
User’s Guide

PocketBuilder™

2.0

DOCUMENT ID: DC50060-01-0200-01

LAST REVISED: November 2004

Copyright © 2003-2004 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Application Alerts, iAnywhere Mobile Delivery, iAnywhere Mobile Document Viewer, iAnywhere
Mobile Inspection, iAnywhere Mobile Marketing Channel, iAnywhere Mobile Pharma, iAnywhere Mobile Sales, iAnywhere Pylon,
iAnywhere Pylon Application Server, iAnywhere Pylon Conduit, iAnywhere Pylon PIM Server, iAnywhere Pylon Pro, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect,
InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage
Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway,
media.splash, MetaWorks, My iAnywhere, My iAnywhere Media Channel, My iAnywhere Mobile Marketing, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit,
Report-Execute, Report Workbench, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure
SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere
Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL
Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ,
STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server,
Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
TotalFix, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK
Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 05/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

User’s Guide iii

About This Book ... xix

PART 1 THE POCKETBUILDER ENVIRONMENT

CHAPTER 1 Working with PocketBuilder .. 3
Concepts and terms ... 3

Workspaces and targets.. 4
Objects .. 4
DataWindow objects.. 4
PocketBuilder libraries... 5
Painters and editors .. 5
Events and scripts ... 5
Functions... 6
Properties .. 6

The PocketBuilder environment ... 7
The System Tree... 7
The PowerBar ... 9
The Clip window .. 11
The Output window ... 12

Creating and opening workspaces... 13
Creating a workspace.. 13
Opening a workspace.. 13

Using wizards ... 14
Creating a target .. 15

PowerScript application targets... 16
Managing workspaces ... 18

Adding an existing target to a workspace................................ 18
Removing a target from a workspace...................................... 19
Specifying workspace properties... 19

Building workspaces .. 20
Managing databases .. 20
Working with tools .. 22

Using the To-Do List.. 23

Contents

iv PocketBuilder

Using the File editor .. 25
Converting a PocketBuilder target to PowerBuilder 26

Using online Help ... 26
Building an application ... 28

CHAPTER 2 Customizing PocketBuilder .. 31
Starting PocketBuilder with an open workspace 31
Changing the design-time layout.. 32

Using the Windows XP style for visual controls 33
Arranging the System Tree, Output, and Clip windows........... 33
Using views in painters.. 34

Using toolbars .. 39
Toolbar basics ... 40
Drop-down toolbars ... 40
Controlling the display of toolbars ... 41
Moving toolbars using the mouse.. 41
Customizing toolbars... 42
Creating new toolbars ... 46

Customizing keyboard shortcuts .. 48
Changing fonts ... 49
Defining colors ... 50
Managing the PocketBuilder IDE ... 51

About the registry .. 51
About the initialization file.. 51

PART 2 WORKING WITH TARGETS AND LIBRARIES

CHAPTER 3 Working with PowerScript Targets .. 55
About PowerScript targets ... 55
Working in painters .. 56

PocketBuilder painters .. 56
Opening painters ... 57
Painter features ... 58
Views in painters that edit objects ... 58

About the Application painter ... 63
Specifying application and Today item properties.......................... 64

Application object properties for a custom Today item............ 66
Specifying default text properties .. 69
Specifying an icon ... 70
Specifying default global objects ... 71

Writing application-level scripts .. 72
Setting application properties in scripts................................... 73

Contents

User’s Guide v

Specifying the target’s library search path 73
Looking at an application's structure .. 75

Which objects are displayed.. 76
Working with objects .. 78

Creating new objects... 78
Creating new objects using inheritance................................... 78
Naming conventions.. 80
Opening existing objects ... 82
Running or previewing objects .. 84

Using the Source editor.. 84

CHAPTER 4 Working with Libraries ... 87
About libraries .. 87

Using libraries.. 88
Opening the Library painter.. 89
About the Library painter.. 89
Working with libraries ... 91

Displaying libraries and objects... 92
Using the pop-up menu ... 93
Selecting objects ... 93
Filtering the display of objects ... 94
Creating and deleting libraries... 95
Filtering the display of libraries and folders 96
Working in the current library .. 96
Opening and previewing objects ... 96
Copying, moving, and deleting objects.................................... 97
Setting the root .. 99
Moving back, forward, and up one level................................ 100
Modifying comments ... 100

Searching targets, libraries, and objects 101
Optimizing libraries... 103
Regenerating library entries ... 104

Rebuilding workspaces and targets 106
Exporting and importing entries ... 106
Creating runtime libraries ... 109

Including additional resources... 110
Creating reports on library contents ... 110

Creating library entry reports ... 111
Creating the library directory report....................................... 112

CHAPTER 5 Using Source Control ... 113
About source control systems .. 113

Using your source control manager 114

Contents

vi PocketBuilder

Using PBNative ... 115
Constraints of a multiuser environment................................. 116
Extension to the SCC API ... 118

Using a source control system with PocketBuilder 120
Setting up a connection profile .. 120
Viewing the status of source-controlled objects 123
Working in offline mode... 126
Fine-tuning performance for batched source control

requests.. 127
Files available for source control... 127

Source control operations in PocketBuilder 129
Adding objects to source control ... 129
Checking objects out from source control 131
Checking objects in to source control.................................... 134
Clearing the checked-out status of objects 135
Synchronizing objects with the source control server 136
Refreshing the status of objects .. 138
Comparing local objects with source control versions........... 139
Displaying the source control version history 141
Removing objects from source control 142

Modifying source-controlled targets and objects.......................... 143
Effects of source control on object management 143
Copy and move operations on source-controlled objects 143
Editing the PKG file for a source-controlled target 144

PART 3 CODING FUNDAMENTALS

CHAPTER 6 Writing Scripts ... 147
About the Script view ... 147
Opening Script views ... 149
Modifying Script view properties .. 149
Editing scripts... 150

Printing scripts... 151
Pasting information into scripts ... 151
Reverting to the unedited version of a script 155

Using AutoScript .. 155
Using the AutoScript pop-up window 156
Customizing AutoScript ... 157
Example .. 160

Getting context-sensitive Help ... 161
Compiling the script.. 162

Handling problems .. 163
Declaring variables and external functions 165

Contents

User’s Guide vii

CHAPTER 7 Working with User-Defined Functions...................................... 167
About user-defined functions ... 167

Deciding which kind you want ... 168
Defining user-defined functions.. 169

Opening a Prototype window to add a new function 170
Defining the access level... 170
Defining a return type .. 171
Naming the function .. 172
Defining arguments ... 173
Defining a THROWS clause.. 174
Coding the function ... 175
Compiling and saving the function .. 176

Modifying user-defined functions ... 176
Using your functions... 178

CHAPTER 8 Working with User Events.. 181
About user events .. 181

User events and event IDs .. 182
Defining user events .. 183
Using a user event ... 186

Examples of user event scripts ... 186

CHAPTER 9 Working with Structures .. 189
About structures ... 189

Deciding which kind you want ... 190
Defining structures ... 190
Modifying structures ... 192
Using structures ... 193

Referencing structures .. 194
Copying structures .. 195
Using structures with functions.. 195
Displaying and pasting structure information 196

PART 4 WORKING WITH WINDOWS, CONTROLS, AND USER OBJECTS

CHAPTER 10 Working with Windows... 199
About windows ... 199

Designing windows.. 200
Building windows... 200

Types of windows... 201
Main windows.. 201
Response windows ... 202

Contents

viii PocketBuilder

About the Window painter .. 202
Building a new window... 204

Creating a new window ... 204
Defining the window's properties... 204
Adding controls.. 211
Adding nonvisual objects... 211
Saving the window .. 211

Viewing your work .. 212
Previewing a window... 212
Printing a window's definition .. 214

Writing scripts in windows .. 215
About events for windows and controls................................. 215
About functions for windows and controls 216
About properties of windows and controls............................. 216
Declaring instance variables ... 217
Examples of statements .. 218

Running a window.. 218
Using inheritance to build a window... 219

Building two windows with similar definitions 220
Advantages of using inheritance ... 221
Instance variables in descendants .. 222
Control names in descendants.. 223

CHAPTER 11 Working with Controls .. 225
About controls .. 225
Inserting controls in a window .. 226
Selecting controls... 227
Defining a control's properties.. 228
Naming controls ... 228

About the default prefixes.. 229
Changing the name... 230

Changing text ... 231
How text size is stored .. 231

Moving and resizing controls.. 232
Moving and resizing controls using the mouse 232
Moving and resizing controls using the keyboard 232
Aligning controls using the grid ... 232
Aligning controls with each other... 233
Equalizing the space between controls 234
Equalizing the size of controls... 234

Copying controls .. 235
Defining the tab order... 236

Establishing the default tab order.. 236
Changing the window's tab order .. 237

Contents

User’s Guide ix

Defining accelerator keys... 238
Specifying accessibility of controls... 240

Using the Visible property ... 240
Using the Enabled property ... 240

Choosing colors ... 241
Using the 3D look... 243
Using the individual controls .. 244

Using CommandButtons ... 246
Using PictureButtons... 247
Using RadioButtons... 248
Using CheckBoxes .. 249
Using StaticText .. 250
Using StaticHyperLinks ... 250
Using SingleLineEdits and MultiLineEdits 251
Using EditMasks.. 251
Using ListBoxes... 253
Using DropDownListBoxes.. 255
Using Pictures ... 257
Using PictureHyperLinks ... 257
Using drawing objects ... 258
Using HProgressBars and VProgressBars............................ 259
Using HScrollBars and VScrollBars 259
Using HTrackBars and VTrackBars 259
Using ListView controls ... 260
Using TreeView controls ... 263
Using Tab controls .. 266

CHAPTER 12 Understanding Inheritance .. 273
About inheritance ... 273
Creating new objects using inheritance 274
The inheritance hierarchy... 275
Browsing the class hierarchy ... 276
Working with inherited objects ... 277
Using inherited scripts.. 278

Viewing inherited scripts.. 279
Extending a script .. 280
Overriding a script ... 281
Calling an ancestor script .. 282
Calling an ancestor function .. 282

CHAPTER 13 Working with Menus ... 283
About menus and menu items ... 283
About the Menu painter.. 285

Contents

x PocketBuilder

Building a new menu.. 287
Creating a new menu .. 287
Working with menu items .. 287
How menu items are named ... 293
Saving the menu ... 294

Defining the appearance of menu items 295
Setting General properties .. 295

Writing scripts for menu items.. 297
Using the menu item Clicked event....................................... 297
Using functions and variables ... 298
Referring to objects in your application 299

Using inheritance to build a menu.. 301
Modifying an inherited menu ... 302
Inserting menu items in a descendent menu......................... 303

Using menus .. 304
Adding a menu bar to a window .. 305
Displaying pop-up menus.. 306

CHAPTER 14 Working with User Objects ... 307
About user objects ... 307

Class user objects ... 308
Visual user objects .. 309
Building user objects ... 309

About the User Object painter.. 310
Building a new user object ... 311

Creating a new user object.. 311
Building a custom class user object 312
Building a standard class user object.................................... 312
Building a custom visual user object 313
Building a standard visual user object................................... 314
Events in user objects ... 315
Saving a user object.. 315

Using inheritance to build user objects .. 317
Using the inherited information.. 318

Using user objects.. 319
Using visual user objects... 319
Using class user objects.. 320
Using global standard class user objects 321

Communicating between a window and a user object 323
Examples of user object controls affecting a window............ 326

Contents

User’s Guide xi

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices
329
Bar code scanner objects... 330
Digital camera objects.. 331
HPBiometricScanner object ... 333
NotificationBubble object.. 334
Phone-related objects .. 335

PhoneCall object ... 336
CallLog and CallLogEntry objects ... 336
DialingDirectory and DialingDirectoryEntry objects............... 337

POOM object.. 338
SerialGPS object.. 344
Signature control .. 346
SMS messaging objects... 347
Toolbar control ... 348

PART 5 WORKING WITH DATABASES AND DATAWINDOWS

CHAPTER 16 Managing the Database.. 351
Working with database components .. 351
Using the Database painter.. 354

Modifying database preferences ... 357
Logging your work ... 358

Creating databases .. 359
Working with tables .. 361

Creating a new table from scratch... 361
Creating a new table from an existing table 363
Specifying column definitions .. 363
Specifying table and column properties 364
Altering a table .. 368
Cutting, copying, and pasting columns.................................. 369
Closing a table... 369
Dropping a table .. 370
Viewing pending SQL changes ... 370
Printing the table definition .. 371
Exporting table syntax ... 372
About system tables .. 372

Working with keys .. 374
Working with indexes ... 378
Working with database views... 379
Manipulating data... 385

Retrieving data .. 385
Modifying data ... 386

Contents

xii PocketBuilder

Sorting rows .. 387
Filtering rows ... 388
Viewing row information .. 389
Importing data ... 389
Printing data .. 390
Saving data ... 390

Creating and executing SQL statements 391
Building and executing SQL statements 391
Customizing the editor... 394

Controlling access to the current database.................................. 395
Using the MobiLink Synchronization for ASA wizard 396
Using the UltraLite Synchronization wizard.................................. 400
Maintaining users and subscriptions in the remote database 402
Managing MobiLink synchronization on the server 403

Starting the MobiLink synchronization server........................ 404
Using Sybase Central.. 404

CHAPTER 17 Defining DataWindow Objects.. 407
About DataWindow objects .. 407

DataWindow object examples ... 408
How to use DataWindow objects... 409

Choosing a presentation style.. 410
Building a DataWindow object ... 412
Selecting a data source.. 413
Using Quick Select ... 415

Selecting a table.. 415
Selecting columns ... 417
Specifying sorting criteria .. 418
Specifying selection criteria... 418
SQL expression examples .. 421

Using SQL Select ... 424
Selecting tables and views .. 425
Selecting columns ... 427
Displaying the underlying SQL statement 429
Joining tables .. 430
Using retrieval arguments ... 432
Specifying selection, sorting, and grouping criteria 434

Using Query ... 440
Using External.. 441
Using Stored Procedure... 442
Choosing DataWindow object-wide options................................. 444

Contents

User’s Guide xiii

Generating and saving a DataWindow object 445
About the extended attribute system tables and

DataWindow objects... 445
Saving the DataWindow object ... 446
Modifying an existing DataWindow object 447

Defining queries ... 448
Previewing the query... 448
Saving the query ... 449
Modifying a query .. 449

What's next... 450

CHAPTER 18 Enhancing DataWindow Objects... 451
Working in the DataWindow painter... 452

Understanding the DataWindow painter Design view 453
Using the DataWindow painter toolbars 456
Using the Properties view in the DataWindow painter 457
Selecting controls in the DataWindow painter....................... 457
Resizing bands in the DataWindow painter Design view 458
Using zoom in the DataWindow painter 459
Undoing changes in the DataWindow painter 459

Using the Preview view .. 459
Retrieving data .. 461
Modifying data ... 462
Viewing row information .. 464
Importing data into a DataWindow object.............................. 464
Using print preview.. 465
Printing data .. 466
Working in a grid DataWindow object 467

Saving data in an external file .. 468
Modifying general DataWindow object properties........................ 469

Changing the DataWindow object style................................. 469
Setting colors in a DataWindow object.................................. 470
Specifying properties of a grid DataWindow object 471
Defining print specifications for a DataWindow object 472
Modifying text in a DataWindow object 474
Defining the tab order in a DataWindow object 475
Naming controls in a DataWindow object.............................. 476
Using borders in a DataWindow object 477
Specifying variable-height detail bands in a DataWindow

object .. 477
Modifying the data source of a DataWindow object 478

Storing data in a DataWindow object ... 480
Prompting for retrieval criteria .. 481

Contents

xiv PocketBuilder

CHAPTER 19 Working with Controls in DataWindow Objects 485
Adding controls to a DataWindow object 485

Adding columns to a DataWindow object.............................. 485
Adding text to a DataWindow object 486
Adding drawing controls to a DataWindow object 487
Adding a group box to a DataWindow object 487
Adding pictures to a DataWindow object............................... 488
Adding computed fields to a DataWindow object 489
Adding buttons to a DataWindow object 494
Adding graphs to a DataWindow object 498

Reorganizing controls in a DataWindow object............................ 499
Displaying boundaries for controls in a DataWindow

object .. 499
Using the grid and the ruler in a DataWindow object 500
Deleting controls in a DataWindow object............................. 500
Moving controls in a DataWindow object 501
Copying controls in a DataWindow object............................. 501
Resizing controls in a DataWindow object 502
Aligning controls in a DataWindow object 502
Equalizing the space between controls in a DataWindow

object .. 503
Equalizing the size of controls in a DataWindow

object .. 503
Sliding controls to remove blank space in a DataWindow

object .. 504
Positioning controls in a DataWindow object 505
Rotating controls in a DataWindow object 506

CHAPTER 20 Controlling Updates in DataWindow Objects 509
About controlling updates... 509
Changing update settings .. 510

Specifying the table to update ... 511
Specifying the unique key columns....................................... 511
Specifying an identity column.. 512
Specifying updatable columns... 512
Specifying the WHERE clause for update/delete 513
Specifying update when key is modified 515

Using stored procedures to update the database 516

CHAPTER 21 Displaying and Validating Data .. 519
About displaying and validating data.. 519

Presenting the data ... 520
Validating data... 520

Contents

User’s Guide xv

About display formats... 521
Working with display formats ... 522

Working with display formats in the Database painter 522
Working with display formats in the DataWindow painter 524

Defining display formats... 526
Number display formats .. 527
String display formats.. 530
Date display formats.. 530
Time display formats ... 531

About edit styles... 533
Working with edit styles.. 534

Working with edit styles in the Database painter................... 534
Working with edit styles in the DataWindow painter.............. 535

Defining edit styles ... 536
The Edit edit style.. 537
The DropDownListBox edit style ... 538
The CheckBox edit style.. 539
The RadioButtons edit style .. 540
The EditMask edit style ... 541
The DropDownDataWindow edit style................................... 543

Defining a code table ... 546
How code tables are implemented .. 546
How code tables are processed .. 548
Validating user input.. 549

About validation rules... 549
Understanding validation rules .. 550

Working with validation rules.. 551
Working with validation rules in the Database painter........... 551
Working with validation rules in the DataWindow painter...... 555

Summary of maintaining the entities .. 558

CHAPTER 22 Filtering, Sorting, and Grouping Rows 559
Filtering rows.. 559
Sorting rows ... 561

Suppressing repeating values ... 563
Grouping rows.. 564

Using the Group presentation style 566
Defining groups in an existing DataWindow object 569

CHAPTER 23 Highlighting Information in DataWindow Objects 577
Highlighting information.. 577

Modifying properties when designing 577
Modifying properties at runtime ... 578

Contents

xvi PocketBuilder

Modifying properties conditionally at runtime 582
Example 1: creating a gray bar effect.................................... 584
Example 2: rotating controls.. 585
Example 3: highlighting rows of data..................................... 586

Supplying property values.. 587
Background.Color.. 589
Border.. 590
Brush.Color ... 591
Brush.Hatch... 591
Color.. 591
Font.Escapement (for rotating controls) 592
Font.Height.. 593
Font.Italic... 593
Font.Strikethrough... 594
Font.Underline... 595
Font.Weight ... 596
Format ... 596
Height .. 597
Pen.Color .. 597
Pen.Style ... 598
Pen.Width.. 599
Protect ... 599
Timer_Interval ... 599
Visible.. 599
Width ... 600
X.. 600
X1, X2.. 601
Y.. 601
Y1, Y2.. 602

Specifying colors .. 602

CHAPTER 24 Working with Graphs... 605
About graphs.. 605

Parts of a graph... 606
Types of graphs... 608
Using graphs in applications ... 612

Using graphs in DataWindow objects .. 612
Placing a graph in a DataWindow object............................... 613
Using the graph's Properties view... 614
Changing a graph's position and size.................................... 615
Associating data with a graph ... 617
Using overlays... 628

Using the Graph presentation style.. 629

Contents

User’s Guide xvii

Defining a graph's properties ... 630
Using the General page in the graph's Properties view 630
Sorting data for series and categories................................... 632
Specifying text properties for titles, labels, axes, and

legends ... 632
Specifying overlap and spacing... 636
Specifying axis properties ... 636

Using graphs in windows ... 639

PART 6 TESTING AND RUNNING YOUR APPLICATION

CHAPTER 25 Testing and Debugging Applications.. 643
Overview of debugging and testing applications.......................... 643
Debugging an application... 644

Starting the debugger.. 645
Setting breakpoints.. 647
Running in debug mode .. 651
Examining an application at a breakpoint.............................. 652
Stepping through an application.. 657
Debugging windows opened as local variables..................... 659
Just-in-time debugging .. 660
Generating a trace file without timing information 661

Testing an application on the desktop.. 662
Running the application on the desktop 662
Handling errors during execution .. 662

CHAPTER 26 Packaging and Distributing an Application.............................. 667
Packaging an application ... 667
Using dynamic libraries .. 670
Distributing resources .. 671

Using PocketBuilder resource files.. 673
Creating a project... 676
Defining the project .. 677
Building and deploying the project ... 681

How PocketBuilder builds the project.................................... 682
How PocketBuilder searches for objects............................... 683
Listing the objects in a project ... 687
Troubleshooting errors during CAB file generation 687

Signing applications and CAB files .. 689
Security concepts .. 689
Managing certificates .. 691
Signing an application and CAB file 693

Contents

xviii PocketBuilder

Delivering your application to end users 693
Building CAB files.. 695
Distributing the application .. 698

PART 7 APPENDIXES

APPENDIX A Extended Attribute System Tables .. 703
About the extended attribute system tables 703
The extended attribute system tables .. 704
Edit style types for the PBCatEdt table .. 707

CheckBox edit style (code 85)... 707
RadioButton edit style (code 86) ... 708
DropDownListBox edit style (code 87) 709
DropDownDataWindow edit style (code 88).......................... 710
Edit edit style (code 89)... 712
Edit Mask edit style (code 90) ... 713

APPENDIX B PowerBuilder and PocketBuilder Product Differences............ 717
PocketBuilder features ... 717
Differences required by target platform.. 720
Unsupported PowerBuilder features .. 722
Deployment and runtime differences ... 727
Converting a PowerBuilder application .. 730

APPENDIX C The OrcaScript Language... 733
About OrcaScript .. 733
OrcaScript Commands... 735
Usage notes for OrcaScript commands and parameters 741

APPENDIX D Designing Applications for Windows CE Platforms................. 747
General considerations .. 747
Comparative performance.. 748
Designing for the Pocket PC .. 748
Designing for the Smartphone ... 750
Message processing on different devices 753
Porting an application from the Pocket PC to the Smartphone.... 754
Screen rotation on the WM 2003 SE platform.............................. 755

Index ... 757

User’s Guide xix

About This Book

Audience This guide is for programmers building applications with
PocketBuilder™. It assumes that:

• You either have read the Introduction to PocketBuilder included with
the PocketBuilder product or have a basic familiarity with
PowerBuilder®. (PocketBuilder uses PowerScript®, the same
scripting language as PowerBuilder, with modifications for the
Windows CE environment.)

• You have a basic familiarity with Windows CE devices. Although
your development work in PocketBuilder is done on a desktop
machine, you design applications for use on Windows CE devices
such as the Pocket PC or Smartphone.

For information about developing applications for Microsoft
Windows CE, see the Microsoft Windows CE documentation at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wceintro/html/cestart.asp. You can also find helpful information at
the Pocket PC Developer Network Web site at
http://www.pocketpcdn.com.

How to use this book This book gives an overview of the PocketBuilder development
environment and explains in detail how to use the PocketBuilder user
interface, which allows you to create and deploy applications to a
supported Windows CE device or emulator. It describes basic techniques
for building the objects in an application for a handheld device, including
windows, menus, DataWindow® objects, and user-defined objects.

Related documents PocketBuilder documentation The PocketBuilder documentation set
also includes the following manuals:

• Introduction to PocketBuilder - Provides an overview of
PocketBuilder features and the PocketBuilder development
environment and a tutorial that leads the new user through the basic
process of creating and deploying PocketBuilder applications.

• Resource Guide - Presents advanced programming techniques and
information about connecting to and synchronizing with a database.

xx PocketBuilder

PocketBuilder reference set The PocketBuilder reference set is made up of
four manuals that are based on PowerBuilder documentation:

• Connection Reference - Describes the database parameters and
preferences you use to connect to a database in PocketBuilder.

• DataWindow Reference - Lists the DataWindow functions and properties
and includes the syntax for accessing properties and data in DataWindow
objects.

• Objects and Controls - Describes the system-defined objects and their
default properties, functions, and events.

• PowerScript Reference - Describes syntax and usage for the PowerScript
language including variables, expressions, statements, events, and
functions.

Online Help Reference information for PowerScript properties, events, and
functions is available in the online Help with annotations indicating which
objects and methods are applicable to PocketBuilder.

SQL Anywhere® Studio documentation PocketBuilder is tightly
integrated with Adaptive Server® Anywhere (ASA), UltraLite®, and
MobiLink, which are components of SQL Anywhere Studio. You can install
these products from the PocketBuilder setup program. Documentation for SQL
Anywhere Studio is included in a separate collection on the PocketBuilder
Technical Library CD and in online Help. For an introduction to these products,
see Chapter 1 in the Introduction to PocketBuilder.

Sample applications The PocketBuilder installation provides a Code Examples workspace with
targets that illustrate many of the product's features. Commented text inside
events of target objects helps explain the purpose of the sample code. The
example workspace is installed in the Code Examples subdirectory under the
main PocketBuilder directory.

More applications on
the Web

You can find more sample PocketBuilder applications and techniques in the
PocketBuilder project on the Sybase® CodeXchange Web site at
http://pocketpb.codexchange.sybase.com/. There is a link to this page on the
Windows Start menu at Program Files>Sybase>PocketBuilder 2.0>Code
Samples.

If you have not logged in to MySybase, you must log in to the Sybase Universal
Login page to access CodeXchange. If you do not have a MySybase account,
you can sign up. MySybase is a free service that provides a personalized portal
into the Sybase Web site.

 About This Book

User’s Guide xxi

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Technical
Library Product Manuals Web site to learn more about your product.

• The Getting Started CD contains release bulletins and installation guides
in PDF format and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD you need
Adobe Acrobat Reader, which is downloadable at no charge from the
Adobe Web site, using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access
technical information about your product in an easy-to-use format.

• The Technical Library Product Manuals Web site is an HTML version of
the SyBooks CD that you can access using a standard Web browser. In
addition to product manuals, you will find links to the Technical
Documents Web site (replacement for the Tech Info Library), the Solved
Cases page, and Sybase newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

xxii PocketBuilder

Conventions The formatting conventions used in this manual are:

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Formatting example To indicate

Retrieve and Update When used in descriptive text, this font indicates:

• Command and function names

• Datatypes such as integer and char

• Database column names such as emp_id and
f_name

• Keywords such as NULL and TRUE

• User-defined objects such as dw_emp or
w_main

variable or file name When used in descriptive text and syntax
descriptions, oblique font indicates:

• Variables, such as myCounter

• Parts of input text that must be supplied, such as
pklname.pkd

• File and path names

File>Save Menu names and menu items are displayed in plain
text. The greater than symbol (>) shows you how
to navigate menu selections. For example,
File>Save indicates “select Save from the File
menu.”

dw_1.Update() Monospace font indicates:

• Information that you enter in a dialog box or on
a command line

• Sample script fragments

• Sample output fragments

P A R T 1 The PocketBuilder
Environment

This part describes the basics of using PocketBuilder,
understanding and customizing the development
environment, and creating workspaces and targets.

User’s Guide 3

C H A P T E R 1 Working with PocketBuilder

About this chapter This chapter describes the basics of working in the PocketBuilder
integrated development environment (IDE).

Contents

Before you begin The PocketBuilder IDE is very similar to the PowerBuilder IDE. Wizards,
tools, and application development features in PocketBuilder are based on
the same or similar features in PowerBuilder.

For a summary of differences between PowerBuilder and PocketBuilder,
see Appendix B, “PowerBuilder and PocketBuilder Product
Differences.”

Concepts and terms
This section discusses some basic concepts and terms you need to be
familiar with before you start using PocketBuilder to develop applications
and components.

Topic Page

Concepts and terms 3

The PocketBuilder environment 7

Creating and opening workspaces 13

Using wizards 14

Creating a target 15

Managing workspaces 18

Building workspaces 20

Managing databases 20

Working with tools 22

Using online Help 26

Building an application 28

Concepts and terms

4 PocketBuilder

Workspaces and targets
In PocketBuilder, you work with one or more targets in a workspace. Typically
a target is associated with a single application. You can add as many targets to
the workspace as you want, open and edit objects in multiple targets, and build
and deploy multiple targets at once.

A PocketBuilder target is also referred to as a PowerScript target because it is
built using the PowerScript language. PocketBuilder targets have PKT
extensions to differentiate them from PowerScript targets in PowerBuilder,
which have PBT extensions. (PowerBuilder Web and JSP targets are not
supported in PocketBuilder.)

For more information about creating a workspace and targets, see “Creating
and opening workspaces” on page 13 and “Creating a target” on page 15.

Objects
A PocketBuilder application is a collection of objects. PocketBuilder provides
many types of objects, including visual objects such as windows, menus,
buttons, and graph controls, and nonvisual objects such as the datastore,
exception objects, and transaction objects.

As you work to develop a PocketBuilder application, you create new objects
and open and modify existing objects.

For more information about creating, opening, and editing objects, see
“Working with objects” on page 78.

DataWindow objects
The applications you build are often centered around your organization’s data.
With PocketBuilder you can define DataWindow objects to retrieve, display,
and manipulate data. For more information about DataWindow objects, see
Chapter 17, “Defining DataWindow Objects.”

CHAPTER 1 Working with PocketBuilder

User’s Guide 5

PocketBuilder libraries
As you work in a PocketBuilder target, the objects you create are stored in one
or more libraries (PKL files) associated with the application. PKL files are
similar to PBL files associated with PowerBuilder applications. When you run
your application, PocketBuilder retrieves the objects from the library.

PocketBuilder provides a Library painter for managing your libraries. For
information about creating a new library and working with libraries in the
Library painter, see Chapter 4, “Working with Libraries.”

Painters and editors
The editors you use to edit objects are called painters. For example, you build
a window in the Window painter. There you define the properties of the
window, add controls such as buttons and labels, and code the window and its
controls to work as your application requires.

PocketBuilder provides painters for windows, menus, DataWindow objects,
visual and nonvisual user-defined objects, functions, structures, databases, and
the application itself. For each of these object types, there is also a Source
editor in which you can modify code directly. See “Working in painters” on
page 56 and “Using the Source editor” on page 84.

There is also a file editor you can use to edit any file without leaving the
development environment. See “Using the File editor” on page 25.

Events and scripts
PocketBuilder applications are event driven: users of the PocketBuilder
applications you develop can control the flow of the applications by the actions
they take. When a user taps a button, chooses an item from a menu, or enters
data into a text box, an event is triggered. You write scripts that specify the
processing that should happen when events are triggered.

For example, buttons have a Clicked event. You write a script for a button's
Clicked event that specifies what happens when the user taps the button.
Similarly, edit controls have a Modified event that is triggered each time the
user changes a value in the control.

Concepts and terms

6 PocketBuilder

You write scripts in PocketBuilder using PowerScript, an object-oriented
scripting language. You can type, drag and drop, or paste script in a Script view
of the painter for the object you are working on. Scripts consist of PowerScript
functions, expressions, and statements that perform actions or process data and
text in response to an event.

The script for a button's Clicked event might retrieve and display information
from the database; the script for an edit control's Modified event might evaluate
the data and perform processing based on the data.

Scripts can also trigger events. For example, the script for a button’s Clicked
event might open a new window, which triggers the Open event in that window.

Functions
PowerScript provides a rich assortment of built-in functions you use to act
upon the objects and controls in your application. There are functions to open
a window, close a window, enable a button, retrieve data, update a database,
and so on.

You can also build your own functions to define processing unique to your
application.

Properties
All the objects and controls in a PowerScript target have properties, many of
which you set as you develop an application. For example, you specify a label
for a button by setting its text property. You can set these properties in painters
or set and modify them dynamically in scripts.

CHAPTER 1 Working with PocketBuilder

User’s Guide 7

The PocketBuilder environment
When you start PocketBuilder for the first time, the Welcome to PocketBuilder
dialog box lets you create a new workspace with or without targets.

Figure 1-1: The Welcome to PocketBuilder dialog box

When PocketBuilder starts, it opens in a window that contains the menu bar
and the toolbar (PowerBar) at the top, the System Tree and Clip window on the
left, and the Output window at the bottom. The remaining area is for the display
of painters and editors that you open when you start working with objects.

The System Tree
The System Tree provides an active resource of programming information that
you use while developing targets.

Displaying or hiding
the System Tree

The System Tree displays by default when you start PocketBuilder for the first
time. You can hide or display the System Tree by using the System Tree button
on the PowerBar or by selecting Window>System Tree.

The System Tree displays the current workspace and all its targets. You can
expand each target node to display the library list for the target and all the
objects in each target library (PKL). The System Tree works like a tree view in
the Library painter, but you can keep it open all the time to serve as the control
center of the development environment. It also displays properties, functions,
events, structures, and controls, duplicating features in the PocketBuilder
Browser.

The PocketBuilder environment

8 PocketBuilder

Setting the root in the
System Tree

You can set the root of the System Tree to your computer’s root directory, the
current selection, or any directory or library, as well as to the current
workspace. The same capability is available in the Library painter.

Working with targets
To access the pop-up menu that lets you perform operations on a target such as
search, build, and migrate, you must set the root of the System Tree or the view
in the Library painter to the current workspace.

The following illustration shows two targets, including one that lists multiple
libraries in its search path.

Figure 1-2: System Tree showing two targets

CHAPTER 1 Working with PocketBuilder

User’s Guide 9

You can use the System Tree as the hub of your PocketBuilder session. Pop-up
menus let you build and deploy targets, and open and edit any object. The
following table lists the actions you can take from the pop-up menu that
displays for each item in the System Tree. You can also set properties for each
item, choose which object types display in the tree view, change the root of the
System Tree, and reset the root to the current workspace.

Table 1-1: Action items for objects in the System Tree

The PowerBar
Default PowerBar
buttons

Like the System Tree, the PowerBar provides a main control point for building
PocketBuilder applications. From the PowerBar you can create new objects
and applications, open existing objects, and debug and run the current
application.

Figure 1-3: Default PowerBar buttons

You can display a label on each button in a toolbar to remind you of its purpose.
To do so, right-click a toolbar button and select Show Text from the pop-up
menu.

Table 1-2: PowerBar buttons and their uses

Item Menu action items

Workspace (PKW) New (opens New dialog box), Add Target, Open
Workspace, Incremental Build, Full Build, Deploy,
Debug, Run, Close, Show, Properties.

PowerScript target
(PKT)

New, Search, Incremental Build, Full Build, Migrate,
Deploy, Debug, Run, Remove Target, Show, Properties.

PocketBuilder library
(PKL)

Delete, Search, Optimize, Print Directory, Build Runtime
Library, Import, Show, Properties.

PocketBuilder object Edit, Edit Source, Copy, Move, Delete, Export,
Regenerate, Search, Print, Properties.

Edit Source is not available for project objects. Inherit
and Run/Preview are available only for some object
types.

This PowerBar
button Lets you do this

New Create new objects.

Inherit Create new windows, user objects, and menus by inheriting from
an existing object.

The PocketBuilder environment

10 PocketBuilder

Open Open existing objects.

Run/Preview Run windows or preview DataWindows.

System Tree Work in the System Tree window, which can serve as the hub of
your development session.

Output Window Examine the output of a variety of operations (migration, builds,
deployment, project execution, object saves, and searches). See
“The Output window” on page 12.

Next Error,
Previous Error

Navigate through the Output window.

To-Do List Keep track of development tasks you need to do for the current
application and use links to get you quickly to the place where
you complete the tasks.

Browser View information about system objects and objects in your
application, such as their properties, events, functions, and global
variables, and copy, export, or print the information.

Clip Window Store objects or code you use frequently. You can drag or copy
items to the Clip window to be saved and then drag or copy these
items to the appropriate painter view when you want to use them.
See “The Clip window” on page 11.

Library Manage your libraries using the Library painter.

DB Profile Define and use named sets of parameters to connect to a
particular database.

Database Maintain databases and database tables, control user access to
databases, and manipulate data in databases using the Database
painter.

Edit Edit text files (such as source, resource, and initialization files)
in the File editor.

Launch Emulator Open a dialog box that lets you select the Pocket PC or
Smartphone emulator that you want to start up.

Incremental
Build Workspace

Update all the targets and objects in the workspace that have
changed since the last build.

Full Build
Workspace

Update all the targets and objects in the workspace.

Deploy
Workspace

Deploy all the targets in the workspace.

Skip Interrupt a build, deploy, or search operation. When a series of
operations is in progress, such as a full deploy of the workspace,
the Skip button lets you jump to the next operation.

Stop Cancel all build, deploy, or search operations.

This PowerBar
button Lets you do this

CHAPTER 1 Working with PocketBuilder

User’s Guide 11

Customizing the
PowerBar

You can customize the PowerBar. For example, you can choose whether to
move the PowerBar around, add buttons for operations you perform frequently,
and display text in the buttons.

For more information, see “Using toolbars” on page 39.

About PowerTips In the PowerBar, when you leave the mouse pointer over a button for a second
or two, PocketBuilder displays a brief description of the button, called a
PowerTip. PowerTips display in PocketBuilder wherever there are toolbar
buttons.

The Clip window
You can store frequently used code fragments in the Clip window. You copy
text to the Clip window to save it and then drag or copy this text to the
appropriate Script view or editor when you want to use it.

Using the Clip window The Clip window displays a list of named clips and a preview of the
information contained in each clip. It provides buttons to move Clip window
contents to the clipboard, copy clipboard contents to the Clip window, rename
a clip, and delete a clip. Clips you save in one workspace are available in all
your workspaces; you might want to use a naming convention that reflects this.

For example, you might have standard error-checking code that you want to
reuse on a regular basis. You can copy it to the clipboard by highlighting the
code in Script view and selecting Copy from the pop-up menu. In the Clip
window, click the Paste icon, and name the clip.

You can drag a clip from the Clip window to any script to which you want to
add it. You can also use the Copy icon to copy the clip to the clipboard.

Debug Debug the last target you ran or debugged. You can set
breakpoints and watch expressions, step through your code,
examine and change variables during execution, and view the
call stack and objects in memory.

Select & Debug Select a target and open the Debugger.

Run Run the last target you ran or debugged just as your users would
run it.

Select & Run Select a target and run it.

Exit Close PocketBuilder.

This PowerBar
button Lets you do this

The PocketBuilder environment

12 PocketBuilder

You can hide or display the Clip window by using the Clip Window button on
the PowerBar or selecting Window>Clip.

Figure 1-4: Clip window with three clip entries

The Output window
The output of a variety of operations (migration, builds, deployment, project
execution, object saves, and searches) displays in the Output window. You
control operations in the window using the Skip, Stop, Next Error, and
Previous Error buttons or menu options.

You can hide or display the Output window by using the Output button on the
PowerBar or by selecting Window>Output.

Using the Output
window

When applicable, lines in the Output window provide links that invoke the
appropriate painter when you double-click on a given line. The pop-up menu
also provides the options Edit and Edit Source to open an object in a painter or
the Source editor.

Figure 1-5: Output window with deployment output

CHAPTER 1 Working with PocketBuilder

User’s Guide 13

Creating and opening workspaces
Before you can begin any development in PocketBuilder, you need to create or
open a workspace.

Creating a workspace

❖ To create a new workspace:

1 Do one of the following:

• Click the New button in the PowerBar

• Select File>New from the menu bar

• In the System Tree, right-click the workspace name and select New
from the pop-up menu

The New dialog box displays.

2 In the Workspace page of the New dialog box, select Workspace.

The New Workspace dialog box displays.

3 Enter a name for the workspace you want to create and click Save.

The workspace is created and the name of the new workspace displays in
the PocketBuilder title bar. Workspaces have the extension PKW.

Opening a workspace
By default, the last workspace you open in a PocketBuilder session is opened
automatically in the next session. You can change this behavior by modifying
options on the Workspaces tab of the System Options dialog box or on the
Welcome to PocketBuilder screen. For example, you can have PocketBuilder
open not only the workspace, but also the objects and scripts you worked on
last. See “Starting PocketBuilder with an open workspace” on page 31.

When PocketBuilder opens with an existing workspace, it displays the name of
the current workspace in the title bar. The current workspace is also displayed
in the System Tree. Although you can create multiple workspaces in a single
instance of PocketBuilder, you can have only one workspace open at a time.
You can change workspaces at any time. You can also run multiple instances
of PocketBuilder simultaneously.

Using wizards

14 PocketBuilder

❖ To change workspaces:

1 Do one of the following:

• Select File>Open Workspace from the menu bar

• In the System Tree, right-click on the workspace name and select
Open Workspace from the pop-up menu

The Open Workspace dialog box displays.

2 From the list, select the workspace you want to open.

The workspace is changed and the name of the new workspace displays in
the PocketBuilder title bar.

❖ To change the workspace to a recent workspace:

• Select File>Recent Workspaces from the menu bar and select the
workspace

The workspace list includes the eight most recently accessed workspaces.
You can change this by selecting Tools>System Options and modifying
the number of items.

Using wizards
After you have created a workspace, you can add new or existing targets to it.
The first step in building a new PocketBuilder target is to use a Target wizard
to create the new target and name it.

About wizards Wizards simplify the creation of applications and objects. Using your
specifications, wizards can create multiple objects and in some cases
automatically generate complex code that you can modify as needed. In most
wizards, the first page explains what the wizard builds. If you need help with a
field on a wizard page, place the cursor in that field and press F1.

You start wizards from the New dialog box, but not all the icons in the New
dialog box represent wizards. For example, the Application icon on the Project
page of the New dialog box opens the Project painter, where you can enter
required values without being prompted by the Application Project wizard.

CHAPTER 1 Working with PocketBuilder

User’s Guide 15

Related wizards The PocketPC and SmartPhone Application Creation wizards on the Target
page of the New dialog box can launch the Connection Object wizard and the
Application project wizard. If you make selections to create a connection
object and a project in one of the Application Creation wizards, the Connection
Object and Application project wizards are started automatically.

You can also complete the Application Creation wizards without launching
secondary wizards. If your application requires a SQL connection object, you
can create one later with the Connection Object wizard on the PBObjects page
of the New dialog box. You can create a project later with the Application
wizard on the Project page of the New dialog box.

Creating a target
When you create a target, you are prompted for the name and location of a
target (PKT) file and one or more other objects. A target file is an ANSI text
file that contains information about the target.

❖ To create a new target:

1 Do one of the following:

• Click the New button in the PowerBar

• Select File>New from the menu bar

• In the System Tree, highlight the workspace name and select New
from the pop-up menu

The New dialog box opens.

2 On the Target tab page, select one of the Target wizards.

3 Follow the instructions in the wizard, providing the information the wizard
needs.

Creating a target

16 PocketBuilder

You can review your choices on a summary page that displays when you
have finished entering information.

Figure 1-6: Summary page of an Application creation wizard

Be sure the Generate To-Do List check box is selected if you want the
wizard to add items to the To-Do List to guide and facilitate your
development work.

4 When you are satisfied with your choices in the wizard, click Finish.

The objects are created in the target you specified. If you specified that
items were to be added to the To-Do List, you can see the items by clicking
the To-Do List button in the PowerBar.

As you develop the application, you can use linked items on the To-Do list
to open an object in the specific painter and view where you need to work.
See “Using the To-Do List” on page 23.

PowerScript application targets
You can create only Single Document Interface (SDI) applications for
Windows CE. Multiple Document Interface (MDI) application types are not
supported on Windows CE devices.

CHAPTER 1 Working with PocketBuilder

User’s Guide 17

The Target page of the New dialog box in PocketBuilder has wizards that you
can use to create or convert PowerScript targets and to add the targets to a
PocketBuilder workspace:

• Application Target wizard

• Application Creation Target wizards

• Existing Application Target wizard

• Import Desktop to CE

Application Target
wizard

The Application Target wizard creates an Application object and the library
(PKL) and target (PKT) containing it.

Application Creation
Target wizards

The PocketPC and SmartPhone Application Creation Target wizards create an
Application object, a PKL, and a PKT, as well as a set of basic objects and
scripts. If the application requires a connection to a SQL database, the wizard
automatically creates a connection object and integrates it into the application.

Existing Application
Target wizard

The Existing Application Target wizard adds a target to your workspace that
uses an existing application. In the wizard, you must select an Application
object in a PKL file.

After you complete the wizard, the Migrate Application dialog box opens if
you need to migrate the application for compatibility to the current
PocketBuilder version.

Before you migrate
Always make a backup copy of all the PKL files used in an application before
you migrate it or convert it to the current version of PocketBuilder.

You should check the PocketBuilder Release Bulletin for the version you are
using to find out if there are migration issues that might affect you.

Import Desktop to CE You can select a PowerScript target that was built in PowerBuilder 7, 8, 9, or
10 and convert it to a PocketBuilder target. The Import Desktop to CE wizard
copies and converts into PKL files all the PBL files in the target you select on
the first page of the wizard. The wizard also references the PKL files in a new
target with a PKT extension.

The original target and libraries are left in their original directories, which is
also where the new target and migrated libraries are saved. The conversion
wizard gives you the option of adding the new target to the current
PocketBuilder workspace.

Managing workspaces

18 PocketBuilder

Files converted by the wizard keep the same names as the original files except
for their extensions. The PowerBuilder VM for your source files (PBT and
PBL files) must be in your system's PATH variable. The wizard uses the
PBVMxx.DLL and the compiler PBCMPxx.DLL to convert the source files,
where xx is the version of the PowerBuilder VM.

Generating an application that is not in the current workspace can cause
compile errors during the conversion of PBL files to PKL files. However, once
the target has been added to a workspace, a full rebuild fixes everything unless
there are true compile errors in the library you are converting.

For additional considerations in converting a PowerBuilder application to a
PocketBuilder application, see “Converting a PowerBuilder application” on
page 730.

A wizard is available on the Tool page of the New dialog box for converting
PocketBuilder targets to PowerBuilder targets. For information, see
“Converting a PocketBuilder target to PowerBuilder” on page 26.

Managing workspaces
The tasks you might need to perform to manage a workspace include adding
and removing targets, and specifying workspace properties.

Adding an existing target to a workspace
Although you can have only one workspace open at a time in a single instance
of PocketBuilder, you can add as many targets to the workspace as you want,
and you can open and edit objects in multiple targets.

❖ To add an existing target to a workspace:

1 Right-click on the workspace displayed in the System Tree and select Add
Target from the pop-up menu.

The Add Target to Workspace dialog box displays.

2 Navigate to the directory containing the target you want to add and select
the target file.

3 Click Open.

The target is added to your current workspace.

CHAPTER 1 Working with PocketBuilder

User’s Guide 19

Removing a target from a workspace
When you remove a target from a workspace, the target file is not deleted from
the hard drive.

❖ To remove a target from a workspace:

1 Right-click on the target displayed in the System Tree.

2 Select Remove Target from the pop-up menu.

Specifying workspace properties
You specify workspace properties in the Properties of Workspace dialog box.

❖ To specify workspace properties:

1 In the System Tree, select Properties from the pop-up menu for the
workspace.

2 Select the Targets or Deploy Preview tab page.

3 Specify the properties as described in the following sections.

Specifying target order You can specify the targets and the order in which those targets are built or
deployed on the Targets tab page. All the targets identified with the workspace
are listed. Check the targets you want to include in the workspace build or
deployment. Use the arrows to change a target’s position in the target order list.

Previewing
deployment

You can verify the targets and the order in which those targets are built or
deployed on the Deploy Preview tab page. To make changes, you need to use:

• The Targets page in the Properties of Workspace dialog box to change the
targets selected for deployment

• The Deploy page on the target’s properties dialog box to specify which
projects in a PowerScript target are built

Building workspaces

20 PocketBuilder

Building workspaces
You can build and deploy workspaces from within PocketBuilder or from a
command line. For information on working from a command line, see the
Resource Guide.

Build and deploy
options

In the development environment, you can specify how you want the targets in
your workspace to be built and deployed. You can then build individual targets
or all the targets in the workspace.

Table 1-3: Building and deploying targets and workspaces

Managing databases
PocketBuilder installs with SQL Anywhere Studio 9.0.1 tools that you use to
manage your application databases. SQL Anywhere Studio includes the
Adaptive Server Anywhere (ASA) relational database system and the
MobiLink synchronization server.

To do this Do this

Set deployment options
for a target

Select Properties from the pop-up menu for the target and
select the Deploy tab. Select the check box next to a
project to build it when you deploy the target. Use the
arrows to set the order in which projects are built.

Set options for each project in the target in the Project
painter.

Set build and
deployment options for
the workspace

Select Properties from the pop-up menu for the
workspace and select the order in which targets should be
built. On the Deploy Preview page, you can check which
projects and deploy configurations are currently selected.

Build, migrate, or deploy
a selected target

Select Incremental Build, Full Build, Migrate, or Deploy
from the pop-up menu for the target. Deploy builds the
projects in the target in the order listed on the Deploy
page of the target properties dialog box.

Build or deploy all the
targets in the workspace

Select Incremental Build, Full Build, or Deploy from the
pop-up menu for the workspace, from the Run menu, or
from the PowerBar.

CHAPTER 1 Working with PocketBuilder

User’s Guide 21

PocketBuilder supports ASA databases through ODBC. With MobiLink you
can synchronize data between an ASA or UltraLite database and an enterprise
database that uses ASA or a different database management system, such as
Oracle, Microsoft SQL Server, IBM DB2, or Sybase Adaptive Server
Enterprise. MobiLink can use a variety of protocols including TCP/IP, HTTP,
HTTPS, and Microsoft ActiveSync to synchronize the consolidated database
with the remote database on the Windows CE device. Synchronization can be
bidirectional.

For information about MobiLink support in PocketBuilder, see Chapter 16,
“Managing the Database,” and the chapter on MobiLink synchronization in the
Resource Guide.

What you can do At design time, you use the Database painter in PocketBuilder to access ASA
or UltraLite databases and perform the following operations:

• Modify local table and column properties

• Retrieve, change, and insert data

• Create new local tables or modify existing tables

• Create a new database or delete an existing database

For information about using the Database painter, see Chapter 16, “Managing
the Database.”

Setting the database
connection

When you open a painter that communicates with the database (such as the
Database painter or DataWindow painter), PocketBuilder connects you to the
database you used last, if you are not already connected. If the connection to
the default database fails, the painter still opens.

If you do not want to connect to the database you used last, you can deselect
the Connect to Default Profile option in the Database Preferences dialog box.

Changing the
database connection

You can change to a different database at any time. You can have several
database connections open at a time, although only one connection can be
active. The database components for each open connection are listed in the
Objects view of the Database painter.

The Database painter title bar displays the number of open connections and
indicates which is active. The title bar for each view displays the connection
with which it is currently associated. You can change the connection with
which a view is associated by dragging the profile name for a different
connection onto the view.

Working with tools

22 PocketBuilder

Working with tools
PocketBuilder provides a variety of tools to help you with your development
work. There are several ways to open tools:

• Click a button for the tool you want in the PowerBar

• Select the tool from the Tools menu

• Open the New dialog box and select the tool you want on the Tool tab page

Tools in the PowerBar Table 1-4 lists the tools available in the PowerBar. Some of these tools are also
listed on the Tools menu.

Table 1-4: Tools available in the PowerBar

Tool What you use the tool for

To-Do List Keep track of development tasks you need to do for the current
target and create links to get quickly to the place where you
need to complete the tasks. For information, see “Using the To-
Do List” on page 23.

Browser View information about system objects and objects in your
PowerScript target, such as properties, events, functions, and
global variables, and copy, export, or print the information. For
information, see “Browsing the class hierarchy” on page 276.

Library painter Manage libraries, create a new library, and build dynamic
libraries.

Database profiles Define and use named sets of parameters to connect to a
particular database. For information, see the PocketBuilder
Resource Guide.

Database painter View and manage database connections for your applications.
For information, see Chapter 16, “Managing the Database.”

File editor Edit text files such as source, resource, and initialization files.
For information, see “Using the File editor” on page 25.

Launch emulator Open a Pocket PC or Smartphone emulator on the desktop. If
PocketBuilder cannot find a supported emulator on the
desktop, an error message displays.

Debugger Set breakpoints and watch expressions, step through your
application, examine and change variables during execution,
and view the call stack and objects in memory. For
information, see Chapter 25, “Testing and Debugging
Applications.”

CHAPTER 1 Working with PocketBuilder

User’s Guide 23

Tools in the New
dialog box

Table 1-5 lists the tools you can launch from the Tool tab page in the New
dialog box. The Library painter and File editor can also be launched from the
Tools menu and the toolbar.

Table 1-5: Tools available in the New dialog box

Using the To-Do List
The To-Do List displays a list of development tasks you need to do. You can
create tasks for any target in the workspace or for the workspace itself. A
drop-down list at the top of the To-Do List lets you choose which tasks to
display. To open the To-Do List, click the To-Do List button in the PowerBar
or select Tools>To-Do List from the menu bar.

To-Do List entries The entries on the To-Do List are created in two ways:

• Automatically by some PocketBuilder wizards to guide you through the
continued development of objects of different types that you will need to
build the application or component specified by the wizard

• By you at any time when you are working in a painter and want to create
a link to a task you want to remember to complete

Tool What you use the tool for

File editor Edit text files such as source, resource, and initialization
files. For information, see “Using the File editor” on
page 25.

Library Manage libraries, create a new library, and build
dynamic libraries.

DataWindow Syntax Report on properties of DataWindow objects and the
controls within DataWindow objects. For information,
see DataWindow Syntax online Help.

Export CE to Desktop Convert PocketBuilder libraries to PowerBuilder
libraries. For information, see “Converting a
PocketBuilder target to PowerBuilder” on page 26.

Manage Certificates Manage certificates that you can use to digitally sign
PocketBuilder applications and CAB files.

Code Signing Wizard Attach a digital signature to a file that you want to
deploy.

Working with tools

24 PocketBuilder

Some To-Do List entries created by wizards are hot-linked to get you quickly
to the painter and the specific object you need, or to a wizard. You can also
create an entry that links to the painter where you are working. This allows you
to return quickly to the object or script (event/function and line) you were
working on when you made the entry. When you move the pointer over entries
on the To-Do list, the pointer changes to a hand when it is over a linked entry.

Exporting and
importing lists

You can export or import a To-Do List by selecting Export or Import from the
pop-up menu. Doing this is useful if you want to move from one computer to
another or you need to work with To-Do Lists as part of some other system
such as a project management system.

Linked entries
If you import a list from another workspace or target, linked entries display in
the list, but the links are not active.

Working with entries
on the To-Do List

Table 1-6 tells you how to work with entries on the To-Do List.

Table 1-6: Using the To-Do List

To do this Do this

See linked entries Move the pointer over the entries. A hand displays when the
entry you are over is linked.

Use a linked entry to
get to a painter or
wizard

Double-click the linked entry, or select it and then select Go
To Link from the pop-up menu.

Add an entry with no
link

Select Add from the pop-up menu.

Add a linked entry to
a painter that edits
objects

With the painter open, select Add Linked from the pop-up
menu.

Add an entry for a
specific target

If the To-Do List is open, select the target from the
drop-down list at the top of the To-Do List and add the entry.
If the To-Do List is closed, select a target in the System Tree,
open the To-Do List, and add the entry.

Add an entry for the
workspace

Select Current Workspace from the drop-down list at the top
of the To-Do List and add the entry.

Change the list that
displays

Select a specific target or Current Workspace from the
drop-down list at the top of the To-Do List. To display tasks
for all targets and the workspace, select All Items.

Change an entry’s
position on the list

Drag the entry to the position you want.

Edit or delete an entry Select Edit or Delete from the pop-up menu.

CHAPTER 1 Working with PocketBuilder

User’s Guide 25

Using the File editor
One of the tools on the PowerBar and Tools menu is a text editor that is always
available. Using the editor, you can view and modify text files (such as
initialization files and tab-separated files with data) without leaving
PocketBuilder. Among the features the File editor provides are find and
replace, undo, importing and exporting text files, and dragging and dropping
text.

Setting file editing
properties

The File editor has font properties and an indentation property that you can
change to make files easier to read. If you do not change any properties, files
have black text on a white background and a tab stop setting of 3 for
indentation. Select Design>Options from the menu bar to change the tab stop
and font settings.

Editor properties apply elsewhere
When you set properties for the File editor, the settings also apply to the
Function painter, the Script view, the Source editor, the Interactive SQL view
in the Database painter, and the Debug window.

Dragging and
dropping text

To move text, simply select it, drag it to its new location, and drop it. To copy
text, press the Ctrl key while you drag and drop the text.

Delete checked
entries or all entries

Select Delete Checked or Delete All from the pop-up menu.

Check or uncheck an
entry

Click in the margin to the left of the entry or select an entry
and then select Check/Uncheck from the pop-up menu.

Export a To-Do List Select Export from the pop-up menu, name the To-Do List
text file, and click Save.

Import a To-Do List Select Import from the pop-up menu, navigate to an
exported To-Do List text file, and click Open.

To do this Do this

Using online Help

26 PocketBuilder

Converting a PocketBuilder target to PowerBuilder
Export CE to Desktop
wizard

You can convert a PocketBuilder target to a PowerBuilder target with the
Export CE to Desktop wizard. The wizard determines which version of
PowerBuilder you are using from your system’s PATH variable, then copies
and converts into PBL files all the PKL files in the target you select on the first
page of the wizard. The wizard also references the PBL files in a new target
with a PBT extension.

Creating ANSI or Unicode libraries
If you are converting a PocketBuilder target for use in PowerBuilder 10 or
higher, you must select the Create Unicode Libraries check box on the main
page of the wizard. You must not select this check box if you want to convert
the target to a PowerBuilder 8 or 9 target.

Files converted by the wizard keep the same names as the original files except
for their extensions. The PowerBuilder VM must be in your machine's PATH
variable in order for the conversion to proceed. The wizard uses the
PBVMxx.DLL and the compiler PBCMPxx.DLL to convert the PocketBuilder
source files, where xx is the version of the PowerBuilder VM.

The original target and libraries are left in their original directories, which is
also where the new target and migrated libraries are saved. It is good practice
to do a full rebuild after you add a target converted by the Export CE to
Desktop wizard to a PowerBuilder workspace.

Using online Help
PocketBuilder has two kinds of online Help: HTML Help and Windows Help.

About HTML Help HTML Help includes the PocketBuilder books: the Introduction to
PocketBuilder, this book (the User’s Guide), and the Resource Guide.

About Windows Help Windows Help contains context-sensitive reference information from the
following books: Objects and Controls, the DataWindow Reference, the
PowerScript Reference, and the Connection Reference. It also provides
context-sensitive help for dialog boxes and the wizards and tools in the New
dialog box.

Some Windows Help topics provide links to related topics in the HTML Help.

CHAPTER 1 Working with PocketBuilder

User’s Guide 27

Accessing Help Table 1-7 lists the ways you can access Help.

Table 1-7: Accessing online Help

Technical Library CD
and Web site

PocketBuilder books are also provided on a Sybase Technical Library CD and
the Technical Library Product Manuals Web site. For more information, see
“Other sources of information” on page xxi.

Action What it does

Use the Help menu on the
menu bar

Displays the Help contents or Help for the current
painter

In a wizard, press F1 Displays Help for the field in the wizard that has focus

In the Properties view in a
painter, select Help from the
pop-up menu on any tab
page

Displays a Help topic from which you can get Help on
the properties, events, and functions for the object or
control whose properties are displayed in the
Properties view

Add a Help button to the
PowerBar and use it

Displays the Help contents

Press F1 Displays the Help contents

Press Shift+F1 in the Script
view or Function painter

Displays context-sensitive Help about the function,
event, or keyword under the cursor

Select Help from the pop-up
menu in the Browser

Displays Help for the Browser or for the selected
object, control, or function

Click the Help button in a
dialog box

Displays information about that dialog box

Click the link to HTML
Help icon in a Windows
Help topic

Opens the HTML Help at the linked topic

Building an application

28 PocketBuilder

Building an application
This section describes the basic steps you follow when building an application
for deployment to a Windows CE device. After completing step 1, you can
work in any order, defining the objects used in your application as you need
them.

❖ To build an application for deployment to a Windows CE device:

1 Create the application using a target wizard from the New dialog box and
specify the library list for the application.

When you use a target wizard, you create the Application object, which is
the entry point into the application. The Application object contains the
name of the application and specifies the application-level scripts.

See Chapter 3, “Working with PowerScript Targets,” and Part 3, “Coding
Fundamentals.”

2 Create windows.

Place controls in the window and build scripts that specify the processing
that will occur when events are triggered.

See Chapter 10, “Working with Windows.”

3 Create menus.

Menus in your windows can include a menu bar, drop-down menus,
cascading menus, and pop-up menus. You define the menu items and write
scripts that execute when the items are selected.

See Chapter 13, “Working with Menus.”

4 Create user objects.

If you want to be able to reuse components that are placed in windows,
define them as user objects and save them in a library. Later, when you
build a window, you can simply place the user object on the window
instead of having to redefine the components.

See Chapter 14, “Working with User Objects.”

CHAPTER 1 Working with PocketBuilder

User’s Guide 29

5 Create functions, structures, and events.

To support your scripts, you define functions to perform processing unique
to your application and structures to hold related pieces of data. You can
also define your own user events.

See Chapter 7, “Working with User-Defined Functions,” Chapter 8,
“Working with User Events,” and Chapter 9, “Working with Structures.”

6 Create DataWindow objects.

Use these objects to retrieve data from the database, format and validate
data, analyze data through graphs and crosstabs, and update the database.

See Part 5, “Working with Databases and DataWindows.”

7 Test and debug your application.

You can run your application on the desktop at any time. If you discover
problems, you can debug your application on the desktop by setting
breakpoints, stepping through your code, and looking at the values of
variables during execution.

See Chapter 25, “Testing and Debugging Applications.”

8 Prepare an executable.

When your application is complete, you prepare an executable version to
deploy to handheld devices and distribute to your users.

See Chapter 26, “Packaging and Distributing an Application.”

Building an application

30 PocketBuilder

User’s Guide 31

C H A P T E R 2 Customizing PocketBuilder

About this chapter This chapter describes how you can customize the PocketBuilder
development environment to suit your needs and get the most out of
PocketBuilder’s productivity features.

Contents

Starting PocketBuilder with an open workspace
When you start a new PocketBuilder session, you can automatically
display the last workspace from the previous session. You can even
display the painters you had open in the previous session, and open a
Script view to the code you were last working on.

Changing start-up options Options on the Workspaces page of the System Options dialog box allow
you to determine what displays when you start PocketBuilder.

❖ To change start-up options for the development environment:

1 Select Tools>System Options from the menu bar.

2 Click the Workspaces tab and select start-up display options as
described in Table 2-1.

Topic Page

Starting PocketBuilder with an open workspace 31

Changing the design-time layout 32

Using toolbars 39

Customizing keyboard shortcuts 48

Changing fonts 49

Defining colors 50

Managing the PocketBuilder IDE 51

Changing the design-time layout

32 PocketBuilder

Table 2-1: Start-up options for PocketBuilder

Opening PocketBuilder from Windows Explorer
You can double-click a workspace file in Windows Explorer to open
PocketBuilder with that workspace displayed. PocketBuilder workspaces have
a PKW extension.

Changing the design-time layout
You can change the layout of the PocketBuilder main window in several ways.
This section describes:

• Using the Windows XP style for visual controls

• Showing or hiding the System Tree, Output, and Clip windows and
changing their locations

• Showing or hiding views in painters and changing their locations

You can also show or hide toolbars, change their locations, and add custom
buttons. See “Using toolbars” on page 39.

To open PocketBuilder with Do this

The last workspace you were working on Select the Reopen Workspace on Startup
check box.

The last workspace, and the painters and
editors you were using

Select the Reopen Workspace on Startup
and the Reload Painters When Opening
Workspace check boxes.

No workspace Clear the Reopen Workspace on Startup
check box. If you also select the Reload
Painters When Opening Workspace
check box, any painters and editors that
were open when you last closed a
workspace display when you open that
workspace. However, the workspace
does not automatically display on
start-up.

The Welcome dialog box Select the Show Start Dialog at Startup
with no Workspace check box. You must
also clear the Reopen Workspace on
Startup check box.

CHAPTER 2 Customizing PocketBuilder

User’s Guide 33

Using the Windows XP style for visual controls
The PocketBuilder development environment uses the Windows XP style for
visual controls when it runs on a Windows XP system and you have chosen the
Windows XP visual style for the display of controls. Visual controls using this
style include windows, scroll bars, and title bars. The controls in a window or
visual user object display with the Windows XP style in the Layout view of the
object painter, and when you preview the window or run the application in the
development environment.

Arranging the System Tree, Output, and Clip windows
Hiding and moving
windows

You can hide the System Tree, Output, and Clip windows at any time by
clicking their buttons on the PowerBar.

You can dock the System Tree, Output, and Clip windows at the top, bottom,
left, or right of the PocketBuilder main window by dragging the double bar at
the top or side of the windows.

Using the full width or
height of the main
window

Windows docked at the top or bottom of the PocketBuilder IDE occupy the full
width of the frame. You can change this default by clearing the Horizontal
Dock Windows Dominate check box on the General page of the System
Options dialog box. The following screen shows the Clip and Output windows
docked at the bottom of the main window. The Horizontal Dock Windows
Dominate check box has been cleared so that the System Tree occupies the full
height of the window.

Changing the design-time layout

34 PocketBuilder

Figure 2-1: Result of clearing Horizontal Dock Windows Dominate

Using views in painters
Most of the PocketBuilder painters have views. Each view provides a specific
way of viewing or modifying the object you are creating or a specific kind of
information related to that object. Having multiple views available in a painter
window means you can work on more than one task at a time. In the Window
painter, for example, you can select a control in the Layout view to modify its
properties, and double-click the control to edit its scripts.

Views are displayed in panes of the painter window. Some views are stacked
in a single pane. At the bottom of the pane, there is a tab for each view in the
stack. Clicking the tab for a view pops that view to the top of the stack.

Each painter has a default layout, but you can display the views you choose in
as many panes as you want to and save the layouts you like to work with. For
some painters, all available views are included in the default layout; for others,
only a few views are included.

Each pane has:

• A title bar you can display temporarily or permanently

• A handle in the top-left corner you can use to drag the pane to a new
location

• Splitter bars between the pane and each adjacent pane

CHAPTER 2 Customizing PocketBuilder

User’s Guide 35

Displaying the title bar

Because it is not often necessary and takes up valuable screen real estate, a title
bar does not permanently display at the top of a pane for most views, but you
can display a title bar for any pane either temporarily or permanently.

❖ To display a title bar:

1 Place the pointer on the splitter bar at the top of the pane.

The title bar displays.

2 To display the title bar permanently, click the pushpin at the left of the title
bar or select Pinned from its pop-up menu.

Click the pushpin again or select Pinned again on the pop-up menu to hide
the title bar.

After you display a title bar either temporarily or permanently, you can use the
title bar’s pop-up menu.

❖ To maximize a pane to fill the workspace:

• Select Maximize from the title bar’s pop-up menu or click the Maximize
button on the title bar

❖ To restore a pane to its original size:

• Select Restore from the title bar’s pop-up menu or click the Restore button
on the title bar

Moving and resizing panes and views

You can move a pane or a view to any location in the painter window. You
might find it takes a while to get used to moving panes and views around. If
you try a new layout and do not like it, you can always revert to the default
layout and start again. To restore the default layout, select
View>Layouts>Default.

To move a pane, select and drag the title bar of the view that is at the top of the
stack. If the pane contains stacked views, all views in the stack move together.
To move one of the views out of the stack, drag the tab for the view you want
to move.

Changing the design-time layout

36 PocketBuilder

The outline changes size as you drag it. When the pointer is over the middle of
a pane, the outline fills the pane. As you drag the pointer toward any border,
the outline becomes a narrow rectangle adjacent to that border. When the
pointer is over a splitter bar that separates two panes, rows, or columns, the
outline straddles the splitter bar.

Figure 2-2: Moving a pane in the workspace area

❖ To move a pane:

1 Place the pointer anywhere on the title bar of the view at the top of the
stack, hold down the left mouse button, and start moving the pane.

A gray outline appears around the pane.

2 Drag the outline to the new location.

When you move the pointer to a corner
When you move the pointer to a corner, you have many places where you
can drop the outline. To see your options, move the pointer around in all
directions in the corner and see where the outline displays as you move it.

3 Release the mouse button to drop the outline in the new location.

Table 2-2: Where you can move a painter view (pane)

To move a pane here Drop the outline here

Between two panes On the splitter bar between the panes.

Between a border and a pane At the side of the pane nearest the border.

Into a new row On the splitter bar between two rows or at the
top or bottom of the painter window.

Into a new column On the splitter bar between two columns or at
the left or right edge of the painter window.

Onto a stack of panes On the middle of the pane. If the pane was not
already tabbed, tabs are created.

CHAPTER 2 Customizing PocketBuilder

User’s Guide 37

❖ To move a view in a stacked pane:

• Place the pointer anywhere on the view’s tab, hold down the left mouse
button, and start moving the view

You can now move the view as in the previous procedure. If you want to
rearrange the views in a pane, you can drag the view to the left or right
within the same pane.

❖ To resize a pane:

• Drag the splitter bars between panes

Floating and docking views

By default, panes are docked within a painter window, but some tasks might be
easier if you float a pane. A floating pane can be moved outside the painter’s
window or even outside the PocketBuilder window.

When you open another painter
If you have a floating pane within one painter, then open another painter, the
floating pane temporarily disappears. It reappears when the original painter is
selected.

❖ To float a view in its own pane:

• Select Float from the title bar’s pop-up menu

❖ To float a view in a stacked pane:

• Select Float from the tab’s pop-up menu

❖ To dock a floating view:

• Select Dock from the title bar’s pop-up menu

Adding and removing views

You might want to add additional views to the painter window. You can open
only one instance of some views, but as many instances as you need of others,
such as the Script view. If there are views you rarely use, you can move them
into a stacked pane or remove them. When removing a view in a stacked pane,
make sure you remove the view and not the pane.

Changing the design-time layout

38 PocketBuilder

❖ To add a new view to the painter window:

1 Select View from the menu bar and then select the view you want to add.

The view displays in a new pane in a new row.

2 Move the pane where you want it.

For how to move panes, see “Moving and resizing panes and views” on
page 35.

❖ To remove a view in its own pane from the painter window:

1 If the view’s title bar is not displayed, display it by placing the pointer on
the splitter bar at the top of the pane.

2 Click the Close button on the title bar.

❖ To remove a view in a stacked pane from the painter window:

• Select the tab for the view and select Close from its pop-up menu

❖ To remove a stacked pane from the painter window:

1 If the title bar of the top view in the stack is not displayed, display it by
placing the pointer on the splitter bar at the top of the pane.

2 Click the Close button on the title bar.

CHAPTER 2 Customizing PocketBuilder

User’s Guide 39

Saving a layout

When you have rearranged panes in the painter window, PocketBuilder saves
the layout in the registry. The next time you open the painter window, your last
layout displays. You can also save customized layouts so that you can switch
from one to another for different kinds of activities.

Figure 2-3: Layout dialog box with a customized layout defined

❖ To save customized layouts for a painter window:

1 Select View>Layouts>Manage from the menu bar.

2 Click the New Layout button (second from the left at the top of the dialog
box).

3 Type an appropriate name in the text box and click OK.

Restoring the default layout
You can restore the default layout at any time by selecting
Views>Layout>Default.

Using toolbars
Toolbars provide buttons for the most common tasks in the PocketBuilder IDE.
You can move (or dock) toolbars, customize them, and create your own.

You can also create toolbars for use with application menus that you deploy.
For information on creating toolbars for applications, see Chapter 15,
“Working with Native Objects and Controls for Windows CE Devices.”

Using toolbars

40 PocketBuilder

Toolbar basics
PocketBuilder uses three basic toolbar types: the PowerBar, PainterBar, and
StyleBar.

Table 2-3: Toolbars in the IDE and when they are displayed by default

Drop-down toolbars
To reduce the size of toolbars, some toolbar buttons have a down arrow on the
right that you can click to display a drop-down toolbar containing related
buttons.

For example, the down arrow next to the Text button in the DataWindow
painter displays the Controls drop-down toolbar, which has a button for each
control you can place on a DataWindow object.

Figure 2-4: Buttons in the Controls drop-down toolbar

Default button replaced
The button you select from a drop-down toolbar replaces the default button on
the main toolbar. For example, if you select the Picture button from the
Controls drop-down toolbar, it replaces the Text button in the PainterBar.

This toolbar Has buttons for And displays

PowerBar Opening painters and tools Always.

PainterBar Performing tasks in the
current painter

In each painter or editor. Some
painters have more than one
PainterBar.

StyleBar Changing properties of text,
such as font and alignment

In appropriate painters.

CHAPTER 2 Customizing PocketBuilder

User’s Guide 41

Controlling the display of toolbars
You can control:

• Whether and where to display individual toolbars

• Whether to display text on the buttons

• Whether to display PowerTips

Choosing to display text and PowerTips affects all toolbars.

❖ To control a toolbar using the pop-up menu:

1 Position the pointer on a toolbar and display the pop-up menu.

2 Click the items you want.

A check mark means the item is currently selected.

❖ To control a toolbar using the Toolbars dialog box:

1 Select Tools>Toolbars from the menu bar.

The Toolbars dialog box displays.

2 Click the toolbar you want to work with (the current toolbar is highlighted)
and the options you want.

PocketBuilder saves your toolbar preferences in the registry.

Moving toolbars using the mouse
You can use the mouse to move a toolbar.

❖ To move a toolbar with the mouse:

1 Position the pointer on the grab bar at the left of the toolbar or on any
vertical line separating groups of buttons.

2 Press and hold the left mouse button.

3 Drag the toolbar and drop it where you want it.

As you move the mouse, an outlined box shows how the toolbar will
display when you drop it. You can line it up along any frame edge or float
it in the middle of the frame.

Using toolbars

42 PocketBuilder

Docking toolbars

When you first start PocketBuilder, all the toolbars display one above another
at the top left of the workspace. When you move a toolbar, you can dock
(position) it:

• At the top or bottom of the workspace, at any point from the left edge to
the right edge

• At the left or right of the workspace, at any point from the top edge to the
bottom edge

• To the left or right of, or above or below, another toolbar

Customizing toolbars
You can customize toolbars with PocketBuilder buttons and with buttons that
invoke other applications, such as a clock or text processor.

Adding, moving, and
deleting buttons

You can add, move, and delete buttons in any toolbar.

Figure 2-5: Customize dialog box for IDE toolbar buttons

❖ To add a button to a toolbar:

1 Position the pointer on the toolbar and display the pop-up menu.

2 Select Customize.

The Customize dialog box displays.

CHAPTER 2 Customizing PocketBuilder

User’s Guide 43

3 Click the palette of buttons you want to use in the Select Palette group box.

4 Choose a button from the Selected Palette box and drag it to the position
you want in the Current Toolbar box.

If you choose a button from the Custom palette, another dialog box
displays so you can define the button.

For more information, see “Adding a custom button” on page 44.

Seeing what is available in the PowerBar
PocketBuilder provides several buttons that do not display by default in
the PowerBar, but which you can add. To see what is available, scroll the
list of buttons and select one. PocketBuilder lists the description for the
selected button.

❖ To move a button on a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 In the Current toolbar box, select the button and drag it to its new position.

❖ To delete a button from a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 In the Current toolbar box, select the button and drag it outside the Current
toolbar box.

Resetting a toolbar You can restore the original setup of buttons on a toolbar at any time.

❖ To reset a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Click the Reset button, then Yes to confirm, then OK.

Clearing or deleting a
toolbar

Whenever you want, you can remove all buttons from a toolbar. If you do not
add new buttons to the empty toolbar, the toolbar is deleted. You can delete
both built-in toolbars and toolbars you have created.

Using toolbars

44 PocketBuilder

To recreate a toolbar
If you delete one of PocketBuilder’s built-in toolbars, you can recreate it easily.
For example, to recreate the PowerBar, display the pop-up menu, select New,
and then select PowerBar1 in the New Toolbar dialog box.

For information about creating new toolbars and about the meaning of
PowerBar1, see “Creating new toolbars” on page 46.

❖ To clear or delete a toolbar:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Click the Clear button, then Yes to confirm.

The Current toolbar box in the Customize dialog box is emptied.

3 If you want to add new buttons, select them.

4 Click OK.

If you added new buttons, the toolbar is saved and contains the new
buttons. If you did not add new buttons, the toolbar is deleted.

Adding a custom
button

You can add a custom button to a toolbar. A custom button can:

• Invoke a PocketBuilder menu item

• Run an executable (application) outside PocketBuilder

• Run a query or preview a DataWindow object

• Place a user object in a window or in a custom user object

• Assign a display format or create a computed field in a DataWindow
object

❖ To add a custom button:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Select Custom in the Select Palette group box.

The custom buttons display in the Selected Palette list box.

3 Select a custom button and drag it to where you want it in the Current
Toolbar box.

CHAPTER 2 Customizing PocketBuilder

User’s Guide 45

The Toolbar Item Command dialog box displays. Different buttons display
in the dialog box, depending on which toolbar you are customizing.

Figure 2-6: Toolbar Item Command dialog box

4 Fill in the Command Line box using Table 2-4 on page 45.

5 In the Item Text box, specify the text associated with the button in two
parts separated by a comma—the text that displays on the button and text
for the button's PowerTip:

ButtonText, PowerTip

For example:

Save, Save File

If you specify only one piece of text, it is used for both the button text and
the PowerTip.

6 In the Item MicroHelp box, specify the text to appear as MicroHelp when
the pointer is on the button.

Table 2-4: Defining custom buttons

Button action Toolbar Item Command dialog box entry

Invoke a PocketBuilder
menu item

Type

@MenuBarItem.MenuItem

in the Command Line box. For example, to make the
button mimic the Open item on the File menu, type

@File.Open

You can also use a number to refer to a menu item. The
first item in a drop-down or cascading menu is 1, the
second item is 2, and so on. Separator lines in the menu
count as items. This example creates a button that pastes a
FOR...NEXT statement into a script:

@Edit.Paste Special.Statement.6

Using toolbars

46 PocketBuilder

Modifying a custom button

❖ To modify a custom button:

1 Position the pointer on the toolbar, display the pop-up menu, and select
Customize.

2 Double-click the button in the Current toolbar box.

The Toolbar Item Command dialog box displays.

3 Make your changes, as described in “Adding a custom button” on page 44.

Creating new toolbars
PocketBuilder has built-in toolbars. When you start PocketBuilder, you see
what is called the PowerBar. In each painter, you also see one or more
PainterBars. PowerBar and PainterBar are actually instances of two types of
toolbars you can create to make it easier to work in the PocketBuilder IDE.

Run an executable file
outside PocketBuilder

Type the name of the executable file in the Command Line
box. Specify the full path name if the executable is not in
the current search path.

To search for the file name, click the Browse button.

Run a query Click the Query button and select the query from the
displayed list.

Preview a DataWindow
object

Click the Report button and select a DataWindow object
from the displayed list. You can then modify the
command-line arguments in the Command Line box.

Select a user object for
placement in a window
or custom user object

Window and User Object painters only. Click the
UserObject button and select the user object from the
displayed list.

Assign a display format
to a column in a
DataWindow object

DataWindow painter only. Click the Format button to
display the Display Formats dialog box. Select a data type,
then choose an existing display format from the list or
define your own in the Format box.

For more about specifying display formats, see Chapter
21, “Displaying and Validating Data.”

Create a computed field
in a DataWindow
object

DataWindow painter only. Click the Function button to
display the Function for Toolbar dialog box. Select the
function from the list.

Button action Toolbar Item Command dialog box entry

CHAPTER 2 Customizing PocketBuilder

User’s Guide 47

PowerBars and
PainterBars

A PowerBar is a toolbar that always displays in PocketBuilder unless you hide
it. A PainterBar is a toolbar that always displays in the specific painter for
which it was defined unless you hide it:

Table 2-5: PowerBars and PainterBars

About the StyleBar A StyleBar is another type of toolbar that is available by default in certain
painters. You can have only one StyleBar per painter. The default StyleBar
contains drop-down lists for text fonts and sizes, as well as buttons for text
presentation styles and alignment settings. For painters that do not have the
default StyleBar, you can define a toolbar with the name StyleBar, but you can
add only painter-specific buttons, not style buttons.

Where you create
them

You can create a new PowerBar anywhere in PocketBuilder, but to create a new
PainterBar, you must be in the workspace of the painter for which you want to
define the PainterBar.

❖ To create a new toolbar:

1 Position the pointer on any toolbar, display the pop-up menu, and select
New.

The New Toolbar dialog box displays a list of PowerBar and PainterBar
names. StyleBar is also listed for painters that do not already have a
StyleBar.

2 Select a toolbar name and click OK.

The Customize dialog box displays with the Current toolbar box empty.

3 One at a time, drag the toolbar buttons you want from the Selected palette
box to the Current toolbar box and then click OK.

For this toolbar type The default is named And you can have up to

PowerBar PowerBar1 Four PowerBars

PainterBar PainterBar1,
PainterBar2, and so on

Eight PainterBars in each
painter

Customizing keyboard shortcuts

48 PocketBuilder

Customizing keyboard shortcuts
You can associate your own keyboard shortcuts with PocketBuilder menu
items. For example, if you have used another debugger, you may be
accustomed to using specific function keys or key combinations to step into
and over functions. You can assign keyboard shortcuts to associate actions in
PocketBuilder’s Debugger with the keystrokes you are used to.

Creating shortcuts for common tasks
Creating keyboard shortcuts means you can use the keyboard instead of the
mouse for many common tasks, including changing workspaces, objects, or
connections. To do this, create shortcuts for the File>Recent menu items.

❖ To associate a keyboard shortcut with a menu item:

1 Select Tools>Keyboard Shortcuts from the menu bar.

The keyboard shortcuts for the current menu bar display.

2 Select a menu item with no shortcut or a menu item with a default shortcut
that you want to change, then put the cursor in the Press Keys For Shortcut
box.

3 Press the keys you want to use for the shortcut.

The new shortcut displays in the text box. If you type a shortcut that is
already being used, a message notifies you so you can type a different
shortcut or change the existing shortcut.

Figure 2-7: Message indicating a shortcut key is already assigned

❖ To remove a keyboard shortcut associated with a menu item:

1 Select Tools>Keyboard Shortcuts from the menu bar.

2 Select the menu item with the shortcut you want to remove.

3 Click Remove.

You can reset keyboard shortcuts to the default shortcuts globally or for the
current painter only.

CHAPTER 2 Customizing PocketBuilder

User’s Guide 49

❖ To reset keyboard shortcuts to the default:

• Click the Reset button and respond to the prompt

Changing fonts
Table 2-6 summarizes the various ways you can change the fonts used in
PocketBuilder.

Table 2-6: Changing the fonts used in PocketBuilder

Changes you make in the Tools>System Options dialog box and from the
Design>Options menu selection are used the next time you open
PocketBuilder.

Object, painter, or tool How to change fonts

A table’s data, headings, and
labels.

In the Database painter, display the Properties view
for the table, and change the font properties on the
Data, Heading, and Label Font tabs.

Objects in the User Object,
Window, and DataWindow
painters.

Select objects and then modify settings in the
StyleBar or, in the Properties view for one or more
objects, change the font properties on the Font tab.

Application, Menu, and
Library painters, Browser,
and MicroHelp.

Select Tools>System Options from the menu bar and
change the font properties on the Font tab.

Function painter, Script view,
Interactive SQL view in the
Database painter, Source
editor, File editor, and
Debugger. Changes made for
one of these apply to all.

Select Design>Options from the menu bar and
change the font properties on the Font tab of the
dialog box that displays. In the Debugger, select
Debug>Options.

Defining colors

50 PocketBuilder

Defining colors
You can define custom colors to use in most painters and in objects you create.

Figure 2-8: The Color dialog box for defining custom colors

❖ To define custom colors:

1 In a painter that uses custom colors, select Design>Custom Colors from
the menu bar.

The Color dialog box displays.

2 Define your custom colors using the Color dialog box and click OK.

Area of the
Color dialog box What you do

Basic colors Click the basic color closest to the color you want to
define to move the pointer in the color matrix and slider
on the right.

Custom colors
palette

Modify an existing color: click a custom color, then
modify the color matrix and slider. Define a new color:
click an empty box, define the color, and click Add to
Custom Colors.

Color matrix Click in the color matrix to pick a color.

Color slider Move the slider on the right to adjust the color's attributes.

Add to Custom
Colors button

After you have designed the color, click this button to add
the custom color to the Custom colors palette on the left.

CHAPTER 2 Customizing PocketBuilder

User’s Guide 51

Managing the PocketBuilder IDE
PocketBuilder configuration information is stored in an initialization file
(PK.INI) file and in the registry. When you start PocketBuilder, it looks in the
registry and PK.INI to set up your environment.

About the registry
Some PocketBuilder features require the use of the PK.INI file, but many
features use the registry for getting and storing configuration information.
Normally you do not need to access or modify items in the registry directly.

Information related to your preferences, such as the applications you have
created, the way you have arranged your views in the painters, and the shortcut
keys you have defined for PocketBuilder menu items, is stored in
HKEY_CURRENT_USER/Software/Sybase/PocketBuilder/2.0.

Installation-related information is stored in
HKEY_LOCAL_MACHINE/Software/Sybase/PocketBuilder/2.0.

About the initialization file
PK.INI is a text file containing variables that specify your PocketBuilder
preferences. These preferences include information such as the last workspace
you used and your startup preferences. When you perform certain actions in
PocketBuilder, your preferences are written to PK.INI automatically.

Format of INI files PK.INI uses the Windows INI file format. This file has three types of elements:

• Section names, which are enclosed in square brackets

• Keywords, which are the names of preference settings

• Values, which are numeric or text strings assigned as the value of the
associated keyword

A variable can be listed with no value specified, in which case the default is
used.

Some sections are always present by default, but others are created only when
you specify different preferences. If you specify preferences for another painter
or tool, PocketBuilder creates a new section for it at the end of the file.

Managing the PocketBuilder IDE

52 PocketBuilder

Specifying
preferences

Normally you do not need to edit PK.INI. You can specify all your preferences
by taking an action, such as resizing a window or opening a new application,
or by selecting Design>Options from one of the painters. If a variable does not
appear by default in the options sheet for the painter, you can use a text editor
to modify the variable in the appropriate section of PK.INI.

Editing the initialization file
Do not use a text editor to edit PK.INI or any preferences file accessed by
Profile functions while PocketBuilder or your application is running.
PocketBuilder caches the contents of initialization files in memory and
overwrites your edited PK.INI when it exits, ignoring changes.

Where the
initialization file is kept

PK.INI is installed in the same directory as the PocketBuilder executable file.

You can keep PK.INI in another location and tell PocketBuilder where to find
it by specifying the location in the System Options dialog box. You might want
to do this if you use more than one version of PocketBuilder or if you are
running PocketBuilder over a network.

❖ To record your initialization path:

1 Select Tools>System Options from the menu bar.

2 On the General tab page, enter the path of your initialization file in the
Initialization Path text box.

PocketBuilder records the path in the Windows registry.

How PocketBuilder
finds the initialization
file

PocketBuilder looks in the Windows Registry for a path to the file, and then
looks for the file in the directory where PocketBuilder is installed. If
PocketBuilder cannot find PK.INI using the path in the Registry, it clears the
path value.

If PocketBuilder does not find PK.INI when it starts up, it recreates it.
However, if you want to retain any preferences you have set, such as database
profiles, keep a backup copy of PK.INI. The recreated file has the default
preferences.

P A R T 2 Working with Targets and
Libraries

This part describes how to work with PowerScript targets
in painters, how to set properties for an application, how to
manage PocketBuilder libraries, and how to use source
control.

User’s Guide 55

C H A P T E R 3 Working with PowerScript
Targets

About this chapter This chapter describes PowerScript targets and the Application object
associated with each target.

Contents

About PowerScript targets
PowerScript is a scripting language used by PowerBuilder and
PocketBuilder. To create an executable PocketBuilder application, a
PowerScript target is required.

The first step in creating a new application or component is to use a target
wizard, described in “Creating a target” on page 15.

The Application object Every PowerScript target includes an Application object, which is a
discrete object that is saved in a PocketBuilder library (PKL file). When a
user runs the application, the scripts you write for events are triggered in
the Application object.

Topic Page

About PowerScript targets 55

Working in painters 56

About the Application painter 63

Specifying application and Today item properties 64

Writing application-level scripts 72

Specifying the target’s library search path 73

Looking at an application's structure 75

Working with objects 78

Using the Source editor 84

Working in painters

56 PocketBuilder

After you create a new application, you open the Application object and work
in the Application painter to define application-level properties (such as which
fonts are used by default for text) and application-level behavior (such as what
processing should occur when the application begins and ends).

Working in painters
In PocketBuilder, you use particular painters to edit objects such as
applications, windows, menus, DataWindow objects, and user objects. Other
painters such as the Library painter and the Database painter provide you with
the ability to work with libraries and databases.

PocketBuilder painters
Table 3-1 describes the painters available in PocketBuilder.

Table 3-1: Painters in PocketBuilder

Use this painter To do this

Application painter Specify application-level properties and scripts.

Database painter Maintain databases, control user access to databases,
manipulate data in databases, and create tables.

DataWindow painter Build intelligent objects called DataWindow objects that
present information from the database.

Function painter Build global functions to perform processing specific to
your application.

Library painter Manage libraries, create a new library, and build dynamic
libraries.

Menu painter Build menus to be used in windows.

Project painter Create an executable file for your application, select a build
directory, specify a resource file, specify a CAB file for
distribution, and select certificates for signing the
application and CAB files.

Query painter Graphically define and save SQL SELECT statements for
reuse with DataWindow objects.

SQL Select painter Graphically define SQL SELECT statements for
DataWindow objects. You can open this painter from the
Design>Data Source menu of the DataWindow painter.

CHAPTER 3 Working with PowerScript Targets

User’s Guide 57

Opening painters
Painters that edit
objects

There are several ways to open painters that edit objects.

Table 3-2: How to open painters that edit objects

Other painters Painters that do not edit objects are accessible on the Database tab or the Tool
tab of the New dialog box. Some are also available on the PowerBar and from
the Tools menu.

Select Target for Open
Suppose that you use the same PKL in more than one target in the current
workspace. If you double-click an object from that PKL in the Library painter
or on the Workspace page of the System Tree when the root is not set to the
current workspace, the Select Target for Open dialog box displays. The same
dialog box displays if you select Inherit, Run/Preview, Regenerate, Print, or
Search for this object under the above conditions.

Structure painter Define global structures (groups of variables) for use in
your application.

User Object painter
(visual)

Build custom visual objects that you can save and use
repeatedly in your application. A visual user object is a
reusable control or set of controls that has a certain
behavior.

User Object painter
(nonvisual)

Build custom nonvisual objects that you can save and use
repeatedly in your application. A nonvisual user object lets
you reuse a set of business rules or other processing that
acts as a unit but has no visual component.

Window painter Build the windows that will be used in the application.

Use this painter To do this

From here You can

PowerBar Click New or Inherit to create new objects, or Open to open
existing objects

Library painter Double-click an object or select Edit from the object’s pop-up
menu

System Tree Double-click an object or select Edit from the object’s pop-up
menu

Browser Select edit from an object’s pop-up menu

Working in painters

58 PocketBuilder

Painter features
Painters that edit
objects

Table 3-3 describes the features included in most painters used to edit
PocketBuilder objects.

Table 3-3: Common features of PocketBuilder painters

Other painters Most of the painters that are not used to edit PocketBuilder objects have views
and some drag-and-drop operations.

Views in painters that edit objects
Each painter has a View menu that you use for opening views. Which views
you can open depends on the painter you are working in. Every painter has a
default arrangement of views. You can rearrange these views, choose to show
or hide views, and save arrangements that suit your working style.

For more information about arranging views, see Chapter 2, “Customizing
PocketBuilder.”

Many views are shared by some painters, but some views are specific to a
single painter. For example, the Layout, Properties, and Control List views are
used by the Window, Visual User Object, and Application painters, but the
Design, Column Specifications, Data, and Preview views are specific to the
DataWindow painter. The WYSIWYG Menu and Tree Menu views are
specific to the Menu painter.

The following sections describe the views you see in many painters. Views that
are specific to a single object type are described in the chapter for that object
type.

Feature Notes

Painter window with views See “Views in painters that edit objects” next.

Unlimited undo/redo Undo and redo apply to all changes.

Drag-and-drop operations Most drag-and-drop operations change context or
copy objects.

To-Do List support When you are working in a painter, a linked item you
add to the To-Do list can take you to the specific
location. See “Using the To-Do List” on page 23.

Save needed indicator When you make a change, PocketBuilder displays an
asterisk after the object’s name in the painter’s Title
bar to remind you that the object needs to be saved.

CHAPTER 3 Working with PowerScript Targets

User’s Guide 59

Layout view The Layout view shows a representation of the object and its controls. It is
where you place controls on an object and design the layout and appearance of
the object. Figure 3-1 displays an example.

Figure 3-1: Example of a window in Layout view

If the Properties view is displayed and you select a control in the Layout view
or the Control List view, the properties for that control display in the Properties
view. If you select several controls in the Layout view or the Control List view,
the properties common to the selected controls display in the Properties view.

Properties view The Properties view displays properties for the object itself or for the currently
selected controls or nonvisual objects in the object. You can see and change the
values of properties in this view. Figure 3-2 shows the Properties view for a
button control.

Figure 3-2: Properties view for a button control

Working in painters

60 PocketBuilder

The Properties view dynamically changes when you change selected objects or
controls in the Layout, Control List, and Non-Visual Object List views.

If you select several controls in the Layout view or the Control List view, the
Properties view says “group selected” in the title bar and displays the
properties common to the selected controls.

In the Properties view pop-up menu, you can select Labels On Top or Labels
On Left to specify where the labels for the properties display. For help on
properties, select Help from the pop-up menu.

If the Properties view is displayed and you select a nonvisual object in the
Non-Visual Object List view, the properties for that nonvisual object display in
the Properties view. If you select several nonvisual objects in the Non-Visual
Object List view, the properties common to the selected nonvisual objects
display in the Properties view.

Script view The Script view is where you edit the scripts for system events and functions,
define and modify user events and functions, declare variables and external
functions, and view the scripts for ancestor objects.

Figure 3-3: Script view for a window Open event

You can open the default script for an object or control by double-clicking it in
the System Tree or the Layout, Control List, or Non-Visual Object List views,
and you can insert the name of an object, control, property, or function in a
script by dragging it from the System Tree.

For information about the Script view, see Chapter 6, “Writing Scripts.”

CHAPTER 3 Working with PowerScript Targets

User’s Guide 61

Control List view The Control List view lists the visual controls on the object. You can click the
Control column to sort the controls by control name or by hierarchy.

Figure 3-4: Control List view for a window

If you select one or more controls in the Control List view, the controls are also
selected in the Layout view. Selecting a control changes the Properties view,
and double-clicking a control changes the Script view.

Event List view The Event List view displays the full event prototype of both the default and
user-defined events mapped to an object. Icons identify whether an event has a
script, is a descendent event with a script, or is a descendent event with an
ancestor script and a script of its own.

Figure 3-5: Event List view for a window

Working in painters

62 PocketBuilder

Non-Visual Object List
view

The Non-Visual Object List view is a list of nonvisual objects that have been
inserted in an Application object, window, or user object of any type. You can
sort controls by control name or ancestor.

Figure 3-6: Non-Visual Object List view

Function List view The Function List view lists the system-defined functions and the object-level
functions you defined for the object. Icons identify whether a function has a
script, is a descendant of a function with a script, or is a descendant of a
function with an ancestor script as well as a script of its own.

Figure 3-7: Function List view

Note that although the half-colored icon identifies the myfunc user-defined
function as having both an ancestor script and a script of its own, for a function
this means that the function is overridden. This is different from the meaning
of a half-colored icon in the Event List view.

Structure List view The Structure List view lists the object-level structures defined for the object.

Figure 3-8: Structure List view

If you double-click a structure in the Structure List view, the structure’s
definition displays in the Structure view.

CHAPTER 3 Working with PowerScript Targets

User’s Guide 63

Structure view The Structure view is where you edit the definition of object-level structures in
the Window, Menu, and User Object painters.

Figure 3-9: Structure view

About the Application painter
Views in the
Application painter

The Application painter has several views where you specify properties for
your application and how it behaves at start-up. Because the Application
painter is an environment for editing a nonvisual object of type application, the
Application painter looks like the User Object painter for nonvisual user
objects, and it has the same views. For details about the views, how you use
them, and how they are related, see “Views in painters that edit objects” on
page 58.

Most of your work in the Application painter is done in the Properties view and
the Script view to set application-level properties and code application-level
scripts. For information about specifying properties, see “Specifying
application and Today item properties” on page 64. For information about
coding in the Script view, see Chapter 6, “Writing Scripts.”

Inserting nonvisual
objects

You can automatically create nonvisual objects in an application by inserting a
nonvisual object in the Application object. You do this if you want the services
of a nonvisual object to be available to your application. The nonvisual object
you insert can be a custom class or standard class user object.

You insert a nonvisual object in an Application object in the same way you
insert one in a user object. For more information, see “Using class user
objects” on page 320.

Specifying application and Today item properties

64 PocketBuilder

Adding a custom
Today item

The Properties view for an Application object includes a Today Item page for
adding a custom item to the Today screen for a Pocket PC. The Today screen
acts as the main screen or home page in the Pocket PC environment. Default
Today items show the status of an application and launch it when you tap the
item. For example, the default Calendar item on the Today screen shows
whether you have any upcoming appointments. When you tap the item, the
Calendar application starts (or displays if it is running in the background).

Specifying application and Today item properties
You specify Application object and Today item properties in the Application
painter’s Properties view. You can assign additional application properties in
the Additional Properties dialog box that you open by clicking a button on the
General tab page of the painter’s Properties view.

Table 3-4: Specifying properties of an application object

To specify this Use this

DWMessageTitle property General tab page

Properties for a custom Today item Today Item tab page

Default font for static text as it appears in
windows, user objects, and DataWindow objects

Text Font tab page of the
Additional Properties dialog box

Default font for data retrieved in a DataWindow
object

Column Font tab page of the
Additional Properties dialog box

Default font for column headers in tabular and
grid DataWindow objects

Header Font tab page of the
Additional Properties dialog box

Default font for column labels in freeform
DataWindow objects

Label Font tab page of the
Additional Properties dialog box

Application icon Icon tab page of the Additional
Properties dialog box

Global objects for the application Variable Types tab page of the
Additional Properties dialog box

CHAPTER 3 Working with PowerScript Targets

User’s Guide 65

❖ To specify application properties:

1 In the Application painter, if the Properties view is not open, select
View>Properties from the menu bar.

The only modifiable property on the General tab page is DWMessageTitle,
which specifies the title of the message box for any runtime DataWindow
errors encountered in the application. If you change the value of this
property in script, the new value will be recognized only for DataWindows
created (or painted) after the new value is set.

2 (Optional) Specify properties of a custom Today item on the Today Item
tab page of the Properties view.

For information about Today item properties, see “Application object
properties for a custom Today item” on page 66.

3 On the General tab page, click the Additional Properties button, and
specify additional application properties in the Application properties
dialog box.

The additional properties on the Application properties dialog box can
only be modified in this dialog box. They cannot be modified in scripts.

These sections have information about how you specify the following
application properties in the Application painter:

• “Specifying default text properties” on page 69

• “Specifying an icon” on page 70

• “Specifying default global objects” on page 71

Specifying application and Today item properties

66 PocketBuilder

Application object properties for a custom Today item
Today item properties PocketBuilder lets you add a custom item to the Today screen that can launch

a PocketBuilder application. You set the properties for a custom Today item in
the Application painter:

Table 3-5: Properties for a custom Today item in the Application painter

Custom item icon The icon used in the Today screen is the same as the icon specified for the run
application. You specify this icon in the Additional Properties dialog box
launched from the General property page in the Application painter. The icon
from the display application is used if you do not set a run application. No icon
is used if you do not set a run or display application.

Property Description

DisplayText Text that displays when the custom item first displays. If you
do not specify a display application, this text is always used.

DisplayApplication An application that changes the appearance of the custom item
dynamically. For example, the application might have a timer
event that replaces the display text with a reminder of when to
run the application the item launches.

Name The name used to identify the custom item in the Windows CE
registry.

RunApplication The name of the application to be launched when the user taps
the custom item. This can be the same application you
specified as a display application or a different application. If
you specify separate display and run applications, set the
Today item properties on the display application.

If you do not specify a run application, nothing will happen
when the user taps the custom item.

Order The position in the list of Today items where the custom item
displays.

BackColor The background color of the custom item. By default, this is
set to display the standard background used by the Today
screen.

TextColor The color of the text for custom item label. By default, this is
set to display the standard text color used by the Today screen.

CHAPTER 3 Working with PowerScript Targets

User’s Guide 67

Changing the display
text

If you specify a display application, you can use it to change the text on the
Today screen. For example, suppose you have a PocketBuilder application that
initiates MobiLink synchronization. You could write a display application
called SyncDisplay that counts the number of updates that have been
performed on the local database since the last time it was synchronized. This
statement changes the text in the custom item to show the latest count:

SyncDisplay.TodayDisplayText="Sync Update Count is " &
+ string(counter)

The user could monitor the count and use it to decide when to tap the custom
item to launch the synchronization application.

Changing the displayed text is a useful feature. However, when planning to add
a custom Today item, you should consider its memory requirements.

Memory usage If you set both a display application and a run application, the PocketBuilder
VM (PKVM) is loaded twice, in two separate processes, even if you use the
same application as the display and run application. One is loaded with the
Today screen and remains in memory at all times, or until the custom Today
item is disabled or removed. The second PKVM is loaded when the custom
item is tapped and remains in memory until the launched application
terminates.

If you are concerned about memory requirements, specify a run application
only. The PKVM is not loaded until the custom item is tapped. It remains in
memory only while the application is running. (If you set neither a display nor
a run application, the PKVM is never loaded.)

Specifying application and Today item properties

68 PocketBuilder

Deploying a custom
item

To deploy a Today item with an application, you must select the Deploy Today
Item check box in the Project painter.

It is possible to set up different configurations for the Today item that you
deploy to a device or emulator. The configuration you choose depends on the
amount of memory you want to consume and the functionality that you want to
make available to the end user.

Table 3-6: Configurations for a PocketBuilder Today item

When you deploy an application with a Today item to a Pocket PC device, a
new key with the name you specified on the Today Item property page is added
to the HKEY_LOCAL_MACHINE\Software\Microsoft\Today\Items registry
key. The other properties are added to the new key as string or DWORD values.
These registry settings are also added to the CAB file if you choose to build
one.

Using the TodaySave
function

If you use a display application to change the appearance or other
characteristics of the custom item, use the Application object’s TodaySave
function to update the current state of the custom item in the registry as well as
on the Today screen. This ensures that the changes display if the device is reset
or rebooted.

Disabling or removing
custom items

A user can enable or disable a custom item by selecting Settings>Today from
the Start menu, and selecting or clearing the check box on the Items page. If the
custom item is disabled, it does not display on the Today screen.

You can remove all custom PocketBuilder Today items by selecting
Design>Delete Custom Today Items>Default Device from the Project painter
menu. Making this selection does not immediately delete an active Today item,
but it does make sure the item information is removed from the registry. The
next time the device is reset or rebooted, the previously active custom item is
also removed.

For more information The properties associated with the Today item are described in the PowerScript
Reference and in the online Help.

Configuration Effects on memory consumption

Valid values provided for Display
Application and Run Application
properties

PocketBuilder VM is loaded at all times
(remains in memory)

Valid value provided for Run
Application property; no Display
Application is set

PocketBuilder VM is loaded only after a user
taps the custom Today item. It resides in
memory until the application is shut down.

No values provided for Display
Application and Run Application
properties

PocketBuilder VM is not loaded, even after a
user taps the custom Today item.

CHAPTER 3 Working with PowerScript Targets

User’s Guide 69

Specifying default text properties
You probably want to establish a standard look for text that is in your
application. There are four kinds of text whose properties you can specify in
the Application painter: text, header, column, and label.

PocketBuilder provides default settings for the font, size, and style for each of
these and a default color for text and the background. You can change these
settings for an application in the Application painter and can override the
settings for a window, user object, or DataWindow object.

Properties set in the Database painter override application properties
If extended attributes have been set for a database column in the Database
painter or Table painter, those font specifications override the fonts specified
in the Application painter.

❖ To change the text defaults for an application:

1 In the Properties view, click Additional Properties and select one of the
following:

Text Font tab
Header Font tab
Column Font tab
Label Font tab

The tab you choose displays the current settings for the font, size, style,
and color. The text in the Sample box illustrates text with the current
settings.

2 Review the settings and make any necessary changes:

• To change the font, select a font from the list in the Font list.

• To change the size, select a size from the list in the Size list or type a
valid size in the list.

• To change the style, select a style (Regular, Italic, Bold, or Bold Italic)
from the Font styles list.

• To change font effects, select one or more from the Effects group box
(Strikeout and Underline).

Specifying application and Today item properties

70 PocketBuilder

• To change the text color, select a color from the Text Color list. (You
do not specify colors for data, headings, and labels here. You do that
in the DataWindow painter.)

• To change the background color, select a color from the Background
list.

Using custom colors
When specifying a text color, you can choose a custom color. You can
define custom colors in several painters, including the Window painter or
DataWindow painter.

3 When you have made all the changes, click OK.

Specifying an icon
An application icon can display in the File Explorer next to the application file
name, and in the Pocket PC Switcher bar and Start menu.

The Switcher bar drop-down list on a Pocket PC displays the icons of active
applications that are running in the background. If you specify an icon for an
Application object, the icon you select displays in the Switcher bar drop-down
list and in the row of icons under the Start menu that represent the most recently
used applications.

The application icon must have a resolution appropriate to the device where
you deploy it. Different platforms might require 16x16 pixel or 32x32 pixel
icons with either a 4- or 8-bit color depth (16 or 256 colors). To ensure that the
icon you want is used for the deployed application, the icon file you select
should include an image in each of the supported resolutions and color depths.

If you specify an icon in the PocketBuilder IDE rather than in script, the icon
is automatically included in the application executable when you build and
deploy the application project. In this case you do not need to list the icon in a
PocketBuilder Resource (PKR) file.

Pocket PC devices can cache a copy of the application icon when you run a
program. Therefore, if you are redeploying an application with a changed or
modified application icon, a soft reset might be required on the Pocket PC
device before the new icon is displayed.

CHAPTER 3 Working with PowerScript Targets

User’s Guide 71

❖ To associate an icon with an application:

1 In the Properties view, click Additional Properties and select the Icon tab.

2 Specify a file containing an icon (an ICO file).

The button displays below the Browse button.

3 Click OK to associate the icon with the application.

Specifying default global objects
PocketBuilder provides built-in global objects that are predefined in all
applications.

Table 3-7: Built-in global objects in PocketBuilder applications

You can create your own versions of these objects by creating a standard class
user object inherited from one of the built-in global objects. You can add
instance variables and functions to enhance the behavior of the global objects.

For more information, see Chapter 14, “Working with User Objects.”

After you do this, you can tell PocketBuilder that you want to use your version
of the object in your application as the default, instead of the built-in version.

❖ To specify the default global objects:

1 In the Properties view, click Additional Properties and select the Variable
Types tab.

The Variable Types property page displays.

2 Specify the standard class user object you defined in the corresponding
field.

For example, if you defined a user object named mytrans that is inherited
from the built-in Transaction object, type mytrans in the box
corresponding to SQLCA.

Global object Description

SQLCA Transaction object, used to communicate with your database

Error Used to report errors during execution

Message Used to process messages that are not defined events, and to pass
parameters between windows

Writing application-level scripts

72 PocketBuilder

3 Click OK.

When you run your application, it will use the specified standard class user
objects instead of the built-in global objects as the default objects.

Writing application-level scripts
When a user runs an application, an Open event is triggered in the Application
object. The script you write for the Open event initiates the activity in the
application. Typically it sets up the environment and opens the initial window.

When a user ends an application, a Close event is triggered in the Application
object. The script you write for the Close event usually does all the cleanup
required, such as closing a database or writing a preferences file.

If there are serious errors during execution, a SystemError event is triggered in
the Application object.

Batch applications
If your application performs only batch processing, all processing takes place
in the script for the application Open event.

Table 3-8 lists all events that can occur in the Application object. The only
event that requires a script is Open.

Table 3-8: Events in the Application object

Event Occurs when

Open The user starts the application.

Close The user closes the application. Typically, you write a script for
this event that shuts everything down (such as closing the
database connection and writing out a preferences file).

SystemError A serious error occurs during execution (such as trying to open
a nonexistent window). If there is no script for this event,
PocketBuilder displays a message box with the PocketBuilder
error number and message text. If there is a script,
PocketBuilder executes the script.

For more about error handling, see “Handling errors during
execution” on page 662.

Idle The Idle PowerScript function has been called and the
specified number of seconds has elapsed with no mouse or
keyboard activity.

CHAPTER 3 Working with PowerScript Targets

User’s Guide 73

Setting application properties in scripts
The Application object has several properties that specify application-level
properties.

You can reference these properties in any script in the application using this
syntax:

AppName.property

If the script is in the Application object itself, you do not need to qualify the
property name with the application name.

Application name cannot be changed
The name of an application is one of the Application object’s properties, but
you cannot change it.

For a complete list of Application object properties, see Objects and Controls
in the online Help. However, most of the Application object properties listed
do not have any meaning for PocketBuilder.

Specifying the target’s library search path
The objects you create in painters are stored in PocketBuilder libraries. You can
use objects from one or more libraries in a PowerScript target. You define each
library the target uses in the library search path.

PocketBuilder uses the search path to find referenced objects during execution.
When a new object is referenced, PocketBuilder looks through the libraries in
the order in which they are specified in the library search path until it finds the
object.

On the Library List tab page of the Target Properties dialog box, you can
modify the libraries associated with the current target.

❖ To specify the target’s library search path:

1 In the System Tree, right-click on the target containing your application
and select Properties from the pop-up menu.

The Target Properties dialog box displays.

Specifying the target’s library search path

74 PocketBuilder

2 Select the Library List tab page.

The libraries currently included in the library search path are displayed in
the list.

3 Do one of the following:

• Enter the name of all the libraries you want to include in the Library
Search Path list, separating them with semicolons

• Use the Browse button to include other libraries in your search path

You must specify libraries using an absolute path. To change the order of
libraries in the search path, use the pop-up menu to copy, cut, and paste
libraries.

To delete a library from the search path, select the library in the list and use
the pop-up menu or press Delete.

Make sure the order is correct
When you select multiple libraries from the Select Library dialog box
using Shift+Click or Ctrl+Click, the first library you select appears last in
the Library Search Path list and will be the last library searched.

4 Click OK.

PocketBuilder updates the search path for the target.

Where PocketBuilder maintains the library search path
PocketBuilder stores your target’s library search path in the target (PKT)
file in a line beginning with liblist; for example:

liblist "pbtutor.pkl;tutor_pb.pkl";

CHAPTER 3 Working with PowerScript Targets

User’s Guide 75

Looking at an application's structure
If you are working with an application that references one or more objects in
an application-level script, you can look at the application's structure in the
Browser.

Figure 3-10: Displaying an application’s structure in the Browser

❖ To display the application's structure:

1 Click the Browser button on the PowerBar.

2 In the Browser, select the Uses tab page and select Expand All from the
Application object’s pop-up menu.

PocketBuilder expands the display to show all the global objects that are
referenced in a script for the Application object. You can expand the
display more as needed.

Looking at an application's structure

76 PocketBuilder

Which objects are displayed
The Uses tab page of the Browser shows global objects that are referenced in
your application. It shows the same types of objects that you can see in the
Library painter. It does not show entities that are defined within other objects,
such as controls and object-level functions.

Which references are displayed

The Browser displays the following types of references when the Application
object is expanded.

Objects referenced in
painters

These are examples of objects referenced in painters:

• If a menu is associated with a window in the Window painter, the menu
displays when the window is expanded

• If a DataWindow object is associated with a DataWindow control in the
Window painter, the DataWindow object displays when the window is
expanded

• If a window contains a custom user object that includes another user
object, the custom user object displays when the window is expanded, and
the other user object displays when the custom user object is expanded

Objects directly
referenced in scripts

These are examples of objects referenced in scripts:

• If a window script contains the following statement, w_continue displays
when the window is expanded:

Open(w_continue)

Which referenced windows display in the Browser
Windows are considered referenced only when they are opened from
within a script. A use of another window's property or instance variable
does not cause the Browser to display the other window as a reference of
the window containing the script.

• If a menu item script refers to the global function f_calc, f_calc displays
when the menu is expanded:

f_calc(EnteredValue)

CHAPTER 3 Working with PowerScript Targets

User’s Guide 77

• If a window uses a pop-up menu through the following statements, m_new
displays when the window is expanded:

m_new mymenu
mymenu = create m_new
mymenu.m_file.PopMenu(PointerX(), PointerY())

Which references are not displayed

The Browser does not display objects referenced through instance variables or
properties, or objects referenced dynamically through string variables.

Objects referenced
through instance
variables or properties

These are examples of objects referenced through instance variables or
properties:

If w_go has this statement (and no other statement referencing w_emp),
w_emp does not display as a reference for w_go:

w_emp.Title = "Managers"

Objects referenced
dynamically through
string variables

These are examples of objects referenced dynamically through string
variables:

• If a window script has the following statements, the window w_go does not
display when the window is expanded. The window w_go is named only
in a string:

window mywin
string winname = "w_go"
Open(mywin,winname)

• If the DataWindow object d_emp is associated with a DataWindow control
dynamically through the following statement, d_emp does not display
when the window containing the DataWindow control is expanded:

dw_info.DataObject = "d_emp"

Working with objects

78 PocketBuilder

Working with objects
In PowerScript targets, you can:

• Create new objects

• Create new objects using inheritance

• Open existing objects

• Run or preview objects

After you create or open an object, the object displays in its painter and you
work on it there.

Creating new objects
To create new objects, you use the New dialog box.

❖ To create a new object:

1 Do one of the following:

• Click the New button in the PowerBar

• Select File>New from the menu bar

• In the System Tree, right-click on a workspace or target name and
select New from the pop-up menu

2 In the New dialog box, select the appropriate tab page for the object you
want to create.

You use icons on the PB Object tab page for creating new user objects,
windows, menus, structures, and functions.

3 Select an icon and click OK.

Creating new objects using inheritance
One of the most powerful features of PocketBuilder is inheritance. With
inheritance, you can create a new window, user object, or menu (a descendent
object) from an existing object (the ancestor object).

CHAPTER 3 Working with PowerScript Targets

User’s Guide 79

❖ To create a new object by inheriting it from an existing object:

1 Click the Inherit button in the PowerBar, or Select File>Inherit from the
menu bar.

2 In the Inherit From Object dialog box, select the object type (menu, user
object, or window) from the Object Type drop-down list. Then select the
target as well as the library or libraries you want to look in. Finally, select
the object from which you want to inherit the new object.

Figure 3-11: Inheriting from a window object

Displaying objects from many libraries
To find an object more easily, you can select more than one library in the
Libraries list. Use Ctrl+Click to select additional libraries and Shift+Click
to select a range.

3 Click OK.

The new object, which is a descendant of the object you chose to inherit
from, opens in the appropriate painter.

For more information about inheritance, see Chapter 12, “Understanding
Inheritance.”

Working with objects

80 PocketBuilder

Naming conventions
As you use PocketBuilder to develop your application, you create many
different components for which you need to provide names. These components
include objects such as windows and menus, controls that go into your
windows, and variables for your event and function scripts.

You should devise a set of naming conventions and follow them throughout
your project. This is critical when you are working in a team to enforce
consistency and enable others to understand your code. This section provides
tables of common naming conventions. PocketBuilder does not require you to
use these conventions, but they are followed in many PocketBuilder books and
examples.

All identifiers in PocketBuilder can be up to 40 characters long. You typically
use the first few characters to specify a prefix that identifies the kind of object
or variable, followed by an underscore character, followed by a string of
characters that uniquely describes this particular object or variable.

Object naming
conventions

Table 3-9 shows common prefixes for objects that you create in PocketBuilder.

Table 3-9: Common prefixes for objects

Variable naming
conventions

The prefix for variables typically combines a letter that represents the scope of
the variable and a letter or letters that represent its datatype. Table 3-10 lists the
prefixes used to indicate a variable’s scope. Table 3-11 lists the prefixes for
standard datatypes, such as integer or string.

Prefix Description

w_ Window

m_ Menu

d_ DataWindow

q_ Query

n_ or
n_standardobject_

Standard class user object, where standardobject represents
the type of object; for example, n_trans

n_ or n_cst Custom class user object

u_ or
u_standardobject_

Standard visual user object, where standardobject
represents the type of object; for example, u_cb

u_ Custom visual user object

f_ Global function

of_ Object-level function

s_ Global structure

str_ Object-level structure

ue_ User event

CHAPTER 3 Working with PowerScript Targets

User’s Guide 81

The variable might also be a PocketBuilder object or control.
Table 3-12 lists prefixes for some common PocketBuilder system objects. For
controls, you can use the standard prefix that PocketBuilder uses when you add
a control to a window or visual user object. To see these prefixes, open the
Window painter, select Design>Options, and look at the Prefixes 1 and
Prefixes 2 pages.

Table 3-10: Prefixes that indicate the scope of variables

Table 3-11: Prefixes for standard datatypes

Table 3-12: Prefixes for selected PocketBuilder system objects

Prefix Description

a Argument to an event or function

g Global variable

i Instance variable

l Local variable

s Shared variable

Prefix Description

a Any

blb Blob

b Boolean

ch Character

d Date

dtm DateTime

dc Decimal

dbl Double

e Enumerated

i Integer

l Long

r Real

s String

tm Time

ui UnsignedInteger

ul UnsignedLong

Prefix Description

ds DataStore

dw DataWindow

dwc DataWindowChild

dwo DWobject

Working with objects

82 PocketBuilder

Opening existing objects
You can open existing objects from the Open dialog box or directly from the
System Tree.

❖ To open existing objects:

1 Click the Open button in the PowerBar or Select File>Open from the menu
bar.

When using the System Tree
You can open an existing object directly from the System Tree. Either
double-click on the object name or select Edit from the pop-up menu.

2 In the Open dialog box, select the object type from the Object Type
drop-down list. Then select the target as well as the library or libraries you
want to look in. Finally, select the object you want to open.

env Environment

err Error

gr Graph

inet Inet

ir InternetResult

lvi ListViewItem

mfd MailFileDescription

mm MailMessage

mr MailRecipient

ms MailSession

msg Message

nvo NonVisualObject

tr Transaction

tvi TreeViewItem

Prefix Description

CHAPTER 3 Working with PowerScript Targets

User’s Guide 83

Figure 3-12: Opening a User Object from the Open dialog box

Displaying objects from many libraries
To find an object more easily, you can select more than one library in the
Libraries list. Use Ctrl+Click to select additional libraries and Shift+Click
to select a range.

3 Click OK.

The object opens in the appropriate painter.

Accessing recently
opened objects

You can quickly open recently opened objects by selecting File>Recent
Objects from the menu bar. The Recent Objects list includes the eight most
recently opened objects, but you can include up to 36 objects on the list.

❖ To modify the number of recent objects:

1 Select Tools>System Options from the menu bar.

2 On the General page of the System Options dialog box, modify the number
for the recent objects list.

Using the Source editor

84 PocketBuilder

Running or previewing objects
To run a window or preview a DataWindow object, you can use a button on the
PowerBar or the Run/Preview menu item in the File menu.

Using the System Tree
You can right-click an object in the System Tree and select Run/Preview from
the pop-up menu.

❖ To run or preview an object:

1 Do one of the following:

• Click the Run/Preview Object button in the PowerBar

• Select File>Run/Preview from the menu bar

2 In the Run dialog box, select the object type from the Object Type
drop-down list.

3 Select the target as well as the library or libraries you want to look in.

4 Select the object you want to run or preview and click OK.

The object runs or is previewed.

For more specific information on running a window, see “Running a window”
on page 218. For information on using the DataWindow painter’s Preview
view, see Chapter 17, “Defining DataWindow Objects.”

Using the Source editor
You can use the Source editor to edit the source of most PowerScript objects
directly instead of making changes to an object in a painter. You cannot edit the
source of project or proxy objects. The Source editor makes it unnecessary to
export an object in order to edit it and then import it, as you do with the File
editor.

For more information on the PocketBuilder File editor, see “Using the File
editor” on page 25.

CHAPTER 3 Working with PowerScript Targets

User’s Guide 85

Caution—back up your objects
Although the Source editor provides a quick way to make global changes, you
should use it with caution, and you must be familiar with the syntax and
semantics of PowerScript source code before changing it in the Source editor.

Changes you make to an object's source code using the Source editor take
effect immediately when you save the object, before the code is validated. If an
error message displays in the Output window, you must fix the problem in the
Source editor before you close the editor. If you do not, you will not be able to
open the object in a painter.

Technical Support is not able to provide support if changes you make in the
Source editor render an object unusable. For this reason, Sybase strongly
recommends that you make backup copies of your PKLs or objects before you
edit objects in the Source editor.

You can open an object in the Source editor in one of several ways:

• Use the Open dialog box

• Select the Edit Source menu item in the System Tree or Library painter

• Select the Edit Source menu item in the Output window for a line that
contains an error

Unlike the File editor, the Source editor cannot be opened independently. It can
be used only in conjunction with an object defined within a PowerScript target
in the current workspace. You cannot open an object in the Source editor that
is already open in a painter.

In exported objects that you view with the File editor, a PBExportHeader line
is always generated for the object. If you saved the object with a comment from
the object’s painter, a PBExportComment line is also viewable in the exported
file. The Source editor display is identical to the display in the File editor
except that the PBExport lines that are visible at the beginning of the code in
the File editor are not visible in the Source editor.

For more information on exporting objects, see “Exporting and importing
entries” on page 106.

Using the Source editor

86 PocketBuilder

User’s Guide 87

C H A P T E R 4 Working with Libraries

About this chapter PocketBuilder stores all the PowerScript objects you create in libraries.
When you work with a PowerScript target, you specify which libraries it
will use. This chapter describes how to work with your libraries.

Contents

About libraries
Whenever you save an object such as a window or menu in a painter,
PocketBuilder stores the object in a library (a PKL file). Similarly,
whenever you open an object in a painter, PocketBuilder retrieves the
object from the library.

Assigning libraries PowerScript targets can use as many libraries as you want. When you
create a target, you specify which libraries it uses. You can also change the
library search path for a target at any time during development.

For information about specifying the library search path, see “Specifying
the target’s library search path” on page 73.

Topic Page

About libraries 87

Opening the Library painter 89

About the Library painter 89

Working with libraries 91

Searching targets, libraries, and objects 101

Optimizing libraries 103

Regenerating library entries 104

Exporting and importing entries 106

Creating runtime libraries 109

Creating reports on library contents 110

About libraries

88 PocketBuilder

How the information is
saved

Every object is saved in two parts in a library:

• Source form This is a syntactic representation of the object, including
the script code.

• Object form This is a binary representation of the object, similar to an
object file in the C and C++ languages. PocketBuilder compiles an object
automatically every time you save it.

Using libraries
It is hard to predict the needs of a particular application, so the organization of
a target's libraries generally evolves over the development cycle.
PocketBuilder lets you reorganize your libraries easily at any time.

For small applications, you might use only one library, but for larger
applications, you should split the application into different libraries.

About library size There are no limits to how large libraries can be, but for performance and
convenience, you should follow these guidelines:

• Number of objects It is a good idea not to save more than 50 or 60
objects in a library. This is strictly for your convenience; the number of
objects does not affect performance. If you have many objects in a library,
list boxes that list library objects become unmanageable and the System
Tree and Library painter become more difficult to use.

• Balance Managing a large number of libraries with only a few objects
makes the library search path too long and can slow performance by
forcing PocketBuilder to look through many libraries to find an object. Try
to maintain a balance between the size and number of libraries.

Organizing libraries You can organize your libraries any way you want. For example, you might put
all objects of one type in their own library, or divide your target into subsystems
and place each subsystem in its own library.

CHAPTER 4 Working with Libraries

User’s Guide 89

Opening the Library painter
❖ To open the Library painter:

• Click the Library button in the PowerBar or select Tools>Library Painter

What you can do in
the Library painter

In the Library painter, you can:

• Create a new library

• Create new objects in targets in your current workspace

• Copy, move, and delete objects in any library

• Open objects in libraries that are on a library list in the current Workspace
to edit them in the appropriate painters

• Migrate, rebuild, and regenerate libraries in the current Workspace

• Create a dynamic runtime library (PKD) that includes objects in the
current library and related resource objects

What you cannot do in
the Library painter

You cannot migrate or open objects in PocketBuilder libraries that are not on
the library list. You also cannot rename a library.

About the Library painter
Views in the Library
painter

The Library painter has two views, the Tree view and the List view, that can
display all the files in your file system, not just PocketBuilder objects. You use
the painter primarily for displaying and working with workspaces, targets,
library files, and the objects they contain.

The Tree and List views are available from the View menu. By default, the
Library painter displays one Tree view (on the left) and one List view (on the
right). When the Library painter opens, both the Tree view and the List view
display all the drives on your computer, including mapped network drives.

About the Library painter

90 PocketBuilder

Figure 4-1: Default view layout for Library painter

About the Tree view The Tree view in the Library painter displays the drives and folders on the
computer and the workspaces, targets, libraries, objects, and files they contain.
You can expand drives, folders, and libraries to display their contents.

About the List view The List view in the Library painter displays the contents of a selected drive,
folder, or library and has columns with headers that provide extra information.
For libraries, the comment column displays any comment associated with the
library. For objects in libraries, the columns display the object name,
modification date, size, and any comment associated with the object. You can
resize columns by moving the splitter bar between columns. You can sort a
column’s contents by clicking the column header.

About sorting the Name column
When you click the Name column header repeatedly to sort, the sort happens
in four ways: by object type and then name, in both ascending and descending
order, and by object name only, in both ascending and descending order. You
might not easily observe the four ways of sorting if all objects of the same type
have names that begin with the same character or set of characters.

Displaying items in the
Tree view and the List
view

Typically, you select a library in the Tree view and display the objects in that
library in the List view, but at any time, you can set a new root or move back
and forward in the history of your actions to display libraries or other items.
For more information, see “Setting the root” on page 99 and “Moving back,
forward, and up one level” on page 100.

Using custom layouts You might find that having more than one Tree view or List view makes your
work easier. Using the View menu, you can display as many Tree views and
List views as you need.

CHAPTER 4 Working with Libraries

User’s Guide 91

You can filter the objects in each of the List views so that one List view shows
menus, another windows, and another user objects. For information about
filtering objects in a view, see “Filtering the display of objects” on page 94.

For information about opening and closing views, manipulating views,
returning to the default view layout, or saving your favorite layouts, see
Chapter 2, “Customizing PocketBuilder.”

View synchronization Tree and List views are synchronized with each other. When you are using
more than one Tree view or List view, changes you make in one type of view
are reflected in the last view you touched of the other type. For example, when
an item is selected in a Tree view, the contents of that item display in the List
view that you last touched. When you display new contents in a List view by
double-clicking an item, that item is selected in the Tree view you last touched
unless this would require resetting the root.

You can also display the contents of different libraries in separate List views by
dragging and dropping libraries from a Tree view to different List views. For
information about dragging and dropping libraries, see “Displaying libraries
and objects” on page 92.

Using the System
Tree

The System Tree works like a Tree view in the Library painter. You can
perform most tasks in either the System Tree or the Library painter Tree view,
using the pop-up menu in the System Tree and the pop-up menu, PainterBar,
or menu bar in the Library painter. When you have the System Tree and a
Library painter open at the same time, the PainterBar and the menu bar apply
to the Library painter only, not to the System Tree.

Each time you click the Library painter button on the PowerBar, PocketBuilder
opens a new instance of the Library painter. By contrast, there is only a single
instance of the System Tree, which you can display or hide by clicking the
System Tree button on the PowerBar.

Working with libraries
The Library painter is designed for working with PocketBuilder libraries. You
can use the System Tree instead of the Library painter to manage
PocketBuilder libraries, but you can select only one object at a time in the
System Tree, whereas the Library painter List view allows you to select
multiple objects at the same time.

Working with libraries

92 PocketBuilder

Displaying libraries and objects
What you see in the
views

In the Library painter Tree view, you can expand items and see the folders,
libraries, or objects they contain. The List view displays the contents of a
selection in the Tree view.

❖ To expand or collapse an item in the Tree view:

• Double-click the item

If the item contains libraries or objects, they display in the List view.

❖ To display the contents of an item in the List view:

• Select the item in the Tree view or double-click the item in the List view.

Using drag and drop
to expand items

You can drag and drop items to expand them and see the contents.

If you drag an item from a Tree view or List view to a List view, the List view
sets the item as the root and displays its contents.

If you drag an item from a Tree view or List view to a Tree view, the Tree view
expands to display the dragged item.

For example, you can drag a library from the Tree view and drop it in the List
view to quickly display the objects the library contains in the List view. If you
are using one Tree view and multiple List views, you can drag a specific library
from the Tree view to each List view so each List view contains the contents of
a specific library.

For information about using drag and drop to copy or move items, see
“Copying, moving, and deleting objects” on page 97.

Controlling columns
that display in the List
view

You can control whether to display the last modification date, compilation date,
size, SCC version number, and comments (if comments were added when an
object or library was created) in the List view.

The version number column in the Library painter list view remains blank if
the source control system for your workspace does not support the
PowerBuilder extension to the SCC API. If your source control system
supports this extension and if you are connected to source control, you can
override the SCC version number of a PowerScript object in the local copy
directory through the property sheet for that object.

For more information about listing the SCC version number and overriding it
through the PowerBuilder interface, see “Extension to the SCC API” on page
118.

CHAPTER 4 Working with Libraries

User’s Guide 93

❖ To control the display of columns in the List view:

1 Select Design>Options from the menu bar.

2 On the General tab page, select or clear these display items: Modification
Date, Compilation Date, Sizes, SCC Version Number, and Comments.

Using the pop-up menu
Like other painters, the Library painter has a pop-up menu that provides
options that apply to the selected item in the Tree view or the List view. For
example, from a library’s pop-up menu, you can delete, optimize, or search the
library, print the directory, specify the objects that display in the library, and
import objects into it.

The actions available from an object’s pop-up menu depend on the object type.
For PocketBuilder objects that you can work with in painters, there are pop-up
menu items that allow you to edit the object in a painter or in the Source editor.
You can copy, move, or delete the object, export it to a text file, search it,
regenerate it, or send it to a printer. You can also preview and inherit from some
objects. For most of these actions, the object must be in a library in your current
workspace.

Actions available from the pop-up menus are also available on the Entry menu
on the menu bar.

Selecting objects
In the List view, you can select one or more libraries or objects to act on.

❖ To select multiple entries:

• In the List view, use Ctrl+Click (for individual entries) and Shift+Click
(for a group of entries)

❖ To select all entries:

• In the List view, select an object and click the Select All button on the
PainterBar

Working with libraries

94 PocketBuilder

Filtering the display of objects
By default, the Library painter displays all the objects in PocketBuilder
libraries when you expand the libraries in a painter Tree view or List view. You
can restrict what objects display in expanded libraries to specific kinds of
objects or to objects whose names match a specific pattern. For example, you
can limit the display to DataWindow objects only, or limit the display to
windows with names that begin with w_emp.

Settings are remembered
PocketBuilder records your preferences in the Library section of the
PocketBuilder initialization file so that the next time you open the Library
painter, the same information is displayed.

❖ To restrict which objects are displayed:

1 Select Design>Options from the menu bar and select the Include tab.

2 Specify the display criteria:

• To limit the display to entries that contain specific text in their names,
enter the text in the Name box. You can use the wildcard characters
question mark (?) and asterisk (*) in the string. A ? represents one
character; a * represents any string of characters. The default is all
entries of the selected types.

• To limit the display to specific entry types, clear the check boxes for
the entry types that you do not want to display. The default is all
entries.

3 Click OK.

The Options dialog box closes.

4 In the Tree view, expand libraries or select a library to display the objects
that meet the criteria.

Overriding the choices you made for a specific view
In either the Tree view or the List view, you can override your choice of objects
that display in all libraries by selecting a library, displaying the library’s pop-up
menu, and then clearing or selecting items on the list of objects.

CHAPTER 4 Working with Libraries

User’s Guide 95

Creating and deleting libraries
A library is created automatically when you create a new PowerScript target,
but you can create as many libraries as you need for your project in the Library
painter.

❖ To create a library:

1 Click the Create button or select Entry>Library>Create from the menu bar.

The Create Library dialog box displays, showing the current directory and
listing the libraries it contains.

2 Enter the name of the library you are creating and specify the directory in
which you want to store it.

The file is given the extension PKL.

3 Click Save.

The library properties dialog box displays.

4 Enter any comments you want to associate with the library.

Adding comments to describe the purpose of a library is important if you
are working on a large project with other developers.

5 Click OK.

PocketBuilder creates the library.

❖ To delete a library:

1 In either the Tree view or the List view, select the library you want to
delete.

2 Select Entry>Delete from the menu bar or select Delete from the pop-up
menu.

Restriction
You cannot delete a library that is in the current target's library search path.

The Delete Library dialog box displays, showing the library you selected.

3 Click Yes to delete the library.

The library and all its entries are deleted from the file system.

Working with libraries

96 PocketBuilder

Creating and deleting libraries during execution
You can use the LibraryCreate and LibraryDelete functions in scripts to create
and delete libraries. For information about these functions, see the online Help.

Filtering the display of libraries and folders
In either the Tree view or the List view, you can control what displays when
you expand a drive or folder. An expanded drive or folder can display folders,
workspaces, targets, files, and libraries.

❖ To control display of the contents of drives and folders:

• In either the Tree or List view, select a drive or folder, select Show from
the pop-up menu, and select or clear items from the cascading menu.

Working in the current library
In PocketBuilder, the current library is the library that contains the object most
recently opened or edited. That library becomes the default for Open and
Inherit. If you click the Open or Inherit button in the PowerBar, the current
library is the one selected in the Libraries list.

You can display the current library in the Library painter.

❖ To display objects in the current library:

1 Click in the Tree view or the List view.

2 Click the Display Most Recent Object button on the PainterBar or select
Most Recent Object from the View menu.

The library that contains the object you opened or edited last displays in
the view you selected with the object highlighted.

Opening and previewing objects
You can open and preview objects in the current workspace.

Opening
PocketBuilder objects

PocketBuilder objects, such as windows and menus, can be opened only if they
are in a PKL in the current workspace.

CHAPTER 4 Working with Libraries

User’s Guide 97

❖ To open an object:

• In either the Tree view or the List view, double-click the object, or select
Edit from the object’s pop-up menu

PocketBuilder takes you to the painter for that object and opens the object.
You can work on the object and save it as you work. When you close it,
you return to the Library painter.

Opening other objects The Library painter allows you to open most of the different file types it
displays. When you double-click on an object, PocketBuilder attempts to open
it using the following algorithm:

1 PocketBuilder determines if the object can be opened in the File editor. For
example, files with the extensions .txt, .ini, and .sr* open in the File editor.

2 PocketBuilder determines if the object can be opened in a painter.

3 PocketBuilder checks to see if the object is associated with a program in
the HKEY_CLASSES_ROOT section of the Windows registry and, if so,
launches the application.

Previewing
PocketBuilder objects

You can run windows and preview DataWindow objects from the Library
painter.

❖ To preview an object in the Library painter:

• Select Run/Preview from the object’s pop-up menu

Copying, moving, and deleting objects
As the needs of your target change, you can rearrange the objects in libraries.
You can copy and move objects between libraries or delete objects that you no
longer need.

❖ To copy objects using drag and drop:

1 In the Tree view or the List view, select the objects you want to copy.

2 Drag the objects to a library in either view.

If the contents of a library are displaying in the List view, you can drop the
selected objects there.

PocketBuilder copies the objects. If an object with the same name already
exists, PocketBuilder prompts you and if you allow it, replaces it with the
copied object.

Working with libraries

98 PocketBuilder

❖ To move objects using drag and drop:

1 In the Tree view or the List view, select the objects you want to move.

2 Press and hold Shift and drag the objects to a library in either view.

If the contents of a library are displaying in the List view, you can drop the
selected objects there.

PocketBuilder moves the objects and deletes them from the source library.
If an object with the same name already exists, PocketBuilder prompts you
and if you allow it, replaces it with the moved object.

❖ To copy or move objects using a button or menu item:

1 Select the objects you want to copy or move to another library.

2 Do one of the following:

• Click the Copy button or the Move button

• Select Copy or Move from the pop-up menu

• Select Entry>Library Item>Copy or Entry>Library Item>Move from
the menu bar

The Select Library dialog box displays.

3 Select the library to which you want to copy or move the objects and click
OK.

❖ To delete objects:

1 Select the objects you want to delete.

2 Do one of the following:

• Click the Delete button

• Select Delete from the pop-up menu

• Select Entry>Delete from the menu bar

You are asked to confirm the first deletion.

CHAPTER 4 Working with Libraries

User’s Guide 99

Being asked for confirmation
By default, PocketBuilder asks you to confirm each deletion. If you do not
want to have to confirm deletions, select Design>Options to open the
Options dialog box for the Library painter and clear the Confirm on Delete
check box in the General tab page.

PocketBuilder records this preference as the DeletePrompt variable in the
Library section of the PocketBuilder initialization file.

3 Click Yes to delete the entry or Yes To All to delete all entries. Click No
to skip the current entry and go on to the next selected entry.

Setting the root
In either the Tree view or the List view, you can set the root location of the view
from the Set Root dialog box.

Figure 4-2: The Set Root dialog box

Setting the root to the current workspace
In the System Tree, the default root is the current workspace. If you prefer to
work in the Library painter, you might find it convenient to set the root to the
current workspace. Using the current workspace as your root is particularly
helpful if you are using many libraries in various locations, because they are all
displayed in the same tree.

❖ To set the root of the current view:

1 In either view, select View>Set Root from the menu bar or select Set Root
from the pop-up menu to display the Set Root dialog box.

2 Select the location you want from the Set Root To list box.

Working with libraries

100 PocketBuilder

3 If you want the root to be a directory or library, type the path or browse to
the path.

4 Click OK.

Moving back, forward, and up one level
You can set a new root location for the Library painter by moving back to
where you were before, moving forward to where you just were, or, for the List
view, moving up a level.

❖ To move back, forward, or up one level:

• Do one of the following:

• Select View>Back, View>Forward, or View>Up One Level from the
menu bar

• Select Back, Forward, or Up One Level from the pop-up menu

The name of the location you are moving back to or forward to is appended
to Back and Forward.

Modifying comments
You can use comments to document your objects and libraries. For example,
you might use comments to describe how a window is used, specify the
differences between descendent objects, or identify a PocketBuilder library.

You can associate comments with an object or library when you first save it in
a painter and add or modify comments in the System Tree or Library painter.
If you want to modify comments for a set of objects, you can do so quickly in
the List view.

❖ To modify comments for multiple objects:

1 In the List view, select the objects you want.

2 Select Entry>Properties from the menu bar or select Properties from the
pop-up menu.

PocketBuilder displays the Properties dialog box. The information that
displays is for one of the objects you selected. You can change existing
comments, or, if there are no comments, you can enter new descriptive
text.

CHAPTER 4 Working with Libraries

User’s Guide 101

3 Click OK when you have finished editing comments for this object.

If you do not want to change the comments for an object, click OK. The
next object displays.

4 Enter comments and click OK for each object until you have finished.

If you want to stop working on comments before you finish with the
objects you selected, click Cancel. The comments you have entered for
other objects are retained. These comments can be seen in the List view.

❖ To modify comments for a library:

1 Select the library you want.

2 Click the Properties button or select Library from the pop-up menu.

3 Add or modify the comments, then click Apply or OK.

Searching targets, libraries, and objects
Global search of
targets

You can search a target to locate where a specified text string is used. For
example, you could search for:

• All scripts that use the SetTransObject function

• All windows that contain the CommandButton cb_exit (all controls
contained in a window are listed in the window definition, so they can be
searched for as text)

• All DataWindow objects accessing the Employee table in the database

Working with targets
To see the pop-up menu that lets you perform operations such as search, build,
and migrate on a target, you must set the root of the System Tree or the view in
the Library painter to the current workspace.

Searching targets, libraries, and objects

102 PocketBuilder

Searching selected
libraries and objects

You can also select a library or one or more PocketBuilder objects to search
using the Search Library Entries dialog box.

Figure 4-3: The Search Library Entries dialog box

The following procedure applies whatever the scope of your search is.

❖ To search a target, a library, or objects for a text string:

1 Select the target, library, or objects you want to search.

You can select multiple objects in the List view using Shift+Click and
Ctrl+Click.

2 Select Search from the pop-up menu or the PainterBar.

The Search Library Entries dialog box displays.

3 Enter the string you want to locate (the search string) in the Search For
box.

The string can be all or part of a word or phrase used in a property, script,
or variable. You cannot use wildcards in the search string.

4 In the Display group box, select the information you want to display in the
results of the search.

5 In the Search In group box, select the parts of the object that you want
PocketBuilder to inspect: properties, scripts, and/or variables.

6 Click OK.

PocketBuilder searches the libraries for matching entries. When the search
is complete, PocketBuilder displays the matching entries in the Output
window.

CHAPTER 4 Working with Libraries

User’s Guide 103

For example, the following screen displays the results of a search for the string
SetTransObject.

Figure 4-4: Results from a library search for SetTransObject

From the Output window, you can:

• Jump to the painter in which an entry was created

To do this, double-click the entry or select it and then select Edit from the
pop-up menu.

• Print the contents of the window

• Copy the search results to a text file

Optimizing libraries
You should optimize your libraries regularly. Optimizing removes gaps in
libraries and defragments the storage of objects, thus improving performance.

Optimizing affects only layout on disk; it does not affect the contents of the
objects. Objects are not recompiled when you optimize a library.

Once a week
For the best performance, you should optimize libraries you are actively
working on about once a week.

❖ To optimize a library:

1 In either Tree view or List view, choose the library you want to optimize.

2 Select Entry>Library>Optimize from the menu bar or select Optimize
from the library's pop-up menu.

Regenerating library entries

104 PocketBuilder

PocketBuilder reorganizes the library structure to optimize object and data
storage and index locations. Note that PocketBuilder does not change the
modification date for the library entries. PocketBuilder saves the
unoptimized version as a backup file in the same directory.

The optimized file is created with the default permissions for the drive
where it is stored. On some systems new files are not shareable by default.
If you see “save of object failed” messages or “link error” messages after
optimizing, check the permissions assigned to the PKL.

If you do not want a backup file
If you do not want to save a backup copy of the library, clear the Save
Optimized Backups check box in the Library painter's Design>Options
dialog box. If you clear this option, the new setting will remain in effect
until you change it.

Regenerating library entries
Why you need to
regenerate objects

Occasionally you might need to update library entries. For example:

• When you modify an ancestor object, you can regenerate descendants so
they pick up the revisions to their ancestor

• When you make extensive changes to a target, you can rebuild entire
libraries so objects are regenerated sequentially based on interdependence

• When you upgrade to a new version of PocketBuilder, you need to migrate
your targets

When you regenerate an entry, PocketBuilder recompiles the source form
stored in the library and replaces the existing compiled form with the
recompiled form.

❖ To regenerate library entries:

1 Select the entries you want to regenerate.

2 Click the Regenerate button or select Entry>Library Item>Regenerate
from the menu bar.

PocketBuilder uses the source to regenerate the library entry and replaces
the current compiled object with the regenerated object. The compilation
date and size are updated.

CHAPTER 4 Working with Libraries

User’s Guide 105

Regenerating
descendants

You can use the Browser to easily regenerate all descendants of a changed
ancestor object.

Figure 4-5: Regenerating objects from the Browser

❖ To regenerate descendants:

1 Click the Browser button in the PowerBar.

The Browser displays.

2 Select the tab for the object type you want to regenerate.

For example, if you want to regenerate all descendants of window
w_ancestor, click the Window tab.

3 Select the ancestor object and choose Show Hierarchy from its pop-up
menu.

The Regenerate button displays on the pop-up menu.

4 Click the Regenerate button.

PocketBuilder regenerates all descendants of the selected ancestor.

For more about the Browser, see “Browsing the class hierarchy” on page 276.

Regenerate limitations
If you regenerate a group of objects, PocketBuilder regenerates them in the
order in which they appear in the library, which may cause an error if an object
is generated before its ancestor. For this reason, you should use a full or
incremental build to update more than one object at a time.

Exporting and importing entries

106 PocketBuilder

Rebuilding workspaces and targets
When you make modifications to a target and need to update one or more
libraries, you should use a rebuild option to update all the library objects in the
correct sequence.

Working with targets
To see the pop-up menu that lets you perform operations such as search, build,
and migrate on a target, you must set the root of the System Tree or the view in
the Library painter to the current workspace.

There are two methods to use when you rebuild a workspace or target:

• Incremental rebuild Updates all the objects and libraries that reference
objects that have been changed since the last time you built the workspace
or target

• Full rebuild Updates all the objects and libraries in your workspace or
target

Table 4-1: Rebuilding a workspace or target

Exporting and importing entries
Exporting object
definitions to text files

You can export object definitions to Unicode text files. The text files contain
all the information that defines the objects. The files are virtually identical
syntactically to the source forms that are stored in libraries for all objects.

To rebuild Do one of the following

Workspace • Select Incremental Build Workspace or Full Build Workspace
from the PowerBar

• Select the Workspace in the System Tree or Library painter and
select Incremental Build or Full Build from the pop-up menu

Target • Select the target in the Library painter and select
Entry>Target>Incremental Build or Entry>Target>Full Build
from the menu bar

• Select the target in the System Tree or Library painter and select
Incremental Build or Full Build from the pop-up menu

CHAPTER 4 Working with Libraries

User’s Guide 107

You might want to export object definitions in the following situations:

• You want to store the objects as text files

• You want to move objects to another computer as text files

Caution
The primary use of the Export feature is exporting source code, not modifying
the source. You can use the Source editor to modify the source code of an object
directly, but modifying source in a text file is not recommended for most users.
See “Using the Source editor” on page 84.

❖ To export entries to text files:

1 Select the Library entries you want to export.

You can select multiple entries in the List view.

2 Do one of the following:

• Select Export from the pop-up menu

• Click the Export button on the PainterBar

• Select Entry>Library Item>Export from the menu bar

The Export Library Entry dialog box displays, showing the name of the
first entry selected for export in the File Name box and the name of the
current directory. The current directory is the target’s directory or the last
directory you selected for saving exported entries or saving a file using the
File editor.

PocketBuilder appends the file extension .srx, where x represents the
object type.

3 Specify the file name and directory for the export file. Do not change the
file extension from the one that PocketBuilder appended.

4 Click OK.

PocketBuilder converts the entry to Unicode file format, stores it with the
specified name, then displays the next entry you selected for export.

If a file already exists with the same name, PocketBuilder displays a
message asking whether you want to replace the file. If you say no, you
can change the name of the file and then export it, skip the file, or cancel
the export of the current file and any selected files that have not been
exported.

Exporting and importing entries

108 PocketBuilder

5 Repeat steps 3 and 4 until you have processed all the selected entries.

If the Library painter is set to display files, you can see the saved files and
double-click them to open them in the File editor.

Importing text files You can import source files for PocketBuilder objects to a library in the current
workspace. The files you import can be in either ANSI or Unicode format. You
select the files you want to import from the Select Import Files dialog box.

Figure 4-6: The Select Import Files dialog box

❖ To import text files to library entries:

1 In the System Tree or Library painter, select the library into which you
want to import an object.

2 Select Import from the pop-up menu, or, in the Library painter only, click
the Import button on the PainterBar.

The Select Import Files dialog box displays, showing the current directory
and a list of files with the extension .sr* in that directory. The current
directory is the target’s directory or the last directory you selected for
saving exported entries or saving a file using the File editor.

3 Select the files you want to import. Use Shift+Click or Ctrl+Click to select
multiple files.

4 Click Open.

PocketBuilder converts the specified text files to PocketBuilder format,
regenerates (recompiles) the objects, stores the entries in the specified
library, and updates the entries' timestamps.

If a library entry with the same name already exists, PocketBuilder
replaces it with the imported entry.

CHAPTER 4 Working with Libraries

User’s Guide 109

Caution
When you import an entry with the same name as an existing entry, the old
entry is deleted before the import takes place. If an import fails, the old
object will already have been deleted.

Creating runtime libraries
If you want your deployed target to use dynamic runtime libraries, you can
create them from the Build Runtime Library dialog box.

For information about using runtime libraries, see Chapter 26, “Packaging and
Distributing an Application.” That chapter also describes the Project painter,
which you can use to create dynamic runtime libraries automatically.

Figure 4-7: The Build Runtime Library dialog box

❖ To create a runtime library:

1 Select the library you want to use to build a runtime library.

2 Select Entry>Library>Build Runtime Library from the menu bar, or select
Build Runtime Library from the library's pop-up menu.

The Build Runtime Library dialog box displays, listing the name of the
selected library.

Creating reports on library contents

110 PocketBuilder

3 If any of the objects in the source library use resources, specify a
PocketBuilder resource file in the Resource File Name box (see
“Including additional resources” next).

4 Click OK.

PocketBuilder closes the dialog box and creates a runtime library with the
same name as the selected library and the extension pkd.

Including additional resources
When building a runtime library, PocketBuilder does not inspect the objects; it
simply removes the source form of the objects. Therefore, if any of the objects
in the library use resources (pictures, icons, and pointers)—either specified in
a painter or assigned dynamically in a script—and you do not want to provide
these resources separately, you must list the resources in a PocketBuilder
resource file (PKR file). Doing so enables PocketBuilder to include the
resources in the runtime library when it builds it.

For more on resource files, see “Using PocketBuilder resource files” on page
673.

After you have defined the resource file, specify it in the Resource File Name
box to include the named resources in the runtime library.

Creating reports on library contents
You can generate three types of reports from the Library painter:

• The search results report

• Library entry reports

• The library directory report

The search results report contains the matching-entries information that
PocketBuilder displays after it completes a search, described in “Searching
targets, libraries, and objects” on page 101. The other two types of reports are
described in this section.

CHAPTER 4 Working with Libraries

User’s Guide 111

Creating library entry reports
Library entry reports provide information about selected entries in the current
target. You can use these reports to get printed documentation about the objects
you have created in your target.

Figure 4-8: The Print Options dialog box for library entry reports

❖ To create library entry reports:

1 Select the library entries you want information about in the List view.

2 Select Entry>Library Item>Print from the menu bar, or select Print from
the pop-up menu.

The Print Options dialog box displays.

3 If you have selected the Application object or one or more menus,
windows, or user objects to report on, select the information you want
printed for each of these object types.

For example, if you want all properties for selected windows to appear in
the report, make sure the Properties box is checked in the Window/User
Object group box.

The settings are saved
PocketBuilder records these settings in the Library section of the
PocketBuilder initialization file.

4 Click OK.

PocketBuilder generates the selected reports and sends them to the printer
specified in Printer Setup in the File menu.

Creating reports on library contents

112 PocketBuilder

Creating the library directory report
The library directory report lists all entries in a selected library in your
workspace, showing the following information for all objects in the library,
ordered by object type:

• Name of object

• Modification date and time

• Size (of compiled object)

• Comments

❖ To create the library directory report:

1 Select the library that you want the report for.

The library must be in your current workspace.

2 Select Entry>Library>Print Directory from the menu bar, or select Print
Directory from the pop-up menu.

PocketBuilder sends the library directory report to the printer specified
under File>Printer Setup in the menu bar.

User’s Guide 113

C H A P T E R 5 Using Source Control

About this chapter PocketBuilder provides a direct connection to external SCC-compliant
source control systems. This chapter describes how to work with source
control.

Contents

About source control systems
This section provides an overview of source control systems and describes
the PocketBuilder interface (API) to such systems.

What source control
systems do

Source control systems (version control systems) track and store the
evolutionary history of software components. They are particularly useful
if you are working with other developers on a large application, in that
they can prevent multiple developers from modifying the same
component at the same time. You can make sure you are working with the
latest version of a component or object by synchronizing the copy of the
object you are working on with the last version of the object checked in to
the source control system.

Why use a source control
system

Most source control systems provide disaster recovery protection and
functions to help manage complex development processes. With a source
control system, you can track the development history of objects in your
PocketBuilder workspace, maintain archives, and restore previous
revisions of objects, if necessary.

Topic Page

About source control systems 113

Using a source control system with PocketBuilder 120

Source control operations in PocketBuilder 129

Modifying source-controlled targets and objects 143

About source control systems

114 PocketBuilder

Source control
interfaces

You work with a source control system through a source control interface.
PocketBuilder supports source control interfaces based on the Microsoft
Common Source Code Control Interface Specification, version 0.99.0823. You
can use the PocketBuilder SCC API with any source control system that
implements features defined in the Microsoft specification.

PocketBuilder institutes source control at the object level. This gives you much
finer control of the source code than if you copied your PKLs directly to source
control outside of the PocketBuilder SCC API.

No other interfaces
PocketBuilder does not support working with source control systems through
proprietary interfaces provided by source control vendors. To work with source
control systems from your PocketBuilder workspace, you must use the
PocketBuilder SCC API. PocketBuilder also uses this API to connect to the
PowerBuilder Native check in/check out utility that installs with the product.

Using your source control manager
The PocketBuilder SCC API works with your source control system to perform
certain source control operations and functions described in the next section.
Other source control operations must be performed directly from the source
control management tool. After you have defined a source control connection
profile for your PocketBuilder workspace, you can open your source control
manager from the Library painter.

❖ To start your source control manager from PocketBuilder

• Select Entry>Source Control>Run Source Control Manager from the
Library painter menu bar.

The menu item name varies depending on the source control system you
selected in the source control connection profile for your current
workspace. There is no manager tool for the PBNative check in/check out
utility.

For information on configuring a source control connection profile, see
“Setting up a connection profile” on page 120.

CHAPTER 5 Using Source Control

User’s Guide 115

Which tool to use The following table shows which source control functions you should perform
from your source control manager and which you can perform from
PocketBuilder:

Table 5-1: Where to perform source control operations

* You can perform these operations from PocketBuilder for some source control systems.

Using PBNative
PocketBuilder enables you to use the PBNative check in/check out utility that
ships with PowerBuilder (but not with PocketBuilder). PBNative allows you to
lock the current version of PocketBuilder objects and prevents others from
checking out these objects while you are working on them. It provides minimal
versioning functionality, and does not allow you to add comments or labels to
objects that you add or check in to the PBNative project directory.

Connecting to
PBNative

You connect to PBNative from PocketBuilder in the same way you connect to
all other source control systems: through the PocketBuilder SCC API. You use
the same menu items to add, check out, check in, or get the latest version of
objects on the source control server. However, any menu item that calls a
source control management tool is unavailable when you select PBNative as
your source control system.

Tool or interface Use for this source control functionality

Source control manager Setting up a project*
Assigning access permissions
Retrieving earlier revisions of objects*
Assigning revision labels*
Running reports*
Editing the PKG file for a source-controlled target*

PocketBuilder SCC API Setting up a connection profile
Viewing the status of source-controlled objects
Adding objects to source control
Checking objects out from source control
Checking objects in to source control
Clearing the checked-out status of objects
Synchronizing objects with the source control server
Refreshing the status of objects
Comparing local objects with source control versions
Displaying the source control version history
Removing objects from source control

About source control systems

116 PocketBuilder

Because there is no separate management tool for PBNative, if you need to edit
project PKG files that get out of sync, you can open them directly on the server
without checking them out of source control.

For more information about PKG files, see “Editing the PKG file for a source-
controlled target” on page 144.

PRP files PBNative creates files with an extra PRP extension for every object registered
in the server storage location. If an object with the same file name (minus the
additional extension) has been checked out, a PRP file provides the user name
of the person who has placed a lock on the object. PRP files are created on the
server, not in the local path.

PocketBuilder also adds a version number to the PRP file for an object in the
PBNative archive directory when you register that object with PBNative
source control. PocketBuilder increments the version number when you check
in a new revision. The version number is visible in the Show History dialog box
that you open from the pop-up menu for the object, or in the Library painter
when you display the object version numbers.

For more information on the Show History dialog box, see “Displaying the
source control version history” on page 141. For information on displaying the
version number in the Library painter, see “Displaying libraries and objects”
on page 92.

Using Show Differences functionality with PBNative
PBNative has an option that allows you to see differences between an object on
the server and an object on the local machine using a 32-bit visual difference
utility that you must install separately. For information on setting up a visual
difference utility for use with PBNative, see “Comparing local objects with
source control versions” on page 139.

Constraints of a multiuser environment
Any object added or checked in to source control should be usable by all
developers who have access permissions to that object in source control. This
requires that the local paths for objects on different machines be the same in
relation to the local root directory where the PocketBuilder workspace resides.

CHAPTER 5 Using Source Control

User’s Guide 117

Project manager’s
tasks

Before developers can start work on PocketBuilder objects in a workspace
under source control, a project manager usually performs the following tasks:

• Sets up source control projects (and archive databases)

• Assigns each developer permission to access the new project

• Sets up the directory structure for all targets in a project

Ideally, the project manager should create a subdirectory for each target.
Whatever directory structure is used, it should be copied to all machines
used to check out source-controlled objects.

• Distributes the initial set of PKLs and target (PKT) files to all developers
working on the project or provides a network location from which these
files and their directory structure can be copied.

PowerScript targets require that all PKLs listed in a target library list be
present on the local machine. For source control purposes, all PKLs in a
target should be in the same local root path, although they could be saved
in separate subdirectories. PKWs and PKLs are not stored in source
control unless they are added from outside the PocketBuilder SCC API.
They cannot be checked in to or out of source control using the
PocketBuilder SCC API.

If you are sharing PKLs in multiple targets, you can include the shared
PKLs in a workspace and in targets of their own, and create a separate
source control project for the shared objects. After adding (registering) the
shared PKL objects to this project, you can copy the shared targets to other
workspaces, but the shared targets should not be registered with the
corresponding projects for these other workspaces. In this case, the icons
indicating source control status for the shared objects should be different
depending on which workspace is the current workspace.

Getting the latest version of all targets in a workspace
For small projects, instead of requiring the project manager to distribute
PKLs and target files, developers can create targets in their local
workspaces having the same name as targets under source control. After
creating a source control connection profile for the workspace, a developer
can get the latest version of all objects in the workspace targets from the
associated project on the source control server, overwriting any target and
object files in the local root path.

Unfortunately, this does not work well for large PowerScript projects with
multiple PKLs and complicated inheritance schemes.

About source control systems

118 PocketBuilder

Ongoing maintenance tasks of a project manager typically include:

• Distributing any target (PKT) files and PKLs that are added to the
workspace during the course of development, or maintaining them on a
network directory in an appropriate hierarchical file structure

• Making sure the PKL mapping files (PKGs) do not get out of sync

For information about the PKG files, see “Editing the PKG file for a
source-controlled target” on page 144.

Connections from each development machine to the source control project can
be defined on the workspace after the initial setup tasks are performed.

Developers’ tasks Each user can define a local root directory in a workspace connection profile.
Although the local root directory can be anywhere on a local machine, the
directory structure below the root directory must be the same on all machines
that are used to connect to the source control repository. Only relative path
names are used to describe the location of objects in the workspace below the
root directory level.

After copying the directory structure for source-controlled PowerScript targets
to the local root path, developers can add these targets to their local
workspaces. The target objects can be synchronized in PocketBuilder, although
for certain complex targets, it might be better to do the initial synchronization
through the source control client tool or on a nightly build machine before
adding the targets to PocketBuilder. (Otherwise, the target PKLs may need to
be manually rebuilt and regenerated.)

For more information about getting the latest version of objects in source
control, see “Synchronizing objects with the source control server” on page
136.

Extension to the SCC API
Status determination
by version number

PocketBuilder makes an extension to the SCC API available to third-party SCC
providers. This allows them to enhance the integration of their products with
PocketBuilder. Typically, calls to the SccDiff method are required to determine
if an object is out of sync with the SCC repository. (This is not required for
Perforce and ClearCase.)

CHAPTER 5 Using Source Control

User’s Guide 119

However, SCC providers can implement SccQueryInfoEx as a primary file
comparison method instead of SccDiff. The SccQueryInfoEx method returns the
most recent version number for each object requested. This allows
PocketBuilder to compare the version number associated with the object in the
PKL with the version number of the tip revision in the SCC repository in order
to determine whether an object is in sync.

Since SccQueryInfoEx is a much simpler request than SccDiff, the performance
of the PocketBuilder IDE improves noticeably when this feature is
implemented by the SCC provider. For these providers, the SccDiff call is used
as a backup strategy only when a version number is not returned on an object
in the repository. Also for these providers, the version number for registered
files can be displayed in the Library painter.

For more information on viewing the version number, see “Displaying
libraries and objects” on page 92.

Once the new API method is implemented in an SCC provider DLL and
exported, PocketBuilder automatically begins to use the SCCQueryInfoEx call
with that provider. The SccQueryInfoEx method is currently used by PBNative.

Overriding the version
number

For source control systems that support the SccQueryInfoEx method, you can
manually override the version number of local files, but only for PowerScript
objects, and only when you are connected to source control.

This can be useful with source control systems that allow you to check out a
version of an object that is not the tip revision. However, the source control
system alone decides the version number of the tip revision when you check a
file back into source control. It is the version returned by the source control
system that gets added to the PKC file for the workspace and to the PKLs in
the local directory.

For more information about the PKC file, see “Working in offline mode” on
page 126.

You change the local version number for a source-controlled PowerScript
object in its Properties dialog box, which you access from the object’s pop-up
menu in the System Tree or the Library painter. If the source control system
for the workspace supports the SccQueryInfoEx method and you are connected
to source control, the Properties dialog box for a source-controlled PowerScript
object (other than a PKT) has an editable SCC Version text box. The SCC
Version text box is grayed if the source control system does not support the
SccQueryInfoEx method or if you are not connected to source control.

Using a source control system with PocketBuilder

120 PocketBuilder

Local change only
The version number that you manually enter for an object is discarded on
check-in. Only the source control provider decides what number the tip
revision is assigned.

Using a source control system with PocketBuilder
PocketBuilder provides a direct connection to external SCC-compliant source
control systems.

Before you can perform any source control operations from PocketBuilder, you
must set up a source control connection profile for your PocketBuilder
workspace, either from the System Tree or from the Library painter. Even if
you use the PBNative check in/check out utility, you must access
source-controlled objects through an SCC interface that you define in the
Workspace Properties dialog box.

The source control connection profile assigns a PocketBuilder workspace to a
source control project. Setting up a source control project is usually the job of
a project manager or administrator. See “Project manager’s tasks” on page
117.

Creating a new source control project
Although you can create a project in certain source control systems directly
from PocketBuilder, it is usually best to create the project from the
administrative tool for your source control system before you create the
connection profile in PocketBuilder.

Setting up a connection profile
In PocketBuilder you can set up a source control connection profile at the
workspace level only. Local and advanced connection options can be defined
differently on each machine for PocketBuilder workspaces that contain the
same targets.

CHAPTER 5 Using Source Control

User’s Guide 121

Local connection
options

Local connection options allow you to create a trace log to record all source
control activity for your current workspace session. You can overwrite or
preserve an existing log file for each session.

You can also make sure a comment is included for every file checked in to
source control from your local machine. If you select this connection option,
the OK button on the Check In dialog box is disabled until you type a comment
for all the objects you are checking in.

The following table lists the connection options you can make for each local
connection profile:

Table 5-2: Source control properties for a workspace

Select this option To do this

Log All Source Management
Activity (not selected by default)

Enable trace logging. By default the log file
name is PKSCC15.LOG, which is saved in
your workspace directory, but you can select
a different path and file name.

Append To Log File (default
selection when logging is enabled)

Append source control activity information
to named log file when logging is enabled.

Overwrite Log File (not selected by
default)

Overwrite the named log file with source
control activity of the current session when
logging is enabled.

Require Comments On Check In (not
selected by default; not available for
PBNative source control)

Disable the OK button on the Check In dialog
box until you type a comment.

This Project Requires That I
Sometimes Work Offline (not
selected by default)

Disable automatic connection to source
control when you open the workspace.

Delete PowerBuilder Generated
Object Files (not selected by default)

Remove object files (such as SRDs) from the
local directory after they are checked in to
source control. This may increase the time it
takes for PocketBuilder to refresh source
control status, but it minimizes the drive
space used by temporary files. You cannot
select this option for the Perforce, ClearCase,
or Continuus source control systems.

Perform Diff On Status Update Permit display of out-of-sync icons for local
objects that are different from objects on the
source control server. Selecting this also
increases the time it takes to refresh source
control status.You cannot select this option
for Perforce.

Suppress prompts to overwrite
read-only files

Avoid message boxes warning that read-only
files exist on your local project directory.

Using a source control system with PocketBuilder

122 PocketBuilder

Advanced connection
options

Advanced connection options depend on the source control system you are
using to store your workspace objects. Different options exist for different
source control systems.

Applicability of advanced options
Some advanced options might not be implemented or might be rendered
inoperable by the PocketBuilder SCC API interface. For example, if an
advanced option allows you to make local files writable after an Undo Check
Out operation, PocketBuilder still creates read-only files when reverting an
object to the current version in source control. (PocketBuilder might even
delete these files if you selected the Delete PowerBuilder Generated Object
Files option.)

❖ To set up a connection profile:

1 Right-click the Workspace object in the System Tree (or in the Tree view
of the Library painter) and select Properties from the pop-up menu.

2 Select the Source Control tab from the Workspace Properties dialog box.

3 From the Source Control System drop-down list, select the system you
want to use.

Only source control systems that are defined in your registry
(HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\
InstalledSCCProviders) appear in the drop-down list.

4 Type in your user name for the source control system.

Some source control systems use a login name from your registry rather
than the user name that you enter here. For these systems (such as Perforce
or Version Manager), you can leave this field blank.

5 Click the ellipsis button next to the Project text box.

A dialog box from your source control system displays. Typically it allows
you to select or create a source control project.

Status Refresh Rate (5 minutes by
default)

Specifies the minimum time elapsed before
PocketBuilder automatically requests
information from the source control server to
determine if objects are out of sync. Valid
values are between 1 and 59 minutes. Status
refresh rate is ignored when you are working
offline.

Select this option To do this

CHAPTER 5 Using Source Control

User’s Guide 123

The dialog box displayed for PBNative is shown below:

6 Fill in the information required by your source control system and click
OK.

The Project field on the Source Control page of the Workspace Properties
dialog box is typically populated with the project name from the source
control system you selected. However, some source control systems (such
as Perforce and Vertical Sky) do not return a project name. For these
systems, you can leave this field blank.

7 Type or select a path for the local root directory.

All the files that you check in to and out of source control must reside in
this path or in a subdirectory of this path.

8 (Option) Select the options you want for your local workspace connection
to the source control server.

9 (Option) Click the Advanced button and make any changes you want to
have apply to advanced options defined for your source control system.

The Advanced button might be grayed if you are not first connected to a
source control server. If Advanced options are not supported for your
source control system, you see only a splash screen for the system you
selected and an OK button that you can click to return to the Workspace
Properties dialog box.

10 Click Apply or click OK.

Viewing the status of source-controlled objects
After a PocketBuilder workspace is assigned to a source control project
through a connection profile, icons in the PocketBuilder System Tree indicate
the source control status of all objects in the workspace. In the Library painter,
the same icons also indicate the status of objects if the workspace to which they
belong is the current workspace for PocketBuilder.

Using a source control system with PocketBuilder

124 PocketBuilder

Source control icons The icons and their meanings are described in Table 5-3 and Table 5-4.

Table 5-3: Source control status icons in PocketBuilder

Compound icons with a red check mark can display only if you add a PK.INI
setting to permit multiple user checkouts. These icons are described in the
following table:

Table 5-4: Source control status icons with multiple checkouts enabled

For more information on allowing multiple user checkouts, see “Checking
objects out from source control” on page 131.

Icon Source control status of object displaying icon

The object resides only locally and is not under source control.

The object is under source control and is not checked out by anyone. The
object on the local machine is in sync with the object on the server unless
the icon for indeterminate status also appears next to the same object.

 The object is checked out by the current user.

The object is checked out by another user.

The current status of an object under source control has not been
determined. You are likely to see this icon only if the Perform Diff On
Status Update check box is not selected and if diffs are not performed for
your source control system based on version number. This icon can appear
only in conjunction with the icon for a registered object (green dot icon)
or for an object checked out by another user (red x icon). If multiple
checkouts are enabled, it can also appear with a red check mark above it.

The object on the local machine is registered to source control but is out
of sync with the object on the server. This icon can also appear with the
icon for an object checked out by another user. The Perform Diff On Status
Update check box must be selected for this icon to display.

Icon Source control status of object displaying icon

The object is under source control and is checked out nonexclusively by
another user. PocketBuilder allows a concurrent checkout by the current
user.

The object is checked out by both the current user and another user.

The object is checked out nonexclusively by another user and the version
in the current user’s local path is out of sync.

CHAPTER 5 Using Source Control

User’s Guide 125

Pop-up menus Pop-up menus for each object in the workspace change dynamically to reflect
the source control status of the object. For example, if the object is included in
a source-controlled workspace but has not been registered to source control,
the Add To Source Control menu item is visible and enabled in the object’s
pop-up menu. However, other source control menu items such as Check In and
Show Differences are not visible until the object is added to source control.

Library painter Entry
menu

Additional status functionality is available from the Entry menu of the Library
painter. Depending on the source control system you are using, you can see the
owner of an object and the name of the user who has the object checked out.
For most source control systems, you can see the list of revisions, including any
branch revisions, as well as version labels for each revision.

Library painter selections
When a painter is open, menu commands apply to the current object or objects
in the painter, not the current object in the System Tree. This can get confusing
with the Library painter in particular, since Library painter views list objects
only (much like the System Tree), and do not provide a more detailed visual
interface for viewing current selections, as other painters do.

❖ To view the status of source-controlled objects

1 In a Library painter view, select the object (or objects) whose status you
want to determine.

2 Select Entry>Source Control>Source Control Manager Properties.

A dialog box from your source control system displays. Typically it
indicates if the selected file is checked in, or the name of the user who has
the file checked out. It should also display the version number of the
selected object.

Displaying the version number in the Library painter
You can display the version number of all files registered in source control
directly in the Library painter. You add a Version Number column to the
Library painter List view by making sure the SCC Version Number option
is selected in the Options dialog box for the Library painter.

For more information, see “Displaying libraries and objects” on page 92.

Using a source control system with PocketBuilder

126 PocketBuilder

Working in offline mode
Viewing status
information offline

You can work offline and still see status information from the last time you
were connected to source control. However, you cannot perform any source
control operations while you are offline, and you cannot save changes to
source-controlled objects that you did not check out from source control before
you went offline.

To be able to work offline, you should select the option on the Source Control
page of the Workspace Properties dialog box that indicates you sometimes
work offline. If you select this option, a dialog box displays each time you open
the workspace. The dialog box prompts you to select whether you want to work
online or offline.

For more information about setting source control options for your workspace,
see “Setting up a connection profile” on page 120.

About the PKC file If you opt to work offline, PocketBuilder looks for a PKC file in the local root
directory and imports it if found. The PKC file is a text file that contains status
information from the last time a workspace was connected to source control.
PocketBuilder creates a PKC file only from a workspace that is connected to
source control. Status information is added to the PKC file from expanded
object nodes (in the System Tree or in a Library painter view) at the time you
exit the workspace.

If a PKC file already exists for a workspace that is connected to source control,
PocketBuilder merges status information from the current workspace session
with status information already contained in the PKC file. Newer status
information for an object replaces older status information for the same object,
but older status information is not overwritten for objects in nodes that were
not expanded during a subsequent workspace session.

Backing up the PKC
file

You can back up the PKC file with current checkout and version information
by selecting the Backup SCC Status Cache menu item from the Library painter
Entry>Source Control menu, or from the pop-up menu on the current
workspace item in the System Tree. The Library painter menu item is only
enabled when the current workspace file is selected.

The Backup SCC Status Cache operation copies the entire contents of the
refresh status cache to the PKC file in the local project path whether the status
cache is dirty or valid. To assure a valid status cache, you can perform a Refresh
Status operation on the entire workspace before backing up the SCC status
cache.

For information about refreshing the status cache, see “Refreshing the status
of objects” on page 138.

CHAPTER 5 Using Source Control

User’s Guide 127

Fine-tuning performance for batched source control requests
PocketBuilder uses an array of object file names that it passes to a source
control system in each of its SCC API requests. The SCC specification does not
mention an upper limit to the number of files that can be passed in each request,
but the default implementation in PocketBuilder limits SCC server requests to
batches of 25 objects.

A PK.INI file setting allows you to override the 25-file limit on file names sent
to the source control server in a batched request. You can make this change in
the Library section of the PK.INI file by adding the following instruction:

[Library]
SccMaxArraySize=nn

where nn is the number of files you want PocketBuilder to include in its SCC
API batch calls. Like other settings in the PK.INI file, the SccMaxArraySize
parameter is not case sensitive.

Files available for source control
The following schema shows a directory structure for files in the local
PocketBuilder workspace and on the source control server. Directories and
files in the local root path that can be copied to the source control server from
PocketBuilder are displayed in bold font. Asterisks indicate a variable name for
a file and italic print indicates a variable name for a file or folder.

Using a source control system with PocketBuilder

128 PocketBuilder

Figure 5-1: Directory structure in local path and source control server

Typically, the source control server files are stored in a database but preserve
the file system structure.

Temporary files in local root path
When you add or check in a PowerScript object to source control,
PocketBuilder first exports the object as a temporary file (*.SR*) to your local
target directory. For some source control systems, you might choose to delete
temporary files from the local root path.

CHAPTER 5 Using Source Control

User’s Guide 129

Source control operations in PocketBuilder
The following source control operations are described in this section:

• Adding objects to source control

• Checking objects out from source control

• Checking objects in to source control

• Clearing the checked-out status of objects

• Synchronizing objects with the source control server

• Refreshing the status of objects

• Comparing local objects with source control versions

• Displaying the source control version history

• Removing objects from source control

Source control operations on workspace and PKL files are performed on the
objects contained in the current workspace or in target PKLs, not on the actual
PKW and PKL files. The PKW and PKL files cannot be added to source
control through the PocketBuilder interface. Source control operations are not
enabled for target PKD files or for any of the objects in target PKD files.

Adding objects to source control
You add an object to your source control project by selecting the Add To
Source Control menu item from the object’s pop-up menu in the System Tree
or in the Library painter. You can also select an object in a Library painter view
and then select Entry>Source Control>Add To Source Control from the
Library painter menu bar.

What happens when
you add objects to
source control

When you add an object to source control, the icon in front of the object
changes from a plus sign to a green dot, indicating that the object on the local
machine is in sync with the object on the server.

PocketBuilder creates read-only object files in the local root directory for each
PocketBuilder object that you add to source control. These files can be
automatically deleted if you selected the Delete PocketBuilder Generated
Object Files option as a source control connection property (although you
cannot do this for certain SCC systems such as Perforce or ClearCase).
Read-only attributes are not changed by PocketBuilder if you later remove a
workspace containing these files from source control.

Source control operations in PocketBuilder

130 PocketBuilder

Adding multiple
objects to source
control

If the object you select is a PocketBuilder workspace, a dialog box displays
listing all the objects for that workspace that are not currently under source
control (although the workspace PKW and target PKLs are not included in the
list). If the object you select is a PocketBuilder target, and at least one of the
objects in that target has not been registered with the current source control
project, PocketBuilder displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Register the target file only

If you select the multiple files radio button, another dialog box displays with a
list of objects to add to source control. A check box next to each object lets you
select which objects you want to add to source control. By default, check boxes
are selected for all objects that are not in your source control project. They are
not selected for any object already under source control.

For all source control dialog boxes listing multiple files, you can resize the list
by placing a cursor over the edge of the dialog box until a two-headed arrow
displays, then dragging the edge in the direction of one of the arrow heads.

Selecting multiple files from a PKL
If you select Add To Source Control for a target PKL, you immediately see the
list of multiple files from that PKL in the Add To Source Control dialog box.
There is no need for an intervening dialog box as there is for a target or
workspace, since you cannot register a PKL file to source control from the
PocketBuilder UI. You can register only the objects contained in that PKL.

You can also select multiple objects to add to source control from the List view
of the Library painter without selecting a workspace, target, or PKL.

You cannot add objects to your source control project that are already
registered with that project. The Add To Source Control menu item is disabled
for all objects that are registered in source control except workspaces and
targets. If you select the Add To Source Control menu item for a workspace or
target in which all the objects are already registered to source control,
PocketBuilder displays the Add To Source Control dialog box with an empty
list of files.

Creating a mapping
file for target PKLs

When you add a target, or an object in a target that is not under source control,
to source control, PocketBuilder creates a PKG file. The PKG files are used by
PocketBuilder to make sure that objects are distributed to the correct PKLs and
targets when you check the objects out (or get the latest versions of the objects)
from source control.

CHAPTER 5 Using Source Control

User’s Guide 131

A PKG file maps objects in a target to a particular PKL in a PowerScript target.
One PKG file is created per PKL, so there can be multiple PKG files per
PowerScript target. If a PKG file already exists for a target PKL containing the
object you are adding to source control, PocketBuilder checks the PKG file out
of source control and adds the name of the object to the names of objects
already listed in the PKG file. It then checks the PKG file back in to source
control.

If your source control system requires comments on registration and check-in,
you get separate message boxes for the PKG file and the objects that you are
adding to source control. If your source control system gives you the option of
adding the same comments to all the objects you are registering, you might still
see additional message boxes for PKG files, since PKG files are checked in
separately.

Because it is possible for PKG files to get out of sync, it is important that the
project manager monitor these files to make sure they map all objects to the
correct PKLs and contain references to all objects in the source control project.
However, you cannot explicitly check in or check out PKG files through the
PocketBuilder SCC API.

For more information on modifying PKG files, see “Editing the PKG file for a
source-controlled target” on page 144.

Checking objects out from source control
Enabling multiple user
checkout

Checking out an object from a source control system usually prevents other
users from checking in modified versions of the same object. By default,
PocketBuilder assumes that any object checked out by a user is exclusively
reserved for that user until the object is checked back in.

Some source control systems, such as Serena Version Manager (formerly
Merant PVCS) and MKS Source Integrity, permit multiple user checkouts. In
these systems, you can allow shared checkouts of the same object.
PocketBuilder can recognize shared checkouts, but only if you add the
following instruction to the Library section of the PK.INI file:

[Library]
SccMultiCheckout=1

Source control operations in PocketBuilder

132 PocketBuilder

After you add this PK.INI setting, PocketBuilder shows a red check mark as
part of a compound icon to indicate that an object is checked out to another user
in a shared (nonexclusive) mode. PocketBuilder allows you to check out an
object with this compound icon, even though another user has already checked
the object out.

Multiple user checkouts
If you configure the PK.INI file to allow multiple user checkouts, you must
make sure that you have a way to manage updates to the same object by
multiple users. The merge functionality is not supported by the SCC API, so
either you must configure merge operations through the Advanced Check Out
dialog box of the source control system, or you must merge the changes using
the source control management system instead of the PocketBuilder user
interface.

What happens When you check out an object, PocketBuilder:

• Locks the object in the archive so that no one else can modify it (unless
you set the source control system to allow shared checkouts)

• Copies the object to the directory for the target to which it belongs

• For a PowerScript object, compiles the object and regenerates it in the
target PKL to which it is mapped

• Displays a check mark icon next to the object in your System Tree and in
your Library painter to show that the object has been checked out

Checking out multiple
objects

If you select the Check Out menu item for a PocketBuilder target that is not
already checked out, and at least one of the objects in that target is available for
checkout, PocketBuilder displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Check out the target file only

If you select the multiple file option, or if the target file is already checked out,
the Check Out dialog box displays the list of objects from that target that are
available for checkout. A check box next to each object in the list lets you
choose which objects you want to check out. By default, check boxes are
selected for all objects that are not currently checked out of source control.

The Deselect All button in the Check Out dialog box lets you clear all the check
boxes with a single click. When none of the objects in the list is selected, the
button text becomes Select All, and you can click the button to select all the
objects in the list.

CHAPTER 5 Using Source Control

User’s Guide 133

You can also select multiple objects (without selecting a target) in the List view
of the Library painter. The PocketBuilder SCC API does not let you check out
an object that you or someone else has already checked out or that is not yet
registered with source control. If you use multiple object selection to select an
object that is already checked out, PocketBuilder does not include this object
in the list view of the Check Out dialog box.

Creating a source
control branch

If your source control system supports branching and its SCC API lets you
check out a version of an object that is not the most recent version in source
control, you can select the version you want in the Advanced Check Out dialog
box. You access this dialog box by clicking the Advanced button in the Check
Out dialog box. When you select an earlier version, PocketBuilder displays a
message box telling you it will create a branch when you check the object back
in. You can click Yes to continue checking out the object or No to leave the
object unlocked in the source control project. If this is part of a multiple object
check-out, you can select Yes To All or No To All.

If you want just a read-only copy of the latest version of an object
Instead of checking out an object and locking it in the source control system,
you can choose to get the latest version of the object with a read-only attribute.
See “Synchronizing objects with the source control server” on page 136.

❖ To check out an object from source control:

1 Right-click the object in the System Tree or in a Library painter view and
select Check Out from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Check Out from the Library painter menu.

The Check Out dialog box displays the name of the object you selected.
For PowerScript objects, the object listing includes the name of the PKL
that contains the selected object.

If you selected multiple objects, the Check Out dialog box displays the list
of objects available for checkout. You can also display a list of available
objects when you select a target file for checkout. A check mark next to an
object in the list marks the object as assigned for checkout.

2 Make sure that the check box is selected next to the object you want to
check out, and click OK.

Source control operations in PocketBuilder

134 PocketBuilder

Checking objects in to source control
When you finish working with an object that you checked out, you must check
it back in so other developers can use it, or you must clear the object’s
checked-out status. You cannot check in objects that you have not checked out.

If you do not want to use the checked-out version
Instead of checking an entry back in, you can choose not to use the checked-out
version by clearing the checked-out status of the entry. See “Clearing the
checked-out status of objects” next.

Checking in multiple
objects

If you select the Check In menu item for a workspace, PocketBuilder lists all
the objects in the workspace that are available for check-in. If you select the
Check In menu item for a PocketBuilder target that is currently checked out to
you, and at least one of the objects in that target is also checked out to you,
PocketBuilder displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Check in the target file only

If you select the multiple file option, or if the target file is not currently checked
out to you, the Check In dialog box displays the list of objects from that target
that are available for you to check in. A check box next to each object in the
list lets you choose which objects you want to check in. By default, check
boxes are selected for all objects that you currently have checked out of source
control.

The Deselect All button in the Check In dialog box lets you clear all the check
boxes with a single click. When none of the objects in the list is selected, the
button text becomes Select All, and you can click the button to select all the
objects in the list.

You can also select multiple objects (without selecting a workspace or target)
in the List view of the Library painter. The PocketBuilder SCC API does not
let you check in an object that you have not checked out of source control. If
you use multiple object selection to select an object that is not checked out to
you, PocketBuilder does not include this object in the list view of the Check In
dialog box.

CHAPTER 5 Using Source Control

User’s Guide 135

❖ To check in objects to source control:

1 Right-click the object in the System Tree or in a Library painter view and
select Check In from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Check In from the Library painter menu.

The Check In dialog box displays the name of the object you selected. If
you selected multiple objects or a workspace, the Check In dialog box
displays the list of objects available for check-in. You can also display a
list of available objects when you select a target file. A check mark next to
an object in the list marks the object as assigned for check-in.

2 Make sure the check box is selected next to the object you want to check
in, and click OK.

Clearing the checked-out status of objects
Sometimes you need to clear (reverse) the checked-out status of an object
without checking it back in to source control. This is usually the case if you
modify the object but then decide not to use the changes you have made. When
you undo a checkout on an object, PocketBuilder replaces your local copy with
the latest version of the object on the source control server. For PowerScript
targets, it compiles and regenerates the object in its target PKL.

Clearing the status of
multiple objects

If you select the Undo Check Out menu item for a PocketBuilder target that is
checked out to you, and at least one of the objects in that target is also checked
out to you, PocketBuilder displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Undo the checked-out status for the target file only

If you select the multiple file option, or if the target file is not currently checked
out to you, the Undo Check Out dialog box displays the list of objects from that
target that are locked by you in source control. A check box next to each object
in the list lets you choose the objects for which you want to undo the
checked-out status. By default, check boxes are selected for all objects that are
currently checked out to you from source control.

Source control operations in PocketBuilder

136 PocketBuilder

You can also select multiple objects (without selecting a target) in the List view
of the Library painter. The PocketBuilder SCC API does not let you undo the
checked-out status of an object that you have not checked out of source control.
If you use multiple object selection to select an object that is not checked out
to you, PocketBuilder does not include this object in the list view of the Undo
Check Out dialog box.

❖ To clear the checked-out status of entries:

1 Right-click the object in the System Tree or in a Library painter view and
select Undo Check Out from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Undo Check Out from the Library painter menu.

The Undo Check Out dialog box displays the name of the object you
selected. If you selected multiple objects, the Undo Check Out dialog box
displays the list of objects in the selection that are currently checked out to
you. You can also display a list of objects that are checked out to you when
you select a target file.

2 Make sure that the check box is selected next to the object whose
checked-out status you want to clear, and click OK.

Synchronizing objects with the source control server
You can synchronize local copies of PocketBuilder objects with the latest
versions of these objects in source control without checking them out from the
source control system. The objects copied to your local machine are read-only.
The newly-copied PowerScript objects are then compiled into their target
PKLs.

If there are exported PowerScript files in your local path that are not marked
read-only, and you did not select the Suppress Prompts To Overwrite
Read-Only Files option, your source control system may prompt you before
attempting to overwrite these files during synchronization. If you are
synchronizing multiple objects at the same time, you can select:

• Yes To All, to overwrite all files in your selection.

• No To All, to cancel the synchronization for all objects in the selection that
have writable files in the local path.

CHAPTER 5 Using Source Control

User’s Guide 137

Synchronizing an object does not lock that object on the source control server.
After you synchronize local objects to the latest version of these objects in
source control, other developers can continue to perform source control
operations on these objects.

If you want only to check whether the status of the objects has changed on the
source control server, you can use the Refresh Status menu item from the
Library painter Entry menu or System Tree pop-up menus. The Refresh Status
command runs on a background thread. If you do not use the Refresh Status
feature before getting the latest versions of workspace or target objects, then
PocketBuilder has to obtain status and out-of-sync information from the SCC
provider in real time during a GetLatestVersion call.

For more information, see “Refreshing the status of objects” on page 138.

❖ To synchronize a local object with the latest source control version:

1 Right-click the object in the System Tree or in a Library painter view and
select Get Latest Version from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Get Latest Version from the Library painter menu.

The Get Latest Version dialog box displays the name of the object you
selected. If you selected multiple objects in the Library painter List view,
the Get Latest Version dialog box lists all the objects in your selection. If
you selected a workspace, the Get Latest Version dialog box lists all the
objects referenced in the PKG files belonging to your workspace. You can
also display a list of available objects (from the PKG files for a target)
when you select the Get Latest Version menu item for a target file.

A check mark next to an object in the list assigns the object for
synchronization. By default only objects that are currently out of sync are
selected in this list. You can use the Select All button to select all the
objects for synchronization. If all objects are selected, the button text
becomes Deselect All. Its function also changes, allowing you to clear all
the selections with a single click.

2 Make sure that the check box is selected next to the object for which you
want to get the latest version, and click OK.

Source control operations in PocketBuilder

138 PocketBuilder

Refreshing the status of objects
PocketBuilder uses the source control connection defined for a workspace to
check periodically on the status of all objects in the workspace. You can set the
status refresh rate for a workspace on the Source Control page of the
Workspace Properties dialog box. You can also select the Perform Diff on
Status Update option to detect any differences between objects in your local
directories and objects on the source control server.

For more information about source control options you can set on your
workspace, see “Setting up a connection profile” on page 120.

PocketBuilder stores status information in memory, but it does not
automatically update the source control status of an object until a System Tree
or Library painter node containing that object has been expanded and the time
since the last status update for that object exceeds the status refresh rate.

Status information can still get out of sync if multiple users access the same
source control project simultaneously and you do not refresh the view of your
System Tree or Library painter. By using the Refresh Status menu item, you
can force a status update for objects in your workspace without waiting for the
refresh rate to expire, and without having to open and close tree view nodes
containing these objects.

The Refresh Status feature runs in the background on a secondary thread. This
allows you to continue working in PocketBuilder while the operation proceeds.
When the Refresh Status command is executed, your SCC status cache is
populated with fresh status values. This allows subsequent operations like a
target-wide synchronization (through a GetLatestVersion call) to run much
faster.

❖ To refresh the status of objects:

1 Right-click the object in the System Tree or in a Library painter view and
select Refresh Status from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Refresh Status from the Library painter menu.

If the object you selected is not a workspace, target, or PKL file, the object
status is refreshed and any change is made visible by a change in the
source control icon next to the object. If you selected an object in a Library
painter view, the status of this object in the System Tree is also updated.

For information about the meaning of source control icons in
PocketBuilder, see “Viewing the status of source-controlled objects” on
page 123.

CHAPTER 5 Using Source Control

User’s Guide 139

2 If you selected a workspace or target file in step 1, select a radio button to
indicate whether you want to refresh the status of the selected file only or
of multiple files in the workspace or target.

3 If you selected a PKL in step 1, or if you selected the multiple files option
in step 2, make sure that the check box is selected next to the object or
objects whose status you want to refresh, and click OK.

Status is refreshed for every object selected in the Refresh Status dialog
box. Any change in status is made visible by a change in the source control
icon next to the objects (in the selected workspace, target, or PKL) that are
refreshed.

Comparing local objects with source control versions
The PocketBuilder SCC API lets you compare an object in your local directory
with a version of the object in the source control archive (or project). By
default, the comparison is made with the latest version in the archive, although
most source control systems let you compare your local object to any version
in the archive. Using this feature, you can determine what changes have been
made to an object since it was last checked in to source control.

Setting up PBNative
for object
comparisons

PBNative does not have its own visual difference utility, but it does allow you
to select one that you have already installed. You must use only a 32-bit visual
difference utility for the object comparisons. You can select any or all of the
following options when you set up the utility to work with a PBNative
repository:

Table 5-5: Object comparison options for use with PBNative

Option Select this if

Enclose file names in
double quotes

Your visual difference utility does not handle spaces in
file names

Refer to local PKL entry
as argument #1

You do not want the visual difference utility to use the
repository object as the first file in a file comparison

Generate short (8.3) file
names

Your visual difference utility does not handle long file
names

Generate an extra space
prior to file arguments

Your visual difference utility requires an extra space
between files that are listed as arguments when you open
the utility from a command line

Source control operations in PocketBuilder

140 PocketBuilder

❖ To set up PBNative for object comparisons

1 Right-click the Workspace object in the System Tree and click the Source
Control tab in the Workspace Properties dialog box.

PBNative should be your selection for the source control system, and you
must have a project and local root directory configured. If you are
connected already to source control, you can skip the next step.

2 Click Connect.

The Connect button is disabled if you are already connected to source
control.

3 Click Advanced.

The PBNative Options dialog box displays.

4 Type the path to a visual difference utility followed by the argument string
required by your utility to perform a diff (comparison) on two objects.

Typically, you would add two %s parameter markers to indicate where
PocketBuilder should perform automatic file name substitution. The
following figure shows a setting used to call the Microsoft WinDiff utility:

5 (Optional) Select any or all of the check box options in the PBNative
Command Options dialog box for your object comparisons.

6 Click OK twice.

You are now set to use your visual difference utility to compare objects on
the local machine and the server.

Using Show
Differences to
compare objects

You can select Show Differences from a pop-up menu or from the Library
painter menu bar. If the object you want to compare has not been added to the
source control project defined for your workspace, the Show Differences menu
item is not available.

CHAPTER 5 Using Source Control

User’s Guide 141

❖ To compare a local object with the latest source control version:

1 Right-click the object in the System Tree or in a Library painter view and
select Show Differences from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Show Differences from the Library painter menu bar.

A dialog box from your source control system displays.

PBNative connections
Skip the next step if you are using a visual difference utility with
PBNative. The difference utility displays the files directly or indicates that
there are no differences between the files.

2 Select the source control comparison options you want and click OK.

Some source control systems support additional comparison functions.
You may need to run the source control manager for these functions. See
your source control system documentation for more information.

Displaying the source control version history
For some source control systems, the PocketBuilder SCC API lets you show
the version control history of an object in source control. Using this feature,
you can determine what changes have been made to an object since it was first
checked in to source control.

The Show History menu item is not visible if the object for which you want to
display a version history has not been added to the source control project
defined for your workspace. It is grayed if your source control system does not
support this functionality through the PocketBuilder SCC API.

❖ To display the source control version history:

1 Right-click the object in the System Tree or in a Library painter view and
select Show History from the pop-up menu
or
Select the object in a Library painter view and select Entry>Source
Control>Show History from the Library painter menu bar.

A dialog box from your source control system displays.

2 Select the source control options you want and click OK.

Source control operations in PocketBuilder

142 PocketBuilder

Some source control systems support additional tracing and reporting
functions for objects in their archives. You might need to run the source
control manager for these functions. See your source control system
documentation for more information.

Removing objects from source control
The PocketBuilder SCC API lets you remove objects from source control,
although for some source control systems, you might have to use the source
control manager to delete the archives for the objects you remove. You cannot
remove an object that is currently checked out from source control.

You cannot delete a source-controlled object from a local PocketBuilder
workspace before that object has been removed from source control. There is
no requirement, however, that the source control archive be deleted before you
delete the object from its PocketBuilder workspace.

❖ To remove objects from source control:

1 Select the object in a Library painter view and select Entry>Source
Control>Remove From Source Control from the Library painter menu.

The Remove From Source Control dialog box displays the name of the
object you selected.

If you selected multiple objects or a workspace, the Remove From Source
Control dialog box displays the list of objects in your selection that are not
currently checked out from source control. You can also display a list of
available objects when you select the Remove From Source Control menu
item for a target file. A check mark next to an object in the list marks the
object as assigned for removal from source control.

2 Make sure that the check box is selected next to the object you want to
remove, and click OK.

CHAPTER 5 Using Source Control

User’s Guide 143

Modifying source-controlled targets and objects
Objects in targets under source control must be managed differently than the
same objects in targets that are not under source control.

Effects of source control on object management
You must check out a target file from source control before you can modify its
properties. If objects in a source-controlled target are not themselves registered
in source control, you can add them to or delete them from the local target
without checking out the target. However, you must remove a
source-controlled object from the source control system before you can delete
the same object from the local copy of the target (whether or not the target itself
is under source control).

Although you can add objects to a source-controlled target without checking
out the target from source control, you cannot add existing libraries to the
library list of a source-controlled PowerScript target unless the target is
checked out.

For information on removing an object from source control, see “Removing
objects from source control” on page 142.

Copy and move operations on source-controlled objects
You cannot copy a source-controlled object to a destination PKL in the same
directory as the source PKL. Generally when you work with source control,
objects with the same name should not exist in more than one PKL in the same
directory.

Moving an object that is not under source control to a destination PKL that has
a source-controlled object with the same name is permitted only when the
second object is checked out of source control.

You cannot move an object from a source PKL if the object is under source
control, even when the object has been checked out. The right way to move an
object under source control is described below.

Modifying source-controlled targets and objects

144 PocketBuilder

❖ To move an object under source control from one PKL to another:

1 Export the object from the first PKL.

2 Remove the object from source control.

See “Removing objects from source control” on page 142.

3 Delete the object from the first PKL.

4 Import the object into the second PKL.

5 Register the object in source control once again.

Editing the PKG file for a source-controlled target
PocketBuilder creates and uses PKG files to determine if any objects present
on a source control server are missing from local PowerScript targets.
Up-to-date PKG files insure that the latest objects in source control are
available to all developers on a project, and that the objects are associated with
a named PKL file.

Ideally, PKG files are not necessary. If the source control system exposes the
latest additions of objects in a project through its SCC interface, PocketBuilder
can obtain the list of all objects added to a project since the last status refresh.
However, many source control systems do not support this, so PocketBuilder
uses the PKG files to make sure it has an up-to-date list of objects under source
control.

PKG files are registered and checked in to source control separately from all
other objects in PocketBuilder. They are automatically updated to include new
objects that are added to source control, but they can easily get out of sync
when multiple users simultaneously register objects to (or delete objects from)
the same source control project. For example, it is possible to add an object to
source control successfully yet have the check-in of the PKG file fail because
it is locked by another user.

You cannot see the PKG files in the System Tree or Library painter, unless you
set the root for these views to the file system. To edit PKG files manually, you
should check them out of source control using the source control manager and
open them in a text editor. (If you are using PBNative, you can edit PKG files
directly in the server storage location, without checking them out of source
control.)

You can manually add objects to the PKG file for a PocketBuilder library by
including a new line for each object after the @begin Objects line.

P A R T 3 Coding Fundamentals

This part describes how to code your application. It covers
the basics of the PowerScript language, how to use the
Script view, and how to create functions, structures, and
user events to make your code more powerful and easier
to maintain.

User’s Guide 147

C H A P T E R 6 Writing Scripts

About this chapter PocketBuilder applications are event driven. You specify the processing
that takes place when an event occurs by writing a script. This chapter
describes how to use the Script view to write scripts using the PowerScript
language.

Contents

For more information For complete information about the PowerScript language, see the
PowerScript Reference in the online Help.

About the Script view
You use the Script view to code functions and events, define your own
functions and events, and declare variables and external functions.

Script views are part of the default layout in the Application, Window,
User Object, Menu, and Function painters. In Application, Window, and
User Object painters, the initial layout has one Script view that displays
the default event script for the object and a second Script view set up for
declaring instance variables. You can open as many Script views as you
need, or perform all coding tasks in a single Script view.

Topic Page

About the Script view 147

Opening Script views 149

Modifying Script view properties 149

Editing scripts 150

Using AutoScript 155

Getting context-sensitive Help 161

Compiling the script 162

Declaring variables and external functions 165

About the Script view

148 PocketBuilder

Titlebar The Script view’s titlebar shows the name and return type of the current event
or function, as well as the name of the current control for events and the
argument list for functions. If the Script view is being used to declare variables
or functions, the titlebar shows the type of declaration.

Dropdown lists There are three drop-down lists at the top of the Script view.

Figure 6-1: Script view for application Open event

In the first list, you can select the object, control, or menu item for which you
want to write a script. You can also select Functions to edit function scripts or
Declare to declare variables and external functions.

The second list lets you select the event or function you want to edit or the kind
of declaration you want to make. A script icon next to an event name indicates
there is a script for that event, and the icon’s appearance tells you more about
the script.

Table 6-1: Script icons in the Script view

The same script icons display in the Event List view.

The third list is available in descendent objects. It lists the current object and
all its ancestors so that you can view scripts in the ancestor objects.

Toggle buttons for
Prototype and Error
windows

A Prototype window displays at the top of the Script view when you define a
new function or event. An Error window displays at the bottom of the view
when there are compilation errors. You can toggle the display of these windows
with the two toggle buttons to the right of the lists.

For more information about the Prototype window, see Chapter 7, “Working
with User-Defined Functions,” and Chapter 8, “Working with User Events.”

If there is a script The script icon displays

For the current object or control With text

In an ancestor object or control only In color

In an ancestor as well as in the object or control you
are working with

Half in color

CHAPTER 6 Writing Scripts

User’s Guide 149

Opening Script views
If there is no open Script view, selecting a menu or PainterBar item that
requires a Script view opens one automatically. If you want to edit more than
one script at a time, you can open additional Script views from the View menu.

❖ To open a new Script view:

• Select View>Script from a painter menu bar

❖ To edit a script for a control:

• Double-click a scriptable control, or select Script from the PainterBar or a
pop-up menu

The Script view shows the default script for the control. If the Script view
is in a stacked pane and is hidden, it pops to the front. If there is no open
Script view, PocketBuilder creates a new one.

Using drag and drop
If a Script view is visible, you can drag a control from the Control list view
to the Script view to edit a script for the control.

❖ To edit a script for a function or event:

• Double-click an item in the Event list or Function list view of a painter

If the Script view is in a tabbed pane and is hidden, it pops to the front. If
there is no open Script view, PocketBuilder creates a new one. The Script
view shows the script for the selected event or function. You can select a
different function or event from the second drop-down list in an open
Script view.

Modifying Script view properties
The Script view automatically:

• Color-codes scripts to identify datatypes, system-level functions,
flow-of-control statements, comments, and literals

• Indents the script based on flow-of-control statements

You can modify these and other properties.

Editing scripts

150 PocketBuilder

Some properties are shared
Some properties you specify for the Script view also affect the File editor,
Source editor, Debugger, and the Interactive SQL and Activity Log views in
the Database painter.

❖ To specify Script view properties:

1 Select Design>Options to display the Options dialog box for the painter.

The Options dialog box includes four tab pages that affect the Script view:
Script, Font, Coloring, and AutoScript.

2 Choose the tab appropriate to the property you want to specify:

Editing scripts
You can perform standard editing tasks in the Script view using the Edit menu,
the pop-up menu in the Script view, or the PainterBars. There are shortcuts for
many editing actions.

Setting up shortcuts
In a painter with a Script view, select Tools>Keyboard Shortcuts. Expand the
Edit menu to view existing shortcuts and set up your own shortcuts.

To specify Choose this tab

Tab size, automatic indenting, whether dashes are
allowed in identifiers, and which compiler and database
messages display

Script

Font family, size, and color for the Script view Font

Text and background coloring for PowerScript syntax
elements

Coloring

Whether AutoScript is enabled and what kind of
assistance it provides

AutoScript

CHAPTER 6 Writing Scripts

User’s Guide 151

Printing scripts
You can print a description of the object you are editing, including all its
scripts, by selecting File>Print from the menu bar. To print a specific script,
select File>Print Script.

Pasting information into scripts
You can paste the names of variables, functions, objects, controls, and other
items directly into your scripts. (You can also use AutoScript. See “Using
AutoScript” on page 155.) If what you paste includes commented text that you
need to replace, such as function arguments or clauses in a statement, you can
use Edit>Go To>Next Marker to move your cursor to the next commented item
in the template.

Table 6-2: Pasting information into scripts

Undoing a paste
If you paste information into your script by mistake, click the Undo button or
select Edit>Undo from the menu bar.

To paste Use

PocketBuilder objects and their
properties, functions, and events

System Tree

Properties, datatypes, functions,
structures, variables, and objects

Browser

Contents of clipboard Edit>Paste

Contents of Clipboard window Drag and drop

Objects, controls, arguments, and global
and instance variables

Paste buttons on PainterBar
or
Edit>Paste Special

PowerScript statements Paste Statement button
or
Edit>Paste Special>Statement

SQL statements Paste SQL button
or
Edit>Paste Special>SQL

Built-in, user-defined, and external
functions

Paste Function button
or
Edit>Paste Special>Function

Contents of text files Edit>Paste Special>From File

Editing scripts

152 PocketBuilder

Some of these techniques are explained in the sections that follow.

Using the System
Tree

To paste the name of a PocketBuilder object, or of any of its properties,
functions, or events, select the item you want to paste in the System Tree and
drag it into your script.

Using the Browser You can use the Browser to paste the name of any property, datatype, function,
structure, variable, or object in the application.

Most tab pages in the Browser have two panes. The left pane displays one type
of object, such as a window or menu. The right pane displays the properties,
events, functions, external functions, instance variables, shared variables, and
structures associated with the object.

Getting context-sensitive Help in the Browser
To get context-sensitive Help for an object, control, or function, select Help
from its pop-up menu.

❖ To use the Browser to paste information into the Script view:

1 Click the Browser button in the PowerBar, or select Tools>Browser.

2 Select the PowerScript target you want to browse.

3 Select the appropriate tab and then select the object in the left pane.

4 Select the category of information you want to display by expanding the
appropriate folder in the right pane.

5 Select the information and click Copy.

6 In the Script view, move the cursor where you want to paste the
information and select any text you want to replace.

7 Select Paste from the pop-up menu.

PocketBuilder displays the information at the insertion point in the script,
replacing any selected text.

Pasting statements You can paste a template for all basic forms of the following PowerScript
statements:

• IF ... THEN

• DO ... LOOP

• FOR ... NEXT

CHAPTER 6 Writing Scripts

User’s Guide 153

• CHOOSE CASE

• TRY ... CATCH ... FINALLY

When you paste these statements into a script, prototype values display in the
syntax to indicate conditions or actions.

❖ To paste a PowerScript statement into the script:

1 Place the insertion point where you want to paste the statement in the
script.

2 Select the Paste Statement button from the PainterBar, or select Edit>Paste
Special>Statement from the menu bar.

3 From the cascading menu, select the statement you want to paste.

The statement prototype displays at the insertion point in the script.

4 Replace the prototype values with the conditions you want to test and the
actions you want to take based on the test results.

For more about PowerScript statements, see the PowerScript Reference in the
online Help.

Pasting SQL You can paste a SQL statement into your script instead of typing the statement.

❖ To paste a SQL statement:

1 Place the insertion point where you want to paste the SQL statement in the
script.

2 Click the Paste SQL button in the PainterBar, or select Edit>Paste
Special>SQL from the menu bar.

3 From the cascading menu, select the type of statement you want to insert.

The appropriate dialog box displays so that you can create the SQL
statement.

4 Create the statement, then return to the Script view.

The statement displays at the insertion point in the workspace.

For more about embedding SQL in scripts, see the PowerScript Reference in
the online Help.

Editing scripts

154 PocketBuilder

Pasting functions You can paste any function into a script.

❖ To paste a function into a script:

1 Place the insertion point where you want to paste the function in the script.

2 Click the Paste Function button in the PainterBar, or select Edit>Paste
Special>Function from the menu bar.

3 Choose the type of function you want to paste: built-in, user-defined, or
external.

4 Double-click the function you want from the list that displays.

PocketBuilder pastes the function into the script and places the cursor
within the parentheses so that you can define any needed arguments.

For more about pasting user-defined functions, see “Pasting user-defined
functions” on page 178. For more about external and built-in functions, see the
Resource Guide.

Pasting contents of
files

If you have code that is common across different scripts, you can keep that
code in a text file, then paste it into new scripts you write. For shorter snippets
of code, you can also use the Clip window. See “The Clip window” on page 11.

❖ To import the contents of a file into the Script view:

1 Place the insertion point where you want the file contents pasted.

2 Select Edit>Paste Special>From File from the menu bar.

The Paste From File dialog box displays, listing all files with the extension
SCR. If necessary, navigate to the directory that contains the script you
want to paste.

3 Choose the file containing the code you want. You can change the type of
files displayed by changing the file specification in the File Name box.

PocketBuilder copies the file into the Script view at the insertion point.

Saving a script to a file
To save all or part of a script to an external text file, select the code you want
to save and copy and paste it to the File editor. Use the extension SCR to
identify it as PowerScript code. You might want to use this technique to save a
backup copy before you make major changes or so that you can use the code in
other scripts.

CHAPTER 6 Writing Scripts

User’s Guide 155

Reverting to the unedited version of a script
You can discard the edits you have made to a script and revert to the unedited
version by selecting Edit>Revert Script from the menu.

Using AutoScript
AutoScript is a tool designed to help you write PowerScript code more quickly
by providing a lookup and paste service inside the Script view. It is an
alternative to using the paste toolbar buttons or the Browser. It allows you to
paste functions, events, variables, properties, and templates for TRY, DO, FOR,
IF, and CHOOSE statements into your script without moving your hands away
from the keyboard.

If you are not sure what the name or syntax of a function is or what the names
of certain variables are, AutoScript can show you a list to choose from. You can
paste what you need right into the script. If you can remember part of the name,
start typing and select Edit>Activate AutoScript (or do nothing if automatic
pop-up is turned on). If you cannot remember the name at all, right-click in
Script view white space and select Activate AutoScript from the pop-up menu.

Where you use
AutoScript

You can use AutoScript in three different contexts:

• When you can remember part of a name and you want AutoScript to finish
typing it for you or show you a list of alternatives.

• When you cannot remember a name or you just want a list. AutoScript
options can help you narrow the list if you do not know the name but you
do know the type you are looking for. For example, you can choose to see
a list showing all variables, or only all local variables.

• When you want a list of the properties and/or functions and events that
apply to an identifier followed by a dot.

For how to use AutoScript options, see “Customizing AutoScript” on page
157.

Two ways to use
AutoScript

AutoScript can pop up a list automatically when you pause while typing, or
when you request it:

• Turn automatic pop-up on to have AutoScript pop up the list or complete
what you are typing. It does this when you pause for a few seconds after
typing one or more characters or an identifier followed by a dot. See
“Using automatic pop-up” on page 160.

Using AutoScript

156 PocketBuilder

• Invoke AutoScript when you need it by selecting Edit>Activate
AutoScript when you have typed one or more characters or an identifier
followed by a dot, or when the cursor is in white space. This activates
AutoScript only once. It does not turn automatic pop-up on.

For how to paste an item from the pop-up window into a script, see “Using the
AutoScript pop-up window” next.

Using the AutoScript pop-up window
If there is more than one property, variable, method, or statement that could be
inserted, AutoScript pops up an alphabetical list of possible completions or
insertions. An icon next to each item indicates its type. The following screen
includes an instance variable, events, properties, statements, and functions:

Figure 6-2: The AutoScript pop-up window showing script choices

If a function is overloaded, each version displays on a different line in the
AutoScript pop-up window.

If you have started typing a word, only completions that begin with the string
you have already typed display in the list.

Case sensitivity
AutoScript always pastes lowercase characters, but the case of any characters
you have already typed is preserved. For example, if you are using AutoScript
to complete a function name and you want to use mixed case, you can type up
to the last uppercase letter before invoking AutoScript. AutoScript completes
the function name and pastes an argument template.

CHAPTER 6 Writing Scripts

User’s Guide 157

Pasting an item into
the script

To paste an item into the script, press Tab or Enter or double-click the item. Use
the arrow and page up and down keys to scroll through the list. If the item is a
function, event, or statement, the template that is pasted includes descriptive
comments that you replace with argument names, conditions, and so forth. The
first commented argument or statement is selected so that it is easy to replace.
You can jump to the next comment by selecting Edit>Go To>Next Marker.

Go to next marker
You can use Edit>Go To>Next Marker to jump to the next comment enclosed
by /* and */ anywhere in the Script view, not just in AutoScript templates. For
how to create a shortcut for this menu item, see “Customizing AutoScript”
next.

If you do not want to
paste from the list

To dismiss the pop-up window without pasting into the script, press the
Backspace key or click anywhere outside the pop-up.

If nothing displays AutoScript does not pop up a list if the cursor is in a comment or string literal,
or if an identifier is complete. If neither condition is true and nothing displays
when you select Edit>Activate AutoScript, there may be no appropriate
completions in the current context. Check that the options you need are
selected on the AutoScript options page as described in “Customizing
AutoScript” next.

Customizing AutoScript
There are four ways to customize AutoScript:

• Creating shortcut keys

• Specifying what displays in the AutoScript list

• Using automatic pop-up

• Using AutoScript only with dot notation

Creating shortcut keys AutoScript is easier to use if you create shortcuts for the menu items that you
use frequently. For example, the Edit>Activate AutoScript menu item uses F8
as a shortcut key by default, but you can select a different shortcut key or key
combination for this item.

❖ To modify or create shortcut keys for using AutoScript:

1 Select Tools>Keyboard Shortcuts from the menu bar and expand the Edit
menu in the Keyboard Shortcuts dialog box.

Using AutoScript

158 PocketBuilder

2 If you want to select a default key for activating AutoScript, scroll down
and select Activate AutoScript and type a key sequence, such as
Ctrl+Space.

3 Expand the Go To menu, select Next Marker, and type a key sequence,
such as Ctrl+M.

After you click OK, the shortcuts display in the Edit menu.

AutoScript display
customizations

You can change what gets displayed when you activate AutoScript. You make
these changes in the AutoScript page of the Options dialog box that you open
from a painter’s Design>Options menu.

Figure 6-3: The AutoScript page of the Options dialog box

You can select different items to include in these different contexts:

• When you have started typing a variable or method name or the beginning
of a PowerScript statement

• When you have typed the name of an object followed by a dot

• When the cursor is at the beginning of a new line or in white space

CHAPTER 6 Writing Scripts

User’s Guide 159

Specifying what
displays in the
AutoScript list

Table 6-3 shows what is included in an AutoScript list or pasted into a Script
view when you make particular selections on the AutoScript page of the
Options dialog box.

Table 6-3: Setting options for AutoScript in the Options dialog box

Turning options off reduces the length of the list that displays when you invoke
AutoScript. This makes it faster and easier to paste a completion or insert code
into the script.

• To show all variables and methods when typing, check all the boxes except
Statement Templates in the Partial Name Resolution Include group box.
When you pause or select Edit>Activate AutoScript from the main menu,
the list shows variables and methods that begin with the string you typed.

• To find functions for an object quickly, clear all the boxes except Methods
in the After A Dot Include group box. When you type an instance name
followed by a dot, only function and event names for the instance display.

• To see a list of arguments and local variables when the cursor is in white
space, check the Arguments and Local Variables boxes in the When No
Context Include group box. When you select Edit>Activate AutoScript,
the list shows only arguments and local variables.

Check box Displays

Arguments Arguments for the current function or event.

Local Variables Variables defined in the current script.

Instance Variables Variables defined for and associated with an instance of the
current object or, after a dot, variables associated with the object
preceding the dot.

Shared Variables Variables defined for the current object and associated with all
instances of it.

Global Variables Variables defined for the current application.

Properties Properties for the current object or, after a dot, properties for the
object preceding the dot. Includes controls on the current
window.

Methods Functions and events for the current object or, after a dot,
functions and events for the object preceding the dot.

Statement
Templates

PowerScript statement templates for each type of IF, FOR,
CHOOSE CASE, TRY, or DO statement with comments
indicating what code should be inserted. This option is off by
default.

Using AutoScript

160 PocketBuilder

Using automatic
pop-up

Most of the time you are likely to use a shortcut key to invoke AutoScript, but
you can also have AutoScript pop up a list or paste a selection automatically
whenever you pause for several seconds while typing. To do so, check the
Automatic Popup box on the AutoScript options page. Automatic pop-up does
not operate when the cursor is at the beginning of a line or in white space.

This feature is most useful when you are entering new code. You can customize
the options in the Partial Name Resolution Include and After A Dot Include
group boxes to reduce the number of times AutoScript pops up.

When you are editing existing code, it is easier to work with automatic pop-up
off. AutoScript might pop up a list or paste a template for a function when you
do not want it to. Using only the shortcut key to invoke AutoScript gives you
complete control.

Using AutoScript only
with dot notation

If you want AutoScript to work only when you have typed an identifier
followed by a dot, check the Activate Only After a Dot box on the AutoScript
options page. The effect of checking this box applies whether or not you have
checked Automatic Popup. You might find it most useful when you have
checked Automatic Popup, because it provides another way to limit the number
of times AutoScript pops up automatically.

Example
The following simple example illustrates how AutoScript works with
automatic pop-up turned off and different settings for each context. To set up
the example:

1 Create a new window and place on it a DataWindow control and a
CommandButton control.

2 Select all the boxes in the Partial Name Resolution Include group box.

3 Clear all the boxes in the After A Dot Include group box except Methods.

4 Clear all the boxes in the When No Context Include group box except
Arguments and Local Variables.

5 Clear both boxes in the Options group box.

CHAPTER 6 Writing Scripts

User’s Guide 161

Table 6-4: AutoScript example

Getting context-sensitive Help
In addition to accessing Help through the Help menu and F1 key, you can use
context-sensitive Help in the Script view to display Help for reserved words
and built-in functions.

❖ To use context-sensitive Help:

1 Place the insertion point within a reserved word (such as DO or CREATE)
or built-in function (such as Open or Retrieve).

Context Do this What happens

Partial name
resolution

In the Clicked event script
for cb_1, type long
ll_rtn. On a new line,
type ll and select
Edit>Activate AutoScript.

AutoScript pastes the local variable
ll_rtn into the script because it is the
only completion that begins with ll.

Type = d and select
Edit>Activate AutoScript.

The list displays all properties, events,
functions, variables, and statements that
begin with d.

Type w and press Tab or
Enter.

The list scrolls to dw_1 and AutoScript
pastes it into the script when you press
Tab or Enter.

After a dot Type a dot after dw_1 and
select Edit>Activate
AutoScript.

The list shows all the functions and
events for a DataWindow control.

Type GetNextM and press
Tab or Enter.

AutoScript pastes the rest of the
GetNextModified function name and
template into the script, retaining your
capitalization.

Select Edit>Go To>Next
Marker.

AutoScript selects the next function
argument so you can replace it.
Complete or comment out the
statement.

No context In the empty ItemChanged
event for dw_1, declare
some local variables, press
Tab or Enter, and select
Edit>Activate AutoScript.

The list displays the local variables and
the arguments for the ItemChanged
event.

Compiling the script

162 PocketBuilder

2 Press Shift+F1.

The Help window displays information about the reserved word or
function.

Copying Help text
You can copy text from the Help window into the Script view. This is an easy
way to get more information about arguments required by built-in functions.

Compiling the script
Before you can execute a script, you must compile it.

❖ To compile a script:

• Click the Compile button, or select Edit>Compile from the menu bar.

PocketBuilder compiles the script and reports any problems it finds, as
described in “Handling problems” next.

PocketBuilder compiles automatically
When you attempt to open a different script in a Script view, PocketBuilder
compiles the current script. When you save the object, such as the window
containing a control you wrote a script for, PocketBuilder recompiles all scripts
in the object to make sure they are still valid. For example, PocketBuilder
checks that all objects that were referenced when you wrote the script still
exist.

CHAPTER 6 Writing Scripts

User’s Guide 163

Handling problems
If problems occur when a script is compiled, PocketBuilder displays messages
in a Message window below the script.

Figure 6-4: Example of a script compilation error message

There are three kinds of messages:

Errors
Warnings
Information messages

Understanding errors Errors indicate serious problems that you must fix before a script will compile
and before you can close the Script view or open another script in the same
view. Errors are shown in the Message window as:

line number: Error error number:message

Understanding
warnings

Warnings indicate problems that you should be aware of but that do not prevent
a script from compiling.

There are three types of warnings:

Compiler warnings Compiler warnings inform you of syntactic problems,
such as undeclared variables. PocketBuilder lets you compile a script that
contains compiler warnings, but you must fix the problem in the script before
you can save the object that the script is for, such as the window or menu.
Compiler warnings are shown in the Message window as:

line number: Warning warning number:message

Compiling the script

164 PocketBuilder

Obsolete warnings Obsolete warnings inform you when you use any
obsolete functions or syntax in your script. Obsolete functions, although they
still compile and run, have been replaced by more efficient functions. You
should replace all references to obsolete functions as soon as possible.
Obsolete warnings are shown in the Message window as:

line number: Warning warning number:message

Database warnings Database warnings come from the database manager
you are connected to. PocketBuilder connects to the database manager when
you compile a script containing embedded SQL. Typically, these warnings
arise because you are referencing a database you are not connected to.
Database warnings are shown in the Message window as:

line number: Database warning number:message

PocketBuilder lets you compile scripts with database warnings and also lets
you save the associated object. It does this because the execution environment
might be different from the compile-time environment, and the problem might
not apply during execution.

You should study database warnings carefully to make sure the problems will
not occur during execution.

Understanding
Information messages

Information messages are issued when there is a potential problem. For
example, an information message is issued when you have used a global
variable name as a local variable, because that might result in a conflict later.

Information messages are shown in the Message window as:

line number: Information number:message

Displaying warnings
and messages

To specify which messages display when you compile, select Design>Options
to open the Options dialog box, select the Script tab page, and check or clear
the Display Compiler Warnings, Display Obsolete Messages, Display
Information Messages, and Display Database Warnings check boxes. The
default is to display compiler and database warning messages. Error messages
always display.

Fixing problems To fix a problem, click the message. The Script view scrolls to display the
statement that caused the message. After you fix all the problems, compile the
script again.

To save a script with errors
Comment out the lines containing errors.

CHAPTER 6 Writing Scripts

User’s Guide 165

Declaring variables and external functions
The default layout in the Application, Window, and User Object painters
includes a Script view set up to declare variables. Keeping a separate Script
view open makes it easy to declare any variables or external functions you need
to use in your code without closing and compiling the script.

❖ To declare variables and external functions:

1 Select [Declare] from the first list in the Script view.

2 Select the variable type (instance, shared, or global) or the function type
(local or global) from the second list.

3 Type the declaration in the Script view.

For more information about declaring variables, see the PowerScript Reference
in the online Help. For more information about declaring and using external
functions, see the PowerScript Reference and the Resource Guide.

Declaring variables and external functions

166 PocketBuilder

User’s Guide 167

C H A P T E R 7 Working with User-Defined
Functions

About this chapter This chapter describes how to build and use user-defined functions.

Contents

About user-defined functions
The PowerScript language has many built-in functions, but you might find
that you need to code the same procedure over and over again. For
example, you might need to perform a certain calculation in several places
in an application or in different applications. In such a situation, create a
user-defined function to perform the processing.

A user-defined function is a collection of PowerScript statements that
perform some processing. After you define a user-defined function and
save it in a library, any application accessing that library can use the
function.

There are two kinds of user-defined functions, global and object-level
functions.

Global functions Global functions are not associated with any object in your application
and are always accessible anywhere in the application.

They correspond to the PocketBuilder built-in functions that are not
associated with an object, such as the mathematical and string-handling
functions. You define global functions in the Function painter.

Topic Page

About user-defined functions 167

Defining user-defined functions 169

Modifying user-defined functions 176

Using your functions 178

About user-defined functions

168 PocketBuilder

Object-level functions Object-level functions are defined for a window, menu, user object, or
application object. These functions are part of the object's definition and can
always be used in scripts for the object itself. You can choose to make these
functions accessible to other scripts as well.

These functions correspond to built-in functions that are defined for specific
PocketBuilder objects such as windows or controls. You define object-level
functions in a Script view for the object.

Deciding which kind you want
When you design your application, you need to decide how you will use the
functions you will define:

• If a function is general-purpose and applies throughout an application,
make it a global function.

• If a function applies only to a particular kind of object, make it an
object-level function. You can still call the function from anywhere in the
application, but the function acts only on a particular object type.

For example, suppose you want a function that returns the contents of a
SingleLineEdit control in one window to another window. Make it a
window-level function, defined in the window containing the
SingleLineEdit control. Then, anywhere in your application that you need
this value, call the window-level function.

Multiple objects can have functions with the same name
Two or more objects can have functions with the same name that do different
things. In object-oriented terms, this is called polymorphism. For example,
each window type can have its own Initialize function that performs processing
unique to that window type. There is never any ambiguity about which function
is being called, because you always specify the object's name when you call an
object-level function.

Object-level functions can also be overloaded—two or more functions can
have the same name but different argument lists. Global functions cannot be
overloaded.

CHAPTER 7 Working with User-Defined Functions

User’s Guide 169

Defining user-defined functions
Although you define global functions in the Function painter and object-level
functions in the painter for a specific object, in both cases you define and code
the function in a Script view.

When you add a new function, a Prototype window displays above the script
area in the Script view. The fields in the Prototype window are in the same
order as the function’s signature:

• The function’s access level, return type, and name

• For each parameter, how it is passed, its datatype, and its name

• The exceptions the function can throw, if any

Figure 7-1: Defining a function prototype

The following sections describe each of the steps required to define and code a
new function:

1 Opening a Prototype window to add a new function.

2 Defining the access level (for object-level functions).

3 Defining a return type.

4 Naming the function.

5 Defining arguments.

6 Defining a THROWS clause.

Defining user-defined functions

170 PocketBuilder

7 Coding the function.

8 Compiling and saving the function.

Opening a Prototype window to add a new function
How you create a new function depends on whether you are defining a global
function or an object-level function.

❖ To create a new global function:

• Select File>New from the menu bar and select Function from the PB
Object tab

The Function painter opens, displaying a Script view with an open
Prototype window in which you define the function.

❖ To create a new object-level function:

1 Open the object for which you want to declare a function.

You can declare functions for windows, menus, user objects, or
applications.

2 Select Insert>Function from the menu bar, or select Add from the Function
List view pop-up menu.

The Prototype window opens in a Script view.

Defining the access level
In the Prototype window, use the drop-down list labeled Access to specify
where you can call the function in the application.

For global functions Global functions can always be called anywhere in the application. In
PocketBuilder terms, they are public. When you are defining a global function,
you cannot modify the access level; the field is read-only.

CHAPTER 7 Working with User-Defined Functions

User’s Guide 171

For object-level
functions

You can restrict access to an object-level function by setting its access level, as
described in Table 7-1.

Table 7-1: Access levels for object-level functions

If a function is to be used only internally within an object, you should define
its access as private or protected. This ensures that the function is never called
inappropriately from outside the object. In object-oriented terms, defining a
function as protected or private encapsulates the function within the object.

Defining a return type
Many functions perform some processing and then return a value. That value
can be the result of the processing or a value that indicates whether the function
executed successfully or not. To have your function return a value, you need to
define its return type, which specifies the datatype of the returned value.

You must code a return statement in the function that specifies the value to
return. See “Returning a value” on page 175. When you call the function in a
script or another function, you can use an assignment statement to assign the
returned value to a variable in the calling script or function. You can also use
the returned value directly in an expression in place of a variable of the same
type.

❖ To define a function's return type:

• Select the return type from the Return Type drop-down list in the
Prototype window, or type in the name of an object type you have defined

You can specify any PocketBuilder datatype, including the standard
datatypes, such as integer and string, as well as objects and controls, such
as DataStore or MultiLineEdit.

You can also specify as the return type any object type that you have
defined. For example, if you defined a window named w_calculator and
want the function to process the window and return it, type
w_calculator in the Return Type list. You cannot select w_calculator
from the drop-down list, because the list shows built-in data types only.

Access Means you can call the function

Public In any script in the application.

Private Only in scripts for events in the object in which the function is defined.
You cannot call the function from descendants of the object.

Protected Only in scripts for the object in which the function is defined and
scripts for that object’s descendants.

Defining user-defined functions

172 PocketBuilder

❖ To specify that a function does not return a value:

• Select (None) from the Return Type list

This tells PocketBuilder that the function does not return a value. This is
similar to defining a procedure or a void function in some programming
languages.

Examples of functions
returning values

The following table shows the return type you would specify for some different
types of function.

Table 7-2: Examples of return types for different types of functions

Naming the function
Name the function in the Function Name box. Function names can have up to
40 characters. For valid characters, see “identifier names” in the online Help.

For object-level functions, the function is added to the Function List view when
you tab off the Function Name box. It is saved as part of the object whenever
you save the object.

Using a naming convention for user-defined functions makes them easy to
recognize and distinguish from built-in PowerScript functions. A commonly
used convention is to preface all global function names with f_ and object-level
functions with of_, such as:

// global functions
f_calc
f_get_result

// object-level functions
of_refreshwindow
of_checkparent

Built-in functions do not usually have underscores in their names, so this
convention makes it easy for you to identify functions as user defined.

If you are defining
Specify this
return type

A mathematical function that does some processing and returns a
real number

real

A function that takes a string as an argument and returns the string
in reverse order

string

A function that is passed an instance of window w_calculator, does
some processing (such as changing the window's color), then
returns the modified window

w_calculator

CHAPTER 7 Working with User-Defined Functions

User’s Guide 173

Defining arguments
Like built-in functions, user-defined functions can have any number of
arguments, including none. You declare the arguments and their types when
you define a function.

Passing arguments In user-defined functions, you can pass arguments by reference, by value, or
read-only. You specify this for each argument in the Pass By list.

By reference When you pass an argument by reference, the function has
access to the original argument and can change it directly.

By value When you pass by value, you are passing the function a temporary
local copy of the argument. The function can alter the value of the local copy
within the function, but the value of the argument is not changed in the calling
script or function.

Read-only When you pass as read-only, the variable’s value is available to
the function, but it is treated as a constant. Read-only provides a performance
advantage over passing by value for string, blob, date, time, and datetime
arguments, because it does not create a copy of the data.

If the function takes no arguments
Leave the initial argument shown in the Prototype window blank.

❖ To define arguments:

1 Declare whether the argument is passed by reference, by value, or read-
only.

The order in which you specify arguments in the Prototype window is the
order you use when calling the function.

2 Declare the argument's type. You can specify any datatype, including:

• Built-in datatypes, such as integer and real

• Object types, such as window, or specific objects, such as w_emp

• User objects

• Controls, such as CommandButtons

3 Name the argument.

4 If you want to add another argument, press the Tab key or select Add
Parameter from the pop-up menu, and repeat steps 1 to 3.

Defining user-defined functions

174 PocketBuilder

Passing arrays
You must include the square brackets in the array definition, for example,
price[] or price[50], and the datatype of the array must be the datatype of
the argument. For information on arrays, see the PowerScript Reference in the
online Help.

Defining a THROWS clause
If you are using user-defined exceptions, you must define what exceptions
might be thrown from a user-defined function or event. You use the Throws
box in the Prototype window to do this.

When you need to
add a THROWS
clause

Any developers who call the function or event need to know what exceptions
can be thrown from it so that their code can handle the exceptions. If a function
contains a THROW statement that is not surrounded by a try-catch block that
can deal with that type of exception, then the function must be declared to
throw that type of an exception or some ancestor of that exception type.

There are two exception types that inherit from the Throwable object:
Exception and RuntimeError. Typically, you add objects that inherit from
Exception to the THROWS clause of a function. Exception objects are the
parents of all checked exceptions, which are exceptions that must be dealt with
when thrown and declared when throwing. You do not need to add runtime
error objects to the THROWS clause, because they can occur at any time. You
can catch these errors in a try-catch block, but you are not required to.

Adding a THROWS
clause

You can add a THROWS clause to any PocketBuilder function or to any user
event that is not defined by an event ID. To do so, drag and drop an exception
object from the System Tree, or type the name of the object in the Throws box.
If you type the names of multiple user objects in the Throws box, use a comma
to separate the object names. When you drag and drop multiple user objects,
PocketBuilder automatically adds the comma separators.

The PocketBuilder compiler checks whether a user-defined exception thrown
on a function call in a script matches an exception in the THROWS clause for
that function and prompts you if there is no matching exception in the
THROWS clause.

CHAPTER 7 Working with User-Defined Functions

User’s Guide 175

You can create a user-defined exception object and inherit from it to define
more specific lower-level exceptions. If you add a high-level exception to the
THROWS clause, you can throw any lower-level exception in the script, but
you risk hiding any useful information obtainable from the lower-level
exception.

For more information about exception handling, see the Resource Guide.

Coding the function
When you have finished defining the function prototype, you specify the code
for the function, just as you specify the script for an event in the Script view.
For information about using the Script view, see Chapter 6, “Writing Scripts.”

What functions can
contain

User-defined functions can include PowerScript statements, embedded SQL
statements, and calls to built-in, user-defined, and external functions.

You can type the statements in the Script view, or you can use the buttons in
the PainterBar or items on the Edit>Paste Special menu to insert them into the
function. For more information, see “Pasting information into scripts” on page
151.

Returning a value If you specified a return type for your function in the Prototype window, you
must return a value in the body of the function. To return a value in a function,
use the RETURN statement:

RETURN expression

where expression is the value you want returned by the function. The datatype
of the expression must be the datatype you specified for the return value for the
function.

Example The following function returns the result of dividing arg1 by arg2 when arg2
does not equal zero. It returns –1 if arg2 equals zero:

IF arg2 <> 0 THEN
RETURN arg1 / arg2

ELSE
RETURN -1

END IF

Modifying user-defined functions

176 PocketBuilder

Compiling and saving the function
When you finish building a function, compile it and save it in a library. Then
you can use it in scripts or other user-defined functions in any application that
includes the library containing the function in its library search path. You
compile the script and handle errors as described in “Compiling the script” on
page 162.

Modifying user-defined functions
You can change the definition of a user-defined function at any time. You
change the processing performed by the function by modifying the statements
in the Script view. You can also change the return type, argument list, or access
level for a function.

❖ To change a function's return type, arguments, or access level:

1 Do one of the following:

• In the Function painter, open the global function

• Open the object that contains the object-level function you want to
edit and select the function from the Function list

2 Make the changes you want in the Prototype window.

If the Prototype window is hidden, click the toggle button to display it.

3 Select File>Save from the menu bar.

❖ To change a function’s name:

1 If desired, modify the function’s return type, arguments, or access level as
described in the previous procedure.

2 Do one of the following:

• In the Function painter, select File>Save As from the menu bar and
enter a name

• In the Script view, enter a new name in the Function Name box

When you tab off the box, the new function name displays in the Function
List view.

CHAPTER 7 Working with User-Defined Functions

User’s Guide 177

Adding, inserting, and
deleting arguments

You can change a user-defined function's arguments at any time using the
pop-up menu in the Prototype window.

• Add an argument by selecting the Add Parameter menu item. Boxes for
defining the new argument display below the last argument in the list.

• Insert an argument by moving the pointer to the argument before which
you want to insert the new argument and selecting the Insert Parameter
menu item. Boxes for defining the new argument display above the
selected argument.

• Delete an argument by selecting it and clicking the Delete Parameter menu
item.

To change the position of an argument
To change the position of an argument, delete the argument and insert it as a
new argument in the correct position.

Recompiling other
scripts

Changing arguments and the return type of a function affects scripts and other
functions that call that function. You should recompile any script in which the
function is used. This guarantees that the scripts and functions work correctly
during execution.

Seeing where a
function is used

PocketBuilder provides browsing facilities to help you find where you have
referenced your functions. In the System Tree or Library painter, select a target,
library, or object and select Search from the pop-up menu. You can also search
multiple entries in the Library painter.

❖ To determine which functions and scripts call a user-defined function:

1 Open the Library painter.

2 In a List view, select all the entries you want to search for references to the
user-defined function.

3 Select Entry>Search from the menu bar.

The Search Library Entries dialog box displays.

4 Specify the user-defined function as the search text and specify the types
of components you want to search.

5 Click OK.

PocketBuilder displays all specified components that reference the
function in the Output window. You can double-click a listed component
to open the appropriate painter.

Using your functions

178 PocketBuilder

For more about browsing library entities, see “Searching targets, libraries, and
objects” on page 101.

Using your functions
You use user-defined functions the same way you use built-in functions. You
can call them in event scripts or in other user-defined functions.

For more information about calling functions, see the Resource Guide.

Pasting user-defined
functions

When you build a script in the Script view, you can type the call to the
user-defined function. You can also paste the function into the script. There are
several ways to paste a user-defined function into a script:

• Drag the function from the System Tree to the Script view

• Select Edit>Paste Special>Function>User-defined from the menu bar

• Enable AutoScript, select the function’s signature in the list that displays
when you pause, and press Tab or Enter

• Select the function in the Browser and copy and paste it into the script

Using the System Tree, AutoScript, or the Browser pastes the function’s
prototype arguments as well as its name into the script.

For more information about AutoScript, see “Using AutoScript” on page 155.

❖ To paste a user-defined function into a script from the Browser:

1 Select Tools>Browser from the menu bar.

2 Do one of the following:

• Select a global function from the Function page

• Select the object that contains the object-level function you want to
paste from the corresponding page (such as the Window page)

3 Double-click the Functions category in the right pane.

4 Select the function you want to paste and select Copy from its pop-up
menu.

CHAPTER 7 Working with User-Defined Functions

User’s Guide 179

5 In the Script view, move the insertion point to where you want to paste the
function and select Paste from the pop-up menu.

The function and its prototype parameters display at the insertion point in
your script.

6 Specify the required arguments.

Using your functions

180 PocketBuilder

User’s Guide 181

C H A P T E R 8 Working with User Events

About this chapter This chapter introduces user events, describes how to define them, and
discusses how to use them in an application.

Contents

About user events
Windows, user objects, controls, menus, and Application objects each
have a predefined set of events. In most cases, the predefined events are
all you need, but there are times when you need to declare your own user
event. You can use predefined event IDs to trigger a user event, or you can
trigger it exclusively from within your application scripts.

Features that you might want to add to your application by creating user
events include keystroke processing, communication between a user
object and a window, and the ability to perform a task in multiple ways.

Keystroke processing Suppose you want to modify the way keystrokes are processed in your
application. For example, in a DataWindow control, suppose you want the
user to be able to press the Down Arrow and Up Arrow keys to scroll
among radio buttons in a DataWindow column. Normally, pressing these
keys moves the focus to the next or preceding row.

To make this change, you can define user events corresponding to
operating system events that PocketBuilder does not define.

Multiple methods Suppose you want to provide several ways to accomplish a certain task
within a window. For example, you want the user to be able to update the
database by either clicking a button or selecting a menu item. In addition,
you want to provide the option of updating the database when the user
closes the window.

Topic Page

About user events 181

Defining user events 183

Using a user event 186

About user events

182 PocketBuilder

To do this, you define a user event to update the database.

Communication
between user object
and window

Suppose you have placed a custom visual user object in a window and need to
pass information between the user object and the window. You can create a user
event that communicates this information either synchronously or
asynchronously.

For more information, see “Communicating between a window and a user
object” on page 323.

User events and event IDs
About event IDs An event ID connects events related to user actions or system activity to a

system message. PocketBuilder defines (or maps) events to commonly used
event IDs, and when it receives a system message, it uses the mapped event ID
to trigger an event.

User-defined events do not have to be mapped to an event ID. See “Defining
user events” on page 183.

The PocketBuilder naming convention for user event IDs is similar to the
convention Windows uses to name messages. All PocketBuilder event IDs
begin with pbm_.

Event IDs associated
with Windows
messages

Several Windows messages and notifications map to event IDs.

For Windows messages that begin with wm_, the PocketBuilder event ID
typically has the same name with pbm_ substituted for wm_. For messages from
controls, the event ID typically has the same name but begins with pbm_ and
has the Windows prefix for the control added to the message name. For
example:

• wm_keydown maps to pbm_keydown

• bm_getcheck (a button control message) maps to pbm_bmgetcheck

• bn_clicked (a button control notification message) maps to pbm_bnclicked

To see a list of event IDs to which you can map a user-defined event, select
Insert>Event and display the Event ID drop-down list in the Prototype window
that displays.

Windows messages that are not mapped to an event ID map to the pbm_other
event ID. The PocketBuilder Message object is populated with information
about system events that are not mapped to event IDs. For more information
about the Message object, see the online Help.

CHAPTER 8 Working with User Events

User’s Guide 183

For more information about Windows messages and notifications, see the
information about Windows controls and Windows management in the section
on user interface design and development in the Microsoft MSDN Library at
http://msdn.microsoft.com/library/default.asp.

Event IDs associated
with PocketBuilder
events

PocketBuilder has its own events, each of which has an event ID. For example,
the PocketBuilder event DragDrop has the event ID pbm_dragdrop. The event
name and event ID of the predefined PocketBuilder events are protected; they
cannot be modified. The event IDs for predefined events are shown in the
Event List view.

Figure 8-1: The Event List view for a window

Defining user events
In PocketBuilder, you can define both mapped and unmapped user events for
windows, user objects, controls, menus, and the Application object. The access
level for events is always public.

When you add a new event, a Prototype window displays above the script area
in the Script view. Most of the fields in the Prototype window are the same as
when you define a user-defined function. They are in the same order as the
event’s signature: access level, return type, name, required parameters, and any
exception objects for its THROWS clause. For each parameter, you define how
it is passed, its datatype, and the parameter name.

Defining user events

184 PocketBuilder

For information about filling in these fields, see “Defining user-defined
functions” on page 169.

Figure 8-2: Prototype window for a user-defined event

The Prototype window for user-defined events has an additional field that you
use if you want to map the user event to an event ID.

External check box
When you check the External check box, PocketBuilder sets the
IsExternalEvent property of the ScriptDefinition object associated with the
event to “true”. This has no effect on your application in this release. The
feature might be used in a future release.

Mapped user events When a system message occurs, PocketBuilder triggers any user event that has
been mapped to the message and passes the appropriate values to the event
script as arguments. When you define a user event and map it to an event ID,
you must use the return value and arguments that are associated with the event
ID.

❖ To define a mapped user event:

1 Open the object for which you want to define a user event.

2 If you want to define a user event for a control on a window or visual user
object, double-click the control to select it.

3 Select Insert>Event from the menu bar or select Add from the Event List
view pop-up menu.

The Prototype window opens in the Script view. If you display the Script
view’s title bar, you see (Untitled) because you have not yet named the
event.

4 Name the event and tab to the next field.

CHAPTER 8 Working with User Events

User’s Guide 185

To recognize a user event easily, consider prefacing the name with an
easily recognizable prefix such as ue_. Event names can have up to 40
characters. For valid characters, see “identifier names” in the online Help.

When you tab to the next field, the user event is added to the Event List
view. It is saved as part of the object whenever you save the object.

5 Select an ID from the drop-down list box at the bottom of the Prototype
window.

Unmapped user
events

Unmapped user events are associated with PocketBuilder activities and do not
have event IDs. When you define an unmapped user event, you specify the
arguments and return datatype; only your application scripts can trigger the
user event. For example, if you create an event called ue_update that updates a
database, you might trigger or post the event in the Clicked event of an Update
command button.

❖ To define an unmapped user event:

1 Open the object for which you want to define a user event.

2 If you want to define a user event for a control on a window or visual user
object, double-click the control to select it.

3 Select Insert>Event from the menu bar or select Add from the pop-up
menu for the Event List view.

The Prototype window opens in the Script view. If you display the Script
view’s title bar, you see (Untitled) because you have not yet named the
event.

4 Select a return type and tab to the next field.

Defining return types for events is similar to defining them for functions.
See “Defining a return type” on page 171.

5 Name the event and tab to the next field.

To recognize a user event easily, consider prefacing the name with an
easily recognizable prefix such as ue_. Event names can have up to 40
characters. For valid characters, see “identifier names” in the online Help.

When you tab to the next field, the user event is added to the Event List
view. It is saved as part of the object whenever you save the object.

6 If the event takes arguments, define arguments for the event.

Defining arguments for events is similar to defining them for functions.
See “Defining arguments” on page 173 and “Adding, inserting, and
deleting arguments” on page 177.

Using a user event

186 PocketBuilder

7 Optionally enter the name of exceptions that can be thrown by the event.

❖ To open a user event for editing:

• In the Event List view, double-click the event’s name

❖ To delete a user event:

• In the Event List view, select the user event’s name and select Delete from
the Edit menu or the pop-up menu

Using a user event
After you define a user event, you must write the script that PocketBuilder will
execute when that user event is triggered. If it is an unmapped user event, you
also write the code that will trigger the user event.

User events display in alphabetical order in the Event List view and the event
drop-down list in the Script view, along with the predefined events. As with
predefined events, the script tells PocketBuilder what processing to perform
when the user event occurs.

If the user event is not mapped to a Windows message (that is, if there is no
event ID associated with it), you must trigger the event in a script. You can
trigger the user event in an object using the EVENT syntax. For information
about calling events, see the PowerScript Reference in the online Help.

Examples of user event scripts
This section includes two examples that use a mapped user event. For more
user event examples, see “Communicating between a window and a user
object” on page 323.

Example 1: mapped
user event for a
control

Situation You have several SingleLineEdit controls in a window and want
the Enter key to behave like the Tab key. For example, you might want users to
tab to the next SingleLineEdit when they press Enter.

Using the KeyDown function
You cannot use the KeyDown PowerScript function to obtain a key code value
entered by a user on a Windows CE platform.

CHAPTER 8 Working with User Events

User’s Guide 187

Solution Define a user event for the first SingleLineEdit. Give the event any
name you want, such as ue_CheckKey. Map the event to the event ID
pbm_keydown. Write a script for the user event that tests for the key that was
pressed on the Soft Input Panel (SIP) or peripheral keyboard. If Enter was
pressed, set the focus to the SingleLineEdit that you want the user to go to.

For example, in the script for the user event for sle_1, you could code:

// Script for user event ue_CheckKey,
// which is mapped to pbm_keydown.
IF Key=KeyEnter! THEN // Go to sle_2 if

sle_2.SetFocus() // Enter pressed.
END IF

Example 2: mapped
user event for an edit
style

Situation You have a DataWindow control with a column that uses the
RadioButton edit style and you want to allow users to scroll through the
RadioButtons when they press Down Arrow or Up Arrow. (Normally, pressing
Down Arrow or Up Arrow scrolls to the next or preceding row.)

Solution Declare a user event for the DataWindow control that maps to the
event ID pbm_dwnkey and write a script like the following for it. (dwn stands
for DataWindow notification.)

// Script is in a user event for a DataWindow control.
// It is mapped to pbm_dwnkey. If user is in column
// number 2, which uses the RadioButton edit style, and
// presses DownArrow, the cursor moves to the next item
// in the RadioButton list instead of going to the next
// row in the DataWindow, which is the default behavior.
// Pressing UpArrow moves to the preceding RadioButton.
//
// Note that the CHOOSE CASE below tests for data
// values, not display values, for the RadioButtons.

int colnum = 2 // Column number
long rownum
rownum = dw_1.GetRow() // Current row
IF This.GetColumn() = colnum THEN

CHOOSE CASE key
CASE KeyDownArrow!
 CHOOSE CASE dw_1.GetItemString(rownum, colnum)
 CASE "a" // First value in RB
 This.SetItem(rownum, colnum,"b") // Next
 CASE "b" // Second value in RB
 This.SetItem(rownum, colnum,"c") // Next
 CASE "c" // Last value in RB
 This.SetItem(rownum, colnum,"a") // First

Using a user event

188 PocketBuilder

 END CHOOSE

 CASE KeyUpArrow!
 CHOOSE CASE dw_1.GetItemString(rownum, colnum)
 CASE "a" // First value in RB
 This.SetItem(rownum, colnum,"c") // Last
 CASE "b" // Second value in RB
 This.SetItem(rownum, colnum,"a") // First
 CASE "c" // First value in RB
 This.SetItem(rownum, colnum,"b") // Previous
 END CHOOSE

END CHOOSE
END IF
return(1)

User’s Guide 189

C H A P T E R 9 Working with Structures

About this chapter This chapter describes how to build and use structures.

Contents

About structures
A structure is a collection of one or more related variables of the same or
different datatypes grouped under a single name. In some languages, such
as Pascal and COBOL, structures are called records.

Structures allow you to refer to related entities as a unit rather than
individually. For example, if you define the user's ID, address, access
level, and a picture (bitmap) of the employee as a structure called
s_employee, you can then refer to this collection of variables as
s_employee.

Two kinds There are two kinds of structures:

• Global structures, which are not associated with any object in your
application. You can declare an instance of the structure and reference
the instance in any script in your application.

• Object-level structures, which are associated with a particular type of
window, menu, or user object, or with the Application object. These
structures can always be used in scripts for the object itself. You can
also choose to make the structures accessible from other scripts.

Topic Page

About structures 189

Defining structures 190

Modifying structures 192

Using structures 193

Defining structures

190 PocketBuilder

Deciding which kind you want
When you design your application, think about how the structures you are
defining will be used:

• If the structure is general-purpose and applies throughout the application,
make it a global structure

• If the structure applies only to a particular type of object, make it an
object-level structure

Defining structures
Although you define object-level structures in the painter for a specific object
and global structures in the Structure painter, in both cases you define the
structure in a Structure view. The following sections describe each of the steps
you take to define a new structure:

1 Open a Structure view.

2 For object-level structures, name the structure.

3 Define the variables that make up the structure.

4 Save the structure.

Opening a Structure
view

How you open the Structure view depends on whether you are defining an
object-level structure or a global structure.

Figure 9-1: Structure view in a PocketBuilder object painter

❖ To define an object-level structure:

1 Open the object for which you want to declare the structure.

You can declare structures for windows, menus, user objects, or
applications.

CHAPTER 9 Working with Structures

User’s Guide 191

2 Select Insert>Structure from the menu bar.

A Structure view opens.

❖ To define a global structure:

• Select Structure from the Objects tab in the New dialog box.

The Structure painter opens. It has one view, the Structure view. In the
Structure painter, there is no Structure Name text box in the Structure view.

Naming the structure If you are defining an object-level structure, you name it in the Structure Name
box in the Structure view. If you are defining a global structure, you name it
when you save the structure.

Structure names can have up to 40 characters. For information about valid
characters, see “identifier names” in the online Help.

You might want to adopt a naming convention for structures so that you can
recognize them easily. A common convention is to preface all global structure
names with s_ and all object-level structure names with str_.

Defining the variables By default, the Structure view displays a single string datatype for the
structure’s initial variable. You can change this to any PocketBuilder datatype,
including the standard datatypes such as integer and boolean, as well as objects
and controls such as Window or MultiLineEdit. The default for subsequent
variables is the datatype of the previous variable.

Specifying a defined object as a variable You can specify any object types
that you have defined. For example, if you have defined a window named
w_calculator and you want the structure to include the window, type
w_calculator as the datatype. You cannot select w_calculator from the list,
since the list shows only built-in datatypes.

Specifying a structure as a variable A variable in a structure can itself be a
structure. Specify the structure's name as the variable's datatype.

Specifying a decimal as a variable If you select decimal as the datatype,
the default number of decimal places is 2. You can also select decimal{2} or
decimal{4} to specify 2 or 4 decimal places explicitly.

❖ To define the variables that compose the structure:

1 Select or enter the datatype of a variable that you want to include in the
structure.

2 Enter the name of the variable.

3 Repeat until you have entered all the variables.

Modifying structures

192 PocketBuilder

Saving the structure How you save the structure depends on whether it is an object-level structure
or a global structure.

The names of object-level structures are added to the Structure List view and
display in the title bar of the Structure view as soon as you tab off the Structure
Name box. As you add variables to the structure, the changes are saved
automatically. When you save the object that contains the structure, the
structure is saved as part of the object in the library in which the object resides.

Comments and object-level structures
You cannot enter comments for an object-level structure, because it is not a
PocketBuilder object.

❖ To name and save a global structure:

1 Select File>Save from the menu bar, or close the Structure painter.

The Save Structure dialog box displays.

2 Name the structure.

See “Naming the structure” on page 191.

3 (Optional) Add comments to describe your structure.

4 Choose the library where you want to save the structure.

5 Click OK.

PocketBuilder stores the structure in the specified library. You can view
the structure as an independent entry in the Library painter.

Modifying structures
❖ To modify a structure:

1 Do one of the following:

• In the Open dialog box, select the global structure you want to modify

• Open the painter for the object that contains the object-level structure,
open the Structure List view if it is not already open, and from there
select the structure you want to modify

CHAPTER 9 Working with Structures

User’s Guide 193

2 Review the variable information displayed in the Structure view and
modify the structure as necessary.

To insert a variable before an existing variable, highlight it and select
Insert>Row from the menu bar or Insert Row from the pop-up menu.

To delete a variable, select Delete Row from the pop-up menu.

3 Save the modified structure.

Building a similar
structure

If you want to create a structure that is similar to one that already exists, you
can use the existing structure as a starting point and modify it.

❖ To build an object-level structure that is similar to an existing
object-level structure:

1 Right-click the existing structure in the Structure List view.

2 Select Duplicate from the pop-up menu.

3 Name the new structure in the Structure Name box.

4 Modify variables as needed.

❖ To build a global structure that is similar to an existing global structure:

1 Open and modify the existing structure.

2 Select File>Save As from the PocketBuilder menu.

3 Type a name for the new structure, optionally add or modify a comment,
select the library where you want to save the structure, and click OK.

Using structures
After you define the structure, you can:

• Reference an instance of the structure in scripts and functions

• Pass the structure to functions

• Display and paste information about structures by using the Browser

Using structures

194 PocketBuilder

Referencing structures
When you define a structure, you are defining a new datatype. You can use this
new datatype in scripts and user-defined functions as long as the structure
definition is stored in a library in the application's library search path.

❖ To use a structure in a script or user-defined function:

1 Declare a variable of the structure type.

2 Reference the variable in the structure.

Referencing global
structures

The variables in a structure are similar to the properties of a PocketBuilder
object. To reference a global structure's variable, use dot notation:

structure.variable

Example Assume that s_empdata is a global structure with the variables
emp_id, emp_dept, emp_fname, emp_lname, and emp_salary. To use this
structure definition, declare a variable of type s_empdata and use dot notation
to reference the structure's variables, as shown in the following script:

s_empdata lstr_emp1, lstr_emp2 // Declare 2 variables
// of type emp_data.

lstr_emp1.emp_id = 100 // Assign values to the
lstr_emp1.emp_dept = 200 // structure variables.
lstr_emp1.emp_fname = "John"
lstr_emp1.emp_lname = "Paul-Jones"
lstr_emp1.emp_salary = 99908.23

// Retrieve the value of a structure variable.
lstr_emp2.emp_salary = lstr_emp1.emp_salary * 1.05

// Use a structure variable in a
// PowerScript function.
MessageBox ("New Salary", &

String(lstr_emp2.emp_salary,"$###,##0.00"))

Referencing
object-level structures

You reference object-level structures in scripts for the object itself exactly as
you do global structures. Declare a variable of the structure type, then use dot
notation:

structure.variable

CHAPTER 9 Working with Structures

User’s Guide 195

Example Assume that the structure str_custdata is defined for the window
w_history and you are writing a script for a CommandButton in the window. To
use the structure definition in the script, write:

str_custdata lstr_cust1
lstr_cust1.name = "Joe"

No access to object-level structures outside the object
You cannot make object-level structures accessible outside an object because
object-level structures are implicitly private.

Copying structures

❖ To copy the values of a structure to another structure of the same type:

• Assign the structure to be copied to the other structure using this syntax:

struct1 = struct2

PocketBuilder copies all the variable values from struct2 to struct1.

Example These statements copy the values in lstr_emp2 to lstr_emp1:

str_empdata lstr_emp1, lstr_emp2
...
lstr_emp1 = lstr_emp2

Using structures with functions
You can pass structures as arguments in user-defined functions. Simply name
the structure as the datatype when defining the argument. Similarly,
user-defined functions can return structures. Name the structure as the return
type for the function.

You can also define external functions that take structures as arguments.

Example Assume the following:

• Revise is an external function that expects a structure as its argument

• lstr_empdata is a declared variable of a structure datatype

You can call the function as follows:

Revise(lstr_empdata)

Using structures

196 PocketBuilder

Declare the function first
The external function must be declared before you can reference it in a script.

For more about passing arguments to external functions, see the Resource
Guide.

Displaying and pasting structure information
You can display the names and variables of defined structures in the Browser.
You can also paste these entries into a script.

❖ To display information about a global structure in the Browser:

1 Select the Structure tab and select a structure.

2 Double-click the properties folder in the right pane.

The properties folder expands to show the structure variables as properties
of the structure.

❖ To display information about an object-level structure in the Browser:

1 Select the tab for the type of object for which the structure is defined.

2 Select the object that contains the structure.

3 Double-click the structure folder in the right pane.

The structure folder expands to display the structure variables using dot
notation.

❖ To paste the information into a script:

1 Scroll to the structure variable you want to paste.

2 Select Copy from the variable’s pop-up menu.

3 Insert the cursor in the script where you want to paste the variable and
select Paste from the pop-up menu.

The variable name displays at the insertion point in the script.

P A R T 4 Working with Windows,
Controls, and User
Objects

This part describes how to create windows for your
application. It covers the properties of windows, the
controls you can place in windows, how to use inheritance
to save time and effort, and how to define menus. It also
introduces user objects.

User’s Guide 199

C H A P T E R 1 0 Working with Windows

About this chapter This chapter describes how to build windows in the Window painter.

Contents

About windows
Windows form the interface between the user and a PocketBuilder
application. Windows can display information, request information from
a user, and respond to the user's stylus or keyboard actions.

A window consists of:

• Properties that define the window's appearance and behavior

For example, a window might have a caption bar with a dismiss or
OK button, and it might have a menu bar.

• Events

Like other PocketBuilder objects, windows have events.

• Controls placed in the window

At the window level When you create a window, you specify its properties in the Window
painter’s Properties view. You can dynamically change window properties
in scripts during execution.

Topic Page

About windows 199

Types of windows 201

About the Window painter 202

Building a new window 204

Viewing your work 212

Writing scripts in windows 215

Running a window 218

Using inheritance to build a window 219

About windows

200 PocketBuilder

You can write scripts for window events to specify what should happen when
a window is manipulated. For example, you can connect to a database when a
window is opened by coding the appropriate statements in the script for the
window's Open event.

At the control level You place PocketBuilder controls, such as CheckBox, CommandButton, or
MultiLineEdit controls, in a window to request and receive information from
the user and to present information to the user.

After you place a control in a window, you can define the style of the control,
move and resize the control, and code scripts to determine how the control
responds to events.

Designing windows
The Microsoft Windows CE operating environment has certain standards that
graphical applications are expected to conform to. Windows, menus, and
controls are supposed to look and behave in predictable ways from application
to application.

This chapter describes some of the guidelines you should follow when
designing windows and applications, but a full discussion is beyond the scope
of this book. Information about design guidelines for Windows CE platforms
is available on the Microsoft Web site at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcedesgn/html/_wcesdk_Application_Design_Guidelines.asp. See also
Appendix D, “Designing Applications for Windows CE Platforms.”

Building windows
When you build a window, you:

• Specify the appearance and behavior of the window by setting its
properties

• Add controls to the window

• Compile scripts that determine how to respond to events in the window
and its controls

To support these scripts, you can define new events for the window and its
controls, and declare functions, structures, and variables for the window.

CHAPTER 10 Working with Windows

User’s Guide 201

Two ways There are two ways to build a window. You can:

• Build a new window from scratch

You use this technique to create windows that are not based on existing
windows.

• Build a window that inherits its style, events, functions, structures,
variables, and scripts from an existing window

You use inheritance to create windows that are derived from existing
windows, thereby saving time and coding effort.

For more information For information on building a window from scratch, see “Building a new
window” on page 204.

For information on using inheritance to build a window, see “Using inheritance
to build a window” on page 219.

Types of windows
PocketBuilder provides support for main and response windows. Windows CE
platforms do not support MDI windows.

Main windows
Main windows are standalone windows; they are independent of all other
windows. They provide the principal user interface for your applications, and
can overlay other windows of the same type.

Using main windows Define your independent windows as main windows. For example, suppose
your application contains a calculator or scratch pad window that you want
always to have available to the user. Make it a main window, which can be
displayed at any time anywhere on the screen. As a main window, it can display
on top of other windows on the screen.

About the Window painter

202 PocketBuilder

Response windows
Response windows request information from the user. A response window is
always opened within another window (its parent). Typically, a response
window is opened after some event occurs in the parent window.

Response windows are application modal. That is, when a response window
displays, it is the active window (it has focus), and no other window in the
application is accessible until the user responds to the response window. The
user can go to other applications, but when the user returns to the application,
the response window is still active. Response windows act like modal pop-up
windows.

Using response
windows

For example, if you want to display a confirmation window when a user tries
to close a window with unsaved changes, use a response window. The user is
not allowed to proceed until the response window is closed.

Figure 10-1: Example of a response window

Using message boxes PocketBuilder also provides message boxes, which are predefined windows
that act like response windows in that they are application modal. You open
message boxes using the PowerScript MessageBox function.

For more information, see “MessageBox” in the online Help.

About the Window painter
Views in the Window
painter

You design windows in the Window painter. The Window painter has several
views where you specify how a window looks and how it behaves. The
Window painter looks similar to the User Object painter for visual user objects,
and it has the same views. For details about the views, how you use them, and
how they are related, see “Views in painters that edit objects” on page 58.

CHAPTER 10 Working with Windows

User’s Guide 203

Window painter
workspace

The default layout for the Window painter workspace has two stacked panes
with the Layout and Properties views at the top of the stacks.

Figure 10-2: Default view layout for the Window painter

Most of your work in the Window painter is done in three views:

• The Layout view, where you design the appearance of the window

• The Properties view, where you set window properties and control
properties

• The Script view, where you modify behavior by coding window and
control scripts

For information about specifying window properties, see “Defining the
window's properties” on page 204.

For information about adding controls and nonvisual objects to a window, see
“Adding controls” on page 211 and “Adding nonvisual objects” on page 211.

For information about coding in the Script view, see “Writing scripts in
windows” on page 215 and Chapter 6, “Writing Scripts.”

Building a new window

204 PocketBuilder

Building a new window
This section describes how to build windows from scratch. You build from
scratch to create windows that are not based on existing windows.

Creating a new window

❖ To create a new window:

1 Open the New dialog box.

2 On the PB Object tab page, select Window.

3 Click OK.

The Window painter opens. The new window displays in the Window
painter’s Layout view, and its default properties display in the Properties
view.

Defining the window's properties
Every window (and control) has a style that determines how it appears to the
user. You define a window's style by choosing settings in the Window painter’s
Properties view. A window's style encompasses its:

Type
Basic appearance
Initial position on the screen (response windows)
Size at design time

Runtime size of main windows depends on the device where you deploy your
application.

When you define a window's style in the Window painter, you are actually
assigning values to the properties for the window. You can programmatically
change some elements of a window's style during execution by setting its
properties in scripts, although other style selections must be made prior to the
loading of the window on the deployment device.

For a list of window properties, see Objects and Controls in the online Help.
Because of target platform differences, some of the properties listed for
PowerBuilder windows do not apply to PocketBuilder windows.

CHAPTER 10 Working with Windows

User’s Guide 205

For descriptions of window properties that are specific to PocketBuilder (that
is, they do not apply to windows in PowerBuilder applications), see Appendix
B, “PowerBuilder and PocketBuilder Product Differences,” in this User’s
Guide.

❖ To specify window properties:

1 Click the window's background to display the window’s properties in the
Properties view.

Another way to display window properties
You can also select the window name in the Control List view.

2 Choose the tab appropriate to the property you want to specify:

Using the General properties page

Use the General properties page to specify the following window information:

Window type
Title bar text
Menu name
Navigation bar button (OK or X)
IDE window size (design-time window size)
Color

Depending on the type of window, PocketBuilder enables or disables certain
check boxes that specify other properties of the window. For example, if you
are creating a main window, the Title Bar check box is selected and disabled.
Main windows always have title bars, so you cannot clear the Title Bar check
box.

By default, the title of a main window is Untitled (except if the window is
created by the Template Application wizard, in which case the default window
title is Main Window). You can change the window title by replacing the text
in the Title box.

Choose this tab To specify the window's

General Name, type, state, navigation bar button, default
design-time size setting, color, and whether a menu is
associated with it

Scroll Horizontal and vertical scroll bar placement

Other Position and size on the desktop and whether or not to
display a tap-and-hold indicator on the Pocket PC

Building a new window

206 PocketBuilder

Main windows must have titles
If you delete a title for a main window, you risk creating problems for
application users on Windows CE devices. Applications without titles are not
included in the list of running programs on these devices. If users start a
different program or otherwise minimize a title-less PocketBuilder application,
they might have difficulty redisplaying the application, or even closing it,
without performing a soft reset.

Specifying the
window's type

The first thing you should do on the General properties page is specify the type
of window you are creating.

❖ To specify the window's type:

1 In the Properties view for the window, select the General tab.

2 Scroll down the property page and select the appropriate window type
from the WindowType drop-down list.

Specifying other basic
window properties

By selecting and clearing check boxes on the General property page, you can
specify whether the window is enabled, has a menu bar, has an OK button in
the navigation bar, and so on.

Note the following:

• A main window must have a title bar. It has a default minimum size and
cannot be repositioned through the PocketBuilder IDE.

• A response window cannot have a menu. (Response windows should not
be used on the Smartphone.)

Associating a menu
with the window

Only main windows can have a menu associated with them. If you do not
associate a named menu with a main window, you can still select the MenuBar
property on the General page of the Properties view for the window. Selecting
this property resizes the window at design time, allowing you to see how much
space would be left in the window if you added a menu dynamically at runtime.

❖ To associate a menu with the window:

1 Do one of the following:

• Enter the name of the menu in the Menu Name text box on the General
properties page.

• Click the Browse button and select the menu from the Select Object
dialog box, which displays a list of all menus available to the
application.

CHAPTER 10 Working with Windows

User’s Guide 207

2 Click the Preview button in the PainterBar to see the menu.

For information about preview, see “Viewing your work” on page 212.

Changing the menu
At runtime, you can change a menu associated with a window by using the
ChangeMenu function. For more information, see the online Help.

Choosing a window
color

You can change the background color of your window.

❖ To specify the color of a window:

• Specify the color of the window from the BackColor drop-down list on the
General properties page

Changing default
window colors

The default window background color for new windows is ButtonFace if you
are defining a 3D window, and white if you are not. (If you have specified
different display colors for 3D objects in the Windows Control Panel, the
default color for a new 3D window will be the color that you set, rather than
ButtonFace.)

You can change the default for windows that are not 3D in the Application
painter Properties view. To do so, click the Additional Properties button on the
General page and modify the Background color on the Text Font tab page. New
windows that are not 3D will have the new color you specified.

For more about using colors in windows, including how to define your own
custom colors, see Chapter 11, “Working with Controls.”

Choosing the window's size and position
Design-time window
size

Main windows are automatically configured at runtime to match a deployment
device’s full screen settings. At design time you can easily change a window’s
size to match the size it will have on a deployment device. Selections for the
IDE window size are:

• PDA Portrait 240 x 320 QVGA

• PDA Landscape 320 x 240 QVGA

• Smartphone Portrait 176 x 220

• Smartphone Square 220 x 220

• VGA Landscape 640 x 480

Building a new window

208 PocketBuilder

• Design Size Default

• Unconstrained

The Design Size Default value sets the window displayed in the Window
painter to the size selected on the Size tab of the Options dialog box. You
display this dialog box by selecting Design>Options from the Window painter
menu.

The Unconstrained value lets you set the design-time window size on the Other
tab of the Properties view for the current window or by dragging the window
handles in the Layout view. If you do not select Unconstrained before you set
design-time window size on the Other tab or before you resize the window in
the Layout view, PocketBuilder automatically changes the IDE Window Size
drop-down list value to Unconstrained.

About PowerBuilder
units

All window measurements are in PowerBuilder units (PBUs). Using these
units, you can build applications that look similar on screens of different
resolution. A PBU is defined in terms of logical inches. The size of a logical
inch is defined by your operating system as a specific number of pixels. The
number is dependent on the display device. Windows typically uses 96 pixels
per logical inch for small fonts and 120 pixels per logical inch for large fonts.
Windows CE devices typically use 96 pixels per logical inch.

Almost all sizes in the Window painter and in scripts are expressed as PBUs.
The two exceptions are text size, which is expressed in points, and grid size in
the Window and DataWindow painters, which is in pixels.

The PowerScript functions PixelsToUnits and UnitsToPixels return conversion
values for a measurement that you assign as a function argument. For more
about these functions, see the online Help.

Changing the default
sizes of new windows

You can change settings for the default size of a main window. The
PocketBuilder install program sets up a portrait orientation for main windows,
but you can change this default on the Size tab of the Options dialog box for
the Window painter.

The default size of a main window with a portrait orientation is 1097 by 1280
PBUs (240 by 320 pixels) without a menu bar, or 1097 by 1176 PBUs (240 by
294 pixels) if a menu bar is added. (You add a menu bar by selecting the
MenuBar check box, or by assigning a menu to the window in the MenuName
text box.)

The default size of a response window is 823 by 600 PBUs.

CHAPTER 10 Working with Windows

User’s Guide 209

❖ To change the default size of new windows

1 Select Design>Options from the main menu for the Window painter.

2 Click the Size tab and select the default size option you want for main
windows.

If you select the Custom radio button for a main window, you must enter
values in PBUs for the width and height of any new main windows you
create in your target.

Resizing a main
window in the Layout
view

You can resize main and response windows in the Layout view of the Window
painter. When you resize a window, the IDE Window Size selection value
changes automatically to Unconstrained. At runtime, the size of a main
window is modified automatically to fit the full screen size of the device where
the window is deployed (unless you are deploying to the desktop).

❖ To resize a window in the Layout view:

1 Place the cursor on an outer edge of a window in the Layout view.

The cursor becomes a two-headed arrow. The edge of the window where
you place the cursor determines the angle of the arrow and the window size
property that you can change.

2 Drag the edge of the window to a new location.

The new location determines the current window’s new width or height.

Resizing and
repositioning windows
in the Properties view

You can change a window’s width and height properties on the Other page of
the Properties view. When you resize a window, the IDE Window Size
selection value changes automatically to Unconstrained. At runtime, the size of
a main window is modified automatically to fit the full screen size of the device
where the window is deployed (unless you are deploying to the desktop).

You can change the x and y values of a response window only. The x and y
values for a response window at runtime are relative to the upper-left corner of
its main window parent (the bottom left edge of the Windows CE navigation
bar).

❖ To specify a window’s position and size:

1 Click the window's background so that the Properties view displays
window properties.

2 Select the Other tab in the current window’s Properties view.

Building a new window

210 PocketBuilder

3 Enter values for the x and y location of the window in PBUs.

You can enter values only for a response window.

4 Enter values for width and height in PBUs.

The size of the window changes in the Layout view.

Specifying window scrolling

If your window is larger than the default size, it is probable that not all the
window's contents will be visible during execution. In such cases, you should
make the window scrollable by providing vertical and horizontal scroll bars.
You do this on the Scroll property page.

By default, PocketBuilder controls scrolling when scroll bars are present. You
can set values for the size of the scrolling action when a user clicks on a scroll
bar arrow.

Table 10-1: Options that control the size of a scrolling action

❖ To specify window scrolling:

1 Click the window's background so that the Properties view displays
window properties.

2 Select the Scroll tab.

Option Meaning

UnitsPerLine The number of PBUs to scroll up or down when the user clicks
the up or down arrow in the vertical scroll bar. When the value
is 0 (the default), a scrolling action equals 1/100 the height of
the window. The value you enter defines a logical line in the
context of the current window.

UnitsPerColumn The number of PBUs to scroll right or left when the user clicks
the right or left arrow in the horizontal scroll bar. When the
value is 0 (the default), a scrolling action equals 1/100 the
width of the window. The value you enter defines a logical
column in the context of the current window.

ColumnsPerPage The number of columns to scroll when the user clicks the
horizontal scroll bar itself. When the value is 0 (the default), a
scrolling action equals 10 columns.

LinesPerPage The number of lines to scroll when the user clicks the vertical
scroll bar itself. When the value is 0 (the default), a scrolling
action equals 10 lines.

CHAPTER 10 Working with Windows

User’s Guide 211

3 Indicate which scroll bars you want to display by selecting the HScrollBar
and VScrollBar check boxes.

4 For horizontal scroll bars, specify scrolling options for the units per
column and the columns per page. For vertical scroll bars, specify
scrolling options for the units per line and the lines per page.

Adding controls
When you build a window, you place controls, such as CheckBox,
CommandButton, and MultiLineEdit controls, in the window to request and
receive information from the user and to present information to the user.

After you place a control in the window, you can define its style, move and
resize it, and write scripts to determine how the control responds to events.

For more information, see Chapter 11, “Working with Controls.”

Adding nonvisual objects
If you need the services of a nonvisual object, you can insert it in a window.
Nonvisual objects are listed in the Non-Visual Object List view for the window.
A nonvisual object that you insert in a window can be a custom class or
standard class user object.

You insert a nonvisual object in a window in the same way you insert one in a
user object. For more information, see “Using class user objects” on page 320.

Saving the window
You can save the window you are working on at any time.

Naming the window The name you assign to a window when you save it can be any valid identifier
of up to 40 characters. For information, see “valid identifiers” in the online
Help.

A commonly used convention is to preface all window names with w_ and use
a suffix that helps you identify the particular window. For example, you might
name a window that displays employee data w_empdata.

Viewing your work

212 PocketBuilder

❖ To save a window:

1 Select File>Save from the menu bar.

If you have previously saved the window, PocketBuilder saves the new
version in the same library and returns you to the Window painter
workspace.

If you have not previously saved the window, PocketBuilder displays the
Save Window dialog box.

2 Name the window in the Windows text box.

See the window naming considerations at the beginning of this section.

3 Type comments in the Comments text box to describe the window.

These comments display in the Select Window window and in the Library
painter. It is a good idea to use comments so that you and others can easily
remember the purpose of the window later.

4 Specify which library you want to save the window in.

5 Click OK.

Viewing your work
While building a window, you can preview it and print its definition.

Previewing a window
As you develop a window, you can preview its appearance from the Window
painter. By previewing the window, you get a quick desktop view of how it
might look during execution, only without the personal digital assistant (PDA)
skin. If the window that you preview has an associated menu, the menu bar will
be visible at the top of the window, not at the bottom as on a PDA device or
emulator. Size restrictions for windows on the PDA device or emulator are also
not applicable to windows that you preview on the desktop.

The control bar is present for main windows that you preview or run on the
desktop. You can close a main window that you preview by clicking the close
button in its control bar.

CHAPTER 10 Working with Windows

User’s Guide 213

You can add a control bar to response windows by selecting the TitleBar check
box or adding a Close (OK) button. If you preview a response window that
does not have a control bar, you can close the response window by
right-clicking the PocketBuilder icon in the Windows task bar and selecting
Restore from the pop-up menu. A message box informs you that an application
is running. You can then click Terminate in the message box to close the
response window and return to PocketBuilder.

Preview button on the PainterBar and the PowerBar
You can preview a window from the Window painter by using the Preview
button on the PainterBar or clicking the Preview button on the PowerBar.
When you use the Preview button on the PainterBar, you do not have to save
the window first, but you cannot trigger events, as described later. For
information about previewing using the PowerBar button, see “Running a
window” on page 218.

❖ To preview a window:

• Click the Preview button in the PainterBar, or select Design>Preview from
the menu bar

PocketBuilder is minimized, and the window displays with the properties
you have defined for it.

For information about previewing using the PowerBar button, see
“Running a window” on page 218.

What you can do While previewing the window, you can get a sense of its look and feel. You can:

• Move the window (although you cannot do this on the Windows CE
device)

• Tab from control to control

• Select controls

• Use scroll bars that you place on the window

Viewing your work

214 PocketBuilder

What you cannot do You cannot:

• Change properties of the window

Changes you make while previewing the window, such as changing radio
button selections or entering text in a text box, are not saved.

• Trigger events

For example, clicking a CommandButton while previewing a window
does not trigger the button’s Clicked event.

• Connect to a database

❖ To return to the Window painter:

• Do one of the following:

• Click the Close button in the control menu in the upper-right corner
of the window

On the Windows CE device or emulator, you will not have a control
menu in the title bar, although for the Pocket PC platform you can add
a Close (OK) button or a SmartMinimize (X) button to the navigation
bar. (Smartphone applications do not have Close or SmartMinimize
buttons, but typically have a Quit or Done menu assigned to the left
soft key.)

You can add a Close button to the navigation bar or title bar for a
response window, but not a SmartMinimize button. You cannot
preview the navigation bar on the desktop using the Preview feature.

• Right-click the title bar and select Close from the pop-up menu

• For a main window that is not visible, click PocketBuilder on the task
bar and then click the Terminate button

• For a response window that does not have a control bar, right-click
PocketBuilder on the task bar, select Restore from the pop-up menu,
and then click the Terminate button

Printing a window's definition
You can print a window's definition for documentation purposes.

❖ To print information about the current window:

• Select File>Print from the menu bar

CHAPTER 10 Working with Windows

User’s Guide 215

Information about the current window is sent to the printer specified in
Printer Setup. You can change the information sent to the printer by
right-clicking the window in the System Tree or Library painter, selecting
Print from the pop-up menu, then selecting or clearing check boxes for the
different print options for the window or user object.

Print settings
You can also view and change the print options from the Library painter
by selecting any PocketBuilder object and then selecting Entry>Library
Item>Print from the menu bar.

PocketBuilder records your printing options preferences in variables in the
[Library] section of the PocketBuilder initialization file, so the preference
is maintained across sessions. If there is no [Library] section,
PocketBuilder creates one after you print an object definition for the first
time.

Writing scripts in windows
You write scripts for window and control events. To support these scripts, you
can define:

• Window-level and control-level functions

• Instance variables for the window

About events for windows and controls
Windows have several events, including Open, which is triggered when the
window is opened (before it is displayed), and Close, which is triggered when
the window is closed. For example, you might connect to a database and
initialize some values in the window's Open event, and disconnect from a
database in the Close event.

Each type of control also has its own set of events. A button, for example, has
a Clicked event, which triggers when a user clicks the button. SingleLineEdits
and MultiLineEdits have Modified events, which trigger when the contents of
the edit control change.

Writing scripts in windows

216 PocketBuilder

Defining your own
events

You can also define your own events, called user events, for a window or
control, then use the EVENT keyword to trigger your user event.

For example, suppose that you offer the user several ways to update the
database from a window, such as clicking a button or selecting a menu item.
When the user closes the window, you want to update the database as well
(after asking for confirmation). You want the same type of processing to occur
after different system events.

You can define a user event for the window, write a script for that event, and
then everywhere you want that event triggered, use the EVENT keyword.

To learn how to use user events, see Chapter 8, “Working with User Events.”

About functions for windows and controls
PocketBuilder provides built-in functions that act on windows and on different
types of controls. You can use these functions in scripts to manipulate your
windows and controls. For example, to open a window, you can use the built-in
window-level function Open, or you can pass parameters between windows by
opening them with the function OpenWithParm and closing them with
CloseWithReturn.

You can define your own window-level functions to make it easier to
manipulate your windows. For more information, see Chapter 7, “Working
with User-Defined Functions.”

About properties of windows and controls
In scripts, you can assign values to the properties of objects and controls to
change their appearance or behavior. You can also test the values of properties
to obtain information about an object.

For example, you can change the text displayed in a StaticText control when
the user clicks a CommandButton, or use data entered in a SingleLineEdit to
determine the information that is retrieved and displayed in a DataWindow
control.

To refer to properties of an object or control, use dot notation to identify the
object and the property:

object.property

control.property

CHAPTER 10 Working with Windows

User’s Guide 217

If you do not identify the object or control when you refer to a property,
PocketBuilder assumes you are referring to the object or control the script is
written for.

The reserved word Parent
In the script for a window control, you can use the reserved word Parent to refer
to the window containing the control. For example, the following line in a
script for a CommandButton closes the window containing the button:

close(Parent)

It is easier to reuse a script if you use Parent instead of the name of the window.

Properties, events, and built-in functions for all PowerBuilder objects,
including windows, and all types of controls are described in Objects and
Controls. In most cases, descriptions apply to properties, events, and built-in
functions for PocketBuilder objects. Differences between PowerBuilder and
PocketBuilder are described in Appendix B, “PowerBuilder and
PocketBuilder Product Differences,” of this User’s Guide.

Declaring instance variables
Often data needs to be accessible to several scripts within a window. For
example, suppose that a window displays information about one customer. You
might want several CommandButtons to manipulate the data, and the script for
each button needs to know the customer's ID. There are several ways to
accomplish this:

• Declare a global variable containing the current customer ID

All scripts in the application have access to this variable.

• Declare an instance variable within the window

All scripts for the window and controls in the window have access to this
variable.

• Declare a shared variable within the window

All scripts for the window and its controls have access to this variable. In
addition, all other windows of the same type have access to the same
variable.

Running a window

218 PocketBuilder

When declaring a variable, you need to consider what the scope of the variable
is. If the variable is meaningful only within a window, declare it as a
window-level variable, generally an instance variable. If the variable is
meaningful throughout the entire application, make it a global variable.

For a complete description of the types of variables and how to declare them,
see the PowerScript Reference in the online Help.

Examples of statements
The following assignment statement in the script for the Clicked event for a
CommandButton changes the text in the StaticText object st_greeting when the
button is clicked:

st_greeting.Text = "Hello User"

The following statement tests the value entered in the SingleLineEdit sle_state
and displays the window w_state1 if the text is "AL":

if sle_State.Text= "AL" then Open(w_state1)

Running a window
During development, you can test a window on the desktop without running the
whole application or deploying it to an emulation environment.

You can run a window using the PowerBar Run/Preview Object button, even if
the window is not in the current target or library. Because the window is
functional, if the window is currently open in the Window painter, you are
prompted to save any changes to the window. You can trigger events and open
other windows while running the window in this manner.

Previewing the window
You can preview a window from the Window painter by using the Preview
button on the PainterBar or run the window by clicking the Preview button on
the PowerBar. For information about previewing using the PainterBar button,
see “Previewing a window” on page 212.

CHAPTER 10 Working with Windows

User’s Guide 219

❖ To run a window:

1 Click the Preview button in the PowerBar (not the PainterBar).

2 In the Run/Preview dialog box, select Windows as the Objects of Type.

3 Select the target that includes the window you want to run.

4 Select the library that includes the window.

5 Select the window you want to run and click OK.

You must save your work before running a window. If you have not saved
your work, PocketBuilder prompts you to do so.

PocketBuilder runs the window.

When running a window, you can trigger events, open other windows, connect
to a database, and so on. The window is fully functional. It has access to global
variables you have defined for the application and to built-in global variables,
such as SQLCA. The SystemError event is not triggered if there is an error,
because SystemError is an Application object event.

❖ To return to the Window painter:

• Do one of the following:

• Click the Close button in the upper-right corner of the window

• If the window is not visible, click PocketBuilder on the task bar and
then click the Terminate button

Using inheritance to build a window
When you build a window that inherits its definition—its style, events,
functions, structures, variables, controls, and scripts—from an existing
window, you save coding time. All you have to do is modify the inherited
definition to meet the requirements of the current situation.

This section provides an overview of using inheritance in the Window painter.
The issues concerning inheritance with windows are the same as the issues
concerning inheritance with user objects and menus. They are described in
more detail in Chapter 12, “Understanding Inheritance.”

Using inheritance to build a window

220 PocketBuilder

Building two windows with similar definitions
Suppose that your application needs two windows with similar definitions.
One window, w_employee, needs:

• A title (Employee Data)

• Text that prompts a user to select a file

• A drop-down list with a list of available employee files

• An Open button with a script that opens the selected file in a multiline edit
box

• An Exit button with a script that asks the user to confirm that the window
should be closed and then closes the window

Figure 10-3 shows how the w_employee window might look.

Figure 10-3: Example window w_employee

The only differences in the second window, w_customer, are that the title is
Customer Data, the drop-down list displays customer files instead of employee
files, and there is a Delete button so that the user can delete files.

Your choices To build these windows, you have three choices:

• Build two new windows from scratch as described in “Building a new
window” on page 204

• Build one window from scratch and then modify it and save it under
another name

• Use inheritance to build two windows that inherit a definition from an
ancestor window

CHAPTER 10 Working with Windows

User’s Guide 221

Using inheritance To build the two windows using inheritance, follow these steps:

1 Create an ancestor window, w_ancestor, that contains the text, drop-down
list, and the open and exit buttons, and save and close it.

Using the Window painter with inherited windows
You cannot inherit a window from an existing window when the existing
window is open, and you cannot open a window when its ancestor or
descendant is open.

2 Select File>Inherit, select w_ancestor in the Inherit From dialog box, and
click OK.

3 Add the Employee Data title, specify that the DropDownListBox control
display employee files, and save the window as w_employee.

4 Select File>Inherit, select w_ancestor in the Inherit From dialog box, and
click OK.

5 Add the Customer Data title, specify that the DropDownListBox control
display customer files, add the Delete button, and save the window as
w_customer.

Advantages of using inheritance
Using inheritance has a number of advantages:

• When you change the ancestor window, the changes are reflected in all
descendants of the window. You do not have to make manual changes in
the descendants, as you would in a copy. This saves you coding time and
makes the application easier to maintain.

• Each descendant inherits the ancestor's scripts, so you do not have to
re-enter the code to add to the script.

• You get consistency in the code and in the application windows.

When you use inheritance to build an object, everything in the ancestor object
is inherited in all its descendants. In the descendant, you can:

• Change the properties of the window

• Add controls to the window and modify existing controls

• Size and position the window and the controls in the window

• Build new scripts for events in the window or its controls

Using inheritance to build a window

222 PocketBuilder

• Reference the ancestor's functions and events

• Reference the ancestor’s structures if the ancestor contains a public or
protected instance variable of the structure datatype

• Access ancestor properties, such as instance variables, if the scope of the
property is public or protected

• Extend or override inherited scripts

• Declare functions, structures, and variables for the window

• Declare user events for the window and its controls

The only thing you cannot do is delete inherited controls. If you do not need an
inherited control, you can make it invisible in the descendent window.

Instance variables in descendants
If you create a window by inheriting it from an existing window that has public
or protected instance variables with simple datatypes, the instance variables
display and can be modified in the descendent window’s Properties view. You
see them at the bottom of the General tab page.

Figure 10-4: Instance variables inherited from an ancestor window

All public instance variables with simple datatypes such as integer, boolean,
character, date, string, and so on display. Instance variables with the any or blob
datatype or instance variables that are objects or arrays do not display.

CHAPTER 10 Working with Windows

User’s Guide 223

Control names in descendants
PocketBuilder uses this syntax to show names of inherited controls:

ancestorwindow::control

For example, if you select the Open button in w_customer, which is inherited
from w_ancestor, its name displays on the General page in the properties view
as w_ancestor::cb_open.

Names of controls must be unique in an inheritance hierarchy. For example,
you cannot have a CommandButton named cb_close defined in an ancestor and
a different CommandButton named cb_close defined in a child. You should
develop a naming convention for controls in windows that you plan to use as
ancestors.

Using inheritance to build a window

224 PocketBuilder

User’s Guide 225

C H A P T E R 1 1 Working with Controls

About this chapter Users run your application primarily by interacting with the controls you
place in windows. This chapter describes the use of controls.

Contents

About controls
About window controls You place controls in a window to request and receive information from

the user and to present information to the user. For a complete list of
standard window controls, open a window in the Window painter and
select Insert>Control.

If you often use a control or set of controls with certain properties, such as
a group of related radio buttons, you can create a visual user object that
contains the control or set of controls. For more about user objects, see
Chapter 14, “Working with User Objects.”

Topic Page

About controls 225

Inserting controls in a window 226

Selecting controls 227

Defining a control's properties 228

Naming controls 228

Changing text 231

Moving and resizing controls 232

Copying controls 235

Defining the tab order 236

Defining accelerator keys 238

Specifying accessibility of controls 240

Choosing colors 241

Using the 3D look 243

Using the individual controls 244

Inserting controls in a window

226 PocketBuilder

About events All window controls have events so that users can act on the controls. You write
scripts that determine the processing that takes place when an event occurs in
the control.

Drawing objects are usually used only to make your window more attractive or
to group controls. Only constructor and destructor events are defined for them,
but you can define your own events if needed. The drawing objects are Line,
Oval, Rectangle, and RoundRectangle.

Inserting controls in a window
You insert controls in a window in the Window painter.

❖ To insert a control in a window:

1 Select Insert>Control from the menu bar, or display the Controls
drop-down toolbar on the PainterBar.

2 Select the control you want to insert.

If you selected User Object, the Select Object dialog box displays, listing
all user objects defined for the application. In this case, select the library
and the user object you want to insert, and click OK.

3 In the Layout view, click where you want the control.

After you insert the control, you can size it, move it, define its appearance and
behavior, and create scripts for its events.

Duplicating controls To place multiple controls of the same type in a window, place a control in the
window and make sure it is selected. Then press Ctrl+T or select Duplicate
from the pop-up menu once for each duplicate control you want to place in the
window. The controls are placed one under another. You can drag them to other
locations as needed.

Inserting controls with
undefined content

When you insert a DataWindow, Picture, PictureButton, or PictureHyperLink
control in a window, you are inserting only the control. You see only an empty
box for a DataWindow control, the dotted outline of a box for a Picture or a
PictureHyperLink control, and a large button resembling a CommandButton
for a PictureButton control. You must specify a DataWindow object or picture
later.

CHAPTER 11 Working with Controls

User’s Guide 227

Selecting controls
You select controls so that you can change their properties or write scripts using
the Layout view or the Control List view.

❖ To select a control:

• Click the control in the Layout view, or click the control in the Control List
view

In the Layout view, the control you clicked displays with handles on it.
Any previously selected controls are no longer selected.

Acting on multiple
controls

You can act on all or multiple selected controls as a unit. For example, you can
move all of the controls or change the fonts for all the text displayed in the
controls.

❖ To select multiple controls:

• In the Layout or Control List view, click the first control, press and hold
the Ctrl key, then click additional controls

❖ To select neighboring multiple controls:

• In the Layout view, press the left mouse button, drag the mouse over the
controls you want to select, and release the mouse button

Selecting all controls
You can select all controls by selecting Edit>Select All from the menu bar.

Information displayed
in the MicroHelp bar

The name, x and y coordinates, width, and height of a selected control are
displayed in the MicroHelp bar. If you select multiple objects, Group
Selected displays in the Name area and the coordinates and size do not
display.

Defining a control's properties

228 PocketBuilder

Defining a control's properties
Just like the window object, each control has properties that determine the
control’s style—how it looks and behaves during execution.

You define a control's properties by using the Properties view for the control.
The properties and values displayed in the Properties view change dynamically
when you change the selected object or control. To see this, click the window
background to display the window properties in the Properties view and then
click a control in the window to display the control’s properties in the
Properties view.

❖ To define a control's properties:

1 Select the control.

The selected control’s properties display in the Properties view.

2 Use the tab pages in the Properties view to change the control's properties.

About tab pages in the
Properties view

The Properties view presents information in a consistent arrangement of tabbed
property pages. You select items on the individual property pages to change the
control's definition.

All controls have a General properties page, which contains much of the style
information—such as the visibility of the control, whether it is enabled, and so
on—about the control. The General properties page is always the first page of
a control’s Properties view.

Getting Help on
properties

You can get Help when you are defining properties. In any tab page in the
Properties view, right-click on the background and select Help from the pop-up
menu. The Help displays information about the control and a link to an
alphabetical list of properties for the control.

Naming controls
When you place a control in a window, PocketBuilder assigns it a unique name.
The name is the concatenation of the default prefix for the control name and
the lowest 1- to 4-digit number that makes the name unique.

CHAPTER 11 Working with Controls

User’s Guide 229

For example, assume the prefix for ListBoxes is lb_ and you add a ListBox to
the window:

• If the names lb_1, lb_2, and lb_3 are currently used, the default name is lb_4

• If lb_1 and lb_3 are currently used but lb_2 is not, the default name is lb_2

About the default prefixes
Each type of control has a default prefix for its name. Table 11-1 lists the initial
default prefix for each control in a window.

Table 11-1: Default prefixes for window control names

Control Prefix

CheckBox cbx_

CommandButton cb_

DataWindow dw_

DropDownListBox ddlb_

EditMask em_

Graph gr_

GroupBox gb_

HProgressBar hpb_

HScrollBar hsb_

HTrackBar htb_

Line ln_

ListBox lb_

ListView lv_

MultiLineEdit mle_

NotificationBubble nb_

Oval ov_

Picture p_

PictureHyperLink phl_

PictureButton pb_

PocketOutlookObjectManager po_

RadioButton rb_

Rectangle r_

RoundRectangle rr_

Signature sig_

SingleLineEdit sle_

Naming controls

230 PocketBuilder

Changing the default prefixes

You can change the default prefixes for controls in the Window painter's
Options dialog box. Select Design>Options from the menu bar to open the
Options dialog box. The changes you make are saved in the PocketBuilder
initialization file. For more about the initialization file, see “About the
initialization file” on page 51.

Changing the name
You should change the default suffix to a suffix that is meaningful in your
application. For example, if you have command buttons that update and
retrieve database information, you might call them cb_update and cb_retrieve.
If you have many controls on a window, using intuitive names makes it easier
for you and others to write and understand scripts for these controls.

Using application-based names instead of sequential numbers also minimizes
the likelihood of name conflicts when you use inheritance to create windows.

❖ To change a control's name:

1 Select the control in the Layout view or in the Control List view; this
displays the control’s properties in the Properties view.

2 On the General properties page, select the application-specific suffix (for
example, the 1 in the cb_1 command button name) and type a more
meaningful one.

You can use any valid identifier of up to 40 characters. For information,
see “identifier names” in the online Help.

StaticText st_

StaticHyperLink shl_

Tab tab_

Toolbar tlbr_

TreeView tv_

User Object uo_

VProgressBar vpb_

VScrollBar vsb_

VTrackBar vtb_

Control Prefix

CHAPTER 11 Working with Controls

User’s Guide 231

Changing text
You can specify the text and text display characteristics for a control in the
Properties view for the control. You can also use the Window painter StyleBar
to change:

• The text itself

• The font, point size, and characteristics such as bold

• The alignment of text within the control

CommandButton text
Text in CommandButtons is always center aligned.

The default text for most controls that have a text property is none. To display
an empty StaticText or SingleLineEdit control, clear the Text box in the
Properties view or the StyleBar.

When you add text to a control’s text property, the width of the control changes
automatically to accommodate the text as you type it in the StyleBar, or when
you tab off the Text box in the Properties view.

❖ To change text properties of controls:

1 Select one or more controls whose properties you want to change.

2 Specify changes in the Font tab page in the Properties view, or specify
changes using the StyleBar.

How text size is stored
A control's text size is specified in the control's TextSize property. The values
in the TextSize drop-down list determine the point size of the control’s text.
PocketBuilder uses negative numbers when saving the text size in points. For
example, if you define the text size for the StaticText control st_prompt to be
12 points, PocketBuilder sets the value of the st_prompt TextSize property
to –12.

If you want to change the text size in points at runtime, you must use a negative
value. For example, to change the point size for st_prompt to 14 points, code:

st_prompt.TextSize = -14

Moving and resizing controls

232 PocketBuilder

If you want to specify text size in pixels, you can do so by using positive
numbers. The following statement sets the text size to be 14 pixels:

st_prompt.TextSize = 14

Moving and resizing controls
There are several ways to move and resize controls in the Layout view.

Moving and resizing controls using the mouse
To move a control using the mouse, drag the control to where you want it.

To resize a control, select it, then grab an edge and drag the edge with the
mouse.

Moving and resizing controls using the keyboard
To move a control using the keyboard, select the control, then press an arrow
key to move it in the corresponding direction.

To resize a control, select the control, then press:

• Shift+Right Arrow to make the control wider

• Shift+Left Arrow to make the control narrower

• Shift+Down Arrow to make the control taller

• Shift+Up Arrow to make the control shorter

Aligning controls using the grid
The Window painter provides a grid to help you align controls at design time.
You can use the grid options to:

• Make controls snap to a grid position when you place them or move them
in a window

CHAPTER 11 Working with Controls

User’s Guide 233

• Show or hide the grid when the workspace displays

• Specify the height and width of the grid cells

❖ To use the grid:

1 Choose Design>Options from the menu bar and select the General tab.

2 Do one or more of the following:

• Select Snap to Grid to align controls with a horizontal and vertical
grid when you place or move them

• Select Show Grid to display the grid in the Layout view

• Specify the width of each cell in the grid in pixels in the X text box

• Specify the height of each cell in the grid in pixels in the Y text box

Hiding the grid
Window painting is slower when the grid is displayed, so you might want to
display the grid only when necessary.

Aligning controls with each other
You can align selected controls by their left, right, top, or bottom edges or their
horizontal or vertical centers.

PainterBars in the Window painter
The Window painter has three PainterBars. PainterBar1 includes buttons that
perform operations that are common to many painters, including save, cut,
copy, paste, and close. PainterBar2 includes buttons used with the Script view.
PainterBar3 contains buttons that manipulate the display of the selected control
or controls. The tools used to align, resize, and adjust the space between
controls are on a drop-down toolbar on PainterBar3.

❖ To align controls:

1 Select the control whose position you want to use to align the others.

PocketBuilder displays handles around the selected control.

2 Press and hold the Ctrl key and click the controls you want to align with
the first one.

All the selected controls have handles on them.

Moving and resizing controls

234 PocketBuilder

3 Select Format>Align from the menu bar, or select the Layout drop-down
toolbar in PainterBar3.

4 Select the dimension along which you want to align the controls.

PocketBuilder aligns all the selected controls with the first control
selected.

Equalizing the space between controls
You can manually move controls by dragging them with the mouse. You can
also equalize the space around selected controls by using the Format menu or
the Layout drop-down toolbar.

❖ To equalize the space between controls:

1 Select the two controls whose spacing is correct.

To do so, select one control, then press and hold Ctrl and click the second
control.

2 Select the other controls whose spacing you want to have match the first
two controls.

To do so, press and hold Ctrl while clicking each control whose spacing
you want to change.

3 Select Format>Space from the menu bar, or select the Layout drop-down
toolbar in PainterBar3.

4 Select horizontal or vertical spacing.

The PowerTip text for the corresponding toolbar items is:

• Space evenly horizontally

• Space evenly vertically

Equalizing the size of controls
Using the Format menu or the Layout drop-down toolbar, you can adjust the
selected controls so that they are all the same size as the first control selected.
This is something you might do if you have several SingleLineEdit or
CommandButton controls on a window.

CHAPTER 11 Working with Controls

User’s Guide 235

❖ To equalize the size of controls:

1 Select the control whose size is correct.

2 Select the other controls whose size you want to have match the first
control.

To do so, press and hold Ctrl while clicking each control whose size you
want to change.

3 Select Format>Size from the menu bar, or select the Layout drop-down
toolbar in PainterBar3.

4 Select the menu or toolbar item for width, height, or both width and height.

The PowerTip text for the toolbar items is:

• Make all widths same as first selected

• Make all heights same as first selected

• Make all widths and heights same as first selected

Copying controls
You can copy a control within a window or to other windows. All properties of
the control, as well as all of its scripts, are copied. You can use this technique
to easily make a copy of an existing control and change whatever you want in
the copy.

❖ To copy a control:

1 Select the control.

2 Select Edit>Copy from the menu bar or press Ctrl+C.

The control is copied to a private PocketBuilder clipboard.

3 Do one of the following:

• To copy the control within the same window, select Edit>Paste
Controls from the menu bar or press Ctrl+V.

• To copy the control to another window, click the Open button in the
PowerBar and open the window in another instance of the Window
painter. Make that window active and select Edit>Paste Controls from
the menu bar or press Ctrl+V.

Defining the tab order

236 PocketBuilder

If the control you are pasting has the same name as a control that
already exists in the window, the Paste Control Name Conflict dialog
box displays.

4 If prompted, change the name of the pasted control to be unique.

PocketBuilder pastes the control in the destination window at the same
location as in the source window. (If you are pasting into the same window,
you should move the pasted control so that it does not overlay the original
control.) You can make whatever changes you want to the copy; the
original control remains unaffected.

Defining the tab order
When you place controls in a window, PocketBuilder assigns them a default tab
order, the default sequence in which focus moves from control to control when
the user presses the Tab key. Although it is not standard practice to use the Tab
key for changing focus in Windows CE applications, you have this capability
with applications that you develop for Pocket PC devices in PocketBuilder.

Tab order in user objects
When the user tabs to a custom user object in a window and then presses the
Tab key (or up/down arrow keys in a Smartphone application), focus moves to
the next control in the tab order for the user object. After the user tabs to all the
controls in the tab order for the user object, focus moves to the next control in
the window tab order.

Establishing the default tab order
PocketBuilder uses the relative positions of controls in a window to establish
the default tab order. It looks at the positions in the following order:

• The distance of the control from the top of the window (Y)

• The distance of the control from the left edge of the window (X)

The control with the smallest Y distance is the first control in the default tab
order. If multiple controls have the same Y distance, PocketBuilder uses the X
distance to determine the tab order among these controls.

CHAPTER 11 Working with Controls

User’s Guide 237

Default tab values for drawing objects and radio buttons
The default tab value for drawing objects and RadioButtons in a GroupBox is
0, which means the control is skipped when the user tabs from control to
control.

When you add a control to the window, PocketBuilder obtains the tab value of
the control that precedes the new control in the tab order and assigns the new
control the next number. The values assigned are multiples of 10.

For example, if the tab values for controls A, B, and C are 30, 10, and 20
respectively, and you add control D between controls A and B, PocketBuilder
assigns control D the tab value 40.

Changing the window's tab order
You can view and modify the tab order of a window’s controls through the tab
order formatting mode of PocketBuilder. (You can also change the tab order of
an individual control on the Other tab of the control’s Properties view.)

Figure 11-1: Viewing the tab order of controls

❖ To change the tab order:

1 Select Format>Tab Order from the menu bar, or click the Tab Order button
on PainterBar1 (next to the Preview button).

The current tab order displays. If this is the first time you have used Tab
Order for the window, the default tab order displays.

2 Use the mouse or the Tab key to move the pointer to the tab value you want
to change.

Defining accelerator keys

238 PocketBuilder

3 Enter a new tab value from 0 to 9999.

The value 0 removes the control from the tab order. Other than 0, the exact
value you use does not matter. Only the relative value is significant. For
example, if you want the user to tab to control B after control A but before
control C, set the tab value for control B so it is between the value for
control A and the value for control C.

Tab tips
A tab order value of 0 does not prevent a control from being selected or
activated, or from receiving keyboard events. To prevent a user from
activating a control, clear the Enabled check box on its General properties
page.

To permit tabbing in a group box, change the tab value of the GroupBox
control to 0, then assign nonzero tab values to the controls in the group
box.

4 Repeat the procedure until you have the tab order you want.

5 Select Format>Tab Order or the Tab Order button again.

PocketBuilder saves the tab order.

Each time you select Tab Order, PocketBuilder renumbers the tab order values
to include any controls that have been added to the window and to allow space
to insert new controls in the tab order. For example, if the original tab values
for controls A, B, and C were 10, 20, and 30, and you insert control D between
A and B and give it a tab value of 15, then when you select tab order again, the
controls A, B, and C will have the tab values 10, 30, and 40, and control D will
have the tab value 20.

Defining accelerator keys
You can define an accelerator key for a control to allow users to change focus
to the control. An accelerator key is sometimes referred to as a mnemonic
access key.

Although it is not standard practice to include accelerator keys in Windows CE
applications, you have this capability with applications that you develop in
PocketBuilder.

CHAPTER 11 Working with Controls

User’s Guide 239

Using accelerator
keys with noneditable
controls

For noneditable controls, such as a command button or check box, users need
only press the accelerator key to change focus to the control and precipitate
control events.

❖ To define an accelerator key for a CommandButton, CheckBox, or
RadioButton:

1 Click the control to display the control’s properties in the Properties view.

2 In the Text box on the General page, precede the letter that you want to use
as the accelerator key with an ampersand character (&).

When you perform your next action (such as tabbing to the next property,
saving the window, or selecting another control in the Layout view), the
property is set and PocketBuilder displays an underline to indicate the
accelerator key.

Displaying an ampersand
If you want to display an ampersand character in the text of a control, type
a double ampersand. The first ampersand acts as an escape character.

Using accelerator
keys with editable
controls

You can add accelerator keys to editable controls, but for Pocket PC
applications, these are useful only with peripheral keyboards that have an Alt
key. Users must press Alt followed by the accelerator key to use an accelerator,
and the Alt key is not available on the Soft Input Panel (SIP), or even on some
peripheral keyboards, for Pocket PC devices.

❖ To define an accelerator key for a SingleLineEdit, MultiLineEdit, ListBox,
or DropDownListBox:

1 Click the control to display the control’s properties in the Properties view.

2 In the General properties page, type the letter of the accelerator key in the
Accelerator box.

For example, if the control contains a user’s name and you want to make
Alt+N the accelerator for the control, type n in the Accelerator box.

At this point you have defined the accelerator key, but the user has no way
of knowing it, so you need to label the control.

3 Place a StaticText control next to the control that was assigned the
accelerator key.

4 Click the StaticText control to display its properties in the Properties view.

5 In the Text box on the General page, precede the letter that you want to use
as the accelerator key with an ampersand character (&).

Specifying accessibility of controls

240 PocketBuilder

For example, if the StaticText control will display the label Name, type
&Name in the Text box so that the letter N is underlined. The underlined
letter in the StaticText label lets the user know that there is an accelerator
key for changing focus to the associated editable control.

Specifying accessibility of controls
Controls have two boolean properties that affect their accessibility:

• Visible

• Enabled

Using the Visible property
If the Visible property of a control is selected, the control displays in the
window. If you want a control to be initially invisible, be sure the Visible
property is not selected in the General properties page in the control’s
Properties view.

Hidden controls do not display by default in the Window painter’s Layout
view.

❖ To display hidden controls in the Layout view:

• Select Design>Show Invisibles from the menu bar.

❖ To display hidden controls during execution:

• Assign the value true to the Visible property of each hidden control:

controlname.Visible = TRUE

Using the Enabled property
If the Enabled property is selected, the control is active. For example, an
enabled CommandButton can be clicked, a disabled CommandButton cannot.

CHAPTER 11 Working with Controls

User’s Guide 241

If you want a control to display but be inactive, be sure the Enabled property is
not selected in the General properties page in the control’s Properties view. For
example, a CommandButton might be active only after the user has selected an
option. In this case, display the CommandButton initially disabled so that it
appears grayed out. Then when the user selects the option, enable the
CommandButton in a script:

CommandButtonName.Enabled = TRUE

Choosing colors
The Window painter has two Color drop-down toolbars on PainterBar3 that
display colors you can use for the background and foreground of components
of the window. Initially, the drop-down toolbars display these color selections:

• 20 predefined colors

• 16 custom colors (labeled C)

• The full set of Windows system colors

Do not use Windows system colors for deployed applications
The Windows system colors are those defined by the user in the desktop
Windows Control Panel. They are labeled with letters that indicate the type of
display element they represent. As they are not defined for the Windows CE
device, you should not use them in the applications you build with
PocketBuilder.

Choosing colors

242 PocketBuilder

Defining custom
colors

You can define your own custom colors for use in windows, user objects, and
DataWindow objects.

Figure 11-2: Dialog box for defining custom colors

❖ To define and maintain custom colors:

1 Select Design>Custom Colors from the menu bar.

The Color dialog box displays.

2 Click in an empty color box in the list of custom colors.

3 Choose an existing color or create the color you want.

You can start with one of the basic colors and customize it in the palette to
the right by dragging the color indicator with the mouse. You can also
specify precise values to define the color.

4 When you have the color you want, click Add to Custom Colors.

The new color displays in the list of custom colors.

5 Select the new color in the list of custom colors.

6 Click OK.

The new color displays in the Color drop-down toolbars and is available
in all windows, user objects, and DataWindow objects you create.

PocketBuilder saves custom colors in the [Colors] section of the PocketBuilder
initialization file, so they are available across sessions.

CHAPTER 11 Working with Controls

User’s Guide 243

Specifying foreground
and background
colors

You can assign colors to controls using the PainterBar or the Properties view.
The page in the Properties view that you use to assign colors depends on the
control.

For some controls you can change the background color only. For others,
including the CommandButton, PictureButton, PictureHyperLink, Picture,
ScrollBars, TrackBars, and ProgressBars, you can change neither the
foreground nor the background color.

❖ To assign a color using the PainterBar:

1 Select the control.

2 Select either the foreground or background color button from the
PainterBar.

3 Select a color from the drop-down toolbar.

Using the 3D look
Although it is not standard for Windows CE applications, you can give the
applications you develop with PocketBuilder a three-dimensional look and
feel. To use this appearance for an application, select a 3D border for your
SingleLineEdit boxes and other controls and make the window background
gray.

❖ To use the 3D look by default:

1 Select Design>Options from the menu bar.

The Options dialog box displays.

2 On the General properties page, select Default to 3D.

When you build a new window, PocketBuilder automatically sets the
window background color to gray and uses 3D borders when you place
controls.

PocketBuilder records this preference in the Default3D variable in the
[Window] section of the PocketBuilder initialization file, so the preference is
maintained across sessions.

Using the individual controls

244 PocketBuilder

Using the individual controls
Table 11-2 lists basic types of controls by the purpose that they serve in typical
applications.

Table 11-2: Summary of basic control types by function

Smartphone platform
Several control types are not fully supported on Smartphone platforms. These
include Tabs, Toolbars, RadioButtons, and Signature controls. ListBoxes and
DropDownListBoxes are converted automatically to Spinner controls on the
Smartphone platform.

How to use the
controls

Generally you should use the controls only for the purposes shown in the
preceding table. For example, users expect to use radio buttons to select an
option. Do not also have them use a RadioButton to invoke an action, such as
opening a window or printing. Use a CommandButton for that purpose.

There are, however, several exceptions: user objects can be created for any
purpose, and ListBoxes, ListViews, TreeViews, and Tabs are often used both
to display data and to invoke actions. For example, double-clicking a ListBox
item often causes some action to occur.

The rest of this chapter describes features that are unique to individual controls:

• “Using CommandButtons” on page 246

• “Using PictureButtons” on page 247

• “Using RadioButtons” on page 248

• “Using CheckBoxes” on page 249

• “Using StaticText” on page 250

• “Using StaticHyperLinks” on page 250

Function Controls include

Invoke actions CommandButtons, PictureButtons, PictureHyperLinks,
StaticHyperLinks, Tabs, Toolbars, User Objects

Display and/or accept
data

ListBoxes, DropDownListBoxes, DataWindow controls,
StaticText, ListViews, TreeViews, Graphs, Pictures,
ProgressBars, ScrollBars, SingleLineEdits, MultiLineEdits,
EditMasks, Tabs, Signature controls, User Objects

Indicate choices RadioButtons (you can group these controls in a
GroupBox), CheckBoxes, TrackBars

Enhance presentation Line, Rectangle, RoundRectangle, Oval

CHAPTER 11 Working with Controls

User’s Guide 245

• “Using SingleLineEdits and MultiLineEdits” on page 251

• “Using EditMasks” on page 251

• “Using ListBoxes” on page 253

• “Using DropDownListBoxes” on page 255

• “Using Pictures” on page 257

• “Using PictureHyperLinks” on page 257

• “Using drawing objects” on page 258

• “Using HProgressBars and VProgressBars” on page 259

• “Using HScrollBars and VScrollBars” on page 259

• “Using HTrackBars and VTrackBars” on page 259

• “Using ListView controls” on page 260

• “Using TreeView controls” on page 263

• “Using Tab controls” on page 266

Objects and controls
described elsewhere

For controls that are not described here, see the following chapters of this
User’s Guide:

• For information about user objects, see Chapter 14, “Working with User
Objects”

• For information about controls and objects that are specific to the
Windows CE platforms, see Chapter 15, “Working with Native Objects
and Controls for Windows CE Devices”

• For information about DataWindow controls and objects, see Chapter 17,
“Defining DataWindow Objects”

• For information about graph controls, see Chapter 24, “Working with
Graphs”

• For information about the Today item, see “Application object properties
for a custom Today item” on page 66

Using the individual controls

246 PocketBuilder

Using CommandButtons
CommandButtons are used to carry out actions. For example, you can use an
OK button to confirm a deletion or a Cancel button to cancel a requested
deletion. If there are many related CommandButtons, place them along the
right side of the window; otherwise, place them along the bottom of the
window.

You cannot change the color or alignment of text in a CommandButton.

If clicking the button opens a window that requires user interaction before any
other action takes place, use ellipsis points in the button text; for example,
“Print...”.

Specifying Default and Cancel buttons
Default command
button

You can specify that a CommandButton is the default button in a window by
selecting Default in the General properties page in the button's Properties view.

When there is a default CommandButton and the user presses the Enter key:

• If the focus is not on another CommandButton, the default button's
Clicked event is triggered

• If the focus is on another CommandButton, the Clicked event of the button
with focus is triggered

Other controls affect default behavior
If the window does not contain an editable field, use the SetFocus function or
the tab order setting to make sure the default button behaves as described
above.

A bold border is placed around the default CommandButton.

Cancel command
button

You can define a CommandButton as the cancel button by selecting Cancel in
the General properties page in the button's Properties view. If you define a
cancel CommandButton, the cancel button’s Clicked event is triggered when
the user presses the Esc key.

CHAPTER 11 Working with Controls

User’s Guide 247

Default and cancel actions in Windows CE applications
Because it is usually easier to click a command button with the stylus than to
use the SIP or peripheral keyboard, it is not standard practice in Windows CE
applications to use the Enter and Esc keys for default and cancel actions. There
is no Esc key on the Smartphone, but you can use the Action key for the Enter
key.

Using PictureButtons
A PictureButton is identical to a CommandButton in its functionality. The only
difference is that you can specify a picture to display on the PictureButton. The
picture can be a PocketBuilder stock icon or a BMP, GIF, animated GIF, JPEG,
or PNG file.

Using JPEG or PNG image files
Unlike BMP and GIF images, which can reside in a PocketBuilder resource file
(PKR) or in a database blob, JPEG and PNG images must reside in the file
system. You must deploy JPEG or PNG files to the current application
directory or include the full path of the deployed image files that you want to
use in a Pocket PC device or emulator.

PNG files are not supported on the desktop, only on Pocket PC devices and
emulators. You cannot add a PNG file to a picture button control in the
PocketBuilder UI, only in script. For example:

pb_1.PictureName = "\Program Files\my_pic.png"

You can choose to display one picture if the button is enabled and a different
picture if the button is disabled.

Use these controls when you want to be able to represent the purpose of a
button with a picture instead of text.

❖ To specify a picture:

1 Select the PictureButton to display its properties in the Properties view.

2 On the General properties page, enter the name of the image file you want
to display when the button is enabled, or use the Browse button and choose
a file.

3 Enter the name of the image file you want to display when the button is
disabled, or use the Browse Disabled button and choose a file.

Using the individual controls

248 PocketBuilder

If the PictureButton is defined as initially enabled, the enabled picture
displays in the Layout view. If the PictureButton is defined as initially
disabled, the disabled picture displays in the Layout view.

❖ To specify button text alignment:

1 Select the PictureButton to display its properties in the Properties view.

2 On the General properties page, enter the text for the PictureButton in the
Text box.

3 Use the HTextAlign and VTextAlign lists to choose how you want to
display the button text.

Using RadioButtons
RadioButtons are round buttons that represent mutually exclusive options.
When a RadioButton is selected, it has a dark center; when it is not selected,
the center is blank. RadioButtons exist in groups. Exactly one RadioButton is
selected in each group.

Smartphone platforms
The Action key on a Smartphone device or emulator selects or clears a single
radio button, but does not change other radio buttons in the same radio button
group. Avoid using radio buttons in applications deployed to Smartphone
platforms. You should use check boxes or list boxes instead.

When a window opens, one RadioButton in a group must be selected. You
specify which RadioButton is initially selected by selecting the Checked
property in the General properties page in the RadioButton's Properties view.
When the user clicks a RadioButton in a deployed application, the RadioButton
becomes selected, and the previously selected RadioButton in the group
becomes deselected.

Use RadioButtons to represent the state of an option. Do not use them to invoke
actions.

Grouping
RadioButtons

By default, all RadioButtons in a window are in one group, regardless of their
location in the window. Only one RadioButton can be selected at a time.

You use a GroupBox control to group related RadioButtons. All RadioButtons
inside a GroupBox are considered to be in one group. One button can be
selected in each group.

CHAPTER 11 Working with Controls

User’s Guide 249

Figure 11-3: RadioButtons in 2 GroupBox controls

The Automatic
property

When a window contains several RadioButtons that are outside of a GroupBox,
the window acts as a GroupBox. Only one RadioButton can be selected at a
time, unless the check box for the Automatic property on the RadioButton’s
General properties page is cleared.

When the Automatic property is not set, you must use scripts to control when
a button is selected. Multiple RadioButtons can be selected outside of a group.

The Automatic property does not change how RadioButtons are processed
inside a GroupBox.

Using CheckBoxes
CheckBoxes are square boxes used to set independent options. When a
CheckBox is selected, it contains a check mark; when it is not selected, it is
blank.

CheckBoxes are independent of each other. You can group them in a GroupBox
or rectangle to make the window easier to understand and use, but that does not
affect the CheckBoxes' behavior; they are still independent.

Figure 11-4: Multiple selections in a GroupBox

Using three states CheckBoxes usually have two states, on and off, but sometimes you want to
represent a third state, such as Unknown. The third state displays as a grayed
box with a check mark.

❖ To enable the third state:

• Select the ThreeState property in the General page of the CheckBox
Properties view

Using the individual controls

250 PocketBuilder

❖ To specify that a CheckBox’s current state is the third state:

• Select the ThreeState and the ThirdState properties in the General page of
the CheckBox Properties view

Using StaticText
You use a StaticText control to display text to the user or to describe a control
that does not have text associated with it, such as a list box or edit control.

The user cannot change the text, but you can change the text for a StaticText
control in a script by assigning a string to the control's Text property.

StaticText controls have events associated with them, but you will probably
seldom write scripts for them because users do not expect to interact with static
text.

Indicating accelerator
keys

One use of a StaticText control is to label a list box or edit control. If you assign
an accelerator key to a list box or edit control, you need to indicate the
accelerator key in the text that labels the control. Otherwise, the user would
have no way of knowing that an accelerator key is defined for the control. This
technique is described in “Defining accelerator keys” on page 238.

Indicating a border
style

You can select a border style using the BorderStyle property on the General
properties page.

The Border property must also be selected
The BorderStyle property affects the StaticText control only if the Border
property check box is selected.

Using StaticHyperLinks
A StaticHyperLink is display text that provides a hot link to a specified Web
page. When a user clicks the StaticHyperLink in a window, the user's Web
browser opens to display the page.

The StaticHyperLink control has a URL property that specifies the target of the
link. You specify the text and URL on the StaticHyperLink control’s General
properties page in the Properties view.

Since browsers on Windows CE devices all support URL completion, you can
enter a partial address—for example, sybase.com—instead of the complete
address: http://www.sybase.com.

CHAPTER 11 Working with Controls

User’s Guide 251

Using SingleLineEdits and MultiLineEdits
A SingleLineEdit is a box in which users can enter a single line of text. A
MultiLineEdit is a box in which users can enter more than one line of text.
SingleLineEdits and MultiLineEdits are typically used for input and output of
data.

Smartphone platforms
Smartphones support several modes of text or data entry. In MultiLineEdits,
users can press the Action key on the Smartphone keypad to enter a new line.
For more information about text entry modes, see Appendix D, “Designing
Applications for Windows CE Platforms.”

For these controls, you can specify many properties, including:

• Whether the box has a border (the Border property).

• Whether the box automatically scrolls as needed (AutoHScroll and, for
MultiLineEdits, AutoVScroll).

• For SingleLineEdits, whether the box is a Password box so that asterisks
are displayed instead of the actual entry (Password).

• The case in which to accept and display the entry (TextCase).

• Whether the selection displays when the control does not have focus
(HideSelection). This property is ignored on Smartphone platforms.

For more information about properties of these controls, right-click in any tab
page in the Properties view and select Help from the pop-up menu.

Using EditMasks
Sometimes users need to enter data that has a fixed format. For example, U.S.
and Canadian phone numbers have a three-digit area code, followed by three
digits, followed by four digits. You can use an EditMask control that specifies
that format to make it easier for users to enter values. Think of an EditMask
control as a smart SingleLineEdit: it knows the format of the data that can be
entered.

An edit mask consists of special characters that determine what can be entered
in the box. An edit mask can also contain punctuation characters to aid the user.

Using the individual controls

252 PocketBuilder

For example, to make it easier for users to enter phone numbers in the proper
format, you can specify the following mask, where # indicates a number:

(###) ###-####

During execution, the punctuation characters (the parentheses and dash)
display in the box and the cursor jumps over them as the user types.

Masks in EditMask controls work in windows as they do in display formats and
in the EditMask edit style in DataWindow objects. For more information about
specifying masks, see the discussion of display formats in Chapter 21,
“Displaying and Validating Data.”

❖ To use an EditMask control:

1 Select the EditMask to display its properties in the Properties view.

2 Name the control on the General properties page.

3 Select the Mask tab.

4 In the MaskDataType drop-down list, specify the type of data that users
will enter into the control.

5 In the Mask edit box, type the mask.

You can click the button on the right and select masks. The masks have the
special characters used for the specified data type.

6 Specify other properties for the EditMask control.

For information on the other properties, right-click in any tab page in the
Properties view and select Help from the pop-up menu.

Control size and text entry
The size of the EditMask control affects its behavior. If the control is too small
for the specified font size, users might not be able to enter text.

To correct this, either specify a smaller font size or resize the EditMask control.

Validation for
EditMask controls

The EditMask control checks the validity of a date when you enter it, but if you
change a date so that it is no longer valid, its validity is not checked when you
tab away from the control. For example, if you enter the date 12/31/2002 in an
EditMask control with the mask mm/dd/yyyy, you can delete the 1 in 12 so that
the date becomes 02/31/2002. To catch problems like this, add validation code
to the LoseFocus event for the control.

Keyboard behavior Some keystrokes have special behavior in EditMask controls. For more
information, see “The EditMask edit style” on page 541.

CHAPTER 11 Working with Controls

User’s Guide 253

Using spin controls You can define an EditMask as a spin control, which is an edit control that
contains up and down arrows that users can click to cycle through fixed values.
For example, assume you want to allow your users to select how many copies
of a report to print. You could define an EditMask as a spin control that allows
users to select from a range of values.

Figure 11-5: Edit mask as a spin control

❖ To define an EditMask as a spin control:

1 Name the EditMask and provide the data type and mask, as described
above.

2 Select the Spin check box on the Mask property page.

3 Specify the needed information.

For example, to allow users to select a number from 1 to 20 in increments
of 1, specify a spin range of 1 to 20 and a spin increment of 1.

For more information on the options for spin controls, right-click in any tab
page in the Properties view and select Help from the pop-up menu.

Using ListBoxes
A ListBox displays available choices. You can specify scroll bars for a ListBox
if more choices exist than can be displayed in the ListBox at one time.

Smartphone platforms
ListBoxes are converted to spinner controls when you deploy them to a
Smartphone device or emulator. Extended and multiple selection properties for
spinner controls are not supported. For more information about spinner
controls, see Appendix D, “Designing Applications for Windows CE
Platforms.”

Selecting an item and
invoking actions

ListBoxes are an exception to the rule that a control should either invoke an
action or be used for viewing and entering data. ListBoxes can do both.
ListBoxes display data, but they can also invoke actions.

Using the individual controls

254 PocketBuilder

In Windows applications, clicking an item in the ListBox typically selects the
item and triggers the SelectionChanged event. On Pocket PC devices, tapping
an item in the ListBox has the same effect. Double-clicking an item
(double-tapping the item on a Pocket PC) acts upon the item by triggering the
DoubleClicked event.

PocketBuilder automatically highlights an item when a user selects the item at
runtime. If you want something to happen when users double-click (or
double-tap) an item, you can add a script to the control's DoubleClicked event.
The SelectionChanged event is always triggered before the DoubleClicked
event. The RButtonDown event on a ListBox control translates to a
tap-and-hold action on a Windows CE device.

Populating the list of
items

To add items to a ListBox, select the ListBox to display its properties in the
Properties view, select the Items tab, and enter the values for the list. Press the
Tab key to go to the next line.

In the Items tab page, you can work with rows as described in Table 11-3.

Table 11-3: Working with rows in the Items page of the ListBox
Properties view

Changing the list during execution
To change the items in the list at runtime, use the functions AddItem,
DeleteItem, and InsertItem.

Setting tab stops You can set tab stops for text in ListBoxes (and in MultiLineEdits) by setting
the TabStop property on the General properties page. You can define up to 16
tab stops. The default is a tab stop every eight characters.

You can also define tab stops in a script. Here is an example that defines two
tab stops and populates a ListBox control:

// lb_1 is the name of the ListBox.
string f1, f2, f3
f1 = "1"
f2 = "Emily"

To do this Do this

Select a row Click the row button on the left, or with the cursor in the edit box,
press Shift+Space

Delete a row Select the row and press Delete

Move a row Click the row button and drag the row where you want it, or press
Shift+Space to select the row, then press Ctrl+Up Arrow or
Ctrl+Down Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu

CHAPTER 11 Working with Controls

User’s Guide 255

f3 = "Foulkes"
// Define 1st tab stop at character 5.
lb_1.tabstop[1] = 5
// Define 2nd tab stop 10 characters after the 1st.
lb_1.tabstop[2] = 10
// Add an item, separated by tabs.
// Note that the ~t must have a space on either side
// and must be lowercase.
lb_1.AddItem(f1 + " ~t " + f2 + " ~t " + f3)
//Make sure a scroll bar displays for the list box
lb_1.HScrollBar=true

Note that this script will not work if it is in the window's Open event, because
the controls have not yet been created. The best place to include this script is
in a user event that is posted in the window's Open event using the PostEvent
function.

Other properties For ListBoxes, you can specify whether:

• Items in the ListBox are displayed in sorted order

• The ListBox allows the user to select multiple items

• The ListBox displays scroll bars if needed

For more information, right-click in any tab page in the Properties view for a
ListBox and select Help from the pop-up menu.

Using DropDownListBoxes
DropDownListBoxes combine the features of a SingleLineEdit and a ListBox.

Smartphone platforms
ListBoxes and DropDownListBoxes are converted to spinner controls when
you deploy them to a Smartphone device or emulator. Edit functions for
spinner controls are not supported. For more information about spinner
controls, see Appendix D, “Designing Applications for Windows CE
Platforms.”

Using the individual controls

256 PocketBuilder

There are two types of DropDownListBoxes:

• Noneditable

• Editable

Noneditable boxes If you want your user to choose only from a fixed set of choices, make the
DropDownListBox noneditable.

In this type of DropDownListBox, the only valid values are those in the list.

The SIP keyboard as well as peripheral keyboards can be used to select items
from the list in a deployed application when the DropDownListBox has focus.
Users can make selections from the list box by:

• Using the arrow keys to scroll through the list.

• Typing a character. The ListBox scrolls to the first entry in the list that
begins with the typed character. Typing the character again scrolls to the
next entry beginning with the character unless the character can be
combined with the first to match an entry.

• Using the stylus on the Pocket PC to select the down arrow in the
DropDownListBox control to display the list, then selecting an entry from
the list.

Editable boxes If you want to give users the option of specifying a value that is not in the list,
make the DropDownListBox editable by selecting the AllowEdit check box on
the General properties page.

With an editable DropDownListBox, you can choose whether to have the list
always display or not. If you do not choose to always display an editable list,
the user can still display the list in the deployed application by tapping (Pocket
PC device) or clicking (emulator) the down arrow.

Populating the list You specify the list in a DropDownListBox the same way as for a ListBox. For
information, see “Using ListBoxes” on page 253.

Specifying the size of
the drop-down box

To indicate the size of the box that drops down, size the control in the Window
painter using the mouse. When the control is selected in the painter, the full
size, including the drop-down box, is shown.

Other properties As with ListBoxes, you can specify whether the list is sorted and whether the
edit control is scrollable.

For more information, right-click in any tab page in the Properties view and
select Help from the pop-up menu.

CHAPTER 11 Working with Controls

User’s Guide 257

Using Pictures
Pictures are controls that display images. These can be PocketBuilder stock
icons or BMP, GIF, JPEG, or PNG files.

Using JPEG or PNG image files
Unlike BMP and GIF images, which can reside in a PocketBuilder resource file
(PKR) or in a database blob, JPEG and PNG images must reside in the file
system. You must deploy JPEG or PNG files to the current application
directory or include the full path of the deployed image files that you want to
use in a Pocket PC device or emulator.

PNG files are not supported on the desktop, only on Pocket PC devices and
emulators. You cannot add a PNG file to a picture control in the PocketBuilder
UI, only in script. For example:

p_1.PictureName = "\Program Files\my_pic.png"

❖ To display a picture:

1 Place a picture control in the window.

2 In the General properties page in the Properties view, enter the name of the
file you want to display in the PictureName text box or browse to select a
file.

The picture displays.

You can choose to resize or invert the image.

Picture controls have events that can be triggered when users click on them.
They can also be used simply to display an image. Be consistent in their use so
users know what they can do with them.

Using PictureHyperLinks
A PictureHyperLink is a picture that provides a hot link to a specified Web
page. When a user clicks the PictureHyperLink in a window, the user’s Web
browser opens to display the page.

Using the individual controls

258 PocketBuilder

The PictureHyperLink control has a URL property that specifies the target of
the link. You specify the picture and URL in the PictureHyperLink control’s
Properties view in the General properties page. Since browsers on Windows
CE devices all support URL completion, you can enter a partial address—for
example, sybase.com—instead of the complete address:
http://www.sybase.com.

The PictureHyperLink control is a descendant of the Picture control. Like a
Picture control, a PictureHyperLink control can display a PocketBuilder stock
icon or an image from a BMP, GIF, animated GIF, JPEG, or PNG file. You
select the picture in the same manner.

For more information, see “Using Pictures” on page 257.

Using drawing objects
PocketBuilder provides the following drawing objects: Line, Oval, Rectangle,
and RoundRectangle. Drawing objects are usually used only to enhance the
appearance of a window or to group controls. However, constructor and
destructor events are available, and you can define your own unmapped events
for a drawing object. A drawing object does not receive Windows messages, so
a mapped event would not be useful.

You can use the following functions to manipulate drawing objects during
execution:

Hide
Move
Resize
Show

In addition, each drawing object has a set of properties that define its
appearance. You can assign values to the properties in a script to change the
appearance of a drawing object.

Never in front
A drawing object cannot be placed on top of another control that is not a
drawing object, such as a GroupBox. Drawing objects always appear behind
other controls whether or not the Bring to Front or Send to Back items on the
pop-up menu are set. However, drawing objects can be on top of or behind
other drawing objects.

CHAPTER 11 Working with Controls

User’s Guide 259

Using HProgressBars and VProgressBars
HProgressBars and VProgressBars are rectangles whose highlighting indicates
the progress of a lengthy operation, such as an installation program that copies
a large number of files. The progress bar gradually fills with the system
highlight color as the operation progresses.

You can set the range and current position of a progress bar in the Properties
view using the MinPosition, MaxPosition, and Position properties. To specify
the size of each increment, set the SetStep property.

Using HScrollBars and VScrollBars
You can place freestanding scroll bar controls within a window. Typically, you
use these controls to do one of the following:

• Provide a slider control that allows the user to specify a continuous value

• Graphically display information to the user

You can set the position of the scroll box by specifying the value for the
control's Position property. When the user drags the scroll box, the value of
Position is automatically updated.

Smartphone platforms
Avoid using scroll bars in applications that you deploy to a Smartphone device
or emulator. User interaction with these controls is problematic on Smartphone
platforms.

Using HTrackBars and VTrackBars
The HTrackBar and VTrackBar controls have sliders that move in discrete
increments inside a horizontal or vertical channel. Like a scroll bar, a track bar
typically functions as a slider control that allows users to specify a value or see
a value you have displayed graphically, but on a discrete rather than continuous
scale. Clicking on the slider moves it in discrete increments instead of
continuously.

Using the individual controls

260 PocketBuilder

Smartphone platforms
Avoid using track bars in applications that you deploy to a Smartphone device
or emulator. User interaction with these controls is problematic on Smartphone
platforms.

Setting properties and
placing tick marks

Use a track bar when you want the user to select a discrete value. For example,
you might use a track bar to enable a user to select a timer interval or the size
of a window.

You can set properties such as minimum and maximum values. You can also
set the frequency of tick marks and where tick marks display. Typically a
horizontal track bar has a series of tick marks along the bottom of the channel,
and a vertical track bar has tick marks on the right.

Highlighting a range of
values

You can highlight a range of values in the trackbar with the SelectionRange
function. The range you select is indicated by a black fill in the channel and an
arrow at each end of the range. This is useful if you want to indicate a range of
preferred values. In a scheduling application, the selection range could indicate
a block of time that is available for scheduling purposes. Setting a selection
range does not prevent the user from selecting a value either inside or outside
the range.

Figure 11-6: Horizontal track bar with a highlighted range

Using ListView controls
A ListView control lets you display items and icons in a variety of
arrangements. You can display large or small icons in free-form lists. Using
PowerScript functions such as AddColumn, AddLargePicture, SetItem,
SetColumn, and so on, you can add columns, pictures, and items to the
ListView and modify column properties.

CHAPTER 11 Working with Controls

User’s Guide 261

Smartphone platforms
PocketBuilder application users can use the arrow keys on the Smartphone to
navigate the items in a ListView control, but you must program a menu item or
soft key to move the focus from the ListView to another control in the same
main window.

For information about ListView functions, see the online Help.

Figure 11-7: List view with small icons

Adding ListView Items
and pictures

The ListView control’s Properties view has two tab pages for adding pictures:
Large Picture (default size 32 by 32 pixels) and Small Picture (16 by 16 pixels).
Each picture you enter gets an index number that you can associate with an
item in the Items page.

You can choose from a group of stock images provided by PocketBuilder or use
BMP, GIF, ICO, JPEG, or PNG files for the images that you add to a ListView.
You cannot add a PNG file to a picture control in the PocketBuilder UI, only in
script. (PNG files are not supported on the desktop, only on Pocket PC devices
and emulators.)

❖ To add ListView items:

1 Select the ListView control to display its properties in the Properties view
and then select the Items tab.

2 Enter the name of the ListView item and the picture index you want to
associate with it.

The picture index corresponds to the images you select on the Large
Picture, Small Picture, and State property pages.

On the Items tab page, you work with rows in the same way that you do
for a ListBox control. For more information on working with rows on the
Items tab page, see Table 11-3 on page 254.

Using the individual controls

262 PocketBuilder

Setting the picture index to zero
Setting the picture index for the first item to zero clears all the settings on
the tab page.

3 Set properties for the item on the Large Picture, Small Picture, and/or State
tab pages as you did on the Items tab page.

On these pages, you can also browse for a picture. To do so, click the
browse button or press F2.

4 Repeat until all the items are added to the ListView.

Choosing a ListView
style

You can display a ListView in four styles:

• Large icon (default)

• Small icon

• List

• Report

❖ To select a ListView style:

1 Select the ListView control to display its properties in the Properties view
and then select the General tab.

2 Select the type of view you want from the View drop-down list.

Setting other
properties

You can modify other properties of the ListView control on the tab pages of the
control’s Properties view.

❖ To specify other ListView properties:

1 Select the ListView control to display its properties in the Properties view.

2 Choose the tab appropriate to the property you want to specify and change
the properties as needed.

Choose
this tab To specify

General The border style

Whether the user can delete items

Large Picture The images for ListView items in large icon view

Small Picture The images for ListView items in small icon, list, and report
views

State The state images for ListView items

Items The names and associated picture index for ListView items

CHAPTER 11 Working with Controls

User’s Guide 263

For more information about other properties, right-click in any tab page in the
Properties view and select Help from the pop-up menu or see Objects and
Controls. Because of target platform differences, some of the properties listed
for PowerBuilder objects and controls do not apply to PocketBuilder objects
and controls.

For more information on the ListView control, see the chapter on using lists
and tree views in the Resource Guide.

Using TreeView controls
You can use TreeView controls in your application to represent relationships
among hierarchical data. An example of a TreeView implementation is
PocketBuilder’s Browser. The tab pages in the Browser contain TreeView
controls.

Figure 11-8: Tree view panes in the PocketBuilder Browser

Font The font size, family, and color for ListView items

Other The size and position of the ListView

Choose
this tab To specify

Using the individual controls

264 PocketBuilder

Smartphone platforms
PocketBuilder application users can use the arrow keys on the Smartphone to
navigate the items in a TreeView control, but you must program a menu item
or soft key to move the focus from the TreeView to another control in the same
main window.

Adding TreeView
items and pictures

A TreeView consists of TreeView items that are associated with one or more
pictures. You add images to a TreeView in the same way you add images to a
ListView, except that you use the Pictures tab page instead of the Large Picture
or Small Picture tab pages.

You can choose from a group of stock images provided by PocketBuilder, or
use BMP, GIF, ICO, JPEG, or PNG files for the images that you add to a
TreeView. You cannot add a PNG file to a picture control in the PocketBuilder
UI, only in script. (PNG files are not supported on the desktop, only on Pocket
PC devices and emulators.)

Dynamically changing image size
The image size can be changed during execution by setting the PictureHeight
and PictureWidth properties when you create a TreeView.

For more information, see “PictureHeight” and “PictureWidth” in the online
Help.

❖ To add items to a TreeView:

• Write a script in the TreeView constructor event to create TreeView items

For more information about populating a TreeView, see the chapter on
using lists and tree views in the Resource Guide.

Adding state pictures
to TreeView items

A “state” picture is an image that appears to the left of the TreeView item,
indicating that the item is not in its normal mode. A state picture can indicate
that a TreeView item is being changed, or that it is performing a process and is
unavailable for action.

CHAPTER 11 Working with Controls

User’s Guide 265

Figure 11-9: TreeView control showing a state picture

❖ To specify a state picture for a TreeView item:

1 Select the TreeView control to display its properties in the Properties view
and then select the State tab.

2 Do one of the following:

• Use the StatePictureName drop-down list to select stock pictures to
add to the TreeView

• Use the Browse button to select a BMP, ICO, GIF, or JPEG file

Working with the rows in the State or Pictures tab page in the Properties view
is the same as working with rows in the State, Small Picture, or Large Picture
tab pages in a ListView control. For information, see “Using ListView
controls” on page 260.

❖ To activate a state picture for a TreeView item:

• Write a script that changes the image when appropriate

For example, the following script gets the current TreeView item and
displays the state picture for it.

long ll_tvi
treeviewitem tvi

ll_tvi = tv_foo.finditem(currenttreeitem! , 0)
tv_foo.getitem(ll_tvi , tvi)
tvi.statepictureindex = 1
tv_foo.setitem(ll_tvi, tvi)

For more information on the TreeView control, see the chapter on using
lists and tree views in the Resource Guide.

Setting other
properties

You can modify other properties of the TreeView control on the tab pages of
the control’s Properties view.

Using the individual controls

266 PocketBuilder

❖ To specify other TreeView properties:

1 Select the TreeView control to display its properties in the Properties view
and then select the General tab.

2 Enter a name for the TreeView in the Name text box and specify other
properties as appropriate.

Among the properties you can specify on the General properties page are:

• The border style

• Whether the TreeView has lines showing the item hierarchy

• Whether the TreeView includes collapse and expand buttons

• Whether the user can delete items

• Whether the user can drag and drop items into the TreeView

3 For other options, choose the tab appropriate to the property you want to
specify:

For more information about TreeView properties, right-click in any tab
page in the Properties view and select Help from the pop-up menu, or see
Objects and Controls in the online Help. Because of differences in the
target platform, some of the properties listed for PowerBuilder objects and
controls do not apply to PocketBuilder objects and controls.

For more information on the TreeView control, see the chapter on using
lists and tree views in the Resource Guide.

Using Tab controls
A Tab control is a container for tab pages that display other controls. You can
add a Tab control to a window in your application to present information that
can logically be grouped together but might also be divided into distinct
categories. An example is the use of tab pages in the Properties view for objects
in PocketBuilder.

Choose this tab To specify

Pictures The images used to represent TreeView items

State The state images for the TreeView items

Font The font size, family, and color for TreeView items

Others The size and position of the TreeView

CHAPTER 11 Working with Controls

User’s Guide 267

Smartphone platforms
Tab controls are not supported on Smartphone devices or emulators.

When you add a Tab control to a window, PocketBuilder creates a Tab control
with one tab page labeled “none”. The control is rectangular. By default, the
tab label is at the bottom of the tab page.

Distinguishing tab
controls and tab
pages

Typically you use more than one tab page on a tab control. After you add a tab
control with a single tab page to a window, you add as many tab pages as your
application requires.

Each tab page displays a label that is visible even when a different tab page is
selected. If the number of tab pages is too large to display all the tab pages, a
miniature scroll bar is displayed on the screen at the level of the visible tab
labels. The scroll bar enables users to scroll to hidden tab labels.

To select the Tab control at design time, click any of the tab labels, or click in
the area adjacent to the tab labels but outside the current tab page.

To select a tab page, click its label and then click anywhere on the tab page
except the label itself. Selection handles display at the corners of the tab page,
but do not include the tab control labels. (When the tab control is selected
rather than the tab page, the selection handles include the tab control labels.)

Adding tab pages to a
Tab control

You can add a new Tab control to a window by selecting Insert>Control>Tab
and clicking in the window. The control has one tab page when it is created.
Use the following procedure to place additional tab pages in the tab control.

❖ To create a new tab page in a Tab control:

1 Select the Tab control by clicking on a tab label or in the area to the right
of the labels when the labels display at the bottom or top of the tab pages.

The handles that indicate that the Tab control is selected display at the
corners of the Tab control. If you selected the tab page, the handles display
at the corners of the area above the tab labels when the labels are at the
bottom of the control.

The pop-up menu for a tab page does not allow you to insert additional tab
pages, only to modify the order of the controls on the selected tab.

2 Choose Insert TabPage from the pop-up menu.

3 Add controls to the new tab page.

Using the individual controls

268 PocketBuilder

Creating a reusable
tab page

You can create reusable tab pages in the User Object painter by defining a tab
page with controls on it that is independent of a Tab control. You can then add
that tab page to one or more Tab controls.

❖ To define a tab page that is independent of a Tab control:

1 Click the New button on the PowerBar and use the Custom Visual icon on
the Object tab page to create a custom visual user object.

2 Size the user object to match the size of the Tab controls in which you will
use it.

3 To the user object, add the controls that you want to display on the tab
page.

4 Select the user object (not one of the controls you added) and on the
TabPage page in the Properties view, specify the information to be used by
the tab page:

• Text—The text to display on the tab

• PictureName—A picture to display on the tab with or instead of the
text

• PowerTipText—Text for a pop-up message to display when the user
moves the cursor to the tab

• Colors for the tab and its text

5 Save and close the user object.

Adding a reusable tab
page to a Tab control

After you have created a user object that can be used as a tab page, you can add
it to a Tab control. You cannot add the user object to a Tab control if the user
object is open. After you have added the user object to the control, you also
cannot open the user object and the window that contains the Tab control at the
same time.

❖ To add a tab page that exists as an independent user object to a Tab
control:

1 In the Window painter, right-click the Tab control.

2 Choose Insert User Object from the pop-up menu.

3 Select a user object that you have set up as a tab page and click OK.

CHAPTER 11 Working with Controls

User’s Guide 269

A tab page, inherited from the user object you selected, is inserted. You
can select the tab page, set its tab page properties, and write scripts for the
inherited user object just as you do for tab pages defined within the Tab
control, but you cannot edit the content of the user object within the Tab
control. If you want to edit the controls, close the Window painter and go
back to the User Object painter to make changes.

Manipulating the Tab
control

You can use the Layout view to open other views of the Tab control and to
move, resize, or delete the Tab control.

❖ To change the name and properties of the Tab control:

1 Click any of the tabs in the Tab control to display the Tab control
properties in the Properties view.

2 Edit the properties.

For more information, right-click in the Properties view and select Help
from the pop-up menu.

❖ To change the scripts of the Tab control:

1 Double-click one of the tab labels or right-click a tab label and select
Script from the pop-up menu.

2 Select the Tab control event you want from the second drop-down list of
the Script view and edit the script.

❖ To move a Tab control:

• With the mouse pointer on one of the tab labels, hold down the left mouse
button and drag to move the control to the new position

The Tab control and all tab pages are moved as a group.

❖ To resize a Tab control:

• Grab a border of the control and drag it to the new size

The Tab control and all tab pages are sized as a group.

❖ To delete a Tab control:

• With the mouse pointer on one of the tabs, select Cut or Delete from the
pop-up menu

Manipulating the tab
pages

You can use the Layout view to display any tab page in a Tab control, to open
other views of the selected tab page, and to delete the selected tab page from
the Tab control.

Using the individual controls

270 PocketBuilder

❖ To view a different tab page:

• Click on the label for the tab page you want to view

The selected tab page is brought to the front. The tabs are rearranged
according to the TabPosition setting you have chosen for the Tab control.

❖ To change the name and properties of a tab page:

1 Select the tab.

Selecting a tab can move it to the position for a selected tab based on the
TabPosition setting for the Tab control. For example, if TabPosition is set
to tabsonbottomandtop! and a tab displays at the top, it moves to the
bottom when you select it.

2 Click anywhere on the tab page except the tab label.

3 Edit the properties.

❖ To change the scripts of the tab page:

1 Select the tab.

It may move to the position for a selected tab based on the Tab Position
setting for the Tab control.

2 Click anywhere on the tab page except the tab label.

3 Select Script from the tab page’s pop-up menu.

4 Select a script and edit it.

❖ To delete a tab page from a Tab control:

• With the mouse pointer anywhere on the tab page except the tab label,
select Cut or Delete from the pop-up menu

Managing controls on
tab pages

You can add and move controls on tab pages the same way you add and move
controls on a window.

❖ To add a control to a tab page:

• Choose a control from the toolbar or the Control menu, then click in the
tab page where you want to add the control

You can add controls only to a tab page created within the Tab control. To
add controls to an independent tab page, open it in the User Object painter.

CHAPTER 11 Working with Controls

User’s Guide 271

❖ To move a control from one tab page to another:

• Cut or copy the control and paste it on the destination tab page

The source and destination tab pages must be embedded tab pages, not
independent ones created in the User Object painter.

❖ To move a control between a tab page and the window containing the
Tab control:

• Cut or copy the control and paste it on the destination window or tab page

Moving the control between a tab page and the window changes the
control's parent, which affects scripts that refer to the control.

For more information on the Tab control, see the chapter on using tab
controls in the Resource Guide.

Using the individual controls

272 PocketBuilder

User’s Guide 273

C H A P T E R 1 2 Understanding Inheritance

About this chapter This chapter describes how to use inheritance to build PocketBuilder
objects.

Contents

About inheritance
One of the most powerful features of PocketBuilder is inheritance. It
enables you to build windows, user objects, and menus that are derived
from existing objects.

Using inheritance has a number of advantages:

• When you change an ancestor object, the changes are reflected in all
the descendants. You do not have to make manual changes in the
descendants as you would in a copy. This saves you coding time and
makes the application easier to maintain.

• The descendant inherits the ancestor's scripts so you do not have to
re-enter the code to add to the script.

• You get consistency in the code and objects in your applications.

This chapter describes how inheritance works in PocketBuilder and how
to use it to maximize your productivity.

Topic Page

About inheritance 273

Creating new objects using inheritance 274

The inheritance hierarchy 275

Browsing the class hierarchy 276

Working with inherited objects 277

Using inherited scripts 278

Creating new objects using inheritance

274 PocketBuilder

Opening ancestors and descendants
To enforce consistency, PocketBuilder does not let you open an ancestor object
until you have closed any descendants that are open, or to open a descendent
object when its ancestor is open.

Creating new objects using inheritance
You use the Inherit From Object dialog box to create a new window, user
object, or menu using inheritance.

❖ To create a new object using inheritance:

1 Click the Inherit button in the PowerBar, or select File>Inherit from the
menu.

2 In the Inherit From Object dialog box, select the object type (menu, user
object, or window) from the Objects of Type drop-down list.

3 Select the target as well as the library or libraries you want to look in, then
select the object from which you want to inherit the new object.

Displaying objects from many libraries
To find an object more easily, you can select more than one library in the
Libraries list. Use Ctrl+Click to toggle selected libraries and Shift+Click
to select a range.

4 Click OK.

The new object, which is a descendant of the object you chose to inherit
from, opens in the appropriate painter.

CHAPTER 12 Understanding Inheritance

User’s Guide 275

The inheritance hierarchy
When you build an object that inherits from another object, you are creating a
hierarchy (or tree structure) of ancestor objects and descendent objects.
Chapter 10, “Working with Windows,” uses the example of creating two
windows, w_customer and w_employee, that inherit their properties from a
common ancestor, w_ancestor. In this example, w_employee and w_customer
are the descendants.

The object at the top of the hierarchy is a base class object, and the other objects
are descendants of this object. Each descendant inherits information from its
ancestor. The base class object typically performs generalized processing, and
each descendant modifies the inherited processing as needed.

Multiple descendants An object can have an unlimited number of descendants, and each descendant
can also be an ancestor. For example, if you build three windows that are direct
descendants of the w_ancestor window and three windows that are direct
descendants of the w_employee window, the hierarchy looks like this:

Figure 12-1: Object hierarchy example

Browsing the class hierarchy

276 PocketBuilder

Browsing the class hierarchy
PocketBuilder provides a Browser that can show the hierarchy of the built-in
PocketBuilder system objects and the hierarchy of the ancestor and descendent
windows, menus, and user objects you create. In object-oriented terms, these
are called class hierarchies: each PocketBuilder object defines a class.

Figure 12-2: Displaying the hierarchy of system classes in the Browser

Regenerating objects
The Browser also provides a convenient way to regenerate objects and their
descendants. For more information, see “Regenerating library entries” on page
104.

❖ To browse the class hierarchy of PocketBuilder system objects:

1 Click the Browser button in the PowerBar.

2 Choose the System tab to show the built-in PocketBuilder objects.

3 In the left pane, scroll down the object list and select “powerobject”.

4 Display the pop-up menu for powerobject and choose Show Hierarchy.

5 Select Expand All from the pop-up menu and scroll to the top.

The hierarchy for the built-in PocketBuilder objects displays.

CHAPTER 12 Understanding Inheritance

User’s Guide 277

Getting context-sensitive Help in the Browser
To get context-sensitive Help for an object, control, or function, select
Help from its pop-up menu.

❖ To display the class hierarchy for other object types:

1 Choose the Menu, Window, or User Object tab.

If you choose any other object type, there is no inheritance for the object
type, so you cannot display a class hierarchy.

2 In the left pane, select an object and choose Show Hierarchy from its
pop-up menu.

3 Select an object and choose Expand All from its pop-up menu.

PocketBuilder shows the selected object in the current application.
Descendent objects are shown indented under their ancestors.

Working with inherited objects
This section describes:

• Working in a descendent object

• Working in an ancestor object

• Resetting properties in a descendant

Working in a
descendent object

You can change descendent objects to meet specialized needs. For example,
you can:

• Change properties of the descendent object

• Change properties of inherited controls in the object

• Add controls to a descendent window or user object

• Add menu items to a menu

For specifics about what you can do in inherited windows, user objects, and
menus, see Chapter 10, “Working with Windows,” Chapter 14, “Working with
User Objects,” and Chapter 13, “Working with Menus.”

Using inherited scripts

278 PocketBuilder

Working in an
ancestor object

When you use inheritance to build an object, the descendant is dependent on
the definition of the ancestor. Therefore you should not delete the ancestor
without deleting the descendants. You should also be careful when you change
the definition of an ancestor object. You might want to regenerate descendent
objects if you do any of the following:

• Delete or change the name of an instance variable in the ancestor

• Modify a user-defined function in the ancestor

• Delete a user event in an ancestor

• Rename or delete a control in an ancestor

When you regenerate the descendants, the compiler flags any references it
cannot resolve so that you can fix them. For information about regenerating
objects, see Chapter 4, “Working with Libraries.”

About local changes
If you change a property in an ancestor object, the property will also change in
all descendants—as long as you have not already changed that property in a
descendant (in which case the property in the descendant stays the same). In
other words, local changes always override inherited properties.

Using inherited scripts
In the hierarchy formed by ancestors and descendants, each descendant inherits
its event scripts from its immediate ancestor. If an inherited event does not have
a script, you can write a script for the event in the descendant. If the inherited
event does have a script, the ancestor script will execute in the descendant
unless you extend the script or override it. You can:

• Extend the ancestor script—build a script that executes after the ancestor
script

• Override the ancestor script—build a script that executes instead of the
ancestor script

You cannot delete or modify an ancestor script from within a descendant.

CHAPTER 12 Understanding Inheritance

User’s Guide 279

Executing code before
the ancestor script

To write a script that executes before the ancestor script, first override the
ancestor script and then in the descendent script explicitly call the ancestor
script at the appropriate place. For more information, see “Calling an ancestor
script” on page 282.

Getting the return
value of the ancestor
script

To get the return value of an ancestor script, you can use the
AncestorReturnValue variable. This variable is always available in descendent
scripts that extend an ancestor script. It is also available if you override the
ancestor script and use the CALL syntax to call the ancestor event script. For
more information, see the chapter on using the PowerScript language in the
Resource Guide.

Viewing inherited scripts
If an inherited object or control has a script defined only in an ancestor, no
script displays in the Script view.

Script icons in the
second drop-down list

The second drop-down list in the Script view indicates which events have
scripts written for an ancestor, as follows:

• If the event has a script in an ancestor only, the script icon next to the event
name in the second drop-down list is displayed in color

• If the event has a script in an ancestor as well as in the object you are
working with, the script icon is displayed half in color

Script icons in the
third drop-down list

The third drop-down list in the Script view shows the current object followed
by each of its ancestors in ascending order. The icon next to an object name
indicates whether the object has a script for the event selected in the second
drop-down list, as follows:

• If an object is the highest class in the hierarchy to have a script, a
transparent script icon displays next to its name. No icons display next to
the names of any of its ancestors.

• If an object does not have a script for the event but has an ancestor that has
a script for the event, the script icon next to its name is displayed in color.

• If an object has a script for the event, and it has an ancestor that also has a
script for the event, the script icon next to its name is displayed half in
color.

Using inherited scripts

280 PocketBuilder

❖ To view an ancestor script:

1 In the first drop-down list in the Script view for an inherited object, select
the object itself, and in the second drop-down list, select the event whose
script you want to see.

The Script view does not display the script for the ancestor. No script
displays.

2 In the third drop-down list in the Script view, select an ancestor object that
has a script for the selected event.

The Script view displays any script defined in the ancestor object.

3 To climb the inheritance hierarchy, in the third drop-down list select the
script for the grandparent of the current object, the great-grandparent, and
so on, until you display the scripts you want.

The Script view displays the scripts for each of the ancestor objects. You
can traverse the entire inheritance hierarchy using the third drop-down list.

Extending a script
When you extend an ancestor script for an event, PocketBuilder executes the
ancestor script, then executes the script for the descendant when the event is
triggered.

❖ To extend an ancestor script:

1 In the first drop-down list in the Script view, select the object or a control,
and in the second drop-down list, select the event for which you want to
extend the script.

2 Make sure that Extend Ancestor Script on the Edit menu or the pop-up
menu in the Script view is selected.

Extending the ancestor script is the default.

3 In the Script view, enter the appropriate statements.

You can call the script for any event in any ancestor as well as call any
user-defined functions that have been defined for the ancestor. For
information about calling an ancestor script or function, see “Calling an
ancestor script” on page 282 and “Calling an ancestor function” on page
282.

CHAPTER 12 Understanding Inheritance

User’s Guide 281

Example of extending
a script

If the ancestor script for the Clicked event in a button beeps when the user
clicks the button without selecting an item in a list, you might extend the script
in the descendant to display a message box in addition to beeping.

Overriding a script

❖ To override an ancestor script:

1 In the first drop-down list in the Script view, select the object or a control,
and in the second drop-down list, select the event for which you want to
override the script.

2 Code a script for the event in the descendant.

You can call the script for any event in any ancestor as well as call any
user-defined functions that have been defined for the ancestor.

For information about calling an ancestor script or function, see “Calling
an ancestor script” on page 282 and “Calling an ancestor function” on
page 282.

Override but not execute
To override a script for the ancestor but not execute a script in the
descendant, enter only a comment in the Script view.

3 Click on Extend Ancestor Script on the Edit menu or the pop-up menu to
clear the check mark.

You do not want Extend Ancestor Script selected. Not extending the
ancestor script means that you are overriding the script.

During execution, PocketBuilder executes the descendent script when the
event is triggered. The ancestor script is not executed.

Example of overriding
a script

If the script for the Open event in the ancestor window displays employee files
and you want to display customer files in the descendent window, create a new
script for the Open event in the descendant to display customer files, and clear
the check mark for the Extend Ancestor Script menu item.

Using inherited scripts

282 PocketBuilder

Calling an ancestor script
When you write a script for a descendent object or control, you can call scripts
written for any ancestor. You can refer by name to any ancestor of the
descendent object in a script, not just the immediate ancestor (parent). To
reference the immediate ancestor (parent), you can use the Super reserved
word.

For more information about calling scripts for an event in an ancestor window,
user object, or menu, and about the Super reserved word, see the PowerScript
Reference in the online Help.

Calling an ancestor function
When you write a script for a descendent window, user object, or menu, you
can call user-defined functions that have been defined for any of its ancestors.
To call the first function up the inheritance hierarchy, just call the function as
usual:

function (arguments)

If there are several versions of the function up the inheritance hierarchy and
you do not want to call the first one up, you need to specify the name of the
object defining the function you want:

ancestorobject::function (arguments)

This syntax works only in scripts for the descendent object itself, not in scripts
for controls or user objects in the descendent object or in menu item scripts. To
call a specific version of an ancestor user-defined function in a script for a
control, user object, or menu item in a descendent object, do the following:

1 Define an object-level user-defined function in the descendent object that
calls the ancestor function.

2 Call the function you just defined in the descendent script.

For more information about calling an ancestor function, see the PowerScript
Reference in the online Help.

User’s Guide 283

C H A P T E R 1 3 Working with Menus

About this chapter You add menus to windows to give your users an easy, intuitive way to
select commands and options in your applications. This chapter describes
how to define and use menus.

Contents

About menus and menu items
The main windows in an application typically have menus. Menus are lists
of related commands or options (menu items) that a user can select in the
currently active window. Each choice in a menu is called a menu item.
Menu items display in a menu bar or in drop-down or cascading menus.

About Menu objects
Each item in a menu is defined as a Menu object in PocketBuilder. You
can see the Menu object in the list of objects in the Browser’s System tab.

Menus you define in PocketBuilder work the same as standard menus in
your operating environment. Menus cannot be associated with response
windows.

Topic Page

About menus and menu items 283

About the Menu painter 285

Building a new menu 287

Defining the appearance of menu items 295

Writing scripts for menu items 297

Using inheritance to build a menu 301

Using menus 304

About menus and menu items

284 PocketBuilder

About using menus You can use menus that you build in PocketBuilder in two ways:

• In the menu bar of windows Menu bar menus are associated with a
window in the Window painter and display whenever the window is
opened.

• As pop-up menus Pop-up menus display only when a script executes
the PopMenu function.

Both uses are described in this chapter.

PocketBuilder gives you freedom to design menus with respect to operating
system constraints, but you should still follow conventions that make it easy to
use the menus in your deployed applications. For example, you should keep
menus simple and consistent, and group related items in a drop-down menu.
You should use cascading menus sparingly and restrict them to one or two
levels.

Smartphone platforms
Windows in applications for Smartphone devices require a menu object with
exactly two main menu items. In deployed applications, the first menu item
corresponds to the left menu key on the Smartphone, and the second menu item
corresponds to the right menu key.

The right menu key typically opens a menu that has submenu items. If a right
menu is not needed, it can be left blank, but it still must be included in any
menu object that you deploy with your application. If you do not supply a menu
object for a window, a nonfunctional menu is automatically assigned to that
window.

Pop-up menus are not recommended for use in Smartphone applications.

For more information about designing applications for Smartphone devices,
see Appendix D, “Designing Applications for Windows CE Platforms.”

CHAPTER 13 Working with Menus

User’s Guide 285

About building menus When you build a menu, you:

• Specify the appearance and behavior of the menu items by setting their
properties.

• Build scripts that determine responses to events in the menu items. To
support these scripts, you can declare functions, structures, and variables
for the menu.

There are two ways to build a menu. You can:

• Build a new menu from scratch. See “Building a new menu” on page 287.

• Build a menu that inherits its style, functions, structures, variables, and
scripts from an existing menu. You use inheritance to create menus that are
derived from existing menus, thereby saving time and coding. See “Using
inheritance to build a menu” on page 301.

Adding a toolbar with
menu functions

You can add a toolbar with picture buttons to deliver the same functionality as
an application menu.

For information about the PocketBuilder toolbar control, see Chapter 15,
“Working with Native Objects and Controls for Windows CE Devices.”

About the Menu painter
Views in the Menu
painter

The Menu painter has several views where you specify menu items and how
they look and behave. For general information about views, how you use them,
and how they are related, see “Views in painters that edit objects” on page 58.

Tree Menu and
WYSIWYG Menu
views

The default Menu painter layout shows the Tree Menu view in the top left and
the WYSIWYG Menu view in the top middle. The WYSIWYG Menu view
displays how the menu will look on the desktop, not on the Windows CE device
or emulator.

About the Menu painter

286 PocketBuilder

Figure 13-1: Default Menu painter layout

The Tree Menu and WYSIWYG Menu views are where you specify menu
items that display in the menu bar and under items in the menu bar.

Table 13-1: Tree and WYSIWYG views in the Menu painter

You can use either the Tree Menu view or the WYSIWYG Menu view to insert
new menu items on the menu bar or on drop-down (cascading) menus, or to
modify existing menu items. The menus in both views change when you make
a change in either view.

This view Displays

Tree Menu All the menu items at the same time when the tree is fully
expanded. To fully expand the tree or collapse the expanded
tree, press Ctrl+Shift+*.

WYSIWYG Menu The menu as it would appear in a desktop application, with the
exception of menu items that do not display at runtime if you
set their Visible property to false. In the WYSIWYG Menu
view, these items diplay in a dithered mode. In applications
that you deploy to the Windows CE device or emulator, menu
items appear at the bottom of the window, not at the top as in
the WYSIWYG view.

CHAPTER 13 Working with Menus

User’s Guide 287

Building a new menu
This section describes how to build menus from scratch. You use this technique
to create menus that are not based on existing menus. For how to create a new
menu using inheritance, see “Using inheritance to build a menu” on page 301.

Creating a new menu
You build a new menu by creating a new Menu object and then working on it
in the Menu painter.

❖ To create a new menu:

1 Click the New button in the PowerBar.

2 On the PB Object tab page, select Menu and click OK.

The Menu painter opens. Because you are creating a new menu and have
not added menu items yet, the only content in the Tree Menu view is an
untitled top-level tree view item. There is no content visible in the
WYSIWYG Menu view.

Working with menu items
A menu consists of at least one menu item on the menu bar and menu items in
a drop-down menu. You can add menu items in three places:

• To the menu bar

• To a drop-down menu

• To a cascading menu

Using the pop-up menu
The procedures in this section use the Insert and Edit menus on the
PocketBuilder main menu to insert and edit menu items. You can also use the
equivalent items on the selected object’s pop-up menu.

Building a new menu

288 PocketBuilder

Inserting menu items

There are three choices on the Insert menu: Menu Item, Menu Item At End, and
Submenu Item. Use the first two to insert menu items in the same menu as the
selected item, and use Insert>Submenu Item to create a new drop-down or
cascading menu for the selected item.

For example, suppose you have created a File menu on the menu bar with two
menu items: Open and Exit. Here are the results of some insert operations:

• Select File and select Insert>Menu Item At End

A new item is added to the menu bar after the File menu.

• Select Open and select Insert>Menu Item

A new item is added to the File menu above Open.

• Select Open and select Insert>Menu Item At End

A new item is added to the File menu after Exit.

• Select Open and select Insert>Submenu Item

A new cascading menu is added to the Open menu item.

Getting the menu
started

The first thing you do with a new menu is add the first item to the menu bar.
After doing so, you can continue adding new items to the menu bar or to the
menu bar item you just created. As you work, the changes you make display in
both the WYSIWYG and Tree Menu views.

The first procedure in this section describes how to add a single first item to the
menu bar. Use this procedure if you want to add the menu bar item, then work
on its drop-down menu. Use the second procedure to add multiple items
quickly to the menu bar.

❖ To insert the first menu bar item in a new menu:

1 Select Insert>Submenu Item.

PocketBuilder displays an empty box on the menu bar in the WYSIWYG
Menu view and a blank submenu item in the Tree Menu view.

2 Type the text you want for the menu item and press Enter.

❖ To insert multiple menu bar items in a new menu:

1 Select Insert>Submenu Item.

PocketBuilder displays an empty box on the menu bar in the WYSIWYG
Menu view and a blank submenu item in the Tree Menu view.

CHAPTER 13 Working with Menus

User’s Guide 289

2 Type the text you want for the menu item and press Tab.

PocketBuilder displays a new empty box on the menu bar in the
WYSIWYG Menu view and a blank submenu item in the Tree Menu view.

3 Repeat step 2 until you have added all the menu bar items you need.

4 Press Enter to save the last menu bar item.

Adding additional
menu items

After you have created the first menu bar item, you can add more items to the
menu bar or start building drop-down and cascading menus.

❖ To insert additional menu items on the menu bar:

1 Do one of the following:

• With any menu bar item selected, select Insert>Menu Item At End to
add an item to the end of the menu bar

• Select a menu bar item and select Insert>Menu Item to add a menu bar
item before the selected menu bar item

2 Type the text you want for the menu bar item and then press Enter.

❖ To add a drop-down menu to an item on the menu bar:

1 Select the item in the menu bar for which you want to create a drop-down
menu.

2 Select Insert>Submenu Item.

PocketBuilder displays an empty box.

3 Type the text you want for the menu item and then press Tab.

4 Repeat Step 3 until you have added all the items you want on the
drop-down menu.

5 Press Enter to save the last drop-down menu item.

❖ To add a cascading menu to an item in a drop-down menu:

1 Select the item in a drop-down menu for which you want to create a
cascading menu.

2 Select Insert>Submenu Item.

PocketBuilder displays an empty box.

3 Type the text you want for the menu item and then press Tab.

Building a new menu

290 PocketBuilder

4 Repeat step 3 until you have added all the items you want on the cascading
menu.

5 Press Enter to save the last cascading menu item.

❖ To add an item to the end of any menu:

1 Select any item on the menu.

2 Select Insert>Menu Item At End.

PocketBuilder displays an empty box.

3 Type the text you want for the second menu item in the box and press
Enter.

❖ To insert an item in any existing menu:

1 Select the item before which the new menu item will display.

2 Select Insert>Menu Item.

An empty box displays above the item you selected.

3 Type the text you want for the menu item and press Enter.

Creating separation lines in menus

You should separate groups of related menu items with lines.

Figure 13-2: Separation line between two menu groups

❖ To create a line between items on a menu:

1 Insert a new menu item where you want the separation line.

2 Type a single dash (-) as the menu item text and press Enter.

A separation line displays.

CHAPTER 13 Working with Menus

User’s Guide 291

Duplicating menu items

You might find that you save time creating new menu items if you duplicate
existing menu items. A duplicate menu item has the same properties and script
as the original menu item. You might be able to modify a long script slightly to
make it work for your duplicate menu item.

❖ To duplicate a menu item or a submenu item:

1 Select the menu item or the submenu item to duplicate.

2 Select Edit>Duplicate or press Ctrl+T.

The duplicate item displays at the same level of the menu and follows the
item you selected. The name of the duplicate menu item is unique.

3 Change the text of the duplicate menu item.

4 Modify the properties and script associated with the duplicate item as
needed.

Changing menu item text

You sometimes need to change the text of a menu item, and if you duplicate a
menu item, you need to change the text of the duplicate item.

❖ To change the text of a menu item:

1 Do one of the following:

• Click the item to select it, then click it again

• Select the item and select Edit>Menu Item Text

• Select the item and open the general page in the Properties view

2 Type the new text for the menu item in the box in the WYSIWYG Menu
or Tree Menu view or in the Text box in the Properties view.

Selecting menu items

You can select multiple menu items to move, delete, or change common
properties.

❖ To select multiple menu items:

• Press and hold Ctrl while selecting each item you want

Building a new menu

292 PocketBuilder

❖ To select a range of menu items at the same level in the menu:

• Select the first item in the range, press Shift, then select the last item in the
range

Navigating in the menu

As you work in a menu, you can move to another menu item by selecting it.
You can also use the Right Arrow, Left Arrow, Up Arrow, and Down Arrow
keys on the keyboard to navigate.

Moving menu items

The easiest way to change the order of items in the menu bar or in a drop-down
or cascading menu is to drag the item you want to move and drop it where you
want it to be. You can drag items within the same level in a menu structure or
to another level. For example, you can drag an item in the menu bar to a
drop-down menu or an item in a cascading menu to the menu bar.

WYSIWYG Menu and Tree Menu views
You can use drag and drop within each view. You can also drag from one view
and drop in another.

❖ To move a menu item or submenu item using drag and drop:

1 Select the item.

2 Press and hold the left mouse button and drag the item to a new location.

A feedback line appears at the new location that indicates where to drop it.

3 Release the mouse button to drop the menu item.

The menu item displays in the new location.

Dragging to copy
To copy a menu item by dragging it, press and hold the Ctrl key while you drag
and drop the item. A copied menu item has the same properties and scripts as
the original menu item.

You can also copy or move a menu item by selecting the item and using the Cut,
Copy, and Paste items on the Edit menu or the pop-up menu.

CHAPTER 13 Working with Menus

User’s Guide 293

Deleting menu items

❖ To delete a menu item:

1 Select the menu item you want to delete.

2 Click the Delete button in the PainterBar or select Edit>Delete from the
menu bar.

How menu items are named
When you add a menu item, PocketBuilder gives it a default name, which
displays in the Name box in the Properties view. This is the name by which you
refer to a menu item in a script.

About the default
menu item names

The default name is a concatenation of the default prefix for menus, m_, and
the valid PowerBuilder characters and symbols in the text you typed for the
menu item. If there are no valid characters or symbols in the text you typed for
the menu item, PocketBuilder creates a unique name m_n, where n is the lowest
number that can be combined with the prefix to create a unique name.

Prefix may be different
The default prefix is different if it has been changed in the Options dialog box.

The complete menu item name (prefix and suffix) can be up to 40 characters.
If the prefix and suffix exceed this size, PocketBuilder uses only the first 40
characters without displaying a warning message.

Duplicate menu item
names

If you add a menu item that has the same name as an existing menu item,
PocketBuilder displays a dialog box that suggests a unique name for the menu
item. For example, you might already have an Options item on the Edit menu
with the default name m_options. If you add an Options item to another menu,
PocketBuilder cannot give it the name m_options.

Menu item names are
locked by default

After you add a menu item, the name that PocketBuilder assigns to the menu
item is locked. Even if you later change the text that displays for the menu item,
PocketBuilder does not rename the menu item. This ensures that you can
change the text that displays in a menu without having to revise all your scripts
that refer to the menu item by the name that PocketBuilder assigns to it.

If you want to rename a menu item after changing the text that displays for it,
you can unlock the name.

Building a new menu

294 PocketBuilder

❖ To have PocketBuilder rename a menu item:

1 On the General properties page in the Properties view, clear the Lock
Name check box.

2 Change the text that displays for the menu item.

Saving the menu
You can save the menu you are working on at any time. When you save a menu,
PocketBuilder saves the compiled menu items and scripts in the library you
specify.

❖ To save a menu:

1 Select File>Save from the menu bar.

If you have previously saved the menu, PocketBuilder saves the new
version in the same library and returns you to the Menu painter.

If you have not previously saved the menu, PocketBuilder displays the
Save Menu dialog box.

2 Name the menu in the Menus box.

The menu name can be any valid identifier up to 40 characters. For
information about valid identifiers, see “identifier names” in the online
Help.

A common convention is to use a standard prefix of m_ and a suffix that
helps you identify the particular menu. For example, you might name a
menu used in a sales application m_sales.

3 Write comments to describe the menu.

These comments display in the Select Menu dialog box and in the Library
painter. It is a good idea to use comments so that you and others can easily
remember the purpose of the menu later.

4 Specify the library in which to save the menu and click OK.

CHAPTER 13 Working with Menus

User’s Guide 295

Defining the appearance of menu items
You can use the Menu painter to change the appearance and behavior of your
menu and menu items by choosing different settings in the tab pages in the
Properties view.

For a list of menu item properties, see Objects and Controls in the online Help,
or select Help from the pop-up menu in the menu’s Properties view and select
the Properties button in the Help window. Because of target platform
differences, some of the properties listed for PowerBuilder menu items do not
apply to PocketBuilder menu items.

Setting General properties
This section describes the properties you can set when you select a menu item
and then select the General tab page in the Properties view.

Unlocking menu item
names

For information, see “How menu items are named” on page 293.

Setting the
appearance of a menu
item

On the General tab page in the Properties view, you can also specify how a
menu item appears during execution.

Table 13-2: Setting display properties for menu items

The settings you specify here determine how the menu items display by
default. You can change the values of the properties in scripts during execution.

Property Meaning

Visible Whether the menu item is visible. An invisible menu item still
displays in the WYSIWYG and Tree Menu views, but does not
display during execution. In the WYSIWYG Menu view, the text
of an invisible item has a dithered (faded and dotted) appearance.

Enabled Whether the menu item can be selected.

Checked Whether the menu item displays with a check mark next to it.

ShiftToRight Whether the menu item shifts to the right (or down for a
drop-down or cascading menu) when you add menu items in a
menu that is inherited from this menu. Selecting this property
allows you to insert menu items in descendent menus instead of
being able to add them only to the end.

For more information, see “Inserting menu items in a descendent
menu” on page 303.

Defining the appearance of menu items

296 PocketBuilder

Assigning accelerator
keys

A menu item can have an accelerator key, also called a mnemonic access key,
which allows users to select the item from the SIP by pressing the designated
key, or from a peripheral keyboard by pressing Alt+key when the menu item is
displayed. Accelerator keys display with an underline in the menu item text.

It is not standard practice to include accelerator keys in Windows CE
applications. In applications deployed to a Windows CE device or emulator,
accelerator keys do not display well for menu bar items. Therefore, if used at
all, accelerator keys should be used only in drop-down menus.

❖ To assign an accelerator key:

• Type an ampersand (&) before the letter in the menu item text that you
want to designate as the accelerator key.

For example, &Open designates the O in Open as an accelerator key and
Co&py designates the p in Copy as an accelerator key.

Displaying an ampersand in the text
If you want an ampersand to display in the menu text, type two
ampersands. For example, Fish&&Chips displays as Fish&Chips with no
accelerator key. To display Fish&Chips as the menu text with the C
underlined as the accelerator, type Fish&&&Chips.

Assigning shortcut
keys

Shortcut keys are combinations of keys that a user can press to select a menu
item whether or not the menu is displayed. Although it is not standard practice
to use shortcut keys in Windows CE applications, PocketBuilder permits you
to define them for use in your applications.

If you specify the same shortcut for more than one MenuItem, the command
that occurs later in the menu hierarchy is executed.

Some shortcut key combinations, such as Ctrl+C, Ctrl+V, and Ctrl+X, are
commonly used by many applications. Avoid using these combinations when
you assign shortcut keys for your application.

Figure 13-3: Shortcut key selection box in Properties view

CHAPTER 13 Working with Menus

User’s Guide 297

❖ To assign a shortcut key:

1 Select the menu item to which you want to assign a shortcut key.

2 Select the General tab in the Properties view.

3 Select a key from the Key drop-down list.

4 Select Shortcut Alt, Shortcut Ctrl, and/or Shortcut Shift to create a key
combination.

PocketBuilder displays the shortcut key next to the menu item name. Note
that the SIP does not have an Alt key.

Writing scripts for menu items
You write scripts for menu items in the Script view. The scripts specify what
happens when users select a menu item.

❖ To write a script for a menu item:

• Double-click the menu item or select Script from the menu item’s pop-up
menu

The Script view displays for the clicked event, which is the default event
for a menu item.

Using the menu item Clicked event
Typically, your application will contain Clicked scripts for each menu item in
a drop-down or cascading menu. For example, the script for the Clicked event
for the Open menu item on the File menu opens a file.

The Clicked event is triggered whenever:

• The menu item is tapped with a stylus (or clicked with a mouse on the
desktop)

• The shortcut key for the menu item is pressed

• The menu containing the menu item is displayed and the accelerator key
is pressed

• A pop-up menu displays

Writing scripts for menu items

298 PocketBuilder

Using the Clicked event on Windows CE platforms
The Windows CE platform does not allow the Clicked event on top-level menu
items. For example, script that you place in the Clicked event for the File menu
is not triggered on the Windows CE platform, although the same script is
triggered in the Clicked event for the File>Open menu item.

The Clicked event for a menu item can be triggered only if both its Visible and
Enabled properties are set to true.

If the menu item has a drop-down or cascading menu under it, the script for its
Clicked event (if any) is executed when a user taps the menu item with a stylus.
The drop-down or cascading menu displays after the Clicked event is triggered.
If the menu item does not have a menu under it, the script for the Clicked event
is executed when the stylus is lifted.

Using the Clicked event to specify menu item properties
When the user clicks an item on the menu bar to display a drop-down menu,
the Clicked event for the menu item on the menu bar is triggered and then the
drop-down menu is displayed.

You can use the menu bar's Clicked event to specify the properties of the menu
items in the drop-down menu. For example, if you want to disable items in a
drop-down menu, you can disable them in the script for the Clicked event for
the menu item in the menu bar.

Using functions and variables
You can use functions and variables in your scripts.

Using functions PocketBuilder provides built-in functions that act on menu items. You can use
these functions in scripts to manipulate menu items during execution. For
example, to hide a menu, you can use the built-in Hide function.

For a complete list of the menu-level built-in functions, look at the Function
List view or use the Browser.

CHAPTER 13 Working with Menus

User’s Guide 299

Defining menu-level functions
You can define your own menu-level functions to make it easier to manipulate
your menus. One way to do this is by selecting Add from the pop-up menu in
the Function List view.

For more information, see Chapter 7, “Working with User-Defined
Functions.”

Using variables Scripts for menu items have access to all global variables declared for the
application. You can also declare local variables, which are accessible only in
the script where they are declared.

You can declare instance variables for the menu when you have data that needs
to be accessible to scripts in several menu items in a menu. Instance variables
are accessible to all menu items in the menu.

For a complete description of variables and how to declare them, see the
PowerScript Reference in the online Help.

Defining menu-level
structures

If you need to manipulate a collection of related variables, you can define
menu-level structures using the Structure view. You can do this by displaying
the Structure List view and then selecting Add from the pop-up menu. The
Structure and Structure List views are not part of the default layout.

For more information, see Chapter 9, “Working with Structures.”

Referring to objects in your application
You can refer to any object in the application in scripts for menu items. You
must fully qualify the reference, using the object name, as follows.

Referring to windows When referring to a window, you simply name the window. When referring to
a property in a window, you must always qualify the property with the
window's name:

window.property

For example, this statement moves the window w_cust from within a menu
item script:

w_cust.Move(300, 300)

Writing scripts for menu items

300 PocketBuilder

Use with caution in Windows CE applications
It is not standard practice to move main windows in Windows CE applications.
This can lead to inadvertent hiding of an application that continues to run in the
background. Also, use caution in modifying a main window by changing its
height or width, as described in another example in this section. Moving or
resizing main windows is likely to confuse to users of your applications.

This statement minimizes w_cust, but on the desktop only. WindowState is not
a recognized property on the Windows CE platform:

w_cust.WindowState = Minimized!

You can use the reserved word ParentWindow to refer to the window that the
menu is associated with during execution. For example, the following
statement closes the window the menu is associated with:

Close(ParentWindow)

You can also use ParentWindow to refer to properties of the window a menu is
associated with, but not to refer to properties of controls or user objects in the
window.

For example, the following statement is valid, because it refers to properties of
the window itself:

ParentWindow.Height = ParentWindow.Height/2

But the following statement is invalid, because it refers to a control in the
window:

ParentWindow.sle_result.Text = "Statement invalid"

Referring to controls
and user objects in
windows

When referring to a control or user object, you must always qualify the control
or user object with the name of the window:

window.control.property

window.userobject.property

For example, this statement enables a CommandButton in window w_cust from
a menu item script:

w_cust.cb_print.Enabled = TRUE

Referring to menu
items

When referring to a menu item, use this syntax:

menu.menu_item

menu.menu_item.property

CHAPTER 13 Working with Menus

User’s Guide 301

Reference within the same menu
When referring to a menu item within the same menu, you do not have to
qualify the reference with the menu name.

When referring to a menu item in a drop-down or cascading menu, you must
specify each menu item on the path to the menu item you are referencing,
separating the names with periods.

For example, to place a check mark next to the menu item m_bold, which is on
a drop-down menu under m_text in the menu saved in the library as m_menu,
use this statement:

m_menu.m_text.m_bold.Check()

If the previous script is for a menu item in the same menu (m_menu), you do
not need to qualify the menu item with the name of the menu:

m_text.m_bold.Check()

Using inheritance to build a menu
When you build a menu that inherits its style, events, functions, structures,
variables, and scripts from an existing menu, you save coding time. All you
have to do is modify the descendent object to meet the requirements of the
current situation.

❖ To use inheritance to build a descendent menu:

1 Click the Inherit button on the PowerBar.

2 In the Inherit From Object dialog box, select Menus from the Object Type
drop-down list, the library or libraries you want to look in, and the menu
you want to use to create the descendant, and click OK.

Displaying menus from many libraries
To find a menu more easily, you can select more than one library in the
Application Libraries list. Use Ctrl+Click to toggle selected libraries and
Shift+Click to select a range.

The selected menu displays in the WYSIWYG Menu view and the Tree
Menu view in the Menu painter. The title in the painter’s title bar indicates
that the menu is a descendant.

Using inheritance to build a menu

302 PocketBuilder

3 Make the changes you want to the descendent menu as described in
“Modifying an inherited menu” next.

4 Save the menu under a new name.

Modifying an inherited menu
When you build and save a menu, PocketBuilder treats the menu as a unit that
includes:

• All menu items and their scripts

• Any variables, functions, and structures declared for the menu

When you use inheritance to build a menu, everything in the ancestor menu is
inherited in all of its descendants.

What you can do In a descendent menu, you can do the following:

• Add menu items to the end of a menu

• Insert menu items in a menu (with some restrictions)

For more information, see “Where you can insert menu items in a
descendent menu” on page 304.

• Modify existing menu items

For example, you can change the text displayed for a menu item or change
its initial appearance by, for example, disabling it or making it invisible.

• Build scripts for menu items that do not have scripts in the ancestor menu

• Extend or override inherited scripts

• Declare functions, structures, and variables for the menu

What you cannot do You cannot do the following in a descendent menu:

• Change the order of inherited menu items

• Delete an inherited menu item

• Insert menu items between inherited menu items that do not have the
ShiftToRight property set (see “Modifying the ShiftToRight property” on
page 303)

• Change the name of an inherited menu item

• Change the type of an inherited menu item

CHAPTER 13 Working with Menus

User’s Guide 303

Hiding a menu item
If you do not need a menu item in a descendent menu, you can hide it by
clearing the Visible property in the Properties view or by using the Hide
function.

About menu item
names in a
descendant

PocketBuilder uses the following syntax to show names of inherited menu
items:

AncestorMenuName::MenuItemName

For example, in a menu inherited from m_update_file, you see
m_update_file::m_file for the m_file menu item, which is defined in
m_update_file.

The inherited menu item name is also locked, so you cannot change it.

Understanding
inheritance

The issues concerning inheritance with menus are similar to the issues
concerning inheritance with windows and user objects. For information, see
Chapter 12, “Understanding Inheritance.”

Inserting menu items in a descendent menu
Modifying the
ShiftToRight property

When defining a descendent menu, you might want to insert menu items in the
middle of the menu bar or in the middle of a drop-down or cascading menu. To
do this, you set the ShiftToRight property in a menu item’s Properties view on
the General properties page.

If the ancestor menu has no menu items with ShiftToRight set, you can add a
new menu item to the end of the descendent menu. To add new menu items
elsewhere in the menu, set the ShiftToRight property for the descendent menu
items that will follow the new menu item.

The ShiftToRight property is used for menu items on the menu bar (where
items need to shift right if a new item is inserted) and for menu items in a
drop-down or cascading menu (where items might need to shift down if a new
item is inserted). The property name is ShiftToRight, but in drop-down or
cascading menus, it means shift down.

Using menus

304 PocketBuilder

Where you can insert
menu items in a
descendent menu

In a descendent menu, a group of menu items can be one of four types. Each
type has an insertion rule.

Table 13-3: Insertion rules for groups of menu items

Where you set the
ShiftToRight property

You set the ShiftToRight property in an ancestor menu only if you know that
you will always want a group of menu items to shift right (or down) when you
inherit from the menu and add a new menu item. For example, if you have New,
Edit, and Tools menus on the menu bar, set the ShiftToRight property for the
Tools menu items if you are going to inherit from this menu, because Tools is
usually the last item on a menu bar.

How to insert menu
items in a descendent
menu

If you can insert a menu item in a descendent menu, the Insert Menu Item
option on the Insert menu and the pop-up menu is enabled. The Insert Menu
Item is enabled if ShiftToRight is set in the selected item before which you are
inserting, and in all menu items following it.

To insert a menu item in a descendant, you use the same method you use to
insert an item in a new menu, whether the menu item is on the menu bar or on
a drop-down or cascading menu. For information about inserting menu items,
see “Working with menu items” on page 287.

Using menus
You can use menus in two ways:

• Place them in the menu bar of a window

• Display a menu as a pop-up menu

Type of group Insertion rule

Inherited menu items without
ShiftToRight set

You cannot insert a new menu item before
any of these menu items

Inherited menu items with
ShiftToRight set in ancestor

You can insert before the first menu item in
the group but not before the others

New items without ShiftToRight set You can insert a new menu item before any
of these menu items

New items with ShiftToRight set You can insert a new menu item before any
of these menu items

CHAPTER 13 Working with Menus

User’s Guide 305

Adding a menu bar to a window
To have a menu bar display when a window is opened by a user, you associate
a menu with the window in the Window painter.

❖ To associate a menu with a window:

1 Click the Open button in the PowerBar, select the window with which you
want to associate the menu, and open the window.

2 Do one of the following:

• In the Properties view for the window, enter the name of the menu in
the MenuName text box on the General tab page

• Click the Browse button and select the menu from the Select Object
dialog box, which lists all menus available to the application

In the Select Object dialog box, you can search for a menu by clicking
the Browse button.

3 Click Save to associate the selected menu with the window.

Identifying menu items
in window scripts

You reference menu items in scripts in windows and controls using the
following syntax:

menu.menu_item

You must always fully qualify the menu item with the name of the menu.

When referring to a menu item in a drop-down or cascading menu, you must
specify each menu item on the path to the menu item you are referencing,
separating the names with periods.

For example, to refer to the Enabled property of menu item m_open, which is
under the menu bar item m_file in the menu saved in the library as m_menu, use:

m_menu.m_file.m_open.Enabled

Changing a window's
menu during
execution

You can use the ChangeMenu function in a script to change the menu associated
with a window during execution.

Using menus

306 PocketBuilder

Displaying pop-up menus
To display a pop-up menu in a window, use the PopMenu function to identify
the menu and the location at which you want to display the menu.

If the menu is
associated with the
window

If the menu is currently associated with the window, you can simply call the
PopMenu function.

The following statement in a CommandButton script displays m_appl.m_help
as a pop-up menu at the current pointer position, assuming menu m_appl is
already associated with the window:

m_appl.m_help.PopMenu(PointerX(), PointerY())

If the menu is not
associated with the
window

If the menu is not already associated with the window, you must create an
instance of the menu before you can display it as a pop-up menu.

The following statements create an instance of the menu m_new, then pop up
the menu mymenu.m_file at the pointer location, assuming m_new is not
associated with the window containing the script:

m_new mymenu
mymenu = create m_new
mymenu.m_file.PopMenu(PointerX(), PointerY())

User’s Guide 307

C H A P T E R 1 4 Working with User Objects

About this chapter One of the features of object-oriented programming is reusability: you
define a component once, then reuse it as many times as you need to
without any additional work. One of the best ways to get reusability in
PocketBuilder is with user objects. This chapter describes how to define
and use user objects.

Contents

About user objects
Applications often have features in common. For example, you might
often reuse features like the following:

• A processing package that calculates commissions or performs
statistical analysis

• A Close button that performs a certain set of operations and then
closes the window

• DataWindow controls that perform standard error checking

• A list that lists all departments

• A predefined file viewer that you plug into a window

Topic Page

About user objects 307

About the User Object painter 310

Building a new user object 311

Using inheritance to build user objects 317

Using user objects 319

Communicating between a window and a user object 323

About user objects

308 PocketBuilder

If you find yourself using the same application feature repeatedly, you should
define a user object: you define the user object once in the User Object painter
and use it as many times as you need.

There are two main types of user objects: class and visual. Class user objects
are also called nonvisual objects.

Class user objects
A class user object lets you reuse a set of business rules or other processing that
acts as a unit but has no visual component. For example, you might define a
class that calculates sales commissions or performs statistical analysis.
Whenever you need to do this type of processing, you instantiate the user
object in a script and call its functions.

You build class user objects in the User Object painter, specifying instance
variables and object-level functions. Then you create an instance of the class
user object in your application, thereby making its processing available.

There are two kinds of class user objects:

• Custom class

• Standard class

Custom class user
objects

Custom class user objects are objects of your own design that encapsulate
properties and functions not visible to the user. They are not derived from
PocketBuilder objects. You define them to create units of processing that have
no visual component.

For example, to calculate commissions in an application, you can define an
n_CalculateCommission custom class user object that contains properties and
user-defined functions that do the processing to calculate commissions.

Whenever you need to use this processing, you create an instance of the user
object in a script, which then has access to the logic in the user object.

Standard class user
objects

A standard class user object inherits its definition from one built-in, nonvisual
PocketBuilder object, such as the POOM object, the Transaction object, or the
Error object. You modify the definition to make the object specific to your
application, and optionally add instance variables and functions to enhance the
behavior of the built-in object. Once you define a standard class user object,
you can go to the Application painter and specify that you want to use it instead
of the corresponding built-in system object in your application.

CHAPTER 14 Working with User Objects

User’s Guide 309

Visual user objects
A visual user object is a reusable control or set of controls that has a certain
behavior. You define it in the User Object painter, where you place controls in
the user object and write scripts for those controls. Then you can place the user
object as often as needed in windows you build in your applications.

The types of visual user objects are:

• Custom visual Most useful if you frequently group controls together in
a window and always use the controls to perform the same processing.

• Standard visual Most useful if you frequently use a PocketBuilder
control to perform the same processing.

Custom visual user
objects

Custom visual user objects are objects that have several controls that function
as a unit. You can think of a custom visual user object as a window that is a
single unit and is used as a control.

Suppose that you frequently use a group of buttons, each of which performs
standard processing. If you build a custom user object that contains all the
buttons, you can place the buttons in the window as a unit when you place the
user object in a window.

Standard visual user
objects

A standard visual user object inherits its definition from one standard
PocketBuilder control. You modify the definition to make the control specific
to your applications.

Suppose that you frequently use a CommandButton named Close to display a
message box and close the parent window. If you build a standard visual user
object that derives from a CommandButton to perform this processing, you can
use the user object whenever you want to display a message box and then close
a window.

Building user objects
You can build a user object from scratch, or you can create a user object that
inherits its style, events, functions, structures, variables, and scripts from an
existing user object.

For information on building a user object from scratch, see “Building a new
user object” on page 311. To find out more about creating a user object based
on an existing PocketBuilder object, see “Using inheritance to build user
objects” on page 317.

About the User Object painter

310 PocketBuilder

About the User Object painter
The User Object painter has different implementations, depending on the type
of user object you are working with. It has several views where you specify
how the user object behaves and, for custom visual and standard visual user
objects, how it looks. For details about the views, how you use them, and how
they are related, see “Views in painters that edit objects” on page 58.

Views for visual user
objects

In this User Object painter for a custom visual user object, the Layout view and
Script view have been arranged to display at the same time.

Figure 14-1: Custom visual object in the User Object painter

Most of your work in the User Object painter for visual objects is done in three
views:

• The Layout view, where you design the appearance of the user object

• The Properties view, where you set user object properties and control
properties

• The Script view, where you modify behavior by coding user object and
control scripts

In the Layout view, you add controls to a visual user object in the same way
you add controls to a window.

For information about specifying user object properties, see “Building a new
user object” on page 311. For information about using the Script view, see
Chapter 6, “Writing Scripts.”

CHAPTER 14 Working with User Objects

User’s Guide 311

Views for nonvisual
user objects

The Layout and Control List view are not needed for nonvisual user objects,
but you use all the other views that you use for visual objects.

For nonvisual user objects, there is no layout design work to do, but otherwise,
working in the User Object painter on the behavior of a nonvisual object is
similar to working on the behavior of a visual user object.

Building a new user object
This section describes how to build a user object from scratch.You use this
technique to create user objects that are not based on existing user objects.

Creating a new user object
You can create any type of user object from the PB Object tab page of the New
dialog box.

Figure 14-2: User object types on the PBObject tab page

❖ To create a new user object:

1 Open the New dialog box.

2 On the PB Object tab page, select the kind of user object you want to
create.

The four user object choices display at the top of the tab page.

3 Click OK.

What you do next depends on the type of user object you selected. For
custom user objects, the User Object painter opens. For standard user
objects, a selection dialog box displays.

The remainder of this section describes how to build each type of user
object.

Building a new user object

312 PocketBuilder

Building a custom class user object
On the PB Object tab page of the New dialog box, if you select Custom Class
and click OK, the User Object painter for custom class user objects opens.

❖ To build the custom class user object:

1 Declare functions, structures, or variables you need for the user object.

2 Create and compile scripts for the user object.

Custom class user objects have built-in constructor and destructor events.

3 Save the user object.

See “Saving a user object” on page 315.

Using AutoInstantiate You can create custom class user objects that are autoinstantiated, which
provides you with the ability to define methods.

Autoinstantiated user objects do not require explicit CREATE or DESTROY
statements when you use them. They are instantiated when you call them in a
script and destroyed automatically.

❖ To define an autoinstantiated custom class user object:

• In the Properties view, select the AutoInstantiate check box

For more information about autoinstantiation, see “autoinstantiate” in the
online Help.

Building a standard class user object
On the PB Object tab page of the New dialog box, if you select Standard Class
and click OK, the Select Standard Class Type dialog box displays.

❖ To build the standard class user object:

1 In the Select Standard Class Type dialog box, select the built-in system
object that you want your user object to inherit from and click OK.

2 Declare functions, structures, or variables you need for the user object.

For a list of properties and functions
Use the Browser to list the built-in properties inherited from the selected
system object. Use the Function List view or the Browser to list the
functions inherited from the selected system object.

CHAPTER 14 Working with User Objects

User’s Guide 313

3 Declare any user events needed for the user object.

For information about user events, see “Communicating between a
window and a user object” on page 323.

4 In the Script view, create and compile scripts for the user object.

Class user objects have built-in constructor and destructor events.

5 Save the user object.

See “Saving a user object” on page 315.

Building a custom visual user object
On the PB Object tab page of the New dialog box, if you select Custom Visual
and click OK, the User Object painter for custom visual user objects opens. It
looks like the Window painter, but the empty box that displays in the Layout
view is the new custom visual user object.

Building a custom visual user object is similar to building a window, described
in Chapter 10, “Working with Windows.” The views available in the Window
painter and the User Object painter for custom visual user objects are the same.

❖ To build the custom visual user object:

1 Place the controls you want in the custom visual user object.

2 Work with the custom visual user object as you would with a window in
the Window painter:

• Define the properties of the controls

• Declare functions, structures, or variables as necessary

• Declare any events needed for the user object or its controls

For information about user events, see “Communicating between a
window and a user object” on page 323.

Building a new user object

314 PocketBuilder

• In the Script view, create and compile the scripts for the user object or
its controls

You can write scripts for each control in a custom visual user object.

For more information on events associated with custom visual user
objects, see “Events in user objects” on page 315.

3 Save the user object.

See “Saving a user object” on page 315.

Building a standard visual user object
On the PB Object tab page of the New dialog box, if you select Standard Visual
and click OK, the Select Standard Visual Type dialog box displays.

❖ To build a standard visual user object:

1 In the Select Standard Visual Type dialog box, select the PocketBuilder
control you want to use to build your standard visual user object, and click
OK.

The selected control displays in the workspace. Your visual user object
will have the properties and events associated with the PocketBuilder
control you are modifying.

2 Work with the control as you do in the Window painter:

• Review the default properties and make any necessary changes

• Declare functions, structures, or variables as necessary

You can declare these in the Script view.

• Declare any user events needed for the user object

For information about user events, see “Communicating between a
window and a user object” on page 323.

• Create and compile the scripts for the user object

Standard visual user objects have the same events as the
PocketBuilder control you modified to create the object.

3 Save the user object.

See “Saving a user object” on page 315.

CHAPTER 14 Working with User Objects

User’s Guide 315

Events in user objects
When you build a user object, you can write scripts for any event associated
with that user object.

Events in class user
objects

Most custom class user objects have only constructor and destructor events.

Table 14-1: Events for custom class user objects

Standard class user objects have the same events as the PocketBuilder system
object from which they inherit.

Events in visual user
objects

Standard visual user objects have the same events as the PocketBuilder control
from which they inherit. Custom user objects have a common set of events.

Table 14-2: Events for custom visual user objects

For more about drag and drop events, see the chapter in the Resource Guide on
using drag and drop in a window.

Saving a user object
When you save an object, you must give it a name.

Naming conventions You should adopt naming conventions to make it easy to understand a user
object's type and purpose. A user object name can be any valid PowerBuilder
identifier of up to 40 characters. For information about valid identifiers, see
“identifier names” in the online Help.

Event Occurs when

Constructor The user object is created

Destructor The user object is destroyed

Event Occurs when

Constructor Immediately before the Open event of the window and when the
user object is dynamically placed in a window

Destructor Immediately after the Close event of the window and when the
user object is dynamically removed from a window

DragDrop A dragged object is dropped on the user object

DragEnter A dragged object enters the user object

DragLeave A dragged object leaves the user object

DragWithin A dragged object is moved within the user object

Other A Windows message occurs that is not a PocketBuilder event

RButtonDown The right mouse button is pressed (desktop), or a tap-and-hold
action is executed on the control (Pocket PC device)

Building a new user object

316 PocketBuilder

One convention you could follow is the use of u_ as the prefix for visual user
objects and n_ as the prefix for class (nonvisual) user objects. For standard
classes, include in the name the standard prefix for the object or control from
which the class inherits.

Table 14-3 shows some examples of this convention.

Table 14-3: Suggested naming conventions for user objects

❖ To save a user object:

1 In the User Object painter, select File>Save from the menu bar or click the
Save button in the painter bar.

If you have previously saved the user object, PocketBuilder saves the new
version in the same library and returns you to the User Object painter.

If you have not previously saved the user object, PocketBuilder displays
the Save User Object dialog box.

2 Enter a name in the User Objects box.

To determine a useful name for the user object, see “Naming conventions”
on page 315.

3 Enter comments to describe the user object.

These display in the Select User Object dialog box and in the Library
painter, and document the purpose of the user object.

4 Specify the library in which to save the user object.

To make a user object available to all applications, save it in a common
library and include the library in the library search path for each
application.

5 Click OK to save the user object.

Type of user
object Format Example

Standard visual u_control_purpose u_cb_close, a CommandButton that
closes a window

Custom visual u_purpose u_toolbar, a toolbar

Standard class n_systemobject_purpose n_trans_test, derived from the
Transaction object and used for testing

Custom class n_cst_purpose n_cst_commission, calculates
commissions

CHAPTER 14 Working with User Objects

User’s Guide 317

Using inheritance to build user objects
When you build a user object that inherits its definition (properties, events,
functions, structures, variables, controls, and scripts) from an existing user
object, you save coding time. All you have to do is modify the inherited
definition to meet the requirements of the current application.

For example, suppose your application has a user object u_file_view that has
three CommandButtons:

• List—displays a list of files in a list

• Open—opens the selected file and displays the file in a MultiLineEdit
control

• Close—displays a message box and then closes the window

If you want to build another user object that is exactly like the existing
u_file_view except that it has a fourth CommandButton, you can use inheritance
to build the new user object, and then all you have to do is add the fourth
CommandButton.

❖ To use inheritance to build a descendent user object:

1 Click the Inherit button in the PowerBar, or select File>Inherit from the
menu bar.

2 In the Inherit From Object dialog box, select User Objects from the
Objects of Type drop-down list.

3 Select the target as well as the library or libraries you want to look in.

Displaying user objects from many libraries
To find a user object more easily, you can select more than one library in
the Libraries list. Use Ctrl+Click to toggle selected libraries and
Shift+Click to select a range.

4 Select the user object you want to use to create the descendant, and click
OK.

The selected object displays in the User Object painter and the title bar
indicates that the object is a descendant.

5 Make any changes you want to the user object.

6 Save the user object with a new name.

Using inheritance to build user objects

318 PocketBuilder

Using the inherited information
When you build and save a user object, PocketBuilder treats the object as a unit
that includes:

• The object (and any controls within the object if it is a custom visual user
object)

• The object's properties, events, and scripts

• Any variables, functions, or structures declared for the object

When you use inheritance to build a new user object, everything in the ancestor
user object is inherited in the direct descendant, and in its descendants in turn.

Ancestor’s instance
variables display

Suppose that you create a user object by inheriting it from a custom class or
standard class user object that has public or protected instance variables with
simple datatypes. In this case, the instance variables display and can be
modified in the descendent user object’s Properties view.

All public instance variables with simple datatypes, such as integer, boolean,
character, date, string, and so on, display in the descendant. Instance variables
with the any or blob datatype or instance variables that are objects or arrays do
not display.

What you can do in
the descendant

You can do the following in a descendent user object:

• Change the values of the properties and the variables

• Build scripts for events that do not have scripts in the ancestor

• Extend or override the inherited scripts

• Add controls (in custom visual user objects)

• Reference the ancestor's functions and events

• Reference the ancestor’s structures if the ancestor contains a public or
protected instance variable of the structure data type

• Access ancestor properties, such as instance variables, if the scope of the
property is public or protected

• Declare variables, events, functions, and structures for the descendant

What you cannot do in
the descendant

In a descendent user object, you cannot delete controls inherited from a custom
visual user object. If you do not need a control in a descendent user object, you
can make it invisible.

CHAPTER 14 Working with User Objects

User’s Guide 319

Understanding
inheritance

The issues concerning inheritance with user objects are the same as the issues
concerning inheritance with windows and menus. See Chapter 12,
“Understanding Inheritance,” for more information.

Using user objects
Once you have built a user object, you are ready to use it in an application. This
section describes how to use:

• Visual user objects

• Class user objects

Using visual user objects
You use visual user objects by placing them in a window or in a custom visual
user object. The techniques are similar whether you are working in the Window
painter or the User Object painter.

❖ To place a user object:

1 Open the window or custom visual user object in which you want to place
the visual user object.

2 Click the User Object button in the PainterBar, or select Insert>Control
from the menu bar and then select User Object.

3 Select the user object you want to use and click the location where you
want the user object to display.

PocketBuilder creates a descendent user object that inherits its definition
from the selected user object and places it in the window or user object.

What you can do After you place a user object in a window or a custom visual user object, you
can name it, size it, position it, write scripts for it, and do anything else you can
do with a control.

When you place the user object in a window, PocketBuilder assigns it a unique
name, just as it does when you place a control. The name is a concatenation of
the default prefix for a user object control (initially, uo_) and a default suffix,
which is a number that makes the name unique.

Using user objects

320 PocketBuilder

You should change the default suffix to a suffix that has meaning for the user
object in your application.

For more information about naming, see “Naming controls” on page 228.

Writing scripts When you place a user object in a window or a custom user object, you are
actually creating a descendant of the user object. All scripts defined for the
ancestor user object are inherited. You can choose to override or extend those
scripts.

For more information, see “Using inherited scripts” on page 278.

You place a user object as a unit in a window (or another user object). You
cannot write scripts for individual controls in a custom user object after placing
it in a window or custom user object; you do that only when you are defining
the user object itself.

Placing a user object
during execution

You can add a user object to a window during execution using the PowerScript
functions OpenUserObject and OpenUserObjectWithParm in a script. You can
remove a user object from a window using the CloseUserObject function.

Using class user objects
How you insert a
nonvisual object

There are two ways to use a class user object when the user object is not
autoinstantiating: you can create an instance of it in a script, or you can insert
the user object in a window or user object using the Insert menu.

For more information on autoinstantiation, see “Using AutoInstantiate” on
page 312.

The nonvisual object you insert can be a custom class user object or a standard
class user object of most types.

❖ To instantiate a class user object:

1 In the window or user object in which you want to use the class user object,
declare a variable of the user object type and create an instance of it using
the CREATE statement. For example:

// declared instance variable:
// n_myobject invo_myobject
invo_myobject = CREATE n_myobject

2 Use the user object’s properties and functions to do the processing you
want.

CHAPTER 14 Working with User Objects

User’s Guide 321

3 When you have finished using the user object, destroy it using the
DESTROY statement.

If you select Autoinstantiate in the properties of the class user object, you
cannot use the CREATE and DESTROY statements.

❖ To insert a class user object:

1 Open the window or user object in which you want to insert the class user
object.

2 Select Insert>Object from the menu bar.

3 Select User Object (at the bottom of the list) and then select the class user
object you want to insert.

PocketBuilder inserts the selected class user object.

4 Modify the properties and code the events of the nonvisual object as
needed.

When the user object is created in an application, the nonvisual object it
contains is created automatically. When the user object is destroyed, the
nonvisual object is destroyed automatically.

Using the Non-Visual
Object List view

You can use the same technique to insert standard class user objects. Since all
class user objects are nonvisual, you cannot see them, but if you look at the
Non-Visual Object List view, you see all the class user objects that exist in your
user object.

Using the Non-Visual Object List view’s pop-up menu, you can display a class
user object’s properties in the Properties view, display the Script view for the
object to code its behavior, or delete the object.

Using global standard class user objects
Several standard class user object types are inherited from predefined global
objects used in all PocketBuilder applications:

Transaction (SQLCA)
Error
Message

Replacing the built-in
global object

If you want your standard class user object to replace the built-in global object,
you tell PocketBuilder to use your user object instead of the built-in system
object that it inherits from. You will probably use this technique if you build a
user object that inherits from the Error or Message object.

Using user objects

322 PocketBuilder

In Figure 14-3, user objects have been assigned to replace the default
Transaction and Error objects.

Figure 14-3: Replacing default global objects

❖ To replace the built-in global object with a standard class user object:

1 Open the Application object.

2 In the Properties view, click the Additional Properties button on the
General tab page.

3 In the Application properties dialog box, select the Variable Types tab.

4 Specify the standard class user object you defined in the corresponding
field and click OK.

After you have specified your user object as the default global object, it
replaces the built-in object and is created automatically when the application
starts up. You do not create it (or destroy it) yourself.

The properties and functions defined in the user object are available anywhere
in the application. Reference them using dot notation, just as you access those
of other PocketBuilder objects such as windows.

Supplementing the
built-in global object

You can use a user object inherited from one of the built-in global objects by
inserting one in your user object as described in “Using class user objects” on
page 320. If you do, your user object is used in addition to the built-in global
object variable. Typically you use this technique with user objects inherited
from the Transaction object. You now have access to two Transaction objects:
the built-in SQLCA and the one you defined.

CHAPTER 14 Working with User Objects

User’s Guide 323

For more information For more information about using the Error object, see “Using the Error
object” on page 663.

For information about using the Message object, and about creating your own
Transaction object, see the Resource Guide.

Communicating between a window and a user object
Sometimes you might need to exchange information between a window and a
visual user object in the window. Consider these situations:

• You have a set of buttons in a custom user object. Each of the buttons acts
upon a file that is listed in a SingleLineEdit control in the window (but not
in the user object).

You need to pass the contents of the SingleLineEdit control from the
window to the user object.

• You have a user object color toolbar. When the user clicks one of the colors
in the user object, a control in the window changes to that color.

You need to pass the color from the user object to the window control.

This section discusses two techniques for handling this communication and
presents a simple example.

Table 14-4: Techniques for communicating information in a window

Communication with both techniques can be either synchronous (using Send
for functions and the EVENT keyword for events) or asynchronous (using Post
for functions and the POST keyword for events).

Technique Advantages Disadvantages

Functions Easy to use

Supports parameters and return types,
so is not prone to errors

Supports data encapsulation and
information hiding

Best for complex operations

Creates overhead, might be
unnecessary for simple
operations

User events Very flexible and powerful Uses no type checking, so
is prone to error

Communicating between a window and a user object

324 PocketBuilder

Directly referencing
properties

Instead of using functions or user events, it is possible to directly reference
properties of a user object. If you have a user object control, uo_1, associated
with a custom user object that has a SingleLineEdit, sle_1, you can use the
following in a script for the window:

uo_1.sle_1.Text = "new text"

However, it is better to communicate with user objects through functions and
user events, as described below, in order to maintain a clean interface between
the user object and the rest of your application.

The functions
technique

Exchanging information using functions is straightforward. After a user object
calls a function, any return value is available to any control within that object.

For how to use this technique, see “Example 1: using functions” on page 326.

❖ To pass information from a window to a user object:

1 Define a public, user-object-level function that takes as arguments the
information needed from the window.

2 Place the user object in the window.

3 When appropriate, call the function from a script in the window, passing
the needed information as arguments.

❖ To pass information from a user object to a window:

1 Define a public, window-level function that takes as parameters the
information needed from the user object.

2 Place the user object in the window.

3 When appropriate, call the function from a script in the user object,
passing the needed information as parameters.

The user events
technique

You can define user-defined events, also called user events, to communicate
between a window and a user object. You can declare user events for any
PocketBuilder object or control.

A custom visual user object often requires a user event. After you place a
custom visual user object in a window or in another custom user object, you
can write scripts for events that occur only in the user object itself. You cannot
write scripts for events in the controls in the user object.

You can, however, define user events for the user object, and trigger those
events in scripts for the controls contained in that user object. In the Window
painter, you write scripts for the user events, referencing components of the
window as needed.

CHAPTER 14 Working with User Objects

User’s Guide 325

For more information about user events, see Chapter 8, “Working with User
Events.” For instructions for using this technique, see “Example 2: using user
events” on page 327.

❖ To define and trigger a user event in a visual user object:

1 In the User Object painter, select the user object.

Make sure no control in the user object is selected.

2 In the Event List view, select Add from the pop-up menu.

3 In the Prototype window that displays, define the user event.

For how to do so, see “Defining user events” on page 183.

4 Use the Event keyword in scripts for a control to trigger the user event in
the user object:

userobject.Event eventname ()

For example, the following statement in the Clicked event of a
CommandButton contained in a custom visual user object triggers the
Max_requested event in the user object:

Parent.Event Max_requested()

This statement uses the pronoun Parent, referring to the custom visual user
object itself, to trigger the Max_requested event in that user object.

5 Implement these user events in the Window painter.

❖ To implement the user event in the window:

1 Open the window.

2 In the Window painter, select Insert>Control from the menu bar and place
the custom visual user object in the window.

3 Double-click the user object, and then in the Script view, write scripts for
the user events you defined in the User Object painter.

Communicating between a window and a user object

326 PocketBuilder

Examples of user object controls affecting a window
To illustrate these techniques, consider a simple custom visual user object,
uo_backcolor, that contains two buttons, Green and Blue.

Figure 14-4: User object with two buttons

If the user clicks the Green button in an application window containing this
user object, the current window background turns green. If the user clicks Blue,
the window background color changes to blue.

Because the user object can be associated with any window, the scripts for the
buttons cannot reference the window that has the user object. The user object
must get the name of the window so that the buttons can reference the window.

“Example 1: using functions” next shows how PocketBuilder uses functions to
pass a window name to a user object, allowing controls in the user object to
affect the window the user object is in.

“Example 2: using user events” on page 327 shows how PocketBuilder uses
unmapped user events to allow controls in a user object to affect the window
the user object is in.

Example 1: using
functions

1 In the Script view in the User Object painter, define an instance variable,
mywin, of type window.

window mywin

This variable will hold the name of the window that has the user object.

2 Define a user object-level function, f_setwin, with:

• Public access

• No return value

• One argument, win_param, of type window and passed by value

3 Type the following script for the function:

mywin = win_param

When f_setwin is called, the window name passed in win_param will be
assigned to mywin, where user object controls can reference the window
that has the user object.

CHAPTER 14 Working with User Objects

User’s Guide 327

4 Write scripts for the two buttons:

• cb_green: mywin.BackColor = RGB (64,128,64)

• cb_blue: mywin.BackColor = RGB (64,64,255)

5 Save the user object as uo_backcolor and close the User Object painter.

6 Open the window, select Insert>Control>User Object, select uo_backcolor,
and click in the window in the Layout view to add the user object.

7 In the Properties view, change the name for the user object control to
uo_func.

8 In the Open event for the window, call the user object-level function,
passing the name of the window:

uo_func.f_setwin(This)

The pronoun This refers to the window's name, which will be passed to the
user object's f_setwin function.

What happens When the window opens, it calls the user object-level
function f_setwin, which passes the window name to the user object. The user
object stores the name in its instance variable mywin. When the user clicks a
button control in the user object, the control references the window through
mywin.

Example 2: using user
events

1 In the Script view in the User Object painter, define two unmapped user
events for the user object: Green_requested and Blue_requested.

Leave the Event ID fields blank to define them as unmapped.

2 Trigger user events of the user object in the scripts for the Clicked event
of each CommandButton:

• cb_green: Parent.Event Green_requested()

• cb_blue: Parent.Event Blue_requested()

3 Save the user object and name it uo_event and close the User Object
painter.

4 Open the window and, in the Window painter, select Insert>Object from
the menu bar and then place uo_event in the window.

5 Double-click uo_event to display its Script view.

The two new user events display in the second drop-down list in the Script
view.

Communicating between a window and a user object

328 PocketBuilder

6 Write scripts for the two user events:

• green_requested: Parent.BackColor = RGB (64,128,64)

• blue_requested: Parent.BackColor = RGB (64,64,128)

These scripts reference the window containing the user object with the
pronoun Parent.

What happens When a user clicks a button, the Clicked event script for that
button triggers a user event in its parent, the user object. The user object script
for that event modifies its parent, the window.

User’s Guide 329

C H A P T E R 1 5 Working with Native Objects and
Controls for Windows CE
Devices

About this chapter PocketBuilder includes support for objects and controls that are specific
to Windows CE platforms. This chapter describes these objects and
controls.

Contents

You can also add a custom Today item for the Start page of a Pocket PC.
For information about adding a custom Today item, see “Specifying
application and Today item properties” on page 64.

Topic Page

Bar code scanner objects 330

Digital camera objects 331

HPBiometricScanner object 333

NotificationBubble object 334

Phone-related objects 335

POOM object 338

SerialGPS object 344

Signature control 346

SMS messaging objects 347

Toolbar control 348

Bar code scanner objects

330 PocketBuilder

Bar code scanner objects
Description The SocketBarcodeScanner and SymbolBarcodeScanner nonvisual objects

inherit from the BarcodeScanner base class. They interface, respectively, with
the Socket and Symbol bar code scanners. The Socket scanner software is
designed to work with Socket’s In-Hand Scan Card laser scanner devices. The
Symbol scanner software is designed to work with Symbol Technologies' PPT
2800 and 8800 Series Pocket PC terminals.

Usage You can add a SocketBarcodeScanner or SymbolBarcodeScanner object to
your PocketBuilder application by selecting the SocketBarcodeScanner or
SymbolBarcodeScanner menu item from the Insert>Object menu in the
window painter. After you add this object to your application, you must call the
Open function on the object to load the scanner DLLs and connect to the
scanner firmware.

You start a synchronous scan by calling ScanWait, passing in a scan timeout
period in seconds. You can run continuous scans by calling the ScanNoWait
function from the ScanTriggered event. You retrieve scan data by calling
RetrieveData and assigning instance members of the SymbolBarcodeScanner
object to variables of the appropriate datatype, or by displaying the values of
the instance members in text boxes of an application window or user object.

The following is example code for reading a single bar code scan using a
SymbolBarcodeScanner object that is assigned to l_scanner:

Integer li_ret
li_ret = l_scanner.Open()
li_ret = l_scanner.ScanWait(30)
li_ret = l_scanner.RetrieveData()
sle_symbology.text=string(l_scanner.ScannedSymbology)
sle_data.text = l_scanner.ScannedData

For more information Properties and functions of the BarcodeScanner base class (implemented by
the SocketBarcodeScanner and SymbolBarcodeScanner objects) are described
in the PowerScript Reference and in the online Help.

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices

User’s Guide 331

Digital camera objects
Specifying a camera
device

The Camera object provides the interface for a PocketBuilder application and
a digital camera device. PocketBuilder supports the HP Photosmart, VEO
130S, and HTC cameras.

To capture an image, you must first specify the camera you want to use by
selecting the camera type in the Properties view for a Camera object or by
setting a specifier for the camera type in script. You must also set the Port or
the Folder property on the Camera object before opening a communication
channel to the camera device.

Table 15-1 shows integer values that have been defined for supported camera
types. It also shows the additional property you must set depending on your
camera type selection.

Table 15-1: Specifier and required Port or Folder property value for
supported camera type

Camera attributes
structure properties

For the HP Photosmart and VEO 130S cameras, the CameraImageAttributes
structure object stores the configurations allowed by the camera device for
capturing images, and lets you select those attributes when previewing or
snapping a photographic image. The CameraImageAttributes object is a
read-only structure containing valid configuration settings for a particular
camera device. You call GetAllowedImageAttributes to retrieve an array of legal
configuration settings for the device.

HTC cameras
For HTC cameras, you must use the IA Camera Wizard to set configurations,
and to preview and capture images. After setting the CameraType and Folder
properties for the Camera object, then calling Open to open a communication
channel to the camera, you can launch the IA Camera Wizard by calling
BeginPreview.

Some cameras have different allowable configurations for preview and capture
modes. (Some cameras do not even permit preview mode.) For example, the
Hewlett-Packard Photosmart Mobile Camera has four different configurations
for picture size in capture mode, but only two in preview mode.

Camera type Specifier Port or Folder property

VEO 130S 11 Port (set to "SIO1:")

HP Photosmart 71 Port (set to "SIO1:")

HTC using the IA
Camera Wizard

81 Folder (set to the path on the Windows CE
device)

Digital camera objects

332 PocketBuilder

Typically, a structure object you use for the preview mode will be different
from the structure object for the capture mode of the same device, so there are
separate functions to set the configuration for each mode,
SetPreviewImageAttributes and SetCaptureImageAttributes.

Camera session
example

The following example opens a camera session where cam_1 is an object of
type camera. It uses the CameraType property to define the camera as an HP
Photosmart device before calling the Open function. The example sets preview
and capture configurations, previews the current image in a preview window,
and captures the image to a file:

integer iRet
CameraImageAttributes AllowedConfigs[]
cam_1.CameraType = 71
cam_1.Port = "SIO:"
iRet = cam_1.Open(w_myphoto_main)
// Get allowed configurations for this specific camera.
cam_1.GetAllowedImageAttributes(AllowedConfigs[])

// Assume presented to the user, and the user
// makes some selections…
// Assume the user selects the first configuration for
// preview purposes and the third configuration for
// capture purposes
cam_1.SetPreviewImageAttributes &

(AllowedConfigs[1])
cam_1.SetCaptureImageAttributes &

(AllowedModes[3])
// set some other options, such as fluorescent
// white balance and center weighting for the
// AE meter
cam_1.SetOption(CamOptWhiteBalance, 3)
cam_1.SetOption(CamOptAEMetering, 1)

// When the user presses a button to begin preview mode,
// preview the image in the picture control "p_preview"
cam_1.BeginPreview(w_main.p_preview)
// When the user presses a button to capture the current
// picture, save the picture to the file "my_pic.jpg"
if cam_1.isReadyToCapture() then

cam_1.CaptureImage("\my_pic.jpg")
end if
// In the application Close event, end the preview and
// close the camera connection
cam_1.EndPreview()
cam_1.Close()

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices

User’s Guide 333

HPBiometricScanner object
Description The HPBiometricScanner nonvisual object inherits from the BiometricScanner

base class to interface with the Hewlett-Packard biometric scanner. The
scanner software is designed to work with the hp IPAQ h5500 and h5550
Pocket PC terminals that include an integrated biometric fingerprint reader.

Usage You can add an HPBiometricScanner object to your PocketBuilder application
by selecting the Insert>Object>HPBiometricScanner menu item. After you add
this object to your application, you must call the Open function on the object
to load the scanner DLLs and connect to the scanner firmware.

You start a synchronous scan by calling ScanCapture, passing in a scan timeout
period in seconds and an enumerated value for the scan purpose. You can call
the VerifyMatch function to compare the scanned minutiae with a template scan
stored in a database.

The following is example code for comparing a single fingerprint scan using
an HPBiometricScanner object that is assigned to l_scanner:

Integer li_ret
Blob lblob_MinutiaeFromDatabase
Blob lblob_MinutiaeFromScan

li_ret = l_scanner.Open()
li_ret = l_scanner.ScanCapture(30, &

EnrollForVerification!)
sle_quality.text = string(l_scanner.ScannedQuality())
li_ret = &

l_scanner.ScannedMinutiae(lblob_MinutiaeFromScan)
li_ret = &

l_scanner.VerifyMatch(lblob_MinutiaeFromScan, &
lblob_MinutiaeFromDatabase)

For more information Properties and functions of the BiometricScanner base class (implemented by
the HPBiometricScanner object) are described in the PowerScript Reference
and in the online Help.

NotificationBubble object

334 PocketBuilder

NotificationBubble object
Description The NotificationBubble is a Windows CE control that lets you send

notifications to a user.

Usage You can add a NotificationBubble object to a window or user object by using
the Insert>Object>NotificationBubble menu item or creating the object in a
script. For example, you might add the following PowerScript code in the
Script view of a command button Clicked event:

String ls_body
NotificationBubble myBubble
Integer li_return

ls_body = "<html><body><form method=~"POST~" action=>"&
+"<p>This is an "&
+"HTML notification coming from "

ls_body += "<i>Pocket</i>"&
+"PowerBuilder</p><p align=right>"&
+"<input type=button name='cmd:10' value="&
+"'My Ok'> <input type=button name='cmd:2'"&
+"value='Cancel'></p></body></html>"

myBubble = CREATE NotificationBubble
myBubble.caption = "My Title"
myBubble.notificationID = 123
myBubble.body = ls_body
myBubble.duration = 10 // seconds
li_return = myBubble.SetMessageSink(parent)
li_return =myBubble.icon("foo.ico")
li_return =myBubble.Update()

You could code another control to update the message body of the notification
bubble with a different message, making sure to create a NotificationBubble
with the same NotificationID and to call the Update function again.

Since there is no guarantee that a user will acknowledge a notification and
thereby remove it, an application must provide a separate means to remove the
notification. Typically you would code the NotificationBubble Remove
function in the Close or Destructor event of the visual object that you assigned
to receive the notification. The following code would ensure the removal of the
NotificationBubble with the NotificationID 123:

NotificationBubble myBubble
Integer li_return
myBubble = CREATE NotificationBubble

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices

User’s Guide 335

myBubble.notificationID = 123
li_return = myBubble.Remove()

You can add a user event to capture a user response to the notification bubble.
The user event must implement the pbm_command event ID. The
pbm_command arguments hwndChild and childID are useful for capturing the
NotificationID of the NotificationBubble control and the command ID of the
HTML input element that acknowledges the notification. You could write these
values to a ListBox control, as in the following example:

if(hwndChild = 123) then
// display only the messages from the Notification
lb_result.addItem("NotificationID="+string(hwndChild))
lb_result.addItem("cmd:###= " + string(childID))
end if

In this example, hwndChild adds the value 123 to the lb_result ListBox. If the
notification is acknowledged from an HTML input element with the attribute
name = “cmd:10”, as in the example at the beginning of this section, childID
would add the value 10 to the ListBox control.

For more information Properties and functions of a NotificationBubble control are described in the
PowerScript Reference and in the online Help.

Phone-related objects
The PhoneCall nonvisual object provides an interface that allows a
PocketBuilder application user to place or receive phone calls on a Smartphone
or Pocket PC-Phone Edition platform. Other nonvisual objects track call
history and provide access to dialing directories. Table 15-2 lists nonvisual user
objects that support telephone functionality in PocketBuilder.

Table 15-2: Phone-related objects

Object Provides the interface to

PhoneCall object The telephone account on a device

CallLog and
CallLogEntry objects

Entries in the call log on a device

DialingDirectory and
DialingDirectoryEntry
objects

Entries in the address books on a device

Phone-related objects

336 PocketBuilder

PhoneCall object
Instantiating the
PhoneCall object

At design time, you can add PhoneCall object to a window by selecting
Insert>Object>PhoneCall from the PocketBuilder menu. The default name for
the first PhoneCall object is pcall_1. If you use the PocketBuilder UI to add the
object, PocketBuilder automatically instantiates the object at runtime. If you do
not use the PocketBuilder UI to add a PhoneCall object, you must instantiate
the object in code (and optimally destroy it after a user finishes placing the call
or closes the application).

PhoneCall object
example

The following example makes a voice call to a local take-out restaurant after
setting some properties on the pcall_1 object:

Integer li_ret
//set properties of phone call object
pcall_1.VoiceCall = true
pcall_1.PhoneNumber = “1-617-123-4567”
pcall_1.CalledParty = “pizza order”
//place a phone call
li_ret = pcall_1.MakeCall()

CallLog and CallLogEntry objects
Using the call history
objects

The CallLog and CallLogEntry objects provide an interface to the entries in the
call log on Smartphone and PocketPC - Phone Edition platforms. The call log
lists information regarding all incoming and outgoing calls for a device,
allowing a user to track and return missed calls, manage phone billing charges,
and perform additional tasks. It is a read-only data store.

At design time, you can add a CallLog object by selecting
Insert>Object>CallLog from the PocketBuilder menu. If you do not use the
PocketBuilder UI to add a CallLog object, you must instantiate a CallLog
object in code. You can call the getEntry method on the CallLog object to return
a CallLogEntry object.

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices

User’s Guide 337

CallLog example The following example places information from a single phone call into
SingleLineEdit boxes:

Integer li_ret
CallLogEntry l_entry
l_entry = clog_1.getEntry(1)
//display call log entry values in text boxes
sle_name.text = l_entry.Name
sle_number.text = l_entry.PhoneNumber
sle_StartTime.text = l_entry.StartTime
sle_EndTime.text = l_entry.EndTime

DialingDirectory and DialingDirectoryEntry objects
Using the phone
directory objects

The DialingDirectory and DialingDirectoryEntry objects provide an interface
to the entries of phone books on Smartphone and PocketPC - Phone Edition
platforms. You can use these objects to merge multiple sources of phone
numbers into a single logical entity.

At design time, you can add a DialingDirectory object by selecting
Insert>Object>DialingDirectory from the PocketBuilder menu. If you do not
use the PocketBuilder UI to add a DialingDirectory object, you must instantiate
a DialingDirectory object in code.

You can call the getEntry method on the DialingDirectory object to return a
DialingDirectoryEntry object:

Integer l_idx = 1
DialingDirectoryEntry l_mydirectoryentry
l_mydirectoryentry = l_myphonebook.getEntry (l_idx)

For more information Properties and functions of phone-related objects are described in the
PowerScript Reference and in the online Help.

POOM object

338 PocketBuilder

POOM object
Description The Pocket Outlook Object Manager (POOM) object provides an interface to

the object store for the Pocket PC contact manager, appointment calendar, and
task manager.

The POOM object interacts with other POOM-related objects listed in
Table 15-3.

Table 15-3: POOM and POOM-related objects

The POOM object is the root object that lets you access all the other objects in
the system. You use it to attach to the Pocket Outlook object manager running
on the Pocket PC, to create and delete contacts, appointments, and tasks, and
to receive and dispatch these objects (contacts, appointments, and tasks) using
infrared queues.

You use the POOMContact, POOMAppointment, and POOMTask objects to
specify the properties of objects, such as the e-mail address of a contact or the
time of an appointment. All of these objects have functions that display the
object on the Pocket PC and update any changes in the Pocket Outlook object
manager’s repository.

The POOMAppointment and POOMTask objects also have functions that let
you specify the details of recurring appointments and tasks, using the
properties of the POOMRecurrence object.

POOMAppointment also lets you add and remove the names of recipients of
an appointment (the individuals invited to a meeting).

Object Description

POOM object Main POOM object that provides an interface to other
POOM-related objects, and lets you add and remove
appointments, contacts, and tasks

POOMAppointment
object

Gets and sets appointment recipients and recurrences

POOMContact object Copies and displays contacts

POOMTask object Copies and displays tasks, and gets and sets task recurrences

POOMRecurrence
object

Used by the POOMAppointment and POOMTask objects to
define recurring appointments and tasks

POOMRecipient
object

Used by the POOMAppointment object to define the
recipients of appointment notifications

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices

User’s Guide 339

Figure 15-1 displays the hierarchical relationships among the POOM-related
objects.

Figure 15-1: Overview of POOM-related objects

Usage You can add a POOM object to a window or user object by using the
Insert>Object>POOM menu item or creating the object in a script.

Creating a POOM object To perform any POOM-related task, such as
getting an appointment or creating a task, you must create a POOM object and
attach to the Pocket Outlook object manager. You attach to the repository by
calling the Login function. To ensure that the POOM object is removed from
the device or emulator’s memory, call the Logoff function when you have
finished working with the object manager.

POOM object

340 PocketBuilder

When you call the Login function, you can optionally specify a window that
will serve as the parent window for the Outlook session and will be used when
you call the Display function. If you do not specify a window, the Pocket PC
Contacts, Calendar, or Tasks window displays.

The following script creates a POOM object, attaches to the Pocket Outlook
object manager, retrieves an array of appointments, and then detaches from the
object manager:

// Global variable: POOM g_poom
POOMAppointment myAppts[]
POOMTask myTasks[]
POOMContact myContacts[]
Integer li_rtn

g_poom = CREATE POOM
li_rtn = g_poom.login()

// Get appointments and display first in edit boxes
li_rtn = g_poom.getAppointments(myAppts)
sle_1.text = myAppts[1].subject
sle_2.text = STRING(myAppts[1].start, "[datetime]")
sle_3.text = STRING(myAppts[1].end, "[datetime]")
sle_4.text = myAppts[1].location
…
g_poom.logoff()
DESTROY g_poom

The examples in the rest of this section assume that you have already attached
to the Pocket Outlook object manager.

Modifying an item in the POOM repository To modify an existing item,
you first obtain the item using one of the Get functions of the POOM object.
For POOMAppointment, POOMContact, and POOMTask, the POOM object
has four Get functions. For example, for contacts:

• GetContact (index) gets a contact using its index in the object manager. It
takes an integer and returns a POOMContact object.

• GetContactFromOID (oid) gets a contact using its Windows CE object
identifier (OID). It takes an unsigned long and returns a POOMContact
object.

OIDs are not persistent
You cannot use OIDs across POOM sessions. They are reassigned when
the repository is backed up and at other times.

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices

User’s Guide 341

• GetContacts (ref poomtask[]) gets an array of all the contacts in the
repository and returns an integer.

• GetContacts (matchcriteria, poomtask[]) gets an array of all the contacts
in the repository that satisfy the match criteria and returns an integer.

Checking for valid objects
When you use a function, such as GetContact or GetContactFromOID, that
returns an object, use the IsValid function to ensure that a valid object was
returned.

The following example changes the second e-mail address of the contact with
index 23:

POOMContact mycontact

mycontact = g_poom.GetContact(23)
If IsValid(mycontact) then

mycontact.email2address = "janedoe@netscape.net"
mycontact.Update()

end if

Creating new objects You use the CREATE statement to create new objects.
This example creates a new appointment, sets its subject, location, and start and
end times, and specifies that the user should be reminded 15 minutes before the
start time. The type of reminder is not specified in this example, so the system
default will be used. You can specify the type of reminder with the
ReminderOptions property.

integer li_rc
POOMAppointment appt
DateTime dt

appt = CREATE POOMAppointment
appt.Subject = "Quick Team Meeting"
appt.Location = "Terry's Office"

// start the meeting 30 minutes from now and
// end it 15 minutes later
dt = datetime(today(), RelativeTime(now(), 30*60))
appt.appointmentStart = dt
dt = datetime(today(), RelativeTime(now(), 45*60))
appt.appointmentEnd = dt
// set a reminder
appt.IsReminderSet = true
appt.ReminderMinutesBeforeStart = 15

POOM object

342 PocketBuilder

// save the appointment in the repository and display it
li_rc = g_poom.Add(appt)

appt.display()POOMAppointment appt

You can add detailed notes to the object description only after it has been saved
in the repository. The Body property sets a text annotation, and the BodyInk
property sets an annotation in Pocket Word Ink (PWI) format. Setting either or
both properties automatically updates the object. For example, if you add the
following line to the previous example after the call to Add and before the call
to Display, the text displays in the calendar:

appt.body = "Quick update on status”

Cloning an existing object When you modify an object, as described in
“Modifying an item in the POOM repository” on page 340, you call the Update
function to save your changes to the repository. If you call the Add function
instead, a new object is added to the repository with the properties you change
and all the properties of the original object. For example, if Mary Smith
changes her last name to Smythe, and you want both names to be listed as
contacts, you could use the following code, assuming Mary’s index in the
contact list is 27:

POOMContact contact
contact = g_poom.GetContact(27)
If IsValid(contact) then

contact.LastName = "Smythe"
g_poom.Add(contact)

end if

Sending a cancellation notice You can use the Cancel function on an
appointment to send a cancellation notice to the appointment’s recipients.

appt = g_poom.GetAppointment(1)
iRet = appt.Cancel()

Removing an existing object You can delete appointments, contacts, and
tasks from the repository by calling the Remove function:

appt = g_poom.GetAppointment(1)
iRet = appt.Remove()

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices

User’s Guide 343

Creating and clearing a recurring appointment or task You create a
POOMRecurrence object to set recurring properties for a valid appointment or
task. The following code causes a task to be entered in the client Outlook
calendar for 23 consecutive days:

POOMTask task
POOMRecurrence recur
integer iRet
task = g_poom.GetTask(1)// BY INDEX
if isValid(task) then

// add the recurrence
recur = CREATE POOMRecurrence
recur.recurrencetype = RecursDaily!
recur.Occurrences = 23
iRet = task.SetRecurrence(recur)
iRet = task.Update()

end if

You clear a recurrence pattern by calling ClearRecurrencePattern on the
POOMRecurrence object for the repeating task or appointment:

task = g_poom.GetTask(1)// BY INDEX
if isValid(task) then

// clear the recurrence
iRet = task.ClearRecurrencePattern()
iRet = task.Update()

end if

Adding recipients to an appointment You add a recipient to an
appointment by calling AddRecipient on a POOMAppointment object. The
AddRecipient function can take string arguments for the name and address of a
recipient, or can be passed a POOMRecipient object containing a recipient
name and address. You must add recipients to an appointment one by one.
However, if you use POOMRecipient objects exclusively to add appointment
recipients, you can call GetRecipients on the POOMAppointment object to
obtain an array of all the names on the recipient list and all the addresses where
appointment notices are sent.

For more information Properties and functions of the POOM object and its related objects are
described in the PowerScript Reference and in the online Help.

For more information about the Pocket Outlook Object Model, see the
Microsoft documentation at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcepoom/html/ceoriPocketOutlookObjectModel.asp

SerialGPS object

344 PocketBuilder

SerialGPS object
Supported hardware PocketBuilder applications can interface with global positioning system (GPS)

devices through nonvisual user objects. The SerialGPS object provides an
interface to the Bluetooth unit GPS devices manufactured by Pharos and
TomTom. The SerialGPS object inherits from a GPS base class.

In addition to the GPS and SerialGPS classes, the PocketBuilder GPS interface
uses several structure objects to store information.

For information about the properties, events, and functions of the SerialGPS
object, and the properties of the related GPSCoordinate, GPSFix,
GPSHeading, GPSSatellitePosition, and GPSSatellitesInView structure
objects, see Objects and Controls in the online Help.

For more information on the supported GPS devices, see the Pharos Web site
at http://www.pharosgps.com and the TomTom Web site at
http://www.tomtom.com. For information about the NMEA-0183 specification
used by the supported GPS devices, see the NMEA Web site at
http://www.nmea.org/.

GPS Example The following example captures the time, latitude, longitude, and altitude of a
GPS reading in SingleLineEdit text boxes:

GPSFix myFix
GPSCoordinate myCoord
Integer fixMinutes
Real fixSeconds
Integer rc

gps_1.SerialPort = "COM5:" //override default com8 port
gps_1.ConfigParams = "buffersize=2000,refresh=2000,"&
+ "timeout=5000,multithread=0"
rc = gps_1.Open()
IF rc = 1 THEN
 rc = gps_1.GetFix(myFix)
 IF rc = 1 THEN
//Data received, test if valid
IF myFix.isFixValid THEN
//Display current fix
sle_time.text = string(myFix.FixTime, "h:mm:ss") &

+ " UTC"
myCoord = myFix.Longitude
fixMinutes = INTEGER (myCoord.minute)
fixSeconds =(myCoord.minute &
- INTEGER(myCoord.minute))*60.0

sle_long.text = "Longitude: " &

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices

User’s Guide 345

+ string(myCoord.degree) + " degrees " &
+ string(fixMinutes) + " minutes " &
+ string(fixSeconds) + " seconds " &
+ string(myCoord.hemisphere)

myCoord = myFix.Latitude
 fixMinutes = INTEGER (myCoord.minute)
fixSeconds =(myCoord.minute &

- INTEGER(myCoord.minute))*60.0
sle_lat.text = "Latitude: " &
+ string(myCoord.degree) + " degrees " &
+ string(fixMinutes) + " minutes " &
+ string(fixSeconds) + " seconds " &
+ string(myCoord.hemisphere)

sle_height.text ="Altitude: " + &
string(myFix.Altitude) + " meters"

ELSE
sle_message.text = "Fix is not valid"
END IF
ELSE
//Call user function to display error
sle_message.text = uf_display_error("GetFix", rc)
END IF
ELSE
sle_message.text = uf_display_error("Open Serial " + &
"GPS", rc)

END IF
rc = gps_1.Close()

The previous example uses the user function, uf_display_error, which provides
a convenient way to interpret error codes from GPS objects. The following
code defines the user function:

public function string uf_display_error (string
msg_prefix, long errcode);

stringerrmsg, err_description
err_description = " RC=" + string(errcode)

choose case errcode
case 1

err_description += " Success"
case 100

err_description += " End of Buffer"
case -1

err_description += " General Error"

Signature control

346 PocketBuilder

case -10
err_description += " GPS Object Error"

case -11
err_description += " No Raw Data. Set " + &
"configparams before Open"

case -12
err_description += " Open Failure. " + &
"Check filename argument on Open"

case -13
err_description += " Open object before " + &
"calling other methods."

case -14
err_description += " Read timeout. " + &
"SerialGPS reciever may not be sending data."

case -15
err_description += " Read Failure. "

case -16
err_description += " Parser Error. " + &

"Unexpected data recieved."
case -17

err_description += " Checksum incorrect. " + &
"Possible data corruption in this sentence."

case -100
err_description += " Method not implemented."

end choose

errmsg = msg_prefix + err_description + EOL
return errmsg

end function

For more information For more information on the supported GPS devices, see the Pharos Web site
at http://www.pharosgps.com and the TomTom Web site at
http://www.tomtom.com. For information about the NMEA-0183 specification,
see the NMEA Web site at http://www.nmea.org/.

Signature control
Description The Signature control lets you capture a user’s signature or a drawing and save

it. You can also set data in the control.

CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices

User’s Guide 347

Usage To add a Signature control to a window or user object, use the
Insert>Control>Signature menu item, or select the Signature icon on the
Controls drop-down toolbar on the PainterBar and click inside the window or
user object.

The GetDataAsInk and SetDataAsInk functions get and set blob data, including
graphical information such as signature or drawing, in Pocket Word Ink (PWI)
format, which is compatible with Pocket Word. You can also save blob data as
a bitmap using the GetDataAsBitmap function. The bitmap is compatible with
the Picture control and Windows desktop applications.

The GetDataAsRTF and SetDataAsRTF functions get and set data in RTF
format in a blob or Unicode string. However, due to a Microsoft limitation,
these functions can currently get and set only the text data in the control, such
as data typed in using the SIP. They cannot get and set graphical data.

The GetDataAsText and SetDataAsText can also get and set text data in a
Unicode string.

After saving the data in the control, use the Clear function to clear all data in
the control.

Properties and functions of a Signature control are described in the
PowerScript Reference and in the online Help.

SMS messaging objects
SMSSession object
interface

Nonvisual user objects in PocketBuilder provide support for sending Short
Message Service (SMS) messages from applications that you deploy to devices
that use the SMS messaging protocol. This includes the “Phone Editions” of
Pocket PC 2002 and 2003 devices, as well as all Smartphone platforms. SMS
involves the combination of text-based e-mail (although other types of data can
be sent) and a paging mechanism.

The SMSSession object provides the interface for a PocketBuilder application
and the SMS messaging system on a Pocket PC or Smartphone device. It also
provides access to the SMSAddress, SMSMessage, and SMSProtocol objects.

For more information Properties and functions of the SMSSession, SMSAddress, SMSMessage, and
SMSProtocol objects are described in the PowerScript Reference and in the
online Help.

Toolbar control

348 PocketBuilder

Toolbar control
Description The Toolbar control lets you add picture buttons to a menu for your

PocketBuilder applications.

Usage You add a Toolbar control to a window or user object using the
Insert>Control>Toolbar menu item, or by selecting the Toolbar icon in
PainterBar1 and clicking inside the window or user object.

You can add toolbar items to the Toolbar control on the Items page of the
Properties view for the control. You can also create ToolbarItem objects in
script:

ToolbarItem myItem
Integer li_rtn

li_rtn = tlbr_myToolBar.AddPicture ("pic1.bmp")
li_rtn = tlbr_myToolBar.AddPicture ("addwatch!")
tlbr_myToolBar.visible = true
myitem.itemstate = 4
myitem.itemgroup = 0
myitem.itempictureindex = 1
myitem.itemstyle = stylebutton!
li_rtn = tlbr_mytoolbar.AddItem(myItem)
myitem.itempictureindex = 2
myitem.itemstyle = stylecheck!
li_rtn = tlbr_mytoolbar.AddItem(myItem)

Typically you would use the PocketBuilder UI to add a visual user object,
because events that are associated with a visual user object are not available
when the object is instantiated in script. Since there are no events on a
ToolbarItem object, the only disadvantage to using script to add a toolbar item
object is one of convenience; however, tapping an item in a Toolbar control
triggers a Clicked event on the control. To take advantage of this Toolbar
control event, you must create the Toolbar control in the UI, even if you add
toolbar items in script.

For more information Properties and functions of the Toolbar control and ToolbarItem objects are
described in the PowerScript Reference and in the online Help.

P A R T 5 Working with Databases
and DataWindows

This part describes how to use PocketBuilder to manage
your database. It also describes how to build DataWindow
objects to retrieve, present, and manipulate data in your
PocketBuilder applications

User’s Guide 351

C H A P T E R 1 6 Managing the Database

About this chapter This chapter describes how you can manage the database from within
PocketBuilder and database synchronization from within PocketBuilder
applications.

Contents

Working with database components
A database is an electronic storage place for data. Databases are designed
to ensure that data is valid and consistent, and that it can be accessed,
modified, and shared.

A database management system (DBMS) governs the activities of a
database and enforces rules that ensure data integrity. A relational DBMS
stores and organizes data in tables.

Topic Page

Working with database components 351

Using the Database painter 354

Creating databases 359

Working with tables 361

Working with keys 374

Working with indexes 378

Working with database views 379

Manipulating data 385

Creating and executing SQL statements 391

Controlling access to the current database 395

Using the MobiLink Synchronization for ASA wizard 396

Using the UltraLite Synchronization wizard 400

Maintaining users and subscriptions in the remote database 402

Managing MobiLink synchronization on the server 403

Working with database components

352 PocketBuilder

How you work with
databases in
PocketBuilder

You can use PocketBuilder to work with the following database components:

• Tables and columns

• Keys

• Indexes

• Database views

• Extended attributes

• Additional database components

Tables and columns A database usually has many tables, each of which contains rows and columns
of data. Each row in a table has the same columns, but a column’s value for a
particular row could be empty or NULL if the column’s definition allows it.

Tables often have relationships with other tables. For example, in the ASA
Sample database that is included with Adaptive Server Anywhere (ASA), the
Department table has a Dept_id column, and the Employee table also has a
Dept_id column that identifies the department in which the employee works.
When you work with the Department table and the Employee table, the
relationship between them is specified by a join of the two tables.

Keys Relational databases use keys to ensure database integrity.

Primary keys A primary key is a column or set of columns that uniquely
identifies each row in a table. For example, two employees might have the
same first and last names, but they have unique ID numbers. The Emp_id
column in the Employee table is the primary key column.

Foreign keys A foreign key is a column or set of columns that contains
primary key values from another table. For example, the Dept_id column is the
primary key column in the Department table and a foreign key in the Employee
table.

Key icons In PocketBuilder, columns defined as keys are displayed with key
icons that include a P for primary or an F for foreign. PocketBuilder
automatically joins tables that have a primary/foreign key relationship, with the
join on the key columns.

CHAPTER 16 Managing the Database

User’s Guide 353

Figure 16-1: Links between tables in Object Layout view

For more information, see “Working with keys” on page 374.

Indexes An index is a column or set of columns you identify to improve database
performance when searching for data specified by the index. You index a
column that contains information you will need frequently. Primary and
foreign keys are special examples of indexes.

You specify a column or set of columns with unique values as a unique index,
represented by an icon with a single key.

You specify a column or set of columns with values that are not unique as a
duplicate index, represented by an icon with two keys.

For more information, see “Working with indexes” on page 378.

Database views If you often select data from the same tables and columns, you can create a
database view of the tables. You give the database view a name, and each time
you refer to it, the associated SELECT command executes to find the data.

Database views are listed in the Objects view of the Database painter and can
be displayed in the Object Layout view, but a database view does not physically
exist in the database in the same way that a table does. Only its definition is
stored in the database, and the view is re-created whenever the definition is
used.

Database administrators often create database views for security purposes. For
example, a database view of an Employee table that is available to users who
are not in Human Resources might show all columns except Salary.

For more information, see “Working with database views” on page 379.

Extended attributes Extended attributes enable you to store information about a table’s columns in
special system tables. Unlike tables, keys, indexes, and database views (which
are DBMS-specific), extended attributes are specific to PocketBuilder. The
most powerful extended attributes determine the edit style, display format, and
validation rules for the column.

Using the Database painter

354 PocketBuilder

For more information about extended attributes, see “Specifying column
extended attributes” on page 365. For more information about the extended
attribute system tables, see Appendix A, “Extended Attribute System Tables.”

Using the Database painter
To open the Database painter, click the Database button in the PowerBar.

About the painter Like the other PocketBuilder painters, the Database painter contains a menu
bar, a customizable PainterBar, and several views. All database-related tasks
that you can do in PocketBuilder can be done in the Database painter.

UltraLite limitations
UltraLite databases do not support database owners, groups, stored procedures,
views, system tables, and extended attributes, and you cannot modify tables
and primary and foreign keys in the database directly. As a result, some of the
Database painter views are read only, some tree view items are not present or
empty, and some menu items are disabled when you are connected to an
UltraLite database. Use the UltraLite Schema Painter, available in the UltraLite
Utilities folder in the Database painter’s Objects view, to modify tables.

Views in the Database
painter

Table 16-1 lists the views available in the Database painter.

Table 16-1: Database painter views

View Description

Activity Log Displays the SQL syntax generated by the actions you
execute.

Columns Used to create and/or modify a table’s columns. The
Columns view is read only for UltraLite databases.

Extended Attributes Lists the display formats, edit styles, and validation rules
defined for the selected database connection. Extended
attributes are not supported in UltraLite databases.

Interactive SQL
(ISQL Session)

Used to build, execute, or explain SQL.

Object Details Displays an object’s properties. For some objects, its
properties are read-only; for others, properties can be
modified. This view is analogous to the Properties view in
other painters.

Object Layout Displays a graphical representation of tables.

CHAPTER 16 Managing the Database

User’s Guide 355

Figure 16-2: Default layout of the Database painter

Dragging and
dropping

You can select certain database objects from the Objects view and drag them
to the Object Details, Object Layout, Columns, and/or ISQL views. Position
the pointer on the database object’s icon and drag it to the appropriate view.

Table 16-2: Using drag and drop in the Database painter

Database painter
tasks

Table 16-3 describes how to do some basic tasks in the Database painter. Most
of these tasks begin in the Objects view. Many can be accomplished by
dragging and dropping objects into different views. If you prefer, you can use
buttons or menu selections from the main bar or from pop-up menus.

Objects Lists the database interfaces and profiles. For an active
database connection, might also list all or some of the
following objects associated with that database: groups,
metadata types, procedures and functions, tables, columns,
primary and foreign keys, indexes, users, views, driver
information, and utilities (the database components listed
depend on the database and your user privileges).

Results Displays data in a grid, table, or freeform format.

View Description

Object Can be dragged to

Driver, group, metadata type, procedure or function,
table, column, user, primary or foreign key, index

Object Details view

Table or view Object Layout view

Table or column Columns view

Procedure or view ISQL view

Using the Database painter

356 PocketBuilder

Table 16-3: Common tasks in the Database painter

To do this Do this

Modify a database profile Highlight a database profile and select Properties from
the Object or pop-up menu, or use the Properties button.
You can use the Import and Export Profiles menu
selections to copy profiles.

For more information, see the chapter on connecting to
a database in the Resource Guide.

Connect to a database Highlight a database profile and then select Connect
from the File or pop-up menu or use the Connect button.
With File>Recent Connections you can review and
return to earlier connections. Database connections can
also be made using the Database Profile button.

Create new profiles,
tables, views, columns,
keys, indexes, or groups

Highlight the database object and select New from the
Object or pop-up menu or use the Create button.

Modify database objects Drag the object to the Object Details view.

Graphically display tables Drag the table icon from the list in the Objects view to
the Object Layout view, or highlight the table and select
Add To Layout from the Object or pop-up menu.

Manipulate data Highlight the table and select Grid, Tabular, or Freeform
from the Object>Data menu or the pop-up menu Edit
Data item, or use the appropriate Data Manipulation
button.

Build, execute, or explain
SQL

Use the ISQL view to build SQL statements. Use the
Paste SQL button to paste SELECT, INSERT, UPDATE,
and DELETE statements, or type them directly into the
view’s scripting area. To execute or explain SQL, select
Execute SQL and Explain SQL from the Design or
pop-up menu.

Define or modify
extended attributes

Select from the Object>Insert menu the type of extended
attribute you want to define or modify, or highlight the
extended attribute from the list in the Extended
Attributes view and select New or Properties from the
pop-up menu.

Specify extended
attributes for a column

Drag the column to the Object Details view and select
the Extended Attributes tab.

Access database utilities Double-click a utility in the Objects view to launch it.

Log your work Select Design>Start Log from the menu bar. To see the
SQL syntax generated, display the Activity Log view.

CHAPTER 16 Managing the Database

User’s Guide 357

Modifying database preferences
To modify database preferences, select Design>Options from the menu bar.
Some preferences are specific to the database connection; others are specific to
the Database painter.

Preferences on the
General properties
page

The Connect To Default Profile, Shared Database Profiles, Keep Connection
Open, Use Extended Attributes, and Read Only preferences are
database-connection-specific preferences. For information about modifying
these preferences, see the Resource Guide.

The remaining preferences are specific to the Database painter, and are shown
in Table 16-4.

Table 16-4: Database painter preferences

Preferences on the
Object Colors property
page

You can set colors separately for each component of the Database painter's
graphical table representation: the table header, columns, indexes, primary key,
foreign keys, and joins. Set a color preference by selecting a color from a
drop-down list.

You can design custom colors for use when you select color preferences. To
design custom colors, select Design>Custom Colors from the menu bar and
work in the Custom Colors dialog box.

Database
preference

What PocketBuilder does with the specified
preference

Columns in the
Table List

When PocketBuilder displays tables graphically, eight table
columns display unless you change the number of columns.

SQL Terminator
Character

PocketBuilder uses the semicolon as the SQL statement
terminator unless you enter a different terminator character in
the box.

Refresh Table List When PocketBuilder first displays a table list, it retrieves the
table list from the database and displays it. To save time,
PocketBuilder saves this list internally for reuse to avoid
regenerating very large table lists. The table list is refreshed
every 30 minutes (1800 seconds) unless you specify a different
refresh rate.

Using the Database painter

358 PocketBuilder

Logging your work
As you work with your database, you generate SQL statements. As you define
a new table, for example, PocketBuilder builds a SQL CREATE TABLE
statement internally. When you click the Create button, PocketBuilder sends
the SQL statement to the DBMS to create the table. Similarly, when you add
an index, PocketBuilder builds a CREATE INDEX statement.

You can see all SQL generated in a Database painter session in the Activity Log
view. You can also save this information to a file. This allows you to have a
record of your work and makes it easy to duplicate the work if you need to
create the same or similar tables in another database.

❖ To start logging your work:

1 Open the Database painter.

2 Select Start Log from the Design menu or the pop-up menu in the Activity
Log view.

PocketBuilder begins sending all generated syntax to the Activity Log
view.

❖ To stop the log:

• Select Stop Log from the Design menu or the pop-up menu in the Activity
Log view.

PocketBuilder stops sending the generated syntax to the Activity Log
view. Your work is no longer logged.

❖ To save the log to a permanent text file:

1 Select Save or Save As from the File menu or the pop-up menu in the
Activity Log view.

2 Name the file and click Save. The default file extension is SQL, but you
can change that if you want to.

Submitting the log to your DBMS
You can open a saved log file and submit it to your DBMS in the ISQL view.
For more information, see “Building and executing SQL statements” on page
391.

CHAPTER 16 Managing the Database

User’s Guide 359

Creating databases
In PocketBuilder you typically work within an existing database, but you can
create a new local ASA or UltraLite database from within PocketBuilder. You
can also delete existing ASA databases.

Creating an ASA
database

You can create an ASA database in the Database painter or the Database
Profiles dialog box.

❖ To create a local ASA database:

1 From the Objects view in the Database painter or the Database Profiles
dialog box, launch the Create ASA Database utility.

The Create Adaptive Server Anywhere Database dialog box displays.

2 In the Database Name box, specify the file name and path of the database
you are creating.

If you do not provide a file extension, the database file name is given the
extension DB.

3 Define other properties of the database as needed.

If you are using a non-English database, you can specify a code page in the
Collation Sequence box.

For complete information about filling in the dialog box, click the Help
button in the dialog box.

4 Click OK.

When you click OK, PocketBuilder does the following:

• Creates a database with the specified name in the specified directory
or folder. If a database with the same name exists, you are asked
whether you want to replace it.

• Adds a data source to the ODBC.INI key in the registry. The data
source has the same name as the database unless one with the same
name already exists, in which case a suffix is appended.

• Creates a database profile and adds it to the registry. The profile has
the same name as the database unless one with the same name already
exists, in which case a suffix is appended.

• Connects to the new database.

Creating databases

360 PocketBuilder

Deleting an ASA
database

You can delete an ASA database in the Database painter or the Database
Profiles dialog box.

❖ To delete a local Adaptive Server Anywhere database:

1 From the Objects view in the Database painter or the Database Profiles
dialog box, launch the Delete ASA Database utility.

The Delete Local Database dialog box displays.

2 Select the database you want to delete and select Open.

3 Click Yes to delete the database.

When you click Yes, PocketBuilder deletes the specified database.

Creating an UltraLite
database

The following procedure shows how to create a new UltraLite database using
the UltraLite Schema Painter and Create UltraLite Database utilities. You can
also create an UltraLite schema and database from an existing ASA database.
For an example, see the DWExam example in the Code
Examples\DataWindows directory and the chapter on MobiLink
synchronization in the Resource Guide.

For more information about creating UltraLite databases, see the UltraLite
Database User’s Guide in the online Help for SQL Anywhere Studio.

❖ To create a local UltraLite database:

1 From the Objects view in the Database painter or the Database Profiles
dialog box, launch the UltraLite Schema Painter utility.

2 Select File>New>UltraLite Schema.

3 Click Browse to navigate to the location where you want to create the
schema (.USM) file, type a name for the schema file, and click Open.

4 If necessary, select a different collation sequence, select the check box if
you want the database to be case sensitive, and click OK.

You do not need to change the collation sequence for most languages
based on the Roman alphabet.

5 Expand the schema and its Tables folder in the left pane and click Add
Table.

The New Table dialog box opens.

CHAPTER 16 Managing the Database

User’s Guide 361

6 Complete the dialog box to add a new table, click OK, and add additional
tables as needed.

For complete information about filling in the dialog box, click the Help
button.

7 Click Save and close the UltraLite Schema Painter.

8 From the Objects view, launch the Create UltraLite Database utility.

The Create UltraLite Database utility runs ulconv, the UltraLite database
converter command-line tool.

9 Click the Browse button next to the UL Schema box and browse to select
the schema file you just created.

10 Click the Browse button next to the New UL DB box, browse to select the
path to the new database, enter a name, and click OK.

Working with tables
When you open the Database painter, the Object view lists all tables in the
current database that you have access to (including tables that were not created
using PocketBuilder). You can create a new table or alter an existing table. You
can also modify table properties and work with indexes and keys.

Creating and modifying tables in an UltraLite database
To create and modify tables in an UltraLite database, use the UltraLite Schema
Painter utility.

Creating a new table from scratch
In PocketBuilder, you can create a new table in a database to which
PocketBuilder is connected.

❖ To create a table in the current database:

1 Do one of the following:

• Click the Create Table button

Working with tables

362 PocketBuilder

• Right-click in the Columns view and select New Table from the pop-
up menu

• Right-click Tables in the Objects view and select New Table from the
pop-up menu

• Select Insert>Table from the Object menu

The new table template displays in the Columns view. You use this
template to specify each column in the table. The insertion point is in the
Column Name box for the first column.

2 Enter the required information for this column.

For what to enter in each field, see “Specifying column definitions” on
page 363.

As you enter information, use the Tab key to move from place to place in
the column definition. After defining the last item in the column
definition, press the Tab key to display the work area for the next column.

3 Repeat step 2 for each additional column in your table.

4 (Optional) Select Object>Pending SQL from the menu bar or select
Pending SQL from the pop-up menu to see the pending SQL syntax.

If you have not already named the table, you must provide a name in the
dialog box that displays. To hide the SQL syntax and return to the table
columns, select Object>Pending Syntax from the menu bar.

5 Click the Save button or select Save from the File or pop-up menu, then
enter a name for the table in the Create New Table dialog box.

PocketBuilder submits the pending SQL syntax statements it generated to
the DBMS, and the table is created. The new table is displayed in the
Object Layout view.

About saving the table
If you make changes after you save the table and before you close it, you
see the pending changes when you select Pending SQL again. When you
click Save again, PocketBuilder submits a DROP TABLE statement to the
DBMS, recreates the table, and applies all changes that are pending.
Clicking Save many times can be time consuming when you are working
with large tables, so you might want to save only when you have finished.

6 Specify extended attributes for the columns.

CHAPTER 16 Managing the Database

User’s Guide 363

For what to enter in each field, see “Specifying column extended
attributes” on page 365.

Creating a new table from an existing table
You can very quickly create a new table that is similar to an existing table by
using the Save Table As menu option.

❖ To create a new table from an existing table:

1 Open the existing table in the Columns view by dragging and dropping it
or by selecting Alter Table from the pop-up menu.

2 Right-click in the Columns view and select Save Table As from the pop-up
menu.

The Create New Table dialog box displays.

3 Enter a name for the new table and then the owner’s name and click OK.

The new table appears in the Objects Layout view and the Columns view.

4 Make whatever changes you want to the table definition.

5 Save the table.

6 Make changes to the table’s properties in the Object Details view.

For more information about modifying table properties, see “Specifying
table and column properties” on page 364.

Specifying column definitions
When you create a new table, you must specify a definition for each column.

Table 16-5: Defining columns in the Columns view

Field What you enter

Column Name (Required) The name by which the column will be identified.

Data Type (Required) Select a datatype from the drop-down list. All
datatypes supported by the current DBMS are displayed in the list.

Width For datatypes with variable widths, the number of characters in
the field.

Dec For numeric datatypes, the number of decimal places to display.

Working with tables

364 PocketBuilder

Specifying table and column properties
After a table has been created and saved, you can specify the properties of a
table and of any column in a table. Table properties include the fonts used for
headers, labels, and data, and a comment that you can associate with the table.
Column properties include the text used for headers and labels, display
formats, validation rules, and edit styles used for data (also known as a
column’s extended attributes), and a comment you can associate with the
column.

Extended attribute system tables not supported for UltraLite databases
Comments, font properties, and extended attributes are stored in the
PocketBuilder extended attribute system tables. System tables are not
supported in UltraLite databases, but you can still take advantage of extended
attributes in your DataWindow objects. For more information, see “Using
extended attributes with an UltraLite application” on page 446.

Specifying table properties

Besides adding a comment to associate with the table, you can choose the fonts
that will be used to display information from the table in a DataWindow object.
You can specify the font, point size, color, and style.

❖ To specify table properties:

1 Do one of the following:

• Highlight the table in either the Objects view or the Object Layout
view and select Properties from the Object or pop-up menu

• Click the Properties button

Null Select Yes or No from the Null drop-down list to specify whether
NULLs are allowed in the column. Specifying No means the
column cannot have NULL values; users must supply a value. No
is the default in a new table.

Default The value that will be placed in a column in a row that you insert
into a DataWindow object. The drop-down list has built-in
choices, but you can type any other value. For an explanation of
the built-in choices, see your DBMS documentation.

Field What you enter

CHAPTER 16 Managing the Database

User’s Guide 365

• Drag and drop the table to the Object Details view

The properties for the table display in the Object Details view.

2 Select a tab and specify properties:

3 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you made in the Object Details view are immediately saved
to the table definition.

Specifying column extended attributes

Besides adding a comment to associate with a column, you can specify
extended attributes for each column. An extended attribute is information
specific to PocketBuilder that enhances the definition of the column.

❖ To specify extended attributes:

1 Do one of the following:

• Highlight the column in either the Objects view or the Object Layout
view and select Properties from the Object or pop-up menu

• Click the Properties button

• Drag and drop the column to the Object Details view

2 Select a tab and specify extended attribute values:

Select this tab To modify this property

General Comments associated with the table

Data Font Font for data retrieved from the database and displayed in
the Results view by clicking a Data Manipulation button

Heading Font Font for column identifiers used in grid, tabular, and n-up
DataWindow objects displayed in the Results view by
clicking a Data Manipulation button

Label Font Font for column identifiers used in freeform
DataWindow objects displayed in the Results view by
clicking a Data Manipulation button

Select this tab To modify these extended attributes

General Column comments.

Headers Label text used in freeform DataWindow objects and
header text used in tabular, grid, or n-up DataWindow
objects.

Working with tables

366 PocketBuilder

3 Right-click on the Column property sheet and select Save Changes from
the pop-up menu.

Any changes you made in the property sheet are immediately saved to the
table definition.

Overriding definitions
In the DataWindow painter, you can override the extended attributes specified
in the Database painter for a particular DataWindow object.

How the information is
stored

Extended attributes are stored in the PocketBuilder system tables in the
database. PocketBuilder uses the information to display, present, and validate
data in the Database painter and in DataWindow objects. When you create a
view in the Database painter, the extended attributes of the table columns used
in the view are used by default.

About display formats,
edit styles, and
validation rules

In the Database painter, you create display formats, edit styles, and validation
rules. Whatever you create is then available for use with columns in tables in
the database. You can see all the display formats, edit styles, and validation
rules defined for the database in the Extended Attributes view.

For more information about defining, maintaining, and using these extended
attributes, see Chapter 21, “Displaying and Validating Data.”

Display How the data is formatted in a DataWindow object as well
as display height, width, and position.

For example, you can associate a display format with a
Revenue column so that its data displays with a leading
dollar sign and negative numbers display in parentheses.

Validation Criteria that a value must pass to be accepted in a
DataWindow object and as an initial value for the column.

For example, you can associate a validation rule with a
Salary column so that users can enter only a value within a
particular range. For the initial value, you can select a value
from the drop-down list. The initial value must be the same
datatype as the column, must pass validation, and can be
NULL only if NULL is allowed for the column.

Edit Style How the column is presented in a DataWindow object.

For example, you can display column values as radio
buttons or in a drop-down list.

Select this tab To modify these extended attributes

CHAPTER 16 Managing the Database

User’s Guide 367

About headings and
labels

By default, PocketBuilder uses the column names as labels and headings,
replacing any underscore characters with spaces and capitalizing each word in
the name. For example, the default heading for the column Dept_name is Dept
Name. To define multiple-line headings, press Ctrl+Enter to begin a new line.

Specifying additional properties for character columns

You can set two additional properties for character columns on the Display
property page: Case and Picture.

Specifying the
displayed case

You can specify whether PocketBuilder converts the case of characters for a
column in a DataWindow object.

❖ To specify how character data should be displayed:

• On the Display property page, select a value in the Case drop-down list:

Specifying a column
as a picture

You can specify that a character column can contain names of picture files
(BMP files).

❖ To specify that column values are names of picture files:

1 On the Display property page, select the Picture check box.

When the Picture check box is selected, PocketBuilder expects to find
picture file names in the column, but displays the contents of the picture
file—not the name of the file—in reports and DataWindow objects.

Because PocketBuilder cannot determine the size of the image until
runtime, it sets both display height and display width to 0 when you select
the Picture check box.

2 Enter the size and the justification for the picture (optional).

Value Meaning

Any Characters are displayed as they are entered

UPPER Characters are converted to uppercase

lower Characters are converted to lowercase

Working with tables

368 PocketBuilder

Altering a table
After a table is created, you can make the following modifications if the table
is not in an UltraLite database (you need to modify an UltraLite database
schema to modify a table):

• Add or modify extended attributes for columns

• Delete an index and create a new index

• Append columns that allow NULLs

• Increase or decrease the number of characters allowed for data in an
existing column

You cannot:

• Insert a column between two existing columns

• Prohibit NULL values for an appended column

• Prohibit NULLs in a column that allowed NULLs

• Allow NULLs in a column that did not allow NULLs

• Alter an existing index

Figure 16-3: Table definition in Columns view of Database painter

❖ To alter a table:

1 Highlight the table and select Alter Table from the pop-up menu.

Opening multiple instances of tables
You can open another instance of a table by selecting Columns from the
View menu. Doing this is helpful when you want to use the Database
painter's cut, copy, and paste features to cut or copy and paste between
tables.

The table definition displays in the Columns view.

2 Make the changes you want in the Columns view or in the Object Details
view.

CHAPTER 16 Managing the Database

User’s Guide 369

3 Select Save Table or Save Changes.

PocketBuilder submits the pending SQL syntax statements it generated to
the DBMS, and the table is modified.

Cutting, copying, and pasting columns
In the Database painter, you can use the Cut, Copy, and Paste buttons in the
PainterBar (or Cut, Copy, and Paste from the Edit or pop-up menu) to cut, copy,
and paste one column at a time within a table or between tables.

❖ To cut or copy a column within a table:

1 Put the insertion point anywhere in the column you want to cut or copy.

2 Click the Cut or Copy button in the PainterBar.

❖ To paste a column within a table:

1 Put the insertion point in the column you want to paste to.

If you are changing an existing table, put the insertion point in the last
column of the table. If you try to insert a column between two columns,
you get an error message. You can append a column only to an existing
table. If you are defining a new table, you can paste a column anywhere.

2 Click the Paste button in the PainterBar.

❖ To paste a column to a different table:

1 Open another instance of the Columns view and use Alter Table to display
an existing table or click New to create a new table.

2 Put the insertion point in the column you want to paste to.

3 Click the Paste button in the PainterBar.

Closing a table
You can remove a table from a view by selecting Close or Reset View from its
pop-up menu. This action removes the table only from the Database painter
view. It does not drop (remove) the table from the database.

Working with tables

370 PocketBuilder

Dropping a table
Dropping removes the table from the database.

❖ To drop a table:

1 Select Drop Table from the table's pop-up menu or select Object>Delete
from the menu bar.

2 Click Yes.

Deleting orphaned
table information

If you drop a table outside PocketBuilder, information remains in the system
tables about the table, including extended attributes for the columns.

❖ To delete orphaned table information from the extended attribute system
tables:

1 Select Design>Synch Extended Attributes from the menu bar.

If you try to delete orphaned table information and there is none, a
message tells you that synchronization is not necessary.

2 Click Yes.

Viewing pending SQL changes
As you create or alter a table definition, you can view the pending SQL syntax
changes that will be made when you save the table definition.

Figure 16-4: SQL syntax for pending changes to a table

❖ To view pending SQL syntax changes:

• Right-click the table definition in the Columns view and select Pending
Syntax from the pop-up menu.

PocketBuilder displays in SQL syntax the pending changes to the table
definition.

CHAPTER 16 Managing the Database

User’s Guide 371

The SQL statements execute only when you save the table definition or
reset the view and then tell PocketBuilder to save changes.

Copying, saving, and
printing pending SQL
changes

When you are viewing pending SQL changes, you can:

• Copy pending changes to the clipboard

• Save pending changes to a file

• Print pending changes

To copy, save, or print only part of the SQL syntax
Select the part of the SQL syntax you want before you copy, save, or print.

❖ To copy the SQL syntax to the clipboard:

• In the Pending Syntax view, click the Copy button or select Copy from the
pop-up menu.

❖ To save SQL syntax for execution at a later time:

1 In the Pending Syntax view, select File>Save As.

The Save Syntax to File dialog box displays.

2 Navigate to the folder where you want to save SQL, name the file, and then
click the Save button.

At a later time, you can import the SQL file into the Database painter and
execute it.

❖ To print pending table changes:

• While viewing the pending SQL syntax, click the Print button or select
Print from the File menu.

❖ To display columns in the Columns view:

• Select Object>Pending Syntax from the menu bar.

Printing the table definition
You can print a report of the table's definition at any time, whether or not the
table has been saved. The Table Definition Report contains information about
the table and each column in the table, including the extended attributes for
each column.

Working with tables

372 PocketBuilder

❖ To print the table definition:

• Select Print or Print Definition from the File or pop-up menu or click the
Print button.

Exporting table syntax
You can export the syntax for a table to the log. This feature is useful when you
want to create a backup definition of the table before you alter it, or when you
want to create the same table in another DBMS.

PocketBuilder

❖ To export the syntax of an existing table to a log:

1 Select the table in the painter workspace.

2 Select Export Syntax from the Object menu or the pop-up menu.

If you selected a view, PocketBuilder immediately exports the syntax to
the log.

3 Specify a data source in the Data Sources dialog box.

4 Supply any information you are prompted for.

PocketBuilder exports the syntax to the log. Extended attribute
information (such as validation rules used) for the selected table is also
exported.

For more information about the log, see “Logging your work” on page
358.

About system tables
Two kinds of system tables exist in the database:

• System tables provided by your DBMS

For information about the ASA system tables, see the chapter on system
tables in the Adaptive Server Anywhere SQL Reference Manual in the
online books for SQL Anywhere Studio.

• PocketBuilder extended attribute system tables

CHAPTER 16 Managing the Database

User’s Guide 373

No system table support in UltraLite
UltraLite databases do not support system tables.

About PocketBuilder
system tables

PocketBuilder stores extended attribute information you provide when you
create or modify a table (such as the text to use for labels and headings for the
columns, validation rules, display formats, and edit styles) in system tables.
These system tables contain information about database tables and columns.
Extended attribute information extends database definitions. Table 16-6 lists
the extended attribute system tables.

Table 16-6: Extended attribute system tables

In the Employee table, for example, one column name is Emp_lname. A label
and a heading for the column are defined for PocketBuilder to use in
DataWindow objects. The column label is defined as Last Name:. The
column heading is defined as Last Name. The label and heading are stored in
the PBCatCol table in the extended attribute system tables.

The extended attribute system tables are maintained by PocketBuilder. Only
PocketBuilder users can enter information into the extended attribute system
tables. For more information, see Appendix A, “Extended Attribute System
Tables.”

Opening and
displaying system
tables

You can open system tables in the Database painter, just like other tables.

By default, PocketBuilder shows only user-created tables in the Objects view.
If you highlight Tables and select Show System Tables from the pop-up menu,
PocketBuilder also shows system tables.

This system table Stores this extended attribute information

PBCatCol Column data such as name, header, and label for reports and
DataWindow objects, and header and label positions

PBCatEdt Edit style names and definitions

PBCatFmt Display format names and definitions

PBCatTbl Table data such as name, fonts, and comments

PBCatVld Validation rule names and definitions

Working with keys

374 PocketBuilder

Working with keys
Why you should use
keys

You use primary and foreign keys to enforce the referential integrity of your
database. That way you can rely on the DBMS to make sure that only valid
values are entered for certain columns instead of having to write code to
enforce valid values.

For example, suppose you have two tables called Department and Employee.
The Department table contains the column Dept_Head_ID, which holds the ID
of the department's manager. You want to make sure that only valid employee
IDs are entered in this column. The only valid values for Dept_Head_ID in the
Department table are values for Emp_ID in the Employee table.

To enforce this kind of relationship, you define a foreign key for Dept_Head_ID
that points to the Employee table. With this key in place, the DBMS disallows
any value for Dept_Head_ID that does not match an Emp_ID in the Employee
table.

For more about primary and foreign keys, consult a book about relational
database design.

What you can do in
the Database painter

You can work with keys in the following ways:

• Look at existing primary and foreign keys

• Open all tables that depend on a particular primary key

• Open the table containing the primary key used by a particular foreign key

• Create, alter, and drop keys

Working with keys in an UltraLite database
You cannot create, alter, or drop keys in an UltraLite database.

Viewing keys Keys can be viewed in several ways:

• In the expanded tree view of a table in the Objects view

• As icons connected by lines to a table in the Object Layout view

In the following picture, the Department table has two keys:

• A primary key (on dept_id)

• A foreign key (on dept_head_id)

CHAPTER 16 Managing the Database

User’s Guide 375

Figure 16-5: Primary and foreign keys in Object Layout view

If you cannot see the lines
If the color of your window background makes it hard to see the lines for the
keys and indexes, you can set the colors for each component of the Database
painter's graphical table representation, including keys and indexes. For
information, see “Modifying database preferences” on page 357.

Opening related
tables

When working with tables containing keys, you can easily open related tables.

❖ To open the table that a particular foreign key references:

1 Display the foreign key pop-up menu.

2 Select Open Referenced Table.

❖ To open all tables referencing a particular primary key:

1 Display the primary key pop-up menu.

2 Select Open Dependent Table(s).

PocketBuilder opens and expands all tables in the database containing
foreign keys that reference the selected primary key.

Defining primary keys You can define primary keys for database tables with PocketBuilder. However,
you cannot define a primary key for a table that already has one, unless you first
drop the existing primary key.

❖ To create a primary key:

1 Do one of the following:

• Highlight the table for which you want to create a primary key and
click the Create Primary Key drop-down toolbar button in
PainterBar1

• Select Object>Insert>Primary Key from the Database painter menu or
New>Primary Key from the pop-up menu

• Expand the table’s tree view, right-click Primary Key, and select New
Primary Key from the pop-up menu

The Primary Key properties display in the Object Details view.

Working with keys

376 PocketBuilder

2 Select one or more columns for the primary key.

Columns that are allowed in a primary key
Only a column that does not allow NULLs can be included as a column in
a primary key definition. If you choose a column that allows NULLs, you
get a DBMS error when you save the table.

3 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you made in the view are immediately saved to the table
definition.

Defining foreign keys You can define foreign keys for database tables in PocketBuilder.

❖ To create a foreign key:

1 Do one of the following:

• Highlight the table and click the Create Foreign Key drop-down
toolbar button in PainterBar1

• Select Object>Insert>Foreign Key from the Database painter menu or
New>Foreign Key from the pop-up menu

• Expand the table’s tree view and right-click on Foreign Keys and
select New Foreign Key from the pop-up menu

The Foreign Key properties display in the Object Details view.

2 Name the foreign key in the Foreign Key Name box.

3 Select the columns for the foreign key.

4 On the Primary Key tab page, select the table and column containing the
Primary key referenced by the foreign key you are defining.

Key definitions must match exactly
The definition of the foreign key columns must match the primary key
columns, including datatype, precision (width), and scale (decimal
specification).

5 On the Rules tab page, specify the rule that you want applied on delete of
primary table row.

The default rule applied is “Disallow if Dependent Rows Exist
(RESTRICT)”.

CHAPTER 16 Managing the Database

User’s Guide 377

6 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you make in the view are immediately saved to the table
definition.

Modifying keys You can modify a primary key in PocketBuilder.

❖ To modify a primary key:

1 Do one of the following:

• Highlight the primary key listed in the table’s expanded tree view and
click the Properties button

• Select Properties from the Object or pop-up menu

• Drag the primary key icon and drop it in the Object Details view

2 Select one or more columns for the primary key.

3 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you make in the view are immediately saved to the table
definition.

Dropping a key You can drop keys (remove them from the database) from within
PocketBuilder.

❖ To drop a key:

1 Highlight the key in the expanded tree view for the table in the Objects
view or right-click the key icon for the table in the Object Layout view.

2 Select Drop Primary Key or Drop Foreign Key from the key’s pop-up
menu.

3 Click Yes.

Working with indexes

378 PocketBuilder

Working with indexes
Creating an index You can create as many single- or multi-valued indexes for a database table as

you need, and you can drop indexes that are no longer needed.

Update limitation
You can update a table in a DataWindow object only if it has a unique index or
primary key.

In ASA databases, you should not define an index on a column that is defined
as a foreign key, because foreign keys are already optimized for quick
reference.

In UltraLite databases, the ascending or descending attribute is applied to each
column in the index. UltraLite supports the ability to have an ascending index
column and a descending index column in the same index.

❖ To create an index:

1 Do one of the following:

• Highlight the table for which you want to create an index and click the
Create Index drop-down toolbar button in PainterBar1

• Select Object>Insert>Index from the Database painter menu or
New>Index from the pop-up menu

• Expand the table’s tree view and right-click on Indexes and select
New Index from the pop-up menu

The Index’s properties display in the Object Details view.

2 Enter a name for the index in the Index box.

3 Select whether or not to allow duplicate values for the index.

4 Specify any other information required for your database

For ASA, specify the order of the index.

5 Click the names of the columns that make up the index.

6 Select Save Changes from the pop-up menu.

7 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you made in the view are immediately saved to the table
definition.

CHAPTER 16 Managing the Database

User’s Guide 379

Modifying an index You can modify an index.

❖ To modify an index:

1 Do one of the following:

• Highlight the index listed in the table’s expanded tree view and click
the Properties button

• Select Properties from the Object or pop-up menu

• Drag the index icon and drop it in the Object Details view

2 In the Object Details view, select or deselect columns as needed.

3 Right-click on the Object Details view and select Save Changes from the
pop-up menu.

Any changes you made in the view are immediately saved to the table
definition.

Dropping an index Dropping an index removes it from the database.

❖ To drop an index from a table:

1 In the Database painter workspace, display the pop-up menu for the index
you want to drop.

2 Select Drop Index and click Yes.

Working with database views
A database view gives a different (and usually limited) perspective of the data
in one or more tables. Although you see existing database views listed in the
Objects view, a database view does not physically exist in the database as a
table does. Each time you select a database view and use the view’s data,
PocketBuilder executes a SQL SELECT statement to retrieve the data and
creates the database view.

Views are not supported in UltraLite databases.

Working with database views

380 PocketBuilder

Using database views
in PocketBuilder

You can define and manipulate database views in PocketBuilder. Typically you
use database views for the following reasons:

• To give names to frequently executed SELECT statements.

• To limit access to data in a table. For example, you can create a database
view of all the columns in the Employee table except Salary. Users of the
database view can see and update all information except the employee's
salary.

• To combine information from multiple tables for easy access.

In PocketBuilder, you can create single- or multiple-table database views. You
can also use a database view when you define data to create a new database
view.

Figure 16-6: Creating a multiple-table view in the View painter

❖ To create a database view:

1 Click the Create View drop-down toolbar button, select
Object>Insert>View from the Database painter menu, or select New View
from the pop-up menu on the Views folder in the Objects view.

The Select Tables dialog box displays, listing all tables and views that you
can access in the database.

CHAPTER 16 Managing the Database

User’s Guide 381

2 Select the tables and views from which you will create the view by doing
one of the following:

• Click the name of each table or view you want to open in the list
displayed in the Select Tables dialog box, then click the Open button
to open them. The Select Tables dialog box closes.

• Double-click the name of each table or view you want to open. Each
object is opened immediately. Then click the Cancel button to close
the Select Tables dialog box.

Representations of the selected tables and views display in the View
painter workspace.

3 Select the columns to include in the view and include computed columns
as needed.

4 Join the tables if there is more than one table in the view.

For information, see “Joining tables” on page 383.

5 Specify criteria to limit rows retrieved (Where tab), group retrieved rows
(Group tab), and limit the retrieved groups (Having tab) if appropriate.

For information about using selection and grouping criteria, see
“Specifying selection, sorting, and grouping criteria” on page 434.

6 When the view has been completed, click the Return button.

7 Name the view.

Include “view” or some other identifier in the view’s name so that you will
be able to distinguish it from a table in the Select Tables dialog box.

8 Click the Create button.

PocketBuilder generates a CREATE VIEW statement and submits it to the
DBMS. The view definition is created in the database. You return to the
Database painter workspace with the new view displayed in the
workspace.

Opening a database
view

You define, open, and manipulate database views in the View painter, which is
similar to the Select painter. For more information about the Select painter, see
“Selecting a data source” on page 413.

❖ To open a database view:

1 In the Objects view of the database painter, expand the list of Views for
your database.

Working with database views

382 PocketBuilder

2 Highlight the view you want to open and select Add To Layout from the
pop-up menu, or drag the view’s icon to the Object Layout view.

Updating database views
Some database views are logically updatable and others are not. Views are not
supported in UltraLite. For ASA you cannot update views containing aggregate
functions, such as COUNT(*), or a GROUP BY clause in the SELECT statement,
or views containing a UNION operation.

Displaying a database
view’s SQL statement

You can display the SQL statement that defines a database view. How you do
it depends on whether you are creating a new view in the View painter or want
to look at the definition of an existing view.

Figure 16-7: Displaying a view definition in the Database painter

You cannot alter the view definition in the Object Details view. To alter a view,
drop it and create another view.

❖ To display the SQL statement from the View painter:

• Select the Syntax tab in the View painter

PocketBuilder displays the SQL it is generating. The display is updated
each time you change the view.

CHAPTER 16 Managing the Database

User’s Guide 383

❖ To display the SQL statement from the Database painter:

• Highlight the name of the database view in the Objects view and select
Properties from the pop-up menu, or drag the view’s icon to the Object
Details view.

The completed CREATE statement used to create the database view
displays in the Definition field on the General page. The view definition
in the Object Details view is read-only.

Joining tables If the database view contains more than one table, you should join the tables on
their common columns. When the View painter is first opened for a database
view containing more than one table, PocketBuilder makes its best guess as to
the join columns, as follows:

• If there is a primary/foreign key relationship between the tables,
PocketBuilder automatically joins them.

• If there are no keys, PocketBuilder tries to join tables based on common
column names and types.

In the following screen, the Employee and Department tables are joined on the
dept_id column:.

Figure 16-8: Equality join between two tables

❖ To join tables:

1 Click the Join button.

2 Click the columns on which you want to join the tables.

3 To create a join other than the equality join, click the join representation in
the workspace.

The Join dialog box displays.

Working with database views

384 PocketBuilder

Figure 16-9: Join dialog box showing types of join allowed

4 Select the join operator you want from the Join dialog box.

You can select outer joins for ASA databases. For example, in the
preceding dialog box (which uses the Employee and Department tables),
you can choose to include rows from the Employee table where there are
no matching departments, or rows from the Department table where there
are no matching employees.

For more about outer joins, see “Using ANSI outer joins” on page 431.

Dropping a database
view

Dropping a database view removes its definition from the database.

❖ To drop a view:

1 In the Objects view, select the database view you want to drop.

2 Click the Drop Object button in PainterBar1 or select Drop View from the
pop-up menu.

PocketBuilder prompts you to confirm the drop, then generates a DROP
VIEW statement and submits it to the DBMS.

Exporting view syntax You can export the syntax for a view to the log. This feature is useful when you
want to create a backup definition of the view before you alter it or when you
want to create the same view in another DBMS.

❖ To export the syntax of an existing view to a log:

1 Select the view in the painter workspace.

2 Select Export Syntax from the Object menu or the pop-up menu.

For more information about the log, see “Logging your work” on page
358.

CHAPTER 16 Managing the Database

User’s Guide 385

Manipulating data
As you work on the database, you often want to look at existing data or create
some data for testing purposes. You might also want to test display formats,
validation rules, and edit styles on real data.

PocketBuilder provides data manipulation for such purposes. With data
manipulation, you can:

• Retrieve and manipulate database information

• Save the contents of the database in a variety of formats (such as Excel,
HTML tables, or SQL)

Retrieving data
When you retrieve data in the Database painter, what you see is actually a
DataWindow object. The formatting style you pick for retrieval corresponds to
a type of DataWindow object (grid, tabular, or freeform). In a grid display, you
can drag the mouse on a column's border to resize the column.

Figure 16-10: Retrieving data in grid format

❖ To retrieve data:

1 In the Database painter, select the table or database view whose data you
want to manipulate.

2 Do one of the following:

• Click one of the three Data Manipulation buttons (Grid, Tabular, or
Freeform) in the PainterBar.

• Select Data or Edit Data from the Object or pop-up menu and choose
one of the edit options from the cascading menu that displays.

Manipulating data

386 PocketBuilder

All rows are retrieved and display in the Results view. Exactly what you
see in the Results view depends on the formatting style you picked.

As the rows are being retrieved, the Retrieve button in PainterBar3
changes to a Cancel button. You can click the Cancel button to stop the
retrieval.

When results are retrieved, only a few rows of data display at a time. In
freeform format, a single row of data displays. You can use the First, Prior,
Next, and Last buttons in PainterBar3 to page through the rows of data.

Modifying data
You can add, modify, or delete rows. When you have finished manipulating the
data, you can apply the changes to the database.

If looking at data from a view
Some views are logically updatable and others are not. For ASA you cannot
update views containing aggregate functions, such as COUNT(*), or a
GROUP BY clause in the SELECT statement, or views containing a UNION
operation.

❖ To modify data:

1 Do one of the following:

• To modify existing data, tab to a field and enter a new value.

• To add a row, click the Insert Row button and enter data in the new
row.

• To delete a row, click the delete Row button.

When you add or modify data, the data uses the validation rules, display
formats, and edit styles that you or others have defined for the table in the
Database painter.

2 Click the Save Changes button or select Rows>Update to apply changes
to the database.

CHAPTER 16 Managing the Database

User’s Guide 387

Sorting rows
You can sort the data, but any sort criteria you define are for testing only and
are not saved with the table or passed to the DataWindow painter.

Figure 16-11: Specifying sort criteria in the Database painter

The order in which the columns display in the Columns box determines the
precedence of the sorting. For example, in the preceding dialog box, rows will
be sorted by department ID. Within department ID, rows will be sorted by state.

❖ To sort the rows:

1 Select Rows>Sort from the menu bar.

The Specify Sort Columns dialog box displays.

2 Drag the columns you want to sort on from the Source Data box to the
Columns box:

A check box with a check mark in it displays under the Ascending heading
to indicate that the values will be sorted in ascending order. To sort in
descending order, clear the check box.

3 Change the sort order precedence by dragging the column names in the
Column box to achieve the sort order you want.

4 (Optional) Double-click an item in the Columns box to specify an
expression to sort on.

The Modify Expression dialog box displays.

5 Specify the expression.

For example, if you have two columns, Revenues and Expenses, you can
sort on the expression Revenues – Expenses.

6 Click OK.

Manipulating data

388 PocketBuilder

You return to the Specify Sort Columns dialog with the expression
displayed.

If you change your mind
You can remove a column or expression from the sorting specification by
simply dragging it and releasing it outside the Columns box.

7 When you have specified all the sort columns and expressions, click OK.

Filtering rows
You can limit which rows are displayed by defining a filter.

The filters you define are for testing only and are not saved with the table or
passed to the DataWindow painter.

Figure 16-12: Specifying a boolean expression as a filter for testing

❖ To filter the rows:

1 Select Rows>Filter from the menu bar.

The Specify Filter dialog box displays.

2 Enter a boolean expression that PocketBuilder will test against each row.

If the expression evaluates to TRUE, the row is displayed. You can paste
functions, columns, and operators in the expression.

3 Click OK.

PocketBuilder filters the data. Only rows meeting the filter criteria are
displayed.

CHAPTER 16 Managing the Database

User’s Guide 389

❖ To remove the filter:

1 Select Rows>Filter from the menu bar.

The Specify Filter dialog box displays, showing the current filter.

2 Delete the filter expression, then click OK.

Filtered rows and updates
Filtered rows are updated when you update the database.

Viewing row information
You can display information about the data you have retrieved.

❖ To display row information:

• Select Rows>Described from the menu bar.

The Describe Rows dialog box displays, showing the number of:

• Rows that have been deleted in the painter but not yet deleted from the
database

• Rows displayed in Preview

• Rows that have been filtered

• Rows that have been modified in the painter but not yet modified in
the database

All row counts are zero until you retrieve the data from the database or add a
new row. The count changes when you modify the displayed data or test filter
criteria.

Importing data
You can import data from an external source and then save the imported data
in the database.

❖ To import data:

1 Select Rows>Import from the menu bar.

The Select Import File dialog box displays.

Manipulating data

390 PocketBuilder

2 Specify the file from which you want to import the data.

The types of files that you can import into the painter are shown in the
Files of Type drop-down list.

3 Click Open.

PocketBuilder reads the data from the file. You can click the Save Changes
button or select Rows>Update to add the new rows to the database.

Printing data
You can print the data displayed by selecting File>Print from the menu bar.
Before printing, you can also preview the output on the screen.

❖ To preview printed output before printing:

1 Select File>Print Preview from the menu bar.

Preview displays the data as it will print. To display rulers around the page
borders in Print Preview, select File>Print Preview Rulers.

2 To change the magnification used in Print Preview, select File>Print
Preview Zoom from the menu bar.

The Zoom dialog box displays.

3 Select the magnification you want and click OK.

Preview zooms in or out as appropriate.

4 When you have finished looking at the print layout, select File>Print
Preview from the menu bar again.

Saving data
You can save the displayed data in an external file using one of the formats
supported by PocketBuilder.

❖ To save the data in an external file:

1 Select Rows>Save Rows As from the menu bar.

The Save Rows As dialog box displays.

CHAPTER 16 Managing the Database

User’s Guide 391

2 Choose a format for the file.

If you want the column headers saved in the file, select a file format that
includes headers, such as Excel With Headers. When you select a “with
headers” format, the names of the database columns (not the column
labels) are also saved in the file.

For more information, see “Saving data in an external file” on page 468.

3 Name the file and save it.

PocketBuilder saves all displayed rows in the file; all columns in the
displayed rows are saved. Filtered rows are not saved.

Creating and executing SQL statements
The Database painter's Interactive SQL view is a SQL editor in which you can
enter and execute SQL statements. The view provides all editing capabilities
needed for writing and modifying SQL statements. You can cut, copy, and
paste text; search for and replace text; and paint SQL statements. You can also
set editing properties to make reading your SQL files easier.

Building and executing SQL statements
You can use the Interactive SQL view to build SQL statements and execute
them immediately. The view acts as a notepad in which you can enter SQL
statements.

Creating stored procedures

You can use the Interactive SQL (ISQL) view to create stored procedures or
triggers, but make sure that the painter's SQL statement terminator character is
not the same as the terminator character used in the stored procedure language
of your DBMS. Stored procedures are not supported in UltraLite databases.

About the statement
terminator

By default, PocketBuilder uses the semicolon as the SQL statement terminator.
You can override the semicolon by specifying a different terminator character
in the Database painter. To change the terminator character, select
Design>Options from the Database painter’s menu bar.

Creating and executing SQL statements

392 PocketBuilder

Make sure that the character you choose is not reserved for another use by your
database vendor. For example, using the slash character (/) will cause
compilation errors with some DBMSs.

Controlling comments

By default, PocketBuilder strips off comments when it sends SQL to the
DBMS. You can have comments included by clearing the check mark next to
Strip Comments in the pop-up menu of the ISQL view.

Entering SQL

You can enter a SQL statement in four ways:

• Pasting the statement

• Typing the statement in the view

• Opening a text file containing the SQL

• Dragging a procedure or function from the Objects view

Pasting SQL You can paste SELECT, INSERT, UPDATE, and DELETE statements to the view.
Depending on which kind of statement you want to paste, PocketBuilder
displays dialog boxes that guide you through painting the full statement.

❖ To paste a SQL statement to the workspace:

1 Display the ISQL view in the Database painter.

2 Click the Paste SQL button in PainterBar2, or select Paste Special>SQL
from the Edit or pop-up menu.

The SQL Statement Type dialog box displays, listing the types of SQL
statements you can use.

3 Double-click the appropriate icon to select the statement type.

The Select Table dialog box displays.

4 Select the table(s) you will reference in the SQL statement.

You go to the Select, Insert, Update, or Delete painter, depending on the
type of SQL statement you are pasting.

CHAPTER 16 Managing the Database

User’s Guide 393

5 Do one of the following:

• For a SELECT statement, define the statement exactly as in the Select
painter when building a view.

You choose the columns to select. You can define computed columns,
specify sorting and joining criteria, and WHERE, GROUP BY, and
HAVING criteria. For more information, see “Working with database
views” on page 379. For more information about the Select painter,
see “Selecting a data source” on page 413.

• For an INSERT statement, type the values to insert into each column.
You can insert as many rows as you want.

• For an UPDATE statement, specify the new values for the columns in
the Update Column Values dialog box. Then specify the WHERE
criteria to indicate which rows to update.

• For a DELETE statement, specify the WHERE criteria to indicate
which rows to delete.

6 When you have completed painting the SQL statement, click the Return
button in the PainterBar in the Select, Insert, Update, or Delete painter.

You return to the Database painter with the SQL statement pasted into the
ISQL view.

Typing SQL Rather than paste, you can simply type one or more SQL statements directly in
the ISQL view.

You can enter most statements supported by your DBMS. This includes
statements you can paint as well as statements you cannot paint, such as a
database stored procedure or a CREATE TRIGGER statement. You cannot enter
certain statements that could destabilize the PocketBuilder development
environment. These include the SET statement and the USE database
statement.

Importing SQL from a
text file

You can import SQL from a text file to the Database painter.

❖ To read SQL from a file:

1 Put the insertion point where you want to insert the SQL.

2 Select Paste Special>From File from the Edit or pop-up menu.

3 Select the file containing the SQL and click OK.

Creating and executing SQL statements

394 PocketBuilder

Dragging a procedure
or function from the
Objects view

From the tree view in the Objects view, you can select an existing procedure or
function that contains a SQL statement you want to enter and drag it to the
Interactive SQL view.

Explaining SQL

Sometimes there is more than one way to code SQL statements to obtain the
results you want. When this is the case, you can use Explain SQL on the Design
menu to help you select the most efficient method. Explain SQL displays
information about the path that PocketBuilder will use to execute the
statements in the SQL Statement Execution Plan dialog box. This is most
useful when you are retrieving or updating data in an indexed column or using
multiple tables. This feature is not supported for UltraLite connections.

Executing SQL

When you have typed or otherwise entered the SQL statements you want in the
ISQL view of the Database painter, you can submit them to the DBMS.

❖ To execute the SQL:

• Click the Execute button, or select Design>Execute SQL from the menu
bar

If the SQL retrieves data, the data appears in grid format in the Results view. If
there is a database error, you see a message box describing the problem.

For a description of what you can do with the data, see “Manipulating data” on
page 385.

Customizing the editor
The ISQL view provides the same editing capabilities as the File editor. It also
has Script, Font, and Coloring properties that you can change to make SQL
files easier to read. With no change in properties, SQL files have black text on
a white background and a tab stop setting of 3 for indentation.

Setting Script and
Font properties

Select Design>Options from the menu bar to open the Database Preferences
dialog box. The Script and Font properties are the same as those you can set for
the File editor.

For more information, see the section on using the File editor in “Using the File
editor” on page 25.

CHAPTER 16 Managing the Database

User’s Guide 395

Editor properties apply elsewhere
When you set Script and Font properties for the Database painter, the settings
also apply to the Script view, the File editor, and the Debugger.

Setting Coloring
properties

You can set the text color and background color for SQL styles (such as
datatypes and keywords) so that the style will stand out and the SQL code will
be more readable. You set Coloring properties on the Coloring tab page.

Enabling syntax coloring
Be sure the Enable Syntax Coloring check box is selected before you set colors
for SQL styles. You can turn off all Coloring properties by clearing the check
box.

Controlling access to the current database
The Database painter's Design>Table Security menu allows you to control
access to the current database. You use the Table Security dialog box to assign
table access privileges to different users and groups.

UltraLite databases do not use owners and groups. All users have full
permission to update tables, and you cannot use the procedures described in
this section to grant or revoke access to tables.

Using the MobiLink Synchronization for ASA wizard

396 PocketBuilder

Figure 16-13: Assigning privileges in the Table Security dialog box

❖ To control access to the current database:

1 Select Design>Table Security from the Database painter menu

2 Select a user or group, or multiple users and groups, from the
Groups/Users list box.

3 Select a table from the Tables list box.

4 Select the privileges you want to give the selected users or groups for the
table you selected in the previous step, and click Apply.

Update privileges can be restricted to specific columns of the selected
table by clicking the Update button, selecting only those columns for
which you want to grant the privilege, and clicking OK.

5 Repeat steps 2 – 5 until you have granted all the privileges that you want
to assign, then click Done.

Using the MobiLink Synchronization for ASA wizard
What the wizard
generates

You use the MobiLink Synchronization for ASA wizard on the Database tab of
the New dialog box to create a nonvisual user object and a global external
function in your current target, making it easier to add database
synchronization capabilities to the target. By default, the wizard also adds two
windows, a structure, and a second external (configuration) function.

CHAPTER 16 Managing the Database

User’s Guide 397

Table 16-7 shows objects that can be generated by the wizard, listed by their
default names, where appname stands for the name of the current application.

Table 16-7: Objects generated by MobiLink Synchronization wizard

Wizard options In addition to the names of objects generated by the MobiLink Synchronization
for ASA wizard, the wizard includes fields for the options listed in Table 16-8.

Table 16-8: MobiLink Synchronization for ASA wizard options

Default name Description

nvo_appname_sync Nonvisual user object that starts synchronization
from the remote client.

gf_appname_sync Global function that instantiates nvo_appname_sync
to start the synchronization.This function includes
the logic to start the synchronization with or without
a feedback window.

w_appname_sync or
w_sync_default_feedback

Optional feedback window that can be used, instead
of the standard MobiLink status window, to display
synchronization status to the client. Even if you do
not use the optional status window, a generated
feedback window must be instantiated by the
gf_appname_sync function.

gf_appname_configure_sync Optional global function that calls the
w_appname_sync_options window, which allows
the user to configure the dbmlsync client.

w_appname_sync_options Window that allows the application user to change
MobiLink connection arguments at runtime.

s_appname_sync_parms Optional structure used to store runtime information
entered by the user in the w_appname_sync_options
window.

Option Description

Destination library Select the target PKL file where you want to generate
the MobiLink synchronization objects.

Desktop database
connection

Select a PocketBuilder database profile or proceed
without a database connection.

ODBC data source file This is the DSN file, a copy of which you will deploy,
or have already deployed, to remote devices. Your
application uses this DSN to connect to the remote
database.

Publication name Lets you select a publication (or multiple
publications) if you specified a database profile for a
desktop database connection. If you did not, you can
type the name of a publication you want to
synchronize.

Using the MobiLink Synchronization for ASA wizard

398 PocketBuilder

For more information about a wizard option, click inside the option field and
press F1 for online Help.

About the desktop
database profile field

The wizard prompts you for a database profile, which it uses to establish a
connection to a remote database on the desktop. If you are not testing a
connection on the desktop, you can select the option to proceed without a
database connection and ignore the database profile field.

Override registry settings Lets you override registry settings from a previous
deployment.

Build number Assigns a build number for MobiLink
synchronization objects. To override registry settings
from a previous deployment, enter a value that is
higher than the value you previously used.

Client logging options Specifies what information gets written to the
synchronization log and whether you save the
information to a log file.

Additional command line
options

Adds the options you specify to the command line for
starting the MobiLink synchronization client. You can
click the Usage button to see a list of valid options.

Extended options Adds extended options you specify. You do not need
to enter the “-e” switch for extended options in this
field. You can click the Usage button to see a list of
valid extended options.

Single quotes must be used for any extended option
values requiring quotation marks. You must separate
multiple options with semicolons, for example:

scn=on;adr='host=localhost;port=2439'

Host Sets the host information for connecting to the
MobiLink Synchronization Server. If you enter a
value for this field, it overrides any value set in
synchronization subscriptions and in the Extended
Options field.

Port Sets the port for connecting to the MobiLink
Synchronization Server. The default port for
MobiLink is 2439. The value you enter for this field
overrides any value set in synchronization
subscriptions and in the Extended Options field.

Option Description

CHAPTER 16 Managing the Database

User’s Guide 399

Using a remote database on the desktop
The remote desktop database defined by a database connection profile can be
the database you plan to deploy to Windows CE devices or a database that you
use for testing on the desktop only.

A database profile is required for automatic retrieval of publication names in
the database. A publication is a database object describing data to be
synchronized. A publication, along with a synchronization user name and a
synchronization subscription, is required for MobiLink synchronization.

About the publication
name field

The wizard lets you select multiple publication names if they exist in the
remote database defined by the connection profile. There must be subscriptions
associated with the publication in order for them to display in the publication
selection list.

If you selected the option to proceed without a database connection, the wizard
prompts you to type a publication name (or a comma-separated list of
publication names) in the MobiLink Client Publication wizard page instead of
prompting you to select publication names retrieved from the database.

For more information about publications, see the MobiLink Synchronization
User’s Guide on the Technical Library CD or the SQL Anywhere Studio online
Help.

❖ To add objects for MobiLink synchronization

1 Select File>New from the PocketBuilder menu bar.

2 Click the Database tab, select the MobiLink Synchronization for ASA
wizard, and click OK.

3 Follow the instructions in the wizard, providing the information the wizard
needs.

On the last page of the wizard, make sure the Generate To-Do List check
box is selected if you want the wizard to add items to the To-Do List to
guide and facilitate your development work.

4 When you are satisfied with your choices in the wizard, click Finish.

The wizard generates objects that you can use for database
synchronization.

For information about using the generated objects to synchronize a target
database, see the chapter on MobiLink synchronization in the Resource
Guide.

Using the UltraLite Synchronization wizard

400 PocketBuilder

Using the UltraLite Synchronization wizard
About the wizard The UltraLite Synchronization wizard generates objects that make it easier for

you to initiate and control MobiLink synchronization requests from an
application connection to a remote UltraLite database. Some of the objects
created by the wizard are similar to the objects created by the MobiLink
Synchronization for ASA wizard, although there are differences in the way
MobiLink synchronizes remote ASA and remote UltraLite databases.

One of the major differences is that there are no subscriptions in an UltraLite
database. Another difference is that the MobiLink synchronization call is made
directly on the connection object to the remote UltraLite database, rather than
through an outside call to a separate synchronization utility.

Information required
by the wizard

Table 16-9 shows the information required by the UltraLite Synchronization
wizard. For information about preparing databases for synchronization, see the
chapter on MobiLink synchronization in the Resource Guide.

Table 16-9: Information required by UltraLite Synchronization wizard

Information item Description

Application Library PKL where the objects created by the wizard are stored

Publications List of comma separated publications you want to
synchronize

Script Version The version of the script you want to use for
synchronization. If you have not created scripts for
synchronization events, you can leave this blank and
check the Send Column Names box.

Send Column Names Optional check box that is useful for testing if you
have not created your own scripts for synchronization
events

Communications Stream Select the communications stream type that you want
to use. ActiveSync is not supported as a
communications stream type for synchronization from
a PocketBuilder application

Host Specify the numeric IP address for the MobiLink
server. If you leave this blank, localhost is used as the
server name. The IP address should be entered as a list
of four sets of two or three digit numbers separated by
periods, such as 199.99.001.01

Port Specify a port for the MobiLink server. If you leave
this blank, 2439 is used as the default port

Additional Additional parameters can be added for the MobiLink
server connection in the format:

keyword=value[;keyword=value...]

CHAPTER 16 Managing the Database

User’s Guide 401

What the wizard
generates

The UltraLite Synchronization wizard creates a nonvisual user object, a global
external function, and three different structure objects for passing parameters,
all of which make it easier to add database synchronization capabilities to your
PocketBuilder target. By default, the wizard also adds a second global external
function and two optional display windows.

Table 16-7 shows objects that can be generated by the wizard, listed by their
default names, where appname stands for the name of the current application.

Table 1: Objects generated by UltraLite Synchronization wizard

Authentication Parameters Specify a comma separated list of parameters that you
want to pass for authentication purposes to the
MobiLink server. PocketBuilder parses the list of
parameters you enter, counts them, and passes them as
an array in a structure created by the UltraLite
Synchronization wizard

Names for the objects You can specify names for the objects created by the
wizard if you do not want to use the default names
provided by PocketBuilder

Override Previous
Synchronization Settings

Select this check box and assign a build number to the
objects generated by the wizard to enable runtime
overrides to client registry settings for MobiLink
parameters entered by a user

Build Number Specify a positive numeric value for the build number.
To override the registry settings, the build number you
assign must be higher than the build number in the
registry, if there is one.

Information item Description

Default name Description

nvo_appname_ulsync Nonvisual user object that starts synchronization
from the remote client

gf_appname_ulsync Global function that instantiates
nvo_appname_ulsync to start the
synchronization.This function includes the logic to
start the synchronization with or without a
feedback window

s_appname_ulsync_parms Structure used to store runtime information, such
as connection parameters entered by the user in the
w_appname_ulsync_options window

s_appname_ulsync_info Structure used in the Synchronize call to pass
values of instance variables set in the
nvo_appname_ulsync nonvisual user object

Maintaining users and subscriptions in the remote database

402 PocketBuilder

Maintaining users and subscriptions in the remote
database
Sync User and
Subscription
Maintenance wizard

A nonvisual object generated by the MobiLink Sync User and Subscription
Maintenance wizard creates a database connection (with full or limited
administration authority) that allows an application user to update MobiLink
users and subscriptions in a remote ASA database. A wizard screen allows you
to set the database authority that you want to provide to the user for these
administrative tasks.

Altogether the wizard generates six objects, which are described in
Table 16-10. The appname variable in the default name for each object is
replaced by the name of your target application. You can change the default
names on the Name Generated Objects page of the wizard.

Table 16-10: Default names of objects generated by the wizard

s_appname_ulsync_results Structure used to hold summary information from
the synchronization process that is returned in the
GetSynchronizeResult call

w_appname_ulsync or
w_ulsync_default_feedback

Optional feedback window that can be used,
instead of the standard MobiLink status window, to
display synchronization status to the client. Even if
you do not use the optional status window, a
generated feedback window must be instantiated
by the gf_appname_ulsync function

w_appname_ulsync_options Optional window that allows the application user
to change MobiLink connection arguments at
runtime

gf_appname_configure_ulsync Optional global function that calls the
w_appname_ulsync_options window

Default name Description

Generated object Description

w_appname_mluser Window for entering MobiLink user
information, including MobiLink server options
that you enable for editing

w_appname_mlsubscription Window for entering MobiLink subscription
information, including MobiLink server options
that you enable for editing

CHAPTER 16 Managing the Database

User’s Guide 403

After you run the wizard, you can assign a global variable to the nonvisual user
object generated by the wizard and instantiate the nonvisual object in an
application script. You can then call the uf_run_mluser_window function of the
instantiated object from the Clicked event of a User Maintenance menu item
that you add to one of your application menus. Similarly, you can call the
uf_run_mlsub_window function from the Clicked event of a Subscription
Maintenance menu item that you add to an application menu.

Calling the functions of the nonvisual user object opens the designated
maintenance window and connects to the remote database. Changes that the
user makes to either maintenance window are propagated to the remote
database by selections in the menu generated by the wizard. The generated
menu object is associated with both maintenance windows.

Sample code for performing the post-wizard tasks is included in commented
sections of the Script views for the nonvisual object and the two maintenance
windows generated by the wizard.

Managing MobiLink synchronization on the server
You can start the MobiLink synchronization server and Sybase Central from
the PocketBuilder UI.

nvo_appname_mluser Nonvisual user object with functions that
connect to the remote database and open the user
or subscription maintenance window

m_appname_mluser Menu assigned to the user and subscription
maintenance windows with menu items for
propagating changes made in those windows

vo_appname_mluser Visual user object included in the user and
subscription maintenance windows to display
values for MobiLink options and user and
subscription information

d_appname_mluser DataWindow included in the visual user object to
display values for MobiLink options and user
and subscription information

Generated object Description

Managing MobiLink synchronization on the server

404 PocketBuilder

Starting the MobiLink synchronization server
Before you synchronize remote databases with the consolidated database, you
must start the MobiLink synchronization server. You can start the server from
the Database or the Database Profiles dialog box in PocketBuilder.

❖ To start the MobiLink synchronization server:

1 From the Objects view of the Database painter or from the Database
Profiles dialog box, expand the ODBC Utilities folder, and click
MobiLink Synchronization server.

The MobiLink Synchronization Server Options dialog box displays.

2 Select the MobiLink version and enter the ODBC connection string for
your consolidated database.

The values that populate the MobiLink version drop-down list come from
the Adaptive Server Anywhere versions listed in the
hkey_local_machine\software\odbc\odbcinst.ini registry key.

The ODBC connection string should not contain any blank spaces that are
not part of the data source name. The following is an example of an ODBC
connection string for the ASA :

DSN=ASA 8.0 Sample;UID=dba;PWD=sql

3 Define other options as needed.

For information about filling in specific fields in the dialog box, click the
Help button in the dialog box. The Usage button opens a dialog box with
information about command line options.

4 Click OK.

When you click OK, PocketBuilder starts the MobiLink Synchronization
server.

Using Sybase Central
You can use Sybase Central to manage MobiLink synchronization and create
synchronization scripts that are held in the consolidated database. You can also
use the ASA plug-in to Sybase Central to add publications, synchronization
users, and synchronization subscriptions to remote databases.

CHAPTER 16 Managing the Database

User’s Guide 405

❖ To start Sybase Central

• From the Objects view of the Database painter or from the Database
Profiles dialog box, expand the ODBC Utilities folder, and click Sybase
Central. You can also launch Sybase Central from the UltraLite Utilities
folder.

Sybase Central displays.

❖ To work with the consolidated database in Sybase Central

• Right-click MobiLink Synchronization in the left pane of Sybase Central,
select Connect from the pop-up menu, enter connection parameters in the
Connect dialog box, and click OK.

You can use Sybase Central to add scripts for database tables and select
synchronization events that cause the script to be executed.

❖ To work with remote databases in Sybase Central

• Right-click Adaptive Server Anywhere in the left pane of Sybase Central,
select Connect from the pop-up menu, enter connection parameters in the
Connect dialog box, and click OK.

If you open the Publications and MobiLink Users folders under the
MobiLink Synchronization Client folder for the remote database, you can
add publications and synchronization users in the right pane of Sybase
Central.

After you add a publication and a synchronization user, you can create a
synchronization subscription by right-clicking the publication in the right
pane of Sybase Central, selecting Properties from the pop-up menu,
clicking the Subscribe button on the Synchronization Subscriptions tab of
the Publication Properties dialog box, and clicking OK.

For more information, see the chapter on MobiLink synchronization in the
Resource Guide and the SQL Anywhere Studio online Help. You can open the
online Help by clicking the Help button in dialog boxes of the ASA or
MobiLink plug-in for Sybase Central.

Managing MobiLink synchronization on the server

406 PocketBuilder

User’s Guide 407

C H A P T E R 1 7 Defining DataWindow Objects

About this chapter The applications you build are centered around your organization's data.
This chapter describes how to define DataWindow objects to display and
manipulate the data.

Contents

About DataWindow objects
A DataWindow object is an object that you use to retrieve, present, and
manipulate data from a relational database or other data source such as an
Excel worksheet or dBASE file.

DataWindow objects have knowledge about the data they are retrieving.
You can specify display formats, presentation styles, and other data
properties so the data is used in the most meaningful way by users.

Topic Page

About DataWindow objects 407

Choosing a presentation style 410

Building a DataWindow object 412

Selecting a data source 413

Using Quick Select 415

Using SQL Select 424

Using Query 440

Using External 441

Using Stored Procedure 442

Choosing DataWindow object-wide options 444

Generating and saving a DataWindow object 445

Defining queries 448

What's next 450

About DataWindow objects

408 PocketBuilder

DataWindow object examples
You can display the data in the format that will best present the data to your
users.

Edit styles If a column can take only a small number of values, you can have the data
appear as radio buttons in a DataWindow object so users know what their
choices are.

Figure 17-1: DataWindow example with radio buttons

Display formats If a column displays phone numbers, salaries, or dates, you can specify the
format appropriate to the data.

Figure 17-2: DataWindow example with formatted data

Validation rules If a column can take numbers only in a specific range, you can specify a simple
validation rule for the data, without writing any code, to make sure users enter
valid data.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 409

Enhancing
DataWindow objects

If you want to enhance the presentation and manipulation of data in a
DataWindow object, you can include computed fields, pictures, and graphs that
are tied directly to the data retrieved by the object.

How to use DataWindow objects
Before you can use a DataWindow object, you need to build the object. To do
that you can go to the DataWindow painter, which lets you create and edit
DataWindow objects.

This section describes the overall process for creating and using DataWindow
objects. For more information about using DataWindow objects in different
kinds of applications and writing code that interacts with DataWindow objects,
see the Resource Guide.

❖ To use DataWindow objects in an application:

1 Create the DataWindow object using one of the DataWindow wizards on
the DataWindow tab page of the New dialog box.

The wizard helps you define the data source, presentation style, and other
basic properties of the object, and the DataWindow object displays in the
DataWindow painter. In this painter, you define additional properties for
the DataWindow object, such as display formats, validation rules, and
sorting and filtering criteria.

For more information about creating a DataWindow object, see “Building
a DataWindow object” on page 412.

2 Place a DataWindow control in a window or user object.

It is through this control that your application communicates with the
DataWindow object you created in the DataWindow painter.

3 Associate the DataWindow control with the DataWindow object.

4 Set properties and write scripts in the Window painter to manipulate the
DataWindow control and its contents.

For example, you use the PowerScript Retrieve function to retrieve data
into the DataWindow control.

You can write scripts for the DataWindow control to deal with error
handling, sharing data between DataWindow controls, and so on.

Choosing a presentation style

410 PocketBuilder

Choosing a presentation style
The presentation style you select for a DataWindow object determines the
format PocketBuilder uses to display the DataWindow object in the Design
view. You can use the format as displayed or modify it to meet your needs:

When you create a DataWindow object, you can choose from the following
presentation styles:

Tabular
Freeform
Grid
Group
Graph

Using the Tabular
style

The Tabular presentation style presents data with data columns going across
the page and headers above each column. You can reorganize the default layout
any way you want by moving columns and text. The number of rows that can
display at one time is limited by the Windows CE screen. You can add scroll
bars to the DataWindow control that holds the tabular DataWindow object.

Figure 17-3: DataWindow example showing a tablular report

Using the Freeform
style

The Freeform presentation style presents data with data columns going down
the page and labels next to each column. You can reorganize the default layout
any way you want by moving columns and text. The Freeform style is often
used for data entry forms. Figure 17-1 on page 408 is an example of a
DataWindow with a Freeform presentation style. Typically you would use this
style to present detailed information about a particular record (row) in the
database.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 411

Using the Grid style The Grid presentation style shows data in row-and-column format with grid
lines separating rows and columns. With other styles, you can move text,
values, and other objects around freely in designing the report. With the grid
style, the grid lines create a rigid structure of cells.

An advantage of the Grid style is that users can reorder and resize columns
during execution.

Original Grid report The grid report in Figure 17-4 shows employee
information. Several of the columns have a large amount of extra white space.

Figure 17-4: Grid DataWindow

Grid report with modified column widths The grid report in Figure 17-5
was created from the original one by decreasing the width of some columns.

Figure 17-5: Grid DataWindow with column widths adjusted at runtime

Building a DataWindow object

412 PocketBuilder

Using the Group
presentation style

The Group presentation style provides an easy way to create grouped
DataWindow objects, where the rows are divided into groups, each of which
can have statistics calculated for it. Using this style generates a tabular
DataWindow object that has grouping properties defined.

This report groups employees by department and lists each employee’s salary.
It also includes a subtotal for all department salaries in the trailer band for each
group and a grand total for all salaries in the summary band.

Figure 17-6: Group DataWindow showing salaries by department

For more about the Group presentation style, see Chapter 22, “Filtering,
Sorting, and Grouping Rows.”

Using the Graph
presentation styles

In addition to text-based presentation styles, PocketBuilder allows you to
display information graphically using the Graph presentation style.

For more information about this presentation style, see Chapter 24, “Working
with Graphs.”

Building a DataWindow object
You use a wizard to build a new DataWindow object. To create a DataWindow
object or use the DataWindow painter, you must be connected to the database
whose data you will be accessing. When you open the DataWindow painter or
select a data source in the wizard, PocketBuilder connects you to the DBMS
and database you used last. If you need to connect to a different database, do
so before working with a DataWindow object.

For information about changing your database connection, see the Resource
Guide.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 413

❖ To create a new DataWindow object:

1 Select File>New from the menu bar and select the DataWindow tab.

2 If there is more than one target in the workspace, select the target where
you want the DataWindow to be created from the drop-down list at the
bottom of the dialog box.

3 Choose a presentation style for the DataWindow object.

The presentation style determines how the data is displayed. See
“Choosing a presentation style” on page 410. When you choose the
presentation style, the appropriate DataWindow object wizard starts up.

4 If you want data to be retrieved in the Preview view when the
DataWindow object opens, select the Retrieve on Preview check box.

5 Define the data source.

See “Selecting a data source” on page 413.

6 Choose options for the DataWindow object and click Next.

See “Choosing DataWindow object-wide options” on page 444.

7 Review your specifications and click Finish.

The DataWindow object displays in the Design view.

8 Save the DataWindow object in a library.

Selecting a data source
The data source you choose determines how you select the data that will be
used in the DataWindow object.

About the term data source
The term data source used here refers to how you use the DataWindow painter
to specify the data to retrieve into the DataWindow object.

Selecting a data source

414 PocketBuilder

If the data is in the
database

If the data for the DataWindow object will be retrieved from a database, choose
one of the types of data source listed in Table 17-1.

Table 17-1: Types of data source to be used in a DataWindow object

If the data is not in a
database

Select the External data source if:

• The DataWindow object will be populated programmatically

• Data will be imported from a DDE application

• Data will be imported from an external file, such as a tab-separated text
file (TXT file) or a dBASE file (DBF file)

PocketBuilder

After you choose a data source in the various DataWindow wizards, you
specify the data. The data source you choose determines what displays in the
wizards and how you define the data.

Why use a
DataWindow if the
data is not from a
DBMS

Even when the data does not come from the database, there are many times
when you want to take advantage of the intelligence of a DataWindow object:

• Data Validation You have full access to validation rules for data.

• Display Formats You can use any existing display formats to present the
data, or create your own.

• Edit Styles You can use any existing edit styles, such as radio buttons
and edit masks, to present the data, or create your own.

Data source Use when

Quick Select The data is from a single table (or from tables that are related
through foreign keys) and you need to choose only columns,
selection criteria, and sorting.

SQL Select You want more control over the SQL SELECT statement
generated for the data source or your data is from tables that
are not connected through a key. For example, you need to
specify grouping, computed columns, or retrieval arguments
within the SQL SELECT statement.

Query The data has been defined as a query.

Stored Procedure The data is defined in a stored procedure.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 415

Using Quick Select
The easiest way to define a data source is using Quick Select.

❖ To define the data using Quick Select:

1 Click Quick Select in the Choose Data Source dialog box in the wizard and
click Next.

2 Select the table that you will use in the DataWindow object.

For more information, see “Selecting a table” next.

3 Select the columns to be retrieved from the database.

For more information, see “Selecting columns” on page 417.

4 (Optional) Sort the rows before you retrieve data.

For more information, see “Specifying sorting criteria” on page 418.

5 (Optional) Select what data to retrieve.

For more information, see “Specifying selection criteria” on page 418.

6 Click the OK button Quick Select dialog box.

You return to the wizard to complete the definition of the DataWindow
object.

Quick Select
limitations

When you choose Quick Select as your data source, you cannot:

• Specify grouping before rows are retrieved

• Include computed columns

• Specify retrieval arguments for the SELECT statement that are supplied
during execution.

To use these options when you create a DataWindow object, choose SQL
Select as your data source. If you decide later that you want to use retrieval
arguments, you can define them by modifying the data source. For more
information, see Chapter 18, “Enhancing DataWindow Objects.”

Selecting a table
Which tables and
views display?

When you choose Quick Select, the Quick Select dialog box displays. The
Tables box lists tables and views in the current database.

Using Quick Select

416 PocketBuilder

Displaying table comments
To display a comment about a table, position the pointer on the table and click
the right mouse button, or select the table. The comment displays in the Quick
Select dialog box below the list box for tables.

The DBMS determines what tables and views display. ASA does not restrict
the display, so all tables and views display, whether or not you have
authorization.

Tables with key
relationships

When you select a table, the table's column names display in the Columns box,
and any tables having a key relationship with the selected table display in the
Tables box. These tables are indented and marked with an arrow to show their
relationship to the selected table. You can select any of these related tables if
you want to include columns from them in the DataWindow object.

Figure 17-7: Table and column selection using Quick Select

Meaning of the up and
down arrows

An arrow displays next to a table to indicate its relationship to the selected
table. The arrow always points in the many direction of the relationship—
toward the selected table (up) if the selected table contains a foreign key in the
relationship and away from the selected table (down) if the selected table
contains a primary key in the relationship.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 417

Figure 17-8: Arrow direction indicating table key mappings

In Figure 17-8, sales_order is the selected table. The Up arrows indicate that a
foreign key in the sales_order table is mapped to the primary key in the
customer, employee, and fin_code tables. The Down arrow indicates that the
sales_order_items table contains a foreign key mapped to the primary key in
the sales_order table.

How columns from
additional tables
display

The column names of selected tables display in the Columns box. If you select
more than one table, the column names are identified as:

tablename.columnname

For example, department.dept_name and employee.emp_id display when the
Employee table and the Department table are selected.

To return to the original table list
Click the table you first selected at the top of the table list.

Selecting columns
You can select columns from the primary table and from its related tables.
Select the table whose columns you want to use in the Tables box, then add
columns from the Columns box:

• To add a column, select it in the Columns box.

• To add all the columns that display in the Columns box, click Add All.

• To remove a column, deselect it in the Columns box.

• To view comments that describe a table or column, position the pointer on
a table or column name, and press and hold the right mouse button.

As you select columns, they display in the grid at the bottom of the dialog box
in the order in which you select them. If you want the columns to display in a
different order in the DataWindow object, select a column name you want to
move in the grid and drag it to the new location.

Using Quick Select

418 PocketBuilder

Specifying sorting criteria
In the grid at the bottom of the Quick Select dialog box, you can specify if you
want the retrieved rows to be sorted. As you specify sorting criteria,
PocketBuilder builds an ORDER BY clause for the SELECT statement.

Figure 17-9: Selecting columns for sort criteria

❖ To sort retrieved rows on a column:

1 Click in the Sort row for the column you want to sort on.

PocketBuilder displays a drop-down list.

2 Select the sorting order for the rows: Ascending or Descending.

Multilevel sorts You can specify as many columns for sorting as you want. PocketBuilder
processes the sorting criteria left to right in the grid: the first column with
Ascending or Descending specified becomes the highest level sorting column,
the next column with Ascending or Descending specified becomes the next
level sorting column, and so on.

If you want to do a multilevel sort that does not match the column order in the
grid, drag the columns to the correct order and then specify the columns for
sorting.

Specifying selection criteria
You can enter selection criteria in the grid to specify which rows to retrieve.
For example, instead of retrieving data about all employees, you might want to
limit the data to employees in Sales and Marketing, or to employees in Sales
who make more than $80,000.

As you specify selection criteria, PocketBuilder builds a WHERE clause for the
SELECT statement.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 419

❖ To specify selection criteria:

1 Click the Criteria row below the first column for which you want to select
the data to retrieve.

2 Enter an expression, or if the column has an edit style, select or enter a
value.

If the column is too narrow for the criterion, drag the grid line to enlarge
the column. This enlargement does not affect the column size in a
DataWindow object.

3 Enter additional expressions until you have specified the data you want to
retrieve.

About edit styles
If a column has an edit style associated with it in the extended attribute system
tables (an association made in the Database painter), the edit style is used in the
grid selection criteria where possible. Drop-down list boxes are used for
columns with code tables and columns that use the CheckBox and RadioButton
edit styles.

SQL operators
supported in Quick
Select

You can use these SQL relational operators in the retrieval criteria:

Table 17-2: SQL relational operators used in retrieval criteria

Because = is the default operator, you can enter the value 100 instead of = 100,
or the value New Hampshire instead of = New Hampshire.

Comparison operators You can use the LIKE, NOT LIKE, IN, and NOT IN operators to compare
expressions.

Operator Meaning

= Is equal to (default operator)

> Is greater than

< Is less than

< > Is not equal to

> = Is greater than or equal to

< = Is less than or equal to

LIKE Matches this pattern

NOT LIKE Does not match this pattern

IN Is in this set of values

NOT IN Is not in this set of values

Using Quick Select

420 PocketBuilder

Use LIKE to search for strings that match a predetermined pattern. Use NOT
LIKE to find strings that do not match a predetermined pattern. When you use
LIKE or NOT LIKE, you can use wildcards:

• The percent sign (%), like the DOS wildcard asterisk (*), matches multiple
characters. For example, Good% matches all names that begin with Good.

• The underscore character (_) matches a single character. For example,
Good _ _ _ matches all seven-letter names that begin with Good.

Use IN to compare and include rows with values that fall within the set of
values that you define. Use NOT IN to compare and exclude rows with values
that do not fall within the set of values that you define. For an example using
the IN relational criteria, see “Example 4” on page 422. For an example using
the LIKE relational criteria, see “Example 6” on page 423.

Connection operators You can use the OR and AND logical operators to connect expressions.

Table 17-3: Logical operators for selection criteria expressions

PocketBuilder makes some assumptions based on how you specify selection
criteria. When you specify:

• Criteria for more than one column on one line, PocketBuilder assumes a
logical AND between the criteria. A row from the database is retrieved if
all criteria in the line are met.

• Two or more lines of selection criteria, PocketBuilder assumes a logical
OR. A row from the database is retrieved if the criterion in any of the lines
is met.

To override these defaults, begin an expression with the AND or OR operator.
For an example overriding the default logical operators, see “Example 5” on
page 422.

This technique is particularly handy when you want to retrieve a range of
values in a column.

Operator Meaning

OR The row is selected if one expression OR another expression is true

AND The row is selected if one expression AND another expression are true

CHAPTER 17 Defining DataWindow Objects

User’s Guide 421

SQL expression examples
The examples in this section all refer to a grid that contains columns from a
table of employees.

Example 1 The expression >50000 in the Criteria row in the Salary column in the grid
retrieves information for employees whose salaries are less than $50,000.

Figure 17-10: Expression criteria example using a relational operator

The SELECT statement that PocketBuilder creates is:

SELECT emp_id, dept_id, salary
FROM employee
WHERE salary < 50000

Example 2 The expression >300 in the Criteria row in the EmpId column and the
expression <50000 in the Criteria row in the Salary column in the grid retrieve
information for employees whose employee IDs are greater than 300 and
whose salaries are less than $50,000.

Figure 17-11: Expression criteria example using default logical operator

The SELECT statement that PocketBuilder creates is:

SELECT emp_id, dept_id, salary
FROM employee
WHERE emp_id >300 AND salary <50000

Example 3 The expressions 100 in the Criteria row and >300 in the Or row for the DeptId
column, together with the expression <50000 in the Criteria row in the Salary
column, retrieve information for employees who belong to:

• Department 100 and have a salary less than $50,000

or

• A department whose ID is greater than 300, regardless of their salary

Using Quick Select

422 PocketBuilder

Figure 17-12: Expression criteria example using two default logical
operators

The SELECT statement that PocketBuilder creates is:

SELECT emp_id, dept_id, salary
FROM employee
WHERE (dept_id = 100 AND salary < 50000)
OR dept_id > 300

Example 4 The expression IN(100, 200, 500) in the Criteria row in the DeptId column
in the grid retrieves information for employees who are in department 100 or
200 or 500.

Figure 17-13: Expression criteria example using the IN relational
operator

The SELECT statement that PocketBuilder creates is:

SELECT emp_id, dept_id, salary
FROM employee
WHERE dept_id IN (100, 200, 500)

Example 5 This example shows the use of the word AND in the Or criteria row. In the
Criteria row, >=500 is in the EmpId column and >=30000 is in the Salary
column. In the Or row, AND <=1000 is in the EmpId column and AND <=50000
is in the Salary column. These criteria retrieve information for employees who
have employee IDs from 500 to 1000 and salaries from $30,000 to $50,000.

Figure 17-14: Expression criteria example overriding the default logical
operators

CHAPTER 17 Defining DataWindow Objects

User’s Guide 423

The SELECT statement that PocketBuilder creates is:

SELECT emp_id, dept_id, salary
FROM employee
WHERE (emp_id >= 500 AND emp_id <= 1000)
AND (salary >= 30000 AND salary <= 50000)

Example 6 In a grid with three columns: Emp Last Name, Emp First Name, and Salary, the
expressions LIKE C% in the Criteria row and LIKE G% in the Or row in the Emp
Last Name column retrieve information for employees who have last names
that begin with C or G.

Figure 17-15: Expression criteria example using the LIKE relational
operator

The SELECT statement that PocketBuilder creates is:

SELECT emp_last_name, emp_first_name, salary
FROM employee
WHERE emp_last_name LIKE 'C%'
OR emp_last_name LIKE 'G%'

Providing SQL
functionality to users

You can allow your users to specify selection criteria in a DataWindow object
using these techniques during execution:

• You can automatically pop up a window prompting users to specify
criteria each time just before data is retrieved

For more information, see Chapter 18, “Enhancing DataWindow
Objects.”

• You can place the DataWindow object in query mode using the Modify
function

For more information, see the Resource Guide.

Using SQL Select

424 PocketBuilder

Using SQL Select
In specifying data for a DataWindow object, you have more options for
specifying complex SQL statements when you use SQL Select as the data
source. When you choose SQL Select, you go to the Select painter, where you
can paint a SELECT statement that includes the following:

• More than one table

• Selection criteria (WHERE clause)

• Sorting criteria (ORDER BY clause)

• Grouping criteria (GROUP BY and HAVING clauses)

• Computed columns

• One or more arguments to be supplied during execution

Saving your work as a query
While in the Select painter, you can save the current SELECT statement as a
query by selecting File>Save Query from the menu bar. Doing so allows you
to easily use this data specification again in other reports.

For more information about queries, see “Defining queries” on page 448.

❖ To define the data using SQL Select:

1 Click SQL Select in the Choose Data Source dialog box in the wizard and
click Next.

The Select Tables dialog box displays.

2 Select the tables and/or views that you will use in the DataWindow object.

For more information, see “Selecting tables and views” next.

3 Select the columns to be retrieved from the database.

For more information, see “Selecting columns” on page 427.

4 Join the tables if you have selected more than one.

For more information, see “Joining tables” on page 430.

5 Select retrieval arguments if appropriate.

For more information, see “Using retrieval arguments” on page 432.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 425

6 Limit the retrieved rows with WHERE, ORDER BY, GROUP BY, and
HAVING criteria, if appropriate.

For more information, see “Specifying selection, sorting, and grouping
criteria” on page 434.

7 If you want to eliminate duplicate rows, select Distinct from the Design
menu. This adds the DISTINCT keyword to the SELECT statement.

8 Click the Return button on the PainterBar.

You return to the wizard to complete the definition of the DataWindow
object.

Selecting tables and views
After you have chosen SQL Select, the Select Tables dialog box displays in
front of the Table Layout view of the Select painter. What tables and views
display in the dialog box depends on the DBMS. ASA does not restrict the
display, so all tables and views display, whether or not you have authorization.

❖ To select the tables and views:

• Do one of the following:

• Click the name of each table or view you want to open

Each table you select is highlighted. (To deselect a table, click it
again.) Click the Open button to close the Select Tables dialog box.

• Double-click the name of each table or view you want to open

Each object opens immediately behind the Select Tables dialog box.
Click the Cancel button to close the Select Tables dialog box.

Representations of the selected tables and views display. You can move or size
each table to fit the space as needed.

Using SQL Select

426 PocketBuilder

Below the Table Layout view, several tabbed views also display by default.
You will use the views (for example, Compute, Having, Group) to specify the
SQL Select statement in more detail.You can turn the views on and off from the
View menu on the menu bar.

Figure 17-16: Table and column selection using SQL Select

Specifying what is
displayed

You can display the label and datatype of each column in the tables. (The label
information comes from the extended attribute system tables.) If you need
more space, you can choose to hide this information.

❖ To hide or display comments, datatypes, and labels:

1 Position the pointer on any unused area of the Table Layout view and
select Show from the pop-up menu.

A cascading menu displays.

2 Select or clear Datatypes, Labels, or Comments as needed.

Colors in the Select
painter

In the Database painter, you select the colors used by the Select painter to
display the Table Layout view background and table information. You can also
set colors for the text and background components in the table header and detail
areas.

For more information about specifying colors in the Database painter, see
“Modifying database preferences” on page 357.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 427

Adding and removing
tables and views

You can add tables and views to your Table Layout view at any time. You can
also remove individual tables and views from the Table Layout view, or clear
them all at once and begin selecting a new set of tables.

Table 17-4: Adding tables and views in the Select painter

How PocketBuilder
joins tables

If you select more than one table in the Select painter, PocketBuilder joins
columns based on their key relationship.

For information about joins, see “Joining tables” on page 430.

Selecting columns
You can click each column you want to include from the table representations
in the Table Layout view. PocketBuilder highlights selected columns and
places them in the Selection List at the top of the Select painter.

Figure 17-17: Column selection list in the Table Layout view

❖ To reorder the selected columns:

• Drag a column in the Selection List with the mouse. Release the mouse
button when the column is in the proper position in the list.

❖ To select all columns from a table:

• Move the pointer to the table name and select Select All from the pop-up
menu.

❖ To include computed columns:

1 Click the Compute tab to make the Compute view available (or select
View>Compute if the Compute view is not currently displayed).

Each row in the Compute view is a place for entering an expression that
defines a computed column.

To do this Do this

Add tables or views Click the Tables button in the PainterBar and select
tables or views to add

Remove a table or view Display its pop-up menu and select Close

Remove all tables and views Select Design>Undo All from the menu bar

Using SQL Select

428 PocketBuilder

2 Enter one of the following:

• An expression for the computed column. For example:

salary/12

• A function supported by your DBMS. For example, the following is
an ASA function:

substr("employee"."emp_fname",1,2)

You can display the pop-up menu for any row in the Compute view. Using
the pop-up menu, you can select and paste columns, functions, and
arguments (if you have created any) into the expression.

About these functions
The functions listed in the pop-up menu are functions provided by your
DBMS. They are not PocketBuilder functions. This is because you are
now defining a SELECT statement that will be sent to your DBMS for
processing.

3 Press the Tab key to get to the next row to define another computed
column, or click another tab to make additional specifications.

PocketBuilder adds the computed columns to the list of columns you have
selected.

About computed
columns and
computed fields

Computed columns you define in the Select painter are added to the SQL
statement and used by the DBMS to retrieve the data. The expression you
define here follows the rules of the DBMS.

You can also choose to define computed fields, which are created and
processed dynamically by PocketBuilder after the data has been retrieved from
the DBMS. There are advantages to doing this. For example, work is offloaded
from the database server, and the computed fields update dynamically as data
changes in the DataWindow object. If you have many rows, however, this
updating can result in slower performance.

For more information, see Chapter 18, “Enhancing DataWindow Objects.”

CHAPTER 17 Defining DataWindow Objects

User’s Guide 429

Displaying the underlying SQL statement
As you specify the data for the DataWindow object in the Select painter,
PocketBuilder is generating a SQL SELECT statement. It is this SQL statement
that will be sent to the DBMS when you retrieve data into the DataWindow
object. You can look at the SQL as it is being generated while you continue
defining the data for the DataWindow object.

❖ To display the SQL statement:

• Click the Syntax tab to make the Syntax view available, or select
View>Syntax if the Syntax view is not currently displayed.

You may need to use the scroll bar to see all parts of the SQL SELECT
statement. This statement is updated each time you make a change.

Editing the SELECT
statement
syntactically

Instead of modifying the data source graphically, you can directly edit the
SELECT statement in the Select painter.

Converting from syntax to graphics
If the SQL statement contains unions or the BETWEEN operator, it may not be
possible to convert the syntax back to graphics mode. In general, once you
convert the SQL statement to syntax, you should maintain it in syntax mode.

❖ To edit the SELECT statement:

1 Select Design>Convert to Syntax from the menu bar.

PocketBuilder displays the SELECT statement in a text window.

2 Edit the SELECT statement.

3 Do one of the following:

• Select Design>Convert to Graphics from the menu bar to return to the
Select painter.

• Click the Return button to return to the wizard if you are building a
new DataWindow object, or to the DataWindow painter if you are
modifying an existing DataWindow object.

Using SQL Select

430 PocketBuilder

Joining tables
If the DataWindow object will contain data from more than one table, you
should join the tables on their common columns. If you have selected more
than one table, PocketBuilder joins columns according to whether they have a
key relationship:

• Columns with a primary/foreign key relationship are joined automatically

• Columns with no key relationship are joined, if possible, based on
common column names and types

Deleting joins PocketBuilder links joined tables in the Select painter Table Layout view.
PocketBuilder joins can differ depending on the order in which you select the
tables, and sometimes the PocketBuilder best-guess join is incorrect, so you
might need to delete a join and manually define a join.

Figure 17-18: Dialog box for manually deleting and adding table joins

❖ To delete a join:

1 Click the join operator connecting the tables.

The Join dialog box displays.

2 Click Delete.

Adding joins manually You also add joins through the Join dialog box.

❖ To join tables:

1 Click the Join button in the PainterBar.

2 Click the columns on which you want to join the tables.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 431

3 To create a join other than an equality join, click the join operator in the
Table Layout view.

The Join dialog box displays.

4 Select the join operator you want and click OK.

Using ANSI outer joins

PocketBuilderPocketBuilder supports both left and right outer joins in graphics
mode in the Select painter, and full outer and inner joins in syntax mode.

The syntax for ANSI outer joins is generated according to the following BNF
(Backus Naur form):

OUTER-join ::=
table-reference {LEFT | RIGHT} OUTER JOIN table-reference ON
search-condition

table-reference ::=
table_view_name [correlation_name] | OUTER-join

Order of evaluation
and nesting

In ANSI SQL-92, when nesting joins, the result of the first outer join
(determined by order of ON conditions) is the operand of the outer join that
follows it. In PocketBuilder, an outer join is considered to be nested if the
table-reference on the left of the JOIN has been used before within the same
outer join nested sequence.

The order of evaluation for ANSI syntax nested outer joins is determined by
the order of the ON search conditions. This means that you must create the
outer joins in the intended evaluation order and add nested outer joins to the
end of the existing sequence, so that the second table-reference in the outer join
BNF above will always be a table_view_name.

Nesting example For example, if you create a left outer join between a column in Table1 and a
column in Table2, then join the column in Table2 to a column in Table3, the
product of the outer join between Table1 and Table2 is the operand for the outer
join with Table3.

For ODBC connections, the default generated syntax encloses the outer joins
in escape notation {oj ...} that is parsed by the driver and replaced with
DBMS-specific grammar:

SELECT Table1.col1, Table2.col1, Table3.col1
FROM {oj {oj Table1 LEFT OUTER JOIN Table2 ON Table1.col1 =
Table2.col1}
LEFT OUTER JOIN Table3 ON Table2.col1 = Table3.col1}

Using SQL Select

432 PocketBuilder

Table references Table references are considered equal when the table names are equal and there
is either no alias (correlation name) or the same alias for both. Reusing the
operand on the right is not allowed, because ANSI does not allow referencing
the table_view_name twice in the same statement without an alias.

Determining left and
right outer joins

When you create a join condition, the table you select first in the painter is the
left operand of the outer join. The table that you select second is the right
operand. The condition you select from the Joins dialog box determines
whether the join is a left or right outer join.

For example, suppose you select the dept_id column in the employee table, then
select the dept_id column in the department table, then choose the following
condition:

employee.dept_id = department.dept_id and rows from
department that have no employee

The syntax generated is:

SELECT employee.dept_id, department.dept_id
FROM {oj "employee" LEFT OUTER JOIN "department" ON
"employee"."dept_id" = "department"."dept_id"}

If you select the condition with rows from department that have no
employee, you create a right outer join instead.

Equivalent statements
The syntax generated when you select table A then table B and create a left
outer join is equivalent to the syntax generated when you select table B then
table A and create a right outer join.

For more about outer joins, see your DBMS documentation.

Using retrieval arguments
If you know which rows will be retrieved into the DataWindow object during
execution—that is, if you can fully specify the SELECT statement without
having to provide a variable—you do not need to specify retrieval arguments.

Adding retrieval
arguments

If you decide later that you need arguments, you can return to the Select painter
to define the arguments.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 433

Defining retrieval arguments in the DataWindow painter
You can select View>Column Specifications from the menu bar. In the Column
Specification view, a column of check boxes next to the columns in the data
source lets you identify the columns users should be prompted for. This, like
the Retrieval Arguments prompt, calls the Retrieve function.

See Chapter 18, “Enhancing DataWindow Objects.”

If you want the user to be prompted to identify which rows to retrieve, you can
define retrieval arguments when defining the SQL SELECT statement. For
example, consider these situations:

• Retrieving the row in the Employee table for an employee ID entered into
a text box. You must pass that information to the SELECT statement as an
argument during execution.

• Retrieving all rows from a table for a department selected from a
drop-down list. The department is passed as an argument during
execution.

Using retrieval arguments during execution
If a DataWindow object has retrieval arguments, call the Retrieve function
of the DataWindow control to retrieve data during execution and pass the
arguments in the function.

For more information, see the DataWindow Reference in the online Help.

❖ To define retrieval arguments:

1 In the Select painter, select Design>Retrieval Arguments from the menu
bar.

2 Enter a name and select a datatype for each argument.

You can enter any valid SQL identifier for the argument name. The
position number identifies the argument position in the Retrieve function
you code in a script that retrieves data into the DataWindow object.

3 Click Add to define additional arguments as needed and click OK when
done.

Using SQL Select

434 PocketBuilder

Specifying an array as
a retrieval argument

You can specify an array of values as your retrieval argument. Choose the type
of array from the Type drop-down list in the Specify Retrieval Arguments
dialog box. You specify an array if you want to use the IN operator in your
WHERE clause to retrieve rows that match one of a set of values. For example:

SELECT * from employee

WHERE dept_id IN (100, 200, 500)

retrieves all employees in department 100, 200, or 500. If you want your user
to specify the list of departments to retrieve, you define the retrieval argument
as a number array (such as 100, 200, 500).

In the script that does the retrieval, you declare an array and reference it in the
Retrieve function, such as:

int x[3]
// Now populate the array with values
// such as x[1] = sle_dept.Text, and so on
// then retrieve the data, as follows.
dw_1.Retrieve(x)

PocketBuilder passes the appropriate comma-delimited list to the function
(such as 100, 200, 500 if x[1] = 100, x[2] = 200, and x[3] = 500).

When building the SELECT statement, you reference the retrieval arguments in
the WHERE or HAVING clause, as described in the next section.

Specifying selection, sorting, and grouping criteria
In the SELECT statement associated with a DataWindow object, you can add
selection, sorting, and grouping criteria that are included in the SQL statement
and processed by the DBMS as part of the retrieval.

Table 17-5: Adding selection, sorting, and grouping criteria to the
SELECT statement

To do this Use this clause

Limit the data that is retrieved from the database WHERE

Sort the retrieved data before it is brought into the
DataWindow object

ORDER BY

Group the retrieved data before it is brought into the
DataWindow object

GROUP BY

Limit the groups specified in the GROUP BY clause HAVING

CHAPTER 17 Defining DataWindow Objects

User’s Guide 435

Dynamically selecting, sorting, and grouping data
Selection, sorting, and grouping criteria that you define in the Select painter are
added to the SQL statement and processed by the DBMS as part of the
retrieval. You can also define selection, sorting, and grouping criteria that are
created and processed dynamically by PocketBuilder after data has been
retrieved from the DBMS.

For more information, see Chapter 22, “Filtering, Sorting, and Grouping
Rows.”

Referencing retrieval
arguments

If you have defined retrieval arguments, you reference them in the WHERE or
HAVING clause. In SQL statements, variables (called host variables) are always
prefaced with a colon to distinguish them from column names.

For example, if the DataWindow object is retrieving all rows from the
Department table where the dept_id matches a value provided by the user
during execution, your WHERE clause will look something like this:

WHERE dept_id = :Entered_id

where Entered_id was defined previously as an argument in the Specify
Retrieval Arguments dialog box.

Referencing arrays
Use the IN operator and reference the retrieval argument in the WHERE or
HAVING clause.

For example, if you reference an array defined as deptarray, the expression in
the WHERE view might look like this:

"employee.dept_id" IN (:deptarray)

You need to supply the parentheses yourself.

Defining WHERE
criteria

You can limit the rows that are retrieved into the DataWindow object by
specifying selection criteria that correspond to the WHERE clause in the
SELECT statement.

For example, if you are retrieving information about employees, you can limit
the employees to those in Sales and Marketing, or to those in Sales and
Marketing who make more than $50,000.

Using SQL Select

436 PocketBuilder

❖ To define WHERE criteria:

1 Click the Where tab to make the Where view available (or select
View>Where if the Where view is not currently displayed).

Each row in the Where view is a place for entering an expression that
limits the retrieval of rows.

2 Click in the first row under Column to display columns in a drop-down
list, or select Columns from the pop-up menu.

3 Select the column you want to use in the left-hand side of the expression.

The equality (=) operator displays in the Operator column.

Using a function or retrieval argument in the expression
To use a function, select Functions from the pop-up menu and click a listed
function. These are the functions provided by the DBMS.

To use a retrieval argument, select Arguments from the pop-up menu. You
must have defined a retrieval argument already.

4 (Optional) Change the default equality operator.

Enter the operator you want, or click to display a list of operators and
select an operator.

5 Under Value, specify the right-hand side of the expression. You can:

• Type a value.

• Paste a column, function, or retrieval argument (if there is one) by
selecting Columns, Functions, or Arguments from the pop-up menu.

• Paste a value from the database by selecting Value from the pop-up
menu, then selecting a value from the list of values retrieved from the
database. (It may take some time to display values if the column has
many values in the database.)

• Define a nested SELECT statement by selecting Select from the
pop-up menu. In the Nested Select dialog box, you can define a nested
SELECT statement. Click Return when you have finished.

6 Continue to define additional WHERE expressions as needed.

For each additional expression, select a logical operator (AND or OR) to
connect the multiple boolean expressions into one expression that
PocketBuilder evaluates as true or false to limit the rows that are retrieved.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 437

7 Define sorting (Sort view), grouping (Group view), and limiting (Having
view) criteria as appropriate.

8 Click the Return button to return to the DataWindow painter.

Defining ORDER BY
criteria

You can sort the rows that are retrieved into the DataWindow object by
specifying columns that correspond to the ORDER BY clause in the SELECT
statement.

For example, if you are retrieving information about employees, you can sort
on department. Then within each department, you can sort on employee ID.

Figure 17-19: Defining multiple sort criteria for a DataWindow object

❖ To define ORDER BY criteria:

1 Click the Sort tab to make the Sort view available (or select View>Sort if
the Sort view is not currently displayed).

The columns you selected display in the order of selection. You might
need to scroll to see your selections.

2 Drag the first column you want to sort on to the right side of the Sort view.

This specifies the column for the first level of sorting. By default, the
column is sorted in ascending order. To specify descending order, clear the
Ascending check box.

Using SQL Select

438 PocketBuilder

3 Continue to specify additional columns for sorting in ascending or
descending order as needed.

You can change the sorting order by dragging the selected column names
up or down.

4 Define limiting (Where view), grouping (Group view), and limiting by
group (Having view) criteria as appropriate.

5 Click the SQL Select button to return to the DataWindow painter.

Defining GROUP BY
criteria

You can group the retrieved rows by specifying groups that correspond to the
GROUP BY clause in the SELECT statement. This grouping happens before the
data is retrieved into the DataWindow object. Each group is retrieved as one
row into the DataWindow object.

For example, if in the SELECT statement you group data from the Employee
table by department ID, you will get one row back from the database for every
department represented in the Employee table. You can also specify computed
columns, such as total and average salary, for the grouped data. This is the
corresponding SELECT statement:

SELECT dept_id, sum(salary), avg(salary)
FROM employee
GROUP BY dept_id

If you specify this with the Employee table in the ASA Sample database, you
get five rows back, one for each department.

Figure 17-20: Computed columns grouped by department ID

For more about GROUP BY, see your DBMS documentation.

❖ To define GROUP BY criteria:

1 Click the Group tab to make the Group view available (or select
View>Group if the Group view is not currently displayed).

The columns in the tables you selected display in the left side of the Group
view. You might need to scroll to see your selections.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 439

2 Drag the first column you want to group on to the right side of the Group
view.

This specifies the column for grouping. Columns are grouped in the order
they are displayed in the right side of the Group view.

3 Continue to specify additional columns for grouping within the first
grouping column as needed.

To change the grouping order, drag the column names in the right side to
the positions you want.

4 Define sorting (Sort view), limiting (Where view), and limiting by group
(Having view) criteria as appropriate.

5 Click the Return button to return to the DataWindow painter.

Defining HAVING
criteria

If you have defined groups, you can define HAVING criteria to restrict the
retrieved groups. For example, if you group employees by department, you can
restrict the retrieved groups to departments whose employees have an average
salary of less than $50,000. This corresponds to:

SELECT dept_id, sum(salary), avg(salary)
FROM employee
GROUP BY dept_id
HAVING avg(salary) < 50000

If you specify this with the Employee table in the ASA Sample database, you
will get three rows back, because there are three departments that have average
salaries less than $50,000.

Figure 17-21: Grouped data restricted by HAVING criteria

Using Query

440 PocketBuilder

❖ To define HAVING criteria:

• Click the Having tab to make the Having view available (or select
View>Having if the Having view is not currently displayed).

Each row in the Having view is a place for entering an expression that
limits which groups are retrieved. For information on how to define
criteria in the Having view, see the procedure in “Defining WHERE
criteria” on page 435.

Using Query
When you choose Query as the data source, you select a predefined SQL
SELECT statement (a query) as specifying the data for your DataWindow
object.

❖ To define the data using Query:

1 While using any of the DataWindow wizards, click Query in the Choose
Data Source dialog box. Then click Next.

The Select Query dialog box displays.

2 Type the name of a query or use the Browse button to find the query. Then
click Next.

3 Finish interacting with the DataWindow wizard as needed for the
presentation style you are using.

To learn how to create queries, see “Defining queries” on page 448.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 441

Using External
If the data for the DataWindow object does not come from a database, specify
External as the data source. You then specify the data columns and their types
so that PocketBuilder can build the appropriate DataWindow object to hold the
data. These columns make up the result set. PocketBuilder places the columns
you specified in the result set in the DataWindow object.

❖ To define the data using External:

1 Click External in the Choose Data Source dialog box in the wizard and
click Next.

The Define Result Set dialog box displays for you to specify the first
column in the result set.

2 Enter the name and type of the column.

Available datatypes are listed in the drop-down list.

3 Click Add to enter the name and type of any additional columns you want
in the result set.

4 Click Next when you have added all the columns you want.

What you do next In a script, you need to tell PocketBuilder how to get data into the DataWindow
object in your application. Typically, you import data during execution using a
function (such as ImportFile and ImportString) or do some data manipulation and
use the SetItem function to populate the DataWindow.

For more about these functions, see the DataWindow Reference in the online
Help.

You can also import data values from an external file into the DataWindow
object or report.

❖ To import the data values from an external file:

1 Make sure the Preview view of the DataWindow object is selected.

2 Select Rows>Import from the menu bar.

The Select Import File dialog box displays.

3 Select the type of files to list from the List Files of Type drop-down list
(either TXT or DBF files).

4 Select or type the name of the file you want to import and click OK.

Using Stored Procedure

442 PocketBuilder

Using Stored Procedure
A stored procedure is a set of precompiled and preoptimized SQL statements
that performs some database operation. Stored procedures reside where the
database resides, and you can access them as needed.

Defining data using a
stored procedure

You can specify a stored procedure as the data source for a DataWindow object.

❖ To define the data using Stored Procedure:

1 Select Stored Procedure in the Choose Data Source dialog box in the
wizard and click Next.

The Select Stored Procedure dialog box displays a list of the stored
procedures in the current database.

2 Select a stored procedure from the list.

To list system procedures, select the System Procedure check box.

The syntax of the selected stored procedure displays below the list of
stored procedures.

3 Specify how you want the result set description built:

• To build the result set description automatically, clear the Manual
Result Set check box and click Next

PocketBuilder executes the stored procedure and builds the result set
description for you

• To define the result set description manually, select the Manual Result
Set check box and click Next

In the Define Stored Procedure Result Set dialog box:

• Enter the name and type of the first column in the result set

• To add additional columns, click Add

Your preference is saved
PocketBuilder records your preference for building result set descriptions
for stored procedure DataWindow objects in the variable
Stored_Procedure_Build in the PocketBuilder initialization file. If this
variable is set to 1, PocketBuilder automatically builds the result set; if the
variable is set to 0, you are prompted to define the result set description.

4 Continue in the DataWindow wizard as needed for the presentation style
you are using, and click Finish.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 443

When you have finished interacting with the wizard, you go to the
DataWindow painter with the columns specified in the result set placed in
the DataWindow object.

For information about defining retrieval arguments for DataWindow
objects, see Chapter 18, “Enhancing DataWindow Objects.”

For information about using a stored procedure to update the database, see
“Using stored procedures to update the database” on page 516.

Editing a result set
description

After you create a result set that uses a stored procedure, you can edit the result
set description from the DataWindow painter.

❖ To edit the result set description:

1 Select Design>Data Source from the menu bar.

This displays the Column Specification view if it is not already displayed.

2 Select Stored Procedure from the Column Specification view’s pop-up
menu.

The Modify Stored Procedure dialog box displays.

3 Edit the Execute statement, select another stored procedure, or add
arguments.

The syntax is:

execute sp_procname;num arg1 = :arg1, arg2 = :arg2..., argn =:argn

where sp_procname is the name of the stored procedure, num is the stored
procedure group suffix, and arg1, arg1, and argn are the stored procedure’s
arguments.

The group suffix is an optional integer used to group procedures of the
same name so that they can be dropped together with a single DROP
PROCEDURE statement.

4 When you have defined the entire result set, click OK.

You return to the DataWindow painter with the columns specified in the
result set placed in the DataWindow object.

For information about defining retrieval arguments for DataWindow
objects, see Chapter 18, “Enhancing DataWindow Objects.”

Choosing DataWindow object-wide options

444 PocketBuilder

Choosing DataWindow object-wide options
You can set the default options, such as colors and borders, that PocketBuilder
uses in creating the initial draft of a DataWindow object.

DataWindow generation options are for styles that use a layout made up of
bands, which include Freeform, Grid, Tabular, and Group. PocketBuilder
maintains a separate set of options for each of these styles.

When you first create a DataWindow object with one of these styles, you can
choose options in the wizard and save your choices as the future defaults for
the style you select.

Table 17-6: Properties for the DataWindow presentation style that you
select

❖ To specify default colors and borders for a style:

1 Select Design>Options from the menu bar.

The DataWindow Options dialog box displays.

2 Select the Generation tab page if it is not on top.

3 Select the presentation style you want from the Presentation Style
drop-down list.

The values for properties shown on the page are for the currently selected
presentation style.

4 Change one or more of the presentation style properties and click OK.

PocketBuilder saves your generation option choices as the defaults to use
when creating a DataWindow object with the same presentation style.

Property Meaning for the DataWindow object

Background color The default color for the background.

Text border and color The default border and color used for labels and
headings.

Column border and color The default border and color used for data values.

Wrap Height (Freeform
only)

The height of the detail band.

When the value is None, the number of columns
selected determines the height of the detail band.
The columns display in a single vertical line.

When the value is set to a number, the detail band
height is set to the number specified and columns
wrap within the detail band.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 445

Generating and saving a DataWindow object
When you have finished interacting with the wizard, PocketBuilder generates
the DataWindow object and opens the DataWindow painter.

When generating the DataWindow object, PocketBuilder may use information
from a set of tables called the extended attribute system tables. If this
information is available, PocketBuilder uses it.

About the extended attribute system tables and DataWindow
objects

The extended attribute system tables are a set of tables maintained by the
Database painter. They contain information about database tables and columns.
Extended attribute information extends database definitions by recording
information that is relevant to using database data in screens and reports.

For example, labels and headings you defined for columns in the Database
painter are used in the generated DataWindow object. Similarly, if you
associated an edit style with a column in the Database painter, that edit style is
automatically used for the column in the DataWindow object.

When generating a DataWindow object, PocketBuilder uses the information
from the extended attribute system tables listed in Table 17-7.

Table 17-7: Information from the extended attribute system tables

If there is no extended attribute information for the database tables and
columns you are using, you can set the text for headings and labels, the fonts,
and the display formats in the DataWindow painter. The difference is that you
have to do this individually for every DataWindow object that you create using
the data.

If you want to change something that came from the extended attribute system
tables, you can change it in the DataWindow painter. The changes you make in
the DataWindow painter apply only to the DataWindow object you are working
on.

For PocketBuilder uses

Tables Fonts specified for labels, headings, and data

Columns Text specified for labels and headings
Display formats
Validation rules
Edit styles

Generating and saving a DataWindow object

446 PocketBuilder

The advantage of using the extended attribute system tables is that it saves time
and ensures consistency. You have to specify the information only once, in the
database. Since PocketBuilder uses the information whenever anyone creates
a new DataWindow object with the data, it is more likely that the appearance
and labels of data items will be consistent.

For more information about the extended attribute system tables, see Chapter
16, “Managing the Database,” and Appendix A, “Extended Attribute System
Tables.”

Using extended attributes with an UltraLite application

UltraLite databases do not support system tables, so no extended attributes can
be defined in an UltraLite database. If you want to use extended attributes in
an UltraLite application, follow these steps:

1 Define extended attributes while you are connected to a consolidated ASA
database through an ODBC connection.

2 Create the DataWindow objects that you need in your UltraLite
application while connected to the consolidated ASA database. The
extended attributes are stored in the definitions of the DataWindow
objects, which can be used with any database connection.

3 Use the DataWindow objects created using ASA in an application
designed for UltraLite deployment.

This technique lets you take advantage of PocketBuilder extended attributes
without the overhead of additional tables in the UltraLite database.

Saving the DataWindow object
When you have created a DataWindow object, you should save it. The first
time you save it, you give it a name. As you work, you should save your
DataWindow object frequently so that you do not lose changes.

The DataWindow object name can be any valid PowerBuilder identifier up to
40 contiguous characters. A common convention is to prefix the name of the
DataWindow object with d_.

For information about valid identifiers, see “identifier names” in the online
Help.

CHAPTER 17 Defining DataWindow Objects

User’s Guide 447

❖ To save the DataWindow object:

1 Select File>Save from the menu bar.

If you have previously saved the DataWindow object, PocketBuilder saves
the new version in the same library and returns you to the DataWindow
painter.

If you have not previously saved the DataWindow object, PocketBuilder
displays the Save DataWindow dialog box.

2 (Optional) Enter comments in the Comments box to describe the
DataWindow object.

3 Enter a name for the DataWindow object in the DataWindows box.

4 Specify the library in which the DataWindow object is to be saved and
click OK.

Modifying an existing DataWindow object

❖ To modify an existing DataWindow object:

1 Select File>Open from the menu bar.

The Open dialog displays.

2 Select the object type and the library.

PocketBuilder lists the DataWindow objects in the current library.

3 Select the object you want.

PocketBuilder opens the DataWindow painter and displays the
DataWindow object.You can also open a DataWindow object by
double-clicking it in the System Tree, or, if it has been placed in a
DataWindow control window or visual user object, by selecting Modify
DataWindow from the control’s pop-up menu.

To learn how you can modify an existing DataWindow object, see Chapter
18, “Enhancing DataWindow Objects.”

Defining queries

448 PocketBuilder

Defining queries
A query is a SQL SELECT statement created in the Query painter and saved
with a name so that it can be used repeatedly as the data source for a
DataWindow object.

Queries save time, because you specify all the data requirements just once. For
example, you can specify the columns, which rows to retrieve, and the sorting
order in a query. Whenever you want to create a DataWindow object using that
data, simply specify the query as the data source.

❖ To define a query:

1 Select File>New from the menu bar.

2 In the New dialog box, select the Database tab.

3 Select the Query icon and click OK.

4 Select tables in the Select Tables dialog box and click Open.

You can select columns, define sorting and grouping criteria, define
computed columns, and so on, exactly as you do when creating a
DataWindow object using the SQL Select data source.

For more about defining the SELECT statement, see “Using SQL Select” on
page 424.

Previewing the query
While creating a query, you can preview it to make sure it is retrieving the
correct rows and columns.

❖ To preview a query:

1 Select Design>Preview from the menu bar.

PocketBuilder retrieves the rows satisfying the currently defined query in
a grid-style DataWindow object.

2 Manipulate the retrieved data as you do in the Database painter in the
Output view.

You can sort and filter the data, but you cannot insert or delete a row or
apply changes to the database. For more about manipulating data, see
Chapter 16, “Managing the Database.”

CHAPTER 17 Defining DataWindow Objects

User’s Guide 449

3 When you have finished previewing the query, click the Close button in
the PainterBar to return to the Query painter workspace.

Saving the query
You must supply a name for each query that you save. The query name can be
any valid PowerBuilder identifier up to 40 characters. When you name queries,
use a unique name to identify each one. A common convention is to use a
two-part name: a standard prefix that identifies the object as a query (such as
q_) and a unique suffix. For example, you might name a query that displays
employee data q_emp_data.

For information about valid identifiers, see “identifier names” in the online
Help.

❖ To save a query:

1 Select File>Save Query from the menu bar.

If you have previously saved the query, PocketBuilder saves the new
version in the same library and returns you to the Query painter.

If you have not previously saved the query, PocketBuilder displays the
Save Query dialog box.

2 Enter a name for the query in the Queries box.

3 (Optional) Enter comments to describe the query.

These comments display in the Library painter. It is a good idea to use
comments to remind yourself and others of the purpose of the query.

4 Specify the library in which to save the query and click OK.

Modifying a query

❖ To modify a query:

1 Select File>Open from the menu bar.

2 Select the Queries object type and the query you want to modify, then click
OK.

3 Modify the query as needed.

What's next

450 PocketBuilder

What's next
After you have generated your DataWindow object, you will probably want to
preview it to see how it looks. After that, you might want to enhance the
DataWindow object in the DataWindow painter before using it.

PocketBuilder provides many ways for you to make a DataWindow object
easier to use and more informative for users.

See Chapter 18, “Enhancing DataWindow Objects,” next.

User’s Guide 451

C H A P T E R 1 8 Enhancing DataWindow Objects

About this chapter Before you put a DataWindow object into production, you can enhance it
to make the data easier to use and interpret. You do that in the
DataWindow painter. This chapter describes basic enhancements you can
make to a DataWindow object.

Contents

Related topics Other ways to enhance DataWindow objects are covered in later chapters:

Topic Page

Working in the DataWindow painter 452

Using the Preview view 459

Saving data in an external file 468

Modifying general DataWindow object properties 469

Storing data in a DataWindow object 480

Prompting for retrieval criteria 481

Chapter Explains how to

Chapter 19, “Working with Controls
in DataWindow Objects”

Add controls to a DataWindow object
and reorganize, position, and rotate them

Chapter 20, “Controlling Updates in
DataWindow Objects”

Control update capabilities

Chapter 21, “Displaying and
Validating Data”

Specify display formats, edit styles, and
validation rules for column data

Chapter 22, “Filtering, Sorting, and
Grouping Rows”

Limit which rows are displayed, the
order in which they are displayed, and
whether they are divided into groups

Chapter 23, “Highlighting
Information in DataWindow
Objects”

Highlight data by using conditional
expressions to modify the properties of
controls in DataWindow objects

Chapter 24, “Working with Graphs” Use graphs to visually present
information retrieved in a DataWindow
object

Working in the DataWindow painter

452 PocketBuilder

Working in the DataWindow painter
The DataWindow painter provides views related to the DataWindow object
you are working on.

Figure 18-1 shows a DataWindow object in the DataWindow painter with the
view title bars pinned. (The title bars are not pinned by default.)

Figure 18-1: DataWindow views with the title bars pinned

Design view The Design view at the top left shows a representation of the DataWindow
object and its controls. You use this view to design the layout and appearance
of the DataWindow object. Changes you make are immediately shown in the
Preview view and the Properties view.

Preview view The Preview view in the middle on the left shows the DataWindow object with
data as it will appear at runtime. If the Print Preview toggle is selected, you see
the DataWindow object as it will appear when printed.

Properties view The Properties view at the top right displays the properties for the currently
selected control(s) in the DataWindow object, for the currently selected band
in the DataWindow object, or for the DataWindow object itself. You can view
and change the values of properties in this view.

Control List view The Control List view in the stacked pane at the bottom lists all controls in the
DataWindow object. Selecting controls in this view selects them in the Design
view and the Properties view. You can also sort controls by Control Name,
Type, or Tag. Because this view is in a stacked pane, and is not the view on top
of the stack, you do not see the Control List view title bar.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 453

Data view The Data view in the stacked pane displays the data that can be used to populate
a DataWindow object and allows manipulation of that data. Because this view
is in focus, its title bar is visible at the top of the stack of panes.

Column Specifications
view

The Column Specifications view in the stacked pane shows a list of the
columns in the data source. For the columns, you can add, modify, and delete
initial values, validation expressions, and validation messages. You can also
specify that you want a column to be included in a prompt for retrieval criteria
during data retrieval. To add a column to the DataWindow object, you can drag
and drop the column from the Column Specifications view to the Design view.
For external or stored procedure data sources, you can add, delete, and edit
columns (column name, type, and length).

Understanding the DataWindow painter Design view
For the Tabular, Freeform, and Grid presentation styles, the DataWindow
painter Design view is divided into areas called bands. Each band corresponds
to a section of the displayed DataWindow object.

DataWindow objects with these presentation styles are divided into four bands:
header, detail, summary, and footer. Each band is identified by a bar containing
the name of the band above the bar and an Arrow pointing to the band. The
Group presentation style has at least six bands, including a second header band
for the group headers and a second detail band for the group details.

These bands can contain any information you want, including text, drawing
controls, and computed fields containing aggregate totals.

Working in the DataWindow painter

454 PocketBuilder

Figure 18-2 shows the Design view for a DataWindow object with a Group
presentation style.

Figure 18-2: Preview view for a DataWindow with a Group presentation
style

Table 18-1: Bands in the DataWindow painter Design view

The header band

The header band contains heading information that is displayed at the top of
every screen or page. The presentation style determines the contents of the
header band:

• If the presentation style is Tabular or Grid, the headings defined for the
columns in the Database painter display in the header band and the
columns display on a single line across the detail band

• If the presentation style is Freeform, the header band is empty and labels
display in the detail band next to each column

Band Used to display

Header Information at the top of every screen or page, such as the name of the
report or current date

Detail Data from the database or other data source

Summary Summary information that displays after all the data, such as totals and
counts

Footer Information displayed at the bottom of every page or screen, such as
page number and page count

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 455

You can specify additional heading information (such as a date) in the header
band, and you can include pictures and color to enhance the appearance of the
band.

Displaying the current date
To include the current date in the header, you place a computed field that uses
the Today DataWindow expression function in the header band. For
information, see “Adding computed fields to a DataWindow object” on page
489.

The detail band

The detail band displays the retrieved data. The number of rows of data that
display in the DataWindow object at one time is determined by the following
expression:

(Height of the DataWindow object – Height of headers and footers) /
Height of the detail band

The presentation style determines the contents of the detail band:

• If the presentation style is Tabular or Grid, the detail band displays column
names, representing the columns

• If the presentation style is Freeform, the labels defined for the columns in
the Database painter display in the detail band with boxes for the data to
the right

How PocketBuilder names the columns in the Design view
If the DataWindow object uses one table, the names of the columns in the
Design view are the same as the names in the table.

If the DataWindow object uses more than one table, the names of the columns
in the Design view are tablename_columnname. PocketBuilder prefaces the
name of the column with the table name to prevent ambiguity, since different
tables can have columns with the same name.

When you design the detail band of a DataWindow object, you can specify
display information for each column of the DataWindow object and add other
controls, such as text, pictures, and drawing controls.

Working in the DataWindow painter

456 PocketBuilder

The summary and footer bands

You use the summary and footer bands of the DataWindow object the same
way you use summary pages and page footers in a printed report:

• The contents of the summary band display at the end, after all the detail
rows; this band often summarizes information in the DataWindow object

• The contents of the footer band display at the bottom of each screen or
page of the DataWindow object; this band often displays the page number
and name of the report

Using the DataWindow painter toolbars
The DataWindow painter contains three customizable PainterBars and a
StyleBar.

For more information about using toolbars, see “Using toolbars” on page 39.

PainterBars The PainterBars include buttons for standard operations (such as Save, Print,
and Undo on PainterBar1), for common formatting operations (such as
Currency, Percent, and Tab Order on PainterBar2), and for database operations
(such as Retrieve and Insert Row on PainterBar3).

They also include six drop-down toolbars, which are indicated by a small black
triangle on the right part of a button. Table 18-2 lists the drop-down toolbars
that are available. The Controls toolbar is on PainterBar1. The other drop-down
toolbars are on PainterBar2.

Table 18-2: Drop-down toolbars in the DataWindow painter

StyleBar The StyleBar includes buttons for applying properties (such as bold) to selected
text elements.

 Toolbar Used to

Background Color Specify the background color of one or more selected controls.

Borders Specify borders for one or more selected controls.

Controls Specify controls to add to a DataWindow object.

Foreground Color Specify the foreground color of one or more selected controls.
In a text control, the foreground color specifies the color of the
text.

Layout Specify the alignment, sizing, and spacing of selected controls.

Slide Specify sliding for controls.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 457

Using the Properties view in the DataWindow painter
Each part of the DataWindow object (such as text, columns, computed fields,
bands, even the DataWindow object itself) has a set of properties appropriate
to the part. The properties display in the Properties view.

You can use the Properties view to modify the parts of the DataWindow object.

❖ To use the Properties view to modify the parts of the DataWindow object:

1 Position the mouse over the part you want to modify.

2 Display the part's pop-up menu and select Properties.

If it is not already displayed, the Properties view displays. The view
displays the properties of the currently selected control(s), the band, or the
DataWindow object itself. The contents of the Properties view change as
different controls are selected (made current).

For example, the Properties view for a column has tabbed pages of information
with properties specific to the selected column or columns. You access the
properties you want to view or modify by clicking the appropriate tab. To
choose an edit style for the column, you click the Edit tab. This brings the Edit
page to the front of the Properties view.

Selecting controls in the DataWindow painter
The DataWindow painter provides several ways to select controls to act on.
Table 18-3 describes the various methods for selecting controls.

Lasso selection
Use lasso selection when possible, because it is fast and easy. Lasso selection
is another name for the method described in Table 18-3 for selecting
neighboring controls.

Working in the DataWindow painter

458 PocketBuilder

When you select multiple controls, you can act on all the selected controls as a
unit. For example, you can move all of them or change the fonts used to display
text for all of them.

Table 18-3: Selecting controls in a DataWindow object

Displaying information
about the selected
control

The name, x and y coordinates, width, and height of the selected control are
displayed in the MicroHelp bar. If multiple controls are selected, Group
Selected displays in the Name area and the coordinates and size do not
display.

Resizing bands in the DataWindow painter Design view
You can change the size of any band in the DataWindow object.

❖ To resize a band in the DataWindow painter Design view:

• Position the pointer on the bar representing the band and drag the bar up
or down to shrink or enlarge the band

To select Do this

A single control in a
DataWindow object

Click the control in the Design view or in the Control List
view.

Neighboring
controls in a
DataWindow object
(lasso selection)

In the Design view, press and hold the left mouse button at
one corner of the area containing the controls, drag the mouse
over the neighboring controls you want to select, and release
the mouse button. (In the Control List view, use the method
for non-neighboring controls in a DataWindow object.)

Non-neighboring
controls in a
DataWindow object

In the Design or Control List views, click any of the controls
that you want to select, then press and hold the Ctrl key while
clicking the other controls you want to select.

Controls by type in a
DataWindow object

• Select Edit>Select>Select All to select all controls

• Select Edit>Select>Select Text to select all text controls

• Select Edit>Select>Select Columns to select all columns

Controls by position
in a DataWindow
object

• Select Edit>Select>Select Above to select all controls
above the currently selected control

• Select Edit>Select>Select Below to select all controls
below it

• Select Edit>Select>Select Left to select all controls to the
left of it

• Select Edit>Select>Select Right to select all controls to the
right of it

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 459

Using zoom in the DataWindow painter
You can zoom the display in and out in four views in the DataWindow painter:
the Design view, Preview view, Data View, and Column Specifications view.
For example, if you are working with a large DataWindow object, you can
zoom out the Design view so you can see all of it on your screen, or you can
zoom in on a group of controls to see their details better.

❖ To zoom the display in the DataWindow painter:

1 Click in the view you want to zoom.

You can zoom the Design view, Preview view, Data View, and Column
Specifications view.

2 Select Design>Zoom from the menu bar.

3 Select a built-in zoom percentage, or set a custom zoom percentage by
typing an integer in the Custom box.

Using the IntelliMouse pointing device
Using the IntelliMouse pointing device, users can also zoom in and out of a
view by holding down the Ctrl key while rotating the wheel.

Undoing changes in the DataWindow painter
You can undo your change by pressing Ctrl+Z or selecting Edit>Undo from the
menu bar. Undo requests affect all views.

Using the Preview view
You use the Preview view of the DataWindow painter to view a DataWindow
object as it will appear with data and to test the processing that takes place in
the DataWindow object.

❖ To display the Preview view of a DataWindow object :

• If the Preview view is not already displayed, select View>Preview from
the menu bar.

Using the Preview view

460 PocketBuilder

In the Preview view, the bars that indicate the bands do not display, and, if
you selected Retrieve on Preview in the DataWindow wizard,
PocketBuilder retrieves all the rows from the database. You are prompted
to supply arguments if you defined retrieval arguments.

As rows of data are being retrieved, the Retrieve button in the PainterBar
changes to a Cancel button. You can click the Cancel button to stop the
retrieval.

External DataWindow objects If the DataWindow object uses the
External data source, no data is retrieved. You can import data, as
described in “Importing data into a DataWindow object” on page 464.

DataWindow objects that have stored data If the DataWindow object
has stored data in it, no data is retrieved from the database.

UltraLite connections If you are connected to an UltraLite database and preview fails with a Select
error: SQLE_SYNTAX_ERROR message, you might have opened a
DataWindow object that was created using a different DBMS and that uses
qualified SQL. The column names will be qualified with an owner name such
as dba. UltraLite does not support table owners. There are two ways to remove
the qualifiers:

• Select Design>Data Source and add an additional column to the column
list, then remove it again. When you click the Return button on the
PainterBar, PocketBuilder displays the message: SELECT change has
forced update specification change. Click OK to rebuild the
DataWindow syntax with unqualified SQL, then click Save.

• Close the DataWindow painter, select the DataWindow object in the
System Tree, and select Edit Source from its pop-up menu. Place the edit
cursor at the beginning of the editor, then s

elect Edit>Replace to replace all occurrences of the owner name and the period
that follows it with an empty string. After you save and close the source, the
DataWindow displays correctly in the Preview view.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 461

Retrieving data
Where PocketBuilder
gets data

PocketBuilder follows this order of precedence to supply the data in your
DataWindow object:

1 If you have saved data in the DataWindow object, PocketBuilder uses the
saved rows from the DataWindow object and does not retrieve data from
the database.

2 PocketBuilder uses the data in the cache if there is any.

3 If there is no data in the cache yet, PocketBuilder retrieves data from the
database automatically, with one exception. If the Retrieve on Preview
option is off, you have to request retrieval explicitly, as described next.

Previewing without
retrieving data

If you do not want PocketBuilder to retrieve data from the database
automatically when the Preview view opens, you can clear the Retrieve on
Preview option. The Preview view shows the DataWindow object without
retrieving data.

❖ To be able to preview without retrieving data automatically:

1 Select Design>Options from the menu bar.

The DataWindow Options dialog box displays.

2 Clear the Retrieve on Preview check box on the General page.

When this check box is cleared, your request to preview the DataWindow
object does not result in automatic data retrieval from the database.

Retrieve on Preview check box is available in the wizards
During the initial creation of a DataWindow object, you can set or clear the
Retrieve on Preview option.

PocketBuilder uses
data caching

When PocketBuilder first retrieves data, it stores the data internally. When
PocketBuilder refreshes the Preview view, PocketBuilder displays the stored
data instead of retrieving rows from the database again. This can save you a lot
of time, since data retrieval can be time consuming.

How using data from
the cache affects you

Because PocketBuilder accesses the cache and does not automatically retrieve
data every time you preview, you might not have what you want when you
preview. The data you see in preview and the data in the database can be out of
sync.

Using the Preview view

462 PocketBuilder

For example, if you are working with live data that changes frequently, or with
statistics based on changing data and you spend time designing the
DataWindow object, the data you are looking at might no longer match the
database. In this case, retrieve again to obtain the most current data.

Explicitly retrieving
data

You can explicitly request retrieval at any time.

❖ To retrieve rows from the database:

• Do one of the following:

• Click the Retrieve button in the PainterBar

• Select Rows>Retrieve from the menu bar

• Select Retrieve from the Preview view’s pop-up menu

Supplying argument values or criteria
If the DataWindow object has retrieval arguments or is set up to prompt
for criteria, you are prompted to supply values for the arguments or to
specify criteria.

PocketBuilder retrieves the rows. As PocketBuilder retrieves, the Retrieve
button changes to a Cancel button. You can click the Cancel button to stop
the retrieval at any time.

Sharing data with the
Data view

The Data view displays data that can be used to populate a DataWindow. When
the ShareData pop-up menu item in the Data view is checked, changes you
make in the Data view are reflected in the Preview view and vice versa.

Modifying data
You can add, modify, or delete rows in the Preview view. When you have
finished manipulating the data, you can apply the changes to the database.

If looking at data from a view or from more than one table
By default, you cannot update data in a DataWindow object that contains a
view or more than one table.

For more about updating DataWindow objects, see Chapter 20, “Controlling
Updates in DataWindow Objects.”

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 463

Editing data You can make changes to data directly in the Preview view. The Preview view
uses validation rules, display formats, and edit styles that you have defined for
the columns, either in the Database painter or in the current DataWindow
object. Changes that you make to the data use the styles and formats selected
for the column.

❖ To modify existing data:

• Tab to the field that has a value you want to change and enter the new
value.

To save the changes to the database, you must apply them as described in
“Applying changes in an application” on page 463.

Adding a row in an
application

Clicking the Insert Row button in the Preview view is equivalent to calling the
InsertRow function and then the ScrollToRow function during execution.

❖ To add a row:

1 Click the Insert Row button.

PocketBuilder creates a blank row.

2 Enter data for a row.

To save the changes to the database, you must apply them as described in
“Applying changes in an application” on page 463.

Deleting a row in an
application

Clicking the Delete Row button in the Preview view is equivalent to calling the
DeleteRow function during execution.

❖ To delete a row:

• Click the Delete Row button

PocketBuilder removes the row from the display. To save the changes to
the database, you must apply them as described in “Applying changes in
an application” next.

Applying changes in
an application

Clicking the Update Database button in the Preview view is equivalent to
calling the Update function during execution.

❖ To apply changes to the database:

• Click the Update Database button.

PocketBuilder updates the table with all the changes you have made.

Using the Preview view

464 PocketBuilder

Viewing row information
You can display information about the data you have retrieved.

❖ To display the row information:

• Select Rows>Described from the menu bar.

The Describe Rows dialog box displays, showing the number of:

• Rows that have been deleted in the painter but not yet deleted from the
database

• Rows displayed in the Preview view

• Rows that have been filtered

• Rows that have been modified in the painter but not yet modified in
the database

All row counts are zero until you retrieve the data from the database or add a
new row. The count changes when you modify the displayed data or test filter
criteria.

Importing data into a DataWindow object

❖ To import data into a DataWindow object:

1 Select Rows>Import from the menu bar.

Focus must be in the Preview view to enable the Rows>Import menu item.

2 Specify the file from which you want to import the data.

The types of files that you can import into the painter display in the List
Files of Type drop-down list.

3 Click Open.

PocketBuilder reads the data from the file into the painter.

Data from file must match the DataWindow definition
When you import data from a file, the datatypes of the data must match, column
for column, all the columns in the DataWindow definition (the columns
specified in the SELECT statement), not just the columns that are displayed in
the DataWindow object.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 465

Using print preview
Previewing output for
printing

You can print the data displayed in the Preview view. Before printing, you can
preview the output on the screen. Your computer must have a default printer
specified.

❖ To preview printed output before printing:

• Select File>Print Preview from the menu bar.

Focus must be in the Preview view to enable the File>Print Preview menu
item. Print Preview displays the DataWindow object as it will print.

Using the IntelliMouse pointing device
Using the IntelliMouse pointing device, users can scroll a DataWindow object
by rotating the wheel. Users can also zoom a DataWindow object larger or
smaller by holding down the Ctrl key while rotating the wheel.

Displaying rulers You can choose whether to display rulers around page borders in the Print
Preview.

❖ To control the display of rulers in Print Preview:

• Select or clear the File>Print Preview Rulers toggle switch in the menu
bar.

The File>Print Preview Rulers menu item is enabled only if the File>Print
Preview menu item is enabled and selected.

Changing margins You can dynamically change margins while previewing a DataWindow object.

Figure 18-3 shows the left and top margin boundaries of a page containing a
DataWindow object. The Print Preview view also displays boundaries for the
right and bottom margins when you display the rulers in the view.

Figure 18-3: Displaying page margins in the Print Preview view

❖ To change the margins in Print Preview:

• Drag the margin boundaries on the rulers.

Using the Preview view

466 PocketBuilder

Zooming the page You can reduce or enlarge the amount of the page that displays in the Print
Preview view. This does not affect the printed output.

❖ To zoom the page on the display screen:

1 Select File>Print Preview Zoom from the menu bar.

2 Select the magnification you want and click OK.

The display of the page zooms in or out as appropriate. The size of the
contents of the page changes proportionately as you zoom. This type of
zooming affects your display but does not affect printing.

Zooming the contents In addition to zooming the display on the screen, you can also zoom the
contents, affecting the amount of material that prints on a page.

❖ To zoom the contents of a DataWindow object with respect to the printed
page:

1 Select Design>Zoom from the menu bar.

2 Select the magnification you want and click OK.

The contents of the page zooms in or out as appropriate. If you enlarge the
contents so they no longer fit, PocketBuilder creates additional pages as
needed.

Printing data
You can print a DataWindow object at design time while the Preview view is
displayed. You can print all pages, a range of pages, only the current page, or
only odd or even pages. You can also specify whether you want multiple
copies, collated copies, and printing to a file.

Avoiding blank pages
and unwanted page
breaks

To avoid multiple blank pages and other anomalies in printed reports, no row
in the DataWindow object should be larger than the size of the target page. The
page boundary is often reached in long text columns with AutoSizeHeight on.
It can also be reached when detail rows are combined with page and group
headers and trailers, or when they contain a column that has been resized to be
larger than the page.

The summary band in a report is always printed on the same page as the last
row of data. This means you sometimes find that there is a page break before
the last row of data even if there is sufficient space to print the row. If you want
the last row to print on the same page as the preceding rows, you must make
the summary band small enough to fit on the page as well.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 467

Printing a
DataWindow object

You can choose File>Printer Setup from the menu bar to change printers or
printer settings before you print a DataWindow object.

❖ To print a DataWindow object:

1 Select File>Print Report from the menu bar to display the Print dialog box.

2 Specify the number of copies to print.

3 Specify the pages: select All or Current Page, or type page numbers and
page ranges in the Pages box.

4 Specify all pages, even pages, or odd pages in the Print drop-down list.

5 If you want to print to a file rather than to the printer, select the Print to
File check box.

6 If you want to change the collating option, clear or select the Collate
Copies check box and click OK.

If you specified print to file, the Print to File dialog box displays.

7 Enter a file name and click OK.

The extension PRN identifies it as a file prepared for the printer. Change
the drive and directory if you want.

Working in a grid DataWindow object
If you are viewing a grid-style DataWindow object in the Preview view, you
can make the following changes. Whatever you do in the Preview view is
reflected in the Design view:

• Resize columns

• Reorder columns

• Copy data to the clipboard

❖ To resize a column in a grid DataWindow object:

1 Position the mouse pointer at a column boundary in the header.

The pointer changes to a two-headed arrow.

2 Press and hold the left mouse button and drag the mouse to move the
boundary.

3 Release the mouse button when the column is the correct width.

Saving data in an external file

468 PocketBuilder

❖ To reorder columns in a grid DataWindow object:

1 Press and hold the left mouse button on a column heading.

PocketBuilder selects the column and displays a line representing the
column border.

2 Drag the mouse left or right to move the column.

3 Release the mouse button.

❖ To copy data to the clipboard from a grid DataWindow object:

1 Select the cells whose data you want to copy to the clipboard:

• To select an entire column, click its header

• To select neighboring columns, press and hold Shift, then click the
headers

• To select non-neighboring columns, press and hold Ctrl, then click the
headers

• To select cells, press the left mouse button on the bottom border of a
cell and drag the mouse over neighboring cells

Selected cells are highlighted.

2 Select Edit>Copy from the menu bar.

The contents of the selected cells or columns are copied to the clipboard.
If you copied the contents of more than one column, the data is separated
by tabs.

Saving data in an external file
While previewing, you can save the data retrieved in an external file. Note that
the data and headers (if specified) are saved. Information in the footer or
summary bands is not saved unless you are saving the data to a Powersoft
report.

The file format you select for the external file determines whether
PocketBuilder saves the data using ANSI or Unicode character sets.

For information about the relation between the file format you select and the
character set in which data is saved, see the chapter on working with Unicode
in the Resource Guide.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 469

Saving the data in
HTML Table format

One of the external file formats you can save data in is the HTML Table format.
When you save in HTML Table format, PocketBuilder saves a style sheet along
with the data. If you use this format, you can open the saved file in a Web
browser. Once you have the file in HTML Table format, you can continue to
enhance the file in HTML.

❖ To save the data in a DataWindow object in an external file:

1 Select File>Save Rows As from the menu bar.

The Save As dialog box displays.

2 Choose a format for the file from the Save As Type drop-down list.

If you want the column headers saved in the file, select a file format that
includes headers (such as Excel With Headers). When you select a format
with headers, the names of the database columns (not the column labels)
are also saved in the file.

When you choose a format, PocketBuilder supplies the appropriate file
extension.

3 Name the file and click Save.

PocketBuilder saves all displayed rows in the file; all columns in the
displayed rows are saved. Filtered rows are not saved.

Modifying general DataWindow object properties
This section describes the general DataWindow object properties that you can
modify.

Changing the DataWindow object style
The general style properties for a DataWindow object include:

• The unit of measure used in the DataWindow object

• A timer interval for events in the DataWindow object

• A background color for the DataWindow object

PocketBuilder assigns defaults when it generates the basic DataWindow
object. You can change the defaults.

Modifying general DataWindow object properties

470 PocketBuilder

❖ To change the default style properties:

1 Position the pointer in the background of the DataWindow object, display
the pop-up menu, and select Properties.

The Properties view displays with the General page on top.

2 Click the unit of measure you want to use to specify distances when
working with the DataWindow object:

• PowerBuilder units (PBUs)

• Pixels (smallest element on the display monitor)

• Thousandths of an inch

• Thousandths of a centimeter

3 Specify the number of milliseconds you want between internal timer
events in the DataWindow object.

This value determines how often PocketBuilder updates the time fields in
the DataWindow object. (Enter 60,000 milliseconds to specify one
minute.)

4 Select a background color from the Color drop-down list and click OK.
The default color is the window background color.

Setting colors in a DataWindow object
You can set different colors for each element of a DataWindow object to
enhance the display of information.

❖ To set the background color in a DataWindow object:

1 Position the mouse on an empty spot in the DataWindow object, display
the pop-up menu, and select Properties.

2 On the General page in the Properties view for the DataWindow object,
select a color from the Color drop-down list.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 471

❖ To set the color of a band in a DataWindow object:

1 Position the mouse pointer on the bar that represents the band, display the
pop-up menu, then select Properties.

2 On the General page in the band's Properties view, select a color from the
Color drop-down list.

The choice you make here overrides the background color for the
DataWindow object

❖ To set colors in controls in a DataWindow object:

• Position the mouse pointer on the control, display the pop-up menu, then
select Properties

For controls that use text, you can set colors for background and text on
the Font page in the Properties view. For drawing controls, you can set
colors on the General page in the Properties view.

Specifying properties of a grid DataWindow object
In grid DataWindow objects you can specify:

• When grid lines are displayed

• How users can interact with the DataWindow object during execution

❖ To specify basic grid DataWindow object properties:

1 Position the mouse pointer on the background in a grid DataWindow
object, display the pop-up menu, and select Properties.

2 Select the options you want in the Grid section on the General page in the
Properties view as described in Table 18-4.

Modifying general DataWindow object properties

472 PocketBuilder

Table 18-4: Options for grid DataWindow objects

Defining print specifications for a DataWindow object
When you are satisfied with the look of the DataWindow object, you can define
the print specifications for the DataWindow object.

❖ To define print specifications for a DataWindow object:

1 In the DataWindow painter, select Properties from the DataWindow
object's pop-up menu to display the DataWindow object's Properties view.

2 In the Units box on the General page, select a unit of measure.

It is easier to specify the margins when the unit of measure is inches or
centimeters.

3 Select the Print Specifications tab.

The Print Specifications page uses the units of measure you specified on
the General page.

4 Specify print specifications for the current DataWindow object.

Option Description

Display You can select from the following values:

• On Grid lines always display

• Off Grid lines never display (users cannot resize columns
during execution)

• Display only This option is equivalent to selecting “On”

• Print only This option is equivalent to selecting “Off”

Column Moving When selected, columns can be moved during execution

Mouse Selection When selected, data can be selected during execution

Row Resize When selected, rows can be resized during execution

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 473

Table 18-5: Setting print specifications for DataWindow objects

Setting Description

Document Name Specify a name to be used in the print queue to identify the
report.

Printer Name Specify the name of a printer to which this report should be
sent. If this box is empty, the report is sent to the default
system printer. If the specified printer cannot be found, the
report is sent to the default system printer if the Can Use
Default Printer check box is selected. If the specified
printer cannot be found and the Can Use Default Printer
check box is not selected, an error is returned.

Margins Specify top, bottom, left, and right margins. You can also
change margins in the Preview view while you are actually
looking at data. If you change margins in the Preview view,
the changes are reflected here on the Print Specifications
page.

Paper Orientation Choose one of the following:

• Default: Uses the default printer setup.

• Portrait: Prints the contents of the DataWindow object
across the width of the paper.

• Landscape: Prints the contents of the DataWindow
object across the length of the paper.

Paper Size Choose a paper size or leave blank to use the default.

Paper Source Choose a paper source or leave blank to use the default.

Prompt Before Printing Select to display the standard Print Setup dialog box each
time users make a print request.

Can Use Default
Printer

Clear this check box if a printer has been specified in the
Printer Name box and you do not want the report to be sent
to the default system printer if the specified printer cannot
be found. This box is checked by default if a printer name
is specified.

Display Buttons - Print
Preview

Select to display Button controls in Print Preview. The
default is to hide them.

Display Buttons - Print Select to display Button controls when you print the report.
The default is to hide them.

Clip Text Select to clip static text to the dimensions of a text field
when the text field has no visible border setting. The text is
always clipped if the text field has visible borders.

Modifying general DataWindow object properties

474 PocketBuilder

Modifying text in a DataWindow object
You can change the text of a text control in a DataWindow object by selecting
the control and typing new text in the first box of the StyleBar or in the Text
text box on the General tab of the Properties view. To embed a newline
character in the text, type ~n~r.

Changing text
properties

When PocketBuilder initially generates the basic DataWindow object, it uses
the following attributes and fonts:

• For the text and alignment of column headings and labels, PocketBuilder
uses the extended column attributes made in the Database painter.

• For fonts, PocketBuilder uses the definitions made in the Database painter
for the table. If you did not specify fonts for the table, PocketBuilder uses
the defaults set in the Application painter.

You can override any of these defaults in a particular DataWindow object.

❖ To change the text properties for a text control in a DataWindow object:

1 Select the text control.

2 Do one of the following:

• Change the text properties in the StyleBar.

• Select the Font page in the control's Properties view and change the
properties there.

Override Print Job When you print a series of reports using the PrintOpen,
PrintDataWindow, and PrintClose functions, all the reports
in the print job use the layout, fonts, margins, and other
print specifications defined for the computer. Select this
check box to override the default print job settings and use
the print settings defined for this report.

Collate Copies Select to collate copies when printing. Collating increases
print time because the print operation is repeated to
produce collated sets.

Newspaper Columns
Across and Width

Not applicable to PocketBuilder DataWindows.

If you want a multiple-column report where the data fills
one column on a page, then the second, and so on, as in a
newspaper, select the number and width of the columns in
the Newspaper Columns box.

Setting Description

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 475

Defining the tab order in a DataWindow object
When PocketBuilder generates the basic DataWindow object, it assigns
columns a default tab order, the default sequence in which focus moves from
column to column when a user presses the Tab key during execution.
PocketBuilder assigns tab values in increments of 10 in left-to-right and
top-to-bottom order.

Tab order is not used in the Design view
Tab order is used when a DataWindow object is executed, but it is not used in
the DataWindow painter Design view. In the Design view, the Tab key moves
to the controls in the DataWindow object in the order in which the controls
were placed in the Design view.

If the DataWindow
object contains
columns from more
than one table

If you are defining a DataWindow object with more than one table,
PocketBuilder assigns each column a tab value of 0, meaning the user cannot
tab to the column. This is because, by default, multitable DataWindow objects
are not updatable—users cannot modify data in them. You can change the tab
values to nonzero values to allow tabbing in these DataWindow objects.

For more about controlling updates in a DataWindow object, see Chapter 20,
“Controlling Updates in DataWindow Objects.”

Tab order changes have no effect in grid DataWindow objects
In a grid DataWindow object, the tab sequence is always left to right. Changing
the tab value to any number other than 0 has no effect.

❖ To change the tab order:

1 Select Format>Tab Order from the menu bar or click the Tab Order button
on PainterBar2.

The current tab order displays.

2 Use the mouse or the Tab key to move the pointer to the tab value you want
to change.

3 Enter a new tab value in the range 0 to 9999.

0 removes the column from the tab order (the user cannot tab to the
column). It does not matter exactly what value you use other than 0; all that
matters is relative value. For example, if you want the user to tab to
column B after column A but before column C, set the tab value for
column B so it is between the value for column A and the value for
column C.

Modifying general DataWindow object properties

476 PocketBuilder

4 Repeat the procedure until you have the tab order you want.

5 Select Format>Tab Order from the menu bar or click the Tab Order button
again.

PocketBuilder saves the tab order.

Each time you select Tab Order, PocketBuilder reassigns tab values to include
any columns that have been added to the DataWindow object and to allow
space to insert new columns in the tab order.

Changing tab order during execution
To change tab order programmatically in a script, use the SetTabOrder function.

Naming controls in a DataWindow object
You use names to identify columns and other controls in filters, PowerScript
functions, and DataWindow expression functions.

The DataWindow painter automatically generates names for all controls in a
DataWindow object. To name columns, labels, and headings, the DataWindow
painter uses database and extended attribute information. To name all other
controls, it uses a system of prefixes. You can control the prefixes used for
automatic name generation, and you can specify the name of any control
explicitly.

❖ To specify prefixes for naming controls systematically in a DataWindow
object:

1 Select Design>Options from the menu bar and then select the Prefixes tab.

2 Change prefixes as desired and click OK.

❖ To specify a name of a control in a DataWindow object:

1 Select Properties from the control's pop-up menu and then select the
General tab in the Properties view.

2 Type the name in the Name box.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 477

Using borders in a DataWindow object
You can place borders around text and columns to enhance their appearance.
PocketBuilder provides six types of borders: Underline, Box, ResizeBorder,
ShadowBox, Raised, and Lowered.

Figure 18-4: Border styles for text and columns

❖ To add a border to a control in a DataWindow object:

1 Select one or more controls.

2 Select the border you want from the Border drop-down toolbar in the
PainterBar.

PocketBuilder places the border around the selected controls.

You can also specify a border for one or more controls in the Properties view
on the General page.

Specifying variable-height detail bands in a DataWindow object
Sometimes DataWindow objects contain columns whose data is of variable
length. For example, a Memo column in a table might be a character column
that can take up to several thousand characters. Reserving space for that much
information for the column in the detail band would make the detail band's
height very large, meaning you could see few rows at a time.

The detail band can resize based on the data in the Memo column. If the Memo
column has only one line of text, the detail band should be one line. If the
Memo column has 20 lines of text, the detail band should be 20 lines high.

To provide a detail band that resizes as needed, specify that the variable-length
columns and the band have Autosize Height.

❖ To create a resizable detail band in a DataWindow object:

1 Select Properties from the pop-up menu of a column that should resize
based on the amount of data.

2 Select the Autosize Height check box on the Position page.

3 Clear the Auto Horz Scroll check box on the Edit page.

PocketBuilder wraps text in the Preview view instead of displaying text on
one scrollable line.

Modifying general DataWindow object properties

478 PocketBuilder

4 Repeat steps 1 to 3 for any other columns that should resize.

5 Select Properties from the detail band’s pop-up menu.

6 Select the Autosize Height check box on the General page.

In the Preview view, the detail band resizes based on the contents of the
columns you defined as having Autosize Height.

Clipping columns
You can have Autosize Height columns without an Autosize Height detail
band. If such a column expands beyond the size of the detail band in the
Preview view, it is clipped.

Modifying the data source of a DataWindow object
When modifying a DataWindow object, you might realize that you have not
included all the columns you need, or you might need to define retrieval
arguments. You can modify the data source from the DataWindow painter.
How you do this depends on the data source.

Modifying SQL SELECT statements

If the data source is SQL (such as Quick Select, SQL Select, or Query), you can
graphically modify the SQL SELECT statement.

❖ To modify a SQL data source:

1 Select Design>Data Source from the menu bar.

PocketBuilder returns you to the Select painter. (If you used Quick Select
to define the data source, this might be the first time you have seen the
Select painter.)

2 Modify the SELECT statement graphically using the same techniques as
were used when creating it.

For more information, see “Using SQL Select” on page 424.

Modifying the statement syntactically
Select Design>Convert to Syntax from the menu bar to modify the
SELECT statement syntactically.

3 Click the Return button to return to the painter.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 479

Changing the table
If you change the table referenced in the SELECT statement, PocketBuilder
maintains the columns in the Design view (now from a different table) only if
they match the data types and order of the columns in the original table.

Modifying the retrieval
arguments

You can add, modify, or delete retrieval arguments when modifying your data
source.

❖ To modify the retrieval arguments:

1 In the Select painter, select Design>Retrieval Arguments from the menu
bar.

The Specify Retrieval Arguments dialog box, displays listing the existing
arguments.

2 Add, modify, or delete the arguments.

3 Click OK.

You return to the Select painter, or to the text window displaying the
SELECT statement if you are modifying the SQL syntactically.

4 Reference any new arguments in the WHERE or HAVING clause of the
SELECT statement.

For more information about retrieval arguments, see Chapter 17, “Defining
DataWindow Objects.”

Modifying the result set

If the data source is External or Stored Procedure, you can modify the result set
description.

❖ To modify a result set:

1 If the Column Specification view is not open, select View>Column
Specifications from the menu bar.

2 Review the specifications and make any necessary changes.

Storing data in a DataWindow object

480 PocketBuilder

3 If you are modifying the result set for a DataWindow object whose data
source is a stored procedure, do the following:

• Right-click the Column Specification view, select Stored Procedure
from the pop-up menu, then edit the Execute statement, select another
stored procedure, or add retrieval arguments in the Modify Stored
Procedure Data Source dialog box.

For more information about editing the Execute statement, see “Using
Stored Procedure” on page 442.

Storing data in a DataWindow object
Usually you retrieve data into a DataWindow object from the database, because
the data is changeable and you want the latest information. However,
sometimes the data you display in a DataWindow object almost never changes
(as in a list of states or provinces), and sometimes you need a snapshot of the
data at a certain point in time. In these situations, you can store the data in the
DataWindow object itself.

Storing data in a DataWindow object is also a good way to share data and the
DataWindow definition with other developers. They can simply open the
DataWindow object on their computers to get the data and all its properties.

What happens at
runtime

Data stored in a DataWindow object is stored within the actual object itself, so
when a window opens showing such a DataWindow, the data is already there.
There is no need to issue Retrieve to get the data.

PocketBuilder never retrieves data into a drop-down DataWindow that already
contains data. For all other DataWindow objects, if you retrieve data into a
DataWindow object stored with data, PocketBuilder handles it the same as a
DataWindow object that is not stored with data: PocketBuilder gets the latest
data by retrieving rows from the database.

Saving data for a
drop-down
DataWindow

The most common reason to store data in a DataWindow object is for use as a
drop-down DataWindow where the data is not coming from a database. For
example, you might want to display a list of postal codes for entering values in
a State or Province column in a DataWindow object. You can store those codes
in a DataWindow object and use the DropDownDataWindow edit style for the
column.

For more information about using the DropDownDataWindow edit style, see
Chapter 21, “Displaying and Validating Data.”

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 481

❖ To store data in a DataWindow object:

1 If the Data view is not already displayed, select View>Data from the menu
bar.

In the default layout for the DataWindow painter, the Data view displays
in a stacked pane under the Properties view. All columns defined for the
DataWindow object are listed at the top.

2 Do any of the following:

• Click the Insert Row button in the PainterBar to create an empty row
and type a row of data. You can enter as many rows as you want.

• Click the Retrieve button in the PainterBar to retrieve all the rows of
data from the database. You can delete rows you do not want to save
or manually add new rows.

• Click the Delete button in the PainterBar to delete unwanted rows.

Data changes are local to the DataWindow object
Adding or deleting data here does not change the data in the database. It
only determines what data will be stored with the DataWindow object
when you save it. The Update Database button is disabled.

3 When you have finished, save the DataWindow object.

When you save the DataWindow object, the data is stored in the
DataWindow object.

To see changes you make in the Data view reflected in the Preview view,
select ShareData from the pop-up menu in the Data view. The Preview
view shows data from the storage buffer associated with the Data view.

Saving the
DataWindow object
without data

After you save the DataWindow object with data to obtain a snapshot, you
sometimes need to save it again without data. To do so, select Delete All Rows
from the pop-up menu in the Data view before saving.

Prompting for retrieval criteria
You can define your DataWindow object so that it always prompts for retrieval
criteria just before it retrieves data. PocketBuilder allows you to prompt for
criteria when retrieving data for a DataWindow control, but not for a DataStore
object.

Prompting for retrieval criteria

482 PocketBuilder

❖ To prompt for retrieval criteria in a DataWindow object:

1 If the Column Specifications view is not already displayed, select
View>Column Specifications from the menu bar.

In the default layout for the DataWindow painter, the Column
Specifications view displays in a stacked pane under the Properties view.
All columns defined for the DataWindow object are listed in the view.

2 Select the Prompt check box next to each column for which you want to
specify retrieval criteria at runtime.

After you select the Prompt check box, PocketBuilder will display the
Specify Retrieval dialog box just before a retrieval is to be done (it is the
last thing that happens before the SQLPreview event).

Each column you selected in the Column Specification view displays in
the grid. Users can specify criteria here exactly as in the grid in the Quick
Select dialog box. Criteria specified are added to the WHERE clause for the
SQL SELECT statement defined for the DataWindow object.

Testing in PocketBuilder
You can test whether the application containing the DataWindow object will
prompt for retrieval criteria by retrieving data in the Preview view of the
DataWindow object.

Using edit styles If a column uses a code table or the RadioButton, CheckBox, or
DropDownListBox edit style, an arrow displays in the column header and users
can select a value from a drop-down list when specifying criteria.

If you do not want the drop-down list used for a column for specifying retrieval
criteria, select the Override Edit check box on the General page of the column's
Properties view.

CHAPTER 18 Enhancing DataWindow Objects

User’s Guide 483

Forcing the entry of
criteria

If you have specified that a column should prompt for criteria, you can force
the entry of criteria for the column by selecting the Equality Required check
box on the General page of the column's Properties view. PocketBuilder
underlines the column header in the grid during prompting. Selection criteria
for the specified column must be entered, and the = operator must be used.

For more information The section “Using Quick Select” on page 415 describes in detail how you can
specify selection criteria in the grid.

The chapter on dynamic DataWindow objects in the Resource Guide describes
how to write scripts to dynamically allow users to specify retrieval criteria
during execution.

Prompting for retrieval criteria

484 PocketBuilder

User’s Guide 485

C H A P T E R 1 9 Working with Controls in
DataWindow Objects

About this chapter One of the ways you can enhance a DataWindow object is to add controls
such as columns, drawing objects, buttons, and computed fields. You can
also change the layout of the DataWindow object by reorganizing,
positioning, and rotating controls. This chapter shows you how.

Contents

Adding controls to a DataWindow object
This section describes adding controls to enhance your DataWindow
object.

Adding columns to a DataWindow object
You can add columns that are included in the data source to a DataWindow
object. When you first create a DataWindow object, each of the columns
in the data source is automatically placed in the DataWindow object.
Typically, you would add a column to restore one that you had deleted
from the DataWindow object, or to display the column more than once in
the DataWindow object.

Topic Page

Adding controls to a DataWindow object 485

Reorganizing controls in a DataWindow object 499

Positioning controls in a DataWindow object 505

Rotating controls in a DataWindow object 506

Adding controls to a DataWindow object

486 PocketBuilder

Adding columns not previously retrieved to the data source
To specify that you want to retrieve a column not previously retrieved (that is,
add a column to the data source), you must modify the data source.

See “Modifying the data source of a DataWindow object” on page 478.

❖ To add a column from the data source to a DataWindow object:

1 Select Insert>Control>Column from the menu bar.

2 Click where you want to place the column.

The Select Column dialog box displays, listing all columns included in the
data source of the DataWindow object.

3 Select the column and click OK.

Adding text to a DataWindow object
When PocketBuilder generates a basic DataWindow object from a presentation
style and data source, it places columns and their headings in the workspace.
You can add text anywhere you want in order to make the DataWindow object
easier to understand.

❖ To add text to a DataWindow object:

1 Select Insert>Control>Text from the menu bar.

2 Click where you want the text.

PocketBuilder places the text control in the Design view and displays the
word text.

3 Type the text you want.

4 (Optional) Change the font, size, style, and alignment for the text using the
StyleBar.

Displaying an ampersand character
If you want to display an ampersand character, type a double ampersand in the
Text field. A single ampersand causes the next character to display with an
underscore because it is used to indicate accelerator keys.

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 487

About the default font
and style

When you place text in a DataWindow object, PocketBuilder uses the font and
style (such as boldface) defined for the application's text in the Application
painter. You can override the text properties for any text in a DataWindow
object.

For more about changing the application's default text font and style, see
Chapter 3, “Working with PowerScript Targets.”

Adding drawing controls to a DataWindow object
You can add the following drawing controls to a DataWindow object to
enhance its appearance:

• Rectangle

• RoundRectangle

• Line

• Oval

❖ To place a drawing control in a DataWindow object:

1 Select the drawing control from the Insert>Control menu.

2 Click where you want the control to display.

3 Resize or move the drawing control as needed.

4 Use the drawing control's Properties view to change its properties as
needed.

For example, you might want to specify a fill color for a rectangle or
thickness for a line.

Adding a group box to a DataWindow object
To visually enhance the layout of a DataWindow object, you can add a group
box. The group box is a static frame used to group and label a set of controls in
a DataWindow object. The following example shows two group boxes in a
report (a nonupdatable DataWindow object). The Address group box groups
address information, and the Phone/Fax group box groups telephone numbers.

Adding controls to a DataWindow object

488 PocketBuilder

Figure 19-1: DataWindow with group boxes

❖ To add a group box to a DataWindow object:

1 Select Insert>Control>Group Box from the menu bar and click in the
Design view.

2 With the group box selected, type the text to display in the frame.

3 Move and resize the group box as appropriate.

Adding pictures to a DataWindow object
You can place pictures, such as your company logo, in a DataWindow object
to enhance its appearance. If you place a picture in the header, summary, or
footer band of the DataWindow object, the picture displays each time the
contents of that band displays. If you place the picture in the detail band of the
DataWindow object, it displays in each row.

❖ To place a picture in a DataWindow object:

1 Select Insert>Control>Picture from the menu bar.

2 Click where you want the picture to display.

The Select Picture dialog box displays.

3 Use the Browse button to find the file, or enter a file name in the File Name
box. Then click Open.

The picture can be a bitmap (BMP), Graphics Interchange Format (GIF),
or Joint Photographic Experts Group (JPEG) file.

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 489

4 Display the pop-up menu and select Original Size to display the bitmap in
its original size.

You can use the mouse to change the size of the bitmap in the DataWindow
painter.

5 Click the Invert Image check box on the General page of the Properties
view to display the picture with its colors inverted.

Tips for using pictures To display a different picture for each row of data, retrieve a column containing
picture file names from the database.

For more information, see “Specifying additional properties for character
columns” on page 367.

To compute a picture name during execution, use the Bitmap function in the
expression defining a computed field. If you change the bitmap in the Picture
control in a DataWindow object, you need to reset the original size property.
The property automatically reverts to the default setting when you change the
bitmap.

To use a picture to indicate that a row has focus during execution, use the
SetRowFocusIndicator function.

Adding computed fields to a DataWindow object
You can use computed fields in any band of the DataWindow object. Typical
uses with examples include:

• Calculations based on column data that change for each retrieved row

If you retrieve yearly salary, you can define a computed field in the detail
band that displays monthly salary: Salary / 12.

• Summary statistics of the data

In a grouped DataWindow object, you can use a computed field to
calculate the totals of a column, such as salary, for each group: sum
(salary for group 1).

• Concatenated fields

If you retrieve first name and last name, you can define a computed field
that concatenates the values so they appear with only one space between
them: Fname + " " + Lname.

Adding controls to a DataWindow object

490 PocketBuilder

• System information

You can place the current date and time in a DataWindow object's header
using the built-in functions Today() and Now() in computed fields.

Computed columns versus computed fields

When creating a DataWindow object, you can define computed columns and
computed fields as follows:

• In the Select painter, you can define computed columns when you are
defining the SELECT statement that will be used to retrieve data into the
DataWindow object.

• In the DataWindow painter, you can define computed fields after you have
defined the SELECT statement (or other data source).

The difference
between the two ways

When you define the computed column in the Select painter, the value is
calculated by the DBMS when the data is retrieved. The computed column's
value does not change until data has been updated and retrieved again.

When you define the computed field in the DataWindow painter, the value of
the column is calculated in the DataWindow object after the data has been
retrieved. The value changes dynamically as the data in the DataWindow
object changes.

Example Consider a DataWindow object with four columns: Part number, Quantity,
Price, and Cost. Cost is computed as Quantity * Price.

If Cost is defined as a computed column in the Select painter, the SELECT
statement is as follows:

SELECT part.part_num,
part.part_qty,
part.part_price,
part.part_qty * part.part_price
FROM part;

Part # Quantity Price Cost

101 100 1.25 125.00

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 491

If the user changes the price of a part in the DataWindow object in this
scenario, the cost does not change in the DataWindow object until the database
is updated and the data is retrieved again. The user sees a display with the
changed price but the unchanged, incorrect cost.

If Cost is defined as a computed field in the DataWindow object, the SELECT
statement is as follows, with no computed column:

SELECT part.part_num,
part.part_qty,
part.part_price
FROM part;

The computed field is defined in the DataWindow object as Quantity *
Price.

In this scenario, if the user changes the price of a part in the DataWindow
object, the cost changes immediately.

Recommendation If you want your DBMS to do the calculations on the server before bringing
data down and you do not need the computed values to be updated dynamically,
define the computed column as part of the SELECT statement.

If you need to have computed values change dynamically, define computed
fields in the DataWindow painter Design view, as described next.

Defining a computed field in the DataWindow painter

❖ To define a computed field in the DataWindow painter:

1 Select Insert>Control>Computed Field from the menu bar.

2 Click in the Design view at the location where you want the computed
field.

If the calculation is to be based on column data that changes for each row,
make sure you place the computed field in the detail band.

Part # Quantity Price Cost

101 100 2.50 125.00

Part # Quantity Price Cost

101 100 2.50 250.00

Adding controls to a DataWindow object

492 PocketBuilder

The Modify Expression dialog box displays, listing:

• DataWindow expression functions you can use in the computed field

• The columns in the DataWindow object

• Operators and parentheses

3 Enter the expression that defines the computed field as described in
“Entering the expression” next.

4 (Optional) Click Verify to test the expression.

PocketBuilder analyzes the expression.

5 Click OK.

Entering the
expression

You can enter any valid DataWindow expression when defining a computed
field. You can paste operators, columns, and DataWindow expression
functions into the expression from information in the Modify Expression
dialog box. Use the + operator to concatenate strings.

You can use any built-in or user-defined global function in an expression. You
cannot use object-level functions.

DataWindow expressions
You are entering a DataWindow expression, not a SQL expression processed
by the DBMS, so the expression follows the rules for DataWindow
expressions. For complete information about DataWindow expressions, see the
DataWindow Reference in the online Help.

Referring to next and
previous rows

You can refer to other rows in a computed field. Use this syntax:

ColumnName[x]

where x is an integer. 0 refers to the current row (or first row in the detail band),
1 refers to the next row, –1 refers to the previous row, and so on.

Examples Table 19-1 shows some examples of computed fields.

Table 19-1: Computed field examples

To display Enter this expression In this band

Current date at top of each page Today() Header

Current time at top of each page Now() Header

Current page at bottom of each page Page() Footer

Total page count at bottom of each
page

PageCount() Footer

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 493

For complete information about the functions you can use in computed fields
in the DataWindow painter, see the DataWindow Reference in the online Help.

Menu options and
PainterBar buttons for
common functions

PocketBuilder provides a quick way to create computed fields that summarize
values in the detail band, display the current date, or show the current page
number.

❖ To summarize values:

1 Select one or more columns in the DataWindow object’s detail band.

2 Select Insert>Control from the menu bar.

3 Select one of the options at the bottom of the cascading menu: Average,
Count, or Sum.

The same options are available at the bottom of the Controls drop-down
toolbar on the PainterBar.

PocketBuilder places a computed field in the summary band or in the
group trailer band if the DataWindow object is grouped. The band is
resized automatically to hold the computed field. If the computed field you
are adding matches an existing computed field, the duplicate field is not
generated.

❖ To insert a computed field for the current date or page number:

1 Select Insert>Control from the menu bar.

2 Select Today() or Page n of n from the options at the bottom of the
cascading menu.

The same options are available at the bottom of the Controls drop-down
toolbar on the PainterBar.

3 Click anywhere in the DataWindow object.

Concatenation of Fname and Lname
columns for each row

Fname + " " + Lname Detail

Monthly salary if Salary column
contains annual salary

Salary / 12 Detail

Four asterisks if the value of the
Salary column is greater than $50,000

IF(Salary> 50000,

"****", "")

Detail

Average salary of all retrieved rows Avg(Salary) Summary

Count of retrieved rows, assuming
each row contains a value for EmpID

Count(EmpID) Summary

To display Enter this expression In this band

Adding controls to a DataWindow object

494 PocketBuilder

If you selected Today, PocketBuilder inserts a computed field containing
this expression: Today(). For Page n of n, the computed field contains this
expression: 'Page ' + page() + ' of ' + pageCount().

Adding custom
buttons that place
computed fields

You can add buttons to the PainterBar in the DataWindow painter that place
computed fields using any of the aggregate functions, such as Max, Min, and
Median.

❖ To customize the PainterBar with custom buttons for placing computed
fields:

1 Place the mouse pointer over the PainterBar and select Customize from the
pop-up menu.

The Customize dialog box displays.

2 Click Custom in the Select palette group to display the set of custom
buttons.

3 Drag a custom button into the Current toolbar group and release it.

The Toolbar Item Command dialog box displays.

4 Click the Function button.

The Function For Toolbar dialog box displays.

5 Select a function and click OK.

You return to the Toolbar Item Command dialog box.

6 Specify text and microhelp that displays for the button and click OK.

PocketBuilder places the new button in the PainterBar. You can click it to
add a computed field to your DataWindow object the same way you use
the built-in Sum button.

Adding buttons to a DataWindow object
Buttons make it easy to provide command button actions in a DataWindow
object. No coding is required. The use of Button controls in the DataWindow
object instead of CommandButton controls in a window ensures that actions
appropriate to the DataWindow object are included in the object itself.

The Button control is a command or picture button that can be placed in a
DataWindow object. When clicked at runtime, the button activates either a
built-in or user-supplied action.

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 495

For example, you can place a button in a report and specify that clicking it
opens the Filter dialog box, where users can specify a filter to be applied to the
currently retrieved data.

❖ To add a button to a DataWindow object:

1 Select Insert>Control>Button from the menu bar.

2 Click where you want the button to display.

You might find it useful to put a Delete button or an Insert button in the
detail band. Clicking a Delete button in the detail band deletes the row next
to the button clicked. Clicking an Insert button in the detail band inserts a
row following the current row.

Be careful when putting buttons in the detail band
Buttons in the detail band repeat for every row of data, which is not always
desirable. Buttons in the detail band are not visible during retrieval, so a
Cancel button in the detail band would be unavailable when needed.

3 With the button still selected, type the text to display on the button.

4 Display the General page of the Properties view for the button.

5 Select the action you want to assign to the button from the Action
drop-down list.

For information about actions, see “Actions assignable to buttons in
DataWindow objects” on page 496.

6 If you want to add a picture to the button, select the Action Default Picture
check box or enter the name of the Picture file to display on the button.

7 If you want to suppress event processing when the button is clicked at
runtime, select the Suppress Event check box.

When this option has been selected for the button and the button is clicked
at runtime, only the action assigned to the button and the Clicked event are
executed. The ButtonClicking and the ButtonClicked events are not
triggered.

8 Click OK.

What happens if
Suppress Event is off

If Suppress Event is off and the button is clicked, the Clicked and
ButtonClicking events are fired. Code in the ButtonClicking event (if any) is
executed. Note that the Clicked event is executed before the ButtonClicking
event.

Adding controls to a DataWindow object

496 PocketBuilder

• If the return code from the ButtonClicking event is 0, the action assigned
to the button is executed and then the ButtonClicked event is executed

• If the return code from the ButtonClicking event is 1, neither the action
assigned to the button nor the ButtonClicked event is executed

Do not use a message box in the Clicked event
If you call the MessageBox function in the Clicked event, the action assigned
to the button is executed, but the ButtonClicking and ButtonClicked events are
not executed.

Controlling the display of buttons in print preview and on printed output

You can choose whether to display buttons in print preview or in printed
output. You control this in the Properties view for the DataWindow object, not
the Properties view for the button.

❖ To control the display of buttons in a DataWindow object in print preview
and on printed output:

1 Display the DataWindow object’s Properties view with the Print
Specification page on top.

2 Select the Display Buttons – Print check box.

The buttons are included in the printed output when the DataWindow
object is printed.

3 Select the Display Buttons – Print Preview check box.

The buttons display on the screen when you view the DataWindow object
in print preview.

Actions assignable to buttons in DataWindow objects

Table 19-2 shows the actions you can assign to a button in a DataWindow
object. Each action is associated with a numeric value (the Action
DataWindow object property) and a return code (the actionreturncode event
argument).

The following code in the ButtonClicked event displays the value returned by
the action:

MessageBox("Action return code", actionreturncode)

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 497

Table 19-2: Button actions for DataWindow objects

Action Effect Value Action return code

User Defined
(default)

Allows the developer to program the
ButtonClicked event with no intervening
action occurring.

0 The return code from the user's coded
event script.

Retrieve (Yield) Retrieves rows from the database. Before
retrieval occurs, the option to yield is
turned on; this will allow the Cancel action
to take effect during a long retrieve.

1 Number of rows retrieved.

-1 if retrieve fails.

Retrieve Retrieves rows from the database. The
option to yield is not automatically turned
on.

2 Number of rows retrieved.

-1 if retrieve fails.

Cancel Cancels a retrieval that has been started
with the option to yield.

3 0

Page Next Scrolls to the next page. 4 The row displayed at the top of the
DataWindow control when the scrolling
is complete or attempts to go past the
first row.

-1 if an error occurs.

Page Prior Scrolls to the prior page. 5 The row displayed at the top of the
DataWindow control when the scrolling
is complete or attempts to go past the
first row.

-1 if an error occurs.

Page First Scrolls to the first page. 6 1 if successful.

-1 if an error occurs.

Page Last Scrolls to the last page. 7 The row displayed at the top of the
DataWindow control when the scrolling
is complete or attempts to go past the
first row.

-1 if an error occurs.

Sort Displays Sort dialog box and sorts as
specified.

8 1 if successful.

-1 if an error occurs.

Filter Displays Filter dialog box and filters as
specified.

9 Number of rows filtered.

Number < 0 if an error occurs.

Delete Row If button is in the detail band, deletes the
row associated with button; otherwise,
deletes the current row.

10 1 if successful.

-1 if an error occurs.

Append Row Inserts row at the end. 11 Row number of newly inserted row.

Adding controls to a DataWindow object

498 PocketBuilder

Adding graphs to a DataWindow object
Graphs are one of the best ways to present information. For example, if your
application displays sales information over the course of a year, you can easily
build a graph in a DataWindow object to display the information visually.

PocketBuilder offers many types of graphs and provides you with the ability to
control the appearance of a graph to best meet your application's needs.

For information on using graphs, see Chapter 24, “Working with Graphs.”

Insert Row If button is in the detail band, inserts a row
using row number associated with the
button; otherwise, inserts row using the
current row.

12 Row number of newly inserted row.

Update Saves changes to the database. If the
update is successful, a Commit will be
issued; if the update fails, a Rollback will
be issued.

13 1 if successful.

-1 if an error occurs.

Save Rows As Displays Save As dialog box and saves
rows in the format specified.

14 Number of rows filtered.

Number < 0 if an error occurs.

Print Prints one copy of the DataWindow object. 15 0

Preview Toggles between preview and print
preview.

16 0

Preview With
Rulers

Toggles between rulers on and off. 17 0

Query Mode Toggles between query mode on and off. 18 0

Query Sort Allows user to specify sorting criteria
(forces query mode on).

19 0

Query Clear Removes the WHERE clause from a query
(if one was defined).

20 0

Action Effect Value Action return code

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 499

Reorganizing controls in a DataWindow object
This section describes the activities that help you change the layout and
appearance of the controls in a DataWindow object.

Displaying boundaries for controls in a DataWindow object
When reorganizing controls in the Design view, it is sometimes helpful to see
how large all the controls are. That way you can easily check for overlapping
controls and make sure that the spacing around controls is what you want it to
be.

❖ To display control boundaries in a DataWindow object:

1 Select Design>Options from the menu bar.

The DataWindow Options dialog box displays.

2 Select the Show Edges check box.

PocketBuilder displays the boundaries of each control in the DataWindow
object.

Boundaries display only in the Design view
The boundaries displayed for controls are for use only in the Design view. They
do not display in a running DataWindow object or in a printed report.

Reorganizing controls in a DataWindow object

500 PocketBuilder

Using the grid and the ruler in a DataWindow object
The DataWindow painter provides a grid and a ruler to help you align controls.
You can select from the options in Table 19-3.

Table 19-3: Grid and ruler options for the DataWindow painter

❖ To use the grid and the ruler:

1 Select Design>Options from the menu bar.

The DataWindow Options dialog box displays. The Alignment Grid box
contains the alignment grid options.

2 Select the grid and ruler options that you want.

Your choices for the grid and the ruler are saved and used the next time
you start PocketBuilder.

Deleting controls in a DataWindow object

❖ To delete controls in a DataWindow object:

1 Select the controls you want to delete.

2 Select Edit>Delete from the menu bar or press the Delete key.

Option Meaning

Snap to Grid Make controls snap to a grid position when you place them or
move them.

Show Grid Show or hide the grid when the workspace displays.

X Specify the size (width) of the grid cells.

Y Specify the size (height) of the grid cells.

Show Ruler Show a ruler. The ruler uses the units of measurement specified in
the Style dialog box.

See “Changing the DataWindow object style” on page 469.

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 501

Moving controls in a DataWindow object
In all presentation
styles except Grid

In all presentation styles except Grid, you can move all the controls (such as
headings, labels, columns, graphs, and drawing controls) anywhere you want.

❖ To move controls in a DataWindow object:

1 Select the controls you want to move.

2 Do one of the following:

• Drag the controls with the mouse

• Press an arrow key to move the controls in one direction

In grid DataWindow
objects

You can reorder columns in a grid DataWindow object during execution.

See “Working in a grid DataWindow object” on page 467.

Copying controls in a DataWindow object
You can copy controls within a DataWindow object and to other DataWindow
objects. All properties of the controls are copied.

❖ To copy a control in a DataWindow object:

1 Select the control.

2 Select Edit>Copy from the menu bar.

The control is copied to a private PocketBuilder clipboard.

3 Copy (paste) the control to the same DataWindow object or to another one:

• To copy the control within the same DataWindow object, select
Edit>Paste from the menu bar

• To copy the control to another DataWindow object, open the desired
DataWindow object and paste the control

PocketBuilder pastes the control at the same location as in the source
DataWindow object. If you are pasting into the same DataWindow object,
you should move the pasted control so that it does not cover the original
control. PocketBuilder displays a message box if the control you are
pasting is not valid for the destination DataWindow object.

Reorganizing controls in a DataWindow object

502 PocketBuilder

Resizing controls in a DataWindow object
You can resize a control using the mouse or the keyboard. You can also resize
multiple controls to the same size using the Layout drop-down toolbar on
PainterBar2.

Using the mouse To resize a control using the mouse, select it, then grab an edge and drag it with
the mouse.

Using the keyboard To resize a control using the keyboard, select it and use the keyboard keys as
described in Table 19-4.

Table 19-4: Resizing the controls with the arrow keys

In grid DataWindow
objects

You can resize columns in grid DataWindow objects.

❖ To resize a column in a grid DataWindow object:

1 Position the mouse pointer at a column boundary.

The pointer changes to a two-headed arrow.

2 Press and hold the left mouse button and drag the mouse to move the
boundary.

3 Release the mouse button when the column is the correct width.

Aligning controls in a DataWindow object
You might need to align several controls or make them all the same size. You
can use the grid to align the controls, or you can have PocketBuilder align them
for you.

❖ To align controls in a DataWindow object:

1 Select the control with which you want to align the others.

PocketBuilder displays handles around the selected control.

2 Extend the selection by pressing and holding the Ctrl key and clicking the
controls you want to align with the first one.

To make the control Press

Wider Shift+Right Arrow

Narrower Shift+Left Arrow

Taller Shift+Down Arrow

Shorter Shift+Up Arrow

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 503

All the controls have handles on them.

3 Select Format>Align from the menu bar.

4 From the cascading menu, select the dimension along which you want to
align the controls.

For example, to align the controls along the left side, select the first choice
on the cascading menu. You can also use the Layout drop-down toolbar on
PainterBar2.

PocketBuilder moves all the selected controls to align with the first one.

Equalizing the space between controls in a DataWindow object
If you have a series of controls and the spacing is fine between two of them but
is wrong for the rest, you can easily equalize the spacing around all the
controls.

❖ To equalize the space between controls in a DataWindow object:

1 Select the two controls whose spacing is correct.

To do so, click one control, then press Ctrl and click the second control.

2 Select the other controls whose spacing should match that of the first two
controls. To do so, press Ctrl and click each control.

3 Select Format>Space from the menu bar.

4 From the cascading menu, select the dimension whose spacing you want
to equalize.

You can also use the Layout drop-down toolbar on PainterBar2.

Equalizing the size of controls in a DataWindow object
If you have several controls in a DataWindow object and want their sizes to be
the same, you can change their sizes on the Position page of the Properties view
or from the Format menu.

❖ To equalize the size of controls in a DataWindow object:

1 Select the control whose size is correct.

2 Select the other controls whose size should match that of the first control
by pressing Ctrl and clicking.

Reorganizing controls in a DataWindow object

504 PocketBuilder

3 Select Format>Size from the menu bar.

4 From the cascading menu, select the dimension whose size you want to
equalize.

You can also use the Layout drop-down toolbar on PainterBar2.

Sliding controls to remove blank space in a DataWindow object
You can specify that you want to eliminate blank lines or spaces in a
DataWindow object by sliding columns and other controls to the left or up if
there is blank space. You can use this feature to remove extra spaces between
fields such as first and last name.

Table 19-5: Slide options for controls in a DataWindow object

If you are sliding columns up
Even blank columns have height; if there are blank columns above the column
you want to slide up, you need to set the Autosize Height property for all of
them.

❖ To use sliding columns or controls in a DataWindow object:

1 Select Properties from the control's pop-up menu and then select the
Position tab in the Properties view.

2 Select the Slide options you want.

Slide options are also available on PainterBar2.

Option Description

Slide Left When selected, slides the column or control to the left
if there is nothing to the left. Be sure the control does
not overlap the control to the left. Sliding left will not
work if the controls overlap.

Slide Up You can select from the following values:

• All Above Slide the column or control up if there
is nothing in the row above. The row above must be
completely empty for the column or control to slide
up.

• Directly Above Slide the column or control up if
there is nothing directly above it in the row above.

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 505

Positioning controls in a DataWindow object
Table 19-6 shows the properties for each control in a DataWindow object that
determine how it is positioned within the DataWindow object. All except the
HideSnaked property are on the Position page of the object’s Properties view.

Sliding properties also affect control positioning. Sliding properties are
described on “Sliding controls to remove blank space in a DataWindow
object” on page 504.

Table 19-6: Position properties for controls in a DataWindow object

Default positioning PocketBuilder uses the defaults shown in Table 19-7 when you place a new
control in a DataWindow object.

Property Description

X Position (in units you selected for the DataWindow object) from the
left edge of the DataWindow band where the control is placed.

Y Position (in units you selected for the DataWindow object) from the
top edge of the DataWindow band where the control is placed.

Width Width of the control in units you selected for the DataWindow object.

Height Height of control in units you selected for the DataWindow object.

Layer You can select from the following values:

• Background Control is behind other controls. It is not restricted
to one band. This is useful for adding a watermark (such as the
word CONFIDENTIAL) to the background of a report.

• Band Control is placed within one band. It cannot extend
beyond the band's border.

• Foreground Control is in front of other controls. It is not
restricted to one band.

Moveable When selected, control can be moved during execution and in
preview. This is useful for designing layout.

Resizable When selected, control can be resized during execution and in
preview. This is useful for designing layout.

HideSnaked When selected, control appears only in the first column on the page;
in subsequent columns the control does not appear. This is only for
newspaper columns, where the entire DataWindow object snakes
from column to column (set on the General page of the Properties
view).

Rotating controls in a DataWindow object

506 PocketBuilder

Table 19-7: Default position for controls in a DataWindow object

Rotating controls in a DataWindow object
Controls that display text, such as text controls, columns, and computed fields,
can be rotated from the original baseline of the text. The Escapement option on
the Font properties page for the control lets you specify the amount of rotation,
also known as escapement.

Several other properties of a rotated control affect its final placement when the
DataWindow object runs. The location of the control in Design view, the
amount of rotation specified for it, and the location of the text within the
control (for example centered text or left-aligned text) all contribute to what
you see in the DataWindow object Preview view.

The following procedure includes design practices that help ensure that you get
the final results you want. As you become more experienced you can drop or
alter some of the steps. The procedure recommends setting a visible border on
the control so you can see where the control is located in the Preview view and
making the control movable in the Preview view, which is often helpful.

❖ To rotate a control in a DataWindow object:

1 Select the control in the Design view.

2 On the General properties page, change the control’s border to Box.
On the Position properties page make the control movable.

3 In Design view, enlarge the area in which the control is placed.

For example, in a grid DataWindow object, make the band deeper and
move the control down into the center of the band.

4 From the Font properties page, display the Modify Expression dialog box.

You click the button next to the Escapement property to display the dialog
box.

5 Specify the amount of rotation you want as an integer in tenths of a degree.
(For example, 450 means 45 degrees of rotation; 0 means horizontal or no
rotation.)

Control Default position

Graph Foreground, movable, resizable

All other controls Band, not movable, not resizable

CHAPTER 19 Working with Controls in DataWindow Objects

User’s Guide 507

The origin of rotation is the center of the top border of the box containing
the text. It is often helpful to use left-aligned text (General properties
page>Alignment>Left) because it makes it easier to position the control
correctly. The example in Figure 19-2 shows text centered within the
control.

Figure 19-2: Positioning a text control to make space for text rotation

Rotating controls in a DataWindow object

508 PocketBuilder

6 To display the current rotation in Preview, close the Preview view and
reopen it (View>Preview on the menu bar).

Figure 19-3: Displaying rotated text in the Preview view

7 Drag and drop the control in the Preview view or Design view until it is
where you want it.

8 In Design view, select the control that is being rotated, remove the
temporary border, and deselect the Moveable check box.

If you are using a conditional expression for rotation
If you are specifying different rotations depending on particular conditions,
you might need to add conditions to the control’s x and y properties to
conditionally move the control to match the various amounts of rotation. An
alternative to moving the control around is to have multiple controls positioned
exactly as you want them, taking into account the different amounts of rotation.
Then you can add a condition to the visible property of each control to ensure
that the correctly rotated control displays.

User’s Guide 509

C H A P T E R 2 0 Controlling Updates in
DataWindow Objects

About this chapter When PocketBuilder generates a basic DataWindow object, it defines
whether the data is updatable. This chapter describes the default update
settings and how you can modify them.

Contents

About controlling updates
When PocketBuilder generates a basic DataWindow object, it defines
whether the data is updatable using the following default settings:

• If the DataWindow object contains columns from a single table and
includes that table's key columns, PocketBuilder defines all columns
as updatable and specifies a nonzero tab order for each column,
allowing users to tab to the columns.

• If the DataWindow object contains columns from two or more tables
or from a view, PocketBuilder defines all columns as not updatable
and sets all tab orders to zero, preventing users from tabbing to the
columns.

You can accept the default settings or modify the update characteristics for
a DataWindow object.

If using a Stored Procedure or External data source
If the data source is Stored Procedure or External, you can use the
GetNextModified method to write your own update script. For more
information, see the DataWindow Reference in the online Help.

Topic Page

About controlling updates 509

Changing update settings 510

Using stored procedures to update the database 516

Changing update settings

510 PocketBuilder

Changing update settings
You can change DataWindow update settings to:

• Allow updates in a DataWindow object associated with multiple tables or
a view, and define one of the tables as being updatable

• Prevent updates in a DataWindow object associated with one table

• Prevent updates to specific columns in a DataWindow object that is
associated with an updatable table

• Specify which columns uniquely identify a row to be updated

• Specify which columns will be included in the WHERE clause of the
UPDATE or DELETE statement PocketBuilder generates to update the
database

• Specify whether PocketBuilder generates an UPDATE statement, or a
DELETE then an INSERT statement, to update the database when users
modify the values in a key column

Updatability of views
Some views are logically updatable; some are not. For the rules your DBMS
follows for updating views, see your DBMS documentation.

Changing tab values
PocketBuilder does not change the tab values associated with columns after
you change the update characteristics of the DataWindow object. If you have
allowed updates to a table in a multitable DataWindow object, you should
change the tab values for the updatable columns so users can tab to them.

For more information, see “Defining the tab order in a DataWindow object”
on page 475.

❖ To specify update characteristics for a DataWindow object:

1 Select Rows>Update Properties from the menu bar.

The Specify Update Properties dialog box displays.

CHAPTER 20 Controlling Updates in DataWindow Objects

User’s Guide 511

2 To prevent updates to the data, make sure the Allow Updates box is not
selected.
To allow updates, select the Allow Updates box and make changes as
required to the update settings by:

Specifying the table to update
Specifying the unique key columns
Specifying an identity column
Specifying updatable columns
Specifying the WHERE clause for update/delete
Specifying update when key is modified

3 Click OK.

Specifying the table to update
Each DataWindow object can update one table, which you select from the
Table to Update box in the Specify Update Properties dialog box.

Figure 20-1: Selecting a table to update

Specifying the unique key columns
The Unique Key Columns box in the Specify Update Properties dialog box
specifies which columns PocketBuilder uses to identify a row being updated.
PocketBuilder uses the column or columns you specify here as the key columns
when generating the WHERE clause to update the database.

The key columns you select must uniquely identify a row in the table. They can
be the table's primary key, though they do not have to be.

Figure 20-2: Selecting columns that identify the rows to be updated

Changing update settings

512 PocketBuilder

Using the primary key
Clicking the Primary Key button cancels any changes in the Unique Key
Columns box and highlights the primary key for the updatable table.

Specifying an identity column
ASA allows you to specify that the value for a column in a new row is to be
automatically assigned. This kind of column is called an identity column.

For example, ASA allow you to define autoincrement columns so that the
column for a new row is automatically assigned a value one greater than that
of the previous highest value. You could use this feature to specify that the
order number should be automatically incremented when someone adds a new
order:

Figure 20-3: Selecting identity columns for autoincrementation

By specifying an identity column in the Specify Update Properties dialog box,
you tell PocketBuilder to bring back the value of a new row's identity column
after an insert in the DataWindow object so that users can see it.

Specifying updatable columns
You can make all or some of the columns in a table updatable.

Updatable columns are displayed with highlighting. Click a nonupdatable
column to make it updatable. Click an updatable column to make it
nonupdatable.

Changing tab values If you have changed the updatability of a column, you should change its tab
value. If you have allowed a column to be updated, you should change its tab
value to a nonzero number so that users can tab to it.

CHAPTER 20 Controlling Updates in DataWindow Objects

User’s Guide 513

Specifying the WHERE clause for update/delete
Sometimes multiple users access the same tables at the same time. In this type
of situation, you need to decide when to allow your application to update the
database. If you allow your application to always update the database, it could
overwrite changes made by other users.

Figure 20-4: Controlling when updates succeed

You can control when updates succeed by specifying which columns
PocketBuilder includes in the WHERE clause in the UPDATE or DELETE
statement used to update the database:

UPDATE table...
SET column = newvalue
WHERE col1 = value1
AND col2 = value2 ...

DELETE
FROM table
WHERE col1 = value1
AND col2 = value2 ...

Using timestamps ASA lets you create special timestamp columns so that you can ensure that
users are working with the most current data. If the SELECT statement for the
DataWindow object contains a timestamp column, PocketBuilder includes the
key column and the timestamp column in the WHERE clause for an UPDATE or
DELETE statement regardless of which columns you specify in the Where
Clause for Update/Delete box.

If the value in the timestamp column changes (possibly because another user
modifies the row), the update fails.

Changing update settings

514 PocketBuilder

Meanings of WHERE
clause options

Choose one of the options in Table 20-1 in the Where Clause for Update/Delete
box. The results are illustrated by an example following the table.

Table 20-1: Specifying the WHERE clause for UPDATE and DELETE

Example Consider this situation: a DataWindow object is updating the Employee table,
whose key is Emp_ID; all columns in the table are updatable. If the user
changes the salary of employee 1001 from $50,000 to $65,000, this is what
happens with the different settings for the WHERE clause columns:

• If you selected the Key Columns option for the WHERE clause, the
UPDATE statement looks like this:

UPDATE Employee
SET Salary = 65000
WHERE Emp_ID = 1001

Option Result

Key Columns The WHERE clause includes the key columns only. These are the
columns you specified in the Unique Key Columns box.

The values in the originally retrieved key columns for the row are
compared against the key columns in the database. No other
comparisons are done. If the key values match, the update
succeeds.

Caution
Be very careful when using this option. If you tell PocketBuilder to
include only the key columns in the WHERE clause and someone
else modifies the same row after you retrieve it, those modifications
will be overwritten when you update the database.

Use this option only with a single-user database or if you are using
database locking. In other situations, choose one of the other two
options described in this table.

Key and
Updatable
Columns

The WHERE clause includes all key and updatable columns.

The values in the originally retrieved key columns and the
originally retrieved updatable columns are compared against the
values in the database. If any of the columns have changed in the
database since the row was retrieved, the update fails.

Key and
Modified
Columns

The WHERE clause includes all key and modified columns.

The values in the originally retrieved key columns and the modified
columns are compared against the values in the database. If any of
the columns have changed in the database since the row was
retrieved, the update fails.

CHAPTER 20 Controlling Updates in DataWindow Objects

User’s Guide 515

This statement will succeed whether or not other users have modified the
row since your application retrieved it. For example, if another user has
modified the salary to $70,000, that change will be overwritten when your
application updates the database.

• If you selected Key and Modified Columns for the WHERE clause, the
UPDATE statement looks like this:

UPDATE Employee
SET Salary = 65000
WHERE Emp_ID = 1001

AND Salary = 50000

Here the UPDATE statement also checks the original value of the modified
column in the WHERE clause. The statement will fail if another user has
changed the salary of employee 1001 since your application retrieved the
row.

• If you selected Key and Updatable Columns for the WHERE clause, the
UPDATE statement looks like this:

UPDATE Employee
SET Salary = 65000
WHERE Emp_ID = 1001

AND Salary = 50000
AND Emp_Fname = original_value
AND Emp_Lname = original_value
AND Status = original_value
...

Here the UPDATE statement checks all updatable columns in the WHERE
clause. This statement will fail if any of the updatable columns for
employee 1001 have been changed since your application retrieved the
row.

Specifying update when key is modified
The Key Modification property determines the SQL statements PocketBuilder
generates whenever a key column—a column you specified in the Unique Key
Columns box—is changed. The options are:

• Use DELETE then INSERT (default)

• Use UPDATE

Using stored procedures to update the database

516 PocketBuilder

How to choose a
setting

Consider the following when choosing the Key Modification setting:

• If multiple rows are changed, DELETE and INSERT always work. In some
DBMSs, UPDATE fails if the user modifies two keys and sets the value in
one row to the original value of the other row.

• If only one row can be modified by the user before the database is updated,
use UPDATE because it is faster.

Using stored procedures to update the database
Updates to the database can be performed using stored procedures.

Why use stored
procedures?

The DataWindow control submits updates to the database by dynamically
generating INSERT, DELETE, and UPDATE SQL statements after determining
the status of each row in the DataWindow object. You can also define
procedural SQL statements in a stored procedure for use by all applications
accessing a database. Using stored procedures to perform database updates
allows you to enhance database security, integrity, and performance. Since
stored procedures provide for conditional execution, you can also use them to
enforce additional business rules.

Specifying stored
procedures

The Stored Procedure Update dialog box allows you to associate only an
existing stored procedure with your DataWindow object. The stored procedure
must have been previously defined in the database.

Figure 20-5: Stored Procedure Update dialog box

CHAPTER 20 Controlling Updates in DataWindow Objects

User’s Guide 517

❖ To use stored procedures to update the database

1 In the DataWindow painter, select Rows>Stored Procedure Update to
display the Stored Procedure Update dialog box.

2 Select the tab for the SQL update method (Delete, Insert, or Update) with
which you want to associate a stored procedure.

3 Click the Procedure button, select the stored procedure you want executed
when the SQL update method is generated, and click OK.

The parameters used in the stored procedure are displayed in the Argument
Name list in the order in which they are defined in the procedure. Column
Name lists the columns used in your DataWindow object.

4 Select a column in the DataWindow object to associate with a procedure
parameter.

If a stored procedure uses parameters that are not matched to column
names, you can substitute the value from a DataWindow object computed
field or expression.

Matching a column to a procedure parameter
You must be careful to match a column in the DataWindow object
correctly to a procedure parameter, since PocketBuilder is able to verify
only that datatypes match.

5 If the parameter is to receive a column value, indicate whether the
parameter will receive the updated column value entered through the
DataWindow object or retain the original column value from the database.

Typically, you select Use Original when the parameter is used in a WHERE
clause in an UPDATE or DELETE SQL statement. If you do not select Use
Original, the parameter uses the new value entered for that column.
Typically, you would use the new value when the parameter is used in an
INSERT or UPDATE SQL statement.

Using stored procedures to update the database

518 PocketBuilder

What happens when
the stored procedure
is executed

The stored procedure you associate with a SQL update method in the Stored
Procedure Update dialog box is executed when the DataWindow control calls
the Update function. The DataWindow control examines the table in the
DataWindow object, determines the appropriate SQL statement for each row,
and submits the appropriate stored procedure (as defined in the Stored
Procedure Update dialog box) with the appropriate column values or
expressions substituted for the procedure arguments.

If a stored procedure for a particular SQL update method is not defined, the
DataWindow control submits the appropriate SQL syntax in the same manner
it has always used.

Return values from stored procedures cannot be handled by the DataWindow
control. The Update function returns 1 if it succeeds and -1 if an error occurs.
Additional information is returned to SQLCA.

Using Describe and
Modify

You can use the DataWindow Describe and Modify functions to access
DataWindow property values, including the stored procedures associated with
a DataWindow object. For information, see Table.property for the
DataWindow object in the DataWindow Reference in the online Help.

Restrictions on the
use of Modify

Since a database driver can only report stored procedure names and parameter
names and position, it cannot verify that changes made to stored procedures are
valid. Consequently, if you use Modify to change a stored procedure, be careful
that you do not inadvertently introduce changes into the database.

In addition, you must specify the type qualifier first when you use Modify to
enable a DataWindow object that is not already using stored procedures to use
them to update the database. Calling the type qualifier ensures that internal
structures are built before calls are made to Modify. If a new method or method
arguments are specified without a preceding definition of type, Modify fails.

User’s Guide 519

C H A P T E R 2 1 Displaying and Validating Data

About this chapter This chapter describes how to customize your DataWindow object by
modifying the display values in columns and specifying validation rules.

Contents

About displaying and validating data
When PocketBuilder generates a basic DataWindow object, it uses the
extended attributes defined for the data and stored in the extended
attribute system tables.

For more information about the extended attribute system tables, see
Appendix A, “Extended Attribute System Tables.”

In the Database painter, you can create the extended attribute definitions
that specify a column's display format, edit style, and validation rules.

In the DataWindow painter, you can override these extended attribute
definitions for a column in a DataWindow object. These overrides do not
change the information stored with the column definition in the extended
attribute system tables.

Topic Page

About displaying and validating data 519

About display formats 521

Working with display formats 522

Defining display formats 526

About edit styles 533

Working with edit styles 534

Defining edit styles 536

Defining a code table 546

About validation rules 549

Working with validation rules 551

Summary of maintaining the entities 558

About displaying and validating data

520 PocketBuilder

Presenting the data
When you generate a new DataWindow object, PocketBuilder presents the data
according to the properties already defined for a column, such as a column's
display format and edit style.

Display formats Display formats embellish data values while still displaying them as letters,
numbers, and special characters. Using display formats, for example, you can:

• Change the color of numbers when displaying a negative value

• Add parentheses and dashes to format a telephone number

• Add a dollar sign and period to indicate a currency format

For information, see “About display formats” on page 521.

Edit styles Edit styles usually take precedence over display formats and specify how
column data is presented. For example, using edit styles, you can:

• Display valid values in a drop-down list

• Indicate that a single value is selected by using a check box

• Indicate which one of a group of values is selected by using radio buttons

Edit styles not only affect the way data displays, they also affect how the user
interacts with the data at runtime.

For more information, see “About edit styles” on page 533.

Validating data
When data is entered in the Database painter or in a DataWindow object,
PocketBuilder evaluates the data against validation rules defined for that
column. If the data is valid, PocketBuilder accepts the entry; otherwise,
PocketBuilder displays an error message and does not accept the entry.

For more information, see “About validation rules” on page 549.

CHAPTER 21 Displaying and Validating Data

User’s Guide 521

About display formats
You can use display formats to customize the display of column data in a
DataWindow object. Display formats are masks in which certain characters
have special significance. For example, you can display currency values
preceded by a dollar sign, show dates with month names spelled out, and use a
special color for negative numbers. You can use the many predefined display
formats provided with PocketBuilder or define your own.

The DataWindow object in Figure 21-1 uses no display formats; all values
display as they are stored in the database.

Figure 21-1: DataWindow object without display formats

Figure 21-2 shows the same DataWindow object with display formats for the
Phone, Salary, and Start Date columns, that make the data easier to interpret.

Figure 21-2: DataWindow object with display formats

Display formats not used for data entry
When users tab to a column containing a display format, PocketBuilder
removes the display format and displays the raw value for users to edit.

If you want to provide formatting that is displayed during data entry, you need
to specify edit masks, as described in “The EditMask edit style” on page 541.

Working with display formats

522 PocketBuilder

About display format
masks and EditMasks

The differences between display format masks and EditMask edit styles can be
hard to understand. A display format mask determines the appearance of the
column when the focus is off the column, or when the DataWindow object is in
print preview mode. When you apply an EditMask edit style, the mask you use
determines the appearance of the column when focus is on the column.

If you want data to display differently depending on whether the focus is on or
off the column, specify an edit mask (on the Edit properties page for the
column) as well a display format (on the Format properties page for the
column), then check the Use Format check box on the Format properties page.
The Use Format check box displays only when an edit mask has been specified.

Working with display formats
You work with display formats in the Database painter and the DataWindow
painter.

Display formats and
the extended attribute
system tables

When you place a column in a DataWindow object and have given it a display
format (either the default format from the assignment made in the Database
painter for the column or a format assigned in the DataWindow painter), no
link is maintained to the named format in the extended attribute system tables.

If the definition of the display format later changes in the extended attribute
system tables, the format for the column in a DataWindow object does not
change. If you want to use the modified format, you can reapply it to the
column in the DataWindow painter.

Working with display formats in the Database painter
Typically, you define display formats and associate them with columns in the
Database painter, because display formats are properties of the data itself. After
you have associated a display format with a column in the Database painter, it
is used by default each time the column is placed in a DataWindow object.

CHAPTER 21 Displaying and Validating Data

User’s Guide 523

Edit style takes precedence
If a column has an associated edit style, the edit style takes precedence over a
display format unless you use an EditMask edit style and check the Use Format
box on the Format properties page.

For more information, see “About edit styles” on page 533.

What you do in the
Database painter

In the Database painter, you can:

• Create, modify, and delete named display formats

The named display formats are stored in the extended attribute system
tables. When you have defined a display format, it can be used by any
column of the appropriate datatype in the database.

• Assign display formats to columns and remove display formats associated
with columns

Formats that you associate with columns are used by default when you
place the columns in a DataWindow object in the DataWindow painter.

❖ To create a new display format:

1 In the Database painter, select Object>Insert>Display Format from the
menu bar.

The Display Format view displays.

2 Name the display format and specify a datatype.

3 Define the display format using masks.

You can use this display format with any column of the appropriate
datatype in the database.

For information, see “Defining display formats” on page 526.

❖ To modify an existing display format:

1 In the Database painter, open the Extended Attributes view.

2 In the Extended Attributes view, open the list of display formats.

3 Position the pointer on the display format you want to modify, display the
pop-up menu, and select Properties.

4 In the Display Format view, modify the display format as desired.

For information, see “Defining display formats” on page 526.

Working with display formats

524 PocketBuilder

❖ To associate a display format with a column in the Database painter:

1 In the Database painter Objects view, position the pointer on the column,
select Properties from the pop-up menu, and select the Display tab in the
Properties view.

2 Select a format from the list in the Display Format box.

The column now has the selected format associated with it in the extended
attribute system tables.

❖ To remove a display format from a column in the Database painter:

1 In the Database painter Objects view, position the pointer on the column,
select Properties from the pop-up menu, and select the Display tab in the
Properties view.

2 Select (None) from the list in the Display Format box.

The display format is no longer associated with the column.

Working with display formats in the DataWindow painter
Changing the display
format assigned to a
column

Display formats you assign to a column in the Database painter are used by
default when you place the column in a DataWindow object. You can override
the default format in the DataWindow painter by choosing another format from
the extended attribute system tables or defining an ad hoc format for one
specific column.

About computed fields
You can assign display formats to computed fields using the same techniques
as for columns in a table.

What you do in the
DataWindow painter

In the DataWindow painter, you can:

• Accept the default display format assigned to a column in the Database
painter

• Override the default display format with another named format stored in
the extended attribute system tables

• Create an ad hoc, unnamed format to use with one specific column

CHAPTER 21 Displaying and Validating Data

User’s Guide 525

❖ To change a display format for a column in the DataWindow painter:

1 In the DataWindow painter, move the pointer to the column, select
Properties from the column's pop-up menu, and then select the Format tab.

Information appropriate to the datatype of the selected column displays.
The currently used format displays in the Format box. All formats for the
datatype defined in the extended attribute system tables are listed in the
pop-up list (displayed by clicking the button next to the Format box).

2 Do one of the following:

• Remove the display format from the column by clearing the Format
box.

• Select a format in the extended attribute system tables from the
pop-up list.

• Create a format for the column by typing it in the Format box. For
more information, see “Defining display formats” next.

Format not saved in the extended attribute system tables
If you create a format here, it is used only for the current column and is not
saved in the extended attribute system tables.

Using toolbar
shortcuts

To assign the Currency or Percent display format to a numeric column in a
report, select the column, then click the Currency or Percent button in the
PainterBar, or select Format>Currency or Format>Percent from the menu bar.

You can add buttons to the PainterBar that assign a specified display format to
selected columns in reports.

For more information, see the section on customizing toolbars in Chapter 2,
“Customizing PocketBuilder.”

Defining display formats

526 PocketBuilder

Defining display formats
Display formats are represented through masks, where certain characters have
special significance. PocketBuilder supports four kinds of display formats,
each using different mask characters:

Numbers
Strings
Dates
Times

For example, in a string format mask, each @ represents a character in the
string and all other characters represent themselves. You can use the following
mask to display phone numbers:

(@@@) @@@-@@@@

Combining formats You can include different types of display format masks in a single format. Use
a space to separate the masks. For example, the following format section
includes a date and time format:

mmmm/dd/yyyy h:mm

Using sections Each type of display format can have multiple sections, with each section
corresponding to a form of the number, string, date, or time. Only one section
is required; additional sections are optional and should be separated with
semicolons (;).

The following format specifies different displays for positive and negative
numbers; negative numbers are displayed in parentheses:

$#,##0;($#,##0)

Using keywords Enclose display format keywords in square brackets. For example, you can use
the keyword [General] when you want PocketBuilder to determine the
appropriate format for a number.

Using colors You can define a color for each display format section by specifying a color
keyword before the format. The color keyword is the name of the color, or a
number that represents the color, enclosed in square brackets: [RED] or [255].
The number is usually used only when a color is required that is not provided
by name. The named color keywords are:

[BLACK]
[BLUE]
[CYAN]
[GREEN]
[MAGENTA]
[RED]

CHAPTER 21 Displaying and Validating Data

User’s Guide 527

[WHITE]
[YELLOW]

The formula for combining primary color values into a number is:

256*256*blue + 256*green + red=number

where the amount of each primary color is specified as a value from 0 to 255.
For example, to specify cyan, substitute 255 for blue, 255 for green, and 0 for
red. The result is 16776960.

Table 21-1 lists the blue, green, and red values you can use in the formula to
create other colors.

Table 21-1: Numeric values used to create colors

Using special
characters

To include a character in a mask that has special meaning in a display format,
such as a square bracket ([), precede the character with a backslash (\). For
example, to display a single quotation mark, enter \'.

Setting display
formats during
execution

In scripts, you can use GetFormat to get the current format for a column and
SetFormat to change the format for a column during execution.

Number display formats
A number display format can have up to four sections. Only the first is
required. The three other sections determine how the data displays if its value
is negative, zero, or NULL. The sections are separated by semi-colons:

Positive-format;negative-format;zero-format;null-format

Blue Green Red Number Color

0 0 255 255 Red

0 255 0 65280 Green

0 128 0 32768 Dark green

255 0 0 16711680 Blue

0 255 255 65535 Yellow

0 128 128 32896 Brown

255 255 0 16776960 Cyan

192 192 192 12632256 Light gray

Defining display formats

528 PocketBuilder

Special characters Table 21-2 lists characters that have special meaning in number display
formats.

Table 21-2: Characters with special meaning in display formats

Percent signs, decimal points, parentheses, and spaces display as entered in the
mask.

Use at least one 0
In general, a number display format should include at least one 0. If users enter
0 in a field with the mask ###, the field will appear to be blank if you do not
provide a zero-format section. If the mask is ###.##, only the period displays.
If you want two decimal places to display even if both are 0, use the mask
##0.00.

Number keywords You can use the following keywords as number display formats when you want
PocketBuilder to determine an appropriate format to use:

• [General]

• [Currency]

Note that [Currency(7)] and [Currency(n)] can be used as edit masks, but they are
not permitted as display formats.

Number and currency
settings

To ensure that an application behaves the same in every country in which it is
deployed, DataWindow expressions and the masks used in display formats and
edit masks require U.S. notation for numbers. That is, when you specify a
number in a DataWindow expression or in a number mask, a comma always
represents the thousands delimiter and a period always represents the decimal
place. You should also always use the $ sign to represent the symbol for
currency.

At runtime, the locally correct symbols are displayed for numbers and
currency. The comma and period are replaced by the delimiters defined in the
user’s Number settings in the Regional or International Settings property sheet
in the Windows Control Panel. The $ sign in the mask is replaced by the local
currency symbol as defined in the user’s Currency setting in the Windows
Control Panel. For example, in countries where a comma represents the
decimal place and a period represents thousands, users see numbers in those
formats.

Character Meaning

A number

0 A required number; a number will display for every 0 in the mask

CHAPTER 21 Displaying and Validating Data

User’s Guide 529

Percentages When you enter a number in a column with a percent edit mask and tab off the
column, PocketBuilder divides the number by 100 and stores the result in the
buffer. For example, if you enter 23, PocketBuilder passes .23 to the buffer.
When you retrieve from the database, PocketBuilder multiplies the number by
100 and, if the mask is ##0%, displays 23%.

Use caution when defining an edit mask for a percentage. The datatype for the
column must be numeric or decimal to handle the result of a division by 100.
If the column has an integer datatype, a percentage entered as 333 is retrieved
from the database as 300, and 33 is retrieved as 0.

If you use an edit mask with decimals, such as ##0.00%, the datatype must
have enough decimal places to handle the division. For example, if you enter
33.33, the datatype for the column must have at least four decimal places
because the result of the division is .3333. If the datatype has only three
decimal places, the percentage is retrieved as 33.30.

Examples Table 21-3 shows how the values 5, –5, and .5 display when different format
masks are applied.

Table 21-3: Number display format examples

Format 5 -5 .5

[General] 5 -5 0.5

0 5 -5 1

0.00 5.00 -5.00 0.50

#,##0 5 -5 1

#,##0.00 5.00 -5.00 0.50

$#,##0;($#,##0) $5 ($5) $1

$#,##0;-$#,##0 $5 -$5 $1

$#,##0;[RED]($#,##0) $5 ($5) $1

[Currency] $5.00 ($5.00) $0.50

$#,##0.00;($#,##0.00) $5.00 ($5.00) $0.50

$#,##0.00;[RED]($#,##0.00) $5.00 ($5.00) $0.50

##0% 500% -500% 50%

##0.00% 500.00% -500.00% 50.00%

0.00E+00 5.00E+00 -5.00E+00 5.00E-01

Defining display formats

530 PocketBuilder

String display formats
String display formats can have two sections. The first is required and contains
the format for strings; the second is optional and specifies how to represent
NULLs:

string-format;null-format

In a string format mask, each at-sign (@) represents a character in the string
and all other characters represent themselves.

Example This format mask:

[red](@@@) @@@-@@@@

displays the string 800YESCELT in red as:

(800) YES-CELT

Date display formats
Date display formats can have two sections. The first is required and contains
the format for dates; the second is optional and specifies how to represent
NULLs:

date-format;null-format

Special characters Table 21-4 shows characters that have special meaning in date display formats.

Table 21-4: Characters with special meaning in data display formats

Colons, slashes, and spaces display as entered in the mask.

Character Meaning Example

d Day number with no leading zero 9

dd Day number with leading zero if appropriate 09

ddd Day name abbreviation Mon

dddd Day name Monday

m Month number with no leading zero 6

mm Month number with leading zero if appropriate 06

mmm Month name abbreviation Jun

mmmm Month name June

yy Two-digit year 97

yyyy Four-digit year 1997

CHAPTER 21 Displaying and Validating Data

User’s Guide 531

About 2-digit years
If users specify a 2-digit year in a DataWindow object, PocketBuilder assumes
the date is the 20th century if the year is greater than or equal to 50. If the year
is less than 50, PocketBuilder assumes the 21st century. For example:

• 1/1/85 is interpreted as January 1, 1985.

• 1/1/40 is interpreted as January 1, 2040.

Date keywords You can use the following keywords as date display formats when you want
PocketBuilder to determine an appropriate format to use:

• [ShortDate]

• [LongDate]

The format used is determined by the regional settings for date in the registry.
Note that [Date] is not a valid display format.

Examples Table 21-5 shows how the date Friday, January 30, 1998, displays when
different format masks are applied.

Table 21-5: Date display format examples

Time display formats
Time display formats can have two sections. The first is required and contains
the format for times; the second is optional and specifies how to represent
NULLs:

time-format;null-format

Special characters Table 21-6 shows characters that have special meaning in time display formats.

Format Displays

[red]m/d/yy 1/30/98 in red

d-mmm-yy 30-Jan-98

dd-mmmm 30-January

mmm-yy Jan-98

dddd, mmm d, yyyy Friday, Jan 30, 1998

Defining display formats

532 PocketBuilder

Table 21-6: Characters with special meaning in time display formats

Colons, slashes, and spaces display as entered in the mask.

24-hour format is the default
Times display in 24-hour format unless you specify AM/PM, am/pm, A/P, or
a/p.

Time keyword You can use the following keyword as a time display format to specify the
format specified in the Windows control panel:

• [Time]

Examples Table 21-7 shows how the time 9:45:33:234567 PM displays when different
format masks are applied.

Table 21-7: Time display format examples

Character Meaning

h Hour with no leading zero (for example, 1)

hh Hour with leading zero if appropriate (for example, 01)

m Minute with no leading zero (must follow h or hh)

mm Minute with leading zero if appropriate (must follow h or hh)

s Second with no leading zero (must follow m or mm)

ss Second with leading zero (must follow m or mm)

ffffff Microseconds with no leading zeros. You can enter one to six f’s; each
f represents a fraction of a second (must follow s or ss)

AM/PM Two-character, uppercase abbreviation (AM or PM as appropriate)

am/pm Two-character, lowercase abbreviation (am or pm as appropriate)

A/P One-character, uppercase abbreviation (A or P as appropriate)

a/p One-character, lowercase abbreviation (a or p as appropriate)

Format Displays

h:mm AM/PM 9:45 PM

hh:mm A/P 09:45 P

h:mm:ss am/pm 9:45:33 pm

h:mm 21:45

h:mm:ss 21:45:33

h:mm:ss:f 21:45:33:2

h:mm:ss:fff 21:45:33:234

h:mm:ss:ffffff 21:45:33:234567

m/d/yy h:mm 1/30/98 21:45

CHAPTER 21 Displaying and Validating Data

User’s Guide 533

About edit styles
You can define edit styles for columns. Edit styles specify how column data is
presented in DataWindow objects. Unlike display formats, edit styles do not
only affect the display of data; they also affect how users interact with the data
at runtime. Once you define an edit style, it can be used by any column of the
appropriate datatype in the database.

When edit styles are
used

If both a display format and an edit style have been assigned to a column, the
edit style is always used, with one exception. When you assign an EditMask
edit style to a column, you can check the Use Format check box on the Format
properties page for the column to use the edit mask format when focus is on the
column, and the display format mask when focus is off the column.

Edit styles Table 21-8 shows the available edit styles.

Table 21-8: Edit styles

For example, suppose you have a column Status that takes one of three values:
the letters A, T, and L, each representing a status (Active, Terminated, or On
Leave). If you assign it the RadioButton edit style, users can simply click a
button instead of having to type A, T, or L. You do not have to create a
validation rule to validate typed input.

Edit style What the edit style does Example

Edit box (default) Displays a value in the box. For
data entry, type a value.

DropDownListBox Displays a value from the
drop-down list. For data entry,
select or enter a value.

CheckBox Displays a check box selected or
cleared. For data entry, select or
clear the check box.

RadioButtons Displays radio buttons, one of
which is selected. For data entry,
select one of the radio buttons.

EditMask Displays formatted data. For data
entry, type a value.

DropDownDataWindow Displays a value from a
drop-down DataWindow. For
data entry, select a value.

Working with edit styles

534 PocketBuilder

Working with edit styles
You work with edit styles in the Database painter and DataWindow painter.

Edit styles and the
extended attribute
system tables

When you place a column in a DataWindow object and give it an edit style
(either the default style from the assignment made in the Database painter for
the column or a style assigned in the DataWindow painter), PocketBuilder
records the name and definition of the edit style in the DataWindow object.

However, if the definition of the edit style later changes in the extended
attribute system tables, the edit style for the column in a DataWindow object
does not change automatically. You can update the column by reassigning the
edit style to it in the DataWindow object.

Working with edit styles in the Database painter
Typically, you define edit styles in the Database painter, because edit styles are
properties of the data itself. Once defined in the Database painter, the styles are
used by default each time the column is placed in a DataWindow object.

What you do in the
Database painter

In the Database painter, you can:

• Create, modify, and delete named edit styles

The edit styles are stored in the extended attribute system tables. Once you
define an edit style, it can be used by any column of the appropriate
datatype in the database.

• Assign edit styles to columns

These styles are used by default when you place the column in a
DataWindow object in the DataWindow painter.

❖ To create a new edit style:

1 In the Database painter, select Object>Insert>Edit Style from the menu
bar.

2 In the Edit Style dialog box, select the edit style type from the Style
drop-down list.

3 Specify the properties of the edit style and click OK.

For information, see “Defining edit styles” on page 536.

You can use the new edit style with any column of the appropriate datatype
in the database.

CHAPTER 21 Displaying and Validating Data

User’s Guide 535

❖ To modify an existing edit style:

1 In the Database painter, open the Extended Attributes view.

2 In the Extended Attributes view, open the list of edit styles.

3 Position the pointer on the Edit style you want to modify, display the pop-
up menu, then select Properties.

4 In the Edit Style dialog box, modify the edit style as desired and click OK.

For information, see “Defining edit styles” on page 536.

You can use the modified edit style with any column of the appropriate
datatype in the database.

❖ To associate an edit style with a column in the Database painter:

1 In the Database painter (Objects view), position the pointer on the column,
select Properties from the pop-up menu, then select the Edit Style tab in
the Properties view.

2 Select a style for the appropriate datatype from the list in the Style Name
box.

PocketBuilder associates the selected edit style with the column in the
extended attribute system tables.

❖ To remove an edit style from a column in the Database painter:

1 In the Database painter (Objects view), position the pointer on the column,
select Properties from the pop-up menu, then select the Edit Style tab in
the Properties view.

2 Select (None) from the list in the Style Name box.

The edit style is no longer associated with the column.

Working with edit styles in the DataWindow painter
An edit style you assign to a column in the Database painter is used by default
when you place the column in a DataWindow object. You can override the edit
style in the DataWindow painter by choosing another edit style from the
extended attribute system tables or defining an ad hoc style for one specific
column.

Defining edit styles

536 PocketBuilder

What you do in the
DataWindow painter

In the DataWindow painter, you can:

• Accept the default edit style assigned to a column in the Database painter

• Override the default edit style with another named style stored in the
extended attribute system tables

• Create an ad hoc, unnamed edit style to use with one specific column

❖ To specify an edit style for a column:

1 In the DataWindow painter, move the pointer to the column, select
Properties from the column's pop-up menu, and then select the Edit tab.

2 Select the type of edit style you want from the Style Type drop-down list.

The information on the Edit properties page changes to apply to the type
of edit style you selected.

3 Do one of the following:

• Select an edit style from the Style Name box

• Create an ad hoc edit style for the column, as described in “Defining
edit styles” next

Defining edit styles
This section describes how to specify each type of edit style:

• The Edit edit style

• The DropDownListBox edit style

• The CheckBox edit style

• The RadioButtons edit style

• The EditMask edit style

• The DropDownDataWindow edit style

CHAPTER 21 Displaying and Validating Data

User’s Guide 537

The Edit edit style
By default, columns use the Edit edit style, which displays data in an edit
control. You can customize the appearance and behavior of the edit control by
modifying a column's Edit edit style:

• To restrict the number of characters users can enter, enter a value in the
Limit box

• To convert the case of characters upon display, enter an appropriate value
in the Case box

• To have entered values display as asterisks for sensitive data, check the
Password box

• To allow users to tab to the column but not change the value, check the
Display Only box

• To define a code table to determine which values are displayed to users and
which values are stored in the database, check the Use Code Table box and
enter display and data values for the code table

See “Defining a code table” on page 546.

❖ To use the Edit edit style:

1 Select Edit from the Style Type box, if it is not already selected.

2 Select the properties you want.

Date columns and regional settings
Using the Edit edit style, or no edit style, with a date column can cause serious
data entry and validation problems if a user’s computer is set up to use a
nonstandard date style, such as yyyy/dd/mm. For example, if you enter
2001/03/05 in the Retrieval Arguments dialog box for a date column when the
mask is yyyy/dd/mm, the date is interpreted as March 5 instead of May 3. To
ensure that the order of the day and month is interpreted correctly, use an
EditMask edit style.

Defining edit styles

538 PocketBuilder

The DropDownListBox edit style
You can use the DropDownListBox edit style to have columns display as
drop-down lists during execution.

Typically, this edit style is used with code tables, where you can specify display
values that users see and shorter data values that are stored in the database.

In the DropDownListBox edit style, the display values of the code table display
in the ListBox portion of the DropDownListBox. The data values (not the
display values) are the values that are put in the DataWindow buffer when the
user selects an item in the ListBox portion of the drop-down list. These values
are sent to the database when an Update is issued.

For example, when a user selects the value Business Services in Figure 21-3,
the corresponding data value could be a department number such as 200.

Figure 21-3: Example of a drop-down list edit style

❖ To use the DropDownListBox edit style:

1 Select DropDownListBox from the Style Type box for a DataWindow
column.

The Style Type box is on the Edit page of the Properties view for the
column.

2 Select other properties on the Edit page of the Properties view.

3 Enter values you want to have appear in the Display Value box and
corresponding data values in the Data Value box.

During execution You can define and modify a code table for a column in a script by using the
SetValue function during execution. To obtain the value of a column during
execution, use the GetValue function. To clear the code table of values, use the
ClearValues function.

For more about code tables, see “Defining a code table” on page 546.

CHAPTER 21 Displaying and Validating Data

User’s Guide 539

The CheckBox edit style
If a column can take only one of two (or perhaps three) values, you might want
to display the column as a check box; users can select or clear the check box to
specify a value.

❖ To use the CheckBox edit style:

1 Select CheckBox from the Style Type box for a DataWindow column.

2 If you want a label as part of the CheckBox style for the column, enter the
label for the check box in the Text box.

By default, the label displays to the right of the check box when you make
the column wide enough to accomodate both the check box and the label.
If you want the label to display to the left of the check box, select the Left
Text check box on the Edit page of the Properties view for the column.

Using accelerator keys
You can designate an accelerator key in a CheckBox label by including an
ampersand (&) before the letter that you want to use for the accelerator. On
the desktop, the Alt key in combination with the accelerator key changes
focus to the CheckBox control and changes the value of the control.

On a Windows CE device, the SIP keyboard allows users to enter an
accelerator key that changes the value of the check box. However, because
it does not have an Alt key, the SIP keyboard cannot be used to change
focus to the check box control.

3 Enter the values you want to have placed in the DataWindow buffer:

• In the Data Value For On box, enter the value for when the CheckBox
control is checked

• In the Data Value For Off box, enter the value for when the CheckBox
control is not checked

4 (Optional) Select the 3 States check box, then enter a value for a third
CheckBox state in the Other State box.

The Other State box does not display unless you select the 3 States check
box.

What happens The value you enter in the Text box becomes the display value, and values
entered for On, Off, and Other become the data values.

Defining edit styles

540 PocketBuilder

When users check or clear the check box at runtime, PocketBuilder enters the
appropriate data value in its buffer. When the Update function is issued,
PocketBuilder sends the corresponding data values to the database.

Centering check
boxes without text

You might find it useful to center check boxes used for columns of information.
First make the text control used for the column header and the column control
the same size and left aligned. Then you can center the check boxes and the
column header.

❖ To center check boxes without text:

1 In the Edit properties page for the column, make sure the Left Text check
box is not selected and that the Text box where you specify associated text
is empty.

2 Specify centering (Alignment>Center) in the General properties page, or
specify centering using the StyleBar.

The RadioButtons edit style
If a column can take one of a small number of values, you might want to
display the column as radio buttons.

❖ To use the RadioButtons edit style:

1 Select RadioButtons from the Style Type box for a DataWindow column.

2 Specify how many radio buttons will display in the Columns Across box.

3 Enter a set of display and data values for each button you want to display.

The display values you enter become the text of the buttons; the data
values are put in the DataWindow buffer when the button is clicked.

Using accelerator keys
To use an accelerator key on a radio button, enter an ampersand (&) in the
Display Value before the letter that will be the accelerator key. On
Windows CE devices, you can use the SIP keyboard to enter the
accelerator key and change the radio button selection. However, there is
no Alt key on the SIP keyboard that would allow users to change focus to
the radio button control.

What happens Users select values by clicking a radio button. When the Update function is
issued, the data values are sent to the database.

CHAPTER 21 Displaying and Validating Data

User’s Guide 541

The EditMask edit style
Sometimes users need to enter data that has a fixed format. For example, in
North America phone numbers have a 3-digit area code, followed by three
digits, followed by four digits. You can define an edit mask that specifies the
format to make it easier for users to enter values.

Edit masks consist of special characters that determine what can be entered in
the column. They can also contain punctuation characters to aid users.

For example, to make it easier for users to enter North American phone
numbers in the proper format, specify this mask:

(###) ###-####

During execution, the punctuation characters display in the box and the cursor
jumps over them as the user types.

Figure 21-4: Example of EditMask edit style display before data entry

Special characters
and keywords

Edit masks use the same special characters as display formats, and there are
special considerations for using numeric, string, date, and time masks.

For information, see “Defining display formats” on page 526.

Keyboard behavior Note that certain keystrokes from the SIP in edit masks behave as follows:

• The Backspace key deletes the preceding character

• Delete (Shift + Backspace) deletes the character after the current location

• Both Backspace and Delete delete everything that is selected

• Non-numeric edit masks treat any characters that do not match the mask
pattern as delimiters

Also, note this behavior in Date edit masks:

• The strings 00/00/00 or 00/00/0000 are interpreted as the NULL value for
the column.

Using the Mask
pop-up menu

Click the button to the right of the Mask box on the Mask properties page to
display a list that contains complete masks, as well as special characters that
you can use to construct your own mask. For example, the menu for a Date edit
mask contains complete masks such as mm/dd/yy and dd/mmm/yyyy. It also
has components such as dd and jjj (for a Julian day). You might use these to
construct a mask like dd-mm-yy, typing in the hyphens as separators.

Defining edit styles

542 PocketBuilder

You cannot use a partial mask, such as dd or mmm, in a date edit mask. Any
mask that does not include any characters representing the year will be
replaced by a mask that does.

Using spin controls You can define an edit mask as a spin control, which is a box with up and down
arrows that users can click to cycle through fixed values. For example, you can
set up a code table that provides the valid entries in a column; users simply
click an arrow to select an entry. Used this way, a spin control works like a
drop-down list that displays one value at a time.

For more about code tables, see “Defining a code table” on page 546.

Figure 21-5: Effect of clicking arrow on a spin control edit mask

❖ To use an EditMask edit style:

1 Select EditMask in the Style Type box if it is not already selected.

2 Define the mask in the Mask box.

You can select a named style in the Style Name box, which automatically
places an edit mask in the mask box, or you can click the button to the right
of the Mask box, then click the special characters that you want from the
pop-up menu to use them in the mask. You can also type a mask in the
Mask box.

3 Specify other properties for the edit mask.

When you use your EditMask, check its appearance and behavior. If
characters do not appear as you expect, you might want to change the font
size or the size of the EditMask.

CHAPTER 21 Displaying and Validating Data

User’s Guide 543

The DropDownDataWindow edit style
Sometimes another data source determines which data is valid for a column.

Advantage of a
dynamic edit style

Consider this situation: the Department table includes two columns, Dept_id
and Dept_name, listing your company's departments. The Employee table lists
your employees. The Department column in the Employee table can have any
of the values from the Dept_id column in the Department table.

As new departments are added to your company, you want the DataWindow
object containing the Employee table to automatically provide the new
departments as choices when users enter values in the Department column.

In situations such as this, you can specify the DropDownDataWindow edit
style for a column: it is populated from another DataWindow object. When
users go to the column, the contents of the DropDownDataWindow display,
showing the latest data.

Figure 21-6: Example of a DropDownDataWindow edit style

In Figure 21-6, a DataWindow object contains a DropDownDataWindow edit
style that displays a different DataWindow object containing only the Dept_ID
and Dept_Name columns from the Department table. Typically only a single
column is displayed in a drop-down DataWindow. The example in the figure
displays both columns from the DataWindow because the drop-down width
property for the column using the DropDownDataWindow style has been set
to more than 100%.

Defining edit styles

544 PocketBuilder

Example used in
procedure

In the following procedure, you create a DataWindow similar to the
DataWindow object used in Figure 21-6. You name the DataWindow
d_dddw_dept and save it for use in a DropDownDataWindow style. You then
create another DataWindow from the Employee table and use the Properties
view in the DataWindow painter to associate the Dept_ID column in the new
DataWindow with an ad hoc DropDownDataWindow style. The ad hoc style
will display the Dept_ID column from the Department table that is used by the
d_dddw_dept DataWindow object.

You can also create a named DropDownDataWindow edit style in the Database
painter that uses the d_dddw_dept DataWindow object. If you create a named
style, and then select it in the DataWindow painter for a column in another
DataWindow, properties that you set for the style automatically populate the
fields on the Edit page of the Properties view for that column.

For information on creating a named edit style, see “Working with edit styles
in the Database painter” on page 534.

❖ To use the DropDownDataWindow edit style:

1 Create a DataWindow object with columns that you want to use in a
drop-down list, and save the DataWindow.

You will often choose at least two columns for the DataWindow: one
column that contains values that the user sees and another column
containing values to be stored in the database. For example, to create the
d_dddw_dept DataWindow object, create a tabular DataWindow that
contains only the Dept_ID and Dept_Name columns from the Department
table in the ASA Sample database.

2 Select the column for which you want to obtain data from a DataWindow
object, click the Edit tab in the Properties view of the DataWindow painter,
then select the DropDownDW edit style in the Style Type box.

For example, create a DataWindow from the Employee table, then select
the Dept_ID column and specify the DropDownDW edit style for this
column.

3 In the Lines in DropDown box, type the number of rows you want to see
in the drop-down DataWindow.

There are five rows in the Dept_ID column, so you might consider typing
5 for the number of lines you want to see. You might also consider
selecting the V ScrollBar check box on the Edit tab, so that when you add
a sixth or seventh row, users can scroll to see the entire list of departments.

CHAPTER 21 Displaying and Validating Data

User’s Guide 545

4 In the Width of DropDown (%) box, type 100 to display the complete
width of a single column you select as the display column.

5 Click the ellipsis button next to the DataWindow box and select the
DataWindow object that contains the data you want to use to populate the
drop-down list.

Continuing with the same example, you would select d_dddw_dept. After
you select a DataWindow object, two more fields are added to the Edit tab:
one for a display column, and the other for a data column.

Figure 21-7: Setting properties for a DropDownDataWindow edit style

6 In the Display Column box, select the column containing the values that
you want to display in the DataWindow object.

In this example, you could choose to display the Dept_Name column,
instead of the Dept_ID column, from the drop-down DataWindow
d_dddw_dept.

7 In the Data Column box, select the column containing the values that will
be stored in the database.

Here you would probably want the Dept_ID as the data column.

8 Specify other properties for the edit style and click OK when done.

What happens During execution, when data is retrieved into the DataWindow object, the
column whose edit style is DropDownDataWindow will itself be populated.
This will occur as data is retrieved into the DataWindow object that is serving
as the drop-down DataWindow object.

When the user clicks the down arrow next to the column at runtime, the
contents of the drop-down DataWindow object display. When the user selects
a display value, the corresponding data value is stored in the DataWindow
buffer and is stored in the database when an Update command is issued.

Defining a code table

546 PocketBuilder

Limit on size of data value
The data value for a column that uses the DropDownDataWindow edit style is
limited to 511 characters.

Defining a code table
To reduce storage needs, you might frequently want to store short, encoded
values in the database, but these encoded values might not be meaningful to
users. To make DataWindow objects easy to use, you can define code tables.

Each row in a code table is a pair of corresponding values: a display value and
a data value. The display values are those users see during execution. The data
values are those saved in the database.

Limit on size of data value
The data value you specify for the Checkbox, DropDownListBox, Edit,
EditMask, and RadioButtons edit styles is limited to 255 characters.

How code tables are implemented
You can define a code table as a property of the following column edit styles:

Edit
DropDownListBox
RadioButtons
DropDownDataWindow
EditMask, using spin control

The steps for specifying the code table property for each edit style are similar:
you begin by defining a new edit style in the Database painter. Once you select
an edit style, use the specific procedure that follows to define the code table
property.

For information on how to create an edit style, see “Working with edit styles
in the Database painter” on page 534.

CHAPTER 21 Displaying and Validating Data

User’s Guide 547

Allowing NULL values
An internal PocketBuilder code, NULL!, indicates NULL values are allowed.
To use this code, specify NULL! as the data value, then specify a display
format for NULLs for the column.

❖ To define a code table as a property of the Edit edit style:

1 Select the Use Code Table check box.

2 Enter the display and data values for the code table.

3 If you want to restrict input in the column to values in the code table, select
the Validate check box.

For more information, see “Validating user input” on page 549.

❖ To define a code table as a property of the DropDownListBox edit style:

1 Enter the display and data values for the code table.

2 If you want to restrict input in the column to values in the code table, clear
the Allow Editing check box.

For more information, see “Validating user input” on page 549.

❖ To define a code table as a property of the RadioButtons edit style:

1 Enter the display and data values for the code table.

2 If you want the radio buttons to display on a single line, enter the number
of rows in the Columns Across box that you entered in the code table.

❖ To define a code table as a property of the DropDownDataWindow edit
style:

1 Specify the column that provides the display values in the Display Column
box.

2 Specify the column that provides the data values in the Data Column box.

3 If you want to restrict input to values in the code table, clear the Allow
Editing check box.

❖ To define a code table as a property of the EditMask edit style:

1 Select the Spin Control check box.

2 Select the Code Table check box.

3 Enter the display and data values for the code table.

Defining a code table

548 PocketBuilder

How code tables are processed
When data is retrieved into a DataWindow object column with a code table,
processing begins at the top of the data value column. If the data matches a data
value, the corresponding display value displays. If there is no match, the actual
value displays.

Consider the example in Table 21-9.

Table 21-9: Data values and display values

If the data is MA or ma, the corresponding display value (Massachusetts)
displays. If the data is Ma, there is no match, so Ma displays.

Case sensitivity
Code table processing is case sensitive.

If the code table is in a DropDownListBox edit style, and if the column has a
code table that contains duplicate display values, each value displays only
once. So if this code table (Table 21-9) is defined for a column in a
DataWindow object that has a DropDownListBox edit style, Massachusetts
and Rhode Island display in the ListBox portion of the DropDownListBox.

For information about how a user selection is matched to a data value when a
display value corresponds to multiple data values, see “Validating user input”
next.

Display values Data values

Massachusetts MA

Massachusetts ma

ma MA

Mass MA

Rhode Island RI

RI RI

CHAPTER 21 Displaying and Validating Data

User’s Guide 549

Validating user input
When users enter data into a column in a DataWindow object, processing
begins at the top of the display value column of the associated code table.

If the data matches a display value, the corresponding data value is put in the
internal buffer. For each display value, the first data value is used. Using the
sample code table, if the user enters Massachusetts, ma, or Mass, MA is the
data value.

You can specify that only the values in the code table are acceptable:

• For a column using the Edit edit style, select the Validate check box

If you have selected the Validate check box for the Edit edit style, an
ItemError event is triggered whenever a user enters a value not in the code
table. Otherwise, the entered value is validated using the column's
validation rule, if any, and put in the DataWindow buffer.

• For the DropDownListBox and DropDownDataWindow edit styles, clear
the Allow Editing check box to prevent users from typing a value

When the code table processing is complete, the ItemChanged or ItemError
event is triggered.

Code table data
The data values in the code table must pass validation for the column and must
have the same datatype as the column.

About validation rules
When users enter data in a DataWindow object, you want to be sure the data is
valid before using it to update the database. One way to do this is through
validation rules.

You usually define validation rules in the Database painter. To use a validation
rule, you associate it with a column in the Database painter or DataWindow
painter.

About validation rules

550 PocketBuilder

Another technique
You can also perform data validation through code tables, which are
implemented through a column's edit style.

For more information, see “About edit styles” on page 533.

Understanding validation rules
Validation rules are criteria that a DataWindow object uses to validate data
entered into a column by users. They are specific to PocketBuilder and
therefore not enforced by the DBMS.

Validation rules assigned in the Database painter are used by default when you
place columns in a DataWindow object. You can override the default rules in
the DataWindow painter.

A validation rule is an expression that evaluates to either TRUE or FALSE. If
the expression evaluates to TRUE for an entry into a column, PocketBuilder
accepts the entry. If the expression evaluates to FALSE, the entry is not
accepted and the ItemError event is triggered. By default, PocketBuilder
displays a message box to the user.

Figure 21-8: Message box triggered by validation rule violation

You can customize the message displayed when a value is rejected. You can
also code an ItemError script to cause different processing to happen.

For more information, see the chapter on using DataWindow objects in the
Resource Guide.

At runtime
In scripts, you can use the GetValidate function to obtain the validation rule for
a column and the SetValidate function to change the validation rule for a
column.

For information about the GetValidate and SetValidate functions, see the
DataWindow Reference in the online Help.

CHAPTER 21 Displaying and Validating Data

User’s Guide 551

Working with validation rules
You work with validation rules in the Database painter and DataWindow
painter.

Defining validation
rules

Typically, you define validation rules in the Database painter, because
validation rules are properties of the data itself. Once defined in the Database
painter, the rules are used by default each time the column is placed in a
DataWindow object. You can also define a validation rule in the DataWindow
painter that overrides the rule defined in the Database painter.

Validation rules and
the extended attribute
system tables

Once you place a column that has a validation rule from the extended attribute
system tables in a DataWindow object, no link is maintained to the named rule
in the extended attribute system tables.

If the definition of the validation rule changes in the extended attribute system
tables, the rule for the column in a DataWindow object does not change.

Working with validation rules in the Database painter
This section describes the ways you can manipulate validation rules in the
Database painter. You can create and modify validation rules from the
Validation Rule view. This view replaces the Object Details view in the
Database painter when you create a new validation rule or select Properties
from the pop-up menu for an existing validation rule.

Figure 21-9: Defining a validation rule in the Database painter

What you do in the
Database painter

In the Database painter, you can:

• Create, modify, and delete named validation rules

The validation rules are stored in the extended attribute system tables.
Once you define a validation rule, it can be used by any column of the
appropriate datatype in the database.

Working with validation rules

552 PocketBuilder

• Assign validation rules to columns and remove them from columns

These rules are used by default when you place the column in a
DataWindow object in the DataWindow painter.

❖ To create a new validation rule

1 In the Database painter, select Object>Insert>Validation Rule from the
menu bar.

The Validation Rule view displays.

2 On the General tab, assign a name to the rule, select the datatype of the
columns to which it applies, and customize the error message (if desired).

For information, see “Customizing the error message” on page 554.

3 Click the Definition tab and define the expression for the rule.

For information, see “Defining the expression” on page 553.

You can use this rule with any column of the appropriate datatype in the
database.

❖ To modify a validation rule:

1 In the Database painter, open the Extended Attributes view.

2 In the Extended Attributes view, open the list of validation rules.

3 Right-click the validation rule you want to modify and select Properties
from the pop-up menu.

4 In the Validation Rule view, modify the validation rule as desired.

For information, see “Defining the expression” on page 553 and
“Customizing the error message” on page 554.

❖ To associate a validation rule with a column in the Database painter:

1 In the Objects view of the Database painter, right-click the column with
which you want to associate a validation rule, select Properties from the
pop-up menu, and select the Validation tab.

2 Select a validation rule from the Validation Rule drop-down list.

The column now has the selected validation rule associated with it in the
extended attribute system tables. Whenever you use this column in a
DataWindow object, it will use this validation rule unless you override it
in the DataWindow painter.

CHAPTER 21 Displaying and Validating Data

User’s Guide 553

❖ To remove a validation rule from a column in the Database painter:

1 In the Objects view of the Database painter, right-click the column from
which you want to remove a validation rule, select Properties from its
pop-up menu, and select the Validation tab in the Properties view.

2 Select (None) from the list in the Validation Rule drop-down list.

The validation rule is no longer associated with the column.

Defining the expression

A validation rule is a boolean expression. PocketBuilder applies the boolean
expression to an entered value. If the expression returns TRUE, the value is
accepted. Otherwise, the value is not accepted and an ItemError event is
triggered.

What expressions can
contain

You can use any valid DataWindow expression in validation rules.

Validation rules can include most DataWindow expression functions. A
DataWindow object that will be used in PocketBuilder can also include user
defined functions. DataWindow expression functions are displayed in the
Functions list and can be pasted into the definition.

For information about these functions, see the DataWindow Reference in the
online Help.

Use the notation @placeholder (where placeholder is any group of characters)
to indicate the current column in the rule. When you define a validation rule in
the Database painter, PocketBuilder stores it in the extended attribute system
tables with the placeholder name. During execution, PocketBuilder substitutes
the value of the column for placeholder.

Pasting the
placeholder

The @col can be easily used as the placeholder. A button in the Paste area is
labeled with @col. You can click the button to paste the @col into the
validation rule.

An example For example, to make sure that both Age and Salary are greater than zero using
a single validation rule, define the validation rule as follows:

@col > 0

Then associate the validation rule with both the Age and Salary columns. At
runtime, PocketBuilder substitutes the appropriate values for the column data
when the rule is applied.

Working with validation rules

554 PocketBuilder

Using match values for character columns

If you are defining the validation rule for a character column, you can use the
Match button on the Definition page of the Validation Rule view. This button
lets you define a match pattern for matching the contents of a column to a
specified text pattern (for example, ^[0-9]+$ for all numbers and ^[A-Za-z]+$
for all letters).

❖ To specify a match pattern for character columns:

1 Click the Match button on the Definition page of the Validation Rule view.

The Match Pattern dialog box displays.

2 Enter the text pattern you want to match the column to, or select a
displayed pattern.

3 (Optional) Enter a test value and click the Test button to test the pattern.

4 Click OK when you are satisfied that the pattern is correct.

For more on the Match function and text patterns, see the DataWindow
Reference in the online Help.

Customizing the error message

When you define a validation rule, PocketBuilder automatically creates the
error message that displays by default when users enter an invalid value:

'Item ~'' + @Col + '~' does not pass validation test.'

You can edit the string expression to create a custom error message.

Different syntax in the
DataWindow painter

If you are working in the DataWindow painter, you can enter a string
expression for the message, but you do not use the @ sign for placeholders. For
example, this is the default message:

'Item ~'' + ColumnName + '~' does not pass validation test.'

A validation rule for the Salary column in the Employee table might have the
following custom error message associated with it:

'Please enter a salary greater than $10,000.'

CHAPTER 21 Displaying and Validating Data

User’s Guide 555

If users enter a salary less than or equal to $10,000, the custom error message
displays:

Figure 21-10: Custom message triggered by validation rule violation

Specifying initial values

As part of defining a validation rule, you can supply an initial value for a
column.

❖ To specify an initial value for a column in the Database painter:

1 Select Properties from the column's pop-up menu and select the Validation
tab.

2 Specify a value in the Initial Value box.

Working with validation rules in the DataWindow painter
Validation rules you assign to a column in the Database painter are used by
default when you place the column in a DataWindow object. You can override
the validation rule in the DataWindow painter by defining an ad hoc rule for
one specific column. You define ad hoc rules in the Column Specification view.

What you do in the
DataWindow painter

In the DataWindow painter, you can:

• Accept the default validation rule assigned to a column in the Database
painter

• Create an ad hoc, unnamed rule to use with one specific column

Figure 21-11: Specifying a validation rule in the DataWindow painter

Working with validation rules

556 PocketBuilder

❖ To specify a validation rule for a column in the DataWindow painter:

1 In the DataWindow painter, select View>Column Specifications from the
menu bar.

The Column Specification view displays.

2 Create or modify the validation expression.

To display the Modify Expression dialog box, right-click the cell under the
Validation Expression column that corresponds to the column for which
you are creating or modifying a validation rule, and select Expression from
the pop-up menu. Follow the directions in “Specifying the expression”
next.

3 (Optional) Enter a string or string expression to customize the validation
error message.

To display the Modify Expression dialog box, right-click the cell under the
Validation Expression column that corresponds to the column for which
you are creating or modifying a validation rule, and select Expression from
the pop-up menu. For more information, see “Customizing the error
message” on page 554.

4 (Optional) Enter an initial value.

Used for current column only
If you create a validation rule in the DataWindow painter, it is used only
for the current column and is not saved in the extended attribute system
tables.

Specifying the expression

Since a user might just have entered a value in the column, validation rules
refer to the current data value, which you can obtain through the GetText
function.

Using GetText ensures that the most recent data entered in the current column
is evaluated.

PocketBuilder does the conversion for you
If you have associated a validation rule for a column in the Database painter,
PocketBuilder automatically converts the syntax to use GetText when you place
the column in a DataWindow object.

CHAPTER 21 Displaying and Validating Data

User’s Guide 557

GetText returns a string. Be sure to use a data conversion function (such as
Integer or Real) if you want to compare the entered value with a datatype other
than string.

For more on the GetText function and text patterns, see the DataWindow
Reference in the online Help.

Referring to other
columns

You can refer to the values in other columns by specifying their names in the
validation rule. You can paste the column names in the rule using the Columns
box.

Examples

Here are some examples of validation rules.

Example 1 To check that the data entered in the current column is a positive
integer, use this validation rule:

Integer(GetText()) > 0

Example 2 If the current column contains the discounted price and the
column named Full_Price contains the full price, you could use the following
validation rule to evaluate the contents of the column using the Full_Price
column:

Match(GetText(),"^[0-9]+$") AND
Real(GetText()) < Full_Price

To pass the validation rule, the data must be all digits (must match the text
pattern ^[0-9]+$) and must be less than the amount in the Full_Price column.

Notice that to compare the numeric value in the column with the numeric value
in the Full_Price column, the Real function was used to convert the text to a
number.

Example 3 Suppose that in your company, a product price and a sales
commission are related in the following way:

• If the price is greater than or equal to $1000, the commission is between
10 percent and 20 percent

• If the price is less than $1000, the commission is between 4 percent and 9
percent

Summary of maintaining the entities

558 PocketBuilder

The Sales table has two columns, Price and Commission. The validation rule for
the Commission column is:

(Number(GetText()) >= If(price >= 1000, .10, .04))
AND
(Number(GetText()) <= If(price >= 1000, .20, .09))

A customized error message for the Commission column is:

"Price is " + if(price >= 1000,
"greater than or equal to","less than") +
" 1000. Commission must be between " +
If(price >= 1000,".10", ".04") + " and " +
If(price >= 1000, ".20.", ".09.")

Summary of maintaining the entities
PocketBuilder provides facilities you can use to create, modify, and delete
display formats, edit styles, and validation rules independently of their
association with columns. The following procedure summarizes how you do
this.

❖ To maintain display formats, edit styles, and validation rules:

1 Open the Database painter.

2 Select View>Extended Attributes.

The Extended Attributes view displays, listing all the entities in the
extended attribute system tables.

3 Do one of the following:

• To create a new entity, display the pop-up menu for the type you want
to add, then select New

• To modify an entity, display its pop-up menu, then select Properties

• To delete an entity, display its pop-up menu, then select Delete

Caution
If you delete a display format, edit style, or validation rule, it is removed
from the extended attribute system tables. Columns in the database are no
longer associated with the entity.

User’s Guide 559

C H A P T E R 2 2 Filtering, Sorting, and Grouping
Rows

About this chapter This chapter describes how you can customize your DataWindow object
by defining filters, sorting rows, and displaying rows in groups.

Contents

Filtering rows
To limit the data that is retrieved from a database, you can use WHERE and
HAVING clauses and retrieval arguments in SQL SELECT statements for a
DataWindow object. This reduces retrieval time and space requirements
at runtime.

However, you might want to further limit the data that displays in a
DataWindow object. For example, you might want to:

• Retrieve many rows but initially display only a subset—perhaps
allowing the user to specify different subsets of rows to display

• Limit the data that is displayed using DataWindow expression
functions (such as If) that are not valid in the SELECT statement

Using filters In the DataWindow painter, you can define filters, which will limit the
rows that display at runtime. Filters can use most DataWindow expression
functions or user-defined functions.

Filters do not affect which rows are retrieved. A filter operates against the
retrieved data. It does not re-execute the SELECT statement.

Topic Page

Filtering rows 559

Sorting rows 561

Grouping rows 564

Filtering rows

560 PocketBuilder

Defining a filter You define a filter in PocketBuilder in the Specify Filter dialog box.

Figure 22-1: Specifying filters for retrieved data

❖ To define a filter:

1 In the DataWindow painter, select Rows>Filter from the menu bar.

The Specify Filter dialog box displays.

2 In the Specify Filter dialog box, enter a boolean expression that
PocketBuilder will test against each retrieved row.

If the expression evaluates to TRUE, the row is displayed. You can specify
any valid expression in a filter. Filters can use any non-object-level
PowerScript function, including user-defined functions. You can paste
commonly used functions, names of columns, computed fields, retrieval
arguments, and operators into the filter.

International considerations
For applications to run the same in any country, filter expressions require
U.S. notation for numbers. That is, a comma must always represent the
thousands delimiter and a period must always represent the decimal place
when you specify expressions in the development environment.

For information about expressions for filters, see the DataWindow
Reference in the online Help.

3 (Optional) Click Verify to make sure the expression is valid.

4 Click OK.

Only rows meeting the filter criteria are displayed in the Preview view.

CHAPTER 22 Filtering, Sorting, and Grouping Rows

User’s Guide 561

Filtered rows and updates
Modifications of filtered rows are applied to the database when you issue
an update request.

Removing a filter You can remove filters in the Specify Filter dialog box.

❖ To remove a filter:

1 Select Rows>Filter from the menu bar.

2 Delete the filter expression from the Specify Filter dialog box, then click
OK.

Examples of filters Assume that a DataWindow object retrieves employee rows and three of the
columns are Salary, Status, and Emp_Lname. Table 22-1shows some examples
of filters you might use.

Table 22-1: Sample filters

Setting filters in a
script

You can use the SetFilter and Filter functions in a script to dynamically modify
a filter that was set in the DataWindow painter. For information about SetFilter
and Filter, see the DataWindow Reference in the online Help.

Sorting rows
You can use an ORDER BY clause in the SQL SELECT statement for the
DataWindow object to sort the data that is retrieved from the database. If you
do this, the DBMS itself does the sorting, and the rows are brought into
PocketBuilder already sorted.

To display these rows Use this filter

Employees with salaries over $50,000 Salary > 50000

Active employees Status = 'A'

Active employees with salaries over
$50,000

Salary > 50000 AND Status = 'A'

Employees whose last names begin
with H

left(Emp_Lname, 1) = 'H'

Sorting rows

562 PocketBuilder

However, you might want to sort the rows after they are retrieved. For example,
you might want to:

• Offload the processing from the DBMS

• Sort on an expression, which is not allowed in the SELECT statement but
is allowed in PocketBuilder

Figure 22-2: Selecting rows for sorting retrieved data

❖ To sort the rows:

1 Select Rows>Sort from the menu bar.

2 Drag the columns that you want to sort the rows on to the Columns box,
and specify whether you want to sort in ascending or descending order.

The order of the columns determines the precedence of the sort. To reorder
the columns, drag them up or down in the list. To delete a column from the
sort columns list, drag the column outside the dialog box.

3 You can also specify expressions to sort on: for example, if you have two
columns, Revenues and Expenses, you can sort on the expression
Revenues – Expenses.

To specify an expression to sort on, double-click a column name in the
Columns box, modify the expression in the Modify Expression dialog box,
and click OK. You return to the Specify Sort Columns dialog box with the
expression displayed.

You can remove a column or expression from the sorting specification by
simply dragging it and releasing it outside the Columns box.

4 Click OK when you have specified all the sort columns and expressions.

CHAPTER 22 Filtering, Sorting, and Grouping Rows

User’s Guide 563

Suppressing repeating values
When you sort on a column, there might be several rows with the same value
in one column. You can choose to suppress the repeating values in that column.
When you suppress a repeating value, the value displays at the start of each
new page and, if you are using groups, each time a value changes in a higher
group.

You can select columns for which you want to suppress repeating values in the
Specify Repeating Value Suppression List dialog box.

Figure 22-3: Selecting columns for suppression of repeated values

Figure 22-4 shows a DataWindow with a list of employees sorted by
department ID. In this figure, all but the first occurrence of each department ID
has been filtered out.

Figure 22-4: Filtering out repeat values for the dept_name column

❖ To suppress repeating values:

1 Select Rows>Suppress Repeating Values from the menu bar.

The Specify Repeating Value Suppression List dialog box displays.

Grouping rows

564 PocketBuilder

2 Drag the columns whose repeated values you want to suppress from the
Source Data box to the Suppression List box and click OK.

You can remove a column from the suppression list by simply dragging it
and releasing it outside the Suppression List box.

Grouping rows
You can group related rows together and, optionally, calculate statistics for
each group separately. For example, you might want to group employee
information by department and get total salaries for each department.

How groups are
defined

Each group is defined by one or more DataWindow object columns. Each time
the value in a grouping column changes, a break occurs and a new section
begins.

For each group you can:

• Display the rows in each section

• Specify the information you want displayed at the beginning and end of
each section

• Specify page breaks after each break in the data

• Reset the page number after each break

Grouping example The following DataWindow object retrieves employee information. It has one
group defined, Dept_ID, so it groups rows into sections according to the value
in the Dept_ID column. In addition, it displays:

• Department ID before the first row for that department

• Totals and averages for salary and salary plus benefits (a computed
column) for each department

• Grand totals for the company at the end

CHAPTER 22 Filtering, Sorting, and Grouping Rows

User’s Guide 565

Figure 22-5 shows the DataWindow object. Grouping the data has the effect of
suppressing repeated values for the column or columns on which the grouping
is based.

Figure 22-5: Last page of report for employees grouped by department

How to do it You can create a grouped DataWindow object in two ways:

• Use the Group presentation style to create a grouped DataWindow object
from scratch.

• Take an existing tabular DataWindow object and define grouping
(“Defining groups in an existing DataWindow object” on page 569).

Making the
DataWindow control
large enough

If a DataWindow object has grouped rows, each page contains all group
headers (including zero-height headers) at the top of the page.

The last row of a group displays on the same page as that row's group trailer
and each applicable higher level group trailer. If the DataWindow object has a
summary band, it displays on the same page as the last row of the report. If the
control is not large enough, you might see anomalies when scrolling through
the DataWindow object. This is particularly likely in the last row of the report,
which needs room to display the report's header band, all group headers, all
group trailers, the summary band, and the footer band.

If you cannot increase the height of the DataWindow control so that it has room
for all the headers and trailers, you can change the design of the DataWindow
object so that they require less space.

Scrolling through a
grouped DataWindow

When you scroll through a grouped DataWindow object, you might see the
group header repeated where you do not expect it. This is because the data is
paginated in a fixed layout based on the size of the DataWindow control. You
can scroll to a point that shows the bottom half of one page and the top of the
next.

Grouping rows

566 PocketBuilder

When you use the arrow keys to page through the data, you see the data one
page at a time, but you (or your application users) might have to press the arrow
keys several times before the next page is displayed. The SIP keyboard or a
peripheral keyboard can be used to scroll through DataWindow pages deployed
to a PDA device.

Using the Group presentation style
One of the DataWindow object presentation styles, Group, is a shortcut to
creating a grouped DataWindow object. It generates a tabular DataWindow
object that has one group level and some other grouping properties defined.
You can then further customize the DataWindow object.

You specify columns on which to group a DataWindow in the Set Report
Definition page of the Group DataWindow wizard, or in the Specify Group
Columns dialog box that you open from the DataWindow painter.

Figure 22-6 shows selections for grouping by department, as specified by the
dept_id column.

Figure 22-6: Selecting a column on which to group a report

Figure 22-7 is an example of a Group style DataWindow object in the Design
view of the DataWindow painter.

CHAPTER 22 Filtering, Sorting, and Grouping Rows

User’s Guide 567

Figure 22-7: Design view of a DataWindow with a Group presentation
style

❖ To create a basic grouped DataWindow object using the Group
presentation style:

1 Select File>New from the menu bar.

The New dialog box displays.

2 Choose the DataWindow tab page and the Group presentation style, and
click OK.

3 Choose a data source and define the data.

You are prompted to define the grouping column(s).

4 Drag the column(s) you want to group from the Source Data box to the
Columns box.

Multiple columns and multiple group levels
You can specify more than one column, but all columns apply to group
level one. You can define one group level at this point, and define
additional group levels later.

If you want to use an expression
If you want to use an expression, you can enter it as the Group Definition
on the General page in the Properties view after you have finished using
the Group Wizard. You can specify more than one grouping item
expression for a group. A break occurs whenever the value concatenated
from each column/expression changes.

Grouping rows

568 PocketBuilder

5 Click Next.

PocketBuilder suggests a header based on your data source. For example,
if your data comes from the Employee table, PocketBuilder uses the name
Employee in the suggested header.

6 Specify the Page Header text, specify page break and page numbering
properties for data groups, and click Next.

If you want a page break each time a grouping value changes, select the
New Page On Group Break box.

If you want page numbering to restart at 1 each time a grouping value
changes, select the Reset Page Number On Group Break box and the New
Page On Group Break box.

7 Select Color and Border settings and click Next.

8 Review your specification and click Finish.

The DataWindow object displays with the basic grouping properties set.

What PocketBuilder
does

As a result of your specifications, PocketBuilder generates a tabular
DataWindow object and:

• Creates group header and trailer bands

• Places the column you chose as the grouping column in the group header
band

• Sorts the rows by the grouping column

• Places the page header and the date (as a computed field) in the header
band

• Places the page number and page count (as computed fields) in the footer
band

• Creates sum computed fields for all numeric columns (the fields are placed
in the group trailer and summary bands)

What you can do You can use any of the techniques available in a tabular DataWindow object to
modify and enhance the grouped DataWindow object, such as moving controls,
specifying display formats, and so on.

For information about the bands in a grouped DataWindow object and how to
add features especially suited for grouped DataWindow objects (such as adding
a second group level, defining additional summary statistics, and so on), see
“Defining groups in an existing DataWindow object” next.

CHAPTER 22 Filtering, Sorting, and Grouping Rows

User’s Guide 569

DataWindow object is not updatable by default
When you generate a DataWindow object using the Group presentation style,
PocketBuilder makes it not updatable by default. If you want to be able to
update the database through the grouped DataWindow object, you must modify
its update characteristics. For more information, see Chapter 20, “Controlling
Updates in DataWindow Objects.”

Defining groups in an existing DataWindow object
Instead of using the Group presentation style to create a grouped DataWindow
object from scratch, you can take an existing tabular DataWindow object and
define groups in it.

The following procedure is an overview of how you group data in an existing
tabular DataWindow object. Steps 2 through 6 are described in more detail in
separate procedures.

❖ To add grouping to an existing DataWindow object:

1 Start with a tabular DataWindow object that retrieves all the columns you
need.

2 Specify the grouping columns.

3 Sort the rows.

4 (Optional) Rearrange the DataWindow object.

5 (Optional) Add summary statistics.

6 (Optional) Sort the groups.

Specify the grouping columns

❖ To specify the grouping columns:

1 In the DataWindow painter, Select Rows>Create Group from the menu
bar.

The Specify Group Columns dialog box displays.

Grouping rows

570 PocketBuilder

2 Specify the group columns, as described in “Using the Group presentation
style” on page 566.

3 Set the Reset Page Count and New Page on Group Break properties on the
General page in the Properties view.

Creating subgroups After defining your first group, you can define subgroups, which are groups
within the group you just defined.

❖ To define subgroups:

1 Select Rows>Create Group from the menu bar and specify the
column/expression for the subgroup.

2 Repeat step 1 to define additional subgroups if you want.

You can specify as many levels of grouping as you need.

How groups are
identified

PocketBuilder assigns each group a number (or level) when you create the
group. The first group you specify becomes group 1, the primary group. The
second group becomes group 2, a subgroup within group 1, and so on.

For example, say you defined two groups. The first group uses the dept_id
column and the second group uses the status column. The rows will be grouped
first by department (group 1). Within department, rows will be grouped by
status (group 2). If you specify page breaks for the groups, a page break will
occur when any of these values changes.

You use the group's number to identify it when defining summary statistics for
the group. This is described in “Add summary statistics” on page 572.

Sort the rows

PocketBuilder does not sort the data when it creates a group. Therefore, if the
data source is not sorted, you must sort the data by the same columns (or
expressions) specified for the groups.

For example, if you are grouping by dept_id then status, select Rows>Sort from
the menu bar and specify dept_id and then status as sorting columns.

CHAPTER 22 Filtering, Sorting, and Grouping Rows

User’s Guide 571

Figure 22-8: Sorting data by columns used to group data

You can also sort on additional rows. For example, if you want to sort by
employee ID within each group, specify emp_id as the third sorting column.

For more information about sorting, see “Sorting rows” on page 561.

Rearrange the DataWindow object

When you create a group, PocketBuilder creates two new bands for each group:

• A group header band

• A group trailer band

The bar identifying the band contains:

• The number of the group

• The name of the band

• The name of each column that defines the group

• An arrow pointing to the band

Figure 22-9: Group header and trailer bands in the Design view

Grouping rows

572 PocketBuilder

You can include any control in the DataWindow object (such as columns, text,
and computed fields) in the header and trailer bands of a group.

Using the group
header band

The contents of the group header band display at the top of each page and after
each break in the data. Typically, you use this band to identify each group. You
might move the grouping column from the detail band to the group header
band, since it now serves to identify one group rather than each row.

For example, if you group the rows by department and include the department
in the group header, the department will display before the first line of data
each time the department changes. For an example of how this might look at
runtime, see Figure 22-5 on page 565.

Using the group trailer
band

The contents of the group trailer display after the last row for each value that
causes a break.

In the group trailer band, you specify the information you want displayed after
the last line of identical data for each value in the group. Typically, you include
summary statistics here, as described next.

Add summary statistics

One of the advantages of creating a grouped DataWindow object is that you can
have PocketBuilder calculate statistics for each group. To do that, you place
computed fields that reference the group. Typically, you place these computed
fields in the group's trailer band.

❖ To add a summary statistic:

1 Select Insert>Control>Computed Field from the menu bar.

2 Click in the Design view where you want the statistic.

The Modify Expression dialog box displays.

3 Specify the expression that defines the computed field (see “Specifying
the expression” next).

4 Click OK.

A shortcut to sum values
If you want to sum a numeric column, select the column in Design view and
click the Sum button in the Controls drop-down toolbar. PocketBuilder
automatically places a computed field in the appropriate band.

CHAPTER 22 Filtering, Sorting, and Grouping Rows

User’s Guide 573

Specifying the
expression

Typically, you use aggregate and other functions in your summary statistic.
PocketBuilder lists functions you can use in the Functions box in the Modify
Expression dialog box. When you are defining a computed field in a group
header or trailer band, PocketBuilder automatically lists forms of the functions
that reference the group.

Figure 22-10: Listing of functions in the Modify Expression dialog box

You can paste a function into the expression, then replace the placeholder (such
as #x) that is pasted in as a function argument with the appropriate column or
expression.

For example, to count the employees in each department (group 1), specify this
expression in the group trailer band:

Count(Emp_Id for group 1)

To get the average salary of employees in a department, specify:

Avg(Salary for group 1)

To get the total salary of employees in a department, specify:

Sum(Salary for group 1)

Figure 22-11: Design view with group functions in trailer band

Grouping rows

574 PocketBuilder

Figure 22-12 shows the same DataWindow as it appears in the Print Preview
view.

Figure 22-12: Print Preview view with group functions in trailer band

Sort the groups

You can sort the groups in a DataWindow object. For example, in a
DataWindow object showing employee information grouped by department,
you might want to sort the departments (the groups) by total salary.

Typically, this involves aggregate functions, as described in “Add summary
statistics” on page 572. In the department salary example, you could sort the
groups using the aggregate function Sum to calculate total salary in each
department.

Figure 22-13: Group Sort button in the Properties view for a group
header

CHAPTER 22 Filtering, Sorting, and Grouping Rows

User’s Guide 575

❖ To sort the groups:

1 Click the group header bar in the Design view of the DataWindow painter.

The mouse pointer displays as a double-headed arrow when it is
positioned in the group header bar.

After you click the group header bar, the General properties page for the
group displays in the Properties view.

2 Click the ellipsis button next to the Group Sort box.

The Specify Sort Columns dialog box displays.

3 Drag the column by which you want to sort the groups from the Source
Data box into the Columns box.

If you chose a numeric column, PocketBuilder uses the Sum function in
the expression; if you chose a non-numeric column, PocketBuilder uses
the Count function.

For example, if you chose the Salary column, PocketBuilder specifies that
the groups will be sorted by the expression sum(salary for group 1):

Figure 22-14: Sorting a group based on the sum of group salaries

4 Select ascending or descending sort as appropriate.

5 If you want to modify the expression to sort on, double-click the column
in the Columns box.

The Modify Expression dialog box displays.

6 Specify the expression to sort on.

For example, to sort the department group (the first group level) on
average salary, specify avg(salary for group 1).

Grouping rows

576 PocketBuilder

7 Click OK.

You return to the Specify Sort Columns dialog box with the expression
displayed.

8 Click OK again.

At runtime, the groups will be sorted on the expression you specified.

User’s Guide 577

C H A P T E R 2 3 Highlighting Information in
DataWindow Objects

About this chapter This chapter describes how you modify the way information displays in
DataWindow objects and reports by specifying various conditions. The
conditions are usually related to data values, which are not available until
runtime.

Contents

Highlighting information
Every control in a DataWindow object has a set of properties that
determines what the control looks like and where it is located. For
example, the values in a column of data display in a particular font and
color, in a particular location, with or without a border, and so on.

Modifying properties when designing
You define the appearance and behavior of controls in DataWindow
objects in the DataWindow painter. By doing that, you specify the
controls’ properties. For example, by placing a border around a column,
you are setting that column’s Border property.

In most cases, the appearance and behavior of controls is fixed; you do not
want them to change at runtime. When you make headings bold, you
generally want them to be bold at all times.

Topic Page

Highlighting information 577

Modifying properties conditionally at runtime 582

Supplying property values 587

Specifying colors 602

Highlighting information

578 PocketBuilder

In the following DataWindow object, the Salary Plus Benefits column has a
Shadow box border around every data value in the column. To display the
border, you set the border property for the column.

Figure 23-1: Shadow box border around a computed column

Modifying properties at runtime
In some applications, you might want to make certain properties of controls in
DataWindow objects dependent on the data, which is not known to you when
you define the DataWindow object in the painter. For these situations you can
define property conditional expressions, which are expressions that are
evaluated at runtime.

You can use these expressions to modify the appearance and behavior of
DataWindow objects conditionally and dynamically during execution. When
the conditions of the expressions have been met, the results of the expressions
change the values of properties of controls in the DataWindow objects.

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 579

For example, in the following DataWindow object, the Salary Plus Benefits
column has a Shadow box border highlighting each data value that is greater
than $60,000.

Figure 23-2: Conditional implementation of shadow box highlighting

To control the display of the border, you define a conditional expression for the
column’s Border property. When users run the DataWindow object,
PocketBuilder changes the border of individual data values based on the
condition (value greater than $60,000).

Defining an
expression

Figure 23-3 shows the Salary_Plus_Benefits column selected in the Design
view. To the right of the Design view, the Properties view shows properties for
the column, including the Border property. Next to the Border property is a
button for accessing the dialog box where you enter the expression. The button
displays a red equals sign with a slash through it when no expression has been
entered, and a green equals sign with no slash when it has.

Highlighting information

580 PocketBuilder

You click the button to open the Border expression dialog box. A line in the
figure connects the button to the dialog box. In this example, although the
Border property is set to NoBorder in the Properties view, the expression
defined for the property overrides the NoBorder setting at runtime.

Figure 23-3: Setting a conditional expression for the Border property

A closer look at the
expression

The expression you enter almost always begins with If. Then you specify three
things: the condition, what happens if it is true, and what happens if it is false.
Parentheses surround the three things and commas separate them:

If(expression, true, false)

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 581

The following expression is used in Figure 23-3. Because the expression is for
the Border property, the values for true and false indicate particular borders.
The value 1 means Shadow box border and the value 0 means no border:

If(salary_plus_benefits > 60000, 1, 0)

When users run the DataWindow object, PocketBuilder checks the value in the
computed column called salary_plus_benefits to see if it is greater than 60,000.
If it is (true), PocketBuilder displays the value with the Shadow box border. If
not (false), PocketBuilder displays the value with no border.

About specifying
properties

Usually you specify a number to indicate what to assign to a particular
property. For example, the following list shows all of the borders you can
specify and the numbers you use. If you want the border property to be Shadow
box for either true or false, you specify 1 in the appropriate position in the If
statement.

0—None
1—Shadow box
2—Box
3—Resize (not supported on the Windows CE platform)
4—Underline
5—3D Lowered
6—3D Raised

In the Properties view, the list of choices for setting a property includes the
values that correspond to choices in parentheses. This makes it easier to define
an expression for a property; you do not need to look up the values. For
example, if you want to specify the 3D raised border in your expression, you
use the number 6, as shown in the drop-down list.

Figure 23-4: Drop-down list for Border property values

For details on the values of properties you can set using expressions, see
“Supplying property values” on page 587.

For information about properties associated with a DataWindow object, see the
discussion of DataWindow object properties in the online Help.

Modifying properties conditionally at runtime

582 PocketBuilder

Modifying properties
programmatically

You can programmatically modify the properties of controls in a DataWindow
object during execution. For more information, see the DataWindow Reference
in the online Help.

Modifying properties conditionally at runtime
“Modifying properties at runtime” on page 578 describes how you can use
conditional expressions that are evaluated at runtime to highlight information
in a DataWindow object. This section presents a procedure for modifying
properties at runtime and includes some examples.

❖ To modify properties conditionally at runtime:

1 Position the pointer on the control, band, or DataWindow object
background whose properties you want to modify during execution.

2 Select Properties from the pop-up menu, then select the page that contains
the property you want to modify at runtime.

3 Click the button next to the property you want to change.

4 Scroll the list of functions in the Functions box until you see the IF
function, and then select it.

Figure 23-5: Adding a conditional expression for font weight

5 Replace the b (boolean) argument of the IF function with your condition.

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 583

You can select columns and functions and use the buttons to add the
symbols shown on them. As an example expression, you can use
salary>40000.

6 Replace the t (true) argument with the value to use for the property when
the condition is true.

Values for properties are usually numbers. They are different for each
property. For more information about property values you can set on the
Expressions page, see “Supplying property values” on page 587.

For information about valid values for properties of controls in the
DataWindow object, see the discussion of DataWindow object properties
in the online Help.

7 Replace the f (false) argument with the value to use for the property when
the condition is false.

8 Click OK.

The following sections show examples of data and label highlighting and the
use of conditional properties:

Example 1: creating a gray bar effect
Example 2: rotating controls
Example 3: highlighting rows of data

Modifying properties conditionally at runtime

584 PocketBuilder

Example 1: creating a gray bar effect
The following DataWindow object shows alternate rows with a light gray bar.
The gray bars make it easier to track data values across the row.

Figure 23-6: Displaying alternate rows in gray bars for data highlighting

To create the gray bar effect:

1 Add a rectangle control to the detail band and size it so that it surrounds
the controls you want highlighted.

To make sure that you have selected the detail band, select the Position tab
in the Properties view and select Band from the Layer drop-down list.

2 To make it easier to see what you are doing in the Design view, select the
General tab and set the Brush Color to White and the Pen Color to Black.
A narrow black line bounds the rectangle.

3 Select Send to Back from the rectangle’s pop-up menu.

4 To hide the border of the rectangle, set the Pen Style to No Visible Line.

5 Click the button next to the Brush Color property on the General page.

6 In the Modify Expression dialog box, enter the following expression for
the Brush.Color property:

If(mod(getrow(),2)=1, rgb(255, 255, 255), rgb(240,
240, 240))

The mod function takes the row number (getrow()), divides it by 2, then
returns the remainder. The remainder can be either 0 or 1. If the row
number is odd, mod returns 1; if the row number is even, mod returns 0.
The boolean expression mod(getrow(),2)=1 distinguishes odd rows
from even rows.

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 585

The rgb function specifies maximum amounts of red, green, and blue: rgb
(255, 255, 255). Specifying 255 for red, green, and blue results in the
color white. If the row number is odd (the condition evaluates as true), the
rectangle displays as white. If the row number is even (the condition
evaluates as false), the rectangle displays as light gray (rgb (240, 240,
240)).

Example 2: rotating controls
The following DataWindow object shows the column headers for Health
Insurance, Life Insurance, and Day Care rotated 45 degrees.

Figure 23-7: DataWindow with rotated text highlighting

To rotate each of these three text controls:

1 Select one of the controls, then use Ctrl + click to select the other two
controls.

The Properties view changes to show the properties that are common to all
selected controls.

2 On the Font page in the Properties view, click the button next to the
Escapement property.

3 Enter the number 450 in the Modify Expression dialog box and click OK.

The value entered for font escapement is in tenths of degrees, so the
number 450 means 45 degrees. Specifying a condition is optional.
Typically, you do not specify a condition for control rotation.

The rotation of the controls does not change in the Design view.

4 To see the change, close and reopen the Preview view.

Modifying properties conditionally at runtime

586 PocketBuilder

Example 3: highlighting rows of data
The following DataWindow object is an employee phone list for a company in
the U.S. state of Massachusetts. Out-of-state (not in Massachusetts) employees
are shown in bold and preceded by two asterisks (**):

Figure 23-8: Data highlighting with asterisks

In the Design view, the detail band includes four controls: the employee last
name, a comma, the employee first name, and the phone number. (A computed
field that concatenates the last name and first name columns, and separates
them with a comma, could be used instead of the first three controls.)

Logic that relies on the state column
In this example, you use logic that relies on the state column, so you need to
include it in the data source. You can add the column after creating the
DataWindow object by modifying the data source. Notice that the state column
does not actually appear anywhere in the DataWindow object in Figure 23-8.
Values must be available but do not need to be displayed.

To make these controls display in bold with two asterisks if the employee is not
from Massachusetts:

1 Select one of the controls, then use Ctrl + Click to select the other controls.

The Properties view changes to show the properties that are common to all
selected controls.

2 On the Font page in the Properties view, click the button next to the Bold
property.

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 587

3 Enter the following expression in the Modify Expression dialog box and
click OK:

If(state = 'MA', 400, 700)

The expression states that if the value of the state column is MA, use 400
as the font weight. This means employees from Massachusetts display in
the normal font. For any state except MA, use 700 as the font weight. This
means all other employees display in bold font.

4 To insert two asterisks (**) in front of the employee name if the employee
is not from Massachusetts, add a text control to the left of the employee
name with the two asterisks in bold.

5 With the text control selected, click the button next to its Visible property
on the General page in the Properties view.

6 In the Modify Expression dialog box that displays, enter the following
expression and click OK:

If(state = 'MA', 0, 1)

This expression says that if the state of the employee is MA (the true
condition), the Visible property of the ** control is off (indicated by 0). If
the state of the employee is not MA (the false condition), the Visible
property of the ** control is on (indicated by 1). The asterisks are visible
next to that employee's name.

Other highlighting tips
You can use underlines, italics, strikethrough, borders, and colors to
highlight information.

Supplying property values
Each property has its own set of property values that you can use to specify the
true and false conditions in the If expression. Usually you specify a number to
indicate what you want. For example, if you are working with the Border
property, you use the number 0, 1, 2, 4, 5, or 6 to specify a border. (The
number 3 specifies the Resize border that does not display correctly on the
Windows CE platform.)

Supplying property values

588 PocketBuilder

Valid values display in the Properties view wherever possible.
For example, the drop-down list showing border selections includes the correct
number for specifying each border in code. In this case, the number is shown
parenthetically after the name of the border type, such as ShadowBox (1),
Box (2), and so on.

Table 23-1 summarizes the properties available for controls in a DataWindow.
A detailed description of each property follows the table. For more information
about control properties, see the DataWindow Reference in the online Help.

Table 23-1: Properties for controls in the DataWindow painter

Property
Painter option in
Properties view Description

Background.Color Background Color on General
page or Font page

Background color of a control

Border Border on General page Border of a control

Brush.Color Brush Color on General page Color of a graphic control

Brush.Hatch Brush Hatch on General page Pattern used to fill a graphic control

Color Text Color on Font page; Color
on General page; Line Color on
General page

Color of text for text controls, columns, and computed
fields; background color for the DataWindow object;
line color for graphs

Font.Escapement
(for rotating controls)

Escapement on Font page Rotation of a control

Font.Height Size on Font page Height of text

Font.Italic Italic on Font page Use of italic font for text

Font.Strikethrough Strikeout on Font page Use of strikethrough for text

Font.Underline Underline on Font page Use of underlining for text

Font.Weight Bold on Font page Weight (for example, bold) of text font

Format Format on Format page Display format for columns and computed fields

Height Height on Position page Height of a control

Pen.Color Pen Color on General page Color of a line or the line surrounding a graphic control

Pen.Style Pen Style on General page Style of a line or the line surrounding a graphic control

Pen.Width Pen Width on General page Width of a line or the line surrounding a graphic control

Protect Protect on General page Whether a column can be edited

Timer_Interval Timer Interval on General page How often time fields are to be updated

Visible Visible on General page Whether a control is visible

Width Width on Position page Width of a control

X X on Position page X position of a control

X1, X2 X1, X2 on Position page X coordinates of both ends of a line

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 589

Background.Color
Description Setting for the background color of a control.

In the painter Background Color on the General page or Font page in the Properties view.

Value A number that specifies the control's background color. For more information,
see “Specifying colors” on page 602.

The background color of a line is the color that displays between the segments
of the line when the pen style is not solid.

If Background.Mode is transparent (1), Background.Color is ignored.

Example The following statement specifies that if the person represented by the current
row uses the day care benefit, the background color of the control is set to light
gray (15790320). If not, the background color is set to white (16777215):

If(bene_day_care = 'Y', 15790320, 16777215)

In this example, the condition is applied to the Background.Color property for
three controls: the emp_id column, the emp_lname column, and the salary
column.

Figure 23-9 shows the Design view for a tabular DataWindow where the
employee ID, last name, and salary have a gray background if the employee
uses the day care benefit.

Figure 23-9: DataWindow columns with a conditional background color

Y Y on Position page Y position of a control relative to the band in which it is
located

Y1, Y2 Y1, Y2 on Position page Y coordinates of both ends of a line

Property
Painter option in
Properties view Description

Supplying property values

590 PocketBuilder

Border
Description The type of border for the control.

In the painter Border on the General page in the Properties view.

Value A number that specifies the type of border. Values are:

0—None
1—Shadow box
2—Box
3—Resize (not supported on the Windows CE platform)
4—Underline
5—3D Lowered
6—3D Raised

Example The following statement specifies that if the person represented by the current
row has a status of L (on leave), the status column displays with a Shadow box
border:

If(status = 'L', 1, 0)

In this example, the condition is applied to the Border property of the status
column. Figure 23-10 is a portion of the resulting DataWindow object. Notice
that the Leave status displays with a Shadow box border.

Figure 23-10: DataWindow with a conditional Shadow box border

About the value L and the value On Leave
The status column uses an edit style. The internal value for on leave is L and
the display value is Leave. The conditional expression references the internal
value L, which is the actual value stored in the database. The DataWindow
object shows the value Leave, which is the display value assigned to the value
L in the code table for the Status edit style.

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 591

Brush.Color
Description Setting for the fill color of a graphic control.

In the painter Brush Color on the General page in the Properties view.

Value A number that specifies the color that fills the control.

For information on specifying colors, see “Specifying colors” on page 602.

Example See the example for “Brush.Hatch” next.

Brush.Hatch
Description Setting for the fill pattern of a graphic control.

In the painter Brush Hatch on the General page in the Properties view.

Value A number that specifies the pattern that fills the control. The only values that
are supported on the Windows CE platform are:

6—Solid
7—Transparent

Color
Description The color of text for text controls, columns, and computed fields; background

color for the DataWindow object; line color for graphs.

In the painter In the Properties view, Text Color on the Font property page; Color on the
General property page; Line Color on the General property page.

Value A number that specifies the color used for text.

For information on specifying colors, see “Specifying colors” on page 602.

Example The following statement is for the Color property of the emp_id, emp_fname,
emp_lname, and emp_birth_date columns:

If(month(birth_date) = month (today()), 255, 0)

If the employee has a birthday in the current month, the information for the
employee displays in red (255). Otherwise, the information displays in black
(0).

The Font.Underline property has the same conditional expression defined for
it so that the example shows clearly on paper when printed in black and white.

Supplying property values

592 PocketBuilder

Font.Escapement (for rotating controls)
Description The angle of rotation from the baseline of the text.

In the painter Escapement on the Font page in the Properties view.

Value An integer in tenths of degrees. For example, 450 means 45 degrees. 0 is
horizontal.

Example To enter rotation for a control, select the control in the Design view and click
the button next to the Escapement property in the Properties view. In the dialog
box that displays, enter the number of tenths of degrees.

The following picture shows the Design view with a number of text controls.
Each text control shows the Font.Escapement value entered and the number of
degrees of rotation. In the Design view, you do not see rotation; it looks as if
the controls are all mixed up. One control seems to overlay another.

Figure 23-11: Design view with rotated text controls

The next picture shows the same controls in the Preview view after it has been
closed and reopened. Each control is rotated appropriately.

Figure 23-12: Preview view with rotated text controls

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 593

Viewing rotated controls in the Preview view
If the Preview view is open in the DataWindow painter when you set the
Font.Escapement property, you must close and reopen it in order to see the
rotated text.

Font.Height
Description The height of the text.

In the painter Size on the Font page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PBUs, thousandths of an inch (1000 = 1 inch), thousandths
of a centimeter (1000 = 1 centimeter), or pixels. To specify size in points,
specify a negative number.

Example The following statement is specified for the Font.Height property of a text
control. Note that the DataWindow object is defined as using thousandths of an
inch as its unit of measure. The statement says that if the control is in the first
row, show the text 1/2-inch high (500 1/1000ths of an inch), and if it is not the
first, show the text 1/5-inch high (200 1/1000ths of an inch):

If(GetRow() = 1, 500, 200)

The boundaries of the control might need to be extended to allow for the
increased size of the text. At runtime, the first occurrence of the text control is
big (1/2 inch); subsequent ones are small (1/5 inch).

Font.Italic
Description A number that specifies whether the text should be italic.

In the painter Italic on the Font page in the Properties view.

Value Values are:

0—Not italic
1—Italic

Supplying property values

594 PocketBuilder

Example The following statements are specified for the Font.Italic, Font.Underline, and
Font.Weight properties, respectively. If the employee has health insurance, the
employee's information displays in italics. If not, the employee's information
displays in bold and underlined:

Condition for Font.Italic If(bene_health_ins = 'Y', 1, 0)

Condition for Font.Underline If(bene_health_ins = 'N', 1, 0)

Condition for Font.Weight If(bene_health_ins = 'N', 700, 400)

Statements are specified in this way for four controls: the emp_id column, the
emp_fname column, the emp_lname column, and the emp_salary column. In
the resulting DataWindow object, those with health insurance display in italics.
Those without health insurance are emphasized with bold and underlining.

Figure 23-13: DataWindow with font highlighting of row data

Font.Strikethrough
Description A number that specifies whether the text should be crossed out.

In the painter Strikeout on the Font page in the Properties view.

Value Values are:

0—Not crossed out
1—Crossed out

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 595

Example The following statement is for the Font.Strikethrough property of the emp_id,
emp_fname, emp_lname, and emp_salary columns. The status column must be
included in the data source even though it does not appear in the DataWindow
object itself. The statement says that if the employee's status is L, which means
On Leave, cross out the text in the control:

If(status = 'L', 1, 0)

An extra text control is included to the right of the detail line. It only becomes
visible if the status of the row is L (see “Visible” on page 599).

Figure 23-14 is a portion of the resulting DataWindow object. It shows two
employees who are on leave. The four columns of information for each are
crossed out.

Figure 23-14: DataWindow with font strikethrough highlighting

Font.Underline
Description A number that specifies whether the text should be underlined.

In the painter Underline on the Font page in the Properties view.

Value Values are:

0—Not underlined
1—Underlined

Example The following statement, when applied to the Font.Underline property of
columns of employee information, causes the information to be underlined if
the employee does not have health insurance:

If(bene_health_ins = 'N', 1, 0)

See Figure 23-13 for a picture of this example.

Supplying property values

596 PocketBuilder

Font.Weight
Description The weight of the text.

In the painter Bold on the Font page in the Properties view.

Value Values are:

100—Thin
200—Extra light
300—Light
400—Normal
500—Medium
600—Semibold
700—Bold
800—Extrabold
900—Heavy

Most commonly used values
The most commonly used values are 400 (Normal) and 700 (Bold). Your
printer driver may not support all of the settings.

Example The following statement, when applied to the Font.Weight property of columns
of employee information, causes the information to be displayed in bold if the
employee does not have health insurance:

If(bene_health_ins = 'N', 700, 400)

For a picture of this example, see “Font.Italic” on page 593.

Format
Description The display format for a column.

In the painter Format on the Format page in the Properties view.

Values A string specifying the display format.

Example The following statement, when applied to the Format property of the Salary
column, causes the column to display the word Overpaid for any salary
greater than $60,000 and Underpaid for any salary under $60,000:

If(salary>60000, 'Overpaid', 'Underpaid')

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 597

Edit style consideration
Typically you would have an Edit Mask edit style assigned to a salary column.
Because edit styles take precedence over display formats, the strings
Overpaid and Underpaid will not display in the salary column in the
preceding example unless you also change the assigned edit style from Edit
Mask to Edit, or select Use Format on the Format page of the Properties view.

Height
Description The height of the column or other control.

In the painter Height on the Position page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PBUs, thousandths of an inch (1000 = 1 inch), thousandths
of a centimeter (1000 = 1 centimeter), and pixels.

Example The following statement causes the height of a rectangle to be 160 PBUs if the
state column for the row has the value NY. Otherwise, the rectangle is 120
PBUs high:

if (state = 'NY', 160, 120)

Pen.Color
Description The color of the line or the outline of a graphic control.

In the painter Pen Color on the General page in the Properties view.

Value A number that specifies the color of the line or outline.

For information on specifying colors, see “Specifying colors” on page 602.

Example See the example for the Pen.Style property, next.

Supplying property values

598 PocketBuilder

Pen.Style
Description The style of the line or the outline of a graphic control.

In the painter Pen Style on the General page in the Properties view.

Value The only values that are supported on the Windows CE platform are:

0—Solid
1—Dash
5—Null (no visible line)

Example In this example, statements check the employee's start date to see if the month
is the current month or the next month. Properties of a rectangle control placed
behind the row of data are changed to highlight employees with months of hire
that match the current month or the next month.

The Design view includes columns of data and a rectangle behind the data. The
rectangle has been changed to black in the following picture to make it stand
out.

Figure 23-15: Preview view of DataWindow with conditional pen style
properties

The following statement is for the Pen.Color property of the line around the
edge of the rectangle. If the month of the start date matches the current month
or the next one, Pen.Color is set to light gray (12632256). If not, it is set to
white (16777215), which means it will not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1),
12632256, 16777215)

The following statement is for the Pen.Style property of the rectangle. If the
month of the start date matches the current month or the next one, Pen.Style is
set to Solid (0). If not, it is set to NULL (5), which means it will not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1),
0, 5)

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 599

Pen.Width
Description The width of the line or the outline of a graphic control.

In the painter Pen Width on the General page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PBUs, thousandths of an inch (1000 = 1 inch), thousandths
of a centimeter (1000 = 1 centimeter), or pixels.

Example The following statement causes the width of a line to be 10 PBUs if the state
column for the row has the value NY. Otherwise, the line is 4 PBUs wide:

If(state = 'NY', 10, 4)

Protect
Description The protection setting of a column.

In the painter Protect on the General page in the Properties view.

Value Values are:

0—False, the column is not protected
1—True, the column is protected

Timer_Interval
Description The number of milliseconds between the internal timer events.

In the painter Timer Interval on the General page in the Properties view.

Value The default is 0 (which is defined to mean 60,000 milliseconds or one minute).

Visible
Description Whether the control is visible in the DataWindow object.

In the painter Visible on the General page in the Properties view.

Value Values are:

0—Not visible
1—Visible

Supplying property values

600 PocketBuilder

Example The following statement is for the Visible property of a text control with the
words On Leave located to the right of columns of employee information. The
statement says that if the current employee's status is L, which means On
Leave, the text control is visible. Otherwise, it is invisible:

If(status = 'L', 1, 0)

The status column must be retrieved
The status column must be included in the data source even though it does not
appear in the DataWindow object itself.

The Design view includes the text control at the right-hand end of the detail
line. The text control is visible at runtime only if the value of the status column
for the row is L.

In the resulting DataWindow object, the text control is visible only for the two
employees on leave. For a picture, see “Font.Strikethrough” on page 594.

Width
Description The width of the control.

In the painter Width on the Position page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PBUs, thousandths of an inch (1000 = 1 inch), thousandths
of a centimeter (1000 = 1 centimeter), or pixels.

Example The following statement causes the width of a rectangle to be 500 PBUs if the
state column for the row has the value NY. Otherwise, the rectangle is 1000
PBUs wide:

if (state = 'NY', 500, 1000)

X
Description The distance of the control from the left edge of the DataWindow object. At

runtime, the distance from the left edge of the DataWindow object is calculated
by adding the margin to the x value.

In the painter X on the Position page in the Properties view.

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 601

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PBUs, thousandths of an inch (1000 = 1 inch), thousandths
of a centimeter (1000 = 1 centimeter), or pixels.

Example The following statement causes a rectangle to be located 6.250 inches from the
left if the state column for the row has the value NY. Otherwise, the rectangle
is 4.000 inches from the left:

If(state = 'NY', 6250, 4000)

X1, X2
Description The distance of each end of the line from the left edge of the DataWindow

object as measured in the Design view. At runtime, the distance from the left
edge of the DataWindow object is calculated by adding the margin to the x1
and x2 values.

In the painter X1, X2 on the Position page in the Properties view.

Value Integers in the unit of measure specified for the DataWindow object. Units of
measure include PBUs, thousandths of an inch (1000 = 1 inch), thousandths of
a centimeter (1000 = 1 centimeter), and pixels.

Example The following statements for the X1 and X2 properties of a line cause the line
to extend from 6.250 to 7.150 inches from the left if the state column for the
row has the value NY. Otherwise, the line extends from 4.000 to 6.000 inches
from the left:

If(state = 'NY', 6250, 4000)
If(state = 'NY', 7150, 6000)

Y
Description The distance of the control from the top of the band in which the control is

located.

In the painter Y on the Position page in the Properties view.

Value An integer in the unit of measure specified for the DataWindow object. Units
of measure include PBUs, thousandths of an inch (1000 = 1 inch), thousandths
of a centimeter (1000 = 1 centimeter), or pixels.

Specifying colors

602 PocketBuilder

Y1, Y2
Description The distance of each end of the specified line from the top of the band in which

the line is located.

In the painter Y1, Y2 on the Position page in the Properties view.

Value Integers in the unit of measure specified for the DataWindow object. Units of
measure include PBUs, thousandths of an inch (1000 = 1 inch), thousandths of
a centimeter (1000 = 1 centimeter), and pixels.

Example The following statements for the Y1 and Y2 properties of a line cause the line
to be located .400 inches (Y1 and Y2 equal .400 inches) from the top of the
detail band, if the state column for the row has the value NY. Otherwise, the
line is located .250 inches (Y1 and Y2 equal .250 inches) from the top of the
detail band:

If(state = 'NY', 400, 250)
If(state = 'NY', 400, 250)

Specifying colors
You specify a color by specifying a number that represents the color. You can
specify the number explicitly or by using an expression that includes the RGB
(r, g, b) function.

For the numbers and expressions that specify common colors, see Table 23-2
on page 603.

How the number is
calculated

The formula for combining color values into a number is:

red + 256*green + 256*256*blue

where the amount of each primary color (red, green, and blue) is specified as a
value from 0 to 255.

The RGB function calculates the number from the amounts of red, green, and
blue specified.

CHAPTER 23 Highlighting Information in DataWindow Objects

User’s Guide 603

Sample numeric
calculation

To create cyan, you use blue and green, but no red. If you wanted to create the
most saturated (bright) cyan, you would use maximum amounts of blue and
green in the formula, which is indicated by the number 255 for each. The
following statements show the calculation:

red + 256*green + 256*256*blue

0 + 256*255 + 256*256*255

0 + 65280 + 16711680

16776960

Sample expression
using the RGB
function

The following expression specifies the brightest cyan:

RGB (0,255,255)

Notice that the expression specifies the maximum for green and blue (255) and
0 for red. The expression returns the value 16776960. To specify cyan, entering
the expression RGB(0, 255, 255) is the same as entering the number 16776960.

Numbers and
expressions to enter
for the common colors

Table 23-2 shows the numbers and expressions to enter for some common
colors. The number and the expression return the same result; you can use
either.

Table 23-2: Numbers and expressions for common colors

Color
Expression to
enter

Number
to enter

How the number is
calculated

Black RGB (0, 0, 0) 0 0 (no color)

Blue RGB (0, 0, 255) 16711680 256*256*255 (blue only)

Cyan RGB (0, 255, 255) 16776960 256*255 + 256*256*255 (green
and blue)

Dark
Green

RGB (0, 128, 0) 32768 256*128 (green only)

Green RGB (0, 255, 0) 65280 256*255 (green only)

Light Gray RGB (192, 192, 192) 12632256 192 + 256*192 + 256*256*192
(some red, green, and blue in
equal amounts)

Lighter
Gray

RGB (224, 224, 224) 14737632 224 + 256*224 + 256*256*224
(some red, green, and blue in
equal amounts)

Lightest
Gray

RGB (240, 240, 240) 15790320 240 + 256*240 + 256*256*240
(some red, green, and blue in
equal amounts)

Magenta RGB (255, 0, 255) 16711935 255 + 256*256*255 (red and
blue)

Red RGB (255, 0, 0) 255 255 (red only)

Specifying colors

604 PocketBuilder

White RGB (255, 255, 255) 16777215 255 + 256*255 + 256*256*255
(red, green, and blue in equal
amounts at the maximum of 255)

Yellow RGB (255, 255, 0) 65535 255 + 256*255 (red and green)

Color
Expression to
enter

Number
to enter

How the number is
calculated

User’s Guide 605

C H A P T E R 2 4 Working with Graphs

About this chapter This chapter describes how to build and use graphs in PocketBuilder.

Contents

About graphs
Often the best way to display information is graphically. Instead of
showing users a series of rows and columns of data, you can present
information as a graph in a DataWindow object or window. For example,
in a sales application, you might want to present summary information in
a column graph.

PocketBuilder provides many types of graphs and allows you to customize
your graphs in many ways. Probably most of your use of graphs will be in
a DataWindow object; the source of the data for your graphs will be the
database.

You can also use graphs as standalone controls in windows (and user
objects) and populate the graphs with data through scripts.

The way you define graphs is the same whether you are using them in a
DataWindow object or directly in a window. However, the way you
manipulate graphs in a DataWindow object is different from the way you
manipulate them in a window.

Before using graphs in an application, you need to understand the parts of
a graph and the kinds of graphs that PocketBuilder provides.

Topic Page

About graphs 605

Using graphs in DataWindow objects 612

Using the Graph presentation style 629

Defining a graph's properties 630

Using graphs in windows 639

About graphs

606 PocketBuilder

Parts of a graph
Figure 24-1 is a column graph created in PocketBuilder that contains most
major parts of a graph. It shows quarterly sales of three products: Stellar,
Cosmic, and Galactic printers:

Figure 24-1: Parts of a graph

How data is represented

Graphs display data points. To define graphs, you need to know how the data
is represented. PocketBuilder organizes data into three components.

Table 24-1: Components of a graph

Component Meaning

Series A set of data points. Each set of related data points makes up one
series. In Figure 24-1, there is a series for Stellar sales, another
series for Cosmic sales, and another series for Galactic sales. Each
series in a graph is distinguished by color, pattern, or symbol.

Categories The major divisions of the data. Series data are divided into
categories, which are often non-numeric. In Figure 24-1, the series
are divided into four categories: Q1, Q2, Q3, and Q4. Categories
represent values of the independent variable(s).

Values The values for the data points (dependent variables).

CHAPTER 24 Working with Graphs

User’s Guide 607

Organization of a graph

Table 24-2 lists the parts of a typical graph.

Table 24-2: Organization of a graph

Part of graph What it is

Title An optional title for the graph. The title appears at the top of the
graph.

Value axis The axis of the graph along which the values of the dependent
variable(s) are plotted. In a column graph such as Figure 24-1, the
Value axis corresponds to the y axis in an XY presentation. In other
types of graphs, such as a bar graph, the Value axis can be along the
x dimension.

Category axis The axis along which are plotted the major divisions of the data,
representing the independent variable(s). In Figure 24-1, the
Category axis corresponds to the x axis. It plots four categories:
Q1, Q2, Q3, and Q4. These form the major divisions of data in the
graph.

Series axis The axis along which the series (a set of data points) are plotted in
three-dimensional (3D) graphs.

Legend An optional listing of the series. The graph in Figure 24-1 contains
a legend that shows how each series is represented in the graph.

About graphs

608 PocketBuilder

Types of graphs
PocketBuilder provides many types of graphs for you to choose from. You
choose the type on the Define Graph Style page in the DataWindow wizard or
in the General page in the Properties view for the graph.

Figure 24-2: Types of graph

Area, bar, column, and line graphs

Area, bar, column, and line graphs are conceptually very similar. They differ
only in how they physically represent the data values—whether they use areas,
bars, columns, or lines to represent the values. All other properties are the
same. Typically you use area and line graphs to display continuous data and bar
and column graphs to display noncontinuous data.

The only difference between a bar graph and a column graph is the orientation.
In column graphs, values are plotted along the y axis and categories are plotted
along the x axis. In bar graphs, values are plotted along the x axis and
categories are plotted along the y axis.

CHAPTER 24 Working with Graphs

User’s Guide 609

Pie graphs

Pie graphs typically show one series of data points with each data point
displayed as a percentage of a whole. The following pie graph shows the sales
for Stellar printers for each quarter. You can easily see the relative values in
each quarter. (PocketBuilder automatically calculates the percentages of each
slice of the pie.)

Figure 24-3: Pie chart example

You can have pie graphs with more than one series if you want; the series are
shown in concentric circles. Multiseries pie graphs can be useful in comparing
series of data.

Scatter graphs

Scatter graphs show data points with their x and y coordinates. Typically you
use scatter graphs to show the relationship between two sets of numeric values.
Non-numeric values, such as string and DateTime datatypes, do not display
correctly.

Scatter graphs do not use categories. Instead, numeric values are plotted along
both axes—as opposed to other graphs, which have values along one axis and
categories along the other axis.

About graphs

610 PocketBuilder

For example, the data in Table 24-3 shows the effect of speed on the mileage
of a sedan.

Table 24-3: Data showing the effect of car speed on gas mileage

The same data is displayed in a scatter graph in Figure 24-4.

Figure 24-4: Scatter graph example

You can have multiple series of data in a scatter graph. You might want to plot
mileage versus speed for several makes of cars in the same graph.

Speed Mileage

10 12

20 18

30 21

40 23

50 26

60 26

70 24

80 20

CHAPTER 24 Working with Graphs

User’s Guide 611

Three-dimensional graphs

You can also create 3-dimensional (3D) graphs of area, bar, column, line, and
pie graphs. In 3D graphs (except for 3D pie graphs), series are plotted along a
third axis (the Series axis) instead of along the Category axis. You can specify
what perspective to use to show the third dimension.

Figure 24-5: 3D graph example

Stacked graphs

In bar and column graphs, you can choose to stack the bars and columns. In
stacked graphs, each category is represented as one bar or column instead of as
separate bars or columns for each series.

Figure 24-6: Stacked graph example

Using graphs in DataWindow objects

612 PocketBuilder

Using graphs in applications
You can use graphs in DataWindow objects and in windows. You specify the
properties of a graph (such as its type and title) the same way in a DataWindow
object as in a window.

Using graphs in user objects
You can also use graphs in user objects. Everything in this chapter about using
graphs in windows also applies to using graphs in user objects.

The major differences between using a graph in a DataWindow object and
using a graph in a window (or user object) are in the following areas:

• Specifying the data for the graph

In DataWindow objects, you associate columns in the database with the
axes of a graph. In windows, you write scripts containing PowerScript
functions to populate a graph.

• Specifying the location of the graph

In DataWindow objects, you can place a graph in the foreground or in a
DataWindow band. In windows, graphs are placed the same way as all
other window controls.

Using graphs in DataWindow objects
Graphs are used most often in DataWindow objects; the data for the graph
comes from tables in the database.

Graphs in
DataWindow objects
are dynamic

Graphs in DataWindow objects are tied directly to the data that is in the
DataWindow object. As the data changes, the graph is automatically updated
to reflect the new values.

Two techniques You can use graphs in DataWindow objects in two ways:

• By including a graph as a control in a DataWindow object

The graph enhances the display of information in a DataWindow object,
such as a tabular or freeform DataWindow object. This technique is
described in “Placing a graph in a DataWindow object” next.

• By using the Graph presentation style

CHAPTER 24 Working with Graphs

User’s Guide 613

The entire DataWindow object is a graph. The underlying data is not
visible. This technique is described in “Using the Graph presentation
style” on page 629.

Placing a graph in a DataWindow object

❖ To place a graph in a DataWindow object:

1 Open or create the DataWindow object that will contain the graph.

2 Select Insert>Control>Graph from the menu bar.

3 Click where you want the graph.

PocketBuilder displays the Graph Data dialog box.

Figure 24-7: Inserting a graph control in a DataWindow

Using graphs in DataWindow objects

614 PocketBuilder

4 Specify which columns contain the data and the type of graph you want,
and click OK.

For more information, see “Associating data with a graph” on page 617.

The Design view now contains a representation of the graph.

Figure 24-8: Design view with representation of a graph

5 Specify the graph's properties in the Properties view.

See “Using the graph's Properties view” next.

Using the graph's Properties view
A graph has a Properties view in which you can specify the data as well as other
properties of the graph.

❖ To display the graph’s Properties view:

• Select Properties from the graph's pop-up menu.

CHAPTER 24 Working with Graphs

User’s Guide 615

The Properties view for a graph has property pages in which you specify
information about the graph. Table 24-4 lists the property pages and describes
what each property page specifies.

Table 24-4: Property pages for graphs

Changing a graph's position and size
When you first place a graph in a DataWindow object, it is in the foreground—
it sits above the bands in the DataWindow object. Unless you change this
setting, the graph displays in front of any retrieved data.

Property page What it specifies

Axis Labels, scale, information about major and minor divisions for
the category axes.

Data Where to get the graph's data.

General Various general graph properties, including border, graph colors,
whether to size the graph to the full screen display, whether to
suppress the graph in newspaper columns, as well as graph type,
title, legend location.

Some general properties are restricted to certain types of graphs.
Most 3D graphs have properties for perspective, rotation, and
elevation, as well as spacing and depth. Other types of graph,
such as bar and column graphs, have overlap percent and spacing
properties.

Position The x,y location of the upper left corner of the graph, its width
and height, sliding options, and the layer in which the graph is to
be positioned.

Not applicable to PocketBuilder: Check boxes that determine
whether the graph can be moved or resized during execution.

Text Text properties for text controls that display on the graph,
including title, axis text, axis label, and legend.

Text properties include font, font style, font size, alignment,
rotation, color, display expression, and display format.

Using graphs in DataWindow objects

616 PocketBuilder

❖ To specify a graph's position and size:

1 Select Properties from the graph's pop-up menu.

2 Select the settings you want for the options on the Position page of the
Properties view.

Table 24-5: Settings on the Position page for graphs

3 Select or clear the Size To Display check box on the General page of the
Properties view.

When you select the Size To Display check box, the graph fills the
DataWindow object and resizes when users resize the DataWindow object.
This setting is used automatically with the Graph presentation style.

Setting Meaning

Layer Background — The graph displays behind other elements in
the DataWindow object.

Band — The graph displays in one particular band. If you
choose this setting, you should resize the band to fit the graph.
Often you will want to place a graph in the Footer band. As
users scroll through rows in the DataWindow object, the graph
remains at the bottom of the screen as part of the footer.

Foreground — (Default) The graph displays above all other
elements in the DataWindow object.

Moveable The graph can be moved in the Preview view and during
execution. Not applicable to PocketBuilder applications at
runtime.

Resizable The graph can be resized in the Preview view and during
execution. Not applicable to PocketBuilder applications at
runtime.

Slide Left,
Slide Up

The graph slides to the left or up to remove extra white space.
For more information, see “Sliding controls to remove blank
space in a DataWindow object” on page 504.

X, Y The location of the upper-left corner of the graph.

Width, Height The width and height of the graph.

CHAPTER 24 Working with Graphs

User’s Guide 617

Associating data with a graph
When using a graph in a DataWindow object, you associate axes of the graph
with columns in the DataWindow object.

The only way to get data into a graph in a DataWindow object is through
columns in the DataWindow object. You cannot add, modify, or delete data in
the graph except by adding, modifying, or deleting data in the DataWindow
object.

You can graph data from any columns retrieved into the DataWindow object.
The columns do not have to be displayed.

About the examples
The process of specifying data for a graph is illustrated below using the Printer
table in the EAS Demo DB. The EAS Demo DB is installed with
PowerBuilder. The ASA Sample database that ships with ASA and
PocketBuilder contains many of the same tables as EAS Demo DB, but it does
not have the Printer table.

You can add the Printer table to an ASA database from the ISQL Session view
of the PocketBuilder Database painter by:

1 Pasting the contents of the Printer.SQL file that the PocketBuilder setup
program installs in the Code Examples\SQL directory in the PocketBuilder
path.

2 While connected to an ASA database on the desktop, selecting the Execute
icon in the Database painter toolbar (or selecting Design>Execute ISQL
from the main menu.

3 For runtime display on a Windows CE platform, synchronizing the
desktop database with a remote database on the device or emulator.

❖ To specify data for a graph:

1 If you are creating a new graph, the Graph Data dialog box displays.
Otherwise, select Properties from the graph's pop-up menu and select the
Data tab in the Properties view.

2 Fill in the boxes as described in the sections that follow, and click OK.

Using graphs in DataWindow objects

618 PocketBuilder

Specifying which rows to include in a graph

The Rows drop-down list allows you to specify which rows of data are graphed
at any one time.

Table 24-6: Specifying which rows to include in a graph

If you select Group
If you are graphing data in the current group in a grouped DataWindow object
and have several groups displayed at the same time, you should localize the
graph in a group-related band in the Design view to make it clear which group
the graph represents. Usually, the group header band is the most appropriate
band.

Setting Meaning

All Graphs the data from all the rows that have been retrieved but not filtered
or deleted (that is, the rows in the primary buffer of the DataWindow
object)

Page Graphs only the data from the rows that are currently displayed on the
page

Group n Graphs only the data in the specified group (in a grouped DataWindow
object)

CHAPTER 24 Working with Graphs

User’s Guide 619

Specifying the categories

Specify the column or expression whose values determine the categories. In the
Graph Data page in the Graph dialog box and on the Data page in the Properties
view, you can select a column name from a drop-down list. In the Data tab, you
can also type an expression.

Figure 24-9: Selecting a column as a category in the Properties view

There is an entry along the Category axis for each different value of the column
or expression you specify.

Using display values of data
If you are graphing columns that use code tables, which allow you to store data
a data value but display it to users with more meaningful display values, the
graph uses the column's data values by default. To have the graph use a
column's display values, use the LookupDisplay DataWindow expression
function when specifying Category or Series. LookupDisplay returns a string
that matches the display value for a column:

LookupDisplay (column)

For more about code tables, see “Defining a code table” on page 546. For more
about LookupDisplay, see the DataWindow Reference in the online Help.

Specifying the values

PocketBuilder populates the Value drop-down list. The list includes the names
of all the retrieved columns as well as the following aggregate functions:

• Count for all non-numeric columns

• Sum for all numeric columns

Using graphs in DataWindow objects

620 PocketBuilder

Select an item from the drop-down list or type an expression (in the Properties
view). For example, if you want to graph the sum of units sold, you can specify:

sum(units for graph)

To graph 110 percent of the sum of units sold, you can specify:

sum(units*1.1 for graph)

Specifying the series

Graphs can have one or more series.

Single-series graphs If you want only one series—that is, if you want to graph all retrieved rows as
one series of values—leave the Series box empty.

Multiple-series graphs If you want to graph more than one series, select the Series check box and
specify the column that will provide the series values.

You can select column names from the drop-down list.

Figure 24-10: Selecting a column to provide graph series values

There is a set of data points for each different value of the column you specify
here. For example, if you specify in the Series box a column that has 10 values,
then your graph will have 10 series: one set of data points for each different
value of the column.

Using expressions You can also specify expressions for Series (on the Data page of the Properties
view). For example, you could specify the following for Series:

Units / 1000

In this case, if a table had unit values of 10,000, 20,000, and 30,000, the graph
would show series values of 10, 20, and 30.

CHAPTER 24 Working with Graphs

User’s Guide 621

Specifying multiple
entries

You can specify more than one of the retrieved columns to serve as series.
Separate multiple entries by commas.

You must specify the same number of entries in the Value box as you do in the
Series box. The first value in the Value box corresponds to the first series
identified in the Series box, the second value corresponds to the second series,
and so on. The example about graphing actual and projected sales in
“Examples” next illustrates this technique.

Examples

This section shows how to specify the data for several different graphs of the
data in the Printer table in the EAS Demo DB. The table records quarterly unit
sales of three printers by three sales representatives.

Table 24-7: Q1 and Q4 data from the Printer table in EAS Demo DB

Rep Quarter Product Units

Jones Q1 Cosmic 5

Perez Q1 Cosmic 26

Simpson Q1 Cosmic 33

Jones Q1 Galactic 2

Perez Q1 Galactic 1

Simpson Q1 Galactic 6

Jones Q1 Stellar 18

Perez Q1 Stellar 15

Simpson Q1 Stellar 12

… … … …

Jones Q4 Cosmic 52

Perez Q4 Cosmic 48

Simpson Q4 Cosmic 60

Jones Q4 Galactic 3

Perez Q4 Galactic 6

Simpson Q4 Galactic 3

Jones Q4 Stellar 24

Perez Q4 Stellar 36

Simpson Q4 Stellar 30

Using graphs in DataWindow objects

622 PocketBuilder

Graphing total sales To graph total sales of printers in each quarter, retrieve all the columns into a
DataWindow object and create a graph with the following settings on the Data
page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph)

Leave the Series check box and text box empty.

The Quarter column serves as the category. Because the Quarter column has
four values (Q1, Q2, Q3, and Q4), there will be four categories along the
Category axis. Suppose that you want only one series (total sales in each
quarter). You can leave the Series box empty or type a string literal to identify
the series in a legend. Setting Value to sum(units for graph) graphs total
sales in each quarter.

Figure 24-11 shows the resulting column graph. PocketBuilder automatically
generates the category text based on the data in the table.

Figure 24-11: Column graph showing printer sales by quarter

In the preceding graph, there is one set of data points (one series) across four
quarters (the category values).

CHAPTER 24 Working with Graphs

User’s Guide 623

Figure 24-12 is a pie graph, which has exactly the same properties as the
column graph above except for the type, which is 3D Pie.

Figure 24-12: 3D Pie graph showing printer sales by quarter

In pie graphs, categories are shown in the legend.

Graphing unit sales of
each printer

To graph total quarterly sales of each printer type, retrieve all the columns into
a DataWindow object and create a graph with the following settings on the
Data page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph)

• Select the Series check box

• Set Series to product

Suppose that you want a different series for each printer, so the column Product
can serve as the series. Because the Product column has three values (Cosmic,
Galactic, and Stellar), there will be three series in the graph. As in the first
example, you want a value for each quarter, so the Quarter column serves as the
category, and you want to graph total sales in each quarter, so the Value box is
specified as sum(units for graph).

Using graphs in DataWindow objects

624 PocketBuilder

Figure 24-13 shows the resulting graph. PocketBuilder automatically
generates the category and series labels based on the data in the table. The
series labels display in the graph's legend.

Figure 24-13: Column graph with series data by printer type

Graphing unit sales by
representative

To graph quarterly sales made by each representative, create a graph with the
following settings on the Data page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph)

• Select the Series check box

• Set Series to rep

CHAPTER 24 Working with Graphs

User’s Guide 625

Figure 24-14 shows the resulting graph.

Figure 24-14: Column graph with series data by sales representative

Graphing unit sales by
representative and
total sales

To graph quarterly sales made by each representative, plus total sales for each
printer, create a graph with the following settings on the Data page in the
Properties view:

• Set Rows to All

• Set Category to quarter, "Total"

• Set Value to sum(units for graph), sum(units for graph)

• Select the Series check box

• Set Series to rep, rep

Using graphs in DataWindow objects

626 PocketBuilder

Figure 24-15: Adding two series to a graph

Here you have two types of categories: the first is Quarter, which shows
quarterly sales, as in the previous graph. You also want a category for total
sales. There is no corresponding column in the DataWindow object, so you can
simply type the literal “Total” to identify the category. You separate multiple
entries with a comma.

For each of these category types, you want to graph the sum of units sold for
each representative, so the Value and Series values are repeated.

Figure 24-16 shows the resulting graph.

Figure 24-16: Graph with dual series data for two categories

Notice that PocketBuilder uses the literal “Total” supplied in the Category box
in the Graph Data window as a value in the Category axis.

CHAPTER 24 Working with Graphs

User’s Guide 627

Graphing actual and
projected sales

To graph total quarterly sales of all printers and projected sales for next year,
where you assume that sales will increase by 10% next year, create a graph with
the following settings on the Data page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph), sum(units*1.1 for graph)

• Select the Series check box

• Set Series to 'Actual','Projected'

You are using labels to identify two series, Actual and Projected. Note the
single quotation marks around the literals. For Values, you enter the
expressions that correspond to Actual and Projected sales. For Actual, you use
the same expression as in the examples above, sum(units for graph). For
Projected sales, you multiply each unit sale by 1.1 to get the 10 percent
increase. Therefore, the second expression is sum(units*1.1 for graph).

Figure 24-17 shows the resulting graph. PocketBuilder uses the literals you
typed for the series as the series labels in the legend.

Figure 24-17: Graph with dual series data for a single category

Using graphs in DataWindow objects

628 PocketBuilder

Using overlays
Overlays are useful when you want to call special attention to one of the series
in a graph, particularly in a bar or column graph. You call attention to the series
by defining it as an overlay. An overlay series is graphed as a line on top of the
other series in the graph. To define a series as an overlay, do as follows:

• To specify a column name to identify the series, specify this for the series:

"@overlay~t" + ColumnName

• To use a label to identify the series, specify this for the series:

"@overlay~tSeriesLabel "

Examples

To graph sales in each quarter and overlay the sales of each individual printer,
specify the graph's data as in “Graphing unit sales of each printer” on page
623, but use the following expression in the Series box:

"Total Sales", "@overlay~t + product"

Figure 24-18 shows the resulting graph.

Figure 24-18: Graph with overlay for individual product sales by quarter

To graph unit sales of printers by quarter and overlay the largest sale made in
each quarter, change the Value expression to this:

sum(units for graph), max(units for graph)

Change the Series expression to this:

"Total Sales", "@overlay~tLargets Sale"

CHAPTER 24 Working with Graphs

User’s Guide 629

Figure 24-19 shows the resulting graph.

Figure 24-19: Graph with overlay for largest sale by quarter

Using the Graph presentation style
Instead of embedding a graph in a DataWindow object, you can use the Graph
presentation style to create a DataWindow object that is only a graph: the
underlying data is not displayed.

❖ To use the Graph presentation style:

1 Select File>New from the menu bar.

The New dialog box displays.

2 Select the DataWindow tab, select the Graph presentation style, and click
OK.

3 Specify the data source for the DataWindow object.
If you want data to be retrieved into the Preview view automatically, select
the Retrieve on Preview check box.

For more information, see Chapter 17, “Defining DataWindow Objects.”

4 Enter the definitions for the series, categories, and values, as described in
“Associating data with a graph” on page 617, and click Next.

Note that when using the Graph presentation style, the graph always
graphs all rows; you cannot specify page or group.

Defining a graph's properties

630 PocketBuilder

5 Enter a title for the graph, select a graph type, and click Next.

6 Review your specifications and click Finish.

A model of the graph displays in the Design view.

7 Specify the properties of the graph, as described in “Defining a graph's
properties” next.

8 Save the DataWindow object in a library.

9 Associate the graph DataWindow object with a DataWindow control in a
window or user object.

During execution, the graph fills the entire control.

Defining a graph's properties
This section describes properties of a graph that are used whether the graph is
in a DataWindow object or in a window. To define the properties of a graph,
you use the graph's Properties view. For general information about the property
pages, see “Using the graph's Properties view” on page 614.

Using the General page in the graph's Properties view
You name a graph and define its basic properties on the General page in the
graph's Properties view.

❖ To specify the basic properties of a graph:

• Select Properties from the graph's pop-up menu and then select the
General page in the Properties view

About the model
graph in the Design
view

As you modify a graph's properties, PocketBuilder updates the model graph
shown in the Design view so that you can get an idea of the graph's basic
layout:

• PocketBuilder uses the graph title and axis labels you specify

• PocketBuilder uses sample data (not data from your DataWindow object)
to illustrate series, categories, and values

In Preview view, PocketBuilder displays the graph with data.

CHAPTER 24 Working with Graphs

User’s Guide 631

Naming a graph You can modify a graph in scripts during execution. To reference a graph
during execution, you use its name.

❖ To name a graph:

• On the General page for the graph, assign a meaningful name to the graph
in the Name box

Defining a graph's title The graph title displays at the top of the graph.

❖ To specify a graph's title:

• On the General page for the graph, enter a title in the Title box

Multiline titles
You can force a new line in a title by embedding ~n.

For information about specifying properties for the title text, see “Specifying
text properties for titles, labels, axes, and legends” on page 632.

Specifying the type of
graph

You can change the graph type at any time in the development environment.
(To change the type at runtime, modify a graph's GraphType property.)

❖ To specify the graph type:

• On the General properties page for the graph, select a graph type from the
Graph Type drop-down list

Using legends A legend provides a key to your graph's series.

❖ To include a legend for a series in a graph:

• On the General properties page for the graph, specify where you want the
legend to appear by selecting a value in the Legend drop-down list

For information on specifying text properties for the legend, see "Specifying
text properties for titles, labels, axes, and legends" below.

Specifying a border You can specify the border that PocketBuilder places around a graph.

❖ To specify a border for a graph:

• On the General properties page for the graph, select the type of border to
use from the Border drop-down list

Specifying point of
view in 3D graphs

If you are defining a 3D graph, you can specify the point of view that
PocketBuilder uses when displaying the graph.

Defining a graph's properties

632 PocketBuilder

❖ To specify a 3D graph's point of view:

1 On the General properties page for the graph, adjust the point of view
along the three dimensions of the graph:

• To change the perspective, move the Perspective slider

• To rotate the graph, move the Rotation slider

• To change the elevation, move the Elevation slider

2 Define the depth of the graph by entering a value in the Depth box.

The value you enter for the depth is a percentage of the width of the graph.
You can use the spin control to set this value.

Sorting data for series and categories
You can specify how to sort the data for series and categories. By default, the
data is sorted in ascending order.

❖ To specify how to sort the data for series and categories in a graph:

1 Select Properties from the graph's pop-up menu and then select the Axis
page in the Properties view.

2 Select the axis for which you want to specify sorting.

3 In the Sort drop-down list, select Ascending (order), Descending (order),
or Unsorted.

The Sort drop-down list is at the bottom of the Axis page in the Properties
view for the graph.

Specifying text properties for titles, labels, axes, and legends
A graph can have four text elements:

• Title

• Labels for the axes

• Text that shows the values along the axes

• Legend

CHAPTER 24 Working with Graphs

User’s Guide 633

Figure 24-20: Text elements of a graph

You can specify properties for each text element.

❖ To specify text properties for the title, labels, axis values, and legend of
a graph:

1 Select Properties from the graph's pop-up menu and then select the Text
page in the Properties view.

2 Select a text element from the list in the Text Object drop-down list.

Figure 24-21: Selecting text elements to change their properties

3 Specify the font and its characteristics.

Using Auto Size With Auto Size in effect, PocketBuilder resizes the text appropriately
whenever the graph is resized. With Auto Size disabled, you specify the font
size of a text element explicitly.

❖ To have PocketBuilder automatically size a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Select the Autosize check box (this is the default).

Defining a graph's properties

634 PocketBuilder

❖ To specify a font size for a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Clear the Autosize check box.

3 Select the Font size in the Size drop-down list.

Rotating text For all the text elements, you can specify the number of degrees by which you
want to rotate the text.

❖ To specify rotation for a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Specify the rotation you want in the Escapement box, using tenths of a
degree (450 means 45 degrees)

Changes you make here are shown in the model graph in the Design view and
in the Preview view.

Using display formats Display formats are masks in which certain characters have special
significance that aid in the presentation of information to the user. For more
information about defining display formats, see Chapter 21, “Displaying and
Validating Data.”

❖ To use a display format for a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Type a display format in the Format box or choose one from the pop-up
menu.

To display the pop-up menu, click the button to the right of the Format
box.

Modifying display
expressions

You can specify an expression for the text that is used for each graph element.
The expression is evaluated at execution time.

❖ To specify an expression for a text element in a graph:

1 On the Text properties page for the graph, select a text element from the
list in the Text Object drop-down list.

2 Click the button next to the Display Expression box.

The Modify Expression dialog box displays.

3 Specify the expression.

CHAPTER 24 Working with Graphs

User’s Guide 635

You can paste functions, column names, and operators. Included with
column names in the Columns box are statistics about the columns, such
as counts and sums.

4 Click OK to return to the graph's Properties view.

Example By default, when you generate a pie graph, PocketBuilder puts the title at the
top and labels each slice of the pie with the percentage that slice represents of
the whole. Percentages are accurate to two decimal places.

Figure 24-22 has been enhanced as follows:

• The current date displays in the title

• The percentages are rounded to integers

• The raw data for each slice is shown in addition to the percentages

Figure 24-22: Pie chart with display enhancements

To enhance the pie chart, the display expressions were modified for the title and
pie graph labels as follows:

Element Original expression Modified expression

Title title title + " as of " +
date(today())

Pie graph
labels

if(seriescount > 1,
series, string
(percentofseries,
"0.00%"))

if(seriescount > 1, series,
string(percentofseries,"0%
") + " (" + value + ")")

Defining a graph's properties

636 PocketBuilder

Specifying overlap and spacing
With bar and column charts, you can specify the properties in Table 24-8.

Table 24-8: Overlap and spacing properties for bar and column charts

❖ To specify overlap and spacing for the bars or columns in a graph:

1 Select Properties from the graph's pop-up menu and then select the Graph
tab.

2 Specify a percentage for Overlap (% of width) and Spacing (% of width).

Specifying axis properties
Graphs have two or three axes. You specify the axes' properties in the Axis
page in the graph's Properties view.

❖ To specify properties for an axis of a graph:

1 Select Properties from the graph's pop-up menu and then select the Axis
page in the Properties view.

2 Select the Category, the Value, or the Series axis from the Axis drop-down
list.

If you are not working with a 3D graph, the Series Axis options are
disabled.

3 Specify the properties as described next.

Property Meaning

Overlap The percentage by which bars or columns overlap each other. The
default is 0 percent, meaning no overlap.

Spacing The amount of space to leave between bars or columns. The default is
100 percent, which leaves a space equal to the width of a bar or column.

CHAPTER 24 Working with Graphs

User’s Guide 637

Specifying text
properties

You can specify the characteristics of the text that displays for each axis. Table
24-9 shows the two kinds of text associated with an axis.

Table 24-9: Text types associated with each axis of a graph

For information on specifying properties for the text, see “Specifying text
properties for titles, labels, axes, and legends” on page 632.

Specifying datatypes The data graphed along the Value, Category, and Series axes has an assigned
datatype. The Series axis always has the datatype String. The Value and
Category axes can have the datatypes listed in Table 24-10.

Table 24-10: Datatypes for Value and Category axes

For graphs in DataWindow objects, PocketBuilder automatically assigns the
datatypes based on the datatype of the corresponding column; you do not
specify them.

For graphs in windows, you specify the datatypes yourself. Be sure you specify
the appropriate datatypes so that when you populate the graph (using the
AddData function), the data matches the datatype.

Scaling axes You can specify the properties listed in Table 24-11 to define the scaling used
along numeric axes.

Type of text Meaning

Text Text that identifies the values for an axis.

Label Text that describes the axis. You specify the label text in a painter.
You can use ~n to embed a new line within a label.

Axis Possible datatypes

Both axes (for scatter graph) Number, Date, Time

Value (other graph types) Number, Date, DateTime, Time

Category (other graph types) String, Number, Date, DateTime, Time

Defining a graph's properties

638 PocketBuilder

Table 24-11: Properties for scaling on numeric axes

Using major and
minor divisions

You can divide axes into divisions. Each division is identified by a tick mark,
which is a short line that intersects an axis. In the Sales by Printer graphs shown
in “Examples” on page 621, the graph's Value axis is divided into major
divisions of 50 units each. PocketBuilder divides the axes automatically into
major divisions.

❖ To define divisions for an axis of a graph:

1 To divide an axis into a specific number of major divisions, type the
number of divisions you want in the MajorDivisions box.

Leave the number 0 to have PocketBuilder automatically create divisions.
PocketBuilder labels each tick mark in major divisions. If you do not want
each tick mark labeled, enter a value in the DisplayEveryNLabels box. For
example, if you enter 2, PocketBuilder labels every second tick mark for
the major divisions.

2 To use minor divisions, which are divisions within each major division,
type the appropriate number in the MinorDivisions box.

To use no minor divisions, leave the number 0.

When using logarithmic axes
If you want minor divisions, specify 1; otherwise, specify 0.

Property Meaning

Autoscale If selected (the default), PocketBuilder automatically assigns a
scaling for the numbers along the axis.

Round To,
Round To Unit

Specifies how to round the end points of the axis. This rounds
only the range displayed along the axis; it does not round the data
itself.

You can specify a number and a unit. The unit is based on the
datatype; you can specify Default as the unit to have
PocketBuilder decide for you. For example, if the Value axis is a
Date column, you can specify that you want to round the end
points of the axis to the nearest five years. In this case, if the
largest data value is the year 1997, the axis extends up to 2000.

Minimum Value,
Maximum Value

The smallest and largest numbers to appear on the axis (disabled
if you have selected Autoscale).

Scale Type Specifies linear or logarithmic (common or natural) scaling.

CHAPTER 24 Working with Graphs

User’s Guide 639

Representing
divisions with grid and
drop lines

You can specify lines to represent the divisions as described in Table 24-12 and
illustrated in Figure 24-23.

Table 24-12: Representing graph divisions with grid and drop lines

Figure 24-23: Grid and drop lines in a graph

Using line styles You can define line styles for the components of a graph listed in Table 24-13.

Table 24-13: Components of a graph that can have line styles

Using graphs in windows
In addition to using graphs in DataWindow objects, you can also place graphs
directly in windows and visual user objects. You define properties for a graph
control in the Window painter and use scripts to populate the graph with data
and to modify properties for the graph during execution.

Line Meaning

Grid line A line that extends from a tick mark across the graph. Grid lines make
graphs easier to read.

Drop line A line that extends vertically from a data point to its axis (not available
for all graph types).

Component Meaning

PrimaryLine The axis itself

SecondaryLine The axis parallel to and opposite the primary axis

OriginLine A grid line that represents the value zero

Frame The frame for the axis in 3D graphs (disabled for 2D graphs)

Using graphs in windows

640 PocketBuilder

This section describes procedures unique to using graphs in windows and
visual user objects. For general graph properties, see “Defining a graph's
properties” on page 630.

Placing a graph in a
window

This procedure for placing a graph in a window in the Window painter can also
be used for placing a graph on a user object in the User Object painter.

❖ To place a graph in a window:

1 Open the Window painter and select the window that will contain the
graph.

2 Select Insert>Control>Graph from the menu bar.

3 Click where you want the graph.

PocketBuilder displays a model of the graph in the window.

4 Specify properties for the graph, such as type, title, text properties, and
axis properties.

See “Defining a graph's properties” on page 630.

5 Write one or more scripts to populate the graph with data.

See the chapter on manipulating graphs in the Resource Guide.

Using the graph's
Properties view in the
Window painter

A graph's Properties view in the Window and User Object painters is similar to
the one in the DataWindow painter but the Properties view in the Window and
User Object painter:

• Does not have buttons for specifying property conditional expressions
next to properties

• Does not have Data and Position property pages

• Has an Other properties page, which you use to specify position properties
for the graph control

For more information, see “Using the graph's Properties view” on page 614.

P A R T 6 Testing and Running Your
Application

This part describes how to test an application from within
PocketBuilder on the desktop: in debug mode, where you
can set breakpoints and examine the state of your
application as it executes, and in test mode, where the
application runs until you stop it or an error occurs.

It also describes how to build and package an application
for distribution to users.

User’s Guide 643

C H A P T E R 2 5 Testing and Debugging
Applications

About this chapter This chapter describes how to test and debug an application in
PocketBuilder on the desktop. You can also test PocketBuilder
applications on a Windows CE emulator running on the desktop.

Contents

Overview of debugging and testing applications
After you build all or part of an application and compile and save its
objects, you can run the application. The PocketBuilder development
environment provides two ways to run an application on the desktop: in
debug mode and in test mode.

Debug mode In debug mode, you can insert breakpoints (stops) in scripts and functions,
single-step through code, and display the contents of variables to locate
logic errors that will result in errors during execution.

Test mode In the desktop test mode, the application responds to user interaction and
runs until you stop it or until a runtime error occurs.

You can also test an application by deploying and running it on a
supported emulator or device.

Topic Page

Overview of debugging and testing applications 643

Debugging an application 644

Testing an application on the desktop 662

Debugging an application

644 PocketBuilder

Troubleshooting
advantages by
deployment platform

Table 25-1 shows the advantages and disadvantages of troubleshooting an
application, depending on where and how you deploy it.

Table 25-1: Troubleshooting advantages by deployment platform

Debugging an application
Sometimes an application does not behave the way you think it will. Perhaps a
variable is not being assigned the value you expect, or a script does not perform
as desired. In these situations, you can examine your application by running it
in debug mode.

When you run the application in debug mode, PocketBuilder stops execution
before it executes a line containing a breakpoint (stop). You can then step
through the application and examine its state.

❖ To debug an application:

1 Open the debugger.

2 Set breakpoints at places in the application where you have a problem.

3 Run the application in debug mode.

See “Starting the debugger” next.

Platform Advantage Disadvantage

Debugging
on the IDE

• Fastest turnaround time

• Full debugger support

• Least like PDA environment

• Different processor, VM, and DLLs

• Different database configuration

Running in
the Emulator

• Somewhat like the PDA

• Lets you test
applications when a
PDA is not available

• Emulators have bugs of their own

• Pocket PC 2002 emulator can be
cumbersome to install and use

Running in
the PDA

• Real target environment

• Real database
environment

• Difficult to debug

• No tracing or remote debugging
currently available

CHAPTER 25 Testing and Debugging Applications

User’s Guide 645

4 When execution is suspended at a breakpoint, look at the values of
variables, examine the properties of objects in memory and the call stack,
or change the values of variables.

5 Step through the code line by line.

6 As needed, add or modify breakpoints as you run the application.

7 When you uncover a problem, fix your code and run it in the debugger
again.

Note PocketBuilder

Starting the debugger

❖ To open the debugger:

• Do one of the following:

• In the System Tree, highlight a target and select Debug from the
pop-up menu

• Click the Debug or Select and Debug button on the PowerBar

• Select Run>Debug or Run>Select and Debug from the menu bar

The Debug button opens the debugger for the last target run in debug or
test mode. The name of the current target is displayed in the Debug button
tool tip. The Select and Debug button opens a dialog box that lets you
select the target to be debugged.

Debugging an application

646 PocketBuilder

Views in the debugger The debugger contains several views. Each view shows a different kind of
information about the current state of your application or the debugging
session. Table 25-2 summarizes what each view shows and what you can do
from that view.

Table 25-2: Views in the debugger

View What it shows What you can do

Breakpoints A list of breakpoints with
indicators showing whether
the breakpoints are
currently active or inactive

Set, enable, disable, and clear
breakpoints, set a condition for a
breakpoint, and show source for a
breakpoint in the Source view.

Call Stack The sequence of function
calls leading up to the
function that was executing
at the time of the pause for
a breakpoint, shown as the
script and line number from
which the function was
called

Examine the context of the
application at any line in the call
stack.

Objects in
Memory

An expandable list of
objects currently in
memory

View the names and memory
locations of instances of each
memory object, and property
values of each instance.

Source The full text of a script Go to a specific line in a script,
find a string, open another script,
including ancestor and descendent
scripts, and manage breakpoints.

Source Browser An expandable hierarchy of
objects in your application

Select any script in your
application and display it in the
Source view.

Source History A list of the scripts that
have been displayed in the
Source view

Select any script in the Source
History and display it in the
Source view.

Variables An expandable list of all the
variables in scope

Select which kinds of variables are
shown in the view, change the
value of a variable, and set a
breakpoint when a variable
changes.

Watch A list of variables you have
selected to watch as the
application proceeds

Change the value of a variable, set
a breakpoint when a variable
changes, and add an arbitrary
expression to the Watch view.

CHAPTER 25 Testing and Debugging Applications

User’s Guide 647

Changing Variable
views

The default debugger layout contains a separate view for each variable type in
a stacked pane. You can combine two or more Variables views in a single pane.
For example, you might want to combine local and global variables in a single
view that you keep at the top of the stacked pane.

Figure 25-1: Variables views in a stacked pane

❖ To display multiple variable types in a single view:

1 Display the pop-up menu for a pane that contains a Variables view you
want to change.

2 Click the names of the variable types you want to display.

A check mark displays next to selected variable types. The pop-up menu
closes each time you select a variable type or clear a check mark, so you
need to reopen the menu to select an additional variable type.

When you select or clear variable types, the tab for the pane changes to
show the variable types displayed on that pane.

Setting breakpoints
A breakpoint is a point in your application code where you want to interrupt
the normal execution of the application while you are debugging. If you
suspect a problem is occurring in a particular script or function call, set a
breakpoint at the beginning of the script or at the line where the function is
called.

When you close the debugger, any breakpoints you set are written to your
PocketBuilder initialization file and are available when you reopen the
debugger.

Setting a simple
breakpoint

This procedure describes setting a breakpoint in the Source view in the
debugger. You can also set a breakpoint by selecting Add Breakpoint from the
pop-up menu in the Script view when you are not running the debugger.

Debugging an application

648 PocketBuilder

❖ To set a breakpoint on a line in a script:

1 Display the script in a Source view and place the cursor where you want
to set the breakpoint.

For how to change the script shown in the Source view, see “Using the
Source view” on page 656.

2 Double-click the line or select Add Breakpoint from the pop-up menu.

PocketBuilder sets a breakpoint and a red circle displays at the beginning
of the line. If you select a line that does not contain executable code,
PocketBuilder sets the breakpoint at the beginning of the next executable
statement.

Setting special
breakpoints

Breakpoints can be triggered when a statement has been executed a specified
number of times (an occasional breakpoint), when a specified expression is
true (a conditional breakpoint), or when the value of a variable changes.

You use the Edit Breakpoints dialog box to set and edit occasional and
conditional breakpoints. You can also use it to set a breakpoint when the value
of a variable changes. The Edit Breakpoints dialog box opens when you:

• Click the Edit Stop button on the PainterBar

• Select Breakpoints from the pop-up menu in the Source, Variables, Watch,
or Breakpoints view

• Select Edit>Breakpoints from the menu bar

• Double-click a line in the Breakpoints view

Setting occasional
and conditional
breakpoints

If you want to check the progress of a loop without interrupting execution in
every iteration, you can set an occasional breakpoint that is triggered only after
a specified number of iterations. To specify that execution stops only when
conditions you specify are met, set a conditional breakpoint. You can also set
both occasional and conditional breakpoints at the same location.

• If you specify an occurrence Each time PocketBuilder passes through
the specified location, it increments a counter by one. When the counter
reaches the number specified, it triggers the breakpoint and resets the
counter to zero.

• If you specify a condition Each time PocketBuilder passes through the
specified location, it evaluates the expression. When the expression is true,
it triggers the breakpoint.

CHAPTER 25 Testing and Debugging Applications

User’s Guide 649

• If you specify both an occurrence and a condition Each time
PocketBuilder passes through the specified location, it evaluates the
expression. When the expression is true, it increments the counter. When
the counter reaches the number specified, it triggers the breakpoint and
resets the counter to zero.

For example, if you specify an occurrence of 3 and the condition
notisNull(val), PocketBuilder checks whether val is NULL each time
the statement is reached. The breakpoint is triggered on the third
occurrence of a non-NULL val, then again on the sixth occurrence, and so
forth.

❖ To set an occasional or conditional breakpoint:

1 On the Location tab in the Edit Breakpoints dialog box, specify the script
and line number where you want the breakpoint.

You can select an existing location or select New to enter a new location.

Set a simple breakpoint first
You must specify a line that contains executable code. Set a simple
breakpoint on the line before opening the Edit Breakpoints dialog box to
make sure the format and line number are correct.

2 Specify an integer occurrence, a condition, or both.

The condition must be a valid boolean PowerScript expression. If it is not,
the breakpoint is always triggered. PocketBuilder displays the breakpoint
expression in the Edit Breakpoints dialog box and in the Breakpoints view.
When PocketBuilder reaches the location where the breakpoint is set, it
evaluates the breakpoint expression and triggers the breakpoint only when
the expression is true.

Setting a breakpoint
when a variable
changes

You can interrupt execution every time the value of a variable changes. The
variable must be in scope when you set the breakpoint.

❖ To set a breakpoint when a variable changes:

• Do one of the following:

• Select the variable in the Variables view or Watch view and select
Break on Change from the pop-up menu.

• Drag the variable from the Variables view or Watch view to the
Breakpoints view.

Debugging an application

650 PocketBuilder

• Select New on the Variable tab in the Edit Breakpoints dialog box and
specify the name of a variable in the Variable box

The new breakpoint displays in the Breakpoints view and in the Edit
Breakpoints dialog box if it is open. PocketBuilder watches the variable
during execution and interrupts execution when the value of the variable
changes.

Disabling and clearing
breakpoints

If you want to bypass a breakpoint for a specific debugging session, you can
disable it and then enable it again later. If you no longer need a breakpoint, you
can clear it.

❖ To disable a breakpoint:

• Do one of the following:

• Click the red circle next to the breakpoint in the Breakpoints view or
Edit Breakpoints dialog box

• Select Disable Breakpoint from the pop-up menu in the Source view

• Select Disable from the pop-up menu in the Breakpoints view

The red circle next to the breakpoint is replaced with a white circle.

You can enable a disabled breakpoint from the pop-up menus or by
clicking the white circle.

Disabling all breakpoints
To disable all breakpoints, select Disable All from the pop-up menu in the
Breakpoints view.

❖ To clear a breakpoint:

• Do one of the following:

• Double-click the line containing the breakpoint in the Source view

• Select Clear Breakpoint from the pop-up menu in the Source view

• Select Clear from the pop-up menu in the Breakpoints view

• Select the breakpoint in the Edit Breakpoints dialog box and select
Clear

The red circle next to the breakpoint disappears.

CHAPTER 25 Testing and Debugging Applications

User’s Guide 651

Clearing all breakpoints
To clear all breakpoints, select Clear All in the Edit Breakpoints dialog box or
from the pop-up menu in the Breakpoints view.

Running in debug mode
After you have set some breakpoints, you can run the application in debug
mode. The application executes normally until it reaches a statement
containing a breakpoint. At this point it stops so that you can examine the
application. After you do so, you can single-step through the application,
continue execution until execution reaches another breakpoint, or stop the
debugging run so that you can close the debugger and change the code.

❖ To run an application in debug mode:

1 If necessary, open the debugger by clicking the Debug or the Select and
Debug button.

The Debug button opens the debugger for the target you last ran or
debugged. Use the Select and Debug button if you want to debug a
different target in the workspace.

2 Click the Start button in the PainterBar or select Debug>Start from the
menu bar.

The application starts and runs until it reaches a breakpoint. PocketBuilder
displays the debugger, with the line containing the breakpoint displayed in
the Source view. The yellow arrow cursor indicates that this line contains
the next statement to be executed. You can now examine the application
using debugger views and tools.

For more information, see “Examining an application at a breakpoint”
next and “Stepping through an application” on page 657.

❖ To continue execution from a breakpoint:

• Click the Continue button in the PainterBar or select Debug>Continue
from the menu bar

Execution begins at the statement indicated by the yellow arrow cursor
and continues until the next breakpoint is hit or until the application
terminates normally.

Debugging an application

652 PocketBuilder

❖ To terminate a debugging run at a breakpoint:

• Click the Stop Debugging button in the PainterBar or select Debug>Stop
from the menu bar

PocketBuilder resets the application and all the debugger views to their
state at the beginning of the debugging run. You can now begin another run
in debug mode or close the debugger.

Cleaning up
When you terminate a debugging run or close the debugger without
terminating the run, PocketBuilder executes the application’s close event and
destroys any objects, such as autoinstantiated local variables, that it would have
destroyed if the application had continued to run and exited normally.

Examining an application at a breakpoint
When an application is suspended at a breakpoint, use the Variables, Watch,
Call Stack, and Objects in Memory views to examine its state.

About icons used in debugging views
The Variables, Watch, and Objects in Memory views use many of the icons
used in the PocketBuilder Browser as well as some additional icons:
I represents an Instance; F, a field; A, an array; and E, an expression.

Examining variable values
Using Variables views Each Variables view shows one or more types of variables in an expandable

outline. Double-click the variable names or click on the plus and minus signs
next to them to expand and contract the hierarchy. If you open a new Variables
view, it shows all variable types.

Table 25-3: Variable views in the debugger

Variable type What the Variables view shows

Local Values of variables that are local to the current script or function

Global Values of all global variables defined for the application and
properties of all objects (such as windows) that are open

Instance Properties of the current object instance (the object to which the
current script belongs) and values of instance variables defined for
the current object

CHAPTER 25 Testing and Debugging Applications

User’s Guide 653

Watching variables and expressions

The Watch view lets you monitor the values of selected variables and
expressions as the application runs.

If the variable or expression is in scope, the Watch view shows its value. Empty
quotes indicate that the variable is in scope but has not been initialized. An X
in the Watch view indicates that the variable or expression is not in scope.

Figure 25-2: Watch view showing an out-of-scope variable

Setting variables and
expressions in the
Watch view

You can select variables you want to watch as the application runs by copying
them from a Variables view. You can also set a watch on any PowerScript
expression. When you close the debugger, any watch variables and expressions
you set are saved.

❖ To add a variable to the Watch view:

1 Select the variable in the Variables view.

2 Do one of the following:

• Drag the variable to the Watch view

• Click the Add Watch button on the PainterBar

• Select Debug>Add Watch from the menu bar

PocketBuilder adds the variable to the watch list.

❖ To add an expression to the Watch view:

1 Select Insert from the pop-up menu.

2 Type any valid PowerScript expression in the New Expression dialog box
and click OK.

PocketBuilder adds the expression to the watch list.

Parent Properties of the parent of the current instance

Shared Objects, such as application, window, and menu objects, that have
been opened, and the shared variables associated with them

Variable type What the Variables view shows

Debugging an application

654 PocketBuilder

❖ To edit a variable in the Watch view:

1 Select the variable you want to edit.

2 Double-click the variable, or select Edit Variable from the pop-up menu.

3 Type the new value for the variable in the Modify Variable dialog box and
click OK.

❖ To edit an expression in the Watch view:

1 Select the expression you want to edit.

2 Double-click the expression, or select Edit Expression from the pop-up
menu.

3 Type the new expression in the Edit Expression dialog box and click OK.

❖ To clear variables and expressions from the Watch view:

1 Select the variable or expression you want to delete.

2 Do one of the following:

• Select Clear from the pop-up menu

• Click the Remove Watch button on the PainterBar

• Select Debug>Remove Watch from the menu bar

❖ To clear all variables and expressions from the Watch view:

• Select Clear All from the pop-up menu

Monitoring the call stack

The Call Stack view shows the sequence of function calls leading up to the
script or function that was executing at the time of a pause at a breakpoint. Each
line in the Call Stack view displays the name of the script and the line number
from which the call was made. The yellow arrow shows the script and line
where execution was suspended.

You can examine the context of the application at any line in the call stack.

CHAPTER 25 Testing and Debugging Applications

User’s Guide 655

❖ To show a different context from the Call Stack view:

1 Select a line in the Call Stack view.

2 Do one of the following:

• Double-click the line

• Select Set Context from the pop-up menu

• Drag the line into the Source view

A green arrow indicates the script that you selected. The Source view
shows the script and line number you selected, and the Variables and
Watch views show the variables and expressions in scope in that context.

Figure 25-3: Showing a different context from the Call Stack view

Examining objects in memory

The Objects in Memory view shows an expandable list of objects currently in
memory as well as the memory location of each object. Double-click the name
of an object or click the plus sign next to it to view the property values of each
object.

Figure 25-4: Objects in Memory view

Debugging an application

656 PocketBuilder

Using the Source view

The Source view displays the full text of a script. As you run or step through
the application, the Source view is updated to show the current script with a
yellow arrow indicating the next statement to be executed.

Multiple Source views You can open more than one source view. If there are multiple source views
open, only the first one opened is updated to show the current script when the
context of an application changes.

Copying from the
Source view

When text is selected in the Source view, you can select Copy from the pop-up
menu in the Source view to copy the string to the clipboard. You can then paste
the string into another dialog box to search for the string, insert a watch, or add
a conditional breakpoint.

Changing the Source
view

From the pop-up menu, you can navigate backward and forward through the
scripts that have been opened so far, open ancestor and dependent scripts, and
go to a specific line in the current script. There are several other ways to change
the script from other views or from the menu bar.

❖ To change the script displayed in a Source view:

• Do one of the following:

• Drag the name of a script to the Source view from the Call Stack,
Source Browser, or Source History views

• Select a line and then select Open Source from the pop-up menu in the
Breakpoints, Source Browser, or Source History views

• Select Edit>Select Script from the menu bar

❖ To find a specified string in the Source view:

1 Select Find from the pop-up menu, or select Edit>Find from the menu bar.

The Find Text dialog box opens.

2 Type the string in the Find box and check the search options you want.

Using the Source Browser view

The Source Browser shows all the objects in your application in an expandable
hierarchy. It provides a view of the structure of the application and a quick way
to open any script in the Source view.

❖ To open a script from the Source Browser:

1 Double-click the object that the script belongs to or click the plus sign next
to the object to expand it.

CHAPTER 25 Testing and Debugging Applications

User’s Guide 657

2 Do one of the following:

• Double-click the script

• Select the script and select Open Source from the pop-up menu

• Drag the script onto a Source view

When you double-click or select Open Source, a new Source view opens
if there was none open. If several Source views are open, the script
displays in the view that was used last.

Using the Source History view

The Source History view lists all the scripts that have been opened in the
current debugging session. Use the same techniques as in the Source Browser
view to display a selected script in the Source view.

Source History limit
The Source History view shows up to 100 scripts and is not cleared at the end
of each debugging run. It is cleared when you close the debugger. You can also
clear the list from its pop-up menu.

Stepping through an application
When you have stopped execution at a breakpoint, you can use several
commands to step through your application code and use the views to examine
the effect of each statement. As you step through the code, the debugger views
change to reflect the current context of your application and a yellow arrow
cursor indicates the next statement to be executed.

Updating the Source view
When the context of your application changes to another script, the Source
view is updated with the new context. If you have multiple Source views open,
only the first one opened is updated.

Single-stepping
through an application

You can use either Step In or Step Over to step through an application one
statement at a time. They have the same result except when the next statement
contains a call to a function. Use Step In if you want to step into a function and
examine the effects of each statement in the function. Use Step Over to execute
the function as a single statement.

Debugging an application

658 PocketBuilder

❖ To step through an application entering functions:

• Click the Step In button in the PainterBar, or select Debug>Step In from
the menu bar

❖ To step through an application without entering functions:

• Click the Step Over button in the PainterBar, or select Debug>Step Over
from the menu bar

Stepping out of a
function

If you step into a function where you do not need to step into each statement,
use Step Out to continue execution until the function returns.

❖ To step out of a function:

• Click the Step Out button in the PainterBar, or select Debug>Step Out
from the menu bar

Stepping through
multiple statements

As you step through an application, you might reach sections of code that you
are not interested in examining closely. The code might contain a large loop, or
it might be well-tested code that you are confident is free of errors. You can use
Run To Cursor to select a statement further down in a script or in a subsequent
script where you want execution to stop.

❖ To step through multiple statements:

1 Click on the line in the script where you want to resume single stepping.

2 Click the Run To Cursor button in the PainterBar, or select Debug>Run To
Cursor from the menu bar.

PocketBuilder executes all intermediate statements and the yellow arrow
cursor displays at the line where you set the cursor.

Bypassing statements You can use Set Next Statement to bypass a section of code that contains a bug,
or to test part of an application using specific values for variables. Execution
continues from the statement where you place the cursor. Be cautious when you
use Set Next Statement, because results might be unpredictable if, for example,
you skip code that initializes a variable.

❖ To set the next statement to be executed:

1 Click on the line in the script where you want to continue execution.

2 Click the Set Next Statement button in the PainterBar, or select
Debug>Set Next Statement from the menu bar.

3 If necessary, change the values of variables.

4 Continue execution using Continue, Step In, or Step Over.

CHAPTER 25 Testing and Debugging Applications

User’s Guide 659

If you select Continue, PocketBuilder begins execution at the statement
you specified and continues to the next breakpoint. If you select Step In or
Step Over, PocketBuilder sets the next statement and displays the yellow
arrow cursor at the line where you set the cursor.

Changing a variable's
value

As you step through the application, you can change the values of variables that
are in scope. You might want to do this to examine different flows through the
application, to simulate a condition that is difficult to reach in normal testing,
or if you are skipping code that sets a variable's value.

Limitations
You cannot change the values of enumerated variables.

❖ To change the value of a variable:

1 Select the variable in the Variables view or the Watch view.

2 From the pop-up menu, select Edit Variable.

3 Type a value for the variable or select the Null check box and click OK.

The value you enter must conform to the type of the variable. If the
variable is a string, do not enclose the string in quotes. When you continue
execution, the new value is used.

Fixing your code If you find an error in a script or function during a debugging session, you must
close the debugger before you fix it. After you have fixed the problem, you can
reopen the debugger and run the application again in debug mode. The
breakpoints and watchpoints set in your last session are still defined.

Debugging windows opened as local variables
One way to open a window is by declaring a local variable of type window and
opening it through a string. For example:

window mywin
string named_window
named_window = sle_1.Text
Open(mywin, named_window)

The problem Normally, you cannot debug windows opened this way after the script ends
because the local variable (mywin in the preceding script) goes out of scope
when the script ends.

Debugging an application

660 PocketBuilder

The solution If you want to debug windows opened this way, you can declare a global
variable of type window and assign it the local variable. If, for example, you
declare GlobalWindow as a global variable of type window, you could add the
following line to the end of the preceding script:

GlobalWindow = mywin

You can look at and modify the opened window through the global variable.
When you have finished debugging the window, you can remove the global
variable and the statement assigning the local to the global.

Just-in-time debugging
If you are running your application in test mode (using the Run button) and you
notice that the application is behaving incorrectly, just-in-time debugging lets
you switch to debug mode without terminating the application.

When you open the debugger while running an application on the desktop, the
application does not stop executing. The Source, Variables, Call Stack, and
Objects in Memory views are all empty because the debugger does not have
any context. To suspend execution and examine the context in a problem area,
open an appropriate script and set breakpoints, then initiate the action that calls
the script.

If just-in-time debugging is enabled and a system error occurs while an
application is running in test mode, the debugger opens automatically, showing
the context where the error occurred.

You can also use the DebugBreak function to break into the debugger.

You must enable just-in-time debugging before you run your application to
take advantage of this feature.

❖ To enable just-in-time debugging:

1 Select Tools>System Options.

2 Check the Just In Time Debugging check box and click OK.

❖ To debug an application while running in test mode:

1 Enable just-in-time debugging.

2 Run the application on the desktop.

3 Click the minimized PocketBuilder icon on the Windows Taskbar.

4 Click the Debug button in the dialog box that displays.

CHAPTER 25 Testing and Debugging Applications

User’s Guide 661

5 Open a script in the Source view and set breakpoints.

The application is suspended when it hits a breakpoint and the Source,
Variable, Call Stack, and Objects in Memory views show the current
context. You can now debug the application.

Generating a trace file without timing information
If you want to generate an activity log with no timing information in a text file,
you can turn on PKDebug tracing in the System Options dialog box. The
PKDebug trace file contains a log showing which object functions and
instructions and system DLL functions were executed in chronological order.

❖ To generate a simple trace file:

1 Select Tools>System Options and check the Enable PKDebug Tracing
check box.

2 Check the Prompt Before OverWriting PKDebug Output File box if you
want to retain existing trace output when you run or debug the application.

3 (Optional) Specify a pathname for the PKDebug output file.

4 Run your application.

If you do not check the Prompt Before OverWriting PKDebug Output File box,
PocketBuilder overwrites the existing trace file every time you run the
application or click the Start button in the debugger. If you check the box, it
displays a response window. You can choose to overwrite the file, append new
trace output to the existing file, or cancel the run or debug session.

If you want to retain the trace file, save it with a different name before running
the application, or specify a new file name in the System Options dialog box.

If you do not specify an output file path, PocketBuilder creates an output file
in the same directory as the PocketBuilder executable file. The output file has
the same name as the PocketBuilder executable with the extension DBG. If you
do not have write permission to this directory, you must specify a value for the
output file path.

Turning PKDebug off
Running your application with PKDebug on will slow down execution. Be sure
to clear the Enable PKDebug Tracing check box on the System Options dialog
box if you do not need this trace information.

Testing an application on the desktop

662 PocketBuilder

Testing an application on the desktop
In addition to debugging an application, you can run it on the desktop in test
mode. In test mode, the application responds to user interaction and continues
to run until you exit the application or a runtime error occurs. You can rely on
the default runtime error reporting by PocketBuilder or write a script that
specifies your own error processing.

Running the application on the desktop

❖ To run an application on the desktop:

• Do one of the following:

• In the System Tree, highlight a target and select Run from the pop-up
menu

• Click the Run or the Select and Run button on the PowerBar

• Select Run>Run or Run>Select and Run from the menu bar

The Run button runs the last run or debugged target. The name of the
current target is displayed in the Run button tool tip. The Select and Run
button opens a dialog box that lets you select the target to run.

PocketBuilder becomes minimized and a button displays on the Taskbar.
Your application executes.

❖ To stop a running application:

• End the application normally, or double-click the minimized
PocketBuilder icon to open a response window from which you can
terminate the application.

Handling errors during execution
A serious error during execution (such as attempting to access a window that
has not been opened) will trigger the SystemError event in the Application
object if you have not added exception handling code to take care of the error.

If there is no
SystemError script

If you do not write a SystemError script to handle these errors, PocketBuilder
displays a message box containing the following information:

• The number and text of the error message

CHAPTER 25 Testing and Debugging Applications

User’s Guide 663

• The line number, event, and object in which the error occurred

There is also an OK button that closes the message box and stops the
application.

If there is a
SystemError script

If there is a script for the SystemError event, PocketBuilder executes the script
and does not display the message box. Whether or not you have added
TRY/CATCH blocks to your code to trap errors, it is a good idea to build an
application-level script for the SystemError event to trap and process any
runtime errors that have not been handled, as described in “Using the Error
object” next.

For more information about handling exceptions, see the Resource Guide.

Using the Error object In the script for the SystemError event, you can access the built-in Error object
to determine which error occurred and where it occurred. The Error object
contains the properties shown in Table 25-4.

Table 25-4: Properties of the Error object

Defining your own Error object
You can customize your own version of the Error object by defining a class
user object inherited from the built-in Error object. You can add properties and
define object-level functions for your Error object to allow for additional
processing. In the Application painter, you can then specify that you want to
use your user object inherited from Error as the global Error object in your
application. For more information, see “Building a standard class user object”
on page 312.

Runtime error
numbers

Table 25-5 lists the runtime error numbers returned in the Number property of
the Error object and the meaning of each number.

Property Data type Description

Number Integer Identifies the error.

Text String Contains the text of the error message.

WindowMenu String Contains the name of the window or menu in
which the error occurred.

Object String Contains the name of the object in which the
error occurred. If the error occurred in a window
or menu, the Object property will be the same as
the WindowMenu property.

ObjectEvent String Contains the event for which the error occurred.

Line Integer Identifies the line in the script at which the error
occurred.

Testing an application on the desktop

664 PocketBuilder

Table 25-5: Runtime errors

Number Meaning

1 Divide by zero.

2 Null object reference.

3 Array boundary exceeded.

4 Enumerated value is out of range for function.

5 Negative value encountered in function.

6 Invalid DataWindow row/column specified.

7 Unresolvable external when linking reference.

8 Reference of array with null subscript.

9 DLL function not found in current application.

10 Unsupported argument type in DLL function.

11 Object file is out of date and must be converted to current version.

12 DataWindow column type does not match GetItem type.

13 Unresolved property reference.

14 Error opening DLL library for external function.

15 Error calling external function name.

16 Maximum string size exceeded.

17 DataWindow referenced in DataWindow object does not exist.

18 Function does not return value.

19 Cannot convert name in Any variable to name.

20 Database command has not been successfully prepared.

21 Bad runtime function reference.

22 Unknown object type.

23 Cannot assign object of type name to variable of type name.

24 Function call does not match its definition.

25 Double or Real expression has overflowed.

26 Field name assignment not supported.

27 Cannot take a negative to a noninteger power.

29 Nonarray expected in ANY variable.

30 External object does not support data type name.

31 External object data type name not supported.

32 Name not found calling external object function name.

33 Invalid parameter type calling external object function name.

34 Incorrect number of parameters calling external object function name.

35 Error calling external object function name.

36 Name not found accessing external object property name.

37 Type mismatch accessing external object property name.

CHAPTER 25 Testing and Debugging Applications

User’s Guide 665

38 Incorrect number of subscripts accessing external object property name.

39 Error accessing external object property name.

40 Mismatched ANY data types in expression.

41 Illegal ANY data type in expression.

42 Specified argument type differs from required argument type at runtime
in DLL function name.

43 Parent object does not exist.

44 Function has conflicting argument or return type in ancestor.

45 Internal table overflow; maximum number of objects exceeded.

46 Null object reference cannot be assigned or passed to a variable of this
type.

47 Array expected in ANY variable.

48 Size mismatch in array to object conversion.

49 Type mismatch in array to object conversion.

51 Bad argument list for function/event.

58 Object instance does not exist.

59 Invalid column range.

60 Invalid row range.

61 Invalid conversion of number dimensional array to object.

62 Server busy.

63 Function/event with no return value used in expression.

64 Object array expected in left side of assignment.

65 Dynamic function not found. Possible causes include: pass by
value/reference mismatch.

66 Invalid subscript for array index operation.

67 NULL object reference cannot be assigned or passed to an
autoinstantiate.

68 NULL object reference cannot be passed to external DLL function
name.

69 Function name cannot be called from a secured runtime session.

70 External DLL function name cannot be called from a secured runtime
session.

71 General protection fault occurred.

72 name failed with an operating system error code of number.

73 Reference parameters cannot be passed to an asynchronous
shared/remote object method.

74 Reference parameters cannot be passed to a shared object method.

76 Passing NULL as a parameter to external function name.

Number Meaning

Testing an application on the desktop

666 PocketBuilder

Some errors terminate the application immediately. They do not trigger the
SystemError event.

SystemError event
scripts

A typical script for the SystemError event includes a CHOOSE CASE control
structure to handle specific errors. To stop the application, include a HALT
statement in the SystemError script.

Caution
You can continue your application after a SystemError event, but doing so can
cause unpredictable and undesirable effects. Where the application will resume
depends on what caused the error. Typically, you are better off reporting the
problem to the user, then stopping the application with HALT.

❖ To test the SystemError event script:

1 Assign values to the properties of the Error object with the PopulateError
function.

2 Call the SignalError function to trigger the SystemError event.

The script for the SystemError event executes.

77 Object passed to shared/remote object method is not a nonvisual user
object.

79 The argument to name must be an array.

81 Function argument file creator must be a four character string.

82 Function argument file type must be a four character string.

83 Attempt to invoke a function or event that is not accessible.

84 Wrong number of arguments passed to function/event call.

85 Error in reference argument passed in function/event call.

86 Ambiguous function/event reference.

88 Cannot ask for ClassDefinition Information on open painter: name.

90 Cannot assign array of type name to variable of type array of name.

91 Cannot convert name in Any variable to name. Possible cause
uninitialized value.

92 Required property name is missing.

96 Exception Thrown has not been handled.

97 Cannot save name because of a circular reference problem.

98 Obsolete object reference.

Number Meaning

User’s Guide 667

C H A P T E R 2 6 Packaging and Distributing an
Application

About this chapter This chapter describes how to create an executable version of your target
and prepare a completed application for distribution to users.

Contents

Packaging an application
An application that you create in PocketBuilder includes one or more of
the following pieces:

• An executable file (always required)

• Dynamic libraries

• Resources

To decide which of these pieces are required for your particular project,
you need to know something about them.

Topic Page

Packaging an application 667

Using dynamic libraries 670

Distributing resources 671

Creating a project 676

Defining the project 677

Building and deploying the project 681

Signing applications and CAB files 689

Delivering your application to end users 693

Packaging an application

668 PocketBuilder

The executable file The executable file contains:

• Code that enables your application to run on the target platform.

• Compiled versions of objects from your application’s libraries.

• Resources that your application uses, such as bitmaps.

You can choose to put all of your objects in the executable file or to split your
application into one executable file and one or more dynamic library (PKD)
files that contain objects that are linked at runtime.

About the Project painter
You use the Project painter to create an executable version of your target and a
resource file that you can deploy to PocketPC devices, Smartphone devices,
emulators, or the desktop. The Project painter allows you to streamline the
generation of the files your target needs and to rebuild the target easily after
you make changes to target objects. For how to create a new project using the
Project painter, see “Creating a project” on page 676.

Dynamic libraries You can deliver some (or even all) of the objects in your application in one or
more dynamic libraries. Like executable files, dynamic libraries contain only
compiled versions of objects, and they can include resources.

You can put any resources needed by a PKD’s objects in the PKD file itself, so
that the dynamic library is a self-contained unit that can easily be reused. If
performance is your main concern, however, be aware that resources are loaded
faster at runtime when they are included in the executable file.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 669

Table 26-1 next lists several reasons why you might want to use dynamic
libraries.

Table 26-1: Reasons to use dynamic libraries

For more information about building dynamic libraries, see “Using dynamic
libraries” on page 670.

Resources Window, user, and DataWindow objects in a PocketBuilder application can use
BMP, GIF, and ICO files as resources. These resources can be delivered with
the application in several ways. For more information, see “Distributing
resources” on page 671.

Reason Details

Modularity They let you break up your application into smaller, more modular
files that are easier to manage.

Maintainability They enable you to deliver application components separately. To
provide users with a bug fix, you can often give them the particular
dynamic library that was affected.

Reusability They make it possible for multiple applications to reuse the same
components, because dynamic libraries can be shared among
applications as well as among users.

Flexibility They enable you to provide your application with objects that it
references only dynamically at runtime (such as a window object
referenced through a string variable). You cannot put such objects
in your executable file (unless they are DataWindow objects).

Efficiency They can help a large application use memory efficiently because:

• PocketBuilder does not load an entire dynamic library into
memory at once. Instead, it loads individual objects from the
dynamic library when needed.

• Your executable file can remain small, making it faster to load
and less obtrusive.

Using dynamic libraries

670 PocketBuilder

Using dynamic libraries
About dynamic
libraries

You can store the objects used in your PocketBuilder application in more than
one library and, when you run the application, dynamically load any objects
that are not contained in the application's executable file. This allows you to
break the application into smaller units that are easier to manage and makes the
executable file smaller. You do this by using dynamic libraries. PocketBuilder
builds PocketBuilder dynamic libraries (PKD files).

If you decide to use a dynamic library, you need to tell PocketBuilder which
PocketBuilder library (PKL file) to create it from. PocketBuilder then places
compiled versions of all objects from that PKL file into a PKD file with the
same name. For example, the dynamic library built from test.pkl is named
test.pkd.

Reducing the size of
dynamic libraries

When PocketBuilder builds a dynamic library, it copies the compiled versions
of all objects from the source PKL file into the dynamic library.

The easiest way to specify source libraries is simply to use your standard
PocketBuilder libraries as source libraries. However, using this technique can
make your dynamic libraries larger than they need to be, because they include
all objects from the source library, not just the ones used in your application.
You can create a PocketBuilder library that contains only the objects that you
want in a dynamic library.

❖ To create a source library to be used as a dynamic library:

1 In the Library painter, place all the objects that you want in the dynamic
library in one standard PKL file.

If you need to create a new PKL file, select Entry>Library>Create from
the menu bar, then drag or move the objects into the new library.

2 Make sure the application's library search path includes the new library.

Multiple dynamic libraries
You can use as many dynamic libraries as you want in an application. To do so,
create a separate PKL file source library for each of them.

Specifying the
dynamic libraries in
your project

When you define your project, you tell PocketBuilder which of the libraries in
the application's library search path will be dynamic by checking the PKD
check box next to the library name in the Project painter.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 671

Including additional
resources for a
dynamic library

When building a dynamic library, PocketBuilder does not inspect the objects;
it simply copies the compiled form of the objects into the dynamic library.
Therefore, if any of the objects in the library use resources (pictures and
icons)—either specified in a painter or assigned dynamically in a script—and
you do not want to provide these resources separately, you must list the
resources in a PKR file. Doing so enables PocketBuilder to include the
resources in the dynamic library when it builds it.

❖ To reference additional resources:

1 List the resources in a PKR file.

How to list the resources is described in “Distributing resources” next.

2 Use the Resource File Name box in the Project painter workspace to
reference the PKR file in the dynamic library.

Distributing resources
You can choose to distribute resources (pictures and icons) separately or
include them in your executable file or dynamic library.

Including resources in
the executable file

Whenever you create an executable file, PocketBuilder automatically
examines the objects it places in that file to see if they explicitly reference any
resources. It then copies all such resources right into the executable file.

PocketBuilder does not automatically copy in resources that are dynamically
referenced (through string variables). To get such resources into the executable
file, you must use a resource (PKR) file. This is simply a text file in which you
list existing resources, including BMP, GIF, and ICO files.

Once you have a PKR file, you can tell PocketBuilder to read from it when
creating the executable file to determine which additional resources to copy in.
This might even include resources used by the objects in your dynamic
libraries, if you decide to put most or all resources in the executable file for
performance reasons.

Distributing resources

672 PocketBuilder

Including DataWindow objects
You might occasionally want to include a dynamically referenced
DataWindow object (one that your application knows about only through a
string variable) in the executable file you are creating. To do this, you must list
its name in a PKR file along with the names of the resources you want
PocketBuilder to copy into that executable file.

You do not need to do this when creating a dynamic library, because
PocketBuilder automatically includes every DataWindow object from the PKL
source library in the PKD file.

Including resources in
dynamic libraries

You might need to include resources directly in one or more dynamic libraries.
PocketBuilder does not automatically copy any resources into a dynamic
library that you create, even if they are explicitly referenced by objects in that
file. You need to create a PKR file that tells PocketBuilder which resources you
want in a particular PKD file.

Use a different PKR file for each dynamic library in which you want to include
resources. When appropriate, you can even use this approach to generate a
dynamic library that contains only resources and no objects. Simply start with
an empty PKL file as the source.

Delivering resources
as separate files

When you distribute an application, you can include the image files in addition
to the application’s executable file and any dynamic libraries. This can be
useful if you expect to revise some of them in the future. However, it requires
you to do some more work when you get ready to deliver your application,
because you will not be able to use the CAB files generated by the Project
painter without modification. For more information, see “Regenerating CAB
files” on page 696.

Keep in mind also that this is not the fastest approach at runtime, because it
requires more searching. Whenever your application needs a resource, it
searches the executable file and then the dynamic libraries. If the resource is
not found, the application searches for a separate file.

Make sure that your application can find where these separate files are stored;
otherwise, it cannot display the corresponding resources. If you plan to install
the files in a specific directory on the Pocket PC or Smartphone device, your
scripts must reference the files using that path.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 673

An example of delivering separate resources When a resource is
referenced at runtime and it has not been included in the executable file or in a
dynamic library, PocketBuilder looks for it in the device path provided for the
resource. In test mode, you need only make sure the referenced files are in your
machine’s search path, but in applications that you deploy to a Pocket PC or
Smartphone device, you must include the full path to the location where you
install the referenced files.

In test mode on the desktop, if the referenced file is in the search path at
runtime, the application can load it as needed. The desktop search path is as
follows: current directory, Windows directory, Windows System directory,
then all directories in the PATH environment variable.

Using PocketBuilder resource files
Instead of distributing resources separately, you can create a PKR file that lists
all dynamically assigned resources. A PKR file is a Unicode or ANSI text file
in which you list resource names (such as BMP, ICO, and GIF files) and
DataWindow objects. To create a PKR file, use a text editor. List the name of
each resource, one resource on each line, then save the list as a file with the
extension PKR. Here are the contents of a sample PKR file:

ct_graph.ico
document.ico
codes.ico
button.bmp
next1.bmp
prior1.bmp

PocketBuilder compiles the listed resources into the executable file or a
dynamic library file, so the resources are available directly at runtime.

Using DataWindow objects
If the objects in one PKL reference DataWindow objects (either statically or
dynamically) that are in a different PKL, you must either specify a
PocketBuilder resource file that includes the DataWindow objects, or define
the library that includes them as a PKD that you distribute with your
application. Unlike image files, you cannot distribute the objects separately.

When a resource such as a bitmap is referenced at runtime, PocketBuilder first
looks in the executable file for it. Failing that, it looks in the PKD files that are
defined for the application. Failing that, in test mode only (that is, on the
desktop), it looks in directories in the search path for the file.

Distributing resources

674 PocketBuilder

Using a resource file

❖ To use a PocketBuilder resource file:

1 Using a text editor, create a text file that lists all resource files referenced
dynamically in your application.

You must include the path of the file if it is not in the current directory. See
“Naming resources” next.

When creating a resource file for a dynamic library, list all resources used
by the dynamic library, not just those assigned dynamically in a script.

2 Specify the resource files in the Project painter. The executable file can
have a resource file attached to it, as can each of the dynamic libraries.

When PocketBuilder builds the project, it includes all resources specified
in the PKR file in the executable file or dynamic library. You do not have
to distribute your dynamically assigned resources separately; they are in
the application.

Naming resources If the resource file is in the current directory, you can simply list the file, such
as:

FROWN.BMP

If the resource file is in a different directory, include the path to the file, such as:

C:\BITMAPS\FROWN.BMP

If the reference in a script uses a path, you must specify the same path in the
PKR file. If the resource file is not qualified with a path in the script, it must
not be qualified in the PKR file.

Paths in PKR files and scripts must match exactly
The file name specified in the PKR file must exactly match the way the
resource is referenced in scripts.

For example, if the script reads:

p_logo.PictureName = "FROWN.BMP"

then the PKR file must read:

FROWN.BMP

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 675

If the PKR file says something like C:\MYAPP\FROWN.BMP and the script does
not specify the path, PocketBuilder cannot find the resource at runtime.

PocketBuilder does a simple string comparison at runtime. In the preceding
example, when PocketBuilder executes the script, it looks for the object
identified by the string “FROWN.BMP” in the executable file. It cannot find it,
because the resource is identified in the executable file by the string
“C:\MYAPP\FROWN.BMP”. In this case, the picture does not display at runtime;
the control is empty in the window.

Resources not deployed to a path on the device
The resources that you include in a PKR are built into the executable or PKD;
they are not deployed as separate files to the device or emulator. The fact that
there is no C: drive on the device does not matter. “C:\MYAPP\FROWN.BMP” is
simply a string that identifies the resource in the executable or PKD.

Including DataWindow
objects in a PKR file

To include a DataWindow object in the list, enter the name of the library (with
the extension PKL) followed by the DataWindow object name enclosed in
parentheses. For example, here is a sample PKR file that includes DataWindow
objects as well as other resources:

button.bmp
next1.bmp
prior1.bmp
logo.gif
dws.pkl(d_cust)
dws.pkl(d_custlist)

If the DataWindow library is not in the directory that is current when the
executable is built, fully qualify the reference in the PKR file. For example:
c:\myapp\sales.PKl(d_emplist).

Creating a project

676 PocketBuilder

Creating a project
You can create a new project in these ways:

Projects can be modified only in the Project painter
Unlike most other PowerBuilder objects, a project object cannot be edited in
the Source editor.

The following procedure describes how to create a new project from the
Project page.

❖ To create a new project object from the Project page:

1 Select File>New or click the New button in the PowerBar to open the New
dialog box.

2 Select the Project tab.

3 Select the Application Wizard or Application and click OK.

• If you selected the Application wizard, complete the wizard screens
to create a new project with the properties for which you are
prompted, and then click Finish

After you click Finish, the Project painter opens and displays your
selections. You can also open the project generated by the wizard at
any time to modify the properties you selected and build the project.

• If you selected Application, the Project painter opens so that you can
specify properties of the project object

After you close the Project painter, you can reopen the project from
the System Tree at any time, modify the properties you selected, and
deploy the project to the platform you select.

In the New dialog box Do this

Target page Use the PocketPC Application Creation wizard or the
Smartphone Application Creation wizard to help you
build an application from scratch

Project page Double-click the Application icon to open the project
painter where you can enter the required information
without being prompted or use the Application wizard to
help you set up a project object that will build an
executable and optional dynamic libraries

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 677

Defining the project
The Project painter allows you to streamline the generation of executable files
and dynamic libraries for executable applications.

Figure 26-1: Displaying project properties in the Project painter

When you build a project object, you specify the following components of your
application:

• Executable file name

• Which of the libraries you want to distribute as dynamic libraries

• Which PocketBuilder resource files (if any) should be used to build the
executable file and the dynamic libraries

Defining the project

678 PocketBuilder

• Which platform you want to deploy to and what directories you want to
use as your deployment directories

One platform per project
You can deploy your application to your desktop, a PocketPC device, a
PocketPC emulator, a Smartphone device, or a Smartphone emulator. You
can deploy to only one platform per project.

• Whether or not you want to select a certificate to use for signing your
application

• Which deployment options you want to use in your project

• Whether or not you want to select a certificate to use for signing your
application

• Version information for your application

• Whether or not you want to create a CAB file for distribution

Smartphone platforms
PocketBuilder uses the Microsoft Smartphone Cab Wizard (cabwizsp.exe)
to generate CAB files for the Smartphone. The wizard executable is
available in the Tools directory of the Smartphone SDK. You must place
this file in the PocketBuilder\Support\Cabwiz directory before you can
generate a CAB file for Smartphone platforms.

Smartphone SDK downloads are available from links on the Microsoft Web
site at http://msdn.microsoft.com/mobility/downloads/sdks/.

• Whether or not you want to select a certificate to use for signing the
CAB file

Pocket PC platforms
On the Pocket PC, you can sign only the application file itself. The
Pocket PC platform currently does not support CAB file signing.

After you create a project, you might need to update it because your library list
has changed or because you want to change your compilation options.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 679

❖ To define a project:

1 Open a project in the Project painter by:

• Select File>Open from the PocketBuilder menu and then select the
target, the library, the object type (Project), and the existing project
that you want to modify

• Double-click a project in the System Tree

2 Specify or modify options as needed.

If you opened an existing project or a project created using the wizard,
previously selected options display in the workspace. For information
about each option, see “Executable application project options” next.

3 When you have finished defining the project object, save the object by
selecting File>Save from the menu bar.

PocketBuilder saves the project as an object in the specified library. Like
other objects, projects are listed in the System Tree and the Library painter.

Executable application
project options

Table 26-2 describes each of the options you can specify in the Project painter
for executable applications. You can also specify many of these options in the
Application wizard in the Project page of the New dialog box.

Table 26-2: Project options

Option What you specify or select

Executable
File Name

Specify a name for the executable. The name must have the
extension EXE.

Resource File
Name

(Optional) Specify a PocketBuilder resource file (PKR) for your
executable if you dynamically reference resources (such as bitmaps
and icons) in your scripts and you want the resources included in
the executable file instead of having to distribute them separately.

You can type the name of a resource file in the box or click the
button next to the box to browse your directories for the resource
file you want to include. For more information, see “Distributing
resources” on page 671.

Sign the
application

(Usually signed; required to be signed by some operators such as
AT&T and Orange) Specify that you want to sign the application
and select a certificate to use by clicking the Application Certificate
button.

Defining the project

680 PocketBuilder

Platform to
Build

Select the platform for your application in the Select a Build
Platform dialog box; you can build and deploy to only one platform
for a given project. Desktop, PocketPC Device (ARM), and
Smartphone Device (ARM) are always listed. If you have installed
emulators on your machine, the emulators are also listed as
available platforms. If emulators are installed, you can select an
emulator and click the Configure button to display the Windows
CE Platform Manager Configuration dialog box, allowing you to
add or test connections to additional devices and emulators.

Build
Directory

Select a directory where you want to build your application. The
default build directory is (.), which is the directory that contains the
main PocketBuilder application library.

Delete
Temporary
Files After
Build

Select the check box to delete temporary files after the build. The
files include the executable and dynamic libraries deployed to the
device.

Target
Directory

Select a directory on the device or emulator where you want to
deploy your application. The default deployment directory for a
Pocket PC device or emulator is \Program Files. The default
deployment directory for a Smartphone device or emulator is
\Storage\Program Files.

Deploy After
Build

Select this to deploy the application after the build is complete. If
the check box is not selected, then using the Deploy menu item for
a target or using the Deploy PowerBar button results in only a
build, not a deploy.

Launch
Application

Select this if you want to launch the application immediately upon
deployment to a device or emulator.

Add Shortcut
to
Start Menu

(Not an option for the Desktop platform) Select to add a Start menu
item for the deployed application on the device or emulator. For a
Pocket PC, the path is Start>Programs. For a Smartphone, the path
is Start>Accessories. You can override the default directory by
changing the DeviceShortcutPath entry in the PocketBuilder
registry.

Deploy Today
Item

(Not an option for the Desktop platform or emulators) Select to
deploy a custom item to the Today screen of a device. You enter the
Today item properties on the Today Item page of the Properties
view for the Application object. For more information, see
“Application object properties for a custom Today item” on page
66.

Option What you specify or select

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 681

Building and deploying the project
Once you have completed development and defined your project, you can build
and deploy the project to create the executable files and all specified dynamic
libraries. You can build and deploy your project whenever you make changes
to the objects and want to test another version of your application.

This section describes building a single project in the Project painter. You can
build all the targets in your workspace at any time using buttons on the
PowerBar, pop-up menus in the System Tree, or a command line. For more
information, see the section on building workspaces in Chapter 1, “Working
with PocketBuilder.”

Create CAB
File for
Distribution

(Not an option for the Desktop platform) Select this if you want
PocketBuilder to build a CAB file for deployment to a device or
emulator. For more information about building and distributing
CAB files, see “Delivering your application to end users” on page
693.

Sign the CAB
File

(Not an option for the Desktop or Pocket PC platform) Specify that
you want to sign the CAB file and select a certificate to use by
clicking the CAB Certificate button. For more information about
signing CAB files, see “Signing an application and CAB file” on
page 693.

Version Specify your own values for the Company Name, Product Name,
Description, Copyright, and Version fields associated with the
executable file. These values become part of the Version resource
associated with the executable file, and—if you deploy to the
desktop—most of these values display on the Version tab page of
the Properties dialog box for the file in Windows Explorer. The
Company Name and Product Name fields are placed in the CAB
file for your own reference.

PKD Select this check box to define a library as a dynamic library to be
distributed with your application.

Resource File
Name

Specify a resource file for a dynamic library if library objects use
resources (such as bitmaps and icons) and you want to include the
resources in the dynamic library instead of having to distribute
them separately. The file name cannot be specified in the wizard.

Option What you specify or select

Building and deploying the project

682 PocketBuilder

❖ To build and deploy a project:

1 Open a project you built in the Project painter.

2 Click the Deploy button in the PainterBar, or select Design>Deploy
Project from the menu bar.

If the target’s library list has changed
When you click Build, PocketBuilder checks your target’s library list. If it
has changed since you defined your project, PocketBuilder updates the
Project painter workspace with the new library list. Make whatever
changes you need in the workspace, then save the project and click Build
again.

PocketBuilder builds the executable and all specified dynamic libraries.

The next two sections describe in detail how PocketBuilder builds the project
and finds the objects used in the target.

When PocketBuilder has built the target, you can check which objects are
included in the target. See “Listing the objects in a project” on page 687.

How PocketBuilder builds the project
When PocketBuilder builds your application project:

1 PocketBuilder regenerates all the objects in the libraries.

2 If you selected Build CAB File for Pocket PC Distribution, PocketBuilder
creates a CAB file for the deployment targets you selected.

In the process of building a CAB file, PocketBuilder also creates INF,
BAT, DAT, and LOG files. For a detailed description of what gets
generated, see the information on packaging an application for distribution
in “Delivering your application to end users” on page 693. For a
discussion of what to do if errors occur during CAB file generation, see
“Troubleshooting errors during CAB file generation” on page 687.

3 To create the executable file you specified, PocketBuilder searches
through your target. It copies—into the executable file—the compiled
versions of referenced objects from the libraries in the target's library
search path that are not specified as dynamic libraries. For more details,
see “How PocketBuilder searches for objects” next.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 683

4 PocketBuilder creates a dynamic library for each of the libraries you
specified for the target and maintains a list of these library files.
PocketBuilder maintains the unqualified file names of the dynamic library
files; it does not save the path name.

PocketBuilder does not copy objects that are not referenced in the application
to the executable file, nor does it copy objects to the executable file from
libraries you declared to be dynamic libraries. These objects are linked to the
target at runtime and are not stored in the executable file.

What happens during
execution

When an object such as a window is referenced in the application,
PocketBuilder first looks in the executable file for the object. If it does not find
it there, it looks in the dynamic library files that are defined for the target. For
example, if you specified that a dynamic library should be generated from
test.pkl, PocketBuilder looks for test.pkd at runtime.

The dynamic library files must be in the \Windows path on the device or in the
directory where you deploy the project EXE. If PocketBuilder cannot find the
object in any of the dynamic library files, it reports a runtime error.

How PocketBuilder searches for objects
When it searches through a target, PocketBuilder does not find all the objects
that are used in your target and copy them to the executable file. This section
describes which objects it finds and copies, and which it does not.

Which objects are copied to the executable file

PocketBuilder finds and copies the following objects to the executable file:

Objects that are directly referenced in scripts
Objects that are referenced in painters

Objects that are
directly referenced in
scripts

PocketBuilder copies objects directly referenced in scripts to the executable
file. For example:

• If a window script contains the following statement, w_continue is copied
to the executable file:

Open(w_continue)

• If a menu item script refers to the global function f_calc, f_calc is copied to
the executable file:

f_calc(EnteredValue)

Building and deploying the project

684 PocketBuilder

• If a window uses a pop-up menu using the following statements, m_new is
copied to the executable file:

m_new mymenu
mymenu = create m_new
mymenu.m_file.PopMenu(PointerX(), PointerY())

Objects that are
referenced in painters

PocketBuilder copies objects referenced in painters to the executable file. For
example:

• If a menu is associated with a window in the Window painter, the menu is
copied to the executable file.

• If a DataWindow object is associated with a DataWindow control in the
Window painter, the DataWindow object is copied to the executable file.

• If a window contains a custom user object that includes another user
object, both user objects are copied.

• If a resource is assigned in a painter, it is copied to the executable file. For
example, when you place a Picture control in a window in the Window
painter, the image you associate with it is copied.

Which objects are not copied to the executable file

When it creates the executable file, PocketBuilder can identify the associations
you made in the painter, because those references are saved with the object's
definition in the library. PocketBuilder also identifies direct references in
scripts, because the compiler saves this information.

However, PocketBuilder cannot identify objects that are referenced
dynamically through string variables. To do so, it would have to read through
all the scripts and process all assignment statements to uncover all the
referenced objects. The following examples show objects that are not copied to
the executable file:

• If the DataWindow object d_emp is associated with a DataWindow control
dynamically using the following statement, d_emp is not copied:

dw_info.DataObject = "d_emp"

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 685

• The bitmap files assigned dynamically in the following script are not
copied:

IF Balance < 0 THEN
p_logo.PictureName = "frown.bmp"

ELSE
p_logo.PictureName = "smile.bmp"

END IF

• The reference to window w_go in a string variable in the following
window script is not found by PocketBuilder when building the executable
file, so w_go is not copied to the executable file:

window mywin
string winname = "w_go"
Open(mywin,winname)

Which objects are not copied to the dynamic libraries

When it builds a dynamic library, PocketBuilder does not inspect the objects;
it simply copies the compiled form of the objects. Therefore, the DataWindow
objects and resources (such as GIF files) used by any of the objects in the
library—either specified in a painter or assigned dynamically in a script—are
not copied into the dynamic library.

For example, suppose test_dw.pkl contains DataWindow objects and test_w.pkl
contains window objects that reference them, either statically or dynamically.
If you build a dynamic library from test_w.pkl, you must either include the
DataWindow objects in a PocketBuilder resource file that is referenced by
test_w.pkl, or build a dynamic library from test_dw.pkl, as described in “How
to include the objects that were not found” next.

How to include the objects that were not found

If you use only the types of references that are included in the EXE or PKD
files built by PocketBuilder (as described in “Which objects are copied to the
executable file” on page 683), you do not need to do anything else to ensure
that all objects get distributed: they are all built into the executable file or its
dynamic libraries.

If you use the types of references described in the two previous sections
(“Which objects are not copied to the executable file” on page 684 and
“Which objects are not copied to the dynamic libraries” on page 685), you
must include the objects that were not found, using the methods that follow.

Building and deploying the project

686 PocketBuilder

Distributing graphic
objects

For graphic objects in BMP, ICO, or GIF files, you have two choices:

• Distribute them separately

• Include them in a PKR file, then build an executable file or dynamic
PocketBuilder library that uses the resource file

Graphic objects in JPEG files cannot be included in a PKR file and must be
distributed separately if they are not built into the executable file. Graphic
objects in PNG files cannot be included in a PKR file or an executable file, and
can only be used if they are distributed separately.

Distributing
DataWindow objects

For DataWindow objects, you have two choices:

• Include them in a PKR, then build an executable file or dynamic
PocketBuilder library that uses the resource file

• Build and distribute a dynamic library from the PKL that contains the
DataWindow objects

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 687

Distributing other
objects

All other objects (such as windows referenced only in string variables) must be
included directly in a dynamic library.

Table 26-3 summarizes resource distribution possibilities.

Table 26-3: Summary: options for distributing resources

Listing the objects in a project
After you have built your project, you can display a list of the objects in the
project from the Project painter, with three columns that show:

• The source library that contains the object

• The name of the object

• The type of the object

The report lists the objects that PocketBuilder placed in the executable file and
the dynamic libraries it created when you built the project.

You can resize and reorder columns in the report just as in grid DataWindow
objects. You can also sort the rows and print the report using the Sort and Print
buttons.

❖ To list the objects in a project:

1 Build your project.

2 Select Design>List Objects from the Project painter menu bar.

Troubleshooting errors during CAB file generation
After you build a project with the Build CAB File for Pocket PC Distribution
option, you can check the PocketBuilder Output window or the Err.log file for
a description of any errors in the build process.

Distribution method
Graphic
objects

DataWindow
objects

Other
objects

As a separate file Yes No No

In an executable or dynamic
library that references a PKR

Yes Yes No

Directly in a dynamic library No Yes Yes

Building and deploying the project

688 PocketBuilder

If something goes wrong in the creation of the INF file or the BAT file, or in
executing the cabwiz.exe to create the final CAB files, you are likely to see the
following message in the Output window:

CAB Information File Generation Error

If no error messages display in the Output window, but a CAB file is still not
generated, the error might be due to one of the following reasons:

• The generated INF file is somehow incorrect

• The generated BAT file is somehow incorrect

• The cabwiz.exe, makecab.exe, or cabwizsp.exe files are corrupted or
missing from the PocketBuilder support\cabwiz directory

You can check the INF and BAT files in any text editor and you can reinstall
the support\cabwiz directory from the PocketBuilder setup program.

For deployment to a Smartphone device, PocketBuilder uses the Microsoft
Smartphone Cab Wizard (cabwizsp.exe) to generate CAB files. You must place
this file in the support\cabwiz directory before you can generate a CAB file for
these platforms.

The wizard executable is available in the Tools directory of the Smartphone
SDK. Smartphone SDK downloads are available from links on the Microsoft
Web site at http://msdn.microsoft.com/mobility/downloads/sdks/.

If you still cannot generate a CAB file from the PocketBuilder project, you
should clear the Create CAB File for Distribution check box in the Project
painter.

The Output window displays the following message when CAB file generation
is successful:

CAB Information File Generation Starting
Created: D:\DirectoryName\ExeName.inf
Created: D:\DirectoryName\ExeName_makecab.bat
CAB File(s) Generated in directory: D:\DirectoryName
------- Finished Deploy of ExeName_test

In this output message example, DirectoryName is the name of the project
directory and ExeName is the name of the project executable.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 689

Signing applications and CAB files
A certificate is a confirmation of your identity and contains information used
to protect data or to establish secure network connections. A certificate store is
the system area where certificates are kept.

The Project painter lets you sign each application and CAB file that you deploy
with a certificate that you select from your desktop certificate store. Signing
ensures that the application and CAB file are secure.

For the digital signing process, PocketBuilder uses an internal facility.
However, for manually signing your files, such as after using a batch file to
create a CAB file, you can use the Code Signing Wizard on the Tool tab of the
New dialog box in PocketBuilder.

Pocket PC platforms
On the Pocket PC, you can sign only the application file itself. CAB file
signing is not currently supported on this platform.

Security concepts
Authentication and
authorization

Authentication means that the identity of an entity (a person, client, or server)
has been verified to either a server or a client. Authorization means that an
entity has permission to use a resource or file. An entity must be authenticated
before it can be authorized to use a resource or file.

Public-key
cryptography

To maintain secure communications between a client and host, public key
cryptography techniques are used for:

• Authentication Verifying the identity of both the client and the server.
Public-key cryptography techniques use digitally signed certificates that
identify network entities.

• Encryption Modifying data so that it can be read only by the party for
whom it is intended. When used with a user’s private key, certificates
encrypt and decrypt messages.

Unencrypted messages are known as plain text. Encoding the contents of a
message is called encryption. This encrypted message is the cipher text.
Decryption is the process of retrieving the plain text from the cipher text. A key
is usually required to perform encryption and decryption.

Signing applications and CAB files

690 PocketBuilder

Public key encryption uses a pair of keys for encryption and decryption. One
key is secret (the private key) and the other key is distributed (the public key).
You send your digitally signed public key (certificate) to anyone with whom
you wish to communicate using encoded data.

Messages that are sent to you are encrypted with your distributed public key
and decrypted by your private key, while messages sent by you are encrypted
with your private key and decrypted with your distributed public key. RSA
encryption is a widely used public-key encryption system.

Public-key certificates Public key certificates provide a way to identify and authenticate clients and
servers on the Internet. Public key certificates are administered and issued by
a third party known as a certification authority (CA). A subject (individual,
system, or other entity on the network) uses a program to generate a key pair
and submits the public key to the CA along with identifying information (such
as name, organization, e-mail address, and so on). This is known as a certificate
request. The CA issues a digitally signed certificate. A digital signature is a
block of data that is created using a private key.

The CA ties the certificate owner to the public key within the certificate. The
subject then uses the certificate, along with the private key to establish identity.
Once this is done, whomever the subject is communicating with knows that a
third party has vouched for his identity.

This process requires three steps:

1 A client submits a request for, and receives, a certificate from the CA.

2 An administrator installs the CA’s certificate on the server and marks it
trusted. Any client certificate signed by the same CA will now be trusted
and accepted by the server.

3 The client supplies its certificate and negotiates a secure connection with
the server.

SSL, HTTPS, and
IIOPS

SSL provides security for network connections. Specifically, SSL uses
public-key encryption to provide:

• Client and server authentication using certificates

• Encryption to prevent third parties from understanding transmitted data

• Integrity checking to detect whether transmitted data has been altered

Packets for other protocols can be embedded inside SSL packets. A connection
in which the application protocol is embedded inside SSL is an SSL-tunnelled
connection.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 691

Both IIOP and HTTP can be tunnelled inside SSL, which means that these
protocols take advantage of SSL security features. For example, HTTPS
connections embed HTTP packets inside SSL packets. Your Web browser
creates a secure HTTP connection any time you load a page from a URL that
begins with https.

Managing certificates
The PocketBuilder Certificate Manager lets you manage certificates that you
create and certificates created by other people, intermediate certificate
authorities, and trusted root certification authorities.

The PocketBuilder setup program installs several test certificates and packages
in the PocketBuilder/Support/TestCertificates directory. You can import these
certificates to your system certificate store. You can also export certificates and
delete certificates you no longer need.

❖ To run the PocketBuilder Certificate Manager:

• Select File>New and in the Tool tab page, select Manage Certificates.

Signing applications and CAB files

692 PocketBuilder

Importing certificates
to the certificate store

The Certificate Import Wizard helps you copy certificates, certificate trust lists,
and certificate revocation lists from your disk to a certificate store.

❖ To import the test certificates:

1 Select File>New and in the Tool tab page, select Manage Certificates.

2 Click the Import button to start the Certificate Import wizard and then
click Next.

3 To select the test certificate file you want to import, click Browse and then
navigate to the PocketBuilder/Support/TestCertificates directory.

4 In the Files of Type drop-down list, select Personal Information Exchange
(*.pfx, *.p12), then select the path to the PKTestCert_Root.PFX file in the
Test Certificates directory, and then click Next.

5 Enter sybase for the private key password and click Next.

6 For the PKTestCert_Root certificate, specify the certificate store by
selecting the Place all certificates in the following store option, click the
Browse button, select the Trusted Root Certification Authorities entry, and
click OK.

7 Click Next and then click Finish.

8 Repeat steps 1-7 for the derived certificate package
PKTestCert_Unprivileged.PFX, but in step 6, select the Automatically
select the certificate store based on the type of certificate option.

9 Repeat steps 1-7 for the derived certificate package
PKTestCert_Privileged.PFX, but in step 6, select the Automatically select
the certificate store based on the type of certificate option.

Exporting certificates The Certificate Export Wizard helps you export certificates, certificate trust
lists, and certificate revocation lists in a new format and from the certificate
store to other locations.

❖ To export certificates:

1 Select the certificate you want to export and click the Export button.

2 In the Certificate Export Wizard, specify the export file format and the file
name and click Finish.

Deleting certificates You can delete certificates using the PocketBuilder Certificate Manager.

❖ To delete certificates:

• Select the certificates you want to delete, click the Remove button, and
then confirm your request by clicking the Yes button.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 693

Signing an application and CAB file
You can sign an application using the Application area (1) of the Project
painter.

❖ To sign an application:

1 In area 1 of the Project painter, select the Sign the Application check box.

2 Click the Application Certificate button and select the certificate you want
to use for signing the application.

You can sign a CAB file using the CAB File Packaging area (4) of the Project
painter.

❖ To sign a CAB file:

1 In area 4 of the Project painter, select the Sign the CAB check box.

This area displays only a title if you selected Desktop as your deployment
platform. It displays only a title and the check box for creating a CAB file
if you selected Pocket PC as your deployment platform.

2 Click the CAB Certificate button and select the certificate you want to use
for signing the CAB.

Delivering your application to end users
When you deliver the executable version of your application to users, you need
to make sure that various files and programs are installed in the right places on
the users’ Pocket PC devices or emulators. Table 26-4 presents a summary of
the types of files you need to distribute. You will distribute most of these
components using cabinet (CAB) files. The rest of this chapter describes how
you create CAB files and deliver them to your users.

Delivering your application to end users

694 PocketBuilder

Table 26-4: Distribution checklist

Checklist item Details

The application Application files include:

• The executable (EXE) file

• Any dynamic libraries (PKD files)

• Any files for resources you are delivering separately (BMP,
GIF, ICO, JPEG, and PNG files)

Additional files Additional files might include:

• Initialization (INI) files

• Text or sound files

External files If the application references external files, such as DLL files
accessed by external function calls, install them in the \Windows
directory on a Pocket PC or in the \Storage\Windows directory on
a Smartphone.

PocketBuilder
runtime DLLs

The following DLLs must be installed in the \Windows directory
on every Pocket PC device or in the \Storage\Windows directory
on every Smartphone device:

pkvm20.dll
pkbgr20.dll
pkodb20.dll
pkodb20.ini

Database files If the application needs to access a local database, install the
database files on each device. Typically you install the data
source (the DSN file) in the device’s root directory, and install
the database and its log file in the same directory as the
application. Make sure that the DSN file references the location
where you install the database. If you are connecting to an
UltraLite database, you must install the pkul920.dll to the
\Windows directory on a Pocket PC or the \Storage\Windows
directory on a Smartphone device.

Network server If the application needs to access a consolidated database on a
server, the device must be properly connected, and the databases
on the device and the server must be correctly configured. For
more information about synchronizing databases on the server
and device, see the chapter in the Resource Guide about using
MobiLink synchronization and the Mobilink Synchronization
User’s Guide in the SQL Anywhere online books.

Windows CE
registry

If you rely on the Windows CE registry to manage information
needed by the application, update the registry on each device
with required values.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 695

Building CAB files
A CAB file is a platform-specific package containing all the files that your
application needs, together with information about the application. The
Microsoft Windows CE Cab Wizard (cabwiz.exe), a tool that builds CAB files,
is installed in the Sybase\PocketBuilder 2.0\Support\cabwiz directory when
you install PocketBuilder. When you select the Create CAB File for
Distribution check box in the Project painter, PocketBuilder invokes the Cab
wizard to create the file when you build the project.

For more information about CAB files, see the Microsoft Windows CE 3.0
Installation and Configuration Guide at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcepb40/html/cxconCabWizardOverview.asp

What gets generated When you choose to create one or more CAB files in the Project painter,
PocketBuilder creates the files listed in Table 26-5 in the same directory as the
PKL that contains the project object.

The platform-specific files (ARM for the Pocket PC device and x86 for the
Pocket PC 2002 and 2003 emulators) are created for each of the platforms you
select in the Project painter.

Table 26-5: Files generated by the Project painter

Filename Description

AppName.ARM.CAB
AppName.x86.CAB

The Windows CE cabinet files that you distribute to
users as described in “Distributing the application” on
page 698.

AppName.inf The generated cabinet information (INF) file.

This single ANSI text file has internal options for all
selected platforms. The INF file merges your settings in
the Project painter with the cab_template.inf file
installed in the Support\cabwiz directory.

AppName_makecab.bat A batch file that runs the Cab wizard (CABWiz.exe or
CABWizSP.exe, depending on the platform selected for
your project) using the generated AppName.inf file.

This batch file, the INF file, and the platform-specific
executable files let you regenerate the CAB files outside
of the PocketBuilder environment.

AppNname.exe.ARM.
AppName.exe.x86.

Platform-specific executable files generated by
PocketBuilder for use with the batch file.

err.log A text file containing warnings and other messages from
the Cab wizard. In general, warnings can be ignored.

AppNname.ARM.DAT
AppName.x86.DAT

Temporary files generated by the Cab wizard. These files
are used internally by Windows CE.

Delivering your application to end users

696 PocketBuilder

In Table 26-5, AppName is the name you supplied for the executable file in the
Project painter. It is used as the base name of all the files generated when you
choose to build a CAB file.

The information you supply in the Version group box in the Project painter is
stored in the CAB file. After the CAB file is installed on an emulator or Pocket
PC device, the company name and product name are visible in the list of
programs in storage memory that displays when you select
Settings>System>Remove Programs.

Modifying the
template INF file

The INF file generated by the Project painter merges your settings with a
template file, cab_template.inf, installed in the Support\cabwiz directory. If
you are familiar with the structure of INF files, you can customize the CAB
files generated by PocketBuilder by modifying the template.

Make a backup copy
Before you make any modifications to the cab_template.inf file, make a backup
copy so that you can restore the default settings if necessary.

For information about INF files in the Microsoft MSDN library, see Creating
an .inf file at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcesetup/htm/_wcesdk_Creating_an_inf_File_for_the_CAB_Wizard.asp

Regenerating CAB
files

You can make modifications to the generated INF file, such as adding
additional files, registry entries, and shortcuts, by editing it in a text editor.

Regenerating overwrites modifications
If you regenerate the CAB file in the Project painter, your changes to
Appname.inf are overwritten. After modifying an INF file, make a backup copy
of the modified file with a different name so that you can reapply your changes.

When you run the AppName_makecab.bat batch file, it uses your edited INF
file and the platform-specific executable files generated by the Project painter
to build CAB files for all the platforms you selected in the Project painter. You
must have a copy of the AppName.exe file to rebuild the CAB files. If you clear
the Delete Temporary Files After Build check box in the project painter before
you build the project, the AppName.exe and any required PKD files are saved
to the build directory.

Errors when running the AppName_makecab.bat batch file are written to the
err.log file.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 697

Example Suppose you want to install your files in one location, but make the
application accessible to the user by placing a shortcut in a company-specific
folder that displays when you select Programs from the Start menu on the
device.

In this example, the company name is AcmeTools and the product is Bug
Zapper. The executable will be installed in the \Acme Tools directory, and the
shortcut in \Windows\Start Menu\Programs.

1 In the generated INF file, locate the CEStrings section. It shows the name
of the application and the installation directory you provided in the
Version group box in the Project painter:

[CEStrings]
AppName = "Bug Zapper"
InstallDir = "\AcmePrograms"

2 Change the InstallDir line to the following:

InstallDir = %CE11%"\Acme Tools"

The executable will be installed in the Acme Tools directory as long as the
%InstallDir% variable remains specified in the DestinationDirs section of
the INF file. If this directory does not exist, it will be created.

3 Add a line that defines the shortcut to the Shortcuts.All section:

[Shortcuts.All]
"Bug Zapper",0,"bugzapper.exe",%CE11%

Bug Zapper is the name of the shortcut, 0 indicates the shortcut is to a file
and not to a folder, bugzapper.exe is the target of the shortcut, and
%CE11% is the location where the shortcut will be installed.

%CE11% represents the \Windows\Start Menu\Programs directory. For a list
of other identifiers, see Windows CE directory identifiers at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcesetup/html/_wcesdk_windows_ce_directory_identifiers.asp

4 Save the INF file, run bugzapper_makecab.bat, and check the err.log file
for errors.

After you install the regenerated CAB file on a device or emulator, an
Acme Tools folder that contains the Bug Zapper shortcut displays when
you select Programs.

Delivering your application to end users

698 PocketBuilder

Distributing the application
When you have created a CAB file, you can distribute it like any other
self-extracting executable. The CAB file is a single package that can be
downloaded from a Web site or copied using FTP to a user’s desktop.

To install the CAB file, the user must copy it to the Pocket PC device or
emulator using Microsoft ActiveSync or the Windows CE Remote File Viewer
(cefilevw), then tap on the CAB file on the device.

Creating a setup
program

You can make the installation process easier for the user by creating a setup
program. Running the setup program on the desktop installs the application to
the device or emulator.

You can create installation programs using a free application such as EZSetup.
For more information, see the EZSetup download page at
http://www.spbsoftwarehouse.com/products/ezsetup/index.html.

Creating a Windows
installer package

You can also build a Windows Installer package (MSI) file that users run on the
desktop. The MSI file unpacks CAB files, a setup.ini file, and a custom
installer component that distributes and installs the correct CAB file to the
device.

For more information and to obtain the latest version of Windows Installer, see
Windows Installer in the MSDN Library at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msi/setup/windows_installer_start_page.asp.

Distributing the PKVM Any application you distribute needs the PocketBuilder runtime files for
Windows CE (the PKVM) installed on the target device or emulator. There are
three ways to include these files (listed in Table 26-4 on page 694) in your
distribution:

• Distribute the CAB files that are provided in the WinCE directory in your
PocketBuilder installation.

If many of your users already have PocketBuilder applications installed,
they need only install the CAB file for your application. Other users need
to download and install two CAB files.

CHAPTER 26 Packaging and Distributing an Application

User’s Guide 699

• Modify the generated INF file to include the PKVM and rebuild the CAB
files as described in “Regenerating CAB files” on page 696.

This is the easiest solution for your users, because they need only install
one CAB file. However, it forces users who already have the PKVM
installed to download and install unnecessary files.

• Build an installation program that lets users select the components they
want to install.

This is the best solution for all users.

Distributing database
files

For any application that uses a remote database, you must install both the
database and a DSN file on the Pocket PC device or emulator. The DSN file
can be installed in the root directory of the device, the directory from which the
database driver is launched, or the \Windows directory. The database file must
be installed in the location given in the DatabaseFile line in the DSN file.

You can edit the INF file generated in the Project painter to include these
database files in your application CAB file.

You also need to deploy the database engine itself, which is provided in a CAB
file as part of the ASA install. See “Licensing Adaptive Server Anywhere”
next for licensing information.

For more information about deploying ASA databases, see the chapter on
deploying databases and applications in the Adaptive Server Anywhere
Programming Guide. The chapter on deploying MobiLink applications in the
MobiLink Synchronization User’s Guide provides an overview of the files that
need to be distributed with MobiLink servers and clients.

If you need to deploy your application to multiple handheld devices, consider
using mobile application deployment software, such as Manage Anywhere
Studio from iAnywhere Solutions, to manage the distribution process. For
more information, see the Manage Anywhere Studio Web page at
http://www.sybase.com/products/mobilewireless/manageanywherestudio.

Licensing Adaptive
Server Anywhere

Included in PocketBuilder are components from SQL Anywhere Studio (the
Adaptive Server Anywhere DBMS, MobiLink and SQL Remote
synchronization technologies, and Sybase Central administration tool). These
components are licensed for use only with PocketBuilder and only for
development purposes. Deployment of these components requires the purchase
of separate licenses. Contact your Sybase sales representative for more
information.

Delivering your application to end users

700 PocketBuilder

Also included in PocketBuilder is the Adaptive Server Anywhere for Windows
CE royalty-free runtime edition (the “ASA Runtime Edition”). The ASA
Runtime Edition is a restricted-functionality version of the standalone version
of Adaptive Server Anywhere. For example, the ASA Runtime Edition does
not support stored procedures and triggers, transaction log and
synchronization.

The ASA Runtime Edition is intended for use as a low-cost deployment option
where the full functionality of Adaptive Server Anywhere is not required.
Subject to the PocketBuilder Product Specific License Terms, you may deploy
the ASA Runtime Edition with applications developed with PocketBuilder
without royalties or additional licensing.

For more information, including the list of Redistributable Components of the
ASA Runtime Edition, see the Support directory on the PocketBuilder CD.

P A R T 7 Appendixes

Appendix A describes the extended attribute system
tables, Appendix B describes differences between the
PowerBuilder and PocketBuilder products, and Appendix
C describes the use of OrcaScript for automatic builds and
deployment.

User’s Guide 703

A P P E N D I X A Extended Attribute System
Tables

About this appendix This appendix describes each column in the extended attribute system
tables.

Contents

About the extended attribute system tables
When you provide application-based information such as the text to use
for labels and headings for the columns, validation rules, display formats,
and edit styles for a database table, PocketBuilder stores this information
in system tables in your database. These system tables are called the
extended attribute system tables. The tables contain all the information
related to the extended attributes for the tables and columns in the
database. The extended attributes are used in DataWindow objects.

The system tables There are five extended attribute system tables.

Table A-1: List of extended attribute system tables

Topic Page

About the extended attribute system tables 703

The extended attribute system tables 704

Edit style types for the PBCatEdt table 707

Table Contains information about

PBCatTbl Tables in the database

PBCatCol Columns in the database

PBCatFmt Display formats

PBCatVld Validation rules

PBCatEdt Edit styles

The extended attribute system tables

704 PocketBuilder

What to do with the
tables

You can open and look at these tables just like other tables, in the Database
painter. You might want to create a report of the extended attribute information
used in your database by building a DataWindow object whose data source is
the extended attribute system tables.

Caution
You should not change the values in the extended attribute system tables.
PocketBuilder maintains this information automatically whenever you change
information for a table or column in the Database painter.

The extended attribute system tables
This section lists and describes all of the columns in each of the extended
attribute system tables.

Not all columns apply to PocketBuilder applications
Some of these columns contain information that does not apply to
PocketBuilder. The columns were assigned originally for PowerBuilder
applications.

Table A-2: The PBCatTbl table

Column Column name Description

1 pbt_tnam Table name

2 pbt_tid Adaptive Server Enterprise Object ID of table (used
for Adaptive Server Enterprise only)

3 pbt_ownr Table owner

4 pbd_fhgt Data font height, PowerBuilder units

5 pbd_fwgt Data font stroke weight (400=Normal, 700=Bold)

6 pbd_fitl Data font Italic (Y=Yes, N=No)

7 pbd_funl Data font Underline (Y=Yes, N=No)

8 pbd_fchr Data font character set (0=ANSI, 2=Symbol,
255=OEM)

9 pbd_fptc Data font pitch and family (see note)

10 pbd_ffce Data font typeface

11 pbh_fhgt Headings font height, PowerBuilder units

12 pbh_fwgt Headings font stroke weight (400=Normal,
700=Bold)

APPENDIX A Extended Attribute System Tables

User’s Guide 705

About font pitch and family
Font pitch and family is a number obtained by adding together two constants:

Pitch: 0=Default, 1=Fixed, 2=Variable
Family: 0=No Preference, 16=Roman, 32=Swiss, 48=Modern, 64=Script,
80=Decorative

Table A-3: The PBCatCol table

13 pbh_fitl Headings font Italic (Y=Yes, N=No)

14 pbh_funl Headings font Underline (Y=Yes, N=No)

15 pbh_fchr Headings font character set (0=ANSI, 2=Symbol,
255=OEM)

16 pbh_fptc Headings font pitch and family (see note)

17 pbh_ffce Headings font typeface

18 pbl_fhgt Labels font height, PowerBuilder units

19 pbl_fwgt Labels font stroke weight (400=Normal, 700=Bold)

20 pbl_fitl Labels font Italic (Y=Yes, N=No)

21 pbl_funl Labels font Underline (Y=Yes, N=No)

22 pbl_fchr Labels font character set (0=ANSI, 2=Symbol,
255=OEM)

23 pbl_fptc Labels font pitch and family (see note)

24 pbl_ffce Labels font typeface

25 pbt_cmnt Table comments

Column Column name Description

1 pbc_tnam Table name

2 pbc_tid Adaptive Server Enterprise Object ID of table (used
for Adaptive Server Enterprise only)

3 pbc_ownr Table owner

4 pbc_cnam Column name

5 pbc_cid Adaptive Server Enterprise Column ID (used for
Adaptive Server Enterprise only)

6 pbc_labl Label

7 pbc_lpos Label position (23=Left, 24=Right)

8 pbc_hdr Heading

9 pbc_hpos Heading position (23=Left, 24=Right, 25=Center)

10 pbc_jtfy Justification (23=Left, 24=Right)

11 pbc_mask Display format name

Column Column name Description

The extended attribute system tables

706 PocketBuilder

Table A-4: The PBCatFmt table

Table A-5: The PBCatVld table

Table A-6: The PBCatEdt table

12 pbc_case Case (26=Actual, 27=UPPER, 28=lower)

13 pbc_hght Column height, PowerBuilder units

14 pbc_wdth Column width, PowerBuilder units

15 pbc_ptrn Validation rule name

16 pbc_bmap Bitmap/picture (Y=Yes, N=No)

17 pbc_init Initial value

18 pbc_cmnt Column comments

19 pbc_edit Edit style name

20 pbc_tag (Reserved)

Column Column name Description

1 pbf_name Display format name

2 pbf_frmt Display format

3 pbf_type Data type to which format applies

4 pbf_cntr Concurrent-usage flag

Column Column name Description

1 pbv_name Validation rule name

2 pbv_vald Validation rule

3 pbv_type Data type to which validation rule applies

4 pbv_cntr Concurrent-usage flag

5 pbv_msg Validation error message

Column Column name Description

1 pbe_name Edit style name

2 pbe_edit Format string (edit style type dependent; see "Edit
style types for the PBCatEdt table" next)

3 pbe_type Edit style type

4 pbe_cntr Revision counter (increments each time edit style
is altered)

5 pbe_seqn Row sequence number for edit types requiring
more than one row in PBCatEdt table

6 pbe_flag Edit style flag (edit style type dependent)

7 pbe_work Extra field (edit style type dependent)

Column Column name Description

APPENDIX A Extended Attribute System Tables

User’s Guide 707

Edit style types for the PBCatEdt table
Table A-7 shows the edit style types available for the PBCatEdt table.

Table A-7: Edit style types for the PBCatEdt table

CheckBox edit style (code 85)
Table A-8 shows a sample row in the PBCatEdt table for a CheckBox edit style.
Table A-9 shows the meaning of the values in Table A-8.

Table A-8: Sample row in PBCatEdt for a CheckBox edit style

Edit style type pbe_type value (column 3)

CheckBox 85

RadioButton 86

DropDownListBox 87

DropDownDataWindow 88

Edit 89

Edit Mask 90

Name Edit Type Cntr Seqn Flag Work

MyEdit Text 85 1 1 Flag

MyEdit OnValue 85 1 2 0

MyEdit OffValue 85 1 3 0

MyEdit ThirdValue 85 1 4 0

Edit style types for the PBCatEdt table

708 PocketBuilder

Table A-9: Values used in CheckBox edit style sample

RadioButton edit style (code 86)
Table A-10 shows a sample row in the PBCatEdt table for a RadioButton edit
style. Table A-11 shows the meaning of the values in Table A-10.

Table A-10: Sample row in PBCatEdt for a RadioButton edit style

Value Meaning

Text CheckBox text

OnValue Data value for On state

OffValue Data value for Off state

ThirdValue Data value for Third state (this row exists only if 3 State is checked for
the edit style—bit 30 of Flag is 1)

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the
corresponding style is checked. A 0 in any bit indicates the
corresponding style is unchecked.

Bit 31: Left Text
Bit 30: 3 State
Bit 29: 3D
Bit 28: Scale Box
Bits 27 – 16 (3 hex digits): Not used (set to 0)
Bits 15 – 4 (3 hex digits): Always 0 for CheckBox edit style
Bit 3: Always 0 for CheckBox edit style
Bit 2: Always 1 for CheckBox edit style
Bit 1: Always 0 for CheckBox edit style
Bit 0: Always 0 for CheckBox edit style

Name Edit Type Cntr Seqn Flag Work

MyEdit Columns 86 1 1 Flag

MyEdit Display1 86 1 2 0

MyEdit Data1 86 1 3 0

MyEdit Display2 86 1 4 0

MyEdit Data2 86 1 5 0

APPENDIX A Extended Attribute System Tables

User’s Guide 709

Table A-11: Values used in RadioButton edit style sample

DropDownListBox edit style (code 87)
Table A-12 shows a sample row in the PBCatEdt table for a DropDownListBox
edit style. Table A-13 shows the meaning of the values in Table A-12.

Table A-12: Sample row in PBCatEdt for a DropDownListBox edit style

Value Meaning

Columns Character representation (in decimal) of number of columns (buttons)
across.

Display1 Display value for first button.

Data1 Data value for first button.

Display2 Display value for second button.

Data2 Data value for second button.

Display and data values are repeated in pairs for each radio button
defined in the edit style.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Left Text
Bit 30: 3D
Bit 29: Scale Circles
Bit 38: Not used (set to 0)
Bits 27 – 16 (3 hex digits): Not used (set to 0)
Bits 15 – 4 (3 hex digits): Always 0 for RadioButton edit style
Bit 3: Always 1 for RadioButton edit style
Bit 2: Always 0 for RadioButton edit style
Bit 1: Always 0 for RadioButton edit style
Bit 0: Always 0 for RadioButton edit style

Name Edit Type Cntr Seqn Flag Work

MyEdit Limit 87 1 1 Flag Key

MyEdit Display1 87 1 2 0

MyEdit Data1 87 1 3 0

MyEdit Display2 87 1 4 0

MyEdit Data2 87 1 5 0

Edit style types for the PBCatEdt table

710 PocketBuilder

Table A-13: Values used in DropDownListBox edit style sample

DropDownDataWindow edit style (code 88)
Table A-14 shows a sample row in the PBCatEdt table for a
DropDownDataWindow edit style. Table A-15 shows the meaning of the
values in Table A-14.

Value Meaning

Limit Character representation (in decimal) of the Limit value.

Key One-character accelerator key.

Display1 Display value for first entry in code table.

Data1 Data value for first entry in code table.

Display2 Display value for second entry in code table.

Data2 Data value for second entry in code table.

Display and data values are repeated in pairs for each entry in the code
table.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Sorted
Bit 30: Allow editing
Bit 29: Auto HScroll
Bit 28: VScroll bar
Bit 27: Always show list
Bit 26: Always show arrow
Bit 25: Uppercase
Bit 24: Lowercase (if bits 25 and 24 are both 0, then case is Any)
Bit 23: Empty string is NULL
Bit 22: Required field
Bit 21: Not used (set to 0)
Bit 20: Not used (set to 0)
Bits 19 – 16 (1 hex digit): Not used (set to 0)
Bits 15 – 4 (3 hex digits): Always 0 for DropDownListBox edit style
Bit 3: Always 0 for DropDownListBox edit style
Bit 2: Always 0 for DropDownListBox edit style
Bit 1: Always 1 for DropDownListBox edit style
Bit 0: Always 0 for DropDownListBox edit style

APPENDIX A Extended Attribute System Tables

User’s Guide 711

Table A-14: Sample row in PBCatEdt for a DropDownDataWindow edit
style

Table A-15: Values used in DropDownDataWindow edit style sample

Name Edit Type Cntr Seqn Flag Work

MyEdit DataWin 88 1 1 Flag Limit

MyEdit DataCol 88 1 2 0 Key

MyEdit DisplayCol 88 1 3 0 Width%

Value Meaning

DataWin Name of DataWindow object to use.

DataCol Data column from DataWindow object.

DisplayCol Display column from DataWindow object.

Limit Character representation (in decimal) of Limit value.

Key One-character accelerator key.

Width% Width of the dropdown part of the DropDownDataWindow in %.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-
order four are styles within the type. A 1 in any bit indicates the
corresponding style is checked. A 0 in any bit indicates the
corresponding style is unchecked.

Bit 31: Allow editing
Bit 30: Auto HScroll
Bit 29: VScroll bar
Bit 28: Always show list
Bit 27: Uppercase
Bit 26: Lowercase (if bits 27 and 26 are both 0, then case is Any)
Bit 25: HScroll bar
Bit 24: Split horizontal scroll bar
Bit 23: Empty string is NULL
Bit 22: Required field
Bit 21: Always show arrow
Bit 20: Not used (set to 0)
Bits 19 – 16 (1 hex digit): Not used (set to 0)
Bits 15 – 8 (2 hex digits): Always 0 for DropDownDataWindow
edit style
Bit 7: Always 0 for DropDownDataWindow edit style
Bit 6: Always 0 for DropDownDataWindow edit style
Bit 5: Always 0 for DropDownDataWindow edit style
Bit 4: Always 1 for DropDownDataWindow edit style
Bit 3 – 0 (1 hex digit): Always 0 for DropDownDataWindow edit
style

Edit style types for the PBCatEdt table

712 PocketBuilder

Edit edit style (code 89)
Table A-16 shows a sample row in the PBCatEdt table for an Edit edit style.
Table A-17 shows the meaning of the values in Table A-16.

About the example
This example shows an Edit edit style using a code table of display and data
values. There is a pair of rows in PBCatEdt for each entry in the code table only
if bit 23 of Flag is 1.

For information about code tables in edit styles, see Chapter 21, “Displaying
and Validating Data.”

Table A-16: Sample row in PBCatEdt for an Edit edit style

Name Edit Type Cntr Seqn Flag Work

MyEdit Limit 89 1 1 Flag Key

MyEdit Format 89 1 2 0 Focus

MyEdit Display1 89 1 3 0

MyEdit Data1 89 1 4 0

MyEdit Display2 89 1 5 0

MyEdit Data2 89 1 6 0

APPENDIX A Extended Attribute System Tables

User’s Guide 713

Table A-17: Values used in Edit edit style sample

Edit Mask edit style (code 90)
Table A-18 shows a sample row in the PBCatEdt table for an EditMask edit
style. Table A-19 shows the meaning of the values in Table A-18.

Value Meaning

Limit Character representation (in decimal) of Limit value.

Key One-character accelerator key.

Format Display format mask.

Focus Character "1" if Show Focus Rectangle is checked. NULL otherwise.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Uppercase
Bit 30: Lowercase (if Bits 31 and 30 are both 0, then case is Any)
Bit 29: Auto selection
Bit 28: Password
Bit 27: Auto HScroll
Bit 26: Auto VScroll
Bit 25: HScroll bar
Bit 24: VScroll bar
Bit 23: Use code table
Bit 22: Validate using code table
Bit 21: Display only
Bit 20: Empty string is NULL
Bit 19: Required field
Bit 18: Not used (set to 0)
Bit 17: Not used (set to 0)
Bit 16: Not used (set to 0)
Bits 15 – 4 (3 hex digits): Always 0 for Edit edit style
Bit 3: Always 0 for Edit edit style
Bit 2: Always 0 for Edit edit style
Bit 1: Always 0 for Edit edit style
Bit 0: Always 1 for Edit edit style

Edit style types for the PBCatEdt table

714 PocketBuilder

About the example
This example shows an Edit Mask edit style using a code table of display and
data values as part of a spin control. Rows 2 and beyond exist in PBCatEdt only
if the edit mask is defined as a spin control (bit 29 of Flag is 1). Rows 3 and
beyond exist only if the optional code table is populated.

For information about using an edit mask as a spin control, see Chapter 21,
“Displaying and Validating Data.”

Table A-18: Sample row in PBCatEdt for an EditMask edit style

Table A-19: Values used in EditMask edit style sample

Name Edit Type Cntr Seqn Flag Work

MyEdit Format 90 1 1 Flag DtFcKy

MyEdit Range 90 1 2 0 SpinInc

MyEdit Display1 90 1 3 0

MyEdit Data1 90 1 4 0

MyEdit Display2 90 1 5 0

MyEdit Data2 90 1 6 0

Value Meaning

Format Display format mask.

DtFcKy Concatenated string with 1-character data-type code, 1-character focus-
rectangle code (0 or 1), and 1-character accelerator key.

Data type codes:

Format String = "0"

Format Number = "1"

Format Date = "2"

Format Time = "3"

Format DataTime= "4"

Examples:

"10x" means format is Number type, focus rectangle option is
unchecked, accelerator key is "x"
"31z" means format is Time type, focus rectangle option is checked,
accelerator key is "z"

Range Character representation (in decimal) of spin control range. The min
value and max value are tab-delimited.

Example:

"1[tab]13" means min = 1, max = 13

SpinInc Character representation (in decimal) of spin increment.

APPENDIX A Extended Attribute System Tables

User’s Guide 715

Display1 Display value for first entry in code table.

Data1 Data value for first entry in code table.

Display2 Display value for second entry in code table.

Data2 Data value for second entry in code table.

Display and data values are repeated in pairs for each entry in the code
table.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Required
Bit 30: Autoskip
Bit 29: Spin control
Bit 28: Read only (code table option)
Bit 27: Use code table
Bit 26: Not used (set to 0)
Bit 25: Not used (set to 0)
Bit 24: Not used (set to 0)
Bit 23 – 16 (2 hex digits): Not used (set to 0)
Bit 15 – 8 (2 hex digits): Always 0 for Edit Mask edit style
Bit 7: Always 0 for Edit Mask edit style
Bit 6: Always 0 for Edit Mask edit style
Bit 5: Always 1 for Edit Mask edit style
Bit 4: Always 0 for Edit Mask edit style
Bits 3 – 0 (1 hex digit): Always 0 for Edit Mask edit style

Value Meaning

Edit style types for the PBCatEdt table

716 PocketBuilder

User’s Guide 717

A P P E N D I X B PowerBuilder and
PocketBuilder Product
Differences

About this appendix This appendix describes many of the differences between PowerBuilder
and PocketBuilder. It also explains how to convert existing PowerBuilder
applications to PocketBuilder.

Contents

PocketBuilder features
PocketBuilder is a 4GL application development tool for the Windows CE
platform. It enables you to build rich-client handheld applications on the
desktop and deploy them to a Windows CE environment.

The PocketBuilder IDE is similar to that of PowerBuilder. If you are a
PowerBuilder user, you can leverage your existing PowerBuilder skill set,
reusing knowledge and expertise to build and deploy mobile applications.

Key features Key features of PocketBuilder include:

• Support for the Sybase DataWindow, providing powerful data access
and sophisticated programming capabilities on Windows CE devices

• Tight integration with Adaptive Server Anywhere (ASA) and
UltraLite databases

• Support for MobiLink, enabling bidirectional data synchronization
with heterogeneous enterprise systems

Topic Page

PocketBuilder features 717

Differences required by target platform 720

Unsupported PowerBuilder features 722

Deployment and runtime differences 727

Converting a PowerBuilder application 730

PocketBuilder features

718 PocketBuilder

PocketBuilder supports many PowerBuilder features without modification.
You can reuse code from PowerBuilder applications, although PowerBuilder
projects that you import to PocketBuilder must be redesigned for deployment
to handheld devices.

File name changes Although PowerBuilder and PocketBuilder use the same file extensions for
exported objects, file extensions for libraries, targets, workspaces, and resource
files differ to prevent confusion for developers who work with both products.
Table B-1 lists the differences between these extensions.

Table B-1: File extensions that differ

The file name for the PocketBuilder initialization file is PK.INI; the
PowerBuilder initialization file is PB.INI. Both PocketBuilder and
PowerBuilder 10 primarily support Unicode, although they allow you to
import and export files with ANSI character sets. PowerBuilder 9 primarily
supports ANSI character sets.

Environment variables In both products, the enumerated types for the Environment object returned by
a GetEnvironment call include the OSType and CPUType. PocketBuilder has
additional values for the GetEnvironment OSType and CPUType. For a Pocket
PC or Smartphone device, the value returned for the GetEnvironment OSType
is “WindowsCE!” and the value returned for the CPUType is “ARM!”. For a
Pocket PC or Smartphone emulator, the value returned for the CPUType is
“Pentium!”.

System functions and
window events for the
Soft Input Panel

PocketBuilder has system functions to control the display of the Soft Input
Panel (SIP) on a Pocket PC device or emulator, and window events that
respond to changes in the SIP display. Table B-2 lists the system functions you
can use to control the SIP display. The SipUp and SipDown window events
occur when the SIP is opened and closed, respectively.

File type
PowerBuilder
extension PocketBuilder extension

Workspace PBW PKW

Target PBT PKT

Library PBL PKL

Dynamic library PBD PKD

Resource file PBR PKR

APPENDIX B PowerBuilder and PocketBuilder Product Differences

User’s Guide 719

Table B-2: System functions for displaying and selecting the SIP

Syntax and usage notes for the SIP system functions and window events are
described in the function and event reference chapters in the Resource Guide
and in the online Help. These functions and events are not available in
PowerBuilder applications.

System function for
obtaining localized
folder names

Operating systems using different languages can have different names for
system folders. The GetSpecialFolder system function provides a means of
obtaining the name of a system folder on a specific desktop machine or
deployment device. This enables you to develop applications that access
system folders and can still be deployed to devices using different language
operating systems.

Objects and controls
for Windows CE
platforms

PocketBuilder includes objects and controls that are available to Windows CE
platforms. Table B-3 lists these objects and controls. For more information, see
Chapter 15, “Working with Native Objects and Controls for Windows CE
Devices,”or Objects and Controls and the PowerScript Reference.

Table B-3: Native objects and controls for Windows CE platforms

Function Description

GetDeskRect Gets the rectangular coordinates, in pixels, of the current
window without including the area of the SIP when the latter
is visible

GetSIPRect Gets the rectangular coordinates of the SIP, whether it is
visible or not

GetSIPType Returns the type of the current SIP window, whether it is
visible or not

IsSIPVisible Indicates whether the SIP is currently visible to the user

SetSIPPreferredState Displays or hides the SIP used on the Pocket PC or emulator

SetSIPType Specifies the SIP panel type (keyboard or character
recognizer) used by the application on a Pocket PC or
emulator

PocketBuilder object or control Description

BarcodeScanner object Base class for capturing bar codes

BiometricScanner object Base class for capturing fingerprints

CallLog and CallLogEntry objects Intefaces with the call log on a Smartphone
or a Pocket PC Phone Edition device

DialingDirectory object Interfaces with the phone books on a
Smartphone, SIM card, or Pocket PC device

NotificationBubble object Displays a message to the application user

PhoneCall object Makes a phone call from a Smartphone or
Pocket PC Phone Edition device

Differences required by target platform

720 PocketBuilder

Differences required by target platform
The target platform for PocketBuilder applications is Windows CE. The
Windows CE API is a subset of the API for traditional Windows platforms. The
most obvious difference between Windows CE and Windows 2000 or
Windows XP is the screen size (real estate) available to deployed applications.
There are also stylistic differences for applications deployed to Windows CE
platforms.

Window properties The default window object size is smaller in PocketBuilder than in
PowerBuilder, since it is tailored to the size of a Pocket PC screen. Main
windows in PocketBuilder applications are also automatically resized to fit the
device where they are deployed, and are automatically reoriented if the
window layout settings on the device are changed. Main and response windows
are currently the only window types available for PocketBuilder applications.

In addition to differences between the default values for window properties,
some properties exist in one product and not in the other.

POOM object (including
POOMAppointment,
POOMContact, POOMTask,
POOMRecurrence, and
POOMRecipient objects)

Stores appointments, contacts, and tasks, and
integrates an application with the Pocket PC
calendar and contact manager

Signature control Captures user signatures, but can also capture
hand drawings

SMSSession, SMSAddress,
SMSMessage, SMSProtocol, and
SMSProviderSpecificData objects

Interfaces with the SMS messaging system
on a Smartphone or Pocket PC Phone Edition

Today item Adds a custom item to the Pocket PC Today
screen (Start page)

Toolbar control (including
ToolbarItem objects)

Useful as a visual extension to a Pocket PC
application menu

PocketBuilder object or control Description

APPENDIX B PowerBuilder and PocketBuilder Product Differences

User’s Guide 721

The following PowerBuilder window properties do not apply to windows in
PocketBuilder applications, and are not selectable from the General tab page of
the Properties view for windows, as they are in PowerBuilder:

Unlike PowerBuilder, PocketBuilder does not have a Toolbar tab page in the
Properties view for windows and menus. The Toolbar page applies only to
MDI windows, which are not supported on the Windows CE platform. The
PowerBuilder Pointer property on the Other tab page of the window Properties
view also does not exist in PocketBuilder.

Table B-4 shows properties for windows in PocketBuilder that do not apply to
PowerBuilder windows. (These properties apply to PocketBuilder applications
deployed to a Pocket PC device or emulator, not to a Smartphone device or
emulator.) You set these properties in the Properties view of the Window
painter at design time. You cannot set these properties in a script at runtime.

Table B-4: Window properties only in PocketBuilder for the Pocket PC

ContextHelp MinBox Resizeable

ControlMenu MDIClientColor RightToLeft

MaxBox PaletteWindow WindowState

Property Description

Close Adds an OK icon to the title bar of a main or response
window that you deploy to a Windows CE platform.
By default, when users click OK, user input is
confirmed, the window object is destroyed, and the
PocketBuilder application is closed.

SmartMinimize Adds an X icon to the title bar of a main window that
you deploy to a Windows CE platform. By default,
when users click the X, the application is removed
from the current navigational stack, but remains in
memory for quicker availability and enhanced
performance. This property and the Close property are
mutually exclusive. Selecting one deselects the other.

MenuBar Selecting this property makes room at the bottom of
the current window for insertion of a menu. When you
set a value for the MenuName property of a window,
the MenuBar property is automatically selected.

IDE Window Size Selects the window size at design time. At runtime
windows are automatically configured to match a
deployment device’s full screen settings. For more
information about the design time size setting, see
Choosing the window's size and position on page 207.

Unsupported PowerBuilder features

722 PocketBuilder

Platform-specific
properties for multiple
controls

In addition to window properties that are specific for the Pocket PC platform,
platform-specific properties have also been added to different categories of
controls. Table B-5 describes these properties.

Table B-5: General control properties only in PocketBuilder

Unsupported PowerBuilder features
PocketBuilder 2.0 supports PowerScript targets only. Because Web targets are
not supported, the System Tree in PocketBuilder has a single Workspace tab.
PocketBuilder does not currently support distributed applications or
deployment to component transaction servers.

ShowSIPButton Ensures that the SIP button (that is used to open the
soft input panel) displays at the bottom of the window
when you run the window on a Windows CE platform.
This is selected by default.

 Tap_And_Hold_Indicator Determines whether the red and green system visual
cue displays when a user taps and holds down the
stylus on a blank area of the window.

Property Description

Property Description

InputEditMode Integer property for edit controls and DataWindow
columns that specifies an input method edit mode at
runtime. You can use this property to set the SIP type on
Pocket PC devices or the keypad entry mode on
Smartphone devices.

SIPOnFocus Boolean property for all edit controls that lets you
display the SIP automatically when a user changes
focus to one of these controls. This property is not
supported on Smartphone devices or emulators.

Tap_And_Hold_Indicator Boolean property for all draggable controls on a
window (and for the window itself) that determines
whether the red and green system visual cue displays
when a user taps and holds the selected control (or
window). This property is not supported on Smartphone
devices or emulators.

APPENDIX B PowerBuilder and PocketBuilder Product Differences

User’s Guide 723

Using PocketBuilder with PocketSOAP
You can use PocketBuilder in conjunction with PocketSOAP to access online
Web services. DLL files that define a PocketSOAP interface for PocketBuilder
are available on the Sybase CodeXchange Web site at
http://pocketpb.codexchange.sybase.com/. (Click the Pocket SOAP hyperlink
and select the soapif.zip file for download.) A readme file is included in the
Pocket SOAP folder and in the zip file on this Web site.

PowerBuilder installs a Sybase\Shared folder that contains subdirectories with
PowerBuilder DLL files, Web target files, and Java support. There is no shared
folder in a PocketBuilder installation.

Wizard differences The differences between PowerBuilder and PocketBuilder functionality are
reflected in the wizards provided with the two products. PocketBuilder has
wizards that support the conversion of PowerBuilder and PocketBuilder
targets, as well as separate wizards to generate template applications for the
Pocket PC and the Smartphone.

Table B-6 describes differences between several PowerBuilder and
PocketBuilder wizards. Wizards that differ only in the extension of the files
they create are not included in this table.

Table B-6: Modified wizards in PocketBuilder

PocketBuilder wizard Differences from PowerBuilder wizard

Application Creation
wizards (Target tab)

In PocketBuilder there are separate wizards for Pocket
PC and Smartphone targets. These wizards do not
support selection of MDI or PFC application types.

Connection Object
(PB Object tab)

Does not support EAServer connection; allows for entry
of connection information that is not in a database
profile.

Application wizard
(Project tab)

Does not support creation of machine code EXE or DLL
files or incremental builds; allows selection of
deployment target options; version information is more
limited than in PowerBuilder and is valid only for files
deployed to the desktop. In PocketBuilder, you can
select security certificates in the Project painter to sign
application and CAB files.

Unsupported PowerBuilder features

724 PocketBuilder

Object types Table B-7 shows standard class PowerBuilder object types that are not
supported in PocketBuilder.

Table B-7: Unsupported standard class PowerBuilder object types

In addition, PocketBuilder does not support external visual user objects. The
standard RichTextEdit and OLE visual controls are also not supported in
PocketBuilder. ClassDefinition and ScriptDefinition objects, and other objects
that descend from the ClassDefinitionObject object, are supported on the
desktop but not on Windows CE devices or emulators.

PowerScript language Datatypes The longlong datatype added for PowerBuilder 9 is not supported
in PocketBuilder.

Functions The following classes of functions are not supported in
PocketBuilder:

• Connection and TransactionServer object functions (such as
CreateInstance and Lookup)

• CORBA object functions (such as BeginTransaction and Init)

• DBCS functions (such as LenW and PosW)

• DDE functions (such as CloseChannel and GetDataDDE)

• OLE object functions (such as Length and MemberExists)

• Profiling and trace functions (such as RoutineList and TraceBegin)

• RichTextEdit control functions (such as CopyRTF and GetTextColor)

• SSLCallback and SSLServiceProvider object functions (such as GetPin
and SetGlobalProperty)

ADOResultSet JaguarORB SSLServiceProvider

Connection Mail object types Timing

CorbaUnion OLE object types Trace object types

DynamicDescriptionArea Pipeline TransactionServer

DynamicStagingArea Profiling object types

ErrorLogging SSLCallback

APPENDIX B PowerBuilder and PocketBuilder Product Differences

User’s Guide 725

Table B-8 lists PowerScript functions that are not currently implemented for
the Windows CE platform. Although you are not prevented from coding these
functions, if you call any of them at runtime, the calls will either be ignored,
return partially valid data, or throw a system exception.

Table B-8: Unsupported PowerScript functions

Activate GetLibraryList LibraryExport

AddToLibraryList GetRecordSet LibraryImport

Arrangesheets GetToolbar LongLong

CanUndo InsertDocument Mail functions other
than mailLogon,
mailLogoff, and
mailSend

ClassList InsertFile ObjectAtPointer

Connection object functions IsAllArabic OLE object functions

CORBA object functions IsAllHebrew PageCreated

CreatePage IsAnyArabic Profiling object
functions

DBCS functions IsAnyHebrew RichTextEdit functions

DDE functions IsArabic SetLibraryList

GetArgElement IsArabicAndNumbers ShowHelp

GetActiveSheet IsHebrew ShowPopupHelp

GetFirstSheet IsHebrewAndNumbers SSLCallback functions

GetFolder LibraryDirectory SSLServiceProvider
functions

GetLastReturn LibraryDirectoryEx Trace functions

Unsupported PowerBuilder features

726 PocketBuilder

Method limitations on Windows CE platforms

• The SetPointer function works only with the Hourglass! and Arrow! values
in applications deployed to Windows CE platforms. The pointer is an
arrow by default. If you set the pointer to an hourglass in a desktop
application, the pointer reverts to an arrow after the script is run. On a
Windows CE device you must explicitly call SetPointer a second time to
reset the pointer.

• On Windows CE platforms, SetRedraw (FALSE) works only for the
ListBox, DropDownListBox, and TreeView controls, however
SetRedraw (TRUE) forces a repaint of all control types. This can lead to
unexpected performance penalties in applications that you deploy to these
platforms.

• You must install the FieldSoftware PrinterCE SDK before you can use
print methods in PocketBuilder applications deployed to Pocket PC
platforms. An evaluation version of this software is available from the
FieldSoftware Web site at http://www.fieldsoftware.com.

• To send mail from a PocketBuilder application you must configure an
ActiveSync to synchronize mail files with a desktop mail client. Microsoft
Outlook and Outlook Express can be configured to work with ActiveSync.

Events Table B-9 lists events that are not supported on the Windows CE
platform. Although you are not prevented from coding these events, if you add
script for any of them, it will be ignored at runtime.

Table B-9: Unsupported PowerScript events

DataWindow objects
and database support

The DataWindow types supported by PocketBuilder are: Freeform, Graph,
Grid, Group, and Tabular. PocketBuilder does not support the following
DataWindow types: Composite, Crosstab, Label, N-Up, OLE 2.0, and
RichText.

The “Rows to Disk” retrieve option for DataWindow objects is not available in
PocketBuilder.

CloseQuery RemoteExec RemoteRequest

Help RemoteHotLinkStart RemoteSend

HotLinkAlarm RemoteHotLinkStop ToolbarMoved

APPENDIX B PowerBuilder and PocketBuilder Product Differences

User’s Guide 727

The ODBC driver for ASA is the database driver installed with PocketBuilder,
as well as a native driver for UltraLite. Database drivers for OLE/DB and
JDBC, as well as DBMS native drivers, are not supported. PocketBuilder also
does not support data pipeline objects. If you need to access an enterprise
database from a PocketBuilder application, you can use MobiLink
synchronization technology or convert the enterprise database to an ASA
database

For information describing MobiLink support in PocketBuilder, see “Using the
MobiLink Synchronization for ASA wizard” on page 396 and the chapter on
MobiLink synchronization in the Resource Guide.

Colors, presentation
style, and figures

Some defaults for background colors have been changed from Btn_Face
(Gray) in PowerBuilder to Window (White) in PocketBuilder. Some of the
named colors on Windows machines are not supported on Windows CE
devices. Unsupported colors are rendered in black on these devices.

Controls in PocketBuilder default to a 2D presentation style. If a 3D look is
selected for a control, it might not have the desired appearance when deployed
to a Windows CE device. Different versions of the Windows CE platform can
vary in their support of 3D controls.

PocketBuilder supports GIFs, BMPs, JPGs, and stock icons for picture
controls. Other picture files (WMFs, RLEs, and cursor files) are not currently
supported.

Deployment and runtime differences
Debug and
deployment options

For a PocketBuilder project, you specify deployment options that are not
available in PowerBuilder. You must select one of the following deployment
options for each project: Desktop, Pocket PC Device (ARM), Smartphone
Device (ARM), or any of the Pocket PC or Smartphone emulators that you
have installed.

An application that you deploy to the desktop will look slightly different from
the same application deployed to a PDA device or emulator. The desktop
application has its own title bar with a maximize, minimize, and close button.
Even if you select Close or SmartMinimize icons for a window, these do not
display in the window when it is run or debugged on the desktop. Desktop
deployment is for testing and demonstration purposes only.

Deployment and runtime differences

728 PocketBuilder

When you debug an application, you do not have access to the Tip Watch or
Quick Watch views that were added to PowerBuilder in version 9. You must
debug an application from the PocketBuilder IDE; you cannot run the
PocketBuilder debugger with a deployed application.

Running applications
on an emulator or
PDA device

If you deploy applications to a Pocket PC or Smartphone emulator,
PocketBuilder starts the emulator. PocketBuilder has a toolbar icon and Tools
menu item that launches an emulator. If you have more than one emulator
installed, a dialog box lets you select the emulator you want to launch.

You can download Pocket PC and Smartphone SDKs from the Microsoft Web
site. These SDKs include emulators that you can use as target platforms for
your PocketBuilder applications.

Using the Windows
CE Start Menu

By default, PocketBuilder applications are deployed to the \Program Files
directory of a Pocket PC device or emulator and to the \Storage\Program Files
directory on a Smartphone device or emulator, but you can change the
deployment directory in the Project painter. On a Pocket PC device, users can
run the PocketBuilder applications you deploy by tapping on an application
executable file in the directory where it is deployed. (You can also select a
Project painter option to launch the application immediately upon
deployment.)

Users can take advantage of the built-in PocketBuilder application list utility
as a selection vehicle for deployed applications. However, you can also select
a Project painter option to deploy an application shortcut to the \Windows\Start
Menu\Programs directory on the Pocket PC or to the \Storage\Windows\Start
Menu\Accessories directory on the Smartphone. That way users will be able to
find the deployed applications quickly using the Start menu.

Using the built-in
application list

Users can display the built-in application list by selecting
PocketBuilder 2.0 from the Start menu. The list is empty until you begin
deploying applications. By default, the application list displays executable files
that you deploy to the \Program Files directory on the Pocket PC device or the
\Storage\Program Files directory on the Smartphone. Users can launch any
PocketBuilder application that you deploy to the device by selecting the
application from this application list.

On the Pocket PC, the application list includes a directory browser that lets
users select a different directory containing deployed applications. On the
Smartphone, users can use the Menu soft key to change directories when
browsing for deployed applications. However, on the Smartphone, it is not
possible to browse above the parent directory of the application list utility,
which is typically run from the \Storage\Program Files\ directory.

APPENDIX B PowerBuilder and PocketBuilder Product Differences

User’s Guide 729

The application list is present on the device only if the complete PocketBuilder
runtime package is installed. If you install only the PocketBuilder runtime
DLLs to the device, the application list is not available.

Connecting to an ASA
database

By default, PocketBuilder runtime applications on the Windows CE device use
the PKODB20.DLL dynamic link library to connect to ASA data sources
through the ASA version 9 ODBC driver (dbodbc9.dll). You can specify a
different ASA ODBC driver by including the driver=dbodbcX.dll parameter in
your DBPARM ConnectString assignment or in the file data source, where X
is the version number of the ODBC driver for ASA.

For example, to use an ASA 8 ODBC driver on the Windows CE device, you
can use the following DBPARM:

SQLCA.DBPARM="ConnectString='DSN=myDSN;driver=dbodbc8.dll;UID=dba;PWD=sql'"
CONNECT using SQLCA;

SQLCA is the default connection object in all PocketBuilder environments.

In all runtime environments, the connect string for the DBPARM parameter
must not include spaces other than those in the data source name (DSN). The
DSN you assign must exist in the root directory on the Windows CE device or
emulator.

When you install the complete PocketBuilder runtime package to the device or
emulator (rather than just the runtime DLLs), the ASA 9.0 Sample.DSN file is
added to the root directory. Instead of using the ConnectString DBPARM to set
the driver name, you can modify ASA 9.0 Sample.DSN, or any other DSN file
that you use, so that it includes an assignment for the database driver:

[ODBC]
enginename=asademo
databasename=asademo
databasefile=\Program Files\Sybase\ASA\asademo.db
start=\Program Files\Sybase\ASA\dbsrv8.exe
Driver=dbodbc8.dll

ASA requires that the DSN file be saved in ANSI format rather than Unicode
format.

If you are running your PocketBuilder applications from the desktop, it is
recommended that you use the actual name of the driver (for example,
“Adaptive Server Anywhere 8.0”) in a ConnectString DBPARM rather than the
name of the DLL. Otherwise, the driver you select in the connection string
might be ignored.

Converting a PowerBuilder application

730 PocketBuilder

Preventing the ASA
log screen from
displaying

You can add a -q switch to the start line in the DSN file to prevent the ASA log
screen from displaying when you connect to the database:

start=\Program Files\Sybase\ASA\dbsrv9.exe -q

Because the connection might take a few moments, it is a good idea to call the
SetPointer function to display the Windows CE version of the hourglass icon
when using the -q switch. For information about the use of SetPointer on the
Windows CE platform, see the note on “Method limitations on Windows CE
platforms” in this appendix.

CAB file creation and
distribution

In PocketBuilder you can generate a CAB file with all the objects from a
project and the project executable file. You can use the CAB file to distribute
the project to multiple devices.

For more information about generating and distributing CAB files for your
PocketBuilder projects, see Chapter 26, “Packaging and Distributing an
Application.”

Resizing and moving
controls

PocketBuilder painters do not allow you to set properties for resizing and
moving controls at runtime. However, you can still give users the ability to
move and resize controls by modifying these control properties in code.

Converting a PowerBuilder application
PocketBuilder has wizards for importing PowerBuilder targets as
PocketBuilder targets and exporting PocketBuilder targets as PowerBuilder
targets.

If you plan to convert an existing PowerBuilder application to PocketBuilder,
however, you should make as many modifications as possible prior to
migration. The target conversion is more likely to succeed if you make initial
changes to targets in PowerBuilder. This will help you avoid spending time
after the migration fixing multiple compile errors due to third-party controls or
MDI dependencies.

APPENDIX B PowerBuilder and PocketBuilder Product Differences

User’s Guide 731

The recommended conversion strategy is therefore:

1 In PowerBuilder, duplicate the entire target and cut out the features that
you know will not work or that are inappropriate for the Windows CE
environment.

These include features such as the use of MDI windows, large-sized
windows, OLE and RichText controls, and CORBA and other distributed
processing.

2 When you are satisfied that your application conforms reasonably well to
requirements of the Windows CE environment, use the Import Desktop to
CE wizard on the Target page of the New dialog box in PocketBuilder.
(This wizard is not available in PowerBuilder.)

The wizard prompts you for the PowerBuilder target you want to convert.

You can use PowerScript targets from PowerBuilder versions 7, 8, 9, or 10. The
Import Desktop to CE wizard copies and converts all the PBL files in the target
that you select on the first page of the wizard into PKL files, and it references
the PKL files in a new target with a PKT extension. The original target and
libraries are left in their original directories, which is also where the new target
and migrated libraries are saved.

The conversion wizard gives you the option of adding the new target to the
current PocketBuilder workspace.

Files converted by the wizard keep the same names as the original files, except
for their extensions. The PowerBuilder VM for your source files (target and
PBL files) must be in your machine's PATH variable. The wizard uses the
PBVMxx.DLL and the compiler PBCMPxx.DLL to convert the source files,
where xx is the version of the build.

Generating an application that is not in the current workspace can cause
compile errors during the conversion of PBL to PKL files. However, once the
application has been added to a workspace, a full rebuild typically fixes
everything except for true compile errors.

For information on the Export CE to Desktop wizard for converting a
PocketBuilder application to a PowerBuilder application, see “Converting a
PocketBuilder target to PowerBuilder” on page 26.

Converting a PowerBuilder application

732 PocketBuilder

User’s Guide 733

A P P E N D I X C The OrcaScript Language

About this appendix This appendix describes the OrcaScript scripting language. OrcaScript
allows you to perform source control operations and build PocketBuilder
workspaces and executables without operator intervention.

Contents

About OrcaScript
OrcaScript allows you to write batch scripts to process PocketBuilder
applications and files without using the PocketBuilder development
environment. You can use OrcaScript to get the latest version of a
PowerScript target from source control, build the target PKLs, and
compile and deploy PocketBuilder executable files—all without operator
intervention.

OrcaScript uses the Sybase ORCA software to access PocketBuilder
library functions without a visual user interface. ORCA library source and
header files, the ORCA User’s Guide in PDF format, and a customer
license agreement are installed in the PocketBuilder\Support\ORCA
directory. None of these files is required to use OrcaScript.

Using OrcaScript with
source control

The targets you obtain from source control using OrcaScript could be
placed on a network build machine that is shared by PocketBuilder
developers. This is especially advantageous for large shops with fixed
working hours: the builds could be done nightly by running an OrcaScript
batch file, and an up-to-date version of the targets and libraries would be
available at the start of the next work day.

Topic Page

About OrcaScript 733

OrcaScript Commands 735

Usage notes for OrcaScript commands and parameters 741

About OrcaScript

734 PocketBuilder

Developers could then use OrcaScript or operating system commands to copy
the shared files directly to their local machines. Although developers would
still connect directly to source control from their local workspaces, refreshing
the targets in the workspaces would be much faster since compilation times for
complex PowerScript targets would be greatly minimized.

Batch file order If you include OrcaScript commands in a batch file, the file is read line by line.
Each OrcaScript batch file must begin with a start session command and end
with an end session command. You can save the batch file with any extension.
You run the batch file by calling the OrcaScript executable on a command line
and passing the batch file name as an argument:

pkorca15 myOrcaBat.dat

If you use relative directories in the OrcaScript batch file, the directories are
relative to the working directories of the DOS shell. Typically, it is a good idea
to put the OrcaScript batch file in the directory that contains the PKT file for
the target you want to refresh, and to make this the current working directory
before launching OrcaScript using the batch file.

The command to start the OrcaScript executable can also take the following
parameters:

Caution
You should not run an OrcaScript batch file if PocketBuilder is currently
running on the same machine. If the PocketBuilder development environment
is not shut down while OrcaScript is running, your PocketBuilder libraries can
become corrupted. For this reason, casual use of OrcaScript is not
recommended.

Error handling Each line of an OrcaScript batch file either succeeds or fails. If a command
fails, subsequent commands are not processed and the OrcaScript session is
ended. An error message is printed to the command window.

Parameter Description Example

/D Sets variables that
are valid in the
batch file

pkorca15 /D myVar=value myOrca.dat

/H or /? Prints syntax help
to screen

pkorca15 /H

APPENDIX C The OrcaScript Language

User’s Guide 735

OrcaScript Commands
OrcaScript commands are not case sensitive. The generic command parameters
can include only strings delimited by quotation marks, or predefined variables
and constants without quotation marks. White space is used to separate
multiple parameters for a single command. Any place a string is expected, a
name that has been previously defined (set) in an OrcaScript command can be
used.

In the OrcaScript command prototype syntax that follows, square brackets
indicate a parameter is optional, and angle brackets indicate a parameter is
required. A pipe character (|) inside brackets indicates that a selection can be
made from one of the values inside the brackets. As elsewhere in the
PocketBuilder documentation, text in italic type indicates a variable.

For commands where a string variable is required by the command syntax but
is not essential to the command function (such as pkrName for the build library
command), you can use an empty string inside quotation marks for the string
value. Most of the OrcaScript commands and parameters are self-explanatory.
For usage notes and an example of an OrcaScript batch file for obtaining a
PowerScript target from source control, see "Usage notes for OrcaScript
commands and parameters" next.

OrcaScript commands OrcaScript supports the following commands:

start session
end session
set liblist pkl_list [pkl_list ...]
set application pklName applicationName
set name = value
set name += value
echo value [value ...]
file copy fromFile toFile [Clobber | NoClobber | Clobber Always]
file delete file_name [Clobber | NoClobber | Clobber Always]
regenerate pklName entryName entryType
copy entry pklName entryName entryType topklName
build library pklName pkrName <RTLib>
build executable exeName iconName pkrName pkdflags

[newvstylecontrols] [Desktop | ARM | X86]
build application <full | migrate | incremental >
create library pklName pklComments
scc get connect properties workspaceName
scc set connect property deletetempfiles <true|false>
scc set connect property provider sccProvider
scc set connect property userid userID

OrcaScript Commands

736 PocketBuilder

scc set connect property password password
scc set connect property logfile logFileName
scc set connect property project projectPath
scc set connect property localprojpath localProjectPath
scc set connect property auxproject auxProjectPath
scc set connect property logappend < true | false >
scc set connect
scc set target targetName [refreshType][refreshOption][refreshOption]
scc get latest version file_list [file_list ...]
scc exclude liblist pklName [pklName ...]
scc refresh target targetName <full | migrate | incremental >
scc close

Argument description Arguments for OrcaScript commands are described in the table below:

Argument Description

pkl_list String containing the list of PKLs for the session application.
PKL names can be separated by semicolons in a single string,
or separated by a blank space in multiple strings.

pklName Name of a PKL for an OrcaScript action or for the OrcaScript
session application.

applicationName Name of the application for an OrcaScript action.

name Program variable that you define for an OrcaScript session.

value Value of a program variable that you set for the OrcaScript
session. The value is typically a string that you must place in
quotation marks.

fromFile File that you want to copy during an OrcaScript session.

toFile Destination file name for a file that you copy during an
OrcaScript session.

Clobber |
NoClobber |
Clobber Always

(in file copy
command)

Clobber replaces a destination file if it is marked read/write,
but returns an error if a file does not exist or the destination file
is read-only. NoClobber fails when the destination file already
exists. Clobber Always replaces read-only destination files and
does not return an error if the file does not exist. Clobber is the
default behavior.

file_name File name for a file that you want to delete.

Clobber |
NoClobber |
Clobber Always

(in file delete
command)

Clobber deletes read-only files and returns an error if a file
does not exist. NoClobber deletes files marked read/write and
returns an error if the file is read-only or if it does not exist.
Clobber Always deletes read-only files but does not return an
error if the file does not exist. Clobber is the default behavior.

entryName The name of the referenced object.

APPENDIX C The OrcaScript Language

User’s Guide 737

Arguments for source
control commands

In addition to some of the arguments listed in the preceding table, OrcaScript
source control commands use the following arguments:

entryType Value specifying the type of the referenced object. Values can
be: application, datawindow, function, menu, query, structure,
userobject, or window. Certain abbreviations (app, dw, fn,
struct, uo, and win) are allowed as substitute values.

topklName Name of the PKL to which you copy an entry.

pkrName Name of a resource file you want to include in a build.

RTLib Enter RTLib to generate PocketBuilder dynamic libraries.

exeName Name of the executable you want to build.

iconName Name of an icon to use for an executable you build with
OrcaScript.

pkdFlags String composed of a series of Y and N values for each library
in the library list. A value of "nnyy" indicates that there are
four libraries in the library list, the last two being PKDs.
Objects from PKLs are copied into the executable; objects
from PKDs are not copied.

newvstylecontrols Use Microsoft XP visual style controls.

Desktop | ARM |
X86

Use to select the deployment platform where you want the
executable to be built. If an executable from a previous build
exists, it will be replaced by the new executable on the target
platform.

full | migrate |
incremental

Build strategy for the session application.

pklComments Comments for a PKL you create in an OrcaScript session.

Argument Description

Argument Description

workspaceName Name of the workspace to connect to source control.

sccProvider Name of the source control provider.

userID Name of the user registered to source control.

password Password for the user ID.

logFileName Name of a log file used to record SCC transactions.

projectPath Path to the source control project.

localProjectPath Local root directory for the project.

auxProjectPath Contains any string that the SCC provider wants to associate with
the project. It has a different meaning for every SCC vendor.

targetName Name of the target for source control operations.

OrcaScript Commands

738 PocketBuilder

Setting refreshType
and refreshOption
values

When you set up a target with a source control connection, you can use
refreshType and refreshOption options in various combinations. You can even
combine these values in the same string if the values are separated by a blank
space. For example:

scc set target ".\dbauto\dbauto.pkt" "refresh_all
importonly”

Refresh_all option Refresh_all performs no comparisons and imports all
applicable objects. Refresh_all behavior varies depending on whether
ImportOnly is set. If ImportOnly is off, Refresh All issues an
SccGetLatestVersion call to obtain the tip revision of the PKT file specified in
the scc set target command. From the PKT file, it obtains the library list for the
target. It then calls SccGetLatestVersion to obtain the tip revision of the PKG
file associated with each PKL.

Each PKG file contains a list of objects registered under source control that
reside in the associated PKL. Refresh All then issues SccGetLatestVersion to
obtain the tip revision of each object and imports these objects into the PKL.

true | false Boolean value for appending to the source control log file. If this
command is not used but a log file is specified, the session value
defaults to true.

offline Keyword indicating that an actual SCC connection will not be
required for this session. It is appropriate only when the
ImportOnly refresh option is used on a subsequent scc set
target command. When refreshing a target using ImportOnly,
no communication with the SCC provider is required at runtime,
so the job may be run offline.

refreshType Value can be “refresh_all” or “outofdate”.

For a description of when to use these values, see "Setting
refreshType and refreshOption values" next.

refreshOption Value can be “importonly” or “exclude_checkout”.

For a description of when to use these values, see "Setting
refreshType and refreshOption values" next.

file_list String containing one or more file names using relative or
absolute path specification. File names can be separated by
semicolons in a single string, or separated by a blank space in
multiple strings.

Argument Description

APPENDIX C The OrcaScript Language

User’s Guide 739

In offline processing, ImportOnly must be set to on. If you also set the
Refresh_all option, the PKT file that already exists on the local project path is
used to obtain the library list for the target. The PKG file that also exists on the
local project path is then read to obtain a list of objects associated with each
PKL. Refresh_all then processes the PKG lists, importing source entries
residing on the local project path into the appropriate PKL.

ImportOnly option When ImportOnly is on, the expectation is that the user
has already populated the local project path with the desired revision of each
object. ImportOnly is used to build a target from a previous milestone, such as
a version label or a promotion model that does not represent the tip revision of
each object. Therefore, no SccGetLatestVersion calls are issued. The desired
revisions of the PKT, PKG, and object source files must already exist on the
local project path and they are used to import objects into the PKLs. You must
use this option if you are building a source controlled target while you are
offline.

OutOfDate option OutOfDate processing behaves differently depending on
whether ImportOnly is set. When ImportOnly is off, OutOfDate issues an
SccGetLatestVersion call to obtain the tip revision of the PKT and PKG files. It
then compares each object in the target PKLs with the tip revision in the SCC
repository and imports the SCC source files into the PKLs for the objects that
are out of sync.

With ImportOnly turned on, OrcaScript never performs GetLatestVersion since
the desired revision of all objects already exists on the local project path. In this
case, OutOfDate processing compares source code in the PKL against object
source on the local project path to decide which objects, if any, need to be
reimported. Using ImportOnly with OutOfDate processing works the same
whether you are online or offline.

OrcaScript Commands

740 PocketBuilder

Advantage of using OutOfDate with ImportOnly option
Combining the OutOfDate option with the ImportOnly option is particularly
useful if you perform nightly builds of a project that has several promotion
models defined. If the volume of changes is low, it may be more efficient to use
OutOfDate processing rather than Refresh All. In one PocketBuilder
workspace, you build the “development” view of the project that includes all
development work in progress. In another workspace, you build the
“maintenance” view of the project, which includes bug fixes waiting for QA
verification. Elsewhere, you build a “production” view of the project
containing only verified bug fixes.

Each workspace connects to the same SCC project, but uses a different local
project path.You use your vendor-specific SCC administration tool to
synchronize the local project path with the desired revision of each object
belonging to each promotion model. Then you launch OrcaScript to refresh the
PKLs in each workspace. This results in a nightly rebuild of all three promotion
models, which development team members can download each morning from
a shared network drive.

Exclude_checkout option The Exclude_checkout option excludes from the
import list all objects that are currently checked out by the current user, no
matter what other refresh options are used. When connected to SCC, this
option requires an additional call to SccQueryInfo for each object in the target.
Therefore it is not recommended on a nightly build machine. However, it is
highly recommended when a developer uses OrcaScript on his or her own
workstation.

If you use Exclude_checkout processing while offline, the workspace PKC file
is used to determine current status, so you must specify the set get connect
properties workspaceName command. Objects marked as checked out to the
current user in the PKC file will not be imported into the PKLs during target
processing.

APPENDIX C The OrcaScript Language

User’s Guide 741

How the current user is determined for Exclude_checkout processing
For online SCC connections, Exclude_checkout calls scc connect property
userid userID or the scc get connect properties workspaceName to
determine the current user. The runtime processing makes actual SccQueryInfo
calls to the SCC provider to determine check out status, so the information in
the PKC file (from the prior SCC connection) is ignored. Objects checked out
to the current user are not imported and replaced in the target library list.

For scc connect offline, the scc connect property userid command
is completely ignored. OrcaScript must rely on information from the prior SCC
connection. Each PKC file entry contains a bit flag that indicates “checked out
to current user”. This flag determines whether the object is imported or
excluded. The current user at the time the PKC file was created is the user who
last connected to this workspace through the PocketBuilder IDE on this
workstation.

Usage notes for OrcaScript commands and parameters
Before calling any other ORCA functions, you need to open a session:

start session

You can start and end multiple OrcaScript sessions in the same batch file.

Copying files, objects,
and properties

If you want to use OrcaScript simply to move objects among libraries, you do
not need to set a library list or application. You can use the copy commands to
copy files, objects, and properties. This example copies the d_labels
DataWindow from the source.pkl library to the destin.pkl library:

copy entry "c:\\app\\source.pkl""d_labels" dw "c:\\app\\destin.pkl"

Usage notes for OrcaScript commands and parameters

742 PocketBuilder

Setting a library list
and an application

If you want to use OrcaScript to build targets or deploy components, you must
first set the library list and the current application. You can set the library list
and current application only once in an OrcaScript session. To use another
library list and application, end the OrcaScript session and start a new session.
The following OrcaScript commands build target libraries and compile an
executable file:

start session
set liblist ".\qadbtest\qadbtest.pkl;.\shared_obj\shared_obj.pkl;

.\datatypes\datatype.pkl;.\chgreqs\chgreqs.pkl"
set application ".\qadbtest\qadbtest.pkl" "qadbtest"
build library ".\shared_obj\shared_obj.pkl" "" RTLib
build library ".\datatypes\datatype.pkl" "" RTLib
build library ".\chgreqs\chgreqs.pkl" "" RTLib
build executable ".\qadbtest\qadbtest.exe" ".\emp.ico" ".\qadbtest.pkr"

"nyyy" ARM
file copy ".\qadbtest\qadbtest.exe" ".\bin\qadbtest.exe" Clobber Always
file copy ".\chgreqs\chgreqs.pkd" ".\bin\chgreqs.pkd" Clobber Always
file copy ".\datatypes\datatype.pkd" ".\bin\datatype.pkd" Clobber Always
file copy ".\shared_obj\shared_obj.pkd" ".\bin\shared_obj.pkd"

Clobber Always
end session

You can use relative paths when you generate PKDs with the RTLib option, but
the PKD always gets generated in the same directory as the PKL. To actually
run the executable, you might have to move the PKDs to a “BIN” directory.
The above example calls several file copy commands to accomplish this.

Source control
example

You can use OrcaScript source control commands instead of the commands to
set the library list and application. The following is an example of an
OrcaScript session that builds the same libraries as the previous example, but
uses the target properties to set a library list and application:

start session
scc get connect properties "c:\testbld\testbld.pkw"
scc connect
scc set target "c:\testbld\qadbtest\qadbtest.pkt" "outofdate

exclude_checkout"
scc refresh target "incremental"
build library ".\shared_obj\shared_obj.pkl" "" pkd
build library ".\datatypes\datatype.pkl" "" pkd
build library ".\chgreqs\chgreqs.pkl" "" pkd
build executable ".\qadbtest\qadbtest.exe" ".\emp.ico" ".\qadbtest.pkr"

"nyyy"

scc close
end session

APPENDIX C The OrcaScript Language

User’s Guide 743

You can call the scc connect command only after getting connection properties,
and you must call it before you set or refresh the source-controlled targets. You
must call the scc close command before you end your OrcaScript session.

Shared library
example

If you have another target that shares libraries with a target that you already
refreshed, you can use the OrcaScript exclude command to quickly reconstitute
your target. The following example excludes the shared libraries
shared_obj.pkl, datatype.pkl, and chgreqs.pkl that were refreshed in the
previous example. It also demonstrates the use of variables for refresh options
and build type. Set statements define variables that can be used throughout an
OrcaScript session wherever the parser expects a string token.

start session
set refresh_flags = "outofdate"
set refresh_flags += "exclude_checkout"
set build_type = "incremental"
scc get connect properties "c:\testbld\testbld.pkw"
scc connect
scc set target ".\dbauto\dbauto.pkt" refresh_flags
scc exclude liblist ".\shared_obj\shared_obj.pkl"

".\datatypes\datatype.pkl" ".\chgreqs\chgreqs.pkl"
scc refresh target build_type
build executable ".\dbauto\dbauto.exe" ".\emp.ico" "" "nyyy" ARM
scc close
end session

Defining variables from the command line
Instead of defining variables in the OrcaScript session, you can define them
from the command line when you call your script. If you saved the OrcaScript
example in the previous script in a file named MyExample.dat, you could set
the same variables by typing the following at a command line prompt:

pkorca15 /D refresh_flags="outofdate exclude_checkout"
/D build_type="incrementral" MyExample.dat

SCC connection
properties

The SCC get connect properties command is an easy way to populate the Orca
SCC connection structure with the source control properties of a local
workspace. However, to create OrcaScript batch files that are portable from
one workstation to another, the recommended technique is to set each property
explicitly. Many of these properties are vendor specific. The best way to obtain
correct values is to copy them directly from the SCC log file for your
PocketBuilder workspace.

Usage notes for OrcaScript commands and parameters

744 PocketBuilder

After you have obtained the values you need from the SCC log file, you can
create portable batch files by setting the required connection properties and
using relative directories and URLs for path information. The following
example shows portable OrcaScript batch file commands for a workspace that
connects to PBNative:

start session
scc set connect property provider "PB Native"
scc set connect property userid "Jane"
scc set connect property localprojpath ".\"
scc set connect property project "\\network_machine\PBNative_Archive\qadb"
scc set connect property logfile ".\MyPortableExample.log"
scc set connect property logappend "FALSE"
scc set connect property deletetempfiles "FALSE"
scc connect
; Perform refresh and build operations
scc close
end session

Sharing a batch file If you share an OrcaScript batch file with colleagues, make sure that the userid
value for the scc set connect property userid command is set for each user.

Using OrcaScript with
source control targets
offline

You can call scc connect offline to build source control targets offline.
When you use this command, you must specify ImportOnly as a refresh option.
If you also specify the Refresh_all option or the OutOfDate or
Exclude_checkout refresh types, no connection is made to source control.

For the OutOfDate refresh type, the object source residing in the PKL is
compared with the object source on the local project path. If these object
sources are different, the object source on the local project path is imported and
compiled. For the Exclude_checkout refresh type, the workspace PKC file is
used to determine current status. In order for the offline exclude_checkout
processing to locate the PKC file, you must use the scc get connect
properties workspaceName command at the beginning of the script. Objects
marked as checked out to the current user in the PKC file will not be imported
into the PKLs during target processing.

For more information on PKC files, see Chapter 5, “Using Source Control.”

APPENDIX C The OrcaScript Language

User’s Guide 745

Applicable scc connect properties for offline processing
When scc connect offline is used, only the following connect properties
apply:

scc set connect property localprojpath localProjectPath
scc set connect property logfile logFileName
scc set connect property logappend <true | false>

Build command
failures

OrcaScript build commands for an executable or a library fail if the executable
or library already exists in the build directory. To prevent an OrcaScript batch
file containing these commands from failing, move or delete existing
executables and libraries from the build directory before running the batch
script.

Escape characters for
string variables

OrcaScript, like PowerScript, uses the tilde (~) as an escape character. If you
need to include a special character, such as a quotation mark, inside a string,
you must place a tilde in front of it. A character in an OrcaScript batch file with
a tilde in front of it is processed as a literal character.

Building executables
for different platforms

The following example builds executables for three different PocketBuilder
deployment platforms:

start session
set liblist "c:\pkapps\dbpaint\dbpaint.pkl;c:\pkapps\dbpaint\mlshared.pkl"
set application "c:\pkapps\dbpaint\dbpaint.pkl" dbpaint
;
build library "c:\pkapps\dbpaint\mlshared.pkl" "" rtlib
file copy "c:\pkapps\dbpaint\mlshared.pkd"

"c:\pkapps\dbpaint\desktop\mlshared.pkd" CLOBBER ALWAYS
file copy "c:\pkapps\dbpaint\mlshared.pkd"

"c:\pkapps\dbpaint\arm\mlshared.pkd" CLOBBER ALWAYS
file copy "c:\pkapps\dbpaint\mlshared.pkd"

"c:\pkapps\dbpaint\x86\mlshared.pkd" CLOBBER ALWAYS
;
build executable "c:\pkapps\dbpaint\desktop\dbpaint.exe"

"c:\pkapps\emp.ico" "" "ny" DESKTOP
build executable "c:\pkapps\dbpaint\arm\dbpaint.exe" "c:\pkapps\emp.ico" ""

"ny" ARM
build executable "c:\pkapps\dbpaint\x86\dbpaint.exe" "c:\pkapps\emp.ico" ""

"ny" X86
;
end session

Usage notes for OrcaScript commands and parameters

746 PocketBuilder

Ending an OrcaScript
session

You must close an OrcaScript session after you finish calling other OrcaScript
commands. You close an OrcaScript session by calling:

end session

User’s Guide 747

A P P E N D I X D Designing Applications for
Windows CE Platforms

About this chapter This chapter describes some of the particularities of Pocket PC and
Smartphone devices that you must account for when you deploy
applications to these platforms.

Contents

General considerations
Because of the smaller size and typically intermittent energy supply for
Windows CE platforms in comparison to Windows desktop platforms, fast
and efficient code is essential to reduce power utilization.

When you open connections to peripheral utilities such as Bluetooth,
SDIO, or WiFi, you must consider closing all peripheral handles as soon
as such utilities are no longer needed. Applications deployed to Windows
CE devices should save up requests for bulk usage and avoid constant
polling. Polling loops prevent the Windows CE device processor from
going into low-power idle mode, and thus reduce battery life.

Windows CE applications should also avoid unnecessary processing, such
as that required for animations, and should lose focus and deactivate when
overlayed by another application process. Where possible, you should add
timers to applications to stop unnecessary processing.

Topic Page

General considerations 747

Comparative performance 748

Designing for the Pocket PC 748

Designing for the Smartphone 750

Message processing on different devices 753

Porting an application from the Pocket PC to the Smartphone 754

Screen rotation on the WM 2003 SE platform 755

Comparative performance

748 PocketBuilder

Comparative performance
Table D-1 lists comparative performance characteristics of Smartphone and
Pocket PC devices. Pocket PC Phone Edition devices have performance
advantages of the Pocket PC with the functionality of the Smartphone.

Table D-1: Device performance comparison

Because of the generally weaker performance characteristics of Smartphones,
design Smartphone applications to be tolerant of slow storage and to avoid
saving too much data, especially persistent data.

Designing for the Pocket PC
Efficient design In applications for the Pocket PC, you should reduce redundancy and promote

a single way of doing things. This means avoiding the use of options by
presenting only the most efficient selection or procedure to use. The main view
of an application should include the most important information, and other
information should be just a single step away. Presentation and procedures
should be as consistent as possible, allowing application users to “learn once,
do everywhere.”

Tab pages,
notifications, and
information flow

On the Pocket PC, you can use a tab page approach to application design as a
substitute for MDI windows, which are not supported on Windows CE
platforms.

For persistent notifications, you can use the NotificationBubble object. Unlike
a standard modal message box, the notification bubble does not stop
processing.

On a Pocket PC, information should flow from the top down, and on
English-language Pocket PCs, from left to right. You should place frequently
needed controls close to the top of an application window. Audio should be
used as a UI cue rather than as a novelty item. The default font for Pocket PCs
is typically 8-point Tahoma.

Pocket PC Smartphone

Faster processor Slower processor

Persistent RAM backed up by
storage battery

Permanent flash storage, but less RAM

On standby when not in use Idle when not in use

APPENDIX D Designing Applications for Windows CE Platforms

User’s Guide 749

Application titles, SIP
display, and Pocket
PC menus

You should display application titles in the navigation bar of a Pocket PC. On
Pocket PC 2003, you should use the system support for automatic sizing of
windows to fill the screen. (This is automatic with PocketBuilder applications.)
Do not override these settings by entering custom size values. The Soft Input
Panel (SIP) should display continuously for user text entry, and it should be
hidden only where no user input is possible.

Menus on the Pocket PC are typically oriented from left to right, whereas
buttons are typically aligned closer to the rightmost edge of the application
screen. Typical Pocket PC applications can do without a File menu. A typical
application might use the following menu bar items and display them in the
order shown: Edit, View, Insert, Format, and Tools. Common command
buttons display in the order: New, Open, Save, and Print.

Accelerator key combinations in menus and dialog boxes are not supported in
Windows CE environments, and menu shortcuts should be avoided.

External files and
icons

Pocket PC applications that use external file input or output must support long
file names and the common system dialog boxes for opening and saving files.
You can use 16x16 or 32x32 icons to represent a PocketBuilder application in
the Pocket PC Switcher Bar. You should avoid user-exposed methods for
closing applications. Applications should shut down without displaying dialog
boxes or other controls for user input.

Using system
functionality

Applications must not duplicate system functionality such as the Pocket
Outlook Object Manager (POOM) object model, the notification system, or the
MAPI, TAPI, and phone API functionality.

Providing online help Online help for PocketBuilder applications should be integrated with the
system TOC. You write help for an application as an HTML file and place the
HTML file, or a shortcut to it, in the \Windows\Help directory. You can then
call the PowerScript Run function to start the Pocket PC Help application and
include the name of the Help file you want to open. The following example in
a Help menu item script opens the Help file called myHelpTest:

Run ("peghelp.exe file:myHelpTest.htm#Main_Contents")

Wait cursors and size
adjustments

Applications must respect user settings and display a standard wait cursor for
unresponsive events.

Applications should adjust window and control sizes in SIPUp and SIPDown
PowerScript events. The SIP must not overlay partial screen dialog boxes.
Docked SIP panels have a maximum height of 80 pixels.

Saving application
state

One instance only of an application should be running at a time. The
application state is saved and restored on reactivation.

Designing for the Smartphone

750 PocketBuilder

For a Pocket PC or Smartphone emulator, you must explicitly save the
emulator state before shutting down the emulator, or the application is
removed.

Designing for the Smartphone
Display screen and
text entry modes

The screen for the Smartphone is typically smaller than that of the Pocket PC.
It is for display only and does not trigger clicked events in response to user
actions such as tapping an item with a stylus. It primarily serves as a telephone,
not as a Personal Digital Assistant (PDA). A user interacts with a Smartphone
through its keypad. Keypad entry is typically a one-handed operation.

Smartphones support several text entry modes from the Smartphone keypad.
The current text entry mode is indicated in the title bar of a window when focus
is in an editable field. For numeric data entry, the title bar has an icon
displaying “123.” For alphanumeric or multitap mode, the icon displays “abc”,
or “ABC” for entry of capital letters. Users can switch among modes by
pressing or holding the asterisk key on the Smartphone keypad. (In numeric
mode, just pressing the asterisk key enters an asterisk in the edit field.)

In PocketBuilder applications, you can assign a text entry mode to an edit field
by setting its IMEMode property.

Application
requirements

Typically applications must be signed with trusted certificates available on the
Smartphone device. If you distribute an application in a CAB file, the CAB file
must also be signed. PocketBuilder lets you select certificates for signing
applications and CAB files in the Project painter. Although PocketBuilder
supplies certificates for testing, you must purchase or generate your own
certificates.

Window layout and
control conversion

In the window layout for a Smartphone application, you should use one control
(and control label) only per line.

In PocketBuilder applications, list boxes and drop-down lists are automatically
converted to spinner controls. A spinner control is like a typical spin control on
the desktop, except that arrows point to the right and left rather than up and
down.

APPENDIX D Designing Applications for Windows CE Platforms

User’s Guide 751

A user can spin through the items in a list by selecting the right or left arrow on
the Smartphone’s 4-way navigation pad. Otherwise, the user can press the
Action button when a spinner control has focus. This opens a dialog box with
the complete list of items. The user can select an item in this dialog box with
the up and down arrows. After selecting an item, pressing the Action button
again validates the selection and returns the user to the window with the
spinner control.

Figure D-1 shows a window with a ListBox and a DropDownListBox control
that have been converted to spinner controls. Spinner controls provide no
indication of their original design-time control type. The only differences in the
controls seen in the figure are due to their data content, background color
property, and the current focus indicator. The focus indicator is a rectangular
box drawn around the control.

Figure D-1: Window with two spinner controls

Menu design Smartphones have two soft menu keys that link to the two main menus required
for Smartphone applications. The left menu key typically opens a menu for
quick, commonly used actions. In many Smartphone applications, when it
functions to create new items or documents, this menu is labeled New. It is
labeled Done or OK to save parameter settings and return to a previous screen.
A Cancel menu item or button should be available for any windows that an
application user can edit.

The right menu key typically opens a menu that has submenu items. If a right
menu is not needed, it can be left blank, and the menu item can be left
unscripted, but it still must be included in any menu object that you deploy with
your application. Do not use ellipsis marks (...) in a menu label.

Focus indication Indication of current focus is often problematic in Smartphone applications,
particularly for noneditable controls.

Designing for the Smartphone

752 PocketBuilder

If you add more than one command button to an application, it is best to select
the Default property for one of the buttons. The Default property adds thicker
black lines around the button, which serve, initially, as a focus indicator.
Unfortunately, unless you set the Default property for the first button to false
(for example, in a LoseFocus event script), the thick black lines remain.
However, the other buttons on the same window now display the thick black
lines when they have focus and display thinner black lines when they do not
have focus.

When an editable control gains focus, it is typically surrounded, like the
Default command button, by thick black lines in the form of a rectangle. The
rectangle also typically encloses the control label.

Tabbing and scrolling
using menu items

The Smartphone platform is not particularly well suited for tabbing among edit
fields or scrolling in a window. The arrows on the 4-way navigation pad can be
used to change the current focus, but with some controls (such as list views,
multiline edit boxes, and DataWindows), the change in focus remains internal
to the control or to a column in the control.

To change focus to a particular control, you can use the PowerScript SetFocus
function in a ChangeFocus menu item. To provide a user with the ability to tab
among columns in a DataWindow, it is useful to create a Tab menu item that
mimics a Tab key press action. The following menu item script sends a
Windows WM_KEYDOWN message for a Tab key press to a DataWindow
control, enabling the user to tab among editable columns in the DataWindow
object:

send(Handle(w_myMainWindow.dw_1),256,9,0)

When you use the above methods, you cannot change focus to a control that
has a tab order of 0 or to a DataWindow column that is read-only. You can,
however, scroll the window or DataWindow to display the control or read-only
column. The following code in a ScrollToFirstColumn menu item script causes
the first column to display on a screen even when the first column is read-only:

string modstring
modstring=”DataWindow.HorizontalScrollPosition=” &

+ String(0)
w_myMainWindow.dw_1.Modify(modstring)

Closing applications If an application does not save data in the flash memory storage file system or
on a storage card, the data is lost when the user turns off the device.

APPENDIX D Designing Applications for Windows CE Platforms

User’s Guide 753

The Microsoft online Help for the Smartphone SDK recommends that you
simplify Smartphone memory management by not providing a Close button on
an application toolbar or enabling Exit on a File menu. Memory use for running
applications is optimized by the Smartphone shell. Smartphone devices send a
WM_CLOSE message to close idle applications when demand for memory is
high. To preserve an application’s state from one session to another, you can
save persistent-state variables to a temporary file after the application receives
a WM_CLOSE message, but before the operating system is notified. The next
time the application starts, it restores the application state using this temporary
file.

Message processing on different devices
Prompting the user for
information

Table 26-6 lists the different ways you should use to process a question or
display information to the user, depending on whether you deploy your
application to a Pocket PC or a Smartphone device. This information is
provided in more detail in the Smartphone User Interface Guidelines topic of
the Microsoft Smartphone 2003 SDK online Help.

Table 26-6: Displaying questions or information to prompt the user

Information type On the Pocket PC On the Smartphone

Message boxes Use message balloons
or partial-screen dialog
boxes to prompt the
user for information.
Use full-screen
message boxes
primarily for system
messages when the
user must select an item
from a list or enter data
that is not selectable.

Use full-screen message
boxes to prompt the user for
information or answers to
application-specific
questions. Message box
options should typically be
limited to two.

Porting an application from the Pocket PC to the Smartphone

754 PocketBuilder

Porting an application from the Pocket PC to the
Smartphone

You must make certain manual changes to a Pocket PC application before
deploying it to a Smartphone. Table 26-7 lists required changes.

Table 26-7: Modifications for porting an application to the Smartphone

Alert message boxes Include code to wake
up a Pocket PC device
and display a message
balloon or play a sound.
Time-sensitive
information should also
be displayed in a
balloon. Information
that is not time
sensitive can be
displayed on the Today
screen or in the
notification area.

Use a full-screen alert
message box only if the alert
concerns time-sensitive
information for a current
activity or an activity
running in the background.
Information that is not time
sensitive can be displayed
on the Home screen or in the
notification area. You
cannot wake up a
Smartphone device. It must
be turned on by the user.

Options Minimize the the number
of controls in an Options
dialog box. Do not use
menus with the Options
dialog box or the Settings
control panel. Any tab
content should not scroll,
and all editable controls
should be displayed above
the expanded SIP area.

Use one column only and one
control per row. Each row
should be a minimum of 22
pixels high. Avoid contact with
the title bar and soft keys by
adding a two-pixel buffer at the
top and bottom of the Options
dialog box.

Use the right soft key as the
Menu soft key and the left soft
key as the Done soft key.

Information type On the Pocket PC On the Smartphone

Item to change
or add Required change for a Smartphone device

Left menu Use a maximum of two menu bar items. Use the first menu bar
item (left menu soft key) to display the most likely user task.
When closing the window is a needed task, label this menu item
“Done”. Typically there are no submenu items on the left menu.

APPENDIX D Designing Applications for Windows CE Platforms

User’s Guide 755

Screen rotation on the WM 2003 SE platform
PocketBuilder supports deployment to Windows Mobile 2003 Second Edition
devices and emulators. WM 2003 SE replaces the Pocket PC 2003 platform. It
allows for screen rotation between portrait and landscape modes. WM 2003 SE
also supports square screens and changes to screen resolution.

If you have more than one WM 2003 SE emulator, the PocketBuilder 2.0
deployment controller allows you to select the emulator that you want.

Effects of screen
rotation

PocketBuilder processes messages from the WM 2003 SE platform when the
screen orientation or resolution has changed and automatically makes
adjustments to all Main! type application windows to conform to the current
Windows CE environment. The title bar on a main window also resizes
automatically. Any open menus or notification bubbles are closed, and if the
SIP is raised immediately before screen rotation, it is automatically lowered.

Response windows and message boxes are not changed when the screen
orientation or resolution changes. When an application is running and the
display orientation is changed, any response windows and message boxes are
recentered on the display. There is special logic to make sure the response
window’s title bar is still visible, since that is often the only way to close the
window.

Right menu Use the second menu item (right menu soft key) to display the
second most likely user task. This menu item is required,
although it can be left unscripted. If the menu item is not
needed, the menu label can be an empty string.

Use Cancel for the menu bar item or as a menu item listing any
time an application state can be saved.

Radio buttons Change radio buttons to spin controls.

Tab controls Change tabs to list views with each tab pane as an item in the
list.

Security
certificate

Applications must have security certificates before they can be
run on certain Smartphone platforms. You can create a security
certificate with the Manage Certificates utility on the Tools
page of the New dialog box. You can attach the certificate to a
PocketBuilder application in the Project painter before you
deploy the application to a Smartphone.

Item to change
or add Required change for a Smartphone device

Screen rotation on the WM 2003 SE platform

756 PocketBuilder

The Windows CE operating system sends a setting change message,
PBM_Setting_Change, with a wParam value of 12290 when the user presses a
button on a WM 2003 SE device to rotate the screen. The PocketBuilder
pbm_settingchange event handler for this message resizes main windows to the
new screen dimensions with required adjustments for any title and menu bars.
You can add code to the Resize event (or a pbm_settingchange user event) for
a main window if you need to adjust the sizes or positions of controls on the
window.

Obtaining the current screen size
You must instantiate a new Environment object to obtain the current screen
height and width. Environment objects that are instantiated prior to screen
rotation or resolution changes will have incorrect or stale information.

Deployment using
CAB files

If you build CAB files for deployment, the VersionMin value (in the CEDevice
section of the application INF file) is set to 3.0. This defines the application for
compatibility with Pocket PC 2002 devices or emulators.

PocketBuilder adds the BuildMax value of 0xE0000000 to the CEDevice
section of the application INF file. This value prevents application users from
seeing a warning message when installing the CAB file on older Pocket PCs,
but allows developers to take advantage of WM 2003 SE features.

For more information For a discussion of WM 2003 SE features, see the Microsoft Web site at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwm2k3/html/whatsnew2003se.asp

User’s Guide 757

Symbols
+ operator 492
@ placeholder 553

Numerics
24-hour times 532

A
accelerator keys

and CheckBox edit style 539
and RadioButton edit style 540
assigning to menu items 296
defining 239
indicating, in StaticText controls 250

access level
changing in function 176
of functions 170
of object-level structures 195

Activity Log view
generated SQL 358
in Database painter 354
using 358

Adaptive Server Anywhere
creating and deleting databases 359
integration in PocketBuilder 21
preventing log screen display 730
using different versions 729

adding nonvisual objects
to a user object 320
to a window 211
to an Application object 63

AddItem function 254
aggregate functions, in graphs 619
alignment

extended attribute 365

in DataWindow painter 502
of command buttons in windows 246
of controls in windows 233

Alt key
and menu items 296
defining accelerator keys 239

ampersand (&)
defining accelerator keys 239
displaying in text of controls 239
in menu item text 296

ancestors
objects 275, 278
windows 221

AND operator, in Quick Select 420
animated GIF files

and PictureButton controls 247
and PictureHyperLink controls 258

Application Creation wizards 15
application library search path 73
Application objects

creating new 55
displaying structure of 75
events, list of 72
inserting nonvisual objects in 63
properties 73
specifying library search path 73

Application painter
about 63
displaying application structure 75
inserting nonvisual objects in 63
opening 14, 15, 55
properties 19, 63, 64
views 63
workspace 63

Application start wizards
objects created 17
use 15

applications
browsing for 18
changing 18

Index

Index

758 PocketBuilder

creating new 14, 15, 17, 55
deploying 667
displaying structure of 75
library search path 73
selecting 18
specifying properties 19, 64
using templates 17
using wizards 15
windows 201, 202

area graphs
about 608
making three-dimensional 611

arguments
adding, deleting, and reordering in functions 177
changing for function 176
defining for function 173
passing by reference 173
passing by value 173
passing in function 173
passing structures as function arguments 195
referencing retrieval 434
using retrieval 432

arrays
declaring arguments as in functions 174
in retrieval arguments 434

ASA see Adaptive Server Anywhere
asterisks (*)

displaying user input as 537
in text boxes 251
wildcard character 94

audience for this book xix
Auto Size setting, in graphs 633
autoincrement columns, in DataWindow objects 512
AutoInstantiate property 312
autoinstantiating user objects 312
AutoScript

dot notation 160
pops up automatically 160
pop-up window 156
specifying list 158
using 155

Autosize Height, bands 477
average, computing 493
axes

scaling 637
specifying line styles 639

specifying properties in graphs 636
specifying text properties 632
using major and minor divisions 638

B
background colors, in three-dimensional controls 243
background.color property

about 589
specifying colors 602

backing up, source control status 126
bar graphs

about 608
making three-dimensional 611
specifying overlap and spacing 636

base class objects 275
bitmaps, specifying column as 367
BMP files

adding to DataWindow objects 488
and PictureButton controls 247
and PictureHyperLink controls 258
and TreeView controls 265
naming in resource files 675

books, online 27
boolean expressions

in filters 560
in validation rules 553, 556

border property 590
borders

around default command buttons 246
for text boxes 251
in graphs 631
three-dimensional 243

breaks, in grouped DataWindow objects 564
Browser

about 152
class hierarchies 276
opening 152
pasting functions 178
pasting properties with 152
pasting structures with 196
regenerate descendants 105

brush.color property
about 591
specifying colors 602

Index

User’s Guide 759

brush.hatch property 591
built-in functions

for menu items 298
for windows and controls 216
including in user-defined functions 175

buttons
adding to DataWindow objects 494
adding to toolbars 42
custom 44
deleting from toolbar 43
moving on toolbar 43

C
CAB files

building 695
building for distribution 681, 730
creating 695
distributing 698
troubleshooting build errors 687

cabwiz executable file 695
caching data, in DataWindow objects 461
calling

ancestor scripts 282
passing arguments 173
user-defined functions 178

CallLog object 336
CallLogEntry object 336
Camera object 331
CameraImageAttributes object 331
cancel command button 246
case

converting in DataWindow objects 537
of text boxes 251
sensitivity and code tables 548

categories, graph
basics 606
specifying 619

Category axis, graph 607
centering controls 233
CheckBox controls

about 249
prefix 229

CheckBox edit style, defining 539
Checked property 295

check-in/check-out 120
CHOOSE CASE statements 153
class hierarchies 276
class user objects

AutoInstantiate property 312
custom 308
inserting in a user object 320
inserting in a window 211
inserting in an Application object 63
overview 308
standard 308

ClearValues function 538
Clicked event, for menu items 297
client devices, configuring for deployment 694
Clip window 11
clipboard, copying data to 468
Close events, in Application object 55
Close property 721
CloseUserObject function 320
CloseWithReturn function, passing parameters between

windows 216
closing views 38
code

pasting from a file 154
recompiling 104
user-defined functions 175
using structures 193

code tables
about 546
defining 547
in Specify Retrieval Criteria dialog box 482
modifying during execution 538
processing 548
using display values in graphs 619
using in drop-down lists 538

Color drop-down toolbar
adding custom colors to 242
in Window painter 241

color property
about 591
specifying colors 602

colors
background, with 3D controls 243
changing in Database painter 357, 375
customizing 242
default 69

Index

760 PocketBuilder

defining custom 50
in display formats 526
in Select painter 426
of inherited script icon 279
specifying for windows 207

column graphs
about 608
specifying overlap and spacing 636

Column Specifications view, in DataWindow painter 453
columns

adding to DataWindow objects 485
appending to table 368
applying display formats to 522
applying edit styles to 534, 535
defining display formats 522, 524
defining edit styles 534, 535
defining validation rules 551, 555
displaying as a drop-down DataWindow 543
displaying as check boxes 539
displaying as drop-down lists 538
displaying as radio buttons 540
displaying in Library painter 92
displaying with fixed formats 541
foreign key 376
formatting in DataWindow objects 521
graphing data in 612, 617
initial values 555
presenting in DataWindow objects 533
preventing updates in DataWindow objects 509, 512
removing display formats 522
reordering in grid forms 468
resizing in forms 467
restricting input 541
selecting in Select painter 427
sliding to remove blank space 504
specifying extended attributes 365
updatable, in DataWindow objects 509, 512
validating input in DataWindow objects 549
variable length 477

Columns view 354
CommandButton controls

defining accelerator keys for 239
prefix 229
setting a default 246
using 246

comment extended attribute 365

comments
in menu definition 294
in window definition 212
including in SQL statements 392
modifying in Library painter 100

communication
between user objects and windows 323
using user events 324

compiling
on import 108
regenerating library entries 104
scripts 162
user-defined functions 176

computed columns, including in SQL Select 427
computed fields

adding to DataWindow objects 489
creating from toolbar 46
defining 491
defining custom buttons for 494
specifying display formats 524
summary statistics 493

conditional modification
example, gray bar 584
example, highlighting rows 586
example, rotating controls 585
modifying controls 582

connection profile, source control 120
context-sensitive help 161
continuous data, graphing 608
Control List view 61
control names in the DataWindow painter 476
control-level properties in windows 216
controls

calling ancestor scripts for 282
declaring events 181
deriving user objects from 309, 314
in descendent objects 277, 318
in user objects 300

controls in DataWindow objects
adding 485
aligning 502
copying 501
deleting 500
displaying boundaries 499
equalizing size 503
equalizing spacing 503

Index

User’s Guide 761

moving 501
resizing 502

controls in windows
adding to windows 211, 226
aligning to grid 232
changing names 230
copying in Window painter 235
defining properties 228
moving and resizing 232
naming 228
referring to in menu item scripts 300
selecting 227
specifying accessibility of 240
with events, list of 226

conventions, typographical xxii
converting targets

PocketBuilder to PowerBuilder 26
PowerBuilder to PocketBuilder 17, 730

count
computing 493
in graphs 619

CPUType environment variable 718
Create ASA Database utility 359, 360
Create New Table dialog box 363
Create UltraLite Database utility 360
CREATE VIEW statement 381
currency display format 525
current library, working in 96
custom class user objects

about 308
AutoInstantiate property 312
building 312
inserting in a user object 320
inserting in a window 211
inserting in an Application object 63
writing scripts for 312

custom colors 50, 242
custom layouts, Library painter 90
custom visual user objects

about 309
building 313
writing scripts for 320

Customize dialog box 42

D
data

associating with graphs in DataWindow objects
617

caching in DataWindow objects 461
changing 386, 462
copying to clipboard 468
formatting in DataWindow objects 521
importing 389, 441
presenting in DataWindow objects 533
retrieving in DataWindow objects 461
saving in external files 468
saving in HTML Table format 469
updating, controlling 509
validating in DataWindow objects 549

data entry forms 410
Data Manipulation view

opening 385
printing 390
sorting rows 387, 388

data source
defining for DataWindow objects 413
External 441
modifying 478
Query 440
Quick Select 415
SQL Select 424
Stored Procedure 442

data validation
in code tables 549
with validation rules 549

data values
in graphs 619
of code tables 546
specifying fonts in tables 364
using in graphs 619

Data view, in DataWindow painter 453
database administration

executing SQL 391
painting SQL 391

database errors 164
database interfaces

configuring 694
installing 694

Database painter
changing colors in 357

Index

762 PocketBuilder

creating tables 361
defining display formats 522
defining validation rules 551
dragging and dropping 355
previewing data 385
specifying extended attributes 365
tasks 355
views 354
working with edit styles 534
workspace 354

database views
extended attributes of 366
working with 379

databases
accessing through Quick Select 415
accessing through SQL Select 424
changing 21
configuring 694
connecting to 412
controlling updates to 509
creating and deleting local Adaptive Server Anywhere

359
creating tables 361
creating UltraLite 360
ensuring referential integrity 374
executing SQL statements 394
importing data 389
limiting retrieved data 559
logging work 358
managing 21
MobiLink synchronization 396
retrieving, presenting, and manipulating data 385, 407
specifying fonts 364
stored procedures 442
synchronization 21
system tables 373
updating 386, 462
using as data source in DataWindow object 414

datatypes
in display formats 526
in graphs 637
of arguments 173
of return values 171
of structure variables 191
pasting into scripts 152

DataWindow controls

placing in windows 226
prefix 229

DataWindow objects
about 407
adding controls 485
aligning controls 502
and graphs in 612
buttons, adding 494
columns, adding 485
computed fields, adding 489
computed fields, defining 491
controlling updates in 509
creating new 413
custom buttons that add computed fields 494
data sources 413
delivering dynamically referenced 669, 672
display formats 521
distributing 673, 686
drawing controls, adding 487
edit styles 533
escapement 506
expressions in computed fields 492
extended attribute information used 476
filtering rows 559
generating 445
Graph presentation style 629
graphs, adding 498
Grid style 471
grid, working in 467
group boxes, adding 487
Group presentation style 567
grouping rows 564
including in resource files 675
initial values for columns 555
modifying 447
naming 446
pictures, adding 488
positioning of controls in 505
presentation styles 410
previewing 459
previewing without retrieving data 461
prompting for criteria 481
retrieval criteria 481
rotating controls in 506
saving 446
sharing with other developers 480

Index

User’s Guide 763

sorting rows 562
suppressing repeating values 563, 564
tab order 475
text, adding 486
units of measure 469, 470
using 409
validation rules 549
years, how interpreted 530

DataWindow painter
copying controls 501
defining validation rules 555
deleting controls 500
equalizing size 503
equalizing spacing 503
modifying data 462
moving controls 501
opening 97
resizing controls 502
sliding controls 504
working with display formats 524
working with edit styles 535

DataWindow Syntax tool 23
dates

display formats for 530
displaying in Library painter 92

dBASE file, using as data source for DataWindow
object 414

DBMS
CREATE VIEW statement 381
executing SQL statements 394
exporting table syntax 372
exporting view syntax 384
generating SQL statement 384
specifying an outer join 383
stored procedures 442

DDE application, using as data source for DataWindow
object 414

Debugger
about 22
assigning keyboard shortcuts 48

debugging
about 643
views 646

default command buttons 246
default layouts in views 39
Default to 3D command 243

Default3D preference variable 243
defaults

control names in windows 228
global objects 71
menu item names 293
sequence of controls in windows 236

DefaultSize property 721
defining retrieval arguments 433
Delete Library dialog box 95
DELETE statements

building in Database painter 393
specifying WHERE clause 513

DeleteItem function 254
DeleteRow function 463
deploying an application 667, 698
deploying projects, target selection 680
deployment DLLs 694
descendent menus

building 301
inherited characteristics 302

descendent objects
allowed changes 277
calling ancestor functions 282
inheritance hierarchy 275
instance variables in Properties view 222, 318
regenerating 104

descendent scripts
calling ancestors 282
extending ancestors 280
overriding ancestors 281

descendent user objects
building 317
instance variables in Properties view 318
writing scripts for 320

descendent windows
calling ancestor functions 282
characteristics of 222
creating 219
instance variables in Properties view 222
unique control names 230

Describe Rows dialog box
displaying 464
in Data Manipulation painter 389

design guidelines for windows 200
Design view, in DataWindow painter 452
detail bands

Index

764 PocketBuilder

in DataWindow painter 455
resizable 477

DialingDirectory object 337
DialingDirectoryEntry object 337
disk space 103
display expressions in graphs 634
display formats

about 521
adding buttons in DataWindow painter 525
applying to columns 522
colors in 526
datatypes 526
defining 526
deleting 558
for dates 530
for numbers 527
for strings 530
for times 531
in databases 365
in DataWindow objects 520
maintaining 558
masks 526
removing 522
sections 526
setting during execution 527
using in graphs 634
working with in Database painter 522
working with in DataWindow painter 524

display formats, assigning from toolbar 46
display values

of code tables 546
using in graphs 619

displaying objects in current library 96
display-only fields in DataWindow objects 537
DISTINCT keyword 425
distributing an application 698
distribution checklist 693
divisions, axis 638
DLL files, required for deployment 694
DO...LOOP statements 153
dot notation

referring to menu items 300
referring to properties of windows and controls 216
referring to structures 194

DoubleClicked event in ListBox control 254
dragging and dropping, in Database painter 355

drawing controls, adding to DataWindow objects 487
drawing objects in windows

list of 226
using 258

drop lines, graph 639
DROP VIEW statement 384
drop-down menus

about 283
changing order of menu items 292
deleting menu items 293
triggering clicked events 297

drop-down toolbars 40
DropDownDataWindow edit style

defining 543
defining code tables with 547

DropDownDataWindow Edit Style dialog box 544
DropDownListBox controls

defining accelerator keys for 239
edit property 256
prefix 229
using 255

DropDownListBox edit style
defining 538
defining code tables with 547

duplicate menu item names 293
duplicate values, index 378
duplicating menu items 291
dynamic libraries

about 670
execution search path 683
objects copied to 685
specifying in Project painter 670

dynamic user objects 320
dynamically referenced

objects 669, 672
resources 671

E
edges, displaying in DataWindow painter 499
Edit edit style

defining 537
defining code tables with 547

Edit Mask edit style
defining 541

Index

User’s Guide 765

defining code tables with 547
spin controls 542

edit masks
keyboard behavior in 252
using 251

Edit Style dialog box 535
edit styles

about 533
and selection criteria 419
applying to columns 534, 535
deleting 558
in databases 365
in DataWindow objects 520
in Specify Retrieval Criteria dialog box 482
maintaining 558
working with in Database painter 534
working with in DataWindow painter 535

editing, cabinet INF files 696
EditMask controls

defining as spin controls 253
prefix 229
using 251

EditMask property sheet 252
elevation, in 3D graphs 631
ellipses, in command buttons 246
emulators

deploying to 680
Pocket PC 728
Smartphone 728
using to debug applications 644

emulators, opening from PowerBar 10
Enabled property

for controls 240
for menu items 295

encapsulated functions 171
Enter key 246
environment variables

CPUType 718
OSType 718

error messages, customizing in validation rules 554
Error objects

default 71
defining descendent user object 312, 314
using 663

errors
compile 163

execution-time error numbers 663
handling 662

Esc key 246
escapement 506
event IDs, naming conventions 182
Event List view

about 61
in User Object painter 325

events
about 5
and drawing objects 258
application 72
calling ancestor scripts for 282
declaring your own 181
DoubleClicked, in ListBox controls 254
for windows and controls 215
in user objects 315
SystemError 666

EXE files See executables
executable files, including resources in 671
executable version of an application, contents 667
executables

building 681
compiling resources into 673
copying objects into 683
creating in Project painter 678, 681
naming 679
objects excluded from 684
overview of creating 667
running from PocketBuilder 46
specifying dynamic libraries 670

execution
handling errors 662
library list 668
placing user objects 320
previewing windows 212

execution plan, SQL 394
expanding objects in Application painter 76
Explain SQL command 394
exporting a PocketBuilder target 26
expressions

in computed fields 492
in filters 560
in graphs 634
in validation rules 553, 556
specifying graph series with 620

Index

766 PocketBuilder

specifying graph values with 620
Extend Ancestor Script command 280, 281
extended attribute system tables

about 372, 445, 703
deleting orphan table information 370
information used in DataWindow objects 445
storing display formats 522
storing edit styles 534
storing extended attributes 366
storing validation rules 551

Extended Attributes view 354
extended column attributes

about 365
how stored 703
picture columns 367
used for text 474

External data source
importing data values 441
modifying result sets 479
updating data 509

external data, importing 389
external files

importing data from 464
saving data in 468
using as data source for DataWindow object 414

external functions
declaring 165
including in user-defined functions 175
structures as arguments 195

F
File editor 25
files

for PictureButton controls 247
for PictureHyperLink controls 258
for TreeView controls 265
pasting content into script 154
PKD 668
PKR 671

filters
in Data Manipulation view 388
removing 561

focus
for default command button 246

moving from column to column 475
of controls in windows 236

font.escapement property 592
font.height property 593
font.italic property 593
font.strikethrough property 594
font.underline property 595
font.weight property 596
fonts

changing 49
choosing, for controls 231
default 69
in DataWindow object, changing 474
specifying for tables 364

foreign keys
about 374
defining 376
displaying in Database painter 374
joining tables 383, 430
opening related tables 375

format property 596
Freeform style

default wrap height 444
detail band in 455
of DataWindow objects 410

Function For Toolbar dialog box 494
Function List view 62
Function painter

coding functions 175
opening 170

functions
about 6
browsing 152
built-in 298
calling 282
communicating between user objects

and windows 324
for drawing objects 258
for windows and controls 216
in descendent menus 302
passing and returning structures 195
pasting into scripts 152
pasting names of 154
user-defined 167

Index

User’s Guide 767

G
General keyword, in number display formats 528,

531
GetFormat function 527
GetText function, using in validation rules 556
GetValue function 538
GIF files

adding to DataWindow objects 488
and PictureButton controls 247
and PictureHyperLink controls 258
and TreeView controls 265
naming in resource files 675

GIF images 247, 258, 261, 264
global functions

access level 170
opening Function painter 170
user-defined 167

global objects
specifying defaults 71, 321
specifying user objects for 321

global search 102
global standard class user objects 321
global structures

about 189
opening Structure painter 190
referring to 194
saving 192

global variables
and menu item scripts 299
and windows 217
pasting into scripts 152

graph controls in windows, prefix 229
graphics, adding to DataWindow objects 488
graphs

about 605
adding to DataWindow objects 498
autosizing text 633
changing position of 615
data types of axes 637
default positioning in DataWindow objects 505
defining properties 630
examples 621
expressions in 634
in DataWindow objects 612
legends in 631
major and minor divisions 638

multiple series 620
names of 631
overlays in 628
parts of 606
placing in windows 640
rotating text 634
scaling axes 637
selecting data 617
single series 620
sorting series and categories 632
specifying borders 631
specifying categories 619
specifying overlap and spacing of bars

and columns 636
specifying properties of axes 636
specifying rows 618
specifying series 620
specifying type 631
specifying values 619
text properties in 632
titles in 631
types of 608
using display formats 634
using Graph presentation style 629
using in applications 612
using in windows 639

GraphType property 631
grid

aligning controls in DataWindow objects 500
aligning controls in windows 232

grid lines, graph 639
Grid style

basic properties 471
detail band in 455
displaying grid lines 471
of DataWindow objects 411
reordering columns 468
resizing columns 467
working in 467

group box, adding to DataWindow objects 487
GROUP BY criteria 438
Group presentation style

properties of 568
using 567

GroupBox controls in windows
and radio buttons 248

Index

768 PocketBuilder

default tab order 237
prefix 229

grouping
in SQL Select 438
restricting 439

groups in DataWindow objects
graphing 618
of rows 564
sorting 574

H
HAVING criteria 439
header bands, in DataWindow painter 454
heading extended attribute 365
headings

in DataWindow objects 454
specifying fonts in tables 364

height property 597
Help

context-sensitive 161
using online 26
Windows CE platforms 749

Hide function 258
hierarchies

browsing class 276
inheritance 275

HPBiometricScanner object 333
HProgressBar controls

prefix 229
using 259

HScrollBar controls
prefix 229
using 259

HTML Table format, saving data in 469
HTrackBar controls

prefix 229
using 259

hyperlinks, adding to windows 257
hyphens (-) 290

I
ICO files, naming in resource files 675

identity columns, in DataWindow objects 512
Idle event 72
IF...THEN statements 153
importing

data 389
PowerBuilder targets 17

IN operator, in Quick Select 420
indexes

creating 378
dropping from tables 377, 379
properties 378

INF file, modifying 696
Inherit From Object dialog box 274

creating a menu 301
user objects 317

inheritance
browsing class hierarchies 276
building menus with 301
building new objects with 274
building user objects with 317
building windows with 219
hierarchy 223, 275
using unique names 230

inherited controls
deleting 222
syntax of 223

inherited properties 277
inherited scripts 278
initial values, for columns 555
initialization files

about 51
changing path 52
editing 25
how PocketBuilder finds them 51
saving custom colors 242
setting Default 3D variable 243

INSERT statements, building in Database painter 393
inserting nonvisual objects

in a user object 320
in a window 211
in an Application object 63

InsertItem function 254
InsertRow function 463
instance variables

and menu item scripts 299
displayed in user object’s Properties view 318

Index

User’s Guide 769

in ancestor objects 278
in window scripts 217
in window’s Properties view 222
pasting into scripts 152

instances, menu 306
Interactive SQL view 354
Internet

adding hyperlinks to windows 257
image support 247, 258, 261

invisible property 222
items

adding to menus 288
in drop-down lists 256
in list boxes 254

J
Join dialog box 383
joins, in Select painter 430
JPEG images 247, 257, 261, 264
just-in-time debugging 660

K
key and modified columns, updating rows 513
key and updatable columns, updating rows 513
key columns, updating rows 513
key modification, updating rows 515
keyboard

for moving and resizing controls 232
shortcuts 48
using with menus 296

keys, database
arrows specifying key relationship 416
displaying in Database painter 374
dropping from tables 377
specifying in DataWindow objects 511
updating values in DataWindow objects 515
using primary and foreign 374

keywords, display format 526

L
label extended attribute 365
labels, specifying fonts in tables 364
LargeIcon view 262
layer attribute of graphs 615
Layout view 59
layouts

customizing in Library painter 90
restoring default in views 39
saving in views 39

left alignment of controls in windows 233
legends

in graphs 607
specifying text properties 632
using 631

libraries
about 5
creating 95
deleting 95
deleting from search path 74
dynamic 670
optimal size of 88
optimizing 103
organization of 88
rebuilding 106
regenerating 104
reporting on 112
specifying search path 73
storage of objects in 88

library entries
checking in 134
check-out status 135
exporting to text files 106
regenerating 104
reporting on 110
searching 101
selecting 93

library list 73
Library painter

about 89
changing print settings 214
Class browser 276
columns, displaying 92
custom layouts 90
dates, displaying 92
displaying libraries and objects 92

Index

770 PocketBuilder

displaying window comments 212
finding called functions 177
jumping to painters 103
moving back, forward, and up levels 100
opening 89
pop-up menu 93
restricting displayed objects 94
setting the root 99, 100
sorting 90
using drag and drop 92
views 89
what you can do in 89

library search path, use in executable application 668
LIKE operator, in Quick Select 419
Line controls in windows

about 258
events 226
prefix 229

line drawing controls 487
line graphs

about 608
making three-dimensional 611

line styles, graph 639
lines, in menus 290
List Objects dialog box 687
List view

about 90
custom layouts 90
sorting 90
using drag and drop 92

ListBox controls
conversion to spinner controls 751
indicating accelerator keys 250
prefix 229
setting tab stops 254
using 253

ListView controls
LargeIcon view 262
list view 262
prefix 229
properties 262
report view 262
SmallIcon view 262
using 260
view style 262

local Adaptive Server Anywhere databases 359

local variables, and menu item scripts 299
locked menu names 293
log files

about 358
saving 358

logging
exporting table syntax 372
exporting view syntax 384
starting 358
stopping 358

logical operators 419
LookUpDisplay function 619

M
main windows

about 201
specifying window type 206

maintenance of an application
delivering updated runtime DLLs 694
using dynamic libraries to simplify 669

major divisions, in graphs 638
managing

databases 21
workspaces 18

masks
for display formats 526
using 251

match patterns, validation rules 554
Matching Library Entries dialog box 103
MDI applications, not supported on Windows CE 16
menu bars

about 283
adding to windows 305
changing order of items 292
deleting items 293

menu item events 297
menu items

about 283
changing order of 292
Clicked event 297
deleting 293
duplicate names 293
duplicating 291
events 297

Index

User’s Guide 771

inserting in descendent menus 303
moving 292
navigating in 292
properties 295
referring to, in scripts 300
renaming 293
selecting 291
ShiftToRight 303
using variables 299
writing scripts for 297

Menu painter
inherited menu 301
opening 287
saving menus 294
workspace 285

menu scripts, calling ancestor scripts 282
MenuBar property 721
menus

about 283
associating with windows 206
calling ancestor functions 282
creating by inheriting 301
creating new 287
creating separation lines 290
deleting menu items 293
designing for Smartphone platforms 751
in descendent objects 277
moving items in 292
navigating in 292
saving 294
using inheritance with 301
window 284

message boxes 202
Message objects

default 71
defining descendent user object 312, 314

messages, error 663
metafiles, specifying columns as 367
migration, using wizard 17
military time 532
minor divisions, in graphs 638
MobiLink synchronization

about 21
adding objects for 396
managing with Sybase Central 404
starting the server 404

user and subscription maintenance 402
MobiLink Synchronization for ASA wizard 396
modal windows 202
Modify Result Set Description dialog box 479
Move function 258
moving menu items 292
MultiLineEdit controls

defining accelerator keys for 239
prefix 229
setting tab stops 254
using 251

multiple-series graphs 620

N
Name column, sorting 90
names

of controls in DataWindow objects 476
of controls in windows 228
of DataWindow objects 446
of graphs 631
of inherited controls 223
of menu items 293, 305
of menu items in inherited menus 303
of menus 294
of queries 449
of structures 192
of user objects 319
of user-defined functions 168, 172
of windows 211
pasting function 154
pasting into scripts 151

naming conventions
for controls in windows 230
for DataWindow objects 446
for event IDs 182
for queries 449
for user objects 316
for user-defined functions 172
for windows 211
instance variables 80
objects 80

navigating in a menu 292
negative numbers, in TextSize property 231
networks, setting up user access to 694

Index

772 PocketBuilder

New dialog box
creating a menu 287
creating a new application 14, 55
creating a user object 311
creating a window 204
creating objects using inheritance 79

newline characters in text 474
Non-Visual Object List view

about 62
using in User Object painter 321

nonvisual objects
inserting in a user object 320
inserting in a window 211
inserting in an Application object 63

nonvisual user objects
AutoInstantiate property 312
inserting in a user object 320

NotificationBubble object 334
NULL values

allowing in code tables 546
allowing in tables 362
altering table definition 368
specifying display formats for 527

numbers, display formats for 527

O
Object Details view 354
Object Layout view 354
object-level functions

calling 178
opening Prototype window 170
user-defined 167

object-level structures
definition 189
opening Structure view 190
referring to 194
saving 192

objects
about 4
accessing recently opened 83
checking in 134
check-out status 135
compiled form 88
copying into executable files 683

creating new 15, 78
creating using inheritance 78
delivering dynamically referenced ones 669, 672
displaying in current library 96
distributing to users 687
exporting syntax 106
exporting to text files 106
importing syntax 106
in an executable file 668
inheritance hierarchy 275
new, using inheritance 274
opening 13, 14
pasting into scripts 151
pasting with Browser 152
previewing 84
referring to, in menu item scripts 299
regenerating 104
reporting on 110
running 84
searching 101
selecting 93

Objects view 354
ODBC interface

configuring 694
installing 694

off state, CheckBox control 249
on state, CheckBox control 249
online books 27
Open dialog box 82
Open event, and Application object 55
opening

Application painter 14, 15, 55
Data Manipulation view 385
database views 381
DataWindow painter 97
Library painter 89
Menu painter 287, 301
Query painter 97, 448
recent applications 14
Select painter 424
tools 22
User Object painter 209, 311
Window painter 204

OpenUserObject function 320
OpenWithParm function 216
operating system, configuring 694

Index

User’s Guide 773

operators, in Quick Select criteria 419
optimizing libraries 103
Options dialog box, in Library painter 94
options, mutually exclusive 248
OR operator, in Quick Select 420
OrcaScript

about 733
and source control 733
batch files 734
commands 735
usage notes 741

order
of arguments in functions 173
of menu items, changing 292
tab, in windows 236

ORDER BY clause
in SELECT statements 437
specifying in Quick Select 418

OSType environment variable 718
outer join, specifying 383
Output view 354
Oval controls in windows

about 258
events 226
prefix 229

oval drawing controls 487
overlap, of columns in graphs 636
overlays, in graphs 628

P
packaging an application 667
page, graphing data on 618
PainterBars

about 40
adding custom buttons to 44
controlling display of 41
in the Window painter 233

painters
displaying objects referenced in application 76
features 58
jumping to 103
opening 57
summary of 56
using views 34

views in 58
working in 56

painting SQL statements 391
palettes 242
panes

adding 38
docking 37
floating 37
in views 34
moving 35
removing 38
resizing 35

Parent reserved word 217
parents, viewing hierarchy in Browser 276
ParentWindow reserved word 300
passing

arguments in functions 173
parameters between windows 216
return values between windows 216
structures as arguments in functions 195

passwords
defining text boxes for 251
displaying as asterisks 537
fields 537

Paste SQL button 153
pasting

into scripts 151
SQL statements in Database painter 392
statements 153
structures 196
user-defined functions 178

paths, library 73
PBCatCol system table 373, 705
PBCatEdt system table 373, 706
PBCatFmt system table 373, 706
PBCatTbl system table 373, 704
PBCatVld system table 373, 706
PBUs see PowerBuilder units
pen.color property

about 597
specifying colors 602

pen.style property 598
pen.width property 599
percent display format 525
performance

and fragmented libraries 103

Index

774 PocketBuilder

and library size 88
how resource delivery model affects 668, 671

perspective, in 3D graphs 631
PhoneCall object 335
Picture controls in windows

placing 226
prefix 229

PictureButton controls
placing in windows 226
prefix 229
using 247

PictureHyperLink controls
about 257
prefix 229
using 257, 258

pictures
adding to DataWindow objects 488
specifying column as 367

pie graphs
about 609
making three-dimensional 611

pixels
as DataWindow object unit of measure 470
saving text size in 231

PK.INI files
format 51
how PocketBuilder finds them 51
saving custom colors 242
setting Default 3D variable 243
source control setting 127, 131

PKD files
about 670
including resources in 672

PKR files 671
Place 313
placeholders, in validation rules 553
PNG images 247, 257
Pocket PC

design considerations 748
message processing 753

PocketBuilder
converting to PowerBuilder targets 26
execution system 668
extensions 718
importing PowerBuilder targets 17
initialization file format 51

key features 717
runtime DLLs 694
using with Web services 723
window properties 721

PocketSOAP 723
point of view, in 3D graphs 631
points

saving text size in 231
specifying size for tables 364

polymorphism 168
POOM object, overview 338
PopMenu function 306
pop-up menus

controlling toolbars with 41
creating an instance of the menu 306
displaying 306
in Library painter 93
use of in applications 284

pop-up windows, modal response windows 202
position

changing for a control 232
changing for a graph 615
equalizing 234
of windows 209

PowerBar
about 40
adding custom buttons to 44
controlling display of 41
displaying available buttons 43
using 9

PowerBuilder units 208
PowerScript

about 5
expressions in computed fields 492
statements 175

PowerTips
assigning text in custom buttons 45
using 11

predefined objects in applications 71
preference variables

Default3D 243
for colors 242

preferences
changing print settings 214
setting default grid size 233

prefixes

Index

User’s Guide 775

in window names 211
of controls, default 229
of user object names 316, 319

presentation styles
of DataWindow objects 410
using Graph 629
using Group 567

preview
for windows 212
retrieving rows 461

Preview button 218
Preview view

in DataWindow painter 452
modifying data 462

previewing windows 212
primary keys

about 374
defining 375
displaying in Database painter 374
identifying updatable rows 511
joining tables 383, 430
modifying 377
opening related tables 375

Print Options dialog box 111
Print Preview

about 465
command 465

print specifications, reports 472
printing

data, using Print Preview 390, 465
scripts 151
window definitions 214

private access level 170
private libraries, organizing 88
procedures, defining 172
progress bars, freestanding 259
Project painter

building an executable 681
defining an executable application project 678
specifying dynamic libraries 670

projects
building 681
defining executable application 678
objects in 687
reports of objects 687

properties

about 577
application-level 19, 64
browsing 152
conditional expressions 578
control-level 228
example, gray bar 584
example, highlighting rows 586
example, rotating controls 585
in Application painter 63
in descendent objects 277, 318
in scripts 152, 299
in User Object painter 310
in Window painter 202
modifying controls 582
of drop-down lists 256
of list boxes 255
of menu items 295, 300
of PictureHyperLink controls 257, 258
of StaticHyperLink controls 250
of StaticText controls 250
of windows and controls 216
searching for 102
specifying colors 602
text, of controls in windows 231
using expressions 580
window-level 204

Properties view 59
differences from PowerBuilder 721
for graphs 614
for graphs in windows 640
in Application painter 19, 64
in DataWindow painter 452
in Window painter 204

property values
about 587
background.color 589
border 590
brush.color 591
brush.hatch 591
color 591
font.escapement 592
font.height 593, 597
font.italic 593
font.strikethrough 594
font.underline 595
font.weight 596

Index

776 PocketBuilder

format 596
pen.color 597
pen.style 598
pen.width 599
protect 599
specifying colors 602
supplying in conditional expressions 587
timer_interval 599
visible 599
width 600
x 600
x1, x2 601
y 601
y1, y2 602

protected access level 170
Prototype window

displaying 148
opening 170, 183

public access level 170
public libraries, organizing 88

Q
queries

defining 448
modifying 449
modifying comments 100
naming 449
previewing 448
running from toolbar 46
saving 449

Query data source 440
Query painter, opening 97, 448
question marks (?) 94
Quick Select data source

defining 415
up and down arrows 416

R
RadioButton controls

default tab order 237
defining accelerator keys for 239
prefix 229

using 248
using in group boxes 248

RadioButton edit style, defining 540
ranges, spin value 253
rebuilding libraries

full 106
partial 106

recent applications, opening 14
recent objects, modifying display of 83
Rectangle controls in windows

about 258
events 226
prefix 229

rectangle drawing controls 487
referencing

objects dynamically 669, 672
resources dynamically 671

referential integrity, in databases 374
regenerating objects 104
reports

Freeform style 410
graphs, adding 498
Group style 412
on library contents 110
print specifications 472
prompting for criteria 481
retrieval criteria 481
running from toolbar 46
Tabular style 410

Resize function 258
resource files

about 673
creating 675

resources
delivering as separate files 672
distributing 686
dynamically referenced 671
in an executable file 668, 671
in PKD files 668, 672
naming in resource files 675
specifying for dynamic libraries 671

response windows
about 202
specifying window type 206

result sets, modifying 479
retrieval arguments

Index

User’s Guide 777

defining 432
modifying in DataWindow objects 479
referencing 434
specifying in WHERE clause 435

retrieval criteria
in Quick Select grid 419
prompting for in DataWindow objects 481
prompting for in reports 481

Retrieve command 461
Retrieve on Preview option 461
RETURN statements 175
return type

changing for function 176
defining 171
none 172
structure 195

return values, passing between windows 216
Returns list box 171
reusability, use of dynamic libraries to facilitate 669
right alignment, of controls 233
rotation

about 506
in 3D graphs 631
of text in graphs 634

Round Maximum To, in graphs 638
RoundRectangle controls in windows

about 258
events 226
prefix 229

RoundRectangle drawing controls 487
rows

allowing users to select 481
displaying information about 389, 464
filtering 388, 559
graphing 618
grouping 564
grouping in SQL Select 438
manipulating data in the Database painter 386
modifying in the Preview view 462
removing filters 561
sorting 387, 388, 562
sorting in SQL Select 437
suppressing repeating values 563

rulers
displaying in DataWindow painter 500
displaying in print preview 465

Run/Preview button 218
Run/Preview dialog box 84
running windows 218
runtime libraries, creating 109

S
Save As command, changing function name 176
Save As dialog box 469
Save Rows As dialog box 390
saving

data in a DataWindow object 480
data in external files 468
data in HTML Table format 469
DataWindow objects 446
menus 294
queries 449
structures 192
user-defined functions 176
windows 211

scatter graphs 609
SccMaxArraySize, PK.INI file setting 127
SccMultiCheckout, PK.INI file setting 131
schema, creating UltraLite 360
scope, variable 217
screen rotation 755
Script icon

in Select Event list box 148
of inherited scripts 279

Script view 60
about 147
context-sensitive Help 161

scripts
about 6
changing labels in 250
changing text size 231
compiling 162
copying files into 154
defined 5
displaying referenced objects 76, 77
extending 280
for custom visual user objects 320
for descendent user objects 318
for menu items 297, 299
for user events 186

Index

778 PocketBuilder

for user objects 320
in Application painter 63
in User Object painter 310
in Window painter 202
in windows 215
inherited 278
overriding ancestor 281
pasting with Browser 152
printing 151
referring to menu items 293
referring to structures 194
reverting to unedited version 155
searching for strings in 102
writing 147

scroll bars
for text boxes 251
freestanding 259
in list boxes 255
on windows 210

scrolling, on Smartphone platforms 752
SDI application 16
Search Library Entries dialog box

in Library painter 177
using 102

search path
for resource files 673
specifying libraries 73

search strings, library entry 102
seeing nonvisual objects 321
Select All command 227
Select Application dialog box

about 18
New button 15

Select painter
adding tables 427
colors in 426
defining retrieval arguments 432
joining tables 430
opening 424
saving work as query 424
selecting tables 425
specifying selection, sorting, and grouping criteria

434
specifying what is displayed 426

SELECT statements
building in Database painter 393

displaying 429
editing syntactically 429
for view, displaying 382
limiting data retrieved 559
predefined 448
saved as queries 448
sorting rows 562

selecting
controls in DataWindow painter 457
controls in windows 227
menu items 291
multiple list box items 255

selection criteria
allowing users to specify 423, 481
specifying in Quick Select 418
specifying in SQL Select 435

separation lines, in menus 290
SerialGPS object 344
Series axis, graph 607
series, graph

as overlays 628
basics 606
specifying 620

SetFormat function 527
SetTabOrder function 476
setting the root 99
SetValue function 538
shared variables, in window scripts 217
ShareData, in Data view 481
shell of application, creating 17
ShiftToRight property 295, 303
shortcut keys

assigning to menu items 296, 297
triggering clicked events 297

shortcuts
in the Script view 150
keyboard 48
to start application 697

Show Edges option 499
Show function 258
ShowSIPButton property 722
SignalError function 666
Signature control 346
SingleLineEdit controls

defining accelerator keys for 239
prefix 229

Index

User’s Guide 779

using 251
using edit masks 251

single-series graphs 620
SIP see soft input panel
size

defaults 69
equalizing in DataWindow painter 503
of controls in DataWindow objects 502
of controls in windows 232
of drop-down lists 256
of libraries 88
of windows 209

sliding, in reports 504
SmallIcon view 262
SmartMinimize property 721
Smartphone

design considerations 750
menu design 751
message processing 753
porting an application from a Pocket PC 754
tabbing and scrolling 752

SMSSession object 347
snap to grid 232
SocketBarcodeScanner object 330
soft input panel

behavior in edit masks 541
system functions 718
using accelerator keys with 239
using with shortcut keys 297
window property 722

sort criteria, specifying in Quick Select 418
sort order, list box 255
sorting

groups 574
in graphs 632
in SQL Select 437
Name column in Library painter 90
rows 562

source
exporting to text files 106
object 88

source control
advanced options 122
and OrcaScript 733
backing up status cache 126
connection options 121

icons 124
multiple user checkout 131
operations 129
setting up a connection profile 120

Source editor 85
Space controls command 234
space, in libraries 103
spacing

equalizing in DataWindow painter 503
of columns in graphs 636
of controls in windows 234

Specify Sort Columns dialog box 562
Specify Update Properties dialog box 510
spin controls

defining edit masks as 542
using 253

spinner controls, Smartphone list boxes 751
SQL Select

adding tables 427
data source, colors in 426
defining retrieval arguments 432
joining tables with 430
selecting columns 427
selecting tables 425
specifying selection, sorting, and grouping criteria

434
specifying what is displayed 426
using as data source 424

SQL Statement Type dialog box 392
SQL statements

and user-defined functions 175
building and executing 391
displaying 429
executing 391, 394
execution plan 394
explaining 394
exporting to another DBMS 372
for views, displaying 382
generating through Quick Select 415
generating through SQL Select 424
importing from text files 393
logging 358
painting 391
pasting 153
typing 393

stacked graphs 611

Index

780 PocketBuilder

standard class user objects
about 308
building 312, 314
inserting in a user object 320
inserting in a window 211
inserting in an Application object 63
writing scripts for 313

standard visual user objects
about 309
building 314

Start wizards, using 15
statements, pasting into scripts 153
states

of check boxes 249
of radio buttons 248

StaticHyperLink controls
prefix 229
using 250

StaticText controls
prefix 229
using 250

status
backing up for offline mode 126
checked out 135
refreshing 138
source control 123

Stored Procedure data source 442
stored procedures

updating data in DataWindow objects 509
updating data in forms 509
using 442

strings
concatenating 492
display formats for 530

Structure List view 62
Structure painter

button 190
opening 190

Structure view
about 63
opening 190

structures
copying 193, 195
defining 190
embedding 191
in descendent menus 302

modifying 192
passing arguments as in functions 195
pasting into scripts 152
types of 189
using 193

style
default text 69
of DataWindow objects 410
of windows 204

StyleBar
about 40
controlling display of 41

suffix, control name 230
sum

computing 493
in graphs 619

summary statistics, computing 493
Super reserved word 282
SymbolBarcodeScanner object 330
Sync User and Subscription wizard 402
synchronization

ASA database wizard 396
UltraLite database wizard 400

syntax
displaying SQL statements 382
exporting to another DBMS 372
for calling ancestor scripts 282

System Options dialog box 52
system tables

DBMS 373
extended attribute 366, 372, 703

SystemError event 55, 72, 666
SystemError scripts 662

T
Tab controls

adding pages 267
prefix 229
properties 270
selecting 267
selecting a tab page 267
user objects in 268
using 266

tab order

Index

User’s Guide 781

in DataWindow objects 475
in windows 236
setting 237

tab stops, setting 254
tab values 237
tabbing, on Smartphone platforms 752
tables

altering definition of 368
applying display formats to columns 522
applying edit styles to columns 534, 535
controlling updates to 509
creating 361
creating indexes 378
dropping 370
dropping indexes 377, 379
exporting syntax to another DBMS 372
extended attributes, specifying 365
fonts 364
joining in Select painter 430
opening, related to foreign keys 375
opening, related to primary keys 375
presenting in Freeform style 410
presenting in Grid style 411
presenting in Tabular style 410
printing data 390
removing from Database painter view 369
selecting for SQL Select 415, 424
specifying extended attributes 366
specifying fonts 364
specifying updatable 511
working with data 385

tab-separated files, using as data source for
DataWindow object 414

Tabular style
detail band in 455
of DataWindow objects and reports 410

tap-and-hold indicator, Pocket PC 205
targets

about 4, 16
adding to a workspace 18
creating 15

template INF file, modifying 696
testing, windows 212, 218
text

changing properties, in controls in windows 231
cutting, copying, and pasting 369

editing 25
in DataWindow objects 486
matching patterns in validation rules 554
of menu items 293
on toolbar buttons 41
properties in graphs 632
rotating in graphs 634
size in windows 231

text boxes 251
text files

exporting objects to 106
importing SQL statements from 393

TextSize property 231
third state, CheckBox control 249
This reserved word 327
three-dimensional borders 243
three-dimensional graphs

about 611
point of view 631

Time keyword 532
Timer_Interval property 599
times, display formats for 531
timestamps, used in updating rows 513
titles

of graphs 607, 631
specifying text properties 632

To-Do List
entries 23
links 24
opening 23
using 24

Toolbar control 348
toolbars

about 40
controlling display of 41
custom buttons 44
customizing 42
docking 42
drop-down 40
in DataWindow painter 456
moving 41
moving buttons 43
resetting 43

Toolbars dialog box 41
tools 22
track bars, freestanding 259

Index

782 PocketBuilder

Transaction objects
default 71
defining descendent user object 312, 314

Tree view
about 90
custom layouts 90
expanding and collapsing 92
using drag and drop 92

TreeView controls
adding items 264
adding pictures 264
prefix 229
properties 265
using 263, 265

TriggerEvent function 325
typographical conventions xxii

U
UltraLite

and MobiLink synchronization 400
comments not supported 364
creating a database 360
creating a schema 360
creating tables 361
font properties not supported 364
integration in PocketBuilder 21
system tables not supported 373
table security 395
using extended attributes with 446
views not supported 379

UltraLite Schema Painter utility 360
underline (_) character

defining acclerator keys for controls 239
in menu items 296

Undo command
about 152
in Database painter 369
in DataWindow painter 459

unique indexes, creating 378
unique keys, specifying for DataWindow 511
up and down arrows, in Quick Select 416
updatable columns in DataWindow object 512
Update function 463
UPDATE statements

building in Database painter 393
specifying WHERE clause 513

updates, in DataWindow objects 509
user events

about 181
communicating between user objects

and windows 324
defining 183
in ancestor objects 278
in windows 216
writing scripts for 186

user interface, design guidelines 200
user object controls, prefix 229
User Object painter

about 310
events 315
inserting nonvisual objects in 320
opening 311
properties 310
views 310
workspace 310

user objects
about 307
autoinstantiating 312
building custom class 312
building custom visual 313
building standard class 312, 314
building standard visual 314
calling ancestor functions 282
communicating with windows 323
creating new 209, 311
custom class 308
custom visual 309
declaring events 181
events 315
in a Tab control 267
inserting nonvisual objects in 320
instance variables in Properties view 318
names, in windows 319
placing during execution 320
referring to, in menu item scripts 300
saving 316
scripts, calling ancestor scripts 282
selecting from toolbar 46
standard class 308
standard visual 309

Index

User’s Guide 783

tab order within 236
triggering events 325
types of class 308
types of visual 309
using 319
using graphs in 612, 640
using inheritance 317

user-defined functions
access level 170
calling 178
changing name of 176
coding 175
defining 170
defining arguments 173
defining return types 171
finding where used 177
in ancestor objects 278
modifying 176
naming 172
return types 171
types of 167
using 178
using structures in 194
where used 177
with same name 168

V
validation rules

about 365, 549
customizing error messages 554
defining in Database painter 551
defining in DataWindow painter 555
deleting 558
maintaining 558
match patterns 554

Value axis, graph 607
values

defining return types 171
ensuring validity of 374
fixed, cycling through 253
of list box items 254
of structures, copying 195
returning 175
setting tab 237

specifying for graphs 619
suppressing repeating 563

Variable Types property page 71, 322
variables

and menu item scripts 299
declaring 165
displayed in user object’s Properties view 318
displayed in window’s Properties view 222
in descendent menus 302
in retrieval arguments 435
in structures 191, 193
in window scripts 217
pasting 152
searching for 102

View Definition dialog box 383
View painter, opening 381
view synchronization, in Library painter 91
viewing nonvisual objects 321
views

adding 38
closing 38
Control List view 61
docking 37
dropping 384
Event List view 61
floating 37
Function List view 62
in Application painter 63
in Library painter 89
in painters 58
in User Object painter 310
in Window painter 202
Layout view 59
moving 35
Non-Visual Object List view 62
Properties view 59
removing 38
resizing 35
restoring layouts 39
saving layouts 39
Script view 60
Structure List view 62
Structure view 63
updating 509
using in painters 34

Visible property 240, 295, 599

Index

784 PocketBuilder

visual user objects
custom 309
overview 309
placing in window or user object 319
standard 309

VProgressBar controls
prefix 229
using 259

VScrollBar controls
prefix 229
using 259

VTrackBar controls
prefix 229
using 259

W
warnings, compiler 163, 164
Web services 723
WHERE clause

specified for update and delete 513
specifying in Quick Select 418
user modifying during execution 481

WHERE criteria 435
width property 600
wildcards, in Library painter 94
window objects 200
Window painter

about 202
displaying hidden controls 240
inserting nonvisual objects in 211
opening 204
properties 202, 204
views 202
workspace 202

Window Position dialog box
controlling scrolling 210
moving and sizing windows 209

window scripts
calling ancestor scripts 282
displaying pop-up menus 306
identifying menu items in 305

window type, specifying 206
window-level properties 216
window-level variables 217

windows
about 199
aligning controls 233
communicating with user objects 323
creating new 204
declaring events 181
displaying references to 76
guidelines when designing 200
inserting nonvisual objects in 211
instance variables in Properties view 222
naming 211
placing controls in 226
placing visual user objects in 319
previewing 212
printing definition 214
referring to, in scripts 299
running 218
saving 211
selecting controls 227
sizing and positioning 209
specifying color 207
style 205
types of 201
using graphs in 639
using menus 206, 284, 305

Windows CE API 720
Windows CE Start menu, deploying to 728
Windows messages, mapping to PocketBuilder 182
Windows XP, style for visual controls 33
wizards

accessing 14
Application Creation target 15
Existing Application target 17
Export CE to Desktop target 26
Import Desktop to CE target 17
target 15

workspace
grid, in Window painter 232
in Application painter 63
in Database painter 354
in Library painter 89
in Menu painter 285
in User Object painter 310
in Window painter 202
of descendent user object 317

workspaces

Index

User’s Guide 785

about 4
adding targets to 18
creating 13
opening 13

wrap height, default in freeform reports 444

X
X and Y values

and window position 209
in grid 233

x property 600
x1, x2 property 601

Y
y property 601
y1, y2 property 602
years in DataWindow objects, specified with

two digits 530

Z
zero display format 527
Zoom command, in print preview 466

Index

786 PocketBuilder

	User’s Guide
	PART 1 The PocketBuilder Environment
	PART 2 Working with Targets and Libraries
	PART 3 Coding Fundamentals
	PART 4 Working with Windows, Controls, and User Objects
	PART 5 Working with Databases and DataWindows
	PART 6 Testing and Running Your Application
	PART 7 Appendixes
	APPENDIX A Extended Attribute System Tables 703
	APPENDIX B PowerBuilder and PocketBuilder Product Differences 717
	APPENDIX C The OrcaScript Language 733
	APPENDIX D Designing Applications for Windows CE Platforms 747

	CHAPTER 1 Working with PocketBuilder
	Concepts and terms
	Workspaces and targets
	Objects
	DataWindow objects
	PocketBuilder libraries
	Painters and editors
	Events and scripts
	Functions
	Properties

	The PocketBuilder environment
	The System Tree
	The PowerBar
	The Clip window
	The Output window

	Creating and opening workspaces
	Creating a workspace
	Opening a workspace

	Using wizards
	Creating a target
	PowerScript application targets

	Managing workspaces
	Adding an existing target to a workspace
	Removing a target from a workspace
	Specifying workspace properties

	Building workspaces
	Managing databases
	Working with tools
	Using the To-Do List
	Using the File editor
	Converting a PocketBuilder target to PowerBuilder

	Using online Help
	Building an application

	CHAPTER 2 Customizing PocketBuilder
	Starting PocketBuilder with an open workspace
	Changing the design-time layout
	Using the Windows XP style for visual controls
	Arranging the System Tree, Output, and Clip windows
	Using views in painters
	Displaying the title bar
	Moving and resizing panes and views
	Floating and docking views
	Adding and removing views
	Saving a layout

	Using toolbars
	Toolbar basics
	Drop-down toolbars
	Controlling the display of toolbars
	Moving toolbars using the mouse
	Docking toolbars

	Customizing toolbars
	Modifying a custom button

	Creating new toolbars

	Customizing keyboard shortcuts
	Changing fonts
	Defining colors
	Managing the PocketBuilder IDE
	About the registry
	About the initialization file

	CHAPTER 3 Working with PowerScript Targets
	About PowerScript targets
	Working in painters
	PocketBuilder painters
	Opening painters
	Painter features
	Views in painters that edit objects

	About the Application painter
	Specifying application and Today item properties
	Application object properties for a custom Today item
	Specifying default text properties
	Specifying an icon
	Specifying default global objects

	Writing application-level scripts
	Setting application properties in scripts

	Specifying the target’s library search path
	Looking at an application's structure
	Which objects are displayed
	Which references are displayed
	Which references are not displayed

	Working with objects
	Creating new objects
	Creating new objects using inheritance
	Naming conventions
	Opening existing objects
	Running or previewing objects

	Using the Source editor

	CHAPTER 4 Working with Libraries
	About libraries
	Using libraries

	Opening the Library painter
	About the Library painter
	Working with libraries
	Displaying libraries and objects
	Using the pop-up menu
	Selecting objects
	Filtering the display of objects
	Creating and deleting libraries
	Filtering the display of libraries and folders
	Working in the current library
	Opening and previewing objects
	Copying, moving, and deleting objects
	Setting the root
	Moving back, forward, and up one level
	Modifying comments

	Searching targets, libraries, and objects
	Optimizing libraries
	Regenerating library entries
	Rebuilding workspaces and targets

	Exporting and importing entries
	Creating runtime libraries
	Including additional resources

	Creating reports on library contents
	Creating library entry reports
	Creating the library directory report

	CHAPTER 5 Using Source Control
	About source control systems
	Using your source control manager
	Using PBNative
	Constraints of a multiuser environment
	Extension to the SCC API

	Using a source control system with PocketBuilder
	Setting up a connection profile
	Viewing the status of source-controlled objects
	Working in offline mode
	Fine-tuning performance for batched source control requests
	Files available for source control

	Source control operations in PocketBuilder
	Adding objects to source control
	Checking objects out from source control
	Checking objects in to source control
	Clearing the checked-out status of objects
	Synchronizing objects with the source control server
	Refreshing the status of objects
	Comparing local objects with source control versions
	Displaying the source control version history
	Removing objects from source control

	Modifying source-controlled targets and objects
	Effects of source control on object management
	Copy and move operations on source-controlled objects
	Editing the PKG file for a source-controlled target

	CHAPTER 6 Writing Scripts
	About the Script view
	Opening Script views
	Modifying Script view properties
	Editing scripts
	Printing scripts
	Pasting information into scripts
	Reverting to the unedited version of a script

	Using AutoScript
	Using the AutoScript pop-up window
	Customizing AutoScript
	Example

	Getting context-sensitive Help
	Compiling the script
	Handling problems

	Declaring variables and external functions

	CHAPTER 7 Working with User-Defined Functions
	About user-defined functions
	Deciding which kind you want

	Defining user-defined functions
	Opening a Prototype window to add a new function
	Defining the access level
	Defining a return type
	Naming the function
	Defining arguments
	Defining a THROWS clause
	Coding the function
	Compiling and saving the function

	Modifying user-defined functions
	Using your functions

	CHAPTER 8 Working with User Events
	About user events
	User events and event IDs

	Defining user events
	Using a user event
	Examples of user event scripts

	CHAPTER 9 Working with Structures
	About structures
	Deciding which kind you want

	Defining structures
	Modifying structures
	Using structures
	Referencing structures
	Copying structures
	Using structures with functions
	Displaying and pasting structure information

	CHAPTER 10 Working with Windows
	About windows
	Designing windows
	Building windows

	Types of windows
	Main windows
	Response windows

	About the Window painter
	Building a new window
	Creating a new window
	Defining the window's properties
	Using the General properties page
	Choosing the window's size and position
	Specifying window scrolling

	Adding controls
	Adding nonvisual objects
	Saving the window

	Viewing your work
	Previewing a window
	Printing a window's definition

	Writing scripts in windows
	About events for windows and controls
	About functions for windows and controls
	About properties of windows and controls
	Declaring instance variables
	Examples of statements

	Running a window
	Using inheritance to build a window
	Building two windows with similar definitions
	Advantages of using inheritance
	Instance variables in descendants
	Control names in descendants

	CHAPTER 11 Working with Controls
	About controls
	Inserting controls in a window
	Selecting controls
	Defining a control's properties
	Naming controls
	About the default prefixes
	Changing the default prefixes

	Changing the name

	Changing text
	How text size is stored

	Moving and resizing controls
	Moving and resizing controls using the mouse
	Moving and resizing controls using the keyboard
	Aligning controls using the grid
	Aligning controls with each other
	Equalizing the space between controls
	Equalizing the size of controls

	Copying controls
	Defining the tab order
	Establishing the default tab order
	Changing the window's tab order

	Defining accelerator keys
	Specifying accessibility of controls
	Using the Visible property
	Using the Enabled property

	Choosing colors
	Using the 3D look
	Using the individual controls
	Using CommandButtons
	Specifying Default and Cancel buttons

	Using PictureButtons
	Using RadioButtons
	Using CheckBoxes
	Using StaticText
	Using StaticHyperLinks
	Using SingleLineEdits and MultiLineEdits
	Using EditMasks
	Using ListBoxes
	Using DropDownListBoxes
	Using Pictures
	Using PictureHyperLinks
	Using drawing objects
	Using HProgressBars and VProgressBars
	Using HScrollBars and VScrollBars
	Using HTrackBars and VTrackBars
	Using ListView controls
	Using TreeView controls
	Using Tab controls

	CHAPTER 12 Understanding Inheritance
	About inheritance
	Creating new objects using inheritance
	The inheritance hierarchy
	Browsing the class hierarchy
	Working with inherited objects
	Using inherited scripts
	Viewing inherited scripts
	Extending a script
	Overriding a script
	Calling an ancestor script
	Calling an ancestor function

	CHAPTER 13 Working with Menus
	About menus and menu items
	About the Menu painter
	Building a new menu
	Creating a new menu
	Working with menu items
	Inserting menu items
	Creating separation lines in menus
	Duplicating menu items
	Changing menu item text
	Selecting menu items
	Navigating in the menu
	Moving menu items
	Deleting menu items

	How menu items are named
	Saving the menu

	Defining the appearance of menu items
	Setting General properties

	Writing scripts for menu items
	Using the menu item Clicked event
	Using functions and variables
	Referring to objects in your application

	Using inheritance to build a menu
	Modifying an inherited menu
	Inserting menu items in a descendent menu

	Using menus
	Adding a menu bar to a window
	Displaying pop-up menus

	CHAPTER 14 Working with User Objects
	About user objects
	Class user objects
	Visual user objects
	Building user objects

	About the User Object painter
	Building a new user object
	Creating a new user object
	Building a custom class user object
	Building a standard class user object
	Building a custom visual user object
	Building a standard visual user object
	Events in user objects
	Saving a user object

	Using inheritance to build user objects
	Using the inherited information

	Using user objects
	Using visual user objects
	Using class user objects
	Using global standard class user objects

	Communicating between a window and a user object
	Examples of user object controls affecting a window

	CHAPTER 15 Working with Native Objects and Controls for Windows CE Devices
	Bar code scanner objects
	Digital camera objects
	HPBiometricScanner object
	NotificationBubble object
	Phone-related objects
	PhoneCall object
	CallLog and CallLogEntry objects
	DialingDirectory and DialingDirectoryEntry objects

	POOM object
	SerialGPS object
	Signature control
	SMS messaging objects
	Toolbar control

	CHAPTER 16 Managing the Database
	Working with database components
	Using the Database painter
	Modifying database preferences
	Logging your work

	Creating databases
	Working with tables
	Creating a new table from scratch
	Creating a new table from an existing table
	Specifying column definitions
	Specifying table and column properties
	Specifying table properties
	Specifying column extended attributes
	Specifying additional properties for character columns

	Altering a table
	Cutting, copying, and pasting columns
	Closing a table
	Dropping a table
	Viewing pending SQL changes
	Printing the table definition
	Exporting table syntax
	About system tables

	Working with keys
	Working with indexes
	Working with database views
	Manipulating data
	Retrieving data
	Modifying data
	Sorting rows
	Filtering rows
	Viewing row information
	Importing data
	Printing data
	Saving data

	Creating and executing SQL statements
	Building and executing SQL statements
	Creating stored procedures
	Controlling comments
	Entering SQL
	Explaining SQL
	Executing SQL

	Customizing the editor

	Controlling access to the current database
	Using the MobiLink Synchronization for ASA wizard
	Using the UltraLite Synchronization wizard
	Maintaining users and subscriptions in the remote database
	Managing MobiLink synchronization on the server
	Starting the MobiLink synchronization server
	Using Sybase Central

	CHAPTER 17 Defining DataWindow Objects
	About DataWindow objects
	DataWindow object examples
	How to use DataWindow objects

	Choosing a presentation style
	Building a DataWindow object
	Selecting a data source
	Using Quick Select
	Selecting a table
	Selecting columns
	Specifying sorting criteria
	Specifying selection criteria
	SQL expression examples

	Using SQL Select
	Selecting tables and views
	Selecting columns
	Displaying the underlying SQL statement
	Joining tables
	Using ANSI outer joins

	Using retrieval arguments
	Specifying selection, sorting, and grouping criteria

	Using Query
	Using External
	Using Stored Procedure
	Choosing DataWindow object-wide options
	Generating and saving a DataWindow object
	About the extended attribute system tables and DataWindow objects
	Using extended attributes with an UltraLite application

	Saving the DataWindow object
	Modifying an existing DataWindow object

	Defining queries
	Previewing the query
	Saving the query
	Modifying a query

	What's next

	CHAPTER 18 Enhancing DataWindow Objects
	Working in the DataWindow painter
	Understanding the DataWindow painter Design view
	The header band
	The detail band
	The summary and footer bands

	Using the DataWindow painter toolbars
	Using the Properties view in the DataWindow painter
	Selecting controls in the DataWindow painter
	Resizing bands in the DataWindow painter Design view
	Using zoom in the DataWindow painter
	Undoing changes in the DataWindow painter

	Using the Preview view
	Retrieving data
	Modifying data
	Viewing row information
	Importing data into a DataWindow object
	Using print preview
	Printing data
	Working in a grid DataWindow object

	Saving data in an external file
	Modifying general DataWindow object properties
	Changing the DataWindow object style
	Setting colors in a DataWindow object
	Specifying properties of a grid DataWindow object
	Defining print specifications for a DataWindow object
	Modifying text in a DataWindow object
	Defining the tab order in a DataWindow object
	Naming controls in a DataWindow object
	Using borders in a DataWindow object
	Specifying variable-height detail bands in a DataWindow object
	Modifying the data source of a DataWindow object
	Modifying SQL SELECT statements
	Modifying the result set

	Storing data in a DataWindow object
	Prompting for retrieval criteria

	CHAPTER 19 Working with Controls in DataWindow Objects
	Adding controls to a DataWindow object
	Adding columns to a DataWindow object
	Adding text to a DataWindow object
	Adding drawing controls to a DataWindow object
	Adding a group box to a DataWindow object
	Adding pictures to a DataWindow object
	Adding computed fields to a DataWindow object
	Computed columns versus computed fields
	Defining a computed field in the DataWindow painter

	Adding buttons to a DataWindow object
	Controlling the display of buttons in print preview and on printed output
	Actions assignable to buttons in DataWindow objects

	Adding graphs to a DataWindow object

	Reorganizing controls in a DataWindow object
	Displaying boundaries for controls in a DataWindow object
	Using the grid and the ruler in a DataWindow object
	Deleting controls in a DataWindow object
	Moving controls in a DataWindow object
	Copying controls in a DataWindow object
	Resizing controls in a DataWindow object
	Aligning controls in a DataWindow object
	Equalizing the space between controls in a DataWindow object
	Equalizing the size of controls in a DataWindow object
	Sliding controls to remove blank space in a DataWindow object

	Positioning controls in a DataWindow object
	Rotating controls in a DataWindow object

	CHAPTER 20 Controlling Updates in DataWindow Objects
	About controlling updates
	Changing update settings
	Specifying the table to update
	Specifying the unique key columns
	Specifying an identity column
	Specifying updatable columns
	Specifying the WHERE clause for update/delete
	Specifying update when key is modified

	Using stored procedures to update the database

	CHAPTER 21 Displaying and Validating Data
	About displaying and validating data
	Presenting the data
	Validating data

	About display formats
	Working with display formats
	Working with display formats in the Database painter
	Working with display formats in the DataWindow painter

	Defining display formats
	Number display formats
	String display formats
	Date display formats
	Time display formats

	About edit styles
	Working with edit styles
	Working with edit styles in the Database painter
	Working with edit styles in the DataWindow painter

	Defining edit styles
	The Edit edit style
	The DropDownListBox edit style
	The CheckBox edit style
	The RadioButtons edit style
	The EditMask edit style
	The DropDownDataWindow edit style

	Defining a code table
	How code tables are implemented
	How code tables are processed
	Validating user input

	About validation rules
	Understanding validation rules

	Working with validation rules
	Working with validation rules in the Database painter
	Defining the expression
	Using match values for character columns
	Customizing the error message
	Specifying initial values

	Working with validation rules in the DataWindow painter
	Specifying the expression
	Examples

	Summary of maintaining the entities

	CHAPTER 22 Filtering, Sorting, and Grouping Rows
	Filtering rows
	Sorting rows
	Suppressing repeating values

	Grouping rows
	Using the Group presentation style
	Defining groups in an existing DataWindow object
	Specify the grouping columns
	Sort the rows
	Rearrange the DataWindow object
	Add summary statistics
	Sort the groups

	CHAPTER 23 Highlighting Information in DataWindow Objects
	Highlighting information
	Modifying properties when designing
	Modifying properties at runtime

	Modifying properties conditionally at runtime
	Example 1: creating a gray bar effect
	Example 2: rotating controls
	Example 3: highlighting rows of data

	Supplying property values
	Background.Color
	Border
	Brush.Color
	Brush.Hatch
	Color
	Font.Escapement (for rotating controls)
	Font.Height
	Font.Italic
	Font.Strikethrough
	Font.Underline
	Font.Weight
	Format
	Height
	Pen.Color
	Pen.Style
	Pen.Width
	Protect
	Timer_Interval
	Visible
	Width
	X
	X1, X2
	Y
	Y1, Y2

	Specifying colors

	CHAPTER 24 Working with Graphs
	About graphs
	Parts of a graph
	How data is represented
	Organization of a graph

	Types of graphs
	Area, bar, column, and line graphs
	Pie graphs
	Scatter graphs
	Three-dimensional graphs
	Stacked graphs

	Using graphs in applications

	Using graphs in DataWindow objects
	Placing a graph in a DataWindow object
	Using the graph's Properties view
	Changing a graph's position and size
	Associating data with a graph
	Specifying which rows to include in a graph
	Specifying the categories
	Specifying the values
	Specifying the series
	Examples

	Using overlays
	Examples

	Using the Graph presentation style
	Defining a graph's properties
	Using the General page in the graph's Properties view
	Sorting data for series and categories
	Specifying text properties for titles, labels, axes, and legends
	Specifying overlap and spacing
	Specifying axis properties

	Using graphs in windows

	CHAPTER 25 Testing and Debugging Applications
	Overview of debugging and testing applications
	Debugging an application
	Starting the debugger
	Setting breakpoints
	Running in debug mode
	Examining an application at a breakpoint
	Examining variable values
	Watching variables and expressions
	Monitoring the call stack
	Examining objects in memory
	Using the Source view
	Using the Source Browser view
	Using the Source History view

	Stepping through an application
	Debugging windows opened as local variables
	Just-in-time debugging
	Generating a trace file without timing information

	Testing an application on the desktop
	Running the application on the desktop
	Handling errors during execution

	CHAPTER 26 Packaging and Distributing an Application
	Packaging an application
	Using dynamic libraries
	Distributing resources
	Using PocketBuilder resource files

	Creating a project
	Defining the project
	Building and deploying the project
	How PocketBuilder builds the project
	How PocketBuilder searches for objects
	Which objects are copied to the executable file
	Which objects are not copied to the executable file
	Which objects are not copied to the dynamic libraries
	How to include the objects that were not found

	Listing the objects in a project
	Troubleshooting errors during CAB file generation

	Signing applications and CAB files
	Security concepts
	Managing certificates
	Signing an application and CAB file

	Delivering your application to end users
	Building CAB files
	Distributing the application

	About the extended attribute system tables
	The extended attribute system tables
	Edit style types for the PBCatEdt table
	CheckBox edit style (code 85)
	RadioButton edit style (code 86)
	DropDownListBox edit style (code 87)
	DropDownDataWindow edit style (code 88)
	Edit edit style (code 89)
	Edit Mask edit style (code 90)

	PocketBuilder features
	Differences required by target platform
	Unsupported PowerBuilder features
	Deployment and runtime differences
	Converting a PowerBuilder application
	About OrcaScript
	OrcaScript Commands
	Usage notes for OrcaScript commands and parameters

	APPENDIX D Designing Applications for Windows CE Platforms
	General considerations
	Comparative performance
	Designing for the Pocket PC
	Designing for the Smartphone
	Message processing on different devices
	Porting an application from the Pocket PC to the Smartphone
	Screen rotation on the WM 2003 SE platform

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

