmsg(le_err, 'TraceOpen failed')
RETURN

END IF

// Enable trace activities. Enabling ActLine!
// enables ActRoutine! implicitly
TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActUser!)
TraceEnableActivity(ActError!)
TraceEnableActivity(ActLine!)
TraceEnableActivity(ActObjectCreate!)
TraceEnableActivity(ActObjectDestroy!)
TraceEnableActivity(ActGarbageCollect!)

TraceBegin("Trace_block_1")
// first block of code to be traced
// this block has the label Trace_block_1
…

TraceEnd()

// disable trace activities not needed for
// second block
TraceDisableActivity(ActLine!)
TraceDisableActivity(ActObjectCreate!)
TraceDisableActivity(ActObjectDestroy!)
TraceDisableActivity(ActGarbageCollect!)

TraceBegin("Trace_block_2")
// second block of code to be traced
…

TraceEnd()
TraceClose()
Users Guide 929

Analyzing trace information using profiling tools
Analyzing trace information using profiling tools
After you have created a trace file, the easiest way to analyze it is to use the
profiling tools provided on the Tool tab of the New dialog box. There are three
tools:

• The Profiling Class View shows information about the objects that were
used in the application

• The Profiling Routine View shows information about all the routines
(functions and events) that were used in the application

• The Profiling Trace View shows the elapsed time taken by each activity in
chronological order

Using the profiling
tools as a model

Even if you want to develop your own analysis tools, using the profiling tools
is a good way to learn about these models and about profiling in PowerBuilder.
When you are ready to develop your own tools, see “Analyzing trace
information programmatically” on page 936 for an overview of the approaches
you can take.

Profiling Class View
The Class view uses a TreeView control to display statistics for PowerBuilder
objects, their functions, and their events. It displays statistics only for those
objects that were active while tracing was enabled. The Class view has three
tabs:

• Numbers Shows statistics only

• Graph Shows statistics in a bar graph

• Source Shows statistics and source code for those routines that
originated in PowerScript source
930 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
For each object, the Class view shows all the routines called from each class
with the number of times each routine was called (hit) as well as timing
information for each call. The following illustration shows part of a Class view.
Embedded SQL commands are shown as being called from a pseudo class
called ESQL.

The Class view includes both PowerBuilder system-level objects (such as
DataWindow and SystemFunction) and user-defined classes (such as windows
and user objects). Each top-level node is a PowerBuilder class. As you expand
the TreeView control, each node represents a routine and each subnode
represents a called routine.

The Class view uses the call graph model to show cumulative statistics for
objects, routines, and called routines. The information displayed on the right
side of the display differs depending on the current node on the left.

Table 33-3: Statistics displayed in the Profiling Class View by node

You can sort items on the right by clicking the heading.

Current node Statistics displayed

Application Statistics for each object

Object Cumulative statistics for the object and detailed statistics for
the object's routines

Routine Cumulative statistics for the routine and detailed statistics for
called routines
Users Guide 931

Analyzing trace information using profiling tools
Class view metrics The Class view displays five metrics. The profiling tool accesses these metrics
from instances of the ProfileCall and ProfileRoutine objects. The time scale
you specified in the Preferences dialog box determines how times are
displayed.

Table 33-4: Metrics in the Profiling Class View

About percentages
The percentages captured in the trace file are based on the total time tracing
was enabled. Because an application can be idle (while displaying a
MessageBox, for example), percentage metrics are most meaningful when you
control tracing programmatically, which can help to minimize idle time.
Percentages are least meaningful when you create a trace file for a complete
application.

Profiling Routine View
The Routine view displays statistics for a routine, its calling routines, and its
called routines. It uses multiple DataWindow objects to display information for
a routine:

• Called routines The top DataWindow lists functions and events called
by the current routine.

• Current routine The middle DataWindow and the DataWindow on the
right highlight the current routine and show detailed statistics.

Metric What it means

Hits The number of times a routine executed in a particular context.

Self The time spent in the routine or line itself. If the routine or line
was executed more than once, this is the total time spent in the
routine or line itself; it does not include time spent in routines
called by this routine.

%Self Self as a percentage of the total time the calling routine was
active.

Self+Called The time spent in the routine or line and in routines or lines called
from the routine or line. If the routine or line was executed more
than once, this is the total time spent in the routine or line and in
called routines or lines.

%Self+Called Self+Called as a percentage of the total time that tracing was
enabled.
932 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
• Calling routines The bottom DataWindow lists functions and events
that call the routine displayed in the middle DataWindow.

The Routine view has two tabs:

• Detail Shows statistics only

• Source Shows statistics and source code for those routines that
originated in PowerScript source

The Routine view uses the call graph model to show the call chain and
cumulative statistics for routines and called routines.

You can specify the current routine by clicking in the various DataWindows.

Table 33-5: Specifying the current routine in the Profiling Routine View

You can sort items by clicking the column headings.

To do this Click here

Establish a new current
routine in the current
routine DataWindow

On the routine. The profiling tool updates the top and
bottom DataWindows with information on called and
calling routines.

Select a calling routine
as the new routine

On the routine in the top DataWindow. The profiling tool
makes it the current routine in the middle DataWindow.

Select a called routine as
the new routine

On the routine in the bottom DataWindow. The profiling
tool makes it the current routine in the middle
DataWindow.
Users Guide 933

Analyzing trace information using profiling tools
Routine view metrics The Routine view displays nine metrics. The profiling tool accesses these
metrics from instances of the ProfileCall and ProfileRoutine objects. The time
scale you specified in the Preferences dialog box determines how times are
displayed.

Table 33-6: Metrics in the Profiling Routine View

Profiling Trace View
The Trace view uses a TreeView control to display the events and functions in
the trace file. The initial display shows top-level routines. Each node expands
to show the sequence of routine execution. The fully expanded TreeView
shows the complete sequence of executed instructions for the trace file.

The Trace view uses the trace tree model to show the sequence of execution. It
includes statistics and (for those routines that originated in PowerScript source)
source code.

Metric What it means

Hits (Called on
Detail tab)

The number of times a routine executed in a particular context.

Self The time spent in the routine or line itself. If the routine or line was
executed more than once, this is the total time spent in the routine
or line itself; it does not include time spent in routines called by
this routine.

%Self Self as a percentage of the total time the calling routine was active.

Self Min The shortest time spent in the routine or line itself. If the routine or
line was executed only once, this is the same as AbsoluteSelfTime.

Self Max The longest time spent in the routine or line itself. If the routine or
line was executed only once, this is the same as AbsoluteSelfTime.

Self+Called The time spent in the routine or line and in routines or lines called
from the routine or line. If the routine or line was executed more
than once, this is the total time spent in the routine or line and in
called routines or lines.

%Self+Called Self+Called as a percentage of the total time that tracing was
enabled.

Self+Called
Min

The shortest time spent in the routine or line and in called routines
or lines. If the routine or line was executed only once, this is the
same as AbsoluteTotalTime.

Self+Called
Max

The longest time spent in the routine or line and in called routines
or lines. If the routine or line was executed only once, this is the
same as AbsoluteTotalTime.
934 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
You can use the Trace View Options section of the Preferences dialog box to
control the display:

• System routines This option controls whether the Trace view includes
information for lines that execute PowerBuilder system routines.

• Line information This option controls whether the Trace view includes
line numbers.

The following screen shows a Trace view with several nodes expanded. The
number to the right of each item is the execution time for that item.

Trace view metrics The Trace view displays two metrics. The profiling tool accesses these metrics
from instances of the TraceTree and TraceTreeNode objects.

Table 33-7: Metrics in the Profiling Trace View

About preferences
The specifications you make in the Preferences dialog box control whether the
Trace view displays system functions and line numbers.

Entry What it means

Routine or line
number

The routine or line number that was executed.

Execution
time

Total execution time for the Tree view entry. This is total time from
the start of the entry to the end of the entry. For example, if you call
the MessageBox function, this value reflects the elapsed time from
when the message box was opened until the user provided some
kind of response.
Users Guide 935

Analyzing trace information programmatically
Setting call aggregation preferences
You can control how the profiling tools display information using the
Preferences dialog box. To open it, select Options>Preferences from any
profiling view’s menu bar.

In both Class and Routine views, you can choose how functions and events that
are called more than once are displayed. Select the Aggregate Calls check box
if you want the view to display a single line for each called function or event
that represents a sum of all the times it was called. If you do not select the check
box, the view displays statistics for each call on a separate line.

For example, if aggregation is enabled and a function calls another function
five times, you see one entry with five hits; with no aggregation, you see five
separate entries for the same function.

Internally, the profiling tool controls aggregation by using the
AggregateDuplicateRoutineCalls boolean argument to the OutgoingCallList and
IncomingCallList functions on the ProfileRoutine object.

Analyzing trace information programmatically
PowerBuilder provides three ways to analyze trace information using built-in
system objects and functions:

• Analyze performance by building a call graph model

A call graph model contains information about all the routines in the trace
file: how many times each routine was called, which routines called it and
which routines it called, and the execution time taken by the routine itself
and any routines it called.

• Analyze program structure and logical flow by building a trace tree model

A trace tree model contains information about all recorded activities in the
trace file in chronological order, with the elapsed time for each activity.

• Access the data in the trace file directly

Trace objects and functions let you build your own model and analysis
tools by giving you access to all the data in the trace file.

The profiling tools use the first two ways. The Class and Routine views are
based on a call graph model, and the Trace view is based on a trace tree model.
936 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
Supporting files needed
To create a profile from a trace file, PowerBuilder must also access the PBL,
PBD, or executable file used to create the trace file, and the PBL, PBD, or
executable file must be in the same location as when the trace file was created.

Analyzing performance with a call graph model
You use the PowerScript functions and PowerBuilder objects listed in Table
33-8 to analyze the performance of an application.

Table 33-8: Functions for analyzing performance

Each of these functions returns a value of the enumerated datatype ErrorReturn.
The objects contain information such as the number of times a line or routine
was executed, and the amount of time spent in a line or routine and in any
routines called from that line or routine.

Use this
function

With this
object To do this

SetTraceFileName Profiling Set the name of the trace file to be
analyzed.

BuildModel Profiling Build a call graph model based on the
trace file. You can pass optional
parameters that let you track the
progress of the build.

RoutineList Profiling and
ProfileClass

Get a list of routines in the model or
in a class.

ClassList Profiling Get a list of classes in the model.

SystemRoutine Profiling Get the name of the routine node that
represents the root of the model.

IncomingCallList ProfileRoutine Get a list of routines that called a
specific routine.

OutgoingCallList ProfileRoutine
and ProfileLine

Get a list of routines called by a
specific routine or from a specific
line.

LineList ProfileRoutine Get a list of lines in the routine in line
order.

DestroyModel Profiling Destroy the current performance
analysis model and all the objects
associated with it.
Users Guide 937

Analyzing trace information programmatically
Using the BuildModel function to build a call graph model

The call graph model that you create with the BuildModel function contains all
the routines in the trace file and can take a long time to build. If you want to
monitor the progress of the build or you want to be able to interrupt it while the
model is being built, you can pass optional arguments to BuildModel.

BuildModel arguments BuildModel takes three arguments: the name of an object of type PowerObject,
the name of a user event, and a long value representing how often the user event
should be triggered as a percentage of the build completed.

The user event returns a boolean value and has two arguments: the number of
the current activity, and the total number of activities in the trace file.

Destroying existing
models

Before you call BuildModel, you can call DestroyModel to clean up any objects
remaining from an existing model.

Example: building a
call graph model

In the following example, the user event argument to BuildModel is called
ue_progress and is triggered each time five percent of the activities have been
processed. The progress of the build is shown in a window called w_progress
that has a cancel button.

Profiling lpro_model
lpro_model = CREATE Profiling
ib_cancel = FALSE
lpro_model.SetTraceFileName(is_fileName)

open(w_progress)
// call the of_init window function to initialize
// the w_progress window
w_progress.of_init(lpro_model.numberofactivities, &

'Building Model', this, 'ue_cancel')

// Build the call graph model
lpro_model.BuildModel(this, 'ue_progress', 5)

// clicking the cancel button in w_progress
// sets ib_cancel to TRUE and
// returns FALSE to ue_progress
IF ib_cancel THEN &

close(w_progress)
RETURN -1

END IF
938 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
Extracting information from the call graph model

After you have built a call graph model of the application, you can extract
detailed information from it.

For routines and lines, you can extract the timing information shown in Table
33-9 from the ProfileRoutine and ProfileLine objects.

Table 33-9: Timing information in the call graph model

Example: extracting
information from a call
graph model

The following function extracts information from a call graph model about the
routines called from a specific routine. You would use similar functions to
extract information about the routines that called the given routine and about
the routine itself.

The function takes a ProfileCall object and an index as arguments and returns
a structure containing the number of times the called routine was executed and
execution times for the called routine.

str_func_detail lstr_result
ProfileClass lproclass_class

Property What it means

AbsoluteSelfTime The time spent in the routine or line itself. If the routine or
line was executed more than once, this is the total time spent
in the routine or line itself.

MinSelfTime The shortest time spent in the routine or line itself. If the
routine or line was executed only once, this is the same as
AbsoluteSelfTime.

MaxSelfTime The longest time spent in the routine or line itself. If the
routine or line was executed only once, this is the same as
AbsoluteSelfTime.

AbsoluteTotalTime The time spent in the routine or line and in routines or lines
called from the routine or line. If the routine or line was
executed more than once, this is the total time spent in the
routine or line and in called routines or lines.

MinTotalTime The shortest time spent in the routine or line and in called
routines or lines. If the routine or line was executed only
once, this is the same as AbsoluteTotalTime.

MaxTotalTime The longest time spent in the routine or line and in called
routines or lines. If the routine or line was executed only
once, this is the same as AbsoluteTotalTime.

PercentSelfTime AbsoluteSelfTime as a percentage of the total time tracing
was active.

PercentTotalTime AbsoluteTotalTime as a percentage of the total time tracing
was active.
Users Guide 939

Analyzing trace information programmatically
ProfileRoutine lprort_routine

// get the name of the called routine
// from the calledroutine property of
// the ProfileCall object passed to the function
lprort_routine = a_pcall.Calledroutine
lstr_result.Name = ""
lproclass_class = a_pcall.Class
IF isValid(lproclass_class) THEN &

lstr_result.Name += lproclass_class.Name + "."
lstr_result.name += a_pcall.Name

lstr_result.hits = a_pcall.HitCount
lstr_result.selfTime = a_pcall. &

AbsoluteSelfTime * timeScale
lstr_result.totalTime = a_pcall. &

AbsoluteTotalTime * timeScale
lstr_result.percentSelf = a_pcall.PercentSelfTime
lstr_result.percentTotal= a_pcall.PercentTotalTime
lstr_result.index = al_index

RETURN lstr_result

Analyzing structure and flow using a trace tree model
You use the PowerScript functions and PowerBuilder objects listed in Table
33-10 to build a nested trace tree model of an application.

Table 33-10: Functions for analyzing program structure and flow

Use this
function With this object To do this

SetTraceFileName TraceTree Set the name of the trace file to
be analyzed.

BuildModel TraceTree Build a trace tree model based
on the trace file. You can pass
optional parameters that let you
track the progress of the build.

EntryList TraceTree Get a list of the top-level entries
in the trace tree model.
940 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
Each of these functions returns a value of type ErrorReturn.

Each TraceTreeNode object returned by the EntryList and GetChildrenList
functions represents a single node in the trace tree model and contains
information about the parent of the node and the type of activity it represents.

Inherited objects The following objects inherit from TraceTreeNode and contain additional
information, including timer values:

TraceTreeError
TraceTreeESQL
TraceTreeGarbageCollect
TraceTreeLine
TraceTreeObject
TraceTreeRoutine
TraceTreeUser

Using BuildModel to build a trace tree model

You use the same approach to building a trace tree model as you do to building
a call graph model, except that you build a model of type TraceTree instead of
type Profiling.

For example:

TraceTree ltct_treemodel
ltct_treemodel = CREATE TraceTree
ltct_treeModel.SetTraceFileName(is_fileName)

ltct_treeModel.BuildModel(this, 'ue_progress', 1)

For more about using BuildModel, see “Using the BuildModel function to build
a call graph model” on page 938.

GetChildrenList TraceTreeRoutine,
TraceTreeObject, and
TraceTreeGarbageCollect

Get a list of the children of the
routine or object—that is, all the
routines called directly by the
routine, or the destructor called
as a result of the object's
deletion.

DestroyModel TraceTree Destroy the current trace tree
model and all the objects
associated with it.

Use this
function With this object To do this
Users Guide 941

Analyzing trace information programmatically
Extracting information from the trace tree model

To extract information from a tree model, you can use the EntryList function to
create a list of top-level entries in the model and then loop through the list,
extracting information about each node. For each node, determine its activity
type using the TraceActivity enumerated datatype, and then use the appropriate
TraceTree object to extract information.

Example: trace tree
model

The following simple example extracts information from an existing trace tree
model and stores it in a structure:

TraceTreeNode ltctn_list[], ltctn_node
long ll_index, ll_limit
string ls_line
str_node lstr_node

ltct_treemodel.EntryList(ltctn_list)
ll_limit = UpperBound(ltctn_list)
FOR ll_index = 1 to ll_limit

ltctn_node = ltctn_list[ll_index]
of_dumpnode(ltctn_node, lstr_node)
// insert code to handle display of
// the information in the structure here
…

NEXT

The of_dumpnode function takes a TraceTreeNode object and a structure as
arguments and populates the structure with information about each node. The
following code shows part of the function:

string ls_exit, ls_label, ls_routinename
long ll_node_cnt
TraceTreeNode ltctn_list[]
errorreturn l_err

astr_node.Children = FALSE
astr_node.Label = ''
IF NOT isvalid(atctn_node) THEN RETURN
CHOOSE CASE atctn_node.ActivityType

CASE ActRoutine!
TraceTreeRoutine ltctrt_routin
ltctrt_routine = atctn_node
IF ltctrt_routine.Classname = '' THEN &

ls_routinename = ltctrt_routine.ClassName + "."
END IF
ls_routinename += ltctrt_routine.Name
ltctrt_routine.GetChildrenList(ltctn_list)
ll_node_cnt = UpperBound(ltctn_list)
942 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
ls_label = "Execute " + ls_routinename + ' :' + &
 space(ii_offset) + String(l_timescale * &
 (ltctrt_routine.ExitTimerValue - &
 ltctrt_routine.EnterTimerValue), '0.000000')
astr_node.Children = (ll_node_cnt > 0)
astr_node.Label = ls_label
astr_node.Time = ltctrt_routine.EnterTimerValue
RETURN

CASE ActLine!
TraceTreeLine tctln_treeLine
tctln_treeLine = atctn_node
ls_label = LINEPREFIX + &

String(tctln_treeLine.LineNumber)
astr_node.time = tctln_treeLine.Timervalue
...
// CASE statements omitted
...

CASE ELSE
ls_label = "INVALID NODE"

END CHOOSE

astr_node.label = ls_label
RETURN

Accessing trace data directly
You use the PowerScript functions and PowerBuilder objects listed in Table
33-11 to access the data in the trace file directly so that you can develop your
own analysis tools.

Table 33-11: Functions for direct access to trace data

Use this
function

With this
object To do this

Open TraceFile Opens the trace file to be analyzed.

NextActivity TraceFile Returns the next activity in the trace file.
The value returned is of type
TraceActivityNode.

Reset TraceFile Resets the next activity to the beginning of
the trace file.

Close TraceFile Closes the open trace file.
Users Guide 943

Analyzing trace information programmatically
With the exception of NextActivity, each of these functions returns a value of
type ErrorReturn. Each TraceActivityNode object includes information about
the category of the activity, the timer value when the activity occurred, and the
activity type.

Timer values The category of the activity is either TraceIn! or TraceOut! for activities that
have separate beginning and ending points, such as routines, garbage
collection, and tracing itself. Each such activity has two timer values associated
with it: the time when it began and the time when it completed.

Activities that have only one associated timer value are in the category
TraceAtomic!. ActLine!, ActUser!, and ActError! are all atomic activities.

Inherited objects The following objects inherit from TraceActivityNode and contain data about
the associated activity type:

TraceBeginEnd
TraceError
TraceESQL
TraceGarbageCollect
TraceLine
TraceObject
TraceRoutine
TraceUser

TraceTreeNode and TraceActivityNode objects
The objects that inherit from TraceActivityNode are analogous to those that
inherit from TraceTreeNode, and you can use similar techniques when you
write applications that use them.

For a list of activity types, see “Trace activities” on page 920.

Using the TraceFile object

To access the data in the trace file directly, you create a TraceFile object, open
a trace file, and then use the NextActivity function to access each activity in the
trace file sequentially. For each node, determine what activity type it is by
examining the TraceActivity enumerated datatype, and then use the appropriate
trace object to extract information.
944 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
Example: direct
access to trace data

The following example creates a TraceFile object, opens a trace file called
ltcf_file, and then uses a function called of_dumpActivityNode to report the
appropriate information for each activity depending on its activity type.

string ls_fileName
TraceFile ltcf_file
TraceActivityNode ltcan_node
string ls_line

ls_fileName = sle_filename.Text
ltcf_file = CREATE TraceFile
ltcf_file.Open(ls_fileName)
ls_line = "CollectionTime = " + &

String(Truncate(ltcf_file.CollectionTime, 6)) &
+ "~r~n" + "Number of Activities = " + &
String(ltcf_file.NumberOfActivities) + "~r~n" + &
"Time Stamp " + "Activity" + "~r~n"

mle_output.text = ls_line

ltcan_node = ltcf_file.NextActivity()
DO WHILE IsValid(ltcan_node)

ls_line += of_dumpActivityNode(ltcan_node)
ltcan_node = ltcf_file.NextActivity()

LOOP

mle_output.text = ls_line
ltcf_file.Close()

The following code shows part of of_dumpActivityNode:

string lstr_result

lstr_result = String(Truncate(atcan_node. &
TimerValue, 6)) + " "

CHOOSE CASE atcan_node.ActivityType
CASE ActRoutine!

TraceRoutine ltcrt_routine
ltcrt_routine = atcan_node
IF ltcrt_routine.IsEvent THEN
lstr_result += "Event: "

ELSE
lstr_result += "Function: "

END IF
lstr_result += ltcrt_routine.ClassName + "." + &

ltcrt_routine.name + "(" + &
ltcrt_routine.LibraryName + ") " &
Users Guide 945

Generating a trace file without timing information
+ String(ltcrt_routine.ObjectId) + "~r~n"
CASE ActLine!

TraceLine ltcln_line
ltcln_line = atcan_node
lstr_result += "Line: " + &

String(ltcln_line.LineNumber) + "~r~n"
CASE ActESQL!

TraceESQL ltcsql_esql
ltcsql_esql = atcan_node
lstr_result += "ESQL: " + ltcsql_esql.Name &

 + "~r~n"

// CASE statements and code omitted
...
CASE ActBegin!

IF atcan_node.Category = TraceIn! THEN
lstr_result += "Begin Tracing~r~n"

ELSE
lstr_result += "End Tracing~r~n"

END IF
CASE ActGarbageCollect!

lstr_result += "Garbage Collection~r~n"
CASE else

lstr_result += "Unknown Activity~r~n"
END CHOOSE

RETURN lstr_result

Generating a trace file without timing information
If you want to generate an activity log with no timing information in a text file,
you can turn on PBDebug tracing in the System Options dialog box. The
PBDebug trace file contains a log showing which object functions and
instructions and system DLL functions were executed in chronological order.

❖ To generate a simple trace file:

1 Select Tools>System Options and check the Enable PBDebug Tracing
check box.

2 Check the Prompt Before OverWriting PBDebug Output File box if you
want to retain existing trace output when you run or debug the application.
946 PowerBuilder Classic

CHAPTER 33 Tracing and Profiling Applications
3 (Optional) Specify a pathname for the PBDebug output file.

4 Run your application.

If you do not check the Prompt Before OverWriting PBDebug Output File box,
PowerBuilder overwrites the existing trace file every time you run the
application or click the Start button in the debugger. If you check the box, it
displays a response window. You can choose to overwrite the file, append new
trace output to the existing file, or cancel the run or debug session.

If you want to retain the trace file, save it with a different name before running
the application, or specify a new file name in the System Options dialog box.

If you do not specify an output file path, PowerBuilder creates an output file in
the same directory as the PowerBuilder executable file. The output file has the
same name as the PowerBuilder executable with the extension DBG. If you do
not have write permission to this directory, you must specify a value for the
output file path.

Turning PBDebug off
Running your application with PBDebug on will slow down execution. Be sure
to clear the Enable PBDebug Tracing check box on the System Options dialog
box if you do not need this trace information.

For information on creating the same kind of diagnostic trace file when you run
your compiled application outside PowerBuilder, see “Tracing execution” on
page 961.
Users Guide 947

Generating a trace file without timing information
948 PowerBuilder Classic

C H A P T E R 3 4 Creating Executables and
Components

About this chapter This chapter describes how to create an executable version of your target.
It also provides an overview of how you use the PowerBuilder Project
painter to build other kinds of components.

Contents

About building PowerBuilder targets
You can build many types of targets with PowerBuilder. For traditional
client/server applications, you need to create an executable version of
your target that you can deploy to users’ computers. If you are building a
distributed application with PowerBuilder, you typically build a client
executable file and a server component that you can deploy to a
transaction server. For some types of distributed applications, you need to
build proxy objects.

Using the Project painter You use the Project painter to create and maintain PowerBuilder projects
that build all these different objects. The Project painter allows you to
streamline the generation of the files your target needs and to rebuild
easily when you make changes. There is a wizard to help you set up each
project type.

Topic Page

About building PowerBuilder targets 949

Creating a project 951

Defining an executable application project 953

Using dynamic libraries 957

Distributing resources 959

Tracing execution 961

Building an executable file and dynamic libraries 962

Building components, proxies, and .NET targets 967
Users Guide 949

About building PowerBuilder targets
Table 34-1 lists the types of projects you can create and what you can build
using the project.

Table 34-1: Project types

For how to create a new project, see “Creating a project” on page 951. For
more information about .NET projects, see Deploying Applications and
Components to .NET.

Project What it builds

Application An executable file and optional dynamic libraries.

Application Server
Component

One or more application server components based on
custom class user objects that are deployed to a J2EE-
compliant application server and can be used with any
application server client or component.

Application Server
Proxy

One or more proxy objects (stubs) that can be used by a
PowerBuilder client to access functions in application server
components. The application server components can be
built with PowerBuilder or another development tool.

EAServer Component One or more EAServer components based on custom class
user objects that are deployed to EAServer and can be used
with any EAServer client or component.

EAServer Proxy One or more proxy objects (stubs) that can be used by a
PowerBuilder client to access functions in EAServer
components. The EAServer components can be built with
PowerBuilder or another development tool.

EJB Client Proxy One or more proxy objects (stubs) that can be used by a
PowerBuilder client to access functions in an EJB
component on an application server.

.NET Assembly A .NET assembly containing one or more custom class user
objects.

.NET Web Forms
Application

An application that can be deployed to ASP.NET.

.NET Web Service A .NET Web service containing one or more custom class
user objects.

.NET Windows
Forms Application

An application that can be deployed to .NET as a Windows
Forms application and optionally published to a Web, file, or
FTP server as a smart client application.

Web DW Container An EAServer component that contains your DataWindow
definitions and is deployed to EAServer. It uses the interface
of the generic Web DataWindow server component.

Web Service Proxy A proxy object that can be used by a PowerBuilder client to
invoke a Web service defined in a WSDL (Web Services
Description Language) file.
950 PowerBuilder Classic

CHAPTER 34 Creating Executables and Components
Building executable
files

If you are building an executable file, there are two basic ways to package the
application:

• As one standalone executable file that contains all the objects in the
application

• As an executable file and one or more dynamic libraries that contain
objects that are linked at runtime

Read the chapter on packaging your application for deployment in Application
Techniques to get an understanding of the best way for you to package the
application. Then follow the procedures in “Defining an executable
application project” on page 953 to implement your strategy.

Building other types of
targets

For an overview of how you use the Project painter to build different types of
components, see “Building components, proxies, and .NET targets” on page
967.

Providing other
resources

You might need to provide additional resources that your target uses, such as
bitmaps and icons. There are two ways to provide resources:

• Distribute them separately

• Include them in a PowerBuilder resource file (PBR) and build an
executable, a dynamic library, or a component using the resource file

For more information, see “Distributing resources” on page 959.

Building the
workspace

You can build and deploy all the targets in your workspace using buttons on the
PowerBar, pop-up menus in the System Tree, or a command line. For more
information, see “Building workspaces” on page 26.

Creating a project
You can create a new project when you create a new target using most Target
wizards. You can also create a project at any time from the Project page in the
New dialog box if you have already created a target of the appropriate type. For
example, to create a new .NET Web Forms application project, you must have
a .NET Web Forms target.

The Project page has two kinds of icons: icons that open wizards that help you
set up a project, and icons that open the Project painter. Wizard icons display
next to the icon for the same project type. The following procedure describes
how to create a new project from the Project page.
Users Guide 951

Creating a project
❖ To create a new project object from the Project page:

1 Select File>New or click the New button in the PowerBar to open the New
dialog box.

2 Select the Project tab.

3 Select the target in which you want to create the project from the Target
drop-down list.

4 Select the wizard or project type you need and click OK.

If you select a wizard, complete the wizard screens to create a new project
with most of its properties specified. Use the context-sensitive Help if you
are not sure what to enter. You can open the Project painter now or later to
modify the properties if necessary and to build the project.

If you do not select a wizard, the Project painter for the type of object you
selected opens so that you can specify properties of the project object.

Once you have created a project, you can open it from the System Tree.

Projects can be modified only in the painter
Unlike most other PowerBuilder objects, a project object cannot be edited
in the Source editor.

Target-relative paths
and shared projects

All paths used in projects are stored as target-relative paths, if possible. If you
later move the application to a different location in the file system, or another
user copies or checks out the application, the paths are adjusted relative to the
new target location.

For example, suppose user A has an application target stored in the following
directory structure, where pbl_1.pbl contains the application object:

C:\target1\target1.pbt
C:\target1\pbls\pbl_1.pbl
C:\target1\pbls\pbl_2.pbl
C:\target1\res\target1.pbr
C:\target1\out\target1.exe

When user B copies the application to the following directory structure, no
changes need to be made in the Project painter, because the paths reflect the
new directory structure:

D:\PB\My Targets\Target 1\target1.pbt
D:\PB\My Targets\Target 1\pbls\pbl_1.pbl
D:\PB\My Targets\Target 1\pbls\pbl_2.pbl
D:\PB\My Targets\Target 1\res\target1.pbr
D:\PB\My Targets\Target 1\out\target1.exe
952 PowerBuilder Classic

CHAPTER 34 Creating Executables and Components
A projects that was created in an earlier version of PowerBuilder using
hard-coded paths must be opened and resaved before the files it references are
modified with target-relative paths.

If a path is not on the drive where the target is stored, then the path is stored as
an absolute path. For example, the path to image files stored on a shared
network directory such as J:\res\images\common is stored as an absolute path
in the project file.

References to files outside the target path
If a project references a PBL or another file on a local drive that is outside the
path of the target, make sure that the PBL or file is copied to the new target
location and that it is referenced correctly in the project.

Defining an executable application project
The Project painter for executable applications allows you to streamline the
generation of executable files and dynamic libraries. When you build a project
object, you specify the following components of your application:

• Executable file name

• Which of the libraries you want to distribute as dynamic libraries

• Which PowerBuilder resource files (if any) should be used to build the
executable file and the dynamic libraries

• Which build options you want to use in your project

• Which code generation options you want to use

• Version information for your application

If you do not use the Template Application Target wizard to create a new
application project, you need to define the project using a Project wizard or by
setting project properties in the Project painter. After you have created a
project, you might need to update it later because your library list has changed
or you want to change your compilation options.
Users Guide 953

Defining an executable application project
❖ To define or modify an executable application project:

1 Select the Application project icon on the Project tab in the New dialog
box to create a new application project, or select File>Open to open an
existing application project.

The Project painter workspace displays.

2 Specify or modify options as needed.

If you opened an existing project or a project created using the wizard, the
options already selected display in the workspace. For information about
each option, see "Executable application project options" next.

3 When you have finished defining the project object, save the object by
selecting File>Save from the menu bar.

PowerBuilder saves the project as an independent object in the specified
library. Like other objects, projects are displayed in the System Tree and
the Library painter.

Executable application
project options

Table 34-2 describes each of the options you can specify in the Project painter
for executable applications. You can also specify most of these options in the
Application Project wizard.
954 PowerBuilder Classic

CHAPTER 34 Creating Executables and Components
Table 34-2: Options for executable application projects

Option What you specify

Executable file name Specify a name for the executable. The name must have the extension EXE. If you do
not want the executable saved to your current directory, click the Browse (...) button
next to the box to navigate to a different directory.

Resource file name (Optional) Specify a PowerBuilder resource file (PBR) for your executable if you
dynamically reference resources (such as bitmaps and icons) in your scripts and you
want the resources included in the executable file instead of having to distribute the
resources separately.

You can type the name of a resource file in the box or click the button next to the box
to browse your directories for the resource file you want to include.

For more about PBRs, see “Distributing resources” on page 959.

Prompt for overwrite Select this if you want PowerBuilder to prompt you before overwriting files.
PowerBuilder overwrites any files it creates when building your application.

Windows classic style Select this to add a manifest file to the application that specifies the appearance of the
controls as an application resource. When a user runs the application on Windows XP
with the Windows XP style for controls set in the control panel, all PowerBuilder
windows, DataWindow controls that mirror standard Windows controls, and other
controls, display with the new style.

Rebuild Specify either Full or Incremental to indicate whether you want PowerBuilder to
regenerate all objects in the application libraries before it creates the executable and
dynamic libraries. If you choose Incremental, PowerBuilder regenerates only objects
that have changed, and objects that reference any objects that have changed, since the
last time you built your application.

As a precaution, regenerate all objects before rebuilding your project.

Machine Code Select this if you want to generate compiled code instead of Pcode. For more
information about compiled code and Pcode, see Application Techniques.

Selecting Machine Code enables the other code generation options in the Project
painter. They cannot be set in the wizard.

Trace Information Select this if you want to create a trace file when you run your compiled code
executable. You can use the trace file to troubleshoot or profile your application. For
more information on obtaining trace information, see “Tracing execution” on page
961.

Error Context Information Select this if you want PowerBuilder to display context information (such as object,
event, and script line number) for runtime errors.

Optimization Select an optimization level. You can build your application with no optimizations,
or you can optimize for speed or space.

Enable DEBUG symbol Select to enable any code that you placed in DEBUG conditional code blocks. For
more information, see “Using the DEBUG preprocessor symbol” on page 906.
Users Guide 955

Defining an executable application project
Location of temporary
files

The machine code generation process puts temporary files in a temporary
directory, such as the TEMP directory. You can specify a different location in
the [PB] section of your PowerBuilder initialization file with the
CODEGENTEMP variable. You might want to do this if you have limited
space on your local system.

For example:

CODEGENTEMP=e:\pbtempdir

Libraries page The label for the PBD or DLL check box depends on whether you are building a
Pcode or machine code executable. Select the check box to define a library as a
dynamic library to be distributed with your application.

If you are generating Pcode, you create PBD files. If you are generating machine
code, you create DLL files. For more about dynamic libraries, see “Using dynamic
libraries” on page 957.

Specify a resource file for a dynamic library if it uses resources (such as bitmaps and
icons) and you want the resources included in the dynamic library instead of having
to distribute the resources separately. The file name cannot be specified in the wizard.

Version page Specify your own values for the Product Name, Company Name, Description,
Copyright, Product Version, and File Version fields associated with the executable
file and with machine-code DLLs. These values become part of the Version resource
associated with the executable file, and most of them display on the Version tab page
of the Properties dialog box for the file in Windows Explorer. The Product and File
version string fields can have any format.

The Product and File version numeric fields in the “Executable version used by
installer” group box are used by Microsoft Installer to determine whether a file needs
to be updated when a product is installed.

The four numbers can be used to represent the major version, minor version, point
release, and build number of your product. They must all be present. If your file
versioning system does not use all these components, you can replace the unused
numbers with zeroes. The maximum value for any of the numbers is 65535.

Security page Use the Security tab page to generate a manifest file (either external or embedded)
and to set the execution level of the application.To meet the certification requirements
of the Windows Vista Logo program the application executable must have an
embedded manifest that defines the execution level and specifies whether access to
the user interface of another window is required.

For further information, see “Attaching or embedding manifest files” on page 958.

Run page Specify command-line arguments and the application’s working directory. The
Application field displays the name and location of the executable file and is not
editable. You can change these properties on the General page.

Option What you specify
956 PowerBuilder Classic

CHAPTER 34 Creating Executables and Components
Using dynamic libraries
You can store the objects used in your PowerBuilder application in more than
one library and, when you run the application, dynamically load any objects
that are not contained in the application’s executable file. This allows you to
break the application into smaller units that are easier to manage and makes the
executable file smaller. You do this by using dynamic libraries. If you compile
using Pcode, PowerBuilder builds PowerBuilder dynamic libraries (PBD
files). If you use machine code, PowerBuilder builds Dynamic Link Libraries
(DLL files).

When you distribute your application to users, you distribute the executable,
the dynamic libraries, and PowerBuilder runtime DLLs. For more information
about deployment and a list of PowerBuilder runtime DLLs, see Application
Techniques.

Dynamic library
names

PowerBuilder dynamic libraries are given the name of the PBL with the
extension .pbd. For example, the Pcode library built from test.pbl is named
test.pbd.

Machine-code dynamic libraries are given the extension .dll. For example, the
machine-code library built from test.pbl is named test.dll.

Reducing the size of
dynamic libraries

When PowerBuilder builds a dynamic library, it copies the compiled versions
of all objects from the source library (PBL file) into the dynamic library.

The easiest way to specify source libraries is simply to use your standard
PowerBuilder libraries as source libraries. However, using this technique can
make your dynamic libraries larger than they need to be, because they include
all objects from the source library, not just the ones used in your application.
You can create a PowerBuilder library that contains only the objects that you
want in a dynamic library.

❖ To create a source library to be used as a dynamic library:

1 In the Library painter, place in one standard PowerBuilder library (a PBL
file) all the objects that you want in the dynamic library.

If you need to create a new library, select Entry>Library>Create from the
menu bar, then drag or move the objects into the new library.

2 Make sure the application's library search path includes the new library.

Multiple dynamic libraries
You can use as many dynamic libraries as you want in an application. To do so,
create a source library (PBL file) for each of them.
Users Guide 957

Attaching or embedding manifest files
Specifying the
dynamic libraries in
your project

When you define your project, you tell PowerBuilder which of the libraries in
the application’s library search path will be dynamic by checking the PBD or
DLL check box next to the library name in the Project painter.

Including additional
resources for a
dynamic library

When building a dynamic library, PowerBuilder does not inspect the objects;
it simply copies the compiled form of the objects into the dynamic library.
Therefore, if any of the objects in the library use resources (pictures, icons, and
pointers)—either specified in a painter or assigned dynamically in a script—
and you do not want to provide these resources separately, you must list the
resources in a PowerBuilder resource (PBR) file. Doing so enables
PowerBuilder to include the resources in the dynamic library when it builds it.

❖ To reference additional resources:

1 List the resources in a PBR file, as described in “Using PowerBuilder
resource files” on page 960.

2 Use the Resource File Name box in the Project painter workspace to
reference the PBR file in the dynamic library.

Attaching or embedding manifest files
If you want to deploy an application to the Windows Vista operating system
that meets the certification requirements of the Windows Vista Logo program,
you must follow User Account Control (UAC) guidelines. The executable file
must have an embedded manifest that defines the execution level and specifies
whether access to the user interface of another window is required. The Vista
Application Information Service (AIS) checks the manifest file to determine
the privileges with which to launch the process. Use the Security tab page in
the Project painter to specify these properties.

Generate options Select Embedded manifest if your application needs to be certified for Vista. A
manifest file with the execution level you select is embedded in the
application’s executable file.

You can also select External manifest to generate a standalone manifest file in
XML format that you ship with your application’s executable file, or No
manifest if you do not need to distribute a manifest file.

Execution level Select As Invoker if the application does not need elevated or administrative
privileges. Selecting a different execution level will probably require that you
modify your application to isolate administrative features in a separate process
to receive Vista certification.
958 PowerBuilder Classic

CHAPTER 34 Creating Executables and Components
Select Require Administrator if the application process must be created by a
member of the Administrators group. If the application user does not start the
process as an administrator, a message box displays so that the user can enter
the appropriate credentials.

Select Highest Available to have the AIS retrieve the highest available access
privileges for the user who starts the process.

UI access If the application needs to drive input to higher privilege windows on the
desktop, such as an on-screen keyboard, select the “Allow access to protected
system UI” check box. For most applications you should not select this check
box. Microsoft provides this setting for user interface Assistive Technology
(Section 508) applications.

Authenticode signing required
If you check this box, the application must be Authenticode signed and must
reside in a protected location, such as Program Files or Windows\system32.

Distributing resources
You can choose to distribute your resources (pictures, pointers, and icons)
separately or include them in your executable file or dynamic library.

Distributing resources separately
When a resource is referenced at runtime, if the resource has not been included
in the executable file or in a dynamic library, PowerBuilder looks for it in the
search path. You need to distribute resources with your application and make
sure they get installed in the user’s search path.

For example, assume you use two bitmap files as in the following script:

IF Balance < 0 THEN
p_logo.PictureName = "frown.bmp"

ELSE
p_logo.PictureName = "smile.bmp"

END IF
Users Guide 959

Distributing resources
You can distribute the files frown.bmp and smile.bmp with your application. If
the files are on the search path at runtime, the application can load them when
they are needed.

The Windows search path is as follows:

1 The current directory

2 The Windows directory

3 The Windows system directory

4 All directories in the PATH environment variable

Using PowerBuilder resource files
Instead of distributing resources separately, you can create a PowerBuilder
resource file (a PBR file) that lists all dynamically assigned resources.

A PBR file is an ASCII text file in which you list resource names (such as BMP,
CUR, GIF, ICO, JPEG, RLE, WMF, and PNG files) and DataWindow objects.
To create a PBR file, use a text editor. List the name of each resource, one
resource on each line, then save the list as a file with the extension PBR.

Here is a sample PBR file:

ct_graph.ico
document.ico
codes.ico
button.bmp
next1.bmp
prior1.bmp
background.png

PowerBuilder compiles the listed resources into the executable file or a
dynamic library file, so the resources are available directly at runtime.

Using DataWindow objects
If the objects in one PBL reference DataWindow objects, either statically or
dynamically, that are in a different PBL, you must either specify a
PowerBuilder resource file that includes the DataWindow objects, or define the
library that includes them as a PBD or DLL that you distribute with your
application. You cannot distribute them separately as you can image files.

For more information about creating and using PBR files, see the chapter on
packaging your application for deployment in Application Techniques.
960 PowerBuilder Classic

CHAPTER 34 Creating Executables and Components
What happens at runtime
When a resource such as a bitmap is referenced at runtime, PowerBuilder first
looks in the executable file for it. Failing that, it looks in the PBDs that are
defined for the application. Failing that, it looks in directories in the search path
for the file.

Tracing execution
You can trace execution of an executable file built with PowerBuilder. By
tracing execution, you can troubleshoot your application if it does not behave
the same way when run as an executable file as it does when run in the
PowerBuilder development environment. You can also use the trace output to
profile your application: for example, you can see how many times particular
scripts and functions are being executed.

Two kinds of trace
files

You can generate two kinds of trace files:

• With timing information You collect trace information by adding code
to the scripts in the application or adding a window that lets users turn
tracing on and off. PowerBuilder generates a binary trace file that you
analyze using a comprehensive set of objects and functions or the Profiling
tools. For more information about tracing and profiling, see “About
tracing and profiling an application” on page 917.

• Without timing information You collect information by running the
application with the /pbdebug command-line switch. PowerBuilder
generates a text file that logs the creation and destruction of objects and
the execution of scripts and functions.

Tracing execution
using /pbdebug

You generate PBDebug trace information for an executable file by invoking the
executable with a command-line switch.

❖ To generate PBDebug trace information:

• Invoke the executable file using the /pbdebug command-line switch:

EXEFILE /pbdebug

As the application executes, PowerBuilder records the trace output in a file
called exefile.dbg, which is a text file that you can read in any editor. For
information about PBDebug tracing in the development environment, see
“Generating a trace file without timing information” on page 946.
Users Guide 961

Building an executable file and dynamic libraries
Enabling tracing
If you are compiling machine code, you must enable tracing at compile time by
selecting Trace Information in the Project painter Compile Options group. If
you have not enabled tracing when you compile for machine code, no trace
information is generated and the /pbdebug switch has no effect.

If you compile your project in Pcode, the compiler automatically adds the
information needed to enable tracing.

Building an executable file and dynamic libraries
Once you have completed development and defined your project, you build the
project to create the executable files and all specified dynamic libraries. You
can build your project whenever you have made changes to the objects and
want to test or deploy another version of your application.

This section describes building a single project in the Project painter. You can
build all the targets in your workspace at any time using buttons on the
PowerBar, pop-up menus in the System Tree, or a command line. For more
information, see “Building workspaces” on page 26.

❖ To build the application:

1 Open the project you built in the Project painter.

2 Click the Build button in the PainterBar, or select Design>Build Project.

If the target’s library list has changed
When you click Build, PowerBuilder checks your target’s library list. If it
has changed since you defined your project, PowerBuilder updates the
Project painter workspace with the new library list. Make whatever
changes you need in the workspace, then click Build again.

PowerBuilder builds the executable and all specified dynamic libraries.

The next two sections describe in detail how PowerBuilder builds the project
and finds the objects used in the target.

When PowerBuilder has built the target, you can check which objects are
included in the target. See “Listing the objects in a project” on page 966.
962 PowerBuilder Classic

CHAPTER 34 Creating Executables and Components
How PowerBuilder builds the project
When PowerBuilder builds your application project:

1 If you selected Rebuild: Full, PowerBuilder regenerates all the objects in
the libraries.

2 If you selected Prompt for Overwrite, PowerBuilder displays a message
box asking for confirmation before overwriting the executable file and
each dynamic library.

3 To create the executable file you specified, PowerBuilder searches through
your target and copies into the executable file the compiled versions of
referenced objects from the libraries in the target’s library search path that
are not specified as dynamic libraries. For more details, see "How
PowerBuilder searches for objects" next.

4 PowerBuilder creates a dynamic library for each of the libraries you
specified for the target and maintains a list of these library files.
PowerBuilder maintains the unqualified file names of the dynamic library
files; it does not save the path name.

PowerBuilder does not copy objects that are not referenced in the application
to the executable file, nor does it copy objects to the executable file from
libraries you declared to be dynamic libraries. These objects are linked to the
target at runtime and are not stored in the executable file.

What happens at
runtime

When an object such as a window is referenced in the application,
PowerBuilder first looks in the executable file for the object. If it does not find
it there, it looks in the dynamic library files that are defined for the target. For
example, if you specified that a dynamic library should be generated from
test.pbl, PowerBuilder looks for test.pbd or test.dll at runtime. The dynamic
library files must be in the search path. If PowerBuilder cannot find the object
in any of the dynamic library files, it reports a runtime error.

How PowerBuilder searches for objects
When searching through the target, PowerBuilder does not find all the objects
that are used in your target and copy them to the executable file. This section
describes which objects it finds and copies and which it does not.
Users Guide 963

Building an executable file and dynamic libraries
Which objects are copied to the executable file

PowerBuilder finds and copies the following objects to the executable file.

Objects that are
directly referenced in
scripts

PowerBuilder copies objects directly referenced in scripts to the executable
file. For example:

• If a window script contains the following statement, w_continue is copied
to the executable file:

Open(w_continue)

• If a menu item script refers to the global function f_calc, f_calc is copied to
the executable file:

f_calc(EnteredValue)

• If a window uses a pop-up menu using the following statements, m_new is
copied to the executable file:

m_new mymenu
mymenu = create m_new
mymenu.m_file.PopMenu(PointerX(), PointerY())

Objects that are
referenced in painters

PowerBuilder copies objects referenced in painters to the executable file. For
example:

• If a menu is associated with a window in the Window painter, the menu is
copied to the executable file.

• If a DataWindow object is associated with a DataWindow control in the
Window painter, the DataWindow object is copied to the executable file.

• If a window contains a custom user object that includes another user
object, both user objects are copied.

• If a resource is assigned in a painter, it is copied to the executable file. For
example, when you place a Picture control in a window in the Window
painter, the bitmap file you associate with it is copied.

Which objects are not copied to the executable file

When creating the executable file, PowerBuilder can identify the associations
you made in the painter, because those references are saved with the object’s
definition in the library, and direct references in scripts, because the compiler
saves this information.
964 PowerBuilder Classic

CHAPTER 34 Creating Executables and Components
However, it cannot identify objects that are referenced dynamically through
string variables. To do so, it would have to read through all the scripts and
process all assignment statements to uncover all the referenced objects. The
following examples show objects that are not copied to the executable file:

• If the DataWindow object d_emp is associated with a DataWindow control
dynamically using the following statement, d_emp is not copied:

dw_info.DataObject = "d_emp"

• The bitmap files assigned dynamically in the following script are not
copied:

IF Balance < 0 THEN
p_logo.PictureName = "frown.bmp"

ELSE
p_logo.PictureName = "smile.bmp"

END IF

• The reference to window w_go in a string variable in the following
window script is not found by PowerBuilder when building the executable
file, so w_go is not copied to the executable file:

window mywin
string winname = "w_go"
Open(mywin,winname)

Which objects are not copied to the dynamic libraries

When building a dynamic library, PowerBuilder does not inspect the objects;
it simply copies the compiled form of the objects. Therefore, the DataWindow
objects and resources (pictures, icons, and pointers) used by any of the objects
in the library—either specified in a painter or assigned dynamically in a
script—are not copied into the dynamic library.

For example, suppose test_dw.pbl contains DataWindow objects and test_w.pbl
contains window objects that reference them, either statically or dynamically.
If you build a dynamic library from test_w.pbl, you must either include the
DataWindow objects in a PowerBuilder resource file that is referenced by
test_w.pbl, or build a dynamic library from test_dw.pbl, as described in "How
to include the objects that were not found" next.
Users Guide 965

Building an executable file and dynamic libraries
How to include the objects that were not found

If you did not use any of the types of references described in the preceding
sections, you do not need to do anything else to ensure that all objects get
distributed: they are all built into the executable file. Otherwise, you have the
following choices for how to include the objects that were not found.

Distributing graphic
objects

For graphic objects such as icons and bitmaps, you have two choices:

• Distribute them separately

• Include them in a PowerBuilder resource file (PBR), then build an
executable file or dynamic PowerBuilder library that uses the resource file

Distributing
DataWindow objects

For DataWindow objects, you have two choices:

• Include them in a PBR, then build an executable file or dynamic
PowerBuilder library that uses the resource file

• Build and distribute a dynamic library from the PBL that contains the
DataWindow objects

Distributing other
objects

All other objects, such as windows referenced only in string variables, must be
included directly in a dynamic library.

Table 34-3 summarizes resource distribution possibilities.

Table 34-3: Summary: options for distributing resources

Listing the objects in a project
After you have built your project, you can display a list of objects in the project
in a grid DataWindow object with three columns showing:

• The source library that contains the object

• The name of the object

• The type of the object

The report lists the objects that PowerBuilder placed in the executable file and
the dynamic libraries it created when it built the project.

Distribution method
Graphic
objects

DataWindow
objects

Other
objects

As a separate file Yes No No

In an executable or dynamic
library that references a PBR

Yes Yes No

Directly in a dynamic library No Yes Yes
966 PowerBuilder Classic

CHAPTER 34 Creating Executables and Components
Because the report is a grid DataWindow object, you can resize and reorder
columns just as you can in other grid DataWindow objects. You can also sort
the rows and print the report using the Sort and Print buttons.

❖ To list the objects in a project:

1 Build your project.

2 Select Design>List Objects from the menu bar.

Building components, proxies, and .NET targets
The Project painter workspace for executable applications is shown in
“Defining an executable application project” on page 953. It contains a tab
control, and on each tab page there are text boxes and radio buttons you use to
specify the characteristics of your executable file and dynamic libraries.

The workspace for all other types of project objects is similar. If you used a
wizard to create the project, it shows the options you selected in the wizard. If
you did not use a wizard, you select the objects the project will use and specify
project properties on tab pages in the workspace.

When you build the project, the Output window shows whether the build was
successful and lists any errors encountered.

Building and
deploying a
workspace

You can build and deploy a single project or all the projects in your workspace.
You can also build and deploy from a command-line. For more information,
see “Building workspaces” on page 26.

For more information For more information about building EAServer components and proxies, Web
service proxies, and EJB client proxies, see Application Techniques.

For more information about building application server components and
proxies, see the documentation for the Sybase PowerBuilder Application
Server Plug-in product.

For more information about building Web DataWindow containers, see the
DataWindow Programmers Guide.

For more information about building .NET targets, see Deploying Applications
and Components to .NET.
Users Guide 967

Building components, proxies, and .NET targets
968 PowerBuilder Classic

P A R T 8 Appendixes

Appendix A describes the extended attribute system
tables. Appendix B describes how to use OrcaScript for
automatic processing of builds and source control
operations.

Users Guide 971

A P P E N D I X A The Extended Attribute
System Tables

About this appendix This appendix describes each column in the extended attribute system
tables.

Contents

About the extended attribute system tables
PowerBuilder stores application-based information you provide for a
database table (such as the text to use for labels and headings for the
columns, validation rules, display formats, and edit styles) in system
tables in your database. These system tables are called the extended
attribute system tables. The tables contain all the information related to the
extended attributes for the tables and columns in the database. The
extended attributes are used in DataWindow objects.

The system tables There are five extended attribute system tables.

Topic Page

About the extended attribute system tables 971

The extended attribute system tables 972

Edit style types for the PBCatEdt table 975

The extended attribute system tables

972 PowerBuilder Classic

Table A-1: List of extended attribute system tables

What to do with the
tables

You can open and look at these tables in the Database painter just like other
tables. You might want to create a report of the extended attribute information
used in your database by building a DataWindow object whose data source is
the extended attribute system tables.

Caution
You should not change the values in the extended attribute system tables.
PowerBuilder maintains this information automatically whenever you change
information for a table or column in the Database painter.

The extended attribute system tables
This section lists and describes all of the columns in each of the extended
attribute system tables.

Table A-2: The PBCatTbl table

Table Contains information about

PBCatTbl Tables in the database

PBCatCol Columns in the database

PBCatFmt Display formats

PBCatVld Validation rules

PBCatEdt Edit styles

Column Column name Description

1 pbt_tnam Table name

2 pbt_tid Adaptive Server Enterprise Object ID of table (used
for Adaptive Server Enterprise only)

3 pbt_ownr Table owner

4 pbd_fhgt Data font height, PowerBuilder units
5 pbd_fwgt Data font stroke weight (400=Normal, 700=Bold)

6 pbd_fitl Data font Italic (Y=Yes, N=No)

7 pbd_funl Data font Underline (Y=Yes, N=No)

8 pbd_fchr Data font character set (0=ANSI, 2=Symbol,
255=OEM)

9 pbd_fptc Data font pitch and family (see note)

10 pbd_ffce Data font typeface

APPENDIX A The Extended Attribute System Tables

Users Guide 973

About font pitch and family
Font pitch and family is a number obtained by adding together two constants:

Pitch: 0=Default, 1=Fixed, 2=Variable
Family: 0=No Preference, 16=Roman, 32=Swiss, 48=Modern, 64=Script,
80=Decorative

Table A-3: The PBCatCol table

11 pbh_fhgt Headings font height, PowerBuilder units

12 pbh_fwgt Headings font stroke weight (400=Normal,
700=Bold)

13 pbh_fitl Headings font Italic (Y=Yes, N=No)

14 pbh_funl Headings font Underline (Y=Yes, N=No)

15 pbh_fchr Headings font character set (0=ANSI, 2=Symbol,
255=OEM)

16 pbh_fptc Headings font pitch and family (see note)

17 pbh_ffce Headings font typeface

18 pbl_fhgt Labels font height, PowerBuilder units

19 pbl_fwgt Labels font stroke weight (400=Normal, 700=Bold)

20 pbl_fitl Labels font Italic (Y=Yes, N=No)

21 pbl_funl Labels font Underline (Y=Yes, N=No)

22 pbl_fchr Labels font character set (0=ANSI, 2=Symbol,
255=OEM)

23 pbl_fptc Labels font pitch and family (see note)

24 pbl_ffce Labels font typeface

25 pbt_cmnt Table comments

Column Column name Description

1 pbc_tnam Table name

2 pbc_tid Adaptive Server Enterprise Object ID of table (used
for Adaptive Server Enterprise only)

3 pbc_ownr Table owner

4 pbc_cnam Column name

5 pbc_cid Adaptive Server Enterprise Column ID (used for
Adaptive Server Enterprise only)

6 pbc_labl Label

7 pbc_lpos Label position (23=Left, 24=Right)

8 pbc_hdr Heading

Column Column name Description

The extended attribute system tables

974 PowerBuilder Classic

Table A-4: The PBCatFmt table

Table A-5: The PBCatVld table

Table A-6: The PBCatEdt table

9 pbc_hpos Heading position (23=Left, 24=Right, 25=Center)

10 pbc_jtfy Justification (23=Left, 24=Right)

11 pbc_mask Display format name

12 pbc_case Case (26=Actual, 27=UPPER, 28=lower)

13 pbc_hght Column height, PowerBuilder units

14 pbc_wdth Column width, PowerBuilder units

15 pbc_ptrn Validation rule name

16 pbc_bmap Bitmap/picture (Y=Yes, N=No)

17 pbc_init Initial value

18 pbc_cmnt Column comments

19 pbc_edit Edit style name

20 pbc_tag (Reserved)

Column Column name Description

1 pbf_name Display format name

2 pbf_frmt Display format

3 pbf_type Datatype to which format applies

4 pbf_cntr Concurrent-usage flag

Column Column name Description

1 pbv_name Validation rule name

2 pbv_vald Validation rule

3 pbv_type Datatype to which validation rule applies

4 pbv_cntr Concurrent-usage flag

5 pbv_msg Validation error message

Column Column name Description

1 pbe_name Edit style name

2 pbe_edit Format string (edit style type dependent; see “Edit
style types for the PBCatEdt table” next)

3 pbe_type Edit style type (see Table A-7)

4 pbe_cntr Revision counter (increments each time edit style
is altered)

5 pbe_seqn Row sequence number for edit types requiring
more than one row in PBCatEdt table

Column Column name Description

APPENDIX A The Extended Attribute System Tables

Users Guide 975

Edit style types for the PBCatEdt table
Table A-7 shows the edit style types available for the PBCatEdt table.

Table A-7: Edit style types for the PBCatEdt table

CheckBox edit style (code 85)
Table A-8 shows a sample row in the PBCatEdt table for a CheckBox edit style.
Table A-9 shows the meaning of the values in Table A-8.

Table A-8: Sample row in PBCatEdt for a CheckBox edit style

Table A-9: Values used in CheckBox edit style sample

6 pbe_flag Edit style flag (edit style type dependent)

7 pbe_work Extra field (edit style type dependent)

Column Column name Description

Edit style type pbe_type value (column 3)

CheckBox 85

RadioButton 86

DropDownListBox 87

DropDownDataWindow 88

Edit 89

Edit Mask 90

Name Edit Type Cntr Seqn Flag Work

MyEdit Text 85 1 1 Flag

MyEdit OnValue 85 1 2 0

MyEdit OffValue 85 1 3 0

MyEdit ThirdValue 85 1 4 0

Value Meaning

Text CheckBox text

OnValue Data value for On state

OffValue Data value for Off state

ThirdValue Data value for Third state (this row exists only if 3 State is checked for
the edit style—bit 30 of Flag is 1)

Edit style types for the PBCatEdt table

976 PowerBuilder Classic

RadioButton edit style (code 86)
Table A-10 shows a sample row in the PBCatEdt table for a RadioButton edit
style. Table A-11 shows the meaning of the values in Table A-10.

Table A-10: Sample row in PBCatEdt for a RadioButton edit style

Table A-11: Values used in RadioButton edit style sample

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the
corresponding style is checked. A 0 in any bit indicates the
corresponding style is unchecked.

Bit 31: Left Text
Bit 30: 3 State
Bit 29: 3D
Bit 28: Scale Box
Bits 27 – 16 (3 hex digits): Not used (set to 0)
Bits 15 – 4 (3 hex digits): Always 0 for CheckBox edit style
Bit 3: Always 0 for CheckBox edit style
Bit 2: Always 1 for CheckBox edit style
Bit 1: Always 0 for CheckBox edit style
Bit 0: Always 0 for CheckBox edit style

Value Meaning

Name Edit Type Cntr Seqn Flag Work

MyEdit Columns 86 1 1 Flag

MyEdit Display1 86 1 2 0

MyEdit Data1 86 1 3 0

MyEdit Display2 86 1 4 0

MyEdit Data2 86 1 5 0

Value Meaning

Columns Character representation (in decimal) of number of columns (buttons)
across.

Display1 Display value for first button.

Data1 Data value for first button.

Display2 Display value for second button.

Data2 Data value for second button.

Display and data values are repeated in pairs for each radio button
defined in the edit style.

APPENDIX A The Extended Attribute System Tables

Users Guide 977

DropDownListBox edit style (code 87)
Table A-12 shows a sample row in the PBCatEdt table for a DropDownListBox
edit style. Table A-13 shows the meaning of the values in Table A-12.

Table A-12: Sample row in PBCatEdt for a DropDownListBox edit style

Table A-13: Values used in DropDownListBox edit style sample

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Left Text
Bit 30: 3D
Bit 29: Scale Circles
Bit 38: Not used (set to 0)
Bits 27 – 16 (3 hex digits): Not used (set to 0)
Bits 15 – 4 (3 hex digits): Always 0 for RadioButton edit style
Bit 3: Always 1 for RadioButton edit style
Bit 2: Always 0 for RadioButton edit style
Bit 1: Always 0 for RadioButton edit style
Bit 0: Always 0 for RadioButton edit style

Value Meaning

Name Edit Type Cntr Seqn Flag Work

MyEdit Limit 87 1 1 Flag Key

MyEdit Display1 87 1 2 0

MyEdit Data1 87 1 3 0

MyEdit Display2 87 1 4 0

MyEdit Data2 87 1 5 0

Value Meaning

Limit Character representation (in decimal) of the Limit value.

Key One-character accelerator key.

Display1 Display value for first entry in code table.

Data1 Data value for first entry in code table.

Display2 Display value for second entry in code table.

Data2 Data value for second entry in code table.

Display and data values are repeated in pairs for each entry in the code
table.

Edit style types for the PBCatEdt table

978 PowerBuilder Classic

DropDownDataWindow edit style (code 88)
Table A-14 shows a sample row in the PBCatEdt table for a
DropDownDataWindow edit style. Table A-15 shows the meaning of the
values in Table A-14.

Table A-14: Sample row in PBCatEdt for a DropDownDataWindow edit
style

Table A-15: Values used in DropDownDataWindow edit style sample

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Sorted
Bit 30: Allow editing
Bit 29: Auto HScroll
Bit 28: VScroll bar
Bit 27: Always show list
Bit 26: Always show arrow
Bit 25: Uppercase
Bit 24: Lowercase (if bits 25 and 24 are both 0, then case is Any)
Bit 23: Empty string is NULL
Bit 22: Required field
Bit 21: Not used (set to 0)
Bit 20: Not used (set to 0)
Bits 19 – 16 (1 hex digit): Not used (set to 0)
Bits 15 – 4 (3 hex digits): Always 0 for DropDownListBox edit style
Bit 3: Always 0 for DropDownListBox edit style
Bit 2: Always 0 for DropDownListBox edit style
Bit 1: Always 1 for DropDownListBox edit style
Bit 0: Always 0 for DropDownListBox edit style

Value Meaning

Name Edit Type Cntr Seqn Flag Work

MyEdit DataWin 88 1 1 Flag Limit

MyEdit DataCol 88 1 2 0 Key

MyEdit DisplayCol 88 1 3 0 Width%

Value Meaning

DataWin Name of DataWindow object to use.

DataCol Data column from DataWindow object.

DisplayCol Display column from DataWindow object.

APPENDIX A The Extended Attribute System Tables

Users Guide 979

Edit edit style (code 89)
Table A-16 shows a sample row in the PBCatEdt table for an Edit edit style.
Table A-17 shows the meaning of the values in Table A-16.

About the example
This example shows an Edit edit style using a code table of display and data
values. There is a pair of rows in PBCatEdt for each entry in the code table only
if bit 23 of Flag is 1.

For information about code tables in edit styles, see Chapter 22, “Displaying
and Validating Data.”

Limit Character representation (in decimal) of Limit value.

Key One-character accelerator key.

Width% Width of the dropdown part of the DropDownDataWindow in %.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-
order four are styles within the type. A 1 in any bit indicates the
corresponding style is checked. A 0 in any bit indicates the
corresponding style is unchecked.

Bit 31: Allow editing
Bit 30: Auto HScroll
Bit 29: VScroll bar
Bit 28: Always show list
Bit 27: Uppercase
Bit 26: Lowercase (if bits 27 and 26 are both 0, then case is Any)
Bit 25: HScroll bar
Bit 24: Split horizontal scroll bar
Bit 23: Empty string is NULL
Bit 22: Required field
Bit 21: Always show arrow
Bit 20: Not used (set to 0)
Bits 19 – 16 (1 hex digit): Not used (set to 0)
Bits 15 – 8 (2 hex digits): Always 0 for DropDownDataWindow
edit style
Bit 7: Always 0 for DropDownDataWindow edit style
Bit 6: Always 0 for DropDownDataWindow edit style
Bit 5: Always 0 for DropDownDataWindow edit style
Bit 4: Always 1 for DropDownDataWindow edit style
Bit 3 – 0 (1 hex digit): Always 0 for DropDownDataWindow edit
style

Value Meaning

Edit style types for the PBCatEdt table

980 PowerBuilder Classic

Table A-16: Sample row in PBCatEdt for an Edit edit style

Table A-17: Values used in Edit edit style sample

Name Edit Type Cntr Seqn Flag Work

MyEdit Limit 89 1 1 Flag Key

MyEdit Format 89 1 2 0 Focus

MyEdit Display1 89 1 3 0

MyEdit Data1 89 1 4 0

MyEdit Display2 89 1 5 0

MyEdit Data2 89 1 6 0

Value Meaning

Limit Character representation (in decimal) of Limit value.

Key One-character accelerator key.

Format Display format mask.

Focus Character "1" if Show Focus Rectangle is checked. NULL otherwise.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Uppercase
Bit 30: Lowercase (if Bits 31 and 30 are both 0, then case is Any)
Bit 29: Auto selection
Bit 28: Password
Bit 27: Auto HScroll
Bit 26: Auto VScroll
Bit 25: HScroll bar
Bit 24: VScroll bar
Bit 23: Use code table
Bit 22: Validate using code table
Bit 21: Display only
Bit 20: Empty string is NULL
Bit 19: Required field
Bit 18: Not used (set to 0)
Bit 17: Not used (set to 0)
Bit 16: Not used (set to 0)
Bits 15 – 4 (3 hex digits): Always 0 for Edit edit style
Bit 3: Always 0 for Edit edit style
Bit 2: Always 0 for Edit edit style
Bit 1: Always 0 for Edit edit style
Bit 0: Always 1 for Edit edit style

APPENDIX A The Extended Attribute System Tables

Users Guide 981

Edit Mask edit style (code 90)
Table A-18 shows a sample row in the PBCatEdt table for an EditMask edit
style. Table A-19 shows the meaning of the values in Table A-18.

About the example
This example shows an Edit Mask edit style using a code table of display and
data values as part of a spin control. Rows 2 and beyond exist in PBCatEdt only
if the edit mask is defined as a spin control (bit 29 of Flag is 1). Rows 3 and
beyond exist only if the optional code table is populated.

For information about using an edit mask as a spin control, see Chapter 22,
“Displaying and Validating Data.”

Table A-18: Sample row in PBCatEdt for an EditMask edit style

Table A-19: Values used in EditMask edit style sample

Name Edit Type Cntr Seqn Flag Work

MyEdit Format 90 1 1 Flag DtFcKy

MyEdit Range 90 1 2 0 SpinInc

MyEdit Display1 90 1 3 0

MyEdit Data1 90 1 4 0

MyEdit Display2 90 1 5 0

MyEdit Data2 90 1 6 0

Value Meaning

Format Display format mask.

DtFcKy Concatenated string with 1-character data-type code, 1-character focus-
rectangle code (0 or 1), and 1-character accelerator key.

Data type codes:

Format String = "0"

Format Number = "1"

Format Date = "2"

Format Time = "3"

Format DataTime= "4"

Examples:

"10x" means format is Number type, focus rectangle option is
unchecked, accelerator key is "x"
"31z" means format is Time type, focus rectangle option is checked,
accelerator key is "z"

Edit style types for the PBCatEdt table

982 PowerBuilder Classic

Range Character representation (in decimal) of spin control range. The min
value and max value are tab-delimited.

Example:

"1[tab]13" means min = 1, max = 13

SpinInc Character representation (in decimal) of spin increment.

Display1 Display value for first entry in code table.

Data1 Data value for first entry in code table.

Display2 Display value for second entry in code table.

Data2 Data value for second entry in code table.

Display and data values are repeated in pairs for each entry in the code
table.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Required
Bit 30: Autoskip
Bit 29: Spin control
Bit 28: Read only (code table option)
Bit 27: Use code table
Bit 26: Not used (set to 0)
Bit 25: Not used (set to 0)
Bit 24: Not used (set to 0)
Bit 23 – 16 (2 hex digits): Not used (set to 0)
Bit 15 – 8 (2 hex digits): Always 0 for Edit Mask edit style
Bit 7: Always 0 for Edit Mask edit style
Bit 6: Always 0 for Edit Mask edit style
Bit 5: Always 1 for Edit Mask edit style
Bit 4: Always 0 for Edit Mask edit style
Bits 3 – 0 (1 hex digit): Always 0 for Edit Mask edit style

Value Meaning

A P P E N D I X B The OrcaScript Language

About this appendix This appendix describes the OrcaScript scripting language. OrcaScript
allows you to perform source control operations and build PowerBuilder
workspaces and executables without operator intervention. The full
ORCA tool kit is available to Sybase partners only, but OrcaScript can be
used by any PowerBuilder customer.

Contents

About OrcaScript
OrcaScript allows you to write batch scripts to process PowerBuilder
applications and files without using the PowerBuilder development
environment. You can use OrcaScript to get the latest version of a target
from source control, build the target PBLs, deploy components to
EAServer, and compile PowerBuilder executable files—all without
operator intervention.

Using OrcaScript with
source control

The targets you obtain from source control using OrcaScript could be
placed on a network build computer that is shared by PowerBuilder
developers. This is especially advantageous for large shops with fixed
working hours: the builds could be done nightly by running an OrcaScript
batch file, and an up-to-date version of the targets and libraries would be
available at the start of the next work day.

Developers could then use OrcaScript or operating system commands to
copy the shared files directly to their local computers. Although
developers would still connect directly to source control from their local
workspaces, refreshing the targets in the workspaces would be much faster
since compilation times for complex targets would be greatly minimized.

Topic Page

About OrcaScript 983

OrcaScript Commands 985

Usage notes for OrcaScript commands and parameters 989
Users Guide 983

About OrcaScript
Batch file order If you include OrcaScript commands in a batch file, the file is read line by line.
Each OrcaScript batch file must begin with a start session command and end
with an end session command. You can save the batch file with any extension.
You run the batch file by calling the OrcaScript executable on a command line
and passing the batch file name as an argument:

OrcaScr120 myOrcaBat.dat

If you use relative directories in the OrcaScript batch file, create the batch file
in the directory that is the required root directory at runtime. This must be in
the same directory or in the path above a directory containing the files
referenced by the batch file.

When you use relative directories, the OrcaScript batch file is portable for all
users. However, users must make the directory where they copy the batch file
the current directory (the one displayed in the DOS prompt) before invoking
OrcaScr120.exe. The command to start the OrcaScript executable can also take
the following parameters:

Caution
You should not run an OrcaScript batch file if PowerBuilder is currently
running on the same computer. If the PowerBuilder development environment
is not shut down while OrcaScript is running, your PowerBuilder libraries can
become corrupted. For this reason, casual use of OrcaScript is not
recommended.

Error handling Each line of an OrcaScript batch file either succeeds or fails. If a command
fails, subsequent commands are not processed and the OrcaScript session is
ended. An error message is printed to the command window.

Comments A semicolon (;) indicates that the rest of the line is treated as a comment.

Parameter Description Example

/D Sets variables that
are valid in the
batch file

OrcaScr120 /D myVar1=value1

/D myVar2=value2 myOrca.dat

/H or /? Prints syntax help
to screen

OrcaScr120 /H
984 PowerBuilder Classic

APPENDIX B The OrcaScript Language
OrcaScript Commands
OrcaScript commands are not case sensitive. The generic command parameters
can include only strings delimited by quotation marks, or predefined variables
and constants without quotation marks. White space is used to separate
multiple parameters for a single command. Any place a string is expected, a
name that has been previously defined (set) in an OrcaScript command can be
used.

In the OrcaScript command prototype syntax that follows, brackets indicate a
parameter is optional. A pipe character inside angle brackets (< | >) indicates
that a selection must be made from one of the values inside the angle brackets.
As elsewhere in the PowerBuilder documentation, text in italic type indicates
a variable.

For commands where a string variable is required by the command syntax but
is not essential to the command function (such as pbrName for the build library
command), you can use an empty string inside quotation marks for the string
value. Most of the OrcaScript commands and parameters are self-explanatory.
For usage notes and an example of an OrcaScript batch file for obtaining a
target from source control, see "Usage notes for OrcaScript commands and
parameters" next.

OrcaScript commands OrcaScript supports the following commands:

start session
end session
set name = value
set name += value
set liblist pbl_list [pbl_list ...]
set application pblName applicationName
set debug <true | false>
set exeinfo property <companyname | productname | copyright | description>

propertyString
set exeinfo property <fileversion | fileversionnum | productversion |

productversionnum> versionString
echo value [value ...]
file copy fromFile toFile [clobberAttribute]
file delete fileName [clobberAttribute]
regenerate pblName entryName entryType
copy entry pblName entryName entryType toPblName
build library pblName pbrName <pbd | 32>
build executable exeName iconName pbrName pbdflags [machinecode]

[newvstylecontrols]
build application <full | migrate | incremental >
Users Guide 985

OrcaScript Commands
build project pblName projectName [serverName serverPort logID logPass]
create library pblName pblComments
deploy winform project pblName entryName [iconName]
scc get connect properties workspaceName
scc set connect property deletetempfiles <true|false>
scc set connect property provider sccProvider
scc set connect property userid userID
scc set connect property password password
scc set connect property logfile logFileName
scc set connect property project projectPath
scc set connect property localprojpath localProjectPath
scc set connect property auxproject auxProjectPath
scc set connect property logappend < true | false >
scc connect [offline]
scc set target targetName [refreshType][refreshOption][refreshOption]
scc get latest version file_list [file_list ...]
scc exclude liblist pblName [pblName ...]
scc refresh target <full | migrate | incremental >
scc close

Argument description Arguments for OrcaScript commands are described in the table below:

Argument Description

name String you define for an OrcaScript session.

value Value of a string that you set for the OrcaScript session.

pbl_list String containing the list of PBLs for the session application.
PBL names can be separated by semicolons in a single string,
or separated by a blank space in multiple strings.

pblName Name of a PBL for an OrcaScript action or for the OrcaScript
session application.

applicationName Name of the application for an OrcaScript action.

true | false Boolean value for enabling or disabling script in conditional
compilation blocks set with the DEBUG condition. The set
debug command applies to standard PowerBuilder targets
only, not to Windows Forms targets. It affects all objects used
by subsequent regenerate and build application commands. It
also affects all objects retrieved with scc refresh target and scc
get latest version commands.

propertyString String for setting the company or product name, copyright
owner, or application description.
986 PowerBuilder Classic

APPENDIX B The OrcaScript Language
versionString String for setting the product or file version numbers. The
FileVersionNum and ProductVersionNum strings must consist
of four integer values representing the major version number,
minor version number, fix version number, and build number,
with each value separated by a decimal point, for example
"11.0.0.3012".

fromFile File that you want to copy during an OrcaScript session.

toFile File name for a file that you copy during an OrcaScript session.

fileName File that you want to delete during an OrcaScript session.

clobberAttribute Determines whether the file copy command overwrites an
existing file. If the destination file does not already exist, the
file copy command creates the file regardless of the
clobberAttribute value you select. Possible values are:

• Clobber (default) File copy command overwrites an
existing file marked read/write, but does not overwrite an
existing file marked read-only

• NoClobber File copy command does not overwrite an
existing file even if it is marked read/write

• Clobber Always File copy command overwrites an
existing file even if it is marked read-only

entryName Pointer to a string whose value is the name of the referenced
object.

entryType Value specifying the type of the referenced object. Values can
be: application, datawindow, function, menu, query, struct,
userobject, window, pipe, project, or proxy. Certain
abbreviations (app, dw, fn, struct, uo, and win) are allowed as
substitute values.

toPblName Name of the PBL to which you copy an entry.

pbrName Name of a resource file you want to include in a build.

pbd | 32 Select PBD to generate PowerBuilder dynamic libraries.
Select 32 to generate platform-specific machine code. You
must enter a full path for a PBL or PBR if you select 32 as the
value of this argument in an OrcaScript build library command.

exeName Name of the executable you want to build.

iconName Name of an icon to use for an executable you build with
OrcaScript.

pbdFlags String composed of a series of Y and N values for each library
in the library list. A value of "nnyy" indicates that there are
four libraries in the library list, the last two being PBDs.
Objects from PBLs are copied into the executable; objects
from PBDs are not copied.

Argument Description
Users Guide 987

OrcaScript Commands
Arguments for source
control commands

In addition to some of the arguments listed in the preceding table, OrcaScript
source control commands use the following arguments:

machinecode Use to compile a project as machine code.

newvstylecontrols Use Microsoft XP visual style for controls.

full | migrate |
incremental

Build strategy for the session application.

projectName Name of the project object you want to build and deploy.

serverName Name of the server where you want to deploy a project.

serverPort Port for the server where you want to deploy a project.

logID Login ID for the server where you want to deploy a project.

logPass Login password for the server where you want to deploy a
project.

pbdName Name of a PBD you append to an EXE.

pblComments Comments for a PBL you create in an OrcaScript session.

Argument Description

Argument Description

workspaceName Name of the workspace to connect to source control. You must
include the path to the workspace, although you can use a relative
path.

sccProvider Name of the source control provider.

userID Name of the user registered to source control.

password Password for the user ID.

logFileName Name of a log file used to record SCC transactions.

projectPath Path to the source control project.

localProjectPath Local root directory for the project.

auxProjectPath Contains any string that the SCC provider wants to associate with
the project. It has a different meaning for every SCC vendor.

targetName Name of the target for source control operations.

true | false Boolean value for appending to the source control log file. If this
command is not used but a log file is specified, the session value
defaults to “true”.

offline Keyword indicating that an actual SCC connection will not be
required for this session. It is appropriate only when the
ImportOnly refresh option is used on a subsequent scc set
target command. When refreshing a target using ImportOnly,
no communication with the SCC provider is required at runtime,
so the job may be run offline.
988 PowerBuilder Classic

APPENDIX B The OrcaScript Language
Usage notes for OrcaScript commands and parameters
Before calling any other ORCA functions, you need to open a session:

start session

You can start and end multiple OrcaScript sessions in the same batch file.

refreshType Value can be:

• refresh_all Gets latest version of all objects from the SCC
provider and refreshes all target libraries. Does not perform
comparisons.

• outofdate Performs comparisons and updates objects that
are out of date. If no refreshType value is specified, the
refreshType defaults to outofdate.

Combining values
You can combine compatible refreshType and refreshOption
values (for example, outofdate and exclude_checkout) in the
same string if the values are separated by a blank space.

refreshOption Value can be:

• importonly Does not perform comparisons and does not
refresh. Use to build targets if you refreshed the local path
using the SCC provider’s administration tool.

• exclude_checkout Prevents objects that are currently
checked out by the current user from being overwritten. Can
be used with outofdate parameter in the same OrcaScript
command.

file_list String containing one or more resource file names (such as GIFs,
HLPs, or PBRs) using relative or absolute path specification. The
string should not include file names for objects contained in
application PBLs. File names can be separated by semicolons in
a single string, or separated by a blank space in multiple strings.
The list of files must be on a single line even when file names are
contained in multiple strings.

Argument Description
Users Guide 989

Usage notes for OrcaScript commands and parameters
Copying files, objects,
and properties

If you want to use OrcaScript simply to move objects among libraries, you do
not need to set a library list or application. You can use the copy commands to
copy files, objects, and properties. This example copies the d_labels
DataWindow from the source.pbl library to the destin.pbl library:

copy entry "c:\\app\\source.pbl""d_labels" dw
"c:\\app\\destin.pbl"

Setting a library list
and an application

If you want to use OrcaScript to build targets or deploy components (or set
product and version information using the set exeinfo command) you must first
set the library list and the current application. You can set the library list and
current application only once in an OrcaScript session. To use another library
list and application, end the OrcaScript session and start a new session. The
following OrcaScript commands build target libraries and compile an
executable file.

start session
set liblist
".\qadbtest\qadbtest.pbl;.\shared_obj\shared_obj.pbl;.\datatypes\datatype.
pbl;.\chgreqs\chgreqs.pbl"
set application ".\qadbtest\qadbtest.pbl" "qadbtest"
build library ".\shared_obj\shared_obj.pbl" "" pbd
build library ".\datatypes\datatype.pbl" "" pbd
build library ".\chgreqs\chgreqs.pbl" "" pbd
build executable ".\qadbtest\qadbtest.exe" ".\emp.ico" ".\qadbtest.pbr"
"nyyy"
file copy ".\qadbtest\qadbtest.exe" ".\bin\qadbtest.exe"
file copy ".\chgreqs\chgreqs.pbd" ".\bin\chgreqs.pbd"
file copy ".\datatypes\datatype.pbd" ".\bin\datatype.pbd"
file copy ".\shared_obj\shared_obj.pbd" ".\bin\shared_obj.pbd"
end session

You can use relative paths when you generate PBDs with the “PBD” option,
but the PBD always gets generated in the same directory as the PBL. To
actually run the executable, you might have to move the PBDs to a “BIN”
directory. The above example calls several file copy commands to accomplish
this.

If you select 32 as the last argument in a build library command, you must use
the full path for the PBL or PBR name included in that call.

Source control
example

You can use OrcaScript source control commands instead of the commands to
set the library list and application. The following is an example of an
OrcaScript session that builds the same libraries as the previous example, but
uses the target properties to set a library list and application:

start session
scc get connect properties "testbld\testbld.pbw"
990 PowerBuilder Classic

APPENDIX B The OrcaScript Language
scc connect
scc set target "c:\testbld\qadbtest\qadbtest.pbt" "outofdate
exclude_checkout"
scc refresh target "incremental"
build library ".\shared_obj\shared_obj.pbl" "" pbd
build library ".\datatypes\datatype.pbl" "" pbd
build library ".\chgreqs\chgreqs.pbl" "" pbd
build executable ".\qadbtest\qadbtest.exe" ".\emp.ico" ".\qadbtest.pbr"
"nyyy"
scc close
end session

You can call the scc connect command only after getting connection properties,
and you must call it before you set or refresh the source-controlled targets. You
must call the scc close command before you end your OrcaScript session.

Set DEBUG example The build application full command in the following example recompiles all of
the objects in the application PBL with the DEBUG condition disabled, and the
buildapp_p.exe application created by the build executable command behaves
exactly like the production application.

start session
set debug false
set liblist "testdebug\buildapp.pbl"
set application "testdebug\buildapp.pbl" "testdebug"
build application full
build executable "destination_1\buildapp_p.exe" "icon\icon9.ico" "" "N"
end session

Setting the debug value only affects objects that are compiled or regenerated
after the set debug command is issued. The following example copies the PBL
generated from the previous example after it was compiled with the debug
condition disabled. In this example, even though set debug true is called before
it builds the debug_copy.exe executable, the code in DEBUG conditional
compilation blocks is not enabled because none of the commands that follow
the set debug call invoke the PowerScript compiler.

start session
set debug TRUE
file copy "testdebug\buildapp.pbl" "testdebug\copy.pbl" clobber alwaysset
liblist "testdebug\copy.pbl"
set application "testdebug\copy.pbl" "testdebug"
build executable "destination_1\debug_copy.exe" "icon\icon9.ico" "" "N"
end session

If you add a build application command or a regenerate command after the set
debug command, the script inside DEBUG conditional compilation blocks will
be enabled.
Users Guide 991

Usage notes for OrcaScript commands and parameters
Shared library
example

If you have another target that shares libraries with a target that you already
refreshed, you can use the OrcaScript exclude command to quickly reconstitute
your target. The following example excludes the shared libraries
shared_obj.pbl, datatype.pbl, and chgreqs.pbl that were refreshed in the
previous example. It also demonstrates the use of variables for refresh options
and build type. Set statements define variables that can be used throughout an
OrcaScript session wherever the parser expects a string token.

start session
set refresh_flags = "outofdate"
set refresh_flags += "exclude_checkout"
set build_type = "incremental"
scc get connect properties "c:\testbld\testbld.pbw"
scc connect
scc set target ".\dbauto\dbauto.pbt" refresh_flags
scc exclude liblist ".\shared_obj\shared_obj.pbl"

".\datatypes\datatype.pbl" ".\chgreqs\chgreqs.pbl"
scc refresh target build_type
build executable ".\dbauto\dbauto.exe" ".\emp.ico" "" "nyyy"
scc close
end session

Defining variables from the command line
Instead of defining variables in the OrcaScript session, you can define them
from the command line when you call your script. If you saved the OrcaScript
example in the previous script in a file named MyExample.dat, you could set
the same variables by typing the following at a command line prompt:

Orcascr120 /D refresh_flags="outofdate exclude_checkout"
/D build_type="incremental" MyExample.dat

SCC connection
properties

The SCC get connect properties command is an easy way to populate the Orca
SCC connection structure with the source control properties of a local
workspace. However, to create OrcaScript batch files that are portable from
one workstation to another, the recommended technique is to set each property
explicitly. Many of these properties are vendor specific. The best way to obtain
correct values is to copy them directly from the SCC log file for your
PowerBuilder workspace.
992 PowerBuilder Classic

APPENDIX B The OrcaScript Language
After you have obtained the values you need from the SCC log file, you can
create portable batch files by setting the required connection properties and
using relative directories and URLs for path information. The following
example shows portable OrcaScript batch file commands for a workspace that
connects to PBNative:

start session
scc set connect property provider "PB Native"
scc set connect property userid "Jane"
scc set connect property localprojpath ".\"
scc set connect property project "\\network_computer\PBNative_Archive\qadb"
scc set connect property logfile ".\MyPortableExample.log"
scc set connect property logappend "FALSE"
scc set connect property deletetempfiles "FALSE"
scc connect
; Perform refresh and build operations
scc close
end session

Using OrcaScript with
source control targets
offline

You can call scc connect offline to build source control targets offline. When
you use this command, you must specify ImportOnly as a refresh option. If you
also specify the Refresh_all option or the OutOfDate or Exclude_checkout
refresh types, no connection is made to source control.

For the OutOfDate refresh type, the object source residing in the PBL is
compared with the object source on the local project path. If these object
sources are different, the object source on the local project path is imported and
compiled.

For the Exclude_checkout refresh type, the workspace PBC file is used to
determine current status. In order for the offline exclude_checkout processing
to locate the PBC file, you must use the scc get connect properties
workspaceName command at the beginning of the script. Objects marked as
checked out to the current user in the PBC file will not be imported into the
PBLs during target processing.

Applicable scc connect properties for offline processing
When scc connect offline is used, only the following connect properties apply:

scc set connect property localprojpath localProjectPath
scc set connect property logfile logFileName
scc set connect property logappend <true | false>
Users Guide 993

Usage notes for OrcaScript commands and parameters
Setting refreshType
and refreshOption
values

When you set up a target with a source control connection, you can use
refreshType and refreshOption options in various combinations. You can even
combine these values in the same string if the values are separated by a blank
space. For example:

scc set target ".\dbauto\dbauto.pbt" "refresh_all
importonly”

Refresh_all option Refresh_all performs no comparisons and imports all
applicable objects. Refresh_all behavior varies depending on whether
ImportOnly is set. If ImportOnly is off, Refresh All issues an
SccGetLatestVersion call to obtain the tip revision of the PBT file specified in
the scc set target command. From the PBT file, it obtains the library list for the
target. It then calls SccGetLatestVersion to obtain the tip revision of the PBG
file associated with each PBL.

Each PBG file contains a list of objects registered under source control that
reside in the associated PBL. Refresh All then issues SccGetLatestVersion to
obtain the tip revision of each object and imports these objects into the PBL.

In offline processing, ImportOnly must be set to on. If you also set the
Refresh_all option, the PBT file that already exists on the local project path is
used to obtain the library list for the target. The PBG file that also exists on the
local project path is then read to obtain a list of objects associated with each
PBL. Refresh_all then processes the PBG lists, importing source entries
residing on the local project path into the appropriate PBL.

ImportOnly option When ImportOnly is on, the expectation is that the user
has already populated the local project path with the desired revision of each
object. ImportOnly is used to build a target from a previous milestone, such as
a version label or a promotion model that does not represent the tip revision of
each object. Therefore, no SccGetLatestVersion calls are issued. The desired
revisions of the PBT, PBG, and object source files must already exist on the
local project path and they are used to import objects into the PBLs. You must
use this option if you are building a source controlled target while you are
offline.

OutOfDate option OutOfDate processing behaves differently depending on
whether ImportOnly is set. When ImportOnly is off, OutOfDate issues an
SccGetLatestVersion call to obtain the tip revision of the PBT and PBG files. It
then compares each object in the target PBLs with the tip revision in the SCC
repository and imports the SCC source files into the PBLs for the objects that
are out of sync.
994 PowerBuilder Classic

APPENDIX B The OrcaScript Language
With ImportOnly turned on, OrcaScript never performs GetLatestVersion since
the desired revision of all objects already exists on the local project path. In this
case, OutOfDate processing compares source code in the PBL against object
source on the local project path to decide which objects, if any, need to be
reimported. Using ImportOnly with OutOfDate processing works the same
whether you are online or offline.

Advantage of using OutOfDate with ImportOnly option
Combining the OutOfDate option with the ImportOnly option is particularly
useful if you perform nightly builds of a project that has several promotion
models defined. If the volume of changes is low, it may be more efficient to use
OutOfDate processing rather than Refresh All. In one PowerBuilder
workspace, you build the “development” view of the project that includes all
development work in progress. In another workspace, you build the
“maintenance” view of the project, which includes bug fixes waiting for QA
verification. Elsewhere, you build a “production” view of the project
containing only verified bug fixes.

Each PowerBuilder workspace connects to the same SCC project, but uses a
different local project path. You use your vendor-specific SCC administration
tool to synchronize the local project path with the desired revision of each
object belonging to each promotion model. Then you launch OrcaScript to
refresh the PBLs in each workspace. This results in a nightly rebuild of all three
promotion models, which development team members can download each
morning from a shared network drive.

Exclude_checkout option The Exclude_checkout option excludes from the
import list all objects that are currently checked out by the current user, no
matter what other refresh options are used. When connected to SCC, this
option requires an additional call to SccQueryInfo for each object in the target.
Therefore, it is not recommended on a nightly build computer. However, it is
highly recommended when a developer uses OrcaScript on his or her own
workstation.

If you use Exclude_checkout processing while offline, the workspace PBC file
is used to determine current status, so you must specify the set get connect
properties workspaceName command. Objects marked as checked out to the
current user in the PBC file will not be imported into the PBLs during target
processing.
Users Guide 995

Usage notes for OrcaScript commands and parameters
How the current user is determined for Exclude_checkout processing
For online SCC connections, Exclude_checkout calls scc connect property
userid userID or the scc get connect properties workspaceName to determine
the current user. The runtime processing makes actual SccQueryInfo calls to the
SCC provider to determine check out status, so the information in the PBC file
(from the prior SCC connection) is ignored. Objects checked out to the current
user are not imported and replaced in the target library list.

For scc connect offline, the scc connect property userid command is completely
ignored. OrcaScript must rely on information from the prior SCC connection.
Each PBC file entry contains a bit flag that indicates “checked out to current
user”. This flag determines whether the object is imported or excluded. The
current user at the time the PBC file was created is the user who last connected
to this workspace through the PowerBuilder IDE on this workstation.

Build command
failures

OrcaScript build commands for an executable or a library fail if the executable
or library already exists in the build directory. To prevent an OrcaScript batch
file containing these commands from failing, move or delete existing
executables and libraries from the build directory before running the batch
script.

Escape characters for
string variables

OrcaScript, like PowerScript, uses the tilde (~) as an escape character. If you
need to include a special character, such as a quotation mark, inside a string,
you must place a tilde in front of it. A character in an OrcaScript batch file with
a tilde in front of it is processed as a literal character.

Ending an OrcaScript
session

You must close an OrcaScript session after you finish calling other OrcaScript
commands. You close an OrcaScript session by calling:

end session

Property values are deleted during end-session processing. If an OrcaScript
program starts numerous sessions, each individual session must contain
statements to specify property values, such as those assigned in set exeinfo or
scc set connect commands. However, variables that you set on a batch script
command line using the /D parameter, or inside a batch file using the set
variable_name=”value” syntax, remain valid for the entire multisession
program.
996 PowerBuilder Classic

Index
Symbols
+ operator 584
.NET targets

running 14
wizards 24

@
used in crosstabs 767
used in validation rules 653

Numerics
24-hour times 629

A
accelerator keys

and CheckBox edit style 636
and RadioButton edit style 638
assigning to menu items 343
defining 274
indicating, in StaticText controls 285

access level
changing in function 212
of functions 206
of object-level structures 231

ActiveX control, adding to DataWindow object 869
activity log 406
Activity Log view 402

using 406
Adaptive Server Enterprise, temporary tables 420
adding nonvisual objects

to a user object 386
to a window 249
to an Application object 129

AddItem function 295
aggregate functions in graphs 740
alignment
Users Guide
extended attribute 412
for paragraphs 854
in DataWindow painter 596
of command buttons in windows 281
of controls in windows 269

Alt key
and menu items 343
defining accelerator keys 274

ampersand (&)
defining accelerator keys 274
in menu item text 343

ampersand, displaying in text of controls 274
ancestors

objects 317, 320
windows 257

AND operator, in Quick Select 495
animated GIF files

and DropDownPictureListBox controls 286
and Picture controls 286
and PictureButton controls 282
and PictureHyperLink controls 287

Animation controls, using 313
animation, for windows 245
application library search path 135
Application object

creating new 18, 122
specifying library search path 135

Application objects
creating new 20
displaying structure of 138
events, list of 134
inserting nonvisual objects in 129
properties 134
Target wizards 20

Application painter
about 129
displaying application structure 138
displaying toolbar text 355
inserting nonvisual objects in 129
opening 18, 20, 122
997

Index
properties 26, 129
views 129
workspace 129

Application profiler 930
Application Server Component Target wizard 24
Application Target wizard

objects created 22
use 22

application templates, creating 22
applications

building, basic steps 35
creating new 18, 20, 22, 122
displaying structure of 138
library search path 135
MDI design 237
running 909
specifying properties 26, 129
Target wizards 20
windows 237, 239

area graphs
about 730
making three-dimensional 732

arguments
adding, deleting, and reordering in functions 212
changing for function 212
defining for function 209
passing by reference 209
passing by value 209
passing in function 209
passing structures as function arguments 231
referencing retrieval 509
using in pipelines 457
using retrieval 508

arrays
declaring arguments as in functions 210
in retrieval arguments 509

ASCII text and rich text 847
asterisks (*)

displaying user input as 634
in text boxes 288
wildcard character 157

audience for this book xxv
Auto Size setting, in graphs 751
autoincrement columns, in DataWindow objects 606
AutoInstantiate property 375
autoinstantiating user objects 375
998
AutoScript
dot notation 197
pops up automatically 197
pop-up window 194
specifying list 195
using 192

Autosize Height
bands 568
with nested reports 724

average, computing 585
axes

scaling 755
specifying line styles 757
specifying properties in graphs 754
specifying text properties 750
using major and minor divisions 756

B
Background Color drop-down toolbar 534
background colors, in three-dimensional controls in

windows 278
background.color property

about 691
specifying colors 707

backing up, source control status 75
bands

in DataWindow painter 532
resizing in DataWindow painter 537

bar graphs
about 730
making three-dimensional 732
specifying overlap and spacing 754

base class objects 317
base reports 711
BAT files 32
bind variables, used with nested reports 721
bitmaps

in menus and toolbars 332
in rich text 857
specifying column as 414

blob columns
creating 877
making visible 880

blob data
PowerBuilder Classic

Index
creating columns for 877
saving in databases 881

blobs
adding to DataWindow objects 592
adding to reports 592

BMP files
adding to DataWindow objects 580
and DropDownPictureListBox controls 294
and Picture controls 286
and PictureButton controls 282
and PictureHyperLink controls 287
and PictureListBox controls 296
and TreeView controls 302
as toolbar pictures 353
in rich text 857

books, online 33
boolean expressions

in filters 660
in validation rules 652, 655

border property 691
borders

around default command buttons 282
for text boxes 288
in DataWindow objects 568
three-dimensional 278

Borders drop-down toolbar in DataWindow painter
534

breaks, in grouped DataWindow objects 664
Browse property sheets 188
Browser

about 188
class hierarchies 318
opening 189
pasting functions 214
pasting structures with 232
regenerate descendants 167

browsing for applications 25
brush.color property

about 693
specifying colors 707

brush.hatch property 693
build, from command-line 27
built-in functions

for menu items 358
for windows and controls 253
including in user-defined functions 211
Users Guide
business cards 481
buttons

adding to DataWindow objects 586
adding to toolbars 49
custom 51
deleting from toolbar 50
moving on toolbar 50

C
caching data in DataWindow objects 539
calling

ancestor scripts 325
passing arguments 209
user-defined functions 214

cancel command button 282
case

converting in DataWindow objects 634
of text boxes 288
sensitivity and code tables 647

categories, graph
basics 728
specifying 740

Category axis, graph 729
centering controls 269
changing application 25
CheckBox controls

about 283
prefix 265

CheckBox edit style, defining 636
Checked property 341, 342
check-in/check-out 68
checking models, class diagrams 116
child windows

description of 239
specifying window type 243

CHOOSE CASE statements 190
class diagrams

check model 116
plug-in menu items 113
purposes of 108

class hierarchies 318
class user objects

AutoInstantiate property 375
custom 370
999

Index
EAServer/Application Server Project property 375
inserting in a user object 386
inserting in a window 249
inserting in an Application object 129
overview 370
standard 371

ClearValues function 636
Clicked event, for menu items 356, 357
clipboard, copying data to 548
Close events, in Application object 122
CloseUserObject function 385
CloseWithReturn function, passing parameters between

windows 253
closing views 45
code

pasting from a file 191
recompiling 167
user-defined functions 211
using structures 229

code tables
about 645
defining 646
in Specify Retrieval Criteria dialog box 575
modifying at runtime 636
processing 647
using display values in crosstabs 765
using display values in graphs 740
using in drop-down lists 635

Color drop-down toolbar
adding custom colors to 277
in Window painter 276

color property
about 694
specifying colors 707

colors
background, with 3D controls 278
changing in Database painter 405, 423
customizing 277
default 130
defining custom 56
for DataWindow objects 557
in display formats 624
in Select painter 501
of inherited script icon 322
specifying for windows 244

column graphs
1000
about 730
specifying overlap and spacing 754

columns
adding to DataWindow objects 577
appending to table 414
applying display formats to 620
applying edit styles to 633
defining display formats 620, 622
defining edit styles 632, 634
defining validation rules 651, 654
displaying as a drop-down DataWindow 642
displaying as check boxes 636
displaying as drop-down lists 635
displaying as radio buttons 637
displaying in Library painter 156
displaying with fixed formats 638
foreign key 425
formatting in DataWindow objects 619
graphing data in 735, 738
initial values 654
named in DataWindow painter Design view 533
presenting in DataWindow objects 630
preventing updates in DataWindow objects 603,

606
removing display formats 620
reordering in grid forms 547
resizing in forms 547
restricting input 638
selecting in Select painter 502
sliding to remove blank space 597
specifying extended attributes 412
specifying for crosstabs 765
updatable, in DataWindow objects 603, 606
validating input in DataWindow objects 649
variable length 568

Columns view 402
ColumnsPerPage 247
command line

building from 27
starting from 38

CommandButton controls
defining accelerator keys for 274
prefix 265
setting a default 282
using 281

comment character, OrcaScript 984
PowerBuilder Classic

Index
comment extended attribute 412
comments

in menu definition 341
in window definition 249
including in SQL statements 441
modifying in Library painter 163

comments in XML export template 824
communication

between user objects and windows 389
using user events 390

compiling
on import 175
regenerating library entries 167
scripts 199
user-defined functions 211

component targets, running 14
Composite presentation style

about 709
limitations 713
using 713

composite reports
about 709
creating 713
limitations 713
specifying footer position 725
starting on new page 725

computed columns, including in SQL Select 502
computed fields

adding to DataWindow objects 581
creating from toolbar 53
defining 583
defining custom buttons for 586
in crosstabs 773
specifying display formats 622
summary statistics 585

conditional modification
example, gray bar 684
example, highlighting rows 686
example, rotating controls 685
example, size and location 688
modifying controls 683

connection profile, source control 69
Constructor event 378
context-sensitive help 198
continuous data, graphing 730
Control List view 127, 536
Users Guide
control names in the DataWindow painter 567
control-level properties in windows 253
controls

calling ancestor scripts for 325
declaring events 215
deriving user objects from 372, 378
in descendent objects 320, 384

Controls drop-down toolbar in DataWindow painter
534

controls in DataWindow objects
adding 577
aligning 596
copying 595
deleting 594
displaying boundaries 593
equalizing size 597
equalizing spacing 596
moving 594
resizing 595
selecting 535

controls in user objects, referring to in menu item scripts
359

controls in windows
adding to windows 248, 262
aligning to grid 268
changing names 266
copying in Window painter 271
defining properties 264
moving and resizing 268
naming 264
referring to in menu item scripts 359
selecting 263
specifying accessibility of 275
with events, list of 262

conventions xxvi
naming 143

count
computing 585
in graphs 740

Create ASA Database utility 407
CREATE TABLE statement 424
CREATE VIEW statement 430
Crosstab Definition dialog box 764
crosstabs

about 759
associating data 764
1001

Index
basic properties 771
changing column and row labels 772
changing definition of 772
creating 747, 763
defining summary statistics 773
dynamic 762
functions 775
grid lines in 771
modifying data 772
previewing 770
property conditional expressions in 780
specifying columns 765
specifying multiple columns and rows 769
static 762, 779
using expressions 766
using ranges of values 776

CUR files
and DropDownPictureListBox controls 294
and PictureListBox controls 296
selecting mouse pointers 246, 560

currency display format 623
current library, working in 159
current target 11
custom class user objects

about 370
AutoInstantiate property 375
building 375
EAServer/Application Server Project property 375
inserting in a user object 386
inserting in a window 249
inserting in an Application object 129
writing scripts for 375

custom colors 56, 277
custom layouts, Library painter 153
custom visual user objects

about 371
building 376
writing scripts for 385

Customize dialog box 49

D
data

associating with graphs in DataWindow objects 738
caching in DataWindow objects 539
1002
changing 434, 540
copying to clipboard 548
formatting in DataWindow objects 619
importing 438, 516, 543
piping 453
presenting in DataWindow objects 630
retrieving and updating 575
retrieving in DataWindow objects 538, 539
saving in external files 439, 548
saving in HTML Table format 554
storing in DataWindow objects 572
updating, controlling 603
validating in DataWindow objects 649

data entry forms 479
Data Manipulation view

opening 434
printing 439
sorting rows 435, 437

Data Pipeline painter
about 453
opening 160
working in workspace 459

data source
defining for DataWindow objects 488
External 515
modifying 570
Query 515
Quick Select 489
SQL Select 499
Stored Procedure 516

data validation
in code tables 648
with validation rules 649

data values
in graphs 740
of code tables 645
specifying fonts in tables 411
using in graphs 740

database administration
database access 444
executing SQL 440
painting SQL 440
security 444

Database Blob Object dialog box 878
database errors 200
Database painter
PowerBuilder Classic

Index
changing colors in 405
creating OLE columns 877
creating tables 408
defining display formats 620
defining validation rules 651
dragging and dropping 403
previewing data 433
specifying extended attributes 412
tasks 403
views 402
working with edit styles 632
workspace 402

database profiles in pipelines 457
database views

extended attributes of 413
working with 428

databases
accessing through Quick Select 489
accessing through SQL Select 499
changing 401
connecting to 486
controlling access to 444
controlling updates to 603
creating and deleting (SQL Anywhere) 407
creating tables 408
destination in pipelines 454
ensuring referential integrity 422
executing SQL statements 443
importing data 438, 543
limiting retrieved data 659
logging work 406
MobiLink synchronization 445
piping data 453
retrieving, presenting, and manipulating data

433, 475
source in pipelines 454
specifying fonts 411
stored procedures 516
storing blob objects in 876
system tables 420
updating 434, 540
using as data source in a report 488
using as data source in DataWindow object 488

datatypes
in display formats 623
in graphs 755
Users Guide
of arguments 209
of blob columns 877
of return values 207
of structure variables 227
pasting into scripts 188
when piping data 454

DataWindow controls
placing in windows 262
prefix 265

DataWindow objects
about 6, 475
adding controls 577
aligning controls 596
and graphs in 735
blobs, adding 592
borders in 568
buttons, adding 586
caching data 539
changing margins 544
columns, adding 577
Composite presentation style 709
computed fields, adding 581
computed fields, defining 583
controlling updates in 603
creating new 487
creating OLE columns 877
custom buttons that add computed fields 586
data source, modifying 570
data sources 488
data, storing in 572
defaults 556
display formats 619
distributing 960, 966
drawing controls, adding 579
edit styles 630
escapement 600
expressions in computed fields 584
extended attribute information used 565
filtering rows 659
generating 523
Graph presentation style 747
graphs, adding 591
grid style 559
grid, working in 546
group boxes, adding 580
Group presentation style 666
1003

Index
grouping rows 664
initial values for columns 654
modifying 525
multiple column 482
naming 525
nesting reports 715
newspaper columns in 563
OLE 863
pictures, adding 580
positioning of controls in 599
presentation styles 478
previewing 538
previewing without retrieving data 539
printing 545
prompting for criteria 574
result sets, modifying 571
retrieval arguments, modifying 571
retrieval criteria 574
retrieving as needed 575
retrieving data 538, 539
Rich Text 847
rotating controls in 600
saving 524
setting colors 557
setting gradients 558
setting timer 556
sharing with other developers 573
sorting rows 662
suppressing repeating values 663, 664
tab order 566
text, adding 578
TreeView presentation style 783
units of measure 556
using 477
validation rules 649
years, how interpreted 628

DataWindow painter
copying controls 595
defining validation rules 654
deleting controls 594
equalizing size 597
equalizing spacing 596
importing data 543
MicroHelp 537
modifying data 540
moving controls 594
1004
opening 160
printing data 545
resizing bands 537
resizing controls 595
retrieving data 538
saving data 548
selecting controls 535
sliding controls 597
toolbars in 534
undoing changes 537
using the Properties view 535
working in 530
working with display formats 622
working with edit styles 634
zooming 537

DataWindow wizards, list of 478
DataWindow, OLE

activating object 875
OLE object 865, 866
presentation style 865, 867
previewing 874
see also OLE object

DatePicker control 309
dates

display formats for 627
displaying in Library painter 156

dBASE file, using as data source for DataWindow object
488

DBMS
changing 401
controlling database access 444
CREATE VIEW statement 430
defining primary keys 424
executing SQL statements 443
exporting table syntax 419
exporting view syntax 433
generating SQL statement 433
specifying an outer join 432
stored procedures 516
supported 401

dbsign 201
DDE application, using as data source for DataWindow

object 489
debugging

about 885
trace information 961
PowerBuilder Classic

Index
Default 3D variable 278
default command buttons 282
default layouts in views 46
Default to 3D command 278
Default3D preference variable 279
defaults

control names in windows 264
global objects 132
menu item names 334
sequence of controls in windows 272

defaults, for DataWindow objects 556
defining retrieval arguments 508
Delete ASA Database utility 408
Delete Library dialog box 158
DELETE statements

building in Database painter 442
specifying WHERE clause 607

DeleteItem function 295
DeleteRow function 542
deploy properties 135
descendent menus

building 360
inherited characteristics 361

descendent objects
allowed changes 320
calling ancestor functions 325
inheritance hierarchy 317
instance variables in Properties view 258, 383
regenerating 167

descendent scripts
calling ancestors 325
extending ancestors 323
overriding ancestors 324

descendent user objects
building 382
instance variables in Properties view 383
writing scripts for 385

descendent windows
calling ancestor functions 325
characteristics of 258
creating 256
instance variables in Properties view 258
unique control names 266

Describe Rows dialog box
displaying 542
in the Results view 438
Users Guide
Destructor event 378
detail bands

in DataWindow painter 533
resizable 568

disk space 166
display expressions in graphs 752
display formats

about 619
adding buttons in DataWindow painter 623
applying to columns 620
assigning from toolbar 52
colors in 624
data types 623
defining 623
deleting 657
for dates 627
for numbers 625
for strings 627
for times 629
in databases 412
in DataWindow objects 618
maintaining 657
masks 623
removing 620
sections 623
setting during execution 625
using in graphs 752
working with in Database painter 620
working with in DataWindow painter 622

display values
of code tables 645
using in crosstabs 765
using in graphs 740

displaying objects in current library 159
display-only fields in DataWindow objects 635
DISTINCT keyword 500
divisions, axis 756
DLL files

about 957
and external user objects 371

DO...LOOP statements 190
document type declaration 819
document type declaration in XML template 819
documents, storing in databases 876
dot notation

referring to menu items 360
1005

Index
referring to properties of windows and controls 253
referring to structures 230

DoubleClicked event in ListBox control 295
drag and drop events 378
dragging and dropping, in Database painter 403
drawing controls, adding to DataWindow objects 579
drawing objects in windows

list of 262
using 288

drop lines, graph 756
DROP VIEW statement 433
drop-down calendar, in EditMask control 290
drop-down menus

about 327
changing order of menu items 339
deleting menu items 340
triggering clicked events 357

drop-down toolbars 47
DropDownDataWindow edit style

defining 642
defining code tables with 647

DropDownDataWindow edit style properties 643
DropDownListBox controls

defining accelerator keys for 274, 275
edit property 294
prefix 265
using 293

DropDownListBox edit style
defining 635
defining code tables with 646

DropDownPictureListBox controls
adding images 294
prefix 265
using 294

DTD, about 806
duplicate menu item names 335
duplicate values, index 426
duplicating menu items 338
dynamic libraries

about 957
execution search path 963
objects copied to 965
specifying in Project painter 958

dynamic user objects 385
1006
E
EAServer Component Target wizard

using 23
EAServer/Application Server Project property 375
edges, displaying in DataWindow painter 593
Edit edit style

defining 634
defining code tables with 646

Edit Mask edit style
defining 638
defining code tables with 647
spin controls 641

edit masks
keyboard behavior in 290
using 289

edit style properties 633
edit styles

about 630
and selection criteria 493
applying to columns 633
deleting 657
in databases 412
in DataWindow objects 618
in Specify Retrieval Criteria dialog box 575
maintaining 657
working with in Database painter 632
working with in DataWindow painter 634

EditMask controls
defining as spin controls 291
prefix 265
using 289

EditMask property sheet 290
elevation, in 3D graphs 750
ellipses, in command buttons 281
Enabled property

for controls 276
for menu items 342

encapsulated functions 207
encoding declaration 818
Enter key 282
Equality Required property 575
error messages, customizing in validation rules 654
Error objects

default 132
defining descendent user object 376, 378
using 910
PowerBuilder Classic

Index
error rows, correcting in pipelines 468
errors

compile 199
execution-time error numbers 911
handling 910

Esc key 282
escapement 600
event IDs 216
event IDs, naming conventions 216
Event List view

about 127
in User Object painter 391

events
about 6
and drawing objects 288
application 134
calling ancestor scripts for 325
declaring your own 215
DoubleClicked, in ListBox controls 295
for custom and external visual user objects 378
for windows and controls 252
Help 357
in user objects 379
of Picture controls 286
selected 357
SystemError 915

events, SQL Anywhere, in the Database painter 401
EXE files see executables
executables

building 962
compiling resources into 960
copying objects into 964
creating in Project painter 953, 962
naming 955
objects excluded from 964
overview of creating 949
running from PowerBuilder 52
specifying dynamic libraries 958

execution
handling errors 910
placing user objects 385
previewing windows 250
running in trace mode 961

execution plan, SQL 443
expanding objects in Application painter 139
Explain SQL command 443
Users Guide
export template
about 810
creating and saving 811
view 811

Export/Import Template view
about 811
icons 812

expressions
in computed fields 584
in crosstabs 766
in filters 660
in graphs 752
in OLE client names 880
in validation rules 652, 655
specifying graph series with 741
specifying graph values with 740

Extend Ancestor Script command 323, 324
extended attribute system tables

about 419, 523, 971
deleting orphan table information 417
information used in DataWindow objects 523, 565
information used in reports 523
piping 456
storing display formats 620
storing edit styles 632
storing extended attributes 413
storing validation rules 651

Extended Attributes view 402
extended column attributes

about 412
how stored 971
picture columns 414
piping 455
used for text 565

External data source
importing data values 516
modifying result sets 571
updating data 604

external data, importing 438
external files

importing data from 543
saving data in 548
saving table data in 439
using as data source for DataWindow object 488

external functions
declaring 202
1007

Index
including in user-defined functions 211
structures as arguments 231

external visual user objects 371
building 377
properties 377

F
file editor 32
File Import 191
files

for DropDownPictureListBox controls 294
for Picture controls 286
for PictureButton controls 282
for PictureHyperLink controls 287
for PictureListBox controls 296
for TreeView controls 302
importing into script 191

filters
in Data Manipulation view 437
removing 661

focus
for default command button 282
of controls in windows 272

focus, moving from column to column 566
font.escapement property 695
font.height property 696
font.italic property 697
font.strikethrough property 698
font.underline property 699
font.weight property 699
fonts

changing 55
choosing, for controls 267
default 130
in DataWindow object, changing 565
rich text formatting 854
specifying for tables 411

footer bands, in DataWindow painter 534
Foreground Color drop-down toolbar in DataWindow

painter 534
foreign keys

about 422
defining 424
displaying in Database painter 422
1008
joining tables 431, 505
opening related tables 423

format property 700
Freeform style

default wrap height 523
detail band in 533
of DataWindow objects 479

Function For Toolbar dialog box 586
Function List view 128
Function painter

coding functions 211
opening 206

functions
about 7
browsing 188
built-in 358
calling 325
communicating between user objects and windows

390
crosstab 775
for drawing objects 288
for windows and controls 253
in descendent menus 361
passing and returning structures 231
pasting into scripts 188
pasting names of 191
user-defined 203

G
General keyword, in number display formats 626, 628
GetFormat function 625
GetText function, using in validation rules 655
GetValue function 636
GIF files

and DropDownPictureListBox controls 294
and Picture controls 286
and PictureButton controls 282
and PictureHyperLink controls 287
and PictureListBox controls 296
and TreeView controls 302
in menus and toolbars 332

GIF files, adding to DataWindow objects 580
GIF images 282, 286, 287, 296
global functions
PowerBuilder Classic

Index
access level 206
opening Function painter 206
user-defined 203

global objects
specifying defaults 132, 387
specifying user objects for 387

global search 164
global standard class user objects 387
global structures

about 225
opening Structure painter 226
referring to 230
saving 228

global variables
and menu item scripts 358
and windows 254
pasting into scripts 188

gradients
for DataWindow objects 558

graph controls in windows, prefix 265
graphics, adding to DataWindow objects 580
graphs

about 727
adding to DataWindow objects 591
adding to reports 591
autosizing text 751
changing position of 737
data types of axes 755
default positioning in DataWindow objects 599
default positioning in reports 599
defining properties 748
examples 742
expressions in 752
in DataWindow objects 735
legends in 749
major and minor divisions 756
multiple series 741
parts of 728
placing in windows 758
rotating text 752
scaling axes 755
selecting data 738
single series 741
sorting series and categories 750
specifying categories 740
specifying overlap and spacing of bars and columns
Users Guide
754
specifying pointers 757
specifying properties of axes 754
specifying rows 739
specifying series 741
specifying type 749
specifying values 740
text properties in 750
titles in 749
types of 730
using display formats 752
using Graph presentation style 747
using in applications 734
using in windows 757

GraphType property 749
grid lines, graph 756
Grid style

basic properties 559
detail band in 533
displaying grid lines 559
of DataWindow objects 480
reordering columns 547
resizing columns 547
using split horizontal scrolling 547
working in 546

grid, aligning controls in DataWindow objects 593
grid, aligning controls in windows 268
group box, adding to DataWindow objects 580
GROUP BY criteria 513
group headers, in XML 827
Group presentation style

properties of 668, 788
using 666

GroupBox controls in windows
and radio buttons 284
default tab order 272
prefix 265

GroupBox controls, using 287
grouping

in SQL Select 513
restricting 514

groups in DataWindow objects
graphing 739
of rows 664
sorting 675
1009

Index
H
HAVING criteria 514
header bands, in DataWindow painter 532
header section in XML template 816
heading extended attribute 412
headings

in DataWindow objects 532
specifying fonts in tables 411

height property 700
Help

context-sensitive 198
displaying with Help event 357, 380

Help event
for menu items 357

Hide function 288
hierarchies

browsing class 318
inheritance 317

HProgressBar controls
prefix 265
using 293

HScrollBar controls
prefix 265
using 291

HTML Table format, saving data in 554
HTrackBar controls

prefix 265
using 292

hyperlinks, adding to windows 287
hyphens (-) 338

I
ICO files

and DropDownPictureListBox controls 294
and PictureListBox controls 296
in menus and toolbars 332

icon files with several images 333
identity columns, in DataWindow objects 606
Idle event 134
IF...THEN statements 190
IM.INI files

format 58
how InfoMaker finds them 57

images
1010
size limit 286
transparency in menus and toolbars 332

import template
about 810
creating and saving 811
defining 836

importing data 438, 543
IN operator, in Quick Select 494
indexes

creating 426
dropping from tables 426, 427
properties 427

Inherit From Object dialog box 316
creating a menu 360
user objects 382

inheritance
browsing class hierarchies 318
building menus with 360
building new objects with 316
building user objects with 382
building windows with 256
hierarchy 259, 317
using unique names 266

inherited controls
deleting 258
syntax of 259

inherited properties 320
inherited scripts 321
initial values, for columns 654
initialization files

about 57
changing path 59
editing 32
how InfoMaker finds them 57
how PowerBuilder finds them 57
saving custom colors 277
setting Default 3D variable 278

InkEdit control 313
InkPicture control 314, 591
input fields

about 854
columns 855
computed fields 855
data 849, 855
data format 855
editing data 855
PowerBuilder Classic

Index
flashing 855
selected 855
validation rules 855

input language, changing 541
INSERT statements, building in Database painter

442
inserting nonvisual objects

in a user object 386
in a window 249
in an Application object 129

InsertItem function 295
InsertRow function 541
instance variables

and menu item scripts 358
displayed in user object’s Properties view 383
in ancestor objects 320
in window scripts 254
in window’s Properties view 258
pasting into scripts 188

instances, menu 367
Interactive SQL view 402
Internet

adding hyperlinks to windows 287
applications 4
image support 282, 286, 287, 296

invisible property 258
items

adding to menus 336
in drop-down lists 294
in list boxes 295

J
Join dialog box 432
joins, in Select painter 505
JPEG files

adding to DataWindow objects 580
and DropDownPictureListBox controls 294
and Picture controls 286
and PictureButton controls 282
and PictureHyperLink controls 287
and PictureListBox controls 296
and TreeView controls 302
in menus and toolbars 332
size limit 286
Users Guide
JPEG images 282, 286, 287, 296
just-in-time debugging 905

K
key and modified columns, updating rows 607
key and updatable columns, updating rows 607
key columns

for OLE columns 877
updating rows 607

key modification, updating rows 609
keyboard

for moving and resizing controls 268
using with menus 343

keyboard shortcuts
customizing 54
resetting 55

keys, database
arrows specifying key relationship 491
displaying in Database painter 422
dropping from tables 426
specifying in DataWindow objects 605
updating values in DataWindow objects 609
using primary and foreign 422

keywords, display format 624

L
label extended attribute 412
Label style

detail band in 533
of DataWindow objects 480
removing blank lines 597

labels
mailing 480, 597
specifying fonts in tables 411

language for DataWindow input, changing 541
LargeIcon view 300
layer attribute of graphs 737
Layout drop-down toolbar in DataWindow painter

534
Layout view 125
layouts

customizing in Library painter 153
1011

Index
restoring default in views 46
saving in views 45

left alignment of controls in windows 269
legends

in graphs 729
specifying text properties 750
using 749

libraries
about 6
creating 158
deleting 158
deleting from search path 136
dynamic 957
migrating 169
optimal size of 150
optimizing 166
organization of 150
rebuilding 168
regenerating 167
reporting on 179
specifying search path 135
storage of objects in 150

library entries
checking in 83
check-out status 84
exporting to text files 173
regenerating 167
reporting on 177
searching 164
selecting 156

library list 135
Library painter

about 152
changing print settings 251
Class browser 318
columns, displaying 156
custom layouts 153
dates, displaying 156
displaying libraries and objects 154
displaying window comments 249
finding called functions 213
jumping to painters 165
moving back, forward, and up levels 163
opening 151
pop-up menu 155
restricting displayed objects 157
1012
setting the root 162, 163
sorting 153
using drag and drop 155
views 152
what you can do in 151
workspace 152

LIKE operator, in Quick Select 494
Line controls in windows

about 288
events 262
prefix 265

line drawing controls 579
line graphs

about 730
making three-dimensional 732

line styles, graph 757
lines, in menus 338
LinesPerPage 248
List Objects dialog box 966
List view

about 152
custom layouts 153
sorting 153
using drag and drop 155

ListBox controls
indicating accelerator keys 285
prefix 265
setting tab stops 295
using 295

ListView controls
LargeIcon view 300
list view 300
prefix 265
properties 300
report view 300
SmallIcon view 300
using 298
view style 300

local SQL Anywhere databases 407
local variables, and menu item scripts 358
locked menu names 335
log files

about 406
saving 406

logging
exporting table syntax 419
PowerBuilder Classic

Index
exporting view syntax 433
starting 406
stopping 406

logical operators 494
LookUpDisplay function 740

M
mailing labels 480
main windows

about 237
specifying window type 243

major divisions, in graphs 756
manifest file

for standard PowerBuilder applications 958
security tab 956

masks
for display formats 623
using 289

Match button with validation rules 653
match patterns, validation rules 653
Matching Library Entries dialog box 165
MDI applications

about 240
creating shell 22
frames 237

MDI frames
adding toolbars to 348

menu and toolbar enhancements 352
menu bars

about 327
adding to windows 366
changing order of items 339
deleting items 340

menu item events 356, 357
menu items

about 327
associating toolbar pictures with 353
changing order of 339
Clicked event 357
deleting 340
duplicate names 335
duplicating 338
events 357
Help event 357
Users Guide
inserting in descendent menus 362
moving 339
navigating in 339
properties 341, 342
referring to, in scripts 360
renaming 335
Selected event 357
selecting 339
ShiftToRight 362
using variables 358
writing scripts for 356

Menu painter
associating toolbar pictures with menu items 353
inherited menu 360
opening 332, 333, 351
saving menus 340
workspace 329

menu properties 345
menu scripts, calling ancestor scripts 325
menus

about 327
associating with windows 244
building 328
calling ancestor functions 325
creating by inheriting 360
creating new 332, 333, 351
creating separation lines 338
deleting menu items 340
in descendent objects 320
moving items in 339
navigating in 339
saving 340
using inheritance with 360
window 328

message boxes 239
Message objects

default 132
defining descendent user object 376, 378

messages, error 911
metafiles, specifying columns as 414
MicroHelp

displaying with Selected event 357
text 341

MicroHelp, in DataWindow painter 537
migration, using wizard 23
military time 629
1013

Index
minor divisions, in graphs 756
MobiLink synchronization

managing with Sybase Central 451
using the wizard 445

MobiLink synchronization, starting the server 451
modal windows 239
Modify Result Set Description dialog box 571
MonthCalendar controls, using 308
mouse pointers, in DataWindow objects 560
Move function 288
moving menu items 339
MultiLineEdit controls

defining accelerator keys for 274, 275
prefix 265
setting tab stops 295
using 288

multiple columns in DataWindow objects 482, 563
multiple-document interface see MDI
multiple-series graphs 741
multitier applications 4

N
Name column, sorting 153
name tags 481
names

of controls in DataWindow objects 567
of controls in windows 264
of DataWindow objects 525
of inherited controls 259
of menu items 334, 367
of menu items in inherited menus 362
of menus 341
of queries 527
of reports 525
of structures 228
of user objects 385
of user-defined functions 204, 208
of windows 249
pasting function 191
pasting into scripts 187

names, of columns in DataWindow painter Design view
533

naming conventions
for controls in windows 266
1014
for DataWindow objects 525
for event IDs 216
for queries 527
for reports 525
for user objects 381
for user-defined functions 208
for windows 249
instance variables 143
objects 142

navigating in a menu 339
negative numbers, in TextSize property 267
nested reports

adding another report 721
adding to report (DataWindow) 715
adjusting width 719
autosize height 724
changing 720
changing definition of 720
displayed in Design view 716
how retrieval works 712
limitations 713
slide options 725
specifying criteria 723
using retrieval arguments 717, 721

New dialog box
creating a menu 333
creating a new application 18, 122
creating a user object 374
creating a window 241
creating objects using inheritance 141

New Name dialog box 772
New Page command 725
newline characters in text 565
newspaper columns 563
Non-Visual Object List view

about 127
using in User Object painter 387

nonvisual objects
inserting in a user object 386
inserting in a window 249
inserting in an Application object 129

nonvisual user objects
AutoInstantiate property 375
EAServer/Application Server Project property 375
inserting in a user object 386

null data items in exported XML 831
PowerBuilder Classic

Index
NULL values
allowing in code tables 646
allowing in tables 409
altering table definition 415
and blob columns 877
specifying display formats for 625

numbers
display formats for 625

N-Up style
computed fields in 584
detail band in 533
of DataWindow objects 482

O
Object Details view 402
Object Layout view 402
object-level functions

calling 214
opening Prototype window 206
user-defined 203

object-level structures
definition 225
opening Structure view 226
referring to 230
saving 228

Object-Oriented Model
advantages of 108
definition 107
generating PowerBuilder targets 113
reverse engineering a PowerBuilder target 110
validating for PowerBuilder 116

objects
about 5
accessing recently opened 145
checking in 83
check-out status 84
compiled form 150
copying into executable files 964
creating new 20, 140
creating using inheritance 141
displaying in current library 159
distributing to users 966
exporting syntax 173
exporting to text files 173
Users Guide
importing syntax 173
inheritance hierarchy 317
new, using inheritance 316
opening 17, 18
pasting into scripts 187
pasting with Browser 188
previewing 146
referring to, in menu item scripts 359
regenerating 167
reporting on 177
running 146
searching 164
selecting 156

Objects view 402
OCX see ActiveX control
off state, check box 283
OLE

columns in DataWindows 877
data transfer from DataWindow 865
DataWindow objects 863
DataWindow presentation style 865
previewing columns 880
report objects 863

OLE 2.0 controls
placing in windows 263
prefix 265

OLE custom control see ActiveX control
OLE Database Blob command 878
OLE object

activating object 874
display of 874
embedding 874
icon for 874
linking 874
updating link 874

on state, check box 283
online books 33
OOM see Object-Oriented Model
Open dialog box 145
Open event

and Application object 122
and pop-up windows 238

opening
Application painter 18, 20, 122
Data Manipulation view 434
Data Pipeline painter 160
1015

Index
database views 429
DataWindow painter 160
Library painter 151
Menu painter 332, 333, 351, 360
Query painter 160, 526
recent applications 18
Select painter 499
tools 28
User Object painter 245, 374
Window painter 241

OpenUserObject function 385
OpenWithParm function 253
operators, in Quick Select criteria 494
optimizing libraries 166
Options dialog box, in Library painter 157
options, mutually exclusive 284
OR operator

in Quick Select 495
OrcaScript

about 983
and source control 983
batch files 984
commands 985
usage notes 989

order
of arguments in functions 209
of menu items, changing 339
tab, in windows 272

ORDER BY clause
in SELECT statements 512
specifying in Quick Select 492

Other event 378
outer join

specifying 432
Oval controls in windows

about 288
events 262
prefix 265

oval drawing controls 579
overlap, of columns in graphs 754

P
page

graphing data on 739
1016
PainterBar
about 46
adding custom buttons to 51
controlling display of 47

PainterBars, in the Window painter 269
painters

displaying objects referenced in application 139
features 124
jumping to 165
opening 122
summary of 123
using views 41
views in 124
working in 122

painting SQL statements 440
palettes 277
panes

adding 45
docking 44
floating 44
in views 42
moving 43
removing 45
resizing 43
title bar, displaying and using 42

paragraph alignment 854
Parent reserved word 253
parents

in Browser 318
of windows 238

ParentWindow reserved word 359
passing

arguments in functions 209
parameters between windows 253
return values between windows 253
structures as arguments in functions 231

passwords
defining text boxes for 288
displaying as asterisks 634
fields 634

Paste SQL button 190
pasting

into scripts 187
SQL statements in Database painter 441
statements 190
structures 232
PowerBuilder Classic

Index
user-defined functions 214
paths, library 135
PB.INI files

how PowerBuilder finds them 57
saving custom colors 277
setting Default 3D variable 278
source control setting 76, 81

PBCatCol system table 420, 973
PBCatEdt system table 420, 974
PBCatFmt system table 420, 974
PBCatTbl system table 420, 972
PBCatVld system table 420, 974
PBD files 957
pbdebug flag 961
PBLAB120.INI 481
pbm_ event IDs, mapping to Windows messages 216
PDF, saving data as 549
pen.color property

about 701
specifying colors 707

pen.style property 701
pen.width property 703
percent display format 623
performance

and fragmented libraries 166
and library size 150

periodic data, in DataWindow objects 482
perspective, in 3D graphs 750
phone lists, creating 563
Picture controls in windows

placing 262
prefix 265
using 286

picture height 297
picture mask 297
picture width 297
PictureButton controls

placing in windows 262
prefix 265
using 282

PictureHyperLink controls
about 287
prefix 265
using 287

PictureListBox controls
adding images 296
Users Guide
prefix 265
using 296

pictures
adding to DataWindow objects 580
associating with menu items 353
specifying column as 414

pie graphs
about 731
making three-dimensional 732

pipeline objects, defining descendent user object 376,
378

pipelines
about 453
creating 456
data types supported 455
destination database 454
destination, changing 467
editing source data 458
error messages 469
errors, correcting 469
examples 453, 470
executing 458
execution, stopping 463
extended attributes 455
modifying 459
modifying comments 163
opening 470
pipeline operations 461
retrieval arguments 457
reusing 470
rows, committing 463
saving 469
source database 454

pixels, as DataWindow object unit of measure 556
pixels, saving text size in 267
Place 376
placeholders, in validation rules 653
plug-ins, PowerDesigner 105
point of view, in 3D graphs 750
pointer property 703
pointers

in DataWindow objects 560
in graphs 757
window, choosing 246

points, saving text size in 267
points, specifying size for tables 411
1017

Index
polymorphism 204
PopMenu function 367
pop-up menus

controlling toolbars with 47
creating an instance of the menu 367
displaying 367
for toolbars 355
in Library painter 155
use of in applications 328

pop-up windows
about 238
modal 239
naming parents of 238
specifying window type 243

position
changing control's 268
changing graph’s 737
equalizing 270
of windows 246

PowerBar
about 46
adding custom buttons to 51
controlling display of 47
PowerDesigner plug-in 116
using 13

PowerBuilder initialization file, format 58
PowerBuilder units 246
PowerBuilder, opening from command line 40
PowerDesigner plug-in 105
PowerScript

about 7
expressions in computed fields 584
statements 211

PowerTips 348, 355
assigning text in custom buttons 51
using 14

predefined objects in applications 132
preference variables

Default3D 279
for colors 277

preferences
changing print settings 251
setting default grid size 269

prefixes
in window names 249
of controls, default 265
1018
of user object names 381, 385
presentation styles

of DataWindow objects 478
using Crosstab 759
using Graph 747
using Group 666

preview
for crosstabs 770
for windows 250
retrieving rows 538

Preview button 255
Preview view

in DataWindow painter 538
modifying data 540

previewing
OLE DataWindow objects 874
windows 250

primary keys
about 422
defining 423
displaying in Database painter 422
identifying updatable rows 605
joining tables 431, 505
modifying 425
opening related tables 423

Print Options dialog box 178
Print Preview

about 543
command 543

print specifications, reports 561
printing

data, using Print Preview 543
DataWindow objects 545
in Data Manipulation painter 439
scripts 187
window definitions 251

private libraries, organizing 150
procedures, defining 208
processing instructions in XML template 825
profiles, creating from trace file 917
profiles, in pipelines 457
profiling an application 917
progress bars, freestanding 293
Project painter

building an executable 962
defining an executable application project 953
PowerBuilder Classic

Index
specifying dynamic libraries 958
projects

building 962
defining executable application 953
objects in 966
reports of objects 966

projects and targets 951
properties

about 679
application-level 26, 129
browsing 188
control-level 264
example, gray bar 684
example, highlighting rows 686
example, rotating controls 685
example, size and location 688
for external visual user objects 377
in Application painter 129
in descendent objects 320, 383
in scripts 188, 359
in User Object painter 372
in Window painter 240
modifying controls 683
of drop-down lists 294
of list boxes 296
of menu items 341, 342, 360
of PictureHyperLink controls 287
of StaticHyperLink controls 286
of StaticText controls 285
of windows and controls 253
RichText object 860
searching for 164
specifying colors 707
text, of controls in windows 267
using expressions 681
window-level 242

Properties view 125
for graphs 736
for graphs in windows 758
in Application painter 26, 129
in DataWindow painter 535
in Report painter 535
in Window painter 242

property conditional expressions 680, 780
property values

about 689
Users Guide
background.color 691
border 691
brush.color 693
brush.hatch 693
color 694
font.escapement 695
font.height 696, 700
font.italic 697
font.strikethrough 698
font.underline 699
font.weight 699
format 700
pen.color 701
pen.style 701
pen.width 703
pointer 703
protect 704
specifying colors 707
supplying in conditional expressions 689
Timer_Interval 704
visible 704
width 705
x 705
x1, x2 706
y 706
y1, y2 707

Protect property 704
Prototype window

displaying 185
opening 206, 218

PSR files
about 555
creating 548

public libraries, organizing 150

Q
queries

defining 526
modifying 527
modifying comments 163
naming 527
previewing 526
running from toolbar 52
saving 527
1019

Index
Query data source 515
Query painter, opening 160, 526
question marks (?) 157
quick application

MDI, SDI, and PFC applications 22
with Application object only 22

Quick Select data source
defining 489
up and down arrows 491

R
RadioButton controls

default tab order 272
defining accelerator keys for 274
prefix 265
using 284
using in group boxes 284

RadioButton edit style, defining 637
ranges, cross-tabulating 776
ranges, spin value 291
Rebuild Columns At Runtime check box 779
rebuilding libraries

full 168
partial 168

recent applications 25
recent applications, opening 18
recent objects, modifying display of 145
Rectangle controls in windows

about 288
events 262
prefix 265

rectangle drawing controls 579
referential integrity, in databases 422
regenerating objects 167
relative paths in shared targets 952
reports

OLE see reports, OLE
about the extended attribute system tables 523
Composite style 484
creating new 487
Crosstab style 485
escapement 600
generating 523
graphs, adding 591
1020
Group style 483, 486
modifying 525
modifying comments 163
naming 525
n-up 482
OLE 863
on library contents 177
positioning of controls in 599
presentation styles 478
print specifications 561
PSR files 548
rotating controls in 600
running from toolbar 52
saving 524

reports, OLE
OLE object 865, 866
presentation style 865

Resize function 288
resource files, about 960
resources

distributing 959, 966
execution search path 961
specifying for dynamic libraries 958

response windows
about 239
specifying window type 243

result sets, modifying 571
retrieval arguments

defining 508
in nested reports 717
modifying in DataWindow objects 571
referencing 509
specifying in pipelines 457
specifying in WHERE clause 510

retrieval criteria
in nested reports 723
in Quick Select grid 494
prompting for in DataWindow objects 574

Retrieve command 538
Retrieve on Preview option 539
Retrieve Only As Needed 576
retrieving data as needed 540
RETURN statements 211
return type

changing for function 212
defining 207
PowerBuilder Classic

Index
none 208
structure 231

return values, passing between windows 253
Returns list box 207
reverse engineering 110
rich text 847

about 847
file for DataWindow 852
header and footer 852
pictures 857
tables 848
toolbars 850
unsupported formatting 848

RichText object 860
RichText presentation style

about 848
columns 855
creating 849
data for input fields 855
DataWindow settings 853
editing keys 861
header and footer 850, 852
objects 853
page numbers 852
paragraph settings 854
picture objects 857
preview 852, 858
print preview 858
protected from changes 850
Rich Text Object settings 853
selected text settings 854
setting up 851
settings 850
today's date 852

RichTextEdit controls
editing keys 861
pop-up menu 860
prefix 265
properties 859
using 859

right alignment, of controls 269
RLE files

adding to DataWindow objects 580
and Picture controls 286
and PictureButton controls 282
and PictureHyperLink controls 287
Users Guide
as toolbar pictures 353
rotation

in 3D graphs 750
of text in graphs 752

rotation, about 600
Round Maximum To, in graphs 755
RoundRectangle controls in windows

about 288
events 262
prefix 265

RoundRectangle drawing controls 579
rows

allowing users to select 574
displaying information about 438, 542
errors in pipelines 468
filtering 437, 659
graphing 739
grouping 664
grouping in SQL Select 513
modifying in Data Manipulation painter 434
modifying in the Preview view 540
removing filters 661
retrieving as needed 575
saving in external files 439
sorting 435, 437, 662
sorting in SQL Select 512
suppressing repeating values 663

Rows to Disk command 576
RTF 847
rulers

displaying in print preview 544
in DataWindow painter 593

rulers, in Report painter 544
rules for selecting images 333
Run/Preview button 255
Run/Preview dialog box 146
running windows 255
runtime libraries, creating 176

S
Save As command, changing function name 212
Save As dialog box 548
Save Rows As dialog box 439
saving
1021

Index
blob data in databases 881
data in DataWindow objects 572
data in external files 548
data in HTML Table format 554
DataWindow objects 524
layouts in views 45
menus 340
pipelines 454, 469
queries 527
reports 524
structures 228
user-defined functions 211
windows 249

scatter graphs 731
SCC API version control interface 62
SccMaxArraySize, PB.INI file setting 76
SccMultiCheckout, PB.INI file setting 81
scope, variable 254
Script icon

in Select Event list box 184
of inherited scripts 322

Script view 126
about 183
context-sensitive Help 198

scripts
about 7
changing labels in 285
changing text size 267
compiling 199
copying files into 191
defined 7
displaying referenced objects 139, 140
extending 323
for custom visual user objects 385
for descendent user objects 383
for menu items 356, 358
for user events 221
for user objects 385
in Application painter 129
in User Object painter 372
in Window painter 240
in windows 252
inherited 321
overriding ancestor 324
pasting with Browser 188
printing 187
1022
referring to menu items 334
referring to structures 230
reverting to unedited version 192
searching for strings in 164
writing 183

scroll bars
for text boxes 288
freestanding 291
in list boxes 296
on windows 247

SDI application 22
Search Library Entries dialog box

in Library painter 213
using 165

search path
for resource files 960
specifying libraries 135

search strings, library entry 164
seeing nonvisual objects 387
Select All command 263
Select Application dialog box

about 25
New button 20

Select painter
adding tables 502
colors in 501
defining retrieval arguments 508
joining tables 505
opening 499
saving work as query 499
selecting tables 500
specifying selection, sorting, and grouping criteria

509
specifying what is displayed 501

Select Pointer property tab page 246
SELECT statements

building in Database painter 441
displaying 504
editing syntactically 504
for view, displaying 431
limiting data retrieved 659
predefined 526
saved as queries 526
sorting rows 662

Selected event 357
Selected event, for menu items 357
PowerBuilder Classic

Index
selecting
application 25
controls in windows 263
menu items 339
multiple list box items 296

selecting controls, in DataWindow painter 535
selection criteria

allowing users to specify 499, 574
specifying in Quick Select 493
specifying in SQL Select 510

separation lines, in menus 338
separator line in XML template 815
Series axis, graph 729
series, graph

basics 728
specifying 741

server component targets, running 14
SetFormat function 625
SetTabOrder function 567
setting the root 162
SetValue function 636
shared targets

relative paths 952
shared variables, in window scripts 254
ShareData, in Data view 573
shell of application, creating 22
ShiftToRight property 341, 342, 362
shortcut keys

assigning to menu items 343, 344
triggering clicked events 357

shortcuts, in the Script view 187
shortcuts, keyboard 54
Show Edges option 593
Show function 288
SignalError function 915
signing on to database during compile, preventing

201
SingleLineEdit controls

defining accelerator keys for 274, 275
prefix 265
using 288
using edit masks 289

single-series graphs 741
size

defaults 130
equalizing in DataWindow painter 597
Users Guide
of bands in DataWindow painter 537
of controls in DataWindow objects 595
of controls in windows 268
of drop-down lists 294
of libraries 150
of windows 246

Slide drop-down toolbar, in DataWindow painter 534
sliding

in reports 597
used in nested reports 725

SmallIcon view 300
snaking columns, in DataWindow objects 563
snap to grid 268
sort criteria, specifying in Quick Select 492
sort order, list box 296
sorting

groups 675
in graphs 750
in SQL Select 512
Name column in Library painter 153
rows 662

source control
advanced options 70
and OrcaScript 983
connection options 69
icons 73
initialization parameters 92
multiple user checkout 81
operations 78
setting up a connection profile 68
shared targets 952
troubleshooting 95

Source editor 147
source libraries, creating for dynamic libraries 957
source object 150
source, exporting to text files 173
Space Controls command 270
space, in libraries 166
spacing

of columns in graphs 754
of controls in windows 270

spacing, equalizing in DataWindow painter 596
Specify Sort Columns dialog box 662
Specify Update Properties dialog box 604
spin controls

defining edit masks as 641
1023

Index
using 291
spreadsheets, storing in databases 876
SQL Anywhere databases, creating and deleting 407
SQL Select

adding tables 502
defining retrieval arguments 508
joining tables with 505
selecting columns 502
selecting tables 500
specifying selection, sorting, and grouping criteria

509
specifying what is displayed 501
using as data source 499

SQL Select data source, colors in 501
SQL statements

and user-defined functions 211
building and executing 440
displaying 504
executing 440, 443
execution plan 443
explaining 443
exporting to another DBMS 419
for views, displaying 431
generating through Quick Select 489
generating through SQL Select 499
importing from text files 443
logging 406
painting 440
pasting 190
typing 442

SQLCache variable 721
stacked graphs 734
standalone document declaration 818
standard class user objects

about 371
building 376, 378
inserting in a user object 386
inserting in a window 249
inserting in an Application object 129
writing scripts for 376

standard visual user objects
about 372
building 378

starting PowerBuilder from command line 38
statements, pasting into scripts 190
states
1024
of check boxes 283
of radio buttons 284

StaticHyperLink controls
prefix 265
using 286

StaticText controls
prefix 265
using 285

status
backing up for offline mode 75
checked out 84
refreshing 87
source control 72

stock pictures 353
stock pointers, choosing for windows 246
Stored Procedure data source 516
stored procedures

modifying result sets in DataWindow objects 571
updating data in DataWindow objects 604
updating data in forms 604
using 516

string
concatenating 584
display formats for 627

Structure List view 128
Structure painter

button 226
opening 226

Structure view
about 128
opening 226

structures
copying 229, 231
defining 226
embedding 227
in descendent menus 361
modifying 228
passing arguments as in functions 231
pasting into scripts 188
types of 225
using 229

style
default text 130
of windows 242

style, of DataWindow objects 556
StyleBar
PowerBuilder Classic

Index
about 46
controlling display of 47
in DataWindow painter 534

suffix, control name 266
sum

in graphs 740
sum, computing 585
summary bands, in DataWindow painter 534
summary statistics

computing 585
in crosstabs 773

Super reserved word 325
synchronization of views in Library painter 154
synchronization, database wizard 445
syntax

exporting to another DBMS 419
for calling ancestor scripts 325
of view SELECT statement 431

system options tab 59
system tables

DBMS 420
extended attribute 413, 419, 971

SystemError event 122, 134, 915
SystemError scripts 910

T
Tab control, selecting 304
Tab controls

adding pages 304
prefix 265
properties 307
user objects in 305
using 304

tab order
in windows 272
setting 273

tab order, in DataWindow objects 566
tab page in a Tab control, selecting 304
tab stops, setting 295
tab values 273
tables

altering definition of 414, 415
applying display formats to columns 620
applying edit styles to columns 633
Users Guide
controlling updates to 603
creating 408
creating indexes 426
dropping 417
dropping indexes 426, 427
exporting syntax to another DBMS 419
extended attributes, specifying 412
fonts 411
joining in Select painter 505
opening, related to foreign keys 423
opening, related to primary keys 423
presenting in Freeform style 479
presenting in Grid style 480
presenting in Label style 480
presenting in N-Up style 482
presenting in Tabular style 479
printing data 439
removing from Database painter view 416
rich text 848
saving data in external files 439
selecting for SQL Select 489, 500
specifying extended attributes 413
specifying fonts 411
specifying updatable 605
temporary 420
working with data 434

tab-separated files, using as data source for DataWindow
object 488

Tabular style
detail band in 533
of DataWindow objects and reports 479

target data for OLE 871
Target wizards, using 20
targets, about 4
targets, building and deploying 27
Template Application Target wizard, objects created

22
temporary tables, ASE 420
testing, windows 250, 255
text

changing properties, in controls in windows 267
cutting, copying, and pasting 416
editing 32
in DataWindow objects 565, 578
inserting newline characters 565
of menu items 335
1025

Index
on toolbar buttons 47
rotating in graphs 752
size in windows 267

text boxes 288
text files

exporting objects to 173
text files, importing SQL statements from 443
text patterns, matching in validation rules 653
text properties

in graphs 750
text properties, in DataWindow objects 565
TextSize property 267
third state, check box 283
This reserved word 393
three-dimensional borders 278
three-dimensional graphs

about 732
point of view 750

Time keyword 630
timer, setting in DataWindow objects 556
Timer_Interval property 704
times, display formats for 629
timestamps, used in updating rows 607
title bars, displaying in views 42
titles

in OLE server application windows 880
of graphs 729, 749
specifying text properties 750

To-Do List
entries 30
links 31
opening 30
using 31

Toolbar Item Command dialog box 51
toolbar properties 345
toolbars

about 46
associating pictures with menu items 353
controlling display of 47
custom buttons 51
customizing 49
displaying for MDI frames 355
docking 48
drop-down 47
in DataWindow painter 534
in MDI applications 348
1026
moving 48
moving buttons 50
pop-up menus 355
PowerDesigner plug-in 116
resetting 50

Toolbars dialog box 48
ToolbarText propertyattribute 355
ToolbarVisible propertyattribute 355
tools 28
tooltips, adding to a DataWindow control 592
trace information

analyzing 936
collecting 919

trace mode, running in 961
tracing and profiling 917
tracing XML import 843
trackbars, freestanding 292
Trail Footer command 725
Transaction objects

default 132
defining descendent user object 376, 378

translating toolbar pop-up menus 355
transparency

for windows 245
transparent images in menus and toolbars 332
Tree view

about 153
custom layouts 153
expanding and collapsing 154
using drag and drop 155

TreeView controls
adding items 301
adding pictures 301
prefix 265
properties 302
using 301, 302

TreeView DataWindow
adding levels 790
creating 785
Design view 793
icons in the Design view 793
properties 794
tree node icons 795

TreeView presentation style 783
TriggerEvent function 391
two-tier applications 4
PowerBuilder Classic

Index
typographical conventions xxvi

U
underline (_) character

defining acclerator keys for controls 274
in menu items 343

Undo command
about 188
in Database painter 416
in DataWindow painter 537

unique indexes
creating 426
defining for primary key 424

unique keys, specifying for DataWindow 605
units of measure, specifying for DataWindow objects

556
UnitsPerColumn 247
UnitsPerLine 247
up and down arrows, in Quick Select 491
updatable columns in DataWindow object 606
Update function 542
UPDATE statements

building in Database painter 442
specifying WHERE clause 607

updates, in DataWindow objects 603
user events

about 215
communicating between user objects and windows

390
defining 218
in ancestor objects 320
in windows 252
writing scripts for 221

user object controls, prefix 265
User Object painter

about 372
events 379
inserting nonvisual objects in 386
opening 374
properties 372
views 372
workspace 372

user objects
about 369
Users Guide
autoinstantiating 375
building custom class 375
building custom visual 376
building external visual 377
building standard class 376, 378
building standard visual 378
calling ancestor functions 325
communicating with windows 389
creating new 245, 374
custom class 370
custom visual 371
declaring events 215
events 379
external 371
in a Tab control 304
inserting nonvisual objects in 386
instance variables in Properties view 383
names, in windows 385
placing during execution 385
referring to, in menu item scripts 359
saving 380
scripts, calling ancestor scripts 325
selecting from toolbar 52
standard class 371
standard visual 372
tab order within 272
triggering events 391
types of class 370
types of visual 371
using 384
using graphs in 734, 758
using inheritance 382

user-defined functions
access level 206
calling 214
changing name of 212
coding 211
defining 206
defining arguments 209
defining return types 207
finding where used 213
in ancestor objects 320
modifying 212
naming 208
return types 207
types of 203
1027

Index
using 214
using structures in 230
where used 213
with same name 204

V
validation rules

about 412, 649
customizing error messages 654
defining in Database painter 651
defining in DataWindow painter 654
deleting 657
maintaining 657

Value axis, graph 729
values

defining return types 207
ensuring validity of 422
fixed, cycling through 291
of list box items 295
of structures, copying 231
returning 211
setting tab 273
specifying for graphs 740
suppressing repeating 663

Variable Types property page 132
Variable Types tab page 387
variables

and menu item scripts 358
declaring 202
displayed in user object’s Properties view 383
displayed in window’s Properties view 258
in descendent menus 361
in retrieval arguments 510
in structures 227, 229
in window scripts 254
pasting 188
searching for 164
SQLCache 721

version control interface, SCC API 62
version control systems 62
View Definition dialog box 431
View painter, opening 429
view synchronization 154
viewing nonvisual objects 387
1028
views
adding 45
closing 45
Control List view 127
docking 44
dropping 433
Event List view 127
floating 44
Function List view 128
in Application painter 129
in Library painter 152
in painters 124
in User Object painter 372
in Window painter 240
Layout view 125
moving 43
Non-Visual Object List view 127
piping 454
Properties view 125
removing 45
resizing 43
restoring layouts 46
saving layouts 45
Script view 126
Structure List view 128
Structure view 128
title bar, displaying and using 42
updating 603
using in painters 41

Visible property 275, 341, 342, 704
visual user objects

custom 371
external 371
overview 371
placing in window or user object 384
standard 372

VProgressBar controls
prefix 265
using 293

VScrollBar controls
prefix 265
using 291

VTrackBar controls
prefix 265
using 292
PowerBuilder Classic

Index
W
warnings

compile 200
compiler 200, 201
obsolete 200

warnings, compiler 200
Web service data source

updating data in DataWindow objects 612
using 519

WHERE clause
specified for update and delete 607
specifying in Quick Select 493
user modifying at runtime 574

WHERE criteria 510
width property 705
wildcards, in Library painter 157
window objects 236
Window painter

about 240
displaying hidden controls 275
inserting nonvisual objects in 249
opening 241
properties 240, 242
views 240
workspace 240

Window Position dialog box
controlling scrolling 247
moving and sizing windows 246

window scripts
calling ancestor scripts 325
displaying pop-up menus 367
identifying menu items in 367

window type, specifying 243
window-level properties 253
window-level variables 254
windows

about 235
aligning controls 269
communicating with user objects 389
creating new 241
declaring events 215
displaying references to 139
inserting nonvisual objects in 249
instance variables in Properties view 258
MDI frames 237
naming 249
Users Guide
placing controls in 262
placing visual user objects in 384
previewing 250
printing definition 251
referring to, in scripts 359
running 255
saving 249
selecting controls 263
sizing and positioning 246
specifying color 244
style 242
types of 237
using graphs in 757
using menus 244, 328, 366

Windows Forms Application wizard 24
Windows messages, mapping to PowerBuilder 216
wizards

accessing 18
Target wizards 20

WMF files
adding to DataWindow objects 580
and Picture controls 286
and PictureButton controls 282
and PictureHyperLink controls 287

working copy, checking in 83
workspace

grid, in Window painter 268
in Application painter 129
in Data Pipeline painter 457, 459
in Database painter 402
in Library painter 152
in Menu painter 329
in User Object painter 372
in Window painter 240
of descendent user object 383

wrap height, default in freeform reports 523

X
X and Y values

and window position 246
in grid 269

x property 705
x1, x2 property 706
XML
1029

Index
about 805
associating a namespace with a schema 833
Detail Start element 815
exporting 825
exporting metadata 831
header and detail sections 814
importing 835
importing group headers 837
importing with a template 836
importing without a template 840
in the DataWindow painter 809
Iterate Header for Groups 827
Iterate Header for Groups and Detail Start element

815
parsing 808, 810
syntax 807
templates, about 811
templates, creating 812
templates, editing 817
templates, saving 814
tracing import 843
valid and well-formed 806

XML declaration in XML export template 818
XML Schema 807
XSL-FO, saving data as 553

Y
y property 706
y1, y2 property 707
years in DataWindow objects, specified with two digits

628

Z
zero display format 625
Zoom command, in print preview 545
1030
 PowerBuilder Classic

	Users Guide
	About This Book
	PART 1 The PowerBuilder Environment

	CHAPTER 1 Working with PowerBuilder
	About PowerBuilder
	Concepts and terms
	Workspaces and targets
	Objects
	DataWindow objects
	PowerBuilder libraries
	Painters and editors
	Events and scripts
	Functions
	Properties
	Source control
	PowerBuilder extensions

	The PowerBuilder environment
	The System Tree
	The PowerBar
	The Clip window
	The Output window

	Creating and opening workspaces
	Creating a workspace
	Opening a workspace

	Using wizards
	About wizards
	Related wizard types

	Creating a target
	Target types
	Application targets
	Component targets
	.NET targets

	Managing workspaces
	Adding an existing target to a workspace
	Removing a target from a workspace
	Specifying workspace properties

	Building workspaces
	In the development environment
	From a command line

	Working with tools
	Using the To-Do List
	Using the file editor

	Using online Help
	Building an application

	CHAPTER 2 Customizing PowerBuilder
	Starting PowerBuilder with an open workspace
	Using options in the development environment
	Using a workspace file
	Using command line arguments

	Changing default layouts
	Arranging the System Tree, Output, and Clip windows
	Using views in painters
	Displaying the title bar
	Moving and resizing panes and views
	Floating and docking views
	Adding and removing views
	Saving a layout

	Using toolbars
	Toolbar basics
	Drop-down toolbars
	Controlling the display of toolbars
	Moving toolbars using the mouse
	Docking toolbars

	Customizing toolbars
	Modifying a custom button

	Creating new toolbars

	Customizing keyboard shortcuts
	Changing fonts
	Defining colors
	How the PowerBuilder environment is managed
	About the registry
	About the initialization file

	CHAPTER 3 Using Source Control
	About source control systems
	Using your source control manager
	Using PBNative
	Constraints of a multi-user environment
	Extension to the SCC API

	Using a source control system with PowerBuilder
	Setting up a connection profile
	Viewing the status of source-controlled objects
	Working in offline mode
	Fine-tuning performance for batched source control requests
	Configuring Java VM initialization
	Files available for source control

	Source control operations in PowerBuilder
	Adding objects to source control
	Checking objects out from source control
	Checking objects in to source control
	Clearing the checked-out status of objects
	Synchronizing objects with the source control server
	Refreshing the status of objects
	Comparing local objects with source control versions
	Displaying the source control version history
	Removing objects from source control

	Initialization settings that affect source control
	Modifying source-controlled targets and objects
	Effects of source control on object management
	Opening objects checked in to source control
	Copy and move operations on source-controlled objects
	Editing the PBG file for a source-controlled target

	Migrating existing projects under source control
	Using the Existing Application target wizard
	Importing source control files to a new library

	CHAPTER 4 PowerDesigner Integration
	About PowerDesigner and the PowerDesigner plug-in
	What is an OOM?
	Advantages of an OOM class diagram in PowerBuilder
	Reverse-engineering a PowerBuilder target
	Using PowerDesigner menu items in PowerBuilder
	Class diagram menu commands
	Checking the OOM model
	Plug-in toolbars

	PART 2 Working with Targets

	CHAPTER 5 Working with Targets
	About targets
	Working in painters
	Opening painters
	Painter summary
	Painter features
	Views in painters that edit objects

	About the Application painter
	Specifying application properties
	Specifying default text properties
	Specifying an icon
	Specifying default global objects

	Writing application-level scripts
	Setting application properties in scripts

	Specifying target properties
	Specifying the target’s library search path
	Importing .NET assemblies

	Looking at an application’s structure
	Which objects are displayed
	Which references are displayed
	Which references are not displayed

	Working with objects
	Creating new objects
	Creating new objects using inheritance
	Naming conventions
	Opening existing objects
	Running or previewing objects

	Using the Source editor

	CHAPTER 6 Working with Libraries
	About libraries
	Using libraries
	Organizing libraries

	Opening the Library painter
	About the Library painter
	Working with libraries
	Displaying libraries and objects
	Using the pop-up menu
	Controlling columns that display in the List view
	Selecting objects
	Filtering the display of objects
	Creating and deleting libraries
	Filtering the display of libraries and folders
	Working in the current library
	Opening and previewing objects
	Copying, moving, and deleting objects
	Setting the root
	Moving back, forward, and up one level
	Modifying comments

	Searching targets, libraries, and objects
	Optimizing libraries
	Regenerating library entries
	Rebuilding workspaces and targets
	Migrating targets
	Exporting and importing entries
	Creating runtime libraries
	Including additional resources

	Creating reports on library contents
	Creating library entry reports
	Creating the library directory report

	PART 3 Coding Fundamentals

	CHAPTER 7 Writing Scripts
	About the Script view
	Opening Script views
	Modifying Script view properties
	Editing scripts
	Limiting size of scripts
	Printing scripts
	Pasting information into scripts
	Reverting to the unedited version of a script

	Using AutoScript
	Using the AutoScript pop-up window
	Customizing AutoScript
	Example

	Getting context-sensitive Help
	Compiling the script
	Handling problems

	Declaring variables and external functions

	CHAPTER 8 Working with User-Defined Functions
	About user-defined functions
	Deciding which kind you want

	Defining user-defined functions
	Opening a Prototype window to add a new function
	Defining the access level
	Defining a return type
	Naming the function
	Defining arguments
	Defining a THROWS clause
	Coding the function
	Compiling and saving the function

	Modifying user-defined functions
	Using your functions

	CHAPTER 9 Working with User Events
	About user events
	User events and event IDs
	Event ID names

	Defining user events
	Using a user event
	Examples of user event scripts

	CHAPTER 10 Working with Structures
	About structures
	Deciding which kind you want

	Defining structures
	Modifying structures
	Using structures
	Referencing structures
	Copying structures
	Using structures with functions
	Displaying and pasting structure information

	PART 4 Working with Windows

	CHAPTER 11 Working with Windows
	About windows
	Designing windows
	Building windows

	Types of windows
	Main windows
	Pop-up windows
	Child windows
	Response windows
	MDI frames

	About the Window painter
	Building a new window
	Creating a new window
	Defining the window's properties
	Using the General property page
	Choosing the window's size and position
	Choosing the window's pointer
	Specifying window scrolling
	Specifying toolbar properties

	Adding controls
	Adding nonvisual objects
	Saving the window

	Viewing your work
	Previewing a window
	Printing a window's definition

	Writing scripts in windows
	About events for windows and controls
	About functions for windows and controls
	About properties of windows and controls
	Declaring instance variables
	Examples of statements

	Running a window
	Using inheritance to build a window
	Building two windows with similar definitions
	Advantages of using inheritance
	Instance variables in descendants
	Control names in descendants

	CHAPTER 12 Working with Controls
	About controls
	Inserting controls in a window
	Selecting controls
	Defining a control’s properties
	Naming controls
	About the default prefixes
	Changing the default prefixes

	Changing the name

	Changing text
	How text size is stored

	Moving and resizing controls
	Moving and resizing controls using the mouse
	Moving and resizing controls using the keyboard
	Aligning controls using the grid
	Aligning controls with each other
	Equalizing the space between controls
	Equalizing the size of controls

	Copying controls
	Defining the tab order
	Establishing the default tab order
	Changing the window's tab order

	Defining accelerator keys
	Specifying accessibility of controls
	Using the Visible property
	Using the Enabled property

	Choosing colors
	Using the 3D look
	Using the individual controls
	CommandButton
	Specifying Default and Cancel buttons

	PictureButton
	CheckBox
	RadioButton
	StaticText
	StaticHyperLink
	Picture
	PictureHyperLink
	GroupBox
	Drawing controls
	SingleLineEdit and MultiLineEdit
	EditMask
	HScrollBar and VScrollBar
	HTrackBar and VTrackBar
	HProgressBar and VProgressBar
	DropDownListBox
	DropDownPictureListBox
	ListBox
	PictureListBox
	ListView
	TreeView
	Tab
	MonthCalendar
	DatePicker
	Animation
	InkEdit and InkPicture

	CHAPTER 13 Understanding Inheritance
	About inheritance
	Creating new objects using inheritance
	The inheritance hierarchy
	Browsing the class hierarchy
	Working with inherited objects
	Using inherited scripts
	Viewing inherited scripts
	Extending a script
	Overriding a script
	Calling an ancestor script
	Calling an ancestor function

	CHAPTER 14 Working with Menus and Toolbars
	Menus and menu items
	Using the Menu painter
	Menu painter views
	Menu styles

	Building a new menu
	Creating a new menu
	Working with menu items
	How menu items are named
	Inserting menu items
	Creating separation lines in menus
	Duplicating menu items
	Changing menu item text
	Selecting menu items
	Navigating in the menu
	Moving menu items
	Deleting menu items

	Saving the menu

	Defining the appearance and behavior of menu items
	Setting General properties for menu items
	Setting menu style properties for contemporary menus
	Setting menu item style properties

	Providing toolbars
	How toolbars work
	Adding toolbars to a window
	Selecting a toolbar style
	Setting toolbar properties
	Toolbar style properties
	Toolbar item display characteristics

	Setting toolbar properties in the Window painter
	Setting toolbar properties in the Application painter

	Writing scripts for menu items
	Menu item events
	Using functions and variables
	Referring to objects in your application

	Using inheritance to build a menu
	Using the inherited information
	Inserting menu items in a descendent menu

	Using menus in your applications
	Adding a menu bar to a window
	Displaying pop-up menus

	CHAPTER 15 Working with User Objects
	About user objects
	Class user objects
	Visual user objects
	Building user objects

	About the User Object painter
	Building a new user object
	Creating a new user object
	Building a custom class user object
	Building a standard class user object
	Building a custom visual user object
	Building an external visual user object
	Building a standard visual user object
	Events in user objects
	Saving a user object
	Naming the user object

	Using inheritance to build user objects
	Using the inherited information

	Using user objects
	Using visual user objects
	Using class user objects
	Using global standard class user objects

	Communicating between a window and a user object
	Examples of user object controls affecting a window

	PART 5 Working with Databases

	CHAPTER 16 Managing the Database
	Working with database components
	Managing databases
	Using the Database painter
	Modifying database preferences
	Logging your work

	Creating and deleting a SQL Anywhere database
	Working with tables
	Creating a new table from scratch
	Creating a new table from an existing table
	Specifying column definitions
	Specifying table and column properties
	Specifying table properties
	Specifying column extended attributes
	Specifying additional properties for character columns

	Altering a table
	Cutting, copying, and pasting columns
	Closing a table
	Dropping a table
	Viewing pending SQL changes
	Printing the table definition
	Exporting table syntax
	About system tables
	Creating and editing temporary tables

	Working with keys
	Working with indexes
	Working with database views
	Manipulating data
	Retrieving data
	Modifying data
	Sorting rows
	Filtering rows
	Viewing row information
	Importing data
	Printing data
	Saving data

	Creating and executing SQL statements
	Building and executing SQL statements
	Creating stored procedures
	Controlling comments
	Entering SQL
	Explaining SQL
	Executing SQL

	Customizing the editor

	Controlling access to the current database
	Using the ASA MobiLink synchronization wizard
	What the wizard generates
	Wizard options
	Trying out MobiLink synchronization

	Managing MobiLink synchronization on the server
	Starting the MobiLink synchronization server
	Using Sybase Central

	CHAPTER 17 Working with Data Pipelines
	About data pipelines
	Defining a data pipeline
	Piping extended attributes

	Creating a data pipeline
	Modifying the data pipeline definition
	Choosing a pipeline operation
	Dependency of modifications on pipeline operation
	When execution stops
	Whether rows are committed

	Piping blob data
	Changing the destination and source databases

	Correcting pipeline errors
	Saving a pipeline
	Using an existing pipeline
	Pipeline examples

	PART 6 Working with DataWindows

	CHAPTER 18 Defining DataWindow Objects
	About DataWindow objects
	DataWindow object examples
	How to use DataWindow objects

	Choosing a presentation style
	Using the Tabular style
	Using the Freeform style
	Using the Grid style
	Using the Label style
	Using the N-Up style
	Using the Group style
	Using the Composite style
	Using the Graph and Crosstab styles
	Using the OLE 2.0 style
	Using the RichText style
	Using the TreeView style

	Building a DataWindow object
	Selecting a data source
	Using Quick Select
	Selecting a table
	Selecting columns
	Specifying sorting criteria
	Specifying selection criteria
	SQL expression examples

	Using SQL Select
	Selecting tables and views
	Selecting columns
	Displaying the underlying SQL statement
	Joining tables
	Using ANSI outer joins

	Using retrieval arguments
	Using retrieval arguments
	Specifying selection, sorting, and grouping criteria

	Using Query
	Using External
	Using Stored Procedure
	Using a Web service data source
	Choosing DataWindow object-wide options
	Generating and saving a DataWindow object
	About the extended attribute system tables and DataWindow objects
	Saving the DataWindow object
	Naming the DataWindow object

	Modifying an existing DataWindow object

	Defining queries
	Previewing the query
	Saving the query
	Modifying a query

	What's next

	CHAPTER 19 Enhancing DataWindow Objects
	Working in the DataWindow painter
	Understanding the DataWindow painter Design view
	The header band
	The detail band
	The summary and footer bands

	Using the DataWindow painter toolbars
	Using the Properties view in the DataWindow painter
	Selecting controls in the DataWindow painter
	Resizing bands in the DataWindow painter Design view
	Using zoom in the DataWindow painter
	Undoing changes in the DataWindow painter

	Using the Preview view of a DataWindow object
	Retrieving data
	Modifying data
	Viewing row information
	Importing data into a DataWindow object
	Using print preview
	Printing data
	Working in a grid DataWindow object

	Saving data in an external file
	Saving the data as PDF
	Saving as PDF using the distill method
	Saving as PDF using XSL-FO
	Saving as XSL-FO
	System requirements for XSL-FO

	Saving the data in HTML Table format
	Working with PSR files

	Modifying general DataWindow object properties
	Changing the DataWindow object style
	Setting colors in a DataWindow object
	Setting gradients and background pictures in a DataWindow object
	Setting transparency properties for a DataWindow object
	Specifying properties of a grid DataWindow object
	Specifying pointers for a DataWindow object
	Defining print specifications for a DataWindow object
	Printing with newspaper-style columns

	Modifying text in a DataWindow object
	Defining the tab order in a DataWindow object
	Naming controls in a DataWindow object
	Using borders in a DataWindow object
	Specifying variable-height bands in a DataWindow object
	Modifying the data source of a DataWindow object
	Modifying SQL SELECT statements
	Modifying the result set

	Storing data in a DataWindow object using the Data view
	What happens at runtime

	Retrieving data
	Prompting for retrieval criteria in a DataWindow object
	Retrieving rows as needed
	Saving retrieved rows to disk

	CHAPTER 20 Working with Controls in DataWindow Objects
	Adding controls to a DataWindow object
	Adding columns to a DataWindow object
	Adding text to a DataWindow object
	Adding drawing controls to a DataWindow object
	Adding a group box to a DataWindow object
	Adding pictures to a DataWindow object
	Adding computed fields to a DataWindow object
	Computed columns versus computed fields
	Defining a computed field in the DataWindow painter Design view

	Adding buttons to a DataWindow object
	Controlling the display of buttons in print preview and in printed output
	Actions assignable to buttons in DataWindow objects

	Adding graphs to a DataWindow object
	Adding InkPicture controls to a DataWindow object
	Adding OLE controls to a DataWindow object
	Adding reports to a DataWindow object
	Adding tooltips to a DataWindow control

	Reorganizing controls in a DataWindow object
	Displaying boundaries for controls in a DataWindow object
	Using the grid and the ruler in a DataWindow object
	Deleting controls in a DataWindow object
	Moving controls in a DataWindow object
	Copying controls in a DataWindow object
	Resizing controls in a DataWindow object
	Aligning controls in a DataWindow object
	Equalizing the space between controls in a DataWindow object
	Equalizing the size of controls in a DataWindow object
	Sliding controls to remove blank space in a DataWindow object

	Positioning controls in a DataWindow object
	Rotating controls in a DataWindow object

	CHAPTER 21 Controlling Updates in DataWindow objects
	About controlling updates
	What you can do

	Specifying the table to update
	Specifying the unique key columns
	Specifying an identity column
	Specifying updatable columns
	Specifying the WHERE clause for update/delete
	Specifying update when key is modified
	Using stored procedures to update the database
	Using a Web service to update the database

	CHAPTER 22 Displaying and Validating Data
	About displaying and validating data
	Presenting the data
	Validating data

	About display formats
	Working with display formats
	Working with display formats in the Database painter
	Working with display formats in the DataWindow painter

	Defining display formats
	Number display formats
	String display formats
	Date display formats
	Time display formats

	About edit styles
	Working with edit styles
	Working with edit styles in the Database painter
	Working with edit styles in the DataWindow painter

	Defining edit styles
	The Edit edit style
	The DropDownListBox edit style
	The CheckBox edit style
	The RadioButtons edit style
	The EditMask edit style
	The DropDownDataWindow edit style
	The RichText edit style
	The InkEdit edit style

	Defining a code table
	How code tables are implemented
	How code tables are processed
	Validating user input

	About validation rules
	Understanding validation rules

	Working with validation rules
	Defining validation rules
	Defining a validation rule in the Database painter
	Defining the expression
	Using match values for character columns
	Customizing the error message
	Specifying initial values

	Defining a validation rule in the DataWindow painter
	Specifying the expression
	Examples

	How to maintain extended attributes

	CHAPTER 23 Filtering, Sorting, and Grouping Rows
	Filtering rows
	Sorting rows
	Suppressing repeating values

	Grouping rows
	Using the Group presentation style
	Defining groups in an existing DataWindow object
	Specifying the grouping columns
	Sorting the rows
	Rearranging the DataWindow object
	Adding summary statistics
	Sorting the groups

	CHAPTER 24 Highlighting Information in DataWindow Objects
	Highlighting information
	Modifying properties when designing
	Modifying properties at runtime

	Modifying properties conditionally at runtime
	Example 1: creating a gray bar effect
	Example 2: rotating controls
	Example 3: highlighting rows of data
	Example 4: changing the size and location of controls

	Supplying property values
	Background.Color
	Border
	Brush.Color
	Brush.Hatch
	Color
	Font.Escapement (for rotating controls)
	Font.Height
	Font.Italic
	Font.Strikethrough
	Font.Underline
	Font.Weight
	Format
	Height
	Pen.Color
	Pen.Style
	Pen.Width
	Pointer
	Protect
	Timer_Interval
	Visible
	Width
	X
	X1, X2
	Y
	Y1, Y2

	Specifying colors

	CHAPTER 25 Using Nested Reports
	About nested reports
	Creating a report using the Composite presentation style
	Placing a nested report in another report
	Placing a related nested report in another report
	Placing an unrelated nested report in another report

	Working with nested reports
	Adjusting nested report width and height
	Changing a nested report from one report to another
	Modifying the definition of a nested report
	Adding another nested report to a composite report
	Supplying retrieval arguments to relate a nested report to its base report
	Specifying criteria to relate a nested report to its base report
	Using options for nested reports

	CHAPTER 26 Working with Graphs
	About graphs
	Parts of a graph
	How data is represented
	Organization of a graph

	Types of graphs
	Area, bar, column, and line graphs
	Pie graphs
	Scatter graphs
	Three-dimensional graphs
	Stacked graphs

	Using graphs in applications

	Using graphs in DataWindow objects
	Placing a graph in a DataWindow object
	Using the graph's Properties view
	Changing a graph's position and size
	Associating data with a graph
	Specifying which rows to include in a graph
	Specifying the categories
	Specifying the values
	Specifying the series
	Examples

	Using the Graph presentation style
	Defining a graph's properties
	Using the General page in the graph's Properties view
	Sorting data for series and categories
	Specifying text properties for titles, labels, axes, and legends
	Specifying overlap and spacing
	Specifying axis properties
	Specifying a pointer

	Using graphs in windows

	CHAPTER 27 Working with Crosstabs
	About crosstabs
	Two types of crosstabs

	Creating crosstabs
	Associating data with a crosstab
	Specifying the information
	Viewing the crosstab
	Specifying more than one row or column

	Previewing crosstabs
	Enhancing crosstabs
	Specifying basic properties
	Modifying the data associated with the crosstab
	Changing the names used for the columns and rows
	Defining summary statistics
	Using crosstab functions

	Cross-tabulating ranges of values
	Creating static crosstabs
	Using property conditional expressions

	CHAPTER 28 Working with TreeViews
	TreeView presentation style
	Creating a new TreeView DataWindow
	TreeView creation process
	Creating a TreeView DataWindow

	Adding and deleting TreeView levels
	Selecting a tree node and navigating the tree
	Sorting rows in a TreeView DataWindow
	TreeView DataWindow Design view
	Setting properties for the TreeView DataWindow
	Setting general TreeView properties
	Setting TreeView level properties
	Setting detail band properties

	TreeView DataWindow examples
	Data Explorer sample
	Data Linker sample

	CHAPTER 29 Exporting and Importing XML Data
	About XML
	Valid and well-formed XML documents
	XML syntax
	XML parsing

	XML support in the DataWindow painter
	The Export/Import Template view for XML
	Creating templates
	Saving templates
	Header and Detail sections
	Header section
	Detail section

	Editing XML templates
	XML declaration
	Document type declaration
	Root element
	Controls
	DataWindow expressions
	Attributes
	Composite and nested reports
	CDATA sections
	Comments
	Processing instructions

	Exporting to XML
	Setting data export properties
	The Use Template property
	Generating group headers
	Formatting the exported XML
	Exporting metadata

	Selecting templates at runtime

	Importing XML
	Importing with a template
	Example

	Default data import
	Example with no empty elements
	Example with empty elements

	Tracing import

	CHAPTER 30 Working with Rich Text
	About rich text
	Using the RichText presentation style
	Creating the DataWindow object
	Formatting for RichText objects within the DataWindow object
	The whole RichText DataWindow
	Selected text and paragraphs
	Input fields
	Pictures

	Previewing and printing

	Using the RichTextEdit control
	Formatting keys and toolbars

	CHAPTER 31 Using OLE in a DataWindow Object
	About using OLE in DataWindow objects
	OLE objects and the OLE presentation style
	Adding an OLE object to a DataWindow object
	Using the OLE presentation style
	Defining the OLE object
	Specifying data for the OLE object
	Previewing the DataWindow object
	Activating and editing the OLE object
	Changing the object in the control

	Using OLE columns in a DataWindow object
	Creating an OLE column

	PART 7 Running Your Application

	CHAPTER 32 Debugging and Running Applications
	Overview of debugging and running applications
	Debugging an application
	Starting the debugger
	Setting breakpoints
	Running in debug mode
	Examining an application at a breakpoint
	Examining variable values
	Watching variables and expressions
	Monitoring the call stack
	Examining objects in memory
	Using the Source view
	Using the Source Browser view
	Using the Source History view

	Stepping through an application
	Debugging windows opened as local variables
	Just-in-time debugging
	Using the DEBUG preprocessor symbol
	Breaking into the debugger when an exception is thrown

	Running an application
	Running the application
	Handling errors at runtime

	CHAPTER 33 Tracing and Profiling Applications
	About tracing and profiling an application
	Collecting trace information
	Tracing an entire application in PowerBuilder
	Using a window
	Collecting trace information using PowerScript functions

	Analyzing trace information using profiling tools
	Profiling Class View
	Profiling Routine View
	Profiling Trace View
	Setting call aggregation preferences

	Analyzing trace information programmatically
	Analyzing performance with a call graph model
	Using the BuildModel function to build a call graph model
	Extracting information from the call graph model

	Analyzing structure and flow using a trace tree model
	Using BuildModel to build a trace tree model
	Extracting information from the trace tree model

	Accessing trace data directly
	Using the TraceFile object

	Generating a trace file without timing information

	CHAPTER 34 Creating Executables and Components
	About building PowerBuilder targets
	Creating a project
	Defining an executable application project
	Using dynamic libraries
	Attaching or embedding manifest files
	Distributing resources
	Distributing resources separately
	Using PowerBuilder resource files
	What happens at runtime

	Tracing execution
	Building an executable file and dynamic libraries
	How PowerBuilder builds the project
	How PowerBuilder searches for objects
	Which objects are copied to the executable file
	Which objects are not copied to the executable file
	Which objects are not copied to the dynamic libraries
	How to include the objects that were not found

	Listing the objects in a project

	Building components, proxies, and .NET targets

	PART 8 Appendixes

	APPENDIX A The Extended Attribute System Tables
	About the extended attribute system tables
	The extended attribute system tables
	Edit style types for the PBCatEdt table
	CheckBox edit style (code 85)
	RadioButton edit style (code 86)
	DropDownListBox edit style (code 87)
	DropDownDataWindow edit style (code 88)
	Edit edit style (code 89)
	Edit Mask edit style (code 90)

	APPENDIX B The OrcaScript Language
	About OrcaScript
	OrcaScript Commands
	Usage notes for OrcaScript commands and parameters

	Index

