SYBASE

Performance and Tuning Guide

Sybase®1Q
12.7

DOCUMENT ID: DC00169-01-1270-01
LAST REVISED: June 2006

Copyright © 1991-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Trand ator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Devel opers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Ell Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Stite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, Metaworks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASIS, OASIS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business I nterchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optimat+, Partnershipsthat Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, Physical Architect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage |11 Engineering, Startup.Com, STEP, SupportNow, SW.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financia Server, Sybase Gateways, Sybase |Q, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future |s Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, Total Fix, TradeForce, Transact-SQL, Tranglation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, Visua Writer, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK S, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and X TNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

N o o 10 A I VT = o o S PR iX
CHAPTER 1 Selecting Data from Database Tablesccccoeeeeiiiiiiiiiiiiiiciee, 1
Prer@qUISILESooiiiiiieeeie e e e e e 2

Viewing table informationcccccooeiiiiiiee e 2

Ordering qQUENY FESUILS.......uuiiiiiee ettt e e 5

Selecting columns and FOWScocvviiiiieeeiiiiiiiiice e essiieeee e 6

Using search CONAIitioNScc.vvviiiieeiiiiiiiiiee e 7

Comparing dates in QUETIEScuvvieeeeeeeiiiiiiieeee e eeiiieeee e 8

Compound search conditions in the WHERE clause................. 8

Pattern matching in search conditionsccccccevviiiiiinennenn. 9

Matching rows by SOUNd...........ocooiriiiiiii e 10

Shortcuts for typing search conditionscccccceveeeeiiininnen. 10

Obtaining aggregate data...........c.ccccvvviiieee e 11

A first look at aggregate functionscccccoevceiiiiiiien s 11

Using aggregate functions to obtain grouped data.................. 12

RESEIICHING GrOUPS -.oeiiiiieei ittt e 12

Improving subtotal calculationcccccceeeiiiiiiiiiiiee e, 14

Obtaining analytical data............ccoocvvviiiieeeiiiiiiiicee e 17

Eliminating duplicate rowWS............coeeeeiiiiiiiiiieee e 19

CHAPTER 2 JOINING TADIES ..o 21
Joining tables with the cross productccccoeciviviieeiiiiiiiineneen, 22

RESHNCHNG @ JOIN...ciiiiiiiiiie e 22

How tables are related ..o 24

Rows are identified by a primary Keyccccoecvivvvieeeiiiiiinnnnn. 24

Tables are related by a foreign Keycccooeviiiiiiiiieiines 24

B[] [gl o] o 1T -1 (o] £ SR 25

Joining tables using key jOiNS..........ccccviiiiiiiie e 25

Joining tables using natural joiNscccceiiiiiiiiniiie e 26

Ad hoc joins vs. using join INAEXESccoiiereiiiiieeiie e 27

JOINS and data tYPeS ...cveeeeieiiiee e 28

Support for joins between stores or databases............cccccceeeeviiins 28
Performance and Tuning Guide iii

Contents

Querying remote and heterogeneous databases................c.cuue.e.. 30
Replacing joins with SUDQUENIEScccvviiiiieieeeiiiiie e 31
CHAPTER 3 Optimizing Queries and Deletionscocvvvvvviiiiiciiiii e, 35
Tips for StruCturing QUETIES........coiviiiiiiiiee et 36
Impact on query performance of GROUP BY over a UNION ALL
36
Conditions that cause processing by Adaptive Server Anywhere
39

Planning QUETIESuuviiieeiicciieie et 39
Query evaluation OptioNS............eeeeeeeiiiiiiiiiee e e 40
THE QUEIY T .eieie ettt a e 41
Using the HTML query plan.......oooocuiviieeieiiiiiiiieeee e 42
Controlling qUEery ProCESSING.........uvuriiieeeiiiiiiiieeee e iiiieee e e e e eanes 42
Setting query time liMitScvvvveeeiiiie e 42
Setting QUETY PriOFY ...oooviiciiiiieiee et 43
Setting query optimization OptionNScccccvvvviiiiieeiee i, 43
Setting predicate hintS.........ccco i 44
Optimizing delete operations............ccceeeeeeiiiiiiieee e 45
Delete COSING....uvvvieeeiiiiiiiie e 46
Using delete performance optioncccccocveeiieieeiceee s, 46
CHAPTER 4 USING OLAP .. a7
ADOUL OLAP ... a e 48
OLAP DENEfitS ..ooeieeieeiieee e 49
Understanding OLAP evaluationcccccooeeivviieeeeeeeniiiiineenn. 49
GROUP BY clause exXtenSiONS..........eveeiiiiieeiiiiie i 50
Group by ROLLUP and CUBEccccooiiiiiieniieeee e 52
Analytical fUNCHONSocoiiiiiiiiiiic e 66
Simple aggregate fuNClioNS.........cccooviiiiiiiiieee e 67
WINAOWING .ttt e e e e e 67
NUMETIC FUNCHONS.......eiie e 93
OLAP rules and restriCtionsccccvveeeiiciiiieiiee e 97
Additional OLAP eXamplescccceeeiiiiiieeiie e 98
Example: Window functions in quUeries...........ccccceviveeerienens 99
Example: Window with multiple functionscccccoece.. 100
Example: Calculate cumulative SUMcccoocooeeiiiieeennnnnen. 101
Example: Calculate moving average.........cccccceveeeviicivvneeneennn. 102
Example: ORDER BY resultS.......cccccceeeviiiiiiiiiieee e 103
Example: Multiple aggregate functions in a query................. 103
Example: Window frame comparing ROWS and RANGE..... 104
Example: Window frame excludes current row 105
Example: Default window frame for ROW.............ccccvvveeeeennn. 106

iv Sybase 1Q

Contents

Example: Unbounded preceding and unbounded following .. 106

Example: Default window frame for RANGE..............c........... 107
BNF grammar for OLAP functionscccoocoveiiiiiee e, 108
CHAPTER 5 Managing SYStem RESOUICEScccoviuiieiieiiiiiieeeeiiiiieee e 113
Introduction to performance termscccccevvvciiieeiiee i 114
Designing for performance.............covveeiiiiiiiiiieeeeesciiieee e 114
Overview Of MEMOTY USEccoovviiiiiiiiiiee e 114
Paging increases available memory............ccccovceieiniiiineenn. 115
Utilities to monitor SWappiNg.......cooovvvvieieeeeesiiieieee e 116
SEIVEI MEMOTY .. 116
Managing buffer caches..........cccccoeeiiiiiiiei e, 117
Determining the sizes of the buffer cachesccceeee. 117
Setting buffer cache Sizescoooviiiiiiii 123
SPECIfYING PAGE SIZE ..ovvveeeeieiiiiiee e 125
SAVING MEMOIY .ot e e e eeeeeeenas 126
Optimizing for large numbers of USerscccccovieeeiineene 127
Platform-specific memory optionsccccccovvcvieerieeeniiiiiieenn. 130
Other ways to get more MemOryccvvveeveeeviiiiiiiiieeeee e 133
The process threading Model.............cceeveeiiiiiiiiiiee e 134
Insufficient threads error.........coceveviieieiii e, 135
Sybase 1Q options for managing thread usage 135
Balancing 1/O......coo oo 135
Raw I/0O (on UNIX operating SyStems)ccccoeceeeeiieeeennnnne. 136
UsiNg diSK StHPING ...c.ocvveeeeiiiie e 136
INternal StriPINGooiiiee e 138
Using multiple dbSpacescccccoeeviiiiiiee e 139
Strategic file 10cationsccccvviveee e 139
Working space for inserting, deleting, and synchronizing 143
Setting reserved Space OPtioNScccvvvvevieeeriiiiiiieneee e 143
Options for tUNING reSOUICE USEueveieeeiiiiiiiiieeeeeeiiiiiiieeee e e 144
Restricting concurrent qUENES........c.uuvveiveeeiiiiiiiiiiee e 144
Setting the number of CPUS available..............cccocevieiiiins 144
Limiting a query's temporary dbspace use............cccccoeeuvveeee. 145
Limiting queries by rows returnedccccooevvvveeiieeesiniinnnn, 145
Forcing cursors to be non-scrollingcccocccvvvvviieeiiiiiineenn. 145
Limiting the number of CUrSOrsScccoveiiiiie i 146
Limiting the number of statementscccccooviiiiiiiiieeee 146
Prefetching cache pages.......cccccveeeeiiciiiieee e 146
Optimizing for typical USAgecccueeeiiiieeeiiiee e 146
Controlling the number of prefetched rowsccccccee.. 147
Other ways t0 iIMProve reSOUICE USEcccuvveeveeeeiieiuiinneeaaessannnes 147
Managing disk space in multiplex databases........................ 147
Load balancing among qUErY SErversccccvveeeveeessinvvnenens 148
Performance and Tuning Guide

Contents

CHAPTER 6

CHAPTER 7

Vi

Restricting database accessccccccveeevviiiiiiee e, 148
DiSK CACINGuvviiiiiieiiieiee e 148
INAEXING LIPS 1eeeeeiiiiiiiiiie e ae s 149
Choosing the right indeX type........ccoooviiiiiiieeeeeeeiciiieee e, 149
USING JOIN INAEXES ...t 150
Allowing enough disk space for deletionsccccceeeeeenne 150
Managing database size and Structurecccccvvvveveeeeieicnnnnnnn. 151
Managing the size of your databasecccccccoovvvvviennnenn. 151
Controlling index fragmentation............cccccooioiiiiiiiee i 151
Minimizing catalog file growthccccceiviiiiiiii e, 152
Denormalizing for performance...........cccccoviiivieeei i, 152
Denormalization has FSKScceeiiiiieiiiiiieiiee e 152
Disadvantages of denormalizationccccccceeeeviiciiiienneennn, 153
Performance benefits of denormalization...............ccccceevneen. 153
Deciding to denormalize...........oocvvvivieeieiiiiiiiiiiee e 154
Using UNION ALL views for faster [oadscccoccoceeeiiceeennnenen. 154
Optimizing queries that reference UNION ALL views 155
Network performancCe..........coocevie e 156
Improving large data transfers...........ccccccoeviviivieee e, 156
Isolate heavy NetWOrk USEerS..........cooceeeeeiieeeniiee e 157

Put small amounts of data in small packetscc...... 157

Put large amounts of data in large packets............ccccveeeennn. 158
Process at the server level..........cccoeiiiiiieiee, 158
Monitoring and Tuning Performance..........cccccoeeeiniiieeeennnnnen. 159
Viewing the Sybase 1Q environmentccccccvveeeeeiiiiiiiieeeeeeennn 160
Getting information using stored proceduresc.....co...u. 160
Using the Sybase Central performance monitor 161
Profiling database procedures..........cccccevvviiiviiieeee e, 161
Monitoring the buffer caches...........cccooiiiiiii 170
Starting the buffer cache monitorccccooiiiiiiiiine, 170
Checking results while the monitor runs............ccccceeeveeniis 176
Stopping the buffer cache monitorcccccooiiiiiiiiiene. 176
Examining and saving monitor results.............cccccoecoeeerennne.. 177
Examples of monitor results..........cccceveeeeiiiiciiieee e, 177
Buffer cache StrUCLUNecoccvviiiiiiiieie e 182
Avoiding buffer manager thrashingccccccoviiiii e, 183
Monitoring paging on Windows SyStemsc..cccoeevvvveeeeenn. 184
Monitoring paging on UNIX SyStemsS........ccccceevveeeiiiiiiieeeeenn. 184
Buffer cache monitor checkIist ..., 186
System utilities to Monitor CPU USE.........ccccvvvviiieiiiiiiiiiiieee e, 190
Tuning Servers on Windows SYSteMS.........ccevvviiviiiiiiiiiieieeeeenn, 191

Sybase 1Q

Performance and Tuning Guide

General performance guidelinescoocoeeiiiii i 192

Maximizing throughput...........cccoooiiiiiiiiee e, 192
Preventing memory over allocationcccocceeevicerennnenen. 192
Monitoring physical MemMOryccccvvvveeeeiiiiiiiee e 193
File SYSIEMS.....uiiiiiie e 193
Monitoring PerformManCe............cvuvei i 193
Monitoring virtual address space and working set................. 194
Monitoring page faultscccooiiiiiiiieii e, 194
Using the NTFS CAChecoooviiiiiiiiie e 195
Tuning iNSerts and QUETIEScooueeieeiiiie e 195
Characteristics of well-tuned insert operations...................... 195
TUNING TOr QUETIES ...t 196
Tuning backup OPEerationscccoeviiiiiieeee e 197
.. 199
Vii

viii Sybase 1Q

About This Book

Subject

Audience

How to use this book

Related documents

Performance and Tuning Guide

This book presents performance and tuning recommendations.

This guide isfor system and database administrators who need to
understand performance issues. Familiarity with relational database
systems and introductory user-level experience with Sybase1Q is
assumed. Use this guide in conjunction with other manualsin the
documentation set.

The following list shows which chaptersfit a particular interest or need.
To read about

Structure SELECT statements, see Chapter 1, “ Selecting Data from
Database Tables.”

Composing joins, see Chapter 2, “Joining Tables.”

Optimizing queries, see Chapter 3, “Optimizing Queries and
Deletions.”

Adjusting memory, disk I/O and CPUs, see Chapter 5, “Managing
System Resources.”

Performance, see Chapter 6, “Monitoring and Tuning Performance.”

Windows performance, see Chapter 7, “ Tuning Servers on Windows
Systems.”

The Sybase |Q document set consists of these documents:

Introduction to Sybase | Q — contains information and exercises for
users unfamiliar with Sybase 1Q and with the Sybase Central ™
database management tool.

New Featuresin Sybase1Q 12.7 —includes a brief description of new
featuresin Sybase 1Q.

Sybase |Q Performance and Tuning Guide — describes query
optimization, design, and tuning issues for very large databases.

Sybase 1Q System Administration Guide — describes administrative
concepts, procedures and performance tuning recommendations
supported by Sybase 1Q, including how to manage the |Q Store.

Sybase 1Q Troubleshooting and Recovery Guide — Shows how to solve
problems and perform system recovery and database repair.

Sybase 1Q Error Messages — refers to Sybase 1Q error messages
referenced by SQL Code, SQL State, and Sybase error code, and SQL
preprocessor errors and warnings.

Sybase 1Q Utility Guide — contains Sybase | Q utility program reference
material, such as available syntax, parameters, and options.

Large Objects Management in Sybase | Q — describes storage and retrieval
of Binary Large Objects (BLOBS) and Character Large Objects (CLOBS)
within the Sybase 1Q datarepository. You need a separatelicenseto install
this product option.

Sybase 1Q Installation and Configuration Guide — contains platform-
specific instructions on installing Sybase | Q, migrating to a new version
of Sybase 1Q, and configuring Sybase |Q for a particular platform.

Sybase 1Q Release Bulletin — contains last-minute changes to the product
and documentation.

Encrypted Columnsin Sybase | Q — describes the use of user encrypted
columns within the Sybase | Q datarepository. You need a separate license
toinstall this product option.

Sybase IQ and Adaptive Server Anywhere
Because Sybase |Q is an extension of Adaptive Server® Anywhere, a

component of SQL Anywhere® Studio, Sybase 1Q supports many of the same
features as Adaptive Server Anywhere. The Sybase 1Q documentation set
refersyou to SQL Anywhere Studio documentation where appropriate.

Documentation for Adaptive Server Anywhere:

Adaptive Server Anywhere Programming Guide— Intended for application
developers writing programs that directly access the ODBC, Embedded
SQL ™ or Open Client™ interfaces, this book describes how to develop
applications for Adaptive Server Anywhere.

Adaptive Server Anywhere Database Administration Guide — I ntended for
all users, this book covers material related to running, managing, and
configuring databases and database servers.

Sybase 1Q

About This Book

« Adaptive Server Anywhere SQL Reference Manual —Intended for all users,
this book provides a complete reference for the SQL language used by
Adaptive Server Anywhere. It also describes the Adaptive Server
Anywhere system tables and procedures.

You can al so refer to the Adaptive Server Anywhere documentation in the SQL
Anywhere Studio 9.0.2 collection on the Sybase Product Manuals Web site. To
access this site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Other sources of Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
information Manuals Web site to |earn more about your product:

¢ The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

¢ The SyBooks CD contains product manuas and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

¢ The Sybase Product ManualsWeb siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manual s Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

« Infocenter is an online version of SyBooks that you can view using a
standard Web browser. To access the Infocenter Web site, go to Sybooks
Online Help at http://infocenter.sybase.com/help/index.jsp.

Performance and Tuning Guide Xi

http://www.sybase.com/support/manuals
http://www.sybase.com/support/manuals
http://infocenter.sybase.com/help/index.jsp

Sybﬁse V(\:/eLtifications Technical documentation at the Sybase Web site is updated frequently.
on the We

[JFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 IntheCertification Report filter select aproduct, platform, and timeframe
and then click Go.

4 Click aCertification Report title to display the report.

[JFinding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat alowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[JFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFSMaintenance. If prompted, enter your MySybase user name
and password.

3 Select aproduct.

xii Sybase 1Q

http://www.sybase.com/support/techdocs
http://certification.sybase.com
http://www.sybase.com/support/techdocs
http://www.sybase.com/support

About This Book

Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Syntax conventions This documentation uses the following syntax conventionsin syntax
descriptions:

Performance and Tuning Guide

Keywords SQL keywords are shown in UPPER CASE. However, SQL
keywords are case insensitive, so you can enter keywordsin any case you
wish; SELECT isthe same as Select which is the same as select.

Placeholders Itemsthat must be replaced with appropriateidentifiersor
expressions are shown in italics.

Continuation Lines beginning with ... are a continuation of the
statements from the previous line.

Repeating items Lists of repeating items are shown with an element of
thelist followed by an ellipsis (three dots). One or more list elements are
alowed. If more than oneis specified, they must be separated by commas.

Optional portions Optional portions of a statement are enclosed by
square brackets. For example:

RELEASE SAVEPOINT [savepoint-name]

It indicates that the savepoint-name is optional. The square brackets
should not be typed.

Options When none or only one of alist of items must be chosen, the
items are separated by vertical bars and the list enclosed in square
brackets. For example:

[ASC | DESC]

It indicatesthat you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

Xiii

Typographic
conventions

The sample
database

Accessibility
features

Xiv

« Alternatives When precisely one of the options must be chosen, the
aternatives are enclosed in curly braces. For example:

QUOTES { ON | OFF }

It indicates that exactly one of ON or OFF must be provided. The braces
should not be typed.

Table 1 lists the typographic conventions used in this documentation.

Table 1: Typographic conventions

Iltem Description

Code SQL and program code is displayed in a mono-spaced
(fixed-width) font.

User entry Text entered by the user is shown in bold serif type.

emphasis Emphasized words are shown in italic.

file names File names are shown in italic.

database objects Names of database objects, such astablesand procedures,
are shown in bold, san-serif typein print, and initalic
online,

Sybase |Q includes a sample database used by many of the examplesin the
Sybase |Q documentation.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and financial data),
aswell as product information (products), sales information (sales orders,
customers, and contacts), and financia information (fin_code, fin_data).

The sample databaseis held in afile named asigdemo.db, located in the
directory $ASDIR/demo on UNIX systems and %ASDIR%\demo on Windows
systems.

This document isavailablein an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
ascreen reader, or view it with a screen enlarger.

Sybase1Q 12.7 and the HTML documentation have been tested for compliance
with U.S. government Section 508 A ccessibility requirements. Documentsthat
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

For information about accessibility support in the Sybase 1 Q plug-infor Sybase
Central, see “Using accessibility features’ in Introduction to Sybase 1Q. The

online help for this product, which you can navigate using a screen reader, also
describes accessibility features, including Sybase Central keyboard shortcuts.

Sybase 1Q

About This Book

If you need help

Configuring your accessibility tool
You might need to configure your accessibility tool for optimal use. Some

screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT asinitials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool and see “Using screen readers’ in
Introduction to Sybase |Q.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

For a Section 508 compliance statement for Sybase |Q, go to Sybase
Accessibility at http://www.sybase.com/products/accessibility.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

Performance and Tuning Guide XV

http://www.sybase.com/accessibility
http://www.sybase.com/products/accessibility

XVi Sybase 1Q

CHAPTER 1 Selecting Data from Database
Tables

About this chapter This chapter reviews basic query construction and recommends
refinements to take advantage of product design. In thistutorial, you will
look at table contents, order query results, select columns and rows, and
use search conditions to refine queries.

For advanced query performance recommendations, see Chapter 3,
“Optimizing Queries and Deletions.”

Contents

Topic Page
Prerequisites 2
Viewing table information 2
Ordering query results 5
Selecting columns and rows 6
Using search conditions 7
Obtaining aggregate data 11
Obtaining analytical data 17
Eliminating duplicate rows 19

Performance and Tuning Guide 1

Prerequisites

Prerequisites

If you use agraphical front-end tool instead of DBISQL to query your
database, the tool may allow you to view the SQL syntax it generates. For
example, in InfoMaker, you can view SQL statements by choosing the SQL
Syntax button on the Table painter bar.

Thistutorial introduces the SELECT statement used to retrieve information
from databases. SELECT statements are commonly called queries, because
they ask the database server about information in a database.

Note The SELECT statement isaversatile command. SELECT statementscan
become highly complex in applications retrieving very specific information
from large databases. Thistutorial usesonly simple SELECT statements: |ater
tutorials describe more advanced queries. For more information about the full
syntax of the select statement, see the SELECT statement in Chapter 6, “ SQL
Statements,” in the Sybase 1Q Reference Manual.

Ideally, you should be running Sybase | Q software on your computer whileyou
read and work through the tutorial lessons.

Thistutorial assumes that you have already started DBISQL and connected to
the sample database. If you have not already done so, see Chapter 2, “Using
Interactive SQL (dbisgl)” in the Sybase 1Q Utility Guide.

Viewing table information

Listing tables

In this section, you will look at the datain the employee table.

The sample database you use in this tutorial is the same fictional company as
in the previous chapter. The database contains information about employees,
departments, sales orders, and so on. All the information is organized into
tables.

In Introduction to Sybase |Q, you learned how to display alist of tables by
opening the Tablesfolder in Sybase Central. You can also list user tables from
interactive SQL using a system stored procedure, sp_igtable. System stored
procedures are system functions that are implemented as stored proceduresin

Sybase 1Q.

Sybase 1Q

CHAPTER 1 Selecting Data from Database Tables

In the SQL Statements window, type sp_igtable to run the system stored
procedure of the same name.

_@_Inlemclive SQL - [O] %]
E|Iegd|t EGL .[_.j'é_ta.‘.: jﬁnl_s... Nndnw H_e\p G G G

& asigdemo (DBA) on asiqdemo

SGL Statements

Messages

Exacution time: 0.05 secands

164 recardis) afzcted

o rame [fble e[l owrer sever bpeemarts|
rontact BASE DBA A (NULL)
customer BASE DBA I3 (MULL)
depattment BASE DBA i (HULL)
employee BASE DBA 12 (MULL)
fin_cade BASE DBA A {HULL)
fin_data BASE OBA il (HULL)
ig_dumry BASE OBA Al {MULL)
product BASE DBA & (HULL)
sales_order BASE DBA 12 (MULL)
sales_order_items |BASE DBA o] (MULL)

For complete details about this and other system stored procedures, see
Chapter 10, “System Procedures,” in the Sybase 1Q Reference Manual.

Using the SELECT In this lesson, you view one of the tables in the database. The command used
statement will look at everything in atable called employee.
Execute the command:

SELECT * FROM employee
The asterisk is ashort form for all the columnsin the table.

The SELECT statement retrieves all the rows and columns of the employee
table, and the DBISQL Results window lists those that will fit:

‘ ‘ emp_Ina ‘

emp_id | manager_id emp_fname me dept_id
102 501 Fran Whitney 100

105 ‘ 501 Matthew ‘ Cobb 100

Performance and Tuning Guide 3

Viewing table information

Case sensitivity

‘ emp_Ina ‘

emp_id | manager_id emp_fname me dept_id
129 902 Philip Chin 200

148 1293 Julie Jordan 300

160 501 Robert Breault 100

The employee table contains a number of rows organized into columns. Each
column has a name, such as emp_Iname or emp_id. Thereisarow for each
employee of the company, and each row has a value in each column. For
exampl e, the employeewith employee | D 102 isFran Whitney, whose manager
isemployee ID 501.

You will also see some information in the DBISQL Messages window. This
information is explained later.

The table name employee is shown starting with an upper case E, even though
thereal table nameisall lower case. Sybase 1Q databases can be created as
case-sensitive (the default) or case-insensitive in their string comparisons, but
are aways case insensitive in their use of identifiers.

Note The examplesin this book were created case-insensitive, using the
CREATE DATABASE qualifier CASE IGNORE. Thedefault is CASE RESPECT,
which gives better performance.

For information on creating databases, see Chapter 5, “Working with Database
Objects,” Sybase |Q System Administration Guide.

You can typeselect or Select instead of SELECT. Sybase |Q alowsyou to type
keywords in uppercase, lowercase, or any combination of the two. In this
manual, uppercase letters are generally used for SQL keywords.

Manipulation of the DBISQL environment and use of DBISQL is specific to
the operating system.

For information on how to scroll through data and manipulate the DBISQL
environment, see Chapter 2, “Using Interactive SQL (dbisgl)” in Sybase 1Q
Utility Guide.

Sybase 1Q

CHAPTER 1 Selecting Data from Database Tables

Ordering query results

In this section, you will add an ORDER BY clauseto the SELECT statement
to display results in alphabetical or numerical order.

Unless otherwise requested, Sybase 1Q displays the rows of atablein no
particular order. Often it is useful to look at therowsin atablein amore
meaningful sequence. For example, you might like to see employeesin
alphabetical order.

The following example shows how adding an ORDER BY clause to the
SEL ECT statement causes the results to be retrieved in alphabetical order.

Listing employees in
alphabetical order

SELECT * FROM employee ORDER BY emp lname

emp_id | manager_id | emp_fname | emp_Ilname | dept_id
1751 1576 Alex Ahmed 400
1013 703 Joseph Barker 500
591 1576 Irene Barletta 400
191 703 Jeannette Bertrand 500
1336 1293 Janet Bigelow 300

The order of the clausesisimportant. The ORDER BY clause must follow the
FROM clause and the SELECT clause.

Notes

Note If you omit the FROM clause, or if al tablesin the query arein the
SY STEM dbspace, the query is processed by Adaptive Server Anywhere
instead of Sybase 1Q and may behave differently, especialy with respect to
syntactic and semantic restrictions and the effects of option settings. See the
Adaptive Server Anywhere documentation for rules that may apply to
processing.

If you have a query that does not require a FROM clause, you can force the
guery to be processed by Sybase | Q by adding the clause“ FROM iq_dummy,”
where iqg_dummy is a one row, one column table that you create in your
database.

Performance and Tuning Guide 5

Selecting columns and rows

Selecting columns and rows

Listing last name,
department, and birth
date of each
employee

Rearranging columns

Ordering rows

Often, you are only interested in some of the columnsin atable. For example,
to make up birthday cardsfor employeesyou might want to seetheemp_Iname,
dept_id, and birth_date columns.

In this section, you will select each employee's birth date, last name, and
department |D. Type the following:

SELECT emp lname, dept id, birth date

FROM employee

emp_lname dept_id birth_date
Whitney 100 1958-06-05
Caobb 100 1960-12-04
Chin 200 1966-10-30
Jordan 300 1951-12-13
Breault 100 1947-05-13

Thethree columns appear in the order in which you typed them in the SELECT
command. To rearrange the columns, simply change the order of the column

names in the command. For example, to put the birth_date column on the left,
use the following command:

SELECT birth date, emp lname, dept id

FROM employee

You can order rows and look at only certain columns at the same time as

follows:

SELECT birth date, emp lname, dept_ id

FROM employee

ORDER BY emp lname

The asterisk in

SELECT * FROM employee

isashort form for all columnsin the table.

Sybase 1Q

CHAPTER 1 Selecting Data from Database Tables

Using search conditions

Apostrophes and
case-sensitivity

Notes

Performance and Tuning Guide

In this section you will learn procedures for comparing dates, using compound
search conditions in the WHERE clause, pattern matching, and search
condition shortcuts.

Sometimes you will not want to see information on al the employeesin the
employee table. Adding a WHERE clause to the SELECT statement allows
only some rows to be selected from atable.

For example, suppose you would like to look at the employees with first name
John.

[List all employees nhamed John:

e Typethefollowing:

SELECT *
FROM employee
WHERE emp fname = 'John'

emp_id | manager_id | emp_fname | emp_Ilname | dept_id

318 1576 John Crow 400
862 501 John Sheffield 100
1483 1293 John Letiecq 300

* Theapostrophes(single quotes) around the name 'John' arerequired. They
indicate that John is a character string. Quotation marks (double quotes)
have adifferent meaning. Quotation marks can be used to make otherwise
invalid strings valid for column names and other identifiers.

e Thesample database is not case sensitive, so you would get the same
results whether you searched for ' 'JJOHN’, ‘john’, or ‘John'.

Again, you can combine what you have learned:

SELECT emp_ fname, emp lname, birth date
FROM employee

WHERE emp fname = 'John'

ORDER BY birth date

e How you order clausesisimportant. The FROM clause comesfirst,
followed by the WHERE clause, and then the ORDER BY clause. If you
type the clausesin a different order, you will get a syntax error.

Using search conditions

* Youdo not need to split the statement into several lines. You can enter the
statement into the SQL Statementswindow in any format. If you use more
than the number of lines that fit on the screen, the text scrollsin the SQL
Statements window.

Comparing dates in queries

Listing employees
born before March 3,
1964

Sometimes you will not know exactly what value you are looking for, or you
would like to see a set of values. You can use comparisonsin the WHERE
clause to select a set of rows that satisfy the search condition.

The following example shows the use of a date inequality search condition.
Type the following:

SELECT emp lname, birth date
FROM employee
WHERE birth date < 'March 3, 1964'

emp_Ilname birth_date

Whitney 1958-06-05 00:00:00.000
Cobb 1960-12-04 00:00:00.000
Jordan 1951-12-13 00:00:00.000
Breault 1947-05-13 00:00:00.000
Espinoza 1939-12-14 00:00:00.000
Dill 1963-07-19 00:00:00.000

Sybase 1Q knows that the birth_date column contains a date, and converts
'‘March 3, 1964' to a date automatically.

Compound search conditions in the WHERE clause

Quialifying the list

So far, you have seen equal (=) and less than (<) as comparison operators.
Sybase 1Q also supports other comparison operators, such as greater than (>),
greater than or equal (>=), lessthan or equal (<=), and not equal (<>).

These conditions can be combined using AND and OR to make more
complicated search conditions.

To list all employees born before March 3, 1964, but exclude the employee
named Whitney, type:

SELECT emp_lname, birth date

Sybase 1Q

CHAPTER 1 Selecting Data from Database Tables

FROM employee
WHERE birth date < '1964-3-3'
AND emp lname <> 'Whitney'

emp_lname birth_date

Cobb 1960-12-04 00:00:00.000
Jordan 1951-12-13 00:00:00.000
Breault 1947-05-13 00:00:00.000
Espinoza 1939-12-14 00:00:00.000
Dill 1963-07-19 00:00:00.000
Francis 1954-09-12 00:00:00.000

Pattern matching in search conditions

Listing employees
whose surname
begins with BR

Qualifying the
surname search

Another useful way to look for things isto search for a pattern. In SQL, the
word LIKE isused to search for patterns. The use of LIKE can be explained by
example.

Typethe following:

SELECT emp_lname, emp_fname
FROM employee
WHERE emp lname LIKE 'br$%'

emp_Ilname | emp_fname
Breault Robert
Braun Jane

The % in the search condition indicates that any number of other characters
may follow the letters BR.

Tolist al employeeswhose surname beginswith BR, followed by zero or more
lettersand a T, followed by zero or more | etters, type:

SELECT emp_lname, emp_fname
FROM employee
WHERE emp_lname LIKE 'BR%T%'

emp_lname | emp_fname
Breault | Robert

Thefirst % sign matches the string “eaul”, while the second % sign matches
the empty string (no characters).

Performance and Tuning Guide 9

Using search conditions

Another specia character that can be used with LIKE isthe _ (underscore)
character, which matches exactly one character.

The pattern BR_U% matches all names starting with BR and having U as the
fourth letter. In Braun the _ matches the letter A and the% matches N.

Matching rows by sound

Searching surnames
by sound

With the SOUNDEX function, you can match rows by sound, as well as by
spelling. For example, suppose a phone message was | eft for a name that
sounded like“Ms. Brown”. Which employeesin the company have namesthat
sound like Brown?

To list employees with surnames that sound like Brown, type the following:

SELECT emp_ lname, emp fname
FROM employee

WHERE SOUNDEX (emp lname) = SOUNDEX('Brown')
emp_Ilname | emp_fname
Braun | Jane

Jane Braun is the only employee matching the search condition.

Shortcuts for typing search conditions

Using the short form
BETWEEN

Using the short form
IN

10

SQL has two short forms for typing in search conditions. The first,
BETWEEN, is used when you are looking for arange of values. For example,

SELECT emp_lname, birth date

FROM employee

WHERE birth date BETWEEN '1964-1-1'
AND '1965-3-31"

is equivaent to:

SELECT emp_lname, birth date
FROM employee

WHERE birth date >= '1964-1-1"'
AND birth date <= '1965-3-31"

The second short form, IN, may be used when looking for one of a number of
values. The command

SELECT emp lname, emp_ id

FROM employee

Sybase 1Q

CHAPTER 1 Selecting Data from Database Tables

WHERE emp lname IN ('Yeung', 'Bucceri', 'Charlton')
means the same as:

SELECT emp lname, emp id
FROM employee

WHERE emp_lname = 'Yeung'
OR emp lname = 'Bucceri'

OR emp lname 'Charlton'

Obtaining aggregate data

This section tellshow to construct queriesthat give you aggregate information.
Examples of aggregate information are:

« Thetotd of all valuesin acolumn
¢ The number of entriesin acolumn

* Theaveragevaue of entriesin a column

A first look at aggregate functions

Suppose you want to know how many employees there are. The following
statement retrieves the number of rows in the employee table:

SELECT count (*)

FROM employee

count(*)
75

The result returned from this query is atable with only one column (with title
count(*)) and one row, which contains the number of employees.

The following command is a dlightly more complicated aggregate query:
SELECT count (*),
min(birth date),
max (birth date)
FROM employee

count(*) | min(birth_date) | max(birth_date)
75] 1936-01-02] 1973-01-18

Performance and Tuning Guide 11

Obtaining aggregate data

The result set from this query has three columns and only one row. The three
columns contain the number of employees, the birth date of the oldest
employee, and the birth date of the youngest employee.

COUNT, MIN, and MAX are called aggregate functions. Each of these
functions summarizes information for an entire table. In total, there are seven
aggregate functions: MIN, MAX, COUNT, AVG, SUM, STDDEYV, and
VARIANCE. All of the functions have either the name of a column or an
expression as a parameter. Asyou have seen, COUNT also has an asterisk as
its parameter.

Using aggregate functions to obtain grouped data

Using an aggregate
function on groups of
rows

Restricting group

12

In addition to providing information about an entire table, aggregate functions
can be used on groups of rows.

To list the number of orders for which each sales representative isresponsible,
type:
SELECT sales rep, count(*)

FROM sales_order
GROUP BY sales_rep

sales_rep count(*)
129 57

195 50

299 114

467 56

667 54

The results of this query consist of one row for each sales rep ID number,
containing the sales rep ID, and the number of rowsin the sales_order table
with that 1D number.

Whenever GROUP BY is used, the resulting table has one row for each
different value found in the GROUP BY column or columns.

S

You have already seen how to restrict rowsin a query using the WHERE
clause. You can restrict GROUP BY clauses by using the HAVING keyword.

Sybase 1Q

CHAPTER 1 Selecting Data from Database Tables

Restricting GROUP

BY clauses

Using WHERE and
GROUP BY

To list al sales reps with more than 55 orders, type:

SELECT sales_rep, count(*)
FROM sales_ order

GROUP BY sales_rep

HAVING count(*) > 55

sales_rep | count(*)
129 57

299 114

467 56

1142 57

Note GROUP BY must always appear before HAVING. In the same manner,
WHERE must appear before GROUP BY.

To list al sales reps with more than 55 orders and an ID of more than 1000,
type:

SELECT sales_rep, count(*)
FROM sales_order

WHERE sales rep > 1000
GROUP BY sales rep

HAVING count(*) > 55

The Sybase |Q query optimizer moves predicates from the HAVING clause to
the WHERE clause, when doing so provides a performance gain. For example,
if you specify:

GROUP BY sales rep
HAVING count(*) > 55
AND sales_rep > 1000

instead of the WHERE clause in the preceding example, the query optimizer
moves the predicate to a WHERE clause.

Sybase |Q performs this optimization with simple conditions (nothing
involving OR or IN). For this reason, when constructing queries with both a
WHERE clause and a HAVING clause, you should be careful to put as many
of the conditions as possible in the WHERE clause.

Performance and Tuning Guide 13

Obtaining aggregate data

Improving subtotal calculation

Using ROLLUP

14

If you have data that varies across dimensions such as date or place, you may
need to determine how the data variesin each dimension. You can use the
ROLLUP and CUBE operators to create multiple levels of subtotals and a
grand total from alist of references to grouping columns. The subtotals “roll
up” from the most detailed level to the grand total. For example, if you are
analyzing sales data, you can compute an overall average and the average sales
by year using the same query.

To select total car sales by year, model and color:

SELECT year, model, color, sum(sales)
FROM sales tab
GROUP BY ROLLUP (year, model, color);

year model color sales
1990 Chevrolet red 5
1990 Chevrolet white 87
1990 Chevrolet blue 62
1990 Chevrolet NULL 154
1990 Ford blue 64
1990 Ford red 62
1990 Ford white 63
1990 Ford NULL 189
1990 NULL NULL 343
1991 Chevrolet blue 54
1991 Chevrolet red 95
1991 Chevrolet white 49
1991 Chevrolet NULL 198
1991 Ford blue 52
1991 Ford red 55
1991 Ford white 9
1991 Ford NULL 116
1991 NULL NULL 314
NULL NULL NULL 657

Sybase 1Q

CHAPTER 1 Selecting Data from Database Tables

Using CUBE

When processing this query, Sybase | Q groups the data first by al three
specified grouping expressions (year, model, color), then for al grouping
expressions except the last one (color). In the fifth row, NULL indicates the
ROLLUP value for the color column, in other words, the total number of sales
of that model in all colors. 343 represents the total sales of all models and
colorsin 1990 and 314 isthetotal for 1991. Thelast row representstotal sales
on all years, all modelsand all colors.

ROLLUPrequiresan ordered list of grouping expressions as arguments. When
listing groups that contain other groups, list the larger group first (such asstate
before city.)

You can use ROLLUP with the aggregate functions. SUM, COUNT, AVG,
MIN, MAX, STDDEV, and VARIANCE. ROLLUP does not support COUNT
DISTINCT and SUM DISTINCT, however.

The following query uses data from a census, including the state (geographic
location), gender, education level, and income of people. You can use the
CUBE extension of the GROUP BY clause, if you want to compute the average
income in the entire census of state, gender, and education and compute the
averageincomein all possible combinations of the columns state, gender, and
education, while making only asingle pass through the census datain the table
census. For example, use the CUBE operator if you want to compute the
average income of all femalesin all states, or compute the average income of
al peoplein the census according to their education and geographic location.

When CUBE calculates a group, CUBE putsaNULL value in the column(s)
whose group is calculated. The distinction is difficult between the type of
group each row represents and whether the NULL isaNULL stored in the
databaseor aNULL resulting from CUBE. The GROUPING function solvesthis
problem by returning 1, if the designated column has been merged to a higher
level group.

The following query illustrates the use of the GROUPING function with
GROUP BY CUBE.

SELECT

CASE GROUPING (state) WHEN 1 THEN 'ALL' ELSE state END
AS c_state,

CASE GROUPING (gender) WHEN 1 THEN 'ALL' ELSE gender
END AS c_gender,

CASE GROUPING (education) WHEN 1 THEN 'ALL' ELSE
education END AS c¢_education,

COUNT (*) , CAST (ROUND (AVG (income), 2) AS NUMERIC
(18,2)) AS average

FROM census

Performance and Tuning Guide 15

Obtaining aggregate data

GROUP BY CUBE (state, gender, education);

The results of this query are shown below. Note that the NUL L s generated by
CUBE toindicate asubtotal row arereplaced with ALL in the subtotal rows, as
specified in the query.

c_state c_gender c_education count(*) average
MA f BA 3 48333.33
MA f HS 2 40000.00
MA f MS 1 45000.00
MA f ALL 6 45000.00
MA m BA 4 55000.00
MA m HS 1 55000.00
MA m MS 3 85000.00
MA m ALL 8 66250.00
MA ALL ALL 14 57142.86
NH f HS 2 50000.00
NH f MS 1 85000.00
NH f ALL 3 61666.67
NH m BA 3 55000.00
NH m MS 1 49000.00
NH m ALL 4 53500.00
NH ALL ALL 7 57000.00
ALL ALL ALL 21 57095.24
ALL ALL BA 10 53000.00
ALL ALL MS 6 72333.33
ALL ALL HS 5 47000.00
ALL f ALL 9 50555.56
ALL m ALL 12 62000.00
ALL f BA 3 48333.33
ALL m HS 1 55000.00
ALL m MS 4 76000.00
ALL m BA 7 55000.00
ALL f MS 2 65000.00
ALL f HS 4 45000.00
NH ALL HS 2 50000.00
NH ALL MS 2 67000.00
MA ALL MS 4 75000.00
MA ALL HS 3 45000.00

16 Sybase 1Q

CHAPTER 1 Selecting Data from Database Tables

c_state c_gender c_education count(*) average
MA ALL BA 7 52142.86
NH ALL BA 3 55000.00

Data warehouse administrators find ROLLUP and CUBE particularly useful
for operations like:

» Subtotaling on a hierarchical dimension like geography or time, for
example year/month/day or country/state/city

e Populating summary tables

ROLLUP and CUBE alow you to use one query to compute data using
multiple levels of grouping, instead of a separate query for each level.

See the SELECT statement in Chapter 6, “SQL Statements,” Sybase |Q
Reference Manual, for more information on the ROLLUP and CUBE
operators.

Obtaining analytical data

Thissection tellshow to construct queriesthat give you analytical information.
There are two types of analytical functions: rank and inverse distribution. The
rank analytical functions rank items in a group, compute distribution, and
divide aresult set into a number of groupings. The inverse distribution
analytical functions return a k-th percentile value, which can be used to help
establish athreshold acceptance value for a set of data.

The rank analytical functions are RANK, DENSE_RANK,
PERCENT_RANK, and NTILE. Theinverse distribution analytical functions
are PERCENTILE _CONT and PERCENTILE DISC.

Suppose you want to determine the sale status of car dealers. The NTILE
function divides the dealersinto four groups based on the number of cars each
dealer sold. The dealers with ntile = 1 are in the top 25% for car sales.

SELECT dealer name, sales,
NTILE(4) OVER (ORDER BY sales DESC)
FROM carSales;

dealer name sales ntile
Boston 1000 1
Worcester 950 1

Performance and Tuning Guide 17

Obtaining analytical data

18

Providence 950 1
SF 940 1
Lowell 900 2
Seattle 900 2
Natick 870 2
New Haven 850 2
Portland 800 3
Houston 780 3
Hartford 780 3
Dublin 750 3
Austin 650 4
Dallas 640 4
Dover 600 4

To find the top 10% of car dealers by sales, you specify NTILE(10) in the
example SELECT statement. Similarly, to find the top 50% of car dealers by
sales, specify NTILE(2).

NTILE isarank analytical function that distributes query resultsinto aspecified
number of buckets and assigns the bucket number to each row in the bucket.
You can divide aresult set into tenths (deciles), fourths (quartiles), and other
numbers of groupings.

The rank analytical functions require an OVER (ORDER BY) clause. The
ORDER BY clause specifies the parameter on which ranking is performed and
the order in which the rows are sorted in each group. Note that thisORDER BY
clause is used only within the OVER clause and is not an ORDER BY for the
SELECT.

The OVER clauseindicatesthat the function operates on aquery result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the
data set of the rows to include in the computation of the rank analytical
function.

Similarly, the inverse distribution functions require a WITHIN GROUP
(ORDER BY) clause. The ORDER BY specifies the expression on which the
percentile function is performed and the order in which the rows are sorted in
each group. ThisORDER BY clause is used only within the WITHIN GROUP
clause and isnot an ORDER BY for the SELECT. The WITHIN GROUP
clause distributes the query result into an ordered data set from which the
function calculates aresult.

For more details on the analytical functions, see the section” Analytical
functions’ in Chapter 5, “ SQL Functions’ of the Sybase | Q Reference Manual
For information on individual analytical functions, see the section for each
function in the “ SQL Functions’ chapter.

Sybase 1Q

CHAPTER 1 Selecting Data from Database Tables

Eliminating duplicate rows

Result tables from SELECT statements can contain duplicate rows. You can
use the DISTINCT keyword to eliminate the duplicates. For example, the
following command returns many duplicate rows:

SELECT city, state FROM employee
To list only unique combinations of city and state, use this command:

SELECT DISTINCT city, state FROM employee

Note The ROLLUP and CUBE operators do not support the DISTINCT
keyword.

This chapter provides an overview of single-table SELECT statements. For
more information about single-table SELECT statements, see Chapter 5,
“Working with Database Objects,” in the Sybase |Q System Administration
Guide, Chapter 3, “SQL Language Elements,” in the Sybase |Q Reference
Manual, and “SEL ECT statement” in Chapter 6, “SQL Statements,” in the
Sybase 1Q Reference Manual.

Advanced uses of the SELECT statement are described in the next chapter.

Performance and Tuning Guide 19

Eliminating duplicate rows

20 Sybase 1Q

CHAPTER 2

About this chapter

Contents

Performance and Tuning Guide

Joining Tables

This chapter explains how to look at information in more than one table
and describes various types of joins. You will complete tutoria tasks on

joining tables.
Topic Page
Joining tables with the cross product 22
Restricting ajoin 22
How tables are related 24
Join operators 25
Ad hoc joins vs. using join indexes 27
Joins and data types 28
Support for joins between stores or databases 28
Querying remote and heterogeneous databases 30
Replacing joins with subqueries 31
21

Joining tables with the cross product

Joining tables with the cross product

Example

One of the tables in the sample database is fin_data, which lists the financial
data for the company. Each data record has a code column that tellsits
department and whether it is an expense or revenue record. There are 84 rows
in the fin_data table.

You can get information from two tables at the sametime by listing both tabl es,
separated by a comma, in the FROM clause of a SELECT query.

The following dbisql SELECT command lists al the datain the fin_code and
fin_data tables:

SELECT *
FROM fin code, fin_data

Theresults of this query, displayed in the dbisqgl datawindow, match every row
in the fin_code table with every row in the fin_data table.Thisjoinis called a
full cross product, also known as a cartesian product. Each row consists of all
columns from the fin_code table followed by all columns from the fin_data
table.

Thecross product joinisasimple starting point for understanding joins, but not
very useful initself. Subsequent sectionsin this chapter tell how to construct
more selective joins, which you can think of as applying restrictions to the
cross product table.

Restricting a join

Example 1

22

To make across product join useful, you need to include only rows that satisfy
some condition in the result. That condition, called the join condition,
compares one column from one table to one column in the other table, using a
comparison operator (=, =>, <, etc.). You thus eliminate some of the rowsfrom
the cross product resullt.

For example, to make the join in the preceding section useful, you could insist
that the sales_rep in the sales_order table be the same as the onein the
employee tablein every row of the result. Then each row containsinformation
about an order and the sal es representative responsible for it.

To do this, add a WHERE clause to the previous query to show the list of
employees and their course registrations:

SELECT *

Sybase 1Q

CHAPTER 2 Joining Tables

Example 2

Correlation names

FROM sales order, employee
WHERE sales order.sales rep = employee.emp_ id

The table name is given as a prefix to identify the columns. Although not
strictly required inthis case, using the table name prefix clarifiesthe statement,
and is required when two tables have a column with the same name. A table
name used in this context is called aqualifier.

The results of this query contain only 648 rows (one for each row in the
sales order table). Of the original 48,600 rows in the join, only 648 of them
have the employee number equal in the two tables.

The following query isamodified version that fetches only some of the
columns and orders the results.

SELECT employee.emp lname, sales_order.id,
sales order.order_date

FROM sales_order, employee

WHERE sales order.sales _rep = employee.emp_id
ORDER BY employee.emp lname

If there are many tablesin a SELECT command, you may need to type several
qualifier names. You can reduce typing by using a correlation name.

A correlation nameisan aliasfor aparticular instance of atable. Thisaiasis
valid only within a single statement. Correlation names are created by putting
ashort form for a table name immediately after the table name, separated by
the keyword AS. You then must use the short form asa qualifier instead of the
corresponding table name.

SELECT E.emp lname, S.id, S.order date
FROM sales order AS S, employee AS E
WHERE S.sales rep = E.emp_ id

ORDER BY E.emp_lname

Here, two correlation names S and E are created for the sales_order and
employee tables.

Note A table name or correlation nameis only needed to resolve ambiguity if
two columns of different tables have the same name. If you have created a
correlation name, you must useit instead of the full table name, but if you have
not created a correlation name, use the full table name.

Performance and Tuning Guide 23

How tables are related

How tables are related

To construct other types of joins, you must first understand how the
information in onetable is related to that in another.

The primary key for atable identifies each row in the table. Tables are related
to each other using aforeign key.

This section shows how primary and foreign keys together let you construct
queries from more than one table.

Rows are identified by a primary key

Every table in the asigdemo database has a primary key. (It isagood ideato
have aprimary key for each table.) A primary key is one or more columnsthat
uniquely identify arow in the table. For example, an employee number
uniquely identifies an employee—emp_id is the primary key of the employee
table.

The sales_order_items table is an example of atable with two columns that
make up the primary key. The order 1D by itself does not uniquely identify a
row in the sales_order_items table because there can be severa itemsin an
order. Also, the line_id number does not uniquely identify arow in the
sales_order_items table. Both the order ID name and line_id are required to
uniquely identify arow in the sales_order_items table. The primary key of the
table is both columns taken together.

Tables are related by a foreign key

24

Several tablesintheasigdemo databaserefer to other tablesin the database. For
example, in the sales_order table, the sales_rep column indicates which
employee is responsible for an order. Only enough information to uniquely
identify an employeeiskept in the sales_order table. The sales_rep columnin
the sales_order table is aforeign key to the employee table.

Sybase 1Q

CHAPTER 2 Joining Tables

Foreign key

A foreign key is one or more columns that contain candidate key values from
another table. (For more about candidate keys, see Chapter 5, “Working with
Database Objects’ in Sybase 1Q System Administration Guide.) Each foreign
key relationship in the employee database is represented graphically by an
arrow between two tables. You can see these arrows in the diagram of the
Sample Database, Figure 1-1 on page 12, in Introduction to Sybase Q. The
arrow starts at the foreign key side of the relationship and pointsto the
candidate key side of the relationship.

Join operators

Many common joins are between two tablesrelated by aforeign key. The most
common join restricts foreign key valuesto be equal to primary key values.
The example you have already seen restricts foreign key valuesin the
sales_order table to be equal to the candidate key values in the employee table.

SELECT emp_ lname, id, order date
FROM sales order, employee
WHERE sales order.sales _rep = employee.emp_id

The query can be more simply expressed using a KEY JOIN.

Joining tables using key joins

Key joinsare an easy way tojoin tablesrelated by aforeign key. For example:

SELECT emp_ lname, id, order date
FROM sales order
KEY JOIN employee

givesthe same results as a query with a WHERE clause that equates the two
employee |D number columns:

SELECT emp_lname, id, order_ date
FROM sales_order, employee
WHERE sales order.sales _rep = employee.emp_id

Thejoin operator (KEY JOIN) isjust ashort cut for typing the WHERE clause;
the two queries areidentical.

Performance and Tuning Guide 25

Join operators

Joining two or more
tables

In the diagram of the asiqgdemo database, in Introduction to Sybase 1Q, foreign
keys are represented by lines between tables. Anywhere that two tables are
joined by alineinthediagram, you can usethe KEY JOIN operator. Remember
that your application must enforce foreign keysin order to ensure expected
results from queries based on key joins.

Two or more tables can be joined using join operators. The following query
uses four tablesto list the total value of the orders placed by each customer. It
connects the four tables customer, sales_order, sales_order_items and product
single foreign-key relationships between each pair of these tables.

SELECT company name,

CAST (SUM(sales order items.quantity *
product.unit price) AS INTEGER) AS value
FROM customer

KEY JOIN sales_order

KEY JOIN sales order_ items

KEY JOIN product

GROUP BY company name

company_name value
McManus Inc. 3,156
Salt & Peppers. 4,980
The Real Dedl 1,884
Totos Active Wear 2,496
The Ristuccia Center 4,596

The CAST function used in this query converts the data type of an expression.
In this example the sum that is returned as an integer is converted to avalue.

Joining tables using natural joins

Example

26

The NATURAL JOIN operator joins two tables based on common column
names. In other words, Sybase 1Q generates a WHERE clause that equates the
common columns from each table.

For example, for the following query:

SELECT emp_ lname, dept name
FROM employee
NATURAL JOIN department

Sybase 1Q

CHAPTER 2 Joining Tables

Errors using
NATURAL JOIN

the database server |ooks at the two tables and determines that the only column
name they have in common isdept_id. The following ON phraseisinternally
generated and used to perform the join:

FROM employee JOIN department

ON employee.dept id = department.dept id

Thisjoin operator can cause problems by equating columnsyou may not intend
to be equated. For example, the following query generates unwanted results:

SELECT *
FROM sales_order
NATURAL JOIN customer

The result of this query has no rows.
The database server internally generates the following ON phrase:

FROM sales order JOIN customer
ON sales order.id = customer.id

Theid column in the sales_order table isan ID number for the order. Theid
column in the customer tableis an ID number for the customer. None of them
matched. Of course, evenif amatch werefound, it would be ameaninglessone.

You should be careful using join operators. Always remember that the join
operator just saves you from typing the WHERE clause for an unenforced
foreign key or common column names. Be mindful of the WHERE clause, or
you may create queries that give results other than what you intend.

Ad hoc joins vs. using join indexes

If you have defined join indexes on the join columns referenced in your query,
Sybase 1Q will automatically use them to make the query process faster. (For
information about defining join indexes, see Chapter 6, “Using Sybase 1Q
Indexes,” in the Sybase |Q System Administration Guide.)

Any join that does not use join indexesis known as an ad hoc join. If several
tables are referenced by the query, and not all of them have join indexes
defined, Sybase |Q will use the join indexes for those tables that have them in
combination with an ad hoc join with the rest of the tables.

Performance and Tuning Guide 27

Joins and data types

Because you cannot create join indexes for all possiblejoins, ad hoc joins may
sometimes be necessary. Thanks to optimizations in Sybase 1Q, you may find
that queries perform as well or better without join indexes.

Keep these rules in mind when creating join indexes:

e Only full outer joins are supported in theindex. The query can beaninner,
left outer, or right outer join if indexed.

A full outer joinisonewhereall rowsfrom both theleft and right specified
tables areincluded in the result, with NULL returned for any column with
no matching value in the corresponding column.

* The only comparison operator that may be used in the join predicate ON
clauseisEQUALS.

* YoucanusetheNATURAL keywordinstead of an ON clause, but you can
only specify one pair of tables.

» Joinindex columns must have identical datatype, precision, and scale.

Joins and data types

Join columns require like data types for optimal performance. Sybase IQ
allows you to make an ad hoc join on any data types for which an implicit
conversion exists. Unless join column data types are identical, however,
performance can suffer to varying degrees, depending on the datatypesand the
size of thetables. For example, while you can join an INT to aBIGINT column,
thisjoin prevents certain types of optimizations. The Sybase 1Q index advisor
identifies performance concerns for join columns whose data types differ.

For tables of implicit data type conversions, see Chapter 7, “Moving DataIn
and Out of Databases’ in Sybase 1Q System Administration Guide.

Support for joins between stores or databases

28

This section clarifies current support for joins between stores or between
databases.

Sybase 1Q

CHAPTER 2 Joining Tables

Joining tables within a
Sybase 1Q database

Joining Adaptive
Server Enterprise and
Sybase 1Q tables

Any joins within a given Sybase |Q database are supported. This means that
you can join any system or user tablesin the Catalog Store with any tablesin
the IQ Store, in any order.

Joins of Sybase|Q tableswith tablesin an Adaptive Server Enterprise database
are supported under the following conditions:

¢ The Sybase 1Q database can be either the local database or the remote
database.

« If aSybase|Q tableisto be used as aproxy tablein ASE, the table name
must be 30 characters or fewer.

* Inordertojoin alocal Adaptive Server Enterprise table with aremote
Sybase |Q 12 table, the ASE version must be 11.9.2 or higher, and you
must use the correct server class:

¢ To connect from afront end of Adaptive Server Enterprise 12.5 or
higher to aremote Sybase IQ 12.5 or higher, use the ASIQ server
class, which was added in ASE 12.5.

e To connect from afront end of Adaptive Server Enterprise 11.9.2
through 12.0 to aremote Sybase 1Q 12.x (or Adaptive Server
Anywhere 6.x or higher), you must use server class ASAnywhere.

« Whenyoujoin aloca Sybase 1Q table with any remote table, the local
table must appear first in the FROM clause, which meansthelocal tableis
the outermost tablein thejoin.

Joins between Sybase 1Q and Adaptive Server Enterprise rely on Component
Integration Services (CIS).

For moreinformation on queriesfrom Adaptive Server Enterprise databasesto
Sybase 1Q, see Component Integration Services Users's Guidein the Adaptive
Server Enterprise core documentation set.

For more information on queries from Sybase | Q to other databases, see
“Querying remote and heterogeneous databases.”

Performance and Tuning Guide 29

Querying remote and heterogeneous databases

Joining Adaptive
Server Anywhere and
Sybase IQ tables

The CHAR datatype isincompatible between Adaptive Server Anywhere and
Sybase 1Q when the database is built with BLANK PADDING OFF. If you
want to perform cross-database joins between Adaptive Server Anywhere and
Sybase | Q tables using character data as the join key, use the CHAR datatype
with BLANK PADDING ON.

Note Sybase|Q CREATE DATABASE no longer supports BLANK PADDING
OFF for new databases. This change has no effect on existing databases. You
can test the state of existing databases using the BlankPadding database

property:

select db_property (‘BlankPadding’)
Sybase recommends that you change any existing columns affected by
BLANK PADDING OFF, to ensure correct join results. Recreate join columns

as CHAR datatype, rather than VARCHAR. CHAR columns are always blank
padded.

Querying remote and heterogeneous databases

30

This section summarizes how you use Sybase 1Q with Component Integration
Services (CIS). ClSalowsyou to query Adaptive Server Enterprise databases
and remote databases or nonrelational data sources through Sybase |Q. CISis
installed as part of Sybase Q.

Using CI'S, you can access tables on remote servers asif the tableswere local.
CIS performs joins between tables in multiple remote, heterogeneous servers
and transfers the contents of one table into a supported remote server.

To query aremote database or data source, you need to map its tablesto local
proxy tables. CIS presents proxy tablesto a client application asif the data
were stored locally. When you query the tables, CIS determines the actual
server storage location.

[—TTo join remote databases:

1 Create proxy tables, following the stepsin the Sybase 1Q System
Administration Guide.

2 Map the remote tables to the proxy tables.

Sybase 1Q

CHAPTER 2 Joining Tables

3 Reference the proxy tablesin your SELECT statement, using the proxy
database name as the qualifying name for each remote table. For example:

SELECT a.c_custkey, b.o orderkey
FROM proxy asigdemo..cust2 a,
asigdemo. .orders b

WHERE a.c_custkey = b.o_custkey

For moreinformation, see Chapter 16, “ Accessing Remote Data’ and Chapter
17, “ Server Classes for Remote Data Access’ in Sybase 1Q System
Administration Guide.

Replacing joins with subqueries

Using a join

Using an outer join

A join returns aresult table constructed from data from multiple tables. You
can also retrieve the same result table using a subquery. A subquery is simply
a SELECT statement within another select statement. Thisis a useful tool in
building more complex and informative queries.

For example, suppose you need achronological list of ordersand the company
that placed them, but would like the company name instead of their customer
ID. You can get this result using ajoin as follows:

To list the order_id, order_date, and company_name for each order since the
beginning of 1994, type:

SELECT sales_order.id,

sales order.order date,
customer.company_name

FROM sales order

KEY JOIN customer

WHERE order date > '1994/01/01'
ORDER BY order date

id order_date company_name
2473 1994-01-04 Peachtree Active Wear
2474 1994-01-04 Sampson & Sons
2036 1994-01-05 Hermanns

2475 1994-01-05 Sat & Peppers

2106 1994-01-05 Cinnamon Rainbows

Thejoinin previous sections of thetutorial ismorefully called aninner join.

Performance and Tuning Guide 31

Replacing joins with subqueries

Using a subquery

32

You specify an outer join explicitly. In this case, a GROUP BY clauseisaso
required:

SELECT company name,

MAX (sales order.id), state
FROM customer

KEY LEFT OUTER JOIN sales_order
WHERE state = 'WA'

GROUP BY company name, state

company_name max(sales_order.id) | state
Custom Designs 2547 WA
ItsaHit! (NULL) WA

To list order items for products low in stock, type:

SELECT *
FROM sales order_ items
WHERE prod id IN

(SELECT id
FROM product
WHERE quantity < 20)
ORDER BY ship date DESC

id line_id prod_id gquantity ship_date
2082 1 401 48 1994-07-09
2053 1 401 60 1994-06-30
2125 2 401 36 1994-06-28
2027 1 401 12 1994-06-17
2062 1 401 36 1994-06-17

The subquery in the statement is the phrase enclosed in parentheses:

(SELECT id
FROM product
WHERE quantity < 20)

By using a subquery, the search can be carried out in just one query, instead of
using one query to find the list of low-stock products and a second to find
orders for those products.

The subquery makes alist of al valuesin theid column in the product table
satisfying the WHERE clause search condition.

Sybase 1Q

CHAPTER 2 Joining Tables

Rephrasing the query Consider what would happen if an order for ten tank tops were shipped so that
the quantity column for tank tops contained the value 18. The query using the
subquery would list al orders for both wool caps and tank tops. On the other
hand, the first statement you used would have to be changed to the following:

The

SELECT *

FROM sales order items

WHERE prod_id IN (401, 300)
ORDER BY ship date DESC

command using the subquery is an improvement because it still works

even if datain the database is changed.

Remember the following notes about subqueries:

Performance and Tuning Guide

Subqueries may also be useful in cases where you may have trouble
constructing ajoin, such as queries that use the NOT EXISTS predicate.

Subqueries can only return one column.

Subqueriesare allowed only as arguments of comparisons, IN, or EXISTS
clauses.

Subqueries cannot be used inside an outer join ON clause.

33

Replacing joins with subqueries

34 Sybase 1Q

CHAPTER 3

About this chapter

Contents

Performance and Tuning Guide

Optimizing Queries and
Deletions

This chapter offers query and deletion performance recommendations,
including:

e Structuring queries for faster processing
e Using the query plans
e Setting query processing options

e Optimizing delete operations

Topic Page
Tipsfor structuring queries 36
Planning queries 39
Controlling query processing 42
Optimizing delete operations 45

35

Tips for structuring queries

Tips for structuring queries

Here are some hints for better query structure:

* Insome cases, command statements that include subqueries can aso be
formulated as joins and may run faster.

» If you group on multiple columnsin aGROUP BY clause, list the columns
by descending order by number of unique values. Thiswill give you the
best query performance.

» Joinindexes often causejoin queriesto execute faster than ad hoc joins, at
the expense of using more disk space. However, when ajoin query does
not reference the largest table in a multi-table join index, an ad hoc join
usually outperforms the join index.

* You can improve performance by using an additional column to store
frequently calculated results.

Impact on query performance of GROUP BY over a UNION ALL

36

To improve performance, very large tables are often segmented into several
small tables and accessed using aUNION ALL in aview. For certain very
specific queries using such aview witha GROUP BY, the Sybase | Q optimizer
is able to enhance performance by pushing some GROUP BY operations into
each arm of such aUNION ALL, performing the operationsin parallel, then
combining the results. This method, referred to as split GROUP BY, reduces
the amount of datathat is processed by the top level GROUP BY, and
consequently reduces query processing time.

Only certain queries with a GROUP BY over aUNION ALL show a
performance improvement. The following simple query, for example, benefits
from the split GROUP BY:

CREATE VIEW vtable (vl int, v2 char(4)) AS
SELECT al, a2 FROM tableA

UNION ALL

SELECT bl, b2 FROM tableB;

SELECT COUNT (*), SUM(vl) FROM vtable GROUP BY v2;

Sybase 1Q

CHAPTER 3 Optimizing Queries and Deletions

When analyzing this query, the optimizer first performs COUNT(*) GROUP
BY ontableA and COUNT(*) GROUPBY on tableB, then passes these results
tothetop level GROUPBY. Thetop level GROUPBY performsaSUM of the
two COUNT (*) results, to produce the final query result. Note that the role of
the top level GROUP BY changes: the aggregation used by the top level
GROUPBY is SUM instead of COUNT.

Restrictions on split There are some restrictions on the situations and queries that benefit from the
GROUP BY split GROUP BY.

Performance and Tuning Guide

The query may benefit from the split GROUP BY, if the query uses
UNION ALL, rather than UNION. Thefollowing query uses GROUP BY
with UNION, so it does not take advantage of the GROUP BY split:

CREATE VIEW viewA (val int, va2 int, wva3 int,
va4 int) AS

SELECT bl, b2, b3, b4 FROM tableB

UNION

SELECT cl1, c2, c¢3, c4 FROM tableC;

SELECT SUM(val) FROM viewA GROUP BY va3;

CREATE VIEW viewA (val int, va2 int, wva3 int,
va4 int) AS

SELECT bl, b2, b3, b4 FROM tableB

UNION ALL

SELECT cl1, c2, c¢3, c4 FROM tableC;

SELECT SUM(DISTINCT val) FROM viewA GROUP BY va3;

In order for the query to benefit from the split GROUP BY, you need
enough memory in the temporary shared buffer cache to store the
aggregation information and data used for processing the additional
GROUP BY operators.

CREATE VIEW viewA (val int, va2 int, wva3 int,
va4 int) AS
SELECT bl, b2, b3, b4 FROM tableB

UNION ALL
SELECT cl, c2, c3, c4 FROM tableC
UNION ALL
SELECT dl1, d2, d3, d4 FROM tableD
UNION ALL

SELECT el, e2, e3, e4 FROM tableE

The query may benefit from the split GROUP BY, if an aggregation in the
query does not contain DISTINCT. The following query uses SUM
DISTINCT, so it does not take advantage of the split GROUP BY:

37

Tips for structuring queries

UNION ALL
SELECT f1, f2, £3, f4 FROM tableF
UNION ALL
SELECT gl, g2, g3, g4 FROM tableG;

SELECT SUM(val) FROM viewA GROUP BY va3;

Inthisexample, the Sybase | Q optimizer splitsthe GROUPBY and inserts
six GROUP BY operators into the query plan. Consequently, the query
reguires more temporary cache to store aggregation information and data.
If the system cannot all ocate enough cache, the optimizer does not split the
GROUPBY.

You can usethe TEMP_CACHE_MEMORY _MB database option to
increase the size of the temporary cache, if memory is available. For
information on setting buffer cache sizes, see “Determining the sizes of
the buffer caches’ on page 117 and “TEMP_CACHE_MEMORY_MB
option” in the chapter “ Database Options’ of the Sybase 1Q Reference
Manual.

In order for the query to benefit from split GROUP BY, the
AGGREGATION_PREFERENCE database option should be set to its
default value of 0. Thisvalue allowsthe Sybase | Q optimizer to determine
the best algorithm to apply to the GROUP BY. The query does not benefit
from split GROUP BY, if the value of AGGREGATION_PREFERENCE
forces the Sybase 1Q optimizer to choose a sort algorithm to process the
GROUP BY. The option AGGREGATION_PREFERENCE can be used
to override the optimizer's choice of algorithm for processing the GROUP
BY and should not be set to 1 or 2 in this case.

Examples of split In this example, alarge table named tableA is segmented into four smaller

GROUP BY

tables: tabA1, tabA2, tabA3, and tabA4. The view unionTab is created using the

four smaller tablesand UNION ALL:

CREATE VIEW unionTab (vl int, v2 int, v3 int, v4 int) AS
SELECT a, b, ¢, d FROM tabAl

UNION ALL
SELECT a, b, ¢, d FROM tabA2
UNION ALL
SELECT a, b, ¢, d FROM tabA3
UNION ALL

SELECT a, b, c, d FROM tabA4;

The Sybase |Q optimizer splitsthe GROUP BY operation in the following
queries and improves query performance:

38

SELECT v1, v2, SUM(v3), COUNT(*) FROM unionTab

Sybase 1Q

CHAPTER 3 Optimizing Queries and Deletions

GROUP BY v1, v2;

SELECT v3, SUM(v1l*v2) FROM unionTab
GROUP BY vVv3;

Conditions that cause processing by Adaptive Server Anywhere

Sybase | Q architectureincludes a portion of the product that processes queries
according to Adaptive Server Anywhere rules. This feature, called CIS
(formerly OMNI) functional compensation, allows queries not directly
supported by Sybase 1Q semantics to be processed, but with a major
performance cost.

CIS intercepts queries that:

* Reference auser-defined function

¢ Include a cross-database join or proxy table

¢ Include certain system functions

« ReferenceaCatalog Storetable or atable created inthe SY STEM dbspace

For more information on differences between Sybase 1Q and Adaptive Server
Anywhere, see Appendix A, “ Compatibility with Other Sybase Databases,” in
Sybase 1Q Reference Manual.

Planning queries

If you have created the right indexes, the Sybase 1Q query optimizer can
usually execute queriesin the most efficient way—sometimes even if you have
not used the most effective syntax. Proper query design is still important,
however. When you plan your queries carefully, you can have a major impact
on the speed and appropriateness of results.

Performance and Tuning Guide 39

Planning queries

Query evaluation

40

Before it executes any query, the Sybase |Q query optimizer creates a query
plan. Sybase |Q helps you evaluate queries by letting you examine and
influencethe query plan, using the options described in the sectionsthat foll ow.
For details of how to specify these options, see the Sybase |1Q Reference
Manual.

Note For all database options that accept integer values, Sybase 1Q truncates
any decimal option-value setting to aninteger value. For example, thevalue 3.8
is truncated to 3.

options

Thefollowing options can help you evaluate the query plan. Seethe Sybase |Q
Reference Manual for details of these options.

* INDEX_ADVISOR —When set ON, the index advisor prints index
recommendations as part of the Sybase |Q query plan or as a separate
message in the Sybase 1Q message log file if query plans are not enabled.
These messages begin with the string “Index Advisor:” and you can use
that string to search and filter them from a Sybase 1Q messagefile. This
option outputs messages in OWNER.TABLE.COLUMN format and is OFF
by default.

See also the “ sp_igindexadvice procedure” in the Sybase |Q Reference
Manual.

* INDEX_ADVISOR_MAX_ROWS — Used to limit the number of messages
stored by theindex advisor. Once the specified limit has been reached, the
INDEX_ADVISOR will not store new advice. It will, however, continue to
update count and timestamps for existing advice.

* NOEXEC —When set ON, Sybase |Q produces a query plan but does not
execute the query, except when the EARLY_PREDICATE_EXECUTION
option is ON.

* QUERY_DETAIL —When this option and either QUERY_PLAN or
QUERY_PLAN_AS_HTML are both ON, Sybase |Q displays additional
information about the query when producing its query plan. When
QUERY_PLAN and QUERY_PLAN_AS_HTML are OFF, thisoptionis
ignored.

Sybase 1Q

CHAPTER 3 Optimizing Queries and Deletions

The query tree

Performance and Tuning Guide

QUERY_PLAN —When set ON (the default), Sybase | Q produces messages
about queries. These include messages about using join indexes, about the
join order, and about join algorithms for the queries.

QUERY_PLAN_AFTER_RUN — When set ON, the query planis printed
after the query has finished running. This allows the plan to include
additional information, such asthe actual number of rows passed on from
each node of the query. In order for this option to work, QUERY_PLAN
must be ON. This option is OFF by default.

QUERY_PLAN_AS_HTML — Produces a graphical query planin HTML
format for viewing in aWeb browser. Hyperlinks between nodes make the
HTML format much easier to use than the text format in the .igmsg file.
Use the QUERY_NAME option to include the query name in the file name
for the query plan. This option is OFF by default.

QUERY_PLAN_AS_HTML_DIRECTORY —When set ON and adirectory is
specified with QUERY_PLAN_AS_HTML_DIRECTORY, Sybase |Q writes
the HTML query plans in the specified directory.

QUERY_TIMING — Controls the collection of timing statistics on
subqueries and some other repetitive functions in the query engine.
Normally it should be OFF (the default) because for very short correlated
subqueries the cost of timing every subquery execution can be very
expensive in terms of performance.

Note Query planscanaddalot of text to your .igmsg file. When QUERY_PLAN
iSON, and especially if QUERY_DETAIL is ON, you will probably want to
enable message log wrapping by setting IQMSG_LENGTH_MB to a positive
value.

The optimizer creates aquery “tree” that represents the flow of datain the
query. The query plan presentsthe query treeintext forminthe.igmsgfile, and
optionaly in graphical form.

The query tree consists of nodes. Each node represents a stage of work. The
lowest nodes on the tree are leaf nodes. Each leaf node represents atable or a
prejoin index set in the query.

41

Controlling query processing

At thetop of the planistheroot of the operator tree. Information flows up from
the tables and through any operators representing joins, sorts, filters, stores,
aggregation, and subqueries.

Using the HTML query plan

A good way to start using query plansisto set the QUERY_PLAN_AS_HTML
option ON. Thisoption placesagraphical version of the query plan inthe same
directory asthe .igmsg file. You can view thisfile in most Web browsers.

Inthe HTML query plan, each node in the tree is a hyperlink to the details.
Each box is hyperlinked to the tree above. You can click on any node to
navigate quickly through the plan.

Controlling query processing

Any user can set limits on the amount of time spent processing a particular
query. Userswith DBA privileges can give certain users' queries priority over
others, or change processing algorithms to influence the speed of query
processing. See the Sybase |Q Reference Manual for details on the options
described in this section.

Setting query time limits

By setting the MAX_QUERY_TIME option, a user can disallow long queries. If
aquery takeslonger to execute than desired, Sybase |Q stopsthe query with an
appropriate error.

Note Sybase|Q truncates all decimal option-value settings to integer values.
For example, the value 3.8 is truncated to 3.

42 Sybase 1Q

CHAPTER 3 Optimizing Queries and Deletions

Setting query priority

Queries waiting in queue for processing are queued to run in order of the
priority of the user who submitted the query, followed by the order in which the
query was submitted. No queries are run from alower priority queue until
higher priority queries have all been executed.

The following options assign queries a processing priority by user.

IQGOVERN_PRIORITY — Assigns a numeric priority (1, 2, or 3, with 1
being the highest) to queries waiting in the processing queue.

IQGOVERN_MAX_PRIORITY —Allowsthe DBA to set an upper boundary
0on IQGOVERN_PRIORITY for a user or agroup.

IQ_GOVERN_PRIORITY_TIME — Allows high priority usersto start if a
high priority (priority 1) query has been waiting in the -iqgovern queuefor
more than a designated amount of time.

To check the priority of aquery, check the IQGovernPriority attribute returned
by the sp_igcontext stored procedure.

Setting query optimization options
The following options affect query processing speed:

Performance and Tuning Guide

AGGREGATION_PREFERENCE - Controlsthe choice of agorithms for
processing an aggregate (GROUP BY, DISTINCT, SET functions). This
option is designed primarily for internal use; do not use it unless you are
an experienced database administrator.

DEFAULT_HAVING_SELECTIVITY — Sets the selectivity for all HAVING
predicates in a query, overriding optimizer estimates for the number of
rows that will be filtered by the HAVING clause.

DEFAULT_LIKE_MATCH_SELECTIVITY — Sets the default selectivity for
generic LIKE predicates, for example, LIKE 'string%string' Where
% isawildcard character. The optimizer relies on this option when other
selectivity information is not available and the match string does not start
with a set of constant characters followed by a single wildcard.

DEFAULT_LIKE_RANGE_SELECTIVITY — Sets the default selectivity for
leading constant LIKE predicates, of theform LIKE 'string%' where
the match string is a set of constant characters followed by asingle
wildcard character (%). The optimizer relies on this option when other
selectivity information is not available.

43

Controlling query processing

EARLY_PREDICATE_EXECUTION — Controls whether simple local
predicates are executed before join optimization. Under most
circumstances, it should not be changed.

ENABLED_ORDERED_PUSHDOWN_INSERTION — Controls how the
query optimizer adds in the semijoin predicates for push-down joins
selected by the join optimizer. Re-analyzes any intermediate joins that
may beindirectly affected by those semijoins. Under most circumstances,
it should not be changed.

IN_SUBQUERY_PREFERENCE — Controls the choice of agorithms for
processing IN subqueries. This option is designed primarily for internal
use; do not use it unless you are an experienced database administrator.

INDEX_PREFERENCE — Sets the index to use for query processing. The
Sybase | Q optimizer normally chooses the best index available to process
local WHERE clause predicates and other operations which can be done
withinan I1Q index. Thisoption isused to override the optimizer choicefor
testing purposes; under most circumstances it should not be changed.

JOIN_PREFERENCE — Control sthe choi ce of a gorithmswhen processing
joins. This option is designed primarily for internal use; do not use it
unless you are an experienced database administrator.

JOIN_SIMPLIFICATION_THRESHOLD — Controls the minimum number of
tables being joined together before any join optimizer simplifications are
applied. Normally you should not need to change this value.

MAX_HASH_ROWS — Sets the maximum estimated number of rows the
query optimizer will consider for a hash algorithm. The default is
1,250,000 rows. For example, if thereisajoin between two tables, and the
estimated number of rows entering the join from both tables exceeds this
option value, the optimizer will not consider a hash join. On systemswith
morethan 50M B per user of TEMP_CACHE_MEMORY_MB, you may want
to consider a higher value for this option.

MAX_JOIN_ENUMERATION — Sets the maximum number of tablesto be
optimized for join order after optimizer simplifications have been applied.
Normally you should not need to set this option.

Setting predicate hints

Sybase | Q supports a hint string that |ets you specify per-predicate hints, such
as selectivity, usefulness, index preference, and execution mode.

44

Sybase 1Q

CHAPTER 3 Optimizing Queries and Deletions

You can set selectivity in combination with three other query optimizations:
« Setting the equivalent of an index preference option

e Setting the usefulness (ordering the predicates)

« Delaying one or more predicates

Under normal circumstances, there are no advantages to delaying evaluation,
which could slow the query. If you choose to, however, you can move any of
the following four behaviorsto later in the query:

« Before optimization
o Atfirst “first fetch” time

« Atsecond“first fetch” time (inside correl ated subqueriesor ontheleft side
of anested loop pushdown join only)

¢ Not using indexes at al (“horizontal processing”)

For syntax, parameters, and examples, see “User-supplied condition hint
strings,” Chapter 3, “SQL Language Elements,” in the Sybase |Q Reference
Manual.

Optimizing delete operations
Sybase 1Q chooses one of three algorithms to process delete operations:
e Small delete

Small delete provides optimal performance when rows are deleted from
very few groups. It istypically selected when the deleteisonly 1 row or
the delete has an equality predicate on the columns with an HG
(High_Group) index. The small delete algorithm can randomly accessthe
HG. Worst case 1/0O is proportiona to the number of groups visited.

* Middelete

Mid delete provides optimal performance when rows are deleted from
several groups, but the groups are sparse enough or few enough that not
many HG pages are visited. The mid delete algorithm provides ordered
accesstothe HG. Worst case 1/0 isbounded by the number of index pages.
Mid delete has the added cost of sorting the records to delete.

e Largedelete

Performance and Tuning Guide 45

Optimizing delete operations

Delete costing

Large delete provides optimal performance when rows are deleted from a
large number of groups. The large delete scans the HG in order until all
rows are deleted. Worst case /0 isbounded by the number of index pages.
Large delete is paralel, but parallelism islimited by internal structure of
the index and the distribution of group to deleted from. Range predicates
on HG columns can be used to reduce the scan range of the large del ete.

Prior to 12.6, the HG delete cost model considered only worst case I/0
performance and therefore preferred large deletein most cases. The current
cost model considers many factorsincluding I/O costs, CPU costs, available
resources, index metadata, parallelism, and predicates available from the

query.

Specifying predicates on columns that have HG indexes greatly improves
costing. In order for the HG costing to pick an agorithm other than Large
delete, it must be able to determine the number of distinct values (groups)
affected by deletions. Distinct count is initially assumed to be lesser of the
number of index groups and the number of rows deleted. Predicates can
provide an improved or even exact estimate of the distinct count.

Costing currently does not consider the effect of range predicates on the large
delete. This can cause mid delete to be chosen in cases where large delete
would be faster. You can force the large delete algorithm if needed in these
cases, as described in the next section.

Using delete performance option

46

You can use the HG_DELETE_METHOD option to control HG delete
performance.

The value of the parameter specified with the HG_DELETE_METHOD option
forces the specified delete algorithm as follows:

e 1=Smadl Delete
e 2=LargeDelete
* 3=MidDelete

Sybase 1Q

CHAPTER 4 Using OLAP

About this chapter OLAP (online analytical processing) is an efficient method of data
analysis on information stored in arelational database. Using OLAP you

can analyze data on different dimensions, acquire result sets with

subtotaled rows, and organize datainto multidimensional cubes, al in a
single SQL query. You can also use filtersto drill down into the data,
returning result sets quickly. This chapter describes the SQL/OLAP

functionality that Sybase 1Q supports.

Note Thetablesshownin OLAP examplesare available in the asigdemo

database.
Contents Topic Page
About OLAP 438
GROUP BY clause extensions 50
Analytical functions 66
Simple aggregate functions 67
Windowing 67
Ranking functions 82
Windowing aggregate functions 87
Statistical aggregate functions 89
Distribution functions 90
Numeric functions 93
OLAP rules and restrictions 97
Additional OLAP examples 98
BNF grammar for OLAP functions 108
Performance and Tuning Guide 47

About OLAP

About OLAP

48

Extensions to the ANSI SQL standard to include complex data analysis were
introduced as an amendment to the 1999 SQL standard. Sybase 1Q added
portions of these SQL enhancementsin previous rel eases. Sybase 1Q 12.7,
however, contains comprehensive support for these extensions.

These analytic functions, which offer the ability to perform complex data
analysis within asingle SQL statement, are facilitated by a category of
software technology named On Line Analytical Processing (OLAP) whose
functionsinclude GROUP BY clause extensions and analytical functions as
shown in the following list:

* GROUP BY clause extensions— CUBE and ROLLUP
* Anaytical functions:

« Simple aggregates — AVG, COUNT, MAX, MIN, and SUM, STDDEV
and VARIANCE

Note All simple aggregate functions, except Grouping(), can be used
with an OLAP windowed function.

* Window functions:
* Windowing aggregates — AVG, COUNT, MAX, MIN, and SUM

» Ranking functions — RANK, DENSE_RANK, PERCENT_RANK,
and NTILE

e Satistical functions— STDDEV, STDDEV_SAMP,
STDDEV_POP, VARIANCE, VAR_SAMP, and VAR_POP

e Distribution functions— PERCENTILE_CONT and
PERCENTILE_DISC

e Numericfunctions— WIDTH_BUCKET, CEIL, and LN, EXP, POWER,
SQRT, and FLOOR

Some database products provide a separate OL AP module that requires you to
move data from the database into the OL AP module before analyzing it. By
contrast, Sybase |Q builds OLAP features into the database itself, making
deployment and integration with other database features, such as stored
procedures, easy and seamless.

Sybase 1Q

CHAPTER 4 Using OLAP

OLAP benefits

OLAP functions, when combined with the GROUPING, CUBE and ROLLUP
extensions, provide two primary benefits. First, they let you perform
multidimensional data analysis, data mining, time series analyses, trend
analysis, cost allocations, goal seeking, ad hoc multidimensional structural
changes, non-procedural modeling, and exception alerting, often with asingle
SQL statement. Second, the window and reporting aggregate functions use a
relational operator, called awindow that can be executed more efficiently than
semantically equivalent queries that use self-joins or correlated subqueries.
The result sets you obtain using OLAP can have subtotal rows and can be
organized into multidimensional cubes. See “Windowing” on page 67.

Moving averages and moving sums can be calculated over various intervals;
aggregations and ranks can be reset as selected column values change; and
complex ratios can be expressed in simple terms. Within the scope of asingle
query expression, you can define several different OLAP functions, each with
its own partitioning rules.

Understanding OLAP evaluation

OLAP evauation can be conceptualized as several phases of query execution
that contribute to the final result. You can identify OLAP phases of execution
by the relevant clause in the query. For example, if a SQL query specification
contains window functions, the WHERE, JOIN, GROUP BY, and HAVING
clauses are processed first. Partitions are created after the groups defined in the
GROUP BY clause and before the evaluation of the final SELECT list in the
guery’s ORDER BY clause.

For the purpose of grouping, all NULL values are considered to be in the same
group, even though NULL values are not equal to one another.

The HAVING clause acts as afilter, much like the WHERE clause, on the results
of the GROUP BY clause.

Consider the semantics of a simple query specification involving the SQL
statements and clauses, SELECT, FROM, WHERE, GROUP BY, and HAVING
from the ANSI SQL standard:

1 Thequery producesaset of rowsthat satisfy the table expressions present
in the FROM clause.

2 Predicates from the WHERE clause are applied to rows from the table.
Rowsthat fail to satisfy the WHERE clause conditions (do not equal true)
arerejected.

Performance and Tuning Guide 49

GROUP BY clause extensions

3 Except for aggregate functions, expressions from the SELECT list and in
the list and GROUP BY clause are evaluated for every remaining row.

4 Theresulting rows are grouped together based on distinct values of the
expressionsin the GROUP BY clause, treating NULL asaspecia valuein
each domain. The expressions in the GROUP BY clause serve as partition
keysif aPARTITION BY clauseis present.

5 For each partition, the aggregate functions present in the SELECT list or
HAVING clause are evaluated. Once aggregated, individual table rows are
no longer present in theintermediate result set. The new result set consists
of the GROUP BY expressions and the values of the aggregate functions
computed for each partition.

6 Conditions from the HAVING clause are applied to result groups. Groups
are eliminated that do not satisfy the HAVING clause.

7 Resultsarepartitioned on boundaries defined in the PARTITION BY clause.
OLAP windows functions (rank and aggregates) are computed for result
windows.

Figure 4-1: Semantic phases of execution

OLAP processing

PARTITION BY .
JOIN or Final ORDER BY

Data—w| WHERE |- = HAVING . -
GROUF BY Analytic DISTINGT

functions

See “Grammar rule 2" on page 108. See also “BNF grammar for OLAP
functions’ on page 108 for details on OLAP syntax.

GROUP BY clause extensions

Extensions to the GROUP BY clause let application devel opers write complex
SQL statements that

e Partition the input rows in multiple dimensions and combine multiple
subsets of result groups.

50 Sybase 1Q

CHAPTER 4 Using OLAP

Prefixes

e Createa“datacube,” providing a sparse, multi-dimensional result set for
data mining analyses.

e Create aresult set that includes the original groups, and optionally
includes a subtotal and grand-total row.

OLAP Grouping() operations, such as ROLLUP and CUBE, can be
conceptualized as prefixes and subtotal rows.

A list of prefixesis constructed for any query that contains a GROUP BY
clause. A prefix isasubset of the itemsin the GROUP BY clause and is
constructed by excluding one or more of the rightmost items from thosein the
query’s GROUP BY clause. The remaining columns are called the prefix
columns.

ROLLUP example 1 Inthefollowing ROLLUP example query, the GROUP
BY list includes two variables, Year and Quarter:

SELECT year (order_date) Year, quarter (order_ date)
Quarter, COUNT (*) Orders

FROM alt sales_ order

GROUP BY ROLLUP (Year, Quarter)

ORDER BY Year, Quarter

The query’s two prefixes are:

* Exclude Quarter — The set of prefix columns contains the single column
Year.

* Exclude both Quarter and Year — There are no prefix columns.

Year Quarter Orders

Exclide T (NULL) (NULL) 645
Quarter and Year prefix =000 THULD) 380
2000 1 a7
Exclude 2000 2 77
Quarter prefix 2000 3 91
2000 4 125

2001 [NULL] 268 |
2001 1 139
200 2 119
2001 3 10

Note The GROUP BY list contains the same number of prefixes as items.

Performance and Tuning Guide 51

GROUP BY clause extensions

Group by ROLLUP and CUBE

Group by ROLLUP

ROLLUP and subtotal
rows

52

Two important syntactic shortcuts exist to concisely specify common grouping
for prefixes. Thefirst of these patternsis called ROLLUP, and the second is
called CUBE.

The ROLLUP operator requires an ordered list of grouping expressionsto be
supplied as arguments, asin the following syntax.

SELECT ... [GROUPING (column-name) ...] ...
GROUP BY [expression [, ...]
| ROLLUP (expression [, ...]) 1]

GROUPING takes a column name as a parameter and returns a Boolean value
aslisted in Table 4-1.

Table 4-1: Values returned by GROUPING with the ROLLUP operator

If the value of the result is GROUPING returns
NULL created by a ROLLUP operation 1(TRUE)
NULL indicating the row is a subtotal 1(TRUE)
Not created by a ROLLUP operation 0 (FALSE)
A stored NULL 0 (FALSE)

ROLLUP first calculatesthe standard aggregate values specified in the GROUP
BY clause. Then ROLLUP moves from right to left through the list of grouping
columns and creates progressively higher-level subtotals. A grand total is
created at the end. If nis the number of grouping columns, then ROLLUP
creates n+1 levels of subtotals.

This SQL syntax... Defines the following sets...
GROUP BY ROLLUP (A, B, C); (A,B,C)

(A, B)

(A)

()

ROLLUP isequivalent to a UNION of aset of GROUP BY queries. The result
sets of the following queries are identical. The result set of GROUP BY (A, B)
consists of subtotalsover al thoserowsinwhich A and B are held constant. To
make a union possible, column Cisassigned NULL.

Sybase 1Q

CHAPTER 4 Using OLAP

NULL values and
subtotal rows

Is equivalent to this query without

This ROLLUP query... ROLLUP...
SELECT A, B, C, SELECT *

SUM(D) FROM ((SELECT A, B, C, SUM(D)
FROM T1 GROUP BY A, B, C) UNION ALL (SELECT
GROUP BY ROLLUP (A, B, A, B, NULL, SUM(D) GROUP BY A,

c); B) UNION ALL (SELECT A, NULL,

NULL, SUM(D) GROUP BY A)
UNION ALL (SELECT NULL, NULL,
NULL, SUM(D)))

Subtotal rows can help you analyze data, especialy if there are large amounts
of data, different dimensionsto the data, data contained in different tables, or
even different databases altogether. For example, a sales manager might find
reports on sales figures broken down by sales representative, region, and
quarter to be useful in understanding patterns in sales. Subtotals for the data
give the sales manager a picture of overall sales from different perspectives.
Analyzing thisdatais easier when summary information is provided based on
the criteria that the sales manager wants to compare.

With OLAP, the procedure for analyzing and computing row and column
subtotalsisinvisible to users. Figure 4-2 shows conceptually how Sybase IQ
creates subtotals:

Figure 4-2: Subtotals

II/'_"H\ ™y ,/ %
1_} {2 : '\3_/' }
Variables arranged
by ORDER BY
clause

Subtotals attached to
result set

Query calculated

1 Thisstepyields an intermediate result set that has not yet considered the
ROLLUP.

2 Subtotals are evaluated and attached to the result set.
3 Therows are arranged according to the ORDER BY clause in the query.

When rows in the input to a GROUP BY operation contain NULL, thereisthe
possibility of confusion between subtotal rows added by the ROLLUP or CUBE
operationsand rowsthat contain NUL L valuesthat are part of the original input
data.

The Grouping() function distinguishes subtotal rows from others by taking a
column in the GROUP BY list asitsargument, and returning 1 if the columnis
NULL because the row is a subtotal row, and O otherwise.

Performance and Tuning Guide 53

GROUP BY clause extensions

The following example includes Grouping() columnsin the result set. Rows
are highlighted that contain NULL as aresult of the input data, not because
they are subtotal rows. The Grouping() columns are highlighted. The query is
an outer join between the employee table and the sales_order table. The query
selects female employees who live in either Texas, New York, or Caifornia.
NULL appears in the columns corresponding to those femal e employees who
are not sales representatives (and therefore have no sales).

SELECT employee.emp id AS Employee, year (order date) AS
Year, COUNT (*) AS Orders, GROUPING (Employee) AS
GE, GROUPING (Year) AS GY
FROM employee LEFT OUTER JOIN alt sales order ON
employee.emp id = alt_sales_order.sales_rep
WHERE employee.sex IN ('F') AND employee.state
IN ('TX', 'CA', 'NY')

GROUP BY ROLLUP (Year, Employee)

ORDER BY Year, Employee

The following result set is from the query.

emp_ id year Orders GY GE
NULL NULL 1 1 0
NULL NULL 165 1 1
1090 NULL 1 0 0
NULL 2000 98 1 0

667 2000 34 0 0

949 2000 31 0 0
1142 2000 33 0 0
NULL 2001 66 1 0

667 2001 20 0 0
949 2001 22 0 0
1142 2001 24 0 0

For each prefix, asubtotal row is constructed that correspondsto all rowsin
which the prefix columns have the same value.

To demonstrate ROLLUP results, examine the example query again:

SELECT year (order date) AS Year, quarter
(order date) AS Quarter, COUNT (*) Orders
FROM sales order
GROUP BY ROLLUP (Year, Quarter)
ORDER BY Year, Quarter

54 Sybase 1Q

CHAPTER 4 Using OLAP

Inthisquery, the prefix containing the Year column leads to asummary row for
Year=2000 and a summary row for Year=2001. A single summary row for the
prefix has no columns, which is a subtotal over al rows in the intermediate
result set.

The value of each column in a subtotal row is asfollows:

¢ Columnincluded in the prefix — The val ue of the column. For example, in
the preceding query, the value of the Year column for the subtotal over
rows with Year=2000 is 2000.

e Column excluded from the prefix — NULL. For example, the Quarter
column hasavalue of NULL for the subtotal rows generated by the prefix
consisting of the Year column.

* Aggregate function — An aggregate over the values of the excluded
columns.

Subtotal values are computed over the rows in the underlying data, not
over the aggregated rows. In many cases, such as SUM or COUNT, the
result is the same, but the distinction isimportant in the case of statistical
functions such as AVG, STDDEV, and VARIANCE, for which the result
differs.

Restrictions on the ROLLUP operator are:

¢ TheROLLUP operator supports al of the aggregate functions available to
the GROUP BY clause except COUNT DISTINCT and SUM DISTINCT.

¢ ROLLUP canonly be used in the SELECT statement; you cannot use
ROLLUP in asubquery.

e A grouping specification that combines multiple ROLLUP, CUBE, and
GROUP BY columnsin the same GROUP BY clauseis not currently
supported.

¢ Constant expressions as GROUP BY keys are not supported.

For the general format of an expression, see “Expressions,” “SQL Language
Elements,” in the Sybase 1Q Reference Manual.

ROLLUP example 2 Thefollowing exampleillustrates the use of ROLLUP
and GROUPING and displays a set of mask columns created by GROUPING.
ThedigitsOand 1 displayed in columns S, N, and C are the values returned by
GROUPING to represent the value of the ROLLUP result. A program can
analyze the results of this query by using amask of “011” to identify subtotal
rows and “111” to identify the row of overall totals.

SELECT size, name, color, SUM(quantity),

Performance and Tuning Guide 55

GROUP BY clause extensions

56

GROUPING (size) AS S,
GROUPING (name) AS N,
GROUPING (color) AS C
FROM product
GROUP BY ROLLUP (size, name, color) HAVING (S=1 or N=1
or C=1)
ORDER BY size, name, color;

The following are the results from the above query:

size name color SUM S N C
(NULL) (NULL) (NULL) 496 1 1 1
Large (NULL) (NULL) 71 0 1 1
Large Sweatshirt (NULL) 71 0 0 1
Medium (NULL) (NULL) 134 0 1 1
Medium Shorts (NULL) 80 0 0 1
Medium Tee Shirt (NULL) 54 0 0 1
One size fits all (NULL) (NULL) 263 0 1 1
One size fits all Baseball Cap (NULL) 124 0 0 1
One size fits all Tee Shirt (NULL) 75 0 0 1
One size fits all Visor (NULL) 64 0 0 1
Small (NULL) (NULL) 28 0 1 1
Small Tee Shirt (NULL) 28 0 1 1

ROLLUP example 3 The following exampleillustrates the use of
GROUPING todistinguish stored NULL valuesand “NULL" values created by
the ROLLUP operation. Stored NULL values are then displayed as[NULL] in
column prod_id, and “NULL" values created by ROLLUP are replaced with
ALL in column PROD_IDS, as specified in the query.

SELECT year (ship date) AS Year, prod id, SUM(quantity)
AS OSum, CASE WHEN GROUPING (Year) = 1 THEN 'ALL' ELSE
CAST (Year AS char(8)) END, CASE WHEN
GROUPING (prod_id) = 1 THEN 'ALL' ELSE CAST (prod_id
as char(8)) END

FROM alt sales order items

GROUP BY ROLLUP (Year, prod id) HAVING OSum > 36

ORDER BY Year, prod id;

The following are the results from the above query:

ship date prod id SUM SHIP DATES PROD_IDS
NULL NULL 28359 ALL ALL
2000 NULL 17642 2000 ALL
2000 300 1476 2000 300

Sybase 1Q

CHAPTER 4 Using OLAP

2000
2000
2000
2000
2000
2000
2000
2000
2000
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001

301
302
400
401
500
501
600
601
700
NULL
300
301
302
400
401
500
501
600
601
700

1440
1152
1946
1596
1704
1572
2124
1932
2700
10717
888
948
996
1332
1105
948
936
936
792
1836

2000
2000
2000
2000
2000
2000
2000
2000
2000
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001

301
302
400
401
500
501
600
601
700
ALL
300
301
302
400
401
500
501
600
601
700

ROLLUP example 4 The next example query returns data that summarizes
the number of sales orders by year and quarter.

SELECT year (order date) AS Year, quarter (order date)
AS Orders

AS Quarter,
FROM alt_sales_order

GROUP BY ROLLUP (Year,

ORDER BY Year,

COUNT (*)

Quarter)

Quarter

Thefollowing figureillustratesthe query resultswith subtotal rowshighlighted
in the result set. Each subtotal row containsa NULL value in the column or
columns over which the subtotal is computed.

Performance and Tuning Guide

Year Quarter Orders
(ONoLp (NULD) 648 |
(2) 2000 (NULL) 380 |
(2000 1 87
3) 2000 2 77
L 2000 3 91

- 2000 4 235
(2] 2001 (NULL) 268 |
f, 2001 1 139
= 2001 2 119
2001 3 10

57

GROUP BY clause extensions

58

Row [1] represents the total number of orders across both years (2000, 2001)
and al quarters. Thisrow containsNULL in both the Year and Quarter columns
and isthe row where al columns were excluded from the prefix.

Note Every ROLLUP operation returns aresult set with one row where NULL
appears in each column except for the aggregate column. This row represents
the summary of each column to the aggregate function. For example, if SUM
were the aggregate function in question, this row would represent the grand
total of al values.

Row [2] represent the total number of ordersin the years 2000 and 2001,
respectively. Both rows contain NULL in the Quarter column because the
valuesin that column are rolled up to give a subtotal for Year. The number of
rows likethisin your result set depends on the number of variablesthat appear
in your ROLLUP query.

The remaining rows marked [3] provide summary information by giving the
total number of ordersfor each quarter in both years.

ROLLUP example 5 Thisexample of the ROLLUP operation returns a
dlightly more complicated result set, which summarizes the number of sales
orders by year, quarter, and region. In this example, only the first and second
guarters and two selected regions (Canada and the Eastern region) are
examined.

SELECT year (order date) AS Year, quarter (order date)
AS Quarter, region, COUNT(*) AS Orders
FROM alt sales order WHERE region IN ('Canada',
'Eastern') AND quarter IN (1, 2)

GROUP BY ROLLUP (Year, Quarter, Region)

ORDER BY Year, Quarter, Region

Sybase 1Q

CHAPTER 4 Using OLAP

The following figure illustrates the result set from the above query. Each
subtotal row contains aNULL in the column or columns over which the

subtotal is computed.

Year Quarter Region Orders
@_> (NULL) (NULLD (NULL) 183
—— 2000 (NULL) (NULL) 68
2000 1 (NULL) 36
2000 1 Canada 3
2000 1 Eastern 33
fé\,. 2000 2 (NULL) 32
2000 2 Canada 3
2000 2 Eastern 29
—| 2001 (NULL) (NULL) 115 |
2001 1 (NULL) 57
2001 1 Canada 11
2001 1 Eastern 46
2001 2 (NULL) 58
2001 2 Canada 4
2001 2 Eastern 54

Row [1] isan aggregate over all rowsand containsNULL inthe Year, Quarter,
and Region columns. Thevaluein the Orders column of thisrow representsthe
total number of ordersin Canada and the Eastern region in quarters 1 and 2 in

the years 2000 and 2001.

The rows marked [2] represent the total number of sales ordersin each year
(2000) and (2001) in quarters 1 and 2 in Canada and the Eastern region. The
values of these rows [2] are equal to the grand total represented in row [1].

Performance and Tuning Guide

59

GROUP BY clause extensions

The rows marked [3] provide data about the total number of orders for the

given year and quarter by region.

Year Quarter Region Crders

(NULL) (NULL (NULL) 183

2000 (NULL) (NULL) 68
2000 1 (NULL) 36 |

2000 1 Canada 3

/ 2000 1 Eastern 33
2000 2 (NULL) 32 |
2000 2 Canada 3

(3) 2000 2 Eastemn 29
) 2001 (NULL) (NULL) 115
2001 1 (NULL) 57 |

2001 1 Canada 11

2001 1 Eastern 46
2001 2 (NULL) 58 |

2001 2 Canada 4

2001 2 Eastern 54

The rows marked [4] provide data about the total number of orders for each
year, each quarter, and each region in the result set.

Year Quarter Region Orders

(NULL) (NULL (NULL) 183

2000 (NULL) (NULL) 68

2000 1 (NULL) 36

2000 1 Canada 3
/12000 1 Eastern a3
2000 2 (NULL) 32

2000 2 Canada 3

2000 2 Eastern 29

a 2001 (NULL) {NULL) 115
= 2001 1 (NULL) 57
\ 2001 1 Canada 11
\ 2001 1 Eastern 46
2001 2 (NULL) 58

\ 2001 2 Canada 4
2001 2 Eastern 54

60

Sybase 1Q

CHAPTER 4 Using OLAP

Group by CUBE

The CUBE operator inthe GROUP BY clause analyzes data by forming the data
into groups in more than one dimension (grouping expression). CUBE requires
an ordered list of dimensions as arguments and enablesthe SELECT statement
to calculate subtotals for all possible combinations of the group of dimensions
that you specify in the query and generates aresult set that shows aggregates
for all combinations of valuesin selected columns.

CUBE syntax:

SELECT ... [GROUPING (column-name) ...] ...
GROUP BY [expression [,...]
| CUBE (expression [,...])]

GROUPING takes a column name as a parameter and returns a Boolean value
aslisted in Table 4-2.

Table 4-2: Values returned by GROUPING with the CUBE operator

If the value of the result is GROUPING returns
NULL created by a CUBE operation 1 (TRUE)
NULL indicating the row is a subtotal 1 (TRUE)
Not created by a CUBE operation 0 (FALSE)
A stored NULL 0 (FALSE)

CUBE is particularly useful when your dimensions are not a part of the same
hierarchy.

This SQL syntax...
GROUP BY CUBE (A, B, C);

Defines the following sets...
(A,B,C)

(A, B)

(A, Q)

(A)

(8,0

(B)

©

()

Restrictions on the CUBE operator are:

* TheCUBE operator supportsall of the aggregate functions available to the
GROUP BY clause, but CUBE is currently not supported with COUNT
DISTINCT or SUM DISTINCT.

Performance and Tuning Guide 61

GROUP BY clause extensions

62

e CUBE iscurrently not supported with the inverse distribution analytical
functions, PERCENTILE_CONT and PERCENTILE_DISC.

e CUBE canonly beusedinthe SELECT statement; you cannot use CUBE in
a SELECT subquery.

* A GROUPING specification that combines ROLLUP, CUBE, and GROUP
BY columnsin the same GROUP BY clauseis not currently supported.

» Constant expressions as GROUP BY keys are not supported.

Note Performance of CUBE will diminish if the size of the cube exceeds the
size of the temp cache.

GROUPING can be used with the CUBE operator to distinguish between stored
NULL valuesand “NULL” valuesin query results created by CUBE.

See the examplesin the description of the ROLLUP operator for illustrations of
the use of the GROUPING function to interpret results.

All CUBE operations return result sets with at least one row where NULL
appearsin each column except for the aggregate columns. This row represents
the summary of each column to the aggregate function.

CUBE example 1 The following queries use data from a census, including
the state (geographic location), gender, education level, and income of people.
The first query contains a GROUP BY clause that organizes the results of the
guery into groups of rows, according to the val ues of the columns state, gender,
and education in the table census and computes the average income and the
total counts of each group. This query uses only the GROUP BY clause without
the CUBE operator to group the rows.

SELECT state, sex as gender, dept_id, COUNT (*),
CAST (ROUND (AVG (salary) ,2) AS NUMERIC(18,2))
AS average

FROM employee WHERE state IN ('MA' , 'CA')

GROUP BY state, sex, dept_id

ORDER BY 1,2;

The following are the results from the above query:

state gender dept id count(*) avg salary

CA F 200 2 58650.00
CA M 200 1 39300.00
MA F 500 4 29950.00
MA F 400 8 41959.88

Sybase 1Q

CHAPTER 4 Using OLAP

MA F 300 7 59685.71
MA F 200 3 60451.00
MA F 100 6 58243 .42
MA M 300 2 58850.00
MA M 500 5 36793.96
MA M 400 8 45321.47
MA M 100 13 58563.59
MA M 200 8 46810.63

Use the CUBE extension of the GROUP BY clausg, if you want to compute the
average income in the entire census of state, gender, and education and
compute the averageincomein all possible combinations of the columnsstate,
gender, and education, while making only asingle passthrough the censusdata.
For example, use the CUBE operator if you want to compute the average
income of al femalesin all states, or compute the average income of al people
in the census according to their education and geographic location.

When CUBE calculates agroup, aNULL value is generated for the columns
whose group is calculated. The GROUPING function must be used to
distinguish whether aNULL isaNULL stored in the database or aNULL
resulting from CUBE. The GROUPING function returns 1 if the designated
column has been merged to a higher level group.

CUBE example 2 Thefollowing query illustrates the use of the GROUPING
function with GROUP BY CUBE.

SELECT case grouping(state) WHEN 1 THEN 'ALL' ELSE state
END AS c_state, case grouping(sex) WHEN 1 THEN 'ALL'
ELSE sex end AS c_gender, case grouping(dept_ id)
WHEN 1 THEN 'ALL' ELSE cast (dept_id as char(4)) end
AS c_dept, COUNT(*), CAST(ROUND (AVG (salary),2) AS
NUMERIC(18,2))AS AVERAGE

FROM employee WHERE state IN ('MA' , 'CA')

GROUP BY CUBE (state, sex, dept id)

ORDER BY 1,2,3;

The results of this query are shown below. Note that the NULLs generated by
CUBE toindicate asubtotal row are replaced with ALL in the subtotal rows, as
specified in the query.

state sex dept_id count avg salary
ALL ALL 100 19 58462.48
ALL ALL 200 14 50888.43
ALL ALL 300 9 59500.00
ALL ALL 400 16 43640.67
ALL ALL 500 9 33752.20

Performance and Tuning Guide 63

GROUP BY clause extensions

ALL ALL ALL 67 50160.38
ALL F 100 6 58243 .42
ALL F 200 5 59730.60
ALL F 300 7 59685.71
ALL F 400 8 41959.88
ALL F 500 4 29950.00
ALL F ALL 30 50713.08
ALL M 100 13 58563.59
ALL M 200 9 45976 .11
ALL M 300 2 58850.00
ALL M 400 8 45321.47
ALL M 500 5 36793.96
ALL M ALL 37 49712.25
CA ALL 200 3 52200.00
CA ALL ALL 3 52200.00
CA F 200 2 58650.00
CA F ALL 2 58650.00
CA M 200 1 39300.00
CA M ALL 1 39300.00
MA ALL 100 19 58462.48
MA ALL 200 11 50530.73
MA ALL 300 9 59500.00
MA ALL 400 16 43640.67
MA ALL 500 9 33752.20
MA ALL ALL 64 50064.78
MA F 100 6 58243 .42
MA F 200 3 60451.00
MA F 300 7 59685.71
MA F 400 8 41959.88
MA F 500 4 29950.00
MA F ALL 28 50146.16
MA M 100 13 58563.59
MA M 200 8 46810.63
MA M 300 2 58850.00
MA M 400 8 45321.47
MA M 500 5 36793.96
MA M ALL 36 50001.48

CUBE example 3 In this example, the query returns aresult set that
summarizes the total number of orders and then calcul ates subtotas for the
number of orders by year and quarter.

Note Asthe number of variablesthat you want to compare increases, the cost
of computing the cube increases exponentially.

64 Sybase 1Q

CHAPTER 4 Using OLAP

SELECT year (order date) AS Year, quarter (order date)
AS Quarter, COUNT (*

FROM alt_sales_order

) AS Orders

GROUP BY CUBE (Year, Quarter)

ORDER BY Year, Quarter

The figure that follows represents the result set from the query. The subtotal

rows are highlighted in the result set. Each subtotal row hasa NULL in the

column or columns over which the subtotal is computed.

Year Quarter Orders
(o (NULL) 548
(2] (NULD) 1 276

(NULL) 2 196

(NULL) 3 101
| (NULL) 4 125
(3] 2000 NOLD) 380

2000 1 87

2000 2 77

2000 3 91
. 2000 4 125
(&) 2001 (NULD) 268

2001 1 139

2001 2 119

2001 3 10

Thefirst highlighted row [1] represents the total number of orders across both
yearsand all quarters. The value in the Orders column is the sum of the values
in each of the rows marked [3]. It isalso the sum of the four valuesin the rows

marked [2].

The next set of highlighted rows [2] represents the total number of orders by

quarter across both years. The two rows marked by [3] represent the total

number of ordersacross all quartersfor the years 2000 and 2001, respectively.

Performance and Tuning Guide

65

Analytical functions

Analytical functions

66

Sybase 1Q offers both simple and windowed aggregation functions that offer
the ability to perform complex data analysis within asingle SQL statement.
These functions can be used to compute answers to queries such as “What is
the quarterly moving average of the Dow Jones Industrial average” or “List all
employees and their cumulative salaries for each department.” Moving
averages and cumulative sums can be calculated over variousintervals, and
aggregations and ranks can be partitioned such that aggregate calculation is
reset when partition values change. Within the scope of a single query
expression, you can define several different OL APfunctions, each withitsown
arbitrary partitioning rules. Analytical functions can be broken into two
categories

» Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM
summarize data over a group of rows from the database. The groups are
formed using the GROUP BY clause of the SELECT statement.

* Unary statistical aggregate functions that take one argument include
STDDEV, STDDEV_SAMP, STDDEV_POP, VARIANCE, VAR_SAMP, and
VAR_POP().

Both the simple and unary categories of aggregates summarize data over a
group of rows from the database and can be used with awindow specification
to compute a moving window over aresult set asit is processed.

Note The aggregate functions AVG, SUM, STDDEV, STDDEV_POP,
STDDEV_SAMP, VAR_POP, VAR_SAMP, and VARIANCE do not support binary
data types BINARY and VARBINARY.

Sybase 1Q

CHAPTER 4 Using OLAP

Simple aggregate functions

Windowing

Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM
summarize dataover agroup of rowsfrom the database. The groups are formed
using the GROUP BY clause of the SELECT statement. These aggregates are
alowed only in the select list and in the HAVING and ORDER BY clauses of a
SELECT statement.

Note With the exception of Grouping() functions, both the simple and unary

aggregates can be used in a windowing function that incorporates a <window
clause> in a SQL query specification (awindow) that conceptually creates a

moving window over aresult set asit is processed. See“ Windowing” on page
67.

For more information, see “Aggregate functions,” Chapter 5, “SQL
Functions,” in the Sybase | Q Reference Manual.

A magjor feature of the ANSI SQL extensionsfor OLAP isaconstruct called a
window. Thiswindowing extension let users divide result sets of aquery (or a
logical partition of aquery) into groups of rows called partitions and determine
subsets of rows to aggregate with respect to the current row.

You can use three classes of window functions with awindow: ranking
functions, the row numbering function, and window aggregate functions.

<WINDOWED TABLE FUNCTION TYPE> ::=
<RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>
| ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
| <WINDOW AGGREGATE FUNCTION>

See also “ Grammar rule 6” on page 109.

Windowing extensions specify awindow function type over awindow name or
specification and are applied to partitioned result sets within the scope of a
single query expression. A window partition is a subset of rows returned by a
query, as defined by one or more columnsin a special OVER clause:

olap function() OVER (PARTITION BY coll, col2...)

Performance and Tuning Guide 67

Analytical functions

An OLAP window’s
three essential parts

68

Windowing operations et you establish information such as the ranking of
each row within its partition, the distribution of valuesin rowswithin a
partition, and similar operations. Windowing aso lets you compute moving
averages and sumson your data, enhancing the ability to evaluate your dataand
itsimpact on your operations.

A window partition is a subset of rows returned by a query, as defined by one
or more columnsin aspecial OVER() clause:

OLAP_FUNCTION() OVER (PARTITION BY coll, col2...)

The OLAP windows comprise three essential aspects: window partitioning,
window ordering, and window framing. Each has a significant impact on the
specific rows of data visiblein awindow at any point in time. Meanwhile, the
OLAP OVER clause differentiates OL AP functions from other analytic or
reporting functions with three distinct capabilities:

» Defining window partitions (PARTITION BY clause). See “Window
partitioning” on page 69.

* Ordering rows within partitions (ORDER BY clause). See “Window
ordering” on page 70.

» Defining window frames (ROWS/RANGE specification). “Window
framing” on page 71.

A name can be specified for an OLAP window specification. Thisname can be
used to specify multiple windows functions to avoid redundant window
definitions. In this usage, the keyword, wINDOW, isfollowed by at least one
window definition, separated by commas. A window definition includes the
name by which the window is known in the query and the details from the
windows specification, which letsyou to definewindow partitioning, ordering,
and framing:

<WINDOW CLAUSE> ::= <WINDOW WINDOW DEFINITION LIST>

<WINDOW DEFINITION LIST> ::=
<WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>

b

<WINDOW DEFINITION> ::=
<NEW WINDOW NAME> AS <WINDOW SPECIFICATION>

<WINDOW SPECIFICATION DETAILS> ::=
[<EXISTING WINDOW NAME>]
[<WINDOW PARTITION CLAUSE>]
[<WINDOW ORDER CLAUSE>]
[<WINDOW FRAME CLAUSE>]

Sybase 1Q

CHAPTER 4 Using OLAP

For each row in awindow partition, users can define a window frame, which
may vary the specific range of rows used to perform any computation on the
current row of the partition. The current row provides the reference point for
determining the start and end points of the window frame.

Window specifications can be based on either a physical number of rowsusing
awindow specification that defines awindow frame unit of ROWSor alogical
interval of anumeric value, using awindow specification that defines a

window frame unit of RANGE. See “Window framing” on page 71 for details.

Within OLAP windowing operations, you can use the following functional
categories:

« “Ranking functions’ on page 82

* “Windowing aggregate functions’ on page 87
« “Satistical aggregate functions’ on page 89

e “Distribution functions’ on page 90

Window partitioning
Window partitioning is the division of user-specified result sets (input rows)
using aPARTITION BY clause. A partition is defined by one or more value
expressions separated by commas. Partitioned datais also implicitly sorted and
the default sort order is ascending (ASC).

<WINDOW PARTITION CLAUSE> ::=
PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

If awindow partition clauseis not specified, then theinput is treated as single
partition.

Note Theterm, partition, as used with analytic functions, refers only to
dividing the set of result rows using a PARTITION BY clause.

A window partition can be defined based on an arbitrary expression. Also,
because window partitioning occurs after GROUPING (if aGROUP BY clause
is specified), the result of any aggregate function, such as SUM, AVG, and
VARIANCE, can be used in a partitioning expression. Therefore, partitions
provide another opportunity to perform grouping and ordering operationsin
addition to the GROUP BY and ORDER BY clauses; for example, you can
construct queries that compute aggregate functions over aggregate functions,
such as the maximum SUM of a particular quantity.

Performance and Tuning Guide 69

Analytical functions

Window ordering

70

You can specify aPARTITION BY clause, even it thereisno GROUP BY clause.

Window ordering is the arrangement of results (rows) within each window
partition using awindow order clause, which contains one or more value
expressions separated by commas. If awindow order clause is not specified,
the input rows could be processed in an arbitrary order.

<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

The OLAP window order clause is different from the ORDER BY clause that
can be appended to anon-windowed query expression. See“Grammar rule 31”
on page 111.

The ORDER BY clausein an OLAP function, for example, typically definesthe
expressions for sorting rows within window partitions; however, you can use
the ORDER BY clause without a PARTITION BY clause, in which case the sort
specification ensures that the OLAP function is applied to a meaningful (and

intended) ordering of the intermediate result set.

An order specification is aprerequisite for the ranking family of OLAP
functions; it isthe ORDER BY clause, not an argument to the function itself,
that identifies the measures for the ranking values. In the case of OLAP
aggregates, the ORDER BY clauseis not required in general, but it isa
prerequisite to defining awindow frame. (See“Window framing” on page 71.)
Thisis because the partitioned rows must be sorted before the appropriate
aggregate values can be computed for each frame.

The ORDER BY clause includes semantics for defining ascending and
descending sorts, aswell asrulesfor thetreatment of NULL values. By default,
OL AP functions assume an ascending order, where the lowest measured value
isranked 1.

Sybase 1Q

CHAPTER 4 Using OLAP

Window framing

Although this behavior is consistent with the default behavior of the ORDER
BY clause that ends a SELECT statement, it is counter-intuitive for most
sequential calculations. OLAP calculations often require a descending order,
where the highest measured value is ranked 1; this requirement must be
explicitly stated in the ORDER BY clause with the DESC keyword.

Note Ranking functions require a<window order clause> because they are
defined only over sorted input. Aswith an <order by clause> in a<query
specification>, the default sort sequence is ascending.

The use of a<window frame unit> of RANGE also requires the existence of a
<window order clause>. In the case of RANGE, the <window order clause>
may only consist of a single expression. See “Window framing.”

For non-ranking aggregate OL AP functions, you can define awindow frame
with awindow frame clause, which specifies the beginning and end of the
window relative to the current row.

<WINDOW FRAME CLAUSE> ::=
<WINDOW FRAME UNIT>
<WINDOW FRAME EXTENT>

This OLAP function is computed with respect to the contents of amoving
frame rather than the fixed contents of the whole partition. Depending on its
definition, the partition has a start row and an end row, and the window frame
slides from the starting point to the end of the partition.

Performance and Tuning Guide 71

Analytical functions

UNBOUNDED
PRECEEDING and
FOLLOWING

72

Figure 4-3: Three-row moving window with partitioned input

Partition A

Currant Row : Sliding Window
] [

Current
Partition

Direction of Travel

-

Partition C |

Window frames can be defined by an unbounded aggregation group that either
extends back to the beginning of the partition (UNBOUNDED PRECEDING)
or extendsto the end of the partition (UNBOUNDED FOLLOWING), or both.

UNBOUNDED PRECEDING includes all rows within the partition preceding
the current row, which can be specified with either ROWS or RANGE.
UNBOUNDED FOLLOWING includesall rowswithin the partition following
the current row, which can be specified with either ROWS or RANGE. See
“ROWS’ on page 74 and “RANGE" on page 77.

The value FOLLOWING specifies either the range or number of rows
following the current row. If ROWS is specified, then the value is a positive
integer indicating a number of rows. If RANGE is specified, the window
includes any rowsthat are less than the current row plus the specified numeric
value. For the RANGE case, the data type of the windowed value must be
comparable to the type of the sort key expression of the ORDER BY clause.
There can be only one sort key expression, and the data type of the sort key
expression must allow addition.

Sybase 1Q

CHAPTER 4 Using OLAP

CURRENT ROW
concept

The value PREDCEEDING specifies either the range or number of rows
preceding the current row. If ROWS s specified, then the value is a positive
integer indicating a number of rows. If RANGE is specified, the window
includes any rows that are less than the current row minus the specified
numeric value. For the RANGE case, the datatype of the windowed val ue must
be comparable to the type of the sort key expression of the ORDER BY clause.
There can be only one sort key expression, and the data type of the sort key
expression must allow subtraction. This clause cannot be specified in second
bound group if the first bound group is CURRENT ROW or value
FOLLOWING.

The combination BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING provides an aggregate over an entire partition,
without the need to construct ajoin to a grouped query. An aggregate over an
entire partition is also known as a reporting aggregate.

In physical aggregation groups, rows are included or excluded based on their
positionrelativeto the current row, by counting adjacent rows. The current row
issimply areference to the next row in aquery’sintermediate results. As the
current row advances, the window is reeval uated based on the new set of rows
that lie within the window. There is no requirement that the current row be
included in awindow.

If awindow frame clause is not specified, the default window frame depends
on whether or not awindow order clauseis specified:

« If thewindow specification containsawindow order clause, thewindow’s
start point is UNBOUNDED PRECEDING, and the end point is CURRENT
ROW, thus defining a varying-size window suitable for computing
cumulative values.

¢ If the window specification does not contain awindow order clause, the
window’s start point is UNBOUNDED PRECEDING, and the end point is
UNBOUNDED FOLLOWING, thus defining awindow of fixed size,
regardless of the current row.

Note A window frame clause cannot be used with a ranking function.

You can a'so define awindow by specifying awindow frame unit that is row-
based (rows specification) or value-based (range specification).

<WINDOW FRAME UNIT> ::= ROWS | RANGE

<WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW
FRAME BETWEEN>

Performance and Tuning Guide 73

Analytical functions

ROWS

74

When a window frame extent specifies BETWEEN, it explicitly provides the
beginning and end of awindow frame.

If thewindow frame extent specifies only one of thesetwo valuesthenthe other
value defaultsto CURRENT ROW.

The window frame unit, ROWS, defines awindow in the specified number of
rows before or after the current row, which serves as the reference point that
determines the start and end of awindow. Each analytical calculation is based
on the current row within a partition. To produce determinative results for a
window expressed in rows, the ordering expression should be unique.

The reference point for all window framesisthe current row. The SQL/OLAP
syntax provides mechanisms for defining a row-based window frame as any
number of rows preceding or following the current row or preceding and
following the current row.

The following list illustrates common examples of awindow frame unit:

* Rows Between Unbounded Preceding and Current Row — specifies a
window whose start point is the beginning of each partition and the end
point is the current row and is often used to construct windows that
compute cumulative results, such as cumulative sums.

* Rows Between Unbounded Preceding and Unbounded Following —
specifies a fixed window, regardless of the current row, over the entire
partition. The value of awindow aggregatefunctionis, therefore, identical
in each row of the partition.

* Rows Between 1 Preceding and 1 Following — specifies afixed-sized
moving window over three adjacent rows, one each before and after the
current row. You can use this window frame unit to compute, for example,
a 3-day or 3-month moving average. See Figure 4-3 on page 72.

Sybase 1Q

CHAPTER 4 Using OLAP

Row-based window frames

Be aware of non-meaningful resultsthat could be generated using ROWS
dueto gapsin thewindowed values. If the set of valuesis not continuous,
consider using RANGE instead of ROWS, because a window definition
based on RANGE automatically handle adjacent rows with duplicate
values and will not include other rows when there are gapsin the range.

Note In the case of amoving window, it is assumed that rows containing
NULL valuesexist beforethefirst row, and after thelast row, in theinput.
What this meansisthat with a3-row moving window, the computation for
the last row in the input—the current rowv—will include the immediately
preceding row and aNULL value.

Rows Between Current Row and Current Row —restrictsthe window to the
current row only.

Rows Between 1 Preceding and 1 Preceding — specifies asingle row
window consisting only of the preceding row, with respect to the current
row. In combination with another window function that computes a value
based on the current row only, this construction makesit possibleto easily
compute deltas, or differencesin value, between adjacent rows. See
“Computing deltas between adjacent rows” on page 79.

In the example in Figure 4-4, rows[1] through

[5] represent a partition; each row becomes the current row as the OLAP
window frame slides forward. The frame is defined as Between Current Row
And 2 Following, so each frame includes a maximum of three rows and a
minimum of onerow. When the frame reachesthe end of the partition, only the
current row isincluded. The shaded areas indicate which rows are excluded
from the frame at each step in Figure 4-4.

Figure 4-4: Row-based window frames

The

Performance and Tuning Guide

Current Riowe
Current Fowe +1
Current Row +2

Current Ry
Current Rowe +1
Current Rowe +2

Current Ry
Current Fow +1
Current Row +2

Current Riowy
Current Rowe +1

oW Ry =

Current Ry

window frame in Figure 4-4 imposes the following rules:

When row [1] is the current row, rows[4] and [5] are excluded.
When row [2] is the current row, rows[5] and [1] are excluded.
When row [3] is the current row, rows[1] and [2] are excluded.

When row [4] is the current row, rows[1], [2], and [3] are excluded.

75

Analytical functions

76

* When row [5] isthe current row, rows[1], [2], [3], and [4] are excluded.

The following diagram applies these rules to a specific set of values, showing
the OLAP AVG function that would be calcul ated for each row. The dliding
calcul ations produce amoving average with aninterval of three rows or fewer,
depending on which row is the current row:

Fow | Dimension | Measure | OLAP_ AV G
1 A 10 #5383
2 A 50 }—- == ___»900
3 A 100 } — » 240
4 A 120 ’} -1 310
5 A 500 }_ }——»500

The following example demonstrates a sliding window:

SELECT dimension, measure,
AVG (measure) OVER (partition BY dimension
ORDER BY measure
ROWS BETWEEN CURRENT ROW and 2 FOLLOWING)
AS olap_ avg
FROM ...

The averages are computed as follows:

e Row[1] =(10+ 50 + 100)/3

* Row [2] = (50+ 100 + 120)/3

« Row [3] = (100 + 120 + 500)/3

« Row [4] = (120 + 500 + NULL)/3

« Row[5] = (500 + NULL + NULL)/3

Similar calculations would be computed for all subsequent partitionsin the
result set (such as, B, C, and so on).

If there are no rows in the current window, the result isNULL, except for
COUNT.

Sybase 1Q

CHAPTER 4 Using OLAP

RANGE

Range-based window frames The previous example, Row-based window
frames, demonstrates one among many row-based window frame definitions.
The SQL/OLAP syntax also supports another kind of window frame whose
limits are defined in terms of a value-based—or range-based—set of rows,
rather than a specific sequence of rows.

Value-based window frames define rows within awindow partition that
contain a specific range of numeric values. The OLAP function’s ORDER BY
clause defines the numeric column to which the range specification is applied,
relativeto the current row’ svalue for that column. The range specification uses
the same syntax as the rows specification, but the syntax isinterpreted in a
different way.

Thewindow frame unit, RANGE, defines awindow frame whose contents are
determined by finding rowsinwhich the ordering column hasvalueswithinthe
specified range of value relative to the current row. Thisis called alogical
offset of awindow frame, which you can specify with constants, such as“3
preceding,” or any expression that can be evaluated to a numeric constant.
When using awindow defined with RANGE, there can be only asingle
numeric expression in the ORDER BY clause.

For example, aframe could be defined asthe set of rowswith year values some
number of years preceding or following the current row’s year:

ORDER BY year ASC range BETWEEN CURRENT ROW and 1
PRECEDING

In the above example query, 1 preceding means the current row’s year value
minus 1.

Thiskind of range specification isinclusive. If the current row’s year valueis
2000, all rowsin the window partition with year values 2000 and 1999 qualify
for the frame, regardless of the physical position of those rowsin the partition.
The rules for including and excluding value-based rows are quite different
from the rules applied to row-based frames, which depend entirely on the
physical sequence of rows.

Put in the context of an OLAP AVG() calculation, the following partia result
set further demonstrates the concept of a value-based window frame. Again,
the frame consists of rows that:

e Havethe sameyear asthe current row

Performance and Tuning Guide 77

Analytical functions

78

» Havethe same year asthe current row minus 1

Row Dirmension ‘fear Measure Olap_svg
A 1999 10000 10000
2001 5000 3000
2001 o000 3000
2002 12000 5250
2002 3000 5250

BB

2
3
4
a

The following query demonstrates a range-based window definition:

SELECT dimension, year, measure,
AVG (measure) OVER (PARTITION BY dimension
ORDER BY year ASC
range BETWEEN CURRENT ROW and 1 PRECEDING)
as olap avg
FROM ...

The averages are computed as follows:

* Row [1] =1999; rows[2] through [5] are excluded; AVG = 10,000/1
* Row [2] =2001; rows[1], [4], and [5] are excluded; AV G = 6,000/2
* Row [3] =2001; rows[1], [4], and [5] are excluded; AV G = 6,000/2
* Row [4] = 2002; row [1] isexcluded; AVG = 21,000/4

* Row [5] = 2002; row [1] is excluded; AVG = 21,000/4

Ascending and descending order for value-based frames The ORDER
BY clause for an OLAP function with a value-based window frame not only
identifies the numeric column on which the range specification is based; it a'so
declares the sort order for the ORDER BY values. The following specification
is subject to the sort order that precedesit (ASC or DESC):

RANGE BETWEEN CURRENT ROW AND n FOLLOWING
The specification n FOLLOWING means:
e Plusnif the partition is sorted in default ascending order (ASC)
e Minusn if the partition is sorted in descending order (DESC)

For example, assume that the year column contains four distinct values, from
1999 to 2002. The following table shows the default ascending order of these
values on the left and the descending order on the right:

ORDER BY year ASC ORDER BY year DESC
19939 200z
2000 2001
2001 2000
2002 1999

Sybase 1Q

CHAPTER 4 Using OLAP

If the current row is 1999 and the frame is specified as follows, rows that
contain the values 1999 and 1998 (which doesn’t exist in thetabl e) areincluded
in the frame:

ORDER BY year ASC range BETWEEN CURRENT ROW and 1
FOLLOWING

Note The sort order of the ORDER BY valuesisacritical part of the test for
qualifying rows in a value-based frame; the numeric values alone do not
determine exclusion or inclusion.

Using an unbounded window The following query produces aresult set
consisting of al of the products accompanied by the total quantity of all
products:

SELECT id, description, quantity,
SUM (quantity) OVER () AS total
FROM product;

Computing deltas between adjacent rows Using two windows—one over
the current row and the other over the previous row—provides adirect way of
computing deltas, or changes, between adjacent rows. See the following query
example and results.

SELECT emp_id, emp_lname, SUM(salary) OVER (ORDER BY
birth date rows between current row and current row)
AS curr, SUM(salary) OVER (ORDER BY birth date rows
between 1 preceding and 1 preceding) AS prev, (curr
-prev) as delta

FROM employee WHERE state IN ('MA', 'AZ') AND dept id
=100

ORDER BY emp_id, emp_lname;

The following are the results from the query:

emp id emp lname curr prev delta

102 Whitney 45700.000 64500.000 -18800.000
105 Cobb 62000.000 68400.000 -6400.000
160 Breault 57490.000 96300.000 -38810.000
243 Shishov 72995.000 59840.000 13155.000
247 Driscoll 48023.690 87900.000 -39876.310
249 Guevara 42998.000 48023.690 -5025.690
266 Gowda 59840.000 57490.000 2350.000
278 Melkisetian 48500.000 74500.000 -26000.000

Performance and Tuning Guide 79

Analytical functions

316
445
453
479
501
529
582
604
839
1157
1250

Pastor
Lull
Rabkin
Siperstein
Scott
Sullivan
Samuels
Wang
Marshall
Soo

Diaz

74500.
87900.
64500.
39875.
96300.
67890.
37400.
68400.
42500.
39075.
54900.

000
000
000
500
000
000
000
000
000
000
000

62000.
67890.
42998.
42500.
54900.
72995.
39875.
45700.
48500.
37400.

000
000
000
000
000
000
500
000
000
000

12500.
20010.
.000
-2624.
41400.
-5105.
-2475.
22700.
-6000.
.000

21502

1675

000
000

500
000
000
500
000
000

Although the window function SUM() is used, the sum containsonly the salary

value of either the current or previous row because of how the window is

specified. Also, the prev value of thefirst row in theresultisNULL becauseit
has no predecessor; therefore, the delta isNULL aswell.

In each of the examples above, the function used with the OVER() clauseisthe
SUM() aggregate function.

Explicit and in-line window clauses

80

SQL OLAP provides two ways of specifying awindow in a query:

* Theexplicit window clause lets you define awindow that follows a
HAVING clause. You reference windows defined with those window

clauses by specifying their names when you invoke an OLAP function,

such as

SUM (...) OVER w2

Sybase 1Q

CHAPTER 4 Using OLAP

Thein-linewindow specification lets you defineawindow inthe SELECT
list of aquery expression. This capability lets you define your windowsin
awindow clause that follows the HAVING clause and then reference them
by name from your window function invocations, or to define them along
with the function invocations.

Note If you use an in-line window specification, you cannot name the

window. Two or more window function invocationsin asingle SELECT

list that use identical windows must either reference a named window
defined in awindow clause or they must define their in-line windows

redundantly.

Window function example The following example shows a window
function. The query returns aresult set that partitions the data by department
and then provides a cumulative summary of employees salaries starting with
the employee who has been at the company the longest. The result set includes
only those employees who reside in Massachusetts. The column Sum_Salary
provides the cumulative total of employees’ salaries.

SELECT dept_id, emp lname,

start_date,

salary,

SUM (salary) OVER (PARTITION BY dept id ORDER BY
start_date rows between unbounded preceding and

current row) AS sum_salary

FROM employee
WHERE state IN ('MA') AND dept_id IN (100, 200)
ORDER BY dept id;

The following result set is partitioned by department.

Performance and Tuning Guide

dept_id

100
100
100
100
100
100
100
100
100
100
100
100
100
100

emp lname
Whitney
Cobb
Breault
Shishov
Driscoll
Guevara
Gowda
Melkisetian
Pastor
Lull
Rabkin
Siperstein
Scott
Sullivan

start_date
1984-08-28
1985-01-01
1985-06-17
1986-06-07
1986-07-01
1986-10-14
1986-11-30
1986-12-06
1987-04-26
1987-06-15
1987-06-15
1987-07-23
1987-08-04
1988-02-03

sum salary

45700.
107700.
165190.
238185.
.690
.690
.690
.690
.690
.690
.690
.190
.190
.190

286208
329206
389046
437546
512046
599946
664446
704322
800622
868512

000
000
000
000

81

Analytical functions

100 Samuels 1988-03-23 37400.000 905912.190
100 Wang 1988-09-29 68400.000 974312.190
100 Marshall 1989-04-20 42500.000 1016812.190
100 Soo 1990-07-31 39075.000 1055887.190
100 Diaz 1990-08-19 54900.000 1110787.190
200 Dill 1985-12-06 54800.000 54800.000
200 Powell 1988-10-14 54600.000 109400.000
200 Poitras 1988-11-28 46200.000 155600.000
200 Singer 1989-06-01 34892.000 190492.000
200 Kelly 1989-10-01 87500.000 277992.000
200 Martel 1989-10-16 55700.000 333692.000
200 Sterling 1990-04-29 64900.000 398592.000
200 Chao 1990-05-13 33890.000 432482.000
200 Preston 1990-07-11 37803.000 470285.000
200 Goggin 1990-08-05 37900.000 508185.000
200 Pickett 1993-08-12 47653.000 555838.000

Ranking functions

Ranking functions let you compile alist of values from the data set in ranked
order, aswell as compose single-statement SQL queries that answer questions
such as, “Name the top 10 products shipped this year by total sales,” or “Give
the top 5% of salespersonswho sold ordersto at least 15 different companies.”
The functions include RANK(), DENSE_RANK(), PERCENT_RANK(), and
NTILE() with aPARTITION BY clause. See “Ranking functions’ on page 82.

SQL/OLAP defines four functions that are categorized as ranking functions:

<RANK FUNCTION TYPE> ::=
RANK | DENSE RANK | PERCENT RANK | NTILE

Ranking functions let you compute arank value for each row in aresult set
based on the order specified in the query. For example, a sales manager might
need to identify the top or bottom sales people in the company, the highest- or
lowest-performing salesregion, or the best- or worst-selling products. Ranking
functions can provide this information.

82 Sybase 1Q

CHAPTER 4 Using OLAP

RANK() function

DENSE_RANK() function

The RANK function returns anumber that indicates the rank of the current row
among therowsintherow’s partition, as defined by the ORDER BY clause. The
first row in apartition hasarank of 1, and thelast rank in apartition containing
25 rowsis 25. RANK is specified as a syntax transformation, which means that
an implementation can choose to actually transform RANK into its equivalent,
or it can merely return aresult equivalent to the result that transformation
would return.

In the following example, wsl indicates the window specification that defines
the window named w1.

RANK () OVER ws
is equivalent to

(COUNT (*) OVER (ws RANGE UNBOUNDED PRECEDING)
- COUNT (*) OVER (ws RANGE CURRENT ROW) + 1)

The transformation of the RANK function uses logical aggregation (RANGE).
As aresult, two or more records that are tied—or have equal valuesin the
ordering column—uwill have the same rank.The next group in the partition that
hasadifferent valuewill have arank that ismore than one greater than the rank
of thetied rows. For example, if there are rows whose ordering column values
are 10, 20, 20, 20, 30, the rank of the first row is 1 and the rank of the second
row is 2. Therank of thethird and fourth row is also 2, but the rank of the fifth
row is 5. There are no rows whose rank is 3 or 4. This algorithm is sometimes
known as sparse ranking.

See also “RANK function [Analytical],” Chapter 5, “SQL Functions,” in the
Sybase 1Q Reference Manual.

While RANK returns duplicate values in the ranking sequence when there are
ties between values, DENSE_RANK returns ranking values without gaps. The
values for rowswith ties are still equal, but the ranking of the rows represents
the positions of the clusters of rows having equal valuesin the ordering
column, rather than the positions of the individual rows. Asin the RANK
example, where rows ordering column values are 10, 20, 20, 20, 30, the rank
of thefirst row isstill 1 and the rank of the second row is till 2, asaretheranks
of the third and fourth rows. The last row, however, is 3, not 5.

DENSE_RANK is computed through a syntax transformation, as well.

DENSE_RANK () OVER ws

Performance and Tuning Guide 83

Analytical functions

isequivalent to

COUNT (DISTINCT ROW (expr 1, . . ., expr n))
OVER (ws RANGE UNBOUNDED PRECEDING)

In the above example, expr_1 through expr_n represent the list of value
expressions in the sort specification list of window w1.

See also “DENSE_RANK function [Analytical],” Chapter 5, “ SQL
Functions,” in the Sybase 1Q Reference Manual.

PERCENT_RANK() function

Ranking examples

84

The PERCENT_RANK function calcul ates a percentage for the rank, rather than
afractional amount, and returns a decimal value between 0 and 1. In other
words, PERCENT_RANK returnsthe relative rank of arow, which isanumber
that indicates the relative position of the current row within the window
partition in which it appears. For example, in a partition that contains 10 rows
having different valuesin the ordering columns, the third row would be given
aPERCENT_RANK vaue of 0.222 ..., because you have covered 2/9
(22.222...%) of rowsfollowing thefirst row of the partition. PERCENT_RANK
of arow isdefined as one less than the RANK of the row divided by one less
than then umber of rows in the partition, as seen in the following example
(where“ANT” stands for an approximate numeric type, such as REAL or
DOUBLE PRECISION).

PERCENT_RANK () OVER ws

isequivalent to

CASE
WHEN COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING) = 1
THEN CAST (0 AS ANT)
ELSE
(CAST (RANK () OVER (ws) AS ANT) -1 /
(COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING) - 1)
END

See also Chapter , “PERCENT_RANK function [Analytical],” Chapter 5,
“SQL Functions,” in the Sybase |Q Reference Manual.

Ranking example 1 The SQL query that follows finds the male and female
employees from Utah and ranks them in descending order according to salary.

Sybase 1Q

CHAPTER 4 Using OLAP

SELECT emp_ lname,
salary DESC)

salary,
AS Rank

sex, RANK()

OVER

(ORDER BY

FROM employee WHERE state IN ('MA') AND dept_id =100
ORDER BY salary DESC;

The following are the results from the above query:

Pastor
Shishov
Wang
Sullivan
Rabkin
Cobb

Gowda
Breault
Diaz
Melkisetian
Driscoll
Whitney
Guevara
Marshall
Siperstein
Soo
Samuels

sex rank
M 1
M 2
F 3
F 4
M 5
F 6
M 7
M 8
M 9
M 10
M 11
F 12
M 13
F 14
M 15
M 16
F 17
M 18
M 19

Ranking example 2 Using the query from Ranking example 1, you can
change the data by partitioning it by gender. The following example ranks
employeesin descending order by sdary and partitions by gender:

SELECT emp_ lname,

BY sex ORDER BY salary DESC)
FROM employee WHERE state IN
200)

IN (100,

ORDER BY sex,

salary,

salary DESC;

sex, RANK()

("MA',

The following are the results from the above query:

Performance and Tuning Guide

Kelly
Pastor
Shishov

salary sex
87500.000 F
74500.000 F
72995.000 F

OVER
AS RANK
'AZ') AND dept id

rank

(PARTITION

85

Analytical functions

Sullivan 67890.000 F 4
Melkisetian 48500.000 F 5
Pickett 47653.000 F 6
Poitras 46200.000 F 7
Whitney 45700.000 F 8
Siperstein 39875.500 F 9
Scott 96300.000 M 1
Lull 87900.000 M 2
Wang 68400.000 M 3
Sterling 64900.000 M 4
Rabkin 64500.000 M 5
Cobb 62000.000 M 6
Gowda 59840.000 M 7
Breault 57490.000 M 8
Martel 55700.000 M 9
Diaz 54900.000 M 10
Dill 54800.000 M 11
Powell 54600.000 M 12
Driscoll 48023.690 M 13
Guevara 42998.000 M 14
Marshall 42500.000 M 15
Soo 39075.000 M 16
Goggin 37900.000 M 17
Preston 37803.000 M 18
Samuels 37400.000 M 19
Singer 34892.000 M 20
Chao 33890.000 M 21

Ranking example 3 Thisexampletakesalist of female employeesin
Californiaand Texas and ranks them in descending order according to salary.
The PERCENT_RANK function is used to provide a cumulative total in
descending order.

SELECT emp_ lname, salary, sex, CAST(PERCENT RANK() OVER

(ORDER BY salary DESC) AS numeric (4, 2)) AS RANK
FROM employee WHERE state IN ('CA', 'TX') AND sex ='F'
ORDER BY salary DESC;

The following are the results from the above query:

emp lname salary sex percent
Savarino 72300.000 F 0.00
Smith 51411.000 F 0.33
Clark 45000.000 F 0.66
Garcia 39800.000 F 1.00

86 Sybase 1Q

CHAPTER 4 Using OLAP

Ranking example 4 You can use the PERCENT_RANK function to find the
top or bottom percentilesin the data set. In thisexampl e, the query returnsmale
employees whose salary isin the top five percent of the data set.

SELECT * FROM (SELECT emp_lname, salary, sex,
CAST (PERCENT RANK() OVER (ORDER BY salary DESC) as
numeric (4, 2)) AS percent
FROM employee WHERE state IN ('MA') AND sex ='F') AS
DT where percent > 0.5
ORDER BY salary DESC;

The following are the results from the above query:

emp lname salary sex percent
Whitney 45700.000 F 0.51
Barletta 45450.000 F 0.55
Higgins 43700.000 F 0.59
Siperstein 39875.500 F 0.62
Coe 36500.000 F 0.66
Espinoza 36490.000 F 0.70
Wetherby 35745.000 F 0.74
Braun 34300.000 F 0.77
Butterfield 34011.000 F 0.81
Bigelow 31200.000 F 0.85
Bertrand 29800.000 F 0.88
Lambert 29384.000 F 0.92
Kuo 28200.000 F 0.96
Romero 27500.000 F 1.00

Windowing aggregate functions

Windowing aggregate functions let you manipulate multiple levels of
aggregation in the same query. For example, listing all quartersin which
expenses are less than the average. Aggregate functions, including the simple
aggregate functions AvG, COUNT, MAX, MIN, and SUM, can be used to place
results—possibly computed at different levelsin the statement—on the same
row. This placement provides a meansto compare aggregate values with detail
rows within agroup, avoiding the need for ajoin or a correlated subquery.

These functions also let you compare non-aggregate values to aggregate
values. For exampl e, asal esperson might need to compilealist of all customers
who ordered more than the average number of a product in aspecified year, or
amanager might want to compare an employee's salary against the average
salary of the department.

Performance and Tuning Guide 87

Analytical functions

88

If aquery specifies DISTINCT in the SELECT statement, then the DISTINCT
operation is applied after the window operator. (A window operator is
computed after processing the GROUP BY clause and before the evaluation of
the SELECT list items and a query’s ORDER BY clause.).

Windowing aggregate example 1 Inthisexample, the query returnsaresult
set, partitioned by year, that shows alist of the products that sold higher-than-
average sales.

SELECT * FROM (SELECT year (order_ date) AS Y, prod id,
SUM (quantity) AS Q, CAST(AVG(SUM(quantity)) OVER
(PARTITION BY Y) AS numeric (8, 2)) AS Average

FROM alt sales order S, alt sales order items O

WHERE S.id = 0.id

GROUP BY Y, O.prod_id) AS derived_table
WHERE Q > Average

ORDER BY Y, prod id;

The following are the results from the query:

Year prod id Q Average
2000 400 2030 1787.00
2000 600 2124 1787.00
2000 601 1932 1787.00
2000 700 2700 1787.00
2001 400 1248 1048.90
2001 401 1057 1048.90
2001 700 1836 1048.90

For the year 1993, the average number of orders was 1,787. Four products
(700, 601, 600, and 400) sold higher than that amount. In 1994, the average
number of orders was 1,048 and three products exceeded that amount.

Windowing aggregate example 2 Inthisexample, the query returnsaresult
set that shows the employees whose salary is one standard deviation greater
than the average salary of their department. Standard deviation is a measure of
how much the data varies from the mean.

SELECT * FROM (SELECT emp_ lname AS E name, dept id AS
Dept, CAST(salary AS numeric(10,2)) AS Sal,
CAST (AVG (Sal) OVER (PARTITION BY dept_id) AS
numeric (10, 2)) AS Average, CAST(STDDEV_POP(Sal)
OVER (PARTITION BY dept id) AS numeric(10,2)) AS
STD_DEV

FROM employee

Sybase 1Q

CHAPTER 4 Using OLAP

GROUP BY Dept, E name, Sal) AS derived table WHERE
Sal> (Average+STD DEV)
ORDER BY Dept, Sal, E name;

The results of this query are as follows.. Every department has at |east one
employee whose salary significantly deviates from the mean.

Employee Dept Salary Average Std Dev
Lull 100 87900.00 58736.28 16829.59
Sheffield 100 87900.00 58736.28 16829.59
Scott 100 96300.00 58736.28 16829.59
Sterling 200 64900.00 48390.94 13869.59
Savarino 200 72300.00 48390.94 13869.59
Kelly 200 87500.00 48390.94 13869.59
Shea 300 138948.00 59500.00 30752.39
Blaikie 400 54900.00 43640.67 11194.02
Morris 400 61300.00 43640.67 11194.02
Evans 400 68940.00 43640.67 11194.02
Martinez 500 55500.80 33752.20 9084.49

Employee Scott earns $96,300.00 while the departmental averageis
$58,736.28. The standard deviation for that department is 16,829.00, which
means that salaries less than $75,565.88 (58736.28 + 16829.60 = 75565.88)
fall within one standard deviation of the mean. At $96,300.00, employee Scott
iswell above that figure.

Statistical aggregate functions

Standard deviation
and variance

The ANSI SQL/OLAP extensions provide a number of additional aggregate
functionsthat permit statistical analysisof numeric data. This support includes
functions to compute variance, standard deviation, correlation, and linear
regression.

The SQL/OLAP genera set functionsthat take one argument include STDDEV,
STDDEV_POP, STDDEV_SAMP, VARIANCE, VAR_POP, and VAR_SAMP.

<SIMPLE WINDOW AGGREGATE FUNCTION TYPE> ::=
<BASIC AGGREGATE FUNCTION TYPE>
| STDDEV | STDDEV_POP | STDDEV_ SAMP
| VARIANCE | VARIANCE POP | VARIANCE SAMP

Performance and Tuning Guide 89

Analytical functions

e STDDEV_POP — Computes the population standard deviation of the
provided value expression eval uated for each row of the group or partition
(if DISTINCT was specified, then each row that remains after duplicates
have been eliminated), defined as the square root of the population
variance.

e STDDEV_SAMP — Computes the population standard deviation of the
provided value expression eval uated for each row of the group or partition
(if DISTINCT was specified, then each row that remains after duplicates
have been eliminated), defined as the square root of the sample variance.

* VAR_POP — Computes the population variance of value expression
evaluated for each row of the group or partition (if DISTINCT was
specified, then each row that remains after duplicates have been
eliminated), defined as the sum of squares of the difference of value
expression from the mean of value expression, divided by the number of
rows (remaining) in the group or partition.

* VAR_SAMP — Computes the sample variance of value expression
evaluated for each row of the group or partition (if DISTINCT was
specified, then each row that remains after duplicates have been
eliminated), defined as the sum of squares of the difference of value
expression, divided by onelessthan the number of rows (remaining) inthe
group or partition.

These functions, including STDDEV and VARIANCE, are true aggregate
functionsin that they can compute valuesfor a partition of rows as determined
by the query’sORDER BY clause. Aswith other basic aggregate functions such
as MAX or MIN, their computation ignores NULL values in the input. Also,
regardless of the domain of the expression being analyzed, all variance and
standard deviation computation uses | EEE double-precision floating point. If
the input to any variance or standard deviation function is the empty set, then
each function returns NULL asitsresult. If VAR_SAMP is computed for a
single row, it returns NULL, while VAR_POP returns the value 0.

Distribution functions

90

SQL/OLAP defines severa functions that deal with ordered sets. The two
inverse distribution functions are named PERCENTILE_CONT and
PERCENTILE_DISC. These analytical functions take a percentile value as the
function argument and operate on a group of data specified in the WITHIN
GROUP clause or operate on the entire data set.

Sybase 1Q

CHAPTER 4 Using OLAP

Thesefunctionsreturn onevalue per group. For PERCENTILE_DISC (discrete),
the data type of the resultsis the same as the data type of its ORDER BY item
specified in the WITHIN GROUP clause. For PERCENTILE_CONT
(continuous), the data type of the resultsis either numeric, if the ORDER BY
item in the WITHIN GROUP clause is a numeric, or double, if the ORDER BY
item is an integer or floating point.

The inverse distribution analytical functions require awWITHIN GROUP
(ORDER BY) clause. For example:

PERCENTILE_CONT (expressionl)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

The value of expressionl must be a constant of numeric data type and range
from O to 1 (inclusive). If the argument is NULL, then a*“wrong argument for
percentile” error isreturned. If theargument valueislessthan O, or greater than
1, then a“ data value out of range” error is returned.

The ORDER BY clause, which must be present, specifies the expression on
which the percentile function is performed and the order in which the rows are
sorted in each group. This ORDER BY clause is used only within the WITHIN
GROUP clause and is not an ORDER BY for the SELECT statement.

The WITHIN GROUP clause distributes the query result into an ordered data set
from which the function calculates aresullt.

The value expression2 is a sort specification that must be a single expression
involving a column reference. Multiple expressions are not allowed and no
rank analytical functions, set functions, or subqueries are allowed in this sort
expression.

The ASC or DESC parameter specifies the ordering sequence as ascending or
descending. Ascending order is the default.

Inverse distribution analytical functions are allowed in a subquery, aHAVING
clause, aview, or aunion. The inverse distribution functions can be used
anywhere the simple non analytical aggregate functions are used. The inverse
distribution functionsignore the NULL valuein the data set.

PERCENTILE_CONT example This example uses the PERCENTILE_CONT
function to determine the 10th percentile value for car salesin aregion using
the following data set:

sales region dealer_name
900 Northeast Boston

800 Northeast Worcester
800 Northeast Providence

Performance and Tuning Guide 91

Analytical functions

92

700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF

600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

In the following example query, the SELECT statement contains the
PERCENTILE_CONT function:

SELECT region, PERCENTILE_CONT(O.l)
WITHIN GROUP (ORDER BY sales DESC)
FROM carSales GROUP BY region;

Theresult of the SELECT statement lists the 10th percentile value for car sales
inaregion:

region percentile cont
Northeast 840
Northwest 740
South 470

PERCENTILE_DISC example Thisexample usesthe PERCENTILE_DISC
function to determine the 10th percentile value for car salesin aregion, using
the following data set:

sales region dealer_ name
900 Northeast Boston

800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell

540 Northeast Natick

500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF

600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin

Sybase 1Q

CHAPTER 4 Using OLAP

500 South Houston
400 South Austin
300 South Dallas
200 South Dover

Inthefollowing query, the SELECT statement containsthe PERCENTILE_DISC
function:

SELECT region, PERCENTILE DISC(0.1) WITHIN GROUP
(ORDER BY sales DESC)
FROM carSales GROUP BY region;

Theresult of the SELECT statement lists the 10th percentile valuefor car sales

in each region:
region percentile cont
Northeast 900
Northwest 800
South 500

For more information about the distribution functions, see
“PERCENTILE_CONT function [Analytical]” and “PERCENTILE_DISC
function [Analytical],” Chapter 5, “SQL Functions,” in the Sybase 1Q
Reference Manual.

Numeric functions

OLAP numeric functions supported by Sybase |Q include CEILING (CEIL isan
aias), EXP (EXPONENTIAL isan dias), FLOOR, LN (LOG isan aias), SQRT,
and WIDTH_BUCKET.

<numeric value functions> :: =
<natural logarithms>

| <exponential functions

| <power functions>

| <square roots>

| <floor functions>

| <ceiling functions

| <width bucket functions

The syntax for each supported numeric value function is shown in Table 4-3.

Performance and Tuning Guide 93

Analytical functions

94

Table 4-3: Numeric value functions and syntax

Numeric value function

Syntax

Natural logarithm

LENGTH (string-expression)

Exponential function

EXP (numeric-expression)

Power function

POWER (numeric-expressionl, numeric-
expression2)

Square root

SQRT (numeric-expression)

Floor function

FLOOR (humeric-expression)

Ceiling function

CEILING (numeric-expression)

Width bucket function

WIDTH_BUCKET (expression, min_value,

max_value, num_buckets)

The semantics of the numeric value functions are:

LN: Returns the natural logarithm of the argument value. Raises an error
condition if the argument value is zero or negative. LN is a synonym for
LOG.

EXP: Returns the value computed by raising the value of e (the base of
natural logarithms) to the power specified by the value of the argument.

POWER: Returns the value computed by raising the value of the first
argument to the power specified by the value of the second argument. If
the first argument is zero and the second is zero, returns one. If the first
argument is zero and the second is positive, returns zero. If the first
argument is zero and the second argument is negative, raises an exception.
If the first argument is negative and the second is hot an integer, raises an
exception.

SQRT: Returnsthe sguare root of the argument value, defined by syntax
transformation to “POWER (expression, 0.5).”

FLOOR: Returns the integer value nearest to positive infinity that is not
greater than the value of the argument.

CEILING: Returnstheinteger value nearest to negative infinity that is not
less than the value of the argument. CEIL isasynonym for CEILING

Sybase 1Q

CHAPTER 4 Using OLAP

WIDTH_BUCKET The WIDTH_BUCKET function is somewhat more complicated than the other

function numeric value functions. It accepts four arguments: “live value,” two range
boundaries, and the number of equal-sized (or as nearly so as possible)
partitions into which the range indicated by the boundariesis to be divided.
WIDTH_BUCKET returns a number indicating the partition into which the live
value should be placed, based on its value as a percentage of the difference
between the higher range boundary and the lower boundary. Thefirst partition
is partition number one.

In order to avoid errors when the live value is outside the range of boundaries,
live values that are less than the smaller range boundary are placed into an
additional first bucket, bucket zero, and live values that are greater than the
larger range boundary are placed into an additional last bucket, bucket N+1.

] 1 7 3 4 5 . |wec 1

T
WHBZ

For example, WIDTH_BUCKET (14, 5, 30, 5) returns 2 because:
e (30-5)/5is5, sotherangeisdivided into 5 partitions, each 5 units wide.

* Thefirst bucket represents values from 0.00% to 19.999 ... %,; the second
represents values from 20.00% to 39.999 ...%,; and the fifth bucket
represents values from 80.00% to 100.00%.

e Thebucket chosen is determined by computing (5* (14-5)/(30-5)) + 1 —
one more than the number of buckets times the ratio of the offset of the
specified valuefrom thelower value to therange of possiblevalues, which
is (5%0/25) + 1, which is 2.8. Thisvalue is the range of values for bucket
number 2 (2.0 through 2.999 ...), so bucket number 2 is chosen.

Performance and Tuning Guide 95

Analytical functions

WIDTH_BUCKET The following example creates a ten-bucket histogram on the credit_limit

example column for customers in Massachusetts in the sample table and returns the
bucket number (“Credit Group”) for each customer. Customers with credit
limits greater than the maximum value are assigned to the overflow bucket, 11:

Note Thisexampleisfor illustration purposes only and was not generated
using the asigdemo database.

SELECT customer id, cust last name, credit limit,
WIDTH BUCKET (credit limit, 100, 5000, 10) "Credit
Group"

FROM customers WHERE territory = 'MA'
ORDER BY "Credit Group";

CUSTOMER_ID CUST_LAST NAME CREDIT LIMIT Credit Group

825 Dreyfuss 500 1
826 Barkin 500 1
853 Palin 400 1
827 Siegel 500 1
843 Oates 700 2
844 Julius 700 2
835 Eastwood 1200 3
840 Elliott 1400 3
842 Stern 1400 3
841 Boyer 1400 3
837 Stanton 1200 3
836 Berenger 1200 3
848 Olmos 1800 4
849 Kaurusmdki 1800 4
828 Minnelli 2300 5
829 Hunter 2300 5
852 Tanner 2300 5
851 Brown 2300 5
850 Finney 2300 5
830 Dutt 3500 7
831 Bel Geddes 3500 7
832 Spacek 3500 7
838 Nicholson 3500 7
839 Johnson 3500 7
833 Moranis 3500 7
834 Idle 3500 7
845 Fawcett 5000 11
846 Brando 5000 11
847 Streep 5000 11

96 Sybase 1Q

CHAPTER 4 Using OLAP

See also

When the bounds are reversed, the buckets are open-closed intervals. For
example: WIDTH_BUCKET (credit_limit, 5000, 0, 5). In this example, bucket
number 1is (4000, 5000], bucket number 2 is (3000, 4000], and bucket number
5is(0, 1000]. The overflow bucket is numbered 0 (5000, +infinity), and the
underflow bucket is numbered 6 (-infinity, 0].

“BIT_LENGTH function [String],” “EXP function [Numeric],” “FLOOR
function [Numeric],” “POWER function [Numeric],” “ SQRT function
[Numeric],” and “WIDTH_BUCKET function [Numerical],” Chapter 5,
“SQL Functions,” in the Sybase |Q Reference Manual.

OLAP rules and restrictions

OLAP functions can
be used

OLAP functions
cannot be used

Within SQL queries, OLAP functions can be used under the following
conditions:

e IntheSELECT list
* Inexpressions
* Asarguments of scalar functions

* Inthefinal ORDER BY clause (by using aliases or positional referencesto
OLAP functions el sewhere in the query)

OLAP functions cannot be used under the following conditions:
e Insubqueries
¢ Inthe search condition of aWHERE clause

« Asargumentsfor SET (aggregate) functions. For example, the following
expression is not valid:

SUM (RANK () OVER (ORDER BY dollars))

* A windowed aggregate cannot be an argument to argument to another
unless the inner one was generated within aview or derived table. The
same applies to ranking functions.

* Window aggregate and RANK functions are not allowed in a HAVING
clause.

* Window aggregate functions should not specify DISTINCT.

* Window function cannot be nested inside of other window functions.

Performance and Tuning Guide 97

Additional OLAP examples

Sybase 1Q limitations

* Inverse distribution functions are not supported with the OVER clause.
* Outer references are not allowed in a window definition clause.

* Correlation references are allowed within OLAP functions, but correl ated
column aliases are not allowed.

Columns referenced by an OLAP function must be grouping columns or
aggregate functions from the same query block in which the OLAP function
and the GROUP BY clause appear. OL AP processing occurs after the grouping
and aggregation operations and before the final ORDER BY clause is applied;
therefore, it must be possible to derive the OLAP expressions from those
intermediate results. If there isno GROUP BY clause in aquery block, OLAP
functions can reference other columns in the select list.

The following are the Sybase |Q limitations with SQL OLAP functions;
» User-defined functions in a window frame definition are not supported.

* The constants used in a window frame definition must be unsigned
numeric value and should not exceed the val ue of maximum BIG INT 25°°1,

* Window aggregate functions and RANK functions cannot be used in
DELETE and UPDATE statements.

* Window aggregate and RANK functions are not allowed in subqueries.
e CUME_DIST iscurrently not supported.
* Grouping sets are currently not supported.

» Correlation and linear regression functions are currently not supported.

Additional OLAP examples

98

This section provides additional examples using the OLAP functions.

Both start and end points of awindow may vary asintermediate result rowsare
processed. For example, computing acumulative sum involves awindow with
the start point fixed at thefirst row of each partition and an end point that slides
along the rows of the partition to include the current row. See Figure 4-3 on

page 72.

Sybase 1Q

CHAPTER 4 Using OLAP

As another example, both the start and end points of the window can be
variable yet define a constant number of rows for the entire partition. Such a
construction lets users compose queries that compute moving averages, for
example, a SQL query that returns a moving three-day average stock price.

Example: Window functions in queries

Consider the following query which lists all products shipped in July and
August 2005 and the cumulative shipped quantity by shipping date:

SELECT p.id, p.description,
SUM (s.quantity) OVER (PARTITION BY prod_id ORDER BY
s.ship date rows between unbounded preceding and

current row)

s.quantity,

s.ship date,

FROM alt sales order items s JOIN product p on
(s.prod id =
p.id) WHERE s.ship date BETWEEN '2001-05-01' and
'2001-08-31' AND s.quantity > 40
ORDER BY p.id;

The following are the results from the above query:

ID

302
400
400
401
401
401
500
501
501
501
501
601
700
700

description quantity

Crew Neck
Cotton Cap
Cotton Cap
Wool cap

Wool cap

Wool cap
Cloth Visor
Plastic Visor
Plastic Visor
Plastic Visor
Plastic Visor
Zipped Sweatshirt
Cotton Shorts
Cotton Shorts

60
60
48
48
60
48
48
60
48
48
60
60
72
48

ship date
2001-07-02
2001-05-26
2001-07-05
2001-06-02
2001-06-30
2001-07-09
2001-06-21
2001-05-03
2001-05-18
2001-05-25
2001-07-07
2001-07-19
2001-05-18
2001-05-31

sum quantity
60
60
108
48
108
156
48
60
108
156
216
60
72
120

In this example, the computation of the SUM window function occurs after the
join of the two tables and the application of the query’s WHERE clause. The
query uses an in-line window specification that specifies that the input rows

from the join is processed as follows:

1 Partition (group) the input rows based on the val ue of the prod_id attribute.

Performance and Tuning Guide

99

Additional OLAP examples

2 Within each partition, sort the rows by the ship_date attribute.

3 Foreachrow inthepartition, evaluate the SUM() function over the quantity
attribute, using a sliding window consisting of the first (sorted) row of
each partition, up to and including the current row. See Figure 4-3.

An aternative construction for the query is to specify the window separate
from the functions that useit. Thisis useful when more than one window
function is specified that are based on the same window. In the case of the
guery using window functions, a construction that uses the window clause
(declaring awindow identified by cumulative) is as follows:

SELECT p.id, p.description, s.quantity, s.ship date,
SUM (s.quantity) OVER (cumulative
ROWS BETWEEN UNBOUNDED PRECEDING
and CURRENT ROW
) AS cumulative gty
FROM sales order_ items s JOIN product p On (s.prod id =
p.id)
WHERE s.ship date BETWEEN ‘2005-07-01’ and ‘2005-08-31’
Window cumulative as (PARTITION BY s.prod id ORDER BY
s.ship date)
ORDER BY p.id

Note how the window clause appears beforethe ORDER BY clauseinthe query
specification. When using a window clause, the following restrictions apply:

* Thein-line window specification cannot contain a PARTITION BY clause.

* Thewindow specified within the window clause cannot contain awindow
frame clause. For example, from “Grammar rule 32" on page 111.

<WINDOW FRAME CLAUSE> ::=
<WINDOW FRAME UNIT>
<WINDOW FRAME EXTENT>

» Either the in-line window specification, or the window specification
specified inthewindow clause, can contain awindow order clause, but not
both. For example, from “Grammar rule 31" on page 111:

<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Example: Window with multiple functions

It is possibleto define asingle (named) window and compute multiplefunction
results over it, as the following example demonstrates.

100 Sybase 1Q

CHAPTER 4 Using OLAP

SELECT p.id, p.description, s.quantity, s.ship date,
SUM (s.quantity) OVER wsl, MIN(s.quantity) OVER wsl

FROM sales order items s JOIN product p ON (s.prod id =
p.id) WHERE s.ship date BETWEEN '1994-05-01' AND
'1994-08-31' AND s.quantity > 40 window wsl AS
(PARTITION BY prod_id ORDER BY ship date rows
between unbounded preceding and current row)

ORDER BY p.id;

The following are the results from the above query:

ID description quantity ship date sum min
302 Crew Neck 60 1994-07-02 60 60
400 Cotton Cap 60 1994-05-26 60 60
400 Cotton Cap 48 1994-07-05 108 48
401 Wool cap 48 1994-06-02 48 48
401 Wool cap 60 1994-06-30 108 48
401 Wool cap 48 1994-07-09 156 48
500 Cloth Visor 48 1994-06-21 48 48
501 Plastic Visor 60 1994-05-03 60 60
501 Plastic Visor 48 1994-05-18 108 48
501 Plastic Visor 48 1994-05-25 156 48
501 Plastic Visor 60 1994-07-07 216 48
601 Zipped Sweatshirt 60 1994-07-19 60 60
700 Cotton Shorts 72 1994-05-18 72 72
700 Cotton Shorts 48 1994-05-31 120 48

Example: Calculate cumulative sum

This query calculates a cumulative sum of salary per department and ORDER
BY start_date.

SELECT dept_id, start date, name, salary,
SUM (salary) OVER (PARTITION BY dept_id ORDER BY
start_date ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)

FROM empl

ORDER BY dept id, start date;

The following are the results from the above query:

dept id start date name salary sum(salary)
100 1996-01-01 Anna 18000 18000
100 1997-01-01 Mike 28000 46000
100 1998-01-01 Scott 29000 75000

Performance and Tuning Guide 101

Additional OLAP examples

100
100
100
200
200
200
200
300
300
300

1998-02-01
1998-03-12
1998-12-01
1998-01-01
1998-01-20
1998-02-01
1999-01-10
1998-03-12
1998-12-01
1999-01-10

Example: Calculate moving average

This query generates the moving average of salesin three consecutive months.
The size of the window frame is three rows: two preceding rows plus the
current row. The window slides from the beginning to the end of the partition.

102

Antonia
Adam
Amy
Jeff
Tim
Jim
Tom
Sandy
Lisa
Peter

SELECT prod_id, month num, sales,
(PARTITION BY prod_id ORDER BY month num ROWS

BETWEEN 2 PRECEDING AND CURRENT ROW)
FROM sale WHERE rep id

=1

ORDER BY prod_id, month num;

22000
25000
18000
18000
29000
22000
28000
55000
38000
48000

AVG (sales)

The following are the results from the above query:

B W NP oYU WNDERE oUW DN R

1
1

1

97000
22000
40000
18000
47000
69000
97000
55000
93000
41000

OVER

avg (sales)

Sybase 1Q

CHAPTER 4 Using OLAP

Example: ORDER BY results

In this example, the top ORDER BY clause of aquery is applied to the final
results of awindow function. The ORDER BY in awindow clauseisapplied to
the input data of a window function.

SELECT prod_id, month num, sales, AVG(sales) OVER
(PARTITION BY prod_id ORDER BY month num ROWS
BETWEEN 2 PRECEDING AND CURRENT ROW)

FROM sale WHERE rep id = 1

ORDER BY prod_id desc, month num;

The following are the results from the above query:

prod_id month num sales avg(sales)
30 1 10 10.00
30 2 11 10.50
30 3 12 11.00
30 4 1 8.00
20 1 20 20.00
20 2 30 25.00
20 3 25 25.00
20 4 30 28.33
20 5 31 28.66
20 6 20 27.00
10 1 100 100.00
10 2 120 110.00
10 3 100 106.66
10 4 130 116.66
10 5 120 116.66
10 6 110 120.00

Example: Multiple aggregate functions in a query
Thisexample calculates aggregate values against different windowsin aquery.

SELECT prod_id, month num, sales, AVG(sales) OVER
(WS1 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS
CAvg, SUM(sales) OVER(WS1l ROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW) AS CSum

FROM sale WHERE rep_id = 1 WINDOW WS1l AS (PARTITION BY
prod_id

ORDER BY month num)

ORDER BY prod id, month num;

The following are the results from the above query:

Performance and Tuning Guide 103

Additional OLAP examples

Example: Window frame comparing ROWS and RANGE

104

prod id month num
10
10
10
10
10
10
20
20
20
20
20
20
30
30
30
30

B W NDE YU WNDEONUWDN R

sales

CAvg

110.
106.
116.
116.
120.
115.
25.
25.
28.
28.
27.
25.
10.
11.
.00
.50

00
66
66
66
00
00
00
00
33
66
00
50
50
00

CSum
100
220
320
450
570
680

20
50
75
105
136
156
10
21
33
34

This query compares ROWS and RANGE. The data contain duplicate ROWS

per the ORDER BY clause.

SELECT prod_id, month num,
(wsl RANGE BETWEEN 2 PRECEDING AND CURRENT ROW) AS
Range sum, SUM(sales) OVER

(wsl ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS

Row_sum

FROM sale window wsl AS

month num)

sales,

ORDER BY prod_id, month num;

SUM (sales)

The following are the results from the above query:

prod_id month num
10
10
10
10
10
10
10
10
20

R oo ok W R

sales

250
250
370
470
350
381
381
391

20

OVER

(PARTITION BY prod id ORDER BY

Sybase 1Q

CHAPTER 4 Using OLAP

20
20
20
20
20
30
30
30
30
30

B W N R OO WN

30
25
30
31
20
10
11
12

Example: Window frame excludes current row
In this example, you can define the window frame to exclude the current row.

The query calculates the sum over four rows, excluding the current row.

SELECT prod id, month num,

(PARTITION BY prod id ORDER BY month num RANGE
BETWEEN 6 PRECEDING AND 2 PRECEDING)

FROM sale

sales,

ORDER BY prod_id, month num;

50
75
85
86
81
10
21
33
25
25

sum (sales)

The following are the results from the above query:

Performance and Tuning Guide

B WD oYU WD ONUUTRs WD R R

sales

sum(sales)

50
75
85
86
81
10
21
33
24
14

OVER

105

Additional OLAP examples

Example: Default window frame for ROW
This query illustrates the default window frame for ROW.

SELECT prod_id, month num, sales, SUM(sales) OVER
(PARTITION BY prod_id ORDER BY month num RANGE
BETWEEN 1 FOLLOWING AND 3 FOLLOWING)

FROM sale

ORDER BY prod_id, month num;

The following are the results from the above query:

prod_id month num sales sum(sales)
10 1 100 350
10 1 150 350
10 2 120 381
10 3 100 391
10 4 130 261
10 5 120 110
10 5 31 110
10 6 110 (NULL)
20 1 20 85
20 2 30 86
20 3 25 81
20 4 30 51
20 5 31 20
20 6 20 (NULL)
30 1 10 25
30 2 11 14
30 3 12 2
30 4 1 NULL)
30 4 1 (NULL)

Example: Unbounded preceding and unbounded following

In this example, the window frame can include all rowsin the partition. The
query calcul ates max(sal es) sale over the entire partition (no duplicate rowsin
amonth).

SELECT prod_id, month num, sales, SUM(sales) OVER
(PARTITION BY prod id ORDER BY month num ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)

FROM sale WHERE rep id =1

ORDER BY prod id, month num;

The following are the results from the above query:

106 Sybase 1Q

CHAPTER 4 Using OLAP

prod id month num sales max (sales)
10 1 100 680
10 2 120 680
10 3 100 680
10 4 130 680
10 5 120 680
10 6 110 680
20 1 20 156
20 2 30 156
20 3 25 156
20 4 30 156
20 5 31 156
20 6 20 156
30 1 10 34
30 2 11 34
30 3 12 34
30 4 1 34

The query in this exampleis equivaent to:

SELECT prod_id, month num, sales, SUM(sales) OVER
(PARTITION BY prod_id)

FROM sale WHERE rep id = 1

ORDER BY prod_id, month num;

Example: Default window frame for RANGE
This query illustrates the default window frame for RANGE:

SELECT prod_id, month num, sales, SUM(sales) OVER
(PARTITION BY prod_id ORDER BY month_num)

FROM sale

ORDER BY prod_id, month num;

The following are the results from the above query:

prod_id month num sales max (sales)
10 1 100 250
10 1 150 250
10 2 120 370
10 3 100 470
10 4 130 600
10 5 120 751
10 5 31 751

Performance and Tuning Guide 107

BNF grammar for OLAP functions

10 6 110 861
20 1 20 20
20 2 30 50
20 3 25 75
20 4 30 105
20 5 31 136
20 6 20 156
30 1 10 10
30 2 11 21
30 3 12 33
30 4 1 35
30 4 1 35

The query in thisexampleis equivalent to:

SELECT prod_id, month num, sales, SUM(sales) OVER
(PARTITION BY prod_id ORDER BY month num RANGE
BETWEEEN UNBOUNDED PRECEDING AND CURRENT ROW)

FROM sale

ORDER BY prod_id, month num;

BNF grammar for OLAP functions

The following Backus-Naur Form grammar outlines the specific syntactic
support for the various ANSI SQL analytic functions, many of which are
implemented in Sybase 1Q.

Grammar rule 1 <SELECT LIST EXPRESSION> ::=
<EXPRESSION>
| <GROUP BY EXPRESSION>
| <AGGREGATE FUNCTION>
| <GROUPING FUNCTION>
| <TABLE COLUMN>
| <WINDOWED TABLE FUNCTIONS>

Grammar rule 2 <QUERY SPECIFICATION> ::=
<FROM CLAUSE>
[<WHERE CLAUSE>]
[<GROUP BY CLAUSE>]
[<HAVING CLAUSE>]
[<WINDOW CLAUSE>]
[<ORDER BY CLAUSE>]

Grammar rule 3 <ORDER BY CLAUSE> ::= <ORDER SPECIFICATION>

108 Sybase 1Q

CHAPTER 4 Using OLAP

Grammar rule 4

Grammar rule 5

Grammar rule 6

Grammar rule 7

Grammar rule 8

Grammar rule 9

Grammar rule 10

Grammar rule 11

Grammar rule 12

Grammar rule 13

Grammar rule 14

Grammar rule 15

<GROUPING FUNCTION>
GROUPING <LEFT PAREN> <GROUP BY EXPRESSION>

<RIGHT PAREN>

<WINDOWED TABLE FUNCTION>
<WINDOWED TABLE FUNCTION TYPE> OVER <WINDOW NAME OR

SPECIFICATION>

<WINDOWED TABLE FUNCTION TYPE>
<RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>

| ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
| <WINDOW AGGREGATE FUNCTION>

<RANK FUNCTION TYPE>
RANK | DENSE RANK | PERCENT RANK | CUME DIST

<WINDOW AGGREGATE FUNCTION>
<SIMPLE WINDOW AGGREGATE FUNCTION>

| <STATISTICAL AGGREGATE FUNCTION>

<AGGREGATE FUNCTION>
<DISTINCT AGGREGATE FUNCTION>
| <SIMPLE AGGREGATE FUNCTION>
| <STATISTICAL AGGREGATE FUNCTION>

<DISTINCT AGGREGATE FUNCTION>
<BASIC AGGREGATE FUNCTION TYPE> <LEFT PAREN>
<DISTINCT> <EXPRESSION> <RIGHT PAREN>
| LIST <LEFT PAREN> DISTINCT <EXPRESSION>

[<COMMA> <DELIMITER>]

[<ORDER SPECIFICATION>] <RIGHT PAREN>
<BASIC AGGREGATE FUNCTION TYPE>
SUM | MAX | MIN | AVG | COUNT

<SIMPLE AGGREGATE FUNCTION>
<SIMPLE AGGREGATE FUNCTION TYPE> <LEFT PAREN>

<EXPRESSION> <RIGHT PAREN>
| LIST <LEFT PAREN> <EXPRESSION> [<COMMA>

<DELIMITER>]

[<ORDER SPECIFICATION>] <RIGHT PAREN>

<SIMPLE WINDOW

<SIMPLE AGGREGATE FUNCTION TYPE>
AGGREGATE FUNCTION TYPE>

<SIMPLE WINDOW AGGREGATE FUNCTION>
<SIMPLE WINDOW AGGREGATE FUNCTION TYPE> <LEFT PAREN>

<EXPRESSION> <RIGHT PAREN>
| GROUPING FUNCTION
<SIMPLE WINDOW AGGREGATE FUNCTION TYPE>

Performance and Tuning Guide

BNF grammar for OLAP functions

Grammar rule 16

Grammar rule 17

Grammar rule 18

Grammar rule 19

Grammar rule 20

Grammar rule 21

Grammar rule 22

Grammar rule 23

Grammar rule 24

Grammar rule 25

Grammar rule 26

Grammar rule 27

Grammar rule 28

Grammar rule 29

110

<BASIC AGGREGATE FUNCTION TYPE>
| STDDEV | STDDEV_POP | STDDEV_ SAMP
| VARIANCE | VARIANCE POP | VARIANCE SAMP

<STATISTICAL AGGREGATE FUNCTION> ::=
<STATISTICAL AGGREGATE FUNCTION TYPE> <LEFT PAREN>
<DEPENDENT EXPRESSION> <COMMA> <INDEPENDENT
EXPRESSION> <RIGHT PAREN>

<STATISTICAL AGGREGATE FUNCTION TYPE> ::=
CORR | COVAR POP | COVAR_SAMP | REGR_R2 |
REGR_INTERCEPT | REGR_COUNT | REGR SLOPE |
REGR_SXX | REGR SXY | REGR SYY | REGR_AVGY |
REGR_AVGX

<WINDOW NAME OR SPECIFICATION> ::=
<WINDOW NAME> | <IN-LINE WINDOW SPECIFICATION>

<WINDOW NAME> ::= <IDENTIFIER>

<IN-LINE WINDOW SPECIFICATION> ::= <WINDOW
SPECIFICATION>

<WINDOW CLAUSE> ::= <WINDOW WINDOW DEFINITION LIST>

<WINDOW DEFINITION LIST> ::=
<WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>

b

<WINDOW DEFINITION> ::=
<NEW WINDOW NAME> AS <WINDOW SPECIFICATION>

<NEW WINDOW NAME> ::= <WINDOW NAME>

<WINDOW SPECIFICATION> ::=
<LEFT PAREN> <WINDOW SPECIFICATION> <DETAILS> <RIGHT
PAREN>

<WINDOW SPECIFICATION DETAILS> ::=
[<EXISTING WINDOW NAME>]
[<WINDOW PARTITION CLAUSE>]
[<WINDOW ORDER CLAUSE>]
[<WINDOW FRAME CLAUSE>]

<EXISTING WINDOW NAME> ::= <WINDOW NAME>

<WINDOW PARTITION CLAUSE> ::=
PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

<WINDOW PARTITION EXPRESSION LIST> ::=
<WINDOW PARTITION EXPRESSION>
[{ <COMMA> <WINDOW PARTITION EXPRESSION> } . . .]

Sybase 1Q

CHAPTER 4 Using OLAP

Grammar rule 30
Grammar rule 31

Grammar rule 32

Grammar rule 33

Grammar rule 34

Grammar rule 35

Grammar rule 36

Grammar rule 37

Grammar rule 38
Grammar rule 39

Grammar rule 40

Grammar rule 41

Grammar rule 42

Grammar rule 43

Grammar rule 44

Grammar rule 45

Grammar rule 46

Performance and Tuning Guide

<WINDOW PARTITION EXPRESSION> ::= <EXPRESSION>

<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

<WINDOW FRAME CLAUSE>
<WINDOW FRAME UNIT>
<WINDOW FRAME EXTENT>

<WINDOW FRAME UNIT> ::= ROWS | RANGE

<WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW
FRAME BETWEEN>

<WINDOW FRAME START>
UNBOUNDED PRECEDING
| <WINDOW FRAME PRECEDING>
| CURRENT ROW

<WINDOW FRAME PRECEDING> ::= <UNSIGNED VALUE
SPECIFICATION> PRECEDING

<WINDOW FRAME BETWEEN> ::=
BETWEEN <WINDOW FRAME BOUND 1> AND <WINDOW FRAME
BOUND 2>

<WINDOW FRAME BOUND 1> ::= <WINDOW FRAME BOUND>

<WINDOW FRAME BOUND 2> <WINDOW FRAME BOUND>

<WINDOW FRAME BOUND> ::=
<WINDOW FRAME START>
| UNBOUNDED FOLLOWING
| <WINDOW FRAME FOLLOWING>

<WINDOW FRAME FOLLOWING> ::= <UNSIGNED VALUE
SPECIFICATION> FOLLOWING

<GROUP BY EXPRESSION> ::= <EXPRESSION>

<SIMPLE GROUP BY TERM> ::=
<GROUP BY EXPRESSION>
| <LEFT PAREN> <GROUP BY EXPRESSION> <RIGHT PAREN>
| <LEFT PAREN> <RIGHT PAREN>

<SIMPLE GROUP BY TERM LIST> ::=
<SIMPLE GROUP BY TERM> [{ <COMMA> <SIMPLE GROUP BY
TERM> } . . .]

<COMPOSITE GROUP BY TERM> ::=
<LEFT PAREN> <SIMPLE GROUP BY TERM>
[{ <cOMMA> <SIMPLE GROUP BY TERM> } . . .]
<RIGHT PAREN>

<ROLLUP TERM> ::= ROLLUP <COMPOSITE GROUP BY TERM>

111

BNF grammar for OLAP functions

Grammar rule 47

Grammar rule 48

Grammar rule 49

Grammar rule 50

Grammar rule 51

Grammar rule 52

Grammar rule 53

112

<CUBE TERM> ::= CUBE <COMPOSITE GROUP BY TERM>

<GROUP BY TERM> ::=
<SIMPLE GROUP BY TERM>
| <COMPOSITE GROUP BY TERM>
| <ROLLUP TERM>
| <CUBE TERM>

<GROUP BY TERM LIST> ::=
<GROUP BY TERM> [{ <COMMA> <GROUP BY TERM> } . . .]

<GROUP BY CLAUSE> ::= GROUP BY <GROUPING SPECIFICATION>

<GROUPING SPECIFICATION> ::=
<GROUP BY TERM LIST>
| <SIMPLE GROUP BY TERM LIST> WITH ROLLUP
| <SIMPLE GROUP BY TERM LIST> WITH CUBE
| <GROUPING SETS SPECIFICATION>

<GROUPING SETS SPECIFICATION> ::=
GROUPING SETS <LEFT PAREN> <GROUP BY TERM LIST>
<RIGHT PAREN>

<ORDER SPECIFICATION> ::= ORDER BY <SORT SPECIFICATION
LIST>

Sybase 1Q

CHAPTER 5

About this chapter

Contents

Performance and Tuning Guide

Managing System Resources

This chapter describes the way Sybase 1Q uses memory, disk 1/0, and
CPUs, and the rel ationships among these factors. It a so explains how the

DBA can tune performance by adjusting resource usage.

The suggestionsin thischapter are generic. You need to adjust them to suit
your hardware and software configuration. Recommendations for each
platform arein its Sybase |Q Installation and Configuration Guide.

Topic Page
Introduction to performance terms 114
Designing for performance 114
Overview of memory use 114
The process threading model 134
Balancing I/0 135
Options for tuning resource use 144
Other ways to improve resource use 147
Indexing tips 149
Managing database size and structure 151
Using UNION ALL viewsfor faster loads 154
Network performance 156
113

Introduction to performance terms

Introduction to performance terms

Designing for

Performance is the measure of efficiency of a computerized business
application, or of multiple applications running in the same environment. It is
usually measured in response time and throughput.

Responsetimeisthetimeit takesfor asingletask to complete. It is affected by:
» Reducing contention and wait times, particularly disk I/0 wait times
» Using faster components

* Reducing the amount of time the resources are needed (increasing
concurrency)

Throughput refers to the volume of work completed in afixed time period.
Throughput iscommonly measured in transactions per second (tps), but can be
measured per minute, per hour, per day, and so on.

performance

Most gainsin performance derive from good database design, thorough query
analysis, and appropriate indexing. The largest performance gains can be
realized by establishing a good design and by choosing the correct indexing
strategy.

Other considerations, such as hardware and network analysis, can locate
bottlenecks in your installation.

For more information, see Chapter 3, “Optimizing Queries and Deletions.”

Overview of memory use

114

Sybase 1Q uses memory for several purposes:
* Buffersfor dataread from disk to resolve queries
» Buffersfor dataread from disk when loading from flat files

* Overhead for managing connections, transactions, buffers, and database
objects

Sybase 1Q

CHAPTER 5 Managing System Resources

The sectionsthat follow explain how the operating system supports Sybase |Q
use of memory, how Sybase 1Q allocates memory for various purposes, how
you can adjust the memory allocations for better performance, and what you
may need to do to configure the operating system so that enough memory is
available for Sybase 1Q.

Paging increases available memory

When there is not enough memory on your system, performance can degrade
severely. If thisis the case, you need to find away to make more memory
available. Likeany RDBM S software, SybaseQ requiresalot of memory. The
more memory you can allocate to Sybase 1Q, the better.

However, thereis always afixed limit to the amount of memory in a system,
S0 sometimes operating systems can have only part of the datain memory and
the rest on disk. When the operating system must go out to disk and retrieve
any data before a memory request can be satisfied, it is called paging or
swapping. The primary objective of good memory management is to avoid or
minimize paging or swapping.

The most frequently used operating system files are swap files. WWhen memory
is exhausted, the operating system swaps pages of memory to disk to make
room for new data. When the pages that were swapped are called again, other
pages are swapped, and the required memory pages are brought back. Thisis
very time-consuming for users with high disk usage rates. In general, try to
organize memory to avoid swapping and, thus, to minimize use of operating
system files. See “Platform-specific memory options’ on page 130 for
information on configuring memory to minimize swapping.

To make the maximum use of your physical memory, Sybase 1Q uses buffer
cachesfor all reads and writes to your databases.

Note Your swap space on disk must be at |east large enough to accommodate
al of your physical memory.

Performance and Tuning Guide 115

Overview of memory use

Utilities to monitor swapping

Server memory

Managing memory for
multiplexes

Memory for loads,
inserts, updates,
synchronizations, and
deletions

116

You can use the UNIX vmstat command, the UNIX sar command, or the
Windows Task Manager, to get statistics on the number of running processes
and the number of page-outs and swaps. Use thisinformation to find out if the
system is paging excessively. Then make any necessary adjustments. You may
want to put your swap files on special fast disks.

For examples of vmstat output, see “Monitoring paging on UNIX systems.”

Sybase | Q allocates memory for various purposes from a single memory pool,
called server memory. Server memory includesall of the memory allocated for
managing buffers, transactions, databases, and servers.

At the operating system level, Sybase |Q server memory consists of heap
memory. For the most part, you do not need to be concerned with whether
memory used by Sybase 1Q is heap memory or shared memory. All memory
allocation is handled automatically. However, you may need to make sure that
your operating system kernel is correctly configured to use shared memory
before you run Sybase 1Q. See the Sybase 1Q Installation and Configuration
Guide for your platform for details.

Each server in the multiplex can be on its own host or share a host with other
servers. Two or more servers on the same system consume no more CPU time
than would a single combined server handling the sameworkload, but separate
servers might need more physical memory than a single combined server,
because the memory used by each server is not shared by any other server.

To avoid overallocating the physical memory on the machine, you can set the
LOAD_MEMORY_MB database option for operations where loads occur. In
addition to LOAD operations, this option affects INSERT, UPDATE,
SYNCHRONIZE and DELETE operations. TheLOAD_MEMORY_MB option sets
an upper bound (in MB) on the amount of heap memory subsequent loads can
use. For information on loads and buffer cache use, see“ Memory requirements
for loads’ on page 119. For details of the LOAD_MEMORY_MB option, see
Chapter 2, “Database Options,” in the Sybase |Q Reference Manual.

Sybase 1Q

CHAPTER 5 Managing System Resources

Killing processes
affects shared
memory

Warning! Killing processes on UNIX systems may result in semaphores or
shared memory being left behind instead of being cleaned up automatically.
The correct way to shut down a Sybase 1Q server on UNIX isthe stop_asiq
utility, described in “ Stopping the database server” in Chapter 2, “Running
SybaselQ,” Sybase | Q System Administration Guide. For information on using
theipcs and ipcrm to clean up after an abnormal exit, see Chapter 1,
“Troubleshooting Hints,” in Sybase IQ Troubleshooting and Recovery Guide.

Managing buffer caches

Sybase 1Q needs more memory for buffer caches than for any other purpose.
Sybase 1Q has two buffer