
Performance and Tuning Guide

Sybase® IQ
12.7

DOCUMENT ID: DC00169-01-1270-01

LAST REVISED: June 2006

Copyright © 1991-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance and Tuning Guide iii

About This Book ... ix

CHAPTER 1 Selecting Data from Database Tables ... 1
Prerequisites .. 2
Viewing table information ... 2
Ordering query results.. 5
Selecting columns and rows .. 6
Using search conditions ... 7

Comparing dates in queries .. 8
Compound search conditions in the WHERE clause 8
Pattern matching in search conditions 9
Matching rows by sound.. 10
Shortcuts for typing search conditions 10

Obtaining aggregate data... 11
A first look at aggregate functions ... 11
Using aggregate functions to obtain grouped data.................. 12
Restricting groups ... 12
Improving subtotal calculation ... 14

Obtaining analytical data .. 17
Eliminating duplicate rows.. 19

CHAPTER 2 Joining Tables ... 21
Joining tables with the cross product ... 22
Restricting a join... 22
How tables are related ... 24

Rows are identified by a primary key 24
Tables are related by a foreign key ... 24

Join operators .. 25
Joining tables using key joins.. 25
Joining tables using natural joins .. 26

Ad hoc joins vs. using join indexes .. 27
Joins and data types .. 28
Support for joins between stores or databases.............................. 28

Contents

iv Sybase IQ

Querying remote and heterogeneous databases........................... 30
Replacing joins with subqueries... 31

CHAPTER 3 Optimizing Queries and Deletions ... 35
Tips for structuring queries... 36

Impact on query performance of GROUP BY over a UNION ALL
36

Conditions that cause processing by Adaptive Server Anywhere
39

Planning queries .. 39
Query evaluation options... 40
The query tree ... 41
Using the HTML query plan... 42

Controlling query processing.. 42
Setting query time limits .. 42
Setting query priority ... 43
Setting query optimization options .. 43
Setting predicate hints... 44

Optimizing delete operations.. 45
Delete costing.. 46
Using delete performance option .. 46

CHAPTER 4 Using OLAP.. 47
About OLAP ... 48

OLAP benefits ... 49
Understanding OLAP evaluation ... 49

GROUP BY clause extensions... 50
Group by ROLLUP and CUBE .. 52

Analytical functions .. 66
Simple aggregate functions... 67
Windowing... 67
Numeric functions.. 93

OLAP rules and restrictions ... 97
Additional OLAP examples .. 98

Example: Window functions in queries.................................... 99
Example: Window with multiple functions 100
Example: Calculate cumulative sum 101
Example: Calculate moving average..................................... 102
Example: ORDER BY results .. 103
Example: Multiple aggregate functions in a query................. 103
Example: Window frame comparing ROWS and RANGE..... 104
Example: Window frame excludes current row 105
Example: Default window frame for ROW............................. 106

Contents

Performance and Tuning Guide v

Example: Unbounded preceding and unbounded following .. 106
Example: Default window frame for RANGE......................... 107

BNF grammar for OLAP functions ... 108

CHAPTER 5 Managing System Resources .. 113
Introduction to performance terms ... 114
Designing for performance... 114
Overview of memory use ... 114

Paging increases available memory...................................... 115
Utilities to monitor swapping.. 116
Server memory.. 116
Managing buffer caches .. 117
Determining the sizes of the buffer caches 117
Setting buffer cache sizes ... 123
Specifying page size ... 125
Saving memory ... 126
Optimizing for large numbers of users 127
Platform-specific memory options ... 130
Other ways to get more memory ... 133

The process threading model... 134
Insufficient threads error.. 135
Sybase IQ options for managing thread usage 135

Balancing I/O.. 135
Raw I/O (on UNIX operating systems) 136
Using disk striping ... 136
Internal striping.. 138
Using multiple dbspaces ... 139
Strategic file locations ... 139
Working space for inserting, deleting, and synchronizing 143
Setting reserved space options ... 143

Options for tuning resource use ... 144
Restricting concurrent queries... 144
Setting the number of CPUS available.................................. 144
Limiting a query's temporary dbspace use 145
Limiting queries by rows returned ... 145
Forcing cursors to be non-scrolling 145
Limiting the number of cursors .. 146
Limiting the number of statements .. 146
Prefetching cache pages... 146
Optimizing for typical usage .. 146
Controlling the number of prefetched rows 147

Other ways to improve resource use ... 147
Managing disk space in multiplex databases 147
Load balancing among query servers 148

Contents

vi Sybase IQ

Restricting database access ... 148
Disk caching .. 148

Indexing tips ... 149
Choosing the right index type.. 149
Using join indexes ... 150
Allowing enough disk space for deletions 150

Managing database size and structure .. 151
Managing the size of your database 151
Controlling index fragmentation... 151
Minimizing catalog file growth ... 152
Denormalizing for performance ... 152
Denormalization has risks ... 152
Disadvantages of denormalization .. 153
Performance benefits of denormalization.............................. 153
Deciding to denormalize.. 154

Using UNION ALL views for faster loads 154
Optimizing queries that reference UNION ALL views 155

Network performance... 156
Improving large data transfers... 156
Isolate heavy network users.. 157
Put small amounts of data in small packets 157
Put large amounts of data in large packets 158
Process at the server level .. 158

CHAPTER 6 Monitoring and Tuning Performance... 159
Viewing the Sybase IQ environment .. 160

Getting information using stored procedures 160
Using the Sybase Central performance monitor 161
Profiling database procedures... 161

Monitoring the buffer caches.. 170
Starting the buffer cache monitor .. 170
Checking results while the monitor runs................................ 176
Stopping the buffer cache monitor .. 176
Examining and saving monitor results................................... 177
Examples of monitor results .. 177

Buffer cache structure .. 182
Avoiding buffer manager thrashing .. 183

Monitoring paging on Windows systems 184
Monitoring paging on UNIX systems 184

Buffer cache monitor checklist ... 186
System utilities to monitor CPU use... 190

CHAPTER 7 Tuning Servers on Windows Systems....................................... 191

Performance and Tuning Guide vii

General performance guidelines .. 192
Maximizing throughput... 192
Preventing memory over allocation 192
Monitoring physical memory .. 193
File systems... 193

Monitoring performance.. 193
Monitoring virtual address space and working set................. 194
Monitoring page faults ... 194

Using the NTFS cache ... 195
Tuning inserts and queries ... 195

Characteristics of well-tuned insert operations 195
Tuning for queries.. 196

Tuning backup operations .. 197

Index.. 199

viii Sybase IQ

Performance and Tuning Guide ix

About This Book

Subject This book presents performance and tuning recommendations.

Audience This guide is for system and database administrators who need to
understand performance issues. Familiarity with relational database
systems and introductory user-level experience with Sybase IQ is
assumed. Use this guide in conjunction with other manuals in the
documentation set.

How to use this book The following list shows which chapters fit a particular interest or need.
To read about

• Structure SELECT statements, see Chapter 1, “Selecting Data from
Database Tables.”

• Composing joins, see Chapter 2, “Joining Tables.”

• Optimizing queries, see Chapter 3, “Optimizing Queries and
Deletions.”

• Adjusting memory, disk I/O and CPUs, see Chapter 5, “Managing
System Resources.”

• Performance, see Chapter 6, “Monitoring and Tuning Performance.”

• Windows performance, see Chapter 7, “Tuning Servers on Windows
Systems.”

Related documents The Sybase IQ document set consists of these documents:

• Introduction to Sybase IQ – contains information and exercises for
users unfamiliar with Sybase IQ and with the Sybase Central™
database management tool.

• New Features in Sybase IQ 12.7 – includes a brief description of new
features in Sybase IQ.

• Sybase IQ Performance and Tuning Guide – describes query
optimization, design, and tuning issues for very large databases.

• Sybase IQ System Administration Guide – describes administrative
concepts, procedures and performance tuning recommendations
supported by Sybase IQ, including how to manage the IQ Store.

x Sybase IQ

• Sybase IQ Troubleshooting and Recovery Guide – Shows how to solve
problems and perform system recovery and database repair.

• Sybase IQ Error Messages – refers to Sybase IQ error messages
referenced by SQLCode, SQLState, and Sybase error code, and SQL
preprocessor errors and warnings.

• Sybase IQ Utility Guide – contains Sybase IQ utility program reference
material, such as available syntax, parameters, and options.

• Large Objects Management in Sybase IQ – describes storage and retrieval
of Binary Large Objects (BLOBs) and Character Large Objects (CLOBs)
within the Sybase IQ data repository. You need a separate license to install
this product option.

• Sybase IQ Installation and Configuration Guide – contains platform-
specific instructions on installing Sybase IQ, migrating to a new version
of Sybase IQ, and configuring Sybase IQ for a particular platform.

• Sybase IQ Release Bulletin – contains last-minute changes to the product
and documentation.

• Encrypted Columns in Sybase IQ – describes the use of user encrypted
columns within the Sybase IQ data repository. You need a separate license
to install this product option.

Sybase IQ and Adaptive Server Anywhere
Because Sybase IQ is an extension of Adaptive Server® Anywhere, a
component of SQL Anywhere® Studio, Sybase IQ supports many of the same
features as Adaptive Server Anywhere. The Sybase IQ documentation set
refers you to SQL Anywhere Studio documentation where appropriate.

Documentation for Adaptive Server Anywhere:

• Adaptive Server Anywhere Programming Guide – Intended for application
developers writing programs that directly access the ODBC, Embedded
SQL™, or Open Client™ interfaces, this book describes how to develop
applications for Adaptive Server Anywhere.

• Adaptive Server Anywhere Database Administration Guide – Intended for
all users, this book covers material related to running, managing, and
configuring databases and database servers.

 About This Book

Performance and Tuning Guide xi

• Adaptive Server Anywhere SQL Reference Manual – Intended for all users,
this book provides a complete reference for the SQL language used by
Adaptive Server Anywhere. It also describes the Adaptive Server
Anywhere system tables and procedures.

You can also refer to the Adaptive Server Anywhere documentation in the SQL
Anywhere Studio 9.0.2 collection on the Sybase Product Manuals Web site. To
access this site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

• Infocenter is an online version of SyBooks that you can view using a
standard Web browser. To access the Infocenter Web site, go to Sybooks
Online Help at http://infocenter.sybase.com/help/index.jsp.

http://www.sybase.com/support/manuals
http://www.sybase.com/support/manuals
http://infocenter.sybase.com/help/index.jsp

xii Sybase IQ

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

http://www.sybase.com/support/techdocs
http://certification.sybase.com
http://www.sybase.com/support/techdocs
http://www.sybase.com/support

 About This Book

Performance and Tuning Guide xiii

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Syntax conventions This documentation uses the following syntax conventions in syntax
descriptions:

• Keywords SQL keywords are shown in UPPER CASE. However, SQL
keywords are case insensitive, so you can enter keywords in any case you
wish; SELECT is the same as Select which is the same as select.

• Placeholders Items that must be replaced with appropriate identifiers or
expressions are shown in italics.

• Continuation Lines beginning with … are a continuation of the
statements from the previous line.

• Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots). One or more list elements are
allowed. If more than one is specified, they must be separated by commas.

• Optional portions Optional portions of a statement are enclosed by
square brackets. For example:

RELEASE SAVEPOINT [savepoint-name]

It indicates that the savepoint-name is optional. The square brackets
should not be typed.

• Options When none or only one of a list of items must be chosen, the
items are separated by vertical bars and the list enclosed in square
brackets. For example:

[ASC | DESC]

It indicates that you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

xiv Sybase IQ

• Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces. For example:

QUOTES { ON | OFF }

It indicates that exactly one of ON or OFF must be provided. The braces
should not be typed.

Typographic
conventions

Table 1 lists the typographic conventions used in this documentation.

Table 1: Typographic conventions

The sample
database

Sybase IQ includes a sample database used by many of the examples in the
Sybase IQ documentation.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and financial data),
as well as product information (products), sales information (sales orders,
customers, and contacts), and financial information (fin_code, fin_data).

The sample database is held in a file named asiqdemo.db, located in the
directory $ASDIR/demo on UNIX systems and %ASDIR%\demo on Windows
systems.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Sybase IQ 12.7 and the HTML documentation have been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

For information about accessibility support in the Sybase IQ plug-in for Sybase
Central, see “Using accessibility features” in Introduction to Sybase IQ. The
online help for this product, which you can navigate using a screen reader, also
describes accessibility features, including Sybase Central keyboard shortcuts.

Item Description

Code SQL and program code is displayed in a mono-spaced
(fixed-width) font.

User entry Text entered by the user is shown in bold serif type.

emphasis Emphasized words are shown in italic.

file names File names are shown in italic.

database objects Names of database objects, such as tables and procedures,
are shown in bold, san-serif type in print, and in italic
online.

 About This Book

Performance and Tuning Guide xv

Configuring your accessibility tool
You might need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool and see “Using screen readers” in
Introduction to Sybase IQ.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

For a Section 508 compliance statement for Sybase IQ, go to Sybase
Accessibility at http://www.sybase.com/products/accessibility.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

http://www.sybase.com/accessibility
http://www.sybase.com/products/accessibility

xvi Sybase IQ

Performance and Tuning Guide 1

C H A P T E R 1 Selecting Data from Database
Tables

About this chapter This chapter reviews basic query construction and recommends
refinements to take advantage of product design. In this tutorial, you will
look at table contents, order query results, select columns and rows, and
use search conditions to refine queries.

For advanced query performance recommendations, see Chapter 3,
“Optimizing Queries and Deletions.”

Contents Topic Page

Prerequisites 2

Viewing table information 2

Ordering query results 5

Selecting columns and rows 6

Using search conditions 7

Obtaining aggregate data 11

Obtaining analytical data 17

Eliminating duplicate rows 19

Prerequisites

2 Sybase IQ

Prerequisites
If you use a graphical front-end tool instead of DBISQL to query your
database, the tool may allow you to view the SQL syntax it generates. For
example, in InfoMaker, you can view SQL statements by choosing the SQL
Syntax button on the Table painter bar.

This tutorial introduces the SELECT statement used to retrieve information
from databases. SELECT statements are commonly called queries, because
they ask the database server about information in a database.

Note The SELECT statement is a versatile command. SELECT statements can
become highly complex in applications retrieving very specific information
from large databases. This tutorial uses only simple SELECT statements: later
tutorials describe more advanced queries. For more information about the full
syntax of the select statement, see the SELECT statement in Chapter 6, “SQL
Statements,” in the Sybase IQ Reference Manual.

Ideally, you should be running Sybase IQ software on your computer while you
read and work through the tutorial lessons.

This tutorial assumes that you have already started DBISQL and connected to
the sample database. If you have not already done so, see Chapter 2, “Using
Interactive SQL (dbisql)” in the Sybase IQ Utility Guide.

Viewing table information
In this section, you will look at the data in the employee table.

The sample database you use in this tutorial is the same fictional company as
in the previous chapter. The database contains information about employees,
departments, sales orders, and so on. All the information is organized into
tables.

Listing tables In Introduction to Sybase IQ, you learned how to display a list of tables by
opening the Tables folder in Sybase Central. You can also list user tables from
interactive SQL using a system stored procedure, sp_iqtable. System stored
procedures are system functions that are implemented as stored procedures in
Sybase IQ.

CHAPTER 1 Selecting Data from Database Tables

Performance and Tuning Guide 3

In the SQL Statements window, type sp_iqtable to run the system stored
procedure of the same name.

For complete details about this and other system stored procedures, see
Chapter 10, “System Procedures,” in the Sybase IQ Reference Manual.

Using the SELECT
statement

In this lesson, you view one of the tables in the database. The command used
will look at everything in a table called employee.

Execute the command:
SELECT * FROM employee

The asterisk is a short form for all the columns in the table.

The SELECT statement retrieves all the rows and columns of the employee
table, and the DBISQL Results window lists those that will fit:

emp_id manager_id emp_fname
emp_lna
me dept_id

102 501 Fran Whitney 100

105 501 Matthew Cobb 100

Viewing table information

4 Sybase IQ

 The employee table contains a number of rows organized into columns. Each
column has a name, such as emp_lname or emp_id. There is a row for each
employee of the company, and each row has a value in each column. For
example, the employee with employee ID 102 is Fran Whitney, whose manager
is employee ID 501.

You will also see some information in the DBISQL Messages window. This
information is explained later.

Case sensitivity The table name employee is shown starting with an upper case E, even though
the real table name is all lower case. Sybase IQ databases can be created as
case-sensitive (the default) or case-insensitive in their string comparisons, but
are always case insensitive in their use of identifiers.

Note The examples in this book were created case-insensitive, using the
CREATE DATABASE qualifier CASE IGNORE. The default is CASE RESPECT,
which gives better performance.

For information on creating databases, see Chapter 5, “Working with Database
Objects,” Sybase IQ System Administration Guide.

You can type select or Select instead of SELECT. Sybase IQ allows you to type
keywords in uppercase, lowercase, or any combination of the two. In this
manual, uppercase letters are generally used for SQL keywords.

Manipulation of the DBISQL environment and use of DBISQL is specific to
the operating system.

For information on how to scroll through data and manipulate the DBISQL
environment, see Chapter 2, “Using Interactive SQL (dbisql)” in Sybase IQ
Utility Guide.

129 902 Philip Chin 200

148 1293 Julie Jordan 300

160 501 Robert Breault 100

emp_id manager_id emp_fname
emp_lna
me dept_id

CHAPTER 1 Selecting Data from Database Tables

Performance and Tuning Guide 5

Ordering query results
In this section, you will add an ORDER BY clause to the SELECT statement
to display results in alphabetical or numerical order.

Unless otherwise requested, Sybase IQ displays the rows of a table in no
particular order. Often it is useful to look at the rows in a table in a more
meaningful sequence. For example, you might like to see employees in
alphabetical order.

Listing employees in
alphabetical order

The following example shows how adding an ORDER BY clause to the
SELECT statement causes the results to be retrieved in alphabetical order.

SELECT * FROM employee ORDER BY emp_lname

Notes The order of the clauses is important. The ORDER BY clause must follow the
FROM clause and the SELECT clause.

Note If you omit the FROM clause, or if all tables in the query are in the
SYSTEM dbspace, the query is processed by Adaptive Server Anywhere
instead of Sybase IQ and may behave differently, especially with respect to
syntactic and semantic restrictions and the effects of option settings. See the
Adaptive Server Anywhere documentation for rules that may apply to
processing.

If you have a query that does not require a FROM clause, you can force the
query to be processed by Sybase IQ by adding the clause “FROM iq_dummy,”
where iq_dummy is a one row, one column table that you create in your
database.

emp_id manager_id emp_fname emp_lname dept_id

1751 1576 Alex Ahmed 400

1013 703 Joseph Barker 500

591 1576 Irene Barletta 400

191 703 Jeannette Bertrand 500

1336 1293 Janet Bigelow 300

Selecting columns and rows

6 Sybase IQ

Selecting columns and rows
Often, you are only interested in some of the columns in a table. For example,
to make up birthday cards for employees you might want to see the emp_lname,
dept_id, and birth_date columns.

Listing last name,
department, and birth
date of each
employee

In this section, you will select each employee's birth date, last name, and
department ID. Type the following:

SELECT emp_lname, dept_id, birth_date
FROM employee

Rearranging columns The three columns appear in the order in which you typed them in the SELECT
command. To rearrange the columns, simply change the order of the column
names in the command. For example, to put the birth_date column on the left,
use the following command:

SELECT birth_date, emp_lname, dept_id
FROM employee

Ordering rows You can order rows and look at only certain columns at the same time as
follows:

SELECT birth_date, emp_lname, dept_id
FROM employee
ORDER BY emp_lname

The asterisk in

SELECT * FROM employee

is a short form for all columns in the table.

emp_lname dept_id birth_date ...

Whitney 100 1958-06-05 ...

Cobb 100 1960-12-04 ...

Chin 200 1966-10-30 ...

Jordan 300 1951-12-13 ...

Breault 100 1947-05-13 ...

CHAPTER 1 Selecting Data from Database Tables

Performance and Tuning Guide 7

Using search conditions
In this section you will learn procedures for comparing dates, using compound
search conditions in the WHERE clause, pattern matching, and search
condition shortcuts.

Sometimes you will not want to see information on all the employees in the
employee table. Adding a WHERE clause to the SELECT statement allows
only some rows to be selected from a table.

For example, suppose you would like to look at the employees with first name
John.

❖ List all employees named John:

• Type the following:

SELECT *
FROM employee
WHERE emp_fname = 'John'

Apostrophes and
case-sensitivity

• The apostrophes (single quotes) around the name 'John' are required. They
indicate that John is a character string. Quotation marks (double quotes)
have a different meaning. Quotation marks can be used to make otherwise
invalid strings valid for column names and other identifiers.

• The sample database is not case sensitive, so you would get the same
results whether you searched for ' 'JOHN', 'john', or 'John'.

Again, you can combine what you have learned:

SELECT emp_fname, emp_lname, birth_date
FROM employee
WHERE emp_fname = 'John'
ORDER BY birth_date

Notes • How you order clauses is important. The FROM clause comes first,
followed by the WHERE clause, and then the ORDER BY clause. If you
type the clauses in a different order, you will get a syntax error.

emp_id manager_id emp_fname emp_lname dept_id

318 1576 John Crow 400

862 501 John Sheffield 100

1483 1293 John Letiecq 300

Using search conditions

8 Sybase IQ

• You do not need to split the statement into several lines. You can enter the
statement into the SQL Statements window in any format. If you use more
than the number of lines that fit on the screen, the text scrolls in the SQL
Statements window.

Comparing dates in queries
Sometimes you will not know exactly what value you are looking for, or you
would like to see a set of values. You can use comparisons in the WHERE
clause to select a set of rows that satisfy the search condition.

Listing employees
born before March 3,
1964

 The following example shows the use of a date inequality search condition.
Type the following:

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date < 'March 3, 1964'

Sybase IQ knows that the birth_date column contains a date, and converts
'March 3, 1964' to a date automatically.

Compound search conditions in the WHERE clause
So far, you have seen equal (=) and less than (<) as comparison operators.
Sybase IQ also supports other comparison operators, such as greater than (>),
greater than or equal (>=), less than or equal (<=), and not equal (<>).

These conditions can be combined using AND and OR to make more
complicated search conditions.

Qualifying the list To list all employees born before March 3, 1964, but exclude the employee
named Whitney, type:

SELECT emp_lname, birth_date

emp_lname birth_date

Whitney 1958-06-05 00:00:00.000

Cobb 1960-12-04 00:00:00.000

Jordan 1951-12-13 00:00:00.000

Breault 1947-05-13 00:00:00.000

Espinoza 1939-12-14 00:00:00.000

Dill 1963-07-19 00:00:00.000

CHAPTER 1 Selecting Data from Database Tables

Performance and Tuning Guide 9

FROM employee
WHERE birth_date < '1964-3-3'
AND emp_lname <> 'Whitney'

Pattern matching in search conditions
Another useful way to look for things is to search for a pattern. In SQL, the
word LIKE is used to search for patterns. The use of LIKE can be explained by
example.

Listing employees
whose surname
begins with BR

Type the following:

SELECT emp_lname, emp_fname
FROM employee
WHERE emp_lname LIKE 'br%'

The % in the search condition indicates that any number of other characters
may follow the letters BR.

Qualifying the
surname search

To list all employees whose surname begins with BR, followed by zero or more
letters and a T, followed by zero or more letters, type:

SELECT emp_lname, emp_fname
FROM employee
WHERE emp_lname LIKE 'BR%T%'

The first % sign matches the string “eaul”, while the second % sign matches
the empty string (no characters).

emp_lname birth_date

Cobb 1960-12-04 00:00:00.000

Jordan 1951-12-13 00:00:00.000

Breault 1947-05-13 00:00:00.000

Espinoza 1939-12-14 00:00:00.000

Dill 1963-07-19 00:00:00.000

Francis 1954-09-12 00:00:00.000

emp_lname emp_fname

Breault Robert

Braun Jane

emp_lname emp_fname

Breault Robert

Using search conditions

10 Sybase IQ

Another special character that can be used with LIKE is the _ (underscore)
character, which matches exactly one character.

The pattern BR_U% matches all names starting with BR and having U as the
fourth letter. In Braun the _ matches the letter A and the% matches N.

Matching rows by sound
With the SOUNDEX function, you can match rows by sound, as well as by
spelling. For example, suppose a phone message was left for a name that
sounded like “Ms. Brown”. Which employees in the company have names that
sound like Brown?

Searching surnames
by sound

To list employees with surnames that sound like Brown, type the following:

SELECT emp_lname, emp_fname
FROM employee
WHERE SOUNDEX(emp_lname) = SOUNDEX('Brown')

 Jane Braun is the only employee matching the search condition.

Shortcuts for typing search conditions
Using the short form
BETWEEN

SQL has two short forms for typing in search conditions. The first,
BETWEEN, is used when you are looking for a range of values. For example,

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date BETWEEN '1964-1-1'
AND '1965-3-31'

is equivalent to:

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date >= '1964-1-1'
AND birth_date <= '1965-3-31'

Using the short form
IN

The second short form, IN, may be used when looking for one of a number of
values. The command

SELECT emp_lname, emp_id
FROM employee

emp_lname emp_fname

Braun Jane

CHAPTER 1 Selecting Data from Database Tables

Performance and Tuning Guide 11

WHERE emp_lname IN ('Yeung','Bucceri','Charlton')

means the same as:

SELECT emp_lname, emp_id
FROM employee
WHERE emp_lname = 'Yeung'
OR emp_lname = 'Bucceri'
OR emp_lname = 'Charlton'

Obtaining aggregate data
This section tells how to construct queries that give you aggregate information.
Examples of aggregate information are:

• The total of all values in a column

• The number of entries in a column

• The average value of entries in a column

A first look at aggregate functions
Suppose you want to know how many employees there are. The following
statement retrieves the number of rows in the employee table:

SELECT count(*)
FROM employee

The result returned from this query is a table with only one column (with title
count(*)) and one row, which contains the number of employees.

The following command is a slightly more complicated aggregate query:
SELECT count(*),
min(birth_date),
max(birth_date)
FROM employee

count(*)

75

count(*) min(birth_date) max(birth_date)

75 1936-01-02 1973-01-18

Obtaining aggregate data

12 Sybase IQ

The result set from this query has three columns and only one row. The three
columns contain the number of employees, the birth date of the oldest
employee, and the birth date of the youngest employee.

COUNT, MIN, and MAX are called aggregate functions. Each of these
functions summarizes information for an entire table. In total, there are seven
aggregate functions: MIN, MAX, COUNT, AVG, SUM, STDDEV, and
VARIANCE. All of the functions have either the name of a column or an
expression as a parameter. As you have seen, COUNT also has an asterisk as
its parameter.

Using aggregate functions to obtain grouped data
In addition to providing information about an entire table, aggregate functions
can be used on groups of rows.

Using an aggregate
function on groups of
rows

To list the number of orders for which each sales representative is responsible,
type:

SELECT sales_rep, count(*)
FROM sales_order
GROUP BY sales_rep

The results of this query consist of one row for each sales_rep ID number,
containing the sales_rep ID, and the number of rows in the sales_order table
with that ID number.

Whenever GROUP BY is used, the resulting table has one row for each
different value found in the GROUP BY column or columns.

Restricting groups
You have already seen how to restrict rows in a query using the WHERE
clause. You can restrict GROUP BY clauses by using the HAVING keyword.

sales_rep count(*)

129 57

195 50

299 114

467 56

667 54

CHAPTER 1 Selecting Data from Database Tables

Performance and Tuning Guide 13

Restricting GROUP
BY clauses

To list all sales reps with more than 55 orders, type:

SELECT sales_rep, count(*)
FROM sales_order
GROUP BY sales_rep
HAVING count(*) > 55

Note GROUP BY must always appear before HAVING. In the same manner,
WHERE must appear before GROUP BY.

Using WHERE and
GROUP BY

To list all sales reps with more than 55 orders and an ID of more than 1000,
type:

SELECT sales_rep, count(*)
FROM sales_order
WHERE sales_rep > 1000
GROUP BY sales_rep
HAVING count(*) > 55

The Sybase IQ query optimizer moves predicates from the HAVING clause to
the WHERE clause, when doing so provides a performance gain. For example,
if you specify:

GROUP BY sales_rep
HAVING count(*) > 55
 AND sales_rep > 1000

instead of the WHERE clause in the preceding example, the query optimizer
moves the predicate to a WHERE clause.

Sybase IQ performs this optimization with simple conditions (nothing
involving OR or IN). For this reason, when constructing queries with both a
WHERE clause and a HAVING clause, you should be careful to put as many
of the conditions as possible in the WHERE clause.

sales_rep count(*)

129 57

299 114

467 56

1142 57

Obtaining aggregate data

14 Sybase IQ

Improving subtotal calculation
If you have data that varies across dimensions such as date or place, you may
need to determine how the data varies in each dimension. You can use the
ROLLUP and CUBE operators to create multiple levels of subtotals and a
grand total from a list of references to grouping columns. The subtotals “roll
up” from the most detailed level to the grand total. For example, if you are
analyzing sales data, you can compute an overall average and the average sales
by year using the same query.

Using ROLLUP To select total car sales by year, model and color:

SELECT year, model, color, sum(sales)
FROM sales_tab
GROUP BY ROLLUP (year, model, color);

year model color sales

1990 Chevrolet red 5

1990 Chevrolet white 87

1990 Chevrolet blue 62

1990 Chevrolet NULL 154

1990 Ford blue 64

1990 Ford red 62

1990 Ford white 63

1990 Ford NULL 189

1990 NULL NULL 343

1991 Chevrolet blue 54

1991 Chevrolet red 95

1991 Chevrolet white 49

1991 Chevrolet NULL 198

1991 Ford blue 52

1991 Ford red 55

1991 Ford white 9

1991 Ford NULL 116

1991 NULL NULL 314

NULL NULL NULL 657

CHAPTER 1 Selecting Data from Database Tables

Performance and Tuning Guide 15

When processing this query, Sybase IQ groups the data first by all three
specified grouping expressions (year, model, color), then for all grouping
expressions except the last one (color). In the fifth row, NULL indicates the
ROLLUP value for the color column, in other words, the total number of sales
of that model in all colors. 343 represents the total sales of all models and
colors in 1990 and 314 is the total for 1991. The last row represents total sales
on all years, all models and all colors.

ROLLUP requires an ordered list of grouping expressions as arguments. When
listing groups that contain other groups, list the larger group first (such as state
before city.)

You can use ROLLUP with the aggregate functions: SUM, COUNT, AVG,
MIN, MAX, STDDEV, and VARIANCE. ROLLUP does not support COUNT
DISTINCT and SUM DISTINCT, however.

Using CUBE The following query uses data from a census, including the state (geographic
location), gender, education level, and income of people. You can use the
CUBE extension of the GROUP BY clause, if you want to compute the average
income in the entire census of state, gender, and education and compute the
average income in all possible combinations of the columns state, gender, and
education, while making only a single pass through the census data in the table
census. For example, use the CUBE operator if you want to compute the
average income of all females in all states, or compute the average income of
all people in the census according to their education and geographic location.

When CUBE calculates a group, CUBE puts a NULL value in the column(s)
whose group is calculated. The distinction is difficult between the type of
group each row represents and whether the NULL is a NULL stored in the
database or a NULL resulting from CUBE. The GROUPING function solves this
problem by returning 1, if the designated column has been merged to a higher
level group.

The following query illustrates the use of the GROUPING function with
GROUP BY CUBE.

SELECT
CASE GROUPING (state) WHEN 1 THEN 'ALL' ELSE state END
AS c_state,
CASE GROUPING (gender) WHEN 1 THEN 'ALL' ELSE gender
END AS c_gender,
CASE GROUPING (education) WHEN 1 THEN 'ALL' ELSE
education END AS c_education,
COUNT(*), CAST (ROUND (AVG (income), 2) AS NUMERIC
(18,2)) AS average
FROM census

Obtaining aggregate data

16 Sybase IQ

GROUP BY CUBE (state, gender, education);

The results of this query are shown below. Note that the NULLs generated by
CUBE to indicate a subtotal row are replaced with ALL in the subtotal rows, as
specified in the query.

c_state c_gender c_education count(*) average

MA f BA 3 48333.33

MA f HS 2 40000.00

MA f MS 1 45000.00

MA f ALL 6 45000.00

MA m BA 4 55000.00

MA m HS 1 55000.00

MA m MS 3 85000.00

MA m ALL 8 66250.00

MA ALL ALL 14 57142.86

NH f HS 2 50000.00

NH f MS 1 85000.00

NH f ALL 3 61666.67

NH m BA 3 55000.00

NH m MS 1 49000.00

NH m ALL 4 53500.00

NH ALL ALL 7 57000.00

ALL ALL ALL 21 57095.24

ALL ALL BA 10 53000.00

ALL ALL MS 6 72333.33

ALL ALL HS 5 47000.00

ALL f ALL 9 50555.56

ALL m ALL 12 62000.00

ALL f BA 3 48333.33

ALL m HS 1 55000.00

ALL m MS 4 76000.00

ALL m BA 7 55000.00

ALL f MS 2 65000.00

ALL f HS 4 45000.00

NH ALL HS 2 50000.00

NH ALL MS 2 67000.00

MA ALL MS 4 75000.00

MA ALL HS 3 45000.00

CHAPTER 1 Selecting Data from Database Tables

Performance and Tuning Guide 17

Data warehouse administrators find ROLLUP and CUBE particularly useful
for operations like:

• Subtotaling on a hierarchical dimension like geography or time, for
example year/month/day or country/state/city

• Populating summary tables

ROLLUP and CUBE allow you to use one query to compute data using
multiple levels of grouping, instead of a separate query for each level.

See the SELECT statement in Chapter 6, “SQL Statements,”Sybase IQ
Reference Manual, for more information on the ROLLUP and CUBE
operators.

Obtaining analytical data
This section tells how to construct queries that give you analytical information.
There are two types of analytical functions: rank and inverse distribution. The
rank analytical functions rank items in a group, compute distribution, and
divide a result set into a number of groupings. The inverse distribution
analytical functions return a k-th percentile value, which can be used to help
establish a threshold acceptance value for a set of data.

The rank analytical functions are RANK, DENSE_RANK,
PERCENT_RANK, and NTILE. The inverse distribution analytical functions
are PERCENTILE_CONT and PERCENTILE_DISC.

Suppose you want to determine the sale status of car dealers. The NTILE
function divides the dealers into four groups based on the number of cars each
dealer sold. The dealers with ntile = 1 are in the top 25% for car sales.

SELECT dealer_name, sales,
NTILE(4) OVER (ORDER BY sales DESC)
FROM carSales;

dealer_name sales ntile
Boston 1000 1
Worcester 950 1

MA ALL BA 7 52142.86

NH ALL BA 3 55000.00

c_state c_gender c_education count(*) average

Obtaining analytical data

18 Sybase IQ

Providence 950 1
SF 940 1
Lowell 900 2
Seattle 900 2
Natick 870 2
New Haven 850 2
Portland 800 3
Houston 780 3
Hartford 780 3
Dublin 750 3
Austin 650 4
Dallas 640 4
Dover 600 4

To find the top 10% of car dealers by sales, you specify NTILE(10) in the
example SELECT statement. Similarly, to find the top 50% of car dealers by
sales, specify NTILE(2).

NTILE is a rank analytical function that distributes query results into a specified
number of buckets and assigns the bucket number to each row in the bucket.
You can divide a result set into tenths (deciles), fourths (quartiles), and other
numbers of groupings.

The rank analytical functions require an OVER (ORDER BY) clause. The
ORDER BY clause specifies the parameter on which ranking is performed and
the order in which the rows are sorted in each group. Note that this ORDER BY
clause is used only within the OVER clause and is not an ORDER BY for the
SELECT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the
data set of the rows to include in the computation of the rank analytical
function.

Similarly, the inverse distribution functions require a WITHIN GROUP
(ORDER BY) clause. The ORDER BY specifies the expression on which the
percentile function is performed and the order in which the rows are sorted in
each group. This ORDER BY clause is used only within the WITHIN GROUP
clause and is not an ORDER BY for the SELECT. The WITHIN GROUP
clause distributes the query result into an ordered data set from which the
function calculates a result.

For more details on the analytical functions, see the section“Analytical
functions” in Chapter 5, “SQL Functions” of the Sybase IQ Reference Manual
For information on individual analytical functions, see the section for each
function in the “SQL Functions” chapter.

CHAPTER 1 Selecting Data from Database Tables

Performance and Tuning Guide 19

Eliminating duplicate rows
Result tables from SELECT statements can contain duplicate rows. You can
use the DISTINCT keyword to eliminate the duplicates. For example, the
following command returns many duplicate rows:

SELECT city, state FROM employee

To list only unique combinations of city and state, use this command:

SELECT DISTINCT city, state FROM employee

Note The ROLLUP and CUBE operators do not support the DISTINCT
keyword.

This chapter provides an overview of single-table SELECT statements. For
more information about single-table SELECT statements, see Chapter 5,
“Working with Database Objects,” in the Sybase IQ System Administration
Guide, Chapter 3, “SQL Language Elements,” in the Sybase IQ Reference
Manual, and “SELECT statement” in Chapter 6, “SQL Statements,” in the
Sybase IQ Reference Manual.

Advanced uses of the SELECT statement are described in the next chapter.

Eliminating duplicate rows

20 Sybase IQ

Performance and Tuning Guide 21

C H A P T E R 2 Joining Tables

About this chapter This chapter explains how to look at information in more than one table
and describes various types of joins. You will complete tutorial tasks on
joining tables.

Contents Topic Page

Joining tables with the cross product 22

Restricting a join 22

How tables are related 24

Join operators 25

Ad hoc joins vs. using join indexes 27

Joins and data types 28

Support for joins between stores or databases 28

Querying remote and heterogeneous databases 30

Replacing joins with subqueries 31

Joining tables with the cross product

22 Sybase IQ

Joining tables with the cross product
One of the tables in the sample database is fin_data, which lists the financial
data for the company. Each data record has a code column that tells its
department and whether it is an expense or revenue record. There are 84 rows
in the fin_data table.

You can get information from two tables at the same time by listing both tables,
separated by a comma, in the FROM clause of a SELECT query.

Example The following dbisql SELECT command lists all the data in the fin_code and
fin_data tables:

SELECT *
FROM fin_code, fin_data

The results of this query, displayed in the dbisql data window, match every row
in the fin_code table with every row in the fin_data table.This join is called a
full cross product, also known as a cartesian product. Each row consists of all
columns from the fin_code table followed by all columns from the fin_data
table.

The cross product join is a simple starting point for understanding joins, but not
very useful in itself. Subsequent sections in this chapter tell how to construct
more selective joins, which you can think of as applying restrictions to the
cross product table.

Restricting a join
To make a cross product join useful, you need to include only rows that satisfy
some condition in the result. That condition, called the join condition,
compares one column from one table to one column in the other table, using a
comparison operator (=, =>, <, etc.). You thus eliminate some of the rows from
the cross product result.

For example, to make the join in the preceding section useful, you could insist
that the sales_rep in the sales_order table be the same as the one in the
employee table in every row of the result. Then each row contains information
about an order and the sales representative responsible for it.

Example 1 To do this, add a WHERE clause to the previous query to show the list of
employees and their course registrations:

SELECT *

CHAPTER 2 Joining Tables

Performance and Tuning Guide 23

FROM sales_order, employee
WHERE sales_order.sales_rep = employee.emp_id

The table name is given as a prefix to identify the columns. Although not
strictly required in this case, using the table name prefix clarifies the statement,
and is required when two tables have a column with the same name. A table
name used in this context is called a qualifier.

The results of this query contain only 648 rows (one for each row in the
sales_order table). Of the original 48,600 rows in the join, only 648 of them
have the employee number equal in the two tables.

Example 2 The following query is a modified version that fetches only some of the
columns and orders the results.

SELECT employee.emp_lname, sales_order.id,
sales_order.order_date
FROM sales_order, employee
WHERE sales_order.sales_rep = employee.emp_id
ORDER BY employee.emp_lname

If there are many tables in a SELECT command, you may need to type several
qualifier names. You can reduce typing by using a correlation name.

Correlation names A correlation name is an alias for a particular instance of a table. This alias is
valid only within a single statement. Correlation names are created by putting
a short form for a table name immediately after the table name, separated by
the keyword AS. You then must use the short form as a qualifier instead of the
corresponding table name.

SELECT E.emp_lname, S.id, S.order_date
FROM sales_order AS S, employee AS E
WHERE S.sales_rep = E.emp_id
ORDER BY E.emp_lname

Here, two correlation names S and E are created for the sales_order and
employee tables.

Note A table name or correlation name is only needed to resolve ambiguity if
two columns of different tables have the same name. If you have created a
correlation name, you must use it instead of the full table name, but if you have
not created a correlation name, use the full table name.

How tables are related

24 Sybase IQ

How tables are related
To construct other types of joins, you must first understand how the
information in one table is related to that in another.

The primary key for a table identifies each row in the table. Tables are related
to each other using a foreign key.

This section shows how primary and foreign keys together let you construct
queries from more than one table.

Rows are identified by a primary key
Every table in the asiqdemo database has a primary key. (It is a good idea to
have a primary key for each table.) A primary key is one or more columns that
uniquely identify a row in the table. For example, an employee number
uniquely identifies an employee—emp_id is the primary key of the employee
table.

The sales_order_items table is an example of a table with two columns that
make up the primary key. The order ID by itself does not uniquely identify a
row in the sales_order_items table because there can be several items in an
order. Also, the line_id number does not uniquely identify a row in the
sales_order_items table. Both the order ID name and line_id are required to
uniquely identify a row in the sales_order_items table. The primary key of the
table is both columns taken together.

Tables are related by a foreign key
Several tables in the asiqdemo database refer to other tables in the database. For
example, in the sales_order table, the sales_rep column indicates which
employee is responsible for an order. Only enough information to uniquely
identify an employee is kept in the sales_order table. The sales_rep column in
the sales_order table is a foreign key to the employee table.

CHAPTER 2 Joining Tables

Performance and Tuning Guide 25

Foreign key A foreign key is one or more columns that contain candidate key values from
another table. (For more about candidate keys, see Chapter 5, “Working with
Database Objects” in Sybase IQ System Administration Guide.) Each foreign
key relationship in the employee database is represented graphically by an
arrow between two tables. You can see these arrows in the diagram of the
Sample Database, Figure 1-1 on page 12, in Introduction to Sybase IQ. The
arrow starts at the foreign key side of the relationship and points to the
candidate key side of the relationship.

Join operators
Many common joins are between two tables related by a foreign key. The most
common join restricts foreign key values to be equal to primary key values.
The example you have already seen restricts foreign key values in the
sales_order table to be equal to the candidate key values in the employee table.

SELECT emp_lname, id, order_date
FROM sales_order, employee
WHERE sales_order.sales_rep = employee.emp_id

The query can be more simply expressed using a KEY JOIN.

Joining tables using key joins
Key joins are an easy way to join tables related by a foreign key. For example:

SELECT emp_lname, id, order_date
FROM sales_order
KEY JOIN employee

gives the same results as a query with a WHERE clause that equates the two
employee ID number columns:

SELECT emp_lname, id, order_date
FROM sales_order, employee
WHERE sales_order.sales_rep = employee.emp_id

The join operator (KEY JOIN) is just a short cut for typing the WHERE clause;
the two queries are identical.

Join operators

26 Sybase IQ

In the diagram of the asiqdemo database, in Introduction to Sybase IQ, foreign
keys are represented by lines between tables. Anywhere that two tables are
joined by a line in the diagram, you can use the KEY JOIN operator. Remember
that your application must enforce foreign keys in order to ensure expected
results from queries based on key joins.

Joining two or more
tables

Two or more tables can be joined using join operators. The following query
uses four tables to list the total value of the orders placed by each customer. It
connects the four tables customer, sales_order, sales_order_items and product
single foreign-key relationships between each pair of these tables.

SELECT company_name,
CAST(SUM(sales_order_items.quantity *
product.unit_price) AS INTEGER) AS value
FROM customer
KEY JOIN sales_order
KEY JOIN sales_order_items
KEY JOIN product
GROUP BY company_name

The CAST function used in this query converts the data type of an expression.
In this example the sum that is returned as an integer is converted to a value.

Joining tables using natural joins
The NATURAL JOIN operator joins two tables based on common column
names. In other words, Sybase IQ generates a WHERE clause that equates the
common columns from each table.

Example For example, for the following query:

SELECT emp_lname, dept_name
FROM employee
NATURAL JOIN department

company_name value

McManus Inc. 3,156

Salt & Peppers. 4,980

The Real Deal 1,884

Totos Active Wear 2,496

The Ristuccia Center 4,596

...

CHAPTER 2 Joining Tables

Performance and Tuning Guide 27

the database server looks at the two tables and determines that the only column
name they have in common is dept_id. The following ON phrase is internally
generated and used to perform the join:

FROM employee JOIN department
...
ON employee.dept_id = department.dept_id

Errors using
NATURAL JOIN

This join operator can cause problems by equating columns you may not intend
to be equated. For example, the following query generates unwanted results:

SELECT *
FROM sales_order
NATURAL JOIN customer

The result of this query has no rows.

The database server internally generates the following ON phrase:

FROM sales_order JOIN customer
ON sales_order.id = customer.id

The id column in the sales_order table is an ID number for the order. The id
column in the customer table is an ID number for the customer. None of them
matched. Of course, even if a match were found, it would be a meaningless one.

You should be careful using join operators. Always remember that the join
operator just saves you from typing the WHERE clause for an unenforced
foreign key or common column names. Be mindful of the WHERE clause, or
you may create queries that give results other than what you intend.

Ad hoc joins vs. using join indexes
If you have defined join indexes on the join columns referenced in your query,
Sybase IQ will automatically use them to make the query process faster. (For
information about defining join indexes, see Chapter 6, “Using Sybase IQ
Indexes,”in the Sybase IQ System Administration Guide.)

Any join that does not use join indexes is known as an ad hoc join. If several
tables are referenced by the query, and not all of them have join indexes
defined, Sybase IQ will use the join indexes for those tables that have them in
combination with an ad hoc join with the rest of the tables.

Joins and data types

28 Sybase IQ

Because you cannot create join indexes for all possible joins, ad hoc joins may
sometimes be necessary. Thanks to optimizations in Sybase IQ, you may find
that queries perform as well or better without join indexes.

Keep these rules in mind when creating join indexes:

• Only full outer joins are supported in the index. The query can be an inner,
left outer, or right outer join if indexed.

A full outer join is one where all rows from both the left and right specified
tables are included in the result, with NULL returned for any column with
no matching value in the corresponding column.

• The only comparison operator that may be used in the join predicate ON
clause is EQUALS.

• You can use the NATURAL keyword instead of an ON clause, but you can
only specify one pair of tables.

• Join index columns must have identical data type, precision, and scale.

Joins and data types
Join columns require like data types for optimal performance. Sybase IQ
allows you to make an ad hoc join on any data types for which an implicit
conversion exists. Unless join column data types are identical, however,
performance can suffer to varying degrees, depending on the data types and the
size of the tables. For example, while you can join an INT to a BIGINT column,
this join prevents certain types of optimizations. The Sybase IQ index advisor
identifies performance concerns for join columns whose data types differ.

For tables of implicit data type conversions, see Chapter 7, “Moving Data In
and Out of Databases” in Sybase IQ System Administration Guide.

Support for joins between stores or databases
This section clarifies current support for joins between stores or between
databases.

CHAPTER 2 Joining Tables

Performance and Tuning Guide 29

Joining tables within a
Sybase IQ database

Any joins within a given Sybase IQ database are supported. This means that
you can join any system or user tables in the Catalog Store with any tables in
the IQ Store, in any order.

Joining Adaptive
Server Enterprise and
Sybase IQ tables

Joins of Sybase IQ tables with tables in an Adaptive Server Enterprise database
are supported under the following conditions:

• The Sybase IQ database can be either the local database or the remote
database.

• If a Sybase IQ table is to be used as a proxy table in ASE, the table name
must be 30 characters or fewer.

• In order to join a local Adaptive Server Enterprise table with a remote
Sybase IQ 12 table, the ASE version must be 11.9.2 or higher, and you
must use the correct server class:

• To connect from a front end of Adaptive Server Enterprise 12.5 or
higher to a remote Sybase IQ 12.5 or higher, use the ASIQ server
class, which was added in ASE 12.5.

• To connect from a front end of Adaptive Server Enterprise 11.9.2
through 12.0 to a remote Sybase IQ 12.x (or Adaptive Server
Anywhere 6.x or higher), you must use server class ASAnywhere.

• When you join a local Sybase IQ table with any remote table, the local
table must appear first in the FROM clause, which means the local table is
the outermost table in the join.

Joins between Sybase IQ and Adaptive Server Enterprise rely on Component
Integration Services (CIS).

For more information on queries from Adaptive Server Enterprise databases to
Sybase IQ, see Component Integration Services Users's Guide in the Adaptive
Server Enterprise core documentation set.

For more information on queries from Sybase IQ to other databases, see
“Querying remote and heterogeneous databases.”

Querying remote and heterogeneous databases

30 Sybase IQ

Joining Adaptive
Server Anywhere and
Sybase IQ tables

The CHAR data type is incompatible between Adaptive Server Anywhere and
Sybase IQ when the database is built with BLANK PADDING OFF. If you
want to perform cross-database joins between Adaptive Server Anywhere and
Sybase IQ tables using character data as the join key, use the CHAR data type
with BLANK PADDING ON.

Note Sybase IQ CREATE DATABASE no longer supports BLANK PADDING
OFF for new databases. This change has no effect on existing databases. You
can test the state of existing databases using the BlankPadding database
property:

select db_property (‘BlankPadding’)

Sybase recommends that you change any existing columns affected by
BLANK PADDING OFF, to ensure correct join results. Recreate join columns
as CHAR data type, rather than VARCHAR. CHAR columns are always blank
padded.

Querying remote and heterogeneous databases
This section summarizes how you use Sybase IQ with Component Integration
Services (CIS). CIS allows you to query Adaptive Server Enterprise databases
and remote databases or nonrelational data sources through Sybase IQ. CIS is
installed as part of Sybase IQ.

Using CIS, you can access tables on remote servers as if the tables were local.
CIS performs joins between tables in multiple remote, heterogeneous servers
and transfers the contents of one table into a supported remote server.

To query a remote database or data source, you need to map its tables to local
proxy tables. CIS presents proxy tables to a client application as if the data
were stored locally. When you query the tables, CIS determines the actual
server storage location.

❖ To join remote databases:

1 Create proxy tables, following the steps in the Sybase IQ System
Administration Guide.

2 Map the remote tables to the proxy tables.

CHAPTER 2 Joining Tables

Performance and Tuning Guide 31

3 Reference the proxy tables in your SELECT statement, using the proxy
database name as the qualifying name for each remote table. For example:

SELECT a.c_custkey, b.o_orderkey
FROM proxy_asiqdemo..cust2 a,
asiqdemo..orders b
WHERE a.c_custkey = b.o_custkey

For more information, see Chapter 16, “Accessing Remote Data” and Chapter
17, “Server Classes for Remote Data Access” in Sybase IQ System
Administration Guide.

Replacing joins with subqueries
A join returns a result table constructed from data from multiple tables. You
can also retrieve the same result table using a subquery. A subquery is simply
a SELECT statement within another select statement. This is a useful tool in
building more complex and informative queries.

 For example, suppose you need a chronological list of orders and the company
that placed them, but would like the company name instead of their customer
ID. You can get this result using a join as follows:

Using a join To list the order_id, order_date, and company_name for each order since the
beginning of 1994, type:

SELECT sales_order.id,
sales_order.order_date,
customer.company_name
FROM sales_order
KEY JOIN customer
WHERE order_date > '1994/01/01'
ORDER BY order_date

Using an outer join The join in previous sections of the tutorial is more fully called an inner join.

id order_date company_name

2473 1994-01-04 Peachtree Active Wear

2474 1994-01-04 Sampson & Sons

2036 1994-01-05 Hermanns

2475 1994-01-05 Salt & Peppers

2106 1994-01-05 Cinnamon Rainbows

Replacing joins with subqueries

32 Sybase IQ

You specify an outer join explicitly. In this case, a GROUP BY clause is also
required:

SELECT company_name,
MAX(sales_order.id),state
FROM customer
KEY LEFT OUTER JOIN sales_order
WHERE state = 'WA'
GROUP BY company_name, state

Using a subquery To list order items for products low in stock, type:

SELECT *
FROM sales_order_items
WHERE prod_id IN
 (SELECT id
FROM product
WHERE quantity < 20)
ORDER BY ship_date DESC

The subquery in the statement is the phrase enclosed in parentheses:

(SELECT id
FROM product
WHERE quantity < 20)

By using a subquery, the search can be carried out in just one query, instead of
using one query to find the list of low-stock products and a second to find
orders for those products.

The subquery makes a list of all values in the id column in the product table
satisfying the WHERE clause search condition.

company_name max(sales_order.id) state

Custom Designs 2547 WA

Its a Hit! (NULL) WA

id line_id prod_id quantity ship_date

2082 1 401 48 1994-07-09

2053 1 401 60 1994-06-30

2125 2 401 36 1994-06-28

2027 1 401 12 1994-06-17

2062 1 401 36 1994-06-17

CHAPTER 2 Joining Tables

Performance and Tuning Guide 33

Rephrasing the query Consider what would happen if an order for ten tank tops were shipped so that
the quantity column for tank tops contained the value 18. The query using the
subquery would list all orders for both wool caps and tank tops. On the other
hand, the first statement you used would have to be changed to the following:

SELECT *
FROM sales_order_items
WHERE prod_id IN (401, 300)
ORDER BY ship_date DESC

The command using the subquery is an improvement because it still works
even if data in the database is changed.

Remember the following notes about subqueries:

• Subqueries may also be useful in cases where you may have trouble
constructing a join, such as queries that use the NOT EXISTS predicate.

• Subqueries can only return one column.

• Subqueries are allowed only as arguments of comparisons, IN, or EXISTS
clauses.

• Subqueries cannot be used inside an outer join ON clause.

Replacing joins with subqueries

34 Sybase IQ

Performance and Tuning Guide 35

C H A P T E R 3 Optimizing Queries and
Deletions

About this chapter This chapter offers query and deletion performance recommendations,
including:

• Structuring queries for faster processing

• Using the query plans

• Setting query processing options

• Optimizing delete operations

Contents Topic Page

Tips for structuring queries 36

Planning queries 39

Controlling query processing 42

Optimizing delete operations 45

Tips for structuring queries

36 Sybase IQ

Tips for structuring queries
Here are some hints for better query structure:

• In some cases, command statements that include subqueries can also be
formulated as joins and may run faster.

• If you group on multiple columns in a GROUP BY clause, list the columns
by descending order by number of unique values. This will give you the
best query performance.

• Join indexes often cause join queries to execute faster than ad hoc joins, at
the expense of using more disk space. However, when a join query does
not reference the largest table in a multi-table join index, an ad hoc join
usually outperforms the join index.

• You can improve performance by using an additional column to store
frequently calculated results.

Impact on query performance of GROUP BY over a UNION ALL
To improve performance, very large tables are often segmented into several
small tables and accessed using a UNION ALL in a view. For certain very
specific queries using such a view with a GROUP BY, the Sybase IQ optimizer
is able to enhance performance by pushing some GROUP BY operations into
each arm of such a UNION ALL, performing the operations in parallel, then
combining the results. This method, referred to as split GROUP BY, reduces
the amount of data that is processed by the top level GROUP BY, and
consequently reduces query processing time.

Only certain queries with a GROUP BY over a UNION ALL show a
performance improvement. The following simple query, for example, benefits
from the split GROUP BY:

CREATE VIEW vtable (v1 int, v2 char(4)) AS
SELECT a1, a2 FROM tableA
UNION ALL
SELECT b1, b2 FROM tableB;

SELECT COUNT(*), SUM(v1) FROM vtable GROUP BY v2;

CHAPTER 3 Optimizing Queries and Deletions

Performance and Tuning Guide 37

When analyzing this query, the optimizer first performs COUNT(*) GROUP
BY on tableA and COUNT(*) GROUP BY on tableB, then passes these results
to the top level GROUP BY. The top level GROUP BY performs a SUM of the
two COUNT(*) results, to produce the final query result. Note that the role of
the top level GROUP BY changes: the aggregation used by the top level
GROUP BY is SUM instead of COUNT.

Restrictions on split
GROUP BY

There are some restrictions on the situations and queries that benefit from the
split GROUP BY.

• The query may benefit from the split GROUP BY, if the query uses
UNION ALL, rather than UNION. The following query uses GROUP BY
with UNION, so it does not take advantage of the GROUP BY split:

CREATE VIEW viewA (va1 int, va2 int, va3 int,
va4 int) AS
SELECT b1, b2, b3, b4 FROM tableB
UNION
SELECT c1, c2, c3, c4 FROM tableC;

SELECT SUM(va1) FROM viewA GROUP BY va3;

• The query may benefit from the split GROUP BY, if an aggregation in the
query does not contain DISTINCT. The following query uses SUM
DISTINCT, so it does not take advantage of the split GROUP BY:

CREATE VIEW viewA (va1 int, va2 int, va3 int,
va4 int) AS
SELECT b1, b2, b3, b4 FROM tableB
UNION ALL
SELECT c1, c2, c3, c4 FROM tableC;

SELECT SUM(DISTINCT va1) FROM viewA GROUP BY va3;

• In order for the query to benefit from the split GROUP BY, you need
enough memory in the temporary shared buffer cache to store the
aggregation information and data used for processing the additional
GROUP BY operators.

CREATE VIEW viewA (va1 int, va2 int, va3 int,
va4 int) AS
SELECT b1, b2, b3, b4 FROM tableB
UNION ALL
SELECT c1, c2, c3, c4 FROM tableC
UNION ALL
SELECT d1, d2, d3, d4 FROM tableD
UNION ALL
SELECT e1, e2, e3, e4 FROM tableE

Tips for structuring queries

38 Sybase IQ

UNION ALL
SELECT f1, f2, f3, f4 FROM tableF
UNION ALL
SELECT g1, g2, g3, g4 FROM tableG;

SELECT SUM(va1) FROM viewA GROUP BY va3;

In this example, the Sybase IQ optimizer splits the GROUP BY and inserts
six GROUP BY operators into the query plan. Consequently, the query
requires more temporary cache to store aggregation information and data.
If the system cannot allocate enough cache, the optimizer does not split the
GROUP BY.

You can use the TEMP_CACHE_MEMORY_MB database option to
increase the size of the temporary cache, if memory is available. For
information on setting buffer cache sizes, see “Determining the sizes of
the buffer caches” on page 117 and “TEMP_CACHE_MEMORY_MB
option” in the chapter “Database Options” of the Sybase IQ Reference
Manual.

• In order for the query to benefit from split GROUP BY, the
AGGREGATION_PREFERENCE database option should be set to its
default value of 0. This value allows the Sybase IQ optimizer to determine
the best algorithm to apply to the GROUP BY. The query does not benefit
from split GROUP BY, if the value of AGGREGATION_PREFERENCE
forces the Sybase IQ optimizer to choose a sort algorithm to process the
GROUP BY. The option AGGREGATION_PREFERENCE can be used
to override the optimizer's choice of algorithm for processing the GROUP
BY and should not be set to 1 or 2 in this case.

Examples of split
GROUP BY

In this example, a large table named tableA is segmented into four smaller
tables: tabA1, tabA2, tabA3, and tabA4. The view unionTab is created using the
four smaller tables and UNION ALL:

CREATE VIEW unionTab (v1 int, v2 int, v3 int, v4 int) AS
SELECT a, b, c, d FROM tabA1
UNION ALL
SELECT a, b, c, d FROM tabA2
UNION ALL
SELECT a, b, c, d FROM tabA3
UNION ALL
SELECT a, b, c, d FROM tabA4;

The Sybase IQ optimizer splits the GROUP BY operation in the following
queries and improves query performance:

SELECT v1, v2, SUM(v3), COUNT(*) FROM unionTab

CHAPTER 3 Optimizing Queries and Deletions

Performance and Tuning Guide 39

GROUP BY v1, v2;

SELECT v3, SUM(v1*v2) FROM unionTab
GROUP BY v3;

Conditions that cause processing by Adaptive Server Anywhere
Sybase IQ architecture includes a portion of the product that processes queries
according to Adaptive Server Anywhere rules. This feature, called CIS
(formerly OMNI) functional compensation, allows queries not directly
supported by Sybase IQ semantics to be processed, but with a major
performance cost.

CIS intercepts queries that:

• Reference a user-defined function

• Include a cross-database join or proxy table

• Include certain system functions

• Reference a Catalog Store table or a table created in the SYSTEM dbspace

For more information on differences between Sybase IQ and Adaptive Server
Anywhere, see Appendix A, “Compatibility with Other Sybase Databases,” in
Sybase IQ Reference Manual.

Planning queries
If you have created the right indexes, the Sybase IQ query optimizer can
usually execute queries in the most efficient way—sometimes even if you have
not used the most effective syntax. Proper query design is still important,
however. When you plan your queries carefully, you can have a major impact
on the speed and appropriateness of results.

Planning queries

40 Sybase IQ

Before it executes any query, the Sybase IQ query optimizer creates a query
plan. Sybase IQ helps you evaluate queries by letting you examine and
influence the query plan, using the options described in the sections that follow.
For details of how to specify these options, see the Sybase IQ Reference
Manual.

Note For all database options that accept integer values, Sybase IQ truncates
any decimal option-value setting to an integer value. For example, the value 3.8
is truncated to 3.

Query evaluation options
The following options can help you evaluate the query plan. See the Sybase IQ
Reference Manual for details of these options.

• INDEX_ADVISOR – When set ON, the index advisor prints index
recommendations as part of the Sybase IQ query plan or as a separate
message in the Sybase IQ message log file if query plans are not enabled.
These messages begin with the string “Index Advisor:” and you can use
that string to search and filter them from a Sybase IQ message file. This
option outputs messages in OWNER.TABLE.COLUMN format and is OFF
by default.

See also the “sp_iqindexadvice procedure” in the Sybase IQ Reference
Manual.

• INDEX_ADVISOR_MAX_ROWS – Used to limit the number of messages
stored by the index advisor. Once the specified limit has been reached, the
INDEX_ADVISOR will not store new advice. It will, however, continue to
update count and timestamps for existing advice.

• NOEXEC – When set ON, Sybase IQ produces a query plan but does not
execute the query, except when the EARLY_PREDICATE_EXECUTION
option is ON.

• QUERY_DETAIL – When this option and either QUERY_PLAN or
QUERY_PLAN_AS_HTML are both ON, Sybase IQ displays additional
information about the query when producing its query plan. When
QUERY_PLAN and QUERY_PLAN_AS_HTML are OFF, this option is
ignored.

CHAPTER 3 Optimizing Queries and Deletions

Performance and Tuning Guide 41

• QUERY_PLAN – When set ON (the default), Sybase IQ produces messages
about queries. These include messages about using join indexes, about the
join order, and about join algorithms for the queries.

• QUERY_PLAN_AFTER_RUN – When set ON, the query plan is printed
after the query has finished running. This allows the plan to include
additional information, such as the actual number of rows passed on from
each node of the query. In order for this option to work, QUERY_PLAN
must be ON. This option is OFF by default.

• QUERY_PLAN_AS_HTML – Produces a graphical query plan in HTML
format for viewing in a Web browser. Hyperlinks between nodes make the
HTML format much easier to use than the text format in the .iqmsg file.
Use the QUERY_NAME option to include the query name in the file name
for the query plan. This option is OFF by default.

• QUERY_PLAN_AS_HTML_DIRECTORY – When set ON and a directory is
specified with QUERY_PLAN_AS_HTML_DIRECTORY, Sybase IQ writes
the HTML query plans in the specified directory.

• QUERY_TIMING – Controls the collection of timing statistics on
subqueries and some other repetitive functions in the query engine.
Normally it should be OFF (the default) because for very short correlated
subqueries the cost of timing every subquery execution can be very
expensive in terms of performance.

Note Query plans can add a lot of text to your .iqmsg file. When QUERY_PLAN
is ON, and especially if QUERY_DETAIL is ON, you will probably want to
enable message log wrapping by setting IQMSG_LENGTH_MB to a positive
value.

The query tree
The optimizer creates a query “tree” that represents the flow of data in the
query. The query plan presents the query tree in text form in the .iqmsg file, and
optionally in graphical form.

The query tree consists of nodes. Each node represents a stage of work. The
lowest nodes on the tree are leaf nodes. Each leaf node represents a table or a
prejoin index set in the query.

Controlling query processing

42 Sybase IQ

At the top of the plan is the root of the operator tree. Information flows up from
the tables and through any operators representing joins, sorts, filters, stores,
aggregation, and subqueries.

Using the HTML query plan
A good way to start using query plans is to set the QUERY_PLAN_AS_HTML
option ON. This option places a graphical version of the query plan in the same
directory as the .iqmsg file. You can view this file in most Web browsers.

In the HTML query plan, each node in the tree is a hyperlink to the details.
Each box is hyperlinked to the tree above. You can click on any node to
navigate quickly through the plan.

Controlling query processing
Any user can set limits on the amount of time spent processing a particular
query. Users with DBA privileges can give certain users’ queries priority over
others, or change processing algorithms to influence the speed of query
processing. See the Sybase IQ Reference Manual for details on the options
described in this section.

Setting query time limits
By setting the MAX_QUERY_TIME option, a user can disallow long queries. If
a query takes longer to execute than desired, Sybase IQ stops the query with an
appropriate error.

Note Sybase IQ truncates all decimal option-value settings to integer values.
For example, the value 3.8 is truncated to 3.

CHAPTER 3 Optimizing Queries and Deletions

Performance and Tuning Guide 43

Setting query priority
Queries waiting in queue for processing are queued to run in order of the
priority of the user who submitted the query, followed by the order in which the
query was submitted. No queries are run from a lower priority queue until
higher priority queries have all been executed.

The following options assign queries a processing priority by user.

• IQGOVERN_PRIORITY – Assigns a numeric priority (1, 2, or 3, with 1
being the highest) to queries waiting in the processing queue.

• IQGOVERN_MAX_PRIORITY – Allows the DBA to set an upper boundary
on IQGOVERN_PRIORITY for a user or a group.

• IQ_GOVERN_PRIORITY_TIME – Allows high priority users to start if a
high priority (priority 1) query has been waiting in the -iqgovern queue for
more than a designated amount of time.

To check the priority of a query, check the IQGovernPriority attribute returned
by the sp_iqcontext stored procedure.

Setting query optimization options
The following options affect query processing speed:

• AGGREGATION_PREFERENCE – Controls the choice of algorithms for
processing an aggregate (GROUP BY, DISTINCT, SET functions). This
option is designed primarily for internal use; do not use it unless you are
an experienced database administrator.

• DEFAULT_HAVING_SELECTIVITY – Sets the selectivity for all HAVING
predicates in a query, overriding optimizer estimates for the number of
rows that will be filtered by the HAVING clause.

• DEFAULT_LIKE_MATCH_SELECTIVITY – Sets the default selectivity for
generic LIKE predicates, for example, LIKE 'string%string' where
% is a wildcard character. The optimizer relies on this option when other
selectivity information is not available and the match string does not start
with a set of constant characters followed by a single wildcard.

• DEFAULT_LIKE_RANGE_SELECTIVITY – Sets the default selectivity for
leading constant LIKE predicates, of the form LIKE 'string%' where
the match string is a set of constant characters followed by a single
wildcard character (%). The optimizer relies on this option when other
selectivity information is not available.

Controlling query processing

44 Sybase IQ

• EARLY_PREDICATE_EXECUTION – Controls whether simple local
predicates are executed before join optimization. Under most
circumstances, it should not be changed.

• ENABLED_ORDERED_PUSHDOWN_INSERTION – Controls how the
query optimizer adds in the semijoin predicates for push-down joins
selected by the join optimizer. Re-analyzes any intermediate joins that
may be indirectly affected by those semijoins. Under most circumstances,
it should not be changed.

• IN_SUBQUERY_PREFERENCE – Controls the choice of algorithms for
processing IN subqueries. This option is designed primarily for internal
use; do not use it unless you are an experienced database administrator.

• INDEX_PREFERENCE – Sets the index to use for query processing. The
Sybase IQ optimizer normally chooses the best index available to process
local WHERE clause predicates and other operations which can be done
within an IQ index. This option is used to override the optimizer choice for
testing purposes; under most circumstances it should not be changed.

• JOIN_PREFERENCE – Controls the choice of algorithms when processing
joins. This option is designed primarily for internal use; do not use it
unless you are an experienced database administrator.

• JOIN_SIMPLIFICATION_THRESHOLD – Controls the minimum number of
tables being joined together before any join optimizer simplifications are
applied. Normally you should not need to change this value.

• MAX_HASH_ROWS – Sets the maximum estimated number of rows the
query optimizer will consider for a hash algorithm. The default is
1,250,000 rows. For example, if there is a join between two tables, and the
estimated number of rows entering the join from both tables exceeds this
option value, the optimizer will not consider a hash join. On systems with
more than 50MB per user of TEMP_CACHE_MEMORY_MB, you may want
to consider a higher value for this option.

• MAX_JOIN_ENUMERATION – Sets the maximum number of tables to be
optimized for join order after optimizer simplifications have been applied.
Normally you should not need to set this option.

Setting predicate hints
Sybase IQ supports a hint string that lets you specify per-predicate hints, such
as selectivity, usefulness, index preference, and execution mode.

CHAPTER 3 Optimizing Queries and Deletions

Performance and Tuning Guide 45

You can set selectivity in combination with three other query optimizations:

• Setting the equivalent of an index preference option

• Setting the usefulness (ordering the predicates)

• Delaying one or more predicates

Under normal circumstances, there are no advantages to delaying evaluation,
which could slow the query. If you choose to, however, you can move any of
the following four behaviors to later in the query:

• Before optimization

• At first “first fetch” time

• At second “first fetch” time (inside correlated subqueries or on the left side
of a nested loop pushdown join only)

• Not using indexes at all (“horizontal processing”)

For syntax, parameters, and examples, see “User-supplied condition hint
strings,” Chapter 3, “SQL Language Elements,” in the Sybase IQ Reference
Manual.

Optimizing delete operations
Sybase IQ chooses one of three algorithms to process delete operations:

• Small delete

Small delete provides optimal performance when rows are deleted from
very few groups. It is typically selected when the delete is only 1 row or
the delete has an equality predicate on the columns with an HG
(High_Group) index. The small delete algorithm can randomly access the
HG. Worst case I/O is proportional to the number of groups visited.

• Mid delete

Mid delete provides optimal performance when rows are deleted from
several groups, but the groups are sparse enough or few enough that not
many HG pages are visited. The mid delete algorithm provides ordered
access to the HG. Worst case I/O is bounded by the number of index pages.
Mid delete has the added cost of sorting the records to delete.

• Large delete

Optimizing delete operations

46 Sybase IQ

Large delete provides optimal performance when rows are deleted from a
large number of groups. The large delete scans the HG in order until all
rows are deleted. Worst case I/O is bounded by the number of index pages.
Large delete is parallel, but parallelism is limited by internal structure of
the index and the distribution of group to deleted from. Range predicates
on HG columns can be used to reduce the scan range of the large delete.

Delete costing
Prior to 12.6, the HG delete cost model considered only worst case I/O
performance and therefore preferred large delete in most cases. The current
cost model considers many factors including I/O costs, CPU costs, available
resources, index metadata, parallelism, and predicates available from the
query.

Specifying predicates on columns that have HG indexes greatly improves
costing. In order for the HG costing to pick an algorithm other than Large
delete, it must be able to determine the number of distinct values (groups)
affected by deletions. Distinct count is initially assumed to be lesser of the
number of index groups and the number of rows deleted. Predicates can
provide an improved or even exact estimate of the distinct count.

Costing currently does not consider the effect of range predicates on the large
delete. This can cause mid delete to be chosen in cases where large delete
would be faster. You can force the large delete algorithm if needed in these
cases, as described in the next section.

Using delete performance option
You can use the HG_DELETE_METHOD option to control HG delete
performance.

The value of the parameter specified with the HG_DELETE_METHOD option
forces the specified delete algorithm as follows:

• 1 = Small Delete

• 2 = Large Delete

• 3 = Mid Delete

C H A P T E R 4 Using OLAP

About this chapter OLAP (online analytical processing) is an efficient method of data
analysis on information stored in a relational database. Using OLAP you
can analyze data on different dimensions, acquire result sets with
subtotaled rows, and organize data into multidimensional cubes, all in a
single SQL query. You can also use filters to drill down into the data,
returning result sets quickly. This chapter describes the SQL/OLAP
functionality that Sybase IQ supports.

Note The tables shown in OLAP examples are available in the asiqdemo
database.

Contents Topic Page

About OLAP 48

GROUP BY clause extensions 50

Analytical functions 66

Simple aggregate functions 67

Windowing 67

 Ranking functions 82

 Windowing aggregate functions 87

 Statistical aggregate functions 89

 Distribution functions 90

Numeric functions 93

OLAP rules and restrictions 97

Additional OLAP examples 98

BNF grammar for OLAP functions 108
Performance and Tuning Guide 47

About OLAP
About OLAP
Extensions to the ANSI SQL standard to include complex data analysis were
introduced as an amendment to the 1999 SQL standard. Sybase IQ added
portions of these SQL enhancements in previous releases. Sybase IQ 12.7,
however, contains comprehensive support for these extensions.

These analytic functions, which offer the ability to perform complex data
analysis within a single SQL statement, are facilitated by a category of
software technology named On Line Analytical Processing (OLAP) whose
functions include GROUP BY clause extensions and analytical functions as
shown in the following list:

• GROUP BY clause extensions — CUBE and ROLLUP

• Analytical functions:

• Simple aggregates — AVG, COUNT, MAX, MIN, and SUM, STDDEV
and VARIANCE

Note All simple aggregate functions, except Grouping(), can be used
with an OLAP windowed function.

• Window functions:

• Windowing aggregates — AVG, COUNT, MAX, MIN, and SUM

• Ranking functions — RANK, DENSE_RANK, PERCENT_RANK,
and NTILE

• Statistical functions — STDDEV, STDDEV_SAMP,
STDDEV_POP, VARIANCE, VAR_SAMP, and VAR_POP

• Distribution functions — PERCENTILE_CONT and
PERCENTILE_DISC

• Numeric functions — WIDTH_BUCKET, CEIL, and LN, EXP, POWER,
SQRT, and FLOOR

Some database products provide a separate OLAP module that requires you to
move data from the database into the OLAP module before analyzing it. By
contrast, Sybase IQ builds OLAP features into the database itself, making
deployment and integration with other database features, such as stored
procedures, easy and seamless.
48 Sybase IQ

CHAPTER 4 Using OLAP
OLAP benefits
OLAP functions, when combined with the GROUPING, CUBE and ROLLUP
extensions, provide two primary benefits. First, they let you perform
multidimensional data analysis, data mining, time series analyses, trend
analysis, cost allocations, goal seeking, ad hoc multidimensional structural
changes, non-procedural modeling, and exception alerting, often with a single
SQL statement. Second, the window and reporting aggregate functions use a
relational operator, called a window that can be executed more efficiently than
semantically equivalent queries that use self-joins or correlated subqueries.
The result sets you obtain using OLAP can have subtotal rows and can be
organized into multidimensional cubes. See “Windowing” on page 67.

Moving averages and moving sums can be calculated over various intervals;
aggregations and ranks can be reset as selected column values change; and
complex ratios can be expressed in simple terms. Within the scope of a single
query expression, you can define several different OLAP functions, each with
its own partitioning rules.

Understanding OLAP evaluation
OLAP evaluation can be conceptualized as several phases of query execution
that contribute to the final result. You can identify OLAP phases of execution
by the relevant clause in the query. For example, if a SQL query specification
contains window functions, the WHERE, JOIN, GROUP BY, and HAVING
clauses are processed first. Partitions are created after the groups defined in the
GROUP BY clause and before the evaluation of the final SELECT list in the
query’s ORDER BY clause.

For the purpose of grouping, all NULL values are considered to be in the same
group, even though NULL values are not equal to one another.

The HAVING clause acts as a filter, much like the WHERE clause, on the results
of the GROUP BY clause.

Consider the semantics of a simple query specification involving the SQL
statements and clauses, SELECT, FROM, WHERE, GROUP BY, and HAVING
from the ANSI SQL standard:

1 The query produces a set of rows that satisfy the table expressions present
in the FROM clause.

2 Predicates from the WHERE clause are applied to rows from the table.
Rows that fail to satisfy the WHERE clause conditions (do not equal true)
are rejected.
Performance and Tuning Guide 49

GROUP BY clause extensions
3 Except for aggregate functions, expressions from the SELECT list and in
the list and GROUP BY clause are evaluated for every remaining row.

4 The resulting rows are grouped together based on distinct values of the
expressions in the GROUP BY clause, treating NULL as a special value in
each domain. The expressions in the GROUP BY clause serve as partition
keys if a PARTITION BY clause is present.

5 For each partition, the aggregate functions present in the SELECT list or
HAVING clause are evaluated. Once aggregated, individual table rows are
no longer present in the intermediate result set. The new result set consists
of the GROUP BY expressions and the values of the aggregate functions
computed for each partition.

6 Conditions from the HAVING clause are applied to result groups. Groups
are eliminated that do not satisfy the HAVING clause.

7 Results are partitioned on boundaries defined in the PARTITION BY clause.
OLAP windows functions (rank and aggregates) are computed for result
windows.

Figure 4-1: Semantic phases of execution

See “Grammar rule 2” on page 108. See also “BNF grammar for OLAP
functions” on page 108 for details on OLAP syntax.

GROUP BY clause extensions
Extensions to the GROUP BY clause let application developers write complex
SQL statements that

• Partition the input rows in multiple dimensions and combine multiple
subsets of result groups.
50 Sybase IQ

CHAPTER 4 Using OLAP
• Create a “data cube,” providing a sparse, multi-dimensional result set for
data mining analyses.

• Create a result set that includes the original groups, and optionally
includes a subtotal and grand-total row.

OLAP Grouping() operations, such as ROLLUP and CUBE, can be
conceptualized as prefixes and subtotal rows.

Prefixes A list of prefixes is constructed for any query that contains a GROUP BY
clause. A prefix is a subset of the items in the GROUP BY clause and is
constructed by excluding one or more of the rightmost items from those in the
query’s GROUP BY clause. The remaining columns are called the prefix
columns.

ROLLUP example 1 In the following ROLLUP example query, the GROUP
BY list includes two variables, Year and Quarter:

SELECT year (order_date) Year, quarter(order_date)
 Quarter, COUNT(*) Orders
FROM alt_sales_order
GROUP BY ROLLUP(Year, Quarter)
ORDER BY Year, Quarter

The query’s two prefixes are:

• Exclude Quarter – The set of prefix columns contains the single column
Year.

• Exclude both Quarter and Year – There are no prefix columns.

Note The GROUP BY list contains the same number of prefixes as items.
Performance and Tuning Guide 51

GROUP BY clause extensions
Group by ROLLUP and CUBE
Two important syntactic shortcuts exist to concisely specify common grouping
for prefixes. The first of these patterns is called ROLLUP, and the second is
called CUBE.

Group by ROLLUP

The ROLLUP operator requires an ordered list of grouping expressions to be
supplied as arguments, as in the following syntax.

SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [, …]
| ROLLUP (expression [, …])]

GROUPING takes a column name as a parameter and returns a Boolean value
as listed in Table 4-1.

Table 4-1: Values returned by GROUPING with the ROLLUP operator

ROLLUP first calculates the standard aggregate values specified in the GROUP
BY clause. Then ROLLUP moves from right to left through the list of grouping
columns and creates progressively higher-level subtotals. A grand total is
created at the end. If n is the number of grouping columns, then ROLLUP
creates n+1 levels of subtotals.

ROLLUP and subtotal
rows

ROLLUP is equivalent to a UNION of a set of GROUP BY queries. The result
sets of the following queries are identical. The result set of GROUP BY (A, B)
consists of subtotals over all those rows in which A and B are held constant. To
make a union possible, column C is assigned NULL.

If the value of the result is GROUPING returns

NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a ROLLUP operation 0 (FALSE)

A stored NULL 0 (FALSE)

This SQL syntax... Defines the following sets...

GROUP BY ROLLUP (A, B, C); (A, B, C)

(A, B)

(A)

()
52 Sybase IQ

CHAPTER 4 Using OLAP
Subtotal rows can help you analyze data, especially if there are large amounts
of data, different dimensions to the data, data contained in different tables, or
even different databases altogether. For example, a sales manager might find
reports on sales figures broken down by sales representative, region, and
quarter to be useful in understanding patterns in sales. Subtotals for the data
give the sales manager a picture of overall sales from different perspectives.
Analyzing this data is easier when summary information is provided based on
the criteria that the sales manager wants to compare.

With OLAP, the procedure for analyzing and computing row and column
subtotals is invisible to users. Figure 4-2 shows conceptually how Sybase IQ
creates subtotals:

Figure 4-2: Subtotals

1 This step yields an intermediate result set that has not yet considered the
ROLLUP.

2 Subtotals are evaluated and attached to the result set.

3 The rows are arranged according to the ORDER BY clause in the query.

NULL values and
subtotal rows

When rows in the input to a GROUP BY operation contain NULL, there is the
possibility of confusion between subtotal rows added by the ROLLUP or CUBE
operations and rows that contain NULL values that are part of the original input
data.

The Grouping() function distinguishes subtotal rows from others by taking a
column in the GROUP BY list as its argument, and returning 1 if the column is
NULL because the row is a subtotal row, and 0 otherwise.

This ROLLUP query...
Is equivalent to this query without
ROLLUP...

SELECT A, B, C,
 SUM(D)
FROM T1
GROUP BY ROLLUP (A, B,
 C);

SELECT *
FROM ((SELECT A, B, C, SUM(D)
GROUP BY A, B, C) UNION ALL (SELECT
 A, B, NULL, SUM(D) GROUP BY A,
 B) UNION ALL (SELECT A, NULL,
 NULL, SUM(D) GROUP BY A)
 UNION ALL (SELECT NULL, NULL,
 NULL, SUM(D)))
Performance and Tuning Guide 53

GROUP BY clause extensions
The following example includes Grouping() columns in the result set. Rows
are highlighted that contain NULL as a result of the input data, not because
they are subtotal rows. The Grouping() columns are highlighted. The query is
an outer join between the employee table and the sales_order table. The query
selects female employees who live in either Texas, New York, or California.
NULL appears in the columns corresponding to those female employees who
are not sales representatives (and therefore have no sales).

SELECT employee.emp_id AS Employee, year(order_date) AS
 Year, COUNT(*) AS Orders, GROUPING(Employee) AS
 GE, GROUPING(Year) AS GY
 FROM employee LEFT OUTER JOIN alt_sales_order ON
 employee.emp_id = alt_sales_order.sales_rep
 WHERE employee.sex IN ('F') AND employee.state
 IN ('TX', 'CA', 'NY')
GROUP BY ROLLUP (Year, Employee)
ORDER BY Year, Employee

The following result set is from the query.

emp_id year Orders GY GE
------ ---- ------ -- --
NULL NULL 1 1 0
NULL NULL 165 1 1
1090 NULL 1 0 0
NULL 2000 98 1 0
 667 2000 34 0 0
 949 2000 31 0 0
1142 2000 33 0 0
NULL 2001 66 1 0
 667 2001 20 0 0
949 2001 22 0 0
1142 2001 24 0 0

For each prefix, a subtotal row is constructed that corresponds to all rows in
which the prefix columns have the same value.

To demonstrate ROLLUP results, examine the example query again:

SELECT year (order_date) AS Year, quarter
 (order_date) AS Quarter, COUNT (*) Orders
FROM sales_order
 GROUP BY ROLLUP (Year, Quarter)
 ORDER BY Year, Quarter
54 Sybase IQ

CHAPTER 4 Using OLAP
In this query, the prefix containing the Year column leads to a summary row for
Year=2000 and a summary row for Year=2001. A single summary row for the
prefix has no columns, which is a subtotal over all rows in the intermediate
result set.

The value of each column in a subtotal row is as follows:

• Column included in the prefix – The value of the column. For example, in
the preceding query, the value of the Year column for the subtotal over
rows with Year=2000 is 2000.

• Column excluded from the prefix – NULL. For example, the Quarter
column has a value of NULL for the subtotal rows generated by the prefix
consisting of the Year column.

• Aggregate function – An aggregate over the values of the excluded
columns.

Subtotal values are computed over the rows in the underlying data, not
over the aggregated rows. In many cases, such as SUM or COUNT, the
result is the same, but the distinction is important in the case of statistical
functions such as AVG, STDDEV, and VARIANCE, for which the result
differs.

Restrictions on the ROLLUP operator are:

• The ROLLUP operator supports all of the aggregate functions available to
the GROUP BY clause except COUNT DISTINCT and SUM DISTINCT.

• ROLLUP can only be used in the SELECT statement; you cannot use
ROLLUP in a subquery.

• A grouping specification that combines multiple ROLLUP, CUBE, and
GROUP BY columns in the same GROUP BY clause is not currently
supported.

• Constant expressions as GROUP BY keys are not supported.

For the general format of an expression, see “Expressions,” “SQL Language
Elements,” in the Sybase IQ Reference Manual.

ROLLUP example 2 The following example illustrates the use of ROLLUP
and GROUPING and displays a set of mask columns created by GROUPING.
The digits 0 and 1 displayed in columns S, N, and C are the values returned by
GROUPING to represent the value of the ROLLUP result. A program can
analyze the results of this query by using a mask of “011” to identify subtotal
rows and “111” to identify the row of overall totals.

SELECT size, name, color, SUM(quantity),
Performance and Tuning Guide 55

GROUP BY clause extensions
 GROUPING(size) AS S,
 GROUPING(name) AS N,
 GROUPING(color) AS C
FROM product
GROUP BY ROLLUP(size, name, color) HAVING (S=1 or N=1
or C=1)
ORDER BY size, name, color;

The following are the results from the above query:

size name color SUM S N C
---- ----- ------ --- - - -
(NULL) (NULL) (NULL) 496 1 1 1
Large (NULL) (NULL) 71 0 1 1
Large Sweatshirt (NULL) 71 0 0 1
Medium (NULL) (NULL) 134 0 1 1
Medium Shorts (NULL) 80 0 0 1
Medium Tee Shirt (NULL) 54 0 0 1
One size fits all (NULL) (NULL) 263 0 1 1
One size fits all Baseball Cap (NULL) 124 0 0 1
One size fits all Tee Shirt (NULL) 75 0 0 1
One size fits all Visor (NULL) 64 0 0 1
Small (NULL) (NULL) 28 0 1 1
Small Tee Shirt (NULL) 28 0 1 1

ROLLUP example 3 The following example illustrates the use of
GROUPING to distinguish stored NULL values and “NULL” values created by
the ROLLUP operation. Stored NULL values are then displayed as [NULL] in
column prod_id, and “NULL” values created by ROLLUP are replaced with
ALL in column PROD_IDS, as specified in the query.

SELECT year(ship_date) AS Year, prod_id, SUM(quantity)
 AS OSum, CASE WHEN GROUPING(Year) = 1 THEN 'ALL' ELSE
 CAST(Year AS char(8)) END, CASE WHEN
 GROUPING(prod_id) = 1 THEN 'ALL' ELSE CAST(prod_id
 as char(8)) END
FROM alt_sales_order_items
GROUP BY ROLLUP(Year, prod_id) HAVING OSum > 36
ORDER BY Year, prod_id;

The following are the results from the above query:

ship_date prod_id SUM SHIP_DATES PROD_IDS
--------- ------- --- ---------- --------
NULL NULL 28359 ALL ALL
2000 NULL 17642 2000 ALL
2000 300 1476 2000 300
56 Sybase IQ

CHAPTER 4 Using OLAP
2000 301 1440 2000 301
2000 302 1152 2000 302
2000 400 1946 2000 400
2000 401 1596 2000 401
2000 500 1704 2000 500
2000 501 1572 2000 501
2000 600 2124 2000 600
2000 601 1932 2000 601
2000 700 2700 2000 700
2001 NULL 10717 2001 ALL
2001 300 888 2001 300
2001 301 948 2001 301
2001 302 996 2001 302
2001 400 1332 2001 400
2001 401 1105 2001 401
2001 500 948 2001 500
2001 501 936 2001 501
2001 600 936 2001 600
2001 601 792 2001 601
2001 700 1836 2001 700

ROLLUP example 4 The next example query returns data that summarizes
the number of sales orders by year and quarter.

SELECT year(order_date) AS Year, quarter(order_date)
 AS Quarter, COUNT(*) AS Orders
 FROM alt_sales_order
GROUP BY ROLLUP(Year, Quarter)
ORDER BY Year, Quarter

The following figure illustrates the query results with subtotal rows highlighted
in the result set. Each subtotal row contains a NULL value in the column or
columns over which the subtotal is computed.
Performance and Tuning Guide 57

GROUP BY clause extensions
Row [1] represents the total number of orders across both years (2000, 2001)
and all quarters. This row contains NULL in both the Year and Quarter columns
and is the row where all columns were excluded from the prefix.

Note Every ROLLUP operation returns a result set with one row where NULL
appears in each column except for the aggregate column. This row represents
the summary of each column to the aggregate function. For example, if SUM
were the aggregate function in question, this row would represent the grand
total of all values.

Row [2] represent the total number of orders in the years 2000 and 2001,
respectively. Both rows contain NULL in the Quarter column because the
values in that column are rolled up to give a subtotal for Year. The number of
rows like this in your result set depends on the number of variables that appear
in your ROLLUP query.

The remaining rows marked [3] provide summary information by giving the
total number of orders for each quarter in both years.

ROLLUP example 5 This example of the ROLLUP operation returns a
slightly more complicated result set, which summarizes the number of sales
orders by year, quarter, and region. In this example, only the first and second
quarters and two selected regions (Canada and the Eastern region) are
examined.

SELECT year(order_date) AS Year, quarter(order_date)
 AS Quarter, region, COUNT(*) AS Orders
 FROM alt_sales_order WHERE region IN ('Canada',
 'Eastern') AND quarter IN (1, 2)
GROUP BY ROLLUP (Year, Quarter, Region)
ORDER BY Year, Quarter, Region
58 Sybase IQ

CHAPTER 4 Using OLAP
The following figure illustrates the result set from the above query. Each
subtotal row contains a NULL in the column or columns over which the
subtotal is computed.

Row [1] is an aggregate over all rows and contains NULL in the Year, Quarter,
and Region columns. The value in the Orders column of this row represents the
total number of orders in Canada and the Eastern region in quarters 1 and 2 in
the years 2000 and 2001.

The rows marked [2] represent the total number of sales orders in each year
(2000) and (2001) in quarters 1 and 2 in Canada and the Eastern region. The
values of these rows [2] are equal to the grand total represented in row [1].
Performance and Tuning Guide 59

GROUP BY clause extensions
The rows marked [3] provide data about the total number of orders for the
given year and quarter by region.

The rows marked [4] provide data about the total number of orders for each
year, each quarter, and each region in the result set.
60 Sybase IQ

CHAPTER 4 Using OLAP
Group by CUBE

The CUBE operator in the GROUP BY clause analyzes data by forming the data
into groups in more than one dimension (grouping expression). CUBE requires
an ordered list of dimensions as arguments and enables the SELECT statement
to calculate subtotals for all possible combinations of the group of dimensions
that you specify in the query and generates a result set that shows aggregates
for all combinations of values in selected columns.

CUBE syntax:

SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [,…]
| CUBE (expression [,…])]

GROUPING takes a column name as a parameter and returns a Boolean value
as listed in Table 4-2.

Table 4-2: Values returned by GROUPING with the CUBE operator

CUBE is particularly useful when your dimensions are not a part of the same
hierarchy.

Restrictions on the CUBE operator are:

• The CUBE operator supports all of the aggregate functions available to the
GROUP BY clause, but CUBE is currently not supported with COUNT
DISTINCT or SUM DISTINCT.

If the value of the result is GROUPING returns

NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a CUBE operation 0 (FALSE)

A stored NULL 0 (FALSE)

This SQL syntax... Defines the following sets...

GROUP BY CUBE (A, B, C); (A, B, C)

(A, B)

(A, C)

(A)

(B, C)

(B)

(C)

()
Performance and Tuning Guide 61

GROUP BY clause extensions
• CUBE is currently not supported with the inverse distribution analytical
functions, PERCENTILE_CONT and PERCENTILE_DISC.

• CUBE can only be used in the SELECT statement; you cannot use CUBE in
a SELECT subquery.

• A GROUPING specification that combines ROLLUP, CUBE, and GROUP
BY columns in the same GROUP BY clause is not currently supported.

• Constant expressions as GROUP BY keys are not supported.

Note Performance of CUBE will diminish if the size of the cube exceeds the
size of the temp cache.

GROUPING can be used with the CUBE operator to distinguish between stored
NULL values and “NULL” values in query results created by CUBE.

See the examples in the description of the ROLLUP operator for illustrations of
the use of the GROUPING function to interpret results.

 All CUBE operations return result sets with at least one row where NULL
appears in each column except for the aggregate columns. This row represents
the summary of each column to the aggregate function.

CUBE example 1 The following queries use data from a census, including
the state (geographic location), gender, education level, and income of people.
The first query contains a GROUP BY clause that organizes the results of the
query into groups of rows, according to the values of the columns state, gender,
and education in the table census and computes the average income and the
total counts of each group. This query uses only the GROUP BY clause without
the CUBE operator to group the rows.

SELECT state, sex as gender, dept_id, COUNT(*),
 CAST(ROUND(AVG(salary),2) AS NUMERIC(18,2))
 AS average
FROM employee WHERE state IN ('MA' , 'CA')
GROUP BY state, sex, dept_id
ORDER BY 1,2;

The following are the results from the above query:

state gender dept_id count(*) avg salary
----- ------ ------- -------- ----------
CA F 200 2 58650.00
CA M 200 1 39300.00
MA F 500 4 29950.00
MA F 400 8 41959.88
62 Sybase IQ

CHAPTER 4 Using OLAP
MA F 300 7 59685.71
MA F 200 3 60451.00
MA F 100 6 58243.42
MA M 300 2 58850.00
MA M 500 5 36793.96
MA M 400 8 45321.47
MA M 100 13 58563.59
MA M 200 8 46810.63

Use the CUBE extension of the GROUP BY clause, if you want to compute the
average income in the entire census of state, gender, and education and
compute the average income in all possible combinations of the columns state,
gender, and education, while making only a single pass through the census data.
For example, use the CUBE operator if you want to compute the average
income of all females in all states, or compute the average income of all people
in the census according to their education and geographic location.

When CUBE calculates a group, a NULL value is generated for the columns
whose group is calculated. The GROUPING function must be used to
distinguish whether a NULL is a NULL stored in the database or a NULL
resulting from CUBE. The GROUPING function returns 1 if the designated
column has been merged to a higher level group.

CUBE example 2 The following query illustrates the use of the GROUPING
function with GROUP BY CUBE.

SELECT case grouping(state) WHEN 1 THEN 'ALL' ELSE state
 END AS c_state, case grouping(sex) WHEN 1 THEN 'ALL'
 ELSE sex end AS c_gender, case grouping(dept_id)
 WHEN 1 THEN 'ALL' ELSE cast(dept_id as char(4)) end
 AS c_dept, COUNT(*), CAST(ROUND(AVG(salary),2) AS
 NUMERIC(18,2))AS AVERAGE
FROM employee WHERE state IN ('MA' , 'CA')
GROUP BY CUBE(state, sex, dept_id)
ORDER BY 1,2,3;

The results of this query are shown below. Note that the NULLs generated by
CUBE to indicate a subtotal row are replaced with ALL in the subtotal rows, as
specified in the query.

state sex dept_id count avg salary
----- --- ------- ----- ----------
ALL ALL 100 19 58462.48
ALL ALL 200 14 50888.43
ALL ALL 300 9 59500.00
ALL ALL 400 16 43640.67
ALL ALL 500 9 33752.20
Performance and Tuning Guide 63

GROUP BY clause extensions
ALL ALL ALL 67 50160.38
ALL F 100 6 58243.42
ALL F 200 5 59730.60
ALL F 300 7 59685.71
ALL F 400 8 41959.88
ALL F 500 4 29950.00
ALL F ALL 30 50713.08
ALL M 100 13 58563.59
ALL M 200 9 45976.11
ALL M 300 2 58850.00
ALL M 400 8 45321.47
ALL M 500 5 36793.96
ALL M ALL 37 49712.25
CA ALL 200 3 52200.00
CA ALL ALL 3 52200.00
CA F 200 2 58650.00
CA F ALL 2 58650.00
CA M 200 1 39300.00
CA M ALL 1 39300.00
MA ALL 100 19 58462.48
MA ALL 200 11 50530.73
MA ALL 300 9 59500.00
MA ALL 400 16 43640.67
MA ALL 500 9 33752.20
MA ALL ALL 64 50064.78
MA F 100 6 58243.42
MA F 200 3 60451.00
MA F 300 7 59685.71
MA F 400 8 41959.88
MA F 500 4 29950.00
MA F ALL 28 50146.16
MA M 100 13 58563.59
MA M 200 8 46810.63
MA M 300 2 58850.00
MA M 400 8 45321.47
MA M 500 5 36793.96
MA M ALL 36 50001.48

CUBE example 3 In this example, the query returns a result set that
summarizes the total number of orders and then calculates subtotals for the
number of orders by year and quarter.

Note As the number of variables that you want to compare increases, the cost
of computing the cube increases exponentially.
64 Sybase IQ

CHAPTER 4 Using OLAP
SELECT year(order_date) AS Year, quarter(order_date)
 AS Quarter, COUNT(*) AS Orders
FROM alt_sales_order
GROUP BY CUBE(Year, Quarter)
ORDER BY Year, Quarter

The figure that follows represents the result set from the query. The subtotal
rows are highlighted in the result set. Each subtotal row has a NULL in the
column or columns over which the subtotal is computed.

The first highlighted row [1] represents the total number of orders across both
years and all quarters. The value in the Orders column is the sum of the values
in each of the rows marked [3]. It is also the sum of the four values in the rows
marked [2].

The next set of highlighted rows [2] represents the total number of orders by
quarter across both years. The two rows marked by [3] represent the total
number of orders across all quarters for the years 2000 and 2001, respectively.
Performance and Tuning Guide 65

Analytical functions
Analytical functions
Sybase IQ offers both simple and windowed aggregation functions that offer
the ability to perform complex data analysis within a single SQL statement.
These functions can be used to compute answers to queries such as “What is
the quarterly moving average of the Dow Jones Industrial average” or “List all
employees and their cumulative salaries for each department.” Moving
averages and cumulative sums can be calculated over various intervals, and
aggregations and ranks can be partitioned such that aggregate calculation is
reset when partition values change. Within the scope of a single query
expression, you can define several different OLAP functions, each with its own
arbitrary partitioning rules. Analytical functions can be broken into two
categories

• Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM
summarize data over a group of rows from the database. The groups are
formed using the GROUP BY clause of the SELECT statement.

• Unary statistical aggregate functions that take one argument include
STDDEV, STDDEV_SAMP, STDDEV_POP, VARIANCE, VAR_SAMP, and
VAR_POP().

Both the simple and unary categories of aggregates summarize data over a
group of rows from the database and can be used with a window specification
to compute a moving window over a result set as it is processed.

Note The aggregate functions AVG, SUM, STDDEV, STDDEV_POP,
STDDEV_SAMP, VAR_POP, VAR_SAMP, and VARIANCE do not support binary
data types BINARY and VARBINARY.
66 Sybase IQ

CHAPTER 4 Using OLAP
Simple aggregate functions
Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM
summarize data over a group of rows from the database. The groups are formed
using the GROUP BY clause of the SELECT statement. These aggregates are
allowed only in the select list and in the HAVING and ORDER BY clauses of a
SELECT statement.

Note With the exception of Grouping() functions, both the simple and unary
aggregates can be used in a windowing function that incorporates a <window
clause> in a SQL query specification (a window) that conceptually creates a
moving window over a result set as it is processed. See “Windowing” on page
67.

For more information, see “Aggregate functions,” Chapter 5, “SQL
Functions,” in the Sybase IQ Reference Manual.

Windowing
A major feature of the ANSI SQL extensions for OLAP is a construct called a
window. This windowing extension let users divide result sets of a query (or a
logical partition of a query) into groups of rows called partitions and determine
subsets of rows to aggregate with respect to the current row.

You can use three classes of window functions with a window: ranking
functions, the row numbering function, and window aggregate functions.

<WINDOWED TABLE FUNCTION TYPE> ::=
 <RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>
 | ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
 | <WINDOW AGGREGATE FUNCTION>

See also “Grammar rule 6” on page 109.

Windowing extensions specify a window function type over a window name or
specification and are applied to partitioned result sets within the scope of a
single query expression. A window partition is a subset of rows returned by a
query, as defined by one or more columns in a special OVER clause:

olap_function() OVER (PARTITION BY col1, col2...)
Performance and Tuning Guide 67

Analytical functions
Windowing operations let you establish information such as the ranking of
each row within its partition, the distribution of values in rows within a
partition, and similar operations. Windowing also lets you compute moving
averages and sums on your data, enhancing the ability to evaluate your data and
its impact on your operations.

A window partition is a subset of rows returned by a query, as defined by one
or more columns in a special OVER() clause:

OLAP_FUNCTION() OVER (PARTITION BY col1, col2...)

An OLAP window’s
three essential parts

The OLAP windows comprise three essential aspects: window partitioning,
window ordering, and window framing. Each has a significant impact on the
specific rows of data visible in a window at any point in time. Meanwhile, the
OLAP OVER clause differentiates OLAP functions from other analytic or
reporting functions with three distinct capabilities:

• Defining window partitions (PARTITION BY clause). See “Window
partitioning” on page 69.

• Ordering rows within partitions (ORDER BY clause). See “Window
ordering” on page 70.

• Defining window frames (ROWS/RANGE specification). “Window
framing” on page 71.

A name can be specified for an OLAP window specification. This name can be
used to specify multiple windows functions to avoid redundant window
definitions. In this usage, the keyword, WINDOW, is followed by at least one
window definition, separated by commas. A window definition includes the
name by which the window is known in the query and the details from the
windows specification, which lets you to define window partitioning, ordering,
and framing:

<WINDOW CLAUSE> ::= <WINDOW WINDOW DEFINITION LIST>

<WINDOW DEFINITION LIST> ::=
 <WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>
 } . . .]

<WINDOW DEFINITION> ::=
 <NEW WINDOW NAME> AS <WINDOW SPECIFICATION>

<WINDOW SPECIFICATION DETAILS> ::=
 [<EXISTING WINDOW NAME>]
 [<WINDOW PARTITION CLAUSE>]
 [<WINDOW ORDER CLAUSE>]
 [<WINDOW FRAME CLAUSE>]
68 Sybase IQ

CHAPTER 4 Using OLAP
For each row in a window partition, users can define a window frame, which
may vary the specific range of rows used to perform any computation on the
current row of the partition. The current row provides the reference point for
determining the start and end points of the window frame.

Window specifications can be based on either a physical number of rows using
a window specification that defines a window frame unit of ROWS or a logical
interval of a numeric value, using a window specification that defines a
window frame unit of RANGE. See “Window framing” on page 71 for details.

Within OLAP windowing operations, you can use the following functional
categories:

• “Ranking functions” on page 82

• “Windowing aggregate functions” on page 87

• “Statistical aggregate functions” on page 89

• “Distribution functions” on page 90

Window partitioning

Window partitioning is the division of user-specified result sets (input rows)
using a PARTITION BY clause. A partition is defined by one or more value
expressions separated by commas. Partitioned data is also implicitly sorted and
the default sort order is ascending (ASC).

<WINDOW PARTITION CLAUSE> ::=
 PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

If a window partition clause is not specified, then the input is treated as single
partition.

Note The term, partition, as used with analytic functions, refers only to
dividing the set of result rows using a PARTITION BY clause.

A window partition can be defined based on an arbitrary expression. Also,
because window partitioning occurs after GROUPING (if a GROUP BY clause
is specified), the result of any aggregate function, such as SUM, AVG, and
VARIANCE, can be used in a partitioning expression. Therefore, partitions
provide another opportunity to perform grouping and ordering operations in
addition to the GROUP BY and ORDER BY clauses; for example, you can
construct queries that compute aggregate functions over aggregate functions,
such as the maximum SUM of a particular quantity.
Performance and Tuning Guide 69

Analytical functions
You can specify a PARTITION BY clause, even it there is no GROUP BY clause.

Window ordering

Window ordering is the arrangement of results (rows) within each window
partition using a window order clause, which contains one or more value
expressions separated by commas. If a window order clause is not specified,
the input rows could be processed in an arbitrary order.

<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

The OLAP window order clause is different from the ORDER BY clause that
can be appended to a non-windowed query expression. See “Grammar rule 31”
on page 111.

The ORDER BY clause in an OLAP function, for example, typically defines the
expressions for sorting rows within window partitions; however, you can use
the ORDER BY clause without a PARTITION BY clause, in which case the sort
specification ensures that the OLAP function is applied to a meaningful (and
intended) ordering of the intermediate result set.

An order specification is a prerequisite for the ranking family of OLAP
functions; it is the ORDER BY clause, not an argument to the function itself,
that identifies the measures for the ranking values. In the case of OLAP
aggregates, the ORDER BY clause is not required in general, but it is a
prerequisite to defining a window frame. (See “Window framing” on page 71.)
This is because the partitioned rows must be sorted before the appropriate
aggregate values can be computed for each frame.

The ORDER BY clause includes semantics for defining ascending and
descending sorts, as well as rules for the treatment of NULL values. By default,
OLAP functions assume an ascending order, where the lowest measured value
is ranked 1.
70 Sybase IQ

CHAPTER 4 Using OLAP
Although this behavior is consistent with the default behavior of the ORDER
BY clause that ends a SELECT statement, it is counter-intuitive for most
sequential calculations. OLAP calculations often require a descending order,
where the highest measured value is ranked 1; this requirement must be
explicitly stated in the ORDER BY clause with the DESC keyword.

Note Ranking functions require a <window order clause> because they are
defined only over sorted input. As with an <order by clause> in a <query
specification>, the default sort sequence is ascending.

The use of a <window frame unit> of RANGE also requires the existence of a
<window order clause>. In the case of RANGE, the <window order clause>
may only consist of a single expression. See “Window framing.”

Window framing

For non-ranking aggregate OLAP functions, you can define a window frame
with a window frame clause, which specifies the beginning and end of the
window relative to the current row.

<WINDOW FRAME CLAUSE> ::=
 <WINDOW FRAME UNIT>
 <WINDOW FRAME EXTENT>

This OLAP function is computed with respect to the contents of a moving
frame rather than the fixed contents of the whole partition. Depending on its
definition, the partition has a start row and an end row, and the window frame
slides from the starting point to the end of the partition.
Performance and Tuning Guide 71

Analytical functions
Figure 4-3: Three-row moving window with partitioned input

UNBOUNDED
PRECEEDING and
FOLLOWING

Window frames can be defined by an unbounded aggregation group that either
extends back to the beginning of the partition (UNBOUNDED PRECEDING)
or extends to the end of the partition (UNBOUNDED FOLLOWING), or both.

UNBOUNDED PRECEDING includes all rows within the partition preceding
the current row, which can be specified with either ROWS or RANGE.
UNBOUNDED FOLLOWING includes all rows within the partition following
the current row, which can be specified with either ROWS or RANGE. See
“ROWS” on page 74 and “RANGE” on page 77.

The value FOLLOWING specifies either the range or number of rows
following the current row. If ROWS is specified, then the value is a positive
integer indicating a number of rows. If RANGE is specified, the window
includes any rows that are less than the current row plus the specified numeric
value. For the RANGE case, the data type of the windowed value must be
comparable to the type of the sort key expression of the ORDER BY clause.
There can be only one sort key expression, and the data type of the sort key
expression must allow addition.
72 Sybase IQ

CHAPTER 4 Using OLAP
The value PREDCEEDING specifies either the range or number of rows
preceding the current row. If ROWS is specified, then the value is a positive
integer indicating a number of rows. If RANGE is specified, the window
includes any rows that are less than the current row minus the specified
numeric value. For the RANGE case, the data type of the windowed value must
be comparable to the type of the sort key expression of the ORDER BY clause.
There can be only one sort key expression, and the data type of the sort key
expression must allow subtraction. This clause cannot be specified in second
bound group if the first bound group is CURRENT ROW or value
FOLLOWING.

The combination BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING provides an aggregate over an entire partition,
without the need to construct a join to a grouped query. An aggregate over an
entire partition is also known as a reporting aggregate.

CURRENT ROW
concept

In physical aggregation groups, rows are included or excluded based on their
position relative to the current row, by counting adjacent rows. The current row
is simply a reference to the next row in a query’s intermediate results. As the
current row advances, the window is reevaluated based on the new set of rows
that lie within the window. There is no requirement that the current row be
included in a window.

If a window frame clause is not specified, the default window frame depends
on whether or not a window order clause is specified:

• If the window specification contains a window order clause, the window’s
start point is UNBOUNDED PRECEDING, and the end point is CURRENT
ROW, thus defining a varying-size window suitable for computing
cumulative values.

• If the window specification does not contain a window order clause, the
window’s start point is UNBOUNDED PRECEDING, and the end point is
UNBOUNDED FOLLOWING, thus defining a window of fixed size,
regardless of the current row.

Note A window frame clause cannot be used with a ranking function.

You can also define a window by specifying a window frame unit that is row-
based (rows specification) or value-based (range specification).

<WINDOW FRAME UNIT> ::= ROWS | RANGE

<WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW
FRAME BETWEEN>
Performance and Tuning Guide 73

Analytical functions
When a window frame extent specifies BETWEEN, it explicitly provides the
beginning and end of a window frame.

If the window frame extent specifies only one of these two values then the other
value defaults to CURRENT ROW.

ROWS

The window frame unit, ROWS, defines a window in the specified number of
rows before or after the current row, which serves as the reference point that
determines the start and end of a window. Each analytical calculation is based
on the current row within a partition. To produce determinative results for a
window expressed in rows, the ordering expression should be unique.

The reference point for all window frames is the current row. The SQL/OLAP
syntax provides mechanisms for defining a row-based window frame as any
number of rows preceding or following the current row or preceding and
following the current row.

The following list illustrates common examples of a window frame unit:

• Rows Between Unbounded Preceding and Current Row – specifies a
window whose start point is the beginning of each partition and the end
point is the current row and is often used to construct windows that
compute cumulative results, such as cumulative sums.

• Rows Between Unbounded Preceding and Unbounded Following –
specifies a fixed window, regardless of the current row, over the entire
partition. The value of a window aggregate function is, therefore, identical
in each row of the partition.

• Rows Between 1 Preceding and 1 Following – specifies a fixed-sized
moving window over three adjacent rows, one each before and after the
current row. You can use this window frame unit to compute, for example,
a 3-day or 3-month moving average. See Figure 4-3 on page 72.
74 Sybase IQ

CHAPTER 4 Using OLAP
Be aware of non-meaningful results that could be generated using ROWS
due to gaps in the windowed values. If the set of values is not continuous,
consider using RANGE instead of ROWS, because a window definition
based on RANGE automatically handle adjacent rows with duplicate
values and will not include other rows when there are gaps in the range.

Note In the case of a moving window, it is assumed that rows containing
NULL values exist before the first row, and after the last row, in the input.
What this means is that with a 3-row moving window, the computation for
the last row in the input—the current row—will include the immediately
preceding row and a NULL value.

• Rows Between Current Row and Current Row – restricts the window to the
current row only.

• Rows Between 1 Preceding and 1 Preceding – specifies a single row
window consisting only of the preceding row, with respect to the current
row. In combination with another window function that computes a value
based on the current row only, this construction makes it possible to easily
compute deltas, or differences in value, between adjacent rows. See
“Computing deltas between adjacent rows” on page 79.

Row-based window frames In the example in Figure 4-4, rows [1] through
[5] represent a partition; each row becomes the current row as the OLAP
window frame slides forward. The frame is defined as Between Current Row
And 2 Following, so each frame includes a maximum of three rows and a
minimum of one row. When the frame reaches the end of the partition, only the
current row is included. The shaded areas indicate which rows are excluded
from the frame at each step in Figure 4-4.

Figure 4-4: Row-based window frames

The window frame in Figure 4-4 imposes the following rules:

• When row [1] is the current row, rows [4] and [5] are excluded.

• When row [2] is the current row, rows [5] and [1] are excluded.

• When row [3] is the current row, rows [1] and [2] are excluded.

• When row [4] is the current row, rows [1], [2], and [3] are excluded.
Performance and Tuning Guide 75

Analytical functions
• When row [5] is the current row, rows [1], [2], [3], and [4] are excluded.

The following diagram applies these rules to a specific set of values, showing
the OLAP AVG function that would be calculated for each row. The sliding
calculations produce a moving average with an interval of three rows or fewer,
depending on which row is the current row:

The following example demonstrates a sliding window:

SELECT dimension, measure,
 AVG(measure) OVER(partition BY dimension
 ORDER BY measure
 ROWS BETWEEN CURRENT ROW and 2 FOLLOWING)
 AS olap_avg
FROM ...

The averages are computed as follows:

• Row [1] = (10 + 50 + 100)/3

• Row [2] = (50+ 100 + 120)/3

• Row [3] = (100 + 120 + 500)/3

• Row [4] = (120 + 500 + NULL)/3

• Row [5] = (500 + NULL + NULL)/3

Similar calculations would be computed for all subsequent partitions in the
result set (such as, B, C, and so on).

If there are no rows in the current window, the result is NULL, except for
COUNT.
76 Sybase IQ

CHAPTER 4 Using OLAP
RANGE

Range-based window frames The previous example, Row-based window
frames, demonstrates one among many row-based window frame definitions.
The SQL/OLAP syntax also supports another kind of window frame whose
limits are defined in terms of a value-based—or range-based—set of rows,
rather than a specific sequence of rows.

Value-based window frames define rows within a window partition that
contain a specific range of numeric values. The OLAP function’s ORDER BY
clause defines the numeric column to which the range specification is applied,
relative to the current row’s value for that column. The range specification uses
the same syntax as the rows specification, but the syntax is interpreted in a
different way.

The window frame unit, RANGE, defines a window frame whose contents are
determined by finding rows in which the ordering column has values within the
specified range of value relative to the current row. This is called a logical
offset of a window frame, which you can specify with constants, such as “3
preceding,” or any expression that can be evaluated to a numeric constant.
When using a window defined with RANGE, there can be only a single
numeric expression in the ORDER BY clause.

For example, a frame could be defined as the set of rows with year values some
number of years preceding or following the current row’s year:

ORDER BY year ASC range BETWEEN CURRENT ROW and 1
PRECEDING

In the above example query, 1 preceding means the current row’s year value
minus 1.

This kind of range specification is inclusive. If the current row’s year value is
2000, all rows in the window partition with year values 2000 and 1999 qualify
for the frame, regardless of the physical position of those rows in the partition.
The rules for including and excluding value-based rows are quite different
from the rules applied to row-based frames, which depend entirely on the
physical sequence of rows.

Put in the context of an OLAP AVG() calculation, the following partial result
set further demonstrates the concept of a value-based window frame. Again,
the frame consists of rows that:

• Have the same year as the current row
Performance and Tuning Guide 77

Analytical functions
• Have the same year as the current row minus 1

The following query demonstrates a range-based window definition:

SELECT dimension, year, measure,
 AVG(measure) OVER(PARTITION BY dimension
 ORDER BY year ASC
 range BETWEEN CURRENT ROW and 1 PRECEDING)
 as olap_avg
FROM ...

The averages are computed as follows:

• Row [1] = 1999; rows [2] through [5] are excluded; AVG = 10,000/1

• Row [2] = 2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2

• Row [3] = 2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2

• Row [4] = 2002; row [1] is excluded; AVG = 21,000/4

• Row [5] = 2002; row [1] is excluded; AVG = 21,000/4

Ascending and descending order for value-based frames The ORDER
BY clause for an OLAP function with a value-based window frame not only
identifies the numeric column on which the range specification is based; it also
declares the sort order for the ORDER BY values. The following specification
is subject to the sort order that precedes it (ASC or DESC):

RANGE BETWEEN CURRENT ROW AND n FOLLOWING

The specification n FOLLOWING means:

• Plus n if the partition is sorted in default ascending order (ASC)

• Minus n if the partition is sorted in descending order (DESC)

For example, assume that the year column contains four distinct values, from
1999 to 2002. The following table shows the default ascending order of these
values on the left and the descending order on the right:
78 Sybase IQ

CHAPTER 4 Using OLAP
If the current row is 1999 and the frame is specified as follows, rows that
contain the values 1999 and 1998 (which doesn’t exist in the table) are included
in the frame:

ORDER BY year ASC range BETWEEN CURRENT ROW and 1
FOLLOWING

Note The sort order of the ORDER BY values is a critical part of the test for
qualifying rows in a value-based frame; the numeric values alone do not
determine exclusion or inclusion.

Using an unbounded window The following query produces a result set
consisting of all of the products accompanied by the total quantity of all
products:

SELECT id, description, quantity,
 SUM(quantity) OVER () AS total
FROM product;

Computing deltas between adjacent rows Using two windows—one over
the current row and the other over the previous row—provides a direct way of
computing deltas, or changes, between adjacent rows. See the following query
example and results.

SELECT emp_id, emp_lname, SUM(salary) OVER (ORDER BY
 birth_date rows between current row and current row)
 AS curr, SUM(salary) OVER (ORDER BY birth_date rows
 between 1 preceding and 1 preceding) AS prev, (curr
 -prev) as delta
FROM employee WHERE state IN ('MA', 'AZ') AND dept_id
 =100
ORDER BY emp_id, emp_lname;

The following are the results from the query:

emp_id emp_lname curr prev delta
------ --------- --------- ---------- ----------
 102 Whitney 45700.000 64500.000 -18800.000
 105 Cobb 62000.000 68400.000 -6400.000
 160 Breault 57490.000 96300.000 -38810.000
 243 Shishov 72995.000 59840.000 13155.000
 247 Driscoll 48023.690 87900.000 -39876.310
 249 Guevara 42998.000 48023.690 -5025.690
 266 Gowda 59840.000 57490.000 2350.000
 278 Melkisetian 48500.000 74500.000 -26000.000
Performance and Tuning Guide 79

Analytical functions
 316 Pastor 74500.000 62000.000 12500.000
 445 Lull 87900.000 67890.000 20010.000
 453 Rabkin 64500.000 42998.000 21502.000
 479 Siperstein 39875.500 42500.000 -2624.500
 501 Scott 96300.000 54900.000 41400.000
 529 Sullivan 67890.000 72995.000 -5105.000
 582 Samuels 37400.000 39875.500 -2475.500
 604 Wang 68400.000 45700.000 22700.000
 839 Marshall 42500.000 48500.000 -6000.000
1157 Soo 39075.000 37400.000 1675.000
1250 Diaz 54900.000

Although the window function SUM() is used, the sum contains only the salary
value of either the current or previous row because of how the window is
specified. Also, the prev value of the first row in the result is NULL because it
has no predecessor; therefore, the delta is NULL as well.

In each of the examples above, the function used with the OVER() clause is the
SUM() aggregate function.

Explicit and in-line window clauses

SQL OLAP provides two ways of specifying a window in a query:

• The explicit window clause lets you define a window that follows a
HAVING clause. You reference windows defined with those window
clauses by specifying their names when you invoke an OLAP function,
such as

SUM (...) OVER w2
80 Sybase IQ

CHAPTER 4 Using OLAP
• The in-line window specification lets you define a window in the SELECT
list of a query expression. This capability lets you define your windows in
a window clause that follows the HAVING clause and then reference them
by name from your window function invocations, or to define them along
with the function invocations.

Note If you use an in-line window specification, you cannot name the
window. Two or more window function invocations in a single SELECT
list that use identical windows must either reference a named window
defined in a window clause or they must define their in-line windows
redundantly.

Window function example The following example shows a window
function. The query returns a result set that partitions the data by department
and then provides a cumulative summary of employees’ salaries starting with
the employee who has been at the company the longest. The result set includes
only those employees who reside in Massachusetts. The column Sum_Salary
provides the cumulative total of employees’ salaries.

SELECT dept_id, emp_lname, start_date, salary,
 SUM(salary) OVER (PARTITION BY dept_id ORDER BY
 start_date rows between unbounded preceding and
 current row) AS sum_salary
FROM employee
WHERE state IN ('MA') AND dept_id IN (100, 200)
ORDER BY dept_id;

The following result set is partitioned by department.

dept_id emp_lname start_date salary sum_salary
-------- ----------- ------------- ---------- -----------
100 Whitney 1984-08-28 45700.000 45700.000
100 Cobb 1985-01-01 62000.000 107700.000
100 Breault 1985-06-17 57490.000 165190.000
100 Shishov 1986-06-07 72995.000 238185.000
100 Driscoll 1986-07-01 48023.690 286208.690
100 Guevara 1986-10-14 42998.000 329206.690
100 Gowda 1986-11-30 59840.000 389046.690
100 Melkisetian 1986-12-06 48500.000 437546.690
100 Pastor 1987-04-26 74500.000 512046.690
100 Lull 1987-06-15 87900.000 599946.690
100 Rabkin 1987-06-15 64500.000 664446.690
100 Siperstein 1987-07-23 39875.500 704322.190
100 Scott 1987-08-04 96300.000 800622.190
100 Sullivan 1988-02-03 67890.000 868512.190
Performance and Tuning Guide 81

Analytical functions
100 Samuels 1988-03-23 37400.000 905912.190
100 Wang 1988-09-29 68400.000 974312.190
100 Marshall 1989-04-20 42500.000 1016812.190
100 Soo 1990-07-31 39075.000 1055887.190
100 Diaz 1990-08-19 54900.000 1110787.190
200 Dill 1985-12-06 54800.000 54800.000
200 Powell 1988-10-14 54600.000 109400.000
200 Poitras 1988-11-28 46200.000 155600.000
200 Singer 1989-06-01 34892.000 190492.000
200 Kelly 1989-10-01 87500.000 277992.000
200 Martel 1989-10-16 55700.000 333692.000
200 Sterling 1990-04-29 64900.000 398592.000
200 Chao 1990-05-13 33890.000 432482.000
200 Preston 1990-07-11 37803.000 470285.000
200 Goggin 1990-08-05 37900.000 508185.000
200 Pickett 1993-08-12 47653.000 555838.000

Ranking functions

Ranking functions let you compile a list of values from the data set in ranked
order, as well as compose single-statement SQL queries that answer questions
such as, “Name the top 10 products shipped this year by total sales,” or “Give
the top 5% of salespersons who sold orders to at least 15 different companies.”
The functions include RANK(), DENSE_RANK(), PERCENT_RANK(), and
NTILE() with a PARTITION BY clause. See “Ranking functions” on page 82.

SQL/OLAP defines four functions that are categorized as ranking functions:

<RANK FUNCTION TYPE> ::=
 RANK | DENSE RANK | PERCENT RANK | NTILE

Ranking functions let you compute a rank value for each row in a result set
based on the order specified in the query. For example, a sales manager might
need to identify the top or bottom sales people in the company, the highest- or
lowest-performing sales region, or the best- or worst-selling products. Ranking
functions can provide this information.
82 Sybase IQ

CHAPTER 4 Using OLAP
RANK() function

The RANK function returns a number that indicates the rank of the current row
among the rows in the row’s partition, as defined by the ORDER BY clause. The
first row in a partition has a rank of 1, and the last rank in a partition containing
25 rows is 25. RANK is specified as a syntax transformation, which means that
an implementation can choose to actually transform RANK into its equivalent,
or it can merely return a result equivalent to the result that transformation
would return.

In the following example, ws1 indicates the window specification that defines
the window named w1.

RANK() OVER ws

is equivalent to

(COUNT (*) OVER (ws RANGE UNBOUNDED PRECEDING)
- COUNT (*) OVER (ws RANGE CURRENT ROW) + 1)

The transformation of the RANK function uses logical aggregation (RANGE).
As a result, two or more records that are tied—or have equal values in the
ordering column—will have the same rank.The next group in the partition that
has a different value will have a rank that is more than one greater than the rank
of the tied rows. For example, if there are rows whose ordering column values
are 10, 20, 20, 20, 30, the rank of the first row is 1 and the rank of the second
row is 2. The rank of the third and fourth row is also 2, but the rank of the fifth
row is 5. There are no rows whose rank is 3 or 4. This algorithm is sometimes
known as sparse ranking.

See also “RANK function [Analytical],” Chapter 5, “SQL Functions,” in the
Sybase IQ Reference Manual.

DENSE_RANK() function

While RANK returns duplicate values in the ranking sequence when there are
ties between values, DENSE_RANK returns ranking values without gaps. The
values for rows with ties are still equal, but the ranking of the rows represents
the positions of the clusters of rows having equal values in the ordering
column, rather than the positions of the individual rows. As in the RANK
example, where rows ordering column values are 10, 20, 20, 20, 30, the rank
of the first row is still 1 and the rank of the second row is still 2, as are the ranks
of the third and fourth rows. The last row, however, is 3, not 5.

DENSE_RANK is computed through a syntax transformation, as well.

DENSE_RANK() OVER ws
Performance and Tuning Guide 83

Analytical functions
is equivalent to

COUNT (DISTINCT ROW (expr_1, . . ., expr_n))
 OVER (ws RANGE UNBOUNDED PRECEDING)

In the above example, expr_1 through expr_n represent the list of value
expressions in the sort specification list of window w1.

See also “DENSE_RANK function [Analytical],” Chapter 5, “SQL
Functions,” in the Sybase IQ Reference Manual.

PERCENT_RANK() function

The PERCENT_RANK function calculates a percentage for the rank, rather than
a fractional amount, and returns a decimal value between 0 and 1. In other
words, PERCENT_RANK returns the relative rank of a row, which is a number
that indicates the relative position of the current row within the window
partition in which it appears. For example, in a partition that contains 10 rows
having different values in the ordering columns, the third row would be given
a PERCENT_RANK value of 0.222 …, because you have covered 2/9
(22.222...%) of rows following the first row of the partition. PERCENT_RANK
of a row is defined as one less than the RANK of the row divided by one less
than then umber of rows in the partition, as seen in the following example
(where “ANT” stands for an approximate numeric type, such as REAL or
DOUBLE PRECISION).

PERCENT_RANK() OVER ws

is equivalent to

CASE
 WHEN COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
 PRECEDING AND UNBOUNDED FOLLOWING) = 1
 THEN CAST (0 AS ANT)
 ELSE
 (CAST (RANK () OVER (ws) AS ANT) -1 /
 (COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
 PRECEDING AND UNBOUNDED FOLLOWING) - 1)
END

See also Chapter , “PERCENT_RANK function [Analytical],” Chapter 5,
“SQL Functions,” in the Sybase IQ Reference Manual.

Ranking examples

Ranking example 1 The SQL query that follows finds the male and female
employees from Utah and ranks them in descending order according to salary.
84 Sybase IQ

CHAPTER 4 Using OLAP
SELECT emp_lname, salary, sex, RANK() OVER (ORDER BY
 salary DESC) AS Rank
FROM employee WHERE state IN ('MA') AND dept_id =100
ORDER BY salary DESC;

The following are the results from the above query:

emp_lname salary sex rank
--------- -------- --- ----
Scott 96300.000 M 1
Lull 87900.000 M 2
Pastor 74500.000 F 3
Shishov 72995.000 F 4
Wang 68400.000 M 5
Sullivan 67890.000 F 6
Rabkin 64500.000 M 7
Cobb 62000.000 M 8
Gowda 59840.000 M 9
Breault 57490.000 M 10
Diaz 54900.000 M 11
Melkisetian 48500.000 F 12
Driscoll 48023.690 M 13
Whitney 45700.000 F 14
Guevara 42998.000 M 15
Marshall 42500.000 M 16
Siperstein 39875.500 F 17
Soo 39075.000 M 18
Samuels 37400.000 M 19

Ranking example 2 Using the query from Ranking example 1, you can
change the data by partitioning it by gender. The following example ranks
employees in descending order by salary and partitions by gender:

SELECT emp_lname, salary, sex, RANK() OVER (PARTITION
 BY sex ORDER BY salary DESC) AS RANK
FROM employee WHERE state IN ('MA', 'AZ') AND dept_id
 IN (100, 200)
ORDER BY sex, salary DESC;

The following are the results from the above query:

emp_lname salary sex rank
--------- --------- --- ----
Kelly 87500.000 F 1
Pastor 74500.000 F 2
Shishov 72995.000 F 3
Performance and Tuning Guide 85

Analytical functions
Sullivan 67890.000 F 4
Melkisetian 48500.000 F 5
Pickett 47653.000 F 6
Poitras 46200.000 F 7
Whitney 45700.000 F 8
Siperstein 39875.500 F 9
Scott 96300.000 M 1
Lull 87900.000 M 2
Wang 68400.000 M 3
Sterling 64900.000 M 4
Rabkin 64500.000 M 5
Cobb 62000.000 M 6
Gowda 59840.000 M 7
Breault 57490.000 M 8
Martel 55700.000 M 9
Diaz 54900.000 M 10
Dill 54800.000 M 11
Powell 54600.000 M 12
Driscoll 48023.690 M 13
Guevara 42998.000 M 14
Marshall 42500.000 M 15
Soo 39075.000 M 16
Goggin 37900.000 M 17
Preston 37803.000 M 18
Samuels 37400.000 M 19
Singer 34892.000 M 20
Chao 33890.000 M 21

Ranking example 3 This example takes a list of female employees in
California and Texas and ranks them in descending order according to salary.
The PERCENT_RANK function is used to provide a cumulative total in
descending order.

SELECT emp_lname, salary, sex, CAST(PERCENT_RANK() OVER
 (ORDER BY salary DESC) AS numeric (4, 2)) AS RANK
FROM employee WHERE state IN ('CA', 'TX') AND sex ='F'
ORDER BY salary DESC;

The following are the results from the above query:

emp_lname salary sex percent
--------- --------- --- ----------
Savarino 72300.000 F 0.00
Smith 51411.000 F 0.33
Clark 45000.000 F 0.66
Garcia 39800.000 F 1.00
86 Sybase IQ

CHAPTER 4 Using OLAP
Ranking example 4 You can use the PERCENT_RANK function to find the
top or bottom percentiles in the data set. In this example, the query returns male
employees whose salary is in the top five percent of the data set.

SELECT * FROM (SELECT emp_lname, salary, sex,
 CAST(PERCENT_RANK() OVER (ORDER BY salary DESC) as
numeric (4, 2)) AS percent
FROM employee WHERE state IN ('MA') AND sex ='F') AS
 DT where percent > 0.5
ORDER BY salary DESC;

The following are the results from the above query:

emp_lname salary sex percent
--------- ---------- --- ---------
Whitney 45700.000 F 0.51
Barletta 45450.000 F 0.55
Higgins 43700.000 F 0.59
Siperstein 39875.500 F 0.62
Coe 36500.000 F 0.66
Espinoza 36490.000 F 0.70
Wetherby 35745.000 F 0.74
Braun 34300.000 F 0.77
Butterfield 34011.000 F 0.81
Bigelow 31200.000 F 0.85
Bertrand 29800.000 F 0.88
Lambert 29384.000 F 0.92
Kuo 28200.000 F 0.96
Romero 27500.000 F 1.00

Windowing aggregate functions

Windowing aggregate functions let you manipulate multiple levels of
aggregation in the same query. For example, listing all quarters in which
expenses are less than the average. Aggregate functions, including the simple
aggregate functions AVG, COUNT, MAX, MIN, and SUM, can be used to place
results—possibly computed at different levels in the statement—on the same
row. This placement provides a means to compare aggregate values with detail
rows within a group, avoiding the need for a join or a correlated subquery.

These functions also let you compare non-aggregate values to aggregate
values. For example, a salesperson might need to compile a list of all customers
who ordered more than the average number of a product in a specified year, or
a manager might want to compare an employee's salary against the average
salary of the department.
Performance and Tuning Guide 87

Analytical functions
If a query specifies DISTINCT in the SELECT statement, then the DISTINCT
operation is applied after the window operator. (A window operator is
computed after processing the GROUP BY clause and before the evaluation of
the SELECT list items and a query’s ORDER BY clause.).

Windowing aggregate example 1 In this example, the query returns a result
set, partitioned by year, that shows a list of the products that sold higher-than-
average sales.

SELECT * FROM (SELECT year(order_date) AS Y, prod_id,
 SUM(quantity) AS Q, CAST(AVG(SUM(quantity)) OVER
 (PARTITION BY Y) AS numeric (8, 2)) AS Average
FROM alt_sales_order S, alt_sales_order_items O
WHERE S.id = O.id
GROUP BY Y, O.prod_id) AS derived_table
 WHERE Q > Average
ORDER BY Y, prod_id;

The following are the results from the query:

Year prod_id Q Average
---- ------- ---- -------
2000 400 2030 1787.00
2000 600 2124 1787.00
2000 601 1932 1787.00
2000 700 2700 1787.00
2001 400 1248 1048.90
2001 401 1057 1048.90
2001 700 1836 1048.90

For the year 1993, the average number of orders was 1,787. Four products
(700, 601, 600, and 400) sold higher than that amount. In 1994, the average
number of orders was 1,048 and three products exceeded that amount.

Windowing aggregate example 2 In this example, the query returns a result
set that shows the employees whose salary is one standard deviation greater
than the average salary of their department. Standard deviation is a measure of
how much the data varies from the mean.

SELECT * FROM (SELECT emp_lname AS E_name, dept_id AS
 Dept, CAST(salary AS numeric(10,2)) AS Sal,
 CAST(AVG(Sal) OVER(PARTITION BY dept_id) AS
 numeric(10, 2)) AS Average, CAST(STDDEV_POP(Sal)
 OVER(PARTITION BY dept_id) AS numeric(10,2)) AS
 STD_DEV
FROM employee
88 Sybase IQ

CHAPTER 4 Using OLAP
GROUP BY Dept, E_name, Sal) AS derived_table WHERE
 Sal> (Average+STD_DEV)
ORDER BY Dept, Sal, E_name;

The results of this query are as follows:. Every department has at least one
employee whose salary significantly deviates from the mean.

Employee Dept Salary Average Std_Dev
-------- ---- -------- -------- --------
Lull 100 87900.00 58736.28 16829.59
Sheffield 100 87900.00 58736.28 16829.59
Scott 100 96300.00 58736.28 16829.59
Sterling 200 64900.00 48390.94 13869.59
Savarino 200 72300.00 48390.94 13869.59
Kelly 200 87500.00 48390.94 13869.59
Shea 300 138948.00 59500.00 30752.39
Blaikie 400 54900.00 43640.67 11194.02
Morris 400 61300.00 43640.67 11194.02
Evans 400 68940.00 43640.67 11194.02
Martinez 500 55500.80 33752.20 9084.49

Employee Scott earns $96,300.00 while the departmental average is
$58,736.28. The standard deviation for that department is 16,829.00, which
means that salaries less than $75,565.88 (58736.28 + 16829.60 = 75565.88)
fall within one standard deviation of the mean. At $96,300.00, employee Scott
is well above that figure.

Statistical aggregate functions

The ANSI SQL/OLAP extensions provide a number of additional aggregate
functions that permit statistical analysis of numeric data. This support includes
functions to compute variance, standard deviation, correlation, and linear
regression.

Standard deviation
and variance

The SQL/OLAP general set functions that take one argument include STDDEV,
STDDEV_POP, STDDEV_SAMP, VARIANCE, VAR_POP, and VAR_SAMP.

<SIMPLE WINDOW AGGREGATE FUNCTION TYPE> ::=
 <BASIC AGGREGATE FUNCTION TYPE>
 | STDDEV | STDDEV_POP | STDDEV_SAMP
 | VARIANCE | VARIANCE_POP | VARIANCE_SAMP
Performance and Tuning Guide 89

Analytical functions
• STDDEV_POP – Computes the population standard deviation of the
provided value expression evaluated for each row of the group or partition
(if DISTINCT was specified, then each row that remains after duplicates
have been eliminated), defined as the square root of the population
variance.

• STDDEV_SAMP – Computes the population standard deviation of the
provided value expression evaluated for each row of the group or partition
(if DISTINCT was specified, then each row that remains after duplicates
have been eliminated), defined as the square root of the sample variance.

• VAR_POP – Computes the population variance of value expression
evaluated for each row of the group or partition (if DISTINCT was
specified, then each row that remains after duplicates have been
eliminated), defined as the sum of squares of the difference of value
expression from the mean of value expression, divided by the number of
rows (remaining) in the group or partition.

• VAR_SAMP – Computes the sample variance of value expression
evaluated for each row of the group or partition (if DISTINCT was
specified, then each row that remains after duplicates have been
eliminated), defined as the sum of squares of the difference of value
expression, divided by one less than the number of rows (remaining) in the
group or partition.

These functions, including STDDEV and VARIANCE, are true aggregate
functions in that they can compute values for a partition of rows as determined
by the query’s ORDER BY clause. As with other basic aggregate functions such
as MAX or MIN, their computation ignores NULL values in the input. Also,
regardless of the domain of the expression being analyzed, all variance and
standard deviation computation uses IEEE double-precision floating point. If
the input to any variance or standard deviation function is the empty set, then
each function returns NULL as its result. If VAR_SAMP is computed for a
single row, it returns NULL, while VAR_POP returns the value 0.

Distribution functions

SQL/OLAP defines several functions that deal with ordered sets. The two
inverse distribution functions are named PERCENTILE_CONT and
PERCENTILE_DISC. These analytical functions take a percentile value as the
function argument and operate on a group of data specified in the WITHIN
GROUP clause or operate on the entire data set.
90 Sybase IQ

CHAPTER 4 Using OLAP
These functions return one value per group. For PERCENTILE_DISC (discrete),
the data type of the results is the same as the data type of its ORDER BY item
specified in the WITHIN GROUP clause. For PERCENTILE_CONT
(continuous), the data type of the results is either numeric, if the ORDER BY
item in the WITHIN GROUP clause is a numeric, or double, if the ORDER BY
item is an integer or floating point.

The inverse distribution analytical functions require a WITHIN GROUP
(ORDER BY) clause. For example:

PERCENTILE_CONT (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

The value of expression1 must be a constant of numeric data type and range
from 0 to 1 (inclusive). If the argument is NULL, then a “wrong argument for
percentile” error is returned. If the argument value is less than 0, or greater than
1, then a “data value out of range” error is returned.

The ORDER BY clause, which must be present, specifies the expression on
which the percentile function is performed and the order in which the rows are
sorted in each group. This ORDER BY clause is used only within the WITHIN
GROUP clause and is not an ORDER BY for the SELECT statement.

The WITHIN GROUP clause distributes the query result into an ordered data set
from which the function calculates a result.

The value expression2 is a sort specification that must be a single expression
involving a column reference. Multiple expressions are not allowed and no
rank analytical functions, set functions, or subqueries are allowed in this sort
expression.

The ASC or DESC parameter specifies the ordering sequence as ascending or
descending. Ascending order is the default.

Inverse distribution analytical functions are allowed in a subquery, a HAVING
clause, a view, or a union. The inverse distribution functions can be used
anywhere the simple non analytical aggregate functions are used. The inverse
distribution functions ignore the NULL value in the data set.

PERCENTILE_CONT example This example uses the PERCENTILE_CONT
function to determine the 10th percentile value for car sales in a region using
the following data set:

sales region dealer_name
----- --------- -----------
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
Performance and Tuning Guide 91

Analytical functions
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

In the following example query, the SELECT statement contains the
PERCENTILE_CONT function:

SELECT region, PERCENTILE_CONT(0.1)
WITHIN GROUP (ORDER BY sales DESC)
FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales
in a region:

region percentile_cont
--------- ---------------
Northeast 840
Northwest 740
South 470

PERCENTILE_DISC example This example uses the PERCENTILE_DISC
function to determine the 10th percentile value for car sales in a region, using
the following data set:

sales region dealer_name
----- --------- -----------
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
92 Sybase IQ

CHAPTER 4 Using OLAP
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

In the following query, the SELECT statement contains the PERCENTILE_DISC
function:

SELECT region, PERCENTILE_DISC(0.1) WITHIN GROUP
 (ORDER BY sales DESC)
FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales
in each region:

region percentile_cont
--------- ---------------
Northeast 900
Northwest 800
South 500

For more information about the distribution functions, see
“PERCENTILE_CONT function [Analytical]” and “PERCENTILE_DISC
function [Analytical],” Chapter 5, “SQL Functions,” in the Sybase IQ
Reference Manual.

Numeric functions
OLAP numeric functions supported by Sybase IQ include CEILING (CEIL is an
alias), EXP (EXPONENTIAL is an alias), FLOOR, LN (LOG is an alias), SQRT,
and WIDTH_BUCKET.

<numeric value function> :: =
 <natural logarithm>
| <exponential function>
| <power function>
| <square root>
| <floor function>
| <ceiling function>
| <width bucket function>

The syntax for each supported numeric value function is shown in Table 4-3.
Performance and Tuning Guide 93

Analytical functions
Table 4-3: Numeric value functions and syntax

The semantics of the numeric value functions are:

• LN: Returns the natural logarithm of the argument value. Raises an error
condition if the argument value is zero or negative. LN is a synonym for
LOG.

• EXP: Returns the value computed by raising the value of e (the base of
natural logarithms) to the power specified by the value of the argument.

• POWER: Returns the value computed by raising the value of the first
argument to the power specified by the value of the second argument. If
the first argument is zero and the second is zero, returns one. If the first
argument is zero and the second is positive, returns zero. If the first
argument is zero and the second argument is negative, raises an exception.
If the first argument is negative and the second is not an integer, raises an
exception.

• SQRT: Returns the square root of the argument value, defined by syntax
transformation to “POWER (expression, 0.5).”

• FLOOR: Returns the integer value nearest to positive infinity that is not
greater than the value of the argument.

• CEILING: Returns the integer value nearest to negative infinity that is not
less than the value of the argument. CEIL is a synonym for CEILING.

Numeric value function Syntax

Natural logarithm LENGTH (string-expression)

Exponential function EXP (numeric-expression)

Power function POWER (numeric-expression1, numeric-
expression2)

Square root SQRT (numeric-expression)

Floor function FLOOR (numeric-expression)

Ceiling function CEILING (numeric-expression)

Width bucket function WIDTH_BUCKET (expression, min_value,
max_value, num_buckets)
94 Sybase IQ

CHAPTER 4 Using OLAP
WIDTH_BUCKET
function

The WIDTH_BUCKET function is somewhat more complicated than the other
numeric value functions. It accepts four arguments: “live value,” two range
boundaries, and the number of equal-sized (or as nearly so as possible)
partitions into which the range indicated by the boundaries is to be divided.
WIDTH_BUCKET returns a number indicating the partition into which the live
value should be placed, based on its value as a percentage of the difference
between the higher range boundary and the lower boundary. The first partition
is partition number one.

In order to avoid errors when the live value is outside the range of boundaries,
live values that are less than the smaller range boundary are placed into an
additional first bucket, bucket zero, and live values that are greater than the
larger range boundary are placed into an additional last bucket, bucket N+1.

For example, WIDTH_BUCKET (14, 5, 30, 5) returns 2 because:

• (30-5)/5 is 5, so the range is divided into 5 partitions, each 5 units wide.

• The first bucket represents values from 0.00% to 19.999 …%; the second
represents values from 20.00% to 39.999 …%; and the fifth bucket
represents values from 80.00% to 100.00%.

• The bucket chosen is determined by computing (5*(14-5)/(30-5)) + 1 —
one more than the number of buckets times the ratio of the offset of the
specified value from the lower value to the range of possible values, which
is (5*0/25) + 1, which is 2.8. This value is the range of values for bucket
number 2 (2.0 through 2.999 …), so bucket number 2 is chosen.
Performance and Tuning Guide 95

Analytical functions
WIDTH_BUCKET
example

The following example creates a ten-bucket histogram on the credit_limit
column for customers in Massachusetts in the sample table and returns the
bucket number (“Credit Group”) for each customer. Customers with credit
limits greater than the maximum value are assigned to the overflow bucket, 11:

Note This example is for illustration purposes only and was not generated
using the asiqdemo database.

SELECT customer_id, cust_last_name, credit_limit,
 WIDTH_BUCKET(credit_limit, 100, 5000, 10) "Credit
 Group"
 FROM customers WHERE territory = 'MA'
 ORDER BY "Credit Group";

CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT Credit Group

----------- -------------- ------------ ------------
825 Dreyfuss 500 1
826 Barkin 500 1
853 Palin 400 1
827 Siegel 500 1
843 Oates 700 2
844 Julius 700 2
835 Eastwood 1200 3
840 Elliott 1400 3
842 Stern 1400 3
841 Boyer 1400 3
837 Stanton 1200 3
836 Berenger 1200 3
848 Olmos 1800 4
849 Kaurusmdki 1800 4
828 Minnelli 2300 5
829 Hunter 2300 5
852 Tanner 2300 5
851 Brown 2300 5
850 Finney 2300 5
830 Dutt 3500 7
831 Bel Geddes 3500 7
832 Spacek 3500 7
838 Nicholson 3500 7
839 Johnson 3500 7
833 Moranis 3500 7
834 Idle 3500 7
845 Fawcett 5000 11
846 Brando 5000 11
847 Streep 5000 11
96 Sybase IQ

CHAPTER 4 Using OLAP
When the bounds are reversed, the buckets are open-closed intervals. For
example: WIDTH_BUCKET (credit_limit, 5000, 0, 5). In this example, bucket
number 1 is (4000, 5000], bucket number 2 is (3000, 4000], and bucket number
5 is (0, 1000]. The overflow bucket is numbered 0 (5000, +infinity), and the
underflow bucket is numbered 6 (-infinity, 0].

See also “BIT_LENGTH function [String],” “EXP function [Numeric],” “FLOOR
function [Numeric],” “POWER function [Numeric],” “SQRT function
[Numeric],” and “WIDTH_BUCKET function [Numerical],” Chapter 5,
“SQL Functions,” in the Sybase IQ Reference Manual.

OLAP rules and restrictions
OLAP functions can
be used

Within SQL queries, OLAP functions can be used under the following
conditions:

• In the SELECT list

• In expressions

• As arguments of scalar functions

• In the final ORDER BY clause (by using aliases or positional references to
OLAP functions elsewhere in the query)

OLAP functions
cannot be used

OLAP functions cannot be used under the following conditions:

• In subqueries

• In the search condition of a WHERE clause

• As arguments for SET (aggregate) functions. For example, the following
expression is not valid:

SUM(RANK() OVER(ORDER BY dollars))

• A windowed aggregate cannot be an argument to argument to another
unless the inner one was generated within a view or derived table. The
same applies to ranking functions.

• Window aggregate and RANK functions are not allowed in a HAVING
clause.

• Window aggregate functions should not specify DISTINCT.

• Window function cannot be nested inside of other window functions.
Performance and Tuning Guide 97

Additional OLAP examples
• Inverse distribution functions are not supported with the OVER clause.

• Outer references are not allowed in a window definition clause.

• Correlation references are allowed within OLAP functions, but correlated
column aliases are not allowed.

Columns referenced by an OLAP function must be grouping columns or
aggregate functions from the same query block in which the OLAP function
and the GROUP BY clause appear. OLAP processing occurs after the grouping
and aggregation operations and before the final ORDER BY clause is applied;
therefore, it must be possible to derive the OLAP expressions from those
intermediate results. If there is no GROUP BY clause in a query block, OLAP
functions can reference other columns in the select list.

Sybase IQ limitations The following are the Sybase IQ limitations with SQL OLAP functions:

• User-defined functions in a window frame definition are not supported.

• The constants used in a window frame definition must be unsigned
numeric value and should not exceed the value of maximum BIG INT 263-1.

• Window aggregate functions and RANK functions cannot be used in
DELETE and UPDATE statements.

• Window aggregate and RANK functions are not allowed in subqueries.

• CUME_DIST is currently not supported.

• Grouping sets are currently not supported.

• Correlation and linear regression functions are currently not supported.

Additional OLAP examples
This section provides additional examples using the OLAP functions.

Both start and end points of a window may vary as intermediate result rows are
processed. For example, computing a cumulative sum involves a window with
the start point fixed at the first row of each partition and an end point that slides
along the rows of the partition to include the current row. See Figure 4-3 on
page 72.
98 Sybase IQ

CHAPTER 4 Using OLAP
As another example, both the start and end points of the window can be
variable yet define a constant number of rows for the entire partition. Such a
construction lets users compose queries that compute moving averages; for
example, a SQL query that returns a moving three-day average stock price.

Example: Window functions in queries
Consider the following query which lists all products shipped in July and
August 2005 and the cumulative shipped quantity by shipping date:

SELECT p.id, p.description, s.quantity, s.ship_date,
 SUM(s.quantity) OVER (PARTITION BY prod_id ORDER BY
 s.ship_date rows between unbounded preceding and
 current row)
FROM alt_sales_order_items s JOIN product p on
(s.prod_id =
 p.id) WHERE s.ship_date BETWEEN '2001-05-01' and
 '2001-08-31' AND s.quantity > 40
ORDER BY p.id;

The following are the results from the above query:

ID description quantity ship_date sum quantity
--- ----------- -------- --------- ------------
302 Crew Neck 60 2001-07-02 60
400 Cotton Cap 60 2001-05-26 60
400 Cotton Cap 48 2001-07-05 108
401 Wool cap 48 2001-06-02 48
401 Wool cap 60 2001-06-30 108
401 Wool cap 48 2001-07-09 156
500 Cloth Visor 48 2001-06-21 48
501 Plastic Visor 60 2001-05-03 60
501 Plastic Visor 48 2001-05-18 108
501 Plastic Visor 48 2001-05-25 156
501 Plastic Visor 60 2001-07-07 216
601 Zipped Sweatshirt 60 2001-07-19 60
700 Cotton Shorts 72 2001-05-18 72
700 Cotton Shorts 48 2001-05-31 120

In this example, the computation of the SUM window function occurs after the
join of the two tables and the application of the query’s WHERE clause. The
query uses an in-line window specification that specifies that the input rows
from the join is processed as follows:

1 Partition (group) the input rows based on the value of the prod_id attribute.
Performance and Tuning Guide 99

Additional OLAP examples
2 Within each partition, sort the rows by the ship_date attribute.

3 For each row in the partition, evaluate the SUM() function over the quantity
attribute, using a sliding window consisting of the first (sorted) row of
each partition, up to and including the current row. See Figure 4-3.

An alternative construction for the query is to specify the window separate
from the functions that use it. This is useful when more than one window
function is specified that are based on the same window. In the case of the
query using window functions, a construction that uses the window clause
(declaring a window identified by cumulative) is as follows:

SELECT p.id, p.description, s.quantity, s.ship_date,
 SUM(s.quantity) OVER(cumulative
 ROWS BETWEEN UNBOUNDED PRECEDING
 and CURRENT ROW
) AS cumulative qty
FROM sales_order_items s JOIN product p On (s.prod_id =
 p.id)
WHERE s.ship_date BETWEEN ‘2005-07-01’ and ‘2005-08-31’
Window cumulative as (PARTITION BY s.prod_id ORDER BY
 s.ship date)
ORDER BY p.id

Note how the window clause appears before the ORDER BY clause in the query
specification. When using a window clause, the following restrictions apply:

• The in-line window specification cannot contain a PARTITION BY clause.

• The window specified within the window clause cannot contain a window
frame clause. For example, from “Grammar rule 32” on page 111:

<WINDOW FRAME CLAUSE> ::=
 <WINDOW FRAME UNIT>
 <WINDOW FRAME EXTENT>

• Either the in-line window specification, or the window specification
specified in the window clause, can contain a window order clause, but not
both. For example, from “Grammar rule 31” on page 111:

<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Example: Window with multiple functions
It is possible to define a single (named) window and compute multiple function
results over it, as the following example demonstrates.
100 Sybase IQ

CHAPTER 4 Using OLAP
SELECT p.id, p.description, s.quantity, s.ship_date,
 SUM(s.quantity) OVER ws1, MIN(s.quantity) OVER ws1
FROM sales_order_items s JOIN product p ON (s.prod_id =
 p.id) WHERE s.ship_date BETWEEN '1994-05-01' AND
 '1994-08-31' AND s.quantity > 40 window ws1 AS
 (PARTITION BY prod_id ORDER BY ship_date rows
 between unbounded preceding and current row)
ORDER BY p.id;

The following are the results from the above query:

ID description quantity ship_date sum min
--- ----------- -------- ----------- --- ---
302 Crew Neck 60 1994-07-02 60 60
400 Cotton Cap 60 1994-05-26 60 60
400 Cotton Cap 48 1994-07-05 108 48
401 Wool cap 48 1994-06-02 48 48
401 Wool cap 60 1994-06-30 108 48
401 Wool cap 48 1994-07-09 156 48
500 Cloth Visor 48 1994-06-21 48 48
501 Plastic Visor 60 1994-05-03 60 60
501 Plastic Visor 48 1994-05-18 108 48
501 Plastic Visor 48 1994-05-25 156 48
501 Plastic Visor 60 1994-07-07 216 48
601 Zipped Sweatshirt 60 1994-07-19 60 60
700 Cotton Shorts 72 1994-05-18 72 72
700 Cotton Shorts 48 1994-05-31 120 48

Example: Calculate cumulative sum
This query calculates a cumulative sum of salary per department and ORDER
BY start_date.

SELECT dept_id, start_date, name, salary,
 SUM(salary) OVER (PARTITION BY dept_id ORDER BY
 start_date ROWS BETWEEN UNBOUNDED PRECEDING AND
 CURRENT ROW)
FROM emp1
ORDER BY dept_id, start_date;

The following are the results from the above query:

dept_id start_date name salary sum(salary)
------- ---------- ---- ------ -----------
100 1996-01-01 Anna 18000 18000
100 1997-01-01 Mike 28000 46000
100 1998-01-01 Scott 29000 75000
Performance and Tuning Guide 101

Additional OLAP examples
100 1998-02-01 Antonia 22000 97000
100 1998-03-12 Adam 25000 122000
100 1998-12-01 Amy 18000 140000
200 1998-01-01 Jeff 18000 18000
200 1998-01-20 Tim 29000 47000
200 1998-02-01 Jim 22000 69000
200 1999-01-10 Tom 28000 97000
300 1998-03-12 Sandy 55000 55000
300 1998-12-01 Lisa 38000 93000
300 1999-01-10 Peter 48000 141000

Example: Calculate moving average
This query generates the moving average of sales in three consecutive months.
The size of the window frame is three rows: two preceding rows plus the
current row. The window slides from the beginning to the end of the partition.

SELECT prod_id, month_num, sales, AVG(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num ROWS
 BETWEEN 2 PRECEDING AND CURRENT ROW)
FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

The following are the results from the above query:

prod_id month_num sales avg(sales)
------- --------- ------ ----------
10 1 100 100.00
10 2 120 110.00
10 3 100 106.66
10 4 130 116.66
10 5 120 116.66
10 6 110 120.00
20 1 20 20.00
20 2 30 25.00
20 3 25 25.00
20 4 30 28.33
20 5 31 28.66
20 6 20 27.00
30 1 10 10.00
30 2 11 10.50
30 3 12 11.00
30 4 1 8.00
102 Sybase IQ

CHAPTER 4 Using OLAP
Example: ORDER BY results
In this example, the top ORDER BY clause of a query is applied to the final
results of a window function. The ORDER BY in a window clause is applied to
the input data of a window function.

SELECT prod_id, month_num, sales, AVG(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num ROWS
 BETWEEN 2 PRECEDING AND CURRENT ROW)
FROM sale WHERE rep_id = 1
ORDER BY prod_id desc, month_num;

The following are the results from the above query:

prod_id month_num sales avg(sales)
------- --------- ----- ----------
30 1 10 10.00
30 2 11 10.50
30 3 12 11.00
30 4 1 8.00
20 1 20 20.00
20 2 30 25.00
20 3 25 25.00
20 4 30 28.33
20 5 31 28.66
20 6 20 27.00
10 1 100 100.00
10 2 120 110.00
10 3 100 106.66
10 4 130 116.66
10 5 120 116.66
10 6 110 120.00

Example: Multiple aggregate functions in a query
This example calculates aggregate values against different windows in a query.

SELECT prod_id, month_num, sales, AVG(sales) OVER
 (WS1 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS
 CAvg, SUM(sales) OVER(WS1 ROWS BETWEEN UNBOUNDED
 PRECEDING AND CURRENT ROW) AS CSum
FROM sale WHERE rep_id = 1 WINDOW WS1 AS (PARTITION BY
 prod_id
ORDER BY month_num)
ORDER BY prod_id, month_num;

The following are the results from the above query:
Performance and Tuning Guide 103

Additional OLAP examples
prod_id month_num sales CAvg CSum
------- --------- ----- ---- ----
10 1 100 110.00 100
10 2 120 106.66 220
10 3 100 116.66 320
10 4 130 116.66 450
10 5 120 120.00 570
10 6 110 115.00 680
20 1 20 25.00 20
20 2 30 25.00 50
20 3 25 28.33 75
20 4 30 28.66 105
20 5 31 27.00 136
20 6 20 25.50 156
30 1 10 10.50 10
30 2 11 11.00 21
30 3 12 8.00 33
30 4 1 6.50 34

Example: Window frame comparing ROWS and RANGE
This query compares ROWS and RANGE. The data contain duplicate ROWS
per the ORDER BY clause.

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (ws1 RANGE BETWEEN 2 PRECEDING AND CURRENT ROW) AS
 Range_sum, SUM(sales) OVER
 (ws1 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS
 Row_sum
FROM sale window ws1 AS (PARTITION BY prod_id ORDER BY
 month_num)
ORDER BY prod_id, month_num;

The following are the results from the above query:

prod_id month_num sales Range_sum Row_sum
------- --------- ----- ---------- -------
10 1 100 250 100
10 1 150 250 250
10 2 120 370 370
10 3 100 470 370
10 4 130 350 350
10 5 120 381 350
10 5 31 381 281
10 6 110 391 261
20 1 20 20 20
104 Sybase IQ

CHAPTER 4 Using OLAP
20 2 30 50 50
20 3 25 75 75
20 4 30 85 85
20 5 31 86 86
20 6 20 81 81
30 1 10 10 10
30 2 11 21 21
30 3 12 33 33
30 4 1 25 24
30 4 1 25 14

Example: Window frame excludes current row
In this example, you can define the window frame to exclude the current row.
The query calculates the sum over four rows, excluding the current row.

SELECT prod_id, month_num, sales, sum(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num RANGE
 BETWEEN 6 PRECEDING AND 2 PRECEDING)
FROM sale
ORDER BY prod_id, month_num;

The following are the results from the above query:

prod_id month_num sales sum(sales)
------- --------- ----- ----------
10 1 100 (NULL)
10 1 150 (NULL)
10 2 120 (NULL)
10 3 100 250
10 4 130 370
10 5 120 470
10 5 31 470
10 6 110 600
20 1 20 (NULL)
20 2 30 (NULL)
20 3 25 20
20 4 30 50
20 5 31 75
20 6 20 105
30 1 10 (NULL)
30 2 11 (NULL)
30 3 12 10
30 4 1 21
30 4 1 21
Performance and Tuning Guide 105

Additional OLAP examples
Example: Default window frame for ROW
This query illustrates the default window frame for ROW.

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num RANGE
 BETWEEN 1 FOLLOWING AND 3 FOLLOWING)
FROM sale
ORDER BY prod_id, month_num;

The following are the results from the above query:

prod_id month_num sales sum(sales)
------- --------- ----- ----------
10 1 100 350
10 1 150 350
10 2 120 381
10 3 100 391
10 4 130 261
10 5 120 110
10 5 31 110
10 6 110 (NULL)
20 1 20 85
20 2 30 86
20 3 25 81
20 4 30 51
20 5 31 20
20 6 20 (NULL)
30 1 10 25
30 2 11 14
30 3 12 2
30 4 1 NULL)
30 4 1 (NULL)

Example: Unbounded preceding and unbounded following
In this example, the window frame can include all rows in the partition. The
query calculates max(sales) sale over the entire partition (no duplicate rows in
a month).

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num ROWS
 BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

The following are the results from the above query:
106 Sybase IQ

CHAPTER 4 Using OLAP
prod_id month_num sales max(sales)
------- --------- ----- ----------
10 1 100 680
10 2 120 680
10 3 100 680
10 4 130 680
10 5 120 680
10 6 110 680
20 1 20 156
20 2 30 156
20 3 25 156
20 4 30 156
20 5 31 156
20 6 20 156
30 1 10 34
30 2 11 34
30 3 12 34
30 4 1 34

The query in this example is equivalent to:

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id)
FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

Example: Default window frame for RANGE
This query illustrates the default window frame for RANGE:

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num)
FROM sale
ORDER BY prod_id, month_num;

The following are the results from the above query:

prod_id month_num sales max(sales)
------- --------- ----- ----------
10 1 100 250
10 1 150 250
10 2 120 370
10 3 100 470
10 4 130 600
10 5 120 751
10 5 31 751
Performance and Tuning Guide 107

BNF grammar for OLAP functions
10 6 110 861
20 1 20 20
20 2 30 50
20 3 25 75
20 4 30 105
20 5 31 136
20 6 20 156
30 1 10 10
30 2 11 21
30 3 12 33
30 4 1 35
30 4 1 35

The query in this example is equivalent to:

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num RANGE
 BETWEEEN UNBOUNDED PRECEDING AND CURRENT ROW)
FROM sale
ORDER BY prod_id, month_num;

BNF grammar for OLAP functions
The following Backus-Naur Form grammar outlines the specific syntactic
support for the various ANSI SQL analytic functions, many of which are
implemented in Sybase IQ.

Grammar rule 1 <SELECT LIST EXPRESSION> ::=
 <EXPRESSION>
 | <GROUP BY EXPRESSION>
 | <AGGREGATE FUNCTION>
 | <GROUPING FUNCTION>
 | <TABLE COLUMN>
 | <WINDOWED TABLE FUNCTION>

Grammar rule 2 <QUERY SPECIFICATION> ::=
 <FROM CLAUSE>
 [<WHERE CLAUSE>]
 [<GROUP BY CLAUSE>]
 [<HAVING CLAUSE>]
 [<WINDOW CLAUSE>]
[<ORDER BY CLAUSE>]

Grammar rule 3 <ORDER BY CLAUSE> ::= <ORDER SPECIFICATION>
108 Sybase IQ

CHAPTER 4 Using OLAP
Grammar rule 4 <GROUPING FUNCTION> ::=
 GROUPING <LEFT PAREN> <GROUP BY EXPRESSION>
 <RIGHT PAREN>

Grammar rule 5 <WINDOWED TABLE FUNCTION> ::=
 <WINDOWED TABLE FUNCTION TYPE> OVER <WINDOW NAME OR
 SPECIFICATION>

Grammar rule 6 <WINDOWED TABLE FUNCTION TYPE> ::=
 <RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>
 | ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
 | <WINDOW AGGREGATE FUNCTION>

Grammar rule 7 <RANK FUNCTION TYPE> ::=
 RANK | DENSE RANK | PERCENT RANK | CUME_DIST

Grammar rule 8 <WINDOW AGGREGATE FUNCTION> ::=
 <SIMPLE WINDOW AGGREGATE FUNCTION>
 | <STATISTICAL AGGREGATE FUNCTION>

Grammar rule 9 <AGGREGATE FUNCTION> ::=
 <DISTINCT AGGREGATE FUNCTION>
 | <SIMPLE AGGREGATE FUNCTION>
 | <STATISTICAL AGGREGATE FUNCTION>

Grammar rule 10 <DISTINCT AGGREGATE FUNCTION> ::=
 <BASIC AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <DISTINCT> <EXPRESSION> <RIGHT PAREN>
 | LIST <LEFT PAREN> DISTINCT <EXPRESSION>
 [<COMMA> <DELIMITER>]
 [<ORDER SPECIFICATION>] <RIGHT PAREN>

Grammar rule 11 <BASIC AGGREGATE FUNCTION TYPE> ::=
 SUM | MAX | MIN | AVG | COUNT

Grammar rule 12 <SIMPLE AGGREGATE FUNCTION> ::=
 <SIMPLE AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <EXPRESSION> <RIGHT PAREN>
 | LIST <LEFT PAREN> <EXPRESSION> [<COMMA>
 <DELIMITER>]
 [<ORDER SPECIFICATION>] <RIGHT PAREN>

Grammar rule 13 <SIMPLE AGGREGATE FUNCTION TYPE> ::= <SIMPLE WINDOW
AGGREGATE FUNCTION TYPE>

Grammar rule 14 <SIMPLE WINDOW AGGREGATE FUNCTION> ::=
 <SIMPLE WINDOW AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <EXPRESSION> <RIGHT PAREN>
| GROUPING FUNCTION

Grammar rule 15 <SIMPLE WINDOW AGGREGATE FUNCTION TYPE> ::=
Performance and Tuning Guide 109

BNF grammar for OLAP functions
 <BASIC AGGREGATE FUNCTION TYPE>
 | STDDEV | STDDEV_POP | STDDEV_SAMP
 | VARIANCE | VARIANCE_POP | VARIANCE_SAMP

Grammar rule 16 <STATISTICAL AGGREGATE FUNCTION> ::=
 <STATISTICAL AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <DEPENDENT EXPRESSION> <COMMA> <INDEPENDENT
 EXPRESSION> <RIGHT PAREN>

Grammar rule 17 <STATISTICAL AGGREGATE FUNCTION TYPE> ::=
 CORR | COVAR_POP | COVAR_SAMP | REGR_R2 |
 REGR_INTERCEPT | REGR_COUNT | REGR_SLOPE |
 REGR_SXX | REGR_SXY | REGR_SYY | REGR_AVGY |
 REGR_AVGX

Grammar rule 18 <WINDOW NAME OR SPECIFICATION> ::=
 <WINDOW NAME> | <IN-LINE WINDOW SPECIFICATION>

Grammar rule 19 <WINDOW NAME> ::= <IDENTIFIER>

Grammar rule 20 <IN-LINE WINDOW SPECIFICATION> ::= <WINDOW
SPECIFICATION>

Grammar rule 21 <WINDOW CLAUSE> ::= <WINDOW WINDOW DEFINITION LIST>

Grammar rule 22 <WINDOW DEFINITION LIST> ::=
 <WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>
 } . . .]

Grammar rule 23 <WINDOW DEFINITION> ::=
 <NEW WINDOW NAME> AS <WINDOW SPECIFICATION>

Grammar rule 24 <NEW WINDOW NAME> ::= <WINDOW NAME>

Grammar rule 25 <WINDOW SPECIFICATION> ::=
 <LEFT PAREN> <WINDOW SPECIFICATION> <DETAILS> <RIGHT
 PAREN>

Grammar rule 26 <WINDOW SPECIFICATION DETAILS> ::=
 [<EXISTING WINDOW NAME>]
 [<WINDOW PARTITION CLAUSE>]
 [<WINDOW ORDER CLAUSE>]
 [<WINDOW FRAME CLAUSE>]

Grammar rule 27 <EXISTING WINDOW NAME> ::= <WINDOW NAME>

Grammar rule 28 <WINDOW PARTITION CLAUSE> ::=
 PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

Grammar rule 29 <WINDOW PARTITION EXPRESSION LIST> ::=
 <WINDOW PARTITION EXPRESSION>
 [{ <COMMA> <WINDOW PARTITION EXPRESSION> } . . .]
110 Sybase IQ

CHAPTER 4 Using OLAP
Grammar rule 30 <WINDOW PARTITION EXPRESSION> ::= <EXPRESSION>

Grammar rule 31 <WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Grammar rule 32 <WINDOW FRAME CLAUSE> ::=
 <WINDOW FRAME UNIT>
 <WINDOW FRAME EXTENT>

Grammar rule 33 <WINDOW FRAME UNIT> ::= ROWS | RANGE

Grammar rule 34 <WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW
FRAME BETWEEN>

Grammar rule 35 <WINDOW FRAME START> ::=
 UNBOUNDED PRECEDING
 | <WINDOW FRAME PRECEDING>
 | CURRENT ROW

Grammar rule 36 <WINDOW FRAME PRECEDING> ::= <UNSIGNED VALUE
SPECIFICATION> PRECEDING

Grammar rule 37 <WINDOW FRAME BETWEEN> ::=
 BETWEEN <WINDOW FRAME BOUND 1> AND <WINDOW FRAME
 BOUND 2>

Grammar rule 38 <WINDOW FRAME BOUND 1> ::= <WINDOW FRAME BOUND>

Grammar rule 39 <WINDOW FRAME BOUND 2> ::= <WINDOW FRAME BOUND>

Grammar rule 40 <WINDOW FRAME BOUND> ::=
 <WINDOW FRAME START>
 | UNBOUNDED FOLLOWING
 | <WINDOW FRAME FOLLOWING>

Grammar rule 41 <WINDOW FRAME FOLLOWING> ::= <UNSIGNED VALUE
SPECIFICATION> FOLLOWING

Grammar rule 42 <GROUP BY EXPRESSION> ::= <EXPRESSION>

Grammar rule 43 <SIMPLE GROUP BY TERM> ::=
 <GROUP BY EXPRESSION>
 | <LEFT PAREN> <GROUP BY EXPRESSION> <RIGHT PAREN>
 | <LEFT PAREN> <RIGHT PAREN>

Grammar rule 44 <SIMPLE GROUP BY TERM LIST> ::=
 <SIMPLE GROUP BY TERM> [{ <COMMA> <SIMPLE GROUP BY
 TERM> } . . .]

Grammar rule 45 <COMPOSITE GROUP BY TERM> ::=
 <LEFT PAREN> <SIMPLE GROUP BY TERM>
 [{ <COMMA> <SIMPLE GROUP BY TERM> } . . .]
 <RIGHT PAREN>

Grammar rule 46 <ROLLUP TERM> ::= ROLLUP <COMPOSITE GROUP BY TERM>
Performance and Tuning Guide 111

BNF grammar for OLAP functions
Grammar rule 47 <CUBE TERM> ::= CUBE <COMPOSITE GROUP BY TERM>

Grammar rule 48 <GROUP BY TERM> ::=
 <SIMPLE GROUP BY TERM>
 | <COMPOSITE GROUP BY TERM>
 | <ROLLUP TERM>
 | <CUBE TERM>

Grammar rule 49 <GROUP BY TERM LIST> ::=
 <GROUP BY TERM> [{ <COMMA> <GROUP BY TERM> } . . .]

Grammar rule 50 <GROUP BY CLAUSE> ::= GROUP BY <GROUPING SPECIFICATION>

Grammar rule 51 <GROUPING SPECIFICATION> ::=
 <GROUP BY TERM LIST>
 | <SIMPLE GROUP BY TERM LIST> WITH ROLLUP
 | <SIMPLE GROUP BY TERM LIST> WITH CUBE
 | <GROUPING SETS SPECIFICATION>

Grammar rule 52 <GROUPING SETS SPECIFICATION> ::=
 GROUPING SETS <LEFT PAREN> <GROUP BY TERM LIST>
 <RIGHT PAREN>

Grammar rule 53 <ORDER SPECIFICATION> ::= ORDER BY <SORT SPECIFICATION
LIST>
112 Sybase IQ

Performance and Tuning Guide 113

C H A P T E R 5 Managing System Resources

About this chapter This chapter describes the way Sybase IQ uses memory, disk I/O, and
CPUs, and the relationships among these factors. It also explains how the
DBA can tune performance by adjusting resource usage.

The suggestions in this chapter are generic. You need to adjust them to suit
your hardware and software configuration. Recommendations for each
platform are in its Sybase IQ Installation and Configuration Guide.

Contents Topic Page

Introduction to performance terms 114

Designing for performance 114

Overview of memory use 114

The process threading model 134

Balancing I/O 135

Options for tuning resource use 144

Other ways to improve resource use 147

Indexing tips 149

Managing database size and structure 151

Using UNION ALL views for faster loads 154

Network performance 156

Introduction to performance terms

114 Sybase IQ

Introduction to performance terms
Performance is the measure of efficiency of a computerized business
application, or of multiple applications running in the same environment. It is
usually measured in response time and throughput.

Response time is the time it takes for a single task to complete. It is affected by:

• Reducing contention and wait times, particularly disk I/O wait times

• Using faster components

• Reducing the amount of time the resources are needed (increasing
concurrency)

Throughput refers to the volume of work completed in a fixed time period.
Throughput is commonly measured in transactions per second (tps), but can be
measured per minute, per hour, per day, and so on.

Designing for performance
Most gains in performance derive from good database design, thorough query
analysis, and appropriate indexing. The largest performance gains can be
realized by establishing a good design and by choosing the correct indexing
strategy.

Other considerations, such as hardware and network analysis, can locate
bottlenecks in your installation.

For more information, see Chapter 3, “Optimizing Queries and Deletions.”

Overview of memory use
Sybase IQ uses memory for several purposes:

• Buffers for data read from disk to resolve queries

• Buffers for data read from disk when loading from flat files

• Overhead for managing connections, transactions, buffers, and database
objects

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 115

The sections that follow explain how the operating system supports Sybase IQ
use of memory, how Sybase IQ allocates memory for various purposes, how
you can adjust the memory allocations for better performance, and what you
may need to do to configure the operating system so that enough memory is
available for Sybase IQ.

Paging increases available memory
When there is not enough memory on your system, performance can degrade
severely. If this is the case, you need to find a way to make more memory
available. Like any RDBMS software, Sybase IQ requires a lot of memory. The
more memory you can allocate to Sybase IQ, the better.

However, there is always a fixed limit to the amount of memory in a system,
so sometimes operating systems can have only part of the data in memory and
the rest on disk. When the operating system must go out to disk and retrieve
any data before a memory request can be satisfied, it is called paging or
swapping. The primary objective of good memory management is to avoid or
minimize paging or swapping.

The most frequently used operating system files are swap files. When memory
is exhausted, the operating system swaps pages of memory to disk to make
room for new data. When the pages that were swapped are called again, other
pages are swapped, and the required memory pages are brought back. This is
very time-consuming for users with high disk usage rates. In general, try to
organize memory to avoid swapping and, thus, to minimize use of operating
system files. See “Platform-specific memory options” on page 130 for
information on configuring memory to minimize swapping.

To make the maximum use of your physical memory, Sybase IQ uses buffer
caches for all reads and writes to your databases.

Note Your swap space on disk must be at least large enough to accommodate
all of your physical memory.

Overview of memory use

116 Sybase IQ

Utilities to monitor swapping
You can use the UNIX vmstat command, the UNIX sar command, or the
Windows Task Manager, to get statistics on the number of running processes
and the number of page-outs and swaps. Use this information to find out if the
system is paging excessively. Then make any necessary adjustments. You may
want to put your swap files on special fast disks.

For examples of vmstat output, see “Monitoring paging on UNIX systems.”

Server memory
Sybase IQ allocates memory for various purposes from a single memory pool,
called server memory. Server memory includes all of the memory allocated for
managing buffers, transactions, databases, and servers.

At the operating system level, Sybase IQ server memory consists of heap
memory. For the most part, you do not need to be concerned with whether
memory used by Sybase IQ is heap memory or shared memory. All memory
allocation is handled automatically. However, you may need to make sure that
your operating system kernel is correctly configured to use shared memory
before you run Sybase IQ. See the Sybase IQ Installation and Configuration
Guide for your platform for details.

Managing memory for
multiplexes

Each server in the multiplex can be on its own host or share a host with other
servers. Two or more servers on the same system consume no more CPU time
than would a single combined server handling the same workload, but separate
servers might need more physical memory than a single combined server,
because the memory used by each server is not shared by any other server.

Memory for loads,
inserts, updates,
synchronizations, and
deletions

To avoid overallocating the physical memory on the machine, you can set the
LOAD_MEMORY_MB database option for operations where loads occur. In
addition to LOAD operations, this option affects INSERT, UPDATE,
SYNCHRONIZE and DELETE operations. The LOAD_MEMORY_MB option sets
an upper bound (in MB) on the amount of heap memory subsequent loads can
use. For information on loads and buffer cache use, see “Memory requirements
for loads” on page 119. For details of the LOAD_MEMORY_MB option, see
Chapter 2, “Database Options,” in the Sybase IQ Reference Manual.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 117

Killing processes
affects shared
memory

 Warning! Killing processes on UNIX systems may result in semaphores or
shared memory being left behind instead of being cleaned up automatically.
The correct way to shut down a Sybase IQ server on UNIX is the stop_asiq
utility, described in “Stopping the database server” in Chapter 2, “Running
Sybase IQ,” Sybase IQ System Administration Guide. For information on using
the ipcs and ipcrm to clean up after an abnormal exit, see Chapter 1,
“Troubleshooting Hints,” in Sybase IQ Troubleshooting and Recovery Guide.

Managing buffer caches
Sybase IQ needs more memory for buffer caches than for any other purpose.
Sybase IQ has two buffer caches, one for the IQ Store and one for the
Temporary Store. It uses these two buffer caches for all database I/O
operations—for paging, for insertions into the database, and for backup and
restore. Data is stored in one of the two caches whenever it is in memory. All
user connections share these buffer caches. Sybase IQ keeps track of which
data is associated with each connection.

Read the sections that follow for in-depth information on managing buffer
caches:

• For information on how to calculate your memory requirements, see
“Determining the sizes of the buffer caches.”

• For information on how to set buffer cache sizes once you know what they
should be, see “Setting buffer cache sizes.”

• For an example of how to determine appropriate buffer cache sizes, see
Table 5-1 on page 123.

Determining the sizes of the buffer caches
The buffer cache sizes you specify for the IQ Store and Temporary Store will
vary based on several factors. The default values (16MB for the main and
12MB for the temporary cache) are too low for most databases. The actual
values required for your application depend on:

• The total amount of physical memory on your system

• How much of this memory Sybase IQ, the operating system, and other
applications need to do their tasks

Overview of memory use

118 Sybase IQ

• Whether you are doing loads, queries, or both

Read the next several sections for guidelines in determining the best settings
for your site, through the example in Table 5-1 on page 123.

The following diagram shows the relationship between the buffer caches and
other memory consumption.

Figure 5-1: Buffer caches in relation to physical memory

The following sections describe each part in more detail and provide guidelines
to help you determine how much memory each part requires.

Operating system and other applications

This amount of memory will vary for different platforms and how the system
is used. For example, UNIX file systems do more file buffering than UNIX raw
partitions, so the operating system has a higher memory requirement. As a
minimum, you can assume that UNIX systems use 60MB or more, while
Windows systems use 30MB or more.

In addition, other applications that run in conjunction with Sybase IQ (such as
query tools) have their own memory needs. See your application and operating
system documentation for information on their memory requirements.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 119

Sybase IQ memory overhead

After determining how much physical memory the operating system and other
applications use, you can calculate how much of the remaining memory Sybase
IQ requires to do its tasks. The factors that affect this overhead are described
in the following sections.

Raw partitions versus file systems

For UNIX systems, databases using file systems rather than raw partitions may
require another 30% of the remaining memory to handle file buffering by the
operating system. On Windows, file system caching should be disabled by
setting OS_FILE_CACHE_BUFFERING = ‘OFF’ (the default for new databases).
For more information, see the Sybase IQ Installation and Configuration Guide
for your platform.

Multiuser database access

For multiuser queries of a database, Sybase IQ needs about 10MB per “active”
user. Active users are defined as users who simultaneously access or query the
database. For example, 30 users may be connected to Sybase IQ, but only 10
or so may be actively using a database at any one time.

Memory requirements for loads

Sybase IQ also requires a portion of memory separate from the buffer caches
to perform load operations, synchronization, and deletions. This memory is
used for buffering I/O for flat files. Sybase IQ uses memory to buffer a read
from disk. The size of this read equals the BLOCK FACTOR multiplied by the
size of the input record. BLOCK FACTOR is an option of the LOAD TABLE
command. With the default value of 10,000, an input row of data of 200 bytes
results in 2MB total that Sybase IQ uses for buffering I/O. Memory
requirements for a load are determined by the number and width of columns,
not the number of rows.

This memory is required only when loading from flat files, using
INSERT..LOCATION, or INSERT..SELECT. A relatively small amount of
memory is needed for deletions and updates.

Memory for thread stacks

Processing threads require a small amount of memory. The more Sybase IQ
processing threads you use, the more memory needed. The -iqmt server switch
controls the number of threads for Sybase IQ.

Overview of memory use

120 Sybase IQ

If you have a large number of users, the memory needed for Catalog Store
processing threads also increases, although it is still relatively small. The -gn
switch controls Catalog Store processing threads.

The total number of threads (-iqmt plus -gn) must not exceed the number
allowed for your platform. For details, see Chapter 1, “Running the Database
Server,” in Sybase IQ Utility Guide.

Other memory use

All commands and transactions use some memory. The following operations
are the most significant memory users in addition to those discussed
previously:

Backup. The amount of virtual memory used for backup is a function of the
IQ PAGE SIZE specified when the database was created. It is approximately 2 *
number of CPUs * 20 * (IQ PAGE SIZE/16). On some platforms you may be
able to improve backup performance by adjusting BLOCK FACTOR in the
BACKUP command, but increasing BLOCK FACTOR also increases the
amount of memory used. See “Increasing memory used during backup” in
Chapter 14, “Data Backup, Recovery, and Archiving,” in Sybase IQ System
Administration Guide.

Database validation and repair. When you check an entire database, the
sp_iqcheckdb procedure opens all Sybase IQ tables, their respective fields, and
indexes before initiating any processing. Depending on the number of Sybase
IQ tables and the cumulative number of columns and indexes in those tables,
sp_iqcheckdb may require very little or a large amount of virtual memory. To
limit the amount of memory needed, use the sp_iqcheckdb options to check or
repair a single index or table.

Dropping leaked blocks. The drop leaks operation also needs to open all
Sybase IQ tables, files, and indexes, so it uses as much virtual memory as
sp_iqcheckdb uses when checking an entire database. It uses the Sybase IQ temp
buffer cache to keep track of blocks used.

 Sybase IQ main and temp buffer caches

After determining how much overhead memory Sybase IQ needs, you must
decide how to split what is left between your main Sybase IQ and temp buffer
caches. The dashed line dividing the two areas in Figure 5-1 indicates that this
split may change from one database to another based on several factors.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 121

Unlike most other databases, the general rule of thumb for Sybase IQ is a split
of 40% for the main buffer cache and 60% for temp buffer cache. This rule of
thumb, however, is only a start. While some operations, such as queries with
large sort-merge joins or inserts involving HG indexes, may require a temp
buffer cache larger than main, other applications might have different needs.
Sybase IQ supports memory allocation ratios from 30/70 to 70/30, main to
temp.

Note These guidelines assume you have one active database on your system
at a time (that is, any Sybase IQ users are accessing only one database). If you
have more than one active database, you need to further split the remaining
memory among the databases you expect to use.

Sybase strongly recommends that you start with the general guidelines
presented here and watch the performance of Sybase IQ by using its monitor
tool (described in “Monitoring the buffer caches” on page 170) and any
specific tools described in the Sybase IQ Installation and Configuration Guide
for your platform.

Buffer caches and physical memory

The total memory used for Sybase IQ main and temporary buffer caches, plus
Sybase IQ memory overhead, and memory used for the operating system and
other applications, must not exceed the physical memory on your system.

If you set buffer cache sizes higher than your system will accommodate,
Sybase IQ cannot open the database. Specify the server startup options -iqmc
(main cache size) and -iqtc (temp cache size) to open the database and reset the
cache sizes from their default values, which are only 16MB for the main cache
and 12MB for the temporary cache.

Note On some UNIX platforms, you may need to set other server switches to
make more memory available for buffer caches. See “Platform-specific
memory options” on page 130 for more information.

Overview of memory use

122 Sybase IQ

Other considerations

Sybase IQ buffer cache sizes may differ from one database to the next based on
how you use it. For maximum performance, you need to change the settings
between inserting, querying the database, and mixed use. In a mixed-use
environment, however, it is not always feasible to require all users to exit the
database so that you can reset buffer cache options. In those cases, you may
need to favor either load or query performance. When possible, define the
cache sizes before doing any work in the database.

The buffer cache and memory overhead guidelines also may differ between
platforms. See your Sybase IQ Installation and Configuration Guide for any
other issues.

Example of setting buffer cache sizes

The following table lists factors that may consume memory for your system
and shows an example of how much remains for your main and temp buffer
caches. This example assumes that the system has 1GB of physical memory,
no other significant applications on the hardware other than running Sybase IQ,
and only one active database at a time. The table gives separate figures for the
primary type of database access: queries or inserts.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 123

Table 5-1: Example of memory (in MB) available for buffer caches

aMinimum operating system use for Windows is 30MB

As shown in the table, you should have one set of values for your buffer caches
when primarily inserting into the database, another set when primarily
querying the database, each differing from a typical mixed load of inserting and
querying. To change the cache sizes, see “Setting buffer cache sizes.”
Remember that the cache size options do not take effect until you stop and
restart the database.

Setting buffer cache sizes
By default, Sybase IQ sets the size of the main and temporary buffer caches to
16MB and 12MB respectively. Most applications will require much higher
values (limited by the total amount of physical memory). See the preceding
sections to determine the right settings for your system.

Once you know what settings you need, use the options described in Table 5-2
to set buffer cache sizes. You may also use the options described in Table 5-3
to make more memory available for buffer caches.

Memory use
Amount
used

Memory
available:
Queries

Memory
available:
Inserts

Total amount of physical memory
available (approximate in MB)

1000 1000

Operating system use assuming a
minimum amount for a UNIX system

100a 900 900

Overhead for number of active users:
approximately 30 connected users but
only about 10 active at 10MB each

100 825

Overhead for inserts from flat files
assuming a 200-byte record size and
default settings

97 828

Memory remaining for the main and temp
buffer caches

675 828

iqmc (Main_Cache_Memory_MB)
setting: 40% of memory remaining for
buffer caches

405 497

iqtc (Temp_Cache_Memory_MB) setting:
60% of memory remaining for buffer
caches

270 331

Overview of memory use

124 Sybase IQ

Table 5-2: Settings that change buffer cache sizes

Table 5-3: Settings that affect memory available for buffer caches

Setting buffer cache size server switches

Setting the buffer cache sizes using the server startup options -iqmc and -iqtc
has two important advantages:

Method When to use it
How long the setting is
effective

For more
information, see

-iqmc and -iqtc server
switches

Recommended method.
Sets cache sizes when the
database and server are
not running. Allows cache
sizes >4GB.

Especially useful for 64-
bit platforms, or if cache
size database options are
set larger than your
system can accommodate.

From the time the server is
started until it is stopped

“Setting buffer cache
size server switches” on
page 124

MAIN_CACHE_MEMORY_
MB and
TEMP_CACHE_MEMORY_
MB database options

Set buffer cache sizes up
to 4GB. Database must be
open to set these values.

This method is not
recommended.

From the next time the
database is restarted until
you reset these options, or
override them with server
switches

“Database Options”
chapter of Sybase IQ
Reference Manual

Method When to use it
How long the setting is
effective

For more
information, see

-iqwmem server switch Use on some UNIX
platforms to provide
additional memory for use
as buffer caches. They do
not actually set the cache
sizes.

From the time the server is
started until it is stopped

“Platform-specific
memory options” on
page 130

LOAD_MEMORY_MB
database option

Indirectly affects buffer
cache size, by controlling
the memory that can be
used for loads. On some
platforms, allowing
unlimited memory for
loads means less memory
is available for buffer
caches.

Immediately until you reset
the option

“Memory for loads,
inserts, updates,
synchronizations, and
deletions” on page 116

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 125

• It allows you to set cache sizes greater than 4GB. These larger cache sizes
are not allowed on 32-bit platforms, but are recommended on 64-bit
platforms.

• It allows you to modify cache sizes if you have set the database options
larger than your system can accommodate, so that you cannot open the
database.

Whether you use the database options or the server options, you must restart
the server to change buffer cache sizes. The -iqmc and -iqtc server startup
options only remain in effect while the server is running, so you need to include
them every time you restart the server.

Specifying page size
When you create a database, you set its page size. This parameter, in
conjunction with the size of the buffer cache, determines memory use and disk
I/O throughput for that database.

Note The page size cannot be changed and determines the upper size limit on
some database objects.

Setting the page size

Sybase IQ swaps data in and out of memory in units of pages. When you create
a database, you specify a separate page size for the Catalog Store and the IQ
Store. The Temporary Store has the same page size as the IQ Store.

For Sybase IQ page size recommendations for the best performance, see
“Choosing an IQ page size”in Chapter 5, “Working with Database Objects,”,
Sybase IQ System Administration Guide.

Because the Catalog Store accounts for only a tiny fraction of I/O, the page size
for the Catalog Store has no real impact on performance. The default value of
4096 bytes should be adequate.

The IQ page size determines two other performance factors, the default I/O
transfer block size, and the maximum data compression for your database.
These factors are discussed in the sections that follow.

Overview of memory use

126 Sybase IQ

Block size

All I/O occurs in units of blocks. The size of these blocks is set when you
create a Sybase IQ database; you cannot change it without recreating the
database. By default, the IQ page size determines the I/O transfer block size.
For example, the default IQ page size of 128KB results in a default block size
of 8192 bytes. In general, Sybase IQ uses this ratio of default block size to page
size, but it considers other factors also.

The default block size should result in an optimal balance of I/O transfer rate
and disk space usage for most systems. It does favor saving space over
performance, however. If the default block size does not work well for you, you
can set it to any power of two between 4096 and 32,768, subject to the
constraints that there can be no fewer than two and no more than 16 blocks in
a page. You may want to set the block size explicitly in certain cases:

• For a raw disk installation that uses a disk array, larger blocks may give
better performance at the expense of disk space.

• For a file system installation, to optimize performance over disk space, the
IQ block size should be greater than or equal to the operating system's
native block size, if there is one. You may get better I/O rates if your IQ
block size matches your file system’s block size.

Table 5-4 shows the default block size for each IQ page size.

Table 5-4: Default block sizes

Data compression

Sybase IQ compresses all data when storing it on disk. Data compression both
reduces disk space requirements and contributes to performance. The amount
of compression is determined automatically, based on the IQ page size.

Saving memory
If your machine does not have enough memory, to save memory you can try
the following adjustments.

IQ page size (KB) Default block size (bytes)

64 4096

128 (default for new databases) 8192

256 16384

512 32768

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 127

Decrease buffer cache settings

You may be able to save memory by decreasing buffer cache sizes. Keep in
mind that if you decrease the buffer caches too much, you could make your
data loads or queries inefficient or incomplete due to insufficient buffers.

Decrease memory used for loads

You can set the LOAD_MEMORY_MB option to limit the amount of heap
memory used for loads and other similar operations. See ““Memory for loads,
inserts, updates, synchronizations, and deletions” on page 116.

Adjust blocking factor for loads

Use BLOCK FACTOR to reduce I/O when loading from a flat file. The BLOCK
FACTOR option of the LOAD command specifies the blocking factor, or number
of records per block, that were used when the input file was created. The
default BLOCK FACTOR is 10,000.

The syntax for this load option is as follows:

BLOCK FACTOR = integer

Use the following guideline to determine BLOCK FACTOR:

record size * BLOCK FACTOR = memory required

You need extra memory for this option, in addition to the memory for the
buffers. If you have a lot of memory available, or if no other users are active
concurrently, increasing the value of BLOCK FACTOR can improve load
performance.

Optimizing for large numbers of users
Sybase IQ handles up to 200 user connections on 32-bit platforms (Linux and
Windows 2000.2003/XP), and up to 1000 user connections on 64-bit platforms
(Sun Solaris, HP-UX and Itanium, and AIX). To support this greater number
of users on 64-bit systems, you may need to adjust both operating system
parameters and start_asiq server parameters. For recommendations, see the
Sybase IQ Installation and Configuration Guide as well as the sections that
follow.

Overview of memory use

128 Sybase IQ

Sybase IQ command line option changes for large numbers of users

The following start_asiq switches affect operations with large numbers of
users:

 -gm #_connections_to_support

 -iqgovern #_ ACTIVE_ queries_to_support

 -gn #_Catalog_Store_front_end_threads

 -c Catalog_Store_cache_size

 -ch size

 -cl size

-gm This is the total number of connections the server will support. Statistically,
some of these are expected to be connected and idle while others are connected
and actively using the database.

-iqgovern Although 1000 users can be connected to Sybase IQ, for best throughput you
should ensure that far fewer users are allowed to query at once, so that each of
them has sufficient resources to be productive. The -iqgovern value places a
ceiling on the maximum number of queries to execute at once. If more users
than the -iqgovern limit have submitted queries, new queries will be queued
until one of the active queries is finished.

The optimal value for -iqgovern depends on the nature of your queries, number
of CPUs, and size of the Sybase IQ buffer cache. The default value is
2*numCPU + 10. With a large number of connected users, you may find that
setting this option to 2*numCPU + 4 provides better throughput.

-gn The correct value for -gn depends on the value of -gm. The start_asiq utility
calculates -gn and sets it appropriately. Setting -gn too low can prevent the
server from operating correctly. Setting -gn above 480 is not recommended.

-c The Catalog Store buffer cache is also the general memory pool for the Catalog
Store. To specify in MB, use the form -c nM, for example, -c 64M. Sybase
recommends these values:

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 129

Table 5-5: Catalog buffer cache settings

In some cases the standard Catalog cache size may be too small, for example,
to accommodate certain queries that need a lot of parsing. In these cases, you
may find it helpful to set -cl and -ch. For example, on 32-bit platforms, try these
settings

-cl 128M
-ch 256M

Do not use -c in the same configuration file or command line with -ch or -cl. For
related information, see the -ch cache-size option.

 Warning! To control Catalog Store cache size explicitly, you must do either
of the following, but not both, in your configuration file (.cfg) or on the UNIX
command line for server startup:

• Set the -c parameter

• Set specific upper and lower limits for the Catalog Store cache size using
the -ch and -cl parameters

Specifying different combinations of the parameters above can produce
unexpected results.

-iqmt You do not need to set the -iqmt option. If -iqmt is set too low for the number of
specified connections, the number of threads will be increased to handle the
number of requested connections. That is, -gm overrides -iqmt. However, if the
number of Sybase IQ threads is elevated by means of the -iqmt option then that
factor needs to be used in setting limits, as described in “Setting operating
system parameters for large numbers of users.”

Increasing Sybase IQ temporary space for large numbers of users

You may need to increase your temporary dbspace to accommodate more
users.

For this
many
users

On these
platforms Set -c to this minimum value or higher

up to 1000 64-bit only 64MB

up to 200 64-bit 48MB (start_asiq default for 64-bit); larger
numbers of users may benefit from 64MB

up to 200 32-bit 32MB (start_asiq default for 32-bit)

Overview of memory use

130 Sybase IQ

Relative priorities of new and existing connections

If Sybase IQ is very busy handling already connected users, it may be slow to
respond to new connection requests. In extreme cases (such as test scripts that
fire off hundreds of connections in a loop while the server is busy with inserts)
new connections may have to wait up to a minute before becoming active or
may even time out their connection request. In this situation, the server may
appear to be down when it is merely very busy. A user getting this behavior
should try to connect again.

Platform-specific memory options
On all platforms, Sybase IQ uses memory for four primary purposes:

• Main buffer cache

• Temporary buffer cache

• Sybase IQ memory overhead (including thread stacks)

• Load buffers

See Figure 5-1 on page 118 for a diagram of Sybase IQ memory use.

On all 64-bit platforms, the total amount of usable memory is effectively
unlimited. The only limit is the system’s virtual memory.

For performance tuning hints on HP-UX systems, see the Sybase IQ
Installation and Configuration Guide for that platform.

On 32-bit platforms restrictions apply; see the following table for details.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 131

Table 5-6: Total available memory on 32-bit platforms

Due to the virtual memory usage pattern within the Sybase IQ server, virtual
memory fragmentation could cause excessive process growth on Windows
platforms. To reduce the likelihood of this situation, Sybase IQ supports the use
of Microsoft’s low-fragmentation heap (LFH) on Windows XP and Windows
Server 2003.

For more performance tuning hints on Windows platforms, see Chapter 7,
“Tuning Servers on Windows Systems.”

For UNIX systems only, Sybase IQ provides two command-line options that
can help you manage memory.

Wired memory pool On HP and Sun platforms, you can designate a specified amount of memory as
“wired” memory. Wired memory is shared memory that is locked into physical
memory. The kernel cannot page this memory out of physical memory.

Wired memory may improve Sybase IQ performance when other applications
are running on the same machine at the same time. Dedicating wired memory
to Sybase IQ, however, makes it unavailable to other applications on the
machine.

To create a pool of “wired” memory on these UNIX platforms only, specify the
-iqwmem command-line switch, indicating the number of MB of wired
memory. (You must be user root to set -iqwmem, except on Sun.) On 64-bit
platforms, the only upper limit on -iqwmem is the physical memory on the
machine.

For example, on a machine with 14GB of memory, you may be able to set aside
10GB of wired memory. To do so, you specify:

Platform Total memory available

RedHat Linux 2.1 About 1.7GB available to Sybase IQ

RedHat Linux 3.0 About 2.7GB available to Sybase IQ

Windows 2000/2003/XPa 2.75GB available to Sybase IQ
aYou need Windows 2000 Advanced Server or Datacenter Server, Windows Server
2003 Standard, Enterprise or Datacenter Edition, or Windows XP Professional to get
this much memory, and you must set the /3GB switch. Without the switch, the limit
is 2GB. This amount is the total memory available to the process. Total size of buffer
caches must not exceed 2GB on Windows servers, even with the /3GB setting. For
details, see the Sybase IQ Installation and Configuration Guide for Windows.

Overview of memory use

132 Sybase IQ

-iqwmem 10000

 Warning! Use this switch only if you have enough memory to dedicate the
amount you specify for this purpose. Otherwise, you can cause serious
performance degradation.

Note For this version:

• On Sun Solaris, -iqwmem always provides wired memory.

• On HP, -iqwmem provides wired memory if you start the server as root. It
provides unwired memory if you are not root when you start the server.
This behavior may change in a future version.

Impact of other
applications and
databases

Remember, the memory used for the server comes out of a pool of memory
used by all applications and databases. If you try to run multiple servers or
multiple databases on the same machine at the same time, or if you have other
applications running, you may need to reduce the amount of memory your
server requests.

The server log reports how much memory you actually get:

Created 1073741824 byte segement id 51205 Attached at
80000000

Created 184549376 byte segement id 6151 Attached at
C3576000

You can also issue the UNIX command ipcs -mb to see the actual number of
segments.

Troubleshooting HP
memory issues

If you have memory issues on HP-UX, check the value of the maxdsiz_64bit
kernel parameter. This parameter restricts the amount of virtual memory
available to Sybase IQ on 64-bit HP processors. See your Sybase IQ
Installation and Configuration Guide for the recommended value.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 133

Controlling file system buffering

On Solaris UFS and Windows file systems only, you can control whether file
system buffering is turned on or off. Turning off file system buffering saves a
data copy from the file system buffer cache to the main IQ buffer cache.
Usually, doing so reduces paging, and therefore improves performance. Be
aware of one exception: If the IQ page size for the database is less than the file
system's block size (typically only in the case in testing situations) turning off
file system buffering may decrease performance, especially during multiuser
operation.

File system buffering is turned off by default for newly created Sybase IQ
databases.

To disable file system buffering for existing databases, issue the following
statement:

SET OPTION "PUBLIC".OS_FILE_CACHE_BUFFERING = OFF

You can only set this option for the PUBLIC group. You must shut down the
database and restart it for the change to take effect.

Note Solaris does not have a kernel parameter to constrain the size of its file
system buffer cache. Over time, the file system buffer cache grows and
displaces the IQ buffer cache pages, leading to excess operating system paging
activity and reduced Sybase IQ performance.

Windows can bias the paging algorithms to favor applications at the expense
of the file system. This bias is recommended for Sybase IQ performance. See
Chapter 7, “Tuning Servers on Windows Systems” for details.

Other ways to get more memory
In certain environments, you may be able to adjust other options to make more
memory available to Sybase IQ.

The process threading model

134 Sybase IQ

Options for Java-enabled databases

The JAVA_HEAP_SIZE option of the SET OPTION command sets the maximum
size (in bytes) of that part of the memory that is allocated to Java applications
on a per connection basis. Per connection memory allocations typically consist
of the user's working set of allocated Java variables and Java application stack
space. While a Java application is executing on a connection, the per
connection allocations come out of the fixed cache of the database server, so it
is important that a run-away Java application is prevented from using up too
much memory.

The JAVA_NAMESPACE_SIZE option of the SET OPTION command sets the
maximum size (in bytes) of that part of the memory that is allocated to Java
applications on a per database basis. Per database memory allocations include
Java class definitions. As class definitions are effectively read-only, they are
shared among connections. Consequently, their allocations come right out of
the fixed cache, and this option sets a limit on the size of these allocations.

The process threading model
Sybase IQ uses operating system kernel threads for best performance. Threads
can be found at the user level and at the kernel level. Lightweight processes are
underlying threads of control that are supported by the kernel. The operating
system decides which lightweight processes (LWPs) should run on which
processor and when. It has no knowledge about what the user threads are, but
does know if they are waiting or able to run.

The operating system kernel schedules LWPs onto CPU resources. It uses their
scheduling classes and priorities. Each LWP is independently dispatched by the
kernel, performs independent system calls, incurs independent page faults, and
runs in parallel on a multiprocessor system.

A single, highly threaded process serves all Sybase IQ users. Sybase IQ assigns
varying numbers of kernel threads to each user connection, based on the type
of processing being done by that connection, the total number of threads
available, and the various option settings.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 135

Insufficient threads error
When you do not have enough server threads to initiate the query you have
issued, you get the error:

Not enough server threads available for this query

This condition may well be temporary. When some other query finishes,
threads are made available and the query may succeed the next time you issue
it. If the condition persists, you may need to restart the server and specify more
Sybase IQ threads, as described in the next section.

Sybase IQ options for managing thread usage
Sybase IQ offers the following options to help you manage thread usage.

• To set the maximum number of threads available for Sybase IQ use, set the
server startup option -iqmt. The default value is calculated from the
number of connections and the number of CPUs and is usually adequate.

• To set the stack size of the internal execution threads in the server, set the
server startup option -iqtss. The default value is generally sufficient, but
may be increased if complex queries return an error indicating that the
depth of the stack exceeded this limit. For details about -iqmt and -iqtss, see
Chapter 1, “Running the Database Server,” Sybase IQ Utility Guide.

• To set the maximum number of threads a single user will use, issue the
command SET OPTION MAX_IQ_THREADS_PER_CONNECTION. This
can be used to control the amount of resources a particular operation
consumes. For example, the DBA can set this option before issuing an
INSERT or LOAD command.

Balancing I/O
This section explains the importance of balancing I/O on your system. It
explains how to use disk striping and how to locate files on separate disks to
gain better performance. Controlling the size of the message log file is also
discussed.

Balancing I/O

136 Sybase IQ

Raw I/O (on UNIX operating systems)
 Most UNIX file systems divide disks into fixed size partitions. Partitions are
physical subsets of the disk that are accessed separately by the operating
system. Disk partitions are typically accessed in two modes: file system mode
(through the UFS file system) or raw mode. Raw mode (sometimes called
character mode) does unbuffered I/O, generally making a data transfer to or
from the device with every read or write system call. The UFS mode is a UNIX
file system and a buffered I/O system which collects data in a buffer until it can
transfer an entire buffer at a time.

When you create a database or a dbspace, you can place it on either a raw
device or a file system file. Sybase IQ determines automatically from the
pathname you specify whether it is a raw partition or a file system file. Raw
partitions can be any size.

For more information, see the section “Working with database objects” in
Chapter 5, “Working with Database Objects” of the Sybase IQ System
Administration Guide.

Using disk striping
Traditional file management systems allow you to locate individual files on
specific disks. Consequently, all file operations occur against a single disk
drive. Some operating systems allow you to create logical devices or volumes
that span multiple disk drives. Once a file fills the first disk drive, it is
automatically continued onto the next drive in the logical volume. This feature
increases the maximum file size and concentrates activity on a single disk until
it is full.

However, there is another way. Disk striping is a generic method of spreading
data from a single file across multiple disk drives. This method allows
successive disk blocks to be located on striped disk drives. Striping combines
one or more physical disks (or disk partitions) into a single logical disk. Striped
disks split I/O transfers across the component physical devices, performing
them in parallel. They achieve significant performance gains over single disks.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 137

Disk striping lets you locate blocks on different disks. The first block is located
on the first drive. The second block is located on the second drive, and so on.
When all the drives have been used, the process cycles back and uses additional
blocks on the drives. The net effect of disk striping is the random distribution
of data across multiple disk drives. Random operations against files stored on
striped disks tend to keep all of the drives in the striped set equally busy,
thereby maximizing the total number of disk operations per second. This is a
very effective technique in a database environment.

You can use disk striping either as provided by your operating system and
hardware, or Sybase IQ internal disk striping.

Setting up disk striping on UNIX

UNIX systems offering striped disks provide utilities for configuring physical
disks into striped devices. See your UNIX system documentation for details.

Setting up disk striping on Windows

On Windows systems, use hardware disk striping via an appropriate SCSI-2
disk controller. If your machine does not support hardware striping, but you
have multiple disks available for your databases, you can use Windows striping
to spread disk I/O across multiple disks. Set up Windows striping using the
Disk Management.

Recommendations for disk striping

 Here are some general rules on disk striping:

• For maximum performance, the individual disks in a striped file system
should be spread out across several disk controllers. But be careful not to
saturate a disk controller with too many disks. Typically, most SCSI
machines can handle 2–3 disks per controller. See your hardware
documentation for more information.

• Do not put disks on the same controller as slower devices, such as tape
drives or CD-ROMs. This slows down the disk controller.

• Allocate 4 disks per server CPU in the stripe.

• The individual disks must be identical devices. This means they must be
the same size, have the same format, and often be the same brand. If the
layouts differ, the size of the smallest one is often used and other disk
space is wasted. Also, the speed of the slowest disk is often used.

Balancing I/O

138 Sybase IQ

• In general, disks used for file striping should not be used for any other
purpose. For example, do not use a file striped disk as a swap partition.

• Never use the disk containing the root file system as part of a striped
device.

In general, you should use disk striping whenever possible.

Note For the best results when loading data, dump the data to a flat file located
on a striped disk and then read the data into Sybase IQ with the LOAD TABLE
command.

Internal striping
Sybase IQ stores its information in a series of dbspaces—files or raw partitions
of a device—in blocks. Assuming that disk striping is in use, Sybase IQ spreads
data across all dbspaces that have space available. This approach lets you take
advantage of multiple disk spindles at once, and provides the speed of parallel
disk writes.

Disk striping option

This section explains how you can use the option Sybase IQ provides to do disk
striping, without using third party software. If you already have a disk striping
solution through third party software and hardware, you should use that
method instead.

Turning disk striping
on or off

The syntax you use to turn disk striping on or off is:

SET OPTION "PUBLIC".DISK_STRIPING = { ON | OFF }

The default for the DISK_STRIPING option is ON for all platforms. When disk
striping is ON, incoming data is spread across all dbspaces with space
available. When disk striping is OFF, dbspaces (disk segments) are filled up
from the front on the logical file, filling one disk segment at a time.

You must restart the Sybase IQ server in order for a change to the value of the
DISK_STRIPING option to take effect.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 139

The database options MAIN_DISK_KB_PER_STRIPE and
TEMP_DISK_KB_PER_STRIPE define the number of kilobytes (KB) to write to
each dbspace before the disk striping algorithm moves to the next stripe for the
IQ Main Store and the IQ Temporary Store, respectively. The default value for
these options is 1, which rounds up to one page.

You can drop a dbspace using the DROP DBSPACE command when disk
striping is on. Before dropping the dbspace, however, you must relocate all of
the data in the dbspace using the sp_iqrelocate stored procedure. Because disk
striping spreads data across multiple dbspaces, the relocation process may
require the relocation of many tables and indexes. Use the sp_iqdbspaceinfo
and sp_iqdbspace stored procedures to determine which tables and indexes
reside on a dbspace.

Using multiple dbspaces
Using multiple dbspaces allows your Sybase IQ and temporary data to be
broken down into multiple operating system files or partitions. These files can
then be spread across multiple disks.

Like disk striping, randomness can be created by placing successive database
files across multiple drives. You can create additional segments for your
Sybase IQ and temporary data with the CREATE DBSPACE command.

When to create
dbspaces

When possible, allocate all dbspaces when you create a database.

If you add dbspaces later, Sybase IQ stripes new data across both old and new
dbspaces. Striping may even out, or it may remain unbalanced, depending on
the type of updates you have. The number of pages that are “turned over” due
to versioning has a major impact on whether striping is rebalanced.

Strategic file locations
Performance related to randomly accessed files can be improved by increasing
the number of disk drives devoted to those files, and therefore, the number of
operations per second performed against those files. Random files include
those for the IQ Store, the Temporary Store, the Catalog Store, programs
(including the Sybase IQ executables, user and stored procedures, and
applications), and operating system files.

Balancing I/O

140 Sybase IQ

Conversely, performance related to sequentially accessed files can be
improved by locating these files on dedicated disk drives, thereby eliminating
contention from other processes. Sequential files include the transaction log
and message log files.

To avoid disk bottlenecks, follow these suggestions:

• Keep random disk I/O away from sequential disk I/O.

• Isolate Sybase IQ database I/O from I/O for proxy tables in other
databases, such as Adaptive Server Enterprise.

• Place the transaction log and message log on separate disks from the IQ
Store, Catalog Store, and Temporary Store, and from any proxy databases
such Adaptive Server Enterprise.

• Place the database file, temporary dbspace, and transaction log file on the
same physical machine as the database server.

The transaction log file

The transaction log file contains information that allows Sybase IQ to recover
from a system failure. The default filename extension for this file is .log.

To move or rename the transaction log file, use the Transaction Log utility
(dblog). For syntax and details, see Chapter 3, “Database Administration
Utilities,”Sybase IQ Utility Guide.

 Warning! The Sybase IQ transaction log file is different from most relational
database transaction log files. If for some reason you lose your database files,
then you lose your database (unless it is the log file that is lost). However, if
you have an appropriate backup, then you can reload the database.

Truncating the
transaction log

Sybase IQ records in the transaction log the information necessary to recover
from a system failure. Although the information logged is small for each
committed transaction, the transaction log continues to grow in size. In systems
with a high number of transactions that change data, over a period of time the
log can grow to be very large.

Log truncation generally requires the Sybase IQ servers involved to be taken
off line. When to truncate the log is really up to the DBA responsible for
supporting the Sybase IQ systems, and depends on the growth profile of the log
file and the operational procedures at the site. The log truncation procedure
should be scheduled at least once a month or more frequently if the log file is
exceeding 100MB.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 141

Table 5-7shows methods for truncating transaction logs in Sybase IQ.

Table 5-7: Truncating transaction logs

Be sure to use the appropriate method. Sybase IQ database replication
inherently relies on transaction log information. For this reason, only the
DELETE_OLD_LOGS option should be used for a multiplex database (see
“Truncating the transaction log for a multiplex database.”). Also, the
transaction log provides Sybase support with valuable information for problem
diagnosis and reproduction. Both methods should include archiving the
existing log (keeping a copy of the log), in case Sybase support needs the log
for further diagnostic work.

Truncating the
transaction log for a
non-multiplex
database

Use the –m server startup switch to truncate the transaction log of a non-
multiplex database. Note that leaving the –m server startup switch permanently
set is not recommended. This switch should only be used to start Sybase IQ for
a transaction log truncation. How this is done is up to the DBA, but the
following procedure provides a suggestion.

❖ Truncating the transaction log of a non-multiplex database

1 Create a copy of the server switches .cfg file with a name identifying the
file as the log truncation configuration setting and edit this copy of the file
to add the –m switch.

2 Perform normal full backup procedures, including making copies of the
.db and .log files.

3 Shut down Sybase IQ. Verify that ‘CloseDatabase’ was written in the
iq.msg file.

4 Restart Sybase IQ with the configuration file containing the –m option.
Note that no user access or transactions should be allowed at this time.

5 Shut down Sybase IQ and restart using the configuration file without the
–m option set.

If your database is … Use this method … For details, see …

Non-multiplex The –m switch, which
causes the transaction
log to be truncated after
each checkpoint for all
databases

“Truncating the transaction
log of a non-multiplex
database”

Multiplex The
DELETE_OLD_LOGS
database option

“Truncating the transaction
log of a multiplex
database”

Running The dbbackup command
line utility

Backup utility (dbbackup)
in Sybase IQ Utility Guide.

Balancing I/O

142 Sybase IQ

Truncating the
transaction log for a
multiplex database

❖ Truncating the transaction log of a multiplex database

1 Back up the database from the write server, if you have not already done
so.

2 Set the DELETE_OLD_LOGS option on the write server:

SET OPTION Public.Delete_Old_Logs=’On’

3 Stop the write server’s dbremote and restart it with the -x command line
switch. (Create a special version of the start_dbremote.bat script, found in
the write server’s database directory, to do this.) This truncates the log at
the write server. For example:

cd \Server01\mpxdb\cmd /c
start dbremote -q -v -x -o
"d:\Server01\mpxdb\dbremote.log" -c
"uid=DBA;pwd=SQL;eng=Server01;dbf=
d:\Server01\mpxdb\mpxdb;
links=tcpip{port=1704;host=FIONA-PC}"

4 Clear the DELETE_OLD_LOGS option on the write server:

SET OPTION Public.Delete_Old_Logs=’Off’

Note The query server transaction log is always truncated during
synchronization, no matter when the write server log was last truncated.

The message log

A message log file exists for each database. The default name of this file is
dbname.iqmsg, although you can specify a different name when you create the
database. The message log file is actually created when the first user connects
to a database.

By default, Sybase IQ logs all messages in the message log file, including error,
status, and insert notification messages. You can turn off notification messages
in the LOAD and INSERT statements.

At some sites the message log file tends to grow rapidly, due to the number of
insertions, LOAD option and NOTIFY_MODULUS database option settings, or
certain other conditions. Sybase IQ lets you limit the size of this file by
wrapping the message log.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 143

When you enable message log wrapping, as soon as the file reaches the
maximum size specified in the IQMSG_LENGTH_MB database option, new
messages are written starting at the beginning of the file. Existing messages are
overwritten, line-by-line.

When wrapping is enabled, the tag <next msg insertion place> tells you
where new messages are being placed. Additional tags at the beginning and end
of the file remind you that log wrapping is enabled, and that the last message
in the file may not be the most recent one.

To enable message log wrapping and set the maximum log file size, see
“IQMSG_LENGTH_MB option” in Sybase IQ Reference Manual.

Working space for inserting, deleting, and synchronizing
When you insert or delete data, and when you synchronize join indexes, Sybase
IQ needs some working space in the IQ Store. This space is reclaimed for other
purposes when the transaction that needs it commits.

Ordinarily, as long as you maintain a reasonable percentage of free space in
your IQ Store, you will have enough free space. However, for certain deletions,
depending on the size of the data and its distribution among database pages,
you may need a large amount of working space. In the case where you are
deleting a major portion of your database, and the data is distributed sparsely
across many pages, you could temporarily double the size of your database.

Setting reserved space options
Two database options, MAIN_RESERVED_DBSPACE_MB and
TEMP_RESERVED_DBSPACE_MB, control the amount of space Sybase IQ
reserves for certain operations. For more information see “Reserving space to
handle out-of-space conditions”in Sybase IQ System Administration Guide.

Options for tuning resource use

144 Sybase IQ

Options for tuning resource use
The number of concurrent users of a Sybase IQ database, the queries they run,
and the processing threads and memory available to them, can have a dramatic
impact on performance, memory use, and disk I/O. Sybase IQ provides several
options for adjusting resource use to accommodate varying numbers of users
and types of queries. These may be:

• SET OPTION command options that affect only the current database.

• Command-line options that affect an entire database server.

• Connection parameters that affect the current connection only.

For more information on all of these options, including parameters, when the
options take effect, and whether you can set them for both a single connection
and the PUBLIC group, see the Sybase IQ Reference Manual.

For information specific to optimizing tables, see “Optimizing storage and
query performance,” Sybase IQ System Administration Guide

Restricting concurrent queries
The -iqgovern command-line option lets you control the number of concurrent
queries on a server. This is not the same as the number of connections, which
is controlled by your license.

The -iqgovern switch optimizes paging of buffer data out to disk, so that
memory is used most effectively. The default value of -iqgovern is (2 x the
number of CPUs) + 4.

Setting the number of CPUS available
The -iqnumbercpus switch on the Sybase IQ startup command lets you specify
the number of CPUs available. This switch is recommended only:

• On machines with Intel® CPUs and hyperthreading enabled

• On machines where an operating system utility has been used to restrict
Sybase IQ to a subset of the CPUs within the machine

For details, see “Setting the number of CPUs” in the Sybase IQ System
Administration Guide.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 145

Limiting a query's temporary dbspace use
The QUERY_TEMP_SPACE_LIMIT option of the SET command lets you
restrict the amount of temporary dbspace available to any one query. By
default, a query can use 2000MB of temporary dbspace.

When you issue a query, Sybase IQ estimates the temporary space needed to
resolve the query. If the total estimated temporary result space for sorts, hashes,
and row stores exceeds the current QUERY_TEMP_SPACE_LIMIT setting, the
query is rejected, and you receive a message such as:

Query rejected because it exceeds total space resource
limit

If this option is set to 0, there is no limit, and no queries are rejected based on
their temporary space requirements.

Limiting queries by rows returned
The QUERY_ROWS_RETURNED_LIMIT option of the SET command tells the
query optimizer to reject queries that might otherwise consume too many
resources. If the query optimizer estimates that the result set from a query will
exceed the value of this option, it rejects the query with the message:

Query rejected because it exceed resource:
Query_Rows_Returned_Limit

If you use this option, set it so that it only rejects queries that consume vast
resources.

Forcing cursors to be non-scrolling
When you use scrolling cursors with no host variable declared, Sybase IQ
creates a temporary store node where query results are buffered. This storage
is separate from the Temporary Store buffer cache. If you are retrieving very
large numbers (millions) of rows, this store node can require a lot of memory.

You can eliminate this temporary store node by forcing all cursors to be non-
scrolling. To do so, set the FORCE_NO_SCROLL_CURSORS option to ON.
You may want to use this option to save on temporary storage requirements if
you are retrieving very large numbers (millions) of rows. The option takes
effect immediately for all new queries submitted.

Options for tuning resource use

146 Sybase IQ

If scrolling cursors are never used in your application, you should make this a
permanent PUBLIC option. It will use less memory and make a big
improvement in query performance.

Limiting the number of cursors
The MAX_CURSOR_COUNT option specifies a resource governor to limit the
maximum number of cursors that a connection can use at once. The default is
50. Setting this option to 0 allows an unlimited number of cursors.

Limiting the number of statements
The MAX_STATEMENT_COUNT option specifies a resource governor to limit
the maximum number of prepared statements that a connection can use at once.

Prefetching cache pages
The SET option PREFETCH_BUFFER_LIMIT defines the number of cache
pages available to Sybase IQ for use in prefetching (the read ahead of database
pages). This option has a default value of 0. Set this option only if advised to
do so by Sybase Technical Support. For more information, see
“PREFETCH_BUFFER_LIMIT option” in the Sybase IQ Reference Manual.

The SET option BT_PREFETCH_MAX_MISS determines whether to continue
prefetching pages for a given query. If queries using HG indexes run more
slowly than expected, try gradually increasing the value of this option. For
more information, see “BT_PREFETCH_MAX_MISS option” in the Sybase
IQ Reference Manual.

Optimizing for typical usage
Sybase IQ tracks the number of open cursors and allocates memory
accordingly. In certain circumstances, USER_RESOURCE_RESERVATION
option can be set to adjust the minimum number of current cursors that thinks
is currently using the product and hence allocate memory from the temporary
cache more sparingly.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 147

This option should only be set after careful analysis shows it is actually
required. Contact Sybase Technical Support with details if you need to set this
option.

Controlling the number of prefetched rows
Prefetching is used to improve performance on cursors that only fetch relative
1 or relative 0. Two connection parameters let you change cursor prefetch
defaults. PrefetchRows (PROWS) sets the number of rows prefetched;
PrefetchBuffer (PBUF) sets the memory available to this connection for
storing prefetched rows. Increasing the number of rows you prefetch may
improve performance under certain conditions:

• The application fetches many rows (several hundred or more) with very
few absolute fetches.

• The application fetches rows at a high rate, and the client and server are on
the same machine or connected by a fast network.

• Client/server communication is over a slow network, such as a dial-up link
or wide area network.

Other ways to improve resource use
This section describes several ways to adjust your system for maximum
performance or better use of disk space.

Managing disk space in multiplex databases
Sybase IQ cannot drop old versions of tables while any user on any server
might be in a transaction that might need the old versions. Sybase IQ may
therefore consume a very large amount of disk space when table updates and
queries occur simultaneously in a multiplex database. The amount of space
consumed depends on the nature of the data and indexes and the update rate.

Other ways to improve resource use

148 Sybase IQ

You can free disk blocks by allowing the write server to drop obsolete versions
no longer required by queries. All users on all servers should commit their
current transactions periodically to allow recovery of old table versions. The
servers may stay up and are fully available. The dbremote processes must all
continue to run to forward the latest information about the use of table versions
on each query server to the write server.

Load balancing among query servers
You may be able to use the IQ Network Client to balance the query load among
multiplex query servers. This method requires an intermediate system that is
able to dispatch the client connection to a machine in a pool, depending on the
workload of the machine.

To use this method, on the client system you create a special ODBC DSN, with
the IP address and port number of this intermediate load balancing system, a
generic server name, and the VerifyServerName connection parameter set to
NO. When a client connects using this DSN, the load balancer establishes the
connection to the machine it determines is least loaded.

For details on how to define an ODBC DSN for use in query server load
balancing, see “VerifyServerName parameter [Verify]” in Chapter 4,
“Connection and Communication Parameters” of the Sybase IQ System
Administration Guide.

Restricting database access
For better query performance, set the database to read-only, if possible, or
schedule significant updates for low usage hours. Sybase IQ allows multiple
query users to read from a table while you are inserting or deleting from that
table. However, performance can degrade during concurrent updates to the
database.

Disk caching
Disk cache is memory used by the operating system to store copies of disk
blocks temporarily. All file system based disk reads and writes usually pass
through a disk cache. From an application's standpoint, all reads and writes
involving disk caches are equivalent to actual disk operations.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 149

Operating systems use two different methods to allocate memory to disk cache:
fixed and dynamic. A preset amount of memory is used in a fixed allocation;
usually a 10–15 percent memory allocation is set aside. The operating system
usually manages this workspace using a LRU (least recently used) algorithm.
For a dynamic allocation, the operating system determines the disk cache
allocation as it is running. The goal is to keep as much memory in active use as
possible, balancing the demand for real memory against the need for data from
disk.

Indexing tips
The following sections give some tips for selecting and managing indexes. See
Chapter 6, “Using Sybase IQ Indexes,” in the Sybase IQ System
Administration Guide for more information on these topics.

Choosing the right index type
It is important to choose the correct index type for your column data. Sybase
IQ provides some indexes automatically—a default index on all columns that
optimizes projections, and an HG index for UNIQUE and PRIMARY KEYS and
FOREIGN KEYS. While these indexes are useful for some purposes, you need
other indexes to process certain queries as quickly as possible. Sybase IQ
chooses the best index type for you when there are multiple index types for a
column.

The Sybase IQ query optimizer features an index advisor that generates
messages when the optimizer would benefit from an additional index on one or
more columns in your query. To activate the index advisor, set the
INDEX_ADVISOR option ON. Messages print as part of a query plan or as a
separate message in the message log (.iqmsg) if query plans are not enabled,
and output is in OWNER.TABLE.COLUMN format. For details, see
INDEX_ADVISOR option in “Database Options,” Sybase IQ Reference
Manual.

Indexing tips

150 Sybase IQ

You should create either an LF or HG index in addition to the default index on
LF or HG on grouping columns referenced by the WHERE clause in a join
query. Sybase IQ cannot guarantee that its query optimizer will produce the
best execution plan if some columns referenced in the WHERE clause lack
either an LF or HG index. Non-aggregated columns referenced in the HAVING
clause should also have the LF or HG index in addition to the default index. For
example:

SELECT c.name, SUM(l.price * (1 - l.discount))
FROM customer c, orders o, lineitem l
WHERE c.custkey = o.custkey
 AND o.orderkey = l.orderkey
 AND o.orderdate >= "1994-01-01"
 AND o.orderdate < "1995-01-01"
GROUP by c.name
HAVING c.name NOT LIKE "I%"
 AND SUM(l.price * (1 - l.discount)) > 0.50
ORDER BY 2 desc

In addition to the default index, all columns in this example beside l.price and
l.discount should have an LF or HG index.

Using join indexes
Users frequently need to see the data from more than one table at once. This
data can be joined at query time, or in advance by creating a join index.
Sometimes you can improve query performance by creating a join index for
columns that are joined in a consistent way.

Because join indexes require substantial time and space to load, you should
create them only for joins needed on a regular basis. Sybase IQ join indexes
support one-to-many and one-to-one join relationships.

Allowing enough disk space for deletions
When you delete data rows, Sybase IQ creates a version page for each database
page that contains any of the data being deleted. The versions are retained until
the delete transaction commits. For this reason, you may need to add disk space
when you delete data. See “Overlapping versions and deletions” on page 394
for details.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 151

Managing database size and structure
This section offers ideas on improving your database design and managing
your data.

Managing the size of your database
The size of your database depends largely on the indexes you create, and the
quantity of data you maintain. You achieve faster query processing by creating
all of the indexes you need for the types of queries your users issue. However,
if you find that some tables or indexes are not needed, you can drop them. By
doing so, you free up disk space, increase the speed of loads and backups, and
reduce the amount of archive storage you need for backups.

To control the quantity of data stored in a given table, consider how best to
eliminate data rows you no longer need. If your database contains data that
originated in an Adaptive Server Anywhere database, you may be able to
eradicate unneeded data by simply replaying Anywhere deletions; command
syntax is compatible. You can do the same with data from an Adaptive Server
Enterprise database, because Sybase IQ provides Transact-SQL compatibility.

Controlling index fragmentation
Internal index fragmentation occurs when index pages are not being used to
their maximum volume.

Row fragmentation can occur when rows are deleted. If you delete an entire
page of rows, that page is freed, but if some rows on a page are unused, unused
space remains on the disk.

DML operations (INSERT, UPDATE, DELETE) that act on tables cause index
fragmentation. Two stored procedures report fragmentation:

• sp_iqrowdensity reports row fragmentation at the default index level. See
“sp_iqrowdensity procedure.”

• sp_iqindexfragmentation reports internal fragmentation within
supplemental indexes. See “sp_iqindexfragmentation procedure.”

The database administrator may create other indexes to supplement the default
index on a column. These indexes can use more space than needed when rows
are deleted from a table.

Managing database size and structure

152 Sybase IQ

Neither procedure recommends further action. The database administrator
must examine the information reported and determine whether to take further
action, such as recreating, reorganizing, or rebuilding indexes.

Minimizing catalog file growth
Growth of the catalog files is normal and varies depending on the application
and catalog content. The size of the .DB file does not affect performance, and
free pages within the .DB file are reused as needed. To minimize catalog file
growth:

• Avoid using IN SYSTEM on CREATE TABLE statements.

• Issue COMMIT statements after running system stored procedures.

• Issue COMMIT statements during long-running transactions.

Denormalizing for performance
Once you have created your database in normalized form, you may perform
benchmarks and decide to intentionally back away from normalization to
improve performance. Denormalizing:

• Can be done with tables or columns

• Assumes prior normalization

• Requires a knowledge of how the data is being used

Good reasons to denormalize are:

• All queries require access to the “full” set of joined data

• Computational complexity of derived columns require storage for selects

Denormalization has risks
Denormalization can be successfully performed only with thorough knowledge
of the application and should be performed only if performance issues indicate
that it is needed. One of the things to consider when you denormalize is the
amount of effort it will then take to keep your data up-to-date with changes.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 153

This is a good example of the differences between decision support
applications, which frequently need summaries of large amounts of data, and
transaction processing needs, which perform discrete data modifications.
Denormalization usually favors some processing, at a cost to others.

Whatever form of denormalization you choose, it has the potential for data
integrity problems which must be carefully documented and addressed in
application design.

Disadvantages of denormalization
Denormalization has these disadvantages:

• Denormalization usually speeds retrieval but can slow updates. This is not
a real concern in a DSS environment.

• Denormalization is always application-specific and needs to be re-
evaluated if the application changes.

• Denormalization can increase the size of tables. This is not a problem in
Sybase IQ, because you can optimize the storage of column data. For
details, see the IQ UNIQUE column constraint in CREATE TABLE
statement and “MINIMIZE_STORAGE option” in Sybase IQ Reference
Manual.

• In some instances, denormalization simplifies coding; in others, it makes
it more complex.

Performance benefits of denormalization
Denormalization can improve performance by:

• Minimizing the need for joins

• Precomputing aggregate values, that is, computing them at data
modification time, rather than at select time

• Reducing the number of tables, in some cases

Using UNION ALL views for faster loads

154 Sybase IQ

Deciding to denormalize
When deciding whether to denormalize, you need to analyze the data access
requirements of the applications in your environment and their actual
performance characteristics. Some of the issues to examine when considering
denormalization include:

• What are the critical queries, and what is the expected response time?

• What tables or columns do they use? How many rows per access?

• What is the usual sort order?

• What are concurrency expectations?

• How big are the most frequently accessed tables?

• Do any processes compute summaries?

• Should you create join indexes to gain performance?

Using UNION ALL views for faster loads
To minimize load times for very large tables, you can use a UNION ALL view.
Sybase IQ lets you partition tables by splitting the data into several separate
base tables (for example, by date). You load data into these smaller tables. You
then join the tables back together into a logical whole by means of a UNION
ALL view, which you can then query.

UNION ALL views are simple to administer. If the data is partitioned by
month, for example, you can drop an entire month’s worth of data by deleting
a table and updating the UNION ALL view definition appropriately. You can
have many view definitions for a year, a quarter, and so on, without adding
extra date range predicates.

To create a UNION ALL view, choose a logical means of dividing a base table
into separate physical tables. The most common division is by month.

For example, to create a view including all months for the first quarter, enter:

CREATE VIEW
SELECT * JANUARY
UNION ALL
SELECT * FEBRUARY
UNION ALL
SELECT * MARCH

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 155

UNION ALL

Each month, you can load data into a single base table—JANUARY,
FEBRUARY, or MARCH in this example. Next month, load data into a new
table with the same columns, and the same index types.

For syntax details, see UNION operation in the Sybase IQ Reference Manual.

Note You cannot perform an INSERT...SELECT into a UNION ALL view.

Optimizing queries that reference UNION ALL views
All partitions in a UNION ALL view must have a complete set of indexes
defined for optimization to work.

Queries with DISTINCT will tend to run more slowly using a UNION ALL view
than a base table.

Sybase IQ includes patented optimizations for UNION ALL views, including:

• Split group by over union all view

• Push-down join into union all view

Should you need to adjust performance for queries that reference UNION ALL
views, you might want to set the Join_Preference database option, which
affects joins between UNION ALL views. For details of these options, see
Chapter 2, “Database Options,” in the Sybase IQ Reference Manual.

A UNION can be treated as a partitioned table only if it satisfies all of the
following constraints:

• It contains only one or more UNION ALL.

• Each arm of the UNION has only one table in its FROM clause, and that
table is a physical base table.

• No arm of the UNION has a DISTINCT, a RANK, an aggregate function, or
a GROUP BY clause.

• Each item in the SELECT clause within each arm of the UNION is a
column.

• The sequence of data types for the columns in the SELECT list of the first
UNION arm is identical to the sequence in each subsequent arm of the
UNION.

Network performance

156 Sybase IQ

See also “SELECT statement,” in the Sybase IQ Reference Manual.

Network performance
The following sections offer suggestions for solving some network
performance issues.

Improving large data transfers
Large data transfers simultaneously decrease overall throughput and increase
the average response time. Here are some suggestions to improve performance
during these transfers:

• Perform large transfers during off-hour periods, if possible.

• Limit the number of concurrent queries during large transfers.

• Do not run queries and insertions concurrently during large transfers.

• Use stored procedures to reduce total traffic.

• Use row buffering to move large batches through the network.

• If large transfers are common, consider installing better network hardware
that is suitable for such transfers. For example:

• Token ring–responds better during heavy utilization periods than
ethernet hardware.

• Fiber optic–provides very high bandwidth, but is usually too
expensive to use throughout the entire network.

• Separate network–can be used to handle network traffic between the
highest volume workstations and the server.

CHAPTER 5 Managing System Resources

Performance and Tuning Guide 157

Isolate heavy network users
In case A in Figure 12-4, clients accessing two different database servers use
one network card. That means that clients accessing Servers A and B have to
compete over the network and past the network card. In the case B, clients
accessing Server A use a different network card than clients accessing Server
B.

It would be even better to put your database servers on different machines. You
may also want to put heavy users of different databases on different machines.

Figure 5-2: Isolating heavy network users

Put small amounts of data in small packets
If you send small amounts of data over the network, keep the default network
packet size small (default is 512 bytes). The -p server startup option lets you
specify a maximum packet size. Your client application may also let you set the
packet size.

Network performance

158 Sybase IQ

Put large amounts of data in large packets
If most of your applications send and receive large amounts of data, increase
default network packet size. This will result in fewer (but larger) transfers.

Process at the server level
Filter as much data as possible at the server level.

Performance and Tuning Guide 159

C H A P T E R 6 Monitoring and Tuning
Performance

About this chapter This chapter describes tools you use to monitor Sybase IQ performance.
Use these tools to determine whether your system is making optimal use
of available resources. To understand how Sybase IQ uses memory,
process threads, and disk, and to learn about options you can set to control
resource use, see Chapter 5, “Managing System Resources.” See also the
sections on performance implications and tuning in other chapters of this
guide for more tuning hints.

Contents Topic Page

Viewing the Sybase IQ environment 160

Monitoring the buffer caches 170

Buffer cache structure 182

Avoiding buffer manager thrashing 183

Buffer cache monitor checklist 186

System utilities to monitor CPU use 190

Viewing the Sybase IQ environment

160 Sybase IQ

Viewing the Sybase IQ environment
The first step in tuning Sybase IQ performance is to look at your environment.
You have various options:

• Use system monitoring tools (each system and site has different tools in
place).

• Use one of the stored procedures that displays information about Sybase
IQ. See the next section for more information.

• Determine appropriateness of index types. See Chapter 6, “Using Sybase
IQ Indexes” in Sybase IQ System Administration Guide for more
information about choosing index types.

• For on-screen information, look at your insert and delete notification
messages. Chapter 7, “Moving Data In and Out of Databases” in Sybase
IQ System Administration Guide gives more information about these
messages.

• Look at the Sybase IQ message file, called dbname.iqmsg by default.

• Use the performance monitor in Sybase Central.

• Use procedure profiling to track execution times for stored procedures,
functions, and events

Getting information using stored procedures
Sybase IQ offers several stored procedures that display information about your
database:

• sp_iqconnection displays statistics about user connections and versions

• sp_iqcontext displays information about what statements are executing

• sp_iqcheckdb checks the validity of your current database

• sp_iqdbstatistics reports results of the most recent sp_iqcheckdb

• sp_iqdbsize gives the size of the current database

• sp_iqspaceinfo displays space usage by each object in the database

• sp_iqstatus displays miscellaneous status information about the database.

• sp_iqtablesize gives the size of the table you specify.

• sp_iqgroupsize lists the members of the specified group.

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 161

See Sybase IQ Reference Manual for syntax details and examples of all Sybase
IQ stored procedures.

Using the Sybase Central performance monitor
You can monitor server statistics using Sybase Central as follows.

❖ Monitoring performance in Sybase Central

1 Select a server.

2 On the Statistics tab, right-click the name on the and choose Add to
Performance Monitor.

3 Click the Performance Monitor tab. Sybase Central only tracks the
difference from one snapshot to the next, so some selected statistics may
show no activity in the Performance Monitor.

For a description of each statistic, right-click its name on the Statistics tab,
and choose Properties. You may also graph that statistic on the
Performance Monitor by clicking the check box on the Properties tab,
choosing Apply, and OK.

Profiling database procedures
Procedure profiling shows you how long it takes your stored procedures,
functions, events, system triggers, and triggers to execute. You can also view
the execution time for each line of a procedure. Using the database profiling
information, you can determine which procedures can be fine-tuned to increase
performance within your database.

When profiling is enabled, Sybase IQ monitors which stored procedures,
functions, events, system triggers, and triggers are used, keeping track of how
long it takes to execute them, and how many times each one is called.

Profiling information is stored in memory by the server and can be viewed in
Sybase Central via the Profile tab or in Interactive SQL. Once profiling is
enabled, the database gathers profiling information until you disable profiling
or until the server is shut down.

For more information about obtaining profiling information in Interactive
SQL, see “Viewing procedure profiling information in Interactive SQL” on
page 168.

Viewing the Sybase IQ environment

162 Sybase IQ

Enabling procedure profiling

Procedure profiling tracks the usage of procedures and triggers by all
connections. You can enable profiling in either Sybase Central or Interactive
SQL. You must have DBA authority to enable and use procedure profiling.

❖ To enable profiling (Sybase Central)

1 Connect to your database as a user with DBA authority.

2 Select the database in the left pane.

3 From the File menu, choose Properties.

The Database property sheet appears.

4 On the Profiling tab, select Enable Profiling on This Database.

5 Click OK to close the property sheet.

Note You can also right click your database in Sybase Central to enable profiling.
From the popup menu, choose Profiling > Start Profiling.

❖ To enable profiling (SQL)

1 Connect to your database as a user with DBA authority.

2 Call the sa_server_option stored procedure with the ON setting.

For example, enter:

CALL sa_server_option ('procedure_profiling', 'ON')

If necessary, you can see what procedures a specific user is using, without
preventing other connections from using the database. This is useful if the
connection already exists, or if multiple users connect with the same userid.

❖ To filter procedure profiling by user

1 Connect to the database as a user with DBA authority.

2 Call the following procedure:

CALL sa_server_option
('ProfileFilterUser','userid')

The value of userid is the name of the user being monitored.

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 163

Resetting procedure profiling

When you reset profiling, the database clears the old information and
immediately starts collecting new information about procedures, functions,
events, and triggers.

The following sections assume that you are already connected to your database
as a user with DBA authority and that procedure profiling is enabled.

❖ To reset profiling (Sybase Central)

1 Select the database in the left pane.

2 From the File menu, choose Properties.

The Database property sheet appears.

3 On the Profiling tab, click Reset Now.

4 Click OK to close the property sheet.

Note You can also right click your database in Sybase Central to reset profiling.
From the popup menu, click Profiling > Reset Profiling Information.

❖ To reset profiling (SQL)

• Call the sa_server_option stored procedure with the RESET setting.

For example, enter:

CALL sa_server_option ('procedure_profiling',
'RESET')

Disabling procedure profiling

Once you are finished with the profiling information, you can either disable
profiling or you can clear profiling. If you disable profiling, the database stops
collecting profiling information and the information that it has collected to that
point remains on the Profile tab in Sybase Central. If you clear profiling, the
database turns profiling off and removes all the profiling data from the Profile
tab in Sybase Central.

❖ To disable profiling (Sybase Central)

1 Select the database in the left pane.

2 From the File menu, choose Properties.

The Database property sheet appears.

3 On the Profiling tab, clear the Enable Profiling on This Database option.

Viewing the Sybase IQ environment

164 Sybase IQ

4 Click OK to close the property sheet.

Note You can also right click your database in Sybase Central to disable profiling.
From the popup menu, choose Profiling > Stop Profiling.

❖ To disable profiling (SQL)

• Call the sa_server_option stored procedure with the OFF setting.

For example, enter:

CALL sa_server_option ('procedure_profiling',
'OFF')

❖ To clear profiling (Sybase Central)

1 Select the database in the left pane.

2 From the File menu, choose Properties.

The Database property sheet appears.

3 On the Profiling tab, click Clear Now.

You can only clear profiling if profiling is enabled.

4 Click OK to close the property sheet.

Note You can also right click your database in Sybase Central to clear profiling.
From the popup menu, select Profiling > Clear Profiling Information.

❖ To clear profiling (SQL)

• Call the sa_server_option stored procedure with the CLEAR setting.

For example, enter:

CALL sa_server_option ('procedure_profiling',
'CLEAR')

Viewing procedure profiling information in Sybase Central

Procedure profiling provides you with different information depending
whether you choose to look at information for your entire database, a specific
type of object, or a particular procedure. The information can be displayed in
the following ways:

• details for all profiled objects within the database

• details for all stored procedures and functions

• details for all events

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 165

• details for all triggers

• details for all system triggers

• details for individual profiled objects

You must be connected to your database and have profiling enabled to view
profiling information.

When you view profiling information for your entire database, the following
columns appear:

• Name Lists the name of the object.

• Owner Lists the owner of the object.

• Table Lists which table a trigger belongs to (this column only appears on
the database Profile tab).

• Event Shows the type of trigger for system triggers. This can be Update
or Delete.

• Type Lists the type of object, for example, a procedure.

• # Exes. Lists the number times each object has been called.

• #msecs. Lists the total execution time for each object.

These columns provide a summary of the profiling information for all of the
procedures that have been executed within the database. One procedure can
call other procedures, so there may be more items listed than those users call
specifically.

❖ To view summary profiling information for stored procedures and
functions

1 Select the Procedures & Functions folder in the left pane.

2 Click the Profile tab in the right pane.

Profiling information about all the stored procedures and functions within
your database appears on the Profile tab.

❖ To view summary profiling information for events

1 Open the Events folder in the left pane.

A list of all the events in your database appears on the Events tab in the
right pane.

2 Click the Profile tab in the right pane.

Viewing the Sybase IQ environment

166 Sybase IQ

Profiling information about all of the events within your database appears
on the Profile tab.

❖ To view summary profiling information for triggers

1 Open the Triggers folder in the left pane.

A list of all the triggers in your database appears on the Triggers tab.

2 Click the Profile tab in the right pane.

Profiling information about all of the triggers in your database appears on
the Profile tab.

❖ To view summary profiling information for system triggers

1 Open the System Triggers folder in the left pane.

A list of all the triggers in your database appears on the System Triggers
tab.

2 Click the Profile tab in the right pane.

Profiling information about all of the system triggers in your database
appears on the Profile tab.

Viewing profiling information for a specific procedure

Sybase IQ provides procedure profiling information about individual stored
procedures, functions, events, and triggers. Sybase Central displays different
information about individual procedures than it does about all of the stored
procedures, functions, events, or triggers within a database.

When you look at the profiling information for a specific procedure, the
following columns appear:

• Calls Lists the number of times the object has been called.

• Milliseconds Lists the total execution time for each object.

• Line Lists the line number beside each line of the procedure.

• Source Displays the SQL procedure, line by line.

The procedure is broken down line by line and you can examine it to see which
lines have longer execution times and therefore might benefit from changes to
improve the procedure's performance. You must be connected to the database,
have profiling enabled, and have DBA authority to access procedure profiling
information.

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 167

❖ To view the profiling information for a stored procedure or function

1 Expand the database in the left pane.

2 Select the Procedures and Functions folder in the left pane.

A list of all the stored procedures and functions within your database
appears on the Procedures & Functions tab in the right pane.

3 Click the stored procedure or function you want to profile in the left pane.

4 Click the Profile tab in the right pane.

Profiling information about the specific stored procedure or function
appears on the Profile tab in the right pane.

❖ To view profiling information for an event

1 Expand the database in the left pane.

2 Select the Events folder in the left pane.

A list of all the events within your database appears on the Events tab in
the right pane.

3 Click the event you want to profile in the left pane.

4 Click the Profile tab in the right pane.

Profiling information about the specific event appears on the Profile tab in
the right pane.

❖ To view profiling information for triggers

1 Expand the database in the left pane.

2 Open the Triggers folder in the left pane.

A list of all the triggers appears on the Triggers tab in the right pane.

3 Select the trigger you want to profile in the right pane.

4 Click the Profile tab in the right pane.

Profiling information about the specific trigger appears on the Profile tab
in the right pane.

❖ To view profiling information for system triggers

1 Expand the database in the left pane.

2 Open the System Triggers folder in the left pane.

Viewing the Sybase IQ environment

168 Sybase IQ

A list of all the system triggers appears on the System Triggers tab in the
right pane.

3 Select the system trigger you want to profile in the right pane.

4 Click the Profile tab in the right pane.

Profiling information about the specific system trigger appears on the
Profile tab in the right pane.

Viewing procedure profiling information in Interactive SQL

You can use stored procedures to view procedure profiling information. The
profiling information is the same whether you view it in Sybase Central or in
Interactive SQL.

The sa_procedure_profile_summary stored procedure provides information
about all of the procedures within the database. You can use this procedure to
view the profiling data for stored procedures, functions, events, system
triggers, and triggers within the same result set. The following parameters
restrict the rows the procedure returns.

• p_object_name Specifies the name of an object to profile.

• p_owner_name Specifies the owner whose objects you want to profile.

• p_table_name Specifies table to profile triggers.

• p_object_type Specifies the type of object to profile. You can choose
from the following five options. Choosing one of these values restricts the
result set to only objects of the specified type.

• P Stored procedure

• F Function

• T Trigger

• E Event

• S System trigger

• p_ordering Specifies the sort order of the result set.

Keep in mind that there may be more items listed than those called specifically
by users because one procedure can call another procedure.

The following sections assume that you are already connected to your database
as a user with DBA authority and that you have procedure profiling enabled.

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 169

❖ To view summary profiling information for all procedures

1 Execute the sa_procedure_profile_summary stored procedure.

For example, enter:

CALL sa_procedure_profile_summary

2 From the SQL menu, choose Execute.

A result set with information about all of the procedures in your database
appears on the Results pane.

For more information about the sa_procedure_profile_summary stored
procedure, see Adaptive Server Anywhere SQL Reference.

Viewing profiling information for a specific procedure in Interactive SQL

The sa_procedure_profile stored procedure provides information about
individual lines within specific procedures. The result set includes the line
number, execution time, and percentage of total execution time for lines within
procedures. You can use the following parameters to restrict the rows the
procedure returns:

• p_object_name Specifies the name of an object to profile.

• p_owner_name Specifies the owner whose objects you want to profile.

• p_table_name Specifies which table to profile triggers.

If you do not include any parameters in your query, the procedure returns
profiling information for all the procedures that have been called.

❖ To view profiling information for specific lines within procedures

1 Execute the sa_procedure_profile stored procedure.

For example, enter:

CALL sa_procedure_profile

2 From the SQL menu, choose Execute.

A result set with profiling information for individual procedure lines
appears in the Results pane.

For more information about the sa_procedure_profile stored procedure, see
Adaptive Server Anywhere SQL Reference.

Monitoring the buffer caches

170 Sybase IQ

Monitoring the buffer caches
Sybase IQ provides a tool to monitor the performance of the buffer caches. This
monitor collects statistics on the buffer cache, memory, and I/O functions
taking place within Sybase IQ, and stores them in a log file.

Buffer cache performance is a key factor in overall performance of Sybase IQ.
Using the information the monitor provides, you can fine tune the amount of
memory you allocate to the main and temp buffer caches. If one cache is
performing significantly more I/O than the other, reallocate some of the
memory appropriately. Reallocate in small amounts such as 10 to 50MB and
on an iterative basis. After reallocating, rerun the workload and monitor the
changes in performance.

Starting the buffer cache monitor
You run the Sybase IQ buffer cache monitor from DBISQL. Each time you start
the monitor it runs as a separate kernel thread within Sybase IQ.

Use this syntax to start the monitor:

IQ UTILITIES { MAIN | PRIVATE }
 INTO dummy_table_name
 START MONITOR 'monitor_options […]'

MAIN starts monitoring of the main buffer cache, for all tables in the IQ Store
of the database you are connected to.

PRIVATE starts monitoring of the temp buffer cache, for all tables in the
Temporary Store of the database you are connected to.

You need to issue a separate command to monitor each buffer cache. You must
keep each of these sessions open while the monitor collects results; a monitor
run stops when you close its connection. A connection can run up to a
maximum of two monitor runs, one for the main and one for the temp buffer
cache.

dummy_table_name can be any Sybase IQ base or temporary table. The table
name is required for syntactic compatibility with other IQ UTILITIES
commands. It is best to have a table that you use only for monitoring.

To control the directory placement of monitor output files, set the
MONITOR_OUTPUT_DIRECTORY option. If this option is not set, the monitor
sends output to the same directory as the database. All monitor output files are
used for the duration of the monitor runs. They remain after a monitor run has
stopped.

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 171

Either declare a temporary table for use in monitoring, or create a permanent
dummy table when you create a new database, before creating any multiplex
query servers. These solutions avoid DDL changes, so that data stays up on
query servers during production runs.

Tip
To simplify monitor use, create a stored procedure to declare the dummy table,
specify its output location, and start the monitor.

'monitor_options' can include one or more of the following values:

• -summary displays summary information for both the main and temp
buffer caches. If you do not specify any monitor options, you receive a
summary report. The fields displayed are as described for the other
options, plus the following:

• Users: Number of users connected to the buffer cache

• IO: Combined physical reads and writes by the buffer cache

• -cache displays activity in detail for the main or temp buffer cache. Critical
fields are Finds, HR%, and BWaits. The fields displayed are:

• Finds: Find requests to the buffer cache. If the Finds value suddenly
drops to zero and remains zero, the server is deadlocked. When the
server has any activity, the Finds value is expected to be non-zero.

• Creats: Requests to create a page within the database

• Dests: Requests to destroy a page within the database

• Dirty: Number of times the buffer was dirtied (modified)

• HR%: Hit rate, the percentage of above satisfied by the buffer cache
without requesting any I/O. The higher the Hit Rate the better, usually
90% - 100% if you set the cache large enough. For a large query, Hit
Rate may be low at first, but increase as prefetching starts to work.

• BWaits: Find requests forced to wait for a busy page (page frame
contention). Usually it is low, but is some special cases it may be high.
For example, if identical queries are started at the same time, both
need the same page, so the second request must wait for the first to get
that page from disk.

Monitoring the buffer caches

172 Sybase IQ

• ReReads: Approximate number of times the same portion of the store
needed to be reread into the cache within the same transaction. Should
always be low, but a high number is not important for Sybase IQ
12.4.2 and above.

• FMiss: False misses, number of times the buffer cache needed
multiple lookups to find a page in memory. This number should be 0
or very small. If the value is high, it is likely that a rollback occurred,
and certain operations needed to be repeated

• Cloned: Number of buffers that Sybase IQ needed to make a new
version for a writer, while it had to retain the previous version for
concurrent readers. A page only clones if other users are looking at
that page.

• Reads/Writes: Physical reads and writes performed by the buffer
cache

• PF/PFRead: Prefetch requests and reads done for prefetch.

• GDirty: Number of times the LRU buffer was grabbed dirty and
Sybase IQ had to write it out before using it. This value should not be
greater than 0 for a long period. If it is, you may need to increase the
number of sweeper threads or move the wash marker.

• Pin%: Percentage of pages in the buffer cache in use and locked.

• Dirty%: Percentage of buffer blocks that were modified. Try not to let
this value exceed 85-90%; otherwise, GDirty will become greater
than 0.

• -cache_by_type produces the same results as -cache, but broken down by
IQ page type. (An exception is the Bwaits column, which shows a total
only.) This format is most useful when you need to supply information to
Sybase Technical Support.

• -file_suffix suffix creates a monitor output file named
<dbname>.<connid>-<main_or_temp>-<suffix>. If you do not
specify a suffix, it defaults to iqmon.

• -io displays main or temp (private) buffer cache I/O rates and compression
ratios during the specified interval. These counters represent all activity
for the server; the information is not broken out by device. The fields
displayed are:

• Reads: Physical reads performed by the buffer cache

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 173

• Lrd(KB): Logical kilobytes read in (page size multiplied by the
number of requests)

• Prd(KB): Physical kilobytes read in

• Rratio: Compression ratio of logical to physical data read in, a
measure of the efficiency of the compression to disk for reads

• Writes: Physical writes performed by the buffer cache

• Lwrt(KB): Logical kilobytes written

• Pwrt(KB): Physical kilobytes written

• Wratio: Compression ratio of logical to physical data written

• -bufalloc displays information on the main or temp buffer allocator, which
reserves space in the buffer cache for objects like sorts, hashes, and
bitmaps.

• OU: User_Resource_Reservation option setting (formerly
Optimize_For_This_Many_Users)

• AU: Current number of active users

• MaxBuf: Number buffers under control of the buffer allocator

• Avail: Number of currently available buffers for pin quota allocation

• AvPF: Number of currently available buffers for prefetch quota
allocation

• Slots: Number of currently registered objects using buffer cache quota

• PinUser: Number of objects (for example, hash, sort, and B-tree
objects) using pin quota

• PFUsr: Number of objects using prefetch quota

• Posted: Number of objects that are pre-planned users of quota

• UnPost: Number of objects that are ad hoc quota users

• Locks: Number of mutex locks taken on the buffer allocator

• Waits: Number of times a thread had to wait for the lock

Monitoring the buffer caches

174 Sybase IQ

• -contention displays many key buffer cache and memory manager locks.
These lock and mutex counters show the activity within the buffer cache
and heap memory and how quickly these locks were resolved. Watch the
timeout numbers. If system time exceeds 20%, it indicates a problem.

Note Due to operating system improvements, Sybase IQ no longer uses
spin locks. As a result, the woTO, Loops, and TOs statistics are rarely
used.

• AU: Current number of active users

• LRULks: Number times the LRU was locked (repeated for the temp
cache)

• woTO: Number times lock was granted without timeout (repeated for
the temp cache)

• Loops: Number times Sybase IQ retried before lock was granted
(repeated for the temp cache)

• TOs: Number of times Sybase IQ timed out and had to wait for the
lock (repeated for the temp cache)

• BWaits: Number of “Busy Waits” for a buffer in the cache (repeated
for the temp cache)

• IOLock: Number of times Sybase IQ locked the compressed I/O pool
(repeated for the temp cache); can be ignored

• IOWait: Number of times Sybase IQ had to wait for the lock on the
compressed I/O pool (repeated for the temp cache); can be ignored

• HTLock: Number of times Sybase IQ locked the block maps hash
table (repeated for the temp cache)

• HTWait: Number of times Sybase IQ had to wait for the block maps
hash table (repeated for the temp cache); HTLock and HTWait
indicate how many block maps you are using

• FLLock: Number of times Sybase IQ had to lock the free list (repeated
for the temp cache)

• FLWait: Number of times Sybase IQ had to wait for the lock on the
free list (repeated for the temp cache)

• MemLks: Number of times Sybase IQ took the memory manager
(heap) lock

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 175

• MemWts: Number of times Sybase IQ had to wait for the memory
manager lock

• -threads displays counter used by the processing thread manager. Values
are server-wide (i.e., it does not matter whether you select this option for
main or private). They represent new events since the last page of the
report.

• cpus: Number of CPUs Sybase IQ is using; this may be less than the
number on the system

• Limit: Maximum number of threads Sybase IQ can use

• NTeams: Number of thread teams currently in use

• MaxTms: Largest number of teams that has ever been in use

• NThrds: Current number of existing threads

• Resrvd: Number of threads reserved for system (connection) use

• Free: Number of threads available for assignment. Monitor this
value— if it is very low, it indicates thread starvation

• Locks: Number of locks taken on the thread manager

• Waits: Number of times Sybase IQ had to wait for the lock on the
thread manager

Note When an object or query needs work, Sybase IQ allocates a group
of processing threads called a thread team. Useful options in adjusting
thread use include database options
MAX_IQ_THREADS_PER_CONNECTION and
MAX_IQ_THREADS_PER_TEAM, and the server option -iqmt which
specifies the number of threads Sybase IQ can use.

• -interval specifies the reporting interval in seconds. The default is every 60
seconds. The minimum is every 2 seconds. You can usually get useful
results by running the monitor at the default interval during a query or time
of day with performance problems. A very short interval may not give
meaningful results. The interval should be proportional to the job time;
one minute is generally more than enough.

The first display shows counters from the start of the server. Subsequent
displays show the difference from the previous display.

• -append | - truncate Append to existing output file or truncate existing
output file, respectively. Truncate is the default.

Monitoring the buffer caches

176 Sybase IQ

• -debug is used mainly to supply information to Sybase Technical Support.
It displays all the information available to the performance monitor,
whether or not there is a standard display mode that covers the same
information. The top of the page is an array of statistics broken down by
disk block type. This is followed by other buffer cache statistics, memory
manager statistics, thread manager statistics, free list statistics, CPU
utilization, and finally buffer allocator statistics. The buffer allocator
statistics are then broken down by client type (hash, sort, and so on) and a
histogram of the most recent buffer allocations is displayed. Note that
memory allocations indicate how much is allocated since the last page of
the report.

Note The interval, with two exceptions, applies to each line of output, not to
each page. The exceptions are -cache_by_type and -debug, where a new page
begins for each display.

Checking results while the monitor runs
On UNIX systems, you can watch monitor output as queries are running.

For example, you could start the monitor using the following command:

iq utilities main into monitor_tab
start monitor “-cache -interval 2 -file_suffix iqmon”

This command sends output to an ASCII file with the name
dbname.conn#-[main|temp]-iqmon. So, for the database asiqdemo, results
would be sent to asiqdemo.2-main-iqmon.

To watch results, issue the following command at the system prompt:

$ tail -f asiqdemo.2-main-iqmon

Stopping the buffer cache monitor
The command you use to stop a monitor run is similar to the one you use to
start it, except that you do not need to specify any options. Use this syntax to
stop the Sybase IQ buffer cache monitor:

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 177

IQ UTILITIES { MAIN | PRIVATE }
 INTO dummy_table_name STOP MONITOR

Note In order for certain option settings to take effect you must restart the
database. If the monitor is running you need to shut it down so that the database
can be restarted.

Examining and saving monitor results
The monitor stores results in an ordinary text file. This file defaults to:

• dbname.connection#-main-iqmon for main buffer cache results

• dbname.connection#-temp-iqmon for temp buffer cache results

The prefix dbname.connection# represents your database name and connection
number. If you see more than one connection number and are uncertain which
is yours, you can run the Catalog stored procedure sa_conn_info. This
procedure displays the connection number, user ID, and other information for
each active connection to the database.

You can use the -file_suffix parameter on the IQ UTILITIES command to change
the suffix iqmon to a suffix of your choice.

To see the results of a monitor run, use a text editor or any other method you
would normally use to display or print a file.

When you run the monitor again from the same database and connection
number, by default it overwrites the previous results. If you need to save the
results of a monitor run, copy the file to another location before starting the
monitor again from the same database or use the -append option.

Examples of monitor results
This section shows sample results using different monitor options.

The -summary option produces results like the following. Note that it shows
both main and temp buffer cache statistics, no matter which you request in the
IQ UTILITIES command:

 Sybase Adaptive Server IQ Performance Monitor

Monitoring the buffer caches

178 Sybase IQ

 Version 3.2

Options string for Main cache: "-summary -interval 5"

 Summary

 2004-07-16 13:53:24

Active| Main Cache | Temp Cache

 Users| Finds HR% Reads/Writes GDirty Pin% Dirty% InUse%| Finds HR%
Reads/Writes GDirty Pin% Dirty% InUse%

 0 286 99.3 2/34 0 0.0 1.6 26.2 608 99.7
2/47 0 0.0 3.6 20.0

 1 2621 99.4 16/155 0 5.6 8.7 81.7 4121 99.6
16/163 0 11.4 23.2 67.3

 1 2646 99.8 6/48 0 1.6 13.5 100.0 3388 99.8
6/70 1 4.1 40.9 94.5

 1 2684 99.9 7/78 0 5.6 14.3 100.0 3497 99.9
8/103 1 10.9 42.3 99.1

 1 1993 99.9 17/22 0 4.0 31.0 100.0 3342 98.7
122/149 0 8.2 41.4 91.4

 1 2479 99.9 32/110 0 5.6 13.5 100.0 3370 99.8
55/112 0 11.4 45.5 95.9

 1 3273 100.0 0/0 0 5.6 23.8 100.0 3951 100.0
0/108 1 13.6 49.1 100.0

 1 2512 99.9 2/0 0 1.6 31.0 100.0 3916 98.9
88/173 0 5.5 48.6 100.0

 1 1264 99.9 66/131 0 4.0 45.2 100.0 4317 98.9
378/305 0 6.4 40.0 77.3

 1 2122 99.8 30/125 0 5.6 12.7 99.2 3122 99.7
67/127 0 12.3 40.0 90.5

 1 3370 100.0 2/0 0 5.6 23.0 100.0 4034 100.0
2/98 2 13.2 46.4 98.2

 1 2981 99.9 2/0 0 5.6 31.7 100.0 3715 99.9
2/110 0 14.1 53.2 100.0

 1 3351 99.6 13/3 0 5.6 39.7 100.0 4131 99.7
13/123 0 14.1 57.7 100.0

 1 3286 99.6 13/13 0 5.6 40.5 100.0 4135 99.6

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 179

15/139 0 12.3 55.9 97.7

 1 296 100.0 0/0 0 1.6 41.3 100.0 3646 96.9
366/320 0 7.3 53.2 100.0

 1 1230 99.4 71/129 0 6.3 58.7 100.0 4221 98.9
390/297 0 9.5 59.1 91.8

 1 1900 100.0 125/279 0 4.0 50.0 100.0 4102 100.0
344/279 0 7.7 38.6 72.3

 Sybase Adaptive Server IQ Performance Monitor

 Shutting Down

 0 422 98.8 16/99 0 0.0 0.8 99.2 853 98.9
34/101 0 0.0 1.8 59.1

The -cache option produces results like the following, which are for the temp
buffer cache.

Options string for Temp cache: "-cache -interval 10"
 Temp Shared Buffer Cache
 2001-02-18 17:43:55
 Finds Creats Dests Dirty HR% BWaits ReReads FMiss Cloned Reads/ PF/
GDirty Pin% Dirty%
 Writes PFRead
Tm: 640 82 57 84 99.4 0 4 0 0 4/0 0/0
0 0.0 2.8
Tm: 1139 109 83 109 100.0 0 0 0 0 0/0 0/0
0 0.0 5.5
Tm: 6794 754 749 754 100.0 0 0 0 0 0/0 0/0
0 0.0 6.1
Tm: 10759 1646 1646 1646 100.0 0 0 0 0 0/0 0/0
0 0.0 6.1

The -io option produces results like the following, which are for the main buffer
cache:

Options string for main cache: "-IO -interval 5"
 Main Buffer Cache
 2001-02-18 13:58:48
 Input Output
 Reads Lrd(KB) Prd(KB) Rratio Writes Lwrt(KB) Pwrt(KB) Wratio
Mn: 10 40 34 1.18 14 56 23 2.43
Mn: 0 0 0 0.00 21 84 34 2.43

Monitoring the buffer caches

180 Sybase IQ

Mn: 0 0 0 0.00 7 28 11 2.43
Mn: 0 0 0 0.00 22 88 35 2.48
Mn: 0 0 0 0.00 63 252 100 2.51
Mn: 0 0 0 0.00 54 216 93 2.32
Mn: 0 0 0 0.00 64 256 101 2.52
Mn: 0 0 0 0.00 62 248 94 2.62
Mn: 0 0 0 0.00 73 292 110 2.65
Mn: 0 0 0 0.00 105 420 121 3.47

The -buffalloc option produces results like the following.

 Options string for Main cache: "-bufalloc -file_suffix bufalloc-iqmon -append
-interval 10"

 Buffer Allocation
2001-02-18 10:58:39

OU/AU MaxBuf Avail AvPF Slots PinUsr PFUsr Posted UnPost Quota Locks Waits
1/0 1592 1592 20 0 0 0 0 0 0 1 0

1/1 1592 1592 20 0 0 0 0 0 0 1 0

1/1 1592 1592 20 0 0 0 0 0 0 1 0

Note The actual -contention output shows Main Cache, Temp Cache, and
Memory Manager on the same line. Because this format is very wide, each of
these sets of columns is shown separately here.

The -contention results for the main cache are:

Options string for Main cache:
"-contention -file_suffix contention-iqmon -append -interval 10"

Contention
2001-02-18 10:57:03

 Main Cache |
AU |LRULks woTO Loops TOs BWaits IOLock IOWait HTLock HTWait FLLock FLWait

 0 66 0 0 0 0 1 0 5 0 4 0
 1 2958 0 0 0 0 160 0 1117 0 6 0
 1 1513 0 0 0 1 378 0 2 0 8 0
 1 370 0 0 0 0 94 0 2 0 10 0
 1 156 0 0 0 0 46 0 2 0 12 0
 1 885 0 0 0 0 248 0 2 0 14 0
 1 1223 0 0 0 0 332 1 2 0 16 0
 1 346 0 0 0 0 66 0 2 0 18 0

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 181

The -contention results for the temp cache are:

Temp Cache
|LRULks woTO Loops TOs BWaits IOLock IOWait HTLock HTWait FLLock FLWait
70 0 0 0 0 1 0 4 0 5 0
466 0 0 0 0 2 0 15 0 12 0
963 0 0 0 0 2 0 8 0 20 1
1186 0 0 0 0 2 0 2 0 23 1
357 0 0 0 0 2 0 2 0 25 1
444 0 0 0 0 2 0 3 0 29 0
884 0 0 0 0 2 0 2 0 31 1
1573 0 0 0 0 2 0 5 0 37 1

The results for the memory manager are:

| Memory Mgr
MemLks MemWts
55483 13
5705 0
2048 0
186 4
2 0
137 0
22 0
203 3

The results of the -threads option look like the following:

 Options string for Main cache: "-threads -file_suffix threads-iqmon -append -
interval 10"

 Threads

 2001-02-18 10:59:24

 CPUs Limit NTeams MaxTms NThrds Resrvd Free Locks Waits

 10 100 4 12 100 13 68 106 590

 10 100 6 12 100 12 63 4 6

 10 100 6 12 100 12 63 0 0

 10 100 7 12 100 12 62 1 1

 10 100 7 12 100 12 62 0 0

Buffer cache structure

182 Sybase IQ

 10 100 7 12 100 12 58 1 5

 10 100 7 12 100 12 58 0 0

Buffer cache structure
Sybase IQ automatically calculates the number of cache partitions for the
buffer cache according to the number of CPUs on your system. If load or query
performance in a multi-CPU configuration is slower than expected, you may
be able to improve it by changing the value of the CACHE_PARTITIONS
database option. For details, see CACHE_PARTITIONS option in Sybase IQ
Reference Manual.

As buffers approach the Least Recently Used (LRU) end of the cache, they pass
a wash marker. Sybase IQ writes the oldest pages—those past the wash
marker—out to disk so that the cache space they occupy can be reused. A team
of Sybase IQ processing threads, called sweeper threads, sweeps (writes) out
the oldest buffers.

When Sybase IQ needs to read a page of data into the cache, it grabs the LRU
buffer. If the buffer is still “dirty” (modified) it must first be written to disk. The
Gdirty column in the monitor -cache report shows the number of times the
LRU buffer was grabbed dirty and Sybase IQ had to write it out before using it.

Usually Sybase IQ is able to keep the Gdirty value at 0. If this value is greater
than 0 for more than brief periods, you may need to adjust one of the database
options that control the number of sweeper threads and the wash marker. See
“SWEEPER_THREADS_PERCENT option” or
“WASH_AREA_BUFFERS_PERCENT option” in Chapter 2, “Database
Options,” Sybase IQ Reference Manual.

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 183

Avoiding buffer manager thrashing
Operating system paging affects queries that need buffers which exceed the
free memory available. Some of this paging is necessary, especially as you
allocate more and more physical memory to your buffer caches. However, if
you overallocate the physical memory to your buffer caches, the operating
system paging occurs much more frequently, and it can cause your entire
system to thrash. The reverse is true as well: Sybase IQ thrashes if you do not
allocate enough memory to your buffer caches.

Buffer manager thrashing occurs when the operating system chooses less
optimum buffers to page out to disk, which forces the buffer manager to make
extra reads from disk to bring those buffers back to memory. Since Sybase IQ
knows which buffers are the best candidates to flush out to disk, you want to
avoid this operating system interference by reducing the overall number of
page outs.

When you set buffer sizes, keep in mind the following trade-off:

• If the Sybase IQ buffer cache is too large, the operating system is forced
to page as Sybase IQ tries to use all of that memory.

• If the Sybase IQ buffer cache is too small, then Sybase IQ thrashes because
it cannot fit enough of the query data into the cache.

If you are experiencing dramatic performance problems, you should monitor
paging to determine if thrashing is a problem. If so, then reset your buffer sizes
as described in “Managing buffer caches”.

If you monitor paging and determine that thrashing is a problem, you can also
limit the amount of thrashing during the execution of a statement which
includes a query that involves hash algorithms. Adjusting the
HASH_THRASHING_PERCENT database option controls the percentage of
hard disk I/Os allowed before the statement is rolled back and an error is
returned.

The default value of HASH_THRASHING_PERCENT is 10%. Increasing
HASH_THRASHING_PERCENT permits more paging to disk before a rollback
and decreasing HASH_THRASHING_PERCENT permits less paging before a
rollback.

Queries involving hash algorithms that executed in earlier versions of Sybase
IQ may now be rolled back when the default HASH_THRASHING_PERCENT
limit is reached. Sybase IQ reports the error Hash insert thrashing
detected or Hash find thrashing detected. Take one or more of the
following actions to provide the query with the resources required for
execution:

Avoiding buffer manager thrashing

184 Sybase IQ

• Relax the paging restriction by increasing the value of
HASH_THRASHING_PERCENT.

• Increase the size of the temporary cache (DBA only). Keep in mind that
increasing the size of the temporary cache reduces the size of the main
cache.

• Attempt to identify and alleviate why Sybase IQ is misestimating one or
more hash sizes for this statement. For example, check that all columns
that need an LF or HG index have one. Also consider if a multicolumn
index is appropriate.

• Decrease the value of the database option
HASH_PINNABLE_CACHE_PERCENT.

For more information on these database options, see the sections
“HASH_THRASHING_PERCENT option” and
“HASH_PINNABLE_CACHE_PERCENT option” in Chapter 2, “Database
Options” of the Sybase IQ Reference Manual.

To identify possible problems with a query, generate a query plan by running
the query with the temporary database options QUERY_PLAN = 'ON' and
QUERY_DETAIL = 'ON', then examine the estimates in the query plan. The
generated query plan is in the message log file.

Monitoring paging on Windows systems
Windows provides the System Monitor to help you monitor paging. To access
it, select the object Logical Disk, the instance of the disk containing the file
PAGEFILE.SYS, and the counter Disk Transfers/Sec. This should be on a
separate disk from your database files. You can also monitor the Object
Memory and the counter Pages/Sec. However, this value is the sum of all
memory faults which includes both soft and hard faults.

Monitoring paging on UNIX systems
UNIX provides a system command, vmstat, to help you monitor system activity
such as paging. The abbreviated command syntax is:

vmstat interval count

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 185

The interval is the time between rows of output, and count is the number times
a row of output is displayed. For more information about vmstat (including its
options and field descriptions), see your operating system's documentation.
Here is an example:

> vmstat 2 3
procs memory page disk faults cpu
r b w swap free re mf pi po fr de sr s0 s1 sd in sy cs us sy id

0 0 0 3312376 31840 0 8 0 0 0 0 0 0 0 0 297 201 472 82 4 14
0 0 0 3312376 31484 2 3 0 0 0 0 0 0 0 0 260 169 597 80 3 17
0 0 0 3312368 31116 0 8 0 0 0 0 0 0 0 0 205 1202 396 67 4 29

The above output shows a steady Sybase IQ querying state where the physical
memory of the machine has not been overallocated. Little to no system page
faulting is occurring. These next set of examples show vmstat output that
indicates a problem. (The output shown omits some of the above fields to fit
better on the page.)

procs memory page faults cpu
r b w swap free re mf pi po fr de sr in sy cs us sy id

0 0 0 217348 272784 0 148 11 3 9 0 2 251 1835 601 6 3 91
0 0 0 3487124 205572 0 5 0 0 0 0 0 86 131 133 0 1 99
0 0 0 3487124 205572 0 5 0 0 0 0 0 71 162 121 0 0 100
0 0 0 3483912 204500 0 425 36 0 0 0 0 169 642 355 2 2 96
0 0 0 3482740 203372 0 17 6 0 0 0 0 158 370 210 1 3 97
0 0 0 3482676 203300 0 4 10 0 0 0 0 160 1344 225 1 2 97
0 0 0 3343272 199964 1 2123 36 0 0 0 0 213 131 399 7 8 85
0 0 0 3343264 185096 0 194 84 0 0 0 0 283 796 732 1 6 93
0 0 0 3342988 183972 0 17 58 0 0 0 0 276 1051 746 2 4 94
0 0 0 3342860 183632 0 119 314 0 0 0 0 203 1660 529 3 4 94
0 0 0 3342748 182316 2 109 184 0 0 0 0 187 620 488 4 2 95
0 0 0 3342312 181104 2 147 96 0 0 0 0 115 256 260 9 2 89
0 0 0 3340748 179180 0 899 26 0 0 0 0 163 836 531 4 4 92
0 0 0 3328704 167224 0 2993 6 0 0 0 0 82 2195 222 4 7 89

The first line of the above output provides a summary of the system activity
since the machine was started. The first three lines show that there is
approximately 200MB of free physical memory and that the machine is idle.
The fourth line corresponds to Sybase IQ starting up for the first time.
Beginning at the eighth line, the amount of free memory starts to reduce
rapidly. This corresponds to the Sybase IQ buffer caches being allocated and
database pages being read in from disk (note that CPU usage has increased). At
this time there is little user CPU time as no queries have begun.

Buffer cache monitor checklist

186 Sybase IQ

procs memory page faults cpu
r b w swap free re mf pi po fr de sr in sy cs us sy id

 7 0 0 3247636 58920 0 1880 1664 0 0 0 0 1131 442 1668 80 18 3
18 0 0 3246568 43732 0 709 1696 0 0 0 0 1084 223 1308 90 10 1
12 0 0 3246604 37004 0 358 656 0 0 0 0 600 236 722 95 5 0
15 0 0 3246628 32156 0 356 1606 0 0 0 0 1141 226 1317 91 9 0
19 0 0 3246612 26748 0 273 1248 0 0 0 0 950 394 1180 92 7 0

The above output is from slightly later when the query is underway. This is
evident from the user mode CPU level (us field). The buffer cache is not yet
full as page-in faults (pi field or KB paged in) are still occurring and the amount
of free memory is still going down.

procs memory page faults cpu
r b w swap free re mf pi po fr de sr in sy cs us sy id

21 0 0 3246608 22100 0 201 1600 0 0 0 0 1208 1257 1413 88 12 0
18 0 0 3246608 17196 0 370 1520 0 464 0 139 988 209 1155 91 8 0
11 0 0 3251116 16664 0 483 2064 138 2408 0 760 1315 218 1488 88 12 0
30 0 0 3251112 15764 0 475 2480 310 4450 0 1432 1498 199 1717 87 13 0

The above output is from even later. On the third line of the output it shows that
the system has reached its threshold for the amount of free memory it can
maintain. At this point, page-outs (po field or KB paged out) occur and the
level of system mode CPU (sy field) increases accordingly. This situation
results because physical memory is overallocated: the Sybase IQ buffer caches
are too big for the machine. To resolve this problem, reduce the size of one or
both of the buffer caches.

Buffer cache monitor checklist
The following table summarizes the most common items to look for in monitor
results, and suggests actions you may need to take if behavior is outside the
normal range. The Statistic column lists the name you see in the standard
monitor reports; if this statistic appears differently in the debug report, the
debug statistic is also listed.

Remember that for any monitor statistic, a temporary anomaly may occur
while the system changes state, such as when a new query is starting.

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 187

Table 6-1: Buffer cache monitor checklist

Statistic Normal behavior
Behavior that needs
adjusting

Recommended
action

HR% (Cache
hit rate)

Above 90%.

For individual internal data
structures like garray, barray,
bitmap (bm), hash object, sort
object, variable-length btree
(btreev), fixed-length btree
(btreef), bit vector (bv), dbext,
dbid, vdo, store, checkpoint
block (ckpt), the hit rate should
be above 90% while a query
runs. It may be below 90% at
first. Once prefetch starts
working (PF or PrefetchReqs >
0), the hit rate should gradually
grow to above 90%.

Hit rate below 90% after prefetch
is working.

Note Some objects do not do
prefetching, so their hit rate may be
low normally.

Try rebalancing the
cache sizes of main
versus temp by adjusting
-iqmc and -iqtc.

Also try increasing the
number of prefetch
threads by adjusting
PREFETCH_THREADS
_PERCENT option.

Gdirty
(Grabbed
Dirty)

0 in a system with a modest
cache size (< 10GB).

GDirty > 0

Note Sweeper threads are
activated only when the number of
dirty pages reaches a certain
percentage of the wash area. If
GDirty/GrabbedDirty is above 0
and the I/O rate (Writes) is low, the
system may simply be lightly
loaded, and no action is necessary.

Adjust
SWEEPER_THREADS_
PERCENT option
(default 10%) or
WASH_AREA_
BUFFERS_PERCENT
option (default 20%) to
increase the size of the
wash area.

BWaits
(Buffer Busy
Waits)

0 Persistently > 0, indicating that
multiple jobs are colliding over the
same buffers.

If the I/O rate (Writes) is
high, Busy Waits may be
caused by cache
thrashing. Check Hit
Rate in the cache report
to see if you need to
rebalance main versus
temp cache.

If a batch job is starting a
number of nearly
identical queries at the
same time, try
staggering the start
times.

Buffer cache monitor checklist

188 Sybase IQ

LRU Waits
(LRUNum
TimeOuts
percentage in
debug report)

20% or less > 20%, which indicates a serious
contention problem.

Check the operating
system patch level and
other environment
settings. This problem
tends to be an O.S. issue.

IOWait
(IONumWaits)

10% or lower > 10% Check for disk errors or
I/O retries

FLWait
(FLMutexWait
s)

20% or lower > 20% Check the dbspace
configuration:

Is the database almost
out of space?

Is DISK_STRIPING
ON?

Does sp_iqcheckdb
report fragmentation
greater than 15%?

HTWait
(BmapHTNu
mWaits)

MemWts
(MemNtimes
Waited)

(PFMgrCond
VarWaits)

10% or lower > 10% Contact Sybase
Technical Support.

Statistic Normal behavior
Behavior that needs
adjusting

Recommended
action

CHAPTER 6 Monitoring and Tuning Performance

Performance and Tuning Guide 189

CPU time
(CPU Sys
Seconds, CPU
Total Seconds,
in debug
report)

CPU Sys Seconds < 20% CPU Sys Seconds > 20%

If CPU Total Seconds also reports
LOW utilization, and there are
enough jobs that the system is
busy, the cache may be thrashing or
parallelism may be lost.

Adjust -iqgovern to
reduce allowed total
number of concurrent
queries.

Check Hit Rate and I/O
Rates in the cache report
for cache thrashing.
Also check if hash
object is thrashing by
looking at the hit rate of
the has object in
cache_by_type (or
debug) report: is it <90%
while the I/O rate
(Writes) is high?

Check query plans for
attempted parallelism.
Were enough threads
available?

Does the system have a
very large number of
CPUs? Strategies such
as multiplex
configuration may be
necessary.

InUse%
(Buffers in
use)

At or near 100% except during
startup

Less than about 100% The buffer cache may be
too large.

Try rebalancing the
cache sizes of main
versus temp by adjusting
-iqmc and -iqtc.

Pin% (Pinned
buffers)

< 90% > 90 to 95%, indicating system is
dangerously close to an Out of
Buffers condition, which would
cause transactions to roll back

Try rebalancing the
cache sizes of main
versus temp.

If rebalancing buffer
cache sizes is not
possible, try reducing
-iqgovern to limit the
number of jobs running
concurrently.

Statistic Normal behavior
Behavior that needs
adjusting

Recommended
action

System utilities to monitor CPU use

190 Sybase IQ

System utilities to monitor CPU use
Use these operating system utilities to monitor CPU usage while using Sybase
IQ.

On UNIX systems use:

• ps command

• vmstat command (see example in the previous section)

• sar command (UNIX SystemV)

On Windows systems use:

• System Monitor

• Task Manager

Free threads
(ThrNumFree)

Free > Resrvd If the number of free threads drops
to the reserved count, the system
may be thread starved.

Try one of the following:

Increase the number of
threads by setting -iqmt.

Reduce thread-related
options:
MAX_IQ_THREADS_
PER_CONNECTION,
MAX_IQ_THREADS_
PER_TEAM,
PARALLEL_GBH_
UNITS (for queries using
Group By hash).

Restrict query engine
resource allocations by
setting
USER_RESOURCE_
RESERVATION.

Limit the number of jobs
by setting -iqgovern.

FlOutOfSpace
(debug only)

0, indicating that the free list for
this store is not full; unallocated
pages are available

1, indicating that this store (main or
temporary) is fully allocated

Add more dbspace to
that store

Statistic Normal behavior
Behavior that needs
adjusting

Recommended
action

Performance and Tuning Guide 191

C H A P T E R 7 Tuning Servers on Windows
Systems

About this chapter This chapter provides performance and tuning guidelines specific to
running Sybase IQ on Windows systems. Use this chapter in conjunction
with Chapter 5, “Managing System Resources.”

Contents Topic Page

General performance guidelines 192

Monitoring performance 193

Using the NTFS cache 195

Tuning inserts and queries 195

Tuning backup operations 197

General performance guidelines

192 Sybase IQ

General performance guidelines
The following are general guidelines that apply to both loading and querying
data. The recommended minimum amount of memory (RAM) for running
Sybase IQ under Windows is 512MB. While Sybase IQ will function correctly
with smaller memory configurations, performance may be compromised.

Maximizing throughput
If you are running on Windows, make sure the Network Services Server option
“Maximize Throughput for Network Applications” is enabled. Enabling this
option ensures that the NTFS cache does not steal memory from Sybase IQ and
cause excessive page faulting, particularly in memory-constrained
environments.

❖ To enable Maximize Throughput for Network Applications:

1 From the Control Panel, double click on the Network Services Server icon.

2 Select the Services tab and double click on the Server network service.

3 Click on the option “Maximize Throughput for Network Applications”.

4 Click OK twice and reboot the machine.

Preventing memory over allocation
Excessive system page faulting results from overallocating the physical
memory (RAM) of the machine. Excessive page faults severely degrade the
performance of Sybase IQ. By carefully allocating Sybase IQ buffers,
monitoring the virtual address space of the Sybase IQ process(es), and
monitoring available physical memory, you can prevent memory
overallocation. This section offers guidelines for monitoring Sybase IQ use of
your machine's physical memory.

CHAPTER 7 Tuning Servers on Windows Systems

Performance and Tuning Guide 193

Monitoring physical memory
The amount of physical memory available to applications (Sybase IQ) is
displayed under Physical Memory (K). If the Available value is consistently
below 5000 it is possible the physical memory for the machine is overallocated.
This is because at the 5000(K) mark, Windows produces page faults in order to
maintain a minimum of 5MB of free memory.

To monitor physical memory, from the Task Manager applet, select the
Performance tab.

File systems
The Windows file system supports compression at the file, directory and
volume level. You should disable Windows file system compression for all disks
and volumes on which you store Sybase IQ databases. This is because Sybase
IQ provides built-in compression. The file system compression will be unable
to reduce the database size further, but may add CPU overhead when
performing reads or writes.

Monitoring performance
 Your primary tool for monitoring performance of Sybase IQ is the Sybase IQ
performance monitor, described in Chapter 6, “Monitoring and Tuning
Performance.” However, you can also use operating system monitoring tools.

Windows provides two tools for monitoring the performance of your system.

Windows Task Manager has two windows that provide an easy-to-read
overview of current system performance. To start the Task Manager type CTRL-
ALT-DEL and select the Task Manager button. By selecting the Processes tab
you can see a list of all the currently running processes on the system. To
customize the columns displayed, select View > Select Columns. The CPU
Usage, Memory Usage and Virtual Memory Size columns help you identify
CPU or memory bottlenecks. The Performance tab allows you to see various
counts and a history of the machine performance.

The System Monitor provides a more detailed analysis of your machine's
performance. It allows you to monitor individual counters to various system
and application objects, including processors, processes, disks and the
network.

Monitoring performance

194 Sybase IQ

Monitoring virtual address space and working set
 The virtual address space of a process is the total size of the process. The
working set of a process is the amount of physical memory currently allocated
to the process. In most cases, in order to avoid excessive system page faulting
the virtual address space for the Sybase IQ process(es) should be less than the
physical memory of the machine.

Due to the virtual memory usage pattern within the Sybase IQ server, virtual
memory fragmentation could cause excessive process growth on Windows
platforms. To reduce the likelihood of this situation, Sybase IQ supports the use
of Microsoft's low-fragmentation heap (LFH) on Windows XP and Windows
Server 2003.

❖ To monitor virtual address space and working set:

1 Start the Performance Monitor.

2 Click on the + icon and select the Process object.

3 Select the first Sybase IQ instance.

4 Select the counters Virtual Bytes and Working Set.

Monitoring page faults
From the Windows Performance Monitor select the Sybase IQ process as
described above. Select the counter Page Faults/sec. This counter includes both
the “soft” and “hard” page faults. Hard page faults are the page faults resulting
in disk I/O. Soft page faults in general are not a performance issue.

To determine the number of hard page faults, select the object LogicalDisk and
the instance of where the file pagefile.sys is located (this should be on a
separate volume from the Sybase IQ database). Select the counter Disk
Transfers/sec. This value when compared with the Page Faults/sec value will
give an indication of the percentage of page faults that are hard page faults.
Ideally there should be little to no I/O activity to the page file. In small memory
configurations, however, paging is likely to occur.

Sustained hard page fault rates above 20 per second indicate that the physical
memory of the machine has been overallocated.

CHAPTER 7 Tuning Servers on Windows Systems

Performance and Tuning Guide 195

Using the NTFS cache
With the Network Services Server option “Maximize Throughput for Network
Applications” enabled, use of the NTFS and its associated cache can improve
the performance of Sybase IQ for both inserts and queries. This is largely due
to the NTFS being able to store significantly more data than the Sybase IQ
buffer cache, with the same amount of physical memory, and the performance
of the Intel Pentium to decompress Sybase IQ pages. As a result, when you use
Sybase IQ on Windows platforms, you should reduce the size of the Sybase IQ
buffer caches from their normal recommended settings.

The Sybase IQ main and temp buffer caches store Sybase IQ data (pages) in
uncompressed form. As a result, a Sybase IQ buffer cache of 100MB can store
100MB worth of data. Conversely, the NTFS cache manages Sybase IQ data in
its compressed form. Therefore, if the compression ratio were 2:1, 100MB of
NTFS cache is potentially storing 200MB of Sybase IQ data. As a result, the
NTFS cache is likely to sustain a higher cache hit rate which can lead to a
reduction in I/O. The savings in I/O outweigh the computational overhead
needed to decompress data as it moves from the NTFS cache to the Sybase IQ
buffer caches.

Tuning inserts and queries
This section provides additional guidelines for tuning inserts and queries on
Windows platforms.

Characteristics of well-tuned insert operations
 A well-tuned Sybase IQ insert operation exhibits certain characteristics. You
can observe these characteristics from the Windows Task Manager and
Windows Performance Monitor.

• Insert operations are generally CPU-bound. All CPUs within the system
should be running at close to 100%, with 95% or higher of the CPU being
executed in user mode. You can see this easily by clicking on the
Performance tab of the Windows Task Manager with the View-Show
Kernel Times option set.

Tuning inserts and queries

196 Sybase IQ

• Physical memory should not be overallocated and in particular, the virtual
address space for the Sybase IQ process should be less than the physical
memory (RAM) for the machine. On machines with large amounts of
physical memory, that is, 512MB to 2GB, this will not be a problem. On
machines with small amounts of memory, that is, 256MB or less, see the
additional guidelines in the following section.

• Hard page faults (I/O to the volume containing pagefile.sys) should be low
and ideally close to 0 (zero).

• I/O operations to the IQ Store should be steady and within the I/O capacity
of the disk subsystem.

Sybase IQ uses the Windows CreateFile option (for both creating and opening
a file) that specifies a file is to be read for sequential access. This option is used
on the files specified in the LOAD TABLE command. As a result, load
performance is improved through read ahead and reduced NTFS Cache
memory utilization.

Load performance can be further improved, sometimes significantly, by setting
the size of the main and temporary Sybase IQ buffer caches considerably
smaller than the calculated recommended values in “Sybase IQ main and temp
buffer caches” on page 120. The reasons for this performance improvement are
described in “Using the NTFS cache” on page 195. You can set the main and
temporary Sybase IQ buffer caches as much as 50% smaller than the calculated
recommended values.

Tuning for queries
You may also improve query performance by reducing the size of the main and
temp buffer caches as described in the previous paragraph. Be careful in a
multiuser environment, however, because reducing the size of the temp buffer
cache affects the various page pinning and sort algorithms which, in turn, may
degrade performance. See Chapter 3, “Optimizing Queries and Deletions,” for
details about query plans, structure, and options.

CHAPTER 7 Tuning Servers on Windows Systems

Performance and Tuning Guide 197

Tuning backup operations
Windows supports only fixed-length I/O devices. This means that each read or
write to tape must be the same size as the one that preceded it and the one that
follows. If any read/write operation exceeds the capacity of the hardware
device, the operation fails. For backup and restore operations, this means that
your backup (or restore) fails unless all of your writes (or reads) are the size the
hardware is configured for.

The Sybase IQ defaults are designed to make your read and write operations as
efficient as possible on each platform. However, if you override the default
block size when you create a Sybase IQ database, you need to adjust the block
factor when you back up that database.

For any backup or restore:

block size x block factor ≈ I/O size

To adjust the block factor on a Windows system, you must know the maximum
physical block size that can be handled by your tape device. This information
usually is not documented by the drive manufacturer. To determine the value,
typically 64KB, you need to write a small applet using WIN32 API calls. You
must then use the block size of the database and the BLOCK FACTOR option of
the BACKUP command to optimize backup performance. For complete syntax
and usage, see the Sybase IQ Reference Manual.

The closer to the maximum block size you can make each I/O operation, the
better your backup performance will be. Use an integral BLOCK FACTOR that
when multiplied by the block size yields as close to the drive's block size as
possible.

Keep in mind that Sybase IQ adds some extra data to each block as it is written,
for data integrity. So, if your database block size is 8192, and the maximum
block size handled by the tape device is 128KB, you cannot use a block factor
of 16, even though 8192 * 16 = 128KB. You have to account for the extra data
added on each I/O operation by Sybase IQ and use a BLOCK FACTOR of 15.
Note that 15 is the default block factor on Windows for the default database
block size and the default IQ page size of 128KB.

Tuning backup operations

198 Sybase IQ

Performance and Tuning Guide 199

A
address space

virtual 194
aggregate functions 67

STDDEV_POP 90
STDDEV_SAMP 90
VAR_POP 90
VAR_SAMP 90

aggregate functions, statistical 89
AGGREGATION_ALGORITHM_ PREFERENCE

option 43
alphabetical order 5
analytical functions 48
AND keyword 8
apostrophes

using 7
ascending order 78
AVG function 12

B
backups 142

tuning block size 197
BETWEEN conditions 10
BLANK PADDING

effect on joins 30
support of OFF 30

BLOCK FACTOR
load option 127

block size
relationship to IQ page size 126

buffer cache monitor 170
examples 177

buffer caches 123, 195
determining sizes 117
example 122
layout 182
monitoring 170

setting sizes 123
buffer manager

thrashing 183
buffers

disabling operating system buffering 133

C
cache

buffer 195
NTFS 195
See Also buffer cache 170

cache pages
prefetching 146

cache size
IQ main and temporary buffers 123

case sensitivity 3, 7
Catalog Store 5

file growth 152
CIS functional compensation

performance impact 39
clearing procedure profiling

SQL 163
Sybase Central 163

columns
about 4
ordering 6
selecting from a table 6

commands
long 7

comparisons
about 7, 8

computing deltas between adjacent rows 79
conditions

and GROUP BY clause 12
search 7, 8, 10

connections
limiting statements used by 146

conventions

Index

Index

200 Sybase IQ

documentation xiii, xiv
syntax xiii
typographic xiv

correlation names
about 23
defined 31

COUNT function 11, 12
CPU usage

monitoring 184, 190
CPUs

availability to Sybase IQ 144
CREATE DBSPACE statement 139
CUBE operation 50, 52

example 64
NULL 53

CUBE operator 61
SELECT statement 61

CURRENT ROW 72, 73
current row 73, 74
cursors

limiting number of 146

D
data

storage 195
data types

requirements for joins 28
database procedures

viewing profiling data 161
database segments

locating for best performance 139
databases

benefits of denormalizing 153
denormalizing for performance 152
managing 151
sample xiv

dates 8, 10
dbspaces

locating for best performance 139
DEFAULT_HAVING_SELECTIVITY option 43
DEFAULT_LIKE_MATCH_SELECTIVITY option 43
DEFAULT_LIKE_RANGE_SELECTIVITY option 43
defining a window 68
deltas between adjacent rows, computing 79

denormalization
disadvantages 153
performance benefits 153
reasons for 152

DENSE_RANK function 17
descending order 78
disabling procedure profiling

SQL 163
Sybase Central 163

disk cache
definition 148

disk caching
performance impact 148

disk space
multiplex databases 147
swap space 115

disk striping
definition 136
internal 138
rules 137
Sybase IQ 136
use in loads 138

distribution functions 48, 69, 90
documentation

accessibility features xiv
Adaptive Server Anywhere x
conventions xiii, xiv
on CD xi
online xi
Sybase IQ ix

dummy Sybase IQ table 5

E
EARLY_PREDICATE_EXECUTION option 44
enabling procedure profiling

SQL 162
Sybase Central 162

events
viewing individual profiling information 167
viewing profiling data 161
viewing summary profiling data 165

examples, OLAP 98
extensions to GROUP BY clause 48, 50

Index

Performance and Tuning Guide 201

F
Federal Rehabilitation Act

section 508 xiv
files

locating for best performance 139
fragmentation 131
FROM clause 5, 155

and joins 22
functions

aggregate 11, 67
analytical 17, 48, 66
distribution 48, 90
inverse distribution 90
numeric 48
numerical 93
ordered sets 90
PERCENTILE_CONT function 90
PERCENTILE_DISC function 90
ranking 48, 82
reporting 87
simple aggregate 67
SOUNDEX function 10
standard deviation 89
statistical 48
statistical aggregate 89
STDDEV_POP function 90
STDDEV_SAMP function 90
VAR_POP function 90
VAR_SAMP function 90
variance 89
viewing individual profiling information 167
viewing profiling data 161
viewing summary profiling data 165
window 49, 87
windowing 67
windowing aggregate 48, 87

G
GROUP BY

CUBE 52
performance recommendation 36
ROLLUP 52

GROUP BY clause extensions 50
grouped data 11

GROUPING function
NULL 53
ROLLUP operation 53

H
HASH_THRASHING_PERCENT option 183
heap

low-fragmentation 131
hint string 44
hyperthreading

server switch 144

I
I/O

performance recommendations 135
IN conditions 10
IN_SUBQUERY_PREFERENCE option 44
index advisor 149
index types

choosing for performance 149
INDEX_ADVISOR option 40
INDEX_PREFERENCE option 44
inequality, testing for 8
insert operations

tuning 195
inverse distribution functions 90
IQ page size

determining 125
IQ PATH option

choosing a raw device 136
IQ Store

buffer cache size 123
iq_dummy table 5
iqgovern switch

restricting queries to improve performance 144
IQGOVERN_MAX_PRIORITY option 43
IQGOVERN_PRIORITY 43
IQMSG log

setting maximum size 142
iqnumbercpus

setting number of CPUs 144
iqwmem switch 131

Index

202 Sybase IQ

J
join indexes

performance impact 150
JOIN_ALGORITHM_PREFERENCE option 44
joins

and BLANK PADDING 30
and data types 28
cross product 22
optimizer simplications 44

joins between databases
performance impact 39

K
key joins

using 25

L
lightweight processes 134
LIST function 12
load balancing

among query servers 148
loading data

memory requirements 119
performance 127
tuning for 195
using striped disk 138

logical offset of a window frame 77
low-fragmentation heap 131

M
main database

buffer cache size 123
MAIN_CACHE_MEMORY_MB option 123
MAX function 12
MAX_CURSOR_COUNT option 146
MAX_HASH_ROWS option 44
MAX_QUERY_TIME option 42
MAX_STATEMENT_COUNT option 146
maximum function 11
memory

fragmentation 131
multiplex databases 116
overhead 119
paging 115
reducing requirements 126
requirements for loads 119
restricting use by queries 145
See Also buffer caches 123
wired 131

message log
Sybase IQ 142

MIN function 12
monitor 161

IQ UTILITIES syntax 170
setting output file location 170
starting and stopping 170

monitoring
page faults 194
physical memory 193
virtual address space 194
working set 194

multiplex databases
disk space 147
memory 116

multithreading
performance impact 134

N
networks

large transfers 156
performance suggestions 156
settings 156

NOEXEC option 40
NT CreateFile option 196
NT Performance Monitor 193
NT Task Manager 193
NTFS cache

improving performance 195
stealing memory 192

NTILE function 17
NULL

CUBE operation 53
ROLLUP operation 53

NULL values

Index

Performance and Tuning Guide 203

example 54
NULL values and subtotal rows 53
numeric functions 48

O
OLAP 69

about 48
aggregate functions 67
analytical functions 48, 66
benefits 49
CUBE operation 61
current row 74
distribution functions 48, 69
extensions to GROUP BY clause 48
functionality 48
Grouping() 50
NULL values 53
numeric functions 48
ORDER BY clause 70
PARTITION BY clause 69
RANGE 69
range 77
ranking functions 48, 69
ROLLUP operator 52
ROWS 69
rows 74
semantic phases of execution 49
statistical functions 48, 69
subtotal rows 52
using 49
window concept 69
window framing 68
window function type 68
window functions 49, 68
window name 68
window ordering 68
window partitioning 68, 69
window sizes 69
window specification 68
windowing extensions 67
windows aggregate functions 48

OLAP examples 98
Ascending and descending order for value-based

frames 78

calculate cumulative sum 101
calculate moving average 102
computing deltas between adjacent rows 79
default window frame for RANGE 107
default window frame for ROW 106
multiple aggregate functions in a query 103
ORDER BY results 103
range-based window frames 77
row-based window frames 75
unbounded preceding and unbounded following

106
unbounded window 79
using a window with multiple functions 100
window frame excludes current row 105
window frame with ROWS vs. RANGE 104
window functions 81
window functions in queries 99

OLAP functions
distribution 90
numerical functions 93
ordered sets 90
ranking functions 82
statistical aggregate 89
windowing 67
windowing aggregate functions 87

OLAP OVER clause 68
online analytical processing

CUBE operator 61
functionality 48
NULL values 53
ROLLUP operator 52
subtotal rows 52

optimizing queries 149
option value

truncation 40
options

INDEX_ADVISOR 40
NOEXEC 40
QUERY_DETAIL 40
QUERY_PLAN 41
QUERY_PLAN_AFTER_RUN 41
QUERY_PLAN_AS_HTML 41
QUERY_PLAN_AS_HTML_DIRECTORY 41
QUERY_TIMING 41
unexpected behavior 5

OR keyword 10

Index

204 Sybase IQ

ORDER BY clause 7, 70, 71
sort order 79

ordered set functions
PERCENTILE_CONT 90
PERCENTILE_DISC 90

ordered sets functions 90
OS_FILE_CACHE_BUFFERING option 133
outer references

defined 31
OVER clause 18, 68

P
page faults 192

monitoring 194
pages

decompressing 195
paging

effect on performance 115
memory 115
monitoring on UNIX 184
monitoring on Windows 184

parameters
to functions 12

PARTITION BY clause 69
partitioned table 155
partitions

definition 136
pattern matching 9
PERCENT_RANK function 17
PERCENTILE_CONT function 17, 90
PERCENTILE_DISC function 17, 90
performance 191

balancing I/O 135
benefits of denormalizing databases 153
choosing correct index type 149
CIS functional compensation impact 39
definition 114
designing for 114
disk caching 148
improving 13
monitoring 170
multi-user 146
restricting queries with iqgovern 144

performance and tuning issues 196

performance monitor
examples 177
Sybase Central 161

performance tuning
introduction 160

phases of execution 49
physical memory

monitoring 193
physical offset of a window frame 74
population variance function 90
predicate hint 44
PREFETCH_BUFFER_LIMIT option 146
Prefetched cache pages 146
prefix columns

ROLLUP operation 52
prefixes 51

ROLLUP operation 52
subtotal rows 52

procedure profiling
clearing in Sybase Central 163
clearing with SQL 163
disabling in Sybase Central 163
disabling with SQL 163
enabling in Sybase Central 162
enabling with SQL 162
events 165, 167
information for individual procedures 166, 169
resetting in Sybase Central 163
resetting with SQL 163
stored procedures and functions 165, 167
summary of procedures 168
system triggers 166, 167
triggers 166, 167
viewing data in Interactive SQL 168
viewing data in Sybase Central 161, 164

process threading model 134
processes

growth 131
monitoring 193
working sets 194

processing queries without 5
profiling database procedures

about 161
profiling information

events 167
stored procedures and functions 167

Index

Performance and Tuning Guide 205

system triggers 167
triggers 167

ps command
monitoring CPUs on UNIX 190

pushdown join 155

Q
queries

indexing recommendations 149
optimizing 39, 43, 149
prefixes 51
processing by Adaptive Server Anywhere 5
restricting concurrent 144
restricting memory use 145
structuring 36
subtotal rows 52
tuning for 196

query performance
Catalog Store tables 39
CIS functional compensation impact 39
cross-database joins 39
processing by Adaptive Server Anywhere rules

39
query plans 39

generating without executing 40
graphical 42

query server
balancing loads 148

QUERY_DETAIL option 40
QUERY_PLAN option 41
QUERY_PLAN_AFTER_RUN option 41
QUERY_PLAN_AS_HTML option 41
QUERY_PLAN_AS_HTML_DIRECTORY option

41
QUERY_TEMP_SPACE_LIMIT option 145
QUERY_TIMING option 41
querying tables 5
quotation marks

using 7

R
RANGE 69

range 8, 77
logical offset of a window frame 77
window frame unit 71
window order clause 71

range specification 73, 77
range-based window frames 77, 78
RANK function 17
rank functions

example 84, 85, 86, 87
ranking functions 48, 69

requirements with OLAP 71
window order clause 71

raw devices
effect on performance 136

raw partitions
memory use 119

RAWDETECT
disk striping option 138

reporting functions 87
example 88

resetting procedure profiling
SQL 163
Sybase Central 163

response time 114
restrictions 7
ROLLUP operation 50, 52

example 58
NULL 53
subtotal rows 52

ROLLUP operator 52
SELECT statement 52

row specification 73
row-based window frames 75
ROWS 69
rows 74

about 4
physical offset of a window frame 74
rows between 1 preceding and 1 following 74
rows between 1 preceding and 1 preceding 75
rows between current row and current row 75
rows between unbounded preceding and current row

74
rows between unbounded preceding and unbounded

following 74
selecting 7
subtotal rows 52

Index

206 Sybase IQ

rows specification 77

S
sample database xiv
sample variance function 90
sar command

monitoring CPUs on UNIX 190
search conditions

date comparisons 8
introduction to 7
short cuts for 10
subqueries 31

section 508
compliance xiv

segments
database, using multiple 139

SELECT statement
about 2, 31

semantic phases of execution 49
sequential disk I/O 140
servers

statistics 161
simple aggregate functions 67
sort order ob ORDER BY in range-based frames 79
sp_iqtable procedure 2
specifying pre-predicate hints 44
standard deviation functions 89
standard deviation of a population function 90
standard deviation of a sample function 90
standards

section 508 compliance xiv
standards and compatibility

section 508 compliance xiv
statistical aggregate functions 89
statistical functions 48, 69
statistics

server 161
STDDEV_POP function 90
STDDEV_SAMP function 90
stored procedures 2

performance monitoring 160
viewing individual profiling information 167
viewing profiling data 161
viewing summary profiling data 165

subqueries
using 31

subtotal rows 52
construction 52
definition 52, 61
NULL values 53
ROLLUP operation 52

SUM function 12
summary information

CUBE operator 61
summary profiling data

events 165
stored procedures and functions 165
system triggers 166
triggers 166

summary rows
ROLLUP operation 52

swap files
effect on performance 115

swapping
disk space requirement 115
effect on performance 115
memory 115

sweeper threads 182
Sybase Central

performance monitor 161
SYSTEM dbspace 5
system stored procedures 2
system triggers

viewing individual profiling information 167
viewing profiling data 161
viewing summary profiling data 166

T
tables

and foreign keys 24
collapsing 150
correlation name 23
iq_dummy 5
joining 150
listing 2
primary keys 24

Task Manager 193
TEMP_CACHE_MEMORY_MB option 123

Index

Performance and Tuning Guide 207

Temporary Store
buffer cache size 123

thrashing
actions to take 183
HASH_THRASHING_PERCENT option 183

threads
buffer caches 182
controlling use with -iqnumbercpus switch 144
management options 135
monitoring 175

throughput 114
maximizing 192

transaction log
about 140
truncating 140
truncating for multiplex 142

triggers
viewing individual profiling information 167
viewing summary profiling data 166

tuning 191
for insert operations 195
for queries 196

U
UNBOUNDED FOLLOWING 72, 73
unbounded following 73
unbounded preceding 73
UNBOUNDED PREDEDING 72, 73
unbounded window, using 79
UNION ALL

rules 155
views 155

user-defined functions
performance impact 39

using unbounded window 79

V
value-based window frames 77

ascending and descending order 78
ORDER BY clause 78

VAR_POP function 90
VAR_SAMP function 90

variance functions 89
viewing procedure profiling data

Sybase Central 164
viewing procedure profiling information in Interactive

SQL 168
viewing profiling information for a specific procedure in

Interactive SQL 169
virtual address space 194
virtual memory

fragmentation 131
vmstat command

monitoring buffer caches on UNIX 184
monitoring CPUs on UNIX 190

W
WHERE clause

and pattern matching 9
BETWEEN conditions 10
date comparisons 8
examples 7
ORDER BY clause 7

window frame clause 71
window frame unit 71, 74, 77

range 77
rows 74

window frames
range based 77, 78
row based 75

window framing 68, 71
window functions

aggregate 69
distribution 69
framing 71
ordering 70
OVER clause 68
partitioning 69
ranking 69
statistical 69
window function type 67
window name or specification 67
window partition 67, 68

window functions, defining 68
window name 68
window operator 67

Index

208 Sybase IQ

window order clause 70, 71
current row 73
unbounded preceding 73

window ordering 68, 70
window partition clause 69
window partitioning 68, 69
window partitioning and GROUP BY operator 69
window sizes

RANGE 69
ROWS 69

window specification 68
window type 68
windowing

partitions 67
windowing aggregate functions 69, 87
windowing extensions 67
windowing functions 69
windows aggregate functions 48
wired memory 131
WITHIN GROUP clause 18
working set 194

	Performance and Tuning Guide
	About This Book
	CHAPTER 1 Selecting Data from Database Tables
	Prerequisites
	Viewing table information
	Ordering query results
	Selecting columns and rows
	Using search conditions
	Comparing dates in queries
	Compound search conditions in the WHERE clause
	Pattern matching in search conditions
	Matching rows by sound
	Shortcuts for typing search conditions

	Obtaining aggregate data
	A first look at aggregate functions
	Using aggregate functions to obtain grouped data
	Restricting groups
	Improving subtotal calculation

	Obtaining analytical data
	Eliminating duplicate rows

	CHAPTER 2 Joining Tables
	Joining tables with the cross product
	Restricting a join
	How tables are related
	Rows are identified by a primary key
	Tables are related by a foreign key

	Join operators
	Joining tables using key joins
	Joining tables using natural joins

	Ad hoc joins vs. using join indexes
	Joins and data types
	Support for joins between stores or databases
	Querying remote and heterogeneous databases
	Replacing joins with subqueries

	CHAPTER 3 Optimizing Queries and Deletions
	Tips for structuring queries
	Impact on query performance of GROUP BY over a UNION ALL
	Conditions that cause processing by Adaptive Server Anywhere

	Planning queries
	Query evaluation options
	The query tree
	Using the HTML query plan

	Controlling query processing
	Setting query time limits
	Setting query priority
	Setting query optimization options
	Setting predicate hints

	Optimizing delete operations
	Delete costing
	Using delete performance option

	CHAPTER 4 Using OLAP
	About OLAP
	OLAP benefits
	Understanding OLAP evaluation

	GROUP BY clause extensions
	Group by ROLLUP and CUBE
	Group by ROLLUP
	Group by CUBE

	Analytical functions
	Simple aggregate functions
	Windowing
	Window partitioning
	Window ordering
	Window framing
	Explicit and in-line window clauses
	Ranking functions
	Windowing aggregate functions
	Statistical aggregate functions
	Distribution functions

	Numeric functions

	OLAP rules and restrictions
	Additional OLAP examples
	Example: Window functions in queries
	Example: Window with multiple functions
	Example: Calculate cumulative sum
	Example: Calculate moving average
	Example: ORDER BY results
	Example: Multiple aggregate functions in a query
	Example: Window frame comparing ROWS and RANGE
	Example: Window frame excludes current row
	Example: Default window frame for ROW
	Example: Unbounded preceding and unbounded following
	Example: Default window frame for RANGE

	BNF grammar for OLAP functions

	CHAPTER 5 Managing System Resources
	Introduction to performance terms
	Designing for performance
	Overview of memory use
	Paging increases available memory
	Utilities to monitor swapping
	Server memory
	Managing buffer caches
	Determining the sizes of the buffer caches
	Operating system and other applications
	Sybase IQ memory overhead
	Sybase IQ main and temp buffer caches
	Example of setting buffer cache sizes

	Setting buffer cache sizes
	Setting buffer cache size server switches

	Specifying page size
	Setting the page size
	Block size
	Data compression

	Saving memory
	Decrease buffer cache settings
	Decrease memory used for loads
	Adjust blocking factor for loads

	Optimizing for large numbers of users
	Sybase IQ command line option changes for large numbers of users
	Increasing Sybase IQ temporary space for large numbers of users
	Relative priorities of new and existing connections

	Platform-specific memory options
	Controlling file system buffering

	Other ways to get more memory
	Options for Java-enabled databases

	The process threading model
	Insufficient threads error
	Sybase IQ options for managing thread usage

	Balancing I/O
	Raw I/O (on UNIX operating systems)
	Using disk striping
	Setting up disk striping on UNIX
	Setting up disk striping on Windows
	Recommendations for disk striping

	Internal striping
	Disk striping option

	Using multiple dbspaces
	Strategic file locations
	The transaction log file
	The message log

	Working space for inserting, deleting, and synchronizing
	Setting reserved space options

	Options for tuning resource use
	Restricting concurrent queries
	Setting the number of CPUS available
	Limiting a query's temporary dbspace use
	Limiting queries by rows returned
	Forcing cursors to be non-scrolling
	Limiting the number of cursors
	Limiting the number of statements
	Prefetching cache pages
	Optimizing for typical usage
	Controlling the number of prefetched rows

	Other ways to improve resource use
	Managing disk space in multiplex databases
	Load balancing among query servers
	Restricting database access
	Disk caching

	Indexing tips
	Choosing the right index type
	Using join indexes
	Allowing enough disk space for deletions

	Managing database size and structure
	Managing the size of your database
	Controlling index fragmentation
	Minimizing catalog file growth
	Denormalizing for performance
	Denormalization has risks
	Disadvantages of denormalization
	Performance benefits of denormalization
	Deciding to denormalize

	Using UNION ALL views for faster loads
	Optimizing queries that reference UNION ALL views

	Network performance
	Improving large data transfers
	Isolate heavy network users
	Put small amounts of data in small packets
	Put large amounts of data in large packets
	Process at the server level

	CHAPTER 6 Monitoring and Tuning Performance
	Viewing the Sybase IQ environment
	Getting information using stored procedures
	Using the Sybase Central performance monitor
	Profiling database procedures
	Enabling procedure profiling
	Resetting procedure profiling
	Disabling procedure profiling
	Viewing procedure profiling information in Sybase Central
	Viewing procedure profiling information in Interactive SQL

	Monitoring the buffer caches
	Starting the buffer cache monitor
	Checking results while the monitor runs
	Stopping the buffer cache monitor
	Examining and saving monitor results
	Examples of monitor results

	Buffer cache structure
	Avoiding buffer manager thrashing
	Monitoring paging on Windows systems
	Monitoring paging on UNIX systems

	Buffer cache monitor checklist
	System utilities to monitor CPU use

	CHAPTER 7 Tuning Servers on Windows Systems
	General performance guidelines
	Maximizing throughput
	Preventing memory over allocation
	Monitoring physical memory
	File systems

	Monitoring performance
	Monitoring virtual address space and working set
	Monitoring page faults

	Using the NTFS cache
	Tuning inserts and queries
	Characteristics of well-tuned insert operations
	Tuning for queries

	Tuning backup operations

	Index

