
Copyright 1987-2007 by Sybase, Inc. All rights reserved. Sybase trademarks can be viewed at the Sybase trademarks page
at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States
of America. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Unicode
and the Unicode Logo are registered trademarks of Unicode, Inc. All other company and product names mentioned may be trademarks of the respec-
tive companies with which they are associated.

Using Encrypted Columns in Adaptive Server®

Document ID: DC00412-01-1501-03

Last revised: September 2007

This document describes the encrypted column feature included with this
version of Adaptive Server®.

Heading Page

 Overview 3

 Setting the system encryption password 4

 Creating and managing encryption keys 5

 Encrypting data 11

 Decrypting data 14

 Dropping encryption and keys 15

 select into command 16

 Length of encrypted columns 17

 Auditing encrypted columns 19

 Performance considerations 21

 System tables 25

 ddlgen utility extensions for encrypted columns 27

 Replicating encrypted data 29

 Bulk copy (bcp) 30

 Component Integration Services (CIS) 31

 load and dump databases 32

 unmount database 33

 quiesce database 34

 Drop database 34

 sybmigrate 35

 Referential integrity constraints 36

 New commands 37

 New system-stored procedure 39

 Changes to commands and system procedures 40

 Full syntax for commands 44

 Downgrade procedure 46

2 New Features

Adaptive Server authentication and access control mechanisms ensure that
only properly identified and authorized users can access data. Data encryption
further protects sensitive data on disk or in archives against theft and security
breaches.

The Adaptive Server Encryption option enables the encryption of data at rest,
without changing your applications. You can quickly add encryption to your
existing environment to encrypt sensitive data at the column level. This native
support provides the following capabilities:

• Column level granularity

• Symmetric, NIST approved algorithm: AES

• Optimized for performance

• Enforces separation of duties

• Key management fully integrated and automatic

• Application transparency: no application changes are need

Data encryption and encryption is automatic and transparent. If you have insert
or update permission on a table, any data you insert or modify is automatically
encrypted prior to storage. Day to day tasks are not interrupted.

However, selecting data from an encrypted column requires separate decrypt
permissions. Decrypt can be granted to specific database users or to roles that
have been defined. Sybase provides granular access capability to sensitive
data, providing you with more control.

Encrypting columns in Adaptive Server is more straight forward than using
encryption in the middle tier, or in the client application. You use SQL
statements to create encryption keys and to specify columns for encryption,
and existing applications continue to run without change.

When data is encrypted, it is stored as ciphertext. Non-encrypted data is stored
as plaintext.

The encryption functionality is also contained in:

• Sybase Central™ and the Adaptive Server plug-in. See the online help for
Sybase Central for more information.

• sybmigrate (the migration tool), bulk copy, and CIS, which are documented
in the Adaptive Server Enterprise System Administration Guide.

• Replication Server™. Use the Replication Server Administration Guide
for information on encryption when replicating.

Overview

Adaptive Server 15.0.1 3

Overview
Figure 1 is an overview of encryption and decryption processing in Adaptive
Server. In this example, the Social Security Number (SSN) is being updated
and encrypted.

Figure 1: Encryption and decryption in Adaptive Server

To create encryption keys, use create encryption key, which:

• Internally creates a key using the Security Builder Crypto™ API.

• Stores the key in encrypted form in the system catalog sysencryptkeys.

Adaptive Server tracks the key that is used to encrypt a given column. Column
encryption uses a symmetric encryption algorithm, which means that the same
key is used for encryption and decryption.

When you insert or update data in an encrypted column, Adaptive Server
transparently encrypts the data immediately before writing the row. When you
select from an encrypted column, Adaptive Server decrypts the data after
reading it from the row. Integer and floating point data are encrypted in the
following form for all platforms:

• Most significant bit (MSB) format for integer data.

• Institute of Electrical and Electronics Engineers (IEEE) floating point
standard with MSB format for floating point data.

Data encrypted on one platform can be decrypted on another platform,
provided that both platforms use the same character set.

Using encrypted
columns in Adaptive
Server

1 Install the license option ASE_ENCRYPTION. See the Adaptive Server
Enterprise Installation Guide for information.

Client

Insert or update SSN

Encryption
algorithm

Encryption

Decryption
algorithm

Encrypted
data

Client
key

Adaptive Server Enterprise

Select SSN

Setting the system encryption password

4 New Features

2 Enable encryption in Adaptive Server Enterprise. Only the System
Security Officer can issue this command:

sp_configure 'enable encrypted columns', 0|1

0 – disable encryption.

1 – enable encryption.

If you turn off this option in a server that contains encrypted columns, any
commands against these columns fail with an error message.

3 Set the system encryption password for a database using sp_encryption.
See “Setting the system encryption password” on page 4.

4 Create the key for encrypting columns. See “Creating encryption keys” on
page 5.

5 Specify the columns for encryption. See “Specifying encryption on new
tables” on page 11 and “Encrypting data in existing tables” on page 13.

6 Grant decrypt permission to users who must see the data. See
“Permissions for decryption” on page 14.

Setting the system encryption password
The System Security Officer uses sp_encryption to set the system encryption
password. The system password is specific to the database where sp_encryption
is executed, and its encrypted value is stored in the sysattributes system table
in that database.

sp_encryption system_encr_passwd, password

password can be as many as 64 bytes in length, and is used by Adaptive Server
to encrypt all keys in the selected database. Once you have set the system
encryption password, you need not specify this password to access keys or
data.

Your system encryption password helps prevent access by unauthorized
people. You should choose long and complex system encryption passwords.
Longer passwords are harder to guess or crack by brute force. Passwords that
are too short or easy to guess may compromise the security of encryption keys.
Include upper and lower case letters, numbers, and special characters in the
system encryption password. Sybase recommends that the length of system
encryption password be between 16 and 64 bytes. In addition, follow the
guidelines below when creating your password:

Creating and managing encryption keys

Adaptive Server 15.0.1 5

• Do not use information such as your birthday, street address, or any other
word or number that has anything to do with your personal life.

• Do not use names of pets or loved ones.

• Do not use words that appear in the dictionary or words spelled
backwards.

You must set the system encryption password in every database where
encryption keys are created. If all keys are stored in one designated database,
then only that database requires a system encryption password. You may create
encrypted columns in the same database as the keys or in other databases.

The System Security Officer can change the system password by using
sp_encryption and supplying the old password:

sp_encryption system_encr_passwd, password [, old_password]

When the system password is changed, Adaptive Server automatically re-
encrypts all keys in the database with the new password.

You can unset the system encryption password by supplying “null” as the
argument for password and supplying the value for old_password. You can
remove the system password only if you have dropped all the encryption keys
in that database.

Creating and managing encryption keys
Adaptive Server generates encryption keys and stores them in the database in
encrypted form. Key owners grant table owners permission to encrypt columns
with a named key.

Creating encryption keys
All the information related to keys and encryption is encapsulated by the create
encryption key, which allows you to specify the key’s name, the encryption
algorithm, the key size, the key’s default property, as well as whether an
initialization vector or padding is used during the encryption process. See
below for the create encryption key syntax.

Creating and managing encryption keys

6 New Features

Column encryption in Adaptive Server uses the Advanced Encryption
Standard (AES) symmetric key encryption algorithm, with available key sizes
of 128, 192, and 256 bits. Random-key generation and cryptographic
functionality is provided by the Security Builder Crypto API.

You can create separate keys for each encrypted column. Keys can be shared
between columns, but each column can have only one key.

The System Security Officer can set up a default encryption key for the
database. The default key is used whenever the encrypt qualifier is used without
a key name on create table, alter table, and select into. For more information,
see “Syntax for create encryption” on page 7.

To securely protect key values, Adaptive Server uses the system encryption
password to generate a 128-bit key-encrypting key, which in turn is used to
encrypt the newly created key (this is the column encryption key.) The column-
encryption key is stored in encrypted form in the sysencryptkeys system table.

Creating and managing encryption keys

Adaptive Server 15.0.1 7

Figure 2: Encrypting user keys

Syntax for create
encryption

 The syntax for create encryption key is:

create encryption key keyname [as default] for algorithm
[with [keylength num_bits]
[init_vector [null | random]]
[pad [null | random]]]

where:

• keyname – must be unique in the user’s table, view, and procedure name
space in the current database.

System encryption
password

Random
values

1c2fg&H39....

IEEE key
derivation
function

128-bit
key-encryption key

4p69jX36bn00........

29c4WRg89....

Column-encryption
key Symmetric

encryption

algorithm

Encrypted
column-encryption key

845t710Kp9....

PasswordForAllKeys

Creating and managing encryption keys

8 New Features

• as default – allows the System Security Officer to create a database default
key for encryption. This enables the table creator to specify encryption
without using a keyname on create table, alter table and select into.
Adaptive Server uses the default key from the same database. The default
key may be changed. See “alter encryption key” on page 37.

• algorithm – Advanced Encryption Standard (AES) is the only algorithm
supported. AES supports key sizes of 128, 192, and 256 bits, and a block
size of 16 bytes. The block size is the number of bytes in an encryption
unit. Data that is larger is subdivided for encryption.

• keylength num_bits – the size, in bits, of the key to be created. For AES,
valid key lengths are 128, 192, and 256 bits. The default keylength is 128
bits.

• init_vector

• random – specifies use of an initialization vector during encryption.
When an initialization vector is used by the encryption algorithm, the
ciphertext of two identical pieces of plaintext are different, which
prevents detection of data patterns. Using an initialization vector can
add to the security of your data.

However, initialization vectors have some performance implications.
You can create indexes and optimize joins and searches only on
columns where the encryption key does not specify an initialization
vector. See “Performance considerations” on page 21.

• null – omits the use of an initialization vector when encrypting. This
makes the column suitable for supporting an index.

The default is to use an initialization vector, that is, init_vector random.
Use of an initialization vector implies using a cipher block chaining
(CBC) mode of encryption (where each block of data is combined
with the previous block before encryption, with the first block being
combined with the initialization vector).

Setting init_vector null implies the electronic code book (ECB) mode,
where each block of data is encrypted independently.

To encrypt one column using an initialization vector and another
column without using an initialization vector, create two separate
keys–one that specifies use of an initialization vector and another that
specifies no initialization vector.

• pad

• null – is the default. It omits random padding of data.

Creating and managing encryption keys

Adaptive Server 15.0.1 9

You cannot use padding if the column must support an index.

• random – data is automatically padded with random bytes before
encryption. You can use padding instead of an initialization vector to
randomize the ciphertext. Padding is suitable only for columns whose
plaintext length is less than half the block length. For the AES
algorithm the block length is 16 bytes.

create encryption key
examples

This example specifies a 256-bit key called “safe_key” as the database default
key:

create encryption key safe_key as default for AES with
keylength 256

Only the System Security Officer can create a default key.

This creates a 128-bit key called “salary_key” for encrypting columns using
random padding:

create encryption key salary_key for AES with
init_vector null pad random

This creates a 192-bit key named “mykey” for encrypting columns using an
initialization vector:

create encryption key mykey for AES with keylength 192
init_vector random

The System Security Officer has implicit permission to create encryption keys,
and may grant that permission to other users. Only the System Security officer
can create keys with the default property.

For example:

grant create encryption key to key_admin_role

Using encryption keys
When you specify a column for encryption, you can use either a named key
from the same database, or from a different database. If you do not specify a
named key, the column is automatically encrypted with the default key from
the same database.

Encrypting with a key from a different database provides a security advantage
because, in the event of the theft of a database dump, it protects against access
to both keys and encrypted data. Administrators can also protect each database
dump with a different password, making unauthorized access even more
difficult.

Creating and managing encryption keys

10 New Features

Encrypting with a key from a different database needs special care to avoid
data and key integrity problems in distributed systems. Carefully coordinate
database dumps and loads. If you use a named key from a different database,
Sybase recommends that, when you:

• Dump the database containing encrypted columns, you also dump the
database where the key was created. You must do this if new keys have
been added since the last dump.

• Dump the database containing an encryption key, dump all databases
containing columns encrypted with that key. This keeps encrypted data in
sync with the available keys.

The System Security Officer can use sp_encryption to identify all the columns
encrypted with a given key. See “sp_encryption” on page 39.

Granting permissions on keys
The key owner must grant select permission on the key before another user can
specify the key in the create table, alter table, and select into statements. For the
database default key, the owner is the System Security Officer. Key owners
should grant select permission on keys only on an “as needed” basis.

The following example allows users with db_admin_role to use the encryption
key “safe_key” when specifying encryption on create table, alter table, and
select into statements:

grant select on safe_key to db_admin_role

Note Users who process encrypted columns through insert, update, delete, and
select do not need select permission on the encryption key.

Changing the key
As part of your information security policy, periodically change the keys used
to encrypt columns. Create a new key using create encryption key, then use alter
table...modify to encrypt the column with the new key

In the following example, assume that the “creditcard” column is already
encrypted. The alter table command decrypts and reencrypts the credit card
value for every row of customer using cc_key_new.

Encrypting data

Adaptive Server 15.0.1 11

create encryption key cc_key_new for AES

alter table customer modify creditcard encrypt with
cc_key_new

See “alter table” on page 40.

Encrypting data
You can encrypt these datatypes:

• int, smallint, tinyint

• unsigned int, smallint, tinyint

• float4 and float8

• decimal and numeric

• char and varchar

• binary and varbinary

The underlying type of encrypted data on disk is varbinary. See “Length of
encrypted columns” on page 17 for more information about the length of the
varbinary data.

Null values are not encrypted.

Specifying encryption on new tables
To encrypt columns in a new table, use this column option on the create table
statement:

create table. . .
[encrypt [with [database.[owner].]keyname]]

Encrypting data

12 New Features

keyname – identifies a key created using create encryption key. The
creator of the table must have select permission on keyname. If keyname
is not supplied, Adaptive Server looks for a default key created using the
as default clause on the create encryption key. See “create table” on page
45 for the complete syntax for create table.

Note You cannot encrypt a computed column, and an encrypted column
cannot appear in the expression defining a computed column. You cannot
specify an encrypted column in the partition_clause of a table.

The following example creates two keys: a database default key, which uses
default values for init_vector, pad, and keylength, and a named key, cc_key, with
non-default values. The ssn column in the employee table is encrypted using
the default key, and the creditcard column in the customer table is encrypted
with cc_key:

create encryption key new_key as default for AES
create encryption key cc_key for AES with

 keylength 256
 init_vector null
 pad random

create table employee_table (ssn char(15) encrypt)

create table customer (creditcard char(20)
 encrypt with cc_key)

Creating indexes on encrypted columns
You can create an index on an encrypted column if the encryption key has been
specified without any initialization vector or random padding. An error occurs
if you execute create index on an encrypted column that has an initialization
vector or random padding. Indexes on encrypted columns are useful for
equality and non-equality matches, but not for range searches or ordering.

Note You cannot use an encrypted column in an expression for a functional
index.

In the following example, cc_key specifies encryption without using an
initialization vector or padding. This allows an index to be built on any column
encrypted with cc_key:

Encrypting data

Adaptive Server 15.0.1 13

create encryption key cc_key for AES
 with init_vector null

create table customer(custid int,
 creditcard varchar(16) encrypt with cc_key)

create index cust_idx on customer(creditcard)

Encrypting data in existing tables
To encrypt columns in existing tables, use the modify column option on the alter
table statement:

alter table table_name modify column_name
[encrypt [with [database.[owner].]keyname]]

keyname – identifies a key created using create encryption key. The creator
of the table must have select permission on keyname. If keyname is not
supplied, Adaptive Server looks for a default key created using the as
default clause on the create encryption key. See the Adaptive Server
Enterprise Reference Manual for the complete alter table syntax.

Note Encrypting a column in an existing table on which a trigger has been
created causes the alter table to fail with an error. You must drop the trigger,
alter the table for encryption; then recreate the trigger.

You cannot modify a column for decryption on which you have created a
trigger. You must first drop the trigger, dectrypt the column, then recreate the
trigger.

You cannot change an existing encrypted column or modify a column for
encryption or decryption if that column is a key in a clustered or placement
index. You must drop the index, alter the table, and then re-create the index.

You can alter the encryption property on a column at the same time you alter
other attributes such as datatype and nullability. You can also add an encrypted
column using alter table.

For example:

alter table customer modify custid null encrypt with
cc_key
alter table customer add address varchar(50) encrypt

Decrypting data

14 New Features

with cc_key

See “alter table” on page 44 for the complete syntax.

Decrypting data

Permissions for decryption
You must have these two permissions to select plaintext data from an
encrypted column or to search or join on an encrypted column:

• select permission on the column

• decrypt permission on the column used in the target list and in where,
having, order by, update, and other such clauses

The table owner uses grant decrypt to grant explicit permission to decrypt one
or more columns in a table to other users, groups, and roles. Decrypt
permission may be implicitly granted when a procedure or view owner grants:

• exec permission on a stored procedure that selects from an encrypted
column where the owner of the procedure also owns the table containing
the encrypted column

• decrypt permission on a view column that selects from an encrypted
column where the owner of the view also owns the table

In both cases, decrypt permission need not be granted on the encrypted column
in the base table.

The syntax is:

grant decrypt on [owner.] table[(column[{,column}])] to user
| group | role

Granting decrypt permission at the table level grants decrypt permission on all
encrypted columns in the table.

To grant decrypt permission on all encrypted columns in the customer table,
enter:

grant decrypt on customer to accounts_role

Dropping encryption and keys

Adaptive Server 15.0.1 15

The following example shows the implicit decrypt permission of user2 on the
ssn column of the base table “employee”. user1 sets up the employee table and
the employee_view as follows:

create table employee (ssn varchar(12)encrypt,
 dept_id int, start_date date, salary money)

create view emp_salary as select
 ssn, salary from employee

grant select, decrypt on emp_salary to user2

user2 has access to decrypted Social Security Numbers when selecting from
the emp_salary view:

select * from emp_salary

Note grant all on a table or view does not grant decrypt permission.

Revoking decryption permission
You can revoke a user’s decryption permission using:

revoke decrypt on [owner.] table[(column[{,column}])] from user
| group | role

For example:

revoke decrypt on customer from public

Dropping encryption and keys

Dropping encryption and encryption keys
If you are a table owner, you can drop the encryption or encryption key on a
column by using alter table with the decrypt option.

The syntax is:

 drop encryption key [database.[owner].]keyname

select into command

16 New Features

For example, to drop encryption on the creditcard column in the customer table,
enter:

alter table customer modify creditcard decrypt

This drops the encryption key on a column:

drop encryption key cust.dbo.cc_key

The System Security Officer and key owners can drop keys. A key can be
dropped only if there are no encrypted columns in any database that use the
key. drop encryption key cannot check suspect and offline databases for
columns encrypted by the key. The command issues a warning message
naming the unavailable database, but does not fail. When the database is
brought online, any tables with columns that were encrypted with the dropped
key are not usable. To restore the key, the System Administrator must load a
dump of the dropped key’s database from a time that precedes when the key
was dropped.

select into command
By default, select into creates a target table without encryption even if the
source table has one or more encrypted columns. select into requires column-
level permissions, including decrypt, on the source table.

Encrypt columns on the new table by using:

select [all|distinct] column_list
into table_name
[(colname encrypt [with [[[database.][owner].]keyname]]

[, colname encrypt
[with[[[database.][owner].]keyname]])]

from table_name | view_name

You can encrypt a specific column in the target table even if the data was not
encrypted in the source table. If the column in the source table is encrypted
with the same key specified for the target column, Adaptive Server optimizes
processing by bypassing the decryption step on the source table and the
encryption step on the target table.

The rules for encryption on a target table are the same as those for the encrypt
specifier in create table on the source table in regard to:

• Allowable datatypes on the columns to be encrypted

• The use of the database default key when the keyname is omitted

Length of encrypted columns

Adaptive Server 15.0.1 17

• The requirement for select permission on the key used to encrypt the target
columns.

For example, to encrypt the creditcard column, enter:

select creditcard, custid, sum(amount) into
#bigspenders
(creditcard encrypt with cust.dbo.new_cc_key)
from daily_xacts group by creditcard
having sum(amount) > $5000

Length of encrypted columns
During create table, alter table, and select into operations, Adaptive Server
calculates the maximum internal length of the encrypted column. To make
decisions on schema arrangements and page sizes, the Database Owner must
know the maximum length of the encrypted columns.

AES is a block cipher algorithm. The length of encrypted data for block cipher
algorithms is a multiple of the block size of the encryption algorithm. For AES,
the block size is 128 bits, or 16 bytes. Therefore, encrypted columns occupy a
minimum of 16 bytes with additional space for:

• The initialization vector. If used, the initialization vector adds 16 bytes to
each encrypted column. By default, the encryption process uses an
initialization vector. Specify init_vector null on create encryption key to
omit the initialization vector.

• The length of the plaintext data. If the column type is char, varchar, binary,
or varbinary, the data is prefixed with 2 bytes before encryption. These 2
bytes denote the length of the plaintext data. No extra space is used by the
encrypted column unless the additional 2 bytes result in the ciphertext
occupying an extra block.

• A sentinel byte, which is a byte appended to the ciphertext to safeguard
against the database system trimming trailing zeros.

Length of encrypted columns

18 New Features

Table 1: Ciphertext lengths

char and binary are treated as variable-length datatypes and are stripped of

User-specified
column type

Input data
length

Init
vector?

Internal
column type

Encrypted
data length

tinyint, smallint, or int
(signed or unsigned)

1, 2, or 4 No varbinary(17) 17

tinyint, smallint, or int
(signed or unsigned)

1, 2, or 4 Yes varbinary(33) 33

tinyint, smallint, or int
(signed or unsigned)

0 (null) No varbinary(17) 0

float, float(4), real 4 No varbinary(17) 17

float, float(4), real 4 Yes varbinary(33) 33

float, float(4), real 0 (null) No varbinary(17) 0

float(8), double 8 No varbinary(17) 17

float(8), double 8 Yes varbinary(33) 33

float(8), double 0 (null) No varbinary(17) 0

numeric(10,2) 3 No varbinary(17) 17

numeric (10,2) 3 Yes varbinary(33) 33

numeric (38,2) 18 No varbinary(33) 33

numeric (38,2) 18 Yes varbinary(49) 49

numeric (38,2) 0 (null) No varbinary(33) 0

char, varchar (100) 1 No varbinary(113) 17

char, varchar(100) 14 No varbinary(113) 17

char, varchar(100) 15 No varbinary(113) 33

char, varchar(100) 15 Yes varbinary(129) 49

char, varchar(100) 31 Yes varbinary(129) 65

char, varchar(100) 0 (null) Yes varbinary(129) 0

binary,
varbinary(100)

1 No varbinary(113) 17

binary,
varbinary(100)

14 No varbinary(113) 17

binary,
varbinary(100)

15 No varbinary(113) 33

binary,
varbinary(100)

15 Yes varbinary(129) 49

binary,
varbinary(100)

31 Yes varbinary(129) 65

binary,
varbinary(100)

0 (null) Yes varbinary(129) 0

Auditing encrypted columns

Adaptive Server 15.0.1 19

blanks and zero padding before encryption. Any blank or zero padding is
applied when the data is decrypted.

Note The column length on disk increases for encrypted columns, but the
increases are invisible to tools and commands. For example, sp_help shows
only the original size.

Auditing encrypted columns
You can audit DDL commands that relate to encrypted columns, such as
creating or dropping an encryption key. Also, when you create a table the audit
record contains the name of the encrypted column and the corresponding
encryption key. A database-wide audit option enables you to group and
manage the audit records of encrypted columns and keys.

Auditing options
Table 2 shows the new commands that can be audited with existing event
options and the new event options.

Table 2: Auditing options, requirements, and examples

Options login_name object_name
Database to be in
to set the option Command being audited

encryption_key

(database-specific)

all Database to be
audited

Any alter encryption key

create encryption key

drop encryption key

sp_encryption

Example Audits all the above commands in the pubs2 database:

sp_audit "encryption_key", "all", "pubs2", "on"

Auditing encrypted columns

20 New Features

Audit values
Table 3 lists the values that appear in the event column, arranged by sp_audit
option. The “Information in extrainfo” column describes information that
might appear in the extrainfo column of an audit table, based on the categories
described in Table 3.

Table 3: Values in event and extrainfo columns

Audit option Command to be audited Event Information in extrainfo output

alter alter table 3 Keywords or options:

ADD/DROP/MODIFY COLUMNS

REPLACE COLUMN

ADD CONSTRAINT

DROP CONSTRAINT

If one or more encrypted columns are added,
keywords contains:

ADD/DROP/MODIFY COLUMNS
column1/keyname1,
[,column2/keyname2]

where keyname is the fully qualified name of
the key.

create create table 10 For encrypted columns, keywords contain
column names and keynames.

EK column1/keyname1[,column2
keyname2]

where EK is a prefix indicating that subsequent
information refers to encryption keys and
keyname is the fully qualified name of the key.

encryption_key sp_encryption 106 Keywords contain ENCR_ADMIN
system_encr_passwd password ********
if password is set the first time, and contains
ENCR_ADMIN system_encr_passwd

password ******** ******** if the
password is subsequently changed.

create encryption key 107 Keywords contain:

algorithm Name-bitlength/IV
[RANDOM|NULL]/PAD [RANDOM|NULL]

For example: AES-128/IV RANDOM/PAD
NULL

Performance considerations

Adaptive Server 15.0.1 21

New event names and numbers
You can query the audit trail for specific audit events. Use audit_event_name
with event id as a parameter.

audit_event_name(event_id)

Table 4 lists the new event numbers and names.

Table 4: New event numbers

Performance considerations
Encryption is a CPU-intensive operation that may introduce a performance
overhead to your application in terms of CPU usage and the elapsed time of
commands that use encrypted columns. The amount of overhead depends on
the number of CPUs and Adaptive Server engines, the load on the system, the
number of concurrent sessions accessing the encrypted data, and the number of
encrypted columns referenced in the query. The encryption key size and the
length of the encrypted data are also factors. In general, the larger the key size
and the wider the data, the higher the CPU usage in the encryption operation.

The elapsed time depends on whether the Adaptive Server optimizer can make
use of an encrypted column.

alter encryption key 108 Keywords contain:

NOT DEFAULT

if key no longer the default key.
DEFAULT

if the key is made the default key

drop encryption key 109

Audit option Command to be audited Event Information in extrainfo output

Event number Event names output

106 Encrypted Column Administration

107 Create Encryption Key

108 Alter Encryption Key

109 Drop Encryption Key

Performance considerations

22 New Features

This section discusses the performance implications of searching encrypted
columns, and how Adaptive Server optimizes processing of encrypted data to
minimize the number of encryption and decryption operations.

Indexes on encrypted columns
You can create an index on an encrypted column if the column’s encryption
key does not specify the use of an initialization vector or random padding.
Using an initialization vector or random padding results in identical data
encrypting to different patterns of ciphertext, which prevents the index from
enforcing uniqueness and from doing equality matching of data in ciphertext
form.

Indexes on encrypted data are useful for equality and non-equality matching of
data but not for data ordering, range searches, or finding minimum and
maximum values. If Adaptive Server is performing an order-dependent search
on an encrypted column, it cannot execute an indexed lookup on encrypted
data. Instead, the encrypted column in each row must be decrypted and then
searched. This slows data processing.

Sort orders and encrypted columns
If you use a case insensitive sort order, Adaptive Server is unable to make use
of an index on an encrypted char or varchar column when performing a join
with another column or a search based on a constant value. This is also true of
an accent insensitive sort order.

Using a case-insensitive comparison, the string abc matches all strings in the
following range: abc, Abc, ABc, ABC, AbC, aBC, aBc and abC. When Adaptive
Server makes a case-insensitive search for a column value matching abc, it
must compare abc against this range of values. By contrast, a case-sensitive
comparison of the string abc to the column data will match only identical
column values, for example, columns containing abc. The main difference
between case-insensitive and case-sensitive column lookups is that case-
insensitive matching requires Adaptive Server to perform a range search
whereas case-sensitive matching requires an equality search.

Performance considerations

Adaptive Server 15.0.1 23

For non-encrypted columns an index on a character column orders the data
according to the defined sort order. For encrypted columns the index orders the
data according to the ciphertext values. The ordering of ciphertext values bears
no relationship to the ordering of plaintext values. For this reason an index on
an encrypted column is useful only for equality and non-equality matching and
not for searching a range of values. The strings abc and Abc encrypt to
different ciphertext values and are not stored adjacently in the index.

When Adaptive Server uses an index on an encrypted column it is comparing
the column data in its ciphertext form. For case sensitive data, you do not want
abc to match Abc, and the ciphertext join or search based on equality matching
works well. Adaptive Server can join columns based on ciphertext values and
can efficiently match where clause values. For example, assume in the
following example that the maidenname column is encrypted:

select account_id from customer where cname =
'Peter Jones' and maidenname = 'McCarthy'

Providing that maidenname has been encrypted without use of an initialization
vector, Adaptive Server will encrypt McCarthy and perform a ciphertext
search of maidenname. If there is an index on maidenname, the search will
make use of the index.

However, for a case insensitive ordering, this strategy of encrypting the
constant is not useful because Adaptive Server must look for a range of values
such as mccarthy, MCCARTHY, and so on, where the ciphertext values are not
ordered according to the server’s character set. Adaptive Server must decrypt
every row in the name column before doing a case insensitive comparison with
McCarthy.

Joins on encrypted columns
Adaptive Server optimizes the joining of two encrypted columns by
performing ciphertext comparisons if:

• The joining columns have the same datatype. For ciphertext comparisons,
char and varchar are considered to be the same datatypes, as are binary and
varbinary.

• For int and float types, the columns have the same length. For numeric and
decimal types, the columns have the same precision and scale.

• The joining columns are encrypted with the same key.

Performance considerations

24 New Features

• The joining columns are not part of an expression. For example, you
cannot perform a ciphertext join on a join where t.encr_col1 = s.encr_col1
+1.

• The encryption key was created with init_vector and pad set to NULL.

• The join operator is ‘=’ or ‘<>’.

• The data has the default sort order.

For example, this sets a schema to join on ciphertext:

create encryption key new_cc_key for AES
with init_vector NULL

create table customer
(custid int,
creditcard char(16) encrypt with new_cc_key)

create table daily_xacts
(cust_id int, creditcard char(16) encrypt with
new_cc_key, amount money........)

You can also set up indexes on the joining columns:

create index cust_cc on customer(creditcard)

create index daily_cc on daily_xacts(creditcard)

Adaptive Server executes the following select statement to total a customer’s
daily charges on a given credit card without decrypting the creditcard column
in either the customer or the daily_xacts table.

select sum(d.amount) from daily_xacts d, customer c
where d.creditcard = c.creditcard and
c.custid = 17936

Constant valued search arguments and encrypted columns
For equality and nonequality comparison of an encrypted column to a constant
value, Adaptive Server optimizes the column scan by encrypting the constant
value once, rather than decrypting the encrypted column for each row of the
table. The same restrictions listed in “Joins on encrypted columns” on page 23
apply.

For example:

select sum(d.amount) from daily_xacts d
where creditcard = '123-456-7890'

System tables

Adaptive Server 15.0.1 25

Adaptive Server cannot make use of an index to perform a range search on an
encrypted column; it must decrypt each row before performing data
comparisons. If a query contains other predicates, Adaptive Server selects the
most efficient join order, which often leaves searches against encrypted
columns until last, on the smallest data set.

If your query has more than one range search where there is no useful index,
write the query so that the range search against the encrypted column is last.
For example, the following query searches for Social Security Numbers of
taxpayers in Rhode Island with incomes above $100,000. The range search of
the zipcode column is positioned before the range search of the encrypted
adjusted gross income column:

select ss_num from taxpayers
where zipcode like ‘02%’ and
agi_enc > 100000

Movement of encrypted data as ciphertext
As much as possible, Adaptive Server optimizes the copying of encrypted data
by copying ciphertext instead of decrypting and reencrypting the data. This
applies to select into, bulk copy, and replication.

System tables

syscolumns
In the syscolumns system table, these columns describe encryption properties:

Field Type Values Description

encrtype int null Type of data in encrypted
form.

encrlen int null Length of encrypted data.

encrkeyid int null Object id of key.

System tables

26 New Features

sysobjects
sysobjects has an entry for each key with type EK (encryption key).

For cross-database key references, syscolumns.encrdate matches
sysobjects.crdate.

encrkeyid in sysencryptkeys matches the id column in sysobjects.

sysencryptkeys
Each key created in a database, including the default key, has an entry in the
database-specific system catalog sysencryptkeys.

encrkeydb varchar
(30)

null Database name where the
encryption key resides. NULL
if key resides in the same
database as the encrypted
column.

encrdate datetime null Creation date, copied from
sysobjects.crdate.

Field Type Values Description

ddlgen utility extensions for encrypted columns

Adaptive Server 15.0.1 27

Table 5: sysencryptkeys

ddlgen utility extensions for encrypted columns
ddlgen supports generation of DDL statements for encrypted keys. To specify
a key, use:

db_Name.owner.keyName

The new type EK, for encryption key, is for generating the DDL to create an
encryption key and to grant permissions on it. ddlgen generates encrypted
column information and a grant decrypt statement, with the DDL of a table.

This example generates DDL for all encrypted keys in a database “accounts”
on a machine named “HARBOR” using port 1955:

ddlgen -Uroy -Proy123 -SHARBOR:1955 -TEK
-Naccounts.dbo.%

Alternatively, you can specify the database name with the -D option:

ddlgen -Uroy -Proy134 -SHARBOR:1955 -TEK -Ndbo.%
-Daccounts

Field Type Description

id int Encryption key ID.

ekalgorithm int Encryption algorithm.

type smallint Identifies the key type. The values are
EK_SYMMETRIC and EK_DEFAULT..

status int Internal status information.

eklen smallint User-specified length of key.

value varbinary(1282) Encrypted value of a key. Contains a
symmetric encryption of the key. To
encrypt keys, Adaptive Server uses AES
with a 128-bit key from the system
encryption password.

uid int null Not used

eksalt varbinary(20) Contains random values used to validate
decryption of the encryption key.

ekpairid int null Not used.

pwdate datetime null Not used.

expdate int null Not used.

ekpwdwarn int null Not used.

ddlgen utility extensions for encrypted columns

28 New Features

--

-- DDL for EncryptedKey 'ssn_key'
--

print 'ssn_key'

create encryption key accounts.dbo.ssn_key
for AES
with keylength 128
init vector random

go

--

-- DDL for EncryptedKey 'ek1'
--

print 'ek1'

create encryption key accounts.dbo.ek1 as default
for AES
with keylength 192
init vector NULL

go

use accounts
go

grant select on accounts.dbo.ek1 to acctmgr_role
go

ddlgen also has an extended option to generate the create encryption key that
specifies the key’s encrypted value as represented in sysencryptkeys. The
option is -XOD and can be used if you must synchronize encryption keys across
servers for data movement. For example, to make cc_key on server “PACIFIC”
available on server “ATLANTIC”, execute ddlgen using -XOD on “PACIFIC”
as follows:

ddlgen -Sfred -Pget2work -SPACIFIC:8532 -TEK -Nsales.dbo.cc_key -XOD

ddlgen output is:

-- DDL for EncryptedKey 'cc_key'

print 'cc_key'

Replicating encrypted data

Adaptive Server 15.0.1 29

create encryption key sales.dbo.cc_key
for AES

with keylength 128
passwd 0x0000E1D8235FEBEB118901
init_vector NULL
keyvalue 0xF772B99CE547D2932A12E0A83F2114848BD93F38016C068D720DDEBAC4DF8AA001
keystatus 32
go

Next, change the create encryption key command generated by ddlgen to
specify the target database on “ATLANTIC,” and run the command on the
target server. cc_key is now available on server “ATLANTIC” to decrypt data
that is moved in ciphertext form from “PACIFIC” to “ATLANTIC.”

See the Adaptive Server Enterprise Utility Guide for more information about
ddlgen syntax options, and see the Replication Server Administration Guide for
examples of using ddlgen with replicated databases.

Replicating encrypted data
If your site replicates schema changes, the following DDL statements are
replicated:

• alter encryption key

• create table and alter table with extensions for encryption

• create encryption key

• grant and revoke create encryption key

• grant and revoke select on the key

• grant and revoke decrypt on the column

• sp_encryption system_encr_passwd

• drop encryption key

The keys are replicated in encrypted form.

If your system does not replicate DDL, manually synchronize encryption keys
at the replicate site. ddlgen supports a special form of create encryption key for
replicating the key’s value. See “ddlgen utility extensions for encrypted
columns” on page 27.

Bulk copy (bcp)

30 New Features

For DML replications, the insert and update commands replicate encrypted
columns in encrypted form, which safeguards replicated data while Replication
Server processes it in stable queues on disk.

Replication Server release 12.6 ESD # 5 and later supports encrypted columns.

See the Replication Server Administration Guide for information on using
encryption during replication.

Bulk copy (bcp)
bcp transfers encrypted data in and out of databases in either plaintext or
ciphertext form. By default, bcp copies plaintext data. bcp processes plaintext
data files as follows:

• Data is automatically encrypted by Adaptive Server before insertion when
executing bcp in. Slow bcp is used. The user must have insert and select
permission on all columns.

• Data is automatically decrypted by Adaptive Server when executing bcp
out. select permission is required on all columns; in addition, decrypt
permission is required on the encrypted columns.

This example copies the “customer” table out as plaintext data in native
machine format:

bcp uksales.dbo.customer out uk_customers -n -Uroy
-Proy123

Use the -C option for bcp to copy the data as ciphertext. When copying
ciphertext, you may copy data out and in across different operating systems. If
you are copying character data as ciphertext, both platforms must support the
same character set.

The -C option for bcp allows administrators to run bcp when they lack decrypt
permission on the data. When the -C option is used, bcp processes data as
follows:

Component Integration Services (CIS)

Adaptive Server 15.0.1 31

• Data is assumed to be in ciphertext format during execution of bcp in, and
Adaptive Server performs no encryption. Use the -C option with bcp in
only if the file being copied into Adaptive Server was created using the -C
option on bcp out. The ciphertext must have been copied from a column
with exactly the same column attributes and encrypted by the same key as
the column into which the data is being copied. Fast bcp is used. The user
must have insert and select permission on the table.

• Data is copied out of Adaptive Server without decryption on bcp out. The
ciphertext data is in hexadecimal format. The user must have select
permission on all columns. For copying ciphertext, decrypt is not required
on the encrypted columns.

• Encrypted char or varchar data retains the character set used by Adaptive
Server at the time of encryption. If the data is copied in ciphertext format
to another server, the character set used on the target server must match
that of the encrypted data copied from the source. The character set
associated with the data on the source server when it was encrypted is not
stored with the encrypted data and is not known or converted on the target
server.

You can also perform bcp without the -C option to avoid the character set
issue.

You cannot use the -J option for character set conversion with the -C
option.

The following example copies the “customer” table. The cc_card column is
copied out as human-readable ciphertext. Other columns are copied in
character format. User “roy” is not required to have decrypt permission on
customer cc_card.

 bcp uksales.dbo.customer out uk_customers -C -c -Uroy
-Proy123

Component Integration Services (CIS)
By default, encryption and decryption are handled by the remote Adaptive
Server. CIS makes a one-time check for encrypted columns on the remote
Adaptive Server. If the remote Adaptive Server supports encryption, CIS
updates the local syscolumns catalog with the encrypted-column-related
metadata.

load and dump databases

32 New Features

• create proxy_table automatically updates syscolumns with any encrypted-
column information from the remote tables.

• create existing table automatically updates syscolumns with any encrypted-
column metadata from the remote tables. The encrypt keyword is not
allowed in the columnlist for create existing table. CIS automatically marks
columns as encrypted if it finds any encrypted columns on the remote
table.

• create table at location with encrypted columns is not allowed.

• alter table is not allowed on encrypted columns for proxy tables.

• select into existing brings the plaintext from the source and inserts it into
destination table. The local Adaptive Server then encrypts the plaintext
before insertion into any encrypted columns.

The following columns are updated from the remote server’s syscolumns
catalog:

• encrtype – type of data on disk.

• encrlen – length of encrypted data.

• status2 – status bits that indicate that column is encrypted.

load and dump databases
dump and load work on the ciphertext of encrypted columns. This behavior
ensures that the data for encrypted columns remains encrypted while on disk.
dump and load pertain to the whole database. Default keys and keys created in
the same database are dumped and loaded along with the data to which they
pertain.

If the loading database contains encryption keys used in other databases, load
does not succeed unless the new syntax with override is used.

load database key_db from "/tmp/key_db.dat" with override

If your keys are in a separate database from the columns they encrypt, Sybase
recommends that:

• When you dump the database containing encrypted columns, you also
dump the database where the key was created. You must do this if you
have added new keys since the last dump.

unmount database

Adaptive Server 15.0.1 33

• When you dump the database containing an encryption key, dump all
databases containing columns encrypted with that key. This keeps the
encrypted data in sync with the available keys.

• After loading the database containing the encryption keys and the database
containing the encrypted columns, bring both databases online at the same
time.

If you load the database containing the keys into a different-named database,
errors result when you access the encrypted columns in other databases. To
change the database name of the keys’ database:

• Before dumping the database containing the encrypted columns, use alter
table to decrypt the data.

• Dump the databases containing keys and encrypted columns.

• After loading the databases, use alter table to reencrypt the data with the
keys in the newly-named database.

 Warning! The consistency issues between encryption keys and encrypted
columns are similar to those for cross-database referential integrity. See
“Cross-database constraints and loading databases” in Chapter 12 of the
Adaptive Server Enterprise System Administration Guide: Volume One.

unmount database
When columns are encrypted by keys from other databases, unmount all
related databases as a set. The interdependency of the databases containing the
encrypted columns and the databases containing the keys is similar to the
interdependency of databases that use referential integrity.

Use the override option to unmount a database containing columns encrypted
by a key in another database.

With the following commands, the encryption key created in key_db has been
used to encrypt columns in col_db. These commands successfully unmount the
named databases:

unmount database key_db, col_db
unmount database key_db with override
unmount database col_db with override

quiesce database

34 New Features

If you include the with override option, Adaptive Server issues a warning
message, but the operation is successful.

These commands fail with an error message without the override:

unmount database key_db
unmount database col_db

quiesce database
You can use quiesce database when the database containing encrypted
columns also contains the encryption key.

You must use with override to quiesce a database whose columns are encrypted
with keys used in other databases.

quiesce database key_db, col_db is allowed, where key_db is the database with
the encryption key and col_db is the database with a table that has a column
encrypted with the key in key_db.

For example, the following commands will succeed where key_db contains the
encryption key used to encrypt columns in col_db:

quiesce database key_tag hold key_db for external
dump to “/tmp/keydb.dat”

quiesce database encr_tag hold col_db for external dump
to “/tmp/col.dat” with override

quiesce database col_tag hold key_db, col_db for
external dump to “/tmp/col.dat”

Drop database
To prevent accidental loss of keys, drop database fails if the database contains
keys currently used to encrypt columns in other databases. Before dropping the
database containing the encryption keys, first remove the encryption on the
columns using alter table, then drop the table or database containing the
encrypted columns.

sybmigrate

Adaptive Server 15.0.1 35

In the following example, key_db is the database where the encryption key
resides and col_db is the database containing the encrypted columns:

drop database key_db, col_db

Adaptive Server raises an error and fails to drop key_db. The drop of col_db
succeeds. To drop both databases, drop col_db first:

drop database col_db, key_db

sybmigrate
sybmigrate is the migration tool used to migrate data from one server to
another.

By default, sybmigrate migrates encrypted columns in ciphertext format. This
avoids the overhead of decrypting data at the source and encrypting at the
target. In some cases, sybmigrate chooses the reencrypt method of migration,
decrypting data at the source and encrypting at the target.

For databases with encrypted columns, sybmigrate:

1 Migrates the system encryption password. If you specify not to migrate the
system encryption password, sybmigrate migrates the encrypted columns
using the reencrypt method instead of migrating the ciphertext directly.

2 Migrates the encryption keys. You may select the keys to migrate.
sybmigrate automatically selects keys in the current database used to
encrypt columns in the same database. If you have selected migration of
the system encryption password, sybmigrate migrates the encryption keys
using their actual values. The key values from the sysencryptkeys system
table have been encrypted using the system encryption password and these
are the values that are migrated. If you have not migrated the system
encryption password, sybmigrate migrates the keys by name, to avoid
migrating keys that will not decrypt correctly at the target. Migrating the
key by name causes the key at the target to be created with a different key
value from the key at the source.

3 Migrates the data. By default, the data is transferred in its ciphertext form.
Ciphertext data can be migrated to a different operating system. Character
data requires that the target server uses the same character set as the
source.

Referential integrity constraints

36 New Features

sybmigrate works on a database as a unit of work. If your database on the source
server has data encrypted by a key in another database, migrate the key’s
database first.

sybmigrate chooses to reencrypt migrated data when:

• Any keys in the current database are specifically not selected for
migration, or already exist in the target server. There is no guarantee that
the keys at the target are identical to the keys are the source, so the
migrating data must be reencrypted.

• The system password was not selected for migration. When the system
password at the target differs from that at the source, the keys cannot be
migrated by value. In turn, the data cannot be migrated as ciphertext.

• The user uses the following flag:

sybmigrate -T 'ALWAYS_REENCRYPT'

Reencrypting data can slow performance. A message to this effect is written to
the migration log file when you perform migration with reencryption mode.

To migrate encrypted columns, you must have both sa_role and sso_role
enabled.

Referential integrity constraints
You can define referential integrity constraints between two encrypted
columns when:

• Both referencing and referenced columns are encrypted.

• The referenced and referencing column are encrypted with the same key.

• The key used to encrypt the columns specifies init_vector NULL and
random pad NULL.

Referential integrity checks are efficient because they are performed on
ciphertext values.

New commands

Adaptive Server 15.0.1 37

New commands
This section contains information about new Adaptive Server commands
related to encrypted columns.

create encryption key
All the information related to keys and encryption is encapsulated by create
encryption key, which allows you to specify the encryption algorithm key size,
the key’s default property, and the use of an initialization vector or padding
during the encryption process.

The System Security Officer has implicit permission to create encryption keys,
and may grant that permission to other users. Only the System Security officer
can create keys with the default property.

See “Syntax for create encryption” on page 7 for more information.

alter encryption key
To change the default encryption key, enter:

alter encryption key key1 as default

If a default key already exists, it no longer has the default property. key1
becomes the default key.

If key1 is the default key, you can remove the default designation for key1 as
follows:

alter encryption key key1 as not default

If key1 is not the default key, the command returns an error.

alter encryption key as default or not default can be executed only by the System
Security Officer and cannot be granted to other users.

drop encryption key
The key owner and the System Security Officer can drop encryption keys. The
command fails if any column in any database is encrypted using the key.

Syntax drop encryption key [database.[owner].]keyname

New commands

38 New Features

grant create encryption key
The System Security Officer grants permission to create encryption keys.

Syntax grant create encryption key to user | role| group

revoke create encryption key
The System Security Officer can revoke permission from other users, groups,
and roles to create encryption keys.

Syntax revoke create encryption key from user | role | group

grant decrypt
The table owner or the System Security Officer grants decrypt permission on a
table or a list of columns in a table.

Syntax grant decrypt on [owner.]tablename[(columnname [{,columname}])]
to user | group | role

Note grant all on a table or column does not grant decrypt permission.

revoke decrypt
The table owner or the System Security Officer revokes decrypt permission on
a table or a list of columns in a table.

Syntax revoke decrypt on [owner.] tablename[(columnname [{,columname}])]
from user | group | role

New system-stored procedure

Adaptive Server 15.0.1 39

New system-stored procedure

sp_encryption
The System Security Officer sets the system encryption password using
sp_encryption. The system password is specific to the database where
sp_encryption is executed, and its encrypted value is stored in the sysattributes
system table in that database.

sp_encryption system_encr_passwd, ‘password’

The password specified using sp_encryption can be 64 bytes in length, and is
used by Adaptive Server to encrypt all keys in that database. You need not
specify this password to access keys or data.

The system encryption password must be set in every database where
encryption keys are created.

The System Security Officer can change the system password by using
sp_encryption and supplying the old password.

sp_encryption system_encr_passwd, ‘password’ [, ‘old_password’]

When the system password is changed, Adaptive Server automatically
reencrypts all keys in the database with the new password.

sp_encryption help displays the key’s name, owner, size, and encryption
algorithm. It also indicates whether the key has been designated as the database
default key, and whether encryption with this key uses random padding or an
initialization vector.

sp_encryption help [, keyname [, display_cols]]

When sp_encryption help is run by a user with sso_role, the key properties of
all keys in the database are displayed. When run by a user without sso_role, the
key properties are displayed for only those keys for which the user has select
permission in that database.

sp_encryption help, keyname displays the properties of keyname. If the
command is run by a user without sso_role, the user must have select
permission on the key.

sp_encryption help, keyname, display_cols may be run only by a user with
sso_role. It lists the columns encrypted by keyname.

Changes to commands and system procedures

40 New Features

Changes to commands and system procedures
The addition of the encrypted columns feature has changed or added syntax to
the commands in this section.

sp_helprotect
sp_helprotect reports on the permissions of encryption keys

sp_configure “enable encrypted columns”
This version of Adaptive Server changes sp_configure "enable encrypted
columns" from a static parameter to a dynamic configuration option. In other
words, you do not need to restart Adaptive Server for the parameter to take
effect.

alter table
Use alter table to encrypt or decrypt existing data or to add an encrypted column
to a table.

Syntax Encrypt a column:

alter table tablename add column_name
encrypt [with [database.[owner].]keyname

Decrypt an existing column:

[decrypt [with [database.[owner].]keyname]]

keyname – identifies a key created using create encryption key. The creator of
the table must have select permission on keyname. If keyname is not supplied,
Adaptive Server looks for a default key created using create encryption key or
alter encryption key as default.

Example Create an encryption key and encrypt ssn column in existing “employee” table.

alter table employee modify ssn
encrypt with ssn_key

grant decrypt on employee(ssn) to hr_manager_role,
hr_director_role

Changes to commands and system procedures

Adaptive Server 15.0.1 41

Usage • Use alter table to change an encryption key. When the encrypt qualifier is
used on a column that is already encrypted, Adaptive Server decrypts the
column and reencrypts it with the new key. This operation may take a
significant amount of time if the table contains a large number of rows.

• You cannot use alter table to encrypt or decrypt a column belonging to a
clustered or placement index. To encrypt or decrypt such a column:

a Drop the index.

b Alter the column.

c Re-create the index.

• You cannot use alter table to encrypt or decrypt a column if the table has a
trigger defined. To modify the column:

a Drop the trigger.

b Alter the column.

c Re-create the trigger.

• alter table displays an error if you alter an encrypted column’s datatype to
be bigint, unsigned bigint, date, money, text, datetime, or time.

• alter table displays an error if you alter a bigint, unsigned bigint, date,
money, text, datetime, or time column to be an encrypted column.

• alter table reports an error if you:

• Modify a computed column to be an encrypted column.

• Modify a column for encryption where the column is referenced in an
expression used by a computed column.

• Modify an encrypted column to be a computed column.

• Modify a column to a computed column in which the expression
references an encrypted column.

• Encrypt a column that is a member of a functional index.

• Specify an encrypted column as a partition key.

• Modify for encryption a column that is used as a partition key.

Changes to commands and system procedures

42 New Features

create index
create index reports an error if you create a functional index using an
expression that references an encrypted column.

create table
Use the encrypt qualifier to set up encryption on a table column.

Syntax create table tablename (colname datatype [default_clause]
 [encrypt [with [database.[owner].]keyname]])

keyname – identifies a key created using create encryption key. The creator of
the table must have select permission on keyname. If keyname is not supplied,
Adaptive Server looks for a default key created using the as default clause on
create encryption key or alter encryption key.

Example Create an employee table with encryption:

create table employee_table (ssn char(15) null encrypt)

Usage • create table displays an error if you specify a bigint, unsigned bigint, date,
money, text, datetime, or time column for encryption.

• create table displays an error if you:

• Specify a computed column based on an expression that references
one or more encrypted columns.

• Use the encrypt and compute parameters on the same column.

• create table reports an error if you specify an encrypted column as a
partition key.

enable encrypted columns configuration parameter
The configuration parameter enable encrypted columns must be set to 1 to use
the encryption functionality. If the configuration option is turned off in a server
that contains encrypted columns, any commands against those columns fail
with an error. You must set both the configuration parameter and the license
option to enable encryption.

sp_configure ‘enable encrypted columns’, 1

Changes to commands and system procedures

Adaptive Server 15.0.1 43

load database
If the loading database contains encryption keys used in other databases, load
does not succeed unless you use with override.

load database key_db from "/tmp/key_db.dat" with override

select into
select into requires column level permissions, including decrypt, on the source
table.

Syntax Encrypt columns on the new table using this syntax:

select [all|distinct] column_list
into target_table

 [(colname encrypt [with [database.[owner].]keyname]
[,colname encrypt

 [with [database.[owner].]keyname]])]
from tabname | viewname

Note You cannot reference a column in the partition_clause that is specified for
encryption in the target table.

Example Encrypting creditcard column in the bigspenders table.

select creditcard, custid, sum(amount) into
#bigspenders
(creditcard encrypt with

cust.database.new_cc_key)
from daily_xacts group by creditcard
having sum(amount) > $5000

dbcc
dbcc checkcatalog includes the following additional consistency checks:

• For each encryption key row in sysobjects, sysencryptkeys is checked for
the existence of a row defining that key.

• For each column in syscolumns marked for encryption, the existence of the
key is checked in sysobjects and sysencryptkeys.

Full syntax for commands

44 New Features

Full syntax for commands
The following information shows the full syntax for the commands covered in
this bulletin.

alter encryption key
alter encryption key key1 as default | not default

alter table
alter table [database.[owner]].table_name

{ add column_name datatype
[default {constant_expression | user | null}]
{identity | null | not null}
[off row | in row]
[[constraint constraint_name]
{ { unique | primary key }

[clustered | nonclustered]
[asc | desc]
[with { fillfactor = pct,

max_rows_per_page = num_rows,
reservepagegap = num_pages }]

[on segment_name]
| references [[database.]owner.]ref_table

[(ref_column)]
[match full]

| check (search_condition)] ... }
[encrypt [with [[database .] owner] .]keyname]]
[, next_column]...

| add {[constraint constraint_name]
{ unique | primary key}

[clustered | nonclustered]
(column_name [asc | desc]

[, column_name [asc | desc]...])
[with { fillfactor = pct,

max_rows_per_page = num_rows,
reservepagegap = num_pages}]

[on segment_name]
| foreign key (column_name [{, column_name}...])

references [[database.]owner.]ref_table
[(ref_column [{, ref_column}...])]
[match full]

| check (search_condition)}
| drop {column_name [, column_name]...

| constraint constraint_name }

Full syntax for commands

Adaptive Server 15.0.1 45

| modify column_name datatype [null | not null]
[encrypt [with [[database.] owner]. keyname]]
|decrypt
[, next_column]...

| replace column_name
default { constant_expression | user | null}
| partition number_of_partitions

| unpartition| { enable | disable } trigger
| lock {allpages | datarows | datapages } }
| with exp_row_size=num_bytes
| [alter_partition_clause]
[partition_clause]

create table
create table [database .[owner].]table_name (column_name datatype)

[default {constant_expression | user | null}]
{[{identity | null | not null}]

[off row | [in row [(size_in_bytes)]]
[[constraint constraint_name]

{{unique | primary key}
[clustered | nonclustered] [asc | desc]
[with { fillfactor = pct,

max_rows_per_page = num_rows, }
reservepagegap = num_pages }]

[on segment_name]
| references [[database .]owner .]ref_table

[(ref_column)]
[match full]
| check (search_condition)}]}
[match full]...

[encrypt [with [[database.] owner].] keyname]]
| [constraint constraint_name]

{{unique | primary key}
[clustered | nonclustered]
(column_name [asc | desc]

[{, column_name [asc | desc]}...])
[with { fillfactor = pct

max_rows_per_page = num_rows ,
reservepagegap = num_pages }]

[on segment_name]
|foreign key (column_name [{,column_name}...])

references [[database.]owner.]ref_table
[(ref_column [{, ref_column}...])]
[match full]

| check (search_condition) ... }
[{, {next_column | next_constraint}}...])
[lock {datarows | datapages | allpages }]
[with { max_rows_per_page = num_rows,

Downgrade procedure

46 New Features

exp_row_size = num_bytes,
reservepagegap = num_pages,
identity_gap = value }]

[table_lob_clause]
[on segment_name]
[[external table] at pathname]
[partition_clause]

select
into_clause ::=

into [[database.] owner.] table_name
[(colname encrypt [with [[database.] owner].] keyname]

[, colname encrypt [with [[database.]owner] .]
keyname]])]

[{ [external table at]
‘server_name.[database].[owner].object_name’
| external directory at ‘pathname’
| external file at ‘pathname’ [column deliminter ‘string’] }]

[on segment_name]
[partition_clause]
[lock { datarows | datapages | allpages }]
[with [, into_option[, into_option] ...]]]

| into existing table table_name

Downgrade procedure
This section describes how to downgrade from Adaptive Server 15.0 with
encryption (Adaptive Server 15.0 EC) to an earlier version of Adaptive Server
15.0 without encryption

If you never configured encrypted columns on Adaptive Server, you do not
need to do anything to prepare for downgrade.

If you have configured Adaptive Server to use encrypted columns, drop or
decrypt the data in encrypted columns before you reload it on Adaptive Server
15.0 GA or Adaptive Server 15.0 ESD #1. If you do not do this, you will get
errors or data corruption when you attempt to process the encrypted data in the
earlier version of Adaptive Server 15.0.

To prepare the server for downgrade, remove decryption from all affected
tables:

47

1 Start Adaptive Server in single-user mode to ensure that no other user can
process encrypted columns while you remove encryption from the
database.

2 Make sure sp_configure "enable encrypted columns" shows a Run Value of
1.

3 Run this command in each database in which the keys were created for a
list of all encryption keys:

sp_encryption help

4 For each key listed in step 3, execute sp_encryption help, key_name,
display_cols to generate a list of all columns this key encrypts. You must
have the sso_role to run this command.

The result set includes the database name, table name, and column name
for each column encrypted by key_name.

Or, run sp_help table_name on each table in each database. The column
description indicates which columns are encrypted.

5 Either drop the tables that have encrypted columns or use alter table to
decrypt the data. For example, to decrypt the column cc_no in the customer
table, enter:

alter table customer modify cc_no decrypt

6 (Optional.) Drop all encryption keys. Dropping the keys ensures that you
have removed all encryption from the database. Adaptive Server returns
an error message if you attempt to drop a key that is associated with an
existing encrypted column.

7 Drop the sp_encryption system procedure.

8 Disable the enable encrypted columns configuration option:

sp_configure "enable encrypted columns", 0

9 Shut down Adaptive Server.

10 Copy the RUN_SERVER file to $SYBASE/ASE-15_0/install in the earlier
Adaptive Server 15.0 release area and modify it to use the dataserver
binary from this release area.

11 Restart the server using the modified RUN_SERVER file.

12 Run the following scripts from the earlier Adaptive Server 15.0 release:

• installmaster – To return system procedures to their original version.

• installsecurity – If you enabled auditing.

Downgrade procedure

48

• instmsgs.ebf – To make sure your Adaptive Server messages are at the
correct level.

• installhasvss – If you enabled, and are using, high availability.

• installmsgsvss – If you have enabled, and are using, Adaptive Server
messaging.

Note You cannot load any dumps of Adaptive Server 15.0 EC databases or
transactions with encrypted columns into an earlier version of Adaptive Server
15.0.

Replication issues
with downgrade

If you are downgrading a server that has replication enabled on databases that
contain encrypted data, you must perform one of the following before you start
the downgrade procedure:

• Verify that you have successfully transferred all replicated data in the
primary database transaction log to the standby or replicate database. The
process for doing depends on the application you are using. See the
documentation for your application for more information.

• Truncate the transaction log in the primary database and set the RS locator
to zero with this command:

sp_stop_rep_agent primary_dbname
dbcc settrunc ('ltm', 'ignore')
dump tran primary_dbname with truncate_only
dbcc settruc ('ltm', 'valid')

Shutdown Replication Server. In the RSSD for the Replication Server run:

rs_zeroltm primary_servername, primary_dbname

	Using Encrypted Columns in Adaptive Server®
	Overview
	Setting the system encryption password
	Creating and managing encryption keys
	Creating encryption keys
	Using encryption keys
	Granting permissions on keys
	Changing the key

	Encrypting data
	Specifying encryption on new tables
	Creating indexes on encrypted columns
	Encrypting data in existing tables

	Decrypting data
	Permissions for decryption
	Revoking decryption permission

	Dropping encryption and keys
	Dropping encryption and encryption keys

	select into command
	Length of encrypted columns
	Auditing encrypted columns
	Auditing options
	Audit values
	New event names and numbers

	Performance considerations
	Indexes on encrypted columns
	Sort orders and encrypted columns
	Joins on encrypted columns
	Constant valued search arguments and encrypted columns
	Movement of encrypted data as ciphertext

	System tables
	syscolumns
	sysobjects
	sysencryptkeys

	ddlgen utility extensions for encrypted columns
	Replicating encrypted data
	Bulk copy (bcp)
	Component Integration Services (CIS)
	load and dump databases
	unmount database
	quiesce database
	Drop database
	sybmigrate
	Referential integrity constraints
	New commands
	create encryption key
	alter encryption key
	drop encryption key
	grant create encryption key
	revoke create encryption key
	grant decrypt
	revoke decrypt

	New system-stored procedure
	sp_encryption

	Changes to commands and system procedures
	sp_helprotect
	sp_configure “enable encrypted columns”
	alter table
	create index
	create table
	enable encrypted columns configuration parameter
	load database
	select into
	dbcc

	Full syntax for commands
	alter encryption key
	alter table
	create table
	select

	Downgrade procedure

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

