
PowerScript® Reference

PocketBuilder™

2.0.1

DOCUMENT ID: DC00132-01-0201-01

LAST REVISED: February 2005

Copyright © 2003-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mail Anywhere Studio,
MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server,
MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-Gateway, Net-
Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server,
Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase
Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup,
Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System XI (logo),
SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib,
Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center,
Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL,
WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc.
11/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

PowerScript Reference iii

About This Book .. xxv

PART 1 POWERSCRIPT TOPICS

CHAPTER 1 Language Basics... 3
Comments.. 3
Identifier names.. 5
Labels... 6
Special ASCII characters ... 6
NULL values... 8
Reserved words ... 9
Pronouns.. 10

Parent pronoun.. 11
This pronoun ... 13
Super pronoun... 14

Statement continuation .. 15
Statement separation ... 16
White space ... 16

CHAPTER 2 Datatypes ... 19
Standard datatypes .. 19
The Any datatype ... 24
System object datatypes .. 27
Enumerated datatypes ... 28

CHAPTER 3 Declarations... 31
Declaring variables... 31

Where to declare variables.. 31
About using variables .. 33
Syntax of a variable declaration .. 35

Declaring constants.. 44

Contents

iv PocketBuilder

Declaring arrays ... 45
Values for array elements ... 48
Size of variable-size arrays ... 50
More about arrays ... 50

Declaring external functions... 54
Datatypes for external function arguments.............................. 58
Calling external functions .. 60
Defining source for external functions 60

Declaring DBMS stored procedures as remote procedure calls 61

CHAPTER 4 Operators and Expressions.. 63
Operators in PocketBuilder .. 63

Arithmetic operators in PocketBuilder 64
Relational operators in PocketBuilder 66
Concatenation operator in PocketBuilder................................ 67

Operator precedence in PocketBuilder expressions 68
Datatype of PocketBuilder expressions ... 69

Numeric datatypes in PocketBuilder 69
String and char datatypes in PocketBuilder 72

CHAPTER 5 Structures and Objects ... 73
About structures ... 73
About objects ... 74

About user objects... 75
Instantiating objects... 76
Using ancestors and descendants .. 77
Garbage collection .. 78
User objects that behave like structures 79

Assignment for objects and structures ... 80
Assignment for structures.. 80
Assignment for objects .. 80
Assignment for autoinstantiated user objects.......................... 81

CHAPTER 6 Calling Functions and Events .. 85
About functions and events.. 85
Finding and executing functions and events 88

Finding functions ... 88
Finding events ... 89

Triggering versus posting functions and events............................. 90
Static versus dynamic calls .. 91

Static calls ... 92
Dynamic calls .. 92

Contents

PowerScript Reference v

Overloading, overriding, and extending functions and events 97
Overloading and overriding functions...................................... 97
Extending and overriding events ... 99

Passing arguments to functions and events 99
Passing objects ... 100
Passing structures... 101
Passing arrays... 101

Using return values .. 102
Functions... 102
Events ... 103
Using cascaded calling and return values............................. 103

Syntax for calling PocketBuilder functions and events................. 104
Calling functions and events in an object’s ancestor 108

PART 2 STATEMENTS, EVENTS, AND FUNCTIONS

CHAPTER 7 PowerScript Statements... 113
Assignment .. 113
CALL .. 116
CHOOSE CASE... 117
CONTINUE .. 119
CREATE... 120
DESTROY.. 123
DO...LOOP... 124
EXIT ... 126
FOR...NEXT ... 127
GOTO... 129
HALT .. 130
IF...THEN ... 130
RETURN .. 132
THROW.. 133
THROWS ... 134
TRY...CATCH...FINALLY...END TRY .. 135

CHAPTER 8 SQL Statements .. 137
Using SQL in scripts... 138

CLOSE Cursor .. 140
CLOSE Procedure... 141
COMMIT.. 142
CONNECT... 143
DECLARE Cursor.. 143
DECLARE Procedure.. 144

Contents

vi PocketBuilder

DELETE .. 146
DELETE Where Current of Cursor .. 147
DISCONNECT... 147
EXECUTE ... 148
FETCH .. 149
INSERT ... 150
OPEN Cursor .. 151
ROLLBACK ... 151
SELECT .. 152
SELECTBLOB... 153
UPDATE.. 154
UPDATEBLOB .. 155
UPDATE Where Current of Cursor 157

Using dynamic SQL ... 157
Dynamic SQL Format 1... 161
Dynamic SQL Format 2... 162
Dynamic SQL Format 3... 163
Dynamic SQL Format 4... 165

CHAPTER 9 PowerScript Events ... 171
About events .. 171
Activate .. 174
BeginDrag .. 175
BeginLabelEdit ... 178
BeginRightDrag.. 180
Clicked ... 181
Close .. 188
CloseQuery .. 189
ColumnClick ... 190
Constructor... 191
DataChange ... 192
Deactivate .. 193
DeleteAllItems .. 193
DeleteItem.. 194
Destructor... 195
DoubleClicked .. 196
DragDrop.. 200
DragEnter... 205
DragLeave.. 206
DragWithin ... 207
EndLabelEdit.. 210
Error ... 212
ExternalException .. 214
FileExists.. 214

Contents

PowerScript Reference vii

GetFocus.. 215
Help.. 216
Hide.. 216
HotLinkAlarm.. 217
Idle ... 218
IncomingMessage .. 218
InputFieldSelected ... 220
InsertItem ... 220
ItemActivate ... 221
ItemChanged.. 222
ItemChanging... 223
ItemCollapsed .. 224
ItemCollapsing ... 225
ItemExpanded .. 226
ItemExpanding ... 227
ItemPopulate .. 228
Key ... 229
LineDown ... 231
LineLeft .. 232
LineRight .. 233
LineUp.. 234
LoseFocus.. 235
Modified.. 237
MouseDown ... 239
MouseMove.. 241
MouseUp.. 244
Moved .. 247
Open .. 248
Other .. 251
PageDown.. 252
PageLeft... 253
PageRight .. 254
PageUp .. 255
PictureSelected .. 256
PipeEnd.. 256
PipeMeter... 257
PipeStart .. 257
PrintFooter ... 258
PrintHeader .. 258
PropertyChanged ... 259
PropertyRequestEdit .. 259
RButtonDown ... 259
RButtonUp.. 262
RemoteExec... 262

Contents

viii PocketBuilder

RemoteHotLinkStart ... 262
RemoteHotLinkStop ... 263
RemoteRequest ... 263
RemoteSend .. 264
Rename.. 264
Resize .. 265
RightClicked ... 266
RightDoubleClicked.. 268
Save ... 269
SaveObject... 270
ScanTriggered.. 270
Selected ... 272
SelectionChanged.. 273
SelectionChanging ... 277
Show .. 279
SipUp ... 280
SipDown... 281
Snapped... 282
Sort... 283
SystemError ... 286
SystemKey ... 287
Timer .. 288
ToolbarMoved .. 290
ViewChange... 290

CHAPTER 10 PowerScript Functions.. 291
Abs ... 292
AcceptCall .. 292
ACos .. 293
Activate .. 294
Add... 295
AddCategory .. 296
AddColumn .. 298
AddData ... 299
AddEntry .. 301
AddItem.. 302
AddLargePicture .. 308
AddPicture.. 309
AddRecipient.. 311
AddSeries... 312
AddSmallPicture... 313
AddStatePicture ... 314
AddToInfraredQueue ... 315
AddToLibraryList .. 316

Contents

PowerScript Reference ix

AllowReceivingCalls... 317
Arrange .. 318
ArrangeSheets ... 318
Asc ... 319
ASin.. 320
ATan... 321
Beep... 322
BeginPreview ... 322
BeginTransaction ... 323
Blob .. 324
BlobEdit.. 324
BlobMid .. 326
BuildModel ... 327
Cancel .. 331
CanUndo .. 332
CaptureImage .. 333
CategoryCount ... 334
CategoryName ... 335
Ceiling .. 336
ChangeDirectory .. 337
ChangeMenu.. 338
Char ... 338
Check ... 339
ChooseColor .. 340
ClassList... 341
ClassName... 342
Clear... 344
ClearRecurrencePattern .. 346
Clipboard.. 347
Close .. 350
CloseChannel... 355
CloseTab.. 356
CloseUserObject .. 357
CloseWithReturn .. 358
CollapseItem .. 361
CommandParm .. 362
CommitTransaction .. 364
ConnectToNewObject .. 364
ConnectToNewRemoteObject ... 364
ConnectToObject ... 365
ConnectToRemoteObject... 365
ConnectToServer ... 366
Copy... 366
CopyRTF.. 368

Contents

x PocketBuilder

Cos... 368
Cpu... 369
CreateDirectory .. 370
CreateInstance... 370
CreatePage .. 372
Cut.. 372
DataCount .. 374
DataSource .. 375
Date.. 375
DateTime.. 379
Day... 381
DayName ... 382
DayNumber .. 383
DaysAfter ... 384
DBHandle... 385
DebugBreak ... 386
Dec... 386
DecoderName .. 387
DeleteCategory .. 388
DeleteColumn .. 389
DeleteColumns... 389
DeleteData ... 390
DeleteItem.. 391
DeleteItems .. 395
DeleteLargePicture .. 395
DeleteLargePictures... 396
DeletePicture.. 396
DeletePictures.. 397
DeleteSeries... 398
DeleteSmallPicture... 399
DeleteSmallPictures... 399
DeleteStatePicture ... 400
DeleteStatePictures ... 400
DestroyModel ... 401
DeviceInfo .. 402
DeviceNames... 403
DirectoryExists ... 405
DirList ... 406
DirSelect... 407
Disable ... 409
DisableCommit ... 409
DisconnectObject ... 410
DisconnectServer... 410
Display ... 411

Contents

PowerScript Reference xi

Double.. 412
DoVerb ... 413
Drag ... 413
DraggedObject ... 415
Draw... 416
DropCall ... 417
EditLabel .. 418
Enable .. 419
EnableCommit.. 420
EnableDecoder .. 421
EndPreview .. 422
EntryList ... 423
ExecRemote... 424
Exp ... 425
ExpandAll ... 425
ExpandItem .. 426
Fact .. 427
FARPrecedence... 428
FileClose .. 429
FileCopy ... 429
FileDelete ... 430
FileExists.. 431
FileLength .. 432
FileMove... 433
FileOpen... 434
FileRead... 436
FileSeek ... 439
FileWrite ... 440
Fill... 442
FillW ... 443
Find .. 443
FindCategory.. 444
FindClassDefinition .. 445
FindFunctionDefinition ... 446
FindItem ... 447
FindMatchingFunction.. 454
FindNext... 457
FindSeries .. 457
FindTypeDefinition ... 458
Flush .. 461
FocusToPreviousInstance.. 462
FromAnsi.. 462
FromUnicode.. 463
GarbageCollect .. 465

Contents

xii PocketBuilder

GarbageCollectGetTimeLimit ... 465
GarbageCollectSetTimeLimit ... 466
GetActiveSheet .. 467
GetAlignment ... 467
GetAllowedImageAttributes.. 467
GetApplication.. 469
GetAppointment ... 469
GetAppointmentFromOID .. 471
GetAppointments ... 472
GetArgElement... 473
GetAsBitmap .. 474
GetAutomationNativePointer.. 474
GetCertificateLabel .. 475
GetChildrenList .. 475
GetColumn ... 477
GetCommandDDE ... 478
GetCommandDDEOrigin.. 478
GetCompanyName .. 479
GetContact ... 480
GetContactFromOID .. 481
GetContacts ... 481
GetContextKeywords ... 483
GetContextService ... 484
GetCredentialAttribute.. 486
GetCurrentDirectory ... 486
GetData.. 487
GetDataAsBitmap .. 490
GetDataAsInk... 491
GetDataAsRTF... 492
GetDataAsText... 493
GetDataDDE .. 494
GetDataDDEOrigin... 495
GetDataPieExplode.. 495
GetDataStyle.. 496
GetDataValue... 503
GetDeskRect.. 505
GetDisplayZoom .. 506
GetDynamicDate.. 506
GetDynamicDateTime.. 507
GetDynamicNumber... 507
GetDynamicString .. 508
GetDynamicTime ... 508
GetEnabledDecoders... 508
GetEntry ... 509

Contents

PowerScript Reference xiii

GetEntries .. 511
GetEnvironment ... 513
GetFileOpenName ... 515
GetFileSaveName.. 518
GetFirstSheet ... 520
GetFix... 521
GetFixesVersion... 523
GetFocus.. 524
GetFolder ... 525
GetGlobalProperty ... 526
GetHeading .. 526
GetHostObject.. 528
GetItem .. 529
GetItemAtPointer.. 533
GetItemPictureIndex .. 534
GetItemState .. 534
GetLastReturn.. 536
GetLibraryList... 536
GetMajorVersion .. 537
GetMessage... 538
GetMessageStatus... 539
GetMinorVersion .. 540
GetName.. 541
GetNativePointer.. 543
GetNextSheet... 543
GetOption... 543
GetOrigin.. 546
GetParagraphSetting ... 548
GetParent... 548
GetPin .. 550
GetRecipients... 550
GetRecordSet .. 551
GetRecurrence... 551
GetRemote... 552
GetSatellitesInView .. 553
GetScreenOrientation .. 555
GetSeriesStyle ... 556
GetShortName ... 562
GetSIPRect .. 563
GetSIPType.. 564
GetSpecialFolder ... 566
GetSpacing .. 567
GetStatus ... 568
GetSupportedDecoders ... 568

Contents

xiv PocketBuilder

GetTask.. 569
GetTaskFromOID... 570
GetTasks.. 571
GetTextColor.. 572
GetTextStyle .. 572
GetToolbar ... 573
GetToolbarPos ... 573
GetTransactionName ... 574
GetURL .. 575
GetVersionName.. 576
Handle.. 577
HasOption .. 579
Hide.. 581
Hour ... 582
HyperLinkToURL.. 583
Icon .. 584
Idle ... 585
ImpersonateClient .. 586
ImportClipboard.. 587
ImportFile ... 590
ImportString.. 594
IncomingCallList ... 597
Init .. 598
InputFieldChangeData ... 599
InputFieldCurrentName.. 600
InputFieldDeleteCurrent ... 600
InputFieldGetData .. 600
InputFieldInsert .. 601
InputFieldLocate... 601
IsReadyToCapture ... 601
InsertCategory.. 603
InsertClass ... 604
InsertColumn.. 605
InsertData... 606
InsertDocument.. 608
InsertFile .. 609
InsertItem ... 609
InsertItemFirst .. 616
InsertItemLast .. 619
InsertItemSort... 621
InsertObject.. 624
InsertPicture ... 624
InsertSeries .. 624
Int ... 626

Contents

PowerScript Reference xv

Integer .. 627
InternetData ... 628
IntHigh.. 628
IntLow... 629
InvokePBFunction .. 630
_Is_A .. 630
IsAlive... 631
IsAllArabic .. 631
IsAllHebrew .. 631
IsAnyArabic .. 632
IsAnyHebrew.. 632
IsArabic .. 632
IsArabicAndNumbers ... 633
IsCallerInRole... 633
IsDate... 633
IsHebrew .. 634
IsHebrewAndNumbers ... 635
IsImpersonating.. 635
IsInTransaction... 635
IsNull .. 636
IsNumber.. 637
IsPreview.. 638
IsSecurityEnabled .. 638
IsSIPVisible .. 638
IsTime .. 639
IsTransactionAborted ... 640
IsValid .. 641
KeyDown.. 642
LastPos .. 642
Left ... 644
LeftW.. 645
LeftTrim .. 645
LeftTrimW... 646
Len ... 647
LenW.. 648
Length .. 648
LibraryCreate ... 649
LibraryDelete.. 650
LibraryDirectory.. 651
LibraryDirectoryEx.. 651
LibraryExport.. 652
LibraryImport .. 652
LineCount... 652
LineLength ... 654

Contents

xvi PocketBuilder

LineList... 655
LinkTo .. 656
Log ... 656
Login .. 658
Logout .. 659
LogTen ... 660
Long ... 661
Lower ... 663
LowerBound ... 663
mailAddress ... 665
mailDeleteMessage.. 665
mailGetMessages .. 666
mailHandle ... 666
mailLogoff... 667
mailLogon... 668
mailReadMessage ... 669
mailRecipientDetails... 670
mailResolveRecipient... 670
mailSaveMessage.. 671
mailSend .. 671
MakeCall .. 673
Match ... 674
MatchW .. 677
Max .. 677
MaxFARRequested.. 678
MaxFRRRequested.. 679
MemberDelete.. 680
MemberExists .. 680
MemberRename .. 681
MessageBox .. 681
Mid ... 683
MidW .. 685
Min ... 686
Minute .. 687
Mod .. 687
ModifyData ... 688
Month ... 690
Move .. 691
MoveTab .. 693
_Narrow.. 694
NextActivity .. 694
Now .. 696
ObjectAtPointer .. 697
Object_To_String ... 697

Contents

PowerScript Reference xvii

OffsetPos ... 698
Open .. 698
OpenChannel ... 713
OpenSheet ... 713
OpenSheetWithParm ... 714
OpenTab .. 714
OpenTabWithParm .. 718
OpenUserObject .. 722
OpenUserObjectWithParm... 726
OpenWithParm... 731
OutgoingCallList... 736
PageCount ... 738
PageCreated .. 738
ParentWindow.. 738
Paste .. 740
PasteLink ... 741
PasteRTF ... 741
PasteSpecial .. 742
Pi .. 742
PixelsToUnits ... 743
PointerX ... 744
PointerY ... 745
PopMenu.. 746
PopulateError ... 748
Pos ... 749
PosW.. 751
Position .. 751
Post .. 753
PostEvent... 754
PostURL... 757
Preview .. 760
Print.. 760
PrintBitmap... 766
PrintCancel... 767
PrintClose... 768
PrintDataWindow ... 769
PrintDefineFont .. 770
PrintGetPrinter ... 772
PrintGetPrinters.. 772
PrintLine ... 773
PrintOpen ... 774
PrintOval .. 776
PrintPage ... 778
PrintRect .. 779

Contents

xviii PocketBuilder

PrintRoundRect.. 780
PrintScreen .. 782
PrintSend ... 783
PrintSetFont ... 784
PrintSetPrinter.. 785
PrintSetSpacing ... 785
PrintSetup .. 786
PrintSetupPrinter.. 786
PrintText... 787
PrintWidth... 789
PrintX ... 790
PrintY ... 791
ProfileInt ... 792
ProfileString.. 794
Rand... 796
Randomize ... 796
Read... 797
Real.. 800
ReceiveFromInfrared ... 802
RegistryDelete.. 803
RegistryGet .. 804
RegistryKeys .. 805
RegistrySet... 807
RegistryValues ... 809
RelativeDate... 810
RelativeTime .. 810
ReleaseAutomationNativePointer .. 811
ReleaseNativePointer .. 811
Remove.. 812
RemoveDirectory ... 814
RemoveRecipient ... 815
Repair... 816
Replace .. 816
ReplaceW... 818
ReplaceText ... 818
Reset.. 819
ResetArgElements ... 822
ResetDataColors.. 823
Resize .. 824
Resolve_Initial_References ... 825
RespondRemote .. 825
Restart.. 826
ResumeTransaction ... 826
RetrieveData .. 827

Contents

PowerScript Reference xix

Reverse.. 828
RevertToSelf .. 829
RGB ... 829
Right... 832
RightW ... 832
RightTrim.. 833
RightTrimW .. 834
RollbackOnly .. 834
RollbackTransaction... 834
Round... 835
RoutineList ... 836
Run... 837
Save ... 839
SaveAs... 839
SaveDocument... 843
ScanAbort .. 843
ScanCapture .. 844
ScannedBitmap.. 846
ScannedMinutiae ... 847
ScannedQuality.. 848
ScanNoWait ... 848
ScanWait.. 850
Scroll .. 851
ScrollNextPage .. 852
ScrollNextRow.. 852
ScrollPriorPage .. 853
ScrollPriorRow ... 853
ScrollToRow... 854
Second ... 854
SecondsAfter.. 855
Seek ... 856
SelectedColumn... 858
SelectedIndex .. 858
SelectedItem .. 859
SelectedLength .. 860
SelectedLine .. 861
SelectedPage... 862
SelectedStart.. 863
SelectedText .. 864
SelectionRange.. 865
SelectItem .. 866
SelectObject... 870
SelectTab ... 870
SelectText .. 871

Contents

xx PocketBuilder

SelectTextAll .. 874
SelectTextLine ... 874
SelectTextWord.. 874
Send... 875
SendToInfrared .. 879
SeriesCount ... 880
SeriesName ... 881
SetAbort ... 882
SetAlignment.. 883
SetArgElement ... 883
SetAutomationLocale ... 883
SetAutomationPointer .. 884
SetAutomationTimeout... 884
SetCaptureImageAttributes.. 884
SetColumn ... 886
SetComplete .. 887
SetData .. 888
SetDataAsInk ... 888
SetDataAsRTF ... 889
SetDataAsText ... 890
SetDataDDE... 891
SetDataPieExplode .. 891
SetDataStyle .. 893
SetDisplayZoom... 899
SetDropHighlight .. 901
SetDynamicParm ... 901
SetEndOfFile.. 902
SetFirstVisible .. 902
SetFocus .. 903
SetGlobalProperty.. 904
SetHold .. 904
SetItem... 906
SetItemPictureIndex... 909
SetItemState .. 910
SetLevelPictures .. 911
SetLibraryList ... 912
SetMask ... 913
SetMessage ... 915
SetMessageSink .. 916
SetMicroHelp.. 917
SetMute.. 917
SetNull.. 918
SetOption ... 919
SetOverlayPicture .. 920

Contents

PowerScript Reference xxi

SetParagraphSetting.. 922
SetPicture... 922
SetPointer .. 923
SetPosition ... 925
SetPreviewImageAttributes.. 928
SetProfileString .. 929
SetRange ... 931
SetRecordSet... 932
SetRecurrence ... 932
SetRedraw ... 933
SetRegistrationCode .. 934
SetRemote ... 935
SetResultSet .. 936
SetRingTone .. 936
SetScreenOrientation... 937
SetSeriesStyle.. 938
SetSIPPreferredState... 946
SetSIPType .. 947
SetSpacing... 948
SetState ... 948
SetTextColor .. 949
SetTextStyle... 950
SetToolbar.. 950
SetToolbarPos ... 950
SetTop.. 951
SetTraceFileName ... 952
SetTransPool ... 953
SharedObjectDirectory... 954
SharedObjectGet ... 954
SharedObjectRegister.. 954
SharedObjectUnregister... 955
Show .. 955
ShowHeadFoot .. 956
ShowHelp... 957
ShowPopupHelp .. 957
Sign .. 958
SignalError ... 958
Sin .. 960
SkipRecurrence.. 960
Sleep .. 961
SoftTrigger ... 962
Sort... 964
SortAll... 966
Space ... 967

Contents

xxii PocketBuilder

Sqrt... 968
Start.. 968
StartHotLink ... 969
StartServerDDE ... 970
State... 970
Status ... 972
StepIt.. 973
Stop.. 973
StopHotLink.. 974
StopServerDDE.. 974
String.. 974
String_To_Object ... 980
SuspendTransaction .. 980
SyntaxFromSQL... 981
SystemRoutine... 983
TabPostEvent... 985
TabTriggerEvent .. 986
Tan ... 987
Text .. 987
TextLine ... 988
Time ... 989
Timer .. 993
ToAnsi .. 994
Today ... 995
TodaySave ... 996
Top ... 997
TotalColumns ... 998
TotalItems .. 999
TotalSelected ... 999
ToUnicode.. 1000
TraceBegin... 1001
TraceClose... 1003
TraceDisableActivity... 1004
TraceEnableActivity ... 1005
TraceEnd.. 1007
TraceError .. 1008
TraceOpen ... 1009
TraceUser .. 1012
TriggerEvent... 1013
TriggerPBEvent.. 1015
Trim .. 1015
TrimW... 1016
Truncate ... 1017
TrustVerify.. 1018

Contents

PowerScript Reference xxiii

TypeOf ... 1018
Uncheck ... 1020
Undo... 1021
UnitsToPixels ... 1022
Update.. 1023
UpdateEntry ... 1025
UpdateLinksDialog ... 1026
Upper ... 1026
UpperBound ... 1027
VerifyMatch .. 1029
Which ... 1030
WordCap .. 1030
WorkSpaceHeight .. 1031
WorkSpaceWidth ... 1032
WorkSpaceX .. 1033
WorkSpaceY .. 1034
Write... 1035
Year.. 1037
Yield ... 1038

Index ... 1041

Contents

xxiv PocketBuilder

PowerScript Reference xxv

About This Book

Audience This guide is for programmers building applications with
PocketBuilder™.

How to use this book This book describes syntax and usage information for the PowerScript®
language, including variables, expressions, statements, events, and
functions.

Related documents PocketBuilder reference set This manual is part of the PocketBuilder
reference set, which is based on PowerBuilder® documentation. The
reference set also includes the following manuals:

• Connection Reference - Describes the database parameters and
preferences you use to connect to a database in PocketBuilder.

• DataWindow Reference - Lists the DataWindow® functions and
properties and includes the syntax for accessing properties and data
in DataWindow objects.

• Objects and Controls - Describes the system-defined objects and their
default properties, functions, and events.

PocketBuilder documentation set The PocketBuilder documentation
set includes the following manuals:

• Introduction to PocketBuilder - Provides an overview of
PocketBuilder features and the PocketBuilder development
environment and a tutorial that leads the new user through the basic
process of creating and deploying PocketBuilder applications.

• Resource Guide - Presents advanced programming techniques and
information about connecting to and synchronizing with a database.

• User’s Guide - Gives an overview of the PocketBuilder development
environment and explains how to use the interface. Describes basic
techniques for building the objects in a PocketBuilder application,
including windows, menus, DataWindow objects, and user-defined
objects. An appendix summarizes the differences between
PocketBuilder and PowerBuilder.

xxvi PocketBuilder

Online Help Reference information for PowerScript properties, events, and
functions is available in the online Help with annotations indicating which
objects and methods are applicable to PowerBuilder.

SQL Anywhere® Studio documentation PowerBuilder is tightly integrated
with Adaptive Server® Anywhere (ASA), UltraLite®, and MobiLink, which
are components of SQL Anywhere Studio. You can install these products from
the PowerBuilder setup program. Documentation for SQL Anywhere Studio is
included in a separate collection on the PowerBuilder Technical Library CD
and in online Help. For an introduction to these products, see Chapter 1 in the
Introduction to PocketBuilder.

Other sources of
information

Use the Sybase® Getting Started CD, the SyBooks™ CD, and the Technical
Library Product Manuals Web site to learn more about your product.

• The Getting Started CD contains release bulletins and installation guides
in PDF format and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD you need
Adobe Acrobat Reader, which is downloadable at no charge from the
Adobe Web site, using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access
technical information about your product in an easy-to-use format.

• The Technical Library Product Manuals Web site is an HTML version of
the SyBooks CD that you can access using a standard Web browser. In
addition to product manuals, you will find links to the Technical
Documents Web site (replacement for the Tech Info Library), the Solved
Cases page, and Sybase newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

 About This Book

PowerScript Reference xxvii

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The formatting conventions used in this manual are:

Formatting example To indicate

Retrieve and Update When used in descriptive text, this font indicates:

• Command, function, and method names

• Keywords such as true, false, and null

• Datatypes such as integer and char

• Database column names such as emp_id and
f_name

• User-defined objects such as dw_emp or
w_main

variable or file name When used in descriptive text and syntax
descriptions, oblique font indicates:

• Variables, such as myCounter

• Parts of input text that must be substituted, such
as pklname.pkd

• File and path names

File>Save Menu names and menu items are displayed in plain
text. The greater than symbol (>) shows you how
to navigate menu selections. For example,
File>Save indicates “select Save from the File
menu.”

dw_1.Update() Monospace font indicates:

• Information that you enter in a dialog box or on
a command line

• Sample script fragments

• Sample output fragments

xxviii PocketBuilder

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

P A R T 1 PowerScript Topics

PowerScript Reference 3

C H A P T E R 1 Language Basics

About this chapter This chapter describes general elements and conventions of PowerScript.

Contents

Comments
Description You can use comments to document your scripts and prevent statements

within a script from executing. There are two methods.

Syntax Double-slash method

Code // Comment

Slash-and-asterisk method

/* Comment */

Topic Page

Comments 3

Identifier names 5

Labels 6

Special ASCII characters 6

NULL values 8

Reserved words 9

Pronouns 10

Statement continuation 15

Statement separation 16

White space 16

Comments

4 PocketBuilder

Usage The following table shows how to use each method.

Table 1-1: Methods for adding comments in scripts

Adding comment markers
In Script views and the Function painter, you can use the Comment Selection
button (or select Edit>Comment Selection from the menu bar) to comment out
the line containing the cursor or a selected group of lines.

For information about adding comments to objects and library entries, see the
User’s Guide.

Examples Double-slash method

// This entire line is a comment.
// This entire line is another comment.
amt = qty * cost // Rest of the line is comment.

// The following statement was commented out so that it
// would not execute.
// SetNull(amt)

Slash-and-asterisk method

/* This is a single-line comment. */

/* This comment starts here,
continues to this line,
and finally ends here. */

A = B + C /* This comment starts here.
/* This is the start of a nested comment.

The nested comment ends here. */
The first comment ends here. */ + D + E + F

Method Marker Can use to Note

Double
slash

// Designate all text on the line to
the right of the marker as a
comment

Cannot extend to
multiple lines

Slash and
asterisk

/*...*/ Designate the text between the
markers as a comment

Nest comments

• Can extend over
multiple lines
(multiline
comments do
not require a
continuation
character)

• Can be nested

CHAPTER 1 Language Basics

PowerScript Reference 5

Identifier names
Description You use identifiers to name variables, labels, functions, windows, controls,

menus, and anything else you refer to in scripts.

Syntax Rules for identifiers:

• Must start with a letter or an _ (underscore)

• Cannot be reserved words (see “Reserved words” on page 9)

• Can have up to 40 characters but no spaces

• Are not case sensitive (PART, Part, and part are identical)

• Can include any combination of letters, numbers, and these special
characters:

- Dash
_ Underscore
$ Dollar sign
Number sign
% Percent sign

Usage By default, PocketBuilder allows you to use dashes in all identifiers, including
in variable names in a script. However, this means that when you use the
subtraction operator or the -- operator in a script, you must surround it with
spaces. If you do not, PocketBuilder interprets the expression as an identifier
name.

If you want to disallow dashes in variable names in scripts, you can change the
setting of the Allow Dashes in Identifiers option in the script editor’s property
sheet. As a result, you do not have to surround the subtraction operator and the
decrement assignment shortcut (--) with spaces.

Be careful
If you disallow dashes and have previously used dashes in variable names, you
will get errors the next time you compile.

Examples Valid identifiers

ABC_Code
Child-Id
FirstButton
response35
pay-before%deductions$
ORDER_DATE

Labels

6 PocketBuilder

Actual-$-amount
Part#

Invalid identifiers

2nd-quantity // Does not start with a letter
ABC Code // Contains a space
Child'sId // Contains invalid special character

Labels
Description You can include labels in scripts for use with GOTO statements.

Syntax Identifier :

Usage A label can be any valid identifier. You can enter it on a line by itself above the
statement or at the start of the line before the statement.

For information about the GOTO statement, see GOTO on page 129. For
information about valid identifiers, see “Identifier names” on page 5.

Examples On a line by itself above the statement

FindCity:
IF city=cityname[1] THEN ...

At the start of the line before the statement

FindCity: IF city=cityname[1] THEN ...

Special ASCII characters
Description You can include special ASCII characters in strings. For example, you might

want to include a tab in a string to ensure proper spacing or a bullet to indicate
a list item. The tilde character (~) introduces special characters. The tab is one
of the common ASCII characters that can be entered by typing a tilde followed
by a single keystroke. The bullet must be entered by typing a tilde followed by
the decimal, hexadecimal, or octal ASCII value that represents it.

CHAPTER 1 Language Basics

PowerScript Reference 7

Syntax Follow the guidelines in the following table.

Table 1-2: Using special ASCII characters in strings

Examples Entering ASCII characters Here is how to use special characters in strings:

Using decimal, hexadecimal, and octal values Here is how to indicate a
bullet (•) in a string by using the decimal, hexadecimal, and octal ASCII values:

In this
category

To specify
this

Enter
this More information

Common
ASCII
characters

Newline ~n

Tab ~t

Vertical tab ~v

Carriage return ~r

Form feed ~f

Backspace ~b

Double quote ~"

Single quote ~'

Tilde ~~

Any
ASCII
character

Decimal ~### ### = a 3-digit number from 000 to 255

Hexadecimal ~h## ## = a 2-digit hexadecimal number from
01 to FF

Octal ~o### ### = a 3-digit octal number from 000 to
377

String Description

"dog~n" A string containing the word dog followed by a newline
character

"dog~tcat~ttiger" A string containing the word dog, a tab character, the word cat,
another tab character, and the word tiger

Value Description

"~249" The ASCII character with decimal value 249

"~hF9" The ASCII character with hexadecimal value F9

"~o371" The ASCII character with octal value 371

NULL values

8 PocketBuilder

NULL values
Description Null means undefined or unknown. It is not the same as an empty string or zero

or a date of 0000-00-00. For example, null is neither 0 nor not 0.

Typically, you work with null values only with respect to database values.

Usage Initial values for variables Although PocketBuilder supports null values for
all variable datatypes, it does not initialize variables to null. Instead, when a
variable is not set to a specific value when it is declared, PocketBuilder sets it
to the default initial value for the datatype—for example, zero for a numeric
value, false for boolean, and the empty string ("") for a string.

Null variables A variable can become null if one of the following occurs:

• A null value is read into it from the database. If your database supports null,
and a SQL INSERT or UPDATE statement sends a null to the database, it is
written to the database as null and can be read into a variable by a SELECT
or FETCH statement.

Null in a variable
When a null value is read into a variable, the variable remains null unless it
is changed in a script.

• The SetNull function is used in a script to set the variable explicitly to null.
For example:

string city // city is an empty string.
SetNull(city) // city is set to NULL.

Nulls in functions and expressions Most functions that have a null value
for any argument return null. Any expression that has a variable with a null
value results in null.

A boolean expression that is null is considered undefined and therefore false.

Testing for null To test whether a variable or expression is null, use the IsNull
function. You cannot use an equal sign (=) to test for null.

Valid This statement shows the correct way to test for null:

IF IsNull(a) THEN ...

Invalid This statement shows the incorrect way to test for null:

IF a = NULL THEN ...

CHAPTER 1 Language Basics

PowerScript Reference 9

Examples Example 1 None of the following statements make the computer beep (the
variable nbr is set to null, so each statement evaluates to false):

int Nbr
// Set Nbr to NULL.
SetNull(Nbr)
IF Nbr = 1 THEN Beep(1)
IF Nbr <> 1 THEN Beep(1)
IF NOT (Nbr = 1) THEN Beep(1)

Example 2 In this IF...THEN statement, the boolean expression evaluates to
false, so the ELSE is executed:

int a
SetNull(a)
IF a = 1 THEN
 MessageBox("Value", "a = 1")
ELSE
 MessageBox("Value", "a = NULL")
END IF

Example 3 This example is a more useful application of a null boolean
expression than Example 2. It displays a message if no control has focus. When
no control has focus, GetFocus returns a null object reference, the boolean
expression evaluates to false, and the ELSE is executed:

IF GetFocus() THEN
 . . . // Some processing
ELSE
 MessageBox("Important", "Specify an option!")
END IF

Reserved words
The words PocketBuilder uses internally are called reserved words and cannot
be used as identifiers. If you use a reserved word as an identifier, you get a
compiler warning. Reserved words that are marked with an asterisk (*) can be
used as function names.

Pronouns

10 PocketBuilder

Table 1-3: PowerScript reserved words

The PocketBuilder system class also includes private variables that you cannot
use as identifiers. If you use a private variable as an identifier, you get an
informational message and should rename your identifier.

Pronouns
Description PowerScript has pronouns that allow you to make a general reference to an

object or control. When you use a pronoun, the reference remains correct even
if the name of the object or control changes.

Usage You can use pronouns in function and event scripts wherever you would use an
object’s name. For example, you can use a pronoun to:

• Cause an event in an object or control

alias
and
autoinstantiate
call
case
catch
choose
close*
commit
connect
constant
continue
create*
cursor
declare
delete
describe*
descriptor
destroy
disconnect
do
dynamic
else
elseif
end
enumerated

event
execute
exit
external
false
fetch
finally
first
for
forward
from
function
global
goto
halt
if
immediate
indirect
insert
into
intrinsic
is
last
library
loop
next

not
of
on
open*
or
parent
post*
prepare
prior
private
privateread
privatewrite
procedure
protected
protectedread
protectedwrite
prototypes
public
readonly
ref
return
rollback
rpcfunc
select
selectblob
shared

static
step
subroutine
super
system
systemread
systemwrite
then
this
throw
throws
to
trigger
true
try
type
until
update*
updateblob
using
variables
while
with
within
_debug

CHAPTER 1 Language Basics

PowerScript Reference 11

• Manipulate or change an object or control

• Obtain or change the setting of a property

The following table lists the PowerScript pronouns and summarizes their use.

Table 1-4: PowerScript pronouns

ParentWindow property You can use the ParentWindow property of the
Menu object like a pronoun in Menu scripts. It identifies the window that the
menu is associated with when your program is running. For more information,
see the User’s Guide.

The rest of this section describes the individual pronouns in detail.

Parent pronoun
Description Parent in a PocketBuilder script refers to the object that contains the current

object.

Usage You can use the pronoun Parent in scripts for:

• Controls in windows

• Custom user objects

• Menus

This pronoun In a script for a Refers to the

This Window, custom user object,
menu, application object, or
control

Object or control itself

Parent Control in a window Window containing the control

Control in a custom user
object

Custom user object containing the
control

Menu Item in the menu on the level
above the current menu

Super Descendent object or control Parent

Descendent window or user
object

Immediate ancestor of the window
or user object

Control in a descendent
window or user object

Immediate ancestor of the
control’s parent window or user
object

Pronouns

12 PocketBuilder

Where you use Parent determines what it references:

Window controls When you use Parent in a script for a control (such as a
CommandButton), Parent refers to the window that contains the control.

User object controls When you use Parent in a script for a control in a
custom user object, Parent refers to the user object.

Menus When you use Parent in a menu script, Parent refers to the menu item
on the level above the menu the script is for.

Examples Window controls If you include this statement in the script for the Clicked
event in a CommandButton within a window, clicking the button closes the
window containing the button:

Close(Parent)

If you include this statement in the script for the CommandButton, clicking the
button displays a horizontal scroll bar within the window (sets the HScrollBar
property of the window to true):

Parent.HScrollBar = TRUE

User object controls If you include this statement in a script for the Clicked
event for a CheckBox in a user object, clicking the check box hides the user
object:

Parent.Hide()

If you include this statement in the script for the CheckBox, clicking the check
box disables the user object (sets the Enabled property of the user object to
false):

Parent.Enabled = FALSE

Menus If you include this statement in the script for the Clicked event in the
menu item Select All under the menu item Select, clicking Select All disables
the menu item Select:

Parent.Disable()

If you include this statement in the script for the Clicked event in the menu item
Select All, clicking Select All checks the menu item Select:

Parent.Checked = TRUE

CHAPTER 1 Language Basics

PowerScript Reference 13

This pronoun
Description The pronoun This in a PocketBuilder script refers to the window, user object,

menu, application object, or control that owns the current script.

Usage Why include This Using This allows you to make ownership explicit. The
following statement refers to the current object’s X property:

This.X = This.X + 50

When optional but helpful In the script for an object or control, you can
refer to the properties of the object or control without qualification, but it is
good programming practice to include This to make the script clear and easy to
read.

When required There are some circumstances when you must use This.
When a global or local variable has the same name as an instance variable,
PocketBuilder finds the global or local variable first. Qualifying the variable
with This allows you to refer to the instance variable instead of the global
variable.

EAServer restriction
You cannot use This to pass arguments in EAServer components.

Examples Example 1 This statement in a script for a menu places a check mark next to
the menu selection:

This.Check()

Example 2 In this function call, This passes a reference to the object
containing the script:

ReCalc(This)

Example 3 If you omit This, “x” in the following statement refers to a local
variable x if there is one defined (the script adds 50 to the variable x, not to the
X property of the control). It refers to the object’s X property if there is no local
variable:

x = x + 50

Example 4 Use This to ensure that you refer to the property. For example, in
the following statement in the script for the Clicked event for a
CommandButton, clicking the button changes the horizontal position of the
button (changes the button’s X property):

This.x = This.x + 50

Pronouns

14 PocketBuilder

Super pronoun
Description When you write a PocketBuilder script for a descendant object or control, you

can call scripts written for any ancestor. You can directly name the ancestor in
the call, or you can use the reserved word Super to refer to the immediate
ancestor.

Usage Whether to use Super If you are calling an ancestor function, you only need
to use Super if the descendant has a function with the same name and the same
arguments as the ancestor function. Otherwise, you would simply call the
function with no qualifiers.

Restrictions for Super You cannot use Super to call scripts associated with
controls in the ancestor window. You can only use Super in an event or function
associated with a direct descendant of the ancestor whose function is being
called. Otherwise, the compiler returns a syntax error.

To call scripts associated with controls, use the CALL statement.

See the discussion of CALL on page 116.

Examples Example 1 This example calls the ancestor function wf_myfunc (presumably
the descendant also has a function called wf_myfunc):

Super::wf_myfunc(myarg1, myarg2)

This example must be part of a script or function in the descendent window, not
one of the window’s controls. For example, if it is in the Clicked event of a
button on the descendent window, you get a syntax error when the script is
compiled.

Supplying arguments
Be certain to supply the correct number of arguments for the ancestor function.

Example 2 This example in a CommandButton script calls the Clicked script
for the CommandButton in the immediate ancestor window or user object:

Super::EVENT Clicked()

CHAPTER 1 Language Basics

PowerScript Reference 15

Statement continuation
Description Although you typically put one statement on each line, you occasionally need

to continue a statement to more than one line. The statement continuation
character is the ampersand (&). (For the use of the ampersand character in
accelerator keys, see the User’s Guide.)

Syntax Start of statement &
more statement &
end of statement

The ampersand must be the last nonwhite character on the line or the compiler
considers it part of the statement.

For information about white space, see “White space” on page 16.

Usage You do not use a continuation character for:

• Continuing comments Do not use a continuation character to continue
a comment. The continuation character is considered part of the comment
and is ignored by the compiler.

• Continuing SQL statements You do not need a continuation character
to continue a SQL statement. In PocketBuilder, SQL statements always
end with a semicolon (;), and the compiler considers everything from the
start of a SQL statement to a semicolon to be part of the SQL statement. A
continuation character in a SQL statement is considered part of the
statement and usually causes an error.

Examples Continuing a quoted string

One way Place an ampersand in the middle of the string and continue the
string on the next line:

IF Employee_District = "Eastern United States and&
Eastern Canada" THEN ...

Note that any white space (such as tabs and spaces) before the ampersand and
at the beginning of the continued line is part of the string.

A problem The following statement uses only the ampersand to continue the
quoted string in the IF...THEN statement to another line; for readability, a tab
has been added to indent the second line. The compiler includes the tab in the
string, which might result in an error:

IF Employee_District = "Eastern United States and&
 Eastern Canada" THEN ...

Statement separation

16 PocketBuilder

A better way A better way to continue a quoted string is to enter a quotation
mark before the continuation character ('& or "&, depending on whether the
string is delimited by single or double quotation marks) at the end of the first
line of the string and a plus sign and a quotation mark (+' or +") at the start of
the next line. This way, you do not inadvertently include unwanted characters
(such as tabs or spaces) in the string literal:

IF Employee_District = "Eastern United States and "&
 +" Eastern Canada" THEN ...

The examples in the PocketBuilder documentation use this method to continue
quoted strings.

Continuing a variable name Do not split a line by inserting the continuation
character within a variable name. This causes an error and the statement fails,
because the continuation character splits the variable name “Quantity”:

Total-Cost = Price * Quan&
 tity + (Tax + Shipping)

Statement separation
Description Although you typically put one statement on each line, you occasionally want

to combine multiple statements on a single line. The statement separation
character is the semicolon (;).

Syntax Statement1; statement2

Examples The following line contains three short statements:

A = B + C; D = E + F; Count = Count + 1

White space
Description Blanks, tabs, form feeds, and comments are forms of white space. The

compiler treats white space as a delimiter and does not consider the number of
white space characters.

Usage White space in string literals The number of white space characters is
preserved when they are part of a string literal (enclosed in single or double
quotation marks).

CHAPTER 1 Language Basics

PowerScript Reference 17

Dashes in identifiers Unless you have prohibited the use of dashes in
identifiers (see “Identifier names” on page 5), you must surround a dash used
as a minus sign with spaces. Otherwise, PocketBuilder considers the dash as
part of a variable name:

Order - Balance // Subtracts Balance from Order
Order-Balance // A variable named Order-Balance

Examples Example 1 Here the spaces and the comment are white space, so the compiler
ignores them:

A + B /*Adjustment factor */+C

Example 2 Here the spaces are within a string literal, so the compiler does
not ignore them:

"The value of A + B is:"

White space

18 PocketBuilder

PowerScript Reference 19

C H A P T E R 2 Datatypes

About this chapter This chapter describes the PowerScript datatypes.

Contents

Standard datatypes
The datatypes The standard datatypes in PocketBuilder are the familiar datatypes that are

used in many programming languages, including char, integer, decimal,
long, and string. In PowerScript, you use these datatypes to declare
variables or arrays.

These are the standard PowerScript datatypes, followed by a description
of each:

Blob Binary large object. Used to store an unbounded amount of data (for
example, generic binary, image, or large text such as a word-processing
document).

Boolean Contains TRUE or FALSE.

Char or character A single ASCII character.

Topic Page

Standard datatypes 19

The Any datatype 24

System object datatypes 27

Enumerated datatypes 28

Blob LongLong

Boolean Long

Char or character Real

Date String

DateTime Time

Decimal or Dec UnsignedInteger, UnsignedInt, or UInt

Double UnsignedLong or ULong

Integer or Int

Standard datatypes

20 PocketBuilder

If you have character-based data that you will want to parse in an application,
you might want to define it as an array of type char. Parsing a char array is
easier and faster than parsing strings. If you will be passing character-based
data to external functions, you might want to use char arrays instead of strings.

For more information about passing character-based data to external functions,
see the Resource Guide. For information about datatype conversion when
assigning strings to chars and vice versa, see “String and char datatypes in
PocketBuilder” on page 72.

Using literals To assign a literal value, enclose the character in either single
or double quotation marks. For example:

char c
c = 'T'
c = "T"

Date The date, including the full year (1000 to 3000), the number of the month (01
to 12), and the day (01 to 31).

Using literals To assign a literal value, separate the year, month, and day
with hyphens. For example:

1992-12-25 // December 25, 1992
1995-02-06 // February 6, 1995

DateTime The date and time in a single datatype, used only for reading and writing
DateTime values from and to a database. To convert DateTime values to
datatypes that you can use in PocketBuilder, use:

• The Date(datetime) function to convert a DateTime value to a
PocketBuilder date value after reading from a database

• The Time(datetime) function to convert a DateTime value to a
PocketBuilder time value after reading from a database

• The DateTime (date, time) function to convert a date and (optional) time to
a DateTime before writing to a DateTime column in a database.

Decimal or Dec Signed decimal numbers with up to 18 digits. You can place the decimal point
anywhere within the 18 digits—for example, 123.456,
0.000000000000000001 or 12345678901234.5678.

CHAPTER 2 Datatypes

PowerScript Reference 21

Using literals To assign a literal value, use any number with a decimal point
and no exponent. The plus sign is optional (95 and +95 are the same). For
numbers between zero and one, the zero to the left of the decimal point is
optional (for example, 0.1 and .1 are the same). For whole numbers, zeros to
the right of the decimal point are optional (32.00, 32.0, and 32. are all the
same). For example:

12.34 0.005 14.0 -6500 +3.5555

Double A signed floating-point number with 15 digits of precision and a range from
2.2250738585073E-308 to 1.79769313486231E+308.

Integer or Int 16-bit signed integers, from -32768 to +32767.

Using literals To assign a literal value, use any whole number (positive,
negative, or zero). The leading plus sign is optional (18 and +18 are the same).
For example:

1 123 1200 +55 -32

Long 32-bit signed integers, from -2147483648 to +2147483647.

Using literals Use literals as for integers, but longer numbers are permitted.

LongLong 64-bit signed integers, from -9223372036854775808 to
9223372036854775807.

Using literals Use literals as for integers, but longer numbers are permitted.

Real A signed floating-point number with six digits of precision and a range from
1.175495E-38 to 3.402822E+38.

Using literals To assign a literal value, use a decimal value, followed by E,
followed by an integer; no spaces are allowed. The decimal number before the
E follows all the conventions specified above for decimal literals. The leading
plus sign in the exponent (the integer following the E) is optional (3E5 and
3E+5 are the same). For example:

2E4 2.5E78 +6.02E3 -4.1E-2
-7.45E16 7.7E+8 3.2E-45

String Any ASCII character with variable length (0 to 2147483647).

Most of the character-based data in your application, such as names, addresses,
and so on, will be defined as strings. PowerScript provides many functions that
you can use to manipulate strings, such as a function to convert characters in a
string to uppercase and functions to remove leading and trailing blanks.

Standard datatypes

22 PocketBuilder

For more information about passing character-based data to external functions,
see the Resource Guide. For information about datatype conversion when
assigning strings to chars and vice versa, see “String and char datatypes in
PocketBuilder” on page 72.

Using literals To assign a literal value, enclose as many as 1024 characters
in either single or double quotes, including a string of zero length or an empty
string. For example:

string s1
s1 = 'This is a string'
s1 = "This is a string"

You can embed a quotation mark in a string literal if you enclose the literal with
the other quotation mark. For example, the following statements result in the
string Here's a string:

string s1
s1 = "Here's a string."

You can also use a tilde (~) to embed a quotation mark in a string literal. For
example:

string s1 = 'He said, "It~'s good!"'

Complex nesting When you nest a string within a string that is nested in
another string, you can use tildes to tell the parser how to interpret the quotation
marks. Each pass through the parser strips away the outermost quotes and
interprets the character after each tilde as a literal. Two tildes become one tilde,
and tilde-quote becomes the quote alone.

Example 1 This string has two levels of nesting:

"He said ~"she said ~~~"Hi ~~~" ~" "

The first pass results in:

He said "she said ~"Hi ~" "

The second pass results in:

she said "Hi"

The third pass results in:

Hi

CHAPTER 2 Datatypes

PowerScript Reference 23

Example 2 A more probable example is a string for the Modify function that
sets a DataWindow property. The argument string often requires complex
quotation marks (because you must specify one or more levels of nested
strings). To understand the quotation marks, consider how PocketBuilder will
parse the string. The following string is a possible argument for the Modify
function; it mixes single and double quotes to reduce the number of tildes:

"bitmap_1.Invert='0~tIf(empstatus=~~'A~~',0,1)'"

The double quotes tell PocketBuilder to interpret the argument as a string. It
contains the expression being assigned to the Invert property, which is also a
string, so it must be quoted. The expression itself includes a nested string, the
quoted A. First, PocketBuilder evaluates the argument for Modify and assigns
the single-quoted string to the Invert property. In this pass through the string, it
converts two tildes to one. The string assigned to Invert becomes:

'0[tab]If(empstatus=~'A~',0,1)'

Finally, PocketBuilder evaluates the property’s expression, converting
tilde-quote to quote, and sets the bitmap’s colors accordingly.

Example 3 There are many ways to specify quotation marks for a particular
set of nested strings. The following expressions for the Modify function all have
the same end result:

"emp.Color = ~"0~tIf(stat=~~~"a~~~",255,16711680)~""
"emp.Color = ~"0~tIf(stat=~~'a~~',255,16711680)~""
"emp.Color = '0~tIf(stat=~~'a~~',255,16711680)'"
"emp.Color = ~"0~tIf(stat='a',255,16711680)~""

Rules for quotation marks and tildes When nesting quoted strings, the
following rules of thumb might help:

• A tilde tells the parser that the next character should be taken as a literal,
not a string terminator

• Pairs of single quotes (') can be used in place of pairs of tilde double
quotes (~")

• Pairs of tilde tilde single quotes (~~') can be used in place of pairs of triple
tilde double quotes (~~~")

Time The time in 24-hour format, including the hour (00 to 23), minute (00 to 59),
second (00 to 59), and fraction of second (up to six digits), with a range from
00:00:00 to 23:59:59:999999.

The Any datatype

24 PocketBuilder

Using literals The time in 24-hour format, including the hour (00 to 23),
minute (00 to 59), second (00 to 59), and fraction of second (up to six digits),
with a range from 00:00:00 to 23:59:59.999999. You separate parts of the time
with colons—except for fractional sections, which should be separated by a
decimal point. For example:

21:09:15 // 15 seconds after 9:09 pm

06:00:00 // Exactly 6 am

10:29:59 // 1 second before 10:30 am

10:29:59.9 // 1/10 sec before 10:30 am

UnsignedInteger,
UnsignedInt, or UInt

16-bit unsigned integers, from 0 to 65535.

UnsignedLong or
ULong

32-bit unsigned integers, from 0 to 4294967295.

The Any datatype
General information PocketBuilder also supports the Any datatype, which can hold any kind of

value, including standard datatypes, objects, structures, and arrays. A variable
whose type is Any is a chameleon datatype—it takes the datatype of the value
assigned to it.

Do not use Any in EAServer component definition
The Any datatype is specific to PowerScript and is not supported in the IDL of
an EAServer component. CORBA has a datatype called Any that can assume
any legal IDL type at runtime, but it is not semantically equivalent to the
PocketBuilder Any type. You must exclude the PocketBuilder Any datatype
from the component interface definition, but you can use it within the
component.

Declarations and
assignments

You declare Any variables just as you do any other variable. You can also
declare an array of Any variables, where each element of the array can have a
different datatype.

You assign data to Any variables with standard assignment statements. You can
assign an array to a simple Any variable.

CHAPTER 2 Datatypes

PowerScript Reference 25

After you assign a value to an Any variable, you can test the variable with the
ClassName function and find out the actual datatype:

any la_spreadsheetdata
la_spreadsheetdata = ole_1.Object.cells(1,1).value
CHOOSE CASE ClassName(la_spreadsheetdata)

CASE "integer"
...

CASE "string"
...

END CHOOSE

These rules apply to Any assignments:

• You can assign anything into an Any variable.

• You must know the content of an Any variable to make assignments from
the Any variable to a compatible datatype.

Restrictions If the value of a simple Any variable is an array, you cannot access the elements
of the array until you assign the value to an array variable of the appropriate
datatype. This restriction does not apply to the opposite case of an array of Any
variables—you can access each Any variable in the array.

If the value of an Any variable is a structure, you cannot use dot notation to
access the elements of the structure until you assign the value to a structure of
the appropriate datatype.

After a value has been assigned to an Any variable, it cannot be converted back
to a generic Any variable without a datatype. Even if you set it to NULL, it
retains the datatype of the assigned value until you assign another value.

Operations and
expressions

You can perform operations on Any variables as long as the datatype of the data
in the Any variable is appropriate to the operator. If the datatype is not
appropriate to the operator, an execution error occurs.

For example, if instance variables ia_1 and ia_2 contain numeric data, this
statement is valid:

any la_3
la_3 = ia_1 - ia_2

If ia_1 and ia_2 contain strings, you can use the concatenation operator:

any la_3
la_3 = ia_1 + ia_2

However, if ia_1 contained a number and ia_2 contained a string, you would
get an execution error.

The Any datatype

26 PocketBuilder

Datatype conversion functions PowerScript datatype conversion functions
accept Any variables as arguments. When you call the function, the Any
variable must contain data that can be converted to the specified type.

For example, if ia_any contains a string, you can assign it to a string variable:

ls_string = ia_any

If ia_any contains a number that you want to convert to a string, you can call
the String function:

ls_string = String(ia_any)

Other functions If a function’s prototype does not allow Any as a datatype
for an argument, you cannot use an Any variable without a conversion function,
even if it contains a value of the correct datatype. When you compile the script,
you get compiler errors such as Unknown function or Function not
found.

For example, the argument for the Len function refers to a string column in a
DataWindow, but the expression itself has a type of Any:

IF Len(dw_notes.Object.Notes[1]) > 0 THEN // Invalid

This works because the string value of the Any expression is explicitly
converted to a string:

IF Len(String(dw_notes.Object.Notes[1])) > 0 THEN

Expressions whose datatype is Any Expressions that access data whose
type is unknown when the script is compiled have a datatype of Any. These
expressions include expressions or functions that access data in an OLE object
or a DataWindow object:

myoleobject.application.cells(1,1).value
dw_1.Object.Data[1,1]
dw_1.Object.Data.empid[99]

The objects these expressions point to can change so that the type of data being
accessed also changes.

Expressions that refer to DataWindow data can return arrays and structures and
arrays of structures as Any variables. For best performance, assign the
DataWindow expression to the appropriate array or structure without using an
intermediate Any variable.

CHAPTER 2 Datatypes

PowerScript Reference 27

Overusing the Any
datatype

Do not use Any variables as a substitute for selecting the correct datatype in
your scripts. There are two reasons for this:

• At execution time, using Any variables is slow PocketBuilder must
do much more processing to determine datatypes before it can make an
assignment or perform an operation involving Any variables. In particular,
an operation performed many times in a loop will suffer greatly if you use
Any variables instead of variables of the appropriate type.

• At compile time, using Any variables removes a layer of error
checking from your programming The PocketBuilder compiler
makes sure datatypes are correct before code gets executed. With Any
variables, errors that can be caught by the compiler are not found until the
code is run.

System object datatypes
Objects as datatypes System object datatypes are specific to PowerScript. You view a list of all the

system objects by selecting the System tab in the Browser.

In building PocketBuilder applications, you manipulate objects such as
windows, menus, CommandButtons, ListBoxes, and graphs. Internally,
PocketBuilder defines each of these kinds of objects as a datatype. Usually you
do not need to concern yourself with these objects as datatypes—you simply
define the objects in a PocketBuilder painter and use them.

However, sometimes you need to understand how PocketBuilder maintains its
system objects in a hierarchy of datatypes. For example, when you need to
define instances of a window, you define variables whose datatype is window.
When you need to create an instance of a menu to pop up in a window, you
define a variable whose datatype is menu.

PocketBuilder maintains its system objects in a class hierarchy. Each type of
object is a class. The classes form an inheritance hierarchy of ancestors and
descendants.

Examples All the classes shown in the Browser are actually datatypes that you can use in
your applications. You can define variables whose type is any class.

For example, the following code defines window and menu variables:

window mywin
menu mymenu

Enumerated datatypes

28 PocketBuilder

If you have a series of buttons in a window and need to keep track of one of
them (such as the last one clicked), you can declare a variable of type
CommandButton and assign it the appropriate button in the window:

// Instance variable in a window
commandbutton LastClicked
// In Clicked event for a button in the window.
// Indicates that the button was the last one
// clicked by the user.
LastClicked = This

Because it is a CommandButton, the LastClicked variable has all the properties
of a CommandButton. After the last assignment above, LastClicked’s
properties have the same values as the most recently clicked button in the
window.

To learn more about working with instances of objects through datatypes, see
“About objects” on page 74.

Enumerated datatypes
About enumerated
datatypes

Like the system object datatypes, enumerated datatypes are specific to
PowerScript. Enumerated datatypes are used in two ways:

• As arguments in functions

• To specify the properties of an object or control

You can list all the enumerated datatypes and their values by selecting the
Enumerated tab in the Browser.

You cannot create your own enumerated datatypes. As an alternative, you can
declare a set of constant variables and assign them initial values. See
“Declaring constants” on page 44.

A variable of one of the enumerated datatypes can be assigned a fixed set of
values. Values of enumerated datatypes always end with an exclamation point
(!). For example, the enumerated datatype Alignment, which specifies the
alignment of text, can be assigned one of the following three values: Center!,
Left!, and Right!:

mle_edit.Alignment=Right!

CHAPTER 2 Datatypes

PowerScript Reference 29

Incorrect syntax
Do not enclose an enumerated datatype value in quotation marks. If you do,
you receive a compiler error.

Advantages of
enumerated types

Enumerated datatypes have an advantage over standard datatypes. When an
enumerated datatype is required, the compiler checks the data and makes sure
it is the correct type. For example, if you set an enumerated datatype variable
to any other datatype or to an incorrect value, the compiler does not allow it.

Enumerated datatypes

30 PocketBuilder

PowerScript Reference 31

C H A P T E R 3 Declarations

About this chapter This chapter explains how to declare variables, constants, and arrays and
refer to them in scripts, and how to declare remote procedure calls (RPCs)
and external functions that reside in dynamic link libraries (DLLs).

Contents

Declaring variables
General information Before you use a variable in a PocketBuilder script, you must declare it

(give it a datatype and a name).

A variable can be a standard datatype, a structure, or an object. Object
datatypes can be system objects as displayed in the Browser or they can
be objects you have defined by deriving them from those system object
types. For most variables, you can assign it a value when you declare it.
You can always assign it a value within a script.

Where to declare variables
Scope You determine the scope of a PowerScript variable by selecting where you

declare it. Instance variables have additional access keywords that restrict
specific scripts from accessing the variable.

Topic Page

Declaring variables 31

Declaring constants 44

Declaring arrays 45

Declaring external functions 54

Declaring DBMS stored procedures as remote procedure calls 61

Declaring variables

32 PocketBuilder

The following table shows the four scopes of variables.

Table 3-1: PowerScript variable scopes

Global, instance, and
shared declarations

Global, instance, and shared variables can be defined in the Script view of the
Application, Window, User Object, or Menu painters. Global variables can also
be defined in the Function painter:

1 Select Declare from the first drop-down list in the Script view.

2 Select the type of variable you want to declare in the second drop-down
list of the Script view.

3 Type the declaration in the scripting area of the Script view.

Local declarations You declare local variables for an object or control in the script for that object
or control.

Declaring SQL
cursors

You can also declare SQL cursors that are global, shared, instance, or local.
Open a specific script or select a variable declaration scope in the Script view
and type the DECLARE SQL statement or select Paste SQL from the PainterBar
or pop-up menu.

Scope Description

Global Accessible anywhere in the application. It is independent of any object
definition.

Instance Belongs to an object and is associated with an instance of that object
(you can think of it as a property of the object). Instance variables have
access keywords that determine whether scripts of other objects can
access them. They can belong to the application object, a window, a user
object, or a menu.

Shared Belongs to an object definition and exists across all instances of the
object. Shared variables retain their value when an object is closed and
opened again.

Shared variables are always private. They are accessible only in scripts
for the object and for controls associated with the object. They can
belong to the application object, a window, a user object, or a menu.

Local A temporary variable that is accessible only in the script in which you
define it. When the script has finished executing, the variable constant
ceases to exist.

CHAPTER 3 Declarations

PowerScript Reference 33

About using variables
General information To use or set a variable’s value in a PocketBuilder script, you name the

variable. The variable must be known to the compiler—in other words, it must
be in scope.

You can use a variable anywhere you need its value—for example, as a
function argument or in an assignment statement.

How PocketBuilder
looks for variables

When PocketBuilder executes a script and finds an unqualified reference to a
variable, it searches for the variable in the following order:

1 A local variable

2 A shared variable

3 A global variable

4 An instance variable

As soon as PocketBuilder finds a variable with the specified name, it uses the
variable’s value.

Referring to global
variables

To refer to a global variable, you specify its name in a script. However, if the
global variable has the same name as a local or shared variable, the local or
shared variable will be found first.

To refer to a global variable that is masked by a local or shared variable of the
same name, use the global scope operator (::) before the name:

::globalname

For example, this statement compares the value of local and global variables,
both named total:

IF total < ::total THEN ...

Referring to instance
variables

You can refer to an instance variable in a script if there is an instance of the
object open in the application. Depending on the situation, you might need to
qualify the name of the instance variable with the name of the object defining
it.

Using unqualified names You can refer to instance variables without
qualifying them with the object name in the following cases:

• For application-level variables, in scripts for the application object

• For window-level variables, in scripts for the window itself and in scripts
for controls in that window

Declaring variables

34 PocketBuilder

• For user-object-level variables, in scripts for the user object itself and in
scripts for controls in that user object

• For menu-level variables, in scripts for a menu object, either the highest-
level menu or scripts for the menu objects included as items on the menu

For example, if w_emp has an instance variable EmpID, then you can reference
EmpID without qualification in any script for w_emp or its controls as follows:

sle_id.Text = EmpID

Using qualified names In all other cases, you need to qualify the name of
the instance variable with the name of the object using dot notation:

object.instancevariable

This requirement applies only to Public instance variables. You cannot
reference Private instance variables outside the object at all, qualified or not.

For example, to refer to the w_emp instance variable EmpID from a script
outside the window, you need to qualify the variable with the window name:

sle_ID.Text = w_emp.EmpID

There is another situation in which references must be qualified. Suppose that
w_emp has an instance variable EmpID and that in w_emp there is a
CommandButton that declares a local variable EmpID in its Clicked script. In
that script, you must qualify all references to the instance variable:

Parent.EmpID

Using pronouns as
name qualifiers

To avoid ambiguity when referring to variables, you might decide to always
use qualified names for object variables. Qualified names leave no doubt about
whether a variable is local, instance, or shared.

To write generic code but still use qualified names, you can use the pronouns
This and Parent to refer to objects. Pronouns keep a script general by allowing
you to refer to the object without naming it specifically.

Window variables in window scripts In a window script, use the pronoun
This to qualify the name of a window instance variable. For example, if a
window has an instance variable called index, then the following statements are
equivalent in a script for that window, as long as there is no local or global
variable named index:

index = 5
This.index = 5

CHAPTER 3 Declarations

PowerScript Reference 35

Window variables in control scripts In a script for a control in a window,
use the pronoun Parent to qualify the name of a window instance variable—the
window is the parent of the control. In this example, the two statements are
equivalent in a script for a control in that window, as long as there is no local
or global variable named “index”:

index = 5
Parent.index = 5

Naming errors If a local or global variable exists with the name “index,”
then the unqualified name refers to the local or global variable. It is a
programming error if you meant to refer to the object variable. You get an
informational message from the compiler if you use the same name for instance
and global variables.

Syntax of a variable declaration
Simple syntax In its simplest form, a PowerScript variable declaration requires only two parts:

the datatype and the variable name. For example:

datatype variablename

Full syntax The full syntax allows you to specify access and an initial value. Arrays and
some datatypes, such as blobs and decimals, accept additional information:

{ access } datatype { { size } } { { precision } } variablename { = value }
{, variablename2 { = value2 } }

Table 3-2: Variable declaration parameters

Parameter Description

access
(optional)

(For instance variables only) Keywords specifying the access
for the variable. For information, see “Access for instance
variables” on page 40.

datatype The datatype of the variable. You can specify a standard
datatype, a system object, or a previously defined structure.

For blobs and decimals, you can specify the size or precision of
the data by including an optional value in brackets.

{ size }
(optional)

(For blobs only) A number, enclosed in braces, specifying the
size in bytes of the blob. If { size } is omitted, the blob has an
initial size of zero and PocketBuilder adjusts its size each time
it is used during execution.

If you enter a size that exceeds the declared length in a script,
PocketBuilder truncates the blob data.

Declaring variables

36 PocketBuilder

Examples Declaring instance variables

integer ii_total = 100 // Total shares
date id_date // Date shares were bought

Declaring a global variable

string gs_name

Declaring shared variables

time st_process_start
string ss_process_name

Declaring local variables

string ls_city = "Boston"
integer li_count

Declaring blobs This statement declares ib_Emp_Picture a blob with an
initial length of zero. The length is adjusted when data is assigned to it:

blob ib_Emp_Picture

This statement declares ib_Emp_Picture a blob with a fixed length of 100
bytes:

blob{100} ib_Emp_Picture

Declaring decimals These statements declare shared variables sc_Amount
and sc_dollars_accumulated as decimal numbers with two digits after the
decimal point:

decimal{2} sc_Amount
decimal{2} sc_dollars_accumulated

{ precision }
(optional)

(For decimals only) A number, enclosed in braces, specifying
the number of digits after the decimal point. If you do not
specify a precision, the variable takes the precision assigned to
it in the script.

variablename The name of the variable (must be a valid PowerScript
identifier, as described in “Identifier names” on page 5).

You can define additional variables with the same datatype by
naming additional variable names, separated by commas; each
variable can have a value.

value
(optional)

A literal or expression of the appropriate datatype that will be
the initial value of the variable.

Blobs cannot be initialized with a value.

For information, see “Initial values for variables” on page 38.

Parameter Description

CHAPTER 3 Declarations

PowerScript Reference 37

This statement declares lc_Rate1 and lc_Rate2 as decimal numbers with four
digits after the decimal point:

dec{4} lc_Rate1, lc_Rate2

This statement declares lc_Balance as a decimal with zero digits after the
decimal point:

decimal{0} lc_Balance

This statement does not specify the number of decimal places for lc_Result.
After the product of lc_Op1 and lc_Op2 is assigned to it, lc_Result has four
decimal places:

dec lc_Result
dec{2} lc_Op1, lc_Op2
lc_Result = lc_Op1 * lc_Op2

Datatype of a variable

A PowerScript variable can be declared as one of the following datatypes:

• A standard datatype (such as an integer or string).

• An object or control (such as a window or CommandButton).

• An object or structure that you have defined (such as a window called
mywindow). An object you have defined must be in a library on the
application’s library search path when the script is compiled.

Variable names

In a well-planned application, standards determine how you name your
PowerScript variables. Naming conventions make scripts easy to understand
and help you avoid name conflicts. A typical approach is to include a prefix
that identifies the scope and the datatype of the variable. For example, a prefix
for an instance variable’s name typically begins with i (such as ii_count or
is_empname), a local integer variable’s name would be li_total and a global
integer variable’s name would be gi_total.

For information about naming conventions, see the User’s Guide.

X and Y as variable
names

Although you might think of x and y as typical variable names, in
PocketBuilder they are also properties that specify an object’s onscreen
coordinates. If you use them as variables and forget to declare them, you do not
get a compiler error. Instead, PocketBuilder assumes you want to move the
object, which might lead to unexpected results in your application.

Declaring variables

38 PocketBuilder

Initial values for variables

When you declare a PowerScript variable, you can accept the default initial
value or specify an initial value in the declaration.

Default values for
variables

If you do not initialize a variable when you declare it, PocketBuilder sets the
variable to the default value for its datatype as shown in the following table.

Table 3-3: Default initial values for variables

Specifying a literal as
a initial value

To initialize a variable when you declare it, place an equal sign (=) and a literal
appropriate for that variable datatype after the variable. For information about
literals for specific datatypes, see “Standard datatypes” on page 19.

This example declares li_count as an integer whose value is 5:

integer li_count=5

This example declares li_a and li_b as integers and initializes li_a to 5 and li_b
to 10:

integer li_a=5, li_b=10

This example initializes ls_method with the string "UPS":

string ls_method="UPS"

This example initializes ls_headers to three words separated by tabs:

string ls_headers = "Name~tAddress~tCity"

This example initializes li_a to 1 and li_c to 100, leaving li_b set to its default
value of zero:

integer li_a=1, li_b, li_c=100

For this variable datatype PocketBuilder sets this default value

Blob A blob of 0 length; an empty blob

Char (or character) ASCII value 0

Boolean false

Date 1900-01-01 (January 1, 1900)

DateTime 1900-01-01 00:00:00

Numeric (integer, long,
longlong, decimal, real, double,
UnsignedInteger, and
UnsignedLong)

0

String Empty string ("")

Time 00:00:00 (midnight)

CHAPTER 3 Declarations

PowerScript Reference 39

This example declares ld_StartDate as a date and initializes it with the date
February 1, 1993:

date ld_StartDate = 1993-02-01

Specifying an
expression as an
initial value

You can initialize a variable with the value of an existing variable or
expression, such as:

integer i = 100
integer j = i

When you do this, the second variable is initialized with the value of the
expression when the script is compiled. The initialization is not reevaluated
during execution.

If the expression’s value changes Because the expression’s value is set to
the variable when the script is compiled (not during execution) make sure the
expression is not one whose value is based on current conditions. If you want
to specify an expression whose value will be different when the application is
executed, do not initialize the variable in the declaration. For such values,
declare the variable and assign the value in separate statements.

In this declaration, the value of d_date is the date the script is compiled:

date d_date = Today()

In contrast, these statements result in d_date being set to the date the
application is run:

date d_date
d_date = Today()

How shared variables
are initialized

When you use a shared variable in a script, the variable is initialized when the
first instance of the object is opened. When the object is closed, the shared
variable continues to exist until you exit the application. If you open the object
again without exiting the application, the shared variable will have the value it
had when you closed the object.

For example, if you set the shared variable Count to 20 in the script for a
window, then close the window, and then reopen the window without exiting
the application, Count will be equal to 20.

When using multiple instances of windows
If you have multiple instances of the window in the example above, Count will
be equal to 20 in each instance. Since shared variables are shared among all
instances of the window, changing Count in any instance of the window
changes it for all instances.

Declaring variables

40 PocketBuilder

How instance
variables are
initialized

When you define an instance variable for a window, menu, or application
object, the instance variable is initialized when the object is opened. Its initial
value is the default value for its datatype or the value specified in the variable
declarations.

When you close the object, the instance variable ceases to exist. If you open the
object again, the instance variable is initialized again.

When to use multiple instances of windows When you build a script for
one of multiple instances of a window, instance variables can have a different
value in each instance of the window. For example, to set a flag based on the
contents of the instance of a window, you would use an instance variable.

When to use shared variables instead Use a shared variable instead of an
instance variable if you need a variable that:

• Keeps the same value over multiple instances of an object

• Continues to exist after the object is closed

Access for instance variables
Description The general syntax for declaring PowerScript variables (see “Syntax of a

variable declaration” on page 35) showed that you can specify access
keywords in a declaration for an instance variable. This section describes those
keywords.

When you specify an access right for a variable, you are controlling the
visibility of the variable or its visibility access. Access determines which
scripts recognize the variable’s name.

For a specified access right, you can control operational access with modifier
keywords. The modifiers specify which scripts can read the variable’s value
and which scripts can change it.

Syntax { access-right } { readaccess } { writeaccess } datatype variablename

The following table describes the parameters you can use to specify access
rights for instance variables.

CHAPTER 3 Declarations

PowerScript Reference 41

Table 3-4: Instance variable declaration parameters for access rights

Parameter Description

access-right
(optional)

A keyword specifying where the variable’s name will be
recognized. Values are:

• PUBLIC — (Default) Any script in the application can
refer to the variable. In another object’s script, you use
dot notation to qualify the variable name and identify
the object it belongs to.

• PROTECTED — Scripts for the object for which the
variable is declared and its descendants can refer to the
variable.

• PRIVATE — Scripts for the object for which the
variable is declared can refer to the variable. You cannot
refer to the variable in descendants of the object.

readaccess
(optional)

A keyword restricting the ability of scripts to read the
variable’s value. Values are:

• PROTECTEDREAD — Only scripts for the object and
its descendants can read the variable.

• PRIVATEREAD — Only scripts for the object can read
the variable.

When access-right is PUBLIC, you can specify either
keyword. When access-right is PROTECTED, you can
specify only PRIVATEREAD. You cannot specify a
modifier for PRIVATE access, because PRIVATE is already
fully restricted.

If readaccess is omitted, any script can read the variable.

writeaccess
(optional)

A keyword restricting the ability of scripts to change the
variable’s value. Values are:

• PROTECTEDWRITE — Only scripts for the object and
its descendants can change the variable.

• PRIVATEWRITE — Only scripts for the object can
change the variable.

When access-right is PUBLIC, you can specify either
keyword. When access-right is PROTECTED, you can
specify only PRIVATEWRITE. You cannot specify a
modifier for PRIVATE access, because PRIVATE is already
fully restricted.

If writeaccess is omitted, any script can change the
variable.

Declaring variables

42 PocketBuilder

Usage Access modifiers give you more control over which objects have access to a
particular object’s variables. A typical use is to declare a public variable but
only allow the owner object to modify it:

public protectedwrite integer ii_count

You can also group declarations that have the same access by specifying the
access-right keyword as a label (see "Another format for access-right
keywords" next).

When you look at exported object syntax, you might see the access modifiers
SYSTEMREAD and SYSTEMWRITE. Only PocketBuilder can access variables
with these modifiers. You cannot refer to variables with these modifiers in your
scripts and functions and you cannot use these modifiers in your own
definitions.

Examples To declare these variables, select Declare>Instance Variables in the appropriate
painter.

These declarations use access keywords to control the scripts that have access
to the variables:

private integer ii_a, ii_n
public integer ii_Subtotal
protected integer ii_WinCount

This protected variable can only be changed by scripts of the owner object;
descendants of the owner can read it:

protected privatewrite string is_label

These declarations have public access (the default) but can only be changed by
scripts in the object itself:

privatewrite real ir_accum, ir_current_data

This declaration defines an integer that only the owner objects can write or read
but whose name is reserved at the public level:

public privateread privatewrite integer ii_reserved

datatype A valid datatype. See “Syntax of a variable declaration”
on page 35.

variablename A valid identifier. See “Syntax of a variable declaration”
on page 35.

Parameter Description

CHAPTER 3 Declarations

PowerScript Reference 43

Private variable not recognized outside its object Suppose you have
defined a window w_emp with a private integer variable ii_int:

private integer ii_int

In a script you declare an instance of the window called w_myemp. If you refer
to the private variable ii_int, you get a compiler warning that the variable is not
defined (because the variable is private and is not recognized in scripts outside
the window itself):

w_emp w_myemp
w_myemp.ii_int = 1 // Variable not defined

Public variable with restricted access Suppose you have defined a
window w_emp with a public integer variable ii_int with write access restricted
to private:

public privatewrite integer ii_int

If you write the same script as above, the compiler warning will say that you
cannot write to the variable (the name is recognized because it is public, but
write access is not allowed):

w_emp w_myemp
w_myemp.ii_int = 1 // Cannot write to variable

Another format for access-right keywords
Description You can also group declarations of PowerScript variables according to access

by specifying the access-right keyword as a label. It appears on its own line,
followed by a colon (:).

Syntax access-right:

{ readaccess } { writeaccess } datatype variablename

{ access-right } { readaccess } { writeaccess } datatype variablename

{ readaccess } { writeaccess } datatype variablename

Within a labeled group of declarations, you can override the access on a single
line by specifying another access-right keyword with the declaration. The
labeled access takes effect again on the following lines.

Examples In these declarations, the instance variables have the access specified by the
label that precedes them. Another private variable is defined at the end, where
private overrides the public label:

Private:
integer ii_a=10, ii_b=24
string is_Name, is_Address1

Declaring constants

44 PocketBuilder

Protected:
integer ii_Units
double idb_Results
string is_Lname
Public:
integer ii_Weight
string is_Location="Home"
private integer ii_test

Some of these protected declarations have restricted write access:

Protected:
integer ii_Units
privatewrite double idb_Results
privatewrite string is_Lname

Declaring constants
Description Any PowerScript variable declaration of a standard datatype that can be

assigned an initial value can be a constant instead of a variable. To make it a
constant, include the keyword CONSTANT in the declaration and assign it an
initial value.

Syntax CONSTANT { access } datatype constname = value

The following table shows the parameters used to declare constants.

Table 3-5: Constant variable declaration parameters

Parameter Description

CONSTANT Declares a constant instead of a variable. The CONSTANT
keyword can be before or after the access keywords.

access
(optional)

(For instance variables only) Keywords specifying the
access for the constant. For information, see “Access for
instance variables” on page 40.

datatype A standard datatype for the constant. For decimals, you
can include an optional value in brackets to specify the
precision of the data. Blobs cannot be constants.

For information about PocketBuilder datatypes, see
“Standard datatypes” on page 19.

CHAPTER 3 Declarations

PowerScript Reference 45

Usage When declaring a constant, an initial value is required. Otherwise, a compiler
error occurs. Assigning a value to a constant after it is declared (that is,
redefining a constant in a descendant object) also causes a compiler error.

Examples Although PowerScript is not case sensitive, these examples of local constants
use a convention of capitalizing constant names:

constant string LS_HOMECITY = "Boston"
constant real LR_PI = 3.14159265

Declaring arrays
Description An array is an indexed collection of elements of a single datatype. In

PocketBuilder, an array can have one or more dimensions. One-dimensional
arrays can have a fixed or variable size; multidimensional arrays always have
a fixed size. Each dimension of an array can have 2,147,483,647 bytes of
elements.

Any simple variable declaration becomes an array when you specify brackets
after the variable name. For fixed-size arrays, you specify the sizes of the
dimensions inside those brackets.

Syntax { access } datatype variablename { d1, ..., dn } { = { valuelist } }

The following table describes the parameters used to declare array variables.

Table 3-6: Array variable declaration parameters

constname The name of the constant (must be a valid PowerScript
identifier, as described in “Identifier names” on page 5).

value A literal or expression of the appropriate datatype that will
be the value of the constant. The value is required. For
information, see “Initial values for variables” on page 38.

Parameter Description

Parameter Description

access
(optional)

(For instance variables only) Keywords specifying the
access for the variable. For information, see “Access for
instance variables” on page 40.

Declaring arrays

46 PocketBuilder

datatype The datatype of the variable. You can specify a standard
datatype, a system object, or a previously defined
structure.

For decimals, you can specify the precision of the data by
including an optional value in brackets after datatype (see
“Syntax of a variable declaration” on page 35):

decimal {2} variablename []
For blobs, fixed-length blobs within an array are not
supported. If you specify a size after datatype, it is ignored.

variablename The name of the variable (name must be a valid
PowerScript identifier, as described in “Identifier names”
on page 5).

You can define additional arrays with the same datatype by
naming additional variable names with brackets and
optional value lists, separated by commas.

[{ d1, ..., dn }] Brackets and (for fixed-size arrays) one or more integer
values (d1 through dn, one for each dimension) specifying
the sizes of the dimensions.

For a variable-size array, which is always one-
dimensional, specify brackets only.

For more information on how variable-size arrays change
size, see “Size of variable-size arrays” on page 50.

For a fixed-size array, the number of dimensions is
determined by the number of integers you specify and is
limited only by the amount of available memory.

For fixed-size arrays, you can use TO to specify a range of
element numbers (instead of a dimension size) for one or
more of the dimensions. Specifying TO allows you to
change the lower bound of the dimension (upperbound
must be greater than lowbound):

[
 d1lowbound TO d1upperbound {, ... ,
dnlowbound TO dnupperbound }
]

{ valuelist }
(optional)

A list of initial values for each position of the array. The
values are separated by commas and the whole list is
enclosed in braces. The number of values cannot be greater
than the number of positions in the array. The datatype of
the values must match datatype.

Parameter Description

CHAPTER 3 Declarations

PowerScript Reference 47

Examples These declarations create variable-size arrays:

integer li_stats[] // Array of integers.
decimal {2} ld_prices[] // Array of decimals with

// 2 places of precision.
blob lb_data[] // Array of variable-size

// blobs.
date ld_birthdays[] // Array of dates.
string ls_city[] // Array of strings.

// Each string can be
// any length.

This statement declares a variable-size array of decimal number (the
declaration does not specify a precision, so each element in the array takes the
precision of the value assigned to it):

dec lc_limit[]

Fixed arrays These declarations create fixed-size, one-dimensional arrays:

integer li_TaxCode[3] // Array of 3 integers.
string ls_day[7] // Array of 7 strings.
blob ib_image[10] // Array of 10

// variable-size blobs.
dec{2} lc_Cost[10] // Array of 10 decimal

// numbers.
// Each value has 2 digits
// following the decimal
// point.

decimal lc_price[20] // Array of 20 decimal
// numbers.
// Each takes the precision
// of the value assigned.

Using TO to change array index values These fixed-size arrays use TO to
change the range of index values for the array:

real lr_Rate[2 to 5] // Array of 4 real numbers:
// Rate[2] through Rate[5]

integer li_Qty[0 to 2] // Array of 3 integers
string ls_Test[-2 to 2] // Array of 5 strings
integer li_year[76 to 96] // Array of 21 integers
string ls_name[-10 to 15] // Array of 26 strings

Incorrect declarations using TO In an array dimension, the second number
must be greater than the first. These declarations are invalid:

integer li_count[10 to 5] // INVALID: 10 is
// greater than 5

Declaring arrays

48 PocketBuilder

integer li_price[-10 to -20] // INVALID: -10
// is greater than -20

Arrays with two or more dimensions This declaration creates a
six-element, two-dimensional integer array. The individual elements are
li_score[1,1], li_score[1,2], li_score[1,3], li_score[2,1], li_score[2,2], and
li_score[2,3]:

integer li_score[2,3]

This declaration specifies that the indexes for the dimensions are 1 to 5 and 10
to 25:

integer li_RunRate[1 to 5, 10 to 25]

This declaration creates a 3-dimensional 45,000-element array:

long ll_days[3, 300, 50]

This declaration changes the subscript range for the second and third
dimension:

integer li_staff[100, 0 to 20, -5 to 5]

More declarations of multidimensional arrays:

string ls_plant[3,10] // two-dimensional array
// of 30 strings

dec{2} lc_rate[3,4] // two-dimensional array of 12
// decimals with 2 digits
// after the decimal point

This declaration creates three decimal arrays:

decimal{3} lc_first[10],lc_second[15,5],lc_third[]

Values for array elements
General information PocketBuilder initializes each element of an array to the same default value as

its underlying datatype. For example, in a newly declared integer array:

integer li_TaxCode[3]

the elements li_TaxCode[1], li_TaxCode[2], and li_TaxCode[3] are all
initialized to zero.

For information about default values for basic datatypes, see “Initial values for
variables” on page 38.

CHAPTER 3 Declarations

PowerScript Reference 49

Simple array In a simple array, you can override the default values by initializing the
elements of the array when you declare the array. You specify the values in a
comma-separated list of values enclosed in braces. You do not have to initialize
all the elements of the array, but you cannot initialize values in the middle or
end without initializing the first elements.

Multidimensional array In a multidimensional array, you still provide the values in a simple,
comma-separated list. When the values are assigned to array positions, the first
dimension is the fastest-varying dimension, and the last dimension is the
slowest-varying. In other words, the values are assigned to array positions by
looping over all the values of the first dimension for each value of the second
dimension, then looping over all the values of the second dimension for each
value of the third, and so on.

Assigning values
You can assign values to an array after declaring it using the same syntax of a
list of values within braces:

integer li_Arr[]
Li_Arr = {1, 2, 3, 4}

Examples Example 1 This statement declares an initialized one-dimensional array of
three variables:

real lr_Rate[3]={1.20, 2.40, 4.80}

Example 2 This statement initializes a two-dimensional array:

integer li_units[3,4] = {1,2,3, 1,2,3, 1,2,3, 1,2,3}

As a result:

Li_units[1,1], [1,2], [1,3], and [1,4] are all 1
Li_units[2,1], [2,2], [2,3], and [2,4] are all 2
Li_units[3,1], [3,2], [3,3], and [3,4] are all 3

Example 3 This statement initializes the first half of a 3-dimensional array:

integer li_units[3,4,2] = &
 {1,2,3, 1,2,3, 1,2,3, 1,2,3}

As a result:

Li_units[1,1,1], [1,2,1], [1,3,1], and [1,4,1] are all 1
Li_units[2,1,1], [2,2,1], [2,3,1], and [2,4,1] are all 2
Li_units[3,1,1], [3,2,1], [3,3,1], and [3,4,1] are all 3
Li_units[1,1,2], [1,2,2], [1,3,2], and [1,4,2] are all 0
Li_units[2,1,2], [2,2,2], [2,3,2], and [2,4,2] are all 0
Li_units[3,1,2], [3,2,2], [3,3,2], and [3,4,2] are all 0

Declaring arrays

50 PocketBuilder

Size of variable-size arrays
General information A variable-size array consists of a variable name followed by square brackets

but no number. PocketBuilder defines the array elements by use at execution
time (subject only to memory constraints). Only one-dimensional arrays can be
variable-size arrays.

Because you do not declare the size, you cannot use the TO notation to change
the lower bound of the array, so the lower bound of a variable-size array is
always 1.

How memory is
allocated

Initializing elements of a variable-size array allocates memory for those
elements. You specify initial values just as you do for fixed-size arrays, by
listing the values in braces. The following statement sets code[1] equal to 11,
code[2] equal to 242, and code[3] equal to 27. The array has a size of 3
initially, but the size will change if you assign values to higher positions:

integer li_code[]={11,242,27}

For example, these statements declare a variable-size array and assigns values
to three array elements:

long ll_price[]
ll_price[100] = 2000
ll_price[50] = 3000
ll_price[110] = 5000

When these statements first execute, they allocate memory as follows:

• The statement ll_price[100]=2000 will allocate memory for 100 long
numbers ll_price[1] to ll_price[100], then assign 0 (the default for
numbers) to ll_price[1] through ll_price[99] and assign 2000 to
ll_price[100].

• The statement ll_price[50]=3000 will not allocate more memory but
will assign the value 3000 to the 50th element of the ll_price array.

• The statement ll_price[110]=5000 will allocate memory for 10 more
long numbers named ll_price[101] to ll_price[110] and then assign 0 (the
default for numbers) to ll_price[101] through ll_price[109] and assign
5000 to ll_price[110].

More about arrays
This section provides technical details about:

• Assigning one array to another

CHAPTER 3 Declarations

PowerScript Reference 51

• Using arraylists to assign values to an array

• Errors that occur when addressing arrays

Assigning one array to another
General information When you assign one array to another, PocketBuilder uses the following rules

to map the values of one onto the other.

One-dimensional
arrays

To an unbounded array The target array is the same as the source:

integer a[], b[]
a = {1,2,3,4}
b = a

To a bounded array If the source array is smaller, values from the source
array are copied to the target array and extra values are set to zero. In this
example, b[5] and b[6] are set to 0:

integer a[], b[6]
a = {1,2,3,4}
b = a

If the source array is larger, values from the source array are copied to the target
array until it is full (and extra values from the source array are ignored). In this
example, the array b has only the first three elements of a:

integer a[], b[3]
a = {1,2,3,4}
b = a

Multidimensional
arrays

PocketBuilder stores multidimensional arrays in column major order, meaning
the first subscript is the fastest varying—[1,1], [2,1], [3,1]).

When you assign one array to another, PocketBuilder linearizes the source
array in column major order, making it a one-dimensional array. PocketBuilder
then uses the rules for one-dimensional arrays (described above) to assign the
array to the target.

Not all array assignments are allowed, as described in the following rules.

One multidimensional array to another If the dimensions of the two arrays
match, the target array becomes an exact copy of the source:

integer a[2,10], b[2,10]
a = b

Declaring arrays

52 PocketBuilder

If both source and target are multidimensional but do not have matching
dimensions, the assignment is not allowed and the compiler reports an error:

integer a[2,10], b[4,10]
a = b // Compiler error

One-dimensional array to a multidimensional array A one-dimensional
array can be assigned to a multidimensional array. The values are mapped onto
the multidimensional array in column major order:

integer a[], b[2,2]
b = a

Multidimensional array to a one-dimensional array A multidimensional
array can also be assigned to a one-dimensional array. The source is linearized
in column major order and assigned to the target:

integer a[], b[2,2]
a = b

Examples Suppose you declare three arrays (a, b, and c). One (c) is unbounded and
one-dimensional; the other two (a and b) are multidimensional with different
dimensions:

integer c[], a[2,2], b[3,3] = {1,2,3,4,5,6,7,8,9}

Array b is laid out like this:

This statement causes a compiler error, because a and b have different
dimensions:

a = b // Compiler error

This statement explicitly linearizes b into c:

c = b

You can then assign the linearized version of the array to a:

a = c

The values in array a are laid out like this:

1 for b[1,1] 4 for b[1,2] 7 for b[1,3]

2 for b[2,1] 5 for b[2,2] 8 for b[2,3]

3 for b[3,1] 6 for b[3,2] 9 for b[3,3]

1 for a[1,1] 3 for a[1,2]

2 for a[2,1] 4 for a[2,2]

CHAPTER 3 Declarations

PowerScript Reference 53

Initializing a with an arraylist produces the same result:

integer a[2,2] = {1,2,3,4}

The following section describes arraylists.

Using arraylists to assign values to an array
General information In PocketBuilder, an arraylist is a list of values enclosed in braces used to

initialize arrays. An arraylist represents a one-dimensional array, and its values
are assigned to the target array using the rules for assigning arrays described in
“Assigning one array to another” on page 51.

Examples In this declaration, a variable-size array is initialized with four values:

integer a[] = {1,2,3,4}

In this declaration, a fixed-size array is initialized with four values (the rest of
its values are zeros):

integer a[10] = {1,2,3,4}

In this declaration, a fixed-size array is initialized with four values. Because the
array’s size is set at 4, the rest of the values in the arraylist are ignored:

integer a[4] = {1,2,3,4,5,6,7,8}

In this declaration, values 1, 2, and 3 are assigned to the first column and the
rest to the second column:

integer a[3,2] = {1,2,3,4,5,6}

If you think of a three-dimensional array as having pages of rows and columns,
then the first column of the first page has the values 1 and 2, the second column
on the first page has 3 and 4, and the first column on the second page has 5
and 6.

The second column on the second page has zeros:

integer a[2,2,2] = {1,2,3,4,5,6}

1 4

2 5

3 6

1 3 5 0

2 4 6 0

Declaring external functions

54 PocketBuilder

Errors that occur when addressing arrays
Fixed-size arrays In PocketBuilder, referring to array elements outside the declared size causes

an error during execution; for example:
int test[10]
test[11]=50 // This causes an execution error.
test[0]=50 // This causes an execution error.
int trial[5,10]
trial [6,2]=75 // This causes an execution error.
trial [4,11]=75 // This causes an execution error.

Variable-size arrays Assigning a value to an element of a variable-size array that is outside its
current values increases the array’s size. However, accessing a variable-size
array above its largest assigned value or below its lower bound causes an error
during execution:

integer li_stock[]
li_stock[50]=200

// Establish array size 50 elements.
IF li_stock[51]=0 then Beep(1)

// This causes an execution error.
IF li_stock[0]=0 then Beep(1)

// This causes an execution error.

Declaring external functions
Description External functions are functions written in languages other than PowerScript

and stored in dynamic link libraries. On Windows and Windows CE, dynamic
libraries have the extension DLL. You can use external functions that are
written in any language that supports dynamic libraries.

Before you can use an external function in a script, you must declare it as one
of two types:

• Global external functions These are available anywhere in the
application.

• Local external functions These are defined for a particular type of
window, menu, user object, or user-defined function. These functions are
part of the object’s definition and can always be used in scripts for the
object itself. You can also choose to make these functions accessible to
other scripts.

CHAPTER 3 Declarations

PowerScript Reference 55

To understand how to declare and call an external function, see the
documentation from the developer of the external function library.

Syntax External function syntax Use the following syntax to declare an external
function:

{ access } FUNCTION returndatatype name ({ { REF } datatype1 arg1,
..., { REF } datatypen argn }) LIBRARY “libname“
ALIAS FOR “extname”

External subroutine syntax To declare external subroutines (which are the
same as external functions except that they do not return a value), use this
syntax:

{ access } SUBROUTINE name ({ { REF } datatype1 arg1, ...,
{ REF } datatypen argn }) LIBRARY “libname“
ALIAS FOR “extname”

The following table describes the parameters used to declare external functions
and subroutines:

Table 3-7: External function or subroutine declaration parameters

Parameter Description

access
(optional)

(Local external functions only) Public, Protected, or Private
specifies the access level of a local external function. The
default is Public.

For more information, see the section about specifying access
of local functions in "Usage" next.

FUNCTION or
SUBROUTINE

A keyword specifying the type of call, which determines the
way return values are handled. If there is a return value, declare
it as a FUNCTION; if it returns nothing or returns VOID, specify
SUBROUTINE.

returndatatype The datatype of the value returned by the function.

name The name of a function or subroutine that resides in a DLL.

REF A keyword that specifies that you are passing by reference the
argument that follows REF. The function can store a value in
arg that will be accessible to the rest of the PocketBuilder
script.

datatype arg The datatype and name of the arguments for the function or
subroutine. The list must match the definition of the function in
the DLL. Each datatype arg pair can be preceded by REF.

For more information on passing arguments, see the Resource
Guide or see Application Techniques in the PowerBuilder
documentation set.

Declaring external functions

56 PocketBuilder

Usage Specifying access of local functions When declaring a local external
function, you can specify its access level—which scripts have access to the
function.

The following table describes where local external functions can be used when
they are declared with a given access level:

Table 3-8: Access levels for local external functions

Use of the access keyword with local external functions works the same as the
access-right keywords for instance variables.

Availability of the
dynamic library during
execution

To be available to a PocketBuilder application running on any Windows CE
platform, the DLL must be in one of the following directories:

• The current directory

• The Windows directory

For PowerBuilder applications running on the desktop, the DLL can also be in
one of the following directories:

• The Windows System subdirectory

• Directories on the DOS path

LIBRARY
“libname” A keyword followed by a string containing the name of the

dynamic library in which the function or subroutine is stored.
libname is a dynamic link library, which is a file that usually
has the extension DLL.

ALIAS FOR
“extname”
(optional)

Keywords followed by a string giving the name of the function
as defined in the dynamic library. If the name in the dynamic
library is not the name you want to use in your script, or if the
name in the database is not a legal PowerScript name, you must
specify ALIAS FOR “extname” to establish the association
between the PowerScript name and the external name.

Parameter Description

Access level Where you can use the local external function

Public Any script in the application.

Private Scripts for events in the object for which the function is
declared. You cannot use the function in descendants of the
object.

Protected Scripts for the object for which the function is declared and its
descendants.

CHAPTER 3 Declarations

PowerScript Reference 57

Examples In the examples application that comes with PowerBuilder, external functions
are declared as local external functions in a user object called
u_external_function_win32. The scripts that call the functions are user object
functions, but because they are part of the same user object, you do not need to
use object notation to call them.

Example 1 These declarations allow PowerBuilder to call the functions
required for playing a sound in the WINMM.DLL:

//playsound
FUNCTION boolean sndPlaySoundA (string SoundName,

uint Flags) LIBRARY "WINMM.DLL"
FUNCTION uint waveOutGetNumDevs () LIBRARY "WINMM.DLL"

A function called uf_playsound in the examples application provided with
PowerBuilder calls the external functions. Uf_playsound is called with two
arguments (as_filename and ai_option) that are passed through to
sndPlaySoundA. Values for ai_option are as defined in the Windows
documentation, as commented here:

//Options as defined in mmystem.h.
//These may be or'd together.
//#define SND_SYNC 0x0000
//play synchronously (default)
//#define SND_ASYNC 0x0001
//play asynchronously
//#define SND_NODEFAULT 0x0002
//do not use default sound
//#define SND_MEMORY 0x0004
//lpszSoundName points to a memory file
//#define SND_LOOP 0x0008
//loop the sound until next sndPlaySound
//#define SND_NOSTOP 0x0010
//do not stop any currently playing sound

uint lui_numdevs

lui_numdevs = WaveOutGetNumDevs()
IF lui_numdevs > 0 THEN

sndPlaySoundA(as_filename,ai_option)
RETURN 1

ELSE
RETURN -1

END IF

Declaring external functions

58 PocketBuilder

Example 2 This is the declaration for the Windows GetSysColor function:

FUNCTION ulong GetSysColor (int index) LIBRARY
"USER32.DLL"

This statement calls the external function. The meanings of the index argument
and the return value are specified in the Windows documentation:

RETURN GetSysColor (ai_index)

Example 3 This is the declaration for the Windows GetSysColor function:

FUNCTION int GetSystemMetrics (int index) LIBRARY
"USER32.DLL"

These statements call the external function to get the screen height and width:

RETURN GetSystemMetrics(1)
RETURN GetSystemMetrics(0)

Datatypes for external function arguments
When you declare an external function in PocketBuilder, the datatypes of the
arguments must correspond with the datatypes as declared in the function’s
source definition. This section documents the correspondence between
datatypes in external functions and datatypes in PocketBuilder. It also includes
information on byte alignment when passing structures by value.

Use the tables to find out what PocketBuilder datatype to use in an external
function declaration. The PocketBuilder datatype you select depends on the
datatype in the source code for the function. The first column lists datatypes in
source code. The second column describes the datatype so you know exactly
what it is. The third column lists the PocketBuilder datatype you should use in
the external function declaration.

Boolean BOOL on Windows is 16-bit, signed. It is declared in PocketBuilder as boolean.

Pointers Table 3-9: PocketBuilder datatypes for pointers

Datatype in source
code Size PocketBuilder datatype

* (any pointer) 32-bit pointer Long

byte * Array of bytes of
variable length

Blob

CHAPTER 3 Declarations

PowerScript Reference 59

Windows 32-bit FAR pointers, such as LPBYTE, LPDWORD, LPINT, LPLONG,
LPVOID, and LPWORD, are declared in PocketBuilder as long datatypes.
HANDLE is defined as 32 bits unsigned and is declared in PocketBuilder as an
UnsignedLong.

Near-pointer datatypes (such as PSTR and NPSTR) are not supported in
PocketBuilder.

Characters and
strings

Table 3-10: PocketBuilder datatypes for characters and strings

The Windows 32-bit FAR pointer LPSTR is declared in PocketBuilder as
string.

Reference arguments
When you pass a string to an external function by reference, all memory
management is done in PocketBuilder. The string variable must be long enough
to hold the returned value. To ensure that this is true, first declare the string
variable, and then use the Space function to fill the variable with blanks equal
to the maximum number of characters that you expect the function to return.

Fixed-point values Table 3-11: PocketBuilder datatypes for fixed-point values

The Windows definition WORD is declared in PocketBuilder as
UnsignedInteger and the Windows definition DWORD is declared as an
UnsignedLong. You cannot call external functions with return values or
arguments of type short.

Datatype in source
code Size PocketBuilder datatype

char 16 bit Unicode Char

string 32-bit pointer to a
null-terminated array of
Unicode characters of
variable length

String

Datatype in source
code Size PocketBuilder datatype

short 16 bits, signed Integer

unsigned short 16 bits, unsigned UnsignedInteger

int 32 bits, signed Long

unsigned int 32 bits, unsigned UnsignedLong

long 32 bits, signed Long

unsigned long 32 bits, unsigned UnsignedLong

longlong 64 bits, signed LongLong

Declaring external functions

60 PocketBuilder

Floating-point values Table 3-12: PocketBuilder datatypes for floating-point values

PocketBuilder does not support 80-bit doubles on Windows.

Date and time The PocketBuilder datatypes Date, DateTime, and Time are structures and have
no direct equivalent for external functions in C.

Passing structures by
value

You can pass PocketBuilder structures to external C functions if they have the
same definitions and alignment as the structure’s components. The DLL or
shared library must be compiled using byte alignment; no padding is added to
align fields within the structure.

Calling external functions
Global external
functions

In PocketBuilder, you call global external functions using the same syntax as
for calling user-defined global and system functions. As with other global
functions, global external functions can be triggered or posted but not called
dynamically.

Local external
functions

Call local functions using the same syntax as for calling object functions. They
can be triggered or posted and called dynamically.

For information For information, see “Syntax for calling PocketBuilder functions and events”
on page 104.

Defining source for external functions
You can use external functions written in any language that supports the
standard calling sequence for 32-bit platforms. If you are calling functions on
Windows in libraries that you have written yourself, remember that you need
to export the functions. Depending on your compiler, you can do this in the
function prototype or in a linker definition (.DEF) file. For more information
about using external functions, see the Resource Guide or see Application
Techniques in the PowerBuilder documentation set.

Datatype in source
code Size and precision PocketBuilder datatype

float 32 bits, single precision Real

double 64 bits, double precision Double

CHAPTER 3 Declarations

PowerScript Reference 61

Declaring DBMS stored procedures as remote
procedure calls
Description In PowerBuilder, you can use dot notation for calling non-result-set stored

procedures as remote procedure calls (RPCs):

object.function

You can call database procedures in Sybase, Oracle, Informix, and other
ODBC databases with stored procedures.

RPCs provide support for Oracle PL/SQL tables and parameters that are
defined as both input and output. You can call overloaded procedures.

Applies to Transaction object

Syntax FUNCTION rtndatatype functionname ({ { REF } datatype1 arg1,...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

SUBROUTINE functionname ({ { REF } datatype1 arg1 , ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

Table 3-13: RPC declaration parameters

Argument Description

FUNCTION or
SUBROUTINE

A keyword specifying the type of call, which determines the
way return values are handled. If there is a return value, declare
it as a FUNCTION. If it returns nothing or returns VOID, specify
SUBROUTINE.

rtndatatype In a FUNCTION declaration, the datatype of the value returned
by the function.

functionname The name of the database procedure as you will call it in
PowerBuilder. If the name in the DBMS is different, use ALIAS
FOR to associate the DBMS name with the PowerBuilder
name.

REF Specifies that you are passing by reference the argument that
follows REF. The stored procedure can store a value in arg that
will be accessible to the rest of the PowerBuilder script.

When you pass a string by reference, all memory management
is done in PowerBuilder. The string variable must be long
enough to hold the returned value. To ensure that this is true,
first declare the string variable, and then use the Space function
to fill the variable with blanks equal to the maximum number
of characters that you expect the function to return.

datatype arg The datatype and name of the arguments for the stored
procedure. The list must match the definition of the stored
procedure in the database. Each datatype arg pair can be
preceded by REF.

Declaring DBMS stored procedures as remote procedure calls

62 PocketBuilder

Usage If a function does not return a value (for example, it returns Void), specify the
declaration as a subroutine instead of a function.

RPC declarations are always associated with a transaction object. You declare
them as local external functions. The Declare Local External Functions dialog
box has a Procedures button (if the connected database supports stored
procedures), which gives you access to a list of stored procedures in the
database.

For more information, see the Resource Guide.

Examples Example 1 This declaration of the GIVE_RAISE_PROC stored procedure is
declared in the User Object painter for a transaction object (the declaration
appears on one line):

FUNCTION double GIVE_RAISE(ref double SALARY) RPCFUNC
ALIAS FOR "GIVE_RAISE_PROC"

This code calls the function in a script:

double val = 20000
double rv
rv = SQLCA.give_raise(val)

Example 2 This declaration for the stored procedure SPM8 does not need an
ALIAS FOR phrase, because the PowerBuilder and DBMS names are the same:

FUNCTION integer SPM8(integer value) RPCFUNC

This code calls the SPM8 stored procedure:

int myresult
myresult = SQLCA.spm8(myresult)
IF SQLCA.sqlcode <> 0 THEN

messagebox("Error", SQLCA.sqlerrtext)
END IF

RPCFUNC A keyword indicating that this declaration is for a stored
procedure in a DBMS, not an external function in a DLL. For
information on declaring external functions, see “Declaring
external functions” on page 54.

ALIAS FOR
"spname"
(optional)

Keywords followed by a string naming the procedure in the
database. If the name in the database is not the name you want
to use in your script or if the name in the database is not a legal
PowerScript name, you must specify ALIAS FOR "spname" to
establish the association between the PowerScript name and
the database name.

Argument Description

PowerScript Reference 63

C H A P T E R 4 Operators and Expressions

About this chapter This chapter describes the operators supported in PowerScript and how to
use them in expressions.

Contents

Operators in PocketBuilder
General information Operators perform arithmetic calculations; compare numbers, text, and

boolean values; execute relational operations on boolean values; and
concatenate strings and blobs.

Three types PowerScript supports three types of operators:

• Arithmetic operators for numeric datatypes

• Relational operators for all datatypes

• Concatenation operator for string datatypes

Operators used in DataWindow objects
The documentation for DataWindows describes how operators are used in
DataWindow expressions.

Topic Page

Operators in PocketBuilder 63

Operator precedence in PocketBuilder expressions 68

Datatype of PocketBuilder expressions 69

Operators in PocketBuilder

64 PocketBuilder

Arithmetic operators in PocketBuilder
Description The following table lists the arithmetic operators used in PocketBuilder.

Table 4-1: PocketBuilder arithmetic operators

Usage Operator shortcuts for assignments For information about shortcuts that
combine arithmetic operators with assignments (such as ++ and +=), see
Assignment on page 113.

Subtraction If the option Allow Dashes in Identifiers is checked on the
Script tab in the Options dialog box, you must always surround the subtraction
operator and the -- operator with spaces. Otherwise, PocketBuilder interprets
the expression as an identifier.

For information about dashes in identifiers, see “Identifier names” on page 5.

Multiplication and division Multiplication and division are carried out to
full precision (16–18 digits). Decimal numbers are rounded (not truncated) on
assignment.

Calculation with NULL When you form an arithmetic expression that
contains a NULL value, the expression’s value is null. Thinking of null as
undefined makes this easier to understand.

For more information about null values, see “NULL values” on page 8.

Errors and overflows The following problems can occur when using
arithmetic operators:

• Division by zero, exponentiation of negative values, and so on cause errors
during execution

• Overflow of real, double, and decimal values causes errors during
execution.

Operator Meaning Example

+ Addition Total=SubTotal+Tax

- Subtraction Price=Price–Discount

Unless you have prohibited the use of dashes in
identifier names, you must surround the minus
sign with spaces.

* Multiplication Total=Quantity*Price

/ Division Factor=Discount/Price

^ Exponentiation Rank=Rating^2.5

CHAPTER 4 Operators and Expressions

PowerScript Reference 65

• Overflow of signed or unsigned integers and longs causes results to wrap.
However, because integers are promoted to longs in calculations,
wrapping does not occur until the result is explicitly assigned to an integer
variable.

For more information about type promotion, see “Datatype of
PocketBuilder expressions” on page 69.

Examples Subtraction This statement always means subtract B from A:

A - B

If DashesInIdentifiers is set to 1, the following statement means a variable
named A-B, but if DashesInIdentifiers is set to 0, it means subtract B from A:

A-B

Precision for division These examples show the values that result from
various operations on decimal values:

decimal {4} a,b,d,e,f
decimal {3} c
a = 20.0/3 // a contains 6.6667
b = 3 * a // b contains 20.0001
c = 3 * a // c contains 20.000
d = 3 * (20.0/3) // d contains 20.0000
e = Truncate(20.0/3, 4) // e contains 6.6666
f = Truncate(20.0/3, 5) // f contains 6.6667

Calculations with null When the value of variable c is null, the following
assignment statements all set the variable a to null:

integer a, b=100, c

SetNULL(c)

a = b+c // all statements set a to NULL
a = b - c
a = b*c
a = b/c

Overflow This example illustrates the value of the variable i after overflow
occurs:

integer i
i = 32767
i = i + 1 // i is now -32768

Operators in PocketBuilder

66 PocketBuilder

Relational operators in PocketBuilder
Description PocketBuilder uses relational operators in boolean expressions to evaluate two

or more operands. Logical operators can join relational expressions to form
more complex boolean expressions.

The result of evaluating a boolean expression is always true or false.

The following table lists relational and logical operators.

Table 4-2: PocketBuilder relational and logical operators

Usage Comparing strings When PocketBuilder compares strings, the comparison
is case sensitive. Trailing blanks are significant.

For information on comparing strings regardless of case, see the functions
Upper on page 1026 and Lower on page 663.

To remove trailing blanks, use the RightTrim function. To remove leading
blanks, use the LeftTrim function. To remove leading and trailing blanks, use the
Trim function. For information about these functions, see RightTrim on page
833, LeftTrim on page 645, and Trim on page 1015.

Null value evaluations When you form a boolean expression that contains
a null value, the AND and OR operators behave differently. Thinking of null as
undefined (neither true nor false) makes the results easier to calculate.

For more information about null values, see “NULL values” on page 8.

Operator Meaning Example

= Equals if Price=100 then Rate=.05

> Greater than if Price>100 then Rate=.05

< Less than if Price<100 then Rate=.05

<> Not equal if Price<>100 then Rate=.05

>= Greater than or equal if Price>=100 then Rate=.05

<= Less than or equal if Price<=100 then Rate=.05

NOT Logical negation if NOT Price=100 then Rate=.05

AND Logical and if Tax>3 AND Ship <5 then

Rate=.05

OR Logical or if Tax>3 OR Ship<5 then Rate=.05

CHAPTER 4 Operators and Expressions

PowerScript Reference 67

Examples Case-sensitive comparisons If you compare two strings with the same text
but different case, the comparison fails. But if you use the Upper or Lower
function, you can ensure that the case of both strings are the same so that only
the content affects the comparison:

City1 = "Austin"
City2 = "AUSTIN"
IF City1 = City2 ... // Returns FALSE

City1 = "Austin"
City2 = "AUSTIN"
IF Upper(City1) = Upper(City2)... // Returns TRUE

Trailing blanks in comparisons In this example, trailing blanks in one
string cause the comparison to fail:

City1 = "Austin"
City2 = "Austin "
IF City1 = City2 ... // Returns FALSE

Logical expressions with null values In this example, the expressions
involving the variable f, which has been set to null, have null values:

boolean d, e = TRUE, f
SetNull(f)
d = e and f // d is NULL
d = e or f // d is TRUE

Concatenation operator in PocketBuilder
Description The PocketBuilder concatenation operator joins the contents of two variables

of the same type to form a longer value. You can concatenate strings and blobs.

The following table shows the concatenation operator.

Table 4-3: PocketBuilder concatenation operator

Examples Example 1 These examples concatenate several strings:

string Test
Test = "over" + "stock" // Test contains "overstock"
string Lname, Fname, FullName
FullName = Lname + ', ' + Fname
 // FullName contains last name and first name,
 // separated by a comma and space.

Operator Meaning Example

+ Concatenate "cat " + "dog"

Operator precedence in PocketBuilder expressions

68 PocketBuilder

Example 2 This example shows how a blob can act as an accumulator when
reading data from a file:

integer i, fnum, loops
bflob tot_b, b
. . .
FOR i = 1 to loops
 bytes_read = FileRead(fnum, b)
 tot_b = tot_b + b
NEXT

Operator precedence in PocketBuilder expressions
Order of precedence To ensure predictable results, all operators in a PocketBuilder expression are

evaluated in a specific order of precedence. When the operators have the same
precedence, PocketBuilder evaluates them left to right.

These are the operators in descending order of precedence:

Table 4-4: Order of precedence of operators

How to override To override the order, enclose expressions in parentheses. This identifies the
group and order in which PocketBuilder will evaluate the expressions. When
there are nested groups, the groups are evaluated from the inside out.

For example, in the expression (x+(y*(a+b))), a+b is evaluated first. The
sum of a and b is then multiplied by y, and this product is added to x.

Operator Purpose

() Grouping (see note below on overriding)

+, - Unary plus and unary minus (indicates positive or negative
number)

^ Exponentiation

*, / Multiplication and division

+, - Addition and subtraction; string concatenation

=, >, <, <=, >=, <> Relational operators

NOT Negation

AND Logical and

OR Logical or

CHAPTER 4 Operators and Expressions

PowerScript Reference 69

Datatype of PocketBuilder expressions
General information The datatype of an expression is important when it is the argument for a

function or event. The expression’s datatype must be compatible with the
argument’s definition. If a function is overloaded, the datatype of the argument
determines which version of the function to call.

There are three types: numeric, string, and char datatypes.

Numeric datatypes in PocketBuilder
General information All numeric datatypes are compatible with each other.

What PocketBuilder
does

PocketBuilder converts datatypes as needed to perform calculations and make
assignments. When PocketBuilder evaluates a numeric expression, it converts
the datatypes of operands to datatypes of higher precedence according to the
operators and the datatypes of other values in the expression.

Datatype promotion when evaluating numeric expressions
Order of precedence The PocketBuilder numeric datatypes are listed here in order of highest to

lowest precedence (the order is based on the range of values for each datatype):

Double
Real
Decimal
LongLong
UnsignedLong
Long
UnsignedInteger
Integer

Rules for type
promotion

Datatypes of operands If operands in an expression have different
datatypes, the value whose type has lower precedence is converted to the
datatype with higher precedence.

Unsigned versus signed Unsigned has precedence over signed, so if one
operand is signed and the other is unsigned, both are promoted to the unsigned
version of the higher type. For example, if one operator is a long and another
UnsignedInteger, both are promoted to UnsignedLong.

Datatype of PocketBuilder expressions

70 PocketBuilder

Operators The effects of operators on an expression’s datatype are:

• +, -, * The minimum precision for addition, subtraction, and
multiplication calculations is long. Integer types are promoted to long types
before doing the calculation and the expression’s resulting datatype is, at
a minimum, long. When operands have datatypes of higher precedence,
other operands are promoted to match based on the Datatypes of operands
rule above.

• / and ^ The minimum precision for division and exponentiation is
double. All types are promoted to double before doing the calculation, and
the expression’s resulting datatype is double.

• Relational Relational operators do not cause promotion of numeric
types.

Datatypes of literals When a literal is an operand in an expression, its datatype is determined by the
literal’s value. The datatype of a literal affects the type promotion of the literal
and other operands in an expression.

Table 4-5: Datatypes of literal operands in an expression

Out of range
Integer literals beyond the range of LongLong cause compiler errors.

Assignment and datatypes
General information Assignment is not part of expression evaluation. In an assignment statement,

the value of an expression is converted to the datatype of the left-hand variable.
In the expression

c = a + b

the datatype of a+b is determined by the datatypes of a and b. Then, the result
is converted to the datatype of c.

Literal Datatype

Integer literals (no decimal point or exponent) within the
range of Long

Long

Integer literals beyond the range of Long and within the
range of UnsignedLong

UnsignedLong

Integer literals beyond the range of UnsignedLong and
within the range of LongLong

UnsignedLong

Numeric literals with a decimal point (but no exponent) Decimal

Numeric literals with a decimal point and explicit
exponent

Double

CHAPTER 4 Operators and Expressions

PowerScript Reference 71

Overflow on
assignment

Even when PocketBuilder performs a calculation at high enough precision to
handle the results, assignment to a lower precision variable can cause overflow,
producing the wrong result.

Example 1 Consider this code:

integer a = 32000, b = 1000
long d
d = a + b

The final value of d is 33000. The calculation proceeds like this:

Convert integer a to long
Convert integer b to long
Add the longs a and b
Assign the result to the long d

Because the variable d is a long, the value 33000 does not cause overflow.

Example 2 In contrast, consider this code with an assignment to an integer
variable:

integer a = 32000, b = 1000, c
long e
c = a + b
e = c

The resulting value of c and e is -32536. The calculation proceeds like this:

Convert integer a to long
Convert integer b to long
Add the longs a and b
Convert the result from long to integer and assign the result to c
Convert integer c to long and assign the result to e

The assignment to c causes the long result of the addition to be truncated,
causing overflow and wrapping. Assigning c to e cannot restore the lost
information.

Datatype of PocketBuilder expressions

72 PocketBuilder

String and char datatypes in PocketBuilder
General information There is no explicit char literal type.

String literals convert to type char using the following rules:

• When a string literal is assigned to a char variable, the first character of the
string literal is assigned to the variable. For example:

char c = "xyz"

results in the character x being assigned to the char variable c.

• Special characters (such as newline, formfeed, octal, hex, and so on) can
be assigned to char variables using string conversion, such as:

char c = "~n"

String variables assigned to char variables also convert using these rules. A
char variable assigned to a string variable results in a one-character string.

Assigning strings to
char arrays

As with other datatypes, you can use arrays of chars. Assigning strings to char
arrays follows these rules:

• If the char array is unbounded (defined as a variable-size array), the
contents of the string are copied directly into the char array.

• If the char array is bounded and its length is less than or equal to the length
of the string, the string is truncated in the array.

• If the char array is bounded and its length is greater than the length of the
string, the entire string is copied into the array along with its zero
terminator. Remaining characters in the array are undetermined.

Assigning char arrays
to strings

When a char array is assigned to a string variable, the contents of the array are
copied into the string up to a zero terminator, if found, in the char array.

Using both strings and
chars in an expression

Expressions using both strings and char arrays promote the chars to strings
before evaluation. For example, the following promotes the contents of c to a
string before comparison with the string “x”:

char c
. . .
if (c = "x") then

Using chars in
PowerScript functions

All PowerScript functions that take strings also take chars and char arrays,
subject to the conversion rules described above.

PowerScript Reference 73

C H A P T E R 5 Structures and Objects

About this chapter This chapter describes basic concepts for structures and objects and how
you define, declare, and use them in PowerScript.

Contents

About structures
General information A structure is a collection of one or more variables (sometimes called

elements) that you want to group together under a single name. The
variables can have any datatype, including standard and object datatypes
and other structures.

Defining structures When you define a structure in the Structure painter or an object painter
(such as Window, Menu, or User Object), you are creating a structure
definition. To use the structure, you must declare it. When you declare it,
an instance of it is automatically created for you. When it goes out of
scope, the structure is destroyed.

For details about defining structures, see the User’s Guide.

Declaring structures If you have defined a global structure in the Structure painter called
str_emp_data, you can declare an instance of the structure in a script or in
an object’s instance variables. If you define the structure in an object
painter, you can only declare instances of the structure in the object’s
instance variables and scripts.

This declaration declares two instances of the structure str_emp_data:

str_emp_data str_emp1, str_emp2

Referring to structure
variables

In scripts, you refer to the structure’s variables using dot notation:

structurename.variable

Topic Page

About structures 73

About objects 74

Assignment for objects and structures 80

About objects

74 PocketBuilder

These statements assign values to the variables in str_emp_data:

str_emp1.emp_id = 100
str_emp1.emp_lname = "Jones"
str_emp1.emp_salary = 200

str_emp2.emp_id = 101
str_emp2.emp_salary = str_emp1.salary * 1.05

Using structures as
instance variables

If the structure is declared as part of an object, you can qualify the structure
name using dot notation:

objectname.structurename.variable

Suppose that this declaration is an instance variable of the window
w_customer:

str_cust_data str_cust1

The following statement in a script for the object refers to a variable of
str_cust_data. The pronoun This is optional, because the structure declaration
is part of the object:

This.str_cust1.name

The following statement in a script for some other object qualifies the structure
with the window name:

w_customer.str_cust1.name

About objects
What an object is In object-oriented programming, an object is a self-contained module

containing state information and associated methods. Most entities in
PocketBuilder are objects: visual objects such as windows and controls on
windows, nonvisual objects such as transaction and error objects, and user
objects that you design yourself.

An object class is a definition of an object. You create an object’s definition in
the appropriate painter: Window, Menu, Application, Structure, or User Object
painter. In the painter, you add controls to be part of the object, specify initial
values for the object’s properties, define its instance variables and functions,
and write scripts for its events and functions.

CHAPTER 5 Structures and Objects

PowerScript Reference 75

An object instance is an occurrence of the object created during the execution
of your application. Your code instantiates an object when it allocates memory
for the object and defines the object based on the definition in the object class.

An object reference is your handle to the object instance. To interact with an
object, you need its object reference. You can assign an object reference to a
variable of the appropriate type.

System objects versus
user objects

There are two categories of objects supported by PocketBuilder: system
objects (also referred to as system classes) defined by PocketBuilder and user
objects you in define in painters.

System objects The PocketBuilder system objects or classes are inherited
from the base class PowerObject. The system classes are the ancestors of all
the objects you define. To see the system class hierarchy, select the System tab
in the Browser, select PowerObject, and select Show Hierarchy and Expand
All from the pop-up menu.

User objects You can create user object class definitions in several painters:
Window, Menu, Application, Structure, and User Object painters. The objects
you define are inherited from one of the system classes or another of your
classes.

Some painters use many classes. In the Window and User Object painters, the
main definition is inherited from the window or user object class. The controls
you use are also inherited from the system class for that control.

About user objects
Two types There are two major types of user objects: visual and class.

Visual user objects A visual user object is a reusable control or set of controls that has a certain
behavior. There are three types—standard, custom, and external.

Table 5-1: Visual user object types

Visual user objects Description

Standard Inherited from a specific visual control. You can set
properties and write scripts so that the control is ready
for use.

It has the same events and properties as the control it is
inherited from plus any that you add.

About objects

76 PocketBuilder

Class user objects Class user objects consist of properties, functions, and sometimes events. They
have no visual component. There are two types—standard and custom.

Table 5-2: Class user object types

For information on defining and using user objects, see the User’s Guide.

Instantiating objects
Classes versus
instances

Because of the way PocketBuilder object classes and instances are named, it is
easy to think they are the same thing. For example, when you define a window
in the Window painter, you are defining an object class.

One instance When you open a window with the simplest format of the Open function, you
are instantiating an object instance. Both the class definition and the instance
have the same name. In your application, w_main is a global variable of type
w_main:

Open(w_main)

Custom Inherited from the UserObject system class. You can
include many controls in the user object and write
scripts for their events.

Each control in the user object has the same events and
properties as the controls from which they are inherited
plus any that you add.

External A user object that displays a visual control defined in a
DLL. The control is not part of the PocketBuilder object
hierarchy. The DLL developer provides information for
setting style bits that control its presentation.

Its events, functions, and properties are specified by the
developer of the DLL.

Visual user objects Description

Class user objects Description

Standard Inherits its definition from a nonvisual PocketBuilder
object, such as the Transaction or Error object. You can
add instance variables and functions.

A few nonvisual objects have events—to write scripts
for these events, you have to define a class user object.

Custom An object of your own design for which you define
instance variables, events, and functions in order to
encapsulate application-specific programming in an
object.

CHAPTER 5 Structures and Objects

PowerScript Reference 77

When you open a window this way, you can only open one instance of the
object.

Several instances If you want to open more than one instance of a window class, you need to
define a variable to hold each object reference:

w_main w_1, w_2
Open(w_1)
Open(w_2)

You can also open windows by specifying the class in the Open function:

window w_1, w_2
Open(w_1, "w_main")
Open(w_2, "w_main")

For class user objects, you always define a variable to hold the object reference
and then instantiate the object with the CREATE statement:

uo_emp_data uo_1, uo_2
uo_1 = CREATE uo_emp_data
uo_2 = CREATE uo_emp_data

You can have more than one reference to an object. You might assign an object
reference to a variable of the appropriate type, or you might pass an object
reference to another object so that it can change or get information from the
object.

For more information about object variables and assignment, see “User objects
that behave like structures” on page 79.

Using ancestors and descendants
Descendent objects In PocketBuilder, an object class can be inherited from another class. The

inherited or descendent object has all the instance variables, events, and
functions of the ancestor. You can augment the descendant by adding more
variables, events, and functions. If you change the ancestor, even after editing
the descendant, the descendant incorporates the changes.

Instantiating When you instantiate a descendent object, PocketBuilder also instantiates all
its ancestor classes. You do not have programmatic access to these ancestor
instances, except in a few limited ways, such as when you use the scope
operator to access an ancestor version of a function or event script.

About objects

78 PocketBuilder

Garbage collection
What garbage
collection does

The PocketBuilder garbage collection mechanism checks memory
automatically for unreferenced and orphaned objects and removes any it finds,
thus taking care of most memory leaks. You can use garbage collection to
destroy objects instead of explicitly destroying them using the DESTROY
statement. This lets you avoid execution-time errors that occur when you
destroy an object that was being used by another process or had been passed by
reference to a posted event or function.

When garbage
collection occurs

Garbage collection occurs:

• When a reference is removed from an object A reference to an
object is any variable whose value is the object. When the variable goes
out of scope, or when it is assigned a different value, PocketBuilder
removes a reference to the object, counts the remaining references, and
destroys the object if no references remain.

• When the garbage collection interval is exceeded When
PocketBuilder completes the execution of a system-triggered event, it
makes a garbage collection pass if the set interval between garbage
collection passes has been exceeded. The default interval is 0.5 seconds.
The garbage collection pass removes any objects and classes that cannot
be referenced, including those containing circular references (otherwise
unreferenced objects that reference each other).

Posting events and functions
When you post an event or function and pass an object reference,
PocketBuilder adds an internal reference to the object to prevent it from being
collected between the time of the post and the actual execution of the event or
function. This reference is removed when the event or function is executed.

Exceptions to garbage
collection

There are a few objects that are prevented from being collected:

• Visual objects Any object that is visible on your screen is not collected
because when the object is created and displayed on your screen, an
internal reference is added to the object. When any visual object is closed
it is explicitly destroyed.

• Timing objects Any Timing object that is currently running is not
collected because the Start function for a Timing object adds an internal
reference. The Stop function removes the reference.

• Shared objects Registered shared objects are not collected because the
SharedObjectRegister function adds an internal reference.
SharedObjectUnregister removes the internal reference.

CHAPTER 5 Structures and Objects

PowerScript Reference 79

Controlling when
garbage collection
occurs

Garbage collection occurs automatically in PocketBuilder, but you can use the
functions GarbageCollect, GarbageCollectGetTimeLimit, and
GarbageCollectSetTimeLimit to force immediate garbage collection or to
change the interval between reference count checks. By setting the interval
between garbage collection passes to a very large number, you can effectively
turn off garbage collection.

User objects that behave like structures
In PocketBuilder, a nonvisual user object can provide functionality similar to
that of a structure. Its instance variables form a collection similar to the
variables for the structure. In scripts, you use dot notation to refer to the user
object’s instance variables, just as you do for structure variables.

Advantages of user
objects

The user object can include functions and its own structure definitions, and it
allows you to inherit from an ancestor class. None of this is possible with a
structure definition.

Memory allocation
differences

Memory allocation is different for user objects and structures. An object
variable is a reference to the object. Declaring the variable does not allocate
memory for the object. After you declare it, you must instantiate it with a
CREATE statement. Assignment for a user object is also different (described in
"Assignment for objects and structures" next).

Autoinstantiated
objects

If you want a user object that has methods and inheritance but want the memory
allocation of a structure, you can define an autoinstantiated object.

You do not have to create and destroy autoinstantiated objects. Like structures,
they are created when they are declared and destroyed when they go out of
scope. However, because assignment for autoinstantiated objects behaves like
structures, the copies made of the object can be a drawback.

To make a custom class user object autoinstantiated, select the Autoinstantiate
check box on the user object’s property sheet.

Assignment for objects and structures

80 PocketBuilder

Assignment for objects and structures
In PocketBuilder, assignment for objects is different from assignment for
structures or autoinstantiated objects:

• When you assign one structure to another, the whole structure is copied so
that there are two copies of the structure.

• When you assign one object variable to another, the object reference is
copied so that both variables point to the same object. There is only one
copy of the object.

Assignment for structures
Declaring a structure variable creates an instance of that structure:

str_emp_data str_emp1, str_emp2 // Two structure
// instances

When you assign a structure to another structure, the whole structure is copied
and a second copy of the structure data exists:

str_emp1 = str_emp2

The assignment copies the whole structure from one structure variable to the
other. Each variable is a separate instance of the structure str_emp_data.

Restriction on
assignment

If the structures have different definitions, you cannot assign one to another,
even if they have the same set of variable definitions.

For example, this assignment is not allowed:

str_emp str_person1
str_cust str_person2
str_person2 = str_person1 // Not allowed

For information about passing structures as function arguments, see “Passing
arguments to functions and events” on page 99.

Assignment for objects
Declaring an object variable declares an object reference:

uo_emp_data uo_emp1, uo_emp2 // Two object references

CHAPTER 5 Structures and Objects

PowerScript Reference 81

Using the CREATE statement creates an instance of the object:

uo_emp1 = CREATE uo_emp_data

When you assign one object variable to another, a reference to the object
instance is copied. Only one copy of the object exists:

uo_emp2 = uo_emp1 // Both point to same object instance

Ancestor and
descendent objects

 Assignments between ancestor and descendent objects occur in the same way,
with an object reference being copied to the target object.

Suppose that uo_emp_data is an ancestor user object of uo_emp_active and
uo_emp_inactive.

Declare variables of the ancestor type:

uo_emp_data uo_emp1, uo_emp2

Create an instance of the descendant and store the reference in the ancestor
variable:

uo_emp1 = CREATE USING "uo_emp_active"

Assigning uo_emp1 to uo_emp2 makes both variables refer to one object that
is an instance of the descendant uo_emp_active:

uo_emp2 = uo_emp1

For information about passing objects as function arguments, see “Passing
arguments to functions and events” on page 99.

Assignment for autoinstantiated user objects
Declaring an autoinstantiated user object creates an instance of that object (just
like a structure). The CREATE statement is not allowed for objects with the
Autoinstantiate setting. In the following example, uo_emp_data has the
Autoinstantiate setting:

uo_emp_data uo_emp1, uo_emp2 // Two object instances

When you assign an autoinstantiated object to another autoinstantiated object,
the whole object is copied to the second variable:

uo_emp1 = uo_emp2

You never have multiple references to an autoinstantiated user object.

Assignment for objects and structures

82 PocketBuilder

Passing to a function When you pass an autoinstantiated user object to a function, it behaves like a
structure:

• Passing by value passes a copy of the object.

• Passing by reference passes a pointer to the object variable, just as for any
standard datatype.

• Passing as read-only passes a copy of the object but that copy cannot be
modified.

Restrictions for
copying

Assignments are allowed between autoinstantiated user objects only if the
object types match or if the target is a nonautoinstantiated ancestor.

Rule 1 If you assign one autoinstantiated object to another, they must be of
the same type.

Rule 2 If you assign an autoinstantiated descendent object to an ancestor
variable, the ancestor cannot have the Autoinstantiate setting. The ancestor
variable will contain a reference to a copy of its descendant.

Rule 3 If you assign an ancestor object to a descendent variable, the ancestor
must contain an instance of the descendant or an execution error occurs.

Examples To illustrate, suppose you have these declarations. Uo_emp_active and
uo_emp_inactive are autoinstantiated objects that are descendants of non-
autoinstantiated uo_emp_data:

uo_emp_data uo_emp1 // Ancestor
uo_emp_active uo_empa, uo_empb // Descendants
uo_emp_inactive uo_empi // Another descendant

Example of rule 1 When assigning one instance to another from the user
objects declared above, some assignments are not allowed by the compiler:

uo_empb = uo_empa // Allowed, same type
uo_empa = uo_empi // Not allowed, different types

Example of rule 2 After this assignment, uo_emp1 contains a copy of the
descendent object uo_empa. Uo_emp_data (the type for uo_emp1) must not be
autoinstantiated. Otherwise, the assignment violates rule 1. If uo_emp1 is
autoinstantiated, a compiler error occurs:

uo_emp1 = uo_empa

Example of rule 3 This assignment is only allowed if uo_emp1 contains an
instance of its descendant uo_empa, which it would if the previous assignment
had occurred before this one:

uo_empa = uo_emp1

CHAPTER 5 Structures and Objects

PowerScript Reference 83

If it did not contain an instance of target descendent type, an execution error
would occur.

For more information about passing arguments to functions and events, see
“Passing arguments to functions and events” on page 99.

Assignment for objects and structures

84 PocketBuilder

PowerScript Reference 85

C H A P T E R 6 Calling Functions and Events

About this chapter This chapter provides background information that will help you
understand the different ways you can use functions and events. It then
provides the syntax for calling functions and events.

Contents

About functions and events
Importance of functions
and events

Much of the power of the PowerScript language resides in the built-in
PowerScript functions that you can use in expressions and assignment
statements.

Types of functions and
events

PocketBuilder objects have built-in events and functions. You can
enhance objects with your own user-defined functions and events, and you
can declare local external functions for an object. The PowerScript
language also has system functions that are not associated with any object.
You can define your own global functions and declare external functions
and remote procedure calls.

Topic Page

About functions and events 85

Finding and executing functions and events 88

Triggering versus posting functions and events 90

Static versus dynamic calls 91

Overloading, overriding, and extending functions and events 97

Passing arguments to functions and events 99

Using return values 102

Syntax for calling PocketBuilder functions and events 104

Calling functions and events in an object’s ancestor 108

About functions and events

86 PocketBuilder

The following table shows the different types of functions and events.

Table 6-1: Types of functions and events

Category Item Definition

Events Event An action in an object or control that can start the
execution of a script. A user can initiate an event
by an action such as clicking an object or entering
data, or a statement in another script can initiate
the event.

User event An event you define to add functionality to an
object. You specify the arguments, return value,
and whether the event is mapped to a system
message. For information about defining user
events, see the User’s Guide.

System or
built-in event

An event that is part of an object’s PocketBuilder
definition. System events are usually triggered by
user actions or system messages. PocketBuilder
passes a predefined set of arguments for use in the
event’s script. System events either return a long or
do not have a return value.

Functions Function A program or routine that performs specific
processing.

System function A built-in PowerScript function that is not
associated with an object.

Object function A function that is part of an object’s definition.
PocketBuilder has many predefined object
functions and you can define your own.

User-defined
function

A function you define. You define global functions
in the Function painter and object functions in
other painters with Script views.

Global function A function you define that can be called from any
script. PowerScript’s system functions are globally
accessible, but they have a different place in the
search order.

Local external
function

An external function that belongs to an object. You
declare it in the Window or User Object painter. Its
definition is in another library.

Global external
function

An external function that you declare in any
painter, making it globally accessible. Its
definition is in another library.

Remote
procedure call
(RPC)

A stored procedure in a database that you can call
from a script. The declaration for an RPC can be
global or local (belonging to an object). The
definition for the procedure is in the database.

CHAPTER 6 Calling Functions and Events

PowerScript Reference 87

Comparing functions
and events

Functions and events have the following similarities:

• Both functions and events have arguments and return values.

• You can call object functions and events dynamically or statically. Global
or system functions cannot be called dynamically.

• You can post or trigger a function or event call.

Functions and events have the following differences:

• Functions can be global or part of an object’s definition. Events are
associated only with objects.

• PocketBuilder uses different search orders when looking for events and
functions.

• A call to an undefined function triggers an error. A call to an undefined
event does not trigger an error.

• Object-level functions can be overloaded. Events (and global functions)
cannot be overloaded.

• When you define a function, you can restrict access to it. You cannot add
scope restrictions when you define events.

• When functions are inherited, you can extend the ancestor function by
calling it in the descendant’s script. You can also override the function
definition. When events are inherited, the scripts for those events are
extended by default. You can choose to extend or override the script.

Which to use Whether you write most of your code in user-defined functions or in event
scripts is one of the design decisions you must make. Because there is no
performance difference, the decision is based on how you prefer to interact
with PocketBuilder: whether you prefer the interface for defining user events
or that for defining functions, how you want to handle errors, and whether your
design includes overloading.

It is unlikely that you will use either events or functions exclusively, but for
ease of maintenance, you might want to choose one approach for handling most
situations.

Finding and executing functions and events

88 PocketBuilder

Finding and executing functions and events
PocketBuilder looks for a matching function or event based on its name and its
argument list. PocketBuilder can make a match between compatible datatypes
(such as all the numeric types). The match does not have to be exact.
PocketBuilder ranks compatible datatypes to quantify how closely one
datatype matches another.

A major difference between functions and events is how PocketBuilder looks
for them.

Finding functions
When calling a function, PocketBuilder searches until it finds a matching
function and executes it—the search ends. Using functions with the same name
but different arguments is called function overloading. For more information,
see “Overloading, overriding, and extending functions and events” on page
97.

Unqualified function
names

If you do not qualify a function name with an object, PocketBuilder searches
for the function and executes the first one it finds that matches the name and
arguments. It searches for a match in the following order:

1 A global external function.

2 A global function.

3 An object function and local external function. If the object is a
descendant, PocketBuilder searches upward through the ancestor
hierarchy to find a match for the function prototype.

4 A system function.

DataWindow expression functions
The functions that you use in the DataWindow painter in expressions for
computed fields, filters, validation rules, and graphed data cannot be
overridden. For example, if you create a global function called Today, it is used
instead of the PowerScript system function Today, but it is not used instead of
the DataWindow expression function Today.

CHAPTER 6 Calling Functions and Events

PowerScript Reference 89

Qualified function
names

You can qualify an object function using dot notation to ensure that the object
function is found, not a global function of the same name. With a qualified
name, the search for a matching function involves the ancestor hierarchy only
(item 3 in the search list above), as shown in the following examples of
function calls:

dw_1.Update()
w_employee.uf_process_list()
This.uf_process_list()

When PocketBuilder searches the ancestor hierarchy for a function, you can
specify that you want to call an ancestor function instead of a matching
descendent function.

For the syntax for calling ancestor functions, see “Calling functions and events
in an object’s ancestor” on page 108.

Finding events
PocketBuilder events in descendent objects are, by default, extensions of
ancestor events. PocketBuilder searches for events in the object’s ancestor
hierarchy until it gets to the top ancestor or finds an event that overrides its
ancestor. Then it begins executing the events, from the ancestor event down to
the descendent event.

Finding functions
versus events

The following illustration shows the difference between searching for events
and searching for functions:

Triggering versus posting functions and events

90 PocketBuilder

Triggering versus posting functions and events
Triggering In PocketBuilder, when you trigger a function or event, it is called immediately.

Its return value is available for use in the script.

Posting When you post a function or event, it is added to the object’s queue and
executed in its turn. In most cases, it is executed when the current script is
finished; however, if other system events have occurred in the meantime, its
position in the queue might be after other scripts. Its return value is not
available to the calling script.

Because POST makes the return value unavailable to the caller, you can think
of it as turning the function or event call into a statement.

Use posting when activities need to be finished before the code checks state
information or does further processing (see Example 2 below).

PocketBuilder
messages processed
first

All events posted by PocketBuilder are processed by a separate queue from the
Windows system queue. PocketBuilder posted messages are processed before
Windows posted messages, so PocketBuilder events that are posted in an event
that posts a Windows message are processed before the Windows message.

For example, when a character is typed into an EditMask control, the
PocketBuilder pdm_keydown event posts the Windows message WM_CHAR to
enter the character. If you want to copy the characters as they are entered from
the EditMask control to another control, do not place the code in an event
posted in the pdm_keydown event. The processing must take place in an event
that occurs after the WM_CHAR message is processed, such as in an event
mapped to pdm_keyup.

Restrictions for POST Because no value is returned, you:

• Cannot use a posted function or event as an operand in an expression

• Cannot use a posted function or event as the argument for another function

• Can only use POST on the last call in a cascaded sequence of calls

These statements cause a compiler error. Both uses require a return value:

IF POST IsNull() THEN ...
w_1.uf_getresult(dw_1.POST GetBorderStyle(2))

TriggerEvent and PostEvent functions
For backward compatibility, the TriggerEvent and PostEvent functions are still
available, but you cannot pass arguments to the called event. You must pass
data to the event in PocketBuilder’s Message object.

CHAPTER 6 Calling Functions and Events

PowerScript Reference 91

Examples of posting The following examples illustrate how to post events.

Example 1 In a sample application, the Open event of the w_activity_manager
window calls the functions uf_setup and uf_set_tabpgsystem. (The functions
belong to the user object u_app_actman.) Because the functions are posted, the
Open event is allowed to finish before the functions are called. The result is that
the window is visible while setup processing takes place, giving the user
something to look at:

guo_global_vars.iuo_app_actman.POST uf_setup()
guo_global_vars.iuo_com_actman.POST
uf_set_tabpgsystem(0)

Example 2 In a sample application, the DoubleClicked event of the
tv_roadmap TreeView control in the u_tabpg_amroadmap user object posts a
function that processes the TreeView item. If the event is not posted, the code
that checks whether to change the item’s picture runs before the item’s
expanded flag is set:

parent.POST uf_process_item ()

Static versus dynamic calls
Calling functions and
events

PocketBuilder calls functions and events in three ways, depending on the type
of function or event and the lookup method defined.

Table 6-2: How PocketBuilder calls functions and events

Type of function Compiler typing Comments

Global and system
functions

Strongly typed. The
function must exist when
the script is compiled.

These functions must exist and
are called directly. They are not
polymorphic, and no
substitution is ever made at
execution time.

Object functions with
STATIC lookup

Strongly typed. The
function must exist when
the script is compiled.

The functions are polymorphic.
They must exist when you
compile, but if another class is
instantiated at execution time,
its function is called instead.

Object functions with
DYNAMIC lookup

Weakly typed. The
function does not have to
exist when the script is
compiled.

The functions are polymorphic.
The actual function called is
determined at execution time.

Static versus dynamic calls

92 PocketBuilder

Specifying static or
dynamic lookup

For object functions and events, you can choose when PocketBuilder looks for
them by specifying static or dynamic lookup. You specify static or dynamic
lookup using the STATIC or DYNAMIC keywords. The DYNAMIC keyword
applies only to functions that are associated with an object. You cannot call
global or system functions dynamically.

Static calls
By default, PocketBuilder makes static lookups for functions and events. This
means that it identifies the function or event by matching the name and
argument types when it compiles the code. A matching function or event must
exist in the object at compile time.

Results of static calls Static calls do not guarantee that the function or event identified at compile
time is the one that is executed. Suppose that you define a variable of an
ancestor type and it has a particular function definition. If you assign an
instance of a descendent object to the variable and the descendant has a
function that overrides the ancestor’s function (the one found at compile time),
the function in the descendant is executed.

Dynamic calls
When you specify a dynamic call in PocketBuilder, the function or event does
not have to exist when you compile the code. You are indicating to the compiler
that there will be a suitable function or event available at execution time.

For a dynamic call, PocketBuilder waits until it is time to execute the function
or event to look for it. This gives you flexibility and allows you to call functions
or events in descendants that do not exist in the ancestor.

Results of dynamic
calls

To illustrate the results of dynamic calls, consider these objects:

• Ancestor window w_a with a function Set(integer).

• Descendent window w_a_desc with two functions: Set(integer) overrides
the ancestor function, and Set(string) is an overload of the function.

Situation 1 Suppose you open the window mywindow of the ancestor
window class w_a:

w_a mywindow
Open(mywindow)

CHAPTER 6 Calling Functions and Events

PowerScript Reference 93

This is what happens when you call the Set function statically or dynamically:

Situation 2 Now suppose you open mywindow as the descendant window
class w_a_desc:

w_a mywindow
Open(mywindow, "w_a_desc")

This is what happens when you call the Set function statically or dynamically
in the descendant window class:

Disadvantages of
dynamic calls

Slower performance Because dynamic calls are resolved at runtime, they
are slower than static calls. If you need the fastest performance, design your
application to avoid dynamic calls.

Less error checking When you use dynamic calls, you are foregoing error
checking provided by the compiler. Your application is more open to
application errors, because functions that are called dynamically might be
unavailable at execution time. Do not use a dynamic call when a static call will
suffice.

This statement Has this result

mywindow.Set(1)
Compiles correctly because function is
found in the ancestor w_a.

At runtime, Set(integer) in the ancestor
is executed.

mywindow.Set("hello")
Fails to compile; no function prototype
in w_a matches the call.

mywindow.DYNAMIC Set("hello")
Compiles successfully because of the
DYNAMIC keyword.

An error occurs at runtime because no
matching function is found.

This statement Has this result

mywindow.Set(1)
Compiles correctly because function is
found in the ancestor w_a.

At runtime, Set(integer) in the
descendant is executed.

mywindow.Set("hello")
Fails to compile; no function prototype
in the ancestor matches the call.

mywindow.DYNAMIC Set("hello")
Compiles successfully because of the
DYNAMIC keyword.

At runtime, Set(string) in the
descendant is executed.

Static versus dynamic calls

94 PocketBuilder

Example using
dynamic call

A sample application has an ancestor window w_datareview_frame that defines
several functions called by the menu items of m_datareview_framemenu. They
are empty stubs with empty scripts so that static calls to the functions will
compile. Other windows that are descendants of w_datareview_frame have
scripts for these functions, overriding the ancestor version.

The wf_print function is one of these—it has an empty script in the ancestor and
appropriate code in each descendent window:

guo_global_vars.ish_currentsheet.wf_print ()

The wf_export function called by the m_export item on the m_file menu does
not have a stubbed-out version in the ancestor window. This code for m_export
uses the DYNAMIC keyword to call wf_export. When the program runs, the
value of variable ish_currentsheet is a descendent window that does have a
definition for wf_export:

guo_global_vars.ish_currentsheet.DYNAMIC wf_export()

Errors when calling functions and events dynamically

If you call a function or event dynamically, different conditions create different
results, from no effect to an execution error. The tables in this section illustrate
this.

Functions The rules for functions are similar to those for events, except functions must
exist: if a function is not found, an error always occurs. Although events can
exist without a script, if a function is defined it has to have code. Consider the
following statements:

1 This statement calls a function without looking for a return value:

object.DYNAMIC funcname()

2 This statement looks for an integer return value:

int li_int
li_int = object.DYNAMIC funcname()

3 This statement looks for an Any return value:

any la_any
la_any = object.DYNAMIC funcname()

CHAPTER 6 Calling Functions and Events

PowerScript Reference 95

The following table uses these statements as examples.

Table 6-3: Dynamic function calling errors

Events Consider these statements:

1 This statement calls an event without looking for a return value:

object.EVENT DYNAMIC eventname()

2 This example looks for an integer return value:

int li_int
li_int = object.EVENT DYNAMIC eventname()

3 This example looks for an Any return value:

any la_any
la_any = object.EVENT DYNAMIC eventname()

The following table uses these statements as examples.

Table 6-4: Dynamic event calling errors

Condition 1 Condition 2 Result Example

The function
does not exist.

None. Execution error 65:
Dynamic function
not found.

All the
statements cause
error 65.

The function is
found and
executed but is
not defined with
a return value.

The code is looking
for a return value.

Execution error 63:
Function/event with
no return value used
in expression.

Statements 2 and
3 cause error 63.

Condition 1 Condition 2 Result Example

The event does
not exist.

The code is not
looking for a return
value.

Nothing; the call fails
silently.

Statement 1 fails
but does not
cause an error.

The code is looking
for a return value.

A null of the Any
datatype is returned.

La_any is set to
null in statement
3.

If the expected
datatype is not Any,
execution error 19
occurs: Cannot
convert Any in Any
variable to datatype.

The assignment
to li_int causes
execution error
19 in statement
2.

Static versus dynamic calls

96 PocketBuilder

When an error occurs You can surround a dynamic function call in a try-catch block to prevent the
application from terminating when an execution error occurs. Although you
can also handle the error in the SystemError event, you should not allow the
application to continue once the SystemError event is invoked—the
SystemError event should only clean up and halt the application.

For information on using try-catch blocks, see the section on exception
handling in the Resource Guide.

If the arguments do
not match

Function arguments are part of the function’s definition. Therefore, if the
arguments do not match (a compatible match, not an exact match), it is
essentially a different function. The result is the same as if the function did not
exist.

If you call an event dynamically and the arguments do not match, the call fails
and control returns to the calling script. There is no error.

Error-proofing your
code

Calling functions and events dynamically opens up your application to
potential errors. The surest way to avoid these errors is to always make static
calls to functions and events. When that is not possible, your design and testing
can ensure that there is always an appropriate function or event with the correct
return datatype.

One type of error you can check for and avoid is data conversion errors.

The event is
found but is not
implemented
(there is no
script).

The event has a
defined return
value.

A null of the defined
datatype is returned.

If eventname is
defined to return
integer, li_int is
set to null in
statement 2.

The event does not
have a defined
return value.

A null of the Any
datatype is returned.

La_any is set to
null in statement
3.

If the expected
datatype is not Any,
execution error 19
occurs: Cannot
convert Any in Any
variable to datatype.

The assignment
to li_int causes
execution error
19 in statement
2.

The event is
found and
executed but is
not defined with
a return value.

The code is looking
for a return value.

Execution error 63:
Function/event with
no return value used
in expression.

Statements 2 and
3 cause error 63.

Condition 1 Condition 2 Result Example

CHAPTER 6 Calling Functions and Events

PowerScript Reference 97

The preceding tables illustrated that a function or event can return a null value
either as an Any variable or as a variable of the expected datatype when a
function or event definition exists but is not implemented.

If you always assign return values to Any variables for dynamic calls, you can
test for null (which indicates failure) before using the value in code.

This example illustrates the technique of checking for null before using the
return value.

any la_any
integer li_gotvalue
la_any = object.DYNAMIC uf_getaninteger()
IF IsNull(la_any) THEN

... // Error handling
ELSE

li_gotvalue = la_any
END IF

Overloading, overriding, and extending functions and
events

In PocketBuilder, when functions are inherited, you can choose to overload or
override the function definition, described in "Overloading and overriding
functions" next.

When events are inherited, the scripts for those events are extended by default.
You can choose to extend or override the script, described in “Extending and
overriding events” on page 99.

Overloading and overriding functions
To create an overloaded function, you declare the function as you would any
function using Insert>Function.

Overriding means defining a function in a descendent object that has the same
name and argument list as a function in the ancestor object. In the descendent
object, the function in the descendant is always called instead of the one in the
ancestor—unless you use the scope resolution operator (::).

Overloading, overriding, and extending functions and events

98 PocketBuilder

To override a function, open the descendent object in the painter, select the
function in the Script view, and code the new script. The icon that indicates that
there is a script for a function is half shaded when the function is inherited from
an ancestor.

You can overload or override object functions only—you cannot overload
global functions.

Type promotion when matching arguments for overloaded functions

When you have overloaded a function so that one version handles numeric
values and another version handles strings, it is clear to the programmer what
arguments to provide to call each version of the function. Overloading with
unrelated datatypes is a good idea and can provide needed functionality for
your application.

Problematic
overloading

If different versions of a function have arguments of related datatypes
(different numeric types or strings and chars), you must consider how
PocketBuilder promotes datatypes in determining which function is called.
This kind of overloading is undesirable because of potential confusion in
determining which function is called.

When you call a function with an expression as an argument, the datatype of
the expression might not be obvious. However, the datatype is important in
determining what version of an overloaded function is called.

Because of the intricacies of type promotion for numeric datatypes, you might
decide that you should not define overloaded functions with different numeric
datatypes. Changes someone makes later can affect the application more
drastically than expected if the change causes a different function to be called.

How type promotion
works

When PocketBuilder evaluates an expression, it converts the datatypes of
constants and variables so that it can process or combine them correctly.

Numbers When PocketBuilder evaluates numeric expressions, it promotes
the datatypes of values according to the operators and the datatypes of the other
operands. For example, the datatype of the expression n/2 is double because it
involves division—the datatype of n does not matter.

Strings When evaluating an expression that involves chars and strings,
PocketBuilder promotes chars to strings.

For more information on type promotion, see “Datatype of PocketBuilder
expressions” on page 69.

CHAPTER 6 Calling Functions and Events

PowerScript Reference 99

Using conversion
functions

You can take control over the datatypes of expressions by calling a conversion
function. The conversion function ensures that the datatype of the expression
matches the function prototype you want to call.

For example, because the expression n/2 involves division, the datatype is
double. However, if the function you want to call expects a long, you can use
the Long function to ensure that the function call matches the prototype:

CalculateHalf(Long(n/2))

Extending and overriding events
In PocketBuilder, when you write event scripts in a descendent object, you can
extend or override scripts that have been written in the ancestor.

Extending (the default) means executing the ancestor’s script first, then
executing code in the descendant’s event script.

Overriding means ignoring the ancestor’s script and only executing the script
in the descendant.

No overloaded events
You cannot overload an event by defining an event with the same name but
different arguments. Event names must be unique.

To select extending or overriding, open the script in the Script view and check
or clear the Extend Ancestor Script item in the Edit or pop-up menu.

Passing arguments to functions and events
In PocketBuilder, arguments for built-in or user-defined functions and events
can be passed three ways:

Table 6-5: Passing arguments to functions and events

Method of passing Description

By value A copy of the variable is available in the function or
event script. Any changes to its value affect the copy
only. The original variable in the calling script is not
affected.

Passing arguments to functions and events

100 PocketBuilder

Passing objects
When you pass an object to a function or event, the object must exist when you
refer to its properties and functions. If you call the function but the object has
been destroyed, you get the execution error for a null object reference. This is
true whether you pass by reference, by value, or read-only.

To illustrate, suppose you have a window with a SingleLineEdit. If you post a
function in the window’s Close event and pass the SingleLineEdit, the object
does not exist when the function executes. To use information from the
SingleLineEdit, you must pass the information itself, such as the object’s text,
rather than the object.

When passing an object, you never get another copy of the object. By reference
and by value affect the object reference, not the object itself.

Objects passed by
value

When you pass an object by value, you pass a copy of the reference to the
object. That reference is still pointing to the original object. If you change
properties of the object, you are changing the original object. However, you can
change the value of the variable so that it points to another object without
affecting the original variable.

Objects passed by
reference

When you pass an object by reference, you pass a pointer to the original
reference to the object. Again, if you change properties of the object, you are
changing the original object. You can change the value of the variable that was
passed, but the result is different—the original reference now points to the new
object.

By reference A pointer to the variable is passed to the function or event
script. Changes affect the original variable in the calling
script.

Read-only The variable is available in the function or event. Its
value is treated as a constant—changes to the variable are
not allowed and cause a compiler error.

Read-only provides a performance advantage for some
datatypes because it does not create a copy of the data, as
with by value. Datatypes for which read-only provides a
performance advantage are string, blob, date, time, and
DateTime.

For other datatypes, read-only provides documentation
for other developers by indicating something about the
purpose of the argument.

Method of passing Description

CHAPTER 6 Calling Functions and Events

PowerScript Reference 101

Objects passed as
read-only

When you pass an object as read-only, you get a copy of the reference to the
object. You cannot change the reference to point to a new object (because
read-only is equivalent to a CONSTANT declaration), but you can change
properties of the object.

Passing structures
Structures as arguments behave like simple variables, not like objects.

Structures passed by
value

When you pass a structure by value, PocketBuilder passes a copy of the
structure. You can modify the copy without affecting the original.

Structures passed by
reference

When you pass a structure by reference, PocketBuilder passes a reference to
the structure. When you changes values in the structure, you are modifying the
original. You will not get a null object reference, because structures always
exist until they go out of scope.

Structures passed as
read-only

When you pass a structure as read-only, PocketBuilder passes a copy of the
structure. You cannot modify any members of the structure.

Passing arrays
When an argument is an array, you specify brackets as part of the argument
name in the declaration for the function or event.

Variable-size array as
an argument

For example, suppose a function named uf_convertarray accepts a variable-size
array of integers. If the argument’s name is intarray, then for Name enter
intarray[] and for Type enter integer.

In the script that calls the function, you either declare an array variable or use
an instance variable or value that has been passed to you. The declaration of
that variable, wherever it is, looks like this:

integer a[]

When you call the function, omit the brackets, because you are passing the
whole array. If you specified brackets, you would be passing one value from
the array:

uf_convertarray(a)

Fixed-size array as an
argument

For comparison, suppose the uf_convertarray function accepts a fixed-size
array of integers of 10 elements instead. If the argument’s name is intarray,
then for Name enter intarray[10], and for Type enter integer.

Using return values

102 PocketBuilder

The declaration of the variable to be passed looks like this:

integer a[10]

You call the function the same way, without brackets:

uf_convertarray(a)

If the array dimensions do not match
If the dimensions of the array variable passed do not match the dimensions
declared for the array argument, then array-to-array assignment rules apply.
For more information, see “Declaring arrays” on page 45.

Using return values
You can use return values of functions and events.

Functions
All built-in PowerScript functions return a value. You can use the return value
or ignore it. User-defined functions and external functions might or might not
return a value.

To use a return value, assign it to a variable of the appropriate datatype or call
the function wherever you can use a value of that datatype.

Posting a function
If you post a function, you cannot use its return value.

Examples The built-in Asc function takes a string as an argument and returns the ASCII
value of the string’s first character:

string S1 = "Carton"
int Test
Test=32+Asc(S1) // Test now contains the value 99

// (the ASCII value of "C" is 67).

The SelectRow function expects a row number as the first argument. The return
value of the GetRow function supplies the row number:

dw_1.SelectRow(dw_1.GetRow(), true)

CHAPTER 6 Calling Functions and Events

PowerScript Reference 103

To ignore a return value, call the function as a single statement:

Beep(4) // This returns a value, but it is
// rarely needed.

Events
Most system events return a value. The return value is a long—numeric codes
have specific meanings for each event. You specify the event’s return code with
a RETURN statement in the event script.

When the event is triggered by user actions or system messages, the value is
returned to the system, not to a script you write.

When you trigger a system or user-defined event, the return value is returned
to your script and you can use the value as appropriate. If you post an event,
you cannot use its return value.

Using cascaded calling and return values
PocketBuilder dot notation allows you to chain together several object function
or event calls. The return value of the function or event becomes the object for
the following call.

This syntax shows the relationship between the return values of three cascaded
function calls:

func1returnsobject().func2returnsobject().func3returnsanything()

Disadvantage of cascaded calls
When you call several functions in a cascade, you cannot check their return
values and make sure they succeeded. If you want to check return values (and
checking is always a good idea), call each function separately and assign the
return values to variables. Then you can use the verified variables in dot
notation before the final function name.

Dynamic calls If you use the DYNAMIC keyword in a chain of cascaded calls, it carries over to
all function calls that follow.

In this example, both func1 and func2 are called dynamically:

object1.DYNAMIC func1().func2()

Syntax for calling PocketBuilder functions and events

104 PocketBuilder

The compiler reports an error if you use DYNAMIC more than once in a
cascaded call. This example would cause an error:

object1.DYNAMIC func1().DYNAMIC func2() // error

Posted functions and
events

Posted functions and events do not return a value to the calling scripts.
Therefore, you can only use POST for the last function or event in a cascaded
call. Calls before the last must return a valid object that can be used by the
following call.

System events System events can only be last in a cascaded list of calls, because their return
value is a long (or they have no return value). They do not return an object that
can be used by the next call.

An event you have defined can have a return value whose datatype is an object.
You can include such events in a cascaded call.

Syntax for calling PocketBuilder functions and events
Description This syntax is used to call all PocketBuilder functions and events. Depending

on the keywords used, this syntax can be used to call system, global, object,
user-defined, and external functions as well as system and user-defined events.

Syntax { objectname.} { type } { calltype } { when } name ({ argumentlist })

The following table describes the arguments used in function and event calls.

Table 6-6: Arguments for calling functions and events

Argument Description

objectname
(optional)

The name of the object where the function or event is defined
followed by a period or the descendant of that object/the
name of the ancestor class followed by two colons.

If a function name is not qualified, PocketBuilder uses the
rules for finding functions and executes the first matching
function it finds.

For system or global functions, omit objectname.

For the rules PocketBuilder uses to find unqualified function
names, see “Finding and executing functions and events” on
page 88.

type
(optional)

A keyword specifying whether you are calling a function or
event. Values are:

• FUNCTION (Default)

• EVENT

CHAPTER 6 Calling Functions and Events

PowerScript Reference 105

Usage Case insensitivity
Function and event names are not case sensitive. For example, the following
three statements are equivalent:

Clipboard("PocketBuilder")
clipboard("PocketBuilder")
CLIPBOARD("PocketBuilder")

Calling arguments The type, calltype, and when keywords can be in any
order after objectname.

Not all options in the syntax apply to all types. For example, there is no point
in calling a system PowerScript object function dynamically. It always exists,
and the dynamic call incurs extra overhead. However, if you had a user-defined
function of the same name that applied to a different object, you might call that
function dynamically.

User-defined global functions and system functions can be triggered or posted
but they cannot be called dynamically.

Finding functions If a global function does not exist with the given name,
PocketBuilder will look for an object function that matches the name and
argument list before it looks for a PocketBuilder system function.

calltype
(optional)

A keyword specifying when PocketBuilder looks for the
function or event. Values are:

• STATIC (Default)

• DYNAMIC

For more information about static versus dynamic calls, see
“Static versus dynamic calls” on page 91.

For more information on dynamic calls, see “Dynamic calls”
on page 92.

when
(optional)

A keyword specifying whether the function or event should
execute immediately or after the current script is finished.
Values are:

• TRIGGER — (Default) Execute it immediately.

• POST — Put it in the object’s queue and execute it in its
turn, after other pending messages have been handled.

For more about triggering and posting, see “Triggering
versus posting functions and events” on page 90.

name The name of the function or event you want to call.

argumentlist
(optional)

The values you want to pass to name. Each value in the list
must have a datatype that corresponds to the declared
datatype in the function or event definition or declaration.

Argument Description

Syntax for calling PocketBuilder functions and events

106 PocketBuilder

Calling functions and events in the ancestor If you want to circumvent
the usual search order and force PocketBuilder to find a function or event in an
ancestor object, bypassing it in the descendant, use the ancestor operator (::).

For more information about the scope operator for ancestors, see “Calling
functions and events in an object’s ancestor” on page 108.

Cascaded calls Calls can be cascaded using dot notation. Each function or
event call must return an object type that is the appropriate object for the
following call.

For more information about cascaded calls, see “Using cascaded calling and
return values” on page 103.

Using return values If the function has a return value, you can call the
function on the right side of an assignment statement, as an argument for
another function, or as an operand in an expression.

External functions Before you can call an external function, you must
declare it. For information about declaring external functions, see “Declaring
external functions” on page 54.

Examples Example 1 The following statements show various function calls using the
most simple construction of the function call syntax.

This statement calls the system function Asc:

charnum = Asc("x")

This statement calls the DataWindow function in a script that belongs to the
DataWindow:

Update()

This statement calls the global user-defined function gf_setup_appl:

gf_setup_appl(24, "Window1")

This statement calls the system function PrintRect:

PrintRect(job, 250, 250, 7500, 1000, 50)

Example 2 The following statements show calls to global and system
functions.

This statement posts the global user-defined function gf_setup_appl. The
function is executed when the calling script finishes:

POST gf_setup_appl(24, "Window1")

CHAPTER 6 Calling Functions and Events

PowerScript Reference 107

This statement posts the system function PrintRect. It is executed when the
calling script finishes. The print job specified in job must still be open:

POST PrintRect(job, 250, 250, 7500, 1000, 50)

Example 3 In a script for a control, these statements call a user-defined
function defined in the parent window. The statements are equivalent, because
FUNCTION, STATIC, and TRIGGER are the defaults:

Parent.FUNCTION STATIC TRIGGER wf_process()
Parent.wf_process()

Example 4 This statement in a DataWindow control’s Clicked script calls
the DoubleClicked event for the same control. The arguments the system
passed to Clicked are passed on to DoubleClicked. When triggered by the
system, PocketBuilder passes DoubleClicked those same arguments:

This.EVENT DoubleClicked(xpos, ypos, row, dwo)

This statement posts the same event:

This.EVENT POST DoubleClicked(xpos, ypos, row, dwo)

Windows CE platforms
Double-clicking is not a natural user action on Pocket PC devices, but it can be
triggered if called in code or by quickly double-tapping an item with a stylus.

Example 5 The variable iw_a is an instance variable of an ancestor window
type w_ancestorsheet:

w_ancestorsheet iw_a

A menu has a script that calls the wf_export function, but that function is not
defined in the ancestor. The DYNAMIC keyword is required so that the script
compiles:

iw_a.DYNAMIC wf_export()

At execution time, the window that is opened is a descendant with a definition
of wf_export. That window is assigned to the variable iw_a and the call to
wf_export succeeds.

Calling functions and events in an object’s ancestor

108 PocketBuilder

Calling functions and events in an object’s ancestor
Description In PocketBuilder, when an object is instantiated with a descendant object, even

if its class is the ancestor and that descendant has a function or event script that
overrides the ancestor’s, the descendant’s version is the one that is executed. If
you specifically want to execute the ancestor’s version of a function or event,
you can use the ancestor operator (::) to call the ancestor’s version explicitly.

Syntax { objectname. } ancestorclass ::{ type } { when } name ({ argumentlist })

The following table describes the arguments used to call functions and events
in an object’s ancestor.

Table 6-7: Arguments for calling ancestor functions and events

Usage The AncestorReturnValue variable When you extend an event script in a
descendent object, the compiler automatically generates a local variable called
AncestorReturnValue that you can use if you need to know the return value of
the ancestor event script. The variable is also generated if you override the
ancestor script and use the CALL syntax to call the ancestor event script.

Argument Description

objectname
(optional)

The name of the object whose ancestor contains the function you
want to execute.

ancestorclass The name of the ancestor class whose function or event you want
to execute. The pronoun Super provides the appropriate reference
when ancestorobject is the immediate ancestor of the current
object.

type
(optional)

A keyword specifying whether you are calling a function or event.
Values are:

• (Default) FUNCTION

• EVENT

when
(optional)

A keyword specifying whether the function or event should
execute immediately or after the current script is finished. Values
are:

• TRIGGER — (Default) Execute it immediately

• POST — Put it in the object’s queue and execute it in its turn,
after other pending messages have been handled

name The name of the object function or event you want to call.

argumentlist
(optional)

The values you want to pass to name. Each value in the list must
have a datatype that corresponds to the declared datatype in the
function definition.

CHAPTER 6 Calling Functions and Events

PowerScript Reference 109

The datatype of the AncestorReturnValue variable is always the same as the
datatype defined for the return value of the event. The arguments passed to the
call come from the arguments that are passed to the event in the descendent
object.

Extending event scripts The AncestorReturnValue variable is always
available in extended event scripts. When you extend an event script,
PocketBuilder generates the following syntax and inserts it at the beginning of
the event script:

CALL SUPER::event_name

You only see the statement if you export the syntax of the object or look at it in
the Source editor.

The following example illustrates the code you can put in an extended event
script:

If AncestorReturnValue = 1 THEN
// execute some code
ELSE
// execute some other code
END IF

Overriding event scripts The AncestorReturnValue variable is only
available when you override an event script after you call the ancestor event
using the CALL syntax:

CALL SUPER::event_name

or

CALL ancestor_name::event_name

The compiler cannot differentiate between the keyword SUPER and the name
of the ancestor. The keyword is replaced with the name of the ancestor before
the script is compiled.

The AncestorReturnValue variable is only declared and a value assigned when
you use the CALL event syntax. It is not declared if you use the new event
syntax:

ancestor_name::EVENT event_name()

You can use the same code in a script that overrides its ancestor event script,
but you must insert a CALL statement before you use the AncestorReturnValue
variable.

// execute code that does some preliminary processing
CALL SUPER::uo_myevent

Calling functions and events in an object’s ancestor

110 PocketBuilder

IF AncestorReturnValue = 1 THEN
...

For information about CALL, see CALL on page 116.

Examples Example 1 Suppose a window w_ancestor has an event ue_process. A
descendent window has a script for the same event.

This statement in a script in the descendant searches the event chain and calls
all appropriate events. If the descendant extends the ancestor script, it calls a
script for each ancestor in turn followed by the descendent script. If the
descendant overrides the ancestor, it calls the descendent script only:

EVENT ue_process()

This statement calls the ancestor event only (this script works if the calling
script belongs to another object or the descendent window):

w_ancestor::EVENT ue_process()

Example 2 You can use the pronoun Super to refer to the ancestor. This
statement in a descendent window script or in a script for a control on that
window calls the Clicked script in the immediate ancestor of that window.

Super::EVENT Clicked(0, x, y)

Example 3 These statements call a function wf_myfunc in the ancestor
window (presumably, the descendant also has a function called wf_myfunc):

Super::wf_myfunc()
Super::POST wf_myfunc()

P A R T 2 Statements, Events, and
Functions

PowerScript Reference 113

C H A P T E R 7 PowerScript Statements

About this chapter This chapter describes the PowerScript statements and how to use them in
scripts.

Contents

Assignment
Description Assigns values to variables or object properties or object references to

object variables.

Syntax variablename = expression

Topic Page

Assignment 113

CALL 116

CHOOSE CASE 117

CONTINUE 119

CREATE 120

DESTROY 123

DO...LOOP 124

EXIT 126

FOR...NEXT 127

GOTO 129

HALT 130

IF...THEN 130

RETURN 132

THROW 133

THROWS 134

TRY...CATCH...FINALLY...END TRY 135

Assignment

114 PocketBuilder

Usage Use assignment statements to assign values to variables. To assign a value to a
variable anywhere in a script, use the equal sign (=). For example:

String1 = "Part is out of stock"
TaxRate = .05

No multiple assignments Since the equal sign is also a logical operator, you
cannot assign more than one variable in a single statement. For example, the
following statement does not assign the value 0 to A and B:

A=B=0 // This will not assign 0 to A and B.

This statement first evaluates B=0 to true or FALSE and then tries to assign this
boolean value to A. When A is not a boolean variable, this line produces an
error when compiled.

Assigning array values You can assign multiple array values with one
statement, such as:

int Arr[]
Arr = {1, 2, 3, 4}

You can also copy array contents. For example, this statement copies the
contents of Arr2 into array Arr1:

Arr1 = Arr2

Argument Description

variablename The name of the variable or object property to which you
want to assign a value. Variablename can include dot
notation to qualify the variable with one or more object
names.

expression An expression whose datatype is compatible with
variablename.

CHAPTER 7 PowerScript Statements

PowerScript Reference 115

Operator shortcuts The PowerScript shortcuts for assigning values to
variables in the following table have slight performance advantages over their
equivalents.

Table 7-1: Shortcuts for assigning values

Unless you have prohibited the use of dashes in variable names, you must leave
a space before -- and -=. If you do not, PowerScript reads the minus sign as
part of a variable name. For more information, see “Identifier names” on page
5.

Examples Example 1 These statements each assign a value to the variable ld_date:

date ld_date
ld_date = Today()
ld_date = 1996-01-01
ld_date = Date("January 1, 1996")

Example 2 These statements assign the parent of the current control to a
window variable:

window lw_current_window
lw_current_window = Parent

Example 3 This statement makes a CheckBox invisible:

cbk_on.Visible = FALSE

Example 4 This statement is not an assignment—it tests the value of the
string in the SingleLineEdit sle_emp:

IF sle_emp.Text = "N" THEN Open(win_1)

Example 5 These statements concatenate two strings and assign the value to
the string Text1:

string Text1
Text1 = sle_emp.Text+".DAT"

Assignment Example Equivalent to

++ i ++ i = i + 1

-- i -- i = i - 1

+= i += 3 i = i + 3

-= i -= 3 i = i -3

*= i *= 3 i = i * 3

/= i /= 3 i = i / 3

^= i ^=3 i = i ^ 3

CALL

116 PocketBuilder

Example 6 These assignments use operator shortcuts:

int i = 4
i ++ // i is now 5.
i -- // i is 4 again.
i += 10 // i is now 14.
i /= 2 // i is now 7.

These shortcuts can be used only in pure assignment statements. They cannot
be used with other operators in a statement. For example, the following is
invalid:

int i, j
i = 12
j = i ++ // INVALID

The following is valid, because ++ is used by itself in the assignment:

int i, j
i = 12
i ++
j = i

CALL
Description Calls an ancestor script from a script for a descendent object. You can call

scripts for events in an ancestor of the user object, menu, or window. You can
also call scripts for events for controls in an ancestor of the user object or
window.

When you use the CALL statement to call an ancestor event script, the
AncestorReturnValue variable is generated. For more information on the
AncestorReturnValue variable, see “About events” on page 171.

Syntax CALL ancestorobject {`controlname}::event

Parameter Description

ancestorobject An ancestor of the descendent object

controlname
(optional)

The name of a control in an ancestor window or custom
user object

event An event in the ancestor object

CHAPTER 7 PowerScript Statements

PowerScript Reference 117

Usage Using the standard syntax
For most purposes, you should use the standard syntax for calling functions and
events. For more information about the standard syntax, see “Syntax for
calling PocketBuilder functions and events” on page 104.

The standard syntax allows you to trigger or post an event or function in an
ancestor and then pass arguments, but it does not allow you to call a script for
a control in the ancestor.

In some circumstances, you can use the pronoun Super when ancestorobject is
the descendant object’s immediate ancestor. See the discussion of “Super
pronoun” on page 14.

If the call is being made to an ancestor event, the arguments passed to the
current event are automatically propagated to the ancestor event. If you call a
non-ancestor event and pass arguments, you need to use the new syntax,
otherwise null will be passed for each argument.

Examples Example 1 This statement calls a script for an event in an ancestor window:

CALL w_emp::Open

Example 2 This statement calls a script for an event in a control in an
ancestor window:

CALL w_emp`cb_close::Clicked

CHOOSE CASE
Description A control structure that directs program execution based on the value of a test

expression (usually a variable).

Syntax CHOOSE CASE testexpression
CASE expressionlist

statementblock
{ CASE expressionlist

statementblock
. . .
CASE expressionlist

statementblock }
CASE ELSE

statementblock }
END CHOOSE

CHOOSE CASE

118 PocketBuilder

Usage At least one CASE clause is required. You must end a CHOOSE CASE control
structure with END CHOOSE.

If testexpression at the beginning of the CHOOSE CASE statement matches a
value in expressionlist for a CASE clause, the statements immediately
following the CASE clause are executed. Control then passes to the first
statement after the END CHOOSE clause.

If multiple CASE expressions exist, then testexpression is compared to each
expressionlist until a match is found or the CASE ELSE or END CHOOSE is
encountered.

If there is a CASE ELSE clause and the test value does not match any of the
expressions, statementblock in the CASE ELSE clause is executed. If no CASE
ELSE clause exists and a match is not found, the first statement after the END
CHOOSE clause is executed.

Examples Example 1 These statements provide different processing based on the value
of the variable Weight:

CHOOSE CASE Weight
CASE IS<16

Postage=Weight*0.30
Method="USPS"

CASE 16 to 48
Postage=4.50
Method="UPS"

Parameter Description

testexpression The expression on which you want to base the execution
of the script

expressionlist One of the following expressions:

• A single value

• A list of values separated by commas (such as 2, 4, 6,
8)

• A TO clause (such as 1 TO 30)

• IS followed by a relational operator and comparison
value (such as IS>5)

• Any combination of the above with an implied OR
between expressions (such as 1, 3, 5, 7, 9, 27 TO 33,
IS >42)

statementblock The block of statements you want PocketBuilder to
execute if the test expression matches the value in
expressionlist

CHAPTER 7 PowerScript Statements

PowerScript Reference 119

CASE ELSE
Postage=25.00
Method="FedEx"

END CHOOSE

Example 2 These statements convert the text in a SingleLineEdit control to a
real value and provide different processing based on its value:

CHOOSE CASE Real(sle_real.Text)
CASE is < 10.99999

sle_message.Text = "Real Case < 10.99999"
CASE 11.00 to 48.99999

sle_message.Text = "Real Case 11 to 48.9999
CASE is > 48.9999

sle_message.Text = "Real Case > 48.9999"
CASE ELSE

sle_message.Text = "Cannot evaluate!"
END CHOOSE

CONTINUE
Description In a DO...LOOP or a FOR...NEXT control structure, skips statements in the loop.

CONTINUE takes no parameters.

Syntax CONTINUE

Usage When PocketBuilder encounters a CONTINUE statement in a DO...LOOP or
FOR...NEXT block, control passes to the next LOOP or NEXT statement. The
statements between the CONTINUE statement and the loop’s end statement are
skipped in the current iteration of the loop. In a nested loop, a CONTINUE
statement bypasses statements in the current loop structure.

For information on how to break out of the loop, see EXIT on page 126.

Examples Example 1 These statements display a message box twice: when B equals 2
and when B equals 3. As soon as B is greater than 3, the statement following
CONTINUE is skipped during each iteration of the loop:

integer A=1, B=1
DO WHILE A < 100

A = A+1
B = B+1
IF B > 3 THEN CONTINUE
MessageBox("Hi", "B is " + String(B))

LOOP

CREATE

120 PocketBuilder

Example 2 These statements stop incrementing B as soon as Count is greater
than 15:

integer A=0, B=0, Count
FOR Count = 1 to 100

A = A + 1
IF Count > 15 THEN CONTINUE
B = B + 1

NEXT
// Upon completion, a=100 and b=15.

CREATE
Description Creates an object instance for a specified object type. After a CREATE

statement, properties of the created object instance can be referenced using dot
notation.

The CREATE statement returns an object instance that can be stored in a
variable of the same type.

Syntax 1 specifies the object type at compilation. Syntax 2 allows the
application to choose the object type dynamically.

Syntax Syntax 1 (specifies the object type at compilation):

objectvariable = CREATE objecttype

Syntax 2 (allows the application to choose the object type dynamically):

objectvariable = CREATE USING objecttypestring

Usage Use CREATE as the first reference to any class user object. This includes
standard class user objects such as mailSession or Transaction.

Parameter Description
objectvariable A global, instance, or local variable whose datatype

is objecttype

objecttype The object datatype

Parameter Description
objectvariable A global, instance, or local variable whose datatype

is the same class as the object being created or an
ancestor of that class

objecttypestring A string whose value is the name of the class datatype
to be created

CHAPTER 7 PowerScript Statements

PowerScript Reference 121

The system provides one instance of several standard class user objects:
Message, Error, Transaction, DynamicDescriptionArea, and
DynamicStagingArea. You only need to use CREATE if you declare additional
instances of these objects.

If you need a menu that is not part of an open window definition, use CREATE
to create an instance of the menu. (See the function PopMenu on page 746.)

To create an instance of a visual user object or window, use the appropriate
Open function (instead of CREATE).

You do not need to use CREATE to allocate memory for:

• A standard datatype, such as integer or string

• Any structure, such as the Environment object

• Any object whose AutoInstantiate setting is true

• Any object that has been instantiated using a function, such as Open

Specifying the object type dynamically CREATE USING allows your
application to choose the object type dynamically. It is usually used to
instantiate an ancestor variable with an instance of one of its descendants. The
particular descendant is chosen at execution time.

For example, if uo_a has two descendants, uo_a_desc1 and uo_a_desc2, then
the application can select the object to be created based on current conditions:

uo_a uo_a_var
string ls_objectname

IF ... THEN
ls_objectname = "uo_a_desc1"

ELSE
ls_objectname = "uo_a_desc2"

END IF
uo_a_var = CREATE USING ls_objectname

Destroying objects you create When you have finished with an object you
created, you can call DESTROY to release its memory. However, you should
call DESTROY only if you are sure that the object is not referenced by any other
object. PocketBuilder’s garbage collection mechanism maintains a count of
references to each object and destroys unreferenced objects automatically.

For more information about garbage collection, see “Garbage collection” on
page 78.

CREATE

122 PocketBuilder

Examples Example 1 These statements create a new transaction object and stores the
object in the variable DBTrans:

transaction DBTrans
DBTrans = CREATE transaction
DBTrans.DBMS = 'ODBC'

Example 2 These statements create a user object when the application has
need of the services it provides. Because the user object might or might not
exist, the code that accesses it checks whether it exists before calling its
functions.

The object that creates the service object declares invo_service as an instance
variable:

n_service invo_service

The Open event for the object creates the service object:

//Open event of some object
IF (some condition) THEN

invo_service = CREATE n_service
END IF

When another script wants to call a function that belongs to the n_service class,
it verifies that invo_service is instantiated:

IF IsValid(invo_service) THEN
invo_service.of_perform_some_work()

END IF

If the service object was created, then it also needs to be destroyed:

IF isvalid(invo_service) THEN DESTROY invo_service

Example 3 When you create a DataStore object, you also have to give it a
DataObject and call SetTransObject before you can use it:

l_ds_delete = CREATE u_ds
l_ds_delete.DataObject = 'd_user_delete'
l_ds_delete.SetTransObject(SQLCA)
li_cnt = l_ds_delete.Retrieve(lstr_data.name)

Example 4 In this example, n_file_service_class is an ancestor object, and
n_file_service_class_ansi and n_file_service_class_dbcs are its descendants.
They hold functions and variables that provide services for the application. The
code chooses which object to create based on whether the user is running in a
DBCS environment:

n_file_service_class lnv_fileservice
string ls_objectname

CHAPTER 7 PowerScript Statements

PowerScript Reference 123

environment luo_env

GetEnvironment (luo_env)
IF luo_env.charset = charsetdbcs! THEN

ls_objectname = "n_file_service_class_dbcs"
ELSE

ls_objectname = "n_file_service_class_ansi"
END IF

lnv_fileservice = CREATE USING ls_objectname

DESTROY
Description Eliminates an object instance that was created with the CREATE statement.

After a DESTROY statement, properties of the deleted object instance can no
longer be referenced.

Syntax DESTROY objectvariable

Usage When you are finished with an object that you created, you can call DESTROY
to release its memory. However, you should call DESTROY only if you are sure
that the object is not referenced by any other object. PocketBuilder’s garbage
collection mechanism maintains a count of references to each object and
destroys unreferenced objects automatically.

For more information about garbage collection, see “Garbage collection” on
page 78.

All objects are destroyed automatically when your application terminates.

Examples Example 1 The following statement destroys the transaction object DBTrans
that was created with a CREATE statement:

DESTROY DBTrans

Example 2 This example creates an OLEStorage variable istg_prod_pic in a
window’s Open event. When the window is closed, the Close event script
destroys the object. The variable’s declaration is:

OLEStorage istg_prod_pic

Parameter Description

objectvariable A variable whose datatype is a PocketBuilder object

DO...LOOP

124 PocketBuilder

The window’s Open event creates an object instance and opens an OLE storage
file:

integer li_result
istg_prod_pic = CREATE OLEStorage
li_result = stg_prod_pic.Open("PICTURES.OLE")

The window’s Close event destroys istg_prod_pic:

integer li_result
li_result = istg_prod_pic.Save()
IF li_result = 0 THEN

DESTROY istg_prod_pic
END IF

DO...LOOP
Description A control structure that is a general-purpose iteration statement used to execute

a block of statements while or until a condition is true.

DO... LOOP has four formats:

• DO UNTIL Executes a block of statements until the specified condition
is true. If the condition is true on the first evaluation, the statement block
does not execute.

• DO WHILE Executes a block of statements while the specified condition
is true. The loop ends when the condition becomes false. If the condition
is false on the first evaluation, the statement block does not execute.

• LOOP UNTIL Executes a block of statements at least once and continues
until the specified condition is true.

• LOOP WHILE Executes a block of statements at least once and continues
while the specified condition is true. The loop ends when the condition
becomes false.

In all four formats of the DO...LOOP control structure, DO marks the beginning
of the statement block that you want to repeat. The LOOP statement marks the
end.

You can nest DO...LOOP control structures.

Syntax DO UNTIL condition
statementblock

LOOP

CHAPTER 7 PowerScript Statements

PowerScript Reference 125

DO WHILE condition
statementblock

LOOP

DO
statementblock

LOOP UNTIL condition

DO
statementblock

LOOP WHILE condition

Usage Use DO WHILE or DO UNTIL when you want to execute a block of statements
only if a condition is true (for WHILE) or false (for UNTIL). DO WHILE and DO
UNTIL test the condition before executing the block of statements.

Use LOOP WHILE or LOOP UNTIL when you want to execute a block of
statements at least once. LOOP WHILE and LOOP UNTIL test the condition after
the block of statements has been executed.

Examples DO UNTIL The following DO UNTIL repeatedly executes the Beep function
until A is greater than 15:

integer A = 1, B = 1

DO UNTIL A > 15
Beep(A)
A = (A + 1) * B

LOOP

DO WHILE The following DO WHILE repeatedly executes the Beep function
only while A is less than or equal to 15:

integer A = 1, B = 1

DO WHILE A <= 15
Beep(A)
A = (A + 1) * B

LOOP

LOOP UNTIL The following LOOP UNTIL executes the Beep function and
then continues to execute the function until A is greater than 1:

integer A = 1, B = 1
DO

Beep(A)

Parameter Description

condition The condition you are testing

statementblock The block of statements you want to repeat

EXIT

126 PocketBuilder

A = (A + 1) * B
LOOP UNTIL A > 15

LOOP WHILE The following LOOP WHILE repeatedly executes the Beep
function while A is less than or equal to 15:

integer A = 1, B = 1

DO
Beep(A)
A = (A + 1) * B

LOOP WHILE A <= 15

EXIT
Description In a DO...LOOP or a FOR...NEXT control structure, passes control out of the

current loop. EXIT takes no parameters.

Syntax EXIT

Usage An EXIT statement in a DO...LOOP or FOR...NEXT control structure causes
control to pass to the statement following the LOOP or NEXT statement. In a
nested loop, an EXIT statement passes control out of the current loop structure.

For information on how to jump to the end of the loop and continue looping,
see CONTINUE on page 119.

Examples Example 1 This EXIT statement causes the loop to terminate if an element in
the Nbr array equals 0:

int Nbr[10]
int Count = 1
// Assume values get assigned to Nbr array...

DO WHILE Count < 11
IF Nbr[Count] = 0 THEN EXIT
Count = Count + 1

LOOP

MessageBox("Hi", "Count is now " + String(Count))

Example 2 This EXIT statement causes the loop to terminate if an element in
the Nbr array equals 0:

int Nbr[10]
int Count
// Assume values get assigned to Nbr array...

CHAPTER 7 PowerScript Statements

PowerScript Reference 127

FOR Count = 1 to 10
IF Nbr[Count] = 0 THEN EXIT

NEXT

MessageBox("Hi", "Count is now " + String(Count))

FOR...NEXT
Description A control structure that is a numerical iteration, used to execute one or more

statements a specified number of times.

Syntax FOR varname = start TO end {STEP increment}
statementblock

NEXT

Usage Using the start and end parameters For a positive increment, end must be
greater than start. For a negative increment, end must be less than start.

When increment is positive and start is greater than end, statementblock does
not execute. When increment is negative and start is less than end,
statementblock does not execute.

When start and end are expressions, they are reevaluated on each pass through
the loop. If the expression’s value changes, it affects the number of loops.
Consider this example—the body of the loop changes the number of rows,
which changes the result of the RowCount function:

FOR n = 1 TO dw_1.RowCount()
dw_1.DeleteRow(1)

NEXT

Parameter Description

varname The name of the iteration counter variable. It can be any
numerical type (integer, double, real, long, or decimal),
but integers provide the fastest performance.

start Starting value of varname.

end Ending value of varname.

increment
(optional)

The increment value. Increment must be a constant and
the same datatype as varname. If you enter an increment,
STEP is required. +1 is the default increment.

statementblock The block of statements you want to repeat.

FOR...NEXT

128 PocketBuilder

A variable as the step increment
If you need to use a variable for the step increment, you can use one of the
DO...LOOP constructions and increment the counter yourself within the loop.

Nesting You can nest FOR...NEXT statements. You must have a NEXT for
each FOR.

You can end the FOR loop with the keywords END FOR instead of NEXT.

Avoid overflow
If start or end is too large for the datatype of varname, varname will overflow,
which might create an infinite loop. Consider this statement for the integer
li_int:

FOR li_int = 1 TO 50000

The end value 50000 is too large for an integer. When li_int is incremented, it
overflows to a negative value before reaching 50000, creating an infinite loop.

Examples Example 1 These statements add 10 to A as long as n is >=5 and <=25:

FOR n = 5 to 25
A = A+10

NEXT

Example 2 These statements add 10 to A and increment n by 5 as long as n is
>= 5 and <=25:

FOR N = 5 TO 25 STEP 5
A = A+10

NEXT

Example 3 These statements contain two lines that will never execute
because increment is negative and start is less than end:

FOR Count = 1 TO 100 STEP -1
 IF Count < 1 THEN EXIT // These 2 lines
 Box[Count] = 10 // will never execute.
NEXT

CHAPTER 7 PowerScript Statements

PowerScript Reference 129

Example 4 These are nested FOR...NEXT statements:

Int Matrix[100,50,200]
FOR i = 1 to 100

FOR j = 1 to 50
FOR k = 1 to 200

Matrix[i,j,k]=1
NEXT
NEXT

NEXT

GOTO
Description Transfers control from one statement in a script to another statement that is

labeled.

Syntax GOTO label

Examples Example 1 This GOTO statement skips over the Taxable=FALSE line:

Goto NextStep
Taxable=FALSE //This statement never executes.
NextStep:
Rate=Count/Count4

Example 2 This GOTO statement transfers control to the statement
associated with the label OK:

GOTO OK
.
.
.
OK:
.
.
.

Parameter Description

label The label associated with the statement to which you
want to transfer control. A label is an identifier followed
by a colon (such as OK:). Do not use the colon with a
label in the GOTO statement.

HALT

130 PocketBuilder

HALT
Description Terminates an application.

Syntax HALT {CLOSE}

Usage When PocketBuilder encounters Halt without the keyword CLOSE, it
immediately terminates the application.

When PocketBuilder encounters Halt with the keyword CLOSE, it immediately
executes the script for the Close event for the application and then terminates
the application. If there is no script for the Close event at the application level,
PocketBuilder immediately terminates the application.

Examples Example 1 This statement stops the application if the user enters a password
in the SingleLineEdit named sle_password that does not match the value stored
in a string named CorrectPassword:

IF sle_password.Text <> CorrectPassword THEN HALT

Example 2 This statement executes the script for the Close event for the
application before it terminates the application if the user enters a password in
sle_password that does not match the value stored in the string
CorrectPassword:

IF sle_password.Text <> CorrectPassword &
THEN HALT CLOSE

IF...THEN
Description A control structure used to cause a script to perform a specified action if a

stated condition is true. Syntax 1 uses a single-line format, and Syntax 2 uses a
multiline format.

Syntax Syntax 1 (the single-line format):

IF condition THEN action1 {ELSE action2}

Parameter Description
condition The condition you want to test.

CHAPTER 7 PowerScript Statements

PowerScript Reference 131

Syntax 2 (the multiline format):

IF condition1 THEN
action1

{ ELSEIF condition2 THEN
action2

. . . }
{ ELSE

action3 }
END IF

Usage You can use continuation characters to place the single-line format on more
than one physical line in the script.

You must end a multiline IF...THEN control structure with END IF (which is two
words).

Examples Example 1 This single-line IF...THEN statement opens window w_first if Num
is equal to 1; otherwise, w_rest is opened:

IF Num = 1 THEN Open(w_first) ELSE Open(w_rest)

action1 The action you want performed if the condition is true.
The action must be a single statement on the same line as
the rest of the IF statement.

action2
(optional)

The action you want performed if the condition is false.
The action must be a single statement on the same line as
the rest of the IF statement.

Parameter Description

Parameter Description
condition1 The first condition you want to test.
action1 The action you want performed if condition1 is true. The

action can be a statement or multiple statements that are
separated by semicolons or placed on separate lines. At
least one action is required.

condition2
(optional)

The condition you want to test if condition1 is false. You
can have multiple ELSEIF...THEN statements in an
IF...THEN control structure.

action2 The action you want performed if condition2 is true. The
action can be a statement or multiple statements that are
separated by semicolons or placed on separate lines.

action3
(optional)

The action you want performed if none of the preceding
conditions is true. The action can be a statement or
multiple statements that are separated by semicolons or
placed on separate lines.

RETURN

132 PocketBuilder

Example 2 This single-line IF...THEN statement displays a message if the
value in the SingleLineEdit sle_State is “TX”. It uses the continuation
character to continue the single-line statement across two physical lines in the
script:

IF sle_State.text="TX" THEN &
MessageBox("Hello","Tex")

Example 3 This multiline IF...THEN compares the horizontal positions of
windows w_first and w_second. If w_first is to the right of w_second, w_first is
moved to the left side of the screen:

IF w_first.X > w_second.X THEN
w_first.X = 0

END IF

Example 4 This multiline IF...THEN causes the application to:

• Beep twice if X equals Y

• Display the Parts list box and highlight item 5 if X equals Z

• Display the Choose list box if X is blank

• Hide the Empty button and display the Full button if none of the above
conditions is true

IF X=Y THEN
Beep(2)

ELSEIF X=Z THEN
Show (lb_parts); lb_parts.SetState(5,TRUE)

ELSEIF X=" " THEN
Show (lb_choose)

ELSE
Hide(cb_empty)
Show(cb_full)

END IF

RETURN
Description Stops the execution of a script or function immediately.

Syntax RETURN { expression }

CHAPTER 7 PowerScript Statements

PowerScript Reference 133

Usage When a user’s action triggers an event and PocketBuilder encounters RETURN
in the event script, it terminates execution of that script immediately and waits
for the next user action.

When a script calls a function or event and PocketBuilder encounters RETURN
in the code, RETURN transfers (returns) control to the point at which the
function or event was called.

Examples Example 1 This script causes the system to beep once; the second beep
statement will not execute:

Beep(1)
RETURN
Beep(1) // This statement will not execute.

Example 2 These statements in a user-defined function return the result of
dividing Arg1 by Arg2 if Arg2 is not equal to zero; they return -1 if Arg2 is
equal to zero:

IF Arg2 <> 0 THEN
RETURN Arg1/Arg2

ELSE
RETURN -1

END IF

THROW
Description Used to manually trigger exception handling for user-defined exceptions.

Syntax THROW exlvalue

Parameter Description

expression In a function, any value (or expression) you want the
function to return. The return value must be the datatype
specified as the return type in the function.

Parameter Description

exlvalue Variable (or expression that evaluates to a valid instance of an
object) of type Throwable. Usually the object type thrown is a
user-defined exception class derived from the system Exception
class that inherits from Throwable.

THROWS

134 PocketBuilder

Usage The variable following the THROW reserved word must be a valid object
instance or an expression that produces a valid object instance that derives
from the Throwable datatype. For example, you can use an expression such as:

THROW create ExceptionType

where ExceptionType is an object of type Throwable.

If you attempt to throw a noninstantiated exception, you will not get back the
exception information you want, since the only exception information you
retrieve will be a NullObjectError.

In a method script, you can only throw an exception that you declare in the
method prototype or that you handle in a try-catch block. The PowerScript
compiler displays an error message if you try to throw a user-defined exception
without declaring it in the prototype Throws statement and without
surrounding it in an appropriate try-catch block.

When a RuntimeError, or a descendant of RuntimeError, is thrown, the
instance variable containing line number information will be filled in at the
point where the THROW statement occurs. If the error is handled and thrown
again, this information will not be updated unless it has specifically been set to
null.

Examples long ll_result
ll_result = myConnection.ConnectToServer()

ConnectionException ex
ex = create ConnectionException
ex.connectResult = ll_result
THROW ex

end if

THROWS
Description Used to declare the type of exception that a method triggers. It is part of the

method prototype.

Syntax methodname ({arguments}) THROWS ExceptionType { , ExceptionType, ... }

Parameter Description

methodname Name of the method that throws an exception.

arguments Arguments of the method that throws an exception. Depending
on the method, the method arguments can be optional.

CHAPTER 7 PowerScript Statements

PowerScript Reference 135

Usage Internal use only.

You do not type or otherwise add the THROWS clause to function calls in a
PocketBuilder script. However, you can add a THROWS clause to any
PocketBuilder function or to any user event that is not defined by a pbm event
ID.

For more information about adding a THROWS clause to a function or event
prototype, see the User’s Guide. For more information about exception
handling, see the Resource Guide.

TRY...CATCH...FINALLY...END TRY
Description Isolates code that can cause an exception, describes what to do if an exception

of a given type is encountered, and allows you to close files or network
connections (and return objects to their original state) whether or not an
exception is encountered.

Syntax TRY
trystatements

CATCH (ThrowableType1 exIdentifier1)
catchstatements1

CATCH (ThrowableType2 exIdentifier2)
catchstatements2

...
CATCH (ThrowableTypeN exIdentifierN)

catchstatementsN
FINALLY

cleanupstatements
END TRY

ExceptionType Object of type Throwable. Usually the object type thrown is a
user-defined exception class derived from the system Exception
class. If you define multiple potential exceptions for a method,
you can throw each type of exception in the same clause by
separating the exception types with commas.

Parameter Description

Parameter Description

trystatements Block of code that might potentially throw an exception.

TRY...CATCH...FINALLY...END TRY

136 PocketBuilder

Usage The TRY block, which is the block of statements between the TRY and CATCH
keywords (or the TRY and FINALLY keywords if there is no CATCH clause), is
used to isolate code that might potentially throw an exception. The statements
in the TRY block are run unconditionally until either the entire block of
statements is executed or some statement in the block causes an exception to
be thrown.

Use a CATCH block or multiple CATCH blocks to handle exceptions thrown in
a TRY block. In the event that an exception is thrown, execution of the TRY
block is stopped and the statements in the first CATCH block are executed—if
and only if the exception thrown is of the same type or a descendant of the type
of the identifier following the CATCH keyword.

If the exception thrown is not the same type or a descendant type of the
identifier in the first CATCH block, the exception is not handled by this CATCH
block. If there are additional CATCH blocks, they are evaluated in the order
they appear. If the exception cannot be handled by any of the CATCH blocks,
the statements in the FINALLY block are executed.

The exception then continues to unwind the call stack to any outer nested
try-catch blocks. If there are no outer nested blocks, the SystemError event on
the Application object is fired.

If no exception is thrown, execution continues at the beginning of the FINALLY
block if one exists; otherwise, execution continues on the line following the
END TRY statement.

See also THROW

ThrowableTypeN Object type of exception to be caught. A CATCH block is
optional if you include a FINALLY block. You can include
multiple CATCH blocks. Every CATCH block in a try-catch
block must include a corresponding exception object type
and a local variable of that type.

exIdentifierN Local variable of type ThrowableTypeN.

catchstatementsN Code to handle the exception being caught.

cleanupstatements Cleanup code. The FINALLY block is optional if you include
one or more CATCH block.

Parameter Description

PowerScript Reference 137

C H A P T E R 8 SQL Statements

About this chapter This chapter describes the embedded SQL and dynamic SQL statements
and how to use them in scripts.

Contents Topic Page

Using SQL in scripts 138

CLOSE Cursor 140

CLOSE Procedure 141

COMMIT 142

CONNECT 143

DECLARE Cursor 143

DECLARE Procedure 144

DELETE 146

DELETE Where Current of Cursor 147

DISCONNECT 147

EXECUTE 148

FETCH 149

INSERT 150

OPEN Cursor 151

ROLLBACK 151

SELECT 152

SELECTBLOB 153

UPDATE 154

UPDATEBLOB 155

UPDATE Where Current of Cursor 157

Using dynamic SQL 157

Dynamic SQL Format 1 161

Dynamic SQL Format 2 162

Dynamic SQL Format 3 163

Dynamic SQL Format 4 165

Using SQL in scripts

138 PocketBuilder

Using SQL in scripts
PowerScript supports standard embedded SQL statements and dynamic SQL
statements in scripts. In general, PowerScript supports all DBMS-specific
clauses and reserved words that occur in the supported SQL statements. For
example, PocketBuilder supports DBMS-specific built-in functions within a
SELECT command.

For information about embedded SQL, see online Help.

Referencing
PowerScript variables
in scripts

Wherever constants can be referenced in SQL statements, PowerScript
variables preceded by a colon (:) can be substituted. Any valid PowerScript
variable can be used. This INSERT statement uses a constant value:

INSERT INTO EMPLOYEE (SALARY)
VALUES (18900) ;

The same statement using a PowerScript variable to reference the constant
might look like this:

int Sal_var
Sal_var = 18900
INSERT INTO EMPLOYEE (SALARY)

VALUES (:Sal_var) ;

Using indicator
variables

PocketBuilder supports indicator variables, which are used to identify null
values or conversion errors after a database retrieval. Indicator variables are
integers that are specified in the HostVariableList of a FETCH or SELECT
statement.

Each indicator variable is separated from the variable it is indicating by a space
(but no comma). For example, this statement is a HostVariableList without
indicator variables:

:Name, :Address, :City

The same HostVariableList with indicator variables looks like this:

:Name :IndVar1, :Address :IndVar2, :City :IndVar3

Indicator variables have one of these values:

Page Meaning

 0 Valid, non-null value

-1 Null value

-2 Conversion error

CHAPTER 8 SQL Statements

PowerScript Reference 139

Error reporting
Not all DBMSs return a conversion error when the datatype of a column does
not match the datatype of the associated variable.

The following statement uses the indicator variable IndVar2 to see if Address
contains a null value:

if IndVar2 = -1 then...

You can also use the PowerScript IsNull function to accomplish the same result
without using indicator variables:

if IsNull(Address) then ...

This statement uses the indicator variable IndVar3 to set City to null:

IndVar3 = -1

You can also use the PowerScript SetNull function to accomplish the same
result without using indicator variables:

SetNull(City)

Error handling in
scripts

The scripts shown in the SQL examples above do not include error handling,
but it is good practice to test the success and failure codes (the SQLCode
attribute) in the transaction object after every statement. The codes are:

After certain statements, such as DELETE, FETCH, and UPDATE, you should
also check the SQLNRows property of the transaction object to make sure the
action affected at least one row.

About SQLErrText and SQLDBCode The string SQLErrText in the
transaction object contains the database vendor-supplied error message. The
long named SQLDBCode in the transaction object contains the database
vendor-supplied status code:

IF SQLCA.SQLCode = -1 THEN
MessageBox("SQL error", SQLCA.SQLErrText)

END IF

Value Meaning

0 Success.

100 Fetched row not found.

-1 Error; the statement failed. Use SQLErrText or SQLDBCode to obtain
the detail.

CLOSE Cursor

140 PocketBuilder

Painting standard
SQL

You can paint the following SQL statements in scripts and functions:

• Declarations of SQL cursors and stored procedures

• Cursor FETCH, UPDATE, and DELETE statements

• Noncursor SELECT, INSERT, UPDATE, and DELETE statements

For more information about scope, see “Where to declare variables” on page
31.

You can declare cursors and stored procedures at the scope of global, instance,
shared, or local variables. A cursor or procedure can be declared in the Script
view using the Paste SQL button in the PainterBar.

You can paint standard embedded SQL statements in the Script view, the
Function painter, and the Interactive SQL view in the Database painter using
the Paste SQL button in the PainterBar or the Paste Special>SQL item from the
pop-up menu.

Supported SQL
statements

In general, all DBMS-specific features are supported in PowerScript if they
occur within a PowerScript-supported SQL statement. For example,
PowerScript supports DBMS-specific built-in functions within a SELECT
command.

However, any SQL statement that contains a SELECT clause must also contain
a FROM clause in order for the script to compile successfully. To solve this
problem, add a FROM clause that uses a "dummy" table to SELECT statements
without FROM clauses. For example:

string res
select user_name() into:res from dummy;
select db_name() into:res from dummy;
select date('2001-01-02:21:20:53') into:res from dummy;

CLOSE Cursor
Description Closes the SQL cursor CursorName; ends processing of CursorName.

Syntax CLOSE CursorName ;

Parameter Description

CursorName The cursor you want to close

CHAPTER 8 SQL Statements

PowerScript Reference 141

Usage This statement must be preceded by an OPEN statement for the same cursor.
The USING TransactionObject clause is not allowed with CLOSE; the
transaction object was specified in the statement that declared the cursor.

CLOSE often appears in the script that is executed when the SQL code after a
fetch equals 100 (not found).

Error handling
It is good practice to test the success/failure code after executing a CLOSE
cursor statement.

Examples This statement closes the Emp_cursor cursor:

CLOSE Emp_cursor ;

CLOSE Procedure
Description Closes the SQL procedure ProcedureName; ends processing of

ProcedureName.

DBMS-specific
Not all DBMSs support stored procedures.

Syntax CLOSE ProcedureName;

Usage This statement must be preceded by an EXECUTE statement for the same
procedure. The USING TransactionObject clause is not allowed with CLOSE;
the transaction object was specified in the statement that declared the
procedure.

Use CLOSE only to close procedures that return result sets. PocketBuilder
automatically closes procedures that do not return result sets (and sets the
return code to 100).

CLOSE often appears in the script that is executed when the SQL code after a
fetch equals 100 (not found).

Parameter Description

ProcedureName The stored procedure you want to close

COMMIT

142 PocketBuilder

Error handling
It is good practice to test the success/failure code after executing a CLOSE
Procedure statement.

Examples This statement closes the stored procedure named Emp_proc:

CLOSE Emp_proc ;

COMMIT
Description Permanently updates all database operations since the previous COMMIT,

ROLLBACK, or CONNECT for the specified transaction object.

Using COMMIT and ROLLBACK in a server component
Server component connections are not supported in PocketBuilder. For
information on COMMIT and ROLLBACK commands embedded in a server
component, see Connecting to Your Database and Application Techniques in
the PowerBuilder documentation set.

Syntax COMMIT {USING TransactionObject};

Usage COMMIT does not cause a disconnect, but it does close all open cursors or
procedures. (But note that the DISCONNECT statement in PocketBuilder does
issue a COMMIT.)

Error handling
It is good practice to test the success/failure code after executing a COMMIT
statement.

Examples Example 1 This statement commits all operations for the database specified
in the default transaction object:

COMMIT ;

Parameter Description

TransactionObject The name of the transaction object for which you want to
permanently update all database operations since the
previous COMMIT, ROLLBACK, or CONNECT. This
clause is required only for transaction objects other than
the default (SQLCA).

CHAPTER 8 SQL Statements

PowerScript Reference 143

Example 2 This statement commits all operations for the database specified
in the transaction object named Emp_tran:

COMMIT USING Emp_tran ;

CONNECT
Description Connects to a specified database.

Syntax CONNECT {USING TransactionObject};

Usage This statement must be executed before any actions (such as INSERT, UPDATE,
or DELETE) can be processed using the default transaction object or the
specified transaction object.

Error handling
It is good practice to test the success/failure code after executing a CONNECT
statement.

Examples Example 1 This statement connects to the database specified in the default
transaction object:

CONNECT ;

Example 2 This statement connects to the database specified in the
transaction object named Emp_tran:

CONNECT USING Emp_tran ;

DECLARE Cursor
Description Declares a cursor for the specified transaction object.

Syntax DECLARE CursorName CURSOR FOR SelectStatement
{USING TransactionObject};

Parameter Description

TransactionObject The name of the transaction object containing the
required connection information for the database to
which you want to connect. This clause is required only
for transaction objects other than the default (SQLCA).

DECLARE Procedure

144 PocketBuilder

Usage DECLARE Cursor is a nonexecutable command and is analogous to declaring a
variable.

To declare a local cursor, open the script in the Script view and select Paste
SQL from the PainterBar or the Edit>Paste Special menu. To declare a global,
instance, or shared cursor, select Declare from the first drop-down list in the
Script view and Global Variables, Instance Variables, or Shared Variables from
the second drop-down list, then select Paste SQL.

For information about global, instance, shared, and local scope, see “Where to
declare variables” on page 31.

Examples This statement declares the cursor called Emp_cur for the database specified in
the default transaction object. It also references the Sal_var variable, which
must be set to an appropriate value before you execute the OPEN Emp_cur
command:

DECLARE Emp_cur CURSOR FOR
SELECT employee.emp_number, employee.emp_name
FROM employee
WHERE employee.emp_salary > :Sal_var ;

DECLARE Procedure
Description Declares a procedure for the specified transaction object.

DBMS-specific
Not all DBMSs support stored procedures.

Syntax DECLARE ProcedureName PROCEDURE FOR
StoredProcedureName
@Param1=Value1, @Param2=Value2,...
{USING TransactionObject};

Parameter Description

CursorName Any valid PocketBuilder name.

SelectStatement Any valid SELECT statement.

TransactionObject The name of the transaction object for which you want to
declare the cursor. This clause is required only for
transaction objects other than the default (SQLCA).

CHAPTER 8 SQL Statements

PowerScript Reference 145

Usage DECLARE Procedure is a nonexecutable command. It is analogous to declaring
a variable.

To declare a local procedure, open the script in the Script view and select Paste
SQL from the PainterBar or the Edit>Paste Special menu. To declare a global,
instance, or shared procedure, select Declare from the first drop-down list in
the Script view and Global Variables, Instance Variables, or Shared Variables
from the second drop-down list, then select Paste SQL.

For information about global, instance, shared, and local scope, see “Where to
declare variables” on page 31.

Examples Example 1 This statement declares the Sybase ASE procedure Emp_proc for
the database specified in the default transaction object. It references the
Emp_name_var and Emp_sal_var variables, which must be set to appropriate
values before you execute the EXECUTE Emp_proc command:

DECLARE Emp_proc procedure for GetName
@emp_name = :Emp_name_var,
@emp_salary = :Emp_sal_var ;

Example 2 This statement declares the ORACLE procedure Emp_proc for
the database specified in the default transaction object. It references the
Emp_name_var and Emp_sal_var variables, which must be set to appropriate
values before you execute the EXECUTE Emp_proc command:

DECLARE Emp_proc procedure for GetName
(:Emp_name_var, :Emp_sal_var) ;

Parameter Description

ProcedureName Any valid PocketBuilder name.

StoredProcedureName Any stored procedure in the database.

@Paramn=Valuen The name of a parameter (argument) defined in the
stored procedure and a valid PocketBuilder
expression; represents the number of the parameter
and value.

TransactionObject The name of the transaction object for which you want
to declare the procedure. This clause is required only
for transaction objects other than the default
(SQLCA).

DELETE

146 PocketBuilder

DELETE
Description Deletes the rows in TableName specified by Criteria.

Syntax DELETE FROM TableName WHERE Criteria {USING TransactionObject};

Usage Error handling
It is good practice to test the success/failure code after executing a DELETE
statement. To see if the DELETE was successful, you can test SLQCode for a
failure code. However, if nothing matches the WHERE clause and no rows are
deleted, SQLCode is still set to zero. To make sure the delete affected at least
one row, check the SQLNRows property of the transaction object.

Examples Example 1 This statement deletes rows from the Employee table in the
database specified in the default transaction object where Emp_num is less
than 100:

DELETE FROM Employee WHERE Emp_num < 100 ;

Example 2 These statements delete rows from the Employee table in the
database named in the transaction object named Emp_tran where Emp_num is
equal to the value entered in the SingleLineEdit sle_number:

int Emp_num
Emp_num = Integer(sle_number.Text)
DELETE FROM Employee

WHERE Employee.Emp_num = :Emp_num ;

The integer Emp_num requires a colon in front of it to indicate it is a variable
when it is used in a WHERE clause.

Parameter Description

TableName The name of the table from which you want to delete
rows.

Criteria Criteria that specify which rows to delete.

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).

CHAPTER 8 SQL Statements

PowerScript Reference 147

DELETE Where Current of Cursor
Description Deletes the row in which the cursor is positioned.

DBMS-specific
Not all DBMSs support DELETE Where Current of Cursor.

Syntax DELETE FROM TableName WHERE CURRENT OF CursorName;

Usage The USING TransactionObject clause is not allowed with this form of DELETE
Where Current of Cursor; the transaction object was specified in the statement
that declared the cursor.

Error handling
It is good practice to test the success/failure code after executing a DELETE
Where Current of Cursor statement.

Examples This statement deletes from the Employee table the row in which the cursor
named Emp_cur is positioned:

DELETE FROM Employee WHERE current of Emp_curs ;

DISCONNECT
Description Executes a COMMIT for the specified transaction object and then disconnects

from the specified database.

Syntax DISCONNECT {USING TransactionObject};

Parameter Description

TableName The name of the table from which you want to delete a
row

CursorName The name of the cursor in which the table was specified

Parameter Description

TransactionObject The name of the transaction object that identifies the
database you want to disconnect from and in which you
want to permanently update all database operations since
the previous COMMIT, ROLLBACK, or CONNECT. This
clause is required only for transaction objects other than
the default (SQLCA).

EXECUTE

148 PocketBuilder

Usage Error handling
It is good practice to test the success/failure code after executing a
DISCONNECT statement.

Examples Example 1 This statement disconnects from the database specified in the
default transaction object:

DISCONNECT ;

Example 2 This statement disconnects from the database specified in the
transaction object named Emp_tran:

DISCONNECT USING Emp_tran ;

EXECUTE
Description Executes the previously declared procedure identified by ProcedureName.

Syntax EXECUTE ProcedureName;

Usage The USING TransactionObject clause is not allowed with EXECUTE; the
transaction object was specified in the statement that declared the procedure.

Error handling
It is good practice to test the success/failure code after executing an EXECUTE
statement.

Examples This statement executes the stored procedure Emp_proc:

EXECUTE Emp_proc ;

Parameter Description

ProcedureName The name assigned in the DECLARE statement of the
stored procedure you want to execute. The procedure
must have been declared previously. ProcedureName is
not necessarily the name of the procedure stored in the
database.

CHAPTER 8 SQL Statements

PowerScript Reference 149

FETCH
Description Fetches the row after the row on which Cursor | Procedure is positioned.

Syntax FETCH Cursor | Procedure INTO HostVariableList;

Usage The USING TransactionObject clause is not allowed with FETCH; the
transaction object was specified in the statement that declared the cursor or
procedure.

If your DBMS supports formats of FETCH other than the customary (and
default) FETCH NEXT, you can specify FETCH FIRST, FETCH PRIOR, or
FETCH LAST.

Error handling
It is good practice to test the success/failure code after executing a FETCH
statement. To see if the FETCH was successful, you can test SLQCode for a
failure code. However, if nothing matches the WHERE clause and no rows are
fetched, SQLCode is still set to 100. To make sure the fetch affected at least
one row, check the SQLNRows property of the transaction object.

Examples Example 1 This statement fetches data retrieved by the SELECT clause in the
declaration of the cursor named Emp_cur and puts it into Emp_num and
Emp_name:

int Emp_num
string Emp_name
FETCH Emp_cur INTO :Emp_num, :Emp_name ;

Example 2 If sle_emp_num and sle_emp_name are SingleLineEdits, these
statements fetch from the cursor named Emp_cur, store the data in Emp_num
and Emp_name, and then convert Emp_num from an integer to a string, and put
them in sle_emp_num and sle_emp_name:

int Emp_num
string Emp_name
FETCH Emp_cur INTO :emp_num, :emp_name ;
sle_emp_num.Text = string(Emp_num)
sle_emp_name.Text = Emp_name

Parameter Description

Cursor or Procedure The name of the cursor or procedure from which you
want to fetch a row

HostVariableList PowerScript variables into which data values will be
retrieved

INSERT

150 PocketBuilder

INSERT
Description Inserts one or more new rows into the table specified in RestOfInsertStatement.

Syntax INSERT RestOfInsertStatement
{USING TransactionObject} ;

Usage Error handling
It is good practice to test the success/failure code after executing an INSERT
statement.

Examples Example 1 These statements insert a row with the values in EmpNbr and
EmpName into the Emp_nbr and Emp_name columns of the Employee table
identified in the default transaction object:

int EmpNbr
string EmpName
...
INSERT INTO Employee (employee.Emp_nbr,

employee.Emp_name)
VALUES (:EmpNbr, :EmpName) ;

Example 2 These statements insert a row with the values entered in the
SingleLineEdits sle_number and sle_name into the Emp_nbr and Emp_name
columns of the Employee table in the transaction object named Emp_tran:

int EmpNbr
string EmpName
EmpNbr = Integer(sle_number.Text)
EmpName = sle_name.Text
INSERT INTO Employee (employee.Emp_nbr,

employee.Emp_name)
VALUES (:EmpNbr, :EmpName) USING Emp_tran ;

Parameter Description

RestOfInsertStatement The rest of the INSERT statement (the INTO clause,
list of columns and values or source).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).

CHAPTER 8 SQL Statements

PowerScript Reference 151

OPEN Cursor
Description Causes the SELECT specified when the cursor was declared to be executed.

Syntax OPEN CursorName ;

Usage The USING TransactionObject clause is not allowed with OPEN; the
transaction object was specified in the statement that declared the cursor.

Error handling
It is good practice to test the success/failure code after executing an OPEN
Cursor statement.

Examples This statement opens the cursor Emp_curs:

OPEN Emp_curs ;

ROLLBACK
Description Cancels all database operations in the specified database since the last

COMMIT, ROLLBACK, or CONNECT.

Using COMMIT and ROLLBACK in a server component
Server component connections are not supported in PocketBuilder. For
information on COMMIT and ROLLBACK commands embedded in a server
component, see Connecting to Your Database and Application Techniques in
the PowerBuilder documentation set.

Syntax ROLLBACK {USING TransactionObject} ;

Usage ROLLBACK does not cause a disconnect, but it does close all open cursors and
procedures.

Parameter Description

CursorName The name of the cursor you want to open

Parameter Description

TransactionObject The name of the transaction object that identifies the
database in which you want to cancel all operations since
the last COMMIT, ROLLBACK, or CONNECT. This
clause is required only for transaction objects other than
the default (SQLCA).

SELECT

152 PocketBuilder

Error handling
It is good practice to test the success/failure code after executing a ROLLBACK
statement.

Examples Example 1 This statement cancels all database operations in the database
specified in the default transaction object:

ROLLBACK ;

Example 2 This statement cancels all database operations in the database
specified in the transaction object named Emp_tran:

ROLLBACK USING emp_tran ;

SELECT
Description Selects a row in the tables specified in RestOfSelectStatement.

Syntax SELECT RestOfSelectStatement
{USING TransactionObject} ;

Usage An error occurs if the SELECT statement returns more than one row.

Error handling
It is good practice to test the success/failure code after executing a SELECT
statement. You can test SQLCode for a failure code.

When you use the INTO clause, PocketBuilder does not verify whether the
datatype of the retrieved column matches the datatype of the host variable; it
only checks for the existence of the columns and tables. You are responsible
for checking that the datatypes match. Keep in mind that not all database
datatypes are the same as PocketBuilder datatypes.

Parameter Description

RestOfSelectStatement The rest of the SELECT statement (the column list
INTO, FROM, WHERE, and other clauses).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).

CHAPTER 8 SQL Statements

PowerScript Reference 153

Examples The following statements select data in the Emp_LName and Emp_FName
columns of a row in the Employee table and put the data into the
SingleLineEdits sle_LName and sle_FName (the transaction object Emp_tran
is used):

int Emp_num
string Emp_lname, Emp_fname
Emp_num = Integer(sle_Emp_Num.Text)

SELECT employee.Emp_LName, employee.Emp_FName
INTO :Emp_lname, :Emp_fname
FROM Employee
WHERE Employee.Emp_nbr = :Emp_num
USING Emp_tran ;

IF Emp_tran.SQLCode = 100 THEN
MessageBox("Employee Inquiry", &
"Employee Not Found")

ELSEIF Emp_tran.SQLCode > 0 then
MessageBox("Database Error", &
Emp_tran.SQLErrText, Exclamation!)

END IF
sle_Lname.text = Emp_lname
sle_Fname.text = Emp_fname

SELECTBLOB
Description Selects a single blob column in a row in the table specified in

RestOfSelectStatement.

Syntax SELECTBLOB RestOfSelectStatement
{USING TransactionObject} ;

Usage An error occurs if the SELECTBLOB statement returns more than one row.

Parameter Description

RestOfSelectStatement The rest of the SELECT statement (the INTO, FROM,
and WHERE clauses).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).

UPDATE

154 PocketBuilder

Error handling
It is good practice to test the success/failure code after executing an
SELECTBLOB statement. To make sure the update affected at least one row,
check the SQLNRows property of SQLCA or the transaction object. The
SQLCode or SQLDBCode property will not indicate the success or failure of
the SELECTBLOB statement.

You can include an indicator variable in the host variable list (target
parameters) in the INTO clause to check for an empty blob (a blob of zero
length) and conversion errors.

Examples The following statements select the blob column Emp_pic from a row in the
Employee table and set the picture p_1 to the bitmap in Emp_id_pic (the
transaction object Emp_tran is used):

Blob Emp_id_pic
SELECTBLOB Emp_pic

INTO :Emp_id_pic
FROM Employee
WHERE Employee.Emp_Num = 100
USING Emp_tran ;

p_1.SetPicture(Emp_id_pic)

The blob Emp_id_pic requires a colon to indicate that it is a host (PowerScript)
variable when you use it in the INTO clause of the SELECTBLOB statement.

UPDATE
Description Updates the rows specified in RestOfUpdateStatement.

Syntax UPDATE TableName RestOfUpdateStatement {USING TransactionObject} ;

Parameter Description

TableName The name of the table in which you want to update
rows.

RestOfUpdateStatement The rest of the UPDATE statement (the SET and
WHERE clauses).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).

CHAPTER 8 SQL Statements

PowerScript Reference 155

Usage Error handling
It is good practice to test the success/failure code after executing a UPDATE
statement. You can test SQLCode for a failure code. However, if nothing
matches the WHERE clause and no rows are updated, SQLCode is still set to
zero. To make sure the update affected at least one row, check the SQLNRows
property of the transaction object.

Examples These statements update rows from the Employee table in the database
specified in the transaction object named Emp_tran, where Emp_num is equal
to the value entered in the SingleLineEdit sle_Number:

int Emp_num
Emp_num=Integer(sle_Number.Text)
UPDATE Employee

SET emp_name = :sle_Name.Text
WHERE Employee.emp_num = :Emp_num
USING Emp_tran ;

IF Emptran.SQLNRows > 0 THEN
COMMIT USING Emp_tran ;

END IF

The integer Emp_num and the SingleLineEdit sle_name require a colon to
indicate they are host (PowerScript) variables when you use them in an
UPDATE statement.

UPDATEBLOB
Description Updates the rows in TableName in BlobColumn.

Syntax UPDATEBLOB TableName
SET BlobColumn = BlobVariable
RestOfUpdateStatement {USING TransactionObject} ;

Parameter Description

TableName The name of the table you want to update.

BlobColumn The name of the column you want to update in
TableName. The datatype of this column must be
blob.

BlobVariable A PowerScript variable of the datatype blob.

UPDATEBLOB

156 PocketBuilder

Usage Error handling
It is good practice to test the success/failure code after executing an
UPDATEBLOB statement. To make sure the update affected at least one row,
check the SQLNRows property of SQLCA or the transaction object. The
SQLCode or SQLDBCode property will not indicate the success or failure of
the UPDATEBLOB statement.

Examples These statements update the blob column emp_pic in the Employee table, where
emp_num is 100:

int fh
blob Emp_id_pic
fh = FileOpen("c:\emp_100.bmp", StreamMode!)
IF fh <> -1 THEN

FileRead(fh, emp_id_pic)
FileClose(fh)
UPDATEBLOB Employee SET emp_pic = :Emp_id_pic
WHERE Emp_num = 100
USING Emp_tran ;

END IF

IF Emptran.SQLNRows > 0 THEN
COMMIT USING Emp_tran ;

END IF

The blob Emp_id_pic requires a colon to indicate it is a host (PowerScript)
variable in the UPDATEBLOB statement.

RestOfUpdateStatement The rest of the UPDATE statement (the WHERE
clause).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is
required only for transaction objects other than the
default (SQLCA).

Parameter Description

CHAPTER 8 SQL Statements

PowerScript Reference 157

UPDATE Where Current of Cursor
Description Updates the row in which the cursor is positioned using the values in

SetStatement.

Syntax UPDATE TableName SetStatement
WHERE CURRENT OF CursorName ;

Usage The USING Transaction Object clause is not allowed with UPDATE Where
Current of Cursor; the transaction object was specified in the statement that
declared the cursor.

Examples This statement updates the row in the Employee table in which the cursor
called Emp_curs is positioned:

UPDATE Employee
SET salary = 17800
WHERE CURRENT of Emp_curs ;

Using dynamic SQL
General information Because database applications usually perform a specific activity, you usually

know the complete SQL statement when you write and compile the script.
When PocketBuilder does not support the statement in embedded SQL (as with
a DDL statement) or when the parameters or the format of the statements are
unknown at compile time, the application must build the SQL statements at
execution time. This is called dynamic SQL. The parameters used in dynamic
SQL statements can change each time the program is executed.

Using Adaptive Server® Anywhere
For information about using dynamic SQL with Adaptive Server Anywhere,
see the Adaptive Server Anywhere Programming Interfaces book.

Parameter Description

TableName The name of the table in which you want to update the
row

SetStatement The word SET followed by a comma-separated list of the
form ColumnName = value

CursorName The name of the cursor in which the table is referenced

Using dynamic SQL

158 PocketBuilder

Four formats PocketBuilder has four dynamic SQL formats. Each format handles one of the
following situations at compile time:

To handle these situations, you use:

• The PocketBuilder dynamic SQL statements

• The dynamic versions of CLOSE, DECLARE, FETCH, OPEN, and
EXECUTE

• The PocketBuilder datatypes DynamicStagingArea and
DynamicDescriptionArea

About the examples
The examples assume that the default transaction object (SQLCA) has been
assigned valid values and that a successful CONNECT has been executed.
Although the examples do not show error checking, you should check the
SQLCode after each SQL statement.

Dynamic SQL
statements

The PocketBuilder dynamic SQL statements are:

DESCRIBE DynamicStagingArea
INTO DynamicDescriptionArea ;

EXECUTE {IMMEDIATE} SQLStatement
{USING TransactionObject} ;

EXECUTE DynamicStagingArea
USING ParameterList ;

EXECUTE DYNAMIC Cursor | Procedure
USING ParameterList ;

OPEN DYNAMIC Cursor | Procedure
USING ParameterList ;

EXECUTE DYNAMIC Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

Format When used

Format 1 Non-result-set statements with no input parameters

Format 2 Non-result-set statements with input parameters

Format 3 Result-set statements in which the input parameters and result-set
columns are known at compile time

Format 4 Result-set statements in which the input parameters, the result-set
columns or both are unknown at compile time

CHAPTER 8 SQL Statements

PowerScript Reference 159

OPEN DYNAMIC Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

PREPARE DynamicStagingArea
FROM SQLStatement {USING TransactionObject} ;

Two datatypes DynamicStagingArea DynamicStagingArea is a PowerBuilder datatype.
PowerBuilder uses a variable of this type to store information for use in
subsequent statements.

The DynamicStagingArea is the only connection between the execution of a
statement and a transaction object and is used internally by PowerBuilder; you
cannot access information in the DynamicStagingArea.

PowerBuilder provides a global DynamicStagingArea variable named SQLSA
that you can use when you need a DynamicStagingArea variable.

If necessary, you can declare and create additional object variables of the type
DynamicStagingArea. These statements declare and create the variable, which
must be done before referring to it in a dynamic SQL statement:

DynamicStagingArea dsa_stage1
dsa_stage1 = CREATE DynamicStagingArea

After the EXECUTE statement is completed, SQLSA is no longer referenced.

DynamicDescriptionArea DynamicDescriptionArea is a PowerBuilder
datatype. PowerBuilder uses a variable of this type to store information about
the input and output parameters used in Format 4 of dynamic SQL.

PowerBuilder provides a global DynamicDescriptionArea named SQLDA that
you can use when you need a DynamicDescriptionArea variable.

If necessary, you can declare and create additional object variables of the type
DynamicDescriptionArea. These statements declare and create the variable,
which must be done before referring to it in a dynamic SQL statement:

DynamicDescriptionArea dda_desc1
dsa_desc1 = CREATE DynamicDescriptionArea

For more information about SQLDA, see Dynamic SQL Format 4 on page
165.

Preparing to use
dynamic SQL

When you use dynamic SQL, you must:

• Prepare the DynamicStagingArea in all formats except Format 1

• Describe the DynamicDescriptionArea in Format 4

• Execute the statements in the appropriate order

Using dynamic SQL

160 PocketBuilder

Preparing and describing the datatypes Since the SQLSA staging area is
the only connection between the execution of a SQL statement and a
transaction object, an execution error will occur if you do not prepare the SQL
statement correctly.

In addition to SQLSA and SQLDA, you can declare other variables of the
DynamicStagingArea and DynamicDescriptionArea datatypes. However, this
is required only when your script requires simultaneous access to two or more
dynamically prepared statements.

This is a valid dynamic cursor:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
PREPARE SQLSA FROM "SELECT emp_id FROM employee" ;
OPEN DYNAMIC my_cursor ;

This is an invalid dynamic cursor. There is no PREPARE, and therefore an
execution error will occur:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
OPEN DYNAMIC my_cursor ;

Statement order Where you place the dynamic SQL statements in your
scripts is unimportant, but the order of execution is important in Formats 2, 3,
and 4. You must execute:

1 The DECLARE and the PREPARE before you execute any other dynamic
SQL statements

2 The OPEN in Formats 3 and 4 before the FETCH

3 The CLOSE at the end

If you have multiple PREPARE statements, the order affects the contents of
SQLSA.

These statements illustrate the correct ordering:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA
string sql1, sql2
sql1 = "SELECT emp_id FROM department "&
WHERE salary > 90000"
sql2 = "SELECT emp_id FROM department "&
WHERE salary > 20000"

IF deptId = 200 then
PREPARE SQLSA FROM :sql1 USING SQLCA ;

CHAPTER 8 SQL Statements

PowerScript Reference 161

ELSE
PREPARE SQLSA FROM :sql2 USING SQLCA ;

END IF
OPEN DYNAMIC my_cursor ; // my_cursor maps to the

// SELECT that has been
// prepared.

Dynamic SQL Format 1
Description Use this format to execute a SQL statement that does not produce a result set

and does not require input parameters. You can use this format to execute all
forms of Data Definition Language (DDL).

Syntax EXECUTE IMMEDIATE SQLStatement
{USING TransactionObject} ;

Examples These statements create a database table named Employee. The statements use
the string Mysql to store the CREATE statement.

string Mysql
Mysql = "CREATE TABLE Employee "&

+"(emp_id integer not null,"&
+"dept_id integer not null, "&
+"emp_fname char(10) not null, "&
+"emp_lname char(20) not null)"

EXECUTE IMMEDIATE :Mysql ;

These statements assume a transaction object named My_trans exists and is
connected:

string Mysql
Mysql="INSERT INTO dept Values (1234, 'Purchasing')"
EXECUTE IMMEDIATE :Mysql USING My_trans ;

Parameter Description

SQLStatement A string containing a valid SQL statement. The string
can be a string constant or a PowerBuilder variable
preceded by a colon (such as :mysql). The string must be
contained on one line and cannot contain expressions.

TransactionObject
(optional)

The name of the transaction object that identifies the
database.

Dynamic SQL Format 2

162 PocketBuilder

Dynamic SQL Format 2
Description Use this format to execute a SQL statement that does not produce a result set

but does require input parameters. You can use this format to execute all forms
of Data Definition Language (DDL).

Syntax PREPARE DynamicStagingArea FROM SQLStatement
{USING TransactionObject} ;

EXECUTE DynamicStagingArea USING {ParameterList} ;

Usage To specify a null value, use the SetNull function.

Examples These statements prepare a DELETE statement with one parameter in SQLSA
and then execute it using the value of the PowerScript variable Emp_id_var:

INT Emp_id_var = 56
PREPARE SQLSA

FROM "DELETE FROM employee WHERE emp_id=?" ;
EXECUTE SQLSA USING :Emp_id_var ;

These statements prepare an INSERT statement with two parameters in SQLSA
and then execute it using the value of the PowerScript variables Dept_id_var
and Dept_name_var (note that Dept_name_var is null):

INT Dept_id_var = 156
String Dept_name_var
SetNull(Dept_name_var)
PREPARE SQLSA

FROM "INSERT INTO dept VALUES (?,?)" ;
EXECUTE SQLSA USING :Dept_id_var,:Dept_name_var ;

Parameter Description

DynamicStagingArea The name of the DynamicStagingArea (usually SQLSA).

If you need a DynamicStagingArea variable other than
SQLSA, you must declare it and instantiate it with the
CREATE statement before using it.

SQLStatement A string containing a valid SQL statement. The string can be
a string constant or a PowerBuilder variable preceded by a
colon (such as :mysql). The string must be contained on one
line and cannot contain expressions.

Enter a question mark (?) for each parameter in the statement.
Value substitution is positional; reserved word substitution is
not allowed.

TransactionObject
(optional)

The name of the transaction object that identifies the
database.

ParameterList
(optional)

A comma-separated list of PowerScript variables. Note that
PowerScript variables are preceded by a colon (:).

CHAPTER 8 SQL Statements

PowerScript Reference 163

Dynamic SQL Format 3
Description Use this format to execute a SQL statement that produces a result set in which

the input parameters and result set columns are known at compile time.

Syntax DECLARE Cursor | Procedure
DYNAMIC CURSOR | PROCEDURE
FOR DynamicStagingArea ;

PREPARE DynamicStagingArea FROM SQLStatement
{USING TransactionObject} ;

OPEN DYNAMIC Cursor
{USING ParameterList} ;

EXECUTE DYNAMIC Procedure
{USING ParameterList} ;

FETCH Cursor | Procedure
INTO HostVariableList ;

CLOSE Cursor | Procedure ;

Usage To specify a null value, use the SetNull function.

The DECLARE statement is not executable and can be declared globally.

Parameter Description

Cursor or Procedure The name of the cursor or procedure you want to use.

DynamicStagingArea The name of the DynamicStagingArea (usually
SQLSA).

If you need a DynamicStagingArea variable other than
SQLSA, you must declare it and instantiate it with the
CREATE statement before using it.

SQLStatement A string containing a valid SQL SELECT statement
The string can be a string constant or a PowerBuilder
variable preceded by a colon (such as :mysql). The
string must be contained on one line and cannot contain
expressions.

Enter a question mark (?) for each parameter in the
statement. Value substitution is positional; reserved
word substitution is not allowed.

TransactionObject
(optional)

The name of the transaction object that identifies the
database.

ParameterList
(optional)

A comma-separated list of PowerScript variables. Note
that PowerScript variables are preceded by a colon (:).

HostVariableList The list of PowerScript variables into which the data
values will be retrieved.

Dynamic SQL Format 3

164 PocketBuilder

If your DBMS supports formats of FETCH other than the customary (and
default) FETCH NEXT, you can specify FETCH FIRST, FETCH PRIOR, or
FETCH LAST.

The FETCH and CLOSE statements in Format 3 are the same as in standard
embedded SQL.

To declare a local cursor or procedure, open the script in the Script view and
select Paste SQL from the PainterBar or the Edit>Paste Special menu. To
declare a global, instance, or shared cursor or procedure, select Declare from
the first drop-down list in the Script view, and select Global Variables, Instance
Variables, or Shared Variables from the second drop-down list. Then, select
Paste SQL.

For information about global, instance, shared, and local scope, see “Where to
declare variables” on page 31.

Examples Example 1 These statements associate a cursor named my_cursor with
SQLSA, prepare a SELECT statement in SQLSA, open the cursor, and return
the employee ID in the current row into the PowerScript variable Emp_id_var:

integer Emp_id_var
DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
PREPARE SQLSA FROM "SELECT emp_id FROM employee" ;
OPEN DYNAMIC my_cursor ;
FETCH my_cursor INTO :Emp_id_var ;
CLOSE my_cursor ;

You can loop through the cursor as you can in embedded static SQL.

Example 2 These statements associate a cursor named my_cursor with
SQLSA, prepare a SELECT statement with one parameter in SQLSA, open the
cursor, and substitute the value of the variable Emp_state_var for the parameter
in the SELECT statement. The employee ID in the active row is returned into
the PowerBuilder variable Emp_id_var:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
integer Emp_id_var
string Emp_state_var = "MA"
string sqlstatement

sqlstatement = "SELECT emp_id FROM employee "&
+"WHERE emp_state = ?"

PREPARE SQLSA FROM :sqlstatement ;
OPEN DYNAMIC my_cursor using :Emp_state_var ;
FETCH my_cursor INTO :Emp_id_var ;
CLOSE my_cursor ;

CHAPTER 8 SQL Statements

PowerScript Reference 165

Example 3 These statements perform the same processing as the preceding
example but use a database stored procedure called Emp_select:

// The syntax of emp_select is:
// "SELECT emp_id
// FROM employee WHERE emp_state=@stateparm".
DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;
integer Emp_id_var
string Emp_state_var

PREPARE SQLSA FROM "emp_select @stateparm=?" ;
Emp_state_var = "MA"
EXECUTE DYNAMIC my_proc USING :Emp_state_var ;
FETCH my_proc INTO :Emp_id_var ;
CLOSE my_proc ;

Dynamic SQL Format 4
Description Use this format to execute a SQL statement that produces a result set in which

the number of input parameters, or the number of result-set columns, or both,
are unknown at compile time.

Syntax DECLARE Cursor | Procedure
DYNAMIC CURSOR | PROCEDURE
FOR DynamicStagingArea ;

PREPARE DynamicStagingArea FROM SQLStatement
{USING TransactionObject} ;

DESCRIBE DynamicStagingArea
INTO DynamicDescriptionArea ;

OPEN DYNAMIC Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

EXECUTE DYNAMIC Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

FETCH Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

CLOSE Cursor | Procedure ;

Dynamic SQL Format 4

166 PocketBuilder

Usage The DECLARE statement is not executable and can be defined globally.

If your DBMS supports formats of FETCH other than the customary (and
default) FETCH NEXT, you can specify FETCH FIRST, FETCH PRIOR, or
FETCH LAST.

To declare a local cursor or procedure, open the script in the Script view and
select Paste SQL from the PainterBar or the Edit>Paste Special menu. To
declare a global, instance, or shared cursor or procedure, select Declare from
the first drop-down list in the Script view and Global Variables, Instance
Variables, or Shared Variables from the second drop-down list, then select
Paste SQL.

For information about global, instance, shared, and local scope, see “Where to
declare variables” on page 31.

Parameter Description

Cursor or Procedure The name of the cursor or procedure you want to use.

DynamicStagingArea The name of the DynamicStagingArea (usually
SQLSA).

If you need a DynamicStagingArea variable other than
SQLSA, you must declare it and instantiate it with the
CREATE statement before using it.

SQLStatement A string containing a valid SQL SELECT statement.
The string can be a string constant or a PowerBuilder
variable preceded by a colon (such as :mysql). The
string must be contained on one line and cannot
contain expressions.

Enter a question mark (?) for each parameter in the
statement. Value substitution is positional; reserved
word substitution is not allowed.

TransactionObject
(optional)

The name of the transaction object that identifies the
database.

DynamicDescriptionArea The name of the DynamicDescriptionArea (usually
SQLDA).

If you need a DynamicDescriptionArea variable other
than SQLDA, you must declare it and instantiate it
with the CREATE statement before using it.

CHAPTER 8 SQL Statements

PowerScript Reference 167

Accessing attribute information When a statement is described into a
DynamicDescriptionArea, this information is available to you in the attributes
of that DynamicDescriptionArea variable:

Setting and accessing parameter values The array of input parameter
values and the array of output parameter values are also available. You can use
the SetDynamicParm function to set the values of an input parameter and the
following functions to obtain the value of an output parameter:

GetDynamicDate
GetDynamicDateTime
GetDynamicNumber
GetDynamicString
GetDynamicTime

For information about these functions, see GetDynamicDate on page 506,
GetDynamicDateTime on page 507, GetDynamicNumber on page 507,
GetDynamicString on page 508, and GetDynamicTime on page 508.

Parameter values The following enumerated datatypes are the valid values
for the input and output parameter types:

TypeBoolean!
TypeDate!
TypeDateTime!
TypeDecimal!
TypeDouble!
TypeInteger!
TypeLong!
TypeReal!
TypeString!
TypeTime!
TypeUInt!
TypeULong!
TypeUnknown!

Information Attribute

Number of input parameters NumInputs

Array of input parameter types InParmType

Number of output parameters NumOutputs

Array of output parameter types OutParmType

Dynamic SQL Format 4

168 PocketBuilder

Input parameters You can set the type and value of each input parameter
found in the PREPARE statement. PowerBuilder populates the SQLDA
attribute NumInputs when the DESCRIBE is executed. You can use this value
with the SetDynamicParm function to set the type and value of a specific input
parameter. The input parameters are optional; but if you use them, you should
fill in all the values before executing the OPEN or EXECUTE statement.

Output parameters You can access the type and value of each output
parameter found in the PREPARE statement. If the database supports output
parameter description, PowerBuilder populates the SQLDA attribute
NumOutputs when the DESCRIBE is executed. If the database does not support
output parameter description, PowerBuilder populates the SQLDA attribute
NumOutputs when the FETCH statement is executed.

You can use the number of output parameters in the NumOutputs attribute in
functions to obtain the type of a specific parameter from the output parameter
type array in the OutParmType attribute. When you have the type, you can call
the appropriate function after the FETCH statement to retrieve the output value.

Examples Example 1 These statements assume you know that there will be only one
output descriptor and that it will be an integer. You can expand this example to
support any number of output descriptors and any datatype by wrapping the
CHOOSE CASE statement in a loop and expanding the CASE statements:

string Stringvar, Sqlstatement
integer Intvar
Sqlstatement = "SELECT emp_id FROM employee"
PREPARE SQLSA FROM :Sqlstatement ;
DESCRIBE SQLSA INTO SQLDA ;
DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
OPEN DYNAMIC my_cursor USING DESCRIPTOR SQLDA ;
FETCH my_cursor USING DESCRIPTOR SQLDA ;

// If the FETCH is successful, the output
// descriptor array will contain returned
// values from the first row of the result set.
// SQLDA.NumOutputs contains the number of
// output descriptors.
// The SQLDA.OutParmType array will contain
// NumOutput entries and each entry will contain
// an value of the enumerated datatype ParmType
// (such as TypeInteger!, or TypeString!).

CHAPTER 8 SQL Statements

PowerScript Reference 169

CHOOSE CASE SQLDA.OutParmType[1]
CASE TypeString!

Stringvar = GetDynamicString(SQLDA, 1)
CASE TypeInteger!

Intvar = GetDynamicNumber(SQLDA, 1)
END CHOOSE
CLOSE my_cursor ;

Example 2 These statements assume you know there is one string input
descriptor and sets the parameter to MA:

string Sqlstatement
Sqlstatement = "SELECT emp_id FROM employee "&

+"WHERE emp_state = ?"
PREPARE SQLSA FROM :Sqlstatement ;

DESCRIBE SQLSA INTO SQLDA ;

// If the DESCRIBE is successful, the input
// descriptor array will contain one input
// descriptor that you must fill prior to the OPEN

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
SetDynamicParm(SQLDA, 1, "MA")

OPEN DYNAMIC my_cursor USING DESCRIPTOR SQLDA ;

FETCH my_cursor USING DESCRIPTOR SQLDA ;

// If the FETCH is successful, the output
// descriptor array will contain returned
// values from the first row of the result set
// as in the first example.

CLOSE my_cursor ;

Dynamic SQL Format 4

170 PocketBuilder

PowerScript Reference 171

C H A P T E R 9 PowerScript Events

About this chapter This chapter discusses events in general and then documents the
arguments, event IDs, and return codes for the events defined for all
PocketBuilder controls and objects except the DataWindow and
DataStore. Usage notes and examples provide information about what is
typically done in an event’s script.

For information about DataWindow and DataStore events, see the
DataWindow Reference.

Contents The events are listed in alphabetical order.

About events
In PocketBuilder, there are several types of events.

Table 9-1: PocketBuilder event types

The following information about event IDs, arguments, and return values
applies to all types of events.

Event IDs An event ID connects an event to a system message. Events that can be
triggered by user actions or other system activity have event IDs. In
PocketBuilder’s objects, PocketBuilder defines events for commonly used
event IDs. These events are documented in this chapter. You can define
your own events for other system messages using the event IDs listed in
the Event Declaration dialog box.

Type Occurs in response to

System events with an ID User actions or other system messages or a call
in your scripts

System events without an ID PocketBuilder messages or a call in your scripts

User-defined events with an
ID

User actions or other system messages or a call
in your scripts

User-defined events without
an ID

A call in your scripts

About events

172 PocketBuilder

Events without IDs Some system events, such as the application object’s
Open event, do not have an event ID. They are associated with PocketBuilder
activity, not system activity. PocketBuilder triggers them itself when
appropriate.

Arguments System-triggered events Each system event has its own list of zero or more
arguments. When PocketBuilder triggers the event in response to a system
message, it supplies values for the arguments, which become available in the
event script.

Events you trigger If you trigger a system event in another event script, you
specify the expected arguments. For example, in the Clicked event for a
window, you can trigger the DoubleClicked event with this statement, passing
its flags, xpos, and ypos arguments on to the DoubleClicked event.

w_main.EVENT DoubleClicked(flags, xpos, ypos)

Because DoubleClicked is a system event, the argument list is fixed—you
cannot supply additional arguments of your own.

Calling events without specifying their arguments
If you use the CALL statement, you can trigger a system event without
specifying its arguments. However, CALL is obsolete and you should not use it
in new applications except as described in CALL on page 116.

Return values Where does the return value go? Most events have a return value. When
the event is triggered by the system, the return value is returned to the system.

When your script triggers a user-defined or system event, you can capture the
return value in an assignment statement:

li_rtn = w_main.EVENT process_info(mydata)

When you post an event, the return value is lost because the calling script is no
longer running when the posted script is actually run. The compiler does not
allow a posted event in an assignment statement.

Return codes System events with return values have a default return code of
0, which means, “take no special action and continue processing.” Some events
have additional codes that you can return to change the processing that happens
after the event. For example, a return code might allow you to suppress an error
message or prevent a change from taking place.

A RETURN statement is not required in an event script, but for most events it
is good practice to include one. For events with return values, if you do not
have a RETURN statement, the event returns 0.

CHAPTER 9 PowerScript Events

PowerScript Reference 173

Some system events have no return value. For these events, the compiler does
not allow a RETURN statement.

Ancestor event script
return values

Sometimes you want to perform some processing in an event in a descendent
object, but that processing depends on the return value of the ancestor event
script. You can use a local variable called AncestorReturnValue that is
automatically declared and assigned the value of the ancestor event.

For more information about AncestorReturnValue, see “Calling functions and
events in an object’s ancestor” on page 108.

User-defined events With an ID When you declare a user-defined event that will be triggered by a
system message, you select an event ID from the list of IDs. The pbm
(PowerBuilder Message) codes listed in the Event dialog box map to system
messages.

The return value and arguments associated with the event ID become part of
your event declaration. You cannot modify them.

When the corresponding system message occurs, PocketBuilder triggers the
event and passes values for the arguments to the event script.

Without an ID When you declare a user event that will not be associated with
a system message, you do not select an event ID for the event.

You can specify your own arguments and return datatype in the Event
Declaration dialog box.

The event will never be triggered by user actions or system activity. You trigger
the event yourself in your application’s scripts.

For more information If you want to trigger events, including system events, see “Syntax for calling
PocketBuilder functions and events” on page 104 for information on the
calling syntax.

To learn more about user-defined events, see the User’s Guide.

Activate

174 PocketBuilder

Activate
Description Occurs just before the window becomes active.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When an Activate event occurs, the first object in the tab order for the window
gets focus. If there are no visible objects in the window, the window gets focus.

An Activate event occurs for a newly opened window because it is made active
after it is opened.

The Activate event is frequently used to enable and disable menu items.

Examples Example 1 In the window’s Activate event, this code disables the Sheet
menu item for menu m_frame on the File menu:

m_frame.m_file.m_sheet.Enabled = FALSE

Example 2 This code opens the sheet w_sheet in a layered style when the
window activates:

w_sheet.ArrangeSheets(Layer!)

See also Close
Open
Show

Event ID Objects

pbm_activate Window

Chapter 9 PowerScript Events

PowerScript Reference 175

BeginDrag
The BeginDrag event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs when the user presses the left mouse button in the ListView control and

begins dragging.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage BeginDrag and BeginRightDrag events occur when the user presses the mouse
button and drags, whether or not dragging is enabled. To enable dragging, you
can:

• Set the DragAuto property to true. If the ListView’s DragAuto property is
true, a drag operation begins automatically when the user clicks.

• Call the Drag function. If DragAuto is false, then in the BeginDrag event
script, the programmer can call the Drag function to begin the drag
operation.

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnbegindrag ListView

Argument Description

index Integer by value (the index of the ListView item being
dragged)

BeginDrag

176 PocketBuilder

Dragging a ListView item onto another control causes its standard drag events
(DragDrop, DragEnter, DragLeave, and DragWithin) to occur. The standard
drag events occur for ListView when another control is dragged within the
borders of the ListView.

Examples This example moves a ListView item from one ListView to another.
Ilvi_dragged_object is a window instance variable whose type is
ListViewItem. To copy the item, omit the code that deletes it from the source
ListView.

This code is in the BeginDrag event script of the source ListView:

// If the TreeView's DragAuto property is FALSE
This.Drag(Begin!)

This.GetItem(This.SelectedIndex(), &
ilvi_dragged_object)

// To copy, rather than move, omit these two lines
This.DeleteItem(This.SelectedIndex())
This.Arrange()

This code is in the DragDrop event of the target ListView:

This.AddItem(ilvi_dragged_object)
This.Arrange()

See also BeginRightDrag
DragDrop
DragEnter
DragLeave
DragWithin

Syntax 2 For TreeView controls
Description Occurs when the user presses the left mouse button on a label in the TreeView

control and begins dragging.

Chapter 9 PowerScript Events

PowerScript Reference 177

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage BeginDrag and BeginRightDrag events occur when the user presses the mouse
button and drags, whether or not dragging is enabled. To enable dragging, you
can:

• Set the DragAuto property to true. If the TreeView’s DragAuto property is
true, a drag operation begins automatically when the user clicks.

• Call the Drag function. If DragAuto is false, then in the BeginDrag event
script, the programmer can call the Drag function to begin the drag
operation.

The user cannot drag a highlighted item.

Dragging a TreeView item onto another control causes the control’s standard
drag events (DragDrop, DragEnter, DragLeave, and DragWithin) to occur. The
standard drag events occur for TreeView when another control is dragged
within the borders of the TreeView.

Examples This example moves the first TreeView item in the source TreeView to another
TreeView when the user drags there. Itvi_dragged_object is a window instance
variable whose type is TreeViewItem. To copy the item, omit the code that
deletes it from the source TreeView.

This code is in the BeginDrag event script of the source TreeView:

long itemnum

// If the TreeView's DragAuto property is FALSE
This.Drag(Begin!)
itemnum = 1
This.GetItem(itemnum, itvi_dragged_object)

// To copy, rather than move, omit these two lines
This.DeleteItem(itemnum)
This.SetRedraw(TRUE)

Event ID Objects

pbm_tvnbegindrag TreeView

Argument Description

handle Long by value (handle of the TreeView item being
dragged)

BeginLabelEdit

178 PocketBuilder

This code is in the DragDrop event of the target TreeView:

This.InsertItemLast(0, ilvi_dragged_object)
This.SetRedraw(TRUE)

Instead of deleting the item from the source TreeView immediately, consider
deleting it after the insertion in the DragDrop event succeeds.

See also BeginRightDrag
DragDrop
DragEnter
DragLeave
DragWithin

BeginLabelEdit
The BeginLabelEdit event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs when the user clicks on the label of an item after selecting the item.

Event ID

Arguments

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnbeginlabeledit ListView

Argument Description

index Integer by value (the index of the selected ListView item)

Chapter 9 PowerScript Events

PowerScript Reference 179

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow editing of the label
1 Prevent editing of the label

Usage When editing is allowed, a box appears around the label with the text
highlighted. The user can replace or change the existing text.

Examples This example uses the BeginLabelEdit event to display the name of the
ListView item being edited:

ListViewItem lvi
This.GetItem(index lvi)
sle_info.text = "Editing " + string(lvi.label)

See also EndLabelEdit

Syntax 2 For TreeView controls
Description Occurs when the user clicks on the label of an item after selecting the item.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow editing of the label
1 Prevent editing of the label

Usage When editing is allowed, a box appears around the label with the text
highlighted. The user can replace or change the existing text.

Event ID Objects

pbm_tvnbeginlabeledit TreeView

Argument Description

handle Long by value (the handle of the selected TreeView item)

BeginRightDrag

180 PocketBuilder

Examples This example uses the BeginLabelEdit to display the name of the TreeView
item being edited in a SingleLineEdit:

TreeViewItem tvi
This.GetItem(index, tvi)
sle_info.text = "Editing " + string(tvi.label)

See also EndLabelEdit

BeginRightDrag
The BeginRightDrag event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs when the user presses the right mouse button in the ListView control

and begins dragging.

Syntax 2 For TreeView controls
Description Occurs when the user presses the right mouse button in the TreeView control

and begins dragging.

Object See

ListView control Syntax 1

TreeView control Syntax 2

Chapter 9 PowerScript Events

PowerScript Reference 181

Clicked
The Clicked event has different arguments for different objects:

For information about the DataWindow control’s Clicked event, see the
DataWindow Reference or the online Help.

Syntax 1 For menus
Description Occurs when the user chooses an item on a menu.

Event ID

Arguments None

Return codes None (do not use a RETURN statement)

Usage If the user highlights the menu item without choosing it, its Selected event
occurs.

If the user chooses a menu item that has a cascaded menu associated with it,
the Clicked event occurs, and the cascaded menu is displayed.

Object See

Menus Syntax 1

ListView and Toolbar controls Syntax 2

Tab controls Syntax 3

TreeView controls Syntax 4

Window Syntax 5

Other controls Syntax 6

Event ID Objects

None Menu

Clicked

182 PocketBuilder

Examples This script is for the Clicked event of the New menu item for the frame
window. The wf_newsheet function is a window function. The window
w_genapp_frame is part of the application template you can generate when you
create a new application:

/* Create a new sheet */
w_genapp_frame.wf_newsheet()

See also Selected

Syntax 2 For ListView controls
Description Occurs when the user clicks within the ListView or Toolbar control, either on

an item or in the blank space around items.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Clicked event occurs when the user presses the mouse button. The Clicked
event can occur during a double-click, in addition to the DoubleClicked event.

In addition to the Clicked event, ItemChanging and ItemChanged events can
occur when the user clicks on an item that does not already have focus.
BeginLabelEdit can occur when the user clicks on a label of an item that has
focus.

Event ID Objects

pbm_lvnclicked ListView

Argument Description

index Integer by value (the index of the ListView item the user
clicked). The value of index is -1 if the user clicks within
the control but not on a specific item.

Chapter 9 PowerScript Events

PowerScript Reference 183

Using the ItemActivate event for ListView controls
You can use the ItemActivate event (with the OneClickActivate property set to
true) instead of the Clicked event for ListView controls.

Examples This code changes the label of the item the user clicks to uppercase:

IF index = -1 THEN RETURN 0

This.GetItem(index, llvi_current)
llvi_current.Label = Upper(llvi_current.Label)
This.SetItem(index, llvi_current)
RETURN 0

See also ColumnClick
DoubleClicked
ItemActivate
ItemChanged
ItemChanging
RightClicked
RightDoubleClicked

Syntax 3 For Tab controls
Description Occurs when the user clicks on the tab portion of a Tab control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Clicked event occurs when the mouse button is released.

Event ID Objects

pbm_tcnclicked Tab

Argument Description

index Integer by value (the index of the tab page the user clicked)

Clicked

184 PocketBuilder

When the user clicks in the display area of the Tab control, the tab page user
object (not the Tab control) gets a Clicked event.

The Clicked event can occur during a double-click, in addition to the
DoubleClicked event.

In addition to the Clicked event, the SelectionChanging and SelectionChanged
events can occur when the user clicks on a tab page label. If the user presses an
arrow key to change tab pages, the Key event occurs instead of Clicked before
SelectionChanging and SelectionChanged.

Examples This code makes the tab label bold for the fourth tab page only:

IF index = 4 THEN
This.BoldSelectedText = TRUE

ELSE
This.BoldSelectedText = FALSE

END IF

See also DoubleClicked
RightClicked
RightDoubleClicked
SelectionChanged
SelectionChanging

Syntax 4 For TreeView controls
Description Occurs when the user clicks an item in a TreeView control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Event ID Objects

pbm_tvnclicked TreeView

Argument Description

handle Long by value (the handle of the TreeView item the user
clicked)

Chapter 9 PowerScript Events

PowerScript Reference 185

Usage The Clicked event occurs when the user presses the mouse button.

The Clicked event can occur during a double-click, in addition to the
DoubleClicked event.

In addition to the Clicked event, GetFocus occurs if the control does not
already have focus.

Examples This code in the Clicked event changes the label of the item the user clicked to
uppercase:

TreeViewItem ltvi_current

This.GetItem(handle, ltvi_current)
ltvi_current.Label = Upper(ltvi_current.Label)
This.SetItem(handle, ltvi_current)

See also DoubleClicked
RightClicked
RightDoubleClicked
SelectionChanged
SelectionChanging

Syntax 5 For windows
Description Occurs when the user clicks in an unoccupied area of the window (any area

with no visible, enabled object).

Event ID
Event ID Objects

pbm_lbuttonclk Window

Clicked

186 PocketBuilder

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Clicked event occurs when the user releases the mouse button.

If the user clicks on a control or menu, that object (rather than the window) gets
a Clicked event. No Clicked event occurs when the user clicks the window’s
title bar.

When the user clicks on the window, the window’s MouseDown and MouseUp
events also occur.

When the user clicks on a visible disabled control or an invisible enabled
control, the window gets a Clicked event.

Examples If the user clicks in the upper left corner of the window, this code sets focus to
the button cb_clear:

IF (xpos <= 600 AND ypos <= 600) THEN
cb_clear.SetFocus()

END IF

Argument Description

flags UnsignedLong by value (the modifier keys and mouse
buttons that are pressed).

Values are:

• 1 — Left mouse button

• 2 — Right mouse button

• 4 — Shift key

• 8 — Ctrl key

• 16 — Middle mouse button

In the Clicked event, the left mouse button is being
released, so 1 is not summed in the value of flags.

For an explanation of flags, see Syntax 2 of MouseMove
on page 241.

xpos Integer by value (the distance of the pointer from the left
edge of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of
the window’s workspace in pixels).

Chapter 9 PowerScript Events

PowerScript Reference 187

See also DoubleClicked
MouseDown
MouseMove
MouseUp
RButtonDown

Syntax 6 For other controls
Description Occurs when the user clicks on the control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Clicked event occurs when the user releases the mouse button.

If another control had focus, then a GetFocus and a Clicked event occur for the
control the user clicks.

Examples This code in an OLE control’s Clicked event activates the object in the control:

integer li_success
li_success = This.Activate(InPlace!)

See also GetFocus
RButtonDown

Event ID Objects

pbm_bnclicked CheckBox, CommandButton, Graph, Picture,
PictureHyperLink, PictureButton, RadioButton,
StaticText, StaticHyperLink

pbm_prnclicked HProgressBar, VProgressBar

Close

188 PocketBuilder

Close
The Close event has different arguments for different objects:

Syntax 1 For the application object
Description Occurs when the user closes the application.

Event ID

Arguments None

Return codes None (do not use a RETURN statement)

Usage The Close event occurs when the last window (for MDI applications the MDI
frame) is closed.

See also Open
SystemError

Syntax 2 For OLE controls
Description Occurs when the object in an OLE control has been activated offsite (the OLE

server displays the object in the server’s window) and that server is closed.

Object See

Application Syntax 1

OLE control Syntax 2

Window Syntax 3

Event ID Objects

None Application

Chapter 9 PowerScript Events

PowerScript Reference 189

Syntax 3 For windows
Description Occurs just before a window is removed from display.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When you call the Close function for the window, a CloseQuery event occurs
before the Close event. In the CloseQuery event, you can specify a return code
to prevent the Close event from occurring and the window from closing.

Do not trigger the Close event to close a window; call the Close function
instead. Triggering the event simply runs the script and does not close the
window.

See also CloseQuery
Open

CloseQuery
Description Occurs when a window is closed, before the Close event.

PocketBuilder applications
If your PocketBuilder application uses the Smart Minimize property, you can
place the code that you put in the PowerBuilder CloseQuery event script in the
Resize event script. Test that the sizetype argument of the Resize event is 1
before executing the code.

Event ID Objects

pbm_close Window

ColumnClick

190 PocketBuilder

ColumnClick
Description Occurs when the user clicks a column header.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The ColumnClicked event is only available when the ListView displays in
report view and the ButtonHeader property is set to true.

Examples This example uses the ColumnClicked event to set up a instance variable for
the column argument, retrieve column alignment information, and display it to
the user:

string ls_label, ls_align
integer li_width
alignment la_align

ii_col = column
This.GetColumn(column, ls_label, la_align, &

li_width)

CHOOSE CASE la_align
CASE Right!

rb_right.Checked = TRUE
ls_align = "Right!"

CASE Left!
rb_left.Checked = TRUE
ls_align = "Left!"

Event ID Objects

pbm_lvncolumnclick ListView

Argument Description

column The index of the clicked column

Chapter 9 PowerScript Events

PowerScript Reference 191

CASE Center!
rb_center.Checked = TRUE
ls_align = "Center!"

CASE Justify!
rb_just.Checked = TRUE
ls_align = "Justify!"

END CHOOSE

sle_info.Text = String(column) &
+ " " + ls_label &
+ " " + ls_align &
+ " " + String(li_width)

See also Clicked

Constructor
Description Occurs when the control or object is created, just before the Open event for the

window that contains the control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage You can write a script for a control’s Constructor event to affect the control’s
properties before the window is displayed.

Event ID Objects

pbm_constructor All objects

DataChange

192 PocketBuilder

When a window or user object opens, a Constructor event for each control in
the window or user object occurs. The order of controls in a window’s Control
property (which is an array) determines the order in which Constructor events
are triggered. If one of the controls in the window is a user object, the
Constructor events of all the controls in the user object occur before the
Constructor event for the next control in the window.

When you call OpenUserObject to add a user object to a window dynamically,
its Constructor event and the Constructor events for all of its controls occur.

When you use the CREATE statement to instantiate a class (nonvisual) user
object, its Constructor event occurs.

When a class user object variable has an Autoinstantiate setting of true, its
Constructor event occurs when the variable comes into scope. Therefore, the
Constructor event occurs for:

• Global variables when the system starts up

• Shared variables when the object with the shared variables is loaded

• Instance variables when the object with the instance variables is created

• Local variables when the function that declares them begins executing

Examples This example retrieves data for the DataWindow dw_1 before its window is
displayed:

dw_1.SetTransObject(SQLCA)
dw_1.Retrieve()

See also Destructor
Open

DataChange
Description Occurs when the server application notifies the control that data has changed.

Chapter 9 PowerScript Events

PowerScript Reference 193

Deactivate
Description Occurs when the window becomes inactive.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When a window is closed, a Deactivate event occurs.

See also Activate
Show

DeleteAllItems
Description Occurs when all the items in the ListView are deleted.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Event ID Objects

pbm_deactivate Window

Event ID Objects

pbm_lvndeleteallitems ListView

DeleteItem

194 PocketBuilder

Examples This example uses the DeleteAllItems event to ensure that there is a default
item in the ListView control:

This.AddItem("Default item", 1)

See also DeleteItem
InsertItem

DeleteItem
The DeleteItem event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs when an item is deleted.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example for the DeleteItem event displays a message with the number of
the deleted item:

MessageBox("Message", "Item " + String(index) &
+ " deleted.")

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvndeleteitem ListView

Argument Description

index Integer by value (the index of the deleted item)

Chapter 9 PowerScript Events

PowerScript Reference 195

See also DeleteAllItems
InsertItem

Syntax 2 For TreeView controls
Description Occurs when an item is deleted.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example displays the name of the deleted item in a message:

TreeViewItem ll_tvi

This.GetItem(handle, ll_tvi)
MessageBox("Message", String(ll_tvi.Label) &

+ " has been deleted.")

Destructor
Description Occurs when the user object or control is destroyed, immediately after the

Close event of a window.

Event ID Objects

pbm_tvndeleteitem TreeView

Argument Description

handle Long by value (the handle of the deleted item)

DoubleClicked

196 PocketBuilder

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When a window is closed, each control’s Destructor event destroys the control
and removes it from memory. After they have been destroyed, you can no
longer refer to those controls in other scripts. If you do, a runtime error occurs.

See also Constructor
Close

DoubleClicked
The DoubleClicked event has different arguments for different objects:

For information about the DataWindow control’s DoubleClicked event, see the
DataWindow Reference or the online Help.

Syntax 1 For ListBox, ListView, and Tab controls
Description Occurs when the user double-clicks on the control.

Event ID Objects

pbm_destructor All objects

Object See

ListBox, ListView, and Tab controls Syntax 1

TreeView control Syntax 2

Window Syntax 3

Other controls Syntax 4

Chapter 9 PowerScript Events

PowerScript Reference 197

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage In a ListView control, the Clicked event occurs twice during a double-click
action, before and after the DoubleClicked event. (The Clicked event occurs
the first time the button is first released; the DoubleClicked event occurs on the
second click when the button is pressed; and the Clicked event occurs again
when the second button press is released.)

Using the ItemActivate event for ListView controls
You can use the ItemActivate event (with the OneClickActivate property set to
false) instead of the DoubleClicked event for ListView controls.

In a ListBox, double-clicking on an item also triggers a SelectionChanged
event.

Examples This example uses the DoubleClicked event to begin editing the double-clicked
ListView item:

This.EditLabels = TRUE

See also Clicked
ColumnClick
ItemActivate
ItemChanged
ItemChanging
RightClicked
RightDoubleClicked
SelectionChanged
SelectionChanging

Event ID Objects

pbm_lbndblclk ListBox

pbm_lvndoubleclicked ListView

pbm_tcndoubleclicked Tab

Argument Description

index Integer by value. The index of the item the user double-
clicked (for tabs, the index of the tab page).

DoubleClicked

198 PocketBuilder

Syntax 2 For TreeView controls
Description Occurs when the user double-clicks on the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example turns on editing for the double-clicked TreeView item:

TreeViewItem ltvi_current
ltvi_current = tv_1.FindItem(CurrentTreeItem!, 0)
This.EditLabel(ltvi_current)

See also Clicked
RightClicked
RightDoubleClicked
SelectionChanged
SelectionChanging

Syntax 3 For windows
Description Occurs when the user double-clicks in an unoccupied area of the window (any

area with no visible, enabled object).

Event ID Objects

pbm_tvndoubleclicked TreeView

Argument Description

handle Long by value (the handle of the item the user double-
clicked)

Chapter 9 PowerScript Events

PowerScript Reference 199

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The xpos and ypos arguments provide the same values the functions PointerX
and PointerY return when you call them for the window.

See also Clicked
MouseDown
MouseMove
MouseUp
RButtonDown

Event ID Objects

pbm_lbuttondblclk Window

Argument Description

flags UnsignedLong by value (the modifier keys and mouse
buttons that are pressed).

Values are:

• 1 — Left mouse button

• 2 — Right mouse button

• 4 — Shift key

• 8 — Ctrl key

• 16 — Middle mouse button

In the Clicked event, the left mouse button is being
released, so 1 is not summed in the value of flags.

For an explanation of flags, see Syntax 2 of MouseMove
on page 241.

xpos Integer by value (the distance of the pointer from the left
edge of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top
of the window’s workspace in pixels).

DragDrop

200 PocketBuilder

Syntax 4 For other controls
Description Occurs when the user double-clicks on the control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The DoubleClicked event for DropDownListBoxes is only active when the
Always Show List property is on.

See also Clicked
RButtonDown

DragDrop
The DragDrop event has different arguments for different objects:

For information about the DataWindow control’s DragDrop event, see the
DataWindow Reference or the online Help.

Event ID Objects

pbm_bndoubleclicked Graph, Picture, PictureHyperLink, StaticText,
StaticHyperLink

pbm_prndoubleclicked HProgressBar, VProgressBar

Object See

ListBox, ListView, and Tab controls Syntax 1

TreeView control Syntax 2

Windows and other controls Syntax 3

Chapter 9 PowerScript Events

PowerScript Reference 201

Syntax 1 For ListBox, ListView, and Tab controls
Description Occurs when the user drags an object onto the control and releases the mouse

button to drop the object.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples For ListView controls, see the example for BeginDrag.

This example inserts the dragged ListView item:

This.AddItem(ilvi_dragged_object)
This.Arrange()

See also BeginDrag
BeginRightDrag
DragEnter
DragLeave
DragWithin

Event ID Objects

pbm_lbndragdrop ListBox

pbm_lvndragdrop ListView

pbm_tcndragdrop Tab

Argument Description

source DragObject by value (a reference to the control being
dragged)

index Integer by value (the index of the target ListView item)

DragDrop

202 PocketBuilder

Syntax 2 For TreeView controls
Description Occurs when the user drags an object onto the control and releases the mouse

button to drop the object.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example inserts the dragged object as a child of the TreeView item it is
dropped upon:

TreeViewItem ltv_1
This.GetItem(handle, ltv_1)
This.SetDropHighlight(handle)
This.InsertItemFirst(handle, itvi_drag_object)
This.ExpandItem(handle)
This.SetRedraw(TRUE)

See also DragEnter
DragLeave
DragWithin

Event ID Objects

pbm_tvndragdrop TreeView

Argument Description

source DragObject by value (a reference to the control being
dragged)

handle Long by value (the handle of the target TreeView item)

Chapter 9 PowerScript Events

PowerScript Reference 203

Syntax 3 For windows and other controls
Description Occurs when the user drags an object onto the control and releases the mouse

button to drop the object.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When a control’s DragAuto property is true, a drag operation begins when the
user presses a mouse button.

Examples Example 1 In this example, the code in the DoubleClicked event for the
DataWindow dw_orddetail starts a drag operation:

IF dw_orddetail.GetRow() > 0 THEN
dw_orddetail.Drag(Begin!)
This.DragIcon = "dragitem.ico"

END IF

Then, in the DragDrop event for a trashcan Picture control, this code deletes
the row the user clicked and dragged from the DataWindow control:

long ll_currow
dwitemstatus ldwis_delrow

Event ID Objects

pbm_bndragdrop CheckBox, CommandButton, Graph, Picture,
PictureHyperLink, PictureButton, RadioButton

pbm_cbndragdrop DropDownListBox

pbm_endragdrop SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_prndragdrop HProgressBar, VProgressBar

pbm_sbndragdrop HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_uondragdrop UserObject

pbm_dragdrop Window

Argument Description

source DragObject by value (a reference to the control being
dragged)

DragDrop

204 PocketBuilder

ll_currow = dw_orddetail.GetRow()

// Save the row's status flag for later use
ldwis_delrow = dw_orddetail.GetItemStatus &

(ll_currow, 0, Primary!)

// Now, delete the current row from dw_orddetail
dw_orddetail.DeleteRow(0)

Example 2 This example for a trashcan Picture control’s DragDrop event
checks whether the source of the drag operation is a DataWindow. If so, it asks
the user whether to delete the current row in the source DataWindow:

DataWindow ldw_Source
Long ll_RowToDelete
Integer li_Choice

IF source.TypeOf() = DataWindow! THEN

ldw_Source = source
ll_RowToDelete = ldw_Source.GetRow()

IF ll_RowToDelete > 0 THEN
li_Choice = MessageBox("Delete", &
"Delete this row?", Question!, YesNo!, 2)
IF li_Choice = 1 THEN
ldw_Source.DeleteRow(ll_RowToDelete)
END IF

ELSE
Beep(1)

END IF

ELSE
Beep(1)

END IF

See also DragEnter
DragLeave
DragWithin

Chapter 9 PowerScript Events

PowerScript Reference 205

DragEnter
Description Occurs when the user is dragging an object and enters the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example for a Picture control’s DragDrop event adds a border to itself
when another Picture control (the source) is dragged within its boundaries:

IF source.TypeOf() = Picture! THEN
This.Border = TRUE

END IF

See also DragDrop
DragLeave
DragWithin

Event ID Objects

pbm_bndragenter CheckBox, CommandButton, Graph, Picture,
PictureHyperlink, PictureButton, RadioButton

pbm_cbndragenter DropDownListBox

pbm_dwndragenter DataWindow

pbm_endragenter SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_lbndragenter ListBox

pbm_lvndragenter ListView

pbm_prndragenter HProgressBar, VProgressBar

pbm_sbndragenter HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcndragenter Tab

pbm_tvndragenter TreeView

pbm_uondragenter UserObject

pbm_dragenter Window

Argument Description

source DragObject by value (a reference to the control being
dragged)

DragLeave

206 PocketBuilder

DragLeave
Description Occurs when the user is dragging an object and leaves the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example checks the name of the control being dragged, and if it is, cb_1 it
cancels the drag operation:

IF ClassName(source) = "cb_1" THEN
cb_1.Drag(Cancel!)

END If

Event ID Objects

pbm_bndragleave CheckBox, CommandButton, Graph, Picture,
PictureHyperLink, PictureButton, RadioButton

pbm_cbndragleave DropDownListBox

pbm_dwndragleave DataWindow

pbm_endragleave SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_lbndragleave ListBox

pbm_lvndragleave ListView

pbm_prndragleave HProgressBar, VProgressBar

pbm_sbndragleave HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcndragleave Tab

pbm_tvndragleave TreeView

pbm_uondragleave UserObject

pbm_dragleave Window

Argument Description

source DragObject by value (a reference to the control being
dragged)

Chapter 9 PowerScript Events

PowerScript Reference 207

This example for a Picture control’s DragDrop event removes its own border
when another Picture control (the source) is dragged beyond its boundaries:

IF source.TypeOf() = Picture! THEN
This.Border = TRUE

END IF

See also DragDrop
DragEnter
DragWithin

DragWithin
The DragWithin event has different arguments for different objects:

For information about the DataWindow control’s DragWithin event, see the
DataWindow Reference or the online Help.

Syntax 1 For ListBox, ListView, and Tab controls
Description Occurs when the user is dragging an object within the control.

Event ID

Object See

ListBox, ListView, and Tab controls Syntax 1

TreeView control Syntax 2

Windows and other controls Syntax 3

Event ID Objects

pbm_lbndragwithin ListBox

pbm_lvndragwithin ListView

pbm_tcndragwithin Tab

DragWithin

208 PocketBuilder

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example changes the background color of the ListView when a
DragObject enters its border:

This.BackColor = RGB(128, 0, 128)

See also DragDrop
DragEnter
DragLeave

Syntax 2 For TreeView controls
Description Occurs when the user is dragging an object within the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example changes the background color of the TreeView when a
DragObject enters its border:

Argument Description

source DragObject by value (a reference to the control being
dragged)

index Integer by value (a reference to the ListView item under
the pointer in the ListView control)

Event ID Objects

pbm_tvndragwithin TreeView

Argument Description

source DragObject by value (a reference to the control being
dragged)

handle Long (a reference to the ListView item under the pointer in
the TreeView control)

Chapter 9 PowerScript Events

PowerScript Reference 209

This.BackColor = RGB(128, 0, 128)

See also DragDrop
DragEnter
DragLeave

Syntax 3 For windows and other controls
Description Occurs when the user is dragging an object within the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

See also DragDrop
DragEnter
DragLeave

Event ID Objects

pbm_bndragwithin CheckBox, CommandButton, Graph, Picture,
PictureHyperLink, PictureButton, RadioButton

pbm_cbndragwithin DropDownListBox

pbm_endragwithin SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_prndragwithin HProgressBar, VProgressBar

pbm_sbndragwithin HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_uondragwithin UserObject

pbm_dragwithin Window

Argument Description

source DragObject by value (a reference to the control being
dragged)

EndLabelEdit

210 PocketBuilder

EndLabelEdit
The EndLabelEdit event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs when the user finishes editing an item’s label.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow the new text to become the item’s label.
1 Prevent the new text from becoming the item’s label.

Usage The user triggers this event by pressing Enter or Tab after editing the text.

Examples This example displays the old label and the new label in a SingleLineEdit:

ListViewItem lvi
sle_info.text = "Finished editing " &

+ String(lvi.label) &
+". Item changed to "+ String(newlabel)

See also BeginLabelEdit

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnendlabeledit ListView

Argument Description

index Integer. The index of the ListView item for which you
have edited the label.

newlabel The string that represents the new label for the ListView
item.

Chapter 9 PowerScript Events

PowerScript Reference 211

Syntax 2 For TreeView controls
Description Occurs when the user finishes editing an item’s label.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow the new text to become the item’s label
1 Prevent the new text from becoming the item’s label

Usage The user triggers this event by pressing Enter or Tab after editing the text.

Examples This example displays the old label and the new label in a SingleLineEdit:

TreeViewItem tvi

This.GetItem(handle, tvi)
sle_info.Text = "Finished editing " &

+ String(tvi.Label) &
+ ". Item changed to " &
+ String(newtext)

See also BeginLabelEdit

Event ID Objects

pbm_tvnendlabeledit TreeView

Argument Description

handle Integer. The index of the TreeView item for which you
have edited the label.

newtext The string that represents the new label for the TreeView
item.

Error

212 PocketBuilder

Error
Description Occurs when an error is found in a data or property expression for an external

object or a DataWindow object. Also occurs when a communications error is
found in a client connecting to EAServer.

Improved error-handling capability
The Error event is maintained for backward compatibility only. If you do not
script the Error event or change its action argument, information from this
event is passed to RuntimeError objects, such as DWRuntimeError. You can
handle these errors in a try-catch block.

Event ID

Arguments

Event ID Objects

None Connection, DataWindow, DataStore

Argument Description

errornumber Unsigned integer by value (PocketBuilder’s error number)

errortext String, read-only (PocketBuilder’s error message)

errorwindowmenu String, read-only (the name of the window or menu that is
the parent of the object whose script caused the error)

errorobject String, read-only (the name of the object whose script
caused the error)

errorscript String, read-only (the full text of the script in which the
error occurred)

errorline Unsigned integer by value (the line in the script where the
error occurred)

Chapter 9 PowerScript Events

PowerScript Reference 213

Return codes None. Do not use a RETURN statement.

Examples This example displays information about the error that occurred and allows the
script to continue:

MessageBox("Error Number " + string(errornumber)&
+ " Occurred", "Errortext: " + String(errortext))

action = ExceptionIgnore!

See also DBError in the DataWindow Reference or the online Help
ExternalException
SystemError

action ExceptionAction by reference.

A value you specify to control the application’s course of
action as a result of the error. Values are:

• ExceptionFail! — fail as if this script were not
implemented. The error condition triggers any active
event handlers, or if none, the SystemError event.

• ExceptionIgnore! — ignore this error and return as if
no error occurred (use this option with caution because
the conditions that caused the error can cause another
error).

• ExceptionRetry! — execute the function or evaluate
the expression again in case the OLE server was not
ready. This option is not valid for DataWindows.

• ExceptionSubstituteReturnValue! — use the value
specified in the returnvalue argument instead of the
value returned by the OLE server or DataWindow, and
cancel the error condition.

returnvalue Any by reference (a value whose datatype matches the
expected value that the OLE server or DataWindow would
have returned).

This value is used when the value of action is
ExceptionSubstituteReturnValue!.

Argument Description

ExternalException

214 PocketBuilder

ExternalException
Description Occurs when an OLE automation command caused an exception on the OLE

server.

Event ID

Return codes None. (Do not use a RETURN statement.)

FileExists
Description Occurs when a file is saved in the RichTextEdit control and the file already

exists.

Event ID

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing
1 Saving of document is canceled

Event ID Objects

None OLE, OLEObject, OLETxnObject

Event ID Objects

pbm_renfileexists RichTextEdit

Argument Description

filename The name of the file

Chapter 9 PowerScript Events

PowerScript Reference 215

GetFocus
Description Occurs just before the control receives focus (before it is selected and becomes

active).

GetFocus applies to all controls

Event ID

Arguments None

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Examples Example 1 This example in a SingleLineEdit control’s GetFocus event
selects the text in the control when the user tabs to it:

This.SelectText(1, Len(This.Text))

Example 2 In Example 1, when the user clicks the SingleLineEdit rather than
tabbing to it, the control gets focus and the text is highlighted, but then the click
deselects the text. If you define a user event that selects the text and then post
that event in the GetFocus event, the highlighting works when the user both
tabs and clicks. This code is in the GetFocus event:

This. EVENT POST ue_select()

Event ID Objects

pbm_bnsetfocus CheckBox, CommandButton, Graph, Picture,
PictureHyperLink, PictureButton, RadioButton

pbm_cbnsetfocus DropDownListBox

pbm_dwnsetfocus DataWindow

pbm_ensetfocus SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_lbnsetfocus ListBox

pbm_lvnsetfocus ListView

pbm_prnsetfocus HProgressBar, VProgressBar

pbm_sbnsetfocus HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcnsetfocus Tab

pbm_tvnsetfocus TreeView

Help

216 PocketBuilder

This code is in the ue_select user event:

This.SelectText(1, Len(This.Text))

See also Clicked
LoseFocus

Help
Description Occurs when the user drags the question-mark button from the title bar to a

menu item or a control and then clicks, or when the user clicks in a control
(giving it focus) and then presses the F1 key.

Event ID

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Hide
Description Occurs just before the window is hidden.

Event ID Objects

pbm_help Window, Menu, DragObject

Argument Description

xpos Integer by value (the distance of the Help message from the
left edge of the screen, in PowerBuilder units)

ypos Integer by value (the distance of the Help message from the
top of the screen, in PowerBuilder units)

Chapter 9 PowerScript Events

PowerScript Reference 217

Event ID

Arguments None

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Usage A Hide event can occur when a sheet in an MDI frame is closed. It does not
occur when closing a main, response, or pop-up window.

See also Close
Show

HotLinkAlarm
Description Occurs after a Dynamic Data Exchange (DDE) server application has sent new

(changed) data and the client DDE application has received it.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Event ID Objects

pbm_hidewindow Window

Event ID Objects

pbm_ddedata Window

Idle

218 PocketBuilder

Idle
Description Occurs when the Idle function has been called in an application object script

and the specified number of seconds have elapsed with no mouse or keyboard
activity.

Event ID

Arguments None

Return codes None. (Do not use a RETURN statement.)

Examples This statement in an application script causes the Idle event to be triggered after
300 seconds of inactivity:

Idle(300)

In the Idle event itself, this statement closes the application:

HALT CLOSE

IncomingMessage
Description Occurs when an incoming SMS message is received.

Event ID

Event ID Objects

None Application

Event ID Objects

None SMSSession

Chapter 9 PowerScript Events

PowerScript Reference 219

Arguments

Return codes Boolean. A return value of true is interpreted as a request to deletes the
incoming message. A return value of false places the message in the SMS
inbox. If no return value is specified, the default is false.

Usage All instantiated SMSSession objects listening for messages are notified of an
incoming SMS message. PocketBuilder can prevent the message from
displaying in the SMS inbox if you set the IncomingMessage event to return
true. If any SMSSession object requests deletion of the message by returning
true for the IncomingMessage event, PocketBuilder will attempt to delete the
message, but only after all SMSSession objects have processed the message.

Deletion of messages is dependent on registry setting
PocketBuilder applications can receive notification of an SMS message only
after you register the shim DLL, PKSMS20.DLL, on your device. The
ReadOnly registry attribute for the DLL must be set to 0 before PocketBuilder
can delete an SMS message For information on registering the DLL and the
ReadOnly registry attribute, see the chapter on Working with Native Objects
and Controls in the User’s Guide.

The IncomingMessage event is synchronous with the operating system
processing SMS messages. Therefore you should not include code that prompts
for user input, or perform any lengthy operation in the script for this event.

Examples The following code in the IncomingMessage event determines whether an
incoming SMS message is placed in the SMS inbox or is deleted based on
whether or not the message contains the text “top secret”:

// If the message contains "top secret" it will deleted.
// Otherwise, it is placed in the inbox.

if POS(SMSMsg.text, "top secret") <> 0 then
// delete this e-mail and notify user of deletion
// in a MultiLineEdit control
mle_status.text += "~r~nWill be deleted.~r~n"
return TRUE

end if

Argument Description

SMSAddress Object of type SMSAddress that contains the address and
address type from which the incoming message originated

SMSMessage Object of type SMSMessage that includes the message ID
and content of the incoming SMS message

InputFieldSelected

220 PocketBuilder

// allow to go into the inbox
return FALSE

InputFieldSelected
Description In a RichTextEdit control, occurs when the user has double-clicked or pressed

Enter in an input field, allowing the user to edit the data in the field.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

InsertItem
Description Occurs when an item is inserted in the ListView.

Event ID

Event ID Objects

pbm_reninputfieldselected RichTextEdit

Argument Description

fieldname String by value (the name of the input field that was
selected)

Event ID Objects

pbm_lvninsertitem ListView

Chapter 9 PowerScript Events

PowerScript Reference 221

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Examples This example displays the label and index of the inserted item:

ListViewItem lvi
This.GetItem(index, lvi)
sle_info.Text = "Inserted "+ String(lvi.Label) &

+ " into position " &
+ String(index)

See also DeleteItem

ItemActivate
Description Occurs when a ListView item is clicked or double-clicked. The actual firing

mechanism depends on the OneClickActivate and TwoClickActivate property
settings.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Use the ItemActivate event instead of the Clicked or DoubleClicked event in
new applications.

Argument Description

index An integer that represents the index of the item being
inserted into the ListView

Event ID Objects

pbm_lvnitemactivate ListView

Argument Description

Index An integer that represents the index of the item being
inserted into the ListView

ItemChanged

222 PocketBuilder

The following ListView property settings determine which user action fires the
event:

Examples This code changes a ListView item text label to uppercase lettering. The
change is made in the second column of the item the user clicks or
double-clicks, depending on the ListView property settings:

listviewitem llvi_current

This.GetItem(index, 2, llvi_current)
llvi_current.Label = Upper(llvi_current.Label)
This.SetItem(index, 2, llvi_current)
RETURN 0

See also ItemChanged
ItemChanging

ItemChanged
Description Occurs when an ListView item has changed.

Event ID

Arguments

OneClickActivate TwoClickActivate Firing mechanism

True True Single click

True False Single click

False True Single click on selected item or
double-click on nonselected item

False False Double-click

Event ID Objects

pbm_lvnitemchanged ListView

Argument Description

index The index of the item that is changing

focuschanged Boolean (specifies if focus has changed for the item)

Chapter 9 PowerScript Events

PowerScript Reference 223

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example checks whether the event is occurring because focus has changed
to the item:

ListViewItem l_lvi

lv_list.GetItem(index, l_lvi)
IF focuschange and hasfocus THEN

sle1.Text = String(lvi.label) +" has focus."
END IF

See also ItemChanged in the DataWindow Reference or the online Help
ItemChanging

ItemChanging
Description Occurs just before a ListView changes.

Event ID

Arguments

hasfocus Boolean (specifies whether the item has focus)

selectionchange Boolean (specifies whether the selection has changed for
the item)

selected Boolean (specifies whether the item is selected)

otherchange Boolean (specifies if anything other than focus or selection
has changed for the item)

Argument Description

Event ID Objects

pbm_lvnitemchanging ListView

Argument Description

index The index of the item that has changed

focuschange Boolean (specifies if focus is changing for the item)

ItemCollapsed

224 PocketBuilder

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

See also ItemChanged

ItemCollapsed
Description Occurs when a TreeView item has collapsed.

Event ID

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Examples This example changes the picture for the collapsed item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_tvi)

CHOOSE CASE l_tvi.Level

hasfocus Boolean (specifies whether the item has focus)

selectionchange Boolean (specifies whether the selection is changing for
the item)

selected Boolean (specifies whether the item is selected)

otherchange Boolean (specifies if anything other than focus or selection
has changed for the item)

Argument Description

Event ID Objects

pbm_tvnitemcollapsed TreeView

Argument Description

handle Long by reference (the handle of the collapsed
TreeViewItem)

Chapter 9 PowerScript Events

PowerScript Reference 225

CASE 1
l_tvi.PictureIndex = 1
l_tvi.SelectedPictureIndex = 1

CASE 2
l_tvi.PictureIndex = 2
l_tvi.SelectedPictureIndex = 2

CASE 3
l_tvi.PictureIndex = 3
l_tvi.SelectedPictureIndex = 3

CASE 4
l_tvi.PictureIndex = 4
l_tvi.SelectedPictureIndex = 4

END CHOOSE
This.SetItem(handle, l_tvi)

See also ItemCollapsing

ItemCollapsing
Description Occurs when a TreeView item is collapsing.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The ItemCollapsing event occurs before the ItemCollapsed event.

Examples This example changes the picture for the collapsing item:

TreeViewItem l_tvi
integer li_level

Event ID Objects

pbm_tvnitemcollapsing TreeView

Argument Description

handle Long by reference (the handle of the collapsing item)

ItemExpanded

226 PocketBuilder

This.GetItem(handle, l_vti)

CHOOSE CASE l_tvi.level
CASE 1

l_tvi.PictureIndex = 1
l_tvi.SelectedPictureIndex = 1

CASE 2
l_tvi.PictureIndex = 2
l_tvi.SelectedPictureIndex = 2

CASE 3
l_tvi.PictureIndex = 3
l_tvi.SelectedPictureIndex = 3

CASE 4
l_tvi.PictureIndex = 4
l_tvi.SelectedPictureIndex = 4

END CHOOSE

This.SetItem(handle, l_tvi)

See also ItemCollapsed

ItemExpanded
Description Occurs when a TreeView item has expanded.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The ItemExpanded event occurs after the ItemExpanding event.

Event ID Objects

pbm_tvnitemexpanded TreeView

Argument Description

handle Long by reference (the handle of the expanded item)

Chapter 9 PowerScript Events

PowerScript Reference 227

Examples This example sets the picture and selected picture for the expanded item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_tvi)

CHOOSE CASE l_tvi.Level
CASE 1

l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 1

CASE 2
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 2

CASE 3
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 3

CASE 4
l_tvi.PictureIndex = 4
l_tvi.SelectedPictureIndex = 5

END CHOOSE
This.SetItem(handle, l_tvi)

See also ItemExpanding

ItemExpanding
Description Occurs while a TreeView item is expanding.

Event ID

Arguments

Event ID Objects

pbm_tvnitemexpanding TreeView

Argument Description

handle Long by reference (the handle of the expanding
TreeView item)

ItemPopulate

228 PocketBuilder

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing
1 Prevents the TreeView from expanding

Usage The ItemExpanding event occurs before the ItemExpanded event.

Examples This example sets the picture and selected picture for the expanding item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_tvi)

CHOOSE CASE l_tvi.Level
CASE 1

l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 1

CASE 2
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 2

CASE 3
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 3

CASE 4
l_tvi.PictureIndex = 4
l_tvi.SelectedPictureIndex = 5

END CHOOSE

This.SetItem(handle, l_tvi)

See also ItemExpanded

ItemPopulate
Description Occurs when a TreeView item is being populated with children.

Event ID
Event ID Objects

pbm_tvnitempopulate TreeView

Chapter 9 PowerScript Events

PowerScript Reference 229

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Examples This example displays the name of the TreeView item you are populating in a
SingleLineEdit:

TreeViewItem tvi

This.GetItem(handle, tvi)
sle_get.Text = "Populating TreeView item " &

+ String(tvi.Label) + " with children"

See also ItemExpanding

Key
Description Occurs when the user presses a key.

Event ID

Arguments

Argument Description

handle Long by reference (the handle of the TreeView item
being populated)

Event ID Objects

pbm_lvnkeydown ListView

pbm_renkey RichTextEdit

pbm_tcnkeydown Tab

pbm_tvnkeydown TreeView

pbm_keydown Window

Argument Description

key KeyCode by value. A value of the KeyCode enumerated
datatype indicating the key that was pressed (for example,
KeyA! or KeyF1!).

Key

230 PocketBuilder

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing
1 Do not process the key (RichTextEdit controls only)

Usage Some controls capture keystrokes so that the window is prevented from getting
a Key event. These include ListView, TreeView, Tab, RichTextEdit, and the
DataWindow edit control. When these controls have focus you can respond to
keystrokes by writing a script for an event for the control. If there is no
predefined event for keystrokes, you can define a user event and associate it
with a pbm code.

If the user presses a modifier key and holds it down while pressing another key,
the Key event occurs twice: once when the modifier key is pressed and again
when the second key is pressed. If the user releases the modifier key before
pressing the second key, the value of keyflags will change in the second
occurrence.

When the user releases a key, the Key event does not occur. Therefore, if the
user releases a modifier key, you do not know the current state of the modifier
keys until another key is pressed.

Examples This example causes a beep when the user presses F1 or F2, as long as Shift
and Ctrl are not pressed:

IF keyflags = 0 THEN
IF key = KeyF1! THEN

Beep(1)
ELSEIF key = KeyF2! THEN

Beep(20)
END IF

END IF

This line displays the value of keyflags when a key is pressed.

st_1.Text = String(keyflags)

See also SystemKey

keyflags UnsignedLong by value (the modifier keys that were
pressed with the key).

Values are:

1 Shift key
2 Ctrl key
3 Shift and Ctrl keys

Argument Description

Chapter 9 PowerScript Events

PowerScript Reference 231

LineDown
Description Occurs when the user clicks the down arrow of the vertical scroll bar.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a vertical scroll bar, nothing happens unless you have
scripts that change the scroll bar’s Position property. For the scroll bar arrows,
use the LineUp and LineDown events; for clicks in the scroll bar background
above and below the thumb, use the PageUp and PageDown event; for
dragging the thumb itself, use the Moved event.

Examples This code in the LineDown event causes the thumb to move down when the
user clicks on the down arrow of the vertical scroll bar and displays the
resulting position in the StaticText control st_1:

IF This.Position > This.MaxPosition - 1 THEN
This.Position = MaxPosition

ELSE
This.Position = This.Position + 1

END IF

st_1.Text = "LineDown " + String(This.Position)

See also LineLeft
LineRight
LineUp
PageDown

Event ID Objects

pbm_sbnlinedown VScrollBar, VTrackBar

LineLeft

232 PocketBuilder

LineLeft
Description Occurs when the user clicks in the left arrow of the horizontal scroll bar.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a horizontal scroll bar, nothing happens unless you
have scripts that change the scroll bar’s Position property. For the scroll bar
arrows, use the LineLeft and LineRight events; for clicks in the scroll bar
background above and below the thumb, use the PageLeft and Right events; for
dragging the thumb itself, use the Moved event.

Examples This code in the LineLeft event causes the thumb to move left when the user
clicks on the left arrow of the horizontal scroll bar and displays the resulting
position in the StaticText control st_1:

IF This.Position < This.MinPosition + 1 THEN
This.Position = MinPosition

ELSE
This.Position = This.Position - 1

END IF

st_1.Text = "LineLeft " + String(This.Position)

See also LineDown
LineRight
LineUp
PageLeft

Event ID Objects

pbm_sbnlineup HScrollBar, HTrackBar

Chapter 9 PowerScript Events

PowerScript Reference 233

LineRight
Description Occurs when right arrow of the horizontal scroll bar is clicked.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a horizontal scroll bar, nothing happens unless you
have scripts that change the scroll bar’s Position property. For the scroll bar
arrows, use the LineLeft and LineRight events; for clicks in the scroll bar
background above and below the thumb, use the PageLeft and PageRight
events; for dragging the thumb itself, use the Moved event.

Examples This code in the LineRight event causes the thumb to move right when the user
clicks on the right arrow of the horizontal scroll bar and displays the resulting
position in the StaticText control st_1:

IF This.Position > This.MaxPosition - 1 THEN
This.Position = MaxPosition

ELSE
This.Position = This.Position + 1

END IF

st_1.Text = "LineRight " + String(This.Position)

See also LineDown
LineLeft
LineUp
PageRight

Event ID Objects

pbm_sbnlinedown HScrollBar, HTrackBar

LineUp

234 PocketBuilder

LineUp
Description Occurs when the up arrow of the vertical scroll bar is clicked.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a vertical scroll bar, nothing happens unless you have
scripts that change the scroll bar’s Position property. For the scroll bar arrows,
use the LineUp and LineDown events; for clicks in the scroll bar background
above and below the thumb, use the PageUp and PageDown events; for
dragging the thumb itself, use the Moved event.

Examples This code in the LineUp event causes the thumb to move up when the user
clicks on the up arrow of the vertical scroll bar and displays the resulting
position in the StaticText control st_1:

IF This.Position < This.MinPosition + 1 THEN
This.Position = MinPosition

ELSE
This.Position = This.Position - 1

END IF

st_1.Text = "LineUp " + String(This.Position)

See also LineDown
LineLeft
LineRight
PageUp

Event ID Objects

pbm_sbnlineup VScrollBar, VTrackBar

Chapter 9 PowerScript Events

PowerScript Reference 235

LoseFocus
Description Occurs just before a control receives focus (before it becomes selected and

active).

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Write a script for a control’s LoseFocus event if you want some processing to
occur when the user changes focus to another control.

For controls that contain editable text, losing focus can also cause a Modified
event to occur.

Because the MessageBox function grabs focus, you should not use it when
focus is changing, such as in a LoseFocus event. Instead, you might display a
message in the window’s title or a MultiLineEdit.

Event ID Description

pbm_controltypekillfocus UserObject (standard visual user objects only)

pbm_bnkillfocus CheckBox, CommandButton, Graph, OLE, Picture,
PictureHyperLink, PictureButton, RadioButton,
StaticText, StaticHyperLink

pbm_cbnkillfocus DropDownListBox, DropDownPictureListBox

pbm_dwnkillfocus DataWindow

pbm_enkillfocus SingleLineEdit, EditMask, MultiLineEdit

pbm_lbnkillfocus ListBox, PictureListBox

pbm_lvnkillfocus ListView

pbm_prnkillfocus HProgressBar, VProgressBar

pbm_renkillfocus RichTextEdit

pbm_sbnkillfocus HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcnkillfocus Tab

pbm_tvnkillfocus TreeView

LoseFocus

236 PocketBuilder

Examples Example 1 In this script for the LoseFocus event of a SingleLineEdit
sle_town, the user is reminded to enter information if the text box is left empty:

IF sle_town.Text = "" THEN
st_status.Text = "You have not specified a town."

END IF

Example 2 Statements in the LoseFocus event for a DataWindow control
dw_emp can trigger a user event whose script validates the last item the user
entered.

This statement triggers the user event ue_accept:

dw_emp.EVENT ue_accept()

This statement in ue_accept calls the AcceptText function:

dw_emp.AcceptText()

This script for the LoseFocus event of a RichTextEdit control performs
processing when the control actually loses focus:

GraphicObject l_control

// Check whether the RichTextEdit still has focus
l_control = GetFocus()
IF TypeOf(l_control) = RichTextEdit! THEN RETURN 0

// Perform processing only if RichTextEdit lost focus
...

This script gets the name of the control instead:

GraphicObject l_control
string ls_name
l_control = GetFocus()
ls_name = l_control.Classname()

See also GetFocus

Chapter 9 PowerScript Events

PowerScript Reference 237

Modified
Description Occurs when the contents in the control has changed.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage For plain text controls, the Modified event occurs when the user indicates being
finished by pressing Enter or tabbing away from the control.

For RichText Edit controls, the value of the Modified property controls the
Modified event. If the property is false, the event occurs when the first change
occurs to the contents of the control. The change also causes the property to be
set to true, which suppresses the Modified event. You can restart checking for
changes by setting the property back to false.

Resetting the Modified property is useful when you insert a document in the
control, which triggers the event and sets the property (it is reporting the
change to the control’s contents). To find out when the user begins making
changes to the content, set the Modified property back to false in the script that
opens the document. When the user begins editing, the property will be reset to
true and the event will occur again.

A Modified event can be followed by a LoseFocus event.

Examples In this example, code in the Modified event performs validation on the text the
user entered in a SingleLineEdit control sle_color. If the user did not enter
RED, WHITE, or BLUE, a message box indicates what is valid input; for valid
input, the color of the text changes:

string ls_color

This.BackColor = RGB(150,150,150)

Event ID Objects

pbm_cbnmodified DropDownListBox, DropDownPictureListBox

pbm_enmodified SingleLineEdit, EditMask, MultiLineEdit

pbm_renmodified RichTextEdit

Modified

238 PocketBuilder

ls_color = Upper(This.Text)
CHOOSE CASE ls_color

CASE "RED"
This.TextColor = RGB(255,0,0)

CASE "BLUE"
This.TextColor = RGB(0,0,255)

CASE "WHITE"
This.TextColor = RGB(255,255,255)

CASE ELSE
This.Text = ""
MessageBox("Invalid input", &
"Enter RED, WHITE, or BLUE.")

END CHOOSE

This is not a realistic example: user input of three specific choices is more
suited to a list box; in a real situation, the allowed input might be more general.

See also LoseFocus

Chapter 9 PowerScript Events

PowerScript Reference 239

MouseDown
The MouseDown event has different arguments for different objects:

Syntax 1 For RichTextEdit controls
Description Occurs when the user presses the left mouse button on the RichTextEdit

control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):
0 Continue processing

Syntax 2 For windows
Description Occurs when the user presses the left mouse button in an unoccupied area of

the window (any area with no visible, enabled object).

Event ID

Object See

RichTextEdit control Syntax 1

Window Syntax 2

Event ID Objects

pbm_renlbuttondown RichTextEdit

Event ID Objects

pbm_lbuttondown Window

MouseDown

240 PocketBuilder

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples Example 1 This code in the MouseDown event displays the window
coordinates of the pointer as reported in the xpos and ypos arguments:

sle_2.Text = "Position of Pointer is: " + &
String(xpos) + "," + String(ypos)

Example 2 This code in the MouseDown event checks the value of the flags
argument, and reports which modifier keys are pressed in the SingleLineEdit
sle_modkey:

CHOOSE CASE flags
CASE 1

sle_mkey.Text = "No modifier keys pressed"
CASE 5

sle_mkey.Text = "SHIFT key pressed"
CASE 9

sle_mkey.Text = "CONTROL key pressed"
CASE 13

sle_mkey.Text = "SHIFT and CONTROL keys pressed"
END CHOOSE

See also Clicked
MouseMove
MouseUp

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons
that are pressed).

 Values are:

• 1 — Left mouse button

• 2 — Right mouse button

• 4 — Shift key

• 8 — Ctrl key

• 16 — Middle mouse button

In the MouseDown event, the left mouse button is always
down, so 1 is always summed in the value of flags. For an
explanation of flags, see Syntax 2 of MouseMove on page 241.

xpos Integer by value (the distance of the pointer from the left edge
of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the
window’s workspace in pixels).

Chapter 9 PowerScript Events

PowerScript Reference 241

MouseMove
The MouseMove event has different arguments for different objects:

Syntax 1 For RichTextEdit controls
Description Occurs when the mouse has moved within the RichTextEdit control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):
0 Continue processing

Syntax 2 For windows
Description Occurs when the pointer is moved within the window.

Event ID

Object See

RichTextEdit control Syntax 1

Window Syntax 2

Event ID Objects

pbm_renmousemove RichTextEdit

Event ID Objects

pbm_mousemove Window

MouseMove

242 PocketBuilder

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Because flags is a sum of button and key numbers, you can find out what keys
are pressed by subtracting the largest values one by one and checking the value
that remains. For example:

• If flags is 5, the Shift key (4) and the left mouse button (1) are pressed.

• If flags is 14, the Ctrl key (8), the Shift key (4), and the right mouse button
(2) are pressed.

This code handles all the buttons and keys (the local boolean variables are
initialized to false by default):

boolean lb_left_button, lb_right_button
boolean lb_middle_button, lb_Shift_key, lb_control_key
integer li_flags

li_flags = flags
IF li_flags 15 THEN

// Middle button is pressed
lb_middle_button = TRUE
li_flags = li_flags - 16

END IF

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons
that are pressed).

 Values are:

• 1 — Left mouse button

• 2 — Right mouse button

• 4 — Shift key

• 8 — Ctrl key

• 16— Middle mouse button

Flags is the sum of all the buttons and keys that are pressed.

xpos Integer by value (the distance of the pointer from the left edge
of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the
window’s workspace in pixels).

Chapter 9 PowerScript Events

PowerScript Reference 243

IF li_flags 7 THEN
// Control key is pressed
lb_control_key = TRUE
li_flags = li_flags - 8

END IF

IF li_flags > 3 THEN
// Shift key is pressed
lb_Shift_key = TRUE
li_flags = li_flags - 4

END IF

IF li_flags > 1 THEN
// Right button is pressed
lb_lb_right_button = TRUE
li_flags = li_flags - 2

END IF

IF li_flags = 1 THEN lb_left_button = TRUE

Most controls in a window do not capture MouseMove events—the
MouseMove event is not mapped by default. If you want the window’s
MouseMove event to be triggered when the mouse moves over a control, you
must map a user-defined event to the pbm_mousemove event for the control.
The following code in the control’s user-defined MouseMove event triggers
the window’s MouseMove event:

Parent.EVENT MouseMove(0, Parent.PointerX(),
Parent.PointerY())

Examples This code in the MouseMove event causes a meter OLE custom control to rise
and fall continually as the mouse pointer is moved up and down in the window
workspace:

This.uf_setmonitor(ypos, ole_verticalmeter, &
This.WorkspaceHeight())

Uf_setmonitor is a window function that scales the pixels to the range of the
gauge. It accepts three arguments: the vertical position of the mouse pointer, an
OLECustomControl reference, and the maximum range of the mouse pointer
for scaling purposes:

double ld_gaugemax, ld_gaugemin
double ld_gaugerange, ld_value

MouseUp

244 PocketBuilder

// Ranges for monitor-type control
ld_gaugemax = ocxitem.Object.MaxValue
ld_gaugemin = ocxitem.Object.MinValue
ld_gaugerange = ld_gaugemax - ld_gaugemin

// Horizontal position of mouse within window
ld_value = data * ld_gaugerange / range + ld_gaugemin

// Set gauge
ocxitem.Object.Value = Round(ld_value, 0)

RETURN 1

The OLE custom control also has a MouseMove event. This code in that event
keeps the gauge responding when the pointer is over the gauge. (You need to
pass values for the arguments that are usually handled by the system; the mouse
position values are specified in relation to the parent window.) For example:

Parent.EVENT MouseMove(0, Parent.PointerX(), &
Parent.PointerY())

See also Clicked
MouseDown
MouseUp

MouseUp
The MouseUp event has different arguments for different objects:

Syntax 1 For RichTextEdit controls
Description Occurs when the user releases the left mouse button in a RichTextEdit control.

Object See

RichTextEdit control Syntax 1

Window Syntax 2

Chapter 9 PowerScript Events

PowerScript Reference 245

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):
0 Continue processing

Syntax 2 For windows
Description Occurs when the user releases the left mouse button in an unoccupied area of

the window (any area with no visible enabled object).

Event ID

Arguments

Event ID Objects

pbm_renlbuttonup RichTextEdit

Event ID Objects

pbm_lbuttonup Window

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons
that are pressed).

Values are:

• 1 — Left mouse button

• 2 — Right mouse button

• 4 — Shift key

• 8 — Ctrl key

• 16 — Middle mouse button

In the MouseUp event, the left mouse button is being released,
so 1 is not summed in the value of flags. For an explanation of
flags, see Syntax 2 of MouseMove on page 241.

xpos Integer by value (the distance of the pointer from the left edge
of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the
window’s workspace in pixels).

MouseUp

246 PocketBuilder

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage A Clicked event also occurs when the mouse button is released.

Examples Example 1 This code in the window’s MouseUp event displays in the
SingleLineEdit sle_2 the window coordinates of the pointer when the button is
released as reported in the xpos and ypos arguments.

sle_2.Text = "Position of Pointer is: " + &
String(xpos) + "," + String(ypos)

Example 2 This code in the window’s MouseUp event checks the value of
the flags argument and reports which modifier keys are pressed in the
SingleLineEdit sle_modkey.

CHOOSE CASE flags
CASE 0

sle_mkey.Text = "No modifier keys pressed"

CASE 4
sle_mkey.Text = "SHIFT key pressed"

CASE 8
sle_mkey.Text = "CONTROL key pressed"

CASE 12
sle_mkey.Text = "SHIFT and CONTROL keys pressed"

END CHOOSE

See also Clicked
MouseDown
MouseMove

Chapter 9 PowerScript Events

PowerScript Reference 247

Moved
Description Occurs when the user moves the scroll box, either by clicking on the arrows or

by dragging the box itself.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Moved event updates the Position property of the scroll bar with the value
of scrollpos.

Examples This statement in the Moved event displays the new position of the scroll box
in a StaticText control:

st_1.Text = "Moved " + String(scrollpos)

See also LineDown
LineLeft
LineRight
LineUp
PageDown
PageLeft
PageRight
PageUp

Event ID Objects

pbm_sbnthumbtrack HScrollBar, HTrackBar, VScrollBar, VTrackBar

Argument Description

scrollpos Integer by value (a number indicating position of the scroll
box within the range of values specified by the
MinPosition and MaxPosition properties)

Open

248 PocketBuilder

Open
The Open event has different arguments for different objects:

Syntax 1 For the application object
Description Occurs when the user starts the application.

Event ID

Arguments

Return codes None (do not use a RETURN statement)

Usage This event can establish database connection parameters and open the main
window of the application.

There is no way to specify command line values when you are testing your
application in the development environment.

Opening the application with command-line arguments at runtime
You can specify command line arguments when you use the Run command
from the Start menu or as part of the Target specification when you define a
shortcut for your application.

In other events and functions, you can call the CommandParm function to get
the command line arguments.

Object See

Application Syntax 1

Window Syntax 2

Event ID Objects

None Application

Argument Description

commandline String by value. Additional arguments are included on the
command line after the name of the executable program.

Chapter 9 PowerScript Events

PowerScript Reference 249

For an example of parsing the string in commandline, see CommandParm on
page 362.

Examples This example populates the SQLCA global variable from the application’s
initialization file, connects to the database, and opens the main window:

/* Populate SQLCA from current myapp.ini settings */
SQLCA.DBMS = ProfileString("myapp.ini", "database", &

"dbms", "")
SQLCA.Database = ProfileString("myapp.ini", &

"database", "database", "")
SQLCA.Userid = ProfileString("myapp.ini", "database", &

"userid", "")
SQLCA.DBPass = ProfileString("myapp.ini", "database", &

"dbpass", "")
SQLCA.Logid = ProfileString("myapp.ini", "database", &

"logid", "")
SQLCA.Logpass = ProfileString("myapp.ini", &

"database", "LogPassWord", "")
SQLCA.Servername = ProfileString("myapp.ini", &

"database", "servername", "")
SQLCA.DBParm = ProfileString("myapp.ini", "database", &

"dbparm", "")

CONNECT;

IF SQLCA.Sqlcode <> 0 THEN
MessageBox("Cannot Connect to Database", &

SQLCA.SQLErrText)
RETURN

END IF

/* Open MDI frame window */
Open(w_genapp_frame)

See also Close

Open

250 PocketBuilder

Syntax 2 For windows
Description Occurs when a window is opened by one of the Open functions. The event

occurs after the window has been opened but before it is displayed.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage These functions trigger the Open event:

Open
OpenWithParm
OpenSheet
OpenSheetWithParm

When the Open event occurs, the controls on the window already exist (their
Constructor events have occurred). In the Open event script, you can refer to
objects in the window and affect their appearance or content. For example, you
can disable a button or retrieve data for a DataWindow.

Some actions are not appropriate in the Open event, even though all the
controls exist. For example, calling the SetRedraw function for a control fails
because the window is not yet visible.

Changing the WindowState property
Do not change the WindowState property in the Open event of a window
opened as a sheet. Doing so might result in duplicate controls on the title bar.
You can change the property in other scripts once the window is open.

When a window is opened, other events occur, such as Constructor for each
control in the window, Activate and Show for the window, and GetFocus for
the first control in the window’s tab order.

Event ID Objects

pbm_open Window

Chapter 9 PowerScript Events

PowerScript Reference 251

Examples When the window contains a DataWindow control, you can retrieve data for it
in the Open event. In this example, values for the transaction object SQLCA
have already been set up:

dw_1.SetTransObject(SQLCA)
dw_1.Retrieve()

See also Activate
Constructor
Show

Other
Description Occurs when a system message occurs that is not a PowerBuilder message.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Other event is no longer useful, because you can define your own user
events. You should avoid using it, because it slows performance while it checks
every Windows message.

Event ID Objects

pbm_other Windows and controls that can be placed in windows

Argument Description

wparam UnsignedLong by value

lparam Long by value

PageDown

252 PocketBuilder

PageDown
Description Occurs when the user clicks in the open space below the scroll box.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a vertical scroll bar, nothing happens unless you have
scripts that change the scroll bar’s Position property. For the scroll bar arrows,
use the LineUp and LineDown events; for clicks in the scroll bar background
above and below the thumb, use the PageUp and PageDown events; for
dragging the thumb itself, use the Moved event.

Examples Example 1 This code in the VScrollBar’s PageDown event uses a
predetermined paging value stored in the instance variable ii_pagesize to
change the position of the scroll box (you would need additional code to
change the view of associated controls according to the scroll bar position):

IF This.Position > &
This.MaxPosition - ii_pagesize THEN
This.Position = MaxPosition

ELSE
This.Position = This.Position + ii_pagesize

END IF
RETURN 0

Example 2 This example changes the position of the scroll box by a
predetermined page size stored in the instance variable ii_pagesize and scrolls
forward through a DataWindow control 10 rows for each page:

long ll_currow, ll_nextrow

This.Position = This.Position + ii_pagesize
ll_currow = dw_1.GetRow()
ll_nextrow = ll_currow + 10

Event ID Objects

pbm_sbnpagedown VScrollBar, VTrackBar

Chapter 9 PowerScript Events

PowerScript Reference 253

dw_1.ScrollToRow(ll_nextrow)
dw_1.SetRow(ll_nextrow)

See also LineDown
PageLeft
PageRight
PageUp

PageLeft
Description Occurs when the open space to the left of the scroll box is clicked.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a horizontal scroll bar, nothing happens unless you
have scripts that change the scroll bar’s Position property. For the scroll bar
arrows, use the LineLeft and LineRight events; for clicks in the scroll bar
background above and below the thumb, use the PageLeft and Right events; for
dragging the thumb itself, use the Moved event.

Examples This code in the PageLeft event causes the thumb to move left a predetermined
page size when the user clicks on the left arrow of the horizontal scroll bar (the
page size is stored in the instance variable ii_pagesize):

IF This.Position < &
This.MinPosition + ii_pagesize THEN

This.Position = MinPosition
ELSE

This.Position = This.Position - ii_pagesize
END IF

Event ID Objects

pbm_sbnpageup HScrollBar, HTrackBar

PageRight

254 PocketBuilder

See also LineLeft
PageDown
PageRight
PageUp

PageRight
Description Occurs when the open space to the right of the scroll box is clicked.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a horizontal scroll bar, nothing happens unless you
have scripts that change the scroll bar’s Position property:

• For the scroll bar arrows, use the LineLeft and LineRight events.

• For clicks in the scroll bar background above and below the thumb, use the
PageLeft and Right event.

• For dragging the thumb itself, use the Moved event.

Examples This code in the PageRight event causes the thumb to move right when the user
clicks on the right arrow of the horizontal scroll bar (the page size is stored in
the instance variable ii_pagesize):

IF This.Position > &
This.MaxPosition - ii_pagesize THEN

This.Position = MaxPosition
ELSE

This.Position = This.Position + ii_pagesize
END IF

Event ID Objects

pbm_sbnpagedown HScrollBar, HTrackBar

Chapter 9 PowerScript Events

PowerScript Reference 255

See also LineRight
PageDown
PageLeft
PageUp

PageUp
Description Occurs when the user clicks in the open space above the scroll box (also called

the thumb).

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a vertical scroll bar, nothing happens unless you have
scripts that change the scroll bar’s Position property:

• For the scroll bar arrows, use the LineUp and LineDown events.

• For clicks in the scroll bar background above and below the thumb, use the
PageUp and PageDown events.

• For dragging the thumb itself, use the Moved event.

Examples Example 1 This code in the PageUp event causes the thumb to move up when
the user clicks on the up arrow of the vertical scroll bar (the page size is stored
in the instance variable ii_pagesize):

IF This.Position < &
This.MinPosition + ii_pagesize THEN

This.Position = MinPosition
ELSE

This.Position = This.Position - ii_pagesize
END IF

Event ID Objects

pbm_sbnpageup VScrollBar, VTrackBar

PictureSelected

256 PocketBuilder

Example 2 This example changes the position of the scroll box by a
predetermined page size stored in the instance variable ii_pagesize and scrolls
backwards through a DataWindow control 10 rows for each page:

long ll_currow, ll_prevrow
This.Position = This.Position - ii_pagesize
ll_currow = dw_1.GetRow()
ll_prevrow = ll_currow - 10
dw_1.ScrollToRow(ll_prevrow)
dw_1.SetRow(ll_prevrow)

See also LineUp
PageDown
PageLeft
PageRight

PictureSelected
Description Occurs when the user selects a bitmap in the RichTextEdit control by

double-clicking it or pressing Enter after clicking it.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

PipeEnd
Description Occurs when pipeline processing is completed.

Event ID Objects

pbm_renpictureselected RichTextEdit

Chapter 9 PowerScript Events

PowerScript Reference 257

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

PipeMeter
Description Occurs during pipeline processing after each block of rows is read or written.

The Commit factor specified for the Pipeline in the Pipeline painter determines
the size of each block.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

PipeStart
Description Occurs when pipeline processing begins.

Event ID

Arguments None

Event ID Objects

pbm_pipeend Pipeline

Event ID Objects

pbm_pipemeter Pipeline

Event ID Objects

pbm_pipestart Pipeline

PrintFooter

258 PocketBuilder

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

PrintFooter
Description Occurs when the footer of a page of the document in the RichTextEdit control

is about to be printed.

Event ID

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing
1 Do not print the header for the current page

PrintHeader
Description Occurs when the header of a page of the document in the RichTextEdit control

is about to be printed.

Event ID

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing
1 Do not print the header for the current page

Event ID Objects

pbm_renprintfooter RichTextEdit

Event ID Objects

pbm_renprintheader RichTextEdit

Chapter 9 PowerScript Events

PowerScript Reference 259

PropertyChanged
Description Occurs after the OLE server changes the value of a property of the OLE object.

Event ID

Return codes None (do not use a RETURN statement)

PropertyRequestEdit
Description Occurs when the OLE server is about to change the value of a property of the

object in the OLE control.

Event ID

Return codes None. Do not use a RETURN statement.

RButtonDown
The RButtonDown event has different arguments for different objects:

Event ID Objects

None OLE

Event ID Objects

None OLE

Object See

Controls and windows, except
RichTextEdit

Syntax 1

RichTextEdit control Syntax 2

RButtonDown

260 PocketBuilder

Syntax 1 For controls and windows, except RichTextEdit
Description For a window, occurs when the right mouse button is pressed in an unoccupied

area of the window (any area with no visible, enabled object). The window
event will occur if the cursor is over an invisible or disabled control.

PocketBuilder
On a Pocket PC device, tap and hold the stylus to trigger the RButtonDown
event.

For a control, occurs when the right mouse button is pressed on the control.

Event ID

Arguments

Event ID Objects

pbm_rbuttondown Windows and controls that can be placed on a window,
except RichTextEdit

Argument Description

flags UnsignedLong by value (the modifier keys and mouse
buttons that are pressed).

Values are:

• 1 — Left mouse button

• 2 — Right mouse button

• 4 — Shift key

• 8 — Ctrl key

• 16 — Middle mouse button

In the RButtonDown event, the right mouse button is
always pressed, so 2 is always summed in the value of
flags.

For an explanation of flags, see Syntax 2 of MouseMove
on page 241.

xpos Integer by value (the distance of the pointer from the left
edge of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of
the window’s workspace in pixels).

Chapter 9 PowerScript Events

PowerScript Reference 261

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples These statements in the RButtonDown script for the window display a pop-up
menu at the cursor position. Menu4 was created in the Menu painter and
includes a menu called m_language. Menu4 is not the menu for the active
window and therefore needs to be created. NewMenu is an instance of Menu4
(datatype Menu4):

Menu4 NewMenu
NewMenu = CREATE Menu4
NewMenu.m_language.PopMenu(xpos, ypos)

In a Multiple Document Interface (MDI) application, the arguments for
PopMenu need to specify coordinates relative to the MDI frame:

NewMenu.m_language.PopMenu(&
w_frame.PointerX(), w_frame.PointerY())

See also Clicked

Syntax 2 For RichTextEdit controls
Description Occurs when the user presses the right mouse button on the RichTextEdit

control and the control’s PopMenu property is set to false.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Event ID Objects

pbm_renrbuttondown RichTextEdit

RButtonUp

262 PocketBuilder

RButtonUp
Description Occurs when the right mouse button is released.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing
1 Prevent processing

RemoteExec
Description Occurs when a DDE client application has sent a command.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

RemoteHotLinkStart
Description Occurs when a DDE client application wants to start a hot link.

Event ID Objects

pbm_renrbuttonup RichTextEdit

Event ID Objects

pbm_ddeexecute Window

Chapter 9 PowerScript Events

PowerScript Reference 263

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

RemoteHotLinkStop
Description Occurs when a DDE client application wants to end a hot link.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

RemoteRequest
Description Occurs when a DDE client application requests data.

Event ID

Arguments None

Event ID Objects

pbm_ddeadvise Window

Event ID Objects

pbm_ddeunadvise Window

Event ID Objects

pbm_dderequest Window

RemoteSend

264 PocketBuilder

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

RemoteSend
Description Occurs when a DDE client application has sent data.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Rename
Description Occurs when the server application notifies the control that the object has been

renamed.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Event ID Objects

pbm_ddepoke Window

Event ID Objects

pbm_omnrename OLE

Chapter 9 PowerScript Events

PowerScript Reference 265

Resize
Description Occurs when the user or a script opens or resizes the client area of a window or

DataWindow control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Event ID Objects

pbm_dwnresize DataWindow

pbm_size Window

Argument Description

sizetype UnsignedLong by value. The values are:

• 0 — (SIZE_RESTORED) The window or DataWindow
has been resized, but it was not minimized or
maximized. The user might have dragged the borders or
a script might have called the Resize function.

• 1 — (SIZE_MINIMIZED) The window or
DataWindow has been minimized.

• 2 — (SIZE_MAXIMIZED) The window or
DataWindow has been maximized.

• 3 — (SIZE_MAXSHOW) This window is a pop-up
window and some other window in the application has
been restored to its former size (does not apply to
DataWindow controls).

• 4 — (SIZE_MAXHIDE) This window is a pop-up
window and some other window in the application has
been maximized (does not apply to DataWindow
controls).

newwidth Integer by value (the width of the client area of a window
or DataWindow control in PowerBuilder units).

newheight Integer by value (the height of the client area of a window
or DataWindow control in PowerBuilder units).

RightClicked

266 PocketBuilder

RightClicked
The RightClicked event has different arguments for different objects:

Syntax 1 For ListView and Tab controls
Description Occurs when the user clicks the right mouse button on the ListView control or

the tab portion of the Tab control.

PocketBuilder applications
In PocketBuilder applications, tap and hold the stylus to trigger the
RightClicked event.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in the display area of the Tab control, the tab page user
object gets an RButtonDown event rather than a RightClicked event for the Tab
control.

Examples This example for the RightClicked event of a ListView control displays a pop-
up menu when the user clicks the right mouse button:

// Declare a menu variable of type m_main

Object See

ListView and Tab control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnrclicked ListView

pbm_tcnrclicked Tab

Argument Description

index Integer by value (the index of the item or tab the user
clicked)

Chapter 9 PowerScript Events

PowerScript Reference 267

m_main m_lv_popmenu
// Create an instance of the menu variable
m_lv_popmenu = CREATE m_main
// Display menu at pointerposition
m_lv_popmenu.m_entry.PopMenu(Parent.PointerX(), &

Parent.PointerY())

See also Clicked
RightDoubleClicked

Syntax 2 For TreeView controls
Description Occurs when the user clicks the right mouse button on the TreeView control.

PocketBuilder applications
In PocketBuilder applications, tap and hold the stylus to trigger the
RightClicked event.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example for the RightClicked event of a TreeView control displays a
pop-up menu when the user clicks the right mouse button:

// Declare a menu variable of type m_main
m_main m_tv_popmenu

// Create an instance of the menu variable
m_tv_popmenu = CREATE m_main

Event ID Objects

pbm_tvnrclicked TreeView

Argument Description

handle Long by value (the handle of the item the user clicked)

RightDoubleClicked

268 PocketBuilder

// Display menu at pointer position
m_tv_popmenu.m_entry.PopMenu(Parent.PointerX(), &

Parent.PointerY())

See also Clicked
RightDoubleClicked

RightDoubleClicked
The RightDoubleClicked event has different arguments for different objects:

Syntax 1 For ListView and Tab controls
Description Occurs when the user double-clicks the right mouse button on the ListView

control or the tab portion of the Tab control.

Event ID

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Object See

ListView and Tab control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnrdoubleclicked ListView

pbm_tcnrdoubleclicked Tab

Chapter 9 PowerScript Events

PowerScript Reference 269

Syntax 2 For TreeView controls
Description Occurs when the user double-clicks the right mouse button on the TreeView

control.

Event ID

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Save
Description Occurs when the server application notifies the control that the data has been

saved.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Event ID Objects

pbm_tvnrdoubleclicked TreeView

Event ID Objects

pbm_omnsave OLE

SaveObject

270 PocketBuilder

SaveObject
Description Occurs when the server application saves the object in the control.

Event ID

Arguments None

Return codes Long. Return code: Ignored

ScanTriggered
Description Occurs when a scan operation is started.

Event ID

Arguments None.

Return codes None.

Usage Use this event with the ScanNoWait function and implement as an
asynchronous (continuous) scan.

Examples The following code in the ScanTriggered event implements continuous
scanning:

// Bar code trigger
// A scan event (typically read) has occured
int iRet
int itmp
string stmp

Event ID Objects

pbm_omnsaveobject OLE

Event ID Objects

None BarcodeScanner objects

Chapter 9 PowerScript Events

PowerScript Reference 271

lb_res.AddItem("==== Scan Triggered ====")
lb_res.AddItem("Data: " + this.ScannerName)
iRet = this.RetrieveData()
lb_res.AddItem("RetrieveData: " + string(iRet))

// ** Display the status **
choose case iRet

case 1
lb_res.AddItem("*SUCCESS*")

case -9
// common
lb_res.AddItem("*Incorrect State (aborted?)")

case -13
// common
lb_res.AddItem("*Timeout (benign)")

case -12
// common
lb_res.AddItem("*Read Cancelled")

// ** and the rare errors **
case -1

lb_res.AddItem("*ERR - General")
case -8

lb_res.AddItem("*ERR - Buffer Allocation")
case -10

lb_res.AddItem("*ERR - Device")
case -11

lb_res.AddItem("*ERR - Read Pending")
case else

lb_res.AddItem("*ERR - Other")
end choose

// ** Display the data **
if iRet = 1 then

// Data:
stmp = this.ScannedData
lb_res.AddItem("Data: " + stmp)
// Symbology:
itmp = this.ScannedSymbology
stmp = this.Decodername(itmp)
lb_res.AddItem("Symbology: " + string(itmp) + " : "&

+ stmp)
// TimeStamp:
stmp = STRING(this.ScannedTimeStamp, "hh:mm:ss")
lb_res.AddItem("TimeStamp: " + stmp)

end if

Selected

272 PocketBuilder

// ** Continue? **
if cbx_rearm.checked then

iRet = this.ScanNoWait()
lb_res.AddItem("ScanNoWait: " + string(iRet))

end if

lb_res.SelectItem(lb_res.totalitems())

See also ScanNoWait

Selected
Description Occurs when the user highlights an item on the menu using the arrow keys or

the mouse, without choosing it to be executed.

Event ID

Arguments None

Return codes None. (Do not use a RETURN statement.)

Usage You can use the Selected event to display MicroHelp for the menu item
(PowerBuilder only). One way to store the Help text is in the menu item’s Tag
property.

Examples This example uses the tag value of the current menu item to display Help text.
The function wf_SetMenuHelp takes the text passed (the tag) and assigns it to a
MultiLineEdit control. A Timer function and the Timer event are used to clear
the Help text.

This code in the Selected event calls the function that sets the text:

w_test.wf_SetMenuHelp(This.Tag)

Event ID Objects

None Menu

Chapter 9 PowerScript Events

PowerScript Reference 273

This code for the wf_SetMenuHelp function sets the text in the MultiLineEdit
mle_menuhelp; its argument is called menuhelpstring:

mle_menuhelp.Text = menuhelpstring
Timer(4)

This code in the Timer event clears the Help text and stops the timer:

w_test.wf_SetMenuHelp("")
Timer(0)

See also Clicked

SelectionChanged
The SelectionChanged event has different arguments for different objects:

Syntax 1 For Listboxes
Description Occurs when an item is selected in the control.

Event ID

Object See

DropDownListBox,
DropDownPictureListBox, ListBox,
PictureListBox controls

Syntax 1

Tab control Syntax 2

TreeView control Syntax 3

Event ID Objects

pbm_cbnselchange DropDownListBox, DropDownPictureListBox

pbm_lbnselchange ListBox, PictureListBox

SelectionChanged

274 PocketBuilder

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage For DropDownListBoxes, the SelectionChanged event applies to selections in
the drop-down portion of the control, not the edit box.

The SelectionChanged event occurs when the user clicks on any item in the list,
even if it is the currently selected item. When the user makes a selection using
the mouse, the Clicked (and if applicable the DoubleClicked event) occurs
after the SelectionChanged event.

Examples This example is for the lb_value ListBox in the window
w_graph_sheet_with_list (in the PowerBuilder Examples application). When
the user chooses values, they are graphed as series in the graph gr_1. The
MultiSelect property for the ListBox is set to true, so index has no effect. The
script checks all the items to see if they are selected:

integer itemcount,i,r
string ls_colname

gr_1.SetRedraw(FALSE)

// Clear out categories, series and data from graph
gr_1.Reset(All!)

// Loop through all selected values and
// create as many series as the user specified
FOR i = 1 to lb_value.TotalItems()

IF lb_value.State(i) = 1 THEN
ls_colname = lb_value.Text(i)

// Call window function to set up the graph
wf_set_a_series(ls_colname, ls_colname, &
lb_category.text(1))

END IF
NEXT
gr_1.SetRedraw(TRUE)

See also Clicked

Argument Description

index Integer by value (the index of the item that has become
selected)

Chapter 9 PowerScript Events

PowerScript Reference 275

Syntax 2 For Tab controls
Description Occurs when a tab is selected.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The SelectionChanged event occurs when the Tab control is created and the
initial selection is set.

See also Clicked
SelectionChanging

Syntax 3 For TreeView controls
Description Occurs when the item is selected in a TreeView control.

Event ID

Event ID Objects

pbm_tcnselchanged Tab

Argument Description

oldindex Integer by value (the index of the tab that was previously
selected)

newindex Integer by value (the index of the tab that has become
selected)

Event ID Objects

pbm_tvnselchanged TreeView

SelectionChanged

276 PocketBuilder

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The SelectionChanged event occurs after the SelectionChanging event.

Examples This example tracks items in the SelectionChanged event:

TreeViewIteml_tvinew, l_tviold

// get the treeview item that was the old selection
This.GetItem(oldhandle, l_tviold)

// get the treeview item that is currently selected
This.GetItem(newhandle, l_tvinew)

// Display the labels for the two items in sle_get
sle_get.Text = "Selection changed from " &

+ String(l_tviold.Label) + " to " &
+ String(l_tvinew.Label)

See also Clicked
SelectionChanging

Argument Description

oldhandle Long by value (the handle of the previously selected item)

newhandle Long by value (the handle of the currently selected item)

Chapter 9 PowerScript Events

PowerScript Reference 277

SelectionChanging
The SelectionChanging event has different arguments for different objects:

Syntax 1 For Tab controls
Description Occurs when another tab is about to be selected.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow the selection to change
1 Prevent the selection from changing

Usage Use the SelectionChanging event to prevent the selection from changing or to
do processing for the newly selected tab page before it becomes visible. If
CreateOnDemand is true and this is the first time the tab page is selected, the
controls on the page do not exist yet, and you cannot refer to them in the event
script.

Examples When the user selects a tab, this code sizes the DataWindow control on the tab
page to match the size of another DataWindow control. The resizing happens
before the tab page becomes visible. This example is from tab_uo in the
w_phone_dir window in the PowerBuilder Examples:

u_tab_dirluo_Tab
luo_Tab = This.Control[newindex]

Object See

Tab control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_tcnselchanging Tab

Argument Description

oldindex Integer by value (the index of the currently selected tab)

newindex Integer by value (the index of the tab that is about to be
selected)

SelectionChanging

278 PocketBuilder

luo_Tab.dw_dir.Height = dw_list.Height
luo_Tab.dw_dir.Width = dw_list.Width

See also Clicked
SelectionChanged

Syntax 2 For TreeView controls
Description Occurs when the selection is about to change in the TreeView control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow the selection to change
1 Prevent the selection from changing

Usage The SelectionChanging event occurs before the SelectionChanged event.

Examples This example displays the status of changing TreeView items in a
SingleLineEdit:

TreeViewItem l_tvinew, l_tviold

// Get TreeViewItem that was the old selection
This.GetItem(oldhandle, l_tviold)

// Get TreeViewItem that is currently selected
This.GetItem(newhandle, l_tvinew)

Event ID Objects

pbm_tvnselchanging TreeView

Argument Description

oldhandle Long by value (the handle of the currently selected item)

newhandle Long by value (the handle of the item that is about to be
selected)

Chapter 9 PowerScript Events

PowerScript Reference 279

//Display the labels for the two items in display
sle_status.Text = "Selection changed from " &

+ String(l_tviold.Label) + " to " &
+ String(l_tvinew.Label)

See also Clicked
SelectionChanged

Show
Description Occurs just before the window is displayed.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Show event occurs when the window is opened.

See also Activate
Hide
Open

Event ID Objects

pbm_showwindow Window

Argument Description

show Boolean by value (whether the window is being shown).
The value is always true.

status Long by value (the status of the window).

Values are:

• 0 — The current window is the only one affected.

• 1 — The window’s parent is also being minimized or a
pop-up window is being hidden.

• 3 — The window’s parent is also being displayed or
maximized or a pop-up window is being shown.

SipUp

280 PocketBuilder

SipUp
Description Occurs when the Soft Input Panel (SIP) is opened.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Because flags is a sum, you can determine the SIP state and status by
subtracting the largest values one by one and checking the value that remains.
For example:

• If flags is 4, the SIP is locked (4), but not docked or visible.

• If flags is 5, the SIP is locked (4) and visible (1), but not docked.

• If flags is 7, the SIP is locked (4), docked (2), and visible (1).

Examples In the window’s SipUp event, this code returns the SIP type:

SIPIMType sType
sType = GetSIPType()

See also SipDown

Event ID Objects

pbm_sipup Window

Argument Description

flags UnsignedLong by value.

Values are:

• 0 — The SIP is off or not visible

• 1 — The SIP is visible

• 2 — The SIP is docked

• 4 — The SIP is locked and the user cannot change
its visibility

Flags is the sum of all SIP states and statuses.

Chapter 9 PowerScript Events

PowerScript Reference 281

SipDown
Description Occurs when the Soft Input Panel (SIP) is closed.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Because flags is a sum, you can determine the SIP state and status by
subtracting the largest values one by one and checking the value that remains.
For example:

• If flags is 4, the SIP is locked (4), but not docked or visible.

• If flags is 5, the SIP is locked (4) and visible (1), but not docked.

• If flags is 7, the SIP is locked (4), docked (2), and visible (1).

Examples In the window’s SipDown event, this code gets the coordinates of the window
and displays them in a multiline edit box:

String strDisplay=""
int rc
long left = 0, top = 0, right = 0, bottom = 0
rc = GetDeskRect(left, top, right, bottom)

Event ID Objects

pbm_sipdown Window

Argument Description

flags UnsignedLong by value.

Values are:

• 0 — The SIP is off or not visible

• 1 — The SIP is visible

• 2 — The SIP is docked

• 4 — The SIP is locked and the user cannot change
its visibility

Flags is the sum of all SIP states and statuses.

Snapped

282 PocketBuilder

strDisplay +=("Desk RECT:~r~n~t Left = " +string(left)&
+"~r~n~t Top=" + String(top) + "~r~n~t Right = " &
+ String(right)+ "~r~n~t Bottom = " +

String(bottom))mle_1.text = strDisplay

See also SipUp

Snapped
Description The Snapped event occurs after an image has been captured by a digital camera

device.

Event ID

Arguments

Return codes None (do not use a RETURN statement)

Usage Coding this event is particularly useful for PocketBuilder applications using
the HTC camera. The HTC camera uses IA Camera Wizard software to capture
images. (This software can be installed with the camera on the Windows CE
device.) The IA Camera Wizard captures the images, and is responsible for
notifying the PocketBuilder application of the capture through the Snapped
event. It passes back the name of the file containing the image in the filename
argument. Since the wizard takes care of the image capturing, the
image-capturing functions on the camera object are not used.

You can also code this event for other camera devices supported by
PocketBuilder, such as the HP and VEO digital cameras. For these cameras, the
value in the filename argument for the Snapped event is the value that you
assign in the CaptureImage function call on the current Camera object.

Event ID Objects

None Camera

Argument Description

filename String by value. The value passed in this argument is the
name of the file that stores the snapped image.

Chapter 9 PowerScript Events

PowerScript Reference 283

Examples The following code in a Snapped event adds notification on a new line in a
multiline edit box that an image has been captured:

mle_1.text = mle_1.text + "~r~npicture file name is "&
 + filename + "."

Sort
The Sort event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs for each comparison when the ListView is being sorted.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

-1 index1 is less than index2
0 index1 is equal to index2
1 index1 is greater than index2

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnsort ListView

Argument Description

index1 Integer by value (the index of one item being compared
during a sorting operation)

index2 Integer by value (the index of the second item being
compared)

column Integer by value (the number of the column containing the
items being sorted)

Sort

284 PocketBuilder

Usage The Sort event allows you to fine-tune the sort order of the items being sorted.
You can examine the properties of each item and tell the Sort function how to
sort them by selecting one of the return codes.

You typically use the Sort event when you want to sort ListView items based
on multiple criteria such as a PictureIndex and Label.

The Sort event occurs if you call the Sort event, or when you call the Sort
function using the UserDefinedSort! argument.

Examples This example sorts ListView items according to PictureIndex and Label sorting
by PictureIndex first, and then by label:

ListViewItem lvi, lvi2

This.GetItem(index1, lvi)
This.GetItem(index2, lvi2)

IF lvi.PictureIndex > lvi2.PictureIndex THEN
RETURN 1

ELSEIF lvi.PictureIndex < lvi2.PictureIndex THEN
RETURN -1

ELSEIF lvi.label > lvi2.label THEN
RETURN 1

ELSEIF lvi.label < lvi2.label THEN
RETURN -1

ELSE
RETURN 0

END IF

Syntax 2 For TreeView controls
Description Occurs for each comparison when the TreeView is being sorted.

Event ID
Event ID Objects

pbm_tvnsort TreeView

Chapter 9 PowerScript Events

PowerScript Reference 285

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

-1 handle1 is less than handle2
0 handle1 is equal to handle2
1 handle1 is greater than handle2

Usage The Sort event allows you to fine-tune the sort order of the items being sorted.
You can examine the properties of each item and tell the Sort function how to
sort them by selecting one of the return codes.

You typically use the Sort event when you want to sort TreeView items based
on multiple criteria such as a PictureIndex and Label.

The Sort event occurs if you call the Sort event, or when you call the Sort
function using the UserDefinedSort! argument.

Examples This example sorts TreeView items according to PictureIndex and Label
sorting by PictureIndex first, then by label:

TreeViewItem tvi, tvi2

This.GetItem(handle1, tvi)
This.GetItem(handle2, tvi2)

IF tvi.PictureIndex > tvi2.PictureIndex THEN
RETURN 1

ELSEIF tvi.PictureIndex < tvi2.PictureIndex THEN
RETURN -1

ELSEIF tvi.Label > tvi2.Label THEN
RETURN 1

ELSEIF tvi.Label < tvi2.Label THEN
RETURN -1

ELSE
RETURN 0

END IF

Argument Description

handle1 Long by value (the handle of one item being compared
during a sorting operation)

handle2 Long by value (the handle of the second item being
compared)

SystemError

286 PocketBuilder

SystemError
Description Occurs when a serious execution time error occurs (such as trying to open a

nonexistent window) if the error is not handled in a try-catch block.

Event ID

Arguments None

Return codes None. (Do not use a RETURN statement.)

Usage If there is no script for the SystemError event, PocketBuilder displays a
message box with the PocketBuilder error number and error message text.

For errors involving external objects and DataWindows, you can handle the
error in the ExternalException or Error events and prevent the SystemError
event from occurring. The ExternalException and Error events are maintained
for backward compatibility.

You can prevent the SystemError event from occurring by handling errors in
try-catch blocks. Well-designed exception-handling code gives application
users a better chance to recover from error conditions and run the application
without interruption. For information about exception handling, see the
Resource Guide.

When a SystemError event occurs, your current script terminates and your
system might become unstable. It is generally not a good idea to continue
running the application, but you can use the SystemError event script to clean
up and disconnect from the DBMS before closing the application.

Examples This statement in the SystemError event halts the application immediately:

HALT CLOSE

See also Error
ExternalException
TRY...CATCH...FINALLY...END TRY

Event ID Objects

None Application

Chapter 9 PowerScript Events

PowerScript Reference 287

SystemKey
Description Occurs when the insertion point is not in a line edit, and the user presses the Alt

key (alone or with another key).

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Pressing the Ctrl key prevents the SystemKey event from firing when the Alt
key is pressed.

Examples This example displays the name of the key that was pressed with the Alt key:

string ls_key

CHOOSE CASE key

CASE KeyF1!
ls_key = "F1"

CASE KeyA!
ls_key = "A"

CASE KeyF2!
ls_key = "F2"

END CHOOSE

Event ID Objects

pbm_syskeydown Window

Argument Description

key KeyCode by value. A value of the KeyCode enumerated datatype
indicating the key that was pressed, for example, KeyA! or KeyF1!.

keyflags UnsignedLong by value (the modifier keys that were pressed with the
key). The only modifier key is the Shift key.

Timer

288 PocketBuilder

This example causes a beep if the user presses Alt+Shift+F1.

IF keyflags = 1 THEN
IF key = KeyF1 THEN

Beep(1)
END IF

END IF

See also Key

Timer
Description Occurs when a specified number of seconds elapses after the Start or Timer

function has been called.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples These examples show how to use a timing object’s Timer event and a window’s
Timer event.

Using a timing object This example uses a timing object to refresh a list of
customers retrieved from a database at specified intervals. The main window
of the application, w_main, contains a DataWindow control displaying a list of
customers and two buttons, Start Timer and Retrieve. The window’s Open
event connects to the database:

CONNECT using SQLCA;

IF sqlca.sqlcode <> 0 THEN
MessageBox("Database Connection", &

sqlca.sqlerrtext)
END IF

Event ID Objects

pbm_timer Timing or Window

Chapter 9 PowerScript Events

PowerScript Reference 289

The following code in the clicked event of the Start Timer button creates an
instance of a timing object, nvo_timer, and opens a response window to obtain
a timing interval. Then, it starts the timer with the specified interval:

MyTimer = CREATE nvo_timer
open(w_interval)
MyTimer.Start(d_interval)

MessageBox("Timer", "Timer Started. Interval is " &
+ string(MyTimer.interval) + " seconds")

In the timing object’s Constructor event, the following code creates an instance
of a datastore:

ds_datastore = CREATE datastore

The timing object’s Timer event calls an object-level function called
refresh_custlist that refreshes the datastore. This is the code for refresh_custlist:

long ll_rowcount

ds_datastore.dataobject = "d_customers"
ds_datastore.SetTransObject (SQLCA)
ll_rowcount = ds_datastore.Retrieve()

RETURN ll_rowcount

The Retrieve button on w_main simply shares the data from the DataStore with
the DataWindow control:

ds_datastore.ShareData(dw_1)

Using a window object This example causes the current time to be
displayed in a StaticText control in a window. Calling Timer in the window’s
Open event script starts the timer. The script for the Timer event refreshes the
displayed time.

In the window’s Open event script, this code displays the time initially and
starts the timer:

st_time.Text = String(Now(), "hh:mm")
Timer(60)

In the window’s Timer event, which is triggered every minute, this code
displays the current time in the StaticText st_time:

st_time.Text = String(Now(), "hh:mm")

ToolbarMoved

290 PocketBuilder

ToolbarMoved
Description Occurs in an MDI frame window when the user moves any FrameBar or

SheetBar.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

ViewChange
Description Occurs when the server application notifies the control that the view shown to

the user has changed.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Event ID Objects

pbm_tbnmoved Window

Event ID Objects

pbm_omnviewchange OLE

PowerScript Reference 291

C H A P T E R 1 0 PowerScript Functions

About this chapter This chapter provides syntax, descriptions, and examples for PowerScript
functions.

Contents The functions are listed alphabetically.

See also For information about functions that apply to DataWindows or
DataStores, see also the DataWindow Reference. Methods that apply to
DataWindows, but not to other PocketBuilder controls, are listed only in
the DataWindow Reference.

Abs

292 PocketBuilder

Abs
Description Calculates the absolute value of a number.

Syntax Abs (n)

Return value The datatype of n. Returns the absolute value of n. If n is null, Abs returns null.

Examples All these statements set num to 4:

integer i, num

i = 4
num = Abs(i)
num = Abs(4)
num = Abs(+4)
num = Abs(-4)

This statement returns 4.2:

Abs(-4.2)

See also Abs method for DataWindows in the DataWindow Reference or online Help

AcceptCall
Description Accepts a new incoming call.

Applies to PhoneCall objects

Argument Description

n The number for which you want the absolute value

Chapter 10 PowerScript Functions

PowerScript Reference 293

Syntax objectname.AcceptCall ()

Return value Integer. Returns 1 for success and a negative value if an error occurs.

Examples In the following example, the g_phInit global variable is set to 1 in the pcall_1
object’s constructor. If the call has been initialized, the AcceptCall function is
called. The End Call button is enabled and the New Call button is disabled:

// Global variable: Long g_phInit = 0
integer li_ret
if (g_phInit > 0) then

li_ret = pcall_1.AcceptCall()
// enable buttons
cb_endcall.enabled = true
cb_newcall.enabled = false

else
sle_1.text = "Call not initialized"

end if

See also AllowReceivingCalls
DropCall
MakeCall
SetHold
SetMute
SetRingTone

ACos
Description Calculates the arccosine of an angle.

Syntax ACos (n)

Argument Description

objectname The name of the PhoneCall object that will accept a call.

Argument Description

n The ratio of the lengths of two sides of a triangle for which you want
a corresponding angle (in radians). The ratio must be a value
between -1 and 1.

Activate

294 PocketBuilder

Return value Double. Returns the arccosine of n.

Examples This statement returns 0:

ACos(1)

This statement returns 3.141593 (rounded to six places):

ACos(-1)

This statement returns 1.000000 (rounded to six places):

ACos(.540302)

This code in the Clicked event of a button catches a runtime error that occurs
when an arccosine is taken for a user-entered value—passed in a variable—that
is outside of the permitted range:

Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

MessageBox("Runtime Error", er.getmessage())
END TRY

See also Cos
ASin
ATan
ACos method for DataWindows in the DataWindow Reference or online Help

Activate
Description Activates the object in an OLE container, allowing the user to work with the

object using the server’s commands.

Applies to OLE controls and OLE DWObjects (objects within a DataWindow object that
is within a DataWindow control)

Syntax objectref.Activate (activationtype)

Return value Integer. Returns 0 if it succeeds and a negative value if an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 295

Add
Description Adds an appointment, contact, or task as a Pocket Outlook entry.

Applies to POOM objects

Syntax Integer objectname.Add (entity)

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Usage A user must be logged in to a POOM object to add an appointment, contact, or
task. For a POOMTask object, the StartDate property must be set before you
call Add. The Body and BodyInk properties cannot be set until after the new
object has been added to the repository, but their values are updated in the
repository implicitly when either value is set.

Examples The following example adds an appointment to the depository, adds body text,
and displays the appointment in the Pocket PC Calendar:

// Global variable: g_poom
integer li_rc
POOMAppointment appt
DateTime dt

Argument Description

objectname The name of the POOM object

entity Entity of type POOMAppointment, POOMContact, or
POOMTask

AddCategory

296 PocketBuilder

Date ld_date
Time lt_time

appt = CREATE POOMAppointment
appt.Subject = "All Hands"
appt.Location = "Auditorium"

// get the start and end times from EditMasks
ld_date = Date(em_startdate.Text)
lt_time = Time(em_starttime.Text)
dt = DateTime(ld_date, lt_time)
appt.appointmentStart = dt

ld_date = Date(em_enddate.Text)
lt_time = Time(em_endtime.Text)
dt = DateTime(ld_date, lt_time)
li_rc = g_poom.Add(appt)

// Now add the body of the appointment
appt.Body = "Agenda: ~r~n Quarterly results " &

 + "~r~n Success stories" &
 + "~r~n Organizational changes"

// Display the appointment
appt.display()

See also Login
Remove

AddCategory
Description Adds a new category to the category axis of a graph. AddCategory is for a

category axis whose datatype is string.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects because their data comes directly from the DataWindow.

Chapter 10 PowerScript Functions

PowerScript Reference 297

Syntax controlname.AddCategory (categoryname)

Return value Integer. Returns the number assigned to the category if it succeeds. If
categoryname already exists as a label on the category axis, AddCategory
returns the number of the existing category. Returns -1 if an error occurs. If any
argument’s value is null, AddCategory returns null.

Usage AddCategory adds a category to the end of the category axis. The category
becomes an empty slot in each series to which you can assign a data point. A
tick mark exists on the category axis for all the categories associated with the
graph.

When the datatype of the category axis is string, you can specify the empty
string ("") as the category name. However, because category names must be
unique, there can be only one category with that name. Category names are
unique if they have different capitalization.

To add categories when the axis datatype is date, DateTime, number, or time,
use InsertCategory. To insert a category in the middle of a series, use
InsertCategory. You can also use InsertCategory to add a category to the end of
a series, as AddCategory does, but it requires an additional argument to do so.

To add data to a series in the graph, use the AddData or InsertData function. You
can add a data value and put it in a new category, or you can add or change data
in an existing category. To add a series to the graph, use the AddSeries function.

Examples This statement adds a category named PCs to the graph gr_product_data:

gr_product_data.AddCategory("PCs")

See also AddData
AddSeries
DeleteData
DeleteSeries

Argument Description

controlname The name of the graph to which you want to add a category.

categoryname A string whose value is the name of the category you want to
add to controlname. The category will appear as a label on the
category axis.

AddColumn

298 PocketBuilder

AddColumn
Description Adds a column with a specified label, alignment, and width.

Applies to ListView controls

Syntax listviewname.AddColumn (label, alignment, width)

Return value Integer. Returns the column index if it succeeds and -1 if an error occurs.

Usage The AddColumn function adds a column at the end of the existing columns
unlike the InsertColumn function which inserts a column at a specified location.

Use SetItem and SetColumn to change the values for existing items. To add new
items, use AddItem. To create columns for the report view of a ListView
control, use AddColumn.

Examples This script for a ListView event creates three columns in a ListView control:

integer index

FOR index = 3 to 25
 This.AddItem ("Category " + String (index), 1)
NEXT

This.AddColumn("Name" , Left! , 1000)
This.AddColumn("Size" , Left! , 400)
This.AddColumn("Date" , Left! , 300)

Argument Description

listviewname The name of the ListView control to which you want to
add a column.

label A string whose value is the name of the column you are
adding.

alignment A value of the enumerated datatype Alignment specifying
the alignment of the column you are adding. Values are:

• Center!

• Justify!

• Left!

• Right!

width An integer whose value is the width of the column you are
adding, in PowerBuilder units.

Chapter 10 PowerScript Functions

PowerScript Reference 299

See also AddItem
DeleteColumn
InsertColumn

AddData
Adds a value to the end of a series of a graph. The syntax you use depends on
the type of graph.

Syntax 1 For all graph types except scatter
Description Adds a data point to a series in a graph. Use Syntax 1 for any graph type except

scatter graphs.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects because their data comes directly from the DataWindow.

Syntax controlname.AddData (seriesnumber, datavalue {, categoryvalue })

To add data to Use

Any graph type except scatter Syntax 1

Scatter graphs Syntax 2

Argument Description

controlname The name of the graph in which you want to add data to a
series. The graph’s type should not be scatter.

seriesnumber The number that identifies the series to which you want to add
data.

datavalue The value of the data you want to add.

categoryvalue
(optional)

The category for this data value on the category axis. The
datatype of the categoryvalue should match the datatype of
the category axis. In most cases you should include
categoryvalue. Otherwise, an uncategorized value will be
added to the series.

AddData

300 PocketBuilder

Return value Long. Returns the position of the data value in the series if it succeeds and -1 if
an error occurs. If any argument’s value is null, AddData returns null.

Usage When you use Syntax 1, AddData adds a value to the end of the specified series
or to the specified category, if it already exists. If categoryvalue is a new
category, the category is added to the end of the series with a label for the data
point’s tick mark. If the axis is sorted, the new category is incorporated into the
existing order. If the category already exists, the new data replaces the old data
at the data point for the category.

For example, if the third category label specified in series 1 is March and you
add data in series 4 and specify the category label March, the data is added at
data point 3 in series 4.

When the axis datatype is string, you can specify the empty string ("") as the
category name. Because category names must be unique, there can be only one
category with a blank name. If you use AddData to add data without specifying
a category, you will have data points without categories, which is not the same
as a category whose name is "".

To insert data in the middle of a series, use InsertData. You can also use
InsertData to add data to the end of a series, as AddData does, although it
requires an additional argument to do it.

For a comparison of AddData, InsertData, and ModifyData, see Equivalent
Syntax in InsertData.

Examples These statements add a data value of 1250 to the series named Costs and assign
the data point the category label Jan in the graph gr_product_data:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.AddData(SeriesNbr, 1250, "Jan")

These statements add a data value of 1250 to the end of the series named Costs
in the graph gr_product_data but do not assign the data point to a category:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.AddData(SeriesNbr, 1250)

See also DeleteData
FindSeries
GetData
InsertData

Chapter 10 PowerScript Functions

PowerScript Reference 301

Syntax 2 For scatter graphs
Description Adds a data point to a series in a scatter graph.

Syntax controlname.AddData (seriesnumber, xvalue, yvalue)

Return value Long. Returns the position of the data value in the series if it succeeds and -1 if
an error occurs. If any argument’s value is null, AddData returns null.

Examples These statements add the x and y values of a data point to the series named
Costs in the scatter graph gr_sales_yr:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = gr_sales_yr.FindSeries("Costs")
gr_sales_yr.AddData(SeriesNbr, 12, 3)

See also DeleteData
FindSeries
GetData

AddEntry
Description Adds an entry to a dialing directory.

Argument Description

controlname The name of the scatter graph in which you want to add data
to a series. The graph’s type should be scatter.

seriesnumber The number that identifies the series to which you want to add
data.

xvalue The x value of the data point you want to add.

yvalue The y value of the data point you want to add.

AddItem

302 PocketBuilder

Function not implemented
The AddEntry function is not implemented in PocketBuilder 2.0. It is reserved
for future use.

Applies to DialingDirectory objects

Syntax objectname.AddEntry (entry)

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Not implemented error

-3 Supporting DLL not loaded

-4 Error in the passed-in arguments

-5 Initialization error

See also AddRecipient
UpdateEntry

AddItem
Adds an item to a list control.

Argument Description

objectname The name of the DialingDirectory object to which you want to add
an entry.

entry A DialingDirectoryEntry structure that you want to add to the
directory. The DataSource property of the object must contain a
positive non-zero value.

To add an item to Use

A ListBox or DropDownListBox control Syntax 1

A PictureListBox or DropDownPictureListBox control Syntax 2

A ListView control when you only need to specify the item
name and picture index

Syntax 3

A ListView control when you need to specify all the
properties for the item

Syntax 4

A toolbar item to the Toolbar control Syntax 5

Chapter 10 PowerScript Functions

PowerScript Reference 303

Syntax 1 For ListBox and DropDownListBox controls
Description Adds a new item to the list of values in a list box.

Applies to ListBox and DropDownListBox controls

Syntax listboxname.AddItem (item)

Return value Integer. Returns the position of the new item. If the list is sorted, the position
returned is the position of the item after the list is sorted. Returns -1 if it fails.
If any argument’s value is null, AddItem returns null.

Usage If the ListBox already contains items, AddItem adds the new item to the end of
the list. If the list is sorted (its Sorted property is true), PocketBuilder re-sorts
the list after the item is added.

A list can have duplicate items. Items in the list are tracked by their position in
the list, not their text.

AddItem and InsertItem do not update the Items property array. You can use
FindItem to find items added during execution.

Adding many items to a list with a horizontal scrollbar If a ListBox or the
ListBox portion of a DropDownListBox will have a large number of items and
you want to display an HScrollBar, call the SetRedraw function to turn Redraw
off, add the items, call SetRedraw again to set Redraw on, and then set the
HScrollBar property to true. Otherwise, it may take longer than expected to add
the items.

Examples This example adds the item Edit File to the ListBox lb_Actions:

integer rownbr
string s

s = "Edit File"
rownbr = lb_Actions.AddItem(s)

Argument Description

listboxname The name of the ListBox or DropDownListBox in which you want
to add an item

item A string whose value is the text of the item you want to add

AddItem

304 PocketBuilder

If lb_Actions contains Add and Run and the Sorted property is false, the
statement above returns 3 (because Edit File becomes the third and last item).
If the Sorted property is true, the statement above returns 2 (because Edit File
becomes the second item after the list is sorted alphabetically).

See also DeleteItem
FindItem
InsertItem
Reset
TotalItems

Syntax 2 For PictureListBox controls
Description Adds a new item to the list of values in a picture list box.

Applies to PictureListBox controls

Syntax listboxname.AddItem (item {, pictureindex })

Return value Integer. Returns the position of the new item. If the list is sorted, the position
returned is the position of the item after the list is sorted. Returns -1 if it fails.
If any argument’s value is null, AddItem returns null.

Usage If you do not specify a picture index, the newly added item will not have a
picture.

If you specify a picture index that does not exist, that number is still stored with
the picture. If you add pictures to the picture array so that the index becomes
valid, the item will then show the corresponding picture.

For additional notes about items in list boxes, see Syntax 1.

Examples This example adds the item Cardinal to the PictureListBox plb_birds:

integer li_pic, li_position

Argument Description

listboxname The name of the PictureListBox in which you want to add an item

item A string whose value is the text of the item you want to add

pictureindex
(optional)

An integer specifying the index of the picture you want to associate
with the newly added item

Chapter 10 PowerScript Functions

PowerScript Reference 305

string ls_name, ls_pic

li_pic = plb_birds.AddPicture("c:\pics\cardinal.bmp")
ls_name = "Cardinal"
li_position = plb_birds.AddItem(ls_name, li_pic)

If plb_birds contains Robin and Swallow and the Sorted property is false, the
AddItem function above returns 3 because Cardinal becomes the third and last
item. If the Sorted property is true, AddItem returns 1 because Cardinal is first
when the list is sorted alphabetically.

See also DeleteItem
FindItem
InsertItem
Reset
TotalItems

Syntax 3 For ListView controls
Description Adds an item to a ListView control.

Applies to ListView controls

Syntax listviewname.AddItem (label, pictureindex)

Return value Integer. Returns the index of the item if it succeeds and -1 if an error occurs.

Usage Use this syntax if you only need to specify the label and picture index of the
item you are adding to the ListView. If you need to specify more than the label
and picture index, use Syntax 4.

Argument Description

listviewname The name of the ListView control to which you are adding a
picture or item

label The name of the item you are adding

pictureindex The index of the picture you want to associate with the newly
added item

AddItem

306 PocketBuilder

Examples This example uses AddItem in the Constructor event to add three items to a
ListView control:

lv_1.AddItem("Sanyo" , 1)
lv_1.AddItem("Onkyo" , 1)
lv_1.AddItem("Aiwa" , 1)

See also DeleteItem
FindItem
InsertItem
Reset
TotalItems

Syntax 4 For ListView controls
Description Adds an item to a ListView control by referencing all the attributes in the

ListView item.

Applies to ListView controls

Syntax listviewname.AddItem (item)

Return value Integer. Returns the index of the item if it succeeds and -1 if an error occurs.

Usage Use this syntax if you need to specify all the properties for the item you want
to add. If you only need to specify the label and picture index, use Syntax 3.

Examples This example uses AddItem in a CommandButton Clicked event to add a
ListView item for each click:

count = count + 1
listviewitem l_lvi
l_lvi.PictureIndex = 2
l_lvi.Label = "Item "+ string(count)
lv_1.AddItem(l_lvi)

Argument Description

listviewname The name of the List View control to which you are adding a
picture or item

item The ListViewItem variable containing properties of the item
you are adding

Chapter 10 PowerScript Functions

PowerScript Reference 307

See also DeleteItem
FindItem
InsertItem
Reset
TotalItems

Syntax 5 For Toolbar controls
Description Adds a toolbar item to the toolbar control.

Applies to Toolbar controls

Syntax Integer controlname.AddItem (item)

Return value Integer. Returns the index of the item that you add to the toolbar.

Examples The following example adds two toolbar items to the next available positions
in the toolbar:

Integer li_rtn
ToolbarItem myItem
myItem.ItemPictureIndex = 1
myItem.ItemStyle = stylecheck!
li_rtn = tlbr_mytoolbar.AddItem(myItem)
myItem.ItemPictureIndex = 2
myItem.ItemStyle = stylebutton!
li_rtn = tlbr_mytoolbar.AddItem(myItem)

See also DeleteItem
InsertItem

Argument Description

controlname The name of the toolbar control

item Object of type ToolbarItem that you want to add to the toolbar

AddLargePicture

308 PocketBuilder

AddLargePicture
Description Adds a bitmap, icon, or cursor to the large image list.

Applies to ListView controls

Syntax listviewname.AddLargePicture (picturename)

Return value Integer. Returns the picture index if it succeeds and -1 if an error occurs.

Usage When you add a large picture to a ListView, it is given the next available
picture index in the ListView. For example, if your ListView has two pictures,
the next picture you add will be assigned picture index number 3.

Before you add large pictures, you can specify scaling for the pictures by
setting the LargePictureWidth and LargePictureHeight properties. The
dimensions in effect when you add the first picture determine the scaling for all
pictures. Changing the property values after you add pictures has no effect.

If you do not specify values for LargePictureWidth and LargePictureHeight
before you add pictures, the dimensions of the first image determine the scaling
for all pictures you add.

When you add a bitmap, specify the color in the bitmap that will be transparent
by setting the LargePictureMaskColor property before calling
AddLargePicture. You can change the LargePictureMaskColor property
between calls.

Examples This example adds the file folder.ico"to the large picture index of the ListView
lv_files:

// Add large picture
integer index
index = lv_files.AddLargePicture("folder.ico")

See also DeleteLargePicture

Argument Description

listviewname The name of the ListView control to which you are adding
a bitmap, icon, or cursor

picturename The name of the bitmap, icon, or cursor you are adding to
the large image list

Chapter 10 PowerScript Functions

PowerScript Reference 309

AddPicture
Adds a bitmap, icon, or cursor to a control.

Syntax 1 For PictureListBox and TreeView controls
Description Adds a bitmap, icon, or cursor to the main image list.

Applies to PictureListBox and TreeView controls

Syntax controlname.AddPicture (picturename)

Return value Integer. Returns the picture index number if it succeeds and -1 if an error
occurs.

Usage The picture is assigned an index in the order in which it is added to the control.

Adding pictures during execution does not update the PictureName property
array. Because the picture is added at the end of the list, the return value from
AddPicture is the number of pictures associated with the control.

Before you add pictures, you can specify scaling for the pictures by setting the
PictureWidth and PictureHeight properties. The dimensions in effect when you
add the first picture determine the scaling for all pictures. Changing the
property values after you add pictures has no effect.

If you do not specify values for PictureWidth and PictureHeight before you add
pictures, the dimensions of the first image determine the scaling for all pictures
you add.

To add a picture to Use

A PictureListBox or TreeView control Syntax 1

A Toolbar control Syntax 2

Argument Description

controlname The name of the control to which you want to add an icon, cursor,
or bitmap to the main image list

picturename The name of the icon, cursor, or bitmap you want to add to the main
image list

AddPicture

310 PocketBuilder

When a you add a bitmap, specify the color in the bitmap that will be
transparent by setting the PictureMaskColor property before calling
AddPicture. You can change the PictureMaskColor property between calls.

Examples This example adds a picture to a TreeView control and associates it with a new
TreeView item:

long ll_tvi
integer li_picture
li_picture = &
tv_list.AddPicture("c:\apps_pb\staff.ico")
ll_tvi = tv_list.FindItem(RootTreeItem!, 0)
tv_list.InsertItemFirst(ll_tvi, "Dept.", li_picture)

See also DeletePicture

Syntax 2 For Toolbar controls
Description Adds a picture to the array of pictures available to the Toolbar control.

Applies to Toolbar controls

Syntax Integer controlname.AddPicture (picturename)

Return value Integer. Returns 1 for success and -1 if an error occurs.

Examples The following example adds a picture to the array of pictures available to be
matched with items in the toolbar:

Integer li_rtn
li_rtn = tlbr_myToolBar.AddPicture &
 ("\program files\pic1.bmp")

See also GetItemPictureIndex
SetItemPictureIndex

Argument Description

controlname The name of the toolbar control

picturename String for the name of the picture that you want to add for use by
the toolbar

Chapter 10 PowerScript Functions

PowerScript Reference 311

AddRecipient
Description Adds the specified recipient for an appointment.

Applies to POOMAppointment controls

Syntax Integer objectname.AddRecipient (name { emailAddress })

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

See also GetRecipients
RemoveRecipient

Argument Description

objectname The name of the POOMAppointment object

name A string or an object of type POOMRecipient that specifies the
name of a recipient to be added to the appointment’s recipient list.
If you use a POOMRecipient object for name, you cannot use the
emailAddress argument.

If you pass a string for name, but do not specify the emailaddress,
or if you use a POOMRecipient object that does not contain an
e-mail address, the Contacts list is searched for a matching name.
If multiple matches are found, a Pocket Outlook dialog box
displays so that a specific recipient can be selected.

emailAddress (Optional) A string specifying the recipient’s e-mail address.

AddSeries

312 PocketBuilder

AddSeries
Description Adds a series to a graph, naming it with the specified name. The new series is

also assigned a number. A graph’s series are numbered consecutively,
according to the order in which they are added.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects because their data comes directly from the DataWindow.

Syntax controlname.AddSeries (seriesname)

Return value Integer. Returns the number assigned to the series if it succeeds. If seriesname
is a duplicate, AddSeries returns the number of the existing series. If an error
occurs, it returns -1. If any argument’s value is null, AddSeries returns null.

Usage Adds seriesname to the graph controlname and assigns the series a number.
The number identifies the series within the graph. The numbers are assigned in
sequence. The first series you add to the graph is assigned number 1 and is the
first series displayed in the graph; the next is assigned 2; and so on.

The series name must be unique within the graph. If you specify a name that
already exists in the graph, AddSeries returns the number of the existing series.
Series names are unique if they have different capitalization. The series name
can be an empty string (""). However, because series names must be unique,
only one series can have a blank name.

If you want to insert a series in the middle of the list, use InsertSeries. You can
also use InsertSeries to add a series to the end of the list, as AddSeries does,
although it requires an additional argument to do it.

To add data to a series in the graph, use the AddData or InsertData function. To
add a category to a series, use the InsertCategory or AddCategory function.

Examples These statements add the series named Costs to the graph gr_product_data:

integer series_nbr
series_nbr = gr_product_data.AddSeries("Costs")

Argument Description

controlname The name of the graph in which you want to add a series

seriesname A string whose value is the name of the series you want to add to
controlname

Chapter 10 PowerScript Functions

PowerScript Reference 313

These statements add an unnamed series to the graph gr_product_data:

integer series_nbr
series_nbr = gr_product_data.AddSeries("")

See also AddCategory
AddData
DeleteData
DeleteSeries
FindSeries
InsertCategory
InsertSeries
SeriesCount
SeriesName

AddSmallPicture
Description Adds a bitmap, icon, or cursor to the small image list.

Applies to ListView controls

Syntax listviewname.AddSmallPicture (picturename)

Return value Integer. Returns the picture index if it succeeds and -1 if an error occurs.

Usage When you add a small picture to a ListView control, it is given the next
available picture index in the ListView. For example, if your ListView has two
pictures, the next picture you add will have index number 3.

Before you add small pictures, you can specify scaling for the pictures by
setting the SmallPictureWidth and SmallPictureHeight properties. The
dimensions in effect when you add the first picture determine the scaling for all
pictures. Changing the property values after you add pictures has no effect.

Argument Description

listviewname The name of the ListView control to which you are adding a small
image

picturename The name of the bitmap, icon, or cursor you are adding to the
ListView control small image list

AddStatePicture

314 PocketBuilder

If you do not specify values for SmallPictureWidth and SmallPictureHeight
before you add pictures, the dimensions of the first image determine the scaling
for all pictures you add.

Before you call AddSmallPicture, specify the color in the bitmap that will be
transparent by setting the SmallPictureMaskColor property. You can change
the SmallPictureMaskColor property between calls.

Examples This example adds the file "shortcut.ico" to the small picture index of the
ListView lv_files:

//Add small picture
integer index
index = lv_files.AddSmallPicture("shortcut.ico")

See also DeleteSmallPicture

AddStatePicture
Description Adds a bitmap, icon, or cursor to the state image list.

Applies to ListView and TreeView controls

Syntax controlname.AddStatePicture (picturename)

Return value Integer. Returns the picture index if it succeeds and -1 if an error occurs.

Usage For ListViews in large icon view, the state picture is a picture displayed to the
left of the large picture, by default in a smaller size. For TreeViews, the state
picture is displayed to the left of the regular picture and the item is moved to
the right to make room for it.

If you specify either StatePictureWidth or StatePictureHeight, the picture is
scaled to the size specified by that property.

Argument Description

controlname The name of the ListView or TreeView control to which you are
adding a bitmap, cursor, or icon

picturename The name of the bitmap, icon, or cursor you are adding

Chapter 10 PowerScript Functions

PowerScript Reference 315

When a you add a bitmap, specify the color in the bitmap that will be
transparent by setting the StatePictureMaskColor property before calling
AddPicture. You can change the StatePictureMaskColor property between
calls.

Examples This example adds the file star.ico to the state picture index of the ListView
lv_files:

//Add state picture
integer index
index = lv_files.AddStatePicture("star.ico")

See also DeleteStatePicture

AddToInfraredQueue
Description Adds an appointment, contact, or task to the infrared queue.

Applies to POOM objects

Syntax Integer objectname.AddToInfraredQueue (entity)

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

Argument Description

objectname The name of the POOM object

entity Entity of type POOMAppointment, POOMContact, or
POOMTask

AddToLibraryList

316 PocketBuilder

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Usage A user must be logged in to a POOM object to add an appointment, contact, or
task to the infrared queue.

Examples The following example submits the first appointment retrieved from Outlook
to the infrared queue:

// Global variable: g_poom
Int li_rtn
POOMAppointment myAppts[]
...
g_poom = CREATE POOM
li_rtn = g_poom.login()
// ** Gets and submits an appointment to the queue**
li_rtn = g_poom.getAppointments(myAppts)
li_rtn = g_poom.AddToInfraredQueue(myAppts[1])

g_poom.logout()

See also Add
GetAppointment
GetContact
GetTask
ReceiveFromInfrared
SendToInfrared

AddToLibraryList
Description Adds new files to the library search path of an application or component at

runtime.

Syntax AddToLibraryList (filelist)

Return value Integer. Returns 1 if it succeeds. If an error occurs, it returns a negative value.

Chapter 10 PowerScript Functions

PowerScript Reference 317

AllowReceivingCalls
Description Allows reception of incoming calls.

Applies to PhoneCall objects

Syntax objectname.AllowReceivingCalls (allow)

Return value Integer. Returns 1 for success and a negative value if an error occurs.

Usage The AllowReceivingCalls function is typically called immediately after a
PhoneCall object has been initialized.

Examples In the following script for the cb_allow button, if the call has been initialized,
the AllowReceivingCalls function is called and the cb_allow button’s text is
toggled between “Disable Receive” and “Enable Receive”. The g_phInit
global variable is set to 1 in the pcall_1 object’s constructor:

// Global variables: Long g_phInit = 0
// boolean gb_Allow
integer li_ret
if (g_phInit > 0) then

li_ret = pcall_1.AllowReceivingCalls(gb_Allow)
if (gb_Allow = true) then

this.text = "Disable Receive"
gb_Allow = false

else
this.text = "Enable Receive"
gb_Allow = true

end if
else

sle_1.text = "Call not initialized"
end if

Argument Description

objectname The name of the PhoneCall object that will be allowed to receive
calls

allow A boolean indicating whether incoming calls will be accepted

Arrange

318 PocketBuilder

See also AcceptCall
GetEntries
MakeCall
SetHold
SetMute
SetRingTone

Arrange
Description Arranges the icons in rows.

Applies to ListView controls

Syntax listviewname.Arrange ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Can only be used with large icon and small icon views.

Examples This example arranges the icons in a ListView control:

lv_list.Arrange()

ArrangeSheets
Description Arranges the windows contained in an MDI frame. (Windows that are

contained in an MDI frame are called sheets.) You can arrange the open sheets
and the icons of minimized sheets or just the icons.

Argument Description

listviewname The name of the ListView control in which you want to arrange
icons

Chapter 10 PowerScript Functions

PowerScript Reference 319

Applies to MDI frame windows

Syntax mdiframe.ArrangeSheets (arrangetype)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, ArrangeSheets returns null.

Asc
Description Converts the first character of a string to its ASCII integer value.

Syntax Asc (string)

Return value Integer. Returns the ASCII value of the first character in string. If string is null,
Asc returns null.

Usage You can use Asc to find out the case of a character by testing whether its ASCII
value is within the appropriate range.

Examples This statement returns 65, the ASCII value for uppercase A:

Asc("A")

This example checks if the first character of string ls_name is uppercase:

String ls_name
IF Asc(ls_name) > 64 and Asc(ls_name) < 91 THEN ...

This example is a function that converts an array of integers into a string. Each
integer specifies two characters. Its low byte is the first character in the pair and
the high byte (ASCII * 256) is the second character. The function has an
argument (iarr) which is the integer array:

string str_from_int, hold_str
integer arraylen

arraylen = UpperBound(iarr)

FOR i = 1 to arraylen

Argument Description

string The string for which you want the ASCII value of the first character

ASin

320 PocketBuilder

 // Convert first character of pair to a char
 hold_str = Char(iarr[i])

 // Add characters to string after converting
 // the integer's high byte to char
 str_from_int = &
 str_from_int + hold_str + &
 Char((iarr[i] - Asc(hold_str)) / 256)
NEXT

For sample code that builds the integer array from a string, see Mid.

See also Char
Mid
Asc method for DataWindows in the DataWindow Reference or online Help

ASin
Description Calculates the arcsine of an angle.

Syntax ASin (n)

Return value Double. Returns the arcsine of n.

Examples This statement returns .999998 (rounded to six places):

ASin(.84147)

This statement returns .520311 (rounded to six places):

ASin(LogTen (Pi (1)))

This statement returns 0:

ASin(0)

Argument Description

n The ratio of the lengths of two sides of a triangle for which you want
a corresponding angle (in radians). The ratio must be a value
between -1 and 1.

Chapter 10 PowerScript Functions

PowerScript Reference 321

This code in the Clicked event of a button catches a runtime error that occurs
when an arcsine is taken for a user-entered value—passed in a variable—that
is outside of the permitted range:

Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (asin (ld_num))
CATCH (runtimeerror er)

MessageBox("Runtime Error", er.getmessage())
END TRY

See also Sin
ACos
ATan
Pi
ASin method for DataWindows in the DataWindow Reference or online Help

ATan
Description Calculates the arctangent of an angle.

Syntax ATan (n)

Return value Double. Returns the arctangent of n.

Examples This statement returns 0:

ATan(0)

This statement returns 1.000 (rounded to three places):

ATan(1.55741)

Argument Description

n The ratio of the lengths of two sides of a triangle for which you want
a corresponding angle (in radians)

Beep

322 PocketBuilder

This statement returns 1.267267 (rounded to six places):

ATan(Pi(1))

See also Tan
ASin
ACos
ATan method for DataWindows in the DataWindow Reference or online Help

Beep
Description Causes the computer to beep up to 10 times.

Syntax Beep (n)

Return value Integer. Returns 1 if it succeeds and -1 if it fails. If n is null, Beep returns null.
The return value usually is not used.

Examples This statement causes the computer to beep five times:

Beep(5)

BeginPreview
Description Starts the camera’s preview mode. For HTC cameras, BeginPreview starts the

IA Camera Wizard.

Argument Description

n The number of times you want the computer to beep. If n is greater
than 10, the computer beeps 10 times.

Chapter 10 PowerScript Functions

PowerScript Reference 323

Applies to Camera objects

Syntax objectname.BeginPreview (previewwindow)

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Supporting DLL not loaded

-3 Other initialization error

-5 Inconsistency in this object instance

-6 Call to the driver or device failed

-7 Unsupported option

-8 Value for option is out of range

Usage The graphic control specified as an argument to the BeginPreview function is
used only if the device supports preview in a specified control. Some devices
preview directly to the physical screen.

Examples The following example specifies that the image is previewed in the p_preview
picture control on the window w_main:

li_rtn = g_myCamera.BeginPreview(w_main.p_preview)

See also EndPreview
SetPreviewImageAttributes

BeginTransaction
Description Creates an EAServer transaction and associates it with the calling thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.BeginTransaction ()

Argument Description

objectname The name of the camera object that you want to inquire about

previewwindow A graphic object such as a window or picture control that serves as
the preview window

Blob

324 PocketBuilder

Return value Boolean. Returns true if it succeeds and false if the transaction could not be
created.

Blob
Description Converts a string to a blob datatype.

Syntax Blob (text)

Return value Blob. Returns the converted string. If text is null, Blob returns null.

Examples This example saves a text string as a blob datatype:

Blob B
B = Blob("Any Text")

See also BlobEdit
BlobMid
String

BlobEdit
Description Inserts data of any PocketBuilder datatype into a blob variable.

Argument Description

text The string you want to convert to a blob datatype

Chapter 10 PowerScript Functions

PowerScript Reference 325

Syntax BlobEdit (blobvariable, n, data)

Return value Unsigned long. Returns the position at which the next data can be copied if it
succeeds, and returns null if there is not enough space in blobvariable to copy
the data. If any argument’s value is null, BlobEdit returns null.

If the data argument is a string, the position in the blobvariable in which you
want to copy data will be the length of the string + 2. If the data argument is a
string converted to a blob, the position will be the length of the string + 1. This
is because a string contains a null terminating character that it loses when it is
converted to a blob. Thus, BlobEdit (blob_var, 1, "ZZZ'') returns 5,
while BlobEdit (blob_var, 1, blob (''ZZZ'')) returns 4.

Examples This example copies a bitmap in the blob emp_photo starting at position 1,
stores the position at which the next copy can begin in nbr, and then copies a
date into the blob emp_photo after the bitmap data:

blob{1000} emp_photo
blob temp
date pic_date
ulong nbr

... // Read BMP file containing employee picture

... // into temp using FileOpen and FileRead.
pic_date = Today()

nbr = BlobEdit(emp_photo, 1, temp)
BlobEdit(emp_photo, nbr, pic_date)
UPDATEBLOB Employee SET pic = :emp_photo
 WHERE ...

See also Blob
BlobMid

Argument Description

blobvariable An initialized variable of the blob datatype into which you want to
copy a standard PocketBuilder datatype

n The number (1 to 4,294,967,295) of the position in blobvariable at
which you want to begin copying the data

data Data of a valid PocketBuilder datatype that you want to copy into
blobvariable

BlobMid

326 PocketBuilder

BlobMid
Description Extracts data from a blob variable.

Syntax BlobMid (data, n {, length })

Return value Blob. Returns length bytes from data starting at byte n. If n is greater than the
number of bytes in data, BlobMid returns an empty blob. If together length and
n add up to more bytes than the blob contains, BlobMid returns the remaining
bytes, and the returned blob will be shorter than the specified length. If any
argument’s value is null, BlobMid returns null.

Include terminator character
String variables contain a zero terminator, which accounts for one byte. Include
the terminator character when calculating how much data to extract.

Examples In this example, the first call to BlobMid stores 10 bytes of the blob datablob
starting at position 5 in the blob data_1; the second call stores the bytes of
datablob from position 5 to the end in data_2:

blob data_1, data_2, datablob

... // Read a blob datatype into datablob.

data_1 = BlobMid(datablob, 5, 10)
data_2 = BlobMid(datablob, 5)

This code copies a bitmap in the blob emp_photo starting at position 1, stores
the position at which the next copy can begin in nbr, and then copies a date into
the blob emp_photo after the bitmap data. Then, using the date’s start position,
it extracts the date from the blob and displays it in the StaticText st_1:

blob{1000} emp_photo
blob temp

Argument Description

data Data of the blob datatype

n The number (1 to 4,294,967,295) of the first byte you want returned

length
(optional)

The number of bytes (1 to 4,294,967,295) you want returned

Chapter 10 PowerScript Functions

PowerScript Reference 327

date pic_date
ulong nbr

... // Read BMP file containing employee picture

... // into temp using FileOpen and FileRead.

pic_date = Today()
nbr = BlobEdit(emp_photo, 1, temp)
BlobEdit(emp_photo, nbr, pic_date)
st_1.Text = String(Date(BlobMid(emp_photo, nbr)))

See also Blob
BlobEdit

BuildModel
Description Builds either a performance analysis or trace tree model based on the trace file

you have specified with the SetTraceFileName function. Optional arguments let
you monitor the progress of the build or interrupt it.

Applies to Profiling and TraceTree objects

Syntax instancename.BuildModel ({ progressobject, eventname, triggerpercent })

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileNotSetError!—TraceFileName has not been set

Argument Description

instancename Instance name of the Profiling or TraceTree object

progressobject
(optional)

A PowerObject that represents the number of activities that
have been processed

eventname
(optional)

A string specifying the name of an event you define

triggerpercent
(optional)

A long identifying the number of activities the BuildModel
function should process before triggering the eventname event

BuildModel

328 PocketBuilder

• ModelExistsError!—A model has already been built

• EnterpriseOnlyFeature!—This function is supported only in the Enterprise
edition of PowerBuilder

• EventNotFoundError!—The event cannot be found on the passed
progressobject, so the model cannot be built

• EventWrongPrototypeError!—The event was found but does not have the
proper prototype, so the model cannot be built

• SourcePBLError!—The source libraries cannot be found, so the model
cannot be built

Usage You must specify the trace file to be modeled using the SetTraceFileName
function before calling BuildModel.

The BuildModel function extracts raw data from a trace file and maps it to
objects that can be acted upon by PowerScript functions. If you want to build
a model of your trace file without recording the progress of the build, call
BuildModel without any of its optional arguments. If you want to receive
progress information while the model is being created or if you want to be able
to interrupt a BuildModel that is taking too long to complete, call BuildModel
with its optional arguments.

The event eventname on the passed progressobject is triggered when the
number of activities indicated by the triggerpercent argument are processed. If
the value of triggerpercent is 0, eventname is triggered for every activity. If the
value of triggerpercent is greater than 100, eventname is never triggered. You
define this event using this syntax:

eventname (currentactivity, totalnumberofactivities)

Eventname returns a boolean value. If it returns false, the processing initiated
by the BuildModel function is canceled and any temporary storage is cleaned up.
If you need to stop BuildModel processing that is taking too long, you can return
a false value from eventname. The script you write for eventname determines
how progress is monitored. For example, you might display progress or simply
check whether the processing must be canceled.

Argument Description

eventname Name of the event

currentactivity A long identifying the number of the current activity

totalnumberofactivities A long identifying the total number of activities in the
trace file

Chapter 10 PowerScript Functions

PowerScript Reference 329

Examples This example creates a performance analysis model of a trace file:

Profiling lpro_model
String ls_filename

lpro_model = CREATE Profiling
lpro_model.SetTraceFileName(ls_filename)
lpro_model.BuildModel()

This example creates a trace tree model of a trace file:

TraceTree ltct_model
String ls_filename

ltct_model = CREATE TraceTree
ltct_model.SetTraceFileName(ls_filename)
ltct_model.BuildModel()

This example creates a performance analysis model that provides progress
information as the model is built. The eventname argument to BuildModel is
called ue_progress and is triggered each time five percent of the activities have
been processed. The progress of the build is shown in a window called
w_progress that includes a Cancel button:

Profiling lpro_model
String ls_filename
Boolean lb_cancel

lpro_model = CREATE Profiling
lb_cancel = false
lpro_model.SetTraceFileName(ls_filename)

Open(w_progress)
// Call the of_init window function to initialize
// the w_progress window
w_progress.of_init(lpro_model.NumberOfActivities, &
 'Building Model', This, 'ue_cancel')

lpro_model.BuildModel(This, 'ue_progress', 5)

// Clicking the cancel button in w_progress
// sets lb_cancel to true and returns
// false to ue_progress
IF lb_cancel THEN &
 Close(w_progress)
 RETURN -1
END IF

BuildModel

330 PocketBuilder

See also SetTraceFileName
DestroyModel

Chapter 10 PowerScript Functions

PowerScript Reference 331

Cancel
Stops the execution of a pipeline or to send a cancellation notice to the recipient
of a Pocket Outlook appointment.

Syntax 1 For pipeline objects
Description Stops the execution of a pipeline object.

Applies to Pipeline objects

Syntax pipelineobject.Cancel ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Syntax 2 For POOMAppointment objects
Description Sends a cancellation notice to the appointment’s recipients, but does not

remove the appointment from the repository. Call the Remove function on the
POOM object to remove the appointment from the repository.

Applies to POOMAppointment objects

Syntax Integer objectname.Cancel ()

To cancel Use

Execution of a pipeline object Syntax 1

An appointment for a POOMAppointment object Syntax 2

Argument Description

objectname The name of the POOMAppointment object

CanUndo

332 PocketBuilder

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

See also Remove
Update

CanUndo
Description Tests whether Undo can reverse the most recent edit for an editable control.

Applies to Any editable control (DataWindow, MultiLineEdit, SingleLineEdit,
RichTextEdit)

Syntax editname.CanUndo ()

Return value Boolean. Returns true if the last edit can be reversed (undone) using the Undo
function and false if the last edit cannot be reversed. If editname is null,
CanUndo returns null.

Chapter 10 PowerScript Functions

PowerScript Reference 333

CaptureImage
Description Captures an image and saves it as a file.

Applies to Camera objects

Syntax objectname.CaptureImage (fileName)

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Supporting DLL not loaded

-3 Other initialization error

-5 Inconsistency in this object instance

-6 Call to the driver or device failed

-7 Unsupported option

-8 Value for option is out of range

Usage The image is saved as a file in JPEG format, or in a format specified using the
CamOptCaptureFormat! value of the CameraOption enumerated variable.
Some devices stop the preview when the capture begins and restart preview
when the capture is complete. For a list of values of the CameraOption
enumerated variable, see GetOption.

HTC cameras
You cannot use PowerScript image-capturing functions with cameras that
depend on the IA Camera Wizard for these functions. Instead, you can use the
Camera object Snapped event to retrieve the file name for an image that you
capture using the IA Camera Wizard.

Argument Description

objectname The name of the camera object that you want to inquire about

fileName A string that specifies the name of the file to which the image is to
be saved

CategoryCount

334 PocketBuilder

Examples The following example tests whether the image is ready to be captured before
capturing it:

if g_mycamera.IsReadyForCapture() then
li_rtn = g_myCamera.CaptureImage("\mypic.jpg")

end if

See also BeginPreview
EndPreview
GetAllowedImageAttributes
IsReadyToCapture
Open
SetCaptureImageAttributes
SetPreviewImageAttributes

CategoryCount
Description Counts the number of categories on the category axis of a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.CategoryCount ({ graphcontrol })

Return value Integer. Returns the count if it succeeds and -1 if an error occurs. If any
argument’s value is null, CategoryCount returns null.

Argument Description

controlname The name of the graph for which you want the number of
categories, or the name of a DataWindow control containing
the graph.

graphcontrol
(DataWindow
control only)

A string whose value is the name of the graph in the
DataWindow for which you want the number of categories.
Graphcontrol is required only if controlname is a
DataWindow control.

Chapter 10 PowerScript Functions

PowerScript Reference 335

Examples These statements get the number of categories in the graph gr_revenues in the
DataWindow control dw_findata:

integer li_count
li_count = &
 dw_findata.CategoryCount("gr_revenues")

These statements get the number of categories in the graph gr_product_data:
integer li_count
li_count = gr_product_data.CategoryCount()

See also DataCount
SeriesCount

CategoryName
Description Obtains the category name associated with the specified category number.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls .

Syntax controlname.CategoryName ({ graphcontrol, } categorynumber)

Return value String. Returns the name of categorynumber in controlname. If an error occurs,
it returns the empty string (""). If any argument’s value is null, CategoryName
returns null.

Argument Description

controlname The name of the graph in which you want to find the name of
a specific category, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)

A string whose value is the name of the graph in the
DataWindow for which you want the name of a specific
category. Graphcontrol is required only if controlname is a
DataWindow control.

categorynumber The number of the category for which you want the name.

Ceiling

336 PocketBuilder

Usage Categories are numbered consecutively, from 1 to the value returned by
CategoryCount. When you delete a category, the categories are renumbered to
keep the numbering consecutive. You can use CategoryName to find out the
named category associated with a category number.

Examples These statements obtain the name of category 5 in the graph gr_product_data:

string ls_name
ls_name = gr_product_data.CategoryName(5)

These statements obtain the name of category 5 in the graph gr_revenues in the
DataWindow control dw_findata:

string ls_name
ls_name = &
 dw_findata.CategoryName("gr_revenues", 5)

See also AddCategory
SeriesName

Ceiling
Description Determines the smallest whole number that is greater than or equal to a

specified limit.

Syntax Ceiling (n)

Return value The datatype of n. Returns the smallest whole number that is greater than or
equal to n. If n is null, Ceiling returns null.

Examples These statements set num to 5:

decimal dec, num
dec = 4.8
num = Ceiling(dec)

Argument Description

n The number for which you want the smallest whole number that is
greater than or equal to it

Chapter 10 PowerScript Functions

PowerScript Reference 337

These statements set num to –4:

decimal num
num = Ceiling(-4.2)
num = Ceiling(-4.8)

See also Int
Round
Truncate
Ceiling method for DataWindows in the DataWindow Reference or online Help

ChangeDirectory
Description Changes the current directory.

Syntax ChangeDirectory (directoryname)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Examples This example changes the current directory to the parent directory of the
current directory and displays the new current directory in a SingleLineEdit
control:

ChangeDirectory("..")
sle_1.text= GetCurrentDirectory()

See also CreateDirectory
GetCurrentDirectory

Argument Description

directoryname String for the name of the directory you want to set as the current
directory

ChangeMenu

338 PocketBuilder

ChangeMenu
Description Changes the menu associated with a window.

Applies to Window objects

Syntax windowname.ChangeMenu (menuname {, position })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, ChangeMenu returns null. The return value is usually not used.

Examples This statement changes the top-level menu of the w_Employee window to
m_Emp1:

w_Employee.ChangeMenu(m_Emp1)

Char
Description Extracts the first character of a string or converts an integer to a char.

Argument Description

windowname The name of the window for which you want to change the
menu.

menuname The name of the menu you want to make the current menu.

position
(PowerBuilder only)

For an MDI frame window, the number of the item on the
menu bar to which you want to append the names of the open
sheets. Items on the menu bar are numbered from the left,
beginning with 1. The default is 0, which lists the open
sheets on the menu bar’s next-to-last menu (or the last menu
if there is only one available).

Chapter 10 PowerScript Functions

PowerScript Reference 339

Syntax Char (n)

Return value Char. Returns the first character of n. If n is null, Char returns null.

Examples This example sets ls_S to an asterisk, the character corresponding to the ASCII
value 42:

string ls_S
ls_S = Char(42)

These statements generate delivery codes A to F for the values 1 through 6 of
li_DeliveryNbr:

string ls_Delivery
integer li_DeliveryNbr

FOR li_DeliveryNbr = 1 to 6
 ls_Delivery = Char(64 + li_DeliveryNbr)
 ... // Additional processing of ls_Delivery
NEXT

See also Asc
Char method for DataWindows in the DataWindow Reference or online Help

Check
Description Displays a check mark next to a menu item in a drop-down or cascading menu

and sets the menu item’s Checked property to true.

Applies to Menu objects

Argument Description

n A string that begins with the character you want, an integer you
want to convert to a character, or a blob in which the first value is a
string or integer. The rest of the contents of the string or blob is
ignored. N can also be an Any variable containing a string, integer,
or blob.

ChooseColor

340 PocketBuilder

Syntax menuname.Check ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If menuname is null,
Check returns null.

Usage A check mark next to a menu item indicates that the menu option is currently
on and that the user can turn the option on and off by choosing it. For example,
in the Window painter’s Design menu, a check mark is displayed next to Grid
when the grid is on.

You can use Check in an item’s Clicked script to mark a menu item when the
user turns the option on and Uncheck to remove the check when the user turns
the option off.

Equivalent syntax You can set a menu object’s Checked property instead of
calling Check.

menuname.Checked = true

This statement:

Menu_Appl.M_View.M_Grid.Checked = TRUE

is equivalent to:

Menu_Appl.M_View.M_Grid.Check()

Examples This statement displays a check mark next to the menu item m_Grid in the
m_View drop-down menu on the menu bar m_Appl:

m_Appl.m_View.m_Grid.Check()

See also Uncheck

ChooseColor
Description Displays the standard color selection dialog box.

Argument Description

menuname The fully qualified name of the menu next to which you want to
display a check mark. The item must be in a drop-down or
cascading menu, not an item on a menu bar.

Chapter 10 PowerScript Functions

PowerScript Reference 341

Syntax ChooseColor (color {, customcolors [] })

Return value Integer. Returns 1 if the function succeeds, 0 if the user selects cancel (or the
dialog box is closed), -1 if an error occurs.

Examples This example displays the color selection dialog box with a base color of red
and with two different custom colors defined:

long red, green, blue
long custom[]
integer li_color

red = 255
custom[1]=rgb(red, 200, blue)
custom[2]=8344736
li_color = ChooseColor(red, custom [])

See also RGB

ClassList
Description Provides a list of the classes included in a performance analysis model.

Applies to Profiling object

Syntax instancename.ClassList (list)

Argument Description

color A long passed by reference that represents the color selected in
the dialog box

customcolors
(optional)

A long array of custom colors passed by reference to the color
selection dialog box

Argument Description

instancename Instance name of the Profiling object.

list An unbounded array variable of datatype ProfileClass in which
ClassList stores a ProfileClass object for each class included in the
model. This argument is passed by reference.

ClassName

342 PocketBuilder

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• ModelNotExistsError!—The function failed because no model exists

Usage You use the ClassList function to extract a list of the classes included in a
performance analysis model. You must have previously created the
performance analysis model from a trace file using the BuildModel function.
Each class listed is defined as a ProfileClass object and provides the class
name, its parent class and type, and a list of the routines associated with that
class. The classes are listed in no particular order.

Examples This example lists the classes included in the performance analysis model:

ProfileClass lproclass_list[], lproclass_class
Profiling lpro_model
Long ll_limitclass, ll_indexclass

lpro_model = CREATE Profiling
lpro_model.BuildModel()

lpro_model.ClassList(lproclass_list)
ll_limitclass = UpperBound(lproclass_list)

FOR ll_indexclass = 1 TO ll_limitclass
 lproclass_class = lproclass_list[ll_indexclass]
 ...
NEXT

See also BuildModel

ClassName
Determines the class of an object or the datatype of a variable.

To determine Use

The class of an object Syntax 1

The class (or datatype) of a variable Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 343

Syntax 1 For any object
Description Provides the class (or name) of the specified object.

Applies to Any control

Syntax controlname.Classname ()

Return value String. Returns the class of controlname, the name assigned to the control.
Returns the empty string ("") if an error occurs. If controlname is null,
ClassName returns null.

Usage The class is the name of an object. You assign the name when you save the
object in its painter. Usually the class and the object itself appear to be the same
(because PocketBuilder declares a variable with the same name as the class for
the object). However, if you have declared multiple instances of an object, it is
clear that the object’s class and the object’s variable are different.

If an ancestor object has been instantiated with one of its descendants, you can
use ClassName to find the name of the descendant.

TypeOf reports an object’s built-in object type. The types are values of the
Object enumerated datatype, such as Window! or CheckBox!. ClassName
reports the class of the object in the ancestor-descendant hierarchy.

Examples These statements return the class of the dragged control Source:
DragObject Source
string which_class

Source = DraggedObject()
which_class = Source.ClassName()

These statements return the class of the objects in the control array and store
them in the_class array:

string the_class[]
windowobject the_object[]
integer i

FOR i = 1 TO UpperBound(control[])

Argument Description

controlname The name of the control for which you want to know the name
assigned to the control in the style window (the class of the control)

Clear

344 PocketBuilder

 the_object[i] = control[i]
 the_class[i] = the_object[i].ClassName()
NEXT

See also DraggedObject
TypeOf

Syntax 2 For variables
Description Provides the datatype of a variable.

Syntax ClassName (variable)

Return value String. Returns the name of variable. Returns the empty string ("") if variable
is an enumerated datatype or if an error occurs. If variable is null, ClassName
returns null.

Usage ClassName cannot determine the datatype if variable is an enumerated
datatype. In this case, ClassName returns the empty string.

Examples If gd_double is a global double variable, ClassName sets varname to double:

string varname
varname = ClassName(gd_double)

Clear
Clears selected text or other contents of a specified control.

Argument Description

variable The name of the variable for which you want to know its name (that
is, its datatype)

To clear Use

Selected text from a specified control Syntax 1

The contents of a Signature control Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 345

Syntax 1 For edit and list box controls
Description Deletes selected text from the specified control, but does not store it in the

clipboard.

Applies to DataWindow, EditMask, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, DropDownPictureListBox, OLE controls, and
OLEStorage objects

Syntax objectname.Clear ()

Return value Long.

For edit controls, returns the number of characters that Clear removed from
objectname. If no text is selected, no characters are removed and Clear returns
0. If an error occurs, Clear returns -1.

If objectname is null, Clear returns null.

Usage To select text for deleting, the user can use the mouse or keyboard. You can also
call the SelectText function in a script.

To delete selected text and store it in the clipboard, use the Cut function.

Examples If the text in sle_comment1 is Draft and it is selected, this statement clears Draft
from sle_comment1 and returns 5:

sle_comment1.Clear()

If the text in sle_comment1 is Draft, the first statement selects the D and the
second clears D from sle_comment1 and returns 1:

sle_comment1.SelectText(1,1)
sle_comment1.Clear()

Argument Description

objectname One of the following:

• The name of the control from which you want to delete (clear)
selected text.

• The name of an OLE control or storage object variable (type
OLEStorage) from which you want to release its OLE object.

If objectname is a DropDownListBox its AllowEdit property must
be true.

ClearRecurrencePattern

346 PocketBuilder

See also Close
Cut
Paste
ReplaceText
SelectText

Syntax 2 For Signature controls
Description Clears the contents of the control.

Applies to Signature controls

Syntax void controlname.Clear ()

Return value None

Examples This statement clears the contents of the signature control sig_1:

sig_1.clear()

ClearRecurrencePattern
Description Clears the recurrence pattern for an appointment and sets it as an appointment

with a single instance.

Applies to POOMAppointment, POOMTask objects

Syntax Integer objectname.ClearRecurrencePattern ()

Argument Description

controlname The name of the signature control you want to clear

Chapter 10 PowerScript Functions

PowerScript Reference 347

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

See also GetRecurrence
SetRecurrence
SkipRecurrence

Clipboard
Retrieves or replaces the contents of the system clipboard.

Argument Description

objectname The name of the POOMAppointment or POOMTask object

To Use

Retrieve or replace the contents of the system clipboard
with text

Syntax 1

Replace the contents of the system clipboard with a bitmap
image of a graph

Syntax 2

Clipboard

348 PocketBuilder

Syntax 1 For text
Description Retrieves or replaces the contents of the system clipboard with text.

Syntax Clipboard ({ string })

Return value String. Returns the current contents of the clipboard if the clipboard contains
text. If string is specified, Clipboard returns the current contents and replaces it
with string.

Returns the empty string ("") if the clipboard is empty or it contains nontext
data, such as a bitmap. If string is specified, the nontext data is replaced with
string. If string is null, Clipboard returns null.

Usage You can use Syntax 1 with the Paste, Replace, or ReplaceText function to insert
the clipboard contents in an editable control or StaticText control.

Calling Clipboard in a DataWIndow control or DataStore object To
retrieve or replace the contents of the system clipboard with text from a
DataWindow item (cell value), you must first assign the value to a string and
then call the system Clipboard function as follows:

string ls_data = dw_1.object.column_name[row_number]
::Clipboard(ls_data)

The DataWindow version of Clipboard, documented in Syntax 2 (and in the
DataWindow Reference), is only applicable to graphs.

Examples These statements put the contents of the clipboard in the variable ls_CoName:

string ls_CoName
ls_CoName = Clipboard()

The following statements place the contents of the clipboard in Heading, and
then replace the contents of the clipboard with the string Employee Data:

string Heading
Heading = Clipboard("Employee Data")

Argument Description

string
(optional)

A string whose value is the text you want to place in the clipboard.
The string replaces the current contents of the clipboard, if any.

Chapter 10 PowerScript Functions

PowerScript Reference 349

The following statement replaces the selected text in the MultiLineEdit
mle_terms with the contents of the clipboard:

mle_terms.ReplaceText(Clipboard())

The following statement exchanges the contents of the StaticText st_welcome
with the contents of the clipboard:

st_welcome.Text = Clipboard(st_welcome.Text)

See also Clear
Copy
Cut
Paste
Replace
ReplaceText

Syntax 2 For bitmaps of graphs
Description Replaces the contents of the system clipboard with a bitmap image of a graph.

You can paste the image into other applications.

Applies to Graph objects in windows and user objects, and graphs in DataWindow
controls and DataStore objects

Syntax name.Clipboard ({ graphobject })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Clipboard returns null.

Examples This statement copies the graph gr_products_data to the clipboard:

gr_products_data.Clipboard()

Argument Description

name The name of the graph or the DataWindow control or
DataStore containing the graph you want to copy to the
clipboard

graphobject
(DataWindow
control and
DataStore only)

A string whose value is the name of the graph in the
DataWindow object that you want to copy to the clipboard

Close

350 PocketBuilder

This statement copies the graph gr_employees in the DataWindow control
dw_emp_data to the clipboard:

dw_emp_data.Clipboard("gr_employees")

Close
Closes a window, scanner, SMS or peripheral device connection, or a file that
you opened with the FileDirect object.

Syntax 1 For windows
Description Closes a window and releases the storage occupied by the window and all the

controls in the window.

Applies to Window objects

Syntax Close (windowname)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If windowname is null,
Close returns null. The return value is usually not used.

Usage Use Syntax 1 to close a window and release the storage occupied by the
window and all the controls in the window.

To close Use

A window Syntax 1

A BarcodeScanner or BiometricScanner object Syntax 2

A communications channel for a Camera object Syntax 3

A communications channel for a SerialGPS object Syntax 4

A Short Message Service (SMS) session Syntax 5

A FileDirect object Syntax 6

A trace file Syntax 7

Argument Description

windowname The name of the window you want to close

Chapter 10 PowerScript Functions

PowerScript Reference 351

When you call Close, PocketBuilder removes the window from view, closes it,
executes the scripts for the CloseQuery and Close events (if any), and then
executes the rest of the statements in the script that called the Close function.

After a window is closed, its properties, instance variables, and controls can no
longer be referenced in scripts. If a statement in the script references the closed
window or its properties or instance variables, an execution error will result.

Preventing a window from closing
You can prevent a window from being closed with a return code of 1 in the
script for the CloseQuery event. Use the RETURN statement.

Examples These statements close the window w_employee and then open the window
w_departments:

Close(w_employee)
Open(w_departments)

After you call Close, the following statements in the script for the CloseQuery
event prompt the user for confirmation and prevent the window from closing:

IF MessageBox('ExitApplication', &
'Exit?', Question!, YesNo!) = 2 THEN
 // If no, stop window from closing
 RETURN 1
END IF

See also Hide
Open

Syntax 2 For BarcodeScanner and BiometricScanner
objects

Description Clears all buffers, detaches from scanner firmware, and unloads all DLLs.

Applies to BarcodeScanner and BiometricScanner objects

Syntax Integer scanner.Close ()

Close

352 PocketBuilder

Return value Integer. Returns 1 for success or -1 if an error occurs.

Usage This is an optional method. It is always called by the Destructor event of
BarcodeScanner and BiometricScanner objects.

Examples The following closes scanner DLLs and disconnects from the scanner device
firmware:

li_rtn = l_scanner.Close()

See also Flush
Open

Syntax 3 For Camera objects
Description Closes a communications channel for a camera if one is open and deactivates

any data handlers.

Applies to Camera objects

Syntax objectname.Close ()

Return value Integer. Returns 1 for success and a negative number for an error.

Usage Use the Close function to close a communications channel for a Camera object
you previously opened using the Open function.

Examples The following script closes a file:

li_ret = myCamera.close ()

See also Open

Argument Description

scanner The scanner object that you want to close

Argument Description

objectname Name of the Camera object

Chapter 10 PowerScript Functions

PowerScript Reference 353

Syntax 4 For GPS and SerialGPS objects
Description Closes a GPS communications channel if one is open and deactivates any data

handlers.

Applies to SerialGPS objects

Syntax GPSname.Close ()

Return value Integer. Returns 1 for success and a negative number for an error. The
following is a list of possible error codes and their meanings:

-1 General error.

-10 Invalid object. Could occur if the GPS object instance is corrupted.

-13 Not previously opened. This function cannot be called until a GPS object
or SerialGps object has been successfully opened.

Usage Use the Close function to close a communications channel for a SerialGPS
object you previously opened using the Open function. The Close function
reinitializes all internal variables to their default values, but the ConfigParams
property for SerialGPS objects is not reinitialized. This allows the user to
reopen the SerialGPS object without having to respecify all of the
configuration parameters.

Examples The following script closes a file:

li_ret = myGPS.close ()

See also Open

Argument Description

GPSname Name of the SerialGPS object

Close

354 PocketBuilder

Syntax 5 For SMSSession objects
Description Closes a Short Message Service (SMS) session.

Applies to SMSSession objects

Syntax SMSsessionname.Close ()

Return value Integer. Returns 1 for success and a negative value if an error occurs.

Usage Use the Close function to close an SMS session you previously opened using
the Open function.

Examples The following script closes a file:

li_ret = mySMSSession.close ()

See also Open

Syntax 6 For FileDirect objects
Description Closes a file that you open with the FileDirect object.

Applies to FileDirect objects

Syntax instancename.Close ()

Return value Integer. Returns 1 for success and a negative number for an error.

Usage Use the Close function to close a file you previously opened using the Open
function.

Argument Description

SMSsessionname Name of the SMSSession object

Argument Description

instancename Instance name of the FileDirect object

Chapter 10 PowerScript Functions

PowerScript Reference 355

Examples The following script closes a file:

li_ret = nvo_FileDirect.close ()

See also Open

Syntax 7 For trace files
Description Closes an open trace file.

Applies to TraceFile objects

Syntax instancename.Close ()

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileNotOpenError!—A trace file has not been opened

Usage You use the Close function to close a trace file you previously opened with the
Open function. You use the Close and Open functions as well as the properties
and functions of the TraceFile object to access the contents of a trace file
directly. You use these functions if you want to perform your own analysis of
the tracing data instead of building a model with the Profiling or TraceTree
object and the BuildModel function.

Examples This example closes a trace file:

ift_file.Close()
DESTROY ift_file

See also NextActivity
Open
Reset

CloseChannel
Description Closes a DDE channel.

Argument Description

instancename Instance name of the TraceFile object

CloseTab

356 PocketBuilder

Syntax CloseChannel (handle {, windowhandle })

Return value Integer. Returns 1 if it succeeds. If an error occurs, CloseChannel returns a
negative integer.

CloseTab
Description Removes a tab page from a Tab control that was opened previously with the

OpenTab or OpenTabWithParm function. CloseTab executes the scripts for the
user object’s Destructor event.

Applies to Tab controls

Syntax tabcontrolname.CloseTab (userobjectvar)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, CloseTab returns null. The return value is usually not used.

Usage CloseTab closes a user object that has been opened as a tab page and releases
the storage occupied by the object and its controls.

When you call CloseTab, PocketBuilder removes the tab page from the control,
closes it, executes the script for the Destructor event (if any), and then executes
the rest of the statements in the script that called the CloseTab function.

CloseTab also removes the user object from the Tab control’s Control array,
which is a property that lists the tab pages within the Tab control. If the closed
tab page was not the last element in the array, the index for all subsequent tab
pages is reduced by one.

After a user object is closed, its properties, instance variables, and controls can
no longer be referenced in scripts. If a statement in the script references the
closed user object or its properties or instance variables, an execution error will
result.

Argument Description

tabcontrolname The name of the Tab control containing the tab page you want
to close

userobjectvar The name of the user object you want to close

Chapter 10 PowerScript Functions

PowerScript Reference 357

Examples These statements close the tab page user object u_employee and then open the
user object u_departments in the Tab control tab_personnel:

tab_personnel.CloseTab(u_employee)
tab_personnel.OpenTab(u_departments)

When the user chooses a menu item that closes a user object, the following
excerpt from the menu item’s script prompts the user for confirmation before
closing the u_employee user object in the window to which the menu is
attached:

IF MessageBox("Close ", "Close?", &
 Question!, YesNo!) = 1 THEN
 // User chose Yes, close user object.
 ParentWindow.CloseTab(u_employee)
 // If user chose No, take no action.
END IF

See also OpenTab

CloseUserObject
Description Closes a user object by removing it from view and executing the scripts for its

Destructor event.

Applies to Window objects

Syntax windowname.CloseUserObject (userobjectname)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, CloseUserObject returns null. The return value is usually not used.

Usage Use CloseUserObject to close a user object and release the storage occupied by
the object and its controls.

Argument Description

windowname The name of the window that contains the user object

userobjectname The name of the user object you want to close

CloseWithReturn

358 PocketBuilder

When you call CloseUserObject, PocketBuilder removes the object from view,
closes it, executes the script for the Destructor event (if any), and then executes
the rest of the statements in the script that called the CloseUserObject function.

CloseUserObject also removes the user object from the window’s Control array,
which is a property that lists the window’s controls. If the closed user object
was not the last element in the array, the index for all subsequent user objects
is reduced by one.

After a user object is closed, its properties, instance variables, and controls can
no longer be referenced in scripts. If a statement in the script references the
closed user object or its properties or instance variables, an execution error will
result.

Examples These statements close the user object u_employee and then open the user
object u_departments in the window w_personnel:

w_personnel.CloseUserObject(u_employee)
w_personnel.OpenUserObject(u_departments)

When the user chooses a menu item that closes a user object, the following
excerpt from the menu item’s script prompts the user for confirmation before
closing the u_employee user object in the window to which the menu is
attached:

IF MessageBox("Close ", "Close?", &
 Question!, YesNo!) = 1 THEN
 // User chose Yes, close user object.
 ParentWindow.CloseUserObject(u_employee)
 // If user chose No, take no action.
END IF

See also OpenUserObject

CloseWithReturn
Description Closes a window and stores a return value in the Message object. You should

use CloseWithReturn only for response windows.

Chapter 10 PowerScript Functions

PowerScript Reference 359

Applies to Window objects

Syntax CloseWithReturn (windowname, returnvalue)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, CloseWithReturn returns null. The return value is usually not used.

Usage The purpose of CloseWithReturn is to close a response window and return
information from the response window to the window that opened it. Use
CloseWithReturn to close a window, release the storage occupied by the
window and all the controls in the window, and return a value.

Just as with Close, CloseWithReturn removes a window from view, closes it,
and executes the script for the CloseQuery and Close events, if any. Before
executing the event scripts, it also stores returnvalue in the Message object.
Then PocketBuilder executes the rest of the script that called the
CloseWithReturn function.

After a window is closed, its properties, instance variables, and controls can no
longer be referenced in scripts. If a statement in the script references the closed
window or its properties or instance variables, an execution error results.

PocketBuilder stores returnvalue in the Message object properties according to
its datatype. In the script that called CloseWithReturn, you can access the
returned value by specifying the property of the Message object that
corresponds to the return value’s datatype.

Table 10-1: Message object properties where return values are stored

Argument Description

windowname The name of the window you want to close.

returnvalue The value you want to store in the Message object when the
window is closed. Returnvalue must be one of these datatypes:

• String

• Numeric

• PowerObject

Return value datatype Message object property

Numeric Message.DoubleParm

PowerObject (such as a structure) Message.PowerObjectParm

String Message.StringParm

CloseWithReturn

360 PocketBuilder

Returning several values as a structure
To return several values, create a user-defined structure to hold the values and
access the PowerObjectParm property of the Message object in the script that
opened the response window. The structure is passed by value so you can
access the information even if the original variable has been destroyed.

Referencing controls
User objects and controls are passed by reference, not by value. You cannot use
CloseWithReturn to return a reference to a control on the closed window
(because the control no longer exists after the window is closed). Instead,
return the value of one or more properties of that control.

Preventing a window from closing
You can prevent a window from being closed with a return code of 1 in the
script for the CloseQuery event. Use a RETURN statement.

Examples This statement closes the response window w_employee_response, returning
the string emp_name to the window that opened it:

CloseWithReturn(Parent, "emp_name")

Suppose that a menu item opens one window if the user is a novice and another
window if the user is experienced. The menu item displays a response window
called w_signon to prompt for the user’s experience level. The user types an
experience level in the SingleLineEdit control sle_signon_id. The OK button in
the response window passes the text in sle_signon_id back to the menu item
script. The menu item script checks the StringParm property of the Message
object and opens the desired window.

The script for the Clicked event of the OK button in the w_signon response
window is a single line:

CloseWithReturn(Parent, sle_signon_id.Text)

The script for the menu item is:

string ls_userlevel

// Open the response window
Open(w_signon)

// Check text returned in Message object
ls_userlevel = Message.StringParm

Chapter 10 PowerScript Functions

PowerScript Reference 361

IF ls_userlevel = "Novice" THEN
 Open(win_novice)
ELSE
 Open(win_advanced)
END IF

See also Close
OpenSheetWithParm
OpenUserObjectWithParm
OpenWithParm

CollapseItem
Description Collapses the specified item.

Applies to TreeView controls

Syntax treeviewname.CollapseItem (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage If there is only one level-one entry, you can use the RootTreeItem handle as the
argument to collapse the tree so that only the top-level node is displayed.
However, CollapseItem collapses only the current item, so that if the children
of the top-level item were expanded when the tree was collapsed, they will still
be expanded when the top-level item is expanded.

If there is more than one level-one entry, using the RootTreeItem handle as the
argument collapses only the first level-one entry.

Examples This example collapses an item in a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(currenttreeitem!, 0)
tv_list.CollapseItem(ll_tvi)

Argument Description

treeviewname The TreeView control in which you want to collapse an item

itemhandle The handle of the item you want to collapse

CommandParm

362 PocketBuilder

This example collapses the top-level item in a TreeView control that has only
one level-one entry:

long ll_tvi
ll_tvi = tv_list.FindItem(roottreeitem!, 0)
tv_list.CollapseItem(ll_tvi)

See also ExpandItem
ExpandAll
FindItem

CommandParm
Description Retrieves the argument string, if any, that followed the program name when the

application was executed.

Syntax CommandParm ()

Return value String. Returns the application’s argument string if it succeeds and the empty
string ("") if it fails or if there were no arguments.

Usage Command arguments can follow the program name in the command line of a
Windows program item or in the Program Manager’s Run response window.
For example, when the user chooses File>Run in the Program Manager and
enters:

MyAppl C:\EMPLOYEE\EMPLIST.TXT

CommandParm retrieves the string C:\EMPLOYEE\EMPLIST.TXT.

If the application’s command line includes several arguments, CommandParm
returns them all as a single string. You can use string functions, such as Mid and
Pos, to parse the string.

You do not need to call CommandParm in the application’s Open event. Use the
commandline argument instead.

Examples These statements retrieve the command line arguments and save them in the
variable ls_command_line:

string ls_command_line
ls_command_line = CommandParm()

Chapter 10 PowerScript Functions

PowerScript Reference 363

If the command line holds several arguments, you can use string functions to
separate the arguments. This example stores a variable number of arguments,
obtained with CommandParm, in an array. The code assumes each argument is
separated by one space. For each argument, the Pos function searches for a
space; the Left function copies the argument to the array; and Replace removes
the argument from the original string so the next argument moves to the first
position:

string ls_cmd, ls_arg[]
integer i, li_argcnt

// Get the arguments and strip blanks
// from start and end of string
ls_cmd = Trim(CommandParm())

li_argcnt = 1

DO WHILE Len(ls_cmd) > 0
 // Find the first blank
 i = Pos(ls_cmd, " ")

 // If no blanks (only one argument),
 // set i to point to the hypothetical character
 // after the end of the string
 if i = 0 then i = Len(ls_cmd) + 1

 // Assign the arg to the argument array.
 // Number of chars copied is one less than the
 // position of the space found with Pos
 ls_arg[li_argcnt] = Left(ls_cmd, i - 1)

 // Increment the argument count for the next loop
 li_argcnt = li_argcnt + 1

 // Remove the argument from the string
 // so the next argument becomes first
 ls_cmd = Replace(ls_cmd, 1, i, "")
LOOP

CommitTransaction

364 PocketBuilder

CommitTransaction
Description Declares that the EAServer transaction associated with the calling thread

should be committed.

Applies to CORBACurrent objects

Syntax CORBACurrent.CommitTransaction (breportheuristics)

Return value Integer. Returns 0 if it succeeds or a negative value if an error occurs.

ConnectToNewObject
Description Creates a new object in the specified server application and associates it with a

PowerBuilder OLEObject variable. ConnectToNewObject starts the server
application if necessary.

Applies to OLEObject objects, OLETxnObject objects

Syntax oleobject.ConnectToNewObject (classname)

Return value Integer. Returns 0 if it succeeds or a negative value if an error occurs.

ConnectToNewRemoteObject
Description Creates a new OLE object in the specified remote server application (if security

on the server allows it) and associates the new object with a PowerBuilder
OLEObject variable. ConnectToNewRemoteObject starts the server application
if necessary.

Chapter 10 PowerScript Functions

PowerScript Reference 365

Applies to OLEObject objects

Syntax oleobject.ConnectToNewRemoteObject (hostname, classname)

Return value Integer. Returns 0 if it succeeds or a negative value if an error occurs.

ConnectToObject
Description Associates an OLE object with a PowerBuilder OLEObject variable and starts

the server application. The OLEObject variable and ConnectToObject are used
for OLE automation, in which the PowerBuilder application asks the server
application to manipulate the OLE object programmatically.

Applies to OLEObject objects

Syntax oleobject.ConnectToObject (filename {, classname })

Return value Integer. Returns 0 if it succeeds or a negative value if an error occurs.

ConnectToRemoteObject
Description Associates an OLE object with a PowerBuilder OLEObject variable and starts

the server application.

Applies to OLEObject objects

Syntax oleobject.ConnectToRemoteObject (hostname, filename {, classname })

Return value Integer. Returns 0 if it succeeds or a negative value if an error occurs.

ConnectToServer

366 PocketBuilder

ConnectToServer
Description Connects a client application to a server component. The client application

must call ConnectToServer before it can use a remote object on the server. This
function applies to distributed applications only.

Applies to Connection objects

Syntax connection.ConnectToServer ()

Return value Long. Returns 0 if it succeeds or a negative value if an error occurs.

Copy
Description Puts selected text or an OLE object on the clipboard. Copy does not change the

source text or object.

Applies to DataWindow, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, DropDownPictureListBox, OLE controls, and OLE
DWObjects (objects within a DataWindow object that is within a DataWindow
control)

Chapter 10 PowerScript Functions

PowerScript Reference 367

Syntax objectref.Copy ()

Return value Integer

For edit controls, Copy returns the number of characters that were copied to the
clipboard. If no text is selected in objectref, no characters are copied and Copy
returns 0. If an error occurs, Copy returns -1. If objectref is null, Copy returns
null.

Usage To select text for copying, the user can use the mouse or keyboard. You can also
call the SelectText function in a script.

To insert the contents of the clipboard into a control, use the Paste function.

Copy does not delete the selected text or OLE object. To delete the data, use the
Clear or Cut function.

Examples Assuming the selected text in mle_emp_address is Temporary Address, these
statements copy Temporary Address from mle_emp_address to the clipboard
and store 17 in copy_amt:

integer copy_amt
copy_amt = mle_emp_address.Copy()

See also Clear
Clipboard
Cut
Paste
ReplaceText
SelectText

Argument Description

objectref One of the following:

• The name of the control containing the text you want to copy to
the clipboard.

• The name of the OLE control or the fully qualified name of a
OLE DWObject within a DataWindow control that contains the
object you want to copy to the clipboard.

The fully qualified name for a DWObject has this syntax:

dwcontrol.Object.dwobjectname
If objectref is a DataWindow, text is copied from the edit control
over the current row and column. If objectref is a
DropDownListBox, its AllowEdit property must be true.

CopyRTF

368 PocketBuilder

CopyRTF
Description Returns the selected text, pictures, and input fields in a RichTextEdit control or

RichText DataWindow as a string with rich text formatting. Bitmaps and input
fields are included in the string.

Applies to DataWindow controls, DataStore objects, and RichTextEdit controls

Syntax rtename.CopyRTF ({ selected {, band } })

Return value String. Returns the selected text as a string.

CopyRTF returns an empty string ("") if:

• There is no selection and selected is true

• An error occurs

Cos
Description Calculates the cosine of an angle.

Syntax Cos (n)

Return value Double. Returns the cosine of n. If n is null, Cos returns null.

Examples This statement returns 1:

Cos(0)

This statement returns .540302:

Cos(1)

Argument Description

n The angle (in radians) for which you want the cosine

Chapter 10 PowerScript Functions

PowerScript Reference 369

This statement returns -1:

Cos(Pi(1))

See also ACos
Pi
Sin
Tan
Cos method for DataWindows in the DataWindow Reference or online Help

Cpu
Description Reports the amount of CPU time that has elapsed since the application started.

Syntax Cpu ()

Return value Long. Returns the number of milliseconds of CPU time elapsed since the start
of your PocketBuilder application.

Examples These statements determine the amount of CPU time that elapsed while a group
of statements executed:

// Declare ll_start and ll_used as long integers.
long ll_start, ll_used

// Set the start equal to the current CPU usage.
ll_start = Cpu()
... // Executable statements being timed

// Set ll_used to the number of CPU seconds
// that were used (current CPU time - start).
ll_used = Cpu() - ll_start

CreateDirectory

370 PocketBuilder

CreateDirectory
Description Creates a directory.

Applies to File system

Syntax CreateDirectory (directoryname)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Examples This example creates a new subdirectory in the current path and then makes the
new subdirectory the current directory:

string ls_path="my targets"
integer li_filenum
CreateDirectory (ls_path)
li_filenum = ChangeDirectory(ls_path)

See also GetCurrentDirectory
RemoveDirectory

CreateInstance
Creates an instance of a remote object running on a middle-tier server.

Argument Description

directoryname String for the name of the directory you want to create

To create a remote object instance Use

From a PowerBuilder client Syntax 1

From within an EAServer or COM+ component Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 371

Syntax 1 For creating an object instance on a remote server
Description Creates an instance of a component running on EAServer. This function can be

used to instantiate a remote object from a PowerBuilder client. In addition, it
can be used within a component running on EAServer to instantiate another
component running on a different server.

Applies to Connection objects

Syntax connection.CreateInstance (objectvariable {, classname })

Return value Long. Returns 0 if it succeeds or a negative value if an error occurs.

Syntax 2 For creating a component instance on the current
server

Description Creates an instance of a component running on the current EAServer or COM+
server. This function is called from within a component instance running on
EAServer or COM+.

Applies to TransactionServer objects

Syntax transactionserver.CreateInstance (objectvariable {, classname })

Return value Long. Returns 0 if it succeeds or a negative value if an error occurs.

CreatePage

372 PocketBuilder

CreatePage
Description Creates a tab page if it has not already been created.

Applies to User objects used as tab pages

Syntax userobject.CreatePage ()

Return value Integer. Returns one of the following values:1 if the page is successfully
created and -1 if the page was already created or if it is not a tab page.

 1 — The tab page was successfully created
 0 — The tab page has already been created
-1 — The user object is not a tab page

Cut
Description Deletes selected text from the specified control and stores it on the clipboard,

replacing the clipboard contents with the deleted text or object.

Applies to DataWindow, MultiLineEdit, SingleLineEdit, DropDownListBox,
DropDownPictureListBox, and OLE controls

Syntax controlname.Cut ()

Argument Description

controlname The name of the control containing the text or object to be cut.

If controlname is a DataWindow, text is cut from the edit control
over the current row and column. If controlname is a
DropDownListBox, the AllowEdit property must be true.

Chapter 10 PowerScript Functions

PowerScript Reference 373

Return value Long.

For editable controls, Cut returns the number of characters that were cut from
controlname and stored in the clipboard. If no text is selected, no characters are
cut and Cut returns 0. If an error occurs, Cut returns -1. If controlname is null,
Cut returns null.

Usage To select text for deleting, the user can use the mouse or keyboard. You can also
call the SelectText function in a script.

To insert the contents of the clipboard into a control, use the Paste function.

To delete selected text or an OLE object but not store it in the clipboard, use
the Clear function.

Examples Assuming the selected text in mle_emp_address is Temporary, this statement
deletes Temporary from mle_emp_address, stores it in the clipboard, and
returns 9:

mle_emp_address.Cut()

See also Copy
Clear
Clipboard
DeleteItem
Paste

DataCount

374 PocketBuilder

DataCount
Description Reports the number of data points in the specified series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls and DataStore objects

Syntax controlname.DataCount ({ graphcontrol, } seriesname)

Return value Long. Returns the number of data points in the specified series if it succeeds
and -1 if an error occurs. If any argument’s value is null, DataCount returns null.

Examples These statements store in ll_count the number of data points in the series
named Costs in the graph gr_product_data:

long ll_count
ll_count = gr_product_data.DataCount("Costs")

These statements store in ll_count the number of data points in the series
named Salary in the graph gr_dept in the DataWindow control dw_employees:

long ll_count
ll_count = &
 dw_employees.DataCount("gr_dept", "Salary")

See also AddSeries
InsertSeries
SeriesCount

Argument Description

controlname The name of the graph in which you want the number of data
points in a specific series, or the name of the DataWindow control
or DataStore containing the graph

graphcontrol
(DataWindow
control or
DataStore only)

The name of the graph in the DataWindow control or DataStore
for which you want the data point count for the series

seriesname A string whose value is the name of the series for which you want
the number of data points

Chapter 10 PowerScript Functions

PowerScript Reference 375

DataSource
Description Allows a RichTextEdit control to share data with a DataWindow and display

the data in its input fields.

Applies to RichTextEdit controls

Syntax rtename.DataSource (dwsource)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Date
Converts DateTime, string, or numeric data to data of type date or extracts a
date value from a blob. You can use one of several syntaxes, depending on the
datatype of the source data.

Platform information for Windows
To make sure you get correct return values for the year, you must verify that
yyyy is the Short Date Style for year in the Regional Settings of the user’s
Control Panel. Your program can check this with the RegistryGet function.

If the setting is not correct, you can ask the user to change it manually or have
the application change it (by calling the RegistrySet function). The user may
need to reboot after the setting is changed.

To Use

Extract the date from DateTime data or extract a date stored
in a blob

Syntax 1

Convert a string to a date Syntax 2

Combine numeric data into a date Syntax 3

Date

376 PocketBuilder

Syntax 1 For DateTime data and blobs
Description Extracts a date from a DateTime value or from a blob whose first value is a date

or DateTime value.

Syntax Date (datetime)

Return value Date. Returns the date in datetime as a date. If datetime contains an invalid date
or an incompatible datatype, Date returns 1900-01-01. If datetime is null, Date
returns null.

Examples After a value for the DateTime variable ldt_StartDateTime has been retrieved
from the database, this example sets ld_StartDate equal to the date in
ldt_StartDateTime:

DateTime ldt_StartDateTime
date ld_StartDate
ld_StartDate = Date(ldt_StartDateTime)

Assuming the value of a blob variable ib_blob contains a DateTime value
beginning at byte 32, the following statement converts it to a date value:

date ld_date
ld_date = Date(BlobMid(ib_blob, 32))

See also DateTime

Syntax 2 For strings
Description Converts a string whose value is a valid date to a date value.

Argument Description

datetime A DateTime value or a blob in which the first value is a date or
DateTime value. The rest of the contents of the blob is ignored.
Datetime can also be an Any variable containing a DateTime or
blob.

Chapter 10 PowerScript Functions

PowerScript Reference 377

Syntax Date (string)

Return value Date. Returns the date in string as a date. If string contains an invalid date or
an incompatible datatype, Date returns 1900-01-01. If string is null, Date
returns null.

Usage Valid dates in strings can include any combination of day (1 to 31), month (1
to 12 or the name or abbreviation of a month), and year (2 or 4 digits).
PocketBuilder assumes a 4-digit number is a year. Leading zeros are optional
for month and day. The month, whether a name, an abbreviation, or a number,
must be in the month location specified in the system setting for a date’s
format. If you do not know the system setting, use the standard datatype date
format yyyy-mm-dd.

Date literals do not need to be converted with the Date function.

Examples Example 1 These statements all return the date datatype for text expressing
the date July 4, 1994 (1994-07-04). The system setting for a date’s format is set
with the month’s position in the middle:

Date("1994/07/04")
Date("1994 July 4")
Date("04 July 1994")

Example 2 The following groups of statements check to be sure the date in
sle_start_date is a valid date and display a message if it is not. The first version
checks the result of the Date function to see if the date was valid. The second
uses the IsDate function to check the text before using Date to convert it:

Version 1:

// Windows Control Panel date format is YY/MM/DD
date ld_my_date

ld_my_date = Date(sle_start_date.Text)
IF ld_my_date = Date("1900-01-01") THEN
 MessageBox("Error", "This date is invalid: " &
 + sle_start_date.Text)
END IF

Version 2:

date ld_my_date

Argument Description

string A string containing a valid date (such as January 1, 1998, or
12-31-99) that you want returned as a date. Datetime can also be an
Any variable containing a string.

Date

378 PocketBuilder

IF IsDate(sle_start_date.Text) THEN
 ld_my_date = Date(sle_start_date.Text)
ELSE
 MessageBox("Error", "This date is invalid: " &
 + sle_start_date.Text)
END IF

See also DateTime
IsDate
RelativeDate
RelativeTime
Date method for DataWindows in the DataWindow Reference

Syntax 3 For combining numbers into a date
Description Combines numbers representing the year, month, and day into a date value.

Syntax Date (year, month, day)

Return value Date. Returns the date specified by the integers for year, month, and day as a
date datatype. If any value is invalid (out of the range of values for dates), Date
returns 1900-01-01. If any argument’s value is null, Date returns null.

Examples These statements use integer values to set ld_my_date to 1994-10-15:

date ld_my_date
ld_my_date = Date(1994, 10, 15)

See also DateTime
DaysAfter
RelativeDate
RelativeTime

Argument Description

year The 4-digit year (-9999 to 9999) of the date

month The 1- or 2-digit integer for the month (1 to 12) of the year

day The 1- or 2-digit integer for the day (1 to 31) of the month

Chapter 10 PowerScript Functions

PowerScript Reference 379

DateTime
Manipulates DateTime values. There are two syntaxes.

Syntax 1 For creating DateTime values
Description Combines a date value and a time value into a DateTime value.

Syntax DateTime (date {, time })

Return value DateTime. Returns a DateTime value based on the values in date and optionally
time. If any argument’s value is null, DateTime returns null.

Usage DateTime data is used only for reading and writing DateTime values to and
from a database. To use the date and time values in scripts, use the Date and
Time functions to assign values to date and time variables.

Examples These statements convert the date and time stored in ld_OrderDate and
lt_OrderTime to a DateTime value that can be used to update the database:

DateTime ldt_OrderDateTime
date ld_OrderDate
time lt_OrderTime

ld_OrderDate = Date(sle_orderdate.Text)
lt_OrderTime = Time(sle_ordertime.Text)
ldt_OrderDateTime = DateTime(&
 ld_OrderDate, lt_OrderTime)

To Use

Combine a date and a time value into a DateTime value Syntax 1

Obtain a DateTime value that is stored in a blob Syntax 2

Argument Description

date A value of type date.

time
(optional)

A value of type time. If you omit time, PocketBuilder sets time to
00:00:00.000000 (midnight). If you specify time, only the hour
portion is required.

DateTime

380 PocketBuilder

See also Date
Time
DateTime method for DataWindows in the DataWindow Reference

Syntax 2 For extracting DateTime values from blobs
Description Extracts a DateTime value from a blob.

Syntax DateTime (blob)

Return value DateTime. Returns the DateTime value stored in blob. If blob is null, DateTime
returns null.

Usage DateTime data is used only for reading and writing DateTime values to and
from a database. To use the date and time values in scripts, use the Date and
Time functions to assign values to date and time variables.

Examples After assigning blob data from the database to lb_blob, the following example
obtains the DateTime value stored at position 20 in the blob (the length you
specify for BlobMid must be at least as long as the DateTime value but can be
longer):

DateTime dt
dt = DateTime(BlobMid(lb_blob, 20, 40))

See also Date
Time

Argument Description

blob A blob in which the first value is a DateTime value. The rest of the
contents of the blob is ignored. Blob can also be an Any variable
containing a blob.

Chapter 10 PowerScript Functions

PowerScript Reference 381

Day
Description Obtains the day of the month in a date value.

Syntax Day (date)

Return value Integer. Returns an integer (1 to 31) representing the day of the month in date.
If date is null, Day returns null.

Examples These statements extract the day (31) from the date literal 1994-01-31 and set
li_day_portion to that value:

integer li_day_portion
li_day_portion = Day(1994-01-31)

These statements check to be sure the date in sle_date is valid, and if so set
li_day_portion to the day in the sle_date:

integer li_day_portion

IF IsDate(sle_date.Text) THEN
 li_day_portion = Day(Date(sle_date.Text))
ELSE
 MessageBox("Error", &
 "This date is invalid: " &
 + sle_date.Text)
END IF

See also Date
IsDate
Month
Year
Day method for DataWindows in the DataWindow Reference or the online Help

Argument Description

date A date value from which you want the day

DayName

382 PocketBuilder

DayName
Description Determines the day of the week in a date value and returns the weekday’s

name.

Syntax DayName (date)

Return value String. Returns a string whose value is the weekday (Sunday, Monday, and so
on) of date. If date is null, DayName returns null.

Usage DayName returns a name in the language of the runtime files available on the
machine where the application is run. If you have installed localized runtime
files in the development environment or on a user’s machine, then on that
machine the name returned by DayName is in the language of the localized
files.

Examples These statements evaluate the date literal 1993-07-04 and set day_name to
Sunday:

string day_name
day_name = DayName(1993-07-04)

These statements check to be sure the date in sle_date is valid, and if so set
day_name to the day in sle_date:

string day_name

IF IsDate(sle_date.Text) THEN
 day_name = DayName(Date(sle_date.Text))
ELSE
 MessageBox("Error", &
 "This date is invalid: " &
 + sle_date.Text)
END IF

See also Day
DayNumber
IsDate
DayName in the DataWindow Reference

Argument Description

date A date value for which you want the name of the day

Chapter 10 PowerScript Functions

PowerScript Reference 383

DayNumber
Description Determines the day of the week of a date value and returns the number of the

weekday.

Syntax DayNumber (date)

Return value Integer. Returns an integer (1-7) representing the day of the week of date.
Sunday is day 1, Monday is day 2, and so on. If date is null, DayNumber returns
null.

Examples These statements evaluate the date literal 1990-01-31 and set day_nbr to 4
(January 31, 1990, was a Wednesday):

integer day_nbr
day_nbr = DayNumber(1990-01-31)

These statements check to be sure the date in sle_date is valid, and if so set
day_nbr to the number of the day in the sle_date:

integer day_nbr

IF IsDate(sle_date.Text) THEN
 day_nbr = DayNumber(Date(sle_date.Text))
ELSE
 MessageBox("Error", &
 "This date is invalid: " &
 + sle_date.Text)
END IF

See also Day
DayName
IsDate
DayNumber in the DataWindow Reference

Argument Description

date The date value from which you want the number of the day of the
week

DaysAfter

384 PocketBuilder

DaysAfter
Description Determines the number of days one date occurs after another.

Syntax DaysAfter (date1, date2)

Return value Long. Returns a long whose value is the number of days date2 occurs after
date1. If date2 occurs before date1, DaysAfter returns a negative number. If any
argument’s value is null, DaysAfter returns null.

Examples This statement returns 4:

DaysAfter(2002-12-20, 2002-12-24)

This statement returns -4:

DaysAfter(2002-12-24, 2002-12-20)

This statement returns 0:

DaysAfter(2003-12-24, 2003-12-24)

This statement returns 5:

DaysAfter(2003-12-29, 2004-01-03)

If you declare date1 and date2 date variables and assign February 16, 2003, to
date1 and April 28, 2003, to date2 as follows:

date date1, date2

date1 = 2003-02-16
date2 = 2003-04-28

then each of the following statements returns 71:

DaysAfter(date1, date2)
DaysAfter(2003-02-16, date2)
DaysAfter(date1, 2003-04-28)
DaysAfter(2003-02-16, 2003-04-28)

Argument Description

date1 A date value that is the start date of the interval being measured

date2 A date value that is the end date of the interval

Chapter 10 PowerScript Functions

PowerScript Reference 385

See also RelativeDate
RelativeTime
SecondsAfter
DaysAfter in the DataWindow Reference

DBHandle
Description Reports the handle for your DBMS.

Applies to Transaction objects

Syntax transactionobject.DBHandle ()

Return value UnsignedLong. Returns the handle for your DBMS. Transactionobject must
exist, and the database must be connected. If transactionobject is null,
DBHandle returns null. If transactionobject does not exist, an execution error
occurs. If there is not enough memory to connect to your DBMS, DBHandle
returns a negative number.

Usage DBHandle returns a valid handle only if you are connected to the database. It is
not able to determine if the database connection does not exist or has been lost.

Examples For examples, search for DBHandle in online Help.

Argument Description

transactionobject The current transaction object

DebugBreak

386 PocketBuilder

DebugBreak
Description Suspends execution and opens the Debug window. This function is for use at

design time only.

Syntax DebugBreak ()

Return value None

Usage Insert a call to the DebugBreak function into a script at a point at which you
want to suspend execution and examine the application. Then enable
just-in-time debugging and run the application in the development
environment.

Just-in-time debugging
You turn on just-in-time debugging on the General page of the System Options
dialog box that you open from the PocketBuilder Tools>System Options menu.

When PocketBuilder encounters the DebugBreak function, the Debug window
opens showing the current context.

Examples This statement tests whether a variable is null and opens the Debug window if
it is:

IF IsNull(auo_ext) THEN DebugBreak()

Dec
Description Converts a string to a decimal number or obtains a decimal value stored in a

blob.

Chapter 10 PowerScript Functions

PowerScript Reference 387

Syntax Dec (stringorblob)

Return value Decimal. Returns the value of stringorblob as a decimal. If stringorblob is not
a valid PowerScript number or if it contains an incompatible datatype, Dec
returns 0. If stringorblob is null, Dec returns null.

Examples This statement returns 24.3 as a decimal datatype:

Dec("24.3")

This statement returns the contents of the SingleLineEdit sle_salary as a
decimal number:

Dec(sle_salary.Text)

For an example of assigning and extracting values from a blob, see Real.

See also Double
Integer
Long
Real

DecoderName
Description Retrieves the short decoder name for the passed in ID value.

Applies to BarcodeScanner objects

Syntax String scanner.DecoderName (decoderID)

Argument Description

stringorblob A string whose value you want returned as a decimal value or a blob
in which the first value is the decimal you want. The rest of the
contents of the blob is ignored. Stringorblob can also be an Any
variable containing a string or blob.

Argument Description

scanner The scanner object for which you want to retrieve a decoder name

decoderID Integer value of the decoder

DeleteCategory

388 PocketBuilder

Return value String. Returns the short decoder name.

Usage Call DecoderName to determine the type of bar code scanned by a particular
decoder.

Examples The following example returns the name of the scanner device with a decoder
ID of 48:

ls_name = l_scanner.DecoderName(48)

The decoder ID of 48 corresponds to UPCE0, which is the value assigned to
the variable ls_name in the preceding script.

See also DeviceInfo
DeviceNames

DeleteCategory
Description Deletes a category and the data values for that category from the category axis

of a graph.

Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (because their data comes directly from the
DataWindow).

Syntax controlname.DeleteCategory (categoryvalue)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, DeleteCategory returns null.

Examples These statements delete the category whose name is entered in the
SingleLineEdit sle_delete from the graph gr_product_data:

string CategName

Argument Description

controlname The graph in which you want to delete a category.

categoryvalue A value that is the category you want to delete from
controlname. The value you specify must be the same
datatype as the datatype of the category axis.

Chapter 10 PowerScript Functions

PowerScript Reference 389

CategName = sle_delete.Text
gr_product_data.DeleteCategory(CategName)

See also DeleteData
DeleteSeries

DeleteColumn
Description Deletes a column.

ListView controls

Syntax listviewname.DeleteColumn (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes the second column in a ListView control:

lv_list.DeleteColumn(2)

See also DeleteColumns

DeleteColumns
Description Deletes all columns.

Applies to ListView controls

Argument Description

listviewname The name of the ListView control from which you want to delete a
column

index The index number of the column you want to delete

DeleteData

390 PocketBuilder

Syntax listviewname.DeleteColumns ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all columns in a ListView control:

lv_list.DeleteColumns()

See also DeleteColumn

DeleteData
Description Deletes a data point from a series of a graph. The remaining data points in the

series are shifted left to fill the data point’s category.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (because their data comes directly from the
DataWindow).

Syntax controlname.DeleteData (seriesnumber, datapointnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, DeleteData returns null.

Examples These statements delete the data at data point 7 in the series named Costs in the
graph gr_product_data:

integer SeriesNbr

Argument Description

listviewname The name of the ListView control from which you want to
delete all columns

Argument Description

controlname The name of the graph in which you want to delete a data
value

seriesnumber The number of the series containing the data value you want
to delete from controlname

datapointnumber The number of the data point containing the data you want to
delete

Chapter 10 PowerScript Functions

PowerScript Reference 391

// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.DeleteData(SeriesNbr, 7)

See also AddData
DeleteCategory
DeleteSeries
FindSeries

DeleteItem
Deletes an item from a ListBox, DropDownListBox, ListView, or Toolbar
control.

Syntax 1 For ListBox and DropDownListBox controls
Description Deletes an item from the list of values for a list box control.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.DeleteItem (index)

To delete an item from Use

A ListBox or DropDownListBox control Syntax 1

A ListView control Syntax 2

A TreeView control Syntax 3

A Toolbar control Syntax 4

Argument Description

listboxname The name of the ListBox, DropDownListBox, or PictureListBox
from which you want to delete an item

index The position number of the item you want to delete

DeleteItem

392 PocketBuilder

Return value Integer. Returns the number of items remaining in the list of values after the
item is deleted. If an error occurs, DeleteItem returns -1. If any argument’s
value is null, DeleteItem returns null.

Usage If the control’s Sorted property is set, the order of the list is probably different
from the order you specified when you defined the control. If you know the
item’s text, use FindItem to determine the item’s index.

Examples Assuming lb_actions contains 10 items, this statement deletes item 5 from
lb_actions and returns 9:

lb_actions.DeleteItem(5)

These statements delete the first selected item in lb_actions:

integer li_Index
li_Index = lb_actions.SelectedIndex()
lb_actions.DeleteItem(li_Index)

This statement deletes the item "Personal" from the ListBox lb_purpose:

lb_purpose.DeleteItem(&
 lb_purpose.FindItem("Personal", 1))

See also AddItem
FindItem
InsertItem
SelectItem

Syntax 2 For ListView controls
Description Deletes the specified item from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteItem (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

listviewname The name of the ListView control from which you want to delete an
item

index The index number of the item you want to delete

Chapter 10 PowerScript Functions

PowerScript Reference 393

Examples This example uses SelectedIndex to find the index of the selected ListView
item and then deletes the corresponding item:

integer index
index = lv_list.selectedindex()
lv_list.DeleteItem(index)

See also AddItem
FindItem
InsertItem
SelectItem
DeleteItems

Syntax 3 For TreeView controls
Description Deletes an item from a control and all its child items, if any.

Applies to TreeView controls

Syntax treeviewname.DeleteItem (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage If all items are children of a single item at the root level, you can delete all items
in the TreeView with the handle for RootTreeItem as the argument for
DeleteItem. Otherwise, you need to loop through the items at the first level.

Examples This example deletes an item from a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
tv_list.DeleteItem(ll_tvi)

This example deletes all items from a TreeView control when there are several
items at the first level:

long tvi_hdl = 0

Argument Description

treeviewname The name of the TreeView control from which you want to delete
an item

itemhandle The handle of the item you want to delete

DeleteItem

394 PocketBuilder

DO UNTIL tv_1.FindItem(RootTreeItem!, 0) = -1
 tv_1.DeleteItem(tvi_hdl)
LOOP

See also AddItem
FindItem
InsertItem
SelectItem
DeleteItems

Syntax 4 For Toolbar controls
Description Deletes a toolbar item from the toolbar control.

Applies to Toolbar controls

Syntax Integer controlname.DeleteItem (index)

Return value Integer. Returns 1 for success and -1 if an error occurs.

Examples The following example removes the second item from the toolbar:

li_rtn = tlbr_mytoolbar.DeleteItem(2)

See also AddItem
InsertItem

Argument Description

controlname The name of the toolbar control

index Integer for the index of the item that you want to remove from the
toolbar

Chapter 10 PowerScript Functions

PowerScript Reference 395

DeleteItems
Description Deletes all items from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteItems ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all the items in a ListView control:

lv_list.DeleteItems()

See also DeleteItem

DeleteLargePicture
Description Deletes a picture from the large image list.

Applies to ListView controls

Syntax listviewname.DeleteLargePicture (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

listviewname The name of the ListView control from which you want to delete all
items

Argument Description

listviewname The name of the ListView control to which you want to delete a
large picture from the image list

index The index entry for the large picture you want to delete

DeleteLargePictures

396 PocketBuilder

Examples This example deletes a large picture from a ListView control:

lv_list.DeleteLargePicture(1)

See also DeleteLargePictures

DeleteLargePictures
Description Deletes all large pictures from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteLargePictures ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all large pictures from a ListView control:

lv_list.DeleteLargePictures()

See also DeleteLargePicture

DeletePicture
Description Deletes a picture from the image list.

Applies to PictureListBox and TreeView controls

Argument Description

listviewname The name of the ListView control from which you want to delete all
pictures from the large picture image list

Chapter 10 PowerScript Functions

PowerScript Reference 397

Syntax controlname.DeletePicture (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage When you delete a picture from the image list for a control, all subsequent
pictures in the list are renumbered to fill the gap. Because the picture index for
an item does not change, the pictures for items that use the affected index
numbers will change.

Examples This example deletes the sixth image from the image list:

tv_list.DeletePicture(6)

See also DeletePictures
AddPicture

DeletePictures
Description Deletes all pictures from an image list.

Applies to PictureListBox and TreeView controls

Syntax controlname.DeletePictures ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all images from a TreeView control image list:

tv_list.DeletePictures()

See also DeletePicture
AddPicture

Argument Description

controlname The control from which you want to delete a picture

index The index number of the picture you want to delete from the
TreeView control’s image list

Argument Description

controlname The control in which you want to delete all pictures from the image
list

DeleteSeries

398 PocketBuilder

DeleteSeries
Description Deletes a series and its data values from a graph.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (because their data comes directly from the
DataWindow).

Syntax controlname.DeleteSeries (seriesname)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, DeleteSeries returns null.

Usage The series in a graph are numbered consecutively, in the order they were added
to the graph. When a series is deleted, the remaining series are renumbered.

Examples This script for the SelectionChanged event of a DropDownListBox assumes
that the list box lists the series in the graph gr_data. When the user chooses an
item, DeleteSeries deletes the series from the graph and DeleteItem deletes the
name from the list box:

string ls_name
ls_name = This.Text
gr_data.DeleteSeries(ls_name)
This.DeleteItem(This.FindItem(ls_name, 0))

See also AddSeries
DeleteCategory
DeleteData
FindSeries

Argument Description

controlname The graph in which you want to delete a series

seriesname A string whose value is the name of the series you want to delete
from controlname

Chapter 10 PowerScript Functions

PowerScript Reference 399

DeleteSmallPicture
Description Deletes a small picture from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteSmallPicture (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes a small picture from a ListView control:

lv_list.DeleteSmallPicture(1)

See also DeleteSmallPictures

DeleteSmallPictures
Description Deletes all small pictures from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteSmallPictures ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

listviewname The name of the ListView control from which you want to delete a
small picture from the image list

index The index number of the small picture you want to delete

Argument Description

listviewname The name of the ListView control from which you want to delete all
small pictures

DeleteStatePicture

400 PocketBuilder

Examples This example deletes all small pictures from a ListView control:

lv_list.DeleteSmallPictures()

See also DeleteSmallPicture

DeleteStatePicture
Description Deletes a state picture from a control.

Applies to ListView and TreeView controls

Syntax controlname.DeleteStatePicture (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes a state picture from a ListView control:

lv_list.DeleteStatePicture(1)

See also DeleteStatePictures

DeleteStatePictures
Description Deletes all state pictures from a control.

Applies to ListView and TreeView controls

Argument Description

controlname The name of the ListView or TreeView control from which you
want to delete a picture from the state image list

index The index number of the state picture you want to delete

Chapter 10 PowerScript Functions

PowerScript Reference 401

Syntax controlname.DeleteStatePictures ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all state pictures from a ListView control:

lv_list.DeleteStatePictures()

See also DeleteStatePicture

DestroyModel
Description Destroys the current performance analysis or trace tree model.

Applies to Profiling and TraceTree objects

Syntax instancename.DestroyModel ()

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• ModelNotExistsError!—The function failed because no model exists

Usage When you are finished with the performance analysis or trace tree model you
created using the BuildModel function, you must call DestroyModel to destroy
the model as well as all the objects associated with that model. The memory
allocated to a model will not be released until the object is destroyed.

Examples This example destroys the performance analysis model previously created
using the BuildModel function:

lpro_model.DestroyModel()
DESTROY lpro_model

Argument Description

controlname The name of the ListView or TreeView control from which you
want to delete all state pictures

Argument Description

instancename Instance name of the Profiling or TraceTree object

DeviceInfo

402 PocketBuilder

See also BuildModel

DeviceInfo
Description Gets information specific to a scanner device.

Applies to BarcodeScanner objects

Syntax Integer scanner.DeviceInfo (values [])

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -10 Low level device error

• -100 Feature not implemented

Usage The information retrieved is for a specific device. For the Symbol and Socket
scanner devices, the information passed to the values array is shown in Table
10-2.

Argument Description

scanner The scanner object associated with the scanner device for which
you want to get device-specific parameters

values [] An array of integer values of the scanner device that is passed by
reference

Chapter 10 PowerScript Functions

PowerScript Reference 403

Table 10-2: Symbol scanner device information

Examples The following example retrieves the major and minor version numbers of the
physical device driver for the Symbol scanner. It displays them in a list box:

unsignedlong l_info[]
integer li_rtn
long ver_major, ver_minor
string stmp

li_rtn = l_scanner.DeviceInfo(l_info)
// physical device driver version
ver_major = INTHIGH(l_info[3])
ver_minor = INTLOW(l_info[3])
stmp = string(ver_major) + "." + string(ver_minor)
lb_res.AddItem("Physical device driver: " + stmp)

See also DecoderName
DeviceNames

DeviceNames
Description Gets the names for a scanner device.

Array number Device-specific information (how value is encoded)

value [1] Hardware version (hiword/loword)

value [2] Decoder version (hiword/loword)

value [3] Physical device driver version (hiword/loword)

value [4] Model device driver version (hiword/loword)

value [5] C-API version (hiword/loword)

value [6] Supports narrow beam width (bool)

value [7] Supports aiming (bool)

value [8] Supports scan direction reporting (bool)

value [9] Supports remote feedback (bool)

value [10] Reader type (enumerated values: 0 for laser bar code reader,
1 for contact wand bar code reader, or 3 for imager bar code
reader)

DeviceNames

404 PocketBuilder

Applies to BarcodeScanner objects

Syntax Integer scanner.DeviceNames (names)

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -10 Low level device error

• -100 Feature not implemented

Usage Call DeviceNames to determine the attached scanner device or devices. The
default scanner device name is SCN1 for a Symbol scanner, and an empty
string for a Socket scanner. You can parse the names argument value on the
position of the tab characters to obtain separate strings for the short device
name, the user-friendly (long) device name, and the port name used by the
scanner device.

Examples The following example gets a string with the tab separated names for the
scanner device and its port:

string l_names
li_rtn = l_scanner.DeviceNames(l_names)

See also DecoderName
DeviceInfo

Argument Description

scanner The scanner object associated with the scanner device for which you
want to get a name

names A string value for scanner device names that is passed by reference in
the following format:

device_name<tab>user_friendly_name<tab>port_name

Chapter 10 PowerScript Functions

PowerScript Reference 405

DirectoryExists
Description Determines if the named directory exists.

Syntax DirectoryExists (directoryname)

Return value Returns true if the directory exists. Returns false if the directory does not exist
or if you pass a file name in the directoryname argument.

Usage You can use this method before attempting to move a file or delete a directory
using other file system methods.

Examples This example determines if a directory exists before attempting to move a file
to it; otherwise it displays a message box indicating that the path does not exist:

string ls_path="monthly targets"

If DirectoryExists (ls_path) Then
 FileMove ("2000\may.csv", ls_path+"\may.csv")
 MessageBox ("File Mgr", "File moved to "&
 + ls_path + ".")
Else
 MessageBox ("File Mgr", "Directory " + ls_path+&
 " does not exist")
End If

See also FileMove
GetCurrentDirectory
RemoveDirectory

Argument Description

directoryname String for the name of the directory you want to verify as existing

DirList

406 PocketBuilder

DirList
Description Populates a ListBox with a list of files. You can specify a path, a mask, and a

file type to restrict the set of files displayed. If the window has an associated
StaticText control, DirList can display the current drive and directory as well.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.DirList (filespec, filetype {, statictext })

Return value Boolean. Returns true if the search path is valid so that the ListBox is populated
or the list is empty. DirList returns false if the ListBox cannot be populated (for
example, filespec is a file, not a directory, or specifies an invalid path). If any
argument’s value is null, DirList returns null.

Argument Description

listboxname The name of the ListBox control you want to populate.

filespec A string whose value is the file pattern. This is usually a mask (for
example, *.INI or *.TXT). If you include a path, it becomes the
current drive and directory.

filetype An unsigned integer representing one or more types of files you
want to list in the ListBox. Types are:

• 0 — Read/write files

• 1 — Read-only files

• 2 — Hidden files

• 4 — System files

• 16 — Subdirectories

• 32 — Archive (modified) files

• 16384 — Drives

• 32768 — Exclude read/write files from the list

To list several types, add the numbers associated with the types. For
example, to list read-write files, subdirectories, and drives, use
0+16+16384 or 16400 for filetype.

statictext
(optional)

The name of the StaticText in which you want to display the current
drive and directory.

Chapter 10 PowerScript Functions

PowerScript Reference 407

Usage You can call DirList when the window opens to populate the list initially. You
should also call DirList in the script for the SelectionChanged event to
repopulate the list box based on the new selection. (See the example in
DirSelect.)

Alternatives
Although DirList’s features allow you to emulate the standard File Open and
File Save windows, you can get the full functionality of these standard
windows by calling GetFileOpenName and GetFileSaveName instead of DirList.

Examples This statement populates the ListBox lb_emp with a list of read/write files with
the file extension TXT in the search path C:\EMPLOYEE*.TXT:

lb_emp.DirList("C:\EMPLOYEE*.TXT", 0)

This statement populates the ListBox lb_emp with a list of read-only files with
the file extension DOC in the search path C:\EMPLOYEE*.DOC and displays
the path specification in the StaticText st_path:

lb_emp.DirList("C:\EMPLOYEE*.DOC", 1, st_path)

These statements in the script for a window Open event initialize a ListBox to
all files in the current directory that match *.TXT:

String s_filespec
s_filespec = "*.TXT"
lb_filelist.DirList(s_filespec, 16400, st_filepath)

See also DirSelect

DirSelect
Description When a ListBox has been populated with the DirList function, DirSelect

retrieves the current selection and stores it in a string variable.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.DirSelect (selection)

DirSelect

408 PocketBuilder

Return value Boolean. Returns true if the current selection is a drive letter or a directory name
(which can contain files and other directories) and false if it is a file (indicating
the user’s final choice). If any argument’s value is null, DirSelect returns null.

Usage Use DirSelect in the SelectionChanged event to find out what the user chose.
When the user’s selection is a drive or directory, use the selection as a new
directory specification for DirList.

Examples The following script for the SelectionChanged event for the ListBox lb_FileList
calls DirSelect to test whether the user’s selection is a file. If not, the script joins
the directory name with the file pattern, and calls DirList to populate the
ListBox and display the current drive and directory in the StaticText
st_FilePath. If the current selection is a file, other code processes the file name:

string ls_filename, ls_filespec = "*.TXT"

IF lb_FileList.DirSelect(ls_filename) THEN
 //If ls_filename is not a file,
 //append directory to ls_filespec.
 ls_filename = ls_filename + ls_filespec
 lb_filelist.DirList(ls_filename, &
 16400, st_FilePath)
ELSE
 ... //Process the file.
END IF

See also DirList

Argument Description

listboxname The name of the ListBox control from which you want to retrieve
the current selection. The ListBox must have been populated using
DirList, and the selection must be a drive letter, a file, or the name
of a directory.

selection A string variable in which the selected path name will be put.

Chapter 10 PowerScript Functions

PowerScript Reference 409

Disable
Description Disables an item on a menu. The menu item is dimmed (its color is changed to

the user’s disabled text color, usually gray), and the user cannot select it.

Applies to Menu objects

Syntax menuname.Disable ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If menuname is null,
Disable returns null.

Equivalent syntax Setting the menu’s Enabled property is the same as
calling Disable.

menuname.Enabled = false

This statement:

m_appl.m_edit.Enabled = FALSE

is equivalent to:

m_appl.m_edit.Disable()

Examples This statement disables the m_edit menu item on the menu m_appl:

m_appl.m_edit.Disable()

See also Enable

DisableCommit
Description Declares that a component’s transaction updates are inconsistent and cannot be

committed in their present state.

Argument Description

menuname The name of the menu selection you want to deactivate (disable)

DisconnectObject

410 PocketBuilder

Applies to TransactionServer objects

Syntax transactionserver.DisableCommit ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

DisconnectObject
Description Releases any object that is connected to the specified OLEObject variable.

Applies to OLEObject objects

Syntax oleobject.DisconnectObject ()

Return value Integer. Returns 0 if it succeeds and a negative value if an error occurs.

DisconnectServer
Description Disconnects a client application from a server application.

Applies to Connection objects

Syntax connection.DisconnectServer ()

Return value Long. Returns 0 if it succeeds and a negative value if an error occurs.

Usage After disconnecting from the server application, the client application needs to
destroy the Connection object.

DisconnectServer causes all remote objects and proxy objects created for the
client connection to be destroyed.

Examples In this example, the client application disconnects from the server application
using the Connection object myconnect:

myconnect.DisconnectServer()
destroy myconnect

See also ConnectToServer

Chapter 10 PowerScript Functions

PowerScript Reference 411

Display
Description Displays the appointment, contact, or task using the default display in Pocket

Outlook or the window specified as an optional argument to the POOM Login
function.

Applies to POOMAppointment, POOMContact, POOMTask objects

Syntax Integer objectname.Display ()

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Examples The following example displays the first appointment in the list of
appointments:

POOMAppointment appt
DateTime dt

// global variable g_poom
appt = g_poom.GetAppointment(1)
dt = appt.AppointmentStart
appt.display()

Argument Description

objectname The name of the POOMAppointment, POOMContact, or
POOMTask object

Double

412 PocketBuilder

See also GetAppointment
GetContact
GetTask

Double
Description Converts a string to a double or obtains a double value that is stored in a blob.

Syntax Double (stringorblob)

Return value Double. Returns the contents of stringorblob as a double. If stringorblob is not
a valid PowerScript number or if it contains a non-numeric datatype, Double
returns 0. If stringorblob is null, Double returns null.

Usage To distinguish between a string whose value is the number 0 and a string whose
value is not a number, use the IsNumber function before calling the Double
function.

Examples This statement returns 24.372 as a double:

Double("24.372")

This statement returns the contents of the SingleLineEdit sle_distance as a
double:

Double(sle_distance.Text)

After assigning blob data from the database to lb_blob, this example obtains the
double value stored at position 20 in the blob (the length you specify for
BlobMid must be at least as long as the value but can be longer):

double lb_num
lb_num = Double(BlobMid(lb_blob, 20, 40))

For an example of assigning and extracting values from a blob, see Real.

Argument Description

stringorblob A string whose value you want returned as a double or a blob in
which the first value is the double value. The rest of the contents of
the blob is ignored. Stringorblob can also be an Any variable
containing a double or blob.

Chapter 10 PowerScript Functions

PowerScript Reference 413

See also Dec
Integer
Long
Real

DoVerb
Description Requests the OLE server application to execute the specified verb for the OLE

object in an OLE control or OLE DWObject.

Applies to OLE controls and OLE DWObjects (objects within a DataWindow object that
is within a DataWindow control)

Syntax objectref.DoVerb (verb)

Return value Integer. Returns 0 if it succeeds and a negative value if an error occurs.

If any argument’s value is null, DoVerb returns null.

Drag
Description Starts or ends the dragging of a control.

Applies to All controls except drawing objects (Lines, Ovals, Rectangles, and Rounded
Rectangles)

Syntax control.Drag (dragmode)

Argument Description

control The name of the control you want to drag or stop dragging

Drag

414 PocketBuilder

Return value Integer. For all controls except OLE controls, returns 1 if it succeeds and -1 if
you try to nest drag events or try to cancel the drag when control is not in drag
mode. The return value is usually not used. If any argument’s value is null, Drag
returns null.

Usage To see the list of draggable controls, open the Browser. All the objects in the
hierarchy below dragobject are draggable.

If you set the control’s DragAuto property to true, PocketBuilder automatically
puts the control in drag mode when the user clicks it. The user must hold the
stylus (PocketBuilder) or mouse button (PowerBuilder) down to drag.

Windows CE platforms
Dragging controls is not a typical action for Pocket PC applications.

When you use Drag(Begin!) in a control’s Clicked event to manually put the
control in drag mode, the user can drag the control by moving the mouse
without holding down the mouse button. Clicking the left mouse button ends
the drag. CANCEL! and END! are required only if you want to end the drag
without requiring the user to click the left mouse button.

Dragging DataWindow controls
The Clicked event of a DataWindow control occurs when the user presses the
mouse button, not when the mouse button is released. If you place Drag(Begin!)
in a DataWindow control’s Clicked event, releasing the mouse button ends the
drag.

To achieve the same behavior as with other controls, define a user-defined
event for the DataWindow control called lbuttonup and map it to the
pbm_lbuttonup event ID. Then place the following code in the lbuttonup event
script (ib_dragflag is a boolean instance variable):

IF NOT ib_dragflag THEN
 this.Drag(Begin!)
 ib_dragflag = TRUE

dragmode A value of the DragMode datatype indicating the action you want
to take on control:

• Begin! — Put control in drag mode

• Cancel! — Stop dragging control but do not cause a DragDrop
event

• End! — Stop dragging control and if control is over a target
object, cause a DragDrop event

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 415

ELSE
 ib_dragflag = FALSE
END IF

To make something happen when the user drags a control onto a target object,
write scripts for one or more of the target’s drag events (DragDrop, DragEnter,
DragLeave, and DragWithin).

Examples This statement puts sle_emp into drag mode:

sle_emp.Drag(Begin!)

See also DraggedObject

DraggedObject
Description Returns a reference to the control that triggered a drag event.

Obsolete function
Use the Drag event’s source argument instead of calling the DraggedObject
function.

Syntax DraggedObject ()

Return value DragObject, a special datatype that includes all draggable controls (all the
controls but no drawing objects). Returns a reference to the control that is
currently being dragged.

Draw

416 PocketBuilder

Draw
Description Draws a picture control at a specified location in the current window.

Applies to Picture controls

Syntax picture.Draw (xlocation, ylocation)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Draw returns null. The return value is usually not used.

Usage Using the Draw function is faster and produces less flicker than successively
changing the X property of a picture. This is because the Draw function draws
directly on the window rather than recreating a small window with the picture
in it for each change. Therefore, use Draw to draw pictures in animation.

To create animation, you can place a picture outside the visible portion of the
window and then use the Draw function to draw it at different locations in the
window. However, the image remains at all the positions where you draw it. If
you change the position by small increments, each new drawing of the picture
covers up most of the previous image.

Using Draw does not change the position of the picture control—it just displays
the control’s image at the specified location. Use the Move function to actually
change the position of the control.

Examples This statement draws the bitmap p_Train at the location specified by the X and
Y coordinates 100 and 200:

p_Train.Draw(100, 200)

These statements draw the bitmap p_ Train in many different locations so it
appears to move from left to right across the window:

integer horizontal

Argument Description

picture The name of the picture control you want to draw in the current
window

xlocation The x coordinate of the location (in PowerBuilder units) at which
you want to draw the picture

ylocation The y coordinate of the location (in PowerBuilder units) at which
you want to draw the picture

Chapter 10 PowerScript Functions

PowerScript Reference 417

FOR horizontal = 1 TO 2000 STEP 8
 p_Train.Draw(horizontal, 100)
NEXT

See also Move

DropCall
Description Disconnects the current call.

Applies to PhoneCall objects

Syntax objectname.DropCall ()

Return value Integer. Returns 1 for success and a negative value if an error occurs.

Examples The following statement disconnects the current call on pcall_1:

li_ret = pcall_1.AllowReceivingCalls(gb_Allow)

See also AcceptCall
AllowReceivingCalls
MakeCall
SetHold
SetMute
SetRingTone

Argument Description

objectname The name of the PhoneCall object whose current call will be
disconnected

EditLabel

418 PocketBuilder

EditLabel
Put a label in a ListView or TreeView control into edit mode.

Syntax 1 For editing a label in a ListView
Description Puts a label in a ListView into edit mode.

Applies to ListView controls

Syntax listviewname.EditLabel (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage The EditLabels property for the ListView must be set to true to enable editing
of labels. When this property is true, calling the EditLabel function sets focus
on the item and enables editing. To disable editing when the user has finished
editing the label, set the EditLabels property to false in the EndLabelEdit event.

If the EditLabels property is set to false, the EditLabel function does not enable
editing.

Examples This example allows the user to edit the label of the first selected item in the
ListView control lv_1:

integer li_selected
li_selected = lv_1.SelectedIndex()
lv_1.EditLabels = TRUE
lv_1.EditLabel(li_selected)

See also FindItem

To enable editing of a label in a Use

ListView control Syntax 1

TreeView control Syntax 2

Argument Description

listviewname The ListView control in which you want to enable label editing

index The index of the ListView item to be edited

Chapter 10 PowerScript Functions

PowerScript Reference 419

Syntax 2 For editing a label in a TreeView
Description Puts a label in a TreeView into edit mode.

Applies to TreeView controls

Syntax treeviewname.EditLabel (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage The EditLabels property for the TreeView must be set to true to enable editing
of labels. When this property is true, calling the EditLabel function sets focus
on the item and enables editing. To disable editing when the user has finished
editing the label, set the EditLabels property to false in the EndLabelEdit event.

If the EditLabels property is set to false, the EditLabel function does not enable
editing.

Examples This example allows the user to edit the label of the current TreeView item:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
tv_list.EditLabels = TRUE
tv_list.EditLabel(ll_tvi)

See also FindItem

Enable
Description Enables an item on a menu so a user can select it.

Argument Description

treeviewname The TreeView control in which you want to enable label editing

itemhandle The handle of the item to be edited

EnableCommit

420 PocketBuilder

Applies to Menu objects

Syntax menuname.Enable ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If menuname is null,
Enable returns null.

Usage Enabling a menu item changes its color to the active color (not the dimmed, or
disabled, color). Calling Enable sets the item’s Enabled property to true.

Equivalent syntax Setting the menu’s Enabled property is the same as
calling Enable.

menuname.Enabled = TRUE

This statement:

menu_appl.m_delete.Enabled = TRUE

is equivalent to:

menu_appl.m_delete.Enable()

Examples This statement enables the m_delete menu selection on the menu m_appl:

m_appl.m_delete.Enable()

See also Disable

EnableCommit
Description Declares that a component's work may be incomplete but its transaction

updates are consistent and can be committed.

Applies to TransactionServer objects

Syntax transactionserver.EnableCommit ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

menuname The name of the menu selection you want to enable

Chapter 10 PowerScript Functions

PowerScript Reference 421

EnableDecoder
Description Enables or disables a particular decodeer.

Applies to BarcodeScanner objects

Syntax Integer scanner.EnableDecoder (decoderID, fState)

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -10 Low level device error

• -11 Read is already pending (typically benign)

• -100 Feature not implemented

Examples The following example enables the decoder with a decoder ID of 49:

li_rtn = l_scanner.EnableDecoder(49, true)

The decoder ID of 49 corresponds to the decoder for UPCE1 type bar codes.

See also DecoderName

Argument Description

scanner The scanner object for which you want to enable or disable a decoder

decoderID Integer value of the decoder you want to enable or disable

fState Boolean value that determines whether to enable or disable the
decoder

EndPreview

422 PocketBuilder

EndPreview
Description Ends preview mode for a camera device.

Applies to Camera objects

Syntax objectname.EndPreview ()

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Supporting DLL not loaded

-3 Other initialization error

-5 Inconsistency in this object instance

-6 Call to the driver or device failed

-7 Unsupported option

-8 Value for option is out of range

Examples The following example ends the preview before closing the application:

li_rtn1 = g_myCamera.EndPreview()
li_rtn2 = g_camera.Close()

See also BeginPreview
CaptureImage
GetAllowedImageAttributes
Open
SetCaptureImageAttributes
SetPreviewImageAttributes

Argument Description

objectname The name of the camera object that you want to inquire about

Chapter 10 PowerScript Functions

PowerScript Reference 423

EntryList
Description Provides a list of the top-level entries included in a trace tree model.

Applies to TraceTree objects

Syntax instancename.EntryList (list)

Return value ErrorReturn. Returns the following values:

• Success!—The function succeeded

• ModelNotExistsError!—The function failed because no model exists

Usage You use the EntryList function to extract a list of the top-level entries or nodes
included in a trace tree model. Each top-level entry listed is defined as a
TraceTreeNode object and provides the type of activity represented by that
node.

You must have previously created the trace tree model from a trace file using
the BuildModel function.

Examples This example gets the top-level entries or nodes in a trace tree model and then
loops through the list extracting information about each node. The
of_dumpnode function takes a TraceTreeNode object and a level as arguments
and returns a string containing information about the node:

TraceTree ltct_model
TraceTreeNode ltctn_list[], ltctn_node
Long ll_index,ll_limit
String ls_line

ltct_model = CREATE TraceTree
ltct_model.BuildModel()
ltct_model.EntryList(ltctn_list)
ll_limit = UpperBound(ltctn_list)

Argument Description

instancename Instance name of the TraceTree object.

list An unbounded array variable of datatype TraceTreeNode in which
EntryList stores a TraceTreeNode object for each top-level entry in
the trace tree model. This argument is passed by reference.

ExecRemote

424 PocketBuilder

FOR ll_index = 1 TO ll_limit
ltctn_node = ltctn_list[ll_index]
ls_line += of_dumpnode(ltctn_node,0)

NEXT
...

See also BuildModel

ExecRemote
Asks a DDE server application to execute the specified command.

Syntax 1 For sending single commands
Description Sends a single command to a DDE server application, called a cold link.

Syntax ExecRemote (command, applname, topicname)

Return value Integer. Returns 1 if it succeeds. If it fails, it returns a negative integer.

Syntax 2 For commands over an opened channel
Description Sends a command to a DDE server application when you have already called

OpenChannel and established a warm link with the server.

Syntax ExecRemote (command, handle {, windowhandle })

Return value Integer. Returns 1 if it succeeds. If an error occurs, ExecRemote returns a
negative integer.

To send Use

A single command to a DDE server application (a cold link) Syntax 1

A command to a DDE server application after you have
opened a channel (a warm link)

Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 425

Exp
Description Raises e to the specified power.

Syntax Exp (n)

Return value Double. Returns e raised to the power n. If n is null, Exp returns null.

Inverse of Exp
The inverse of the Exp function is the Log function.

Examples This statement returns 7.38905609893065.

Exp(2)

These statements convert a natural logarithm (base e) back to a regular number.
When executed, Exp sets value to 200:

double value, x = log(200)
value = Exp(x)

See also Log
LogTen
Exp method for DataWindows in the DataWindow Reference.

ExpandAll
Description Recursively expands a specified item.

Applies to TreeView controls

Argument Description

n The power to which you want to raise e (2.71828)

ExpandItem

426 PocketBuilder

Syntax treeviewname.ExpandAll (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage To expand all levels in a TreeViewItem, use the ExpandAll function for the
RootTreeItem.

Examples This example expands all levels of a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(RootTreeItem! , 0)
tv_list.ExpandAll(ll_tvi)

See also CollapseItem
ExpandItem
FindItem

ExpandItem
Description Expands a specified item.

Applies to TreeView controls

Syntax treeviewname.ExpandItem (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage ExpandItem expands only a single item. To expand a specified item including
its children, use ExpandAll.

Examples This example expands the current level of a TreeView:

Argument Description

treeviewname The TreeView control in which you want to expand an item and all
the subordinate items in its hierarchy

itemhandle The handle of the item you want to expand

Argument Description

treeviewname The TreeView control in which you want to expand an item

itemhandle The handle of the item you want to expand

Chapter 10 PowerScript Functions

PowerScript Reference 427

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)
tv_list.ExpandItem(ll_tvi)

See also CollapseItem
ExpandAll
FindItem

Fact
Description Determines the factorial of a number.

Syntax Fact (n)

Return value Double. Returns the factorial of n. If n is null, Fact returns null.

Examples This statement returns 24 (that is, 1 * 2 * 3 * 4):

Fact(4)

Both these statements return 1:

Fact(1)

Fact(0)

See also Fact method for DataWindows in the DataWindow Reference

Argument Description

n The number for which you want the factorial

FARPrecedence

428 PocketBuilder

FARPrecedence
Description Specifies whether the False Acceptance Rate (FAR) has precedence over the

False Rejection Rate (FRR) for the results of a scanning operation.

Applies to BiometricScanner objects

Function availability
This function is not used by the HPBiometricScanner object implementation of
the BiometricScanner base class.

Syntax Integer scanner.FARPrecedence (which)

Return value Integer. Returns 1 for success or a negative values if an error occurs.

Usage Setting the FAR precedence has meaning only if both the FAR and the FRR
have nondefault values. This function is not used by the HPBiometricScanner
object implementation.

Examples The following example gives precedence to the FAR over the FRR:

li_rtn = l_bioscanner.FARPrecedence(true)

See also MaxFARRequested
MaxFRRRequested

Argument Description

scanner The scanner object associated with the device you want to use to
complete a scan

which Boolean value for the precedence of the FAR. Values are:

Chapter 10 PowerScript Functions

PowerScript Reference 429

FileClose
Description Closes the file associated with the specified file number. The file number was

assigned to the file with the FileOpen function.

Syntax FileClose (file#)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If file# is null,
FileClose returns null.

Examples These statements open and then close the file EMPLOYEE.DAT. The variable
li_FileNum stores the number assigned to the file when FileOpen opens the file.
FileClose uses that number to close the file:

integer li_FileNum
li_FileNum = FileOpen("EMPLOYEE.DAT")
. . . // Some processing
FileClose(li_FileNum)

See also FileLength
FileOpen
FileRead
FileWrite

FileCopy
Description Copies one file to another, optionally overwriting the target file.

Syntax FileCopy (sourcefile, targetfile {, replace })

Argument Description

file# The integer assigned to the file you want to close. The FileOpen
function returns the file number when it opens the file.

FileDelete

430 PocketBuilder

Return value Integer. Returns values as follows:

1—Success
-1—Error opening sourcefile
-2—Error writing targetfile

Usage If you do not specify a fully qualified path for sourcefile or for targetfile, the
function works relative to the current directory. If you do not specify the
replace argument, the FileCopy function does not replace a file in the target
directory that has the same name as the name you specify in the targetfile
argument (This is equivalent to setting the replace value to false).

Examples The following example copies a file from the current directory to a different
directory and saves the return value in a variable. It does not replace a file of
the same name if one already exists in the target directory:

integer li_FileNum
li_FileNum = FileCopy ("jazz.gif" , &

"C:\emusic\jazz.gif", FALSE)

See also FileMove
GetCurrentDirectory

FileDelete
Description Deletes the named file.

Syntax FileDelete (filename)

Argument Description

sourcefile String for the name of the file you want to copy

targetfile String for the name of the file you are copying to

replace
(optional)

Boolean specifying whether to replace the target file (true) or not
(false)

Argument Description

filename A string whose value is the name of the file you want to delete

Chapter 10 PowerScript Functions

PowerScript Reference 431

Return value Boolean. Returns true if it succeeds, false if an error occurs. If filename is null,
FileDelete returns null.

Examples These statements delete the file the user selected in the Open File window:

integer ret, value
string docname, named

value = GetFileOpenName("Select File," &
docname, named, "DOC", &

"Doc Files (*.DOC),*.DOC")

IF value = 1 THEN ret = MessageBox("Delete", &
"Delete file?", Question!, OKCancel!)

IF ret = 1 THEN FileDelete(docname)

See also FileExists

FileExists
Description Reports whether the specified file exists.

Syntax FileExists (filename)

Return value Boolean. Returns true if the file exists, false if it does not exist. If filename is
null, FileExists returns null.

Usage If filename is locked by another application, causing a sharing violation,
FileExists also returns false.

Examples This example determines if the file the user selected in the Save File window
exists and, if so, asks the user if the file can be overwritten:

string ls_docname, ls_named
integer li_ret
boolean lb_exist

Argument Description

filename A string whose value is the name of a file

FileLength

432 PocketBuilder

GetFileSaveName("Select File," ls_docname, &
ls_named, "pkl", &

"Doc Files (*.DOC),*.DOC")

lb_exist = FileExists(ls_docname)
IF lb_exist THEN li_ret = MessageBox("Save", &

"OK to write over" + ls_docname, &
Question!, YesNo!)

See also FileDelete

FileLength
Description Reports the length of a file whose size does not exceed 2GB in bytes.

Syntax FileLength (filename)

Return value Long. Returns the length in bytes of the file identified by filename. If the file
does not exist, FileLength returns -1. If filename is null, FileLength returns null.

Usage Call FileLength before or after you call FileOpen to check the length of a file
before you call FileRead. The FileRead function can read a maximum of 32,765
characters at a time.

File security
If any security is set for the file (for example, if you are sharing the file on a
network), you must call FileLength before FileOpen or after FileClose.
Otherwise, you get a sharing violation.

The FileLength function cannot return the length of files whose size exceeds
2GB.

Argument Description

filename A string whose value is the name of the file for which you want to
know the length. If filename is not on the current application library
search path, you must specify the fully qualified name.

Chapter 10 PowerScript Functions

PowerScript Reference 433

Examples This statement returns the length of the file EMPLOYEE.DAT in the current
directory:

FileLength("EMPLOYEE.DAT")

These statements determine the length of the EMP.TXT file in the EAST
directory and open the file:

long LengthA
integer li_FileNum
LengthA = FileLength("C:\EAST\EMP.TXT")
li_FileNum = FileOpen("C:\EAST\EMP.TXT", &

StreamMode!, Read!, LockReadWrite!)

The examples for FileRead illustrate reading files of different lengths.

See also FileClose
FileOpen
FileRead
FileWrite

FileMove
Description Moves a file.

Syntax FileMove (sourcefile, targetfile)

Return value Integer. Returns values as follows:

1—Success
-1—Error opening sourcefile
-2—Error writing targetfile

Usage You cannot write to a target file if a file with the same name already exists in
the target directory. If you want to copy over a target file, you can use FileCopy
and set the replace argument to true.

Argument Description

sourcefile String for the name of the file you want to move

targetfile String for the name of the location you are moving the file

FileOpen

434 PocketBuilder

Examples This example moves a file from the current directory to a different directory
and saves the return value in the li_FileNum variable:

integer li_FileNum
li_FileNum = FileMove ("june.csv", &

"H:/project/june2000.csv")

See also FileCopy
GetCurrentDirectory

FileOpen
Description Opens the specified file for reading or writing and assigns it a unique integer

file number. You use this integer to identify the file when you read, write, or
close the file. The optional arguments filemode, fileaccess, filelock, and
writemode determine the mode in which the file is opened.

File format
The FileOpen function can open Unicode and ANSI files. If the file does not
exist, FileOpen creates a Unicode file.

Syntax FileOpen (filename {, filemode {, fileaccess {, filelock {, writemode
{ creator, filetype }}}}})

Argument Description

filename A string whose value is the name of the file you want to open. If
filename is not on the current directory’s relative search path, you must
enter the fully qualified name.

filemode
(optional)

A value of the FileMode enumerated type that specifies how the end
of a FileRead or FileWrite is determined. Values are:

• LineMode! — (Default) Read or write the file a line at a time

• StreamMode! — Read the file in 32K chunks

For more information, see Usage below.

Chapter 10 PowerScript Functions

PowerScript Reference 435

Return value Integer. Returns the file number assigned to filename if it succeeds and -1 if an
error occurs. If any argument’s value is null, FileOpen returns null.

Usage When a file has been opened in line mode, each call to the FileRead function
reads until it encounters a carriage return (CR), linefeed (LF), or end-of-file
mark (EOF). Each call to FileWrite adds a CR and LF at the end of each string
it writes.

When a file has been opened in stream mode, a call to FileRead reads the whole
file (until it encounters an EOF) or 32,765 bytes, whichever is less. FileWrite
writes a maximum of 32,765 bytes in a single call and does not add CR and LF
characters.

File not found
If PocketBuilder does not find the file, it creates a new file, giving it the
specified name, if the fileaccess argument is set to Write!.

fileaccess
(optional)

A value of the FileAccess enumerated type that specifies whether the
file is opened for reading or writing. Values are:

• Read! — (Default) Read-only access

• Write! — Write-only access

If PocketBuilder does not find the file, a new file is created if the
fileaccess argument is set to Write!

filelock
(optional)

A value of the FileLock enumerated type specifying whether others
have access to the opened file. Values are:

• LockReadWrite! — (Default) Only the user who opened the file
has access

• LockRead! — Only the user who opened the file can read it, but
everyone has write access

• LockWrite! — Only the user who opened the file can write to it, but
everyone has read access

• Shared! — All users have read and write access.

writemode
(optional)

A value of the WriteMode enumerated datatype. When fileaccess is
Write!, specifies whether existing data in the file is overwritten. Values
are:

• Append! — (Default) Write data to the end of the file

• Replace! — Replace all existing data in the file

Writemode is ignored if the fileaccess argument is Read!

Argument Description

FileRead

436 PocketBuilder

Examples This example uses the default arguments and opens the file EMPLOYEE.DAT
for reading. The default settings are LineMode!, Read!, and LockReadWrite!.
FileRead reads the file line by line and no other user is able to access the file
until it is closed:

integer li_FileNum
li_FileNum = FileOpen("EMPLOYEE.DAT")

This example opens the file EMPLOYEE.DAT in the DEPT directory in stream
mode (StreamMode!) for write only access (Write!). Existing data is
overwritten (Replace!). No other users can write to the file (LockWrite!):

integer li_FileNum
li_FileNum = FileOpen("C:\DEPT\EMPLOYEE.DAT", &

StreamMode!, Write!, LockWrite!, Replace!)

See also FileClose
FileLength
FileRead
FileWrite

FileRead
Description Reads data from the file associated with the specified file number, which was

assigned to the file with the FileOpen function.

File format
FileRead can read Unicode files in line mode, and ANSI and Unicode files in
stream mode. To read from an ANSI file in stream mode, use the FromANSI
function to convert an ANSI blob into a Unicode character string.

Syntax FileRead (file#, variable)

Argument Description

file# The integer assigned to the file when it was opened

variable The name of the string or blob variable into which you want to read
the data

Chapter 10 PowerScript Functions

PowerScript Reference 437

Return value Integer. Returns the number of characters or bytes read. If an end-of-file mark
(EOF) is encountered before any characters are read, FileRead returns -100. If
the file is opened in LineMode and a CR or LF is encountered before any
characters are read, FileRead returns 0. If an error occurs, FileRead returns -1.
If any argument’s value is null, FileRead returns null.

Usage If the file is opened in Line mode, FileRead reads a line of the file (that is, until
it encounters a CR, LF, or EOF). It stores the contents of the line in the
specified variable, skips the line-end characters, and positions the file pointer
at the beginning of the next line.

If the file was opened in Stream mode, FileRead reads to the end of the file or
the next 32,765 bytes, whichever is shorter. FileRead begins reading at the file
pointer, which is positioned at the beginning of the file when the file is opened
for reading. If the file is longer than 32,765 bytes, FileRead automatically
positions the pointer after each read operation so that it is ready to read the next
chunk of data.

FileRead can read a maximum of 32,765 characters at a time. Therefore, before
calling the FileRead function, call the FileLength function to check the file
length. If your system has file sharing or security restrictions, you may need to
call FileLength before you call FileOpen.

An end-of-file mark is a null character (ASCII value 0). Therefore, if the file
being read contains null characters, FileRead stops reading at the first null
character, interpreting it as the end of the file.

Examples This example reads the file EMP_DATA.TXT if it is short enough to be read
with one call to FileRead:

integer li_FileNum
string ls_Emp_Input
long ll_FLength

ll_FLength = FileLength("C:\HR\EMP_DATA.TXT")
li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &

StreamMode!)
IF ll_FLength < 32767 THEN

FileRead(li_FileNum, ls_Emp_Input)
END IF

This example reads the file EMP_PIC1.BMP and stores the data in the blob
Emp_Id_Pic. The number of bytes read is stored in li_bytes:

integer li_fnum, li_bytes
blob Emp_Id_Pic

FileRead

438 PocketBuilder

li_fnum = FileOpen("C:\HR\EMP_PIC1.BMP", &
StreamMode!)

li_bytes = FileRead(li_fnum, Emp_Id_Pic)

This example reads a file exceeding 32,765 bytes. After the script has read the
file into the blob tot_b, you can call the SetPicture or String function to make
use of the data, depending on the contents of the file:

integer li_FileNum, loops, i
long flen, bytes_read, new_pos
blob b, tot_b

// Set a wait cursor
SetPointer(HourGlass!)

// Get the file length, and open the file
flen = FileLength(sle_filename.Text)
li_FileNum = FileOpen(sle_filename.Text, &

StreamMode!, Read!, LockRead!)

// Determine how many times to call FileRead
IF flen > 32765 THEN

IF Mod(flen, 32765) = 0 THEN
loops = flen/32765

ELSE
loops = (flen/32765) + 1

END IF
ELSE

loops = 1
END IF

// Read the file
new_pos = 1

FOR i = 1 to loops
bytes_read = FileRead(li_FileNum, b)
tot_b = tot_b + b

NEXT

FileClose(li_FileNum)

See also FileClose
FileLength
FileRead
FileSeek
FileWrite
FromAnsi

Chapter 10 PowerScript Functions

PowerScript Reference 439

FileSeek
Description Moves the file pointer to the specified position in a file whose size does not

exceed 2GB. The file pointer is the position in the file at which the next read
or write begins.

Effects of file format on character recognition
FileSeek can only be used in stream mode. It moves the pointer a specified
number of bytes and does not take the size of Unicode characters into account.
If you use FileSeek in a Unicode file and move the pointer to a position in the
middle of a Unicode character, the character is not recognized and a FileRead
from that position results in unexpected behavior.

Syntax FileSeek (file#, position, origin)

Return value Long. Returns the file position after the seek operation has been performed. If
any argument’s value is null, FileSeek returns null.

Usage Use FileSeek to move within a binary file that you have opened in stream mode.
FileSeek positions the file pointer so that the next FileRead or FileWrite occurs
at that position within the file.

The FileSeek function cannot handle files whose size exceeds 2GB. Use
FileSeek64 to move the file pointer in larger files.

Examples This example positions the file pointer 14 bytes from the end of the file:

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek(li_FileNum, -14, FromEnd!)

Argument Description

file# The integer assigned to the file when it was opened.

position A long whose value is the new position of the file pointer relative to
the position specified in origin, in bytes.

origin The value of the SeekType enumerated datatype specifying where you
want to start the seek. Values are:

• FromBeginning! — (Default) At the beginning of the file

• FromCurrent! — At the current position

• FromEnd! — At the end of the file

FileWrite

440 PocketBuilder

This example moves the file pointer from its current position 14 bytes toward
the end of the file. In this case, if no processing has occurred after FileOpen to
affect the file pointer, specifying FromCurrent! is the same as specifying
FromBeginning!:

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek(li_FileNum, 14, FromCurrent!)

See also FileRead
FileWrite

FileWrite
Description Writes data to the file associated with the specified file number. The file

number was assigned to the file with the FileOpen function.

File format
FileWrite can write to Unicode files in line mode, and ANSI and Unicode files
in stream mode. To write to an ANSI file in stream mode, use the ToANSI
function to convert a Unicode character string into an ANSI blob.

Syntax FileWrite (file#, variable)

Return value Integer. Returns the number of characters or bytes written if it succeeds and it
returns -1 if an error occurs. If any argument’s value is null, FileWrite returns
null.

Argument Description

file# The integer assigned to the file when the file was opened

variable A string or blob whose value is the data you want to write to the file

Chapter 10 PowerScript Functions

PowerScript Reference 441

Usage FileWrite writes its data at the position identified by the file pointer. If the file
was opened with the writemode argument set to Replace!, the file pointer is
initially at the beginning of the file. After each call to FileWrite, the pointer is
immediately after the last write. If the file was opened with the writemode
argument set to Append!, the file pointer is initially at the end of the file and
moves to the end of the file after each write.

FileWrite sets the file pointer following the last character written. If the file was
opened in line mode, FileWrite writes a carriage return (CR) and linefeed (LF)
after the last character in variable and places the file pointer after the CR and
LF.

Length limit
FileWrite can write only 32,766 bytes at a time, which includes the string
terminator character. If the length of variable exceeds 32,765, FileWrite writes
the first 32,765 characters and returns 32,765.

Examples This script excerpt opens EMP_DATA.TXT and writes the string New
Employees at the end of the file. The variable li_FileNum stores the number of
the opened file:

integer li_FileNum
li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &

LineMode!, Write!, LockWrite!, Append!)
FileWrite(li_FileNum, "New Employees")

The following example reads a blob from the database and writes it to a file.
The SQL SELECT statement assigns the picture data to the blob Emp_Id_Pic.
Then FileOpen opens a file for writing in stream mode and FileWrite writes the
blob to the file. You could use the Len function to test whether the blob was too
big for a single FileWrite call:

integer li_FileNum
blob emp_id_pic

SELECTBLOB salary_hist
INTO : emp_id_pic
FROM Employee
WHERE Employee.Emp_Num = 100
USING Emp_tran;

li_FileNum = FileOpen(&
"C:\EMPLOYEE\EMP_PICS.BMP", &

StreamMode!, Write!, Shared!, Replace!)
FileWrite(li_FileNum, emp_id_pic)

Fill

442 PocketBuilder

See also FileClose
FileLength
FileOpen
FileRead
FileSeek
ToAnsi

Fill
Description Builds a string of the specified length by repeating the specified characters

until the result string is long enough.

Syntax Fill (chars, n)

Return value String. Returns a string n characters long filled with the characters in the
argument chars. If the argument chars has more than n characters, the first n
characters of chars are used to fill the return string. If the argument chars has
fewer than n characters, the characters in chars are repeated until the return
string has n characters. If any argument’s value is null, Fill returns null.

Usage Use Fill in printing routines to create a line or other special effect. For example,
you can fill the amount line of a check with asterisks, or simulate a total line in
a screen display by repeating hyphens below a column of figures.

Examples This statement returns a string whose value is 35 stars:

Fill("*", 35)

This statement returns the string -+-+-+-:

Fill("-+", 7)

This statement returns 10 tildes (~):

Fill("~", 10)

Argument Description

chars A string whose value will be repeated to fill the return string

n A long whose value is the length of the string you want returned

Chapter 10 PowerScript Functions

PowerScript Reference 443

See also Space
Fill method for DataWindows in the DataWindow Reference

FillW
Description Builds a string of the specified length by repeating the specified characters

until the result string is long enough.

Obsolete function
This function is obsolete. It has the same behavior as Fill in SBCS and DBCS
environments.

Syntax FillW (chars, n)

Return value String

Find
Description Finds text in a RichTextEdit control or RichTextEdit DataWindow or

DataStore.

For syntax for PocketBuilder DataWindows and DataStores, see the Find
method for DataWindows in the DataWindow Reference or online Help.

Applies to RichTextEdit controls and DataWindow controls (or DataStore objects) whose
content has the RichTextEdit presentation style

Syntax controlname.Find (searchtext, forward, insensitive, wholeword, cursor)

Return value Integer. Returns the number of characters found. Find returns 0 if no matching
text is found, and returns -1 if the DataWindow’s presentation style is not
RichTextEdit or an error occurs.

FindCategory

444 PocketBuilder

FindCategory
Description Obtains the number of a category in a graph when you know the category’s

label.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.FindCategory ({ graphcontrol, } categoryvalue)

Return value Integer. Returns the number of the category named in categoryvalue in the
graph controlname, or if controlname is a DataWindow control, in
graphcontrol. If an error occurs, FindCategory returns -1. If any argument’s
value is null, FindCategory returns null.

Usage Most of the category manipulation functions require a category number, rather
than a name. However, when you delete and insert categories, existing
categories are renumbered to keep the numbering consecutive. Use
FindCategory when you know only a category’s label or when the numbering
may have changed.

Examples These statements obtain the number of a category in the graph gr_prod_data.
The category name is the text in the SingleLineEdit sle_ctory:

integer CtgryNbr
CtgryNbr =gr_prod_data.FindCategory(sle_ctgry.Text)

These statements obtain the number of the category named Qty in the graph
gr_computers in the DataWindow control dw_equip:

integer CtgryNbr
CtgryNbr = dw_equip.FindCategory("gr_computers", "Qty")

Argument Description

controlname A string whose value is the name of the graph in which you want
to find a specific category, or the name of the DataWindow
control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to find a specific
category.

categoryvalue A value that is the category for which you want the number. The
value you specify must be the same datatype as the datatype of
the category axis.

Chapter 10 PowerScript Functions

PowerScript Reference 445

See also AddCategory
DeleteData
DeleteSeries
FindSeries

FindClassDefinition
Description Searches for an object in one or more PocketBuilder libraries (PKLs) or

PowerBuilder libraries (PBLs) and provides information about its class
definition.

PocketBuilder applications
This function can be used only in the development environment. It cannot be
used in applications deployed to a Pocket PC or Smartphone device.

Syntax FindClassDefinition (classname {, librarylist })

Return value ClassDefinition. Returns an object reference with information about the
definition of classname. If any arguments are null, FindClassDefinition returns
null.

Usage There are two ways to get a ClassDefinition object containing class definition
information:

• For an instantiated object in your application, use its ClassDefinition
property

• For an object stored in a PKL or PBL, call FindClassDefinition

Argument Description

classname The name of an object (also called a class or class definition) for
which you want information.

librarylist
(optional)

An array of strings whose values are the fully qualified
pathnames of PKLs or PBLs. If you omit librarylist,
FindClassDefinition searches the library list associated with the
running application.

FindFunctionDefinition

446 PocketBuilder

Examples This example searches application libraries to find the class definition for
w_mywindow:

ClassDefinition cd_windef
cd_windef = FindClassDefinition("w_mywindow")

This PowerBuilder example searches the libraries in the array ls_libraries to
find the class definition for w_genapp_frame:

ClassDefinition cd_windef
string ls_libraries[]

ls_libraries[1] = "c:\pwrs\bizapp\windows.pbl"
ls_libraries[2] = "c:\pwrs\framewk\windows.pbl"
ls_libraries[3] = "c:\pwrs\framewk\ancestor.pbl"

cd_windef = FindClassDefinition(
"w_genapp_frame", ls_libraries)

See also FindFunctionDefinition
FindMatchingFunction
FindTypeDefinition

FindFunctionDefinition
Description Searches for a global function in one or more PocketBuilder libraries (PKLs)

or PowerBuilder libraries (PBLs) and provides information about the script
definition.

PocketBuilder applications
This function can be used only in the development environment. It cannot be
used in applications deployed to a Pocket PC or Smartphone device.

Syntax FindFunctionDefinition (functionname {, librarylist })

Argument Description

functionname The name of a global function for which you want information.

Chapter 10 PowerScript Functions

PowerScript Reference 447

Return value ScriptDefinition. Returns an object reference with information about the script
of functionname. If any arguments are null, FindFunctionDefinition returns null.

Usage You can call FindClassDefinition to get a class definition for a global function.
However, the ScriptDefinition object provides information tailored for
functions.

Examples This example searches the libraries for the running application to find the
function definition for f_myfunction:

ScriptDefinition sd_myfunc
sd_myfunc = FindFunctionDefinition("f_myfunction")

This PowerBuilder example searches the libraries in the array ls_libraries to
find the class definition for w_genapp_frame:

ScriptDefinition sd_myfunc
string ls_libraries[]

ls_libraries[1] = "c:\pwrs\bizapp\windows.pbl"
ls_libraries[2] = "c:\pwrs\framewk\windows.pbl"
ls_libraries[3] = "c:\pwrs\framewk\ancestor.pbl"

sd_myfunc = FindFunctionDefinition(&
"f_myfunction", ls_libraries)

See also FindClassDefinition
FindMatchingFunction
FindTypeDefinition

FindItem
Finds the next item in a list.

librarylist
(optional)

An array of strings whose values are the fully qualified
pathnames of PKLs or PBLs. If you omit librarylist,
FindFunctionDefinition searches the library list associated with
the running application.

Argument Description

To find the next item Use

In a ListBox, DropDownListBox, PictureListBox, or
DropDownPictureListBox

Syntax 1

In a ListView control based upon its label Syntax 2

FindItem

448 PocketBuilder

Syntax 1 For ListBox and DropDownListBox controls
Description Finds the next item in a ListBox that begins with the specified search text.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.FindItem (text, index)

Return value Integer. Returns the index of the first matching item. To match, the item must
start with the specified text; however, the text in the item can be longer than the
specified text. If no match is found or if an error occurs, FindItem returns -1. If
any argument’s value is null, FindItem returns null.

Usage When FindItem finds the matching item, it returns the index of the item but does
not select (highlight) the item. To find and select the item, use the SelectItem
function.

Examples Assume the ListBox lb_actions contains the following list:

By relative position in a ListView control Syntax 3

By relative position in a TreeView control Syntax 4

To find the next item Use

Argument Description

listboxname The name of the ListBox control in which you want to find an item.

text A string whose value is the starting text of the item you want to find.

index The number of the item just before the first item to be searched. To
search the whole list, specify 0.

Index number Item text

1 Open files

2 Close files

3 Copy files

4 Delete files

Chapter 10 PowerScript Functions

PowerScript Reference 449

Then these statements start searching for Delete starting with item 2 (Close
files). FindItem sets Index to 4:

integer Index
Index = lb_actions.FindItem("Delete", 1)

See also AddItem
DeleteItem
InsertItem
SelectItem

Syntax 2 For ListView controls
Description Searches for the next item whose label matches the specified search text.

Applies to ListView controls

Syntax listviewname.FindItem (startindex, label, partial, wrap)

Return value Integer. Returns the index of the item found if it succeeds and -1 if an error
occurs.

Usage The search starts from startindex + 1 by default. To search from the beginning,
specify 0.

If partial is set to true, the search string matches any label that begins with the
specified text. If partial is set to false, the search string must match the entire
label.

If wrap is set to true, the search wraps around to the first index item after
searching to the end. If wrap is set to false, the search stops at the last index item
in the ListView.

Argument Description

listviewname The ListView control for which you want to search for items

startindex The index number from which you want your search to begin

label The string that is the target of the search

partial If set to true, the search looks for a partial label match

wrap If set to true, the search returns to the first index item after it has
finished

FindItem

450 PocketBuilder

FindItem does not select the item it finds. You must use the item’s selected
property in conjunction with FindItem to select the resulting match.

Examples This example takes the value from a SingleLineEdit control and passes it to
FindItem:

listviewitem l_lvi
integer li_index
string ls_label

ls_label = sle_find.Text
IF ls_label = "" THEN

MessageBox("Error" , &
"Enter the name of a list item")

sle_find.SetFocus()
ELSE

li_index = lv_list.FindItem(0,ls_label,
TRUE,TRUE)
END IF
IF li_index = -1 THEN

MessageBox("Error", "Item not found.")
ELSE

lv_list.GetItem (li_index, l_lvi)
l_lvi.HasFocus = TRUE
l_lvi.Selected = TRUE
lv_list.SetItem(li_index,l_lvi)

END IF

See also AddItem
DeleteItem
InsertItem
SelectItem

Syntax 3 For ListView controls
Description Search for the next item relative to a specific location in the ListView control.

Applies to ListView controls

Chapter 10 PowerScript Functions

PowerScript Reference 451

Syntax listviewname.FindItem (startindex, direction, focused, selected,
cuthighlighted, drophighlighted)

Return value Integer. Returns the index of the item found if it succeeds and -1 if an error
occurs.

Usage The search starts from startindex + 1 by default. If you want to search from the
beginning, specify 0.

FindItem does not select the item it finds. You must use the item’s selected
property in conjunction with FindItem to select the resulting match.

If focused, selected, cuthighlighted, and drophighlighted are set to false, the
search finds the next item in the ListView control.

Examples This example uses FindItem to search from the selected ListView item:

listviewitem l_lvi
integer li_index li_startindex

li_startindex = lv_list.SelectedIndex()
li_index = lv_list.FindItem(li_startindex, &

DirectionDown!, FALSE, FALSE ,FALSE, FALSE)

IF li_index = -1 THEN
MessageBox("Error", "Item not found.")

ELSE
lv_list.GetItem (li_index, l_lvi)
l_lvi.HasFocus = TRUE

Argument Description

listviewname The ListView control for which you want to search for items.

startindex The index number from which you want your search to begin.

direction The direction in which to search. Values are:

DirectionAll!
DirectionUp!
DirectionDown!
DirectionLeft!
DirectionRight!

focused If set to true, the search looks for the next ListView item that has
focus.

selected If set to true, the search looks for the next ListView item that is
selected.

cuthighlighted If set to true, the search looks for the next ListView item that is
the target of a cut operation.

drophighlighted If set to true, the search looks for next ListView item that is the
target of a drag and drop operation.

FindItem

452 PocketBuilder

l_lvi.Selected = TRUE
lv_list.SetItem(li_index,l_lvi)

END IF

See also AddItem
DeleteItem
InsertItem
SelectItem

Syntax 4 For TreeView controls
Description Find an item based on its position in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.FindItem (navigationcode, itemhandle)

Return value Long. Returns the item handle if it succeeds and -1 if an error occurs.

Usage FindItem does not select the item it finds. You must use the item’s selected
property in conjunction with FindItem to select the result of the FindItem search.

FindItem never finds a collapsed item, except when looking for ChildTreeItem!,
which causes an item to expand. CurrentItem! is not changed until after the
clicked event occurs. To return the correct handle for the current item when the
user clicks it, create a custom event to return the handle and post it in the
clicked event.

If navigationcode is RootTreeItem!, FirstVisibleTreeItem!, CurrentTreeItem!,
or DropHighlightTreeItem!, set itemhandle to 0.

Argument Description

treeviewname The name of the TreeView control in which you want to find
a specified item.

navigationcode A value of the TreeNavigation enumerated datatype
specifying the relationship between itemhandle and the item
you want to find. See the table in Usage note for a list of valid
values.

itemhandle A long for the handle of an item related via navigationcode to
the item for which you are searching.

Chapter 10 PowerScript Functions

PowerScript Reference 453

The following table shows valid values for the navigationcode argument.

Table 10-3: Valid values for the navigationcode argument of FindItem

Examples To return the correct handle when the current item is clicked, place this code in
a custom event that is posted in the item’s clicked event:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)

Navigationcode value What FindItem finds

RootTreeItem! The first item at level 1. Returns -1 if no items have been
inserted into the control.

NextTreeItem! The sibling after itemhandle. A sibling is an item at the
same level with the same parent. Returns -1 if there are
no more siblings.

PreviousTreeItem! The sibling before itemhandle. Returns -1 if there are no
more siblings.

ParentTreeItem! The parent of itemhandle. Returns -1 if the item is at
level 1.

ChildTreeItem! The first child of itemhandle. If the item is collapsed,
ChildtreeItem! causes the node to expand. Returns -1 if
the item has no children or if the item is not populated
yet.

FirstVisibleTreeItem! The first item visible in the control, regardless of level.
The position of the scrollbar determines the first visible
item.

NextVisibleTreeItem! The next expanded item after itemhandle, regardless of
level. The NextVisible and PreviousVisible values allow
you to walk through all the visible children and branches
of an expanded node. Returns -1 if the item is the last
expanded item in the control.

To scroll to an item that is beyond the reach of the visible
area of the control, use FindItem and then SelectItem.

PreviousVisibleTreeItem! The next expanded item before itemhandle, regardless
of level. Returns -1 if the item is the first root item.

CurrentTreeItem! The selected item. Returns -1 if the control never had
focus and nothing has been selected.

DropHighlightTreeItem! The item whose DropHighlighted property was most
recently set. Returns -1 if the property was never set or
if it has been set back to false because of other activity
in the control.

FindMatchingFunction

454 PocketBuilder

This example finds the first item on the first level of a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(RootTreeItem!, 0)

See also DeleteItem
GetItem
InsertItem
SelectItem

FindMatchingFunction
Description Finds out what function in a class matches a specified signature. The signature

is a combination of a script name and an argument list.

PocketBuilder applications
This function can be used only in the development environment. It cannot be
used in applications deployed to a Pocket PC or Smartphone device.

Applies to ClassDefinition objects

Syntax classdefobject.FindMatchingFunction (scriptname, argumentlist)

Argument Description

classdefobject The name of the ClassDefinition object describing the
class in which you want to find a function.

Chapter 10 PowerScript Functions

PowerScript Reference 455

Return value ScriptDefinition. Returns an object instance with information about the
matching function. If no matching function is found, FindMatchingFunction
returns null. If any argument is null, it also returns null.

Usage In searching for the function, PocketBuilder examines the collapsed
inheritance hierarchy. The found function may be defined in the current object
or in any of its ancestors.

Arguments passed by reference To find a function with an argument that is
passed by reference, you must specify the REF keyword. If you have a
VariableDefinition object for a function argument, check the
CallingConvention argument to determine if the argument is passed by
reference.

In documentation for PocketBuilder functions, arguments passed by reference
are described as a variable, rather than simply a value. The PocketBuilder
Browser does not report which arguments are passed by reference.

Examples This example gets the ScriptDefinition object that matches the PowerBuilder
window object function OpenUserObjectWithParm and looks for the version
with four arguments. If it finds a match, the example calls the function
uf_scriptinfo, which creates a report about the script:

string ls_args[]
ScriptDefinition sd

ls_args[1] = "ref dragobject"
ls_args[2] = "double"
ls_args[3] = "integer"
ls_args[4] = "integer"

sd = c_obj.FindMatchingFunction(&
"OpenUserObjectWithParm", ls_args)

scriptname A string whose value is the name of the function.

argumentlist An unbounded array of strings whose values are the
datatypes of the function arguments. If the variable is
passed by reference, the string must include "ref" before
the datatype. If the variable is an array, you must include
array brackets after the datatype.

The format is:

{ ref } datatype { [] }
For a bounded array, the argument must include the range,
as in:

ref integer[1 TO 10]

Argument Description

FindMatchingFunction

456 PocketBuilder

IF NOT IsValid(sd) THEN
mle_1.Text = "No matching script"

ELSE
mle_1.Text = uf_scriptinfo(sd)

END IF

The uf_scriptinfo function gets information about the function that matched the
signature and builds a string. Scriptobj is the ScriptDefinition object passed to
the function:

string s, lineend
integer li

lineend = "~r~n"

// Script name
s = s + scriptobj.Name + lineend
// datatype of the return value
s = s + scriptobj.ReturnType.DataTypeOf + lineend

// List argument names
s = s + "Arguments:" + lineend
FOR li = 1 to UpperBound(scriptobj.ArgumentList)

s = s + scriptobj.ArgumentList[li].Name + lineend
NEXT

// List local variables
s = s + "Local variables:" + lineend
FOR li = 1 to UpperBound(scriptobj.LocalVariableList)

s = s + scriptobj.LocalVariableList[li].Name &
+ lineend

NEXT
RETURN s

See also FindClassDefinition
FindFunctionDefinition
FindTypeDefinition

Chapter 10 PowerScript Functions

PowerScript Reference 457

FindNext
Description Finds the next occurrence of text in the control and highlights it, using criteria

set up in a previous call of the Find function.

Applies to RichTextEdit controls and DataWindow controls whose content has the
RichTextEdit presentation style

Syntax controlname.FindNext ()

Return value Integer. Returns the number of characters found. FindNext returns 0 if no
matching text is found and -1 if the DataWindow’s presentation style is not
RichTextEdit or an error occurs.

FindSeries
Description Obtains the number of a series in a graph when you know the series’ name.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.FindSeries ({ graphcontrol, } seriesname)

Argument Description

controlname The name of the graph containing the series for which you
want the number, or the name of the DataWindow control
containing the graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control containing the series

seriesname A string whose value is the name of the series for which you
want the number

FindTypeDefinition

458 PocketBuilder

Return value Integer. Returns the number of the series named in seriesname in the graph
controlname, or if controlname is a DataWindow control, in graphcontrol. If
an error occurs, FindSeries returns -1. If any argument’s value is null, FindSeries
returns null.

Usage Most of the series manipulation functions require a series number, rather than
a name. However, when you delete and insert series, existing series are
renumbered so that the series are numbered consecutively. Use FindSeries
when you know only a series’ name or when the numbering may have changed.

Examples These statements store the number of the series in the graph gr_product_data
that was entered in the SingleLineEdit sle_series in SeriesNbr:

integer SeriesNbr
SeriesNbr = &

gr_product_data.FindSeries(sle_series.Text)

These statements obtain the number of the series named PCs in the graph
gr_computers in the DataWindow control dw_equipment and store it in
SeriesNbr:

integer SeriesNbr
SeriesNbr = &

dw_equipment.FindSeries("gr_computers", "PCs")

See also AddSeries
DeleteSeries
FindCategory

FindTypeDefinition
Description Searches for a type in one or more PocketBuilder libraries (PKLs) or

PowerBuilder libraries (PBLs) and provides information about its type
definition. You can also get type definitions for system types.

PocketBuilder applications
This function can be used only in the development environment. It cannot be
used in applications deployed to a Pocket PC or Smartphone device.

Chapter 10 PowerScript Functions

PowerScript Reference 459

Syntax FindTypeDefinition (typename {, librarylist })

Return value TypeDefinition. Returns an object reference with information about the
definition of typename. If any arguments are null, FindTypeDefinition returns
null.

Usage The returned TypeDefinition object is a ClassDefinition,
SimpleTypeDefinition, or EnumerationDefinition object. You can test the
Category property to find out which one it is.

If you want to get information for a class, call FindClassDefinition instead. The
arguments are the same and you are saved the step of checking that the returned
object is a ClassDefinition object.

If you want to get information for a global function, call FindFunctionDefinition.

Examples This example gets a TypeDefinition object for the grGraphType enumerated
datatype. It checks the category of the type definition and, since it is an
enumeration, assigns it to an EnumerationDefinition object type and saves the
name in a string:

TypeDefinition td_graphtype
EnumerationDefinition ed_graphtype
string enumname

td_graphtype = FindTypeDefinition("grgraphtype")
IF td_graphtype.Category = EnumeratedType! THEN

ed_graphtype = td_graphtype
enumname = ed_graphtype.Enumeration[1].Name

END IF

Argument Description

typename The name of a simple datatype, enumerated datatype, or
class for which you want information. To find a type
definition for a nested type, use this form:

libraryEntryName`typename

librarylist
(optional)

An array of strings whose values are the fully qualified
pathnames of PKLs or PBLs. If you omit librarylist,
FindTypeDefinition searches the library list associated
with the running application.

PocketBuilder also searches its own libraries for built-in
definitions, such as enumerated datatypes and system
classes.

FindTypeDefinition

460 PocketBuilder

This example is a function that takes a definition name as an argument. The
argument is typename. It finds the named TypeDefinition object, checks its
category, and assigns it to the appropriate definition object:

TypeDefinition td_def
SimpleTypeDefinition std_def
EnumerationDefinition ed_def
ClassDefinition cd_def

td_def = FindTypeDefinition(typename)
CHOOSE CASE td_def.Category
CASE SimpleType!

std_def = td_def
CASE EnumeratedType!

ed_def = td_def
CASE ClassOrStructureType!

cd_def = td_def
END CHOOSE

This PowerBuilder example searches the libraries in the array ls_libraries to
find the class definition for w_genapp_frame:

TypeDefinition td_windef
string ls_libraries[]

ls_libraries[1] = "c:\pwrs\bizapp\windows.pbl"
ls_libraries[2] = "c:\pwrs\framewk\windows.pbl"
ls_libraries[3] = "c:\pwrs\framewk\ancestor.pbl"

td_windef = FindTypeDefinition(
"w_genapp_frame", ls_libraries)

See also FindClassDefinition
FindFunctionDefinition
FindMatchingFunction

Chapter 10 PowerScript Functions

PowerScript Reference 461

Flush
Description Clears a scanner’s internal buffers without detaching from scanner firmware or

unloading scanner DLLs.

Applies to BarcodeScanner objects

Syntax Integer scanner.Flush ()

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -9 Incorrect scan state for the requested action (typically benign)

• -10 Low level device error

• -100 Feature not implemented

Usage Use the Flush function to make sure the scanner buffers are clear after aborted
scans.

Examples The following example flushes the internal buffers of the scanner device
associated with the BarcodeScanner object:

li_rtn = l_scanner.Flush()

See also Close

Argument Description

scanner The scanner object that is associated with the scanner you want to
flush

FocusToPreviousInstance

462 PocketBuilder

FocusToPreviousInstance
Description Brings a running instance of a named window to the front of the current

display.

Syntax FocusToPreviousInstance (WindowTitle)

Return value Boolean. Returns true if it succeeds and false if it fails.

FromAnsi
Description Converts a blob containing an ANSI character string to a Unicode string.

Syntax FromAnsi (blob)

Return value String. Returns a character string if it succeeds and an empty string if it fails.

Usage The FromAnsi function converts an ANSI character string contained in a blob
to a Unicode character string.

Unicode file format
Unicode files sometimes have two extra bytes at the start of the file to indicate
that they are Unicode files. If the two bytes are missing, PocketBuilder
assumes “little endian” format.

Argument Description

WindowTitle A string identifying the title of the window that you want to
bring to the front of the current display

Argument Description

blob A blob containing an ANSI character string you want to convert to
a Unicode string

Chapter 10 PowerScript Functions

PowerScript Reference 463

Examples This example reads a blob containing an ANSI character string from a file
called ansi.txt and converts it into a string:

integer li_filenum
blob lb_text
string ls_native

li_filenum = FileOpen("ansi.txt", StreamMode!)
FileRead(li_filenum, lb_text)
ls_native = FromAnsi(lb_text)
FileClose(li_filenum)

See also FromUnicode
String
ToAnsi
ToUnicode

FromUnicode
Description Converts a blob containing a Unicode character string to a string in the file

format of the current version of PocketBuilder.

Syntax FromUnicode (blob)

Return value String. Returns a character string if it succeeds and an empty string if it fails.

Usage The FromUnicode function converts a Unicode blob to a Unicode character
string and has the same result as String(blob). This function will be obsolete in
a future release of PocketBuilder.

Argument Description

blob A blob containing a Unicode character string you want to convert
to a string in the file format of the current version of PocketBuilder

FromUnicode

464 PocketBuilder

Unicode file format
Unicode files sometimes have two extra bytes at the start of the file to indicate
that they are Unicode files. If the two bytes are missing, PocketBuilder
assumes “little endian” format. If you are opening a Unicode file in stream
mode, skip the first two bytes if they are present.

Examples This example converts a Unicode blob that contains the definition of a window
into a Unicode string.

integer li_fileone, li_filetwo
blob lb_text
string ls_native

li_fileone = FileOpen("D:\tst\w_one.srw", StreamMode!)

// Move the file pointer so that Unicode
// identifying characters aren't copied
FileSeek(li_Fileone, 2)

// Read the data in the file into a blob
FileRead(li_fileone, lb_text)
FileClose(li_fileone)

// Convert the Unicode blob to a string
ls_native = FromUnicode(lb_text)

// Open a second file to copy the string to
li_filetwo = FileOpen("w_one.srw", &

StreamMode!, Write!)

FileWrite(li_filetwo, ls_native)
FileClose(li_filetwo)

See also FromAnsi
ToAnsi
ToUnicode

Chapter 10 PowerScript Functions

PowerScript Reference 465

GarbageCollect
Description Forces immediate garbage collection.

Syntax GarbageCollect ()

Return value None

Usage Forces garbage collection to occur immediately. PocketBuilder makes a pass to
identify unused objects, including those with circular references, then deletes
unused objects and classes.

Examples This statement initiates garbage collection:

GarbageCollect()

See also GarbageCollectGetTimeLimit
GarbageCollectSetTimeLimit

GarbageCollectGetTimeLimit
Description Gets the current minimum interval for garbage collection.

Syntax GarbageCollectGetTimeLimit ()

Return value Long. Returns the current minimum garbage collection interval.

Usage Reads the current minimum period between garbage collection passes.

Examples This statement returns the interval between garbage collection passes in the
variable CollectTime:

long CollectTime

CollectTime = GarbageCollectGetTimeLimit()

See also GarbageCollect
GarbageCollectSetTimeLimit

GarbageCollectSetTimeLimit

466 PocketBuilder

GarbageCollectSetTimeLimit
Description Sets the minimum interval between garbage collection passes.

Syntax GarbageCollectSetTimeLimit (newtimeinmilliseconds)

Return value Long. Returns the interval that existed before this function was called. If
newTime is null, then null is returned and the current interval is not changed.

Usage Specifies the minimum interval between garbage collection passes: garbage
collection passes will not happen before this interval has expired.

Garbage collection can effectively be disabled by setting the minimum limit to
a very large number. If garbage collection is disabled, unused classes will not
be flushed out of the class cache.

Examples This example sets the interval between garbage collection passes to 1 second
and sets the variable OldTime to the length of the previous interval:

long OldTime, NewTime
NewTime = 1000 /* 1 second */

OldTime = GarbageCollectSetTimeLimit(NewTime)

See also GarbageCollect
GarbageCollectGetTimeLimit

Argument Description

newtimeinmilliseconds A long (in milliseconds) that you want to set as the
minimum period between garbage collection cycles.

If null, the existing interval is not changed.

Chapter 10 PowerScript Functions

PowerScript Reference 467

GetActiveSheet
Description Returns the currently active sheet in an MDI frame window.

Applies to MDI frame windows

Syntax mdiframewindow.GetActiveSheet ()

Return value Window. Returns the sheet that is currently active in mdiframewindow. If no
sheet is active, GetActiveSheet returns an invalid value. If mdiframewindow is
null, GetActiveSheet returns null.

GetAlignment
Description Obtains the alignment of the paragraph containing the insertion point in a

RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.GetAlignment ()

Return value Alignment. A value of the Alignment enumerated datatype indicating the
alignment of the paragraph containing the insertion point.

GetAllowedImageAttributes
Description Returns the set of allowed image attributes for a specific device.

Applies to Camera objects

GetAllowedImageAttributes

468 PocketBuilder

Syntax objectname.GetAllowedImageAttributes (attrValue })

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Supporting DLL not loaded

-3 Other initialization error

-5 Inconsistency in this object instance

-6 Call to the driver or device failed

-7 Unsupported option

-8 Value for option is out of range

Usage Use this function to determine which attributes, such as image size and zoom
factors, can be set on the current device. For a list of values, see the
CameraImageAttributes variable on the Enumerated tab page in the Browser.

Examples This example gets the attributes that are available for a device in an array of
CameraImageAttributes structures and displays them to the user so that the
user can select the set of attributes to be used for preview and capture:

CameraImageAttributes AllowedConfigs[]
g_myCam.GetAllowedImageAttributes(AllowedConfigs)

// Display choices to user and let user select
// a preview and capture configuration
...
// User chose 1 for preview, 3 for capture
g_myCam.SetPreviewImageAttributes(AllowedConfigs[1])
g_myCam.SetCaptureImageAttributes(AllowedConfigs[3])

See also CaptureImage
GetOption
Open
SetCaptureImageAttributes
SetPreviewImageAttributes

Argument Description

objectname The name of the camera object that you want to inquire about

attrValue An array of values of the CameraImageAttributes structure
returned by reference that contains the set of attributes available on
a specific device

Chapter 10 PowerScript Functions

PowerScript Reference 469

GetApplication
Description Gets the handle of the current Application object so you can get and set

properties of the application.

Syntax GetApplication ()

Return value Application. Returns the handle of the current application object.

Usage The GetApplication function lets you write generic code for an application,
making it reusable in other applications. You do not have to code the actual
name of the application when you want to set application properties.

Examples To change whether Toolbar Tips are displayed, you can get the handle of the
application object and set the ToolbarTips property:

application app
app = GetApplication()
app.ToolbarTips = FALSE

The previous example could be coded more simply as follows:

GetApplication().ToolbarTips = FALSE

GetAppointment
Description Gets an appointment from Pocket Outlook.

Applies to POOM objects

Syntax POOMAppointment objectname.GetAppointment (index)

Argument Description

objectname The name of the POOM object

index Integer for the index of the appointment that you want to get

GetAppointment

470 PocketBuilder

Return value POOMAppointment. Use the IsValid function to confirm that a valid
appointment was returned.

Usage A user must be logged in to a POOM object to get an appointment from Pocket
Outlook.

Examples The following example logs in to the Pocket Outlook session and retrieves the
first appointment in the list of appointments:

// global variable: g_poom
int li_return

g_poom = CREATE POOM
// log in to the Outlook session
li_return = g_poom.Login()

myAppt = g_poom.getAppointment(1)
if IsValid(myAppt) then

// Use myAppt
end if
...
g_poom.Logout()

This example retrieves the first appointment and changes the subject and
location:

integer li_rc
POOMAppointment appt

appt = g_poom.GetAppointment(1)
appt.Subject += " with Andre"
appt.Location = "Blue Room
li_rc = appt.update()

appt.display()

See also Add
GetAppointmentFromOID
GetAppointments
Remove

Chapter 10 PowerScript Functions

PowerScript Reference 471

GetAppointmentFromOID
Description Gets an appointment from Pocket Outlook using the object ID.

Applies to POOM objects

Syntax POOMAppointment objectname.GetAppointmentFromOID (oid)

Return value POOMAppointment. Use the IsValid function to confirm that a valid
appointment was returned.

Usage A user must be logged in to a POOM object to get an appointment from Pocket
Outlook.

Examples The following example retrieves an appointment with an object ID of 1234:

// global variable: g_poom
POOMAppointment appt

appt = g_poom.GetAppointmentFromOID(1234)
If IsValid (appt) then

// Use appt
end if

See also Add
GetAppointment
GetAppointments
Remove

Argument Description

objectname The name of the POOM object

oid Unsignedlong for the object ID of the appointment that you want
to get

GetAppointments

472 PocketBuilder

GetAppointments
Description Gets an array of appointments from Pocket Outlook after optionally filtering

the array for matching criteria.

Applies to POOM objects

Syntax Integer objectname.GetAppointments ({matchcriteria,} appointments [])

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Usage A user must be logged in to a POOM object to get appointments from Pocket
Outlook.

Examples The following example retrieves an array of appointments that satisfy the
criterion that the location is the lunch room, and displays the array in a list box:

// global variable: g_poom
integer li_rc
POOMAppointment apptArray[]
POOMAppointment appt

Argument Description

objectname The name of the POOM object

matchcriteria A string describing criteria you want to use to filter the list of
appointments

appointments An array of POOMAppointments passed by reference

Chapter 10 PowerScript Functions

PowerScript Reference 473

String sCriteria = "[Location] <> ~"Lunch Room~""
DateTime dt
int li_idx

li_rc = g_poom.GetAppointments(sCriteria, apptArray)

FOR li_idx=1 to UPPERBOUND(apptArray)
appt = apptArray[li_idx]
lb_res.AddItem("Appt(" + string(li_idx) + ")")
lb_res.AddItem("Subject: " + appt.Subject)
lb_res.AddItem("Location: " + appt.Location)
dt = appt.appointmentstart
lb_res.AddItem("Start: " + &

string(dt, "dd-mmm-yyyy hh:mm"))
lb_res.AddItem("End: " + &

string(appt.appointmentEnd))

lb_res.AddItem("Duration: " + &
string(appt.appointmentduration))

lb_res.AddItem("Reminder: " + &
string(appt.reminderminutesbeforestart))

NEXT

See also Add
GetAppointment
GetAppointmentFromOID
Remove

GetArgElement
Description Returns the value in the specified argument.

Applies to Window ActiveX controls

Syntax activexcontrol.GetArgElement (index)

Return value Any. Returns the specified argument.

GetAsBitmap

474 PocketBuilder

GetAsBitmap
Description Converts the current image of an object derived from the GraphicObject

baseclass to a standard Windows bitmap.

Syntax String GetAsBitmap (graphicObject , bitmap)

Return value Integer. Returns 1 for success and a negative number if an error occurs.

Usage You assign the visual object that you want to capture in the first argument to
the GetAsBitmap fucntion, and reference the bitmap you want to create as a
Blob datatype in the second argument to the function. The bitmap can then be
saved to a file or set in a picture control.

Examples This example in a command button Clicked event saves the button image in a
Picture control:

int li_ret
BLOB lb_bmp

li_ret = GetAsBitmap (this, lb_bmp)
p_result.SetPicture(lb_bmp)

GetAutomationNativePointer
Description Gets a pointer to the OLE object associated with the OLEObject variable. The

pointer lets you call OLE functions in an external DLL for the object.

Applies to OLEObject

Syntax oleobject.GetAutomationNativePointer (pointer)

Argument Description

graphicObject Read-only value for current object that inherits from GraphicObject

bitmap Blob variable passed by reference for the bitmap created from a
GraphicObject descendent

Chapter 10 PowerScript Functions

PowerScript Reference 475

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

GetCertificateLabel
Description Called by EAServer to allow the user to select one of the available SSL

certificate labels for authentication. This function is used by PowerBuilder
clients connecting to EAServer.

Applies to SSLCallBack objects

Syntax sslcallback.GetCertificateLabel (thesessioninfo, labels)

Return value String. Returns one of the labels passed to the function.

GetChildrenList
Description Provides a list of the children of a routine included in a trace tree model.

Applies to TraceTreeObject, TraceTreeRoutine, and TraceTreeGarbageCollect objects

Syntax instancename.GetChildrenList (list)

Argument Description

instancename Instance name of the TraceTreeObject, TraceTreeRoutine, or
TraceTreeGarbageCollect object.

list An unbounded array variable of datatype TraceTreeNode in which
GetChildrenList stores a TraceTreeNode object for each child of a
routine. This argument is passed by reference.

GetChildrenList

476 PocketBuilder

Return value ErrorReturn. Returns the following values:

• Success!—The function succeeded

• ModelNotExistsError!—The model does not exist

Usage You use the GetChildrenList function to extract a list of the children of a routine
(the classes and routines it calls) included in a trace tree model. Each child
listed is defined as a TraceTreeNode object and provides the type of activity
represented by that child.

You must have previously created the trace tree model from a trace file using
the BuildModel function.

When the GetChildrenList function is called for TraceTreeGarbageCollect
objects, each child listed usually represents the destruction of a garbage
collected object.

Examples This example checks the activity type of a node included in the trace tree
model. If the activity type is an occurrence of a routine, it determines the name
of the class that contains the routine and provides a list of the classes and
routines called by that routine:

TraceTree ltct_node
TraceTreeNode ltctn_list
...
CHOOSE CASE node.ActivityType
 CASE ActRoutine!
 TraceTreeRoutine ltctrt_rout
 ltctrt_rout = ltct_node
 result += "Enter " + ltctrt_rout.ClassName &
 + "." + ltctrt_rout.name + " " &
 + String(ltctrt_rout.ObjectID) + " " &
 + String(ltctrt_rout.EnterTimerValue) &
 + "~r~n" ltctrt_rout.GetChildrenList(ltctn_list)
...

See also BuildModel

Chapter 10 PowerScript Functions

PowerScript Reference 477

GetColumn
Description Retrieves column information for a DataWindow, child DataWindow, or

ListView control.

For syntax for a DataWindow or a child DataWindow, see the GetColumn
method for DataWindows in the DataWindow Reference or the online Help.

Applies to ListView controls

Syntax listviewname.GetColumn (index, label, alignment, width)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use label, alignment, and width to retrieve the properties for a specified
column.

Examples This example uses the instance variable li_col to pass the column number to
GetColumn and retrieve the properties for the column. The script uses
SetColumn to change the column’s alignment:

string ls_label,ls_align
int li_width

Argument Description

listviewname The name of the ListView control from which you want to find the
properties for a column.

index An integer whose value is the index of the column for which you
want to find properties.

label A string identifying the label of the column for which you want to
find properties. This argument is passed by reference.

alignment A value of the enumerated datatype Alignment specifying the
alignment of the column for which you want to find properties.
Values are:

• Center!

• Justify!

• Left!

• Right!

This argument is passed by reference.

width An integer whose value is the width of the column for which you
want to find properties. This argument is passed by reference.

GetCommandDDE

478 PocketBuilder

alignment la_align

IF lv_list.View <> ListViewReport! THEN
 lv_list.View = ListViewReport!
END IF

IF li_col = 0 THEN
 MessageBox("Error!","Click on a Column bar.", &
 StopSign!)
ELSE
 lv_list.GetColumn(li_col, ls_label, la_align, &
 li_width)
 lv_list.SetColumn(li_col, ls_label, Right!, &
 li_width)
END IF

See also SetColumn

GetCommandDDE
Description Obtains the command sent by the client application when your application is a

DDE server.

Syntax GetCommandDDE (string)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (such as the function
was called in the wrong context). If string is null, GetCommandDDE returns
null.

GetCommandDDEOrigin
Description When called by the DDE server application, obtains the application name

parameter used by the DDE client sending the command.

Chapter 10 PowerScript Functions

PowerScript Reference 479

Syntax GetCommandDDEOrigin (applstring)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (such as the function
was called in the wrong context). If applstring is null, GetCommandDDEOrigin
returns null.

GetCompanyName
Description Returns the company name for the current execution context.

Applies to ContextInformation objects

Syntax servicereference.GetCompanyName (name)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the company name (such as Sybase, Inc.).

Examples This example calls the GetCompanyName function:

String ls_company
Integer li_return
ContextInformation ci

li_return = ci.GetCompanyName(ls_company)
IF li_return = 1 THEN
 sle_co_name.text = ls_company
END IF

See also GetContextService
GetFixesVersion
GetHostObject
GetMajorVersion
GetMinorVersion

Argument Description

servicereference Reference to the ContextInformation service instance.

name String into which the function places the company name. This
argument is passed by reference.

GetContact

480 PocketBuilder

GetName
GetShortName
GetVersionName

GetContact
Description Gets a contact from Pocket Outlook.

Applies to POOM objects

Syntax POOMContact objectname.GetContact (index)

Return value POOMContact. Use the IsValid function to confirm that a valid contact was
returned.

Usage A user must be logged in to a POOM object to get a contact from Pocket
Outlook.

Examples The following example retrieves the first contact in Pocket Outlook:

// global variable: g_poom
POOMContact myContact
myContact = g_poom.getContact(1)

if IsValid(myContact) then
// Use myContact

end if

See also Add
GetContactFromOID
GetContacts
Remove

Argument Description

objectname The name of the POOM object

index Integer for the index of the contact that you want to get

Chapter 10 PowerScript Functions

PowerScript Reference 481

GetContactFromOID
Description Gets a contact from Pocket Outlook using the object ID.

Applies to POOM objects

Syntax POOMContact objectname.GetContactFromOID (oid)

Return value POOMContact. Use the IsValid function to confirm that a valid contact was
returned.

Usage A user must be logged in to a POOM object to get a contact from Pocket
Outlook.

Examples The following example retrieves a contact with an object ID of 321:

myContact = g_poom.getContactFromOID(321)
if IsValid(myContact) then

// Use myContact
end if

See also Add
GetContact
GetContacts
Remove

GetContacts
Description Gets an array of contacts from Pocket Outlook after optionally filtering the

array for matching criteria.

Argument Description

objectname The name of the POOM object

oid Unsignedlong for the object ID of the contact that you want to get

GetContacts

482 PocketBuilder

Applies to POOM objects

Syntax Integer objectname.GetContacts ({matchcriteria,} contacts [])

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Usage A user must be logged in to a POOM object to get contacts from Pocket
Outlook.

Examples The following example retrieves contacts that match the criterion that the
contact’s Department property is Finance, and writes their names, phone
numbers, and e-mail addresses to a list box:

// global variable: g_poom
integer li_rc
POOMContact contactArray[]
POOMContact contact
String sCriteria = "[Department] = ~"Finance~""
DateTime dt
int idx

li_rc = g_poom.GetContacts(sCriteria, contactArray)
lb_res.AddItem("Contact[] ret: " + string(li_rc))

FOR idx=1 to UPPERBOUND(contactArray)
contact = contactArray[idx]
lb_res.AddItem("Contact(" + string(idx) + ")")

Argument Description

objectname The name of the POOM object

matchcriteria A string describing criteria you want to use to filter the list of
contacts

contacts An array of POOMContacts passed by reference

Chapter 10 PowerScript Functions

PowerScript Reference 483

lb_res.AddItem("First: " + contact.FirstName)
lb_res.AddItem("Last: " + contact.LastName)
lb_res.AddItem("Phone1: " + &

contact.businesstelephonenumber)
lb_res.AddItem("E-Mai1 1: " + contact.email1address)

NEXT

lb_res.SelectItem(lb_res.TotalItems())

See also Add
GetContact
GetContactFromOID
Remove

GetContextKeywords
Description Retrieves one or more values associated with a specified keyword.

Applies to ContextKeyword objects

Syntax servicereference.GetContextKeywords (name, values)

Return value Integer. Returns the number of elements in values if the function succeeds and
-1 if an error occurs.

Usage Call this function to access environment variables. Environment-variable
availability differs by execution context:

• PocketBuilder design time The function accesses DOS environment
variables, each of which has a unique keyword.

Argument Description

servicereference Reference to the ContextKeyword service instance.

name String specifying the keyword for which the function returns
corresponding values.

values Unbounded String array into which the function places the
values that correspond to name. This argument is passed by
reference.

GetContextService

484 PocketBuilder

• PocketBuilder runtime Retrieves a blank string since there are no DOS
environment variables to access on Pocket PC devices.

Examples This example calls the GetContextKeywords function:

String ls_keyword
Integer li_count, li_return
ContextKeyword lcx_key

li_return = this.GetContextService &
 ("ContextKeyword", lcx_key)
ls_keyword = sle_name.Text
lcx_key.GetContextKeywords &
 (ls_keyword, is_values)
FOR li_count = 1 to UpperBound(is_values)
 lb_parms.AddItem(is_values[li_count])
NEXT

See also GetContextService

GetContextService
Description Creates a reference to a context-specific instance of the specified service.

Applies to Any object

Syntax GetContextService (servicename, servicereference)

Chapter 10 PowerScript Functions

PowerScript Reference 485

Return value Integer. Returns 1 if the function succeeds and a negative integer if an error
occurs. The return value -1 indicates an unspecified error.

Usage Call this function to establish a reference to a service object, allowing you to
access methods and properties in the service object. You must call this function
before calling service object functions.

Using a CREATE statement
You can instantiate these objects with a PowerScript CREATE statement.
However, this always creates an object for the default context (native
PocketBuilder execution environment), regardless of where the application is
running.

Examples This example calls the GetContextService function and displays the class of the
service in a single line edit box:

Integer li_return
ContextKeyword lcx_key

li_return = this.GetContextService &
 ("ContextKeyword", lcx_key)

Argument Description

servicename String specifying the service object. Valid values are:

• ContextInformation—Context information service

• ContextKeyword—Context keyword service

• CORBACurrent—(PowerBuilder only) CORBA current
service for client- or component-management of EAServer
transactions

• ErrorLogging—(PowerBuilder only) Error logging service
for PowerBuilder components running in a transaction server
such as EAServer or COM+

• Internet—Internet service

• SSLServiceProvider—(PowerBuilder only) SSL service
provider service that allows PowerBuilder clients to establish
SSL connections to EAServer components

• TransactionServer—(PowerBuilder only) Transaction server
service for PowerBuilder components running in a
transaction server such as EAServer or COM+

servicereference PowerObject into which the function places a reference to the
service object specified by servicename. This argument is
passed by reference.

GetCredentialAttribute

486 PocketBuilder

sle_classname.Text = ClassName(lcx_key)
...

See also BeginTransaction
GetCompanyName
GetContextKeywords
GetHostObject
GetMajorVersion
GetMinorVersion
GetName
GetShortName
GetURL
GetVersionName
HyperLinkToURL
Init
PostURL

GetCredentialAttribute
Description Called by EAServer to allow the user to supply user credentials dynamically.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to SSLCallBack objects

Syntax sslcallback.GetCredentialAttribute (thesessioninfo, attr, attrvalues)

Return value String. Returns the selected attribute value.

GetCurrentDirectory
Description Gets the current directory for your target application.

Syntax GetCurrentDirectory ()

Chapter 10 PowerScript Functions

PowerScript Reference 487

Return value String. Returns the full path name for the current directory.

Examples This example puts the current directory name in a SingleLineEdit control:

sle_1.text = GetCurrentDirectory()

See also ChangeDirectory
CreateDirectory
DirectoryExists
RemoveDirectory

GetData
Obtains data from a control.

Syntax 1 For data points in graphs
Description Gets the value of a data point in a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetData ({ graphcontrol, } seriesnumber, datapoint
 {, datatype })

To obtain Use

The value of a data point in a series in a graph Syntax 1

The unformatted data from an EditMask control Syntax 2

Data from an OLE server Syntax 3

Argument Description

controlname The name of the graph from which you want data, or the name
of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph from
which you want the data when controlname is a DataWindow.

GetData

488 PocketBuilder

Return value Double. Returns the value of the data in datapoint if it succeeds and 0 if an error
occurs. If any argument’s value is null, GetData returns null.

Usage You can use GetData only for graphs whose values axis is numeric. For graphs
with other types of values axes, use the GetDataValue function instead.

Examples These statements obtain the data value of data point 3 in the series named Costs
in the graph gr_computers in the DataWindow control dw_equipment:

integer SeriesNbr
double data_value

// Get the number of the series.
SeriesNbr = &
 dw_equipment.FindSeries("gr_computers", "Costs")
data_value = dw_equipment.GetData(&
 "gr_computers" , SeriesNbr, 3)

These statements obtain the data value of the data point under the mouse
pointer in the graph gr_prod_data and store it in data_value:

integer SeriesNbr, ItemNbr
double data_value
grObjectType MouseHit

MouseHit = &
 gr_prod_data.ObjectAtPointer(SeriesNbr, ItemNbr)
IF MouseHit = TypeSeries! THEN
 data_value = &
 gr_prod_data.GetData(SeriesNbr, ItemNbr)
END IF

These statements obtain the x value of the data point in the scatter graph
gr_sales_yr and store it in data_value:

integer SeriesNbr, ItemNbr
double data_value

seriesnumber The number that identifies the series from which you want
data.

datapoint The number of the data point for which you want the value.

datatype
(scatter graph only)

(Optional) A value of the grDataType enumerated datatype
specifying whether you want the x or y value of the data point
in a scatter graph. Values are:

• xValue! — The x value of the data point

• yValue! — (Default) The y value of the data point

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 489

gr_product_data.ObjectAtPointer(SeriesNbr, ItemNbr)
data_value = &
 gr_sales_yr.GetData(SeriesNbr, ItemNbr, xValue!)

See also DeleteData
FindSeries
GetDataValue
InsertData
ObjectAtPointer

Syntax 2 For EditMask controls
Description Gets the unformatted text from an EditMask control.

Applies to EditMask controls

Syntax editmaskname.GetData (datavariable)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, GetData returns null.

Usage You can find out the datatype of an EditMask control by looking at its
MaskDataType property, which holds a value of the MaskDataType
enumerated datatype.

Examples This example gets data of datatype date from the EditMask control em_date.
Formatting characters for the date are ignored. The String function converts the
date to a string so it can be assigned to the SingleLineEdit sle_date:

date d
em_date.GetData(d)
sle_date.Text = String(d, "mm-dd-yy")

Argument Description

editmaskname The name of the EditMask control containing the data.

datavariable A variable to which GetData will assign the unformatted data
in the EditMask control. The datatype of datavariable must
match the datatype of the EditMask control, which you select
in the Window painter. Available datatypes are date,
DateTime, decimal, double, string, and time.

GetDataAsBitmap

490 PocketBuilder

This example gets string data from the EditMask control em_string and assigns
the result to sle_string. Characters in the edit mask are ignored:

string s
em_string.GetData(s)
sle_string.Text = s

Syntax 3 For data in an OLE server
Description Gets data from the OLE server associated with an OLE control using Uniform

Data Transfer.

Applies to OLE controls and OLE custom controls

Syntax olename.GetData (clipboardformat, data)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

GetDataAsBitmap
Description Retrieves the data in the control as a standard Windows bitmap that is

compatible with the Picture control and Windows desktop applications.

Applies to Signature controls

Syntax Integer controlname.GetDataAsBitmap (data)

Return value Integer. Returns 1 for success and a negative integer for failure.

Usage The GetDataAsBitmap function returns both typed and freehand drawing or
writing from a signature control as a bitmap in a blob.

Argument Description

controlname The name of the control for which you want to retrieve the data

data The blob in which the bitmap data is saved

Chapter 10 PowerScript Functions

PowerScript Reference 491

Examples The following example gets unformatted data from a Signature control as a
bitmap and writes it to a file. It also displays the bitmap in a Picture control:

blob lblb_bmp
integer li_file, li_rtn

li_rtn = sig_1.GetDataAsBitMap(lblb_bmp)
sle_1.text = string(li_rtn)

li_file = FileOpen("\My Documents\testi.bmp", &
StreamMode!, Write!, LockWrite!, Replace!)

FileWrite(li_file, lblb_bmp)
FileClose(li_file)

p_1.setpicture(lblb_bmp)

See also GetDataAsInk
GetDataAsRTF
GetDataAsText

GetDataAsInk
Description Retrieves the data in the control in Pocket Word Ink (PWI) format. This format

is compatible with Pocket Word.

Applies to Signature controls

Syntax Integer controlname.GetDataAsInk (data)

Return value Integer. Returns 1 for success and a negative integer for failure.

Usage The GetDataAsInk function returns both typed and freehand drawing or writing
from a Signature control in PWI format in a blob.

Argument Description

controlname The name of the control for which you want to retrieve the data

data The blob in which the PWI data is saved

GetDataAsRTF

492 PocketBuilder

Examples The following example gets unformatted data from a Signature control in PWI
format and writes it to a file. The return value from the function is written to a
single line edit box:

blob lblb_ink
integer li_file, li_rtn

li_rtn = sig_1.GetDataAsInk(lblb_ink)
sle_1.text = string(li_rtn)

li_file = FileOpen("\My Documents\testpwi.pwi", &
StreamMode!, Write!, LockWrite!, Replace!)

FileWrite(li_file, lblb_ink)
FileClose(li_file)

See also GetDataAsBitmap
GetDataAsRTF
GetDataAsText
SetDataAsInk

GetDataAsRTF
Description Retrieves the text data in the control as an RTF ANSI text block in a blob or

Unicode string. This function does not return graphic data.

Applies to Signature controls

Syntax Integer controlname.GetDataAsRTF (data)

Return value Integer. Returns 1 for success and a negative integer for failure.

Usage The GetDataAsRTF function returns text data from a Signature control in PWI
format in a blob or a Unicode string. Only text data, such as text entered using
the SIP, is retrieved.

Argument Description

controlname The name of the control for which you want to retrieve the data

data The blob or string in which the RTF data is saved

Chapter 10 PowerScript Functions

PowerScript Reference 493

Examples The following example gets text data from a Signature control in RTF format
as a blob and as a string and writes the RTF to two separate files:

blob lblb_rtf
string ls_rtf
integer li_file, li_rtn

// Get data as a blob
li_rtn = sig_1.GetDataAsRTF(lblb_rtf)
sle_1.text = string(li_rtn)

li_file = FileOpen("\My Documents\blob.rtf", &
StreamMode!, Write!, LockWrite!, Replace!)

FileWrite(li_file, lblb_rtf)
FileClose(li_file)

// Get data as a string
li_rtn = sig_1.GetDataAsRTF(ls_rtf)
sle_1.text += ", " + String(li_rtn)

li_file = FileOpen("\My Documents\string.rtf", &
StreamMode!, Write!, LockWrite!, Replace!)

FileWrite(li_file, ls_rtf)
FileClose(li_file)

See also GetDataAsBitmap
GetDataAsInk
GetDataAsText
SetDataAsRTF

GetDataAsText
Description Retrieves the text data in the control as a string. This function returns data

typed into the control using the SIP. It does not return graphic signature data.

Applies to Signature controls

Syntax Integer controlname.GetDataAsText (data)

GetDataDDE

494 PocketBuilder

Return value Integer. Returns 1 for success and a negative integer for failure.

Usage The GetDataAsText function returns text data from a Signature control in PWI
format in a Unicode string. Only text data, such as text entered using the SIP,
is retrieved.

Examples The following example gets text data from a Signature control as a Unicode
string:

string ls_text
integer li_rtn

li_rtn = sig_1.GetDataAsText(ls_text)
sle_1.text = String(li_rtn)

See also GetDataAsBitmap
GetDataAsInk
GetDataAsRTF
SetDataAsText

GetDataDDE
Description Obtains data sent from another DDE application and stores it in the specified

string variable. PowerBuilder can use GetDataDDE when acting as a DDE
client or a DDE server application.

Syntax GetDataDDE (string)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (such as the function
was called in the wrong context). If string is null, GetDataDDE returns null.

Argument Description

controlname The name of the control for which you want to retrieve the data

data The string in which the text data is saved

Chapter 10 PowerScript Functions

PowerScript Reference 495

GetDataDDEOrigin
Description Determines the origin of data from a hot-linked DDE server application or a

DDE client application, and if successful, stores the application’s DDE
identifiers in the specified strings. PowerBuilder can use GetDataDDEOrigin
when it is acting as a DDE client or as a DDE server application.

Syntax GetDataDDEOrigin (applstring, topicstring, itemstring)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (such as the function
was called in the wrong context). If any argument’s value is null,
GetDataDDEOrigin returns null.

GetDataPieExplode
Description Reports the percentage of the pie graph’s radius that a pie slice is exploded. An

exploded slice is moved away from the center of the pie in order to draw
attention to the data.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataPieExplode ({ graphcontrol, } series, datapoint,
 percentage)

Argument Description

controlname The name of the graph for which you want the percentage a pie
slice is exploded, or the name of the DataWindow control
containing the graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the percentage a pie
slice is exploded

series The number that identifies the series

datapoint The number of the exploded data point (that is, the pie slice)

GetDataStyle

496 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, GetDataPieExplode returns null.

Examples This example reports the percentage that a pie slice is exploded when the user
clicks on that slice. The code checks whether the graph is a pie graph using the
property Graphite. It then finds out whether the user clicked on a pie slice by
checking the series and data point values set by ObjectAtPointer. The script is
for the DoubleClicked event of a graph object:

integer series, datapoint
grObjectType clickedtype
integer percentage

percentage = 50
IF (This.GraphType <> PieGraph! and &
 This.GraphType <> Pie3D!) THEN RETURN
clickedtype = This.ObjectAtPointer(series, &
 datapoint)

IF (series > 0 and datapoint > 0) THEN
 This.GetDataPieExplode(series, datapoint, &
 percentage)
 MessageBox("Explosion Percentage", &
 "Data point " + This.CategoryName(datapoint) &
 + " in series " + This.SeriesName(series) &
 + " is exploded " + String(percentage) + "%")
END IF

See also SetDataPieExplode

GetDataStyle
Finds out the appearance of a data point in a graph. Each data point in a series
can have individual appearance settings. There are different syntaxes,
depending on what settings you want to check.

percentage An integer variable in which you want to store the percentage
of the graph’s radius that the pie slice is exploded

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 497

GetDataStyle provides information about a single data point. The series to
which the data point belongs has its own style settings. In general, the style
values for the data point are the same as its series’ settings. Use SetDataStyle
to change the style values for individual data points. Use GetSeriesStyle and
SetSeriesStyle to get and set style information for the series.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can find out the fill pattern for a data
point or a series in a 2-dimensional line graph, but that fill pattern will not be
visible.

For the enumerated datatype values that GetDataStyle stores in linestyle and
enumvariable, see SetDataStyle.

Syntax 1 For the colors of a data point
Description Obtains the colors associated with a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataStyle ({ graphcontrol, } seriesnumber,
 datapointnumber, colortype, colorvariable)

To get the Use

Data point’s colors Syntax 1

Line style and width used by the data point Syntax 2

Fill pattern or symbol for the data point Syntax 3

Argument Description

controlname The name of the graph for which you want the color of a data
point, or the name of the DataWindow control containing the
graph.

graphcontrol
(Data Window
control only)

(Optional) When controlname is a DataWindow control, the
name of the graph for which you want the color of a data point.

seriesnumber The number of the series in which you want the color of a data
point.

GetDataStyle

498 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores a color value
in colorvariable. If any argument’s value is null, GetDataStyle returns null.

Examples This example gets the text (foreground) color used for data point 6 in the series
named Salary in the graph gr_emp_data. It stores the color value in the variable
color_nbr:

long color_nbr
integer SeriesNbr

// Get the number of the series
SeriesNbr = gr_emp_data.FindSeries("Salary")

// Get the color
gr_emp_data.GetDataStyle(SeriesNbr, 6, &
 Foreground!, color_nbr)

This example gets the background color used for data point 6 in the series
entered in the SingleLineEdit sle_series in the DataWindow graph
gr_emp_data. It stores the color value in the variable color_nbr:

long color_nbr
integer SeriesNbr

// Get the number of the series
SeriesNbr = FindSeries("gr_emp_data", sle_series.Text)

// Get the color
dw_emp_data.GetDataStyle("gr_emp_data", &
 SeriesNbr, 6, Background!, color_nbr)

datapointnumber The number of the data point for which you want the color.

colortype A value of the grColorType enumerated datatype specifying
the aspect of the data point for which you want the color.
Values are:

• Background! — The background color

• Foreground! — Text (fill color)

• LineColor! — The color of the line

• Shade! — The shaded area of three-dimensional graphics

colorvariable A long variable in which you want to store the color.

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 499

See also FindSeries
GetSeriesStyle
SetDataStyle
SetSeriesStyle

Syntax 2 For the line style and width used by a data point
Description Obtains the line style and width for a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataStyle ({ graphcontrol, } seriesnumber,
 datapointnumber, linestyle, linewidth)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. For the specified
series and data point, stores its line style in linestyle and the line’s width in
linewidth. If any argument’s value is null, GetDataStyle returns null.

Usage For the enumerated datatype values that GetDataStyle will store in linestyle, see
SetDataStyle.

Argument Description

controlname The name of the graph for which you want the line style and
width of a data point, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph (in
the DataWindow control) for which you want the line style
and width of a data point.

seriesnumber The number of the series in which you want the line style and
width of a data point.

datapointnumber The number of the data point for which you want the line style
and width.

linestyle A variable of type LineStyle in which you want to store the
line style.

linewidth An integer variable in which you want to store the width of the
line. The width is measured in pixels.

GetDataStyle

500 PocketBuilder

Examples This example gets the line style and width of data point 10 in the series named
Costs in the graph gr_product_data. It stores the information in the variables
line_style and line_width:

integer SeriesNbr, line_width
LineStyle line_style

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.GetDataStyle(SeriesNbr, 10, &
 line_style, line_width)

This example gets the line style and width for data point 6 in the series entered
in the SingleLineEdit sle_series in the graph gr_depts in the DataWindow
control dw_employees. The information is stored in the variables line_style
and line_width:

integer SeriesNbr, line_width
LineStyle line_style

// Get the number of the series
SeriesNbr = dw_employees.FindSeries(&
 " gr_depts " , sle_series.Text)

// Get the line style and width
dw_employees.GetDataStyle("gr_depts", SeriesNbr, &
 6, line_style, line_width)

See also FindSeries
GetSeriesStyle
SetDataStyle
SetSeriesStyle

Syntax 3 For the fill pattern or symbol of a data point
Description Obtains the fill pattern or symbol of a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Chapter 10 PowerScript Functions

PowerScript Reference 501

Syntax controlname.GetDataStyle ({ graphcontrol, } seriesnumber,
 datapointnumber, enumvariable)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores, according to
the type of enumvariable, a value of that enumerated datatype representing the
fill pattern or symbol used for the specified data point. If any argument’s value
is null, GetDataStyle returns null.

Usage For the enumerated datatype values that GetDataStyle will store in
enumvariable, see SetDataStyle.

Examples This example gets the pattern used to fill data point 10 in the series named
Costs in the graph gr_product_data. The information is stored in the variable
data_pattern:

integer SeriesNbr
FillPattern data_pattern

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.GetDataStyle(SeriesNbr, 10, &
 data_pattern)

This example gets the pattern used to fill data point 6 in the series entered in
the SingleLineEdit sle_series in the graph gr_depts in the DataWindow control
dw_employees. The information is assigned to the variable data_pattern:

integer SeriesNbr
FillPattern data_pattern

// Get the number of the series

Argument Description

controlname The name of the graph for which you want the fill pattern or
symbol type of a data point, or the name of the DataWindow
control containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph (in the
DataWindow control) for which you want the fill pattern or
symbol type of a data point.

seriesnumber The number of the series in which you want the fill pattern or
symbol type of a data point.

datapointnumber The number of the data point for which you want the fill
pattern or symbol type.

enumvariable The variable in which you want to store the data style. You can
specify a FillPattern or grSymbolType variable. The data style
information stored will depend on the variable type.

GetDataStyle

502 PocketBuilder

SeriesNbr = dw_employees.FindSeries("gr_depts", &
 sle_series.Text)

// Get the pattern
dw_employees.GetDataStyle("gr_depts", SeriesNbr, &
 6, data_pattern)

These statements store in the variable symbol_type the symbol of data point 10
in the series named Costs in the graph gr_product_data:

integer SeriesNbr
grSymbolType symbol_type

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.GetDataStyle(SeriesNbr, 10, &
 symbol_type)

These statements store the symbol for a data point in the variable symbol_type.
The data point is the sixth point in the series named in the SingleLineEdit
sle_series in the graph gr_depts in the DataWindow control dw_employees:

integer SeriesNbr
grSymbolType symbol_type

// Get the number of the series
SeriesNbr = dw_employees.FindSeries("gr_depts", &
 sle_series.Text)

// Get the symbol
dw_employees.GetDataStyle("gr_depts", SeriesNbr, &
 6, symbol_type)

See also FindSeries
GetSeriesStyle
SetDataStyle
SetSeriesStyle

Chapter 10 PowerScript Functions

PowerScript Reference 503

GetDataValue
Description Obtains the value of a data point in a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataValue ({ graphcontrol, } seriesnumber, datapoint,
 datavariable {, xory })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, GetDataValue returns null.

Usage GetDataValue retrieves data from any graph. The data is stored in datavariable,
whose datatype must match the datatype of the graph’s values axis. If the
values axis is numeric, you can also use the GetData function.

Examples These statements obtain the data value of data point 3 in the series named Costs
in the graph gr_computers in the DataWindow control dw_equipment:

integer SeriesNbr, rtn
double data_value

Argument Description

controlname The name of the graph from which you want data, or the name
of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control from which you want the data.

seriesnumber The number that identifies the series from which you want
data.

datapoint The number of the data point for which you want the value.

datavariable The name of a variable that will hold the data value. The
variable’s datatype can be date, DateTime, double, string, or
time. The variable must have the same datatype as the values
axis of the graph.

xory
(scatter graph only)

(Optional) A value of the grDataType enumerated datatype
specifying whether you want the x or y value of the data point
in a scatter graph. Values are:

• xValue! — The x value of the data point

• yValue! — (Default) The y value of the data point

GetDataValue

504 PocketBuilder

// Get the number of the series.
SeriesNbr = dw_equipment.FindSeries(&
 "gr_computers", "Costs")
rtn = dw_equipment.GetDataValue(&
 "gr_computers" , SeriesNbr, 3, data_value)

These statements obtain the data value of the data point under the mouse
pointer in the graph gr_prod_data and store it in data_value. If the user does not
click on a data point, then ItemNbr is set to 0. The categories of the graph are
time values:

integer SeriesNbr, ItemNbr, rtn
time data_value
grObjectType MouseHit

MouseHit = &
 gr_prod_data.ObjectAtPointer(SeriesNbr, ItemNbr)
IF ItemNbr > 0 THEN
 rtn = gr_prod_data.GetDataValue(&
 SeriesNbr, ItemNbr, data_value)
END IF

These statements obtain the x value of the data point in the scatter graph
gr_sales_yr and store it in data_value. If the user does not click on a data point,
then ItemNbr is set to 0. The datatype of the category axis is Date:

integer SeriesNbr, ItemNbr, rtn
date data_value

gr_product_data.ObjectAtPointer(SeriesNbr, ItemNbr)
IF ItemNbr > 0 THEN
 rtn = gr_sales_yr.GetDataValue(&
 SeriesNbr, ItemNbr, data_value, xValue!)
END IF

See also DeleteData
FindSeries
InsertData
ObjectAtPointer

Chapter 10 PowerScript Functions

PowerScript Reference 505

GetDeskRect
Description On a Pocket PC device or emulator, gets the rectangular coordinates, in pixels,

of the current window—which does not include the area occupied by the Soft
Input Panel (SIP) when the latter is visible. On the desktop, GetDeskRect gets
the coordinates of the desktop monitor.

Syntax int GetDeskRect (long left, long top, long right, long bottom)

Return value Integer. Returns 1 for success and -1 for failure.

Usage Typically it is useful to know the bottommost coordinate of the current window
when the SIP is visible. That way you can adjust the positions and sizes of
controls on the window to account for the smaller display size of the window
when the SIP is being used.

Examples The following example displays the coordinates for the current window in a
multiline edit text box:

String strDisplay=""
int rc
long left = 0, top = 0, right = 0, bottom = 0

Argument Description

left Leftmost value (typically 0) of the rectangular area occupied by the:

• current window on a Pocket PC device or emulator

• monitor for the desktop

top Topmost value of the rectangular area occupied by the:

• current window on a Pocket PC device or emulator (typically 26)

• monitor for the desktop (typically 0)

right Rightmost value of the rectangular area occupied by the:

• current window on a Pocket PC device or emulator (typically 240)

• monitor for the desktop (for example, 1024 on a monitor with a
desktop area of 1024 by 768 pixels)

bottom Bottommost value of the rectangular area occupied by:

• current window on a Pocket PC device or emulator (typically 214
when the SIP is visible and 320 when the SIP is not visible)

• monitor for the desktop (for example, 768 on a monitor with a
desktop area of 1024 by 768 pixels)

GetDisplayZoom

506 PocketBuilder

rc = GetDeskRect(left, top, right, bottom)
strDisplay +=("Desk RECT:~r~n~t Left = " +string(left)&
+"~r~n~t Top=" + String(top) + "~r~n~t Right = " &
+ String(right)+ "~r~n~t Bottom = " + String(bottom))
mle_1.text = strDisplay

See also GetSIPRect
IsSIPVisible

GetDisplayZoom
Description Obtains the zoom factor of controls as a percent of their size at design time.

Syntax GetDisplayZoom ()

Return value Integer. Returns the current zoom factor for application controls, or -1 if an
error occurs or the application is run on the desktop.

Usage The current zoom factor applies to all controls in an application running on a
Windows CE device or emulator. The zoom factor is a percent of the size of the
controls at design time. The permissible zoom factor range is 10 to 500 percent.

See also SetDisplayZoom

GetDynamicDate
Description Obtains data of type Date from the DynamicDescriptionArea after you have

executed a dynamic SQL statement.

Syntax DynamicDescriptionArea.GetDynamicDate (index)

Chapter 10 PowerScript Functions

PowerScript Reference 507

Return value Date. Returns the Date data in the output parameter descriptor identified by
index in DynamicDescriptionArea. Returns 1900-01-01 if an error occurs. If
any argument’s value is null, GetDynamicDate returns null.

GetDynamicDateTime
Description Obtains data of type DateTime from the DynamicDescriptionArea after you

have executed a dynamic SQL statement.

Syntax DynamicDescriptionArea.GetDynamicDateTime (index)

Return value DateTime. Returns the DateTime data in the output parameter descriptor
identified by index in DynamicDescriptionArea. Returns 1900-01-01
00:00:00.000000 if an error occurs. If any argument’s value is null,
GetDynamicDateTime returns null.

GetDynamicNumber
Description Obtains numeric data from the DynamicDescriptionArea after you have

executed a dynamic SQL statement.

Syntax DynamicDescriptionArea.GetDynamicNumber (index)

Return value Double. Returns the numeric data in the output parameter descriptor identified
by index in DynamicDescriptionArea. Returns 0 if an error occurs. If any
argument’s value is null, GetDynamicNumber returns null.

GetDynamicString

508 PocketBuilder

GetDynamicString
Description Obtains data of type String from the DynamicDescriptionArea after you have

executed a dynamic SQL statement.

Syntax DynamicDescriptionArea.GetDynamicString (index)

Return value String. Returns the string data in the output parameter descriptor identified by
index in DynamicDescriptionArea. Returns the empty string ("") if an error
occurs. If any argument’s value is null, GetDynamicString returns null.

GetDynamicTime
Description Obtains data of type Time from the DynamicDescriptionArea after you have

executed a dynamic SQL statement.

Syntax DynamicDescriptionArea.GetDynamicTime (index)

Return value Time. Returns the Time data in the output parameter descriptor identified by
index in DynamicDescriptionArea. Returns 00:00:00.000000 if an error
occurs. If any argument’s value is null, GetDynamicTime returns null.

GetEnabledDecoders
Description Retrieves the list of enabled decoders.

Applies to BarcodeScanner objects

Syntax Integer scanner.GetEnabledDecoders (intDecoders [])

Chapter 10 PowerScript Functions

PowerScript Reference 509

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -9 Incorrect scan state for the requested action (typically benign)

• -10 Low level device error

• -100 Feature not implemented

Usage The enabled decoders are a subset of supported decoders. Decoders must be
enabled for use in a scanning operation.

Examples The following example places the IDs of all the enabled decoders in an array:

integer li_rtn, li_firstID, li_secondID, l_IDs[]
li_rtn = l_scanner.GetEnabledDecoders(l_IDs)
li_firstID = l_IDs[1]
li_secondID = l_IDs[2]

See also EnableDecoder
GetSupportedDecoders

GetEntry
Retrieves an entry in a call log or a dialing directory.

Argument Description

scanner The scanner object that is associated with the scanner for which you
want to obtain a list of enabled decoders

intDecoders [] Array of integers that correspond to the decoder IDs of the enabled
decoders

GetEntry

510 PocketBuilder

Syntax 1 For a CallLog object
Description Retrieves a call log entry based on an index value.

Applies to CallLog objects

Syntax objectname.GetEntry (index)

Return value A CallLogEntry structure. GetEntry returns a null object when the argument
does not correspond to an actual index value.

Examples These statements get the latest entry in the l_myCallLog call log:

Integer l_idx = 1
CallLogEntry l_mylogentry
l_mylogentry = l_mycalllog.getEntry (l_idx)

See also GetEntries

Syntax 2 For a DialingDirectory object
Description Retrieves a dialing directory entry based on an index value and location.

Applies to DialingDirectory objects

To Use

Retrieve an entry in a call log Syntax 1

Retrieve an entry in a dialing directory Syntax 2

Argument Description

objectname The name of the call log from which you want to retrieve an entry.

index An integer that specifies the entry you want to retrieve. Index
values are typically in reverse chronological order, such that a
value of “1” corresponds to the latest entry.

Chapter 10 PowerScript Functions

PowerScript Reference 511

Syntax objectname.GetEntry (index)

Return value A DialingDirectoryEntry structure. GetEntry returns a null object when the
argument does not correspond to an actual index value.

Examples The following statements call the getEntry function on the l_myphonebook
DialingDirectory object to return a DialingDirectoryEntry object:

Integer l_idx = 1
DialingDirectoryEntry l_mydirectoryentry
l_mydirectoryentry = l_myphonebook.getEntry (l_idx)

See also GetEntries
UpdateEntry

GetEntries
Retrieves an entire call log or dialing entry into an array.

Syntax 1 For CallLog objects
Description Retrieves a call log into an array of CallLogEntry objects.

Applies to CallLog objects

Syntax objectname.GetEntries (entries[])

Argument Description

objectname The name of the dialing directory from which you want to retrieve
an entry.

index An integer that specifies the entry you want to retrieve.

To Use

Retrieve a call log into an array of CallLogEntry objects Syntax 1

Retrieve a dialing directory into an array of DialingDirectoryEntry
objects

Syntax 2

GetEntries

512 PocketBuilder

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Not Implemented

-3 Supporting DLL not loaded

-4 Error in the arguments passed in

-5 Other initialization error

Examples The following statements call the getEntries function on the l_mycalllog
CallLog object to return an array of CallLogEntry objects:

// Instance variable:
// CallLogEntry iCallLogEntries[]
CallLog l_mycalllog
l_mycalllog = CREATE CallLog
l_mycalllog.getEntries(iCallLogEntries)

See also GetEntry
UpdateEntry

Syntax 2 For DialingDirectory objects
Description Retrieves a dialing directory into an array of DialingDirectoryEntry objects.

Applies to DialingDirectory objects

Syntax objectname.GetEntries (entries[])

Argument Description

objectname The name of the call log from which you want to retrieve entries

entries[] An array of CallLogEntry objects returned by reference

Argument Description

objectname The name of the dialing directory from which you want to retrieve
entries

Chapter 10 PowerScript Functions

PowerScript Reference 513

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Not Implemented

-3 Supporting DLL not loaded

-4 Error in the arguments passed in

-5 Other initialization error

Examples The following statements call the getEntries function on the l_myphonebook
DialingDirectory object to return an array of DialingDirectoryEntry objects:

// Instance variable:
// DialingDirectoryEntry iDialingDirEntries[]
DialingDirectory l_myphonebook
l_myphonebook = CREATE DialingDirectory
l_myphonebook.getEntries(IDialingDirEntries)

l_mydirectoryentry = l_myphonebook.getEntry (l_idx)

See also GetEntry

GetEnvironment
Description Gets information about the operating system, processor, and screen display of

the system.

Syntax GetEnvironment (environmentinfo)

entries[] An array of DialingDirectoryEntry objects returned by reference

Argument Description

Argument Description

environmentinfo The name of the Environment object that will hold the
information about the environment

GetEnvironment

514 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If environmentinfo is
null, GetEnvironment returns null.

Usage In cross-platform development projects, you can call GetEnvironment in scripts
and take actions based on the operating system. You can also find out the
processor (Intel 386 or 486, 68000, and so on). The information also includes
version numbers of the operating system and PocketBuilder.

You can call GetEnvironment to find out the number of colors supported by the
system and the size of the screen. You can use the size information in a
window’s Open script to reset its X and Y properties.

Examples This script runs another PocketBuilder application and uses the OSType
property of the Environment object to determine how to specify the path:

string path
environment env
integer rtn

rtn = GetEnvironment(env)
IF rtn <> 1 THEN RETURN

CHOOSE CASE env.OSType
CASE Windows!, WindowsNT!
 path = "C:\PB_apps\analyze.exe"
CASE WindowsCE!
 path = "\windows\analyze.exe"
CASE ELSE
 RETURN
END CHOOSE
Run(path)

This example displays a message box that shows the major, minor, and fixes
versions of PocketBuilder:

string ls_version
environment env
integer rtn

rtn = GetEnvironment(env)

IF rtn <> 1 THEN RETURN
ls_version = "Version: "+ string(env.pbmajorrevision)
ls_version += "." + string(env.pbminorrevision)
ls_version += "." + string(env.pbfixesrevision)
ls_version += " Build: " + string(env.pbbuildnumber)

MessageBox("PocketBuilder Version", ls_version)

Chapter 10 PowerScript Functions

PowerScript Reference 515

GetFileOpenName
Description Displays the system’s Open File dialog box and allows the user to select a file

or enter a file name.

Windows CE platforms
The initdir and aFlag options are not currently supported in PocketBuilder, and
in Windows CE, the pathname must be the My Documents directory or its
subdirectory. You cannot use an array of string variables for the filename
argument.

Syntax GetFileOpenName (title, pathname, filename {, extension {, filter { , initdir
{ , aFlag } } } })

GetFileOpenName (title, pathname, filename[] {, extension {, filter { , initdir
{ , aFlag } } } })

Argument Description

title A string whose value is the title of the dialog box.

pathname A string variable in which you want to store the returned path and
file name.

filename,
filename[]

A string variable in which the returned file name is stored or an
array of string variables in which multiple selected file names are
stored. Specifying an array of string variables enables multiple
selection in the dialog box.

extension
(optional)

A string whose value is a 1- to 3-character default file extension.
The default is no extension.

filter
(optional)

A string whose value is a text description of the files to include in
the list box and the file mask that you want to use to select the
displayed files (for example, *.* or *.exe). The format for filter is:

description,*. ext
The default is:

"All Files (*.*),*.*"

initdir
(optional)

A string whose value is the initial directory name. The default is the
current directory.

GetFileOpenName

516 PocketBuilder

Return value Integer. Returns 1 if it succeeds, 0 if the user clicks the Cancel button or
Windows cancels the display, and -1 if an error occurs. If any argument’s value
is null, GetFileOpenName returns null.

Usage If you specify a DOS-style file extension and the user enters a file name with
no extension, PocketBuilder appends the default extension to the file name. If
you specify a file mask to act as a filter, PocketBuilder displays only files that
match the mask.

You use the filter argument to limit the types of files displayed in the list box
and to let the user know what those limits are. For example, to display the
description Text Files (*.TXT) and only files with the extension .TXT, specify
the following for filter:

"Text Files (*.TXT),*.TXT"

To specify more than one file extension in filter, enter multiple descriptions and
extension combinations and separate them with commas. For example:

"PIF files, *.PIF, Batch files, *.BAT"

The dialog boxes presented by GetFileOpenName and GetFileSaveName are
system dialog boxes. They provide standard system behavior, including control
over the current directory. When users change the drive, directory, or folder in
the dialog box, they change the current directory or folder. The newly selected
directory or folder becomes the default for file operations until they exit the
application, unless the optional initdir argument is passed.

The aFlag argument is used to pass one or more options that determine the
appearance of the dialog box. For each option, the value of the flag is
2^(index -1), where index is an integer associated with each option as shown
in the following table. You can pass multiple options by passing an aggregate
flag, calculated by adding the values of the individual flags.

aFlag
(optional)

An unsigned long whose value determines which options are
enabled in the dialog box. The value of each option’s flag is
calculated as 2 to the power of (index -1), where index is the integer
associated with the option. The value of the aggregate flag passed
to GetOpenFileName is the sum of the individual option flags. See
the table in the Usage section for a list of options, the index
associated with each option, and the option’s meaning.

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 517

If you do not pass an aFlag, the Explorer-style open file dialog box is used. If
you do pass a flag, the old-style dialog box is used by default. Some options do
not apply when the Explorer-style dialog box is used. For those that do apply,
add the option value for using the Explorer-style dialog box (2) to the value of
the option if you want to display an Explorer-style dialog box.

For example, passing the flag 32768 (2^15) to the GetFileSaveName function
opens the old-style dialog box with the Read Only check box selected by
default. Passing the flag 32770 opens the Explorer-style dialog box with the
Read Only check box selected by default.

Table 10-4: Option values for GetFileOpenName and GetFileSaveName

Index Constant name Description

1 OFN_CREATEPROMPT If the specified file does not exist, prompt for permission to create
the file. If the user chooses to create the file, the dialog box closes;
otherwise the dialog box remains open.

2 OFN_EXPLORER Use an Explorer-style dialog box.

3 OFN_EXTENSIONDIFFERENT The file extension entered differed from the extensions specified
in extension.

4 OFN_FILEMUSTEXIST Only the names of existing files can be entered.

5 OFN_HIDEREADONLY Hide the Read Only check box.

6 OFN_LONGNAMES Use long file names. Ignored for Explorer-style dialog boxes.

7 OFN_NOCHANGEDIR Restore the current directory to its original value if the user
changed the directory while searching for files. This option has no
effect for GetOpenFileName on Windows NT, 2000, and XP.

8 OFN_NODEREFERENCELINKS Return the path and file name of the selected shortcut (.lnk file);
otherwise the path and file name pointed to by the shortcut are
returned.

9 OFN_NOLONGNAMES Use short file names (8.3 format). Ignored for Explorer-style
dialog boxes.

10 OFN_NONETWORKBUTTON Hide the Network button. Ignored for Explorer-style dialog
boxes.

11 OFN_NOREADONLYRETURN The file returned is not read only and is not in a write-protected
directory.

12 OFN_NOTESTFILECREATE Do not create the file before the dialog box is closed. This option
should be specified if the application saves the file on a netwrok
share where files can be created but not modified. No check is
made for write protection, a full disk, an open drive door, or
network protection.

A file cannot be reopened once it is closed.

13 OFN_NOVALIDATE Invalid characters are allowed in file names.

14 OFN_OVERWRITEPROMPT Used in Save As dialog boxes. Generates a message box if the
selected file already exists.

GetFileSaveName

518 PocketBuilder

Opening a file
Use the FileOpen function to open a selected file.

Examples In the following example, the dialog box has the title Open and displays text
files, batch files, and INI files in the Files of Type drop-down list.

// instance variables
// string is_filename, is_fullname
int li_fileid

if GetFileOpenName ("Open", is_fullname, is_filename, &
"txt", "Text Files (*.txt),*.txt,INI Files " &
+ "(*.ini), *.ini,Batch Files (*.bat),*.bat") &
< 1 then return

li_fileid = FileOpen (is_fullname, StreamMode!)
FileRead (li_fileid, mle_notepad.text)
FileClose (li_fileid)

See also DirList
DirSelect
GetFileSaveName

GetFileSaveName
Description Displays the system’s Save File dialog box with the specified file name

displayed in the File name box. The user can enter a file name or select a file
from the grayed list.

15 OFN_PATHMUSTEXIST Only valid paths and file names can be entered.

16 OFN_READONLY Select the Read Only check box when the Save dialog box is
created.

Index Constant name Description

Chapter 10 PowerScript Functions

PowerScript Reference 519

Windows CE platforms
The initdir and aFlag options are not currently supported in PocketBuilder, and
in Windows CE, the pathname must be the My Documents directory or its
subdirectory. You cannot use an array of string variables for the filename
argument.

Syntax GetFileSaveName (title, pathname, filename {, extension {, filter { , initdir
{ , aFlag } } } })

GetFileSaveName (title, pathname, filename [] {, extension {, filter { , initdir
{ , aFlag } } } })

Return value Integer. Returns 1 if it succeeds, 0 if the user clicks the Cancel button or
Windows cancels the display, and -1 if an error occurs. If any argument’s value
is null, GetFileSaveName returns null.

Argument Description

title A string whose value is the title of the dialog box.

pathname A string variable whose value is the default file name and which
stores the returned path and file name. The default file name is
displayed in the File name box; the user can specify another name.

filename,
filename[]

A string variable in which the returned file name is stored or an
array of string variables in which multiple selected file names are
stored. Specifying an array of string variables enables multiple
selection in the dialog box.

extension
(optional)

A string whose value is a 1- to 3-character default file extension.
The default is no extension.

filter
(optional)

A string whose value is the description of the displayed files and the
file extension that you want use to select the displayed files (the
filter). The format for filter is: description,*. ext

The default is: "All Files (*.*),*.*"

initdir
(optional)

A string whose value is the initial directory name. The default is the
current directory.

aFlag
(optional)

An unsigned long whose value determines which options are
enabled in the dialog box. The value of each option’s flag is
calculated as 2 to the power of (index -1), where index is the integer
associated with the option. The value of the aggregate flag passed
to GetOpenFileName is the sum of the individual option flags. See
the table in the Usage section for GetOpenFileName for a list of
options, the index associated with each option, and the option’s
meaning.

GetFirstSheet

520 PocketBuilder

Usage If you specify a DOS-style extension and the user enters a file name with no
extension, PocketBuilder appends the default extension to the file name. If you
specify a file mask to act as a filter, PocketBuilder displays only files that
match the mask.

For usage notes on the filter, initdir, and aFlag arguments, see the
GetFileOpenName function.

Examples These statements display the Select File dialog box. The default file extension
is .DOC and the filter is all files. If a file is selected successfully, its path
displays in a SingleLineEdit control:

string ls_path, ls_file
int li_rc

ls_path = sle_1.Text
li_rc = GetFileSaveName ("Select File", &

ls_path, ls_file, "DOC", &
"All Files (*.*),*.*")

IF li_rc = 1 Then
sle_1.Text = ls_path + "\" + ls_file

End If

See also GetFileOpenName
DirList
DirSelect

GetFirstSheet
Description Obtains the top sheet in the MDI frame, which may or may not be active.

Applies to MDI frame windows

Syntax mdiframewindow.GetFirstSheet ()

Return value Window. Returns the first (top) sheet in the MDI frame. If no sheet is open in
the frame, GetFirstSheet returns an invalid value. If mdiframewindow is null,
GetFirstSheet returns null.

Chapter 10 PowerScript Functions

PowerScript Reference 521

GetFix
Description Populates a GPSFix structure with data from the current position fix.

Applies to SerialGPS objects

Syntax Integer GPSname.GetFix (myGPSFix)

Return value Integer. Returns 1 for success and 100 or a negative number for an error. The
following is a list of possible error codes and their meanings:

100 End of buffer. The requested data was not found.

-1 General error.

-10 Invalid object. Could occur if the GPS object instance is corrupted.

-13 Not previously opened. This function cannot be called until a GPS object
or SerialGps object has been successfully opened.

-14 Read timeout. Occurs when the timeout interval
(a ConfigParams property of the SerialGps object) is exceeded.

-15 Read Failure. Unable to read the file or serial port.

-16 Parser Error. Parser is unable to interpret a sentence. This error is
generated when nonstandard tokens are discovered while parsing the
GPS data.

-17 Checksum Error. Most GPS sentences end in a two-digit checksum value.
The PocketBuilder parser verifies this value and reports a checksum error
if the calculated value does not match the stated value.

Argument Description

GPSname Name of the SerialGPS object

myGPSFix GPSFix structure object passed by reference that can store the
data from the current position fix

GetFix

522 PocketBuilder

Usage Use this function to populate a GPSFix structure with data about the current
position fix, including data about the location of the fix and how reliable the
data is. Each GetFix request obtains data from a different $GPGGA sentence in
the data buffer. If the end of the data buffer is reached before finding a new
sentence to parse, a GPS object returns 100 to indicate the end of the buffer has
been reached. A SerialGPS object automatically reads in a new buffer and
searches the new buffer. If this second data buffer does not contain a $GPGGA
sentence, then the SerialGPS object returns 100.

Examples The following lines create a SerialGPS object, retrieve information about the
current position fix, test the validity of the GPSFix object, and write data to a
multiline edit box:

SerialGps myGPS
GPSFix myFix
Real lr_alt, lr_gh, lr_hdop
Integer li_numsats, rc

MyGPS = CREATE SerialGPS
myGPS.Open()
...
rc = MyGPS.GetFix(myFix)
if rc = 1 then

if myFix.IsFixValid then
lr_alt = myFix.Altitude
lr_gh = myFix.geoidalheight
lr_hdop = myFix.HDOP
mle_fix.text = "Recorded at: " + &

String(myFix.FixTime)
mle_fix.text += "Altitude: " + String(lr_Alt)
mle_fix.text += "Geoidal height :" + String(lr_gh)
mle_fix.text += "HDOP: " + String(lr_hdop)
 mle_fix.text += "Satellites: " + String(li_numsats)
else

return -1
end if

else
return -1

end if

The Latitude and Longitude properties of the GPSFix structure take a value of
the GPSCoordinate structure. The following example shows how you might
extend the previous example to display the Longitude property value in the
multiline edit box. It takes the Minute property, separates it into whole minutes
and a partial minute, and converts the partial minute into a number of seconds:

GPSCoordinate myLongCoord

Chapter 10 PowerScript Functions

PowerScript Reference 523

Integer fixLongMins, rc
Real fixLongSecs
...
rc = MyGPS.GetFix(myFix)
myLongCoord = myFix.Longitude
fixLongMins = Integer(myLongCoord.Minute)
fixLongSecs = (myLongCoord.Minute - fixLongMins) * 60
mle_fix.text = "Longitude: " &

+ String(myLongCoord.degree) + " degrees " &
+ String(fixLongMins) + " minutes " &
+ String(fixLongSecs) + " seconds " &
+ String(myLongCoord.Hemisphere)

See also GetHeading
GetSatellitesInView
Open

GetFixesVersion
Description Returns the fix level for the current PocketBuilder execution context. For

example, at maintenance level 1.5.2, the fix version is 2.

Applies to ContextInformation objects

Syntax servicereference.GetFixesVersion (fixversion)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the current fix version.

Examples This example calls the GetFixesVersion function:

String ls_name
Constant String ls_currver = "8.0.3"

Argument Description

servicereference Reference to the ContextInformation service instance.

fixversion Integer into which the function places the fix version. This
argument is passed by reference.

GetFocus

524 PocketBuilder

Integer li_majver, li_minver, li_fixver
ContextInformation ci

this.GetContextService ("ContextInformation", ci)
ci.GetMajorVersion(li_majver)
ci.GetMinorVersion(li_minver)
ci.GetFixesVersion(li_fixver)
IF li_majver <> 8 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
ELSEIF li_minver <> 0 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
ELSEIF li_fixver <> 3 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
END IF

See also GetCompanyName
GetHostObject
GetMajorVersion
GetMinorVersion
GetName
GetShortName
GetVersionName

GetFocus
Description Determines the control that currently has focus.

Syntax GetFocus ()

Return value GraphicObject. Returns the control that currently has focus. Returns an invalid
control reference if an error occurs.

Use the IsValid function to determine whether GetFocus has returned a valid
control.

Chapter 10 PowerScript Functions

PowerScript Reference 525

Examples These statements set which_control equal to the datatype of the control that
currently has focus, and then set text_value to the text property of the control:

GraphicObject which_control
SingleLineEdit sle_which
CommandButton cb_which
string text_value

which_control = GetFocus()

CHOOSE CASE TypeOf(which_control)

CASE CommandButton!
 cb_which = which_control
 text_value = cb_which.Text

CASE SingleLineEdit!
 sle_which = which_control
 text_value = sle_which.Text

CASE ELSE
 text_value = ""
END CHOOSE

See also IsValid
SetFocus

GetFolder
Description Displays a folder selection dialog box.

Syntax GetFolder (title, directory)

Return value Integer. Returns 1 if the function succeeds, 0 if the user selects cancel (or the
dialog box is closed), -1 if an error occurs.

GetGlobalProperty

526 PocketBuilder

GetGlobalProperty
Description Returns the value of an SSL global property. This function is used by

PowerBuilder clients connecting to EAServer.

Applies to SSLServiceProvider object

Syntax sslserviceprovider.GetGlobalProperty (property, values)

Return value Long. Returns 0 for success and a negative value if an error has occurs.

GetHeading
Description Populates a GPSHeading structure with data from the current heading.

Applies to SerialGPS objects

Syntax Integer GPSname.GetHeading(GPSHeading)

Return value Integer. Returns 1 for success and 100 or a negative number for an error. The
following is a list of possible error codes and their meanings:

100 End of buffer. The requested data was not found.

-1 General error.

-10 Invalid object. Could occur if the GPS object instance is corrupted.

-13 Not previously opened. This function cannot be called until a GPS object
or SerialGps object has been successfully opened.

-14 Read timeout. Occurs when the timeout interval
(a ConfigParams property of the SerialGps object) is exceeded.

Argument Description

GPSname Name of the SerialGPS object

GPSHeading Structure passed by reference that stores speed and
directional information used by the SerialGPS object

Chapter 10 PowerScript Functions

PowerScript Reference 527

-15 Read Failure. Unable to read the file or serial port.

-16 Parser Error. Parser is unable to interpret a sentence. This error is
generated when nonstandard tokens are discovered while parsing the
GPS data.

-17 Checksum Error. Most GPS sentences end in a two-digit checksum value.
The PocketBuilder parser verifies this value and reports a checksum error
if the calculated value does not match the stated value.

Usage Use this function to populate a GPSHeading structure with information about
the direction of travel, ground speed, and magnetic variation.

Examples The following lines create a SerialGPS object, retrieve information about the
current position fix, test the validity of the GPSHeading object, and write data
to a multiline edit box:

SerialGps myGPS
real TrueHeading, Speed, MV
char MVD
GPSHeading myGPSHeading
Integer rc

MyGPS = CREATE SerialGPS
myGPS.Open()
...
rc = MyGPS.GetHeading(myGPSHeading)
IF rc = 1 THEN
TrueHeading = myGPSHeading.Heading
Speed = myGPSHeading.groundspeed
MV = myGPSHeading.MagneticVariation
MVD = myGPSHeading.MagneticVariationDirection
mle_1 = "Ground speed: " + String(Speed)
mle_1 += "True heading: " + String(TrueHeading) + "~r~n"
mle_1 += "Variation: " + String(MV) + MVD
ELSE
//Process error
END IF

See also GetFix
GetSatellitesInView
Open

GetHostObject

528 PocketBuilder

GetHostObject
Description Provides a reference to the context’s host object.

Applies to ContextInformation objects

Syntax servicereference.GetHostObject (hostobject)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs. In
PocketBuilder applications, GetHostObject always returns -1.

Usage Call this function to obtain a reference to the context object model.

PocketBuilder environments
The host object in a PocketBuilder application is an empty object—it fails the
isValid(obj) test.

See also GetCompanyName
GetName
GetShortName
GetVersionName

Argument Description

servicereference Reference to the Context Information service instance

hostobject PowerObject into which the function places a reference to
the ActiveX automation server object

Chapter 10 PowerScript Functions

PowerScript Reference 529

GetItem
Retrieves data associated with a specified item in ListView, TreeView, and
Toolbar controls.

Syntax 1 For ListView controls
Description Retrieves a ListViewItem object from a ListView control so you can examine

its properties.

Applies to ListView controls

Syntax listviewname.GetItem (index, {column}, item)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores a ListViewItem
object in a ListViewItem variable.

Usage You can retrieve properties for any ListView item with this syntax. If you do
not specify a column, GetItem retrieves properties for the first column of an
item. Only report views display multiple columns.

To retrieve labels only, use syntax 2. You can use GetColumn to obtain column
properties that are not specific to a ListView item.

To retrieve data associated with a specified Use

 ListView control item Syntax 1

 ListView control item and column Syntax 2

TreeView item Syntax 3

Toolbar control item Syntax 4

Argument Description

listviewname The name of the ListView control for which you want to
retrieve the ListView item

index The index number of the item you want to retrieve

column The index number of the column for which you want item
information

item The ListViewItem variable in which you want to store the
ListViewItem object

GetItem

530 PocketBuilder

To change pictures and other property values associated with a ListView item,
use GetItem, change the property values, and use SetItem to apply the changes
back to the ListView.

Examples This example uses GetItem to move the second item in the lv_list ListView
control to the fifth item. It retrieves item 2, inserts it into the ListView control
as item 5, and then deletes the original item:

listviewitem l_lvi

lv_list.GetItem(2, l_lvi)
lv_list.InsertItem(5, l_lvi)
lv_list.DeleteItem(2)

See also GetColumn
SetItem

Syntax 2 For ListView controls
Description Retrieves the value displayed for a ListView item in a specified column.

Applies to ListView controls

Syntax listviewname.GetItem (index, column, label)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores the displayed
value of the ListView column in a string variable.

Usage To retrieve property values for a ListView item, use Syntax 1.

Argument Description

listviewname The name of the ListView control from which you want to retrieve
a displayed value.

index The index number of the item for which you want to retrieve a
displayed value.

column The index number of the column for which you want to retrieve a
value. If the ListView is not a multicolumn report view, all the items
are considered to be in column 1.

label A string variable in which you store the displayed value.

Chapter 10 PowerScript Functions

PowerScript Reference 531

Examples This example gets the displayed values from column 1 and column 3 of the first
row of the lv_list ListView and displays them in the sle_info SingleLineEdit
control.

string ls_artist, ls_comp

lv_list.GetItem(1, 1 , ls_comp)
lv_list.GetItem(1, 3 , ls_artist)
sle_info.text = ls_artist +" wrote " + ls_comp + "."

See also SetItem

Syntax 3 For TreeView controls
Description Retrieves the data associated with the specified item.

Applies to TreeView controls

Syntax treeviewname.GetItem (itemhandle, item)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use GetItem to retrieve the state information associated with a specific item in
a TreeView (such as label, handle, or picture index). After you have retrieved
the information, you can use it in your application. To change a property of an
item, call GetItem to assign the item to a TreeViewItem variable, change its
properties, and call SetItem to copy the changes back to the TreeView.

Examples This code for the Clicked event gets the clicked item and changes it overlay
picture. The SetItem function copies the change back to the TreeView:

treeviewitem tvi
This.SetItem(handle, tvi)
tvi.OverlayPictureIndex = 1

Argument Description

treeviewname The name of the TreeView control in which you want to get data for
a specified item

itemhandle The handle for the item for which you want to retrieve information

item A TreeViewItem variable in which you want to store the item
identified by the item handle

GetItem

532 PocketBuilder

This.SetItem(handle, tvi)

This example tracks items in the SelectionChanged event. If there is no prior
selection, the value of l_tviold is zero:

treeviewitem l_tvinew, l_tviold

// Get the treeview item that was the old selection
tv_list.GetItem(oldhandle, l_tviold)

// Get the treeview item that is currently selected
tv_list.GetItem(newhandle, l_tvinew)

// Print the labels for the two items in the
// SingleLineEdit
sle_get.Text = "Selection changed from " &
 + String(l_tviold.Label) + " to " &
 + String(l_tvinew.Label)

See also InsertItem

Syntax 4 For Toolbar controls
Description Gets a reference to an item in the toolbar.

Applies to Toolbar controls

Syntax Integer controlname.GetItem (toolbarindex, item)

Return value Integer. Returns 1 for success and -1 if an error occurs.

Examples The following example passes a reference to the second item in the toolbar:

Integer li_rtn
ToolbarItem myItem
myItem = CREATE ToolbarItem
li_rtn = tlbr_mytoolbar.GetItem(2, myItem)

Argument Description

controlname The name of the toolbar control

toolbarindex Integer for the index of the toolbar item

item Reference to a ToolbarItem object

Chapter 10 PowerScript Functions

PowerScript Reference 533

See also AddItem
DeleteItem
InsertItem

GetItemAtPointer
Description Gets the handle or the index of the item under the cursor.

Applies to ListView controls, TreeView controls

Syntax controlname.GetItemAtPointer ()

Return value Long. Returns the index (ListView) or handle (TreeView) of the item under the
cursor. Returns -1 for failure.

Usage System events that select an item in a ListView or TreeView control, such as
the Clicked event, already have an argument that passes the index for the
ListView or the handle for the TreeView. The GetItemAtPointer function allows
you to retrieve the index or handle in user events (or system events without an
index or handle argument) for a ListView or TreeView control.

Examples This example places the handle of a TreeView item in a SingleLineEdit box:

integer li_index

li_index= tv_1.GetItematPointer ()
sle_1.text = string (li_index)

See also FindItem
SelectItem

Argument Description

controlname The name of the control whose handle or index you want to obtain.

GetItemPictureIndex

534 PocketBuilder

GetItemPictureIndex
Description Gets the picture index that corresponds to the item index of a toolbar item.

Applies to Toolbar controls

Syntax Integer controlname.GetItemPictureIndex (toolbarindex)

Return value Integer. Returns the picture index that identifies the picture associated with the
toolbar item defined by the value of the toolbarindex argument. Returns -1 if
an error occurs.

Examples The following example gets the picture index for the second item in the toolbar
and places it in a local variable:

Integer li_picindex
li_picindex = tlbr_mytoolbar.GetItemPictureIndex(2)

See also SetItemPictureIndex

GetItemState
Description Gets the state of a toolbar item.

Applies to Toolbar controls

Argument Description

controlname The name of the toolbar control

toolbarindex Integer for the index of the toolbar item

Chapter 10 PowerScript Functions

PowerScript Reference 535

Syntax Integer controlname.GetItemState (toolbarindex)

Return value Integer. Values can be any of the values described in the following table, or
combinations of these values:

Values are additive. For example, a toolbar button with the checked state (1)
can also be enabled (4) and wrapped (32). In this case the return value would
be 37.

Returns -1 if an error occurs.

Examples The following example gets the state for the second item in the toolbar and
places it in a local variable:

integer li_picstate
li_picstate = tlbr_mytoolbar.GetItemState(2)

See also SetItemState

Argument Description

controlname The name of the toolbar control

toolbarindex Integer for the index of the toolbar item

Value Windows CE value Description

1 TBSTATE_CHECKED The toolbar button has a StyleCheck! or
StyleCheckGroup! style and remains in the
depressed state

2 TBSTATE_PRESSED The toolbar button has a StyleButton! style and
is temporarily in the depressed state

4 TBSTATE_ENABLED The toolbar button is enabled for selection

32 TBSTATE_WRAP The next item in the toolbar that is not grouped
with the current toolbar button is on a separate
line

GetLastReturn

536 PocketBuilder

GetLastReturn
Description Returns the return value from the last InvokePBFunction or TriggerPBEvent

function.

Applies to Window ActiveX controls

Syntax activexcontrol.GetLastReturn ()

Return value Any. Returns the last return value.

GetLibraryList
Description Gets the files in the library search path of the application.

Syntax GetLibraryList ()

Return value String. Returns the current library list with complete paths. Multiple libraries
are separated by commas.

Chapter 10 PowerScript Functions

PowerScript Reference 537

GetMajorVersion
Description Returns the major version for the current PocketBuilder execution context. For

example, at maintenance level 1.5.2 the major version is 1.

Applies to ContextInformation objects

Syntax servicereference.GetMajorVersion (majorversion)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the current major version.

Examples This example calls the GetMajorVersion function:

String ls_name
Constant String ls_currver = "8.0.3"
Integer li_majver, li_minver, li_fixver
ContextInformation ci

this.GetContextService ("ContextInformation", ci)

GetMajorVersion(li_majver)
ci.GetMinorVersion(li_minver)
ci.GetFixesVersion(li_fixver)
IF li_majver <> 8 THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

ELSEIF li_minver <> 0 THEN
MessageBox("Error", &

"Must be at Version " + ls_currver)
ELSEIF li_fixver <> 3 THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

END IF

See also GetCompanyName
GetFixesVersion

Argument Description

servicereference Reference to the ContextInformation service instance.

majorversion Integer into which the function places the major version. This
argument is passed by reference.

GetMessage

538 PocketBuilder

GetHostObject
GetMinorVersion
GetName
GetShortName
GetVersionName

GetMessage
Description Returns the error message from objects of type Throwable.

Syntax throwableobject.GetMessage ()

Return value String. The error text for system error objects, such as RuntimeError, is preset.

Usage You can set the error message for an object of type Throwable using the
SetMessage function.

Examples This example catches a system error message and displays that error in a
message box. Catching the system error prevents the application from
terminating when the arccosine argument, entered by the application user, is
not in the required range:

Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

MessageBox("Runtime Error", er.GetMessage())
END TRY

Argument Description

throwableobject Object of type Throwable from which you want to
retrieve an error message

Chapter 10 PowerScript Functions

PowerScript Reference 539

This example catches and displays a user error message from the Clicked event
of a button that calls the user-defined function, wf_acos. The user-defined
function catches a runtime error—preventing the application from
terminating—and then sets the message for a user object, uo_exception, that
inherits from the Exception object type:

TRY
wf_acos()

CATCH (uo_exception u_ex)
messageBox("Out of Range", u_ex.GetMessage())

END TRY

Code for the wf_acos function is shown in the SetMessage function.

See also SetMessage

GetMessageStatus
Description Retrieves information about an SMS message sent during the current session.

Applies to SMSSession objects

Syntax objectname.GetMessageStatus (smsmsg)

Return value Integer. Returns 1 for success and a negative value if an error occurs.

Usage The GetMessageStatus function retrieves an SMSMessage structure that
contains information about the message’s ID, options, validity period, text
content if any, and status.

Argument Description

objectname The name of the SMSSession object

smsmsg An SMS message structure returned by reference that contains
information about the message

GetMinorVersion

540 PocketBuilder

Examples The following example retrieves information about a message in the global
variable g_smsMsg, stores the value of its Status property in the msgStat
SMSMsgStatus variable, and writes the value of msgStat to a single line edit
box:

// Global variables:
// SMSSession g_smsSess
// SMSMessage g_smsMsg

SMSMsgStatus msgStat
integer li_ret

li_ret = g_smsSess.GetMessageStatus(g_smsMsg)
msgStat = g_smsMsg.Status
sle_status.text = "Message status: " + String(msgStat)

See also Open
Send

GetMinorVersion
Description Returns the minor version for the current PocketBuilder execution context. For

example, at maintenance level 1.5.2 the minor version is 5.

Applies to ContextInformation objects

Syntax servicereference.GetMinorVersion (minorversion)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the current minor version.

Argument Description

servicereference Reference to the ContextInformation service instance.

minorversion Integer into which the function places the minor version. This
argument is passed by reference.

Chapter 10 PowerScript Functions

PowerScript Reference 541

Examples This example calls the GetMinorVersion function:

String ls_name
Constant String ls_currver = "8.0.3"
Integer li_majver, li_minver, li_fixver
ContextInformation ci

this.GetContextService("ContextInformation", ci)

ci.GetMajorVersion(li_majver)
ci.GetMinorVersion(li_minver)
ci.GetFixesVersion(li_fixver)
IF li_majver <> 8 THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

ELSEIF li_minver <> 0 THEN
MessageBox("Error", &

"Must be at Version " + ls_currver)
ELSEIF li_fixver <> 3 THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

END IF

See also GetCompanyName
GetFixesVersion
GetHostObject
GetMajorVersion
GetName
GetShortName
GetVersionName

GetName
Description Gets the name for the current execution context.

Applies to ContextInformation objects

GetName

542 PocketBuilder

Syntax servicereference.GetName (name)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs. The
function returns values as follows:

• PocketBuilder runtime: PocketBuilder Runtime

• PowerBuilder runtime: PowerBuilder Runtime

• PowerBuilder window plug-in: PowerBuilder window Plug-in

• PowerBuilder window ActiveX: PowerBuilder Runtime ActiveX

Usage Call this function to determine the current execution environment.

Examples This example calls the GetName function. ci is an instance variable of type
ContextInformation:

String ls_name

this.GetContextService("ContextInformation", ci)
ci.GetName(ls_name)
IF ls_name <> "PocketBuilder Runtime" THEN

cb_close.visible = FALSE
END IF

See also GetCompanyName
GetContextService
GetFixesVersion
GetHostObject
GetMajorVersion
GetMinorVersion
GetShortName
GetVersionName

Argument Description

servicereference Reference to the ContextInformation service instance.

name String into which the function places the name. This
argument is passed by reference.

Chapter 10 PowerScript Functions

PowerScript Reference 543

GetNativePointer
Description Gets a pointer to the OLE object associated with the OLE control. The pointer

lets you call OLE functions in an external DLL for the object.

Applies to OLE controls and OLE custom controls

Syntax olename.GetNativePointer (pointer)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

GetNextSheet
Description Obtains the sheet that is behind the specified sheet in the MDI frame.

Applies to MDI frame windows

Syntax mdiframewindow.GetNextSheet (sheet)

Return value Window. Returns the sheet that is behind sheet in the MDI frame. If there is no
sheet behind sheet, GetNextSheet returns an invalid value. If any argument’s
value is null, GetNextSheet returns null.

GetOption
Description Obtains the value of a specific option for a camera device.

Applies to Camera objects

GetOption

544 PocketBuilder

Syntax objectname.GetOption (Opt)

Return value Integer. Returns the value of the option or 0 if the option is not supported on the
device.

Usage Use the GetOption function to obtain the value of a specific option. Camera
options are settings available on various devices. Not all options are available
on all devices. Most options are cached and used only when applicable. Some
options, such as CamOptPowerUp, are acted on immediately.

The following table lists the available options and their settings. The third
column in the table lists some of the devices that support each option. Note that
support for devices is limited in this release, and not all listed devices are
supported.

Argument Description

objectname The name of the camera object that you want to inquire about

Opt A value of the CameraOption enumerated variable that specifies
the name of the option that you want to want to inquire about. For
a list of options, see Usage

Option Setting
Example of
supported device

CamOptAEMetering! Automatic Exposure Metering points. Values are:

0 = full picture averaging
1 = center weighted
2 = center spot

HP PhotoSmart

VEO 130S

CamOptBrightness! Brightness of the image. Values are:

0 = low exposure
1000 = high exposure

Hitachi G1000

LifeView FlyCam CF

CamOptCaptureFormat! Format of captured image. On some devices, JPEG is the
only format supported. Values are:

1 = JPEG (default)
2 = MPEG4

CamOptCaptureMode! Capture mode. Values are:

1 = static image (default)
2 = video

CamOptColorMode! Color of the picture. Values are:

0 = full color
1 = black and white
2 = negative
4 = “cool” colors

HP PhotoSmart

VEO 130S

CamOptContrast! Image contrast for adjacent areas of the image. The value is
an integer in the range 0 to 1000.

LifeView FlyCam CF

Chapter 10 PowerScript Functions

PowerScript Reference 545

CamOptFlash! Whether the flash should be fired when capturing the
image.Values are:

0 = clear flash mode
1 = set flash mode

LifeView FlyCam CF

CamOptFlashDistance! The distance from the flash to the subject. Values are:
Flash_50cm, Flash_100cm, Flash_150cm, or Flash_300cm

LifeView FlyCam CF

CamOptFlickerFrequency! Sets the flicker filter frequency. Values are:

0 = Automatic (not supported on all devices)
50 = 50Hz
60 = 60Hz (default)

LifeView FlyCam CF

CamOptGamma! Amount of gamma correction applied to the luminance
values of the picture. The value is an integer in the range 0 to
1000.

CamOptHue! The quality of a color as determined by its dominant
wavelength. The value is an integer in the range -180 to 180
with a default of 0.

LifeView FlyCam CF

CamOptLuminosity! Adjusts image to compensate for the amount of light emitted
by the subject. The value is an integer in the range 0 to 1000.

LifeView FlyCam CF

CamOptMoonLight! Sets or clears night vision (moonlight) mode. Values are:

0 = clear moonlight mode
1 = set moonlight mode

LifeView FlyCam CF

CamOptPowerDown! Turns off the device. Set the value to 1 to turn off the device. HP PhotoSmart

VEO 130S

Hitachi G1000

CamOptPowerUp! Turns on the device. Set the value to 1 to turn on the device. Hitachi G1000

CamOptPreviewPosLeft! The left-side position of the preview area. The preview area’s
size is fixed at 160 x 120 pixels.

Hitachi G1000

CamOptPreviewPosTop! The top-side position of the preview area. The preview area’s
size is fixed at 160 x 120 pixels.

Hitachi G1000

CamOptQuality! Picture quality. This option determines the level of
compression. The greater the compression, the lower the
picture quality. Values are:

0 = good
1 = better
2 = best

HP PhotoSmart

VEO 130S

CamOptSaturation! Amount of color saturation (relative purity of color). The
value is an integer in the range 0 to 1000.

LifeView FlyCam CF

Option Setting
Example of
supported device

GetOrigin

546 PocketBuilder

Examples The following statements get the value of the CamOptWhiteBalance option:

integer li_return
li_return = g_myCamera.GetOption(CamOptWhiteBalance)
if not li_return = 0 then

sle_opt.text = "White Balance: " + string(li_return)
else

sle_opt.text = "White Balance: Unsupported option."
end if

See also CaptureImage
HasOption
Open
SetOption

GetOrigin
Description Finds the X and Y coordinates of the upper-left corner of the ListView item.

CamOptSharpen! Adjusts sharpness of the image. The value is an integer in the
range 1 to 100. For example:

0 = soft (blurred) edges
50 = clear (default)
100 = sharp edges

LifeView FlyCam CF

CamOptTimeOut! Timeout in seconds for any capture process. Used by devices
that can capture an image asynchronously to determine how
long the capture function waits for a response. This value is
ignored for synchronous devices.

CamOptWhiteBalance! Adjusts the image to the current light conditions. Values are:

0 = Automatic White Balance (AWD)
1 = Sun/Daylight
2 = Tungsten/Incandescent
3 = Fluorescent
4 = “effects”
5 = Dim/Cloudy

HP PhotoSmart

VEO 130S

LifeView FlyCam CF

Hitachi G1000

Option Setting
Example of
supported device

Chapter 10 PowerScript Functions

PowerScript Reference 547

Applies to ListView controls

Syntax listviewname.GetOrigin (x , y)

Return value Integer. Returns 1 if it succeeds and – 1 if it fails.

Usage Use GetOrigin to find the position of a dragged object relative to the upper left
corner of a ListView control.

Examples This example moves a static text clock to the upper-left coordinates of the
selected ListView item:

integer li_index
listviewitem l_lvi

li_index = lv_list.SelectedIndex()
lv_list.GetItem(li_index, l_lvi)

lv_list.GetOrigin(l_lvi.ItemX, l_lvi.ItemY)

sle_info.Text = "X is "+ String(l_lvi.ItemX) &
+ " and Y is " + String(l_lvi.ItemY)

st_clock.Move(l_lvi.itemx , l_lvi.ItemY)

MessageBox("Clock Location", "X is " &
+ String(st_clock.X) &
+ ", and Y is " &
+ String(st_clock.Y)+".")

Argument Description

listviewname The ListView control for which you want to find the coordinates of
the upper-left corner

x An integer variable in which you want to store the X coordinate for
the ListView control

y An integer variable in which you want to store the Y coordinate for
the ListView control

GetParagraphSetting

548 PocketBuilder

GetParagraphSetting
Description Gets the size of the indentation, left margin, or right margin of the paragraph

containing the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtecontrol.GetParagraphSetting (whichsetting)

Return value Long. Returns the size of the specified setting in thousandths of an inch.
GetParagraphSetting returns -1 if an error occurs. If whichsetting is null, it
returns null.

GetParent
Description Obtains the parent of the specified object.

Applies to Any object

Syntax objectname.GetParent ()

Return value PowerObject. Returns a reference to the parent of objectname.

Examples In event scripts for a user object that will be used as a tab page, you can use
code like the following to make references to the parent Tab control generic:

// a_tab is generic;
// it does not know about specific pages
tab a_tab

// a_tab_page is generic;
// it does not know about specific controls
userobject a_tab_page

Argument Description

objectname A control in a window or user object or an item on a menu for which
you want the parent object

Chapter 10 PowerScript Functions

PowerScript Reference 549

// Get values for the Tab control and the tab page
a_tab = this.GetParent()
// Somewhat redundant, for illustration only
a_tab_page = this

// Set properties for the tab page
a_tab_page.PowerTipText = "Important property page"
// Set properties for the Tab control
a_tab.PowerTips = TRUE

// Run Tab control functions
a_tab.SelectTab(a_tab_page)

You cannot refer to controls on the user object because a_tab_page does not
know about them. You cannot refer to specific pages in the Tab control because
a_tab does not know about them either.

In event scripts for controls on the tab page user object, you can use two levels
of GetParent to refer to the user object and the Tab control containing the user
object as a tab page:

// For a control, add one more level of GetParent()
// and you can make the same settings as above
tab a_tab
userobject a_tab_page

a_tab_page = this.GetParent()
a_tab = a_tab_page.GetParent()

a_tab_page.PowerTipText = "Important property page"
a_tab.PowerTips = TRUE

a_tab.SelectTab(a_tab_page)

See also ParentWindow
“Pronouns” on page 10

GetPin

550 PocketBuilder

GetPin
Description Called by EAServer to obtain a PIN for use with an SSL connection. This

function is used by PowerBuilder clients connecting to EAServer.

Applies to SSLCallBack objects

Syntax sslcallback.GetPin (thesessioninfo, timedout)

Return value String. Returns the PIN specified by the user.

GetRecipients
Description Gets an array of recipients from the POOMRecipient object.

Applies to POOMAppointment objects

Syntax Integer objectname.GetRecipients (recipients[])

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

Argument Description

objectname The name of the POOMAppointment object

recipients[] An array of POOMRecipient objects

Chapter 10 PowerScript Functions

PowerScript Reference 551

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

See also AddRecipient
RemoveRecipient

GetRecordSet
Description Returns the current ADO Recordset object.

Applies to ADOResultSet objects

Syntax adoresultset.GetRecordSet (adorecordsetobject)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

GetRecurrence
Description Returns the recurrence pattern for the appointment.

Applies to POOMAppointment, POOMTask objects

Syntax POOMRecurrence objectname.GetRecurrence ()

Return value POOMRecurrence. Use IsValid to determine whether a valid POOMRecurrence
was returned.

See also ClearRecurrencePattern
SetRecurrence
SkipRecurrence

Argument Description

objectname The name of the POOMAppointment or POOMTask object

GetRemote

552 PocketBuilder

GetRemote
Asks a DDE server application to provide data and stores that data in the
specified variable. There are two ways of calling GetRemote, depending on the
type of DDE connection you have established.

Syntax 1 For single DDE requests
Description Asks a DDE server application to provide data and stores that data in the

specified variable without requiring an open channel. This syntax is
appropriate when you will make only one or two requests of the server.

Syntax GetRemote (location, target, applname, topicname)

Return value Integer. Returns 1 if it succeeds and a negative integer if an error occurs. Values
are:

-1 Link was not started
-2 Request denied

Syntax 2 For DDE requests via an open channel
Description Asks a DDE server application to provide data and stores that data in the

specified variable when you have already established a warm link by opening
a channel to the server. A warm link, with an open channel, is more efficient
when you intend to make several DDE requests.

Syntax GetRemote (location, target, handle {, windowhandle })

Return value Integer. Returns 1 if it succeeds and a negative integer if an error occurs.

To Use

Make a single request of a DDE server application (called a
cold link)

Syntax 1

Request data from a DDE server application after you have
opened a channel (called a warm link)

Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 553

GetSatellitesInView
Description Populates a GPSSatellitesInView structure with data about the satellites

currently in view.

Applies to SerialGPS objects

Syntax Integer GPSname.GetSatellitesInView(GPSSatellitesInView)

Return value Integer. Returns 1 for success and 100 or a negative number for an error. The
following is a list of possible error codes and their meanings:

100 End of buffer. The requested data was not found.

-1 General error.

-10 Invalid object. Could occur if the GPS object instance is corrupted.

-13 Not previously opened. This function cannot be called until a GPS object
or SerialGps object has been successfully opened.

-14 Read timeout. Occurs when the timeout interval
(a ConfigParams property of the SerialGps object) is exceeded.

-15 Read Failure. Unable to read the file or serial port.

-16 Parser Error. Parser is unable to interpret a sentence. This error is
generated when nonstandard tokens are discovered while parsing the
GPS data.

-17 Checksum Error. Most GPS sentences end in a two-digit checksum value.
The PocketBuilder parser verifies this value and reports a checksum error
if the calculated value does not match the stated value.

Argument Description

GPSname Name of the SerialGPS object

GPSSatellitesInView Structure passed by reference that stores position information
for the satellites in view

GetSatellitesInView

554 PocketBuilder

Usage Use this function to populate a GPSSatellitesInView structure with information
about the position of each satellite currently in view and the accuracy of the
position fix. The HDOP (Horizontal Dilution of Precision) and VDOP (Vertical
Dilution of Precision) properties indicate the level of confidence in the
accuracy of measurements related to the horizontal and vertical positions of the
satellites, based on current satellite geometry. A lower value indicates greater
confidence.

Position information is returned in an array of GPSSatellitePosition structures,
each of which contains information about the azimuth, elevation, signal
strength, and PRN number of each of the satellites currently in view. Up to 12
satellites can be listed in the satellite array. Use the UpperBound function to
determine the number of satellites listed.

Examples The following lines create a SerialGPS object, retrieve information about the
satellites used for the current position fix, test the validity of the
GPSSatellitesInView object, and write data to a multiline edit box:

// instance variable: GPSSatellitePosition iGPS_SP[]

SerialGPS myGPS
GPSSatellitesInView mySIV
Integer rc

myGPS = CREATE SerialGPS
myGPS.open()
...
rc = myGPS.getSatellitesInView(mySIV)
if rc = 1 then
mle_1.text = "HDOP: " + String(mySiv.HDOP) + "~r~n"
mle_1.text += "VDOP: " + String(mySiv.VDOP) + "~r~n"
mle_1.text += "Satellites in view: PRN, Azimuth, " &

+ "Elevation, SNR values. ~r~n"

iGPS_SP = mySIV.Satellite[]
integer count
for count = 1 to UpperBound(iGPS_SP)

mle_1.text += String(iGPS_SP[i].PRN + ", "
mle_1.text += String(iGPS_SP[i].Azimuth + ", "
mle_1.text += String(iGPS_SP[i].Elevation + ", "
mle_1.text += String(iGPS_SP[i].SNR + "~r~n "

end for
else
//process error message
end if

Chapter 10 PowerScript Functions

PowerScript Reference 555

See also GetFix
GetHeading
Open

GetScreenOrientation
Description Gets the screen orientation of a device or emulator capable of screen rotation.

Syntax Integer GetScreenOrientation ()

Return value The return values can be one of the following or a negative number for failure:

• 0 0 degrees (the native orientation for the device)

• 1 90 degrees (right-handed landscape orientation)

• 2 180 degrees (upside down)

• 4 270 degrees (left-handed landscape orientation)

Usage This function is supported on devices using the Windows Mobile 2003 Second
Edition platform.

Examples The following lines place the value for the current screen orientation in the
lb_result list box:

integer iRet
iRet = GetScreenOrientation()
lb_result.AddItem("Current Orientation: " &
 + string(iRet))

See also SetScreenOrientation

GetSeriesStyle

556 PocketBuilder

GetSeriesStyle
Finds out the appearance of a series in a graph. The appearance settings for
individual data points can override the series settings, so the values obtained
from GetSeriesStyle may not reflect the current state of the graph. There are
several syntaxes, depending on what settings you want.

GetSeriesStyle provides information about a series. The data points in the series
can have their own style settings. Use SetSeriesStyle to change the style values
for a series. Use GetDataStyle to get style information for a data point and
SetDataStyle to override series settings and set style information for individual
data points.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can find out the fill pattern for a data
point or a series in a two-dimensional line graph, but that fill pattern will not
be visible.

Syntax 1 For the colors of a series
Description Obtains the colors associated with a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesStyle ({ graphcontrol, } seriesname, colortype,
colorvariable)

To Use

Get the series’ colors Syntax 1

Get the line style and width used by the series Syntax 2

Get the fill pattern or symbol for the series Syntax 3

Find out if the series is an overlay (a series shown as a line
on top of another graph type)

Syntax 4

Argument Description

controlname The name of the graph in which you want to obtain the color
of a series, or the name of the DataWindow control containing
the graph.

Chapter 10 PowerScript Functions

PowerScript Reference 557

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores in
colorvariable the RGB value of the specified series and item. If any argument’s
value is null, GetSeriesStyle returns null.

Examples These statements store in the variable color_nbr the text (foreground) color
used for a series in the graph gr_emp_data. The series name is the text in the
SingleLineEdit sle_series:

long color_nbr
gr_emp_data.GetSeriesStyle(sle_series.Text, &

Foreground!, color_nbr)

These statements store in the variable color_nbr the background color used for
the series PCs in the graph gr_computers in the DataWindow control
dw_equipment:

long color_nbr
// Get the color.
dw_equipment.GetSeriesStyle("gr_computers", &

"PCs", Background!, color_nbr)

These statements store the color for the series under the mouse pointer in the
graph gr_product_data in line_color:

string SeriesName
integer SeriesNbr, Data_Point
long line_color
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr, Data_Point)

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the color of a series.

seriesname A string whose value is the name of the series for which you
want the color.

colortype A value of the grColorType enumerated datatype specifying
the aspect of the series for which you want the color:

• Foreground! — Text color

• Background! — Background color

• LineColor! — Line color

• Shade! — Shade (for graphs that are 3-dimensional or have
solid data markers)

colorvariable A long variable in which you want to store the color’s RGB
value.

Argument Description

GetSeriesStyle

558 PocketBuilder

IF MouseHit = TypeSeries! THEN
SeriesName = &

gr_product_data.SeriesName(SeriesNbr)

gr_product_data.GetSeriesStyle(SeriesName, &
LineColor!, line_color)

END IF

See also AddSeries
GetDataStyle
FindSeries
SetDataStyle
SetSeriesStyle

Syntax 2 For the line style and width used by a series
Description Obtains the line style and width for a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesStyle ({ graphcontrol, } seriesname, linestyle,
linewidth)

Argument Description

controlname The name of the graph for which you want the line style and
width for a series in a graph, or the name of the DataWindow
control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the line style
information.

seriesname A string whose value is the name of the series for which you
want the line style information.

linestyle A variable of type LineStyle in which you want to store the
line style of seriesname.

linewidth An integer variable in which you want to store the line width
for seriesname. The width is measured in pixels.

Chapter 10 PowerScript Functions

PowerScript Reference 559

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores in linestyle a
value of the LineStyle enumerated datatype and in linewidth the width of the
line used for the specified series. If any argument’s value is null, GetSeriesStyle
returns null.

Examples These statements store in the variables line_style and line_width the line style
and width for the series under the mouse pointer in the graph gr_product_data:

string SeriesName
integer SeriesNbr, Data_Point, line_width
LineStyle line_style
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &

gr_product_data.SeriesName(SeriesNbr)

gr_product_data.GetSeriesStyle(SeriesName, &
line_style, line_width)

END IF

See also AddSeries
GetDataStyle
FindSeries
SetDataStyle
SetSeriesStyle

Syntax 3 For the fill pattern or symbol of a series
Description Obtains the fill pattern or symbol of a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesStyle ({ graphcontrol, } seriesname, enumvariable)

GetSeriesStyle

560 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores in
enumvariable a value of the appropriate enumerated datatype for the fill pattern
or symbol used for the specified series. If any argument’s value is null,
GetSeriesStyle returns null.

Usage See SetSeriesStyle for a list of the enumerated datatype values that
GetSeriesStyle stores in enumvariable.

Examples These statements store in the variable data_pattern the fill pattern for the series
under the mouse pointer in the graph gr_product_data:

string SeriesName
integer SeriesNbr, Data_Point
FillPattern data_pattern
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &

gr_product_data.SeriesName(SeriesNbr)

gr_product_data.GetSeriesStyle(SeriesName, &
data_pattern)

END IF

This example stores in the variable data_pattern the fill pattern for the series
under the pointer in the graph gr_depts in the DataWindow control
dw_employees. It then sets the fill pattern for the series Total Salary in the
graph gr_dept_data to that pattern:

string SeriesName

Argument Description

controlname The name of the graph for which you want the style
information for a series in a graph, or the name of the
DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the style
information.

seriesname A string whose value is the name of the series for which you
want the style information.

enumvariable The variable in which you want to store the style information.
You can specify a FillPattern or grSymbolType variable. The
style information that GetSeriesStyle stores depends on the
variable type.

Chapter 10 PowerScript Functions

PowerScript Reference 561

integer SeriesNbr, Data_Point
FillPattern data_pattern
grObjectType MouseHit

MouseHit = &
ObjectAtPointer("gr_depts" , SeriesNbr, &

Data_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &
 dw_employees.SeriesName("gr_depts" , SeriesNbr)

dw_employees.GetSeriesStyle("gr_depts" , &
SeriesName, data_pattern)

gr_dept_data.SetSeriesStyle("Total Salary", &
data_pattern)

END IF

In these examples, you can change the datatype of data_pattern (the variable
specified as the last argument) to find out the symbol type.

See also AddSeries
GetDataStyle
FindSeries
SetDataStyle
SetSeriesStyle

Syntax 4 For determining whether a series is an overlay
Description Reports whether a series in a graph is an overlay—whether it is shown as a line

on top of another graph type.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesStyle ({ graphcontrol, } seriesname,overlayindicator)

GetShortName

562 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores in
overlayindicator true if the specified series is an overlay and false if it is not. If
any argument’s value is null, GetSeriesStyle returns null.

Examples These statements find out whether a series in the graph gr_emp_data is an
overlay. The series name is the text in the SingleLineEdit sle_series:

boolean is_overlay
gr_emp_data.GetSeriesStyle(sle_series.Text, &

is_overlay)

GetShortName
Description Gets the short name for the current PocketBuilder execution context.

Applies to ContextInformation objects

Syntax servicereference.GetShortName (shortname)

Argument Description

controlname The name of the graph for which you want the overlay status
of a series in a graph, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the overlay status.

seriesname A string whose value is the name of the series for which you
want the overlay status.

overlayindicator A boolean variable in which you want to store a value
indicating whether the series is an overlay. GetSeriesStyle sets
overlayindicator to true if the series is an overlay and false if
it is not.

Argument Description

servicereference Reference to the ContextInformation service instance.

shortname String into which the function places the short name. This
argument is passed by reference.

Chapter 10 PowerScript Functions

PowerScript Reference 563

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs. The
function returns values for its shortname argument as follows:

• PocketBuilder runtime on Pocket PC PocketPC

• PocketBuilder runtime on Pocket PC Phone Edition PocketPC

• PocketBuilder runtime on Smartphone PocketSM

• PowerBuilder runtime PBRun

• PowerBuilder window plug-in PBWinPlugin

• PowerBuilder window ActiveX PBRTX

Usage Call this function to determine the current execution environment.

Examples This example calls the GetShortName function. ci is an instance variable of
type ContextInformation:

String ls_name

this.GetContextService("ContextInformation", ci)
ci.GetShortName(ls_name)
IF ls_name <> "PBRun" THEN

cb_close.visible = FALSE
END IF

See also GetContextService
GetFixesVersion
GetHostObject
GetMajorVersion
GetMinorVersion
GetName
GetVersionName

GetSIPRect
Description Gets the rectangular coordinates of the SIP, whether it is visible or not, on a

Pocket PC device or emulator.

GetSIPType

564 PocketBuilder

Syntax int GetDeskRect (long left, long top, long right, long bottom)

Return value Integer. Returns 1 for success and -1 for failure.

Usage Typically it is useful to know the topmost coordinate of the SIP so you can
adjust the positions and sizes of controls on the current window when the SIP
is visible.

On the desktop, GetSIPRect parameters left, top, right, and bottom always have
the values 0, 214, 240, and 290, which are the coordinates for a typical SIP
window on a Pocket PC device.

Examples The following example displays the coordinates for the SIP in a multiline edit
text box:

String strDisplay=""
int rc
long left = 0, top = 0, right = 0, bottom = 0

rc = GetSIPRect(left, top, right, bottom)
strDisplay +=("Desk RECT:~r~n~t Left = " +string(left)&
+"~r~n~t Top=" + String(top) + "~r~n~t Right = " &
+ String(right)+ "~r~n~t Bottom = " + String(bottom))
mle_1.text = strDisplay

See also GetDeskRect
IsSIPVisible

GetSIPType
Description Returns the type of the current SIP window, whether it is visible or not.

Syntax SIPIMType GetSIPType ()

Argument Description

left Leftmost value of the rectangular area occupied by the SIP

top Topmost value of the rectangular area occupied by the SIP

right Rightmost value of the rectangular area occupied by the SIP

bottom Bottommost value of the rectangular area occupied by the SIP

Chapter 10 PowerScript Functions

PowerScript Reference 565

Return value SIPIMType. Returns -1 for failure. On the desktop, always returns
SIPKeyboard! for the SIPIMType.

Usage You can use this method to report the current SIP input method available to the
application user.

Examples The following example displays the type of the current SIP window in a
multiline edit text box:

String strDisplay=""
SIPIMType sType
sType = GetSIPType()
choose case sType

case SIPKeyboard!
strDisplay += ("SIP TYPE IS Keyboard! ~r~n")

case SIPJot!
strDisplay += ("SIP TYPE IS SIPJot! ~r~n")

case SIPBlock!
strDisplay += ("SIP TYPE IS SIPBlock! ~r~n")

case SIPWordLogic!
strDisplay += ("SIP TYPE IS SIPWordLogic! ~r~n")

case SIPTranscriber!
strDisplay +=("SIP TYPE IS SIPTranscriber! ~r~n")

case SIPFitaly!
strDisplay +=("SIP TYPE IS Fitaly keyboard ~r~n")

case else
strDisplay+= ("ERROR!!! INVALID SIP TYPE ~r~n");

end choose
mle_1.text = strDisplay

See also GetSIPRect
IsSIPVisible
SetSIPType

Argument Description

SIPIMType An enumerated representation of the type of SIP. Supported values
are: SIPKeyboard!, SIPBlock!, SIPJot!, SIPWordLogic!,
SIPTranscriber!, and SIPFitaly!

GetSpecialFolder

566 PocketBuilder

GetSpecialFolder
Description Retrieves the name of a localized folder.

Syntax String GetSpecialFolder (id_as_integer)

Return value String. Returns the name of the folder on a localized operating system.

Usage Operating systems using different languages can have different names for
system folders. The GetSpecialFolder system function provides a means of
obtaining the name of a system folder on a specific desktop machine or
Windows CE device. This enables you to develop applications that access
system folders and can still be deployed to devices using different language
operating systems.

You use the integer parameter of GetSpecialFolder to indicate the name of the
system folder that you want to return. The userName variable in
Table 10-5 depends on the login name of the current user.

Table 10-5: Correspondence of parameter value to folder name

Argument Description

id_as_integer Integer that corresponds to a localized system folder name on the
desktop, or on a device or emulator. Table 10-5 in the Usage section
displays the correlation between integer values and folder names.

Value Desktop folder Pocket PC folder Smartphone folder

0 C:\Documents and Settings\
userName\Desktop

\My Documents —

2 C:\Documents and Settings\
userName\Start
Menu\Programs

\Windows\Start
Menu\Programs

—

5 C:\Documents and Settings\
userName\My Documents

\My Documents \Storage\My Documents

6 C:\Documents and Settings\
userName\Favorites

\Windows\Favorites \Storage\Windows\Favorites

7 C:\Documents and Settings\
userName\Start
Menu\Programs\Startup

\Windows\Startup \Storage\Windows\Startup

8 C:\Documents and Settings\
userName\Recent

— —

Chapter 10 PowerScript Functions

PowerScript Reference 567

Examples The following example returns the name of the localized folder that
corresponds to the \Windows\StartMenu\Programs folder on an English
language Pocket PC device or emulator. For a German language Pocket PC
device, the return value would be \Windows\Startmenü\Programme:

String ls_Folder
ls_Folder = GetSpecialFolder(2)

GetSpacing
Description Obtains the line spacing of the paragraph containing the insertion point in a

RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.GetSpacing ()

Return value Spacing. A value of the Spacing enumerated datatype indicating the line
spacing of the paragraph containing the insertion point.

9 C:\Documents and Settings\
userName\SendTo

— —

11 C:\Documents and Settings\
userName\Start Menu

\Windows\Start Menu \Storage\Windows\Start
Menu

20 C:\WINNT\Fonts \Windows\Fonts \Storage\Windows\Fonts

26 C:\Documents and Settings\
userName\Application Data

— \Storage\Application Data

36 C:\WINNT\ Pocket PC 2003: \Windows
Pocket PC 2002: —

\Storage\Windows

38 C:\Program Files \Program Files \Storage\Program Files

Value Desktop folder Pocket PC folder Smartphone folder

GetStatus

568 PocketBuilder

GetStatus
Description Returns the status of the EAServer transaction associated with the calling

thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.GetStatus ()

Return value Integer. Returns -1 if an error occurs and a positive integer if it succeeds.

GetSupportedDecoders
Description Retrieves the list of supported decoders.

Applies to BarcodeScanner objects

Syntax Integer scanner.GetSupportedDecoders (intDecoders [])

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

Argument Description

scanner The scanner object that is associated with the scanner for which you
want to obtain a list of enabled decoders

intDecoders [] Array of integers that correspond to the decoder IDs of the
supported decoders

Chapter 10 PowerScript Functions

PowerScript Reference 569

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -9 Incorrect scan state for the requested action (typically benign)

• -10 Low level device error

• -100 Feature not implemented

Usage The supported decoders are defined by the firmware of the scanner device. The
subset of decoders to use for a scanning operation can be obtained by a
GetEnabledDecoders function call.

Examples The following example places the IDs of supported decoders in an array:

integer li_rtn, li_firstID, li_secondID, l_IDs[]
li_rtn = l_scanner.GetSupportedDecoders(l_IDs)
li_firstID = l_IDs[1]
li_secondID = l_IDs[2]

See also EnableDecoder
GetEnabledDecoders

GetTask
Description Gets a task from Pocket Outlook.

Applies to POOM objects

Syntax POOMTask objectname.GetTask (index)

Return value POOMTask. Use the IsValid function to confirm that a valid task was returned.

Usage A user must be logged in to a POOM object to get a task from Pocket Outlook.

Argument Description

objectname The name of the POOM object

index Integer for the index of the task that you want to retrieve

GetTaskFromOID

570 PocketBuilder

Examples The following example retrieves the first task in Pocket Outlook and displays
it:

POOMTask task
DateTime dt

task = g_poom.GetTask(1)
if IsValid(task) then

task.Display()
end if

See also GetTaskFromOID
GetTasks

GetTaskFromOID
Description Gets a task from Pocket Outlook using the object ID.

Applies to POOM objects

Syntax POOMTask objectname.GetTaskFromOID (oid)

Return value POOMTask. Use IsValid to determine whether a valid task was returned.

Usage A user must be logged in to a POOM object to get a task from Pocket Outlook.

Examples The following example retrieves a task with an object ID of 12:

myTask = g_poom.getTaskFromOID(12)
if IsValid(myTask) then

// Use myTask
end if

See also GetContact
GetContacts

Argument Description

objectname The name of the POOM object

oid Unsignedlong for the object ID of the task that you want to retrieve

Chapter 10 PowerScript Functions

PowerScript Reference 571

GetTasks
Description Gets an array of tasks from Pocket Outlook after optionally filtering the array

for matching criteria.

Applies to POOM objects

Syntax Integer objectname.GetTasks ({matchcriteria,} contacts [])

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Usage A user must be logged in to a POOM object to get tasks from Pocket Outlook.

Examples The following example retrieves tasks that match the criterion that the priority
be high:

li_rtn = g_poom.getTasks &
("[Importance]='ImportanceHigh!'", myTasks [])

The following example retrieves all the tasks in the list and writes the subject
and start date of each task to a list box:

integer li_rc
POOMTask taskArray[]

Argument Description

objectname The name of the POOM object

matchcriteria A string describing criteria you want to use to filter the list of tasks

contacts An array of POOMTasks passed by reference

GetTextColor

572 PocketBuilder

POOMTask task
DateTime dt
int idx

li_rc = g_poom.GetTasks(taskArray)

FOR idx=1 to UPPERBOUND(taskArray)
task = taskArray[idx]
lb_res.AddItem("Subject: " + task.Subject)
lb_res.AddItem("Starts: " + task.StartDate)

NEXT

lb_res.SelectItem(lb_res.TotalItems())

See also GetTask
GetTaskFromOID

GetTextColor
Description Obtains the color of selected text in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.GetTextColor ()

Return value Long. Returns the long value that specifies the color of the currently selected
text. If text of different colors is selected, GetTextColor returns the color of the
first selected character. GetTextColor returns -1 if an error occurs.

GetTextStyle
Description Finds out whether selected text has text styles (such as bold or italic) assigned

to it.

Applies to RichTextEdit controls

Chapter 10 PowerScript Functions

PowerScript Reference 573

Syntax rtename.GetTextStyle (textstyle)

Return value Boolean. Returns true if the selected text is formatted with the specified text
style and false if it is not. If textstyle is null, GetTextStyle returns null.

GetToolbar
Description Gets the current values for alignment, visibility, and title of the specified

toolbar.

Applies to MDI frame and sheet windows

Syntax window.GetToolbar (toolbarindex, visible {, alignment {, floatingtitle } })

Return value Integer. Returns 1 if it succeeds. GetToolbar returns -1 if there is no toolbar for
the index you specify or if an error occurs. If any argument’s value is null,
returns null.

GetToolbarPos
Gets position information for the specified toolbar.

Syntax 1 For docked toolbars
Description Gets the position of a docked toolbar.

Applies to MDI frame and sheet windows

To get Use

Docking position of a docked toolbar Syntax 1

Coordinates and size of a floating toolbar Syntax 2

GetTransactionName

574 PocketBuilder

Syntax window.GetToolbarPos (toolbarindex, dockrow, offset)

Return value Integer. Returns 1 if it succeeds. GetToolbarPos returns -1 if there is no toolbar
for the index you specify or if an error occurs. If any argument’s value is null,
GetToolbarPos returns null.

Syntax 2 For floating toolbars
Description Gets the position and size of a floating toolbar.

Applies to MDI frame and sheet windows

Syntax window.GetToolbarPos (toolbarindex, x, y, width, height)

Return value Integer. Returns 1 if it succeeds. GetToolbarPos returns -1 if there is no toolbar
for the index you specify or if an error occurs. If any argument’s value is null,
returns null.

GetTransactionName
Description Returns a string describing the EAServer transaction associated with the

calling thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.GetTransactionName ()

Return value String. Returns a printable string describing the transaction if a transaction
exists and an empty string otherwise.

Chapter 10 PowerScript Functions

PowerScript Reference 575

GetURL
Description Returns HTML for the specified URL.

Applies to Inet objects

Syntax servicereference.GetURL (urlname, data)

Return value Integer. Returns 1 for success and a negative value if an error occurs. Possible
values are:

-1 General error
-2 Invalid URL
-4 Cannot connect to the Internet

Usage Call this function to access HTML source for a URL.

Data references a standard class user object that descends from InternetResult
and that has an overridden InternetData function. This overridden function then
performs the processing you want with the returned HTML. Because the
Internet returns data asynchronously, data must reference a variable that
remains in scope after the function executes (such as a window-level instance
variable).

For more information on the InternetResult standard class user object and the
InternetData function, use the PocketBuilder Browser.

Examples This example calls the GetURL function. Iinet_base is an instance variable of
type inet:

iir_msgbox = CREATE n_ir_msgbox
iinet_base.GetURL(sle_url.text, iir_msgbox)

See also HyperLinkToURL
InternetData
PostURL

GetVersionName

576 PocketBuilder

GetVersionName
Description Gets complete version information for the current PocketBuilder execution

context. A complete version includes a major version, a minor version, and a
fix level (such as 1.5.2).

Applies to ContextInformation objects

Syntax servicereference.GetVersionName (name)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the maintenance level of the current context.

Examples This example calls the GetVersionName function. ci is an instance variable of
type ContextInformation:

String ls_name
String ls_version
Constant String ls_currver = "8.0.3"

GetContextService("ContextInformation", ci)
ci.GetVersionName(ls_version)
IF ls_version <> ls_currver THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

END IF

See also GetCompanyName
GetFixesVersion
GetHostObject
GetMajorVersion
GetMinorVersion
GetName
GetShortName

Argument Description

servicereference Reference to the ContextInformation service instance.

name String into which the function places the version name. This
argument is passed by reference.

Chapter 10 PowerScript Functions

PowerScript Reference 577

Handle
Description Obtains the Windows handle of a PocketBuilder object. You can get the handle

of the application, a window, or a control, but not a drawing object.

Syntax Handle (objectname {, previous })

Return value Long. Returns the handle of objectname. If objectname is an application and
previous is true, Handle always returns 0.

If objectname cannot be referenced at runtime, Handle returns 0 (for example,
if objectname is a window and is not open).

Usage Use Handle when you need an object handle as an argument to Windows
Software Development Kit (SDK) functions or the PowerScript Send function.

Use IsValid instead of the Handle function to determine whether a window is
open.

When you ask for the handle of the application, Handle returns 0 when you are
using the PowerScript Run command. As far as Windows is concerned, your
application does not have a handle when it is run from PocketBuilder. When
you build and run an executable version of your application, the Handle
function returns a valid handle for the application.

If you ask for the handle of a previous instance of an application by setting the
previous flag to true, Handle always returns 0 in current versions of Windows.
Use the Windows FindWindow function to determine whether an instance of the
application’s main window is already open.

Argument Description

objectname The name of the object for which you want the handle. Objectname
can be any PocketBuilder object, including an application or
control, but cannot be a drawing object.

previous
(optional)

(Obsolete argument) A boolean indicating whether you want the
handle of the previous instance of an application. Values are:

• false — (Default) Return the handle of the current instance

• true — Return the handle of the previous instance

In current versions of Windows, Handle always returns 0 when this
argument is set to true.

Handle

578 PocketBuilder

Examples This statement returns the handle to the window w_child:

Handle(w_child)

These statements use an external function called FlashWindow to change the
title bar of a window to inactive and then return it to active. The external
function declaration is:

function boolean flashwindow(uint hnd, boolean inst) &
library "user.exe"

The code that flashes the window’s title bar is:

integer nLoop // Loop counter
long hWnd // Handle to control

// Get the handle to a PowerBuilder window.
hWnd = Handle(Parent)
// Make the title bar flash 300 times.
FOR nLoop = 1 to 300

FlashWindow (hWnd, true)
NEXT
// Return the window to its original state.
FlashWindow (hWnd, FALSE)

For applications, the Handle function does not return a useful value when the
previous flag is true. You can use the FindWindow Windows function to
determine whether a Windows application is already running. FindWindow
returns the handle of a window with a given title.

Declare FindWindowA and SetForegroundWindow as global external functions:

PUBLIC FUNCTION unsignedlong FindWindow (long &
classname, string windowname) &
LIBRARY "user32.dll" ALIAS FOR FindWindowA

PUBLIC FUNCTION int FindWindowA (long classname, &
string windowname) LIBRARY "user32.dll"

PocketBuilder applications
In PocketBuilder, you would declare two versions of each function, for use in
testing on the desktop and in the deployed application:

public FUNCTION unsignedlong FindWindow_NT(long &
ClassName, string WindowName) &
LIBRARY "user32.dll" ALIAS FOR "FindWindowW"

public FUNCTION unsignedlong FindWindow_CE(long &
ClassName, string WindowName) &
LIBRARY "coredll.dll" ALIAS FOR "FindWindowW"

Chapter 10 PowerScript Functions

PowerScript Reference 579

public FUNCTION int SetForegroundWindow_NT(&
unsignedlong hwnd) LIBRARY "user32.dll" &
ALIAS FOR "SetForegroundWindow"

public FUNCTION int SetForegroundWindow_CE(&
unsignedlong hwnd) LIBRARY "coredll.dll" &
ALIAS FOR "SetForegroundWindow"

Then add code like the following to your application’s Open event:

unsignedlong hwnd

hwnd = FindWindow(0, "Main Window")
if hwnd = 0 then

// no previous instance, so open the main window
open(w_main)

else
// open the previous instance window and halt
SetForegroundWindow(hwnd)
HALT CLOSE

end if

See also Send

HasOption
Description Determines whether the device supports a specific option.

Applies to Camera objects

Syntax Boolean objectname.HasOption (Opt)

Argument Description

objectname The name of the camera object that you want to inquire about.

Opt A value of the CameraOption enumerated variable that specifies
the name of the option that you want to want to inquire about. For
a list of options, see GetOption.

HasOption

580 PocketBuilder

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Supporting DLL not loaded

-3 Other initialization error

-5 Inconsistency in this object instance

-6 Call to the driver or device failed

-7 Unsupported option

-8 Value for option is out of range

Usage Use the HasOption function to determine whether the camera device supports a
specific option. You can call GetOption to return the option’s value in a
reference variable.

Examples The following statements determine whether the device supports the
CamOptWhiteBalance option and, if it does, use the GetOption function to
return the value:

boolean lb_query
integer li_return
lb_query = g_myCam.HasOption(CamOptWhiteBalance)
if lb_query = true then

li_return = g_myCam.GetOption(CamOptWhiteBalance)
end if

See also CaptureImage
GetOption
Open
SetOption

Chapter 10 PowerScript Functions

PowerScript Reference 581

Hide
Description Makes an object or control invisible. Users cannot interact with an invisible

object. It does not respond to any events, so the object is also, in effect,
disabled.

Applies to Any object

Syntax objectname.Hide ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If objectname is null,
Hide returns null.

Usage If the object you want to hide is already invisible, then Hide has no effect.

You cannot use Hide to hide a drop-down or cascading menu or any menu that
has an MDI frame window as its parent window. Nor can you hide a window
that has been opened as an MDI sheet.

You can use the Disable function to disable menu items, which displays them
in the disabled color and makes them inactive.

To disable an object so that it does not respond to events, but is still visible, set
its Enabled property.

You can set an object’s Visible property instead of calling Hide:

objectname.Visible = false

This statement:

lb_Options.Visible = FALSE

is equivalent to:

lb_Options.Hide()

Examples This statement hides the ListBox lb_options:

lb_options.Hide()

In the script for a menu item, this statement hides the CommandButton
cb_delete on the active sheet in the MDI frame w_mdi. The active sheets are of
type w_sheet:

Argument Description

objectname The name of the object or control you want to make invisible

Hour

582 PocketBuilder

w_sheet w_active
w_active = w_mdi.GetActiveSheet()
IF IsValid(w_active) THEN w_active.cb_delete.Hide()

See also Show

Hour
Description Obtains the hour in a time value. The hour is based on a 24-hour clock.

Syntax Hour (time)

Return value Integer. Returns an integer (00 to 23) whose value is the hour portion of time.
If time is null, Hour returns null.

Examples This statement returns the current hour:

Hour(Now())

This statement returns 19:

Hour(19:01:31)

See also Minute
Now
Second
Hour method for DataWindows in the DataWindow Reference

Argument Description

time The time from which you want to obtain the hour

Chapter 10 PowerScript Functions

PowerScript Reference 583

HyperLinkToURL
Description Opens the default Web browser, displaying the specified URL.

Applies to Inet objects

Syntax servicereference.HyperlinkToURL (url)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to display a URL from a PocketBuilder application.

Examples This example calls the HyperlinkToURL function. Iinet_base is an instance
variable of type inet:

GetContextService("Internet", iinet_base)
iinet_base.HyperlinkToURL(sle_url.text)

See also GetURL
PostURL

Icon

584 PocketBuilder

Icon
Description Specifies an icon to display in the notification tray when a notification event

occurs.

Applies to NotificationBubble objects

Syntax Integer controlname.Icon (iconName)

Return value Integer. Returns 1 for success, -1 if the iconName argument is empty, and -2 if
there is an error retrieving the icon.

Usage When a user taps the notification icon in the notification tray, a notification
bubble displays on the Pocket PC device or emulator.

The notification icon should be an 8- or 16-bit 16x16 ICO file. It must be
packaged into a resource file (PKR) that is deployed along with the application.
The path to the icon listed in the PKR file can be relative to the directory for
the application and PKR file, or it must match the exact path to the icon on the
device or emulator.

Examples The following example sets a 16x16 icon to display in the notification tray
when a notification event occurs:

li_rtn = nb_myBubble.Icon("foo.ico")

See also Remove
SetMessageSink

Argument Description

controlname The name of the notification bubble for which you want to assign
an icon

iconName String that contains the name of the icon you want to display for a
notification event

Chapter 10 PowerScript Functions

PowerScript Reference 585

Idle
Description Sets a timer so that PocketBuilder triggers an Application Idle event when

there has been no user activity for a specified number of seconds.

Syntax Idle (n)

Return value Integer. Returns 1 if it starts the timer, and -1 if it cannot start the timer or n is
0 and the timer has not been started. Note that when the timer has been started
and you change n, Idle does not start a new timer; it resets the current timer
interval to the new number of seconds. If n is null, Idle returns null. The return
value is usually not used.

Usage Use Idle to shut off or restart an application when there is no user activity. This
is often done for security reasons.

Idle starts a timer after each user activity (such as a keystroke or a mouse click),
and after n seconds of inactivity it triggers an Idle event. The Idle event script
for an application typically closes some windows, logs off the database, and
exits the application or calls the Restart function.

The timer is reset when any of the following activities occur:

• A mouse movement or mouse click in any window of the application

• Any keyboard activity when a window of the PowerBuilder application is
current

• A mouse click or any mouse movement over the icon when a
PowerBuilder application is minimized

• Any keyboard activity when the PowerBuilder application is minimized
and is current (its name is highlighted)

• Any retrieval on a visible DataWindow that causes the edit control to be
painted

Argument Description

n The number of seconds of user inactivity allowed before
PocketBuilder triggers an Application Idle event. A value of 0
terminates Idle detection.

ImpersonateClient

586 PocketBuilder

Tip
To capture movement, write script in the MouseMove or Key events of the
window or sheet. (Keyboard activity does not trigger MouseMove events.)
Disable the DataWindow control and tab ordering during iterative
retrieves so the Idle timer is not reset.

Examples This statement sends an Idle event after five minutes of inactivity:

Idle(300)

This statement turns off idle detection:

Idle(0)

This example shows how to use the Idle event to stop the application and restart
it after two minutes of inactivity. This is often used for computers that provide
information in a public place.

Include this statement in the script for the application’s Open event:

Idle(120) // Sends an Idle event after 2 minutes.

Include these statements in the script for the application’s Idle event to
terminate the application and then restart it:

// Statements to set the database to the desired
// state
...
Restart() // Restarts the application

See also Restart
Timer

ImpersonateClient
Description Allows a COM object running on MTS or COM+ to take on the security

attributes of the client for the duration of a call.

Applies to TransactionServer objects

Syntax transactionserver.ImpersonateClient ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 587

ImportClipboard
Description Inserts data into a DataWindow control, DataStore object, or graph control

from tab-separated, comma-separated, or XML data on the clipboard.

XML data
XML data is not supported in this release of PocketBuilder.

For DataWindow and DataStore syntax, see the ImportClipboard method for
DataWindows in the DataWindow Reference or the online Help.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax graphname.ImportClipboard ({ importtype}, { startrow {, endrow {,
startcolumn } } })

Argument Description

importtype
(optional)

An enumerated value of the SaveAsType DataWindow constant.
Valid type arguments for ImportClipboard are:

Text!
CSV!
XML!

graphname The name of the graph control to which you want to copy data from
the clipboard.

startrow
(optional)

The number of the first detail row in the clipboard that you want to
copy. The default is 1.

For default XML import, if startrow is supplied, the first N
(startrow -1) elements are skipped, where N is the DataWindow row
size.

For template XML import, if startrow is supplied, the first
(startrow -1) occurrences of the repetitive row mapping defined in
the template are skipped.

ImportClipboard

588 PocketBuilder

Return value Returns the number of rows that were imported if it succeeds and one of the
following negative integers if an error occurs:

-1 No rows or startrow value supplied is greater than the number of rows in
the string

-2 Input data does not match number of columns or required column type

-3 Invalid argument

-4 Invalid input

-11 XML Parsing Error; XML parser libraries not found, or XML not well
formed

-12 XML Template does not exist or does not match the DataWindow

If any argument’s value is null, ImportClipboard returns null. If the optional
importtype argument is specified and is not a valid type, ImportClipboard
returns -3.

Usage The clipboard data must be formatted in tab-separated or comma-separated
columns or in XML. The datatypes and order of the DataWindow object’s
columns must match the data on the clipboard.

endrow
(optional)

The number of the last detail row in the clipboard that you want to
copy. The default is the rest of the rows.

For default XML import, if endrow is supplied, import stops when
N * endrow elements have been imported, where N is the
DataWindow row size.

For template XML import, if endrow is supplied, import stops after
endrow occurrences of the repetitive row mapping defined in the
template have been imported.

startcolumn
(optional)

The number of the first column in the clipboard that you want to
copy. The default is 1.

For default XML import, if startcolumn is supplied, import skips
the first (startcolumn - 1) elements in each row.

This argument has no effect on template XML import.

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 589

For graphs, ImportClipboard uses only three columns and ignores other
columns. Each row of data must contain three pieces of information. The
information depends on the type of graph:

• For all graph types except scatter, the first column to be imported is the
series name, the second column contains the category, and the third
column contains the data.

• For scatter graphs, the first column to be imported is the series name, the
second column is the data’s x value, and the third column is the y value.

If a series or category already exists in the graph, the data is assigned to it.
Otherwise, the series and categories are added to the graph.

You can add data to more than one series by specifying different series names
in the first column.

Examples If the clipboard contains the data shown below and the graph does not have any
data yet, then the next statement produces a graph with two series and three
categories. The clipboard data is:

Sales 94Jan3000
Sales 94Mar2200
Sales 94May2500
Sales 95Jan4000
Sales 95Mar3200
Sales 95May3500

This statement copies all the data in the clipboard, as shown above, to
gr_employee:

gr_employee.ImportClipboard()

This statement copies the data from the clipboard starting with row 2 column
3 and copying to row 30 column 5 to the graph gr_employee:

gr_employee.ImportClipboard(2, 30, 3)

See also ImportFile
ImportString

ImportFile

590 PocketBuilder

ImportFile
Description Inserts data into a DataWindow control, DataStore object, or graph control

from data in a file. The data can be tab-separated text, comma-separated text,
or XML. The format of the file depends on whether the target is a DataWindow
(or DataStore) or a graph and on the type of graph.

XML files
XML data is not supported in this release of PocketBuilder.

For DataWindow and DataStore syntax, see the ImportFile method for
DataWindows in the DataWindow Reference or the online Help.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax graphname.ImportFile ({ importtype}, filename {, startrow {, endrow {,
startcolumn } } })

Argument Description

graphname The name of the graph control to which you want to copy data from
the specified file.

importtype
(optional)

An enumerated value of the SaveAsType DataWindow constant. If
this argument is specified, the importtype argument can be specified
without an extension. Valid type arguments for ImportFile are:

Text!
CSV!
XML!

filename A string whose value is the name of the file from which you want
to copy data. The file must be a tab-separated file (TXT), comma-
separated file (CSV), or Extensible Markup Language (XML).
Specify the file’s full name. If the optional importtype is not
specified, the name must end in the appropriate extension.

If you do not specify filename or if it is null, ImportFile prompts the
user for a file name. The remaining arguments are ignored.

Chapter 10 PowerScript Functions

PowerScript Reference 591

Return value Long. Returns the number of rows that were imported if it succeeds and one of
the following negative integers if an error occurs:

-1 No rows or startrow value supplied is greater than the number of rows in
the file

-2 Empty file or input data does not match number of columns or required
column type

-3 Invalid argument

-4 Invalid input

-5 Could not open the file

-6 Could not close the file

-7 Error reading the text

-8 Unsupported file name suffix (must be *.txt, *.csv, *.dbf or *.xml)

-10 Unsupported dBase file format

startrow
(optional)

The number of the first detail row in the file that you want to copy.
The default is 1.

For default XML import, if startrow is supplied, the first N
(startrow -1) elements are skipped, where N is the DataWindow row
size.

For template XML import, if startrow is supplied, the first
(startrow -1) occurrences of the repetitive row mapping defined in
the template are skipped.

endrow
(optional)

The number of the last detail row in the file that you want to copy.
The default is the rest of the rows.

For default XML import, if endrow is supplied, import stops when
N * endrow elements have been imported, where N is the
DataWindow row size.

For template XML import, if endrow is supplied, import stops after
endrow occurrences of the repetitive row mapping defined in the
template have been imported.

startcolumn
(optional)

The number of the first column in the file that you want to copy. The
default is 1.

For default XML import, if startcolumn is supplied, import skips
the first (startcolumn - 1) elements in each row.

This argument has no effect on template XML import.

Argument Description

ImportFile

592 PocketBuilder

-11 XML Parsing Error; XML parser libraries not found or XML not well
formed

-12 XML Template does not exist or does not match the DataWindow

If any argument’s value is null, ImportFile returns null. If the optional importtype
argument is specified and is not a valid type, ImportFile returns -3.

Usage The format of the file can be indicated by specifying the optional importtype
parameter, or by including the appropriate file extension.

For graph controls, ImportFile only uses three columns and ignores other
columns. Each row of data must contain three pieces of information. The
information depends on the type of graph:

• For all graph types except scatter, the first column to be imported is the
series name, the second column contains the category, and the third
column contains the data.

• For scatter graphs, the first column to be imported is the series name, the
second column is the data’s x value, and the third column is the y value.

You can add data to more than one series by specifying different series names
in the first column. To let users select the file to import, specify a null string for
filename. PocketBuilder displays the Select Import File dialog box.

Double quotes The location and number of double quote marks in a field in
a tab delimited file affect how they are handled when the file is imported. If a
string is enclosed in one pair of double quotes, the quotes are discarded. If it is
enclosed in three pairs of double quotes, one pair is retained when the string is
imported. If the string is enclosed in two pairs of double quotes, the first pair is
considered to enclose a null string, and the rest of the string is discarded.

When there is a double quote at the beginning of a string, any characters after
the second double quote are discarded. If there is no second double quote, the
tab character delimiting the fields is not recognized as a field separator and all
characters up to the next occurrence of a double quote, including a carriage
return, are considered to be part of the string. A validation error is generated if
the combined strings exceed the length of the first string.

Double quotes after the first character in the string are rendered literally. Here
are some examples of how tab-delimited strings are imported into a
two-column DataWindow:

Text in file Result

"Joe" TAB "Donaldson" Joe Donaldson

Bernice TAB """Ramakrishnan""" Bernice "Ramakrishnan"

""Mary"" TAB ""Li"" Empty cells

Chapter 10 PowerScript Functions

PowerScript Reference 593

Specifying a null string for file name
If you specify a null string for filename, the remaining arguments are ignored.
All the rows and columns in the file are imported.

Examples This statement copies all the data in the file D:\EMPLOYEE.TXT to
gr_employee starting at the first row:

gr_employee.ImportFile("D:\EMPLOYEE.TXT")

This statement copies the data from the file D:\EMPLOYEE.TXT starting with
row 2 column 3 and ending with row 30 column 5 to the graph gr_employee:

gr_employee.ImportFile("D:\EMPLOYEE.TXT", 2, 30, 3)

The following statements in a PowerBuilder application are equivalent. Both
import the contents of the XML file named myxmldata:

gr_control.ImportFile(myxmldata.xml)
gr_control.ImportFile(XML!, myxmldata)

This example causes PocketBuilder to display the Specify Import File dialog
box:

string null_str
SetNull(null_str)
dw_1.ImportFile(null_str)

See also ImportClipboard
ImportString

"Mich"ael TAB """Lopes""" Mich "Lopes"

"Amy TAB Doherty" Amy<TAB>Doherty in first cell, second cell
empty

3""" TAB 4" 3""" 4"

Text in file Result

ImportString

594 PocketBuilder

ImportString
Description Inserts data into a DataWindow control, DataStore object, or graph control

from tab-separated, comma-separated, or XML data in a string. The way data
is arranged in the string in tab-delimited columns depends on whether the target
is a DataWindow (or DataStore) or a graph, and on the type of graph.

XML data
XML data is not supported in this release of PocketBuilder.

For DataWindow and DataStore syntax, see the ImportString method for
DataWindows in the DataWindow Reference or the online Help.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax graphname.ImportString ({ importtype}, string {, startrow {, endrow {,
startcolumn } } })

Argument Description

graphname The name of the graph control to which you want to copy data from
the specified string.

importtype
(optional)

A value of the SaveAsType enumerated datatype (PocketBuilder or
PowerBuilder) or a string (Web DataWindow) specifying the
format of the imported string. If no import type is specified, the
imported string should contain only tab-separated text. Valid type
arguments are:

Text! (default)
CSV!
XML!

string A string from which you want to copy the data. The string should
contain tab-separated or comma-separated columns or XML with
one row per line (see Usage).

Chapter 10 PowerScript Functions

PowerScript Reference 595

Return value Returns the number of data points that were imported if it succeeds and one of
the following negative integers if an error occurs:

-1 No rows or startrow value supplied is greater than the number of rows in
the string

-2 Empty string or input data does not match number of columns or required
column type

-3 Invalid argument

-4 Invalid input

-11 XML Parsing Error; XML parser libraries not found or XML not well
formed

-12 XML Template does not exist or does not match the DataWindow

If any argument’s value is null, ImportString returns null. If the optional
importtype argument is specified and is not a valid type, ImportString returns -3.

startrow
(optional)

The number of the first detail row in the string that you want to
copy. The default is 1.

For default XML import, if startrow is supplied, the first N
(startrow -1) elements are skipped, where N is the DataWindow row
size.

For template XML import, if startrow is supplied, the first
(startrow -1) occurrences of the repetitive row mapping defined in
the template are skipped.

endrow
(optional)

The number of the last detail row in the string that you want to copy.
The default is the rest of the rows.

For default XML import, if endrow is supplied, import stops when
N * endrow elements have been imported, where N is the
DataWindow row size.

For template XML import, if endrow is supplied, import stops after
endrow occurrences of the repetitive row mapping defined in the
template have been imported.

startcolumn
(optional)

The number of the first column in the string that you want to copy.
The default is 1.

For default XML import, if startcolumn is supplied, import skips
the first (startcolumn - 1) elements in each row.

This argument has no effect on template XML import.

Argument Description

ImportString

596 PocketBuilder

Usage For graph controls, ImportString only uses three columns on each line and
ignores other columns. The three columns must contain information that
depends on the type of graph:

• For all graph types except scatter, the first column to be imported is the
series name, the second column contains the category, and the third
column contains the data.

• For scatter graphs, the first column to be imported is the series name, the
second column is the data’s x value, and the third column is the y value.

You can add data to more than one series by specifying different series names
in the first column.

Examples These statements copy the data from the string ls_Text starting with row 2
column 3 and ending with row 30 column 5 to the graph gr_employee:

string ls_Text
ls_Text = . . .
gr_employee.ImportString(ls_Text, 2, 30, 3)

The following script stores data for two series in the string ls_gr and imports
the data into the graph gr_custbalance. The categories in the data are A, B, and
C:

string ls_gr

ls_gr = "series1~tA~t12~r~n"
ls_gr = ls_gr + "series1~tB~t13~r~n"
ls_gr = ls_gr + "series1~tC~t14~r~n"
ls_gr = ls_gr + "series2~tA~t15~r~n"
ls_gr = ls_gr + "series2~tB~t14~r~n"
ls_gr = ls_gr + "series2~tC~t12.5~r~n"

gr_custbalance.ImportString(ls_gr, 1)

See also ImportClipboard
ImportFile

Chapter 10 PowerScript Functions

PowerScript Reference 597

IncomingCallList
Description Provides a list of the callers of a routine included in a performance analysis

model.

Applies to ProfileRoutine object

Syntax iinstancename.IncomingCallList (list, aggregrateduplicateroutinecalls)

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• ModelNotExistsError!—The model does not exist

Usage Use this function to extract a list of the callers of a routine included in a
performance analysis model. Each caller is defined as a ProfileCall object and
provides the called routine and the calling routine, the number of times the call
was made, and the elapsed time. The callers are listed in no particular order.

You must have previously created the performance analysis model from a trace
file using the BuildModel function.

Argument Description

instancename Instance name of the ProfileRoutine object.

list An unbounded array variable of datatype
ProfileCall in which IncomingCallList stores a
ProfileCall object for each caller of the routine.
This argument is passed by reference.

aggregateduplicateroutinecalls A boolean indicating whether duplicate routine
calls will result in the creation of a single or of
multiple ProfileCall objects.

Init

598 PocketBuilder

The aggregateduplicateroutinecalls argument indicates whether duplicate
routine calls will result in the creation of a single or of multiple ProfileCall
objects. This argument has no effect unless line tracing is enabled and a calling
routine calls the current routine from more than one line. If
aggregateduplicateroutinecalls is true, a new ProfileCall object is created that
aggregates all calls from the calling routine to the current routine. If
aggregateduplicateroutinecalls is false, multiple ProfileCall objects are
returned, one for each line from which the calling routine called the called
routine.

Examples This example gets a list of the routines included in a performance analysis
model and then gets a list of the routines that called each routine:

Long ll_cnt
ProfileCall lproc_call[]

lpro_model.BuildModel()
lpro_model.RoutineList(i_routinelist)

FOR ll_cnt = 1 TO UpperBound(iprort_list)
 iprort_list[ll_cnt].IncomingCallList(lproc_call, &
 TRUE)
 ...
NEXT

See also BuildModel
OutgoingCallList

Init
Sets ORB property values or initializes an instance of the CORBACurrent
service object.

To Use

Set ORB property values for client connections to EAServer using
the JaguarORB object

Syntax 1

Initialize an instance of the CORBACurrent service object for
client- or component-managed transactions

Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 599

Syntax 1 For setting ORB property values
Description Sets ORB property values. This function is used by PowerBuilder clients

connecting to EAServer.

Applies to JaguarORB objects

Syntax jaguarorb.Init (options)

Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

Syntax 2 For initializing CORBACurrent
Description Initializes an instance of the CORBACurrent service object.

Applies to CORBACurrent objects

Syntax CORBACurrent.Init ({ connection | URL})

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

InputFieldChangeData
Description Modifies the data value of input fields in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldChangeData (inputfieldname, inputfieldvalue)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, InputFieldChangeData returns null.

InputFieldCurrentName

600 PocketBuilder

InputFieldCurrentName
Description Gets the name of the input field when the insertion point is in an input field in

a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldCurrentName ()

Return value String. Returns the name of the input field. If the insertion point is not in an
input field or if an error occurs, it returns the empty string ("").

InputFieldDeleteCurrent
Description Deletes the input field that is selected in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldDeleteCurrent ()

Return value Integer. Returns 1 if it succeeds and -1 if there is no input field at the insertion
point, the input field is activated for editing, or an error occurs.

InputFieldGetData
Description Get the data in the specified input field in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldGetData (inputfieldname)

Return value String. The data in the input field. InputFieldGetData returns the empty string
("") if the field does not exist or an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 601

InputFieldInsert
Description Inserts a named input field at the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldInsert (inputfieldname)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If inputfieldname is
null, InputFieldInsert returns null.

InputFieldLocate
Description Locates an input field in a RichTextEdit control and moves the insertion point

there.

Applies to RichTextEdit controls

Syntax rtename.InputFieldLocate (location {, inputfieldname })

Return value String. Returns the name of the input field it located if it succeeds.
InputFieldLocate returns an empty string if no matching input field is found or
if an error occurs. If any argument is null, InputFieldLocate returns null.

IsReadyToCapture
Description Determines whether the device is ready to capture an image.

Applies to Camera objects

IsReadyToCapture

602 PocketBuilder

Syntax objectname.IsReadyToCapture ()

Return value Boolean. Returns true if the device is ready to capture an image and false
otherwise.

Usage Use the IsReadyToCapture function to determine whether the camera device is
ready to capture an image.

Examples The following statements determine whether the device is ready to capture an
image and, if it is, use the CaptureImage function to capture the image:

boolean lb_query
integer li_return
lb_query = g_myCam.IsReadyToCapture()
if lb_query = true then

li_return = g_myCam.CaptureImage("\myPic.jpeg")
end if

See also CaptureImage
GetOption
Open
SetCaptureImageAttributes
SetOption

Argument Description

objectname The name of the camera object that you want to inquire about

Chapter 10 PowerScript Functions

PowerScript Reference 603

InsertCategory
Description Inserts a category on the category axis of a graph at the specified position.

Existing categories are renumbered to keep the category numbering sequential.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax controlname.InsertCategory (categoryvalue, categorynumber)

Return value Integer. Returns the number of the category if it succeeds and -1 if an error
occurs. If the category already exists, it returns the number of the existing
category. If any argument’s value is null, InsertCategory returns null.

Usage Categories are discrete. Even on a date or time axis, each category is separate
with no timeline-style connection between categories. Only scatter graphs,
which do not have discrete categories, have a continuous category axis.

When the axis datatype is string, category names are unique if they have
different capitalization. Also, you can specify the empty string ("") as the
category name. However, because category names must be unique, there can
be only one category with that name.

When you use InsertCategory to create a new category, there will be holes in
each of the series for that category. Use AddData or InsertData to create data
points for the new category.

Equivalent syntax If you want to add a category to the end of a series, you
can use AddCategory instead, which requires fewer arguments.

Argument Description

controlname The name of the graph into which you want to insert a
category.

categoryvalue A value that is the category you want to insert. The category
must be unique within the graph. The value you specify must
be the same datatype as the datatype of the category axis.

categorynumber The number of the category before which you want to insert
the new category. To add the category at the end, specify 0. If
the axis is sorted, the category will be integrated into the
existing order, ignoring categorynumber.

InsertClass

604 PocketBuilder

This statement:

gr_data.InsertCategory("Qty", 0)

is equivalent to:

gr_data.AddCategory("Qty")

Examples These statements insert a category called Macs before the category named PCs
in the graph gr_product_data:

integer CategoryNbr

// Get the number of the category.
CategoryNbr = FindCategory("PCs")
gr_product_data.InsertCategory("Macs", CategoryNbr)

In a graph reporting mail volume in the afternoon, these statements add three
categories to a time axis. If the axis is sorted, the order in which you add the
categories does not matter:

catnum = gr_mail.InsertCategory(13:00, 0)
catnum = gr_mail.InsertCategory(12:00, 0)
catnum = gr_mail.InsertCategory(13:00, 0)

See also AddData
AddCategory
FindCategory
FindSeries
InsertData
InsertSeries

InsertClass
Description Inserts a new object of the specified OLE class in an OLE control.

Syntax ole2control.InsertClass (classname)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 605

InsertColumn
Description Inserts a column with the specified label, alignment, and width at the specified

location.

Applies to ListView controls

Syntax listviewname.InsertColumn (index, label, alignment, width)

Return value Integer. Returns the column index value if it succeeds and -1 if an error occurs.

Usage You can insert a column anywhere in the control. If the index you specify is
greater than the current number of columns, the column is inserted after the last
column.

Examples This example inserts a column named Location, makes it right-aligned, and
sets the column width to 300:

lv_list.InsertColumn(2 , "Location" , Right! , 300)

See also AddColumn
DeleteColumn

Argument Description

listviewname The name of the ListView control to which you want to insert a
column.

index An integer whose value is the number of the column before which
you are inserting a new column.

label A string whose value is the name of the column you are inserting.

alignment A value of the enumerated datatype Alignment specifying the
alignment of the column you are inserting. Values are:

Center!
Justify!
Left!
Right!

width An integer whose value is the width of the column you are inserting,
in PowerBuilder units.

InsertData

606 PocketBuilder

InsertData
Description Inserts a data point in a series of a graph. You can specify the category for the

data point or its position in the series. Does not apply to scatter graphs.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax controlname.InsertData (seriesnumber, datapoint, datavalue
 {, categoryvalue })

Return value Integer. Returns the number of the data value if it succeeds and -1 if an error
occurs. If any argument’s value is null, InsertData returns null.

Usage When you specify datapoint without specifying categoryvalue, InsertData
inserts the data point in the category at that position, shifting existing data
points to the following categories. The shift may cause there to be
uncategorized data points at the end of the axis.

When you specify categoryvalue, InsertData ignores the position in datapoint
and puts the data point in the specified category, replacing any data value that
is already there. If the category does not exist, InsertData creates the category
at the end of the axis.

To modify the value of a data point at a specified position, use ModifyData.

Argument Description

controlname The name of the graph in which you want to insert data into a
series.

seriesnumber The number that identifies the series in which you want to
insert data.

datapoint The number of the data point before which you want to insert
the data.

datavalue The value of the data point you want to insert.

categoryvalue
(optional)

The category for this data value on the category axis. The
datatype of categoryvalue should match the datatype of the
category axis. In most cases, you should include
categoryvalue. Otherwise, an uncategorized value will be
added to the series.

Chapter 10 PowerScript Functions

PowerScript Reference 607

Scatter graphs
To add data to a scatter graph, use Syntax 2 of AddData.

Equivalent syntax If you want to add a data point to the end of a series or to
an existing category in a series, you can use AddData instead, which requires
fewer arguments.

InsertData and ModifyData behave differently when you specify datapoint to
indicate a position for inserting or modifying data. However, they behave the
same as AddData when you specify a position of 0 and a category. All three
modify the value of a data point when the category already exists. All three
insert a category with a data value at the end of the axis when the category does
not exist.

When you specify a position as well as a category, and that category already
exists, InsertData ignores the position and modifies the data of the specified
category, but ModifyData changes the category label at that position.

This statement:

gr_data.InsertData(1, 0, 44, "Qty")

is equivalent to:

gr_data.ModifyData(1, 0, 44, "Qty")

and is also equivalent to:

gr_data.AddData(1, 44, "Qty")

When you specify a position, the following statements are not equivalent:

• InsertData ignores the position and modifies the data value of the Qty
category:

gr_data.InsertData(1, 4, 44, "Qty")

• ModifyData changes the category label and the data value at position 4:

gr_data.ModifyData(1, 4, 44, "Qty")

Examples Assuming the category label Jan does not already exist, these statements insert
a data value in the series named Costs before the data point for Mar and assign
the data point the category label Jan in the graph gr_product_data:

integer SeriesNbr, CategoryNbr

// Get the numbers of the series and category.
SeriesNbr = gr_product_data.FindSeries("Costs")
CategoryNbr = gr_product_data.FindCategory("Mar")

InsertDocument

608 PocketBuilder

gr_product_data.InsertData(SeriesNbr, &
 CategoryNbr, 1250, "Jan")

These statements insert the data value 1250 after the data value for Apr in the
series named Revenues in the graph gr_product_data. The data is inserted in the
category after Apr, and the rest of the data, if any, moves over a category:

integer SeriesNbr, CategoryNbr

// Get the number of the series and category.
CategoryNbr = gr_product_data.FindCategory("Apr")
SeriesNbr = gr_product_data.FindSeries("Revenues")

gr_product_data.InsertData(SeriesNbr, &
 CategoryNbr + 1, 1250)

See also AddData
FindCategory
FindSeries
GetData

InsertDocument
Description Inserts a rich text format or plain text file into a RichTextEdit control,

DataWindow control, or DataStore object.

Applies to RichTextEdit controls, DataWindow controls, and DataStore objects

Syntax rtename.InsertDocument (filename, clearflag { , filetype })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, InsertDocument returns null.

Chapter 10 PowerScript Functions

PowerScript Reference 609

InsertFile
Description Inserts an object into an OLE control. A copy of the specified file is embedded

in the OLE object.

Syntax olecontrol.InsertFile (filename)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

InsertItem
Inserts an item into a ListBox, DropDownListBox, ListView, TreeView or
Toolbar control.

Syntax 1 For ListBox and DropDownListBox controls
Description Inserts an item into the list of values in a list box.

Applies to ListBox and DropDownListBox controls

To insert an item into a Use

ListBox or DropDownListBox control Syntax 1

PictureListBox or DropDownPictureListBox control Syntax 2

ListView control when only the label and picture index need to be
specified

Syntax 3

ListView control when more than the label and picture index need
to be specified

Syntax 4

TreeView control when only the label and picture index need to be
specified

Syntax 5

TreeView control when more than the label and picture index need
to be specified

Syntax 6

Toolbar control Syntax 7

InsertItem

610 PocketBuilder

Syntax listboxname.InsertItem (item, index)

Return value Integer. Returns the final position of the item. Returns -1 if an error occurs. If
any argument’s value is null, InsertItem returns null.

Usage InsertItem inserts the new item before the item identified by index. If the items
in listboxname are sorted (its Sorted property is true), PocketBuilder resorts the
items after the new item is inserted. The return value reflects the new item’s
final position in the list.

AddItem and InsertItem do not update the Items property array. You can use
FindItem to find items added during execution.

Examples This statement inserts the item Run Application before the fifth item in
lb_actions:

lb_actions.InsertItem("Run Application", 5)

If the Sorted property is false, the statement above returns 5 (the previous item
5 becomes item 6). If the Sorted property is true, the list is sorted after the item
is inserted and the function returns the index of the final position of the item.

If the ListBox lb_Cities has the following items in its list and its Sorted property
is set to true, then the following example inserts Denver at the top, sorts the list,
and sets li_pos to 4. If the ListBox’s Sorted property is false, then the statement
inserts Denver at the top of the list and sets li_pos to 1. The list is:

Albany
Boston
Chicago
New York

The example code is:

string ls_City = "Denver"
integer li_pos
li_pos = lb_Cities.InsertItem(ls_City, 1)

Argument Description

listboxname The name of the ListBox or DropDownListBox into which you
want to insert an item

item A string whose value is the text of the item you want to insert

index The number of the item in the list before which you want to insert
the item

Chapter 10 PowerScript Functions

PowerScript Reference 611

See also AddItem
DeleteItem
FindItem
Reset
TotalItems

Syntax 2 For ListBox and DropDownListBox controls
Description Inserts an item into the list of values in a picture list box.

Applies to PictureListBox and DropDownPictureListBox controls

Syntax listboxname.InsertItem (item {, pictureindex }, index)

Return value Integer. Returns the final position of the item. Returns -1 if an error occurs. If
any argument’s value is null, InsertItem returns null.

Usage If you do not specify a picture index, the newly added item will not have a
picture.

If you specify a picture index that does not exist, that number is still stored with
the picture. If you add pictures to the picture array so that the index becomes
valid, the item will then show the corresponding picture.

For additional notes about items in ListBoxes and examples of how the Sorted
property affects the item order, see Syntax 1.

Examples This statement inserts the item Run Application before the fifth item in
lb_actions. The item has no picture assigned to it:

plb_actions.InsertItem("Run Application", 5)

Argument Description

listboxname The name of the PictureListBox or DropDownPictureListBox into
which you want to insert an item

item A string whose value is the text of the item you want to insert

pictureindex
(optional)

An integer specifying the index of the picture you want to associate
with the newly added item

index The number of the item in the list before which you want to insert the
item

InsertItem

612 PocketBuilder

This statement inserts the item Run Application before the fifth item in
lb_actions and assigns it picture index 4:

plb_actions.InsertItem("Run Application", 4, 5)

See also AddItem
DeleteItem
FindItem
Reset
TotalItems

Syntax 3 For ListView controls
Description Inserts an item into a ListView control.

Applies to ListView controls

Syntax listviewname.InsertItem (index, label, pictureindex)

Return value Integer. Returns index if it succeeds and -1 if an error occurs.

Usage If you need to set more than the label and picture index, use Syntax 4.

Examples This example inserts an item in the ListView in position 11:

lv_list.InsertItem(11 , "Presentation" , 1)

See also AddItem

Argument Description

listviewname The name of the ListView control to which you are adding an item

index An integer whose value is the index number of the item before
which you are inserting a new item

label A string whose value is the name of the item you are adding

pictureindex An integer whose value is the index number of the picture of the
item you are adding

Chapter 10 PowerScript Functions

PowerScript Reference 613

Syntax 4 For ListView controls
Description Inserts an item into a ListView control.

Applies to ListView controls

Syntax listviewname.InsertItem (index, item)

Return value Integer. Returns index if it succeeds and -1 if an error occurs.

Usage The index you specify is the position of the item you are adding to a ListView.

If you need to insert just the label and picture index into the ListView control,
use Syntax 3.

Examples This example moves a ListView item from the second position into the fifth
position. It uses GetItem to retrieve the state information from item 2, inserts it
into the ListView control as item 5, and then deletes the original item:

listviewitem l_lvi

lv_list.GetItem(2 , l_lvi)
lv_list.InsertItem(5 , l_lvi)
lv_list.DeleteItem(2)

See also AddItem

Argument Description

listviewname The name of the ListView control into which you are inserting an
item

index An integer whose value is the index number of the item you are
adding

item A system structure of datatype ListViewItem in which InsertItem
stores the item you are inserting

InsertItem

614 PocketBuilder

Syntax 5 For TreeView controls
Description Inserts an item at a specific level and order in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.InsertItem (handleparent, handleafter, label, pictureindex)

Return value Long. Returns the handle of the inserted item if it succeeds and -1 if an error
occurs.

Usage Use this syntax to set just the label and picture index. Use the next syntax if you
need to set additional properties for the item.

If the TreeView’s SortType property is set to a value other than Unsorted!, the
inserted item is sorted with its siblings.

If you are inserting the first child of an item, use InsertItemLast or
InsertItemFirst instead. Those functions do not require a handleafter value.

Examples This example inserts a TreeView item that is on the same level as the current
TreeView item. It uses FindItem to get the current item and its parent, then
inserts the new item beneath the parent item:

long ll_tvi, ll_tvparent
ll_tvi = tv_list.FindItem(currenttreeitem! , 0)
ll_tvparent = tv_list.FindItem(parenttreeitem!,ll_tvi)
tv_list.InsertItem(ll_tvparent,ll_tvi,"Hindemith", 2)

See also GetItem

Argument Description

treeviewname The name of the TreeView control in which you want to insert
an item.

handleparent The handle of the item one level above the item you want to
insert. To insert an item at the first level, specify 0.

handleafter The handle of the item on the same level that you will insert
the item immediately after.

label The label of the item you are inserting.

pictureindex The Index of the index of the picture you are adding to the
image list.

Chapter 10 PowerScript Functions

PowerScript Reference 615

Syntax 6 For TreeView controls
Description Inserts an item at a specific level and order in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.InsertItem (handleparent, handleafter, item)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage Use the previous syntax to set just the label and picture index. Use this syntax
if you need to set additional properties for the item.

If the TreeView’s SortType property is set to a value other than Unsorted!, the
inserted item is sorted with its siblings.

If you are inserting the first child of an item, use InsertItemLast or
InsertItemFirst instead. Those functions do not require a handleafter value.

Examples This example inserts a TreeView item that is on the same level as the current
TreeView item. It uses FindItem to get the current item and its parent, then
inserts the new item beneath the parent item:

long ll_tvi, ll_tvparent
treeviewitem l_tvi

ll_tvi = tv_list.FindItem(currenttreeitem! , 0)
ll_tvparent = tv_list.FindItem(parenttreeitem!,ll_tvi)
tv_list.GetItem(ll_tvi , l_tvi)
tv_list.InsertItem(ll_tvparent,ll_tvi, l_tvi)

See also GetItem

Argument Description

treeviewname The name of the TreeView control into which you want to
insert an item.

handleparent The handle of the item one level above the item you want to
insert. To insert an item at the first level, specify 0.

handleafter The handle of the item on the same level that you will insert
the item immediately after.

item A TreeViewItem structure for the item you are inserting.

InsertItemFirst

616 PocketBuilder

Syntax 7 For Toolbar controls
Description Inserts a toolbar item in a toolbar control.

Applies to Toolbar controls

Syntax Long controlname.InsertItem (item, index)

Return value Long. Returns 1 for success and -1 if an error occurs.

Examples The following example inserts an item at the third position in a toolbar:

Long ll_rtn
ToolbarItem myItem
myItem.ItemPictureIndex = 5
myItem.ItemStyle = stylecheck!
ll_rtn=tlbr_mytoolbar.InsertItem(myItem, 3)

See also AddItem
DeleteItem
GetItem

InsertItemFirst
Inserts an item as the first child of a parent item.

Argument Description

controlname The name of the toolbar control

item Object of type ToolbarItem that you want to insert in a toolbar

index Integer for the position where you want to insert the item in the
toolbar

To insert an item as the first child of its parent Use

When you only need to specify the item label and picture index Syntax 1

When you need to specify more than the item label and picture
index

Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 617

Syntax 1 For TreeView controls
Description Inserts an item as the first child of its parent.

Applies to TreeView controls

Syntax treeviewname.InsertItemFirst (handleparent, label, pictureindex)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Examples This example populates the first level of a TreeView using InsertItemFirst:

long ll_lev1, ll_lev2 ,ll_lev3 ,ll_lev4
int index

tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

ll_lev1 = tv_list.InsertItemFirst(0,"Composers",1)
ll_lev2 = tv_list.InsertItemLast(ll_lev1, &
 "Beethoven",2)
ll_lev3 = tv_list.InsertItemLast(ll_lev2, &
 "Symphonies", 3)

FOR index = 1 to 9
 ll_lev4 = tv_list.InsertItemSort(ll_lev3, &
 "Symphony # " + String(index) , 4)
NEXT

tv_list.ExpandItem(ll_lev3)
tv_list.ExpandItem(ll_lev4)

Argument Description

treeviewname The TreeView control in which you want to specify an item as
the first child of its parent.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

label The label of the item you want to specify as the first child of
its parent.

pictureindex The picture index for the item you want to specify as the first
child of its parent.

InsertItemFirst

618 PocketBuilder

See also InsertItem
InsertItemLast
InsertItemSort

Syntax 2 For TreeView controls
Description Inserts an item as the first child of an item.

Applies to TreeView controls

Syntax treeviewname.InsertItemFirst (handleparent, item)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage If SortType is anything except Unsorted!, items are sorted after they are added
and the TreeView is always in a sorted state. Therefore, calling InsertItemFirst,
InsertItemLast, and InsertItemSort produces the same result.

Examples This example inserts the current item as the first item beneath the root item in
a TreeView control:

long ll_handle, ll_roothandle
treeviewitem l_tvi
ll_handle = tv_list.FindItem(CurrentTreeItem!, 0)
ll_roothandle = tv_list.FindItem(RootTreeItem!, 0)
tv_list.GetItem(ll_handle , l_tvi)

tv_list.InsertItemFirst(ll_roothandle, l_tvi)

See also InsertItem
InsertItemLast
InsertItemSort

Argument Description

treeviewname The TreeView control in which you want to specify an item as
the first child of its parent.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

item A TreeViewItem structure for the item you are inserting.

Chapter 10 PowerScript Functions

PowerScript Reference 619

InsertItemLast
Inserts an item as the last child of a parent item.

Syntax 1 For TreeView controls
Description Inserts an item as the last child of its parent.

Applies to TreeView controls

Syntax treeviewname.InsertItemLast (handleparent, label, pictureindex)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage If more than the item label and Index need to be specified, use syntax 2.

If SortType is anything except Unsorted!, items are sorted after they are added
and the TreeView is always in a sorted state. Therefore, calling InsertItemFirst,
InsertItemLast, and InsertItemSort produces the same result.

Examples This example populates the first three levels of a TreeView using
InsertItemLast:

long ll_lev1, ll_lev2, ll_lev3, ll_lev4

To insert an item as the last child of its parent Use

When you only need to specify the item label and picture
index

Syntax 1

When you need to specify more than item label and picture
index

Syntax 2

Argument Description

treeviewname The TreeView control in which you want to specify an item as
the last child of its parent.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

label The label of the item you want to specify as the last child of
its parent.

pictureindex The picture index for the item you want to specify as the last
child of its parent.

InsertItemLast

620 PocketBuilder

int index

tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

ll_lev1 = tv_list.InsertItemLast(0,"Composers",1)
ll_lev2 = tv_list.InsertItemLast(ll_lev1, &
 "Beethoven",2)
ll_lev3 = tv_list.InsertItemLast(ll_lev2, &
 "Symphonies",3)
FOR index = 1 to 9
 ll_lev4 = tv_list.InsertItemSort(ll_lev3, &
 "Symphony # " String(index), 4)
NEXT

tv_list.ExpandItem(ll_lev3)
tv_list.ExpandItem(ll_lev4)

See also InsertItem
InsertItemFirst
InsertItemSort

Syntax 2 For TreeView controls
Description Inserts an item as the last child of its parent.

Applies to TreeView controls

Syntax treeviewname.InsertItemLast (handleparent, item)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Argument Description

treeviewname The TreeView control in which you want to specify an item as
the last child of its parent.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

item A TreeViewItem structure for the item you are inserting.

Chapter 10 PowerScript Functions

PowerScript Reference 621

Usage If SortType is anything except Unsorted!, items are sorted after they are added
and the TreeView is always in a sorted state. Therefore, calling InsertItemFirst,
InsertItemLast, and InsertItemSort produces the same result.

Examples This example inserts the current item as the last item beneath the root item in a
TreeView control:

long ll_handle, ll_roothandle
treeviewitem l_tvi

ll_handle = tv_list.FindItem(CurrentTreeItem!, 0)
ll_roothandle = tv_list.FindItem(RootTreeItem!, 0)
tv_list.GetItem(ll_handle , l_tvi)

tv_list.InsertItemLast(ll_roothandle, l_tvi)

See also InsertItem
InsertItemFirst
InsertItemSort

InsertItemSort
Inserts a child item in sorted order under the parent item.

Syntax 1 For TreeView controls
Description Inserts an item in sorted order, if possible.

Applies to TreeView controls

To insert an item in sorted order Use

When you only need to specify the item label and picture
index

Syntax 1

When you need to specify more than the item label and
picture index

Syntax 2

InsertItemSort

622 PocketBuilder

Syntax treeviewname.InsertItemSort (handleparent, label, pictureindex)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage If SortType is anything except Unsorted!, the TreeView is always in a sorted
state and you do not need to use InsertItemSort—you can use any insert
function.

If SortType is Unsorted!, InsertItemSort attempts to insert the item at the correct
place in alphabetic ascending order. If the list is out of order, it does its best to
find the correct place, but results may be unpredictable.

Examples This example populates the fourth level of a TreeView control:

long ll_lev1, ll_lev2, ll_lev3, ll_lev4
int index

tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

ll_lev1 = tv_list.InsertItemLast(0,"Composers",1)
ll_lev2 = tv_list.InsertItemLast(ll_lev1,&
 "Beethoven",2)
ll_lev3 = tv_list.InsertItemLast(ll_lev2,&
 "Symphonies",3)
FOR index = 1 to 9
 ll_lev4 = tv_list.InsertItemSort(ll_lev3, &
 "Symphony # " + String(index), 4)
NEXT

tv_list.ExpandItem(ll_lev3)
tv_list.ExpandItem(ll_lev4)

See also InsertItem
InsertItemLast
InsertItemFirst

Argument Description

treeviewname The TreeView control in which you want to insert and sort an
item as a child of its parent, according to its label.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

label The label by which you want to sort the item as a child of its
parent.

pictureindex The picture index for the item you want to sort as a child of its
parent, according to its label.

Chapter 10 PowerScript Functions

PowerScript Reference 623

Syntax 2 For TreeView controls
Description Inserts an item in sorted order, if possible.

Applies to TreeView controls

Syntax treeviewname.InsertItemSort (handleparent, item)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage If SortType is anything except Unsorted!, the TreeView is always in a sorted
state and you do not need to use InsertItemSort—you can use any insert
function.

If SortType is Unsorted!, InsertItemSort attempts to insert the item at the correct
place in alphabetic ascending order. If the list is out of order, it does its best to
find the correct place, but results may be unpredictable.

Examples This example inserts the current item beneath the root item in a TreeView
control and sorts it according to its label:

long ll_handle, ll_roothandle
treeviewitem l_tvi

ll_handle = tv_list.FindItem(CurrentTreeItem!, 0)
ll_roothandle = tv_list.FindItem(RootTreeItem!, 0)
tv_list.GetItem(ll_handle , l_tvi)

tv_list.InsertItemSort(ll_roothandle, l_tvi)

See also InsertItem
InsertItemFirst
InsertItemLast

Argument Description

treeviewname The TreeView control in which you want to sort an item as a
child of its parent, according to its label.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

item A TreeViewItem structure for the item you are inserting.

InsertObject

624 PocketBuilder

InsertObject
Description Displays the standard Insert Object dialog box, allowing the user to choose a

new or existing OLE object, and inserts the selected object in the OLE control.

Syntax olecontrol.InsertObject ()

Return value Integer. Returns 0 if it succeeds and one of the following values if an error
occurs:

 1 User canceled out of dialog box
-9 Error

If any argument’s value is null, InsertObject returns null.

InsertPicture
Description Inserts a bitmap at the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InsertPicture (filename)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If filename is null,
InsertPicture returns null.

InsertSeries
Description Inserts a series in a graph at the specified position. Existing series in the graph

are renumbered to keep the numbering sequential.

Chapter 10 PowerScript Functions

PowerScript Reference 625

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax controlname.InsertSeries (seriesname, seriesnumber)

Return value Integer. Returns the number of the series if it succeeds and -1 if an error occurs.
If the series named in seriesname exists already, it returns the number of the
existing series. If any argument’s value is null, InsertSeries returns null.

Usage Series names are unique if they have different capitalization.

Equivalent syntax If you want to add a series to the end of the list, you can
use AddSeries instead, which requires fewer arguments.

This statement:

gr_data.InsertSeries("Costs", 0)

is equivalent to:

gr_data.AddSeries("Costs")

Examples These statements insert a series before the series named Income in the graph
gr_product_data:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = FindSeries("Income")
gr_product_data.InsertSeries("Costs", SeriesNbr)

See also AddData
AddSeries
FindCategory
FindSeries
InsertCategory
InsertData

Argument Description

controlname The name of the graph in which you want to insert a series.

seriesname A string containing the name of the series you want to insert. The
series name must be unique within the graph.

seriesnumber The number of the series before which you want to insert the new
series. To add the new series at the end, specify 0.

Int

626 PocketBuilder

Int
Description Determines the largest whole number less than or equal to a number.

Syntax Int (n)

Return value Integer. Returns the largest whole number less than or equal to n. If n is too
small or too large to be represented as an integer, Int returns 0. If n is null, Int
returns null.

Usage When the result for Int would be smaller than -32768 or larger than 32767, Int
returns 0 because the result cannot be represented as an integer.

Examples These statements return 3.0:

Int(3.2)
Int(3.8)

The following statements return -4.0:

Int(-3.2)
Int(-3.8)

These statements remove the decimal portion of the variable and store the
resulting integer in li_nbr:

integer li_nbr
li_nbr = Int(3.2) // li_nbr = 3

See also Ceiling
Round
Truncate
Int method for DataWindows in the DataWindow Reference or the online Help

Argument Description

n The number for which you want the largest whole number that is
less than or equal to it

Chapter 10 PowerScript Functions

PowerScript Reference 627

Integer
Description Converts the value of a string to an integer or obtains an integer value that is

stored in a blob.

Syntax Integer (stringorblob)

Return value Integer. Returns the value of stringorblob as an integer if it succeeds and 0 if
stringorblob is not a valid number or is an incompatible datatype. If
stringorblob is null, Integer returns null.

Usage To distinguish between a string whose value is the number 0 and a string whose
value is not a number, use the IsNumber function before calling the Integer
function.

Examples This statement returns the string 24 as an integer:

Integer("24")

This statement returns the contents of the SingleLineEdit sle_Age as an integer:

Integer(sle_Age.Text)

This statement returns 0:

Integer("3ABC") // 3ABC is not a number.

This example checks whether the text of sle_data is a number before
converting, which is necessary if the user might legitimately enter 0:

integer li_new_data
IF IsNumber(sle_data.Text) THEN
 li_new_data = Integer(sle_data.Text)
ELSE
 SetNull(li_new_data)
END IF

Argument Description

stringorblob A string whose value you want returned as an integer or a blob in
which the first value is the integer value. The rest of the contents of
the blob is ignored. Stringorblob can also be an Any variable
containing a string or blob.

InternetData

628 PocketBuilder

After assigning blob data from the database to lb_blob, this example obtains the
integer value stored at position 20 in the blob:

integer i
i = Integer(BlobMid(lb_blob, 20, 2))

See also Double
Dec
IsNumber
Long
Real
Integer method for DataWindows in the DataWindow Reference

InternetData
Description Processes the HTML data returned by a GetURL or PostURL function. The

Context object calls this function; you do not call this function explicitly.
Instead, you override this function in a customized descendant of the
InternetResult standard class user object.

Applies to InternetResult objects

Syntax servicereference.InternetData (data)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

IntHigh
Description Returns the high word of a long value.

Chapter 10 PowerScript Functions

PowerScript Reference 629

Syntax IntHigh (long)

Return value Integer. Returns the high word of long if it succeeds and -1 if an error occurs.
If long is null, IntHigh returns null.

Usage One use for IntHigh is for decoding values returned by external C functions and
Windows messages.

Examples These statements decode a long value LValue into its low and high integers:

integer nLow, nHigh
long LValue = 274489
nLow = IntLow (LValue) //The Low Integer is 12345.
nHigh = IntHigh(LValue) //The High Integer is 4.

See also IntLow

IntLow
Description Returns the low word of a long value.

Syntax IntLow (long)

Return value Integer. Returns the low word of long if it succeeds and -1 if an error occurs. If
long is null, IntLow returns null.

Usage One use for IntLow is for decoding values returned by external C functions and
Windows messages.

Examples These statements decode a long value LValue into its low and high integers:

integer nLow, nHigh
long LValue = 12345
nLow = IntLow(LValue) //The Low Integer is 12345.
nHigh = IntHigh(LValue) //The High Integer is 0.

Argument Description

long A long value

Argument Description

long A long value

InvokePBFunction

630 PocketBuilder

See also IntHigh

InvokePBFunction
Description Invokes the specified user-defined window function in the child window

contained in a PowerBuilder window ActiveX control.

Applies to Window ActiveX controls

Syntax activexcontrol.InvokePBFunction (name {, numarguments {, arguments } })

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

_Is_A
Description Checks to see whether a CORBA object is an instance of a class that

implements a particular interface.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to CORBAObject objects

Syntax corbaobject._Is_A (classname)

Return value Boolean. Returns true if the class of the object implements the specified
interface and false if it does not.

Chapter 10 PowerScript Functions

PowerScript Reference 631

IsAlive
Description Determines whether a server object is still running.

Applies to OLEObject objects, OLETxnObject objects

Syntax oleobject.IsAlive ()

Return value Boolean. Returns true if the server object appears to be running and false if it is
dead.

IsAllArabic
Description Tests whether a particular string is composed entirely of Arabic characters.

Syntax IsAllArabic (string)

Return value Boolean. Returns true if string is composed entirely of Arabic characters and
false if it is not. The presence of numbers, spaces, and punctuation marks will
also result in a return value of false.

IsAllHebrew
Description Tests whether a particular string is composed entirely of Hebrew characters.

Syntax IsAllHebrew (string)

Return value Boolean. Returns true if string is composed entirely of Hebrew characters and
false if it is not. The presence of numbers, spaces, and punctuation marks will
also result in a return value of false.

IsAnyArabic

632 PocketBuilder

IsAnyArabic
Description Tests whether a particular string contains at least one Arabic character.

Syntax IsAnyArabic (string)

Return value Boolean. Returns true if string contains at least one Arabic character and false
if it does not.

IsAnyHebrew
Description Tests whether a particular string contains at least one Hebrew character.

Syntax IsAnyHebrew (string)

Return value Boolean. Returns true if string contains at least one Hebrew character and false
if it does not.

IsArabic
Description Tests whether a particular character is an Arabic character. For a string,

IsArabic tests only the first character on the left.

Syntax IsArabic (character)

Return value Boolean. Returns true if character is an Arabic character and false if it is not.

Chapter 10 PowerScript Functions

PowerScript Reference 633

IsArabicAndNumbers
Description Tests whether a particular string is composed entirely of Arabic characters or

numbers.

Syntax IsArabicAndNumbers (string)

Return value Boolean. Returns true if string is composed entirely of Arabic characters or
numbers and false if it is not.

IsCallerInRole
Description Indicates whether the direct caller of a COM object running on MTS is in a

specified role (either individually or as part of a group).

Applies to TransactionServer objects

Syntax transactionserver.IsCallerInRole (role)

Return value Boolean. Returns true if the direct caller is in the specified role and false if it is
not.

IsDate
Description Tests whether a string value is a valid date.

IsHebrew

634 PocketBuilder

Syntax IsDate (datevalue)

Return value Boolean. Returns true if datevalue is a valid date and false if it is not. If
datevalue is null, IsDate returns null.

Usage You can use IsDate to test whether a user-entered date is valid before you
convert it to a date datatype. To convert a value into a date value, use the Date
function.

Examples This statement returns true:

IsDate("Jan 1, 95")

This statement returns false:

IsDate("Jan 32, 1997")

If the SingleLineEdit sle_Date_Of_Hire contains 7/1/91, these statements store
1991-07-01 in HireDate:

Date HireDate
IF IsDate(sle_Date_Of_Hire.text) THEN
 HireDate = Date(sle_Date_Of_Hire.text)
END IF

See also IsDate method for DataWindows in the DataWindow Reference or the online
Help

IsHebrew
Description Tests whether a particular character is a Hebrew character. For a string,

IsHebrew tests only the first character on the left.

Syntax IsHebrew (character)

Return value Boolean. Returns true if character is an Hebrew character and false if it is not.

Argument Description

datevalue A string whose value you want to test to determine whether it is a
valid date

Chapter 10 PowerScript Functions

PowerScript Reference 635

IsHebrewAndNumbers
Description Tests whether a particular string is composed entirely of Hebrew characters and

numbers.

Syntax IsHebrewAndNumbers (string)

Return value Boolean. Returns true if string is composed entirely of Hebrew characters and
numbers and false if it is not.

IsImpersonating
Description Queries whether a COM object running on MTS is impersonating the client.

Applies to TransactionServer objects

Syntax transactionserver.IsImpersonating ()

Return value Boolean. Returns true if the component is impersonating the client and false if
it is not.

IsInTransaction
Description Indicates whether a component is executing in a transaction.

Applies to TransactionServer objects

Syntax transactionserver.IsInTransaction ()

Return value Boolean. Returns true if the component is executing as part of a transaction and
false if it is not.

IsNull

636 PocketBuilder

IsNull
Description Reports whether the value of a variable or expression is null.

Syntax IsNull (any)

Return value Boolean. Returns true if any is null and false if it is not.

Usage Use IsNull to test whether a user-entered value or a value retrieved from the
database is null. IsNull works for all datatypes but does not work for arrays.

If one or more columns in a DataWindow are required columns, that is, they
must contain data, you do not want to update the database if the columns have
null values. You can use FindRequired to find rows in which those columns have
null values, instead of using IsNull to evaluate each row and column.

Setting a variable to null
To set a variable to null, use the SetNull function.

Examples These statements set lb_test to true:

integer a, b
boolean lb_test
SetNull(b)
lb_test = IsNull(a + b)

See also SetNull
IsNull method for DataWindows in the DataWindow Reference

Argument Description

any A variable or expression that you want to test to determine whether
its value is null

Chapter 10 PowerScript Functions

PowerScript Reference 637

IsNumber
Description Reports whether the value of a string is a number.

Syntax IsNumber (string)

Return value Boolean. Returns true if string is a valid PowerScript number and false if it is
not. If string is null, IsNumber returns null.

Usage Use IsNumber to check that text in an edit control can be converted to a number.

To convert a string to a specific numeric datatype, use the Double, Dec, Integer,
Long, or Real function.

Examples This statement returns true:

IsNumber("32.65")

This statement returns false:

IsNumber("A16")

If the SingleLineEdit sle_Age contains 32, these statements store 32 in
li_YearsOld:

integer li_YearsOld
IF IsNumber(sle_Age.Text) THEN
 li_YearsOld = Integer(sle_Age.Text)
END IF

See also Double
Dec
Integer
Long
Real
IsNumber method for DataWindows in the DataWindow Reference

Argument Description

string A string whose value you want to test to determine whether it is a
valid PowerScript number

IsPreview

638 PocketBuilder

IsPreview
Description Reports whether a RichTextEdit control is in preview mode.

Applies to RichTextEdit controls

Syntax rtename.IsPreview ()

Return value Boolean. Returns true if rtename is in preview mode and false if it is in data
entry mode.

IsSecurityEnabled
Description Indicates whether or not security checking is enabled for a COM object

running on MTS or COM+.

Applies to TransactionServer objects

Syntax transactionserver.IsSecurityEnabled ()

Return value Boolean. Returns true if security checking is enabled and false if it is not.

IsSIPVisible
Description Indicates whether the SIP is currently visible to the user.

Syntax Boolean IsSIPVisible ()

Return value Boolean. Returns “true” if the SIP is currently visible and “false” if it is not
currently visible.

Usage You can use this method to report the status of the SIP window.

Chapter 10 PowerScript Functions

PowerScript Reference 639

Examples The following example displays the status of the SIP window in a
single-line-edit text box:

IF isSIPVisible() THEN
sle_test.text = "SIP is UP"

ELSE
sle_test.text = "SIP is Down"

END IF

See also GetSIPRect
GetSIPType
SetSIPPreferredState

IsTime
Description Reports whether the value of a string is a valid time value.

Syntax IsTime (timevalue)

Return value Boolean. Returns true if timevalue is a valid time and false if it is not. If
timevalue is null, IsTime returns null.

Usage Use IsTime to test to whether a value a user enters in an edit control is a valid
time.

To convert a string to an time value, use the Time function.

Examples This statement returns true:

IsTime("8:00:00 am")

This statement returns false:

IsTime("25:00")

Argument Description

timevalue A string whose value you want to test to determine whether it is a
valid time

IsTransactionAborted

640 PocketBuilder

If the SingleLineEdit sle_EndTime contains 4:15 these statements store
04:15:00 in lt_QuitTime:

Time lt_QuitTime
IF IsTime sle_EndTime.Text) THEN
 lt_QuitTime = Time(sle_EndTime.Text)
END IF

See also Time
IsTime method for DataWindows in the DataWindow Reference or the online
Help

IsTransactionAborted
Description Determines whether the current transaction, in which an EAServer component

participates, has been aborted.

Applies to TransactionServer objects

Syntax transactionserver.IsTransactionAborted ()

Return value Boolean. Returns true if the current transaction has been aborted and false if it
has not.

Chapter 10 PowerScript Functions

PowerScript Reference 641

IsValid
Description Determines whether an object variable is instantiated—whether its value is a

valid object handle.

Syntax IsValid (objectvariable)

Return value Boolean. Returns true if objectvariable is an instantiated object. Returns false
if objectvariable is not an object, or if it is an object that is not instantiated. If
objectvariable is null, IsValid returns null.

Usage Use IsValid instead of the Handle function to determine whether a window is
open.

Examples This statement determines whether the window w_emp is open and if it is not,
opens it:

IF IsValid(w_emp) = FALSE THEN Open(w_emp)

This example returns -1 because the IsValid function returns false. Although the
objectvariable argument is a valid string, it is not an instantiated object. The
IsValid method would return true only if la_value was an instantiated object:

any la_value

la_value = "I’m a string"
IF NOT IsValid(la_value) THEN return -1

See also Handle

Argument Description

objectvariable An object variable or a variable of type Any—typically a reference
to an object that you are testing for validity

KeyDown

642 PocketBuilder

KeyDown
Description Determines whether the user pressed the specified key on the computer

keyboard.

Syntax KeyDown (keycode)

Return value Boolean. Returns true if keycode was pressed and false if it was not. If keycode
is null, KeyDown returns null.

LastPos
Description Finds the last position of a target string in a source string.

Syntax LastPos (string1, string2 {, searchlength })

Return value Long. Returns a long whose value is the starting position of the last occurrence
of string2 in string1 within the characters specified in searchlength. If string2
is not found in string1 or if searchlength is 0, LastPos returns 0. If any
argument’s value is null, LastPos returns null.

Usage The LastPos function is case sensitive. The entire target string must be found
in the source string.

Examples This statement returns 6, because the position of the last occurrence of RU is
position 6:

LastPos("BABE RUTH", "RU")

Argument Description

string1 The string in which you want to find string2.

string2 The string you want to find in string1.

searchlength
(optional)

A long that limits the search to the leftmost searchlength characters
of the source string string1. The default is the entire string.

Chapter 10 PowerScript Functions

PowerScript Reference 643

This statement returns 3:

LastPos("BABE RUTH", "B")

This statement returns 0, because the case does not match:

LastPos("BABE RUTH", "be")

This statement searches the leftmost 4 characters and returns 0, because the
only occurrence of RU is after position 4. The search length must be at least 7
(to include the complete string RU) before the statement returns 6 for the
starting position of the last occurence of RU:

LastPos("BABE RUTH", "RU", 4)

These statements change the text in the SingleLineEdit sle_group. The last
instance of the text NY is changed to North East:

long place_nbr
place_nbr = LastPos(sle_group.Text, "NY")
sle_group.SelectText(place_nbr, 2)
sle_group.ReplaceText("North East")

These statements separate the return value of GetBandAtPointer into the band
name and row number. The LastPos function finds the position of the (last) tab
in the string and the Left and Mid functions extract the information to the left
and right of the tab:

string s, ls_left, ls_right
integer li_tab

s = dw_groups.GetBandAtPointer()
li_tab = LastPos(s, "~t")

ls_left = Left(s, li_tab - 1)
ls_right = Mid(s, li_tab + 1)

These statements tokenize a source string backwards:

// Tokenize the source string backwards
// Results in "pbsyc90.dll powerbuilder
// shared sybase programs c:

string sSource = &
'c:\programs\sybase\shared\powerbuilder\pbsyc90.dll'

string sFind = '\'
string sToken
long llStart, llEnd

llEnd = Len(sSource) + 1

Left

644 PocketBuilder

DO
llStart = LastPos(sSource, sFind, llEnd)
sToken = Mid(sSource, (llStart + 1), &

(llEnd - llStart))
mle_comment.text += sToken + ' '
llEnd = llStart - 1

LOOP WHILE llStart > 1

See also Pos

Left
Description Obtains a specified number of characters from the beginning of a string.

Syntax Left (string, n)

Return value String. Returns the leftmost n characters in string if it succeeds and the empty
string ("") if an error occurs. If any argument’s value is null, Left returns null. If
n is greater than or equal to the length of the string, Left returns the entire string.
It does not add spaces to make the return value’s length equal to n.

Examples This statement returns BABE:

Left("BABE RUTH", 4)

This statement returns BABE RUTH:

Left("BABE RUTH", 40)

These statements store the first 40 characters of the text in the SingleLineEdit
sle_address in emp_address:

string emp_address
emp_address = Left(sle_address.Text, 40)

Argument Description

string The string you want to search

n A long specifying the number of characters you want to return

Chapter 10 PowerScript Functions

PowerScript Reference 645

For sample code that uses Left to parse two tab-separated values, see the Pos
function.

See also Mid
Pos
Right
Left method for DataWindows in the DataWindow Reference

LeftW
Description Obtains a specified number of characters from the beginning of a string.

Obsolete function
This function is obsolete. It has the same behavior as Left in all environments.

Syntax LeftW (string, n)

Return value String

LeftTrim
Description Removes spaces from the beginning of a string.

Syntax LeftTrim (string)

LeftTrimW (string)

Argument Description

string The string you want returned with leading spaces deleted

LeftTrimW

646 PocketBuilder

Return value String. Returns a copy of string with leading spaces deleted if it succeeds and
the empty string ("") if an error occurs. If string is null, LeftTrim returns null.

Examples This statement returns RUTH:

LeftTrim(" RUTH")

These statements delete leading spaces from the text in the MultiLineEdit
mle_name and store the result in emp_name:

string emp_name
emp_name = LeftTrim(mle_name.Text)

See also RightTrim
Trim
LeftTrim method for DataWindows in the DataWindow Reference

LeftTrimW
Description Removes spaces from the beginning of a string.

Obsolete function
This function is obsolete. It has the same behavior as LeftTrim in all
environments.

Syntax LeftTrimW (string)

Return value String. Returns a copy of string with leading spaces deleted if it succeeds and
the empty string ("") if an error occurs. If string is null, LeftTrimW returns null.

Chapter 10 PowerScript Functions

PowerScript Reference 647

Len
Description Reports the length of a string or a blob.

Syntax Len (stringorblob)

Return value Long. Returns a long whose value is the length of stringorblob if it succeeds
and -1 if an error occurs. If stringorblob is null, Len returns null.

Usage Len counts the number of characters in a string. The null that terminates a string
is not included in the count.

If you specify a size when you declare a blob, that is the size reported by Len.
If you do not specify a size for the blob, Len initially reports the blob’s length
as 0. PocketBuilder assigns a size to the blob the first time you assign data to
the blob. Len reports the length of the blob as the number characters it can
contain.

Examples This statement returns 0:

Len("")

These statements store in the variable s_address_len the length of the text in
the SingleLineEdit sle_address:

long s_address_len
s_address_len = Len(sle_address.Text)

The following scenarios illustrate how the declaration of blobs affects their
length, as reported by Len.

In the first example, an instance variable called ib_blob is declared but not
initialized with a size. If you call Len before data is assigned to ib_blob, Len
returns 0. After data is assigned, Len returns the blob’s new length.

The declaration of the instance variable is:

blob ib_blob

The sample code is:

long ll_len

Argument Description

stringorblob The string or blob for which you want the length in number of
characters or in number of bytes

LenW

648 PocketBuilder

ll_len = Len(ib_blob) // ll_len set to 0
ib_blob = Blob("Test String")
ll_len = Len(ib_blob) // ll_len set to 11

In the second example, ib_blob is initialized to the size 100 when it is declared.
When you call Len for ib_blob, it always returns 100. This example uses
BlobEdit, instead of Blob, to assign data to the blob because its size is already
established. The declaration of the instance variable is:

blob{100} ib_blob

The sample code is:

long ll_len
ll_len = Len(ib_blob) // ll_len set to 100
BlobEdit(ib_blob, 1, "Test String")
ll_len = Len(ib_blob) // ll_len set to 100

See also Len method for DataWindows in the DataWindow Reference

LenW
Description Reports the length of a string or a blob.

Obsolete function
This function is obsolete. It has the same behavior as Len in all environments.

Syntax LenW (stringorblob)

Length
Description Reports the length in bytes of an open OLE stream.

Chapter 10 PowerScript Functions

PowerScript Reference 649

Len function
To get the length of a string or blob, use the Len function.

Applies to OLEStream objects

Syntax olestream.Length (sizevar)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

LibraryCreate
Description Creates an empty PocketBuilder or PowerBuilder library with optional

comments.

Syntax LibraryCreate (libraryname {, comments })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, LibraryCreate returns null.

Usage LibraryCreate creates a PocketBuilder library file (PKL) in the current
directory, unless you specify a directory path as part of libraryname. If you do
not specify an extension, LibraryCreate adds the extension .PKL. In
PowerBuilder, LibraryCreate creates a PowerBuilder library file (PBL).

Examples This statement in a PowerBuilder application creates a library named dwTemp
in the PB directory on drive C and associates a comment with the library:

LibraryCreate("c:\pb\dwTemp.pbl", &
 "Temporary library for dynamic DataWindows")

Argument Description

libraryname A string whose value is the name of the PocketBuilder library you
want to create. If you want to create the library somewhere other
than the current directory, enter the full path name.

comments
(optional)

A string whose value is the comments you want to associate with
the library.

LibraryDelete

650 PocketBuilder

See also LibraryDelete
LibraryDirectory
LibraryExport
LibraryImport

LibraryDelete
Description Deletes a library file or, if you specify a DataWindow object, deletes the

DataWindow object from the library.

Syntax LibraryDelete (libraryname {, objectname, objecttype })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, LibraryDelete returns null.

Usage You can delete DataWindow objects from a library in a script with the
LibraryDelete function. To delete other types of objects, use the Library painter.

Examples This statement deletes a library called dwTemp in the current directory and on
the current application library path:

LibraryDelete("dwTemp.pkl")

See also LibraryCreate
LibraryDirectory
LibraryExport
LibraryImport

Argument Description

libraryname A string whose value is the name of the PocketBuilder library you
want to delete or from which you want to delete a DataWindow
object. If you do not specify a full path, LibraryDelete uses the
system’s standard file search order to find the file.

objectname
(optional)

A string whose value is the name of the DataWindow object you
want to delete from libraryname.

objecttype
(optional)

A value of the LibImportType enumerated datatype identifying the
type of object you want to delete. The only supported object type is
ImportDataWindow!.

Chapter 10 PowerScript Functions

PowerScript Reference 651

LibraryDirectory
Description Obtains a list of the objects in a PowerBuilder library. The information

provided is the object name, the date and time it was last modified, and any
comments for the object. You can get a list of all objects or just objects of a
specified type.

Syntax LibraryDirectory (libraryname, objecttype)

Return value String. LibraryDirectory returns a tab-separated list with one object per line. The
format of the list is:

name ~t date/time modified ~t comments ~n

Returns the empty string ("") if an error occurs. If any argument’s value is null,
LibraryDirectory returns null.

LibraryDirectoryEx
Description Obtains a list of the objects in a PowerBuilder library. The information

provided is the object name, the date and time it was last modified, any
comments for the object, and the object’s type. You can get a list of all objects
or just objects of a specified type.

Syntax LibraryDirectoryEx (libraryname, objecttype)

Return value String. LibraryDirectoryEx returns a tab-separated list with one object per line.
The format of the list is:

name ~t date/time modified ~t comments ~t type~n

Returns the empty string ("") if an error occurs. If any argument’s value is null,
LibraryDirectoryEx returns null.

LibraryExport

652 PocketBuilder

LibraryExport
Description Exports an object from a library. The object is exported as syntax.

Syntax LibraryExport (libraryname, objectname, objecttype)
Return value String. Returns the syntax of the object if it succeeds. The syntax is the same as

the syntax returned when you export an object in the Library painter except that
LibraryExport does not include an export header. Returns the empty string ("")
if an error occurs. If any argument’s value is null, LibraryExport returns null.

LibraryImport
Description Imports a DataWindow object into a library. LibraryImport uses the syntax of the

DataWindow object, which is specified in text format, to recreate the object in
the library.

Syntax LibraryImport (libraryname, objectname, objecttype, syntax, errors
 {, comments })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, LibraryImport returns null.

LineCount
Description Determines the number of lines in an edit control that allows multiple lines.

Applies to RichTextEdit, MultiLineEdit, EditMask, and DataWindow controls

Chapter 10 PowerScript Functions

PowerScript Reference 653

Syntax editname.LineCount ()

Return value Long. Returns the number of lines in editname if it succeeds and -1 if an error
occurs. If editname is null, LineCount returns null.

Usage LineCount counts each visible line, whether it was the result of wrapping or
carriage returns.

When you call LineCount for a DataWindow, it reports the number of lines in
the edit control over the current row and column. A user can enter multiple
lines in a DataWindow column only if it has a text datatype and its box is large
enough to display those lines. The size of the column’s box determines the
number of lines allowed in the column. When the user is typing, lines do not
wrap automatically; the user must press enter to type additional lines.

In a MultiLineEdit control, lines wrap when the user’s typing fills the control
horizontally, unless either the HScrollBar or AutoHScroll property is true. If
horizontal scrolling is enabled with these properties, the user must press enter
to type additional lines.

A RichTextEdit control always contains an end-of-file mark even if there is no
text in the control. Therefore, its line count is always at least 1. Other edit
controls, when empty, have a line count of 0.

Examples If the MultiLineEdit mle_Instructions has 9 lines, this example sets li_Count to
9:

integer li_Count
li_Count = mle_Instructions.LineCount()

These statements display a MessageBox if fewer than two lines have been
entered in the MultiLineEdit mle_Address:

integer li_Lines
li_Lines = mle_Address.LineCount()
IF li_Lines < 2 THEN
 MessageBox("Warning", "2 lines are required.")
END IF

Argument Description

editname The name of the control for which you want the number of lines

LineLength

654 PocketBuilder

LineLength
Description Determines the length of the line containing the insertion point in an edit

control.

Applies to RichTextEdit, MultiLineEdit, and EditMask controls

Syntax editname.LineLength ()

Return value Long. Returns the length of the line containing the insertion point in editname.
Returns -1 if an error occurs. If editname is null, LineLength returns null.

Usage If the control contains a selection instead of a single insertion point, LineLength
counts the line at the beginning of the selection.

PocketBuilder remembers where the insertion point is in each editable control.
When the user moves the focus to another control, you can still find out the
length of the line most recently edited by calling the LineLength function for
that control.

Insertion point in editable controls
Because PocketBuilder remembers the position of the insertion point, users can
resume editing at the insertion point if they make the control active by tabbing
to it. When users make a control active by clicking on it, they move the
insertion point as well.

For an EditMask control, LineLength reports the length of the mask, regardless
of the number of characters the user has entered.

Examples If the insertion point is positioned anywhere in line 5 of mle_Contact and line
5 contains the text Select All, il_linelength is set to 10 (the length of line 5):

integer li_linelength
li_linelength = mle_Contact.LineLength()

Argument Description

editname The name of the RichTextEdit, MultiLineEdit, or EditMask in
which you want to determine the length of the line containing the
insertion point

Chapter 10 PowerScript Functions

PowerScript Reference 655

See also Position
SelectedLine
SelectedStart
TextLine

LineList
Description Provides a list of the lines in a routine included in a performance analysis

model.

Applies to ProfileRoutine object

Syntax iinstancename.LineList (list)

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• ModelNotExistsError!—The model does not exist

Usage Use this function to extract a list of the lines in a routine included in the
performance analysis model. You must have previously created the
performance analysis model from a trace file using the BuildModel function.
Each line is defined as a ProfileLine object and provides the number of times
the line was hit, any calls made from the line, and the time spent on the line and
in any called functions. The lines are listed in numeric order.

Lines are not returned for database statements and objects. If line information
was not logged in the trace file, lines are not returned.

Argument Description

instancename Instance name of the ProfileRoutine object.

list An unbounded array variable of datatype ProfileLine in which
LineList stores a ProfileLine object for each line in the routine.
This argument is passed by reference.

LinkTo

656 PocketBuilder

Examples This example gets a list of the routines included in a performance analysis
model and then gets a list of the lines in each routine:

Long ll_cnt
ProfileLine lproln_line[]

lpro_model.BuildModel()
lpro_model.RoutineList(iprort_list)

FOR ll_cnt = 1 TO UpperBound(iprort_list)
 iprort_list[ll_cnt].LineList(lproln_line)
 ...
NEXT

See also BuildModel

LinkTo
Description Establishes a link between an OLE control and a file or an item within the file.

Syntax olecontrol.LinkTo (filename {, sourceitem })

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

Log
Returns the natural logarithm of a number. For an ErrorLogging object, this
function can be used to write a string to the log file maintained by the object’s
container.

To Use

Determine the natural logarithm of a number Syntax 1

Write a string to a log file Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 657

Syntax 1 For all objects
Description Determines the natural logarithm of a number.

Syntax Log (n)

Return value Double. Returns the natural logarithm of n. An execution error occurs if n is
negative or zero. If n is null, Log returns null.

Inverse of Log
The inverse of the Log function is the Exp function.

Examples This statement returns 2.302585092:

Log(10)

This statement returns –.693147. . . :

Log(0.5)

Both these statements result in an error during execution:

Log(0)
Log(-2)

After the following statements execute, the value of a is 200:

double a, b = Log(200)
a = Exp(b)// a = 200

See also Exp
LogTen
Log method for DataWindows in the DataWindow Reference

Argument Description

n The number for which you want the natural logarithm (base e). The
value of n must be greater than 0.

Login

658 PocketBuilder

Syntax 2 For ErrorLogging objects
Description Writes a string to the log file maintained by the object’s container.

Applies to ErrorLogging objects

Syntax errorlogobj.Log (message)

Return value None.

Login
Description Logs in to a POOM object, enabling a Pocket PC or Smartphone device user to

perform operations relating to appointments, contacts, and tasks.

Applies to POOM objects

Syntax Integer objectname.Login ({ parentwindow })

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

Argument Description

objectname The name of the POOM object

parentwindow
(optional)

The name of the parent window or user object for the POOM
object

Chapter 10 PowerScript Functions

PowerScript Reference 659

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Usage A user must be logged in to a POOM object to make any changes to or view
any appointments, contacts, or tasks. The user must log out to remove the
POOM object from memory.

Examples The following example logs in to a POOM object:

Int li_rtn
POOM po_1
...
po_1 = CREATE POOM
li_rtn = po_1.login()

See also Logout

Logout
Description Logs out of a POOM object, freeing the memory used by the object.

Applies to POOM objects

Syntax objectname.Logout ()

Return value None.

Usage The user must log out of a POOM object to remove it from memory.

Examples The following example logs out of a POOM object:

po_1.logout()

See also Login

Argument Description

objectname The name of the POOM object

LogTen

660 PocketBuilder

LogTen
Description Determines the base 10 logarithm of a number.

Syntax LogTen (n)

Usage Double. Returns the base 10 logarithm of n. An execution error occurs if n is
negative. If n is null, LogTen returns null.

Inverse of LogTen The expression 10^n is the inverse of LogTen(n). To
obtain the value of n in the equation r = LogTen(n), use n = 10^r.

Examples This statement returns 1:

LogTen(10)

The following statements both return 0:

LogTen(1)

LogTen(0)

This statement results in an execution error:

LogTen(– 2)

After the following statements execute, the value of a is 200:

double a, b = LogTen(200)
a = 10^b// a = 200

See also Exp
LogTen
LogTen method for DataWindows in the DataWindow Reference

Argument Description

n The number for which you want the base 10 logarithm. The value
of n must not be negative.

Chapter 10 PowerScript Functions

PowerScript Reference 661

Long
Converts data into data of type long. There are two syntaxes.

Syntax 1 For combining integers
Description Combines two unsigned integers into a long value.

Syntax Long (lowword, highword)

Return value Long. Returns the long if it succeeds and -1 if an error occurs. If any argument’s
value is null, Long returns null.

Usage Use Long for passing values to external C functions or specifying a value for
the LongParm property of PocketBuilder’s Message object.

Examples These statements convert the UnsignedIntegers nLow and nHigh into a long
value:

UnsignedInt nLow // Low integer 16 bits
UnsignedInt nHigh // High integer 16 bits
long LValue // Long value 32 bits

nLow = 12345
nHigh = 0
LValue = Long(nLow, nHigh)
MessageBox("Long Value", Lvalue)

To Use

Combine two unsigned integers into a long value Syntax 1

Convert a string whose value is a number into a long or to
obtain a long value stored in a blob

Syntax 2

Argument Description

lowword An UnsignedInteger to be the low word in the long

highword An UnsignedInteger to be the high word in the long

Long

662 PocketBuilder

Syntax 2 For converting strings and blobs
Description Converts a string whose value is a number into a long or obtains a long value

stored in a blob.

Syntax Long (stringorblob)

Return value Long. Returns the value of stringorblob as a long if it succeeds and 0 if
stringorblob is not a valid PowerScript number or if it is an incompatible
datatype. If stringorblob is null, Long returns null.

Usage To distinguish between a string whose value is the number 0 and a string whose
value is not a number, use the IsNumber function before calling the Long
function.

Examples This statement returns 2167899876 as a long:

Long("2167899876")

After assigning blob data from the database to lb_blob, the following example
obtains the long value stored at position 20 in the blob:

long lb_num
lb_num = Long(BlobMid(lb_blob, 20, 4))

For an example of assigning and extracting values from a blob, see Real.

See also Dec
Double
Integer
Real
Long method for DataWindows in the DataWindow Reference

Argument Description

stringorblob The string you want returned as a long or a blob in which the first
value is the long value. The rest of the contents of the blob is
ignored. Stringorblob can also be an Any variable containing a
string or blob.

Chapter 10 PowerScript Functions

PowerScript Reference 663

Lower
Description Converts all the characters in a string to lowercase.

Syntax Lower (string)

Return value String. Returns string with uppercase letters changed to lowercase if it succeeds
and the empty string ("") if an error occurs. If string is null, Lower returns null.

Examples This statement returns babe ruth:

Lower("Babe Ruth")

See also Upper
Lower method for DataWindows in the DataWindow Reference

LowerBound
Description Obtains the lower bound of a dimension of an array.

Syntax LowerBound (array {, n })

Argument Description

string The string you want to convert to lowercase letters

Argument Description

array The name of the array for which you want the lower bound of a
dimension

n

(optional)

The number of the dimension for which you want the lower bound.
The default is 1

LowerBound

664 PocketBuilder

Return value Long. Returns the lower bound of dimension n of array and -1 if n is greater
than the number of dimensions of the array. If any argument’s value is null,
LowerBound returns null.

Usage For variable-size arrays, memory is allocated for the array when you assign
values to it. Before you assign values, the lower bound is 1 and the upper bound
is 0.

Examples The following statements illustrate the values LowerBound reports for
fixed-size arrays and for variable-size arrays before and after memory has been
allocated:

integer a[5], b[2,5]
LowerBound(a) // Returns 1
LowerBound(a, 1) // Returns 1
LowerBound(a, 2) // Returns -1, a has only 1 dim
LowerBound(b, 2) // Returns 1

integer c[]
LowerBound(c) // Returns 1
c[50] = 900
LowerBound(c) // Returns 1

integer d[-10 to 50]
LowerBound(d) // Returns - 10

See also UpperBound

Chapter 10 PowerScript Functions

PowerScript Reference 665

mailAddress
Description Updates the mailRecipient array for a mail message.

Applies to mailSession object

Syntax mailsession.mailAddress ({ mailmessage })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnUserAbort!

mailDeleteMessage
Description Deletes a mail message from the user’s electronic mail inbox.

Applies to mailSession object

Syntax mailsession.mailDeleteMessage (messageid)

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnInvalidMessage!
mailReturnUserAbort!

mailGetMessages

666 PocketBuilder

mailGetMessages
Description Populates the messageID array of a mailSession object with the message IDs

in the user’s inbox.

Applies to mailSession object

Syntax mailsession.mailGetMessages ({ messagetype, } { unreadonly })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnNoMessages!
mailReturnUserAbort!

mailHandle
Description Obtains the handle of a mailSession object.

Applies to mailSession object

Syntax mailsession.mailHandle ()

Return value UnsignedLong. Returns the internal handle of the mail session object. If
mailsession is null, mailHandle returns null.

Chapter 10 PowerScript Functions

PowerScript Reference 667

mailLogoff
Description Ends the mail session, breaking the connection between the PocketBuilder

application and mail. If the mail application was already running when
PocketBuilder began the mail session, it is left in the same state.

Applies to mailSession object

Syntax mailsession.mailLogoff ()

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!

Usage To release the memory used by the mailSession object, use the DESTROY
keyword after ending the mail session.

Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

Examples This statement terminates the current mail session:

current_session. mailLogoff()
DESTROY current_session

See also mailLogon

Argument Description

mailsession A mailSession object identifying the session from which you want
to log off

mailLogon

668 PocketBuilder

mailLogon
Description Establishes a mail session for the PocketBuilder application. The

PocketBuilder application can start a new session or join an existing session.

Applies to mailSession object

Syntax mailsession.mailLogon ({ profile, password } {, logonoption })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnLoginFailure!
mailReturnInsufficientMemory!
mailReturnTooManySessions!
mailReturnUserAbort!

If any argument’s value is null, mailLogon returns null.

Argument Description

mailsession A mailSession object identifying the session you want to logon to.

profile
(optional)

A string whose value is the user’s mail system profile or user ID.

password
(optional)

A string whose value is the user’s mail system password.

logonoption
(optional)

A value of the mailLogonOption enumerated datatype specifying
the logon options:

• mailNewSession! — Starts a new mail session, whether or not
the mail application is already running

• mailDownLoad! — Forces the mail application to download any
new messages from the server to the user’s inbox. Starts a new
mail session only if the mail application is not running

• mailNewSessionWithDownLoad! — Starts a new mail session
and forces new messages to be downloaded from the server to
the user’s inbox

The default is to use an existing session if possible and not to force
new messages to be downloaded. This is the only valid option for
PocketBuilder.

Chapter 10 PowerScript Functions

PowerScript Reference 669

Usage If you do not direct mailLogon to start a new session and the mail application is
already running on the user’s computer, then the PocketBuilder mail session
attaches to the existing session. A profile and password are not necessary.

When mailLogon establishes a new session, then the mail system’s dialog box
prompts for the profile and password if the script does not supply them.

The download option forces the mail server to download the latest messages to
the user’s inbox. This ensures that the inbox is up to date; it does not make the
messages available to PocketBuilder.

Before calling mailLogon, you must declare and create a mailSession object.

Examples In this example, the mailSession object new_session is an instance variable of
the window. The window’s Open event script allocates memory for the
mailSession object and logs on. During the logon process, the mail application
displays a dialog box prompting for the profile and password:

new_session = CREATE mailSession
new_session.mailLogon(mailNewSession!)

This example establishes a new mail session and makes the user’s inbox up to
date. The user wo not be prompted for an ID and password because user
information is provided. Here the mailSession object is a local variable:

mailSession new_session
new_session = CREATE mailSession
new_session.mailLogon("jpl", "hotstuff", &
 mailNewSessionWithDownLoad!)

See also mailLogoff

mailReadMessage
Description Opens a mail message whose ID is stored in the mail session’s message array.

You can choose to read the entire message or the envelope (sender, date
received, and so on) only. If a message has attachments, they are stored in a
temporary file. You can also choose to have the message text written to in a
temporary file.

Applies to mailSession object

mailRecipientDetails

670 PocketBuilder

Syntax mailsession.mailReadMessage (messageid, mailmessage, readoption,
 mark)

Return value MailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!

If any argument’s value is null, mailReadMessage returns null.

mailRecipientDetails
Description Displays a dialog box with the specified recipient’s address information.

Applies to mailSession object

Syntax mailsession.mailRecipientDetails (mailrecipient {, allowupdates })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnUnknownRecipient!
mailReturnUserAbort!

If any argument’s value is null, mailRecipientDetails returns null.

mailResolveRecipient
Description Obtains a valid e-mail address based on a partial or full user name and

optionally updates information in the system’s address list if the user has
privileges to do so.

Applies to mailSession object

Chapter 10 PowerScript Functions

PowerScript Reference 671

Syntax mailsession.mailResolveRecipient (recipient {, allowupdates })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnUserAbort!

If any argument’s value is null, mailResolveRecipient returns null.

mailSaveMessage
Description Creates a new message in the user’s inbox or replaces an existing message.

Applies to mailSession object

Syntax mailsession.mailSaveMessage (messageid, mailmessage)

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnInvalidMessage!
mailReturnUserAbort!
mailReturnDiskFull!

If any argument’s value is null, mailSaveMessage returns null.

mailSend
Description Sends a mail message. If no message information is supplied, the mail system

provides a dialog box for entering it before sending the message.

mailSend

672 PocketBuilder

Applies to mailSession object

Syntax mailsession.mailSend ({ mailmessage })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnLoginFailure!
mailReturnUserAbort!
mailReturnDiskFull!
mailReturnTooManySessions!
mailReturnTooManyFiles!
mailReturnTooManyRecipients!
mailReturnUnknownRecipient!
mailReturnAttachmentNotFound!

If any argument’s value is null, mailSend returns null.

Usage Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

For mailSend, mailOriginator! is not a valid value for the Recipient property of
the mailMessage object. The valid values are mailto!, mailcc!, and mailbcc!.
To specify that the sender receive a copy of the message, use mailcc!.

Examples These statements create a mail session, send a message, and then log off the
mail system and destroy the mail session object:

mailSession mSes
mailReturnCode mRet
mailMessage mMsg

// Create a mail session
mSes = create mailSession

// Log on to the session
mRet = mSes.mailLogon(mailNewSession!)

Argument Description

mailsession A mailSession object identifying the session in which you want to
send the mail message

mailmessage
(optional)

A mailMessage structure

Chapter 10 PowerScript Functions

PowerScript Reference 673

IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail", 'Logon failed.')
 RETURN
END IF

// Populate the mailMessage structure
mMsg.Subject = mle_subject.Text
mMsg.NoteText = 'Luncheon at 12:15'
mMsg.Recipient[1].name = 'Smith, John'
mMsg.Recipient[2].name = 'Shaw, Sue'

// Send the mail
mRet = mSes.mailSend(mMsg)

IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail Send", 'Mail not sent')
 RETURN
END IF

mSes.mailLogoff()
DESTROY mSes

See also mailReadMessage
mailResolveRecipient

MakeCall
Description Places a call using the properties of the PhoneCall object.

Applies to PhoneCall objects

Syntax objectname.MakeCall ()

Return value Integer. Returns 1 for success and a negative value if an error occurs.

Argument Description

objectname The name of the PhoneCall object on which the call will be made

Match

674 PocketBuilder

Examples The following example gets a phone number and name from single-line edit
boxes, sets properties of the pcall_1 object, and makes a call:

// Global variable: Long g_phInit = 0
integer li_ret
if (g_phInit > 0) then

pcall_1.VoiceCall = true
pcall_1.PhoneNumber = sle_number.text
pcall_1.CalledParty = sle_name.text
li_ret = pcall_1.MakeCall()

else
sle_1.text = "Call not initialized"

end if

See also AcceptCall
AllowReceivingCalls
DropCall
SetHold
SetMute
SetRingTone

Match
Description Determines whether a string’s value contains a particular pattern of characters.

Syntax Match (string, textpattern)

Return value Boolean. Returns true if string matches textpattern and false if it does not.
Match also returns false if either argument has not been assigned a value or the
pattern is invalid. If any argument’s value is null, Match returns null.

Usage Match enables you to evaluate whether a string contains a general pattern of
characters. To find out whether a string contains a specific substring, use the
Pos function.

Argument Description

string The string in which you want to look for a pattern of characters

textpattern A string whose value is the text pattern

Chapter 10 PowerScript Functions

PowerScript Reference 675

Textpattern is similar to a regular expression. It consists of metacharacters,
which have special meaning, and ordinary characters, which match
themselves. You can specify that the string begin or end with one or more
characters from a set, or that it contain any characters except those in a set.

A text pattern consists of metacharacters, which have special meaning in the
match string, and nonmetacharacters, which match the characters
themselves.The following tables explain the meaning and use of these
metacharacters.

Table 10-6: Metacharacters used by Match function

The metacharacters asterisk (*), plus (+), and question mark (?) are unary
operators that are used to specify repetitions in a regular expression:

Table 10-7: Unary operators used as metacharacters by Match function

Metacharacter Meaning Example

Caret (^) Matches the beginning of
a string

^C matches C at the beginning of
a string.

Dollar sign ($) Matches the end of a
string

s$ matches s at the end of a
string.

Period (.) Matches any character . . . matches three consecutive
characters.

Backslash (\) Removes the following
metacharacter’s special
characteristics so that it
matches itself

\$ matches $.

Character class (a
group of characters
enclosed in square
brackets ([]))

Matches any of the
enclosed characters

[AEIOU] matches A, E, I, O, or
U.

You can use hyphens to
abbreviate ranges of characters
in a character class. For example,
[A-Za-z] matches any letter.

Complemented
character class (first
character inside the
brackets is a caret)

Matches any character
not in the group
following the caret

[^0-9] matches any character
except a digit, and [^A-Za-z]
matches any character except a
letter.

Metacharacter Meaning Example

* (asterisk) Indicates zero or more
occurrences

A* matches zero or more As (no
As, A, AA, AAA, and so on)

+ (plus) Indicates one or more
occurrences

A+ matches one A or more than
one A (A, AAA, and so on)

? (question mark) Indicates zero or one
occurrence

A? matches an empty string ("")
or A

Match

676 PocketBuilder

Sample patterns The following table shows various text patterns and sample
text that matches each pattern:

Table 10-8: Text pattern examples for Match function

Examples This statement returns true if the text in sle_ID begins with one or more
uppercase or lowercase letters (^ at the beginning of the pattern means that the
beginning of the string must match the characters that follow):

Match(sle_ID.Text, "^[A-Za-z]")

This statement returns false if the text in sle_ID contains any digits (^ inside a
bracket is a complement operator):

Match(sle_ID.Text, "[^0-9]")

This statement returns true if the text in sle_ID contains one uppercase letter:

Match(sle_ID.Text, "[A-Z]")

This statement returns true if the text in sle_ID contains one or more uppercase
letters (+ indicates one or more occurrences of the pattern):

This pattern Matches

AB Any string that contains AB; for example, ABA, DEABC,
graphAB_one

B* Any string that contains 0 or more Bs; for example, AC, B,
BB, BBB, ABBBC, and so on

AB*C Any string containing the pattern AC or ABC or ABBC, and
so on (0 or more Bs)

AB+C Any string containing the pattern ABC or ABBC or ABBBC,
and so on (1 or more Bs)

ABB*C Any string containing the pattern ABC or ABBC or ABBBC,
and so on (1 B plus 0 or more Bs)

^AB Any string starting with AB

AB?C Any string containing the pattern AC or ABC (0 or 1 B)

^[ABC] Any string starting with A, B, or C

[^ABC] A string containing any characters other than A, B, or C

^[^abc] A string that begins with any character except a, b, or c

^[^a-z]$ Any single-character string that is not a lowercase letter (^
and $ indicate the beginning and end of the string)

[A-Z]+ Any string with one or more uppercase letters

^[0-9]+$ Any string consisting only of digits

^[0-9][0-9][0-9]$ Any string consisting of exactly three digits

^([0-9][0-9][0-9])$ Any consisting of exactly three digits enclosed in parentheses

Chapter 10 PowerScript Functions

PowerScript Reference 677

Match(sle_ID.Text, "[A-Z]+")

This statement returns false if the text in sle_ID contains anything other than
two digits followed by a letter (^ and $ indicate the beginning and end of the
string):

Match(sle_ID.Text, "^[0-9][0-9][A-Za-z]$")

See also Pos
Match method for DataWindows in the DataWindow Reference

MatchW
Description Determines whether a string’s value contains a particular pattern of characters.

Obsolete function
MatchW is an obsolete function. It has the same behavior as Match.

Syntax MatchW (string, textpattern)

Return value Boolean. Returns true if string matches textpattern and false if it does not.

Max
Description Determines the larger of two numbers.

Syntax Max (x, y)

Argument Description

x The number to which you want to compare y

y The number to which you want to compare x

MaxFARRequested

678 PocketBuilder

Return value The datatype of x or y, whichever datatype is more precise. If any argument’s
value is null, Max returns null.

Usage If either of the values being compared is null, Max returns null.

Examples This statement returns 7:

Max(4,7)

This statement returns -4:

Max(- 4, - 7)

This statement returns 8.2, a decimal value:

Max(8.2, 4)

See also Min
Max method for DataWindows in the DataWindow Reference

MaxFARRequested
Description Sets or retrieves the maximum acceptable value for a false acceptance rate.

Applies to BiometricScanner objects

Function availability
This function is not used by the HPBiometricScanner object implementation of
the BiometricScanner base class.

Syntax Integer scanner.FARRequested ({maxFAR })

Return value Integer. For the syntax without the maxFAR argument, returns the current value
for the maximum acceptable FAR.

Argument Description

scanner The scanner object associated with the device you want to use to
complete a scan

maxFAR Integer value that you use to set the maximum acceptable FAR

Chapter 10 PowerScript Functions

PowerScript Reference 679

For the syntax with the maxFAR argument, returns 1 for success or a negative
values if an error occurs.

Usage Together with the maximum false rejection rate, setting the maximum FAR is
how you set threshholds for returning scores in the verification stage of a scan
operation. If you assign -1 as the value for the maxFAR argument, the
manufacturer’s default setting is used for the maximum FAR value.

Examples The following example retrieves the maximum FAR to a local variable:

li_rtn = l_bioscanner.FARRequested()

See also FARPrecedence
MaxFRRRequested

MaxFRRRequested
Description Sets or retrieves the maximum acceptable value for a false rejection rate.

Applies to BiometricScanner objects

Function availability
This function is not used by the HPBiometricScanner object implementation of
the BiometricScanner base class.

Syntax Integer scanner.FRRRequested ({maxFRR })

Return value Integer. For the syntax without the maxFRR argument, returns the current value
for the maximum acceptable FRR.

For the syntax with the maxFRR argument, returns 1 for success or a negative
values if an error occurs.

Argument Description

scanner The scanner object associated with the device you want to use to
complete a scan

maxFRR Integer value that you use to set the maximum acceptable FRR

MemberDelete

680 PocketBuilder

Usage Together with the maximum false acceptance rate, setting the maximum FRR
is how you set threshholds for returning scores in the verification stage of a
scan operation. If you assign -1 as the value for the maxFRR argument, the
manufacturer’s default setting is used for the maximum FRR value.

Examples The following example retrieves the maximum FRR to a local variable:

li_rtn = l_bioscanner.FRRRequested()

See also FARPrecedence
MaxFRRRequested

MemberDelete
Description Deletes a member from an OLE object in a storage. The member can be another

OLE object (a substorage) or a stream.

Applies to OLEStorage objects

Syntax olestorage.MemberDelete (membername)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

MemberExists
Description Determines whether the named member is part of an OLE object in a storage.

The member can be another OLE object (a substorage) or a stream.

Applies to OLEStorage objects

Syntax olestorage.MemberExists (membername, exists)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 681

MemberRename
Description Renames a member in an OLE storage. The member can be another OLE

object (a substorage) or a stream.

Applies to OLEStorage objects

Syntax olestorage.MemberRename (membername, newname)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

MessageBox
Description Displays a system MessageBox with the title, text, icon, and buttons you

specify.

Syntax MessageBox (title, text {, icon {, button {, default } } })

Argument Description

title A string specifying the title of the message box, which appears in
the box’s title bar.

text The text you want to display in the message box. The text can be a
numeric datatype, a string, or a boolean value.

icon
(optional)

A value of the Icon enumerated datatype indicating the icon you
want to display on the left side of the message box. Values are:

• Information! (Default)

• StopSign!

• Exclamation!

• Question!

• None!

MessageBox

682 PocketBuilder

Return value Integer. Returns the number of the selected button (1, 2, or 3) if it succeeds and
-1 if an error occurs. If any argument’s value is null, MessageBox returns null.

Usage If the value of title or text is null, the MessageBox does not display. Unless you
specify otherwise, PocketBuilder continues executing the script when the user
clicks the button or presses enter, which is appropriate when the MessageBox
has one button. If the box has multiple buttons, you will need to include code
in the script that checks the return value and takes an appropriate action.

Before continuing with the current application, the user must respond to the
MessageBox. However, the user can switch to another application without
responding to the MessageBox.

When MessageBox does not work
Controls capture the mouse in order to perform certain operations. For
instance, CommandButtons capture the mouse during mouse clicks, Edit
controls capture for text selection, and scrollbars capture during scrolling. If a
MessageBox is invoked while the mouse is captured, unexpected results can
occur.

Because MessageBox grabs focus, you should not use it when focus is
changing, such as in a LoseFocus event. Instead, you might display a message
in the window’s title or a MultiLineEdit.

MessageBox also causes confusing behavior when called after PrintOpen. For
details, see PrintOpen.

button
(optional)

A value of the Button enumerated datatype indicating the set of
CommandButtons you want to display at the bottom of the message
box. The buttons are numbered in the order listed in the enumerated
datatype. Values are:

• OK! — (Default) OK button

• OKCancel! — OK and Cancel buttons

• YesNo! — Yes and No buttons

• YesNoCancel! — Yes, No, and Cancel buttons

• RetryCancel! — Retry and Cancel buttons

• AbortRetryIgnore! — Abort, Retry, and Ignore buttons

default
(optional)

The number of the button you want to be the default button. The
default is 1. If you specify a number larger than the number of
buttons displayed, MessageBox uses the default.

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 683

Examples This statement displays a MessageBox with the title Greeting, the text Hello
User, the default icon (Information!), and the default button (the OK button):

MessageBox("Greeting", "Hello User")

The following statements display a MessageBox titled Result and containing
the result of a function, the Exclamation icon, and the OK and Cancel buttons
(the Cancel button is the default):

integer Net
long Distance = 3.457

Net = MessageBox("Result", Abs(Distance), &
 Exclamation!, OKCancel!, 2)
IF Net = 1 THEN
 ... // Process OK.
ELSE
 ... // Process CANCEL.
END IF

Mid
Description Obtains a specified number of characters from a specified position in a string.

Syntax Mid (string, start {, length })

Argument Description

string The string from which you want characters returned.

start A long specifying the position of the first character you want
returned. (The position of the first character of the string is 1).

length
(optional)

A long whose value is the number of characters you want returned.
If you do not enter length or if length is greater than the number of
characters to the right of start, Mid returns the remaining characters
in the string.

Mid

684 PocketBuilder

Return value String. Returns characters specified in length of string starting at character
start. If start is greater than the number of characters in string, the Mid function
returns the empty string (""). If length is greater than the number of characters
remaining after the start character, Mid returns the remaining characters. The
return string is not filled with spaces to make it the specified length. If any
argument’s value is null, Mid returns null.

Usage To search a string for the position of the substring that you want to extract, use
the Pos function. Use the return value for the start argument of Mid. To extract
a specified number of characters from the beginning or end of a string, use the
Left or the Right function.

Examples This statement returns RUTH:

Mid("BABE RUTH", 5, 5)

This statement returns "":

Mid("BABE RUTH", 40, 5)

This statement returns BE RUTH:

Mid("BABE RUTH", 3)

These statements store the characters in the SingleLineEdit sle_address from
the 40th character to the end in ls_address_extra:

string ls_address_extra
ls_address_extra = Mid(sle_address.Text, 40)

The following user-defined function, called str_to_int_array, converts a string
into an array of integers. Each integer in the array will contain two characters
(one characters as the high byte (ASCII value * 256) and the second character
as the low byte). The function arguments are str, a string passed by value, and
iarr, an integer array passed by reference. The length of the array is initialized
before the function is called. If the integer array is longer than the string, the
script stores spaces. If the string is longer, the script ignores the extra
characters.

To call the function, use code like the following:

int rtn
iarr[20]=0// Initialize the array, if necessary
rtn = str_to_int_array("This is a test.", iarr)

The str_to_int_array function is:

long stringlen, arraylen, i
string char1, char2

Chapter 10 PowerScript Functions

PowerScript Reference 685

// Get the string and array lengths
arraylen = UpperBound(iarr)
stringlen = Len(str)

// Loop through the array
FOR i = 1 to arraylen
 IF (i*2 <= stringlen) THEN
 // Get two chars from str
 char1 = Mid(str, i*2, 1)
 char2 = Mid(str, i*2 - 1, 1)

 ELSEIF (i*2 - 1 <= stringlen) THEN
 // Get the last char
 char1 = " "
 char2 = Mid(str, i*2 - 1, 1)

 ELSE
 // Use spaces if beyond the end of str
 char1 = " "
 char2 = " "
 END IF

 iarr[i] = Asc(char1) * 256 + Asc(char2)
NEXT
RETURN 1

For sample code that converts the integer array back to a string, see Asc.

See also Asc
Left
Pos
Right
UpperBound
Mid method for DataWindows in the DataWindow Reference

MidW
Description Obtains a specified number of characters from a specified position in a string.

Min

686 PocketBuilder

Obsolete function
MidW is an obsolete function. It has the same behavior as Mid.

Syntax MidW (string, start {, length })

Return value String. Returns characters specified in length of string starting at character
start.

Min
Description Determines the smaller of two numbers.

Syntax Min (x, y)

Return value The datatype of x or y, whichever datatype is more precise. If any argument’s
value is null, Min returns null.

Usage If either of the values being compared is null, Min returns null.

Examples This statement returns 4:

Min(4,7)

This statement returns -7:

Min(- 4, - 7)

This statement returns 3.0, a decimal value:

Min(9.2,3.0)

See also Max
Min method for DataWindows in the DataWindow Reference

Argument Description

x The number to which you want to compare y

y The number to which you want to compare x

Chapter 10 PowerScript Functions

PowerScript Reference 687

Minute
Description Obtains the number of minutes in the minutes portion of a time value.

Syntax Minute (time)

Return value Integer. Returns the minutes portion of time (00 to 59). If time is null, Minute
returns null.

Examples This statement returns 1:

Minute(19:01:31)

See also Hour
Second
Minute method for DataWindows in the DataWindow Reference

Mod
Description Obtains the remainder (modulus) of a division operation.

Syntax Mod (x, y)

Return value The datatype of x or y, whichever datatype is more precise. If any argument’s
value is null, Mod returns null.

Argument Description

time The time value from which you want the minutes

Argument Description

x The number you want to divide by y

y The number you want to divide into x

ModifyData

688 PocketBuilder

Examples This statement returns 2:

Mod(20, 6)

This statement returns 1.5:

Mod(25.5, 4)

This statement returns 2.5:

Mod(25, 4.5)

See also Mod method for DataWindows in the DataWindow Reference

ModifyData
Changes the value of a data point in a series on a graph. There are two syntaxes
depending on the type of graph.

Syntax 1 For all graph types except scatter
Description Changes the value of a data point in a series on a graph. You can specify the

data point to be modified by position or by category.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (their data comes directly from the DataWindow).

Syntax controlname.ModifyData (seriesnumber, datapoint, datavalue
 {, categoryvalue })

To modify a data point in Use

All graph types except scatter Syntax 1

Scatter graphs Syntax 2

Argument Description

controlname The name of the graph in which you want to modify data.

seriesnumber The number of the series in which you want to modify data.

datapoint The number of the data point for which you want to modify the
data.

Chapter 10 PowerScript Functions

PowerScript Reference 689

Usage When you specify categoryvalue, ModifyData changes the category value at the
specified position, as well as the data value. If the name you specify already
exists at another position, the data at that position is modified instead and the
position in datapoint is ignored (the same behavior as InsertData).

When you specify a position of 0, ModifyData always behaves the same as
InsertData. For a comparison of AddData, InsertData, and ModifyData, see the
Usage section in InsertData.

Examples These statements change the data for Apr in the series named Costs in the graph
gr_product_data:

integer SeriesNbr, CategoryNbr
// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
CategoryNbr = gr_product_data.FindCategory("Apr")
gr_product_data.ModifyData(SeriesNbr, &
 CategoryNbr, 1250)

See also AddData
FindCategory
FindSeries
InsertCategory
InsertData

Syntax 2 For scatter graphs
Description Changes the value of a data point in a series on a graph. You specify the data

point by position and provide an x and y value.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (their data comes directly from the DataWindow).

datavalue The new value of the data point. The datatype of datavalue is the
same as the datatype of the values axis of the graph.

categoryvalue
(optional)

The category for datavalue. The datatype of categoryvalue is the
same as the datatype of the category axis of the graph.

Argument Description

Month

690 PocketBuilder

Syntax controlname.ModifyData (seriesnumber, datapoint, xvalue, yvalue)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, ModifyData returns null.

Usage For scatter graphs, there are no categories. You specify the position in the series
whose data you want to modify and provide the x and y values for the data.

Examples These statements modify the data point 9 in the series named Test One in the
scatter graph gr_product_data:

integer SeriesNbr
SeriesNbr = gr_product.FindSeries("Test One")
gr_product_data.ModifyData(SeriesNbr, &
 9, 4.55, 86.38)

See also AddData
FindSeries

Month
Description Determines the month of a date value.

Syntax Month (date)

Return value Integer. Returns an integer (1 to 12) whose value is the month portion of date.
If date is null, Month returns null.

Argument Description

controlname The name of the scatter graph in which you want to modify data in
a series

seriesnumber The number that identifies the series in which you want to modify
data

datapoint The number of the data point for which you want to modify data

xvalue The new x value of the data you want to modify

yvalue The new y value of the data you want to modify

Argument Description

date The date from which you want the month

Chapter 10 PowerScript Functions

PowerScript Reference 691

Examples This statement returns 1:

Month(1994-01-31)

These statements store in start_month the month entered in the SingleLineEdit
sle_start_date:

integer start_month
start_month = Month(date(sle_start_date.Text))

See also Day
Date
Year
Month method for DataWindows in the DataWindow Reference

Move
Description Moves a control or object to another position relative to its parent window, or

for some window objects, relative to the screen.

Applies to Any object or control

Syntax objectname.Move (x, y)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs or if objectname is a
maximized window. If any argument’s value is null, Move returns null.

Usage The x and y coordinates you specify are the new coordinates of the upper-left
corner of the object or control. If the shape of the object or control is not
rectangular (such as, a RadioButton or Oval), x and y are the coordinates of the
upper-left corner of the box enclosing it.

Argument Description

objectname The name of the object or control you want to move to a new
location

x The x coordinate of the new location in PowerBuilder units

y The y coordinate of the new location in PowerBuilder units

Move

692 PocketBuilder

When you move controls, drawing objects, and child windows, the coordinates
you specify are relative to the upper-left corner of the parent window. When
you use Move to position main, pop-up, and response windows, the coordinates
you specify are relative to the upper-left corner of the display screen.

Move does not move a maximized sheet or window. If the window is
maximized, Move returns –1.

You can use Move to move a line control but the results are unpredictable
because the line has multiple x and y coordinates.

You can specify coordinates outside the frame of the parent window or screen,
which effectively makes the object or control invisible.

To draw the image of a Picture control at a particular position, without actually
moving the control, use the Draw function.

The Move function changes the X and Y properties of the moved object.

Equivalent syntax The syntax below directly sets the X and Y properties of
an object or control. Although the result is equivalent to using the Move
function, it causes PocketBuilder to redraw objectname twice, first at the new
location of X and then at the new X and Y location:

objectname.X = x

objectname.Y = y

These statements cause PocketBuilder to redraw gb_box1 twice:

gb_box1.X = 150
gb_box1.Y = 200

This statement has the same result but redraws gb_box1 once:

gb_box1.Move(150,200)

Examples This statement changes the X and Y properties of gb_box1 to 150 and 200,
respectively, and moves gb_box1 to the new location:

gb_box1.Move(150, 200)

This statement moves the picture p_Train2 next to the picture p_Train1:

P_Train2.Move(P_Train1.X + P_Train1.Width, &
 P_Train1.Y)

Chapter 10 PowerScript Functions

PowerScript Reference 693

MoveTab
Description Moves a tab page to another position in a Tab control, changing its index

number.

Applies to Tab controls

Syntax tabcontrolname.MoveTab (source, destination)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage MoveTab also reorders the tab pages in the Tab control’s Control array (which
is a property that lists the tab pages within the Tab control) to match the new
tab order.

Examples This example moves the first tab to the end:

tab_1.MoveTab(1, 0)

This example move the fourth tab to the first position:

tab_1.MoveTab(4, 1)

This example move the fourth tab to the third position:

tab_1.MoveTab(4, 3)

See also OpenTab
SelectTab

Argument Description

tabcontrolname The name of the Tab control containing the tab you want to move.

source An integer whose value is the index of the tab you want to move.

destination An integer whose value is the index of the destination tab before
which source is moved. If destination is 0 or greater than the
number of tabs, source is moved to the end.

_Narrow

694 PocketBuilder

_Narrow
Description Converts a CORBA object reference from a general supertype to a more

specific subtype.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to CORBAObject objects

Syntax corbaobject._Narrow (newremoteobject, classname)

Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

NextActivity
Description Provides the next activity in a trace file.

Applies to TraceFile objects

Syntax instancename.NextActivity ()

Return value TraceActivityNode

Usage You use the NextActivity function to read the next activity in a trace file. The
activity is returned as a TraceActivityNode object. If there are no more
activities or if the file is not open, an invalid object is returned. You can then
use the LastError property of the TraceFile object to determine what kind of
error occurred.

Argument Description

instancename Instance name of the TraceFile object

Chapter 10 PowerScript Functions

PowerScript Reference 695

To use this function, you must have previously opened the trace file with the
Open function. You use the NextActivity and Open functions as well as the other
properties and functions provided by the TraceFile object to access the contents
of a trace file directly. For example, you would use these functions if you want
to perform your own analysis of the tracing data instead of using the available
modeling objects.

Examples This example opens a trace file and then uses a user-defined function called
of_dumpactivitynode to report the appropriate information for each activity
depending on its activity type:

String ls_filename, ls_line
TraceFile ltf_file
TraceActivityNode ltan_node

ls_filename = sle_filename.text
ltf_file = CREATE TraceFile
ltf_file.Open(ls_filename)

ls_line = "CollectionTime = " + &
 String(ltf_file.CollectionTime) + "~r~n" + &
 "Num Activities = " + &
 String(ltf_file.NumberOfActivities) + "~r~n
mle_output.text = ls_line

ltan_node = ltf_file.NextActivity()
DO WHILE IsValid(ltan_node)
 ls_line = of_dumpactivitynode(ltan_node)
 ltan_node = ltf_file.NextActivity()
 mle_output.text = ls_line
LOOP

See also Open
Close
Reset

Now

696 PocketBuilder

Now
Description Obtains the current time based on the system time of the client machine.

Syntax Now ()

Return value Time. Returns the current time based on the system time of the client machine.

Usage Use Now to compare a time to the system time or to display the system time on
the screen. You can use the Timer function to trigger a Timer event which
causes Now to refresh the display.

Examples This statement returns the current system time.

Now()

This example displays the current time in the StaticText st_time. It keeps the
time up-to-date by setting a timer that triggers a Timer event every 60 seconds.
Code in the window’s Open event displays the initial time and starts the timer.
Code in the Timer event displays the time again.

The following code appears in the window’s Open event script:

st_time.Text = String(Now(), "hh:mm")
Timer(60)

A single line in the Timer event script refreshes the time display:

st_time.Text = String(Now(), "hh:mm")

See also Today
Now method for DataWindows in the DataWindow Reference

Chapter 10 PowerScript Functions

PowerScript Reference 697

ObjectAtPointer
Description Finds out where the user clicked in a graph. ObjectAtPointer reports the region

of the graph under the pointer and stores the associated series and data point
numbers in the designated variables.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.ObjectAtPointer ({ graphcontrol, } seriesnumber, datapoint)

Return value grObjectType. Returns a value of the grObjectType enumerated datatype if the
user clicks anywhere in the graph (including an empty area) and a null value if
the user clicks outside the graph. If any argument’s value is null, ObjectAtPointer
also returns null.

Object_To_String
Description Gets the string form of an object.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to JaguarORB objects

Syntax jaguarorb.Object_To_String (object)

Return value String. Returns the string representation of a CORBA object.

OffsetPos

698 PocketBuilder

OffsetPos
Description Sets the offset for progress bar controls.

Applies to Progress bar controls

Syntax control.OffsetPos (increment)

Return value Integer. Returns 1 if it succeeds and -1 if there is an error.

Examples This statement offsets the start position of a horizontal progress bar by 10:

HProgressBar.OffsetPos (10)

See also SelectionRange
SetRange
StepIt

Open
Opens a window, connects to a scanner, camera, or GPS device, or opens a file
and selects its access mode.

For windows Open displays a window and makes all its properties and
controls available to scripts.

Argument Description

control The name of the progress bar control

increment An integer that is added to the start position of the progress bar
control

To Use

Open an instance of a particular window datatype Syntax 1

Allow the application to select the window’s datatype when
the script is executed

Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 699

For BarcodeScanner and BiometricScanner objects Open loads scanner
DLLs and connects to scanner firmware.

For GPS or SerialGPS objects Open opens a communications channel or
provides raw data for use by a GPS object.

For other objects Open opens a file and selects its access mode.

Syntax 1 For windows of a known datatype
Description Opens a window object of a known datatype. Open displays the window and

makes all its properties and controls available to scripts.

Applies to Window objects

Syntax Open (windowvar {, parent })

To Use

Connect to scanner firmware Syntax 3

To Use

For the GPS base class Syntax 6

For the SerialGPS object Syntax 5

To Use

Open a communications channel or initialize a Camera
object with a set of raw data

Syntax 6

Open a Short Message Service (SMS) session Syntax 7

Open a file for reading or writing with the FileDirect object Syntax 8

Open a trace file Syntax 9

Open

700 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Open returns null.

Usage You must open a window before you can access the properties of the window.
If you access the window’s properties before you open it, an execution error
will occur.

To reference an open window in scripts, use windowvar.

Calling Open twice
If you call Syntax 1 of the Open function twice for the same window,
PocketBuilder activates the window twice; it does not open two instances of
the window.

To open an array of windows where each window has different datatype, use
Syntax 2 of Open.

Parent windows for the opened window Generally, if you are opening a
child or a pop-up window and specify parent, the window identified by parent
is the parent of the opened window (windowname or windowvar). When a
parent window is closed, all its child and pop-up windows are closed too.

Mouse behavior and response windows
Controls capture the mouse or stylus action in order to perform certain
operations. For instance, CommandButtons capture during mouse clicks, edit
controls capture for text selection, and scroll bars capture during scrolling. If a
response window is opened while the mouse is captured, unexpected results
can occur.

Because a response window grabs focus, you should not open it when focus is
changing, such as in a LoseFocus event.

Argument Description

windowvar The name of the window you want to display. You can specify
a window object defined in the Window painter (which is a
window datatype) or a variable of the desired window
datatype. Open places a reference to the opened window in
windowvar.

parent
(child and pop-up
windows only)
(optional)

The window you want make the parent of the child or pop-up
window you are opening. If you open a child or pop-up
window and omit parent, PowerBuilder associates the
window being opened with the currently active window.

Chapter 10 PowerScript Functions

PowerScript Reference 701

Examples This statement opens an instance of a window named w_employee:

Open(w_employee)

The following statements open an instance of a window of the type
w_employee:

w_employee w_to_open
Open(w_to_open)

The following code opens an instance of a window of the type child named
cw_data and makes w_employee the parent:

child cw_data
Open(cw_data, w_employee)

The following code opens two windows of type w_emp:

w_emp w_e1, w_e2
Open(w_e1)
Open(w_e2)

See also Close
OpenWithParm
Show

Syntax 2 For windows of unknown datatype
Description Opens a window object when you do not know its datatype until the application

is running. Open displays the window and makes all its properties and controls
available to scripts.

Applies to Window objects

Syntax Open (windowvar, windowtype {, parent })

Argument Description

windowvar A window variable, usually of datatype window. Open places
a reference to the opened window in windowvar.

Open

702 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Open returns null.

Usage You must open a window before you can access the properties of the window.
If you access the window’s properties before you open it, an execution error
will occur.

To reference an open window in scripts, use windowvar.

The window object specified in windowtype must be the same datatype as
windowvar (the datatype includes datatypes inherited from it). The datatype of
windowvar is usually window, from which all windows are inherited, but it can
be any ancestor of windowtype. If it is not the same type, an execution error will
occur.

Use this syntax to open an array of windows when each window in the array
will have a different datatype. See the last example, in which the window
datatypes are stored in one array and are used for the windowtype argument
when each window in another array is opened.

Considerations when specifying a window type
When you use Syntax 2, PocketBuilder opens an instance of a window of the
datatype specified in windowtype and places a reference to this instance in the
variable windowvar.

If windowtype is a descendent window, you can only reference properties,
events, functions, or structures that are part of the definition of windowvar. For
example, if a user event is declared for windowtype, you cannot reference it.

The object specified in windowtype is not automatically included in your
executable application. To include it, you must save it in a PKD file
(PocketBuilder dynamic library) that you deliver with your application.

For information about the parent of an opened window, see Syntax 1.

windowtype A string whose value is the datatype of the window you want
to open. The datatype of windowtype must be the same or a
descendant of windowvar.

parent
(child and pop-up
windows only)
(optional)

The window you want to make the parent of the child or
pop-up window you are opening. If you open a child or pop-up
window and omit parent, PowerBuilder associates the
window being opened with the currently active window.

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 703

Examples This example opens a window of the type specified in the string s_w_name and
stores the reference to the window in the variable w_to_open. The SELECT
statement retrieves data specifying the window type from the database and
stores it in s_w_name:

window w_to_open
string s_w_name

SELECT next_window INTO : s_w_name FROM routing_table
WHERE... ;

Open(w_to_open, s_w_name)

This example opens an array of ten windows of the type specified in the string
is_w_emp1 and assigns a title to each window in the array. The string
is_w_emp1 is an instance variable whose value is a window type:

integer n
window win_array[10]

FOR n = 1 to 10
Open(win_array[n], is_w_emp1)
win_array[n].title = "Window " + string(n)

NEXT

The following statements open four windows. The type of each window is
stored in the array w_stock_type. The window reference from the Open
function is assigned to elements in the array w_stock_win:

window w_stock_win[]
string w_stock_type[4]

w_stock_type[1] = "w_stock_wine"
w_stock_type[2] = "w_stock_scotch"
w_stock_type[3] = "w_stock_beer"
w_stock_type[4] = "w_stock_soda"

FOR n = 1 to 4
Open(w_stock_win[n], w_stock_type[n])

NEXT

See also Close
OpenWithParm
Show

Open

704 PocketBuilder

Syntax 3 For BarcodeScanner and BiometricScanner
objects

Description Loads DLLs and connects to scanner firmware.

Applies to BarcodeScanner and BiometricScanner objects

Syntax Integer scanner.Open ()

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -9 Incorrect scan state for the requested action (typically benign)

• -10 Low level device error

• -11 Read is already pending (typically benign)

• -100 Feature not implemented

Usage This is typically the first method to call after creation of a scanner object.

Examples The following example loads scanner DLLs and connects to the scanner device
firmware:

li_rtn = l_scanner.Open()

See also Close
RetrieveData

Argument Description

scanner The scanner object that you want to open

Chapter 10 PowerScript Functions

PowerScript Reference 705

Syntax 4 For GPS objects
Description Opens an ANSI text file containing NMEA sentences for a GPS object and reads the

contents into a buffer.

Applies to GPS objects

Syntax GPSname.Open ({ rawdatafile })

Return value Integer. Returns 1 for success and a negative number for any error. The
following is a list of possible error codes and their meanings:

-1 General error.

-10 Invalid object. Could occur if the GPS object instance is corrupted.

-11 No RawData. This error is generated when the ConfigParams property is
empty and Open is called without a file name argument.

-12 Invalid File. This error is generated on an Open call containing a file
name argument when the file does not exist or cannot be opened
successfully.

-15 Read Failure. This error is generated on an Open call containing a file
name argument when the file cannot be read.

-18 Already Open. An Open request was issued and the object is already
open.

Usage Use this function to populate the fields of the GPS base object.

The optional rawdatafile argument is used when the data to be loaded resides
in an ANSI text file. The entire data file is read into a buffer for use by the
GetFix, GetHeading, and GetSatellitesInView routines. Raw data files must be
ANSI text.

Examples The following lines create a GPS object, retrieve information about the current
position fix, and test the validity of the GPSFix object:

Gps myGPS

Argument Description

GPSname Name of the GPS object.

rawdatafile A string for an ASCII text file containing raw data in
NMEA-0183 format to be used by the GPS object.

Open

706 PocketBuilder

GPSFix myFix
Integer rc
String errmsg

MyGPS = CREATE GPS
rc = myGPS.Open("c:\data\ConcordMA.txt")
IF rc = 1 THEN

rc = MyGPS.GetFix(myFix)
// process fix data

ELSE
 // process error message with user function

errmsg = uf_display_error("Fix Error", rc)

END IF

See also Close
GetFix
GetHeading
GetSatellitesInView

Syntax 5 For SerialGPS objects
Description Opens a communications channel for a SerialGPS object and initializes data handlers.

Applies to SerialGPS objects

Syntax GPSname.Open ()

Return value Integer. Returns 1 for success and a negative number for any error. The
following is a list of possible error codes and their meanings:

-1 General error.

-10 Invalid object. Could occur if the SerialGPS object instance is corrupted.

-15 Read Failure. Unable to read the serial port.

-18 Already Open. An Open request was issued and the object is already
open.

Argument Description

GPSname Name of the SerialGPS object.

Chapter 10 PowerScript Functions

PowerScript Reference 707

Usage Use this function to open a communications channel for a SerialGPS object and
initialize it so that it can be used to obtain GPS information. For the SerialGPS
object, you must previously set the SerialPort property and optionally set the
ConfigParams proeperty prior to calling this function.

Examples The following lines create a SerialGPS object, retrieve information about the
current position fix, and test the validity of the GPSFix object:

SerialGps myGPS
GPSFix myFix
Integer rc

MyGPS = CREATE SerialGPS
rc = myGPS.Open()
IF rc = 1 THEN

rc = MyGPS.GetFix(myFix)
IF rc = 1 THEN

IF myFix.IsFixValid THEN
// process fix data

END IF
ELSE

 // process error message
END IF

END IF

See also Close
GetFix
GetHeading
GetSatellitesInView

Syntax 6 For Camera objects
Description Opens a communications channel for a Camera object and initializes data handlers.

Applies to Camera objects

Open

708 PocketBuilder

Syntax cameraname.Open (AppWindow)

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Supporting DLL not loaded

-3 Other initialization error

-5 Inconsistency in this object instance

-6 Call to the driver or device failed

-7 Unsupported option

-8 Value for option is out of range

Usage Use this function to open a communications channel for a Camera object and
initialize it so that it can be used to capture images.

You must set the camera type before you call Open. You must also set either
the port or the folder property of the Camera object, depending on the type of
camera device you are using. You can set these properties in the Properties
view for a Camera object or in a script. The following table describes the
properties you need to set for different devices:

Examples The following code creates a Camera object that interfaces with an HP
Photosmart camera:

Camera myCamera

myCamera = CREATE Camera
myCamera.Port= "SIO1:"

Argument Description

cameraname Name of the Camera object.

AppWindow GraphicObject that is required by some camera drivers.
Typically you use the name of the main application window.

Device
CameraType
specifier Port or Folder property (value)

VEO 130S 11 Port (set to "SIO1:")

HP Photosmart 71 Port (set to "SIO1:")

HTC using the IA Camera
Wizard

81 Folder (set to the path on the
Windows CE device)

Chapter 10 PowerScript Functions

PowerScript Reference 709

myCamera.CameraType=71
myCamera.Open(w_myphoto_main)
...

See also Close
CaptureImage
GetOption
IsReadyToCapture
SetCaptureImageAttributes
SetOption
SetPreviewImageAttributes

Syntax 7 For SMSSession objects
Description Opens an SMSSession object.

Applies to SMSSession objects

Syntax SMSSessionname.Open (smsproto, msgmodes)

Return value Integer. Returns 1 for success and a negative number for any error.

Usage You can send SMS messages from applications running on any supported
Windows CE platform, but you can receive SMS messages only in applications
running on the Windows Mobile 2003 platform. To receive messages, you also
need to deploy a shim DLL that installs with PocketBuilder, and you must
register the DLL with the operating system where you deploy it.

Argument Description

SMSSessionname Name of the SMSSession object.

smsproto An SMSProtocol structure.

msgmodes A long value indicating whether the SMSSession object is
opened in send or receive mode. Values can be:

• 0 send only (retained to support legacy code)

• 1 send only

• 2 receive only

• 3 send and receive

Open

710 PocketBuilder

For more information about receiving SMS messages in a PocketBuilder
application, see the chapter on working with native objects and controls in the
User’s Guide.

See also Close
GetMessageStatus
Send

Syntax 8 For FileDirect objects
Description Use one of these syntaxes to open a file and select its access mode. Use instead

of FileOpen to interface directly with the underlying file system when you want
to read from or write to a device connected through BlueTooth or other
connection tools. The Open function maps to the Windows CE CreateFile
command.

Applies to FileDirect objects

Syntax Integer instancename.Open (filename, accessmode, {sharemode,
creationdisposition, attributes})

Argument Description

instancename Name of the instance of the FileDirect object

filename A string for the name of the file you want to read from or
write to

accessmode Enumerated value of type stgreadmode. Values can be:

• stgread!

• stgreadwrite!

• stgwrite!

sharemode Enumerated value of type stgsharemode. Values can be:

• stgdenynone!

• stgdenyread!

• stgdenywrite!

• stgexclusive!

Chapter 10 PowerScript Functions

PowerScript Reference 711

Return value Integer. Returns 1 for success and a negative number for any error. Error codes
are:

• -1 Unspecified error

• -2 File not opened

• -3 Initialization error

• -4 Error in the passed in arguments

• -5 File is read-only

• -6 File is write-only

• -7 File is not open

• -8 Data read but less than expected

• -9 File already open, but not in share mode

Usage Use this function to open a file in read or write mode. The FileDirect object
supports only the synchronous style of file input or output; further file-related
commands cannot be processed until the indicated file is successfully opened
or an error in opening the file is caught. The Open function calls the CreateFile
method on the device operating system.

Examples The following example calls the FileDirect user object nvo_fileDirect to open
a file, read some data, store the data in a blob variable, and close the file:

Integer li_ret, li_AmountRead
Blob lb_data
li_ret = nvo_fileDirect.Open ("MyDoc.txt", stgRead!)

creationdisposition Integer indicating what action to take based on whether or not
the designated file exists. Values are:

• 1 Creates a new file if file does not exist, but returns an
error if it does exist

• 2 Creates a new file, overwriting an existing file if
necessary

• 3 Opens an existing file, but returns an error if the file
does not exist

• 4 Opens an existing file or creates a new file if the file
does not exist

• 5 Opens and removes the content of an existing file, but
returns an error if the file does not exist

attributes Integer specifying a handle to a template file that supplies file
attributes for the file that you open or create

Argument Description

Open

712 PocketBuilder

li_ret = nvo_fileDirect.Read (lb_data, 100,
li_amountRead)

li_ret = nvo_fileDirect.Close ()

See also Close
Read

Syntax 9 For opening trace files
Description Opens the specified trace file for reading.

Applies to TraceFile object

Syntax instancename.Open (filename)

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileAlreadyOpenError!—The specified trace file has already been opened

• FileOpenError!—The trace file can not be opened for reading

• FileInvalidFormatError!—The file does not have the correct format

• EnterpriseOnlyFeature!—This function is supported only in the Enterprise
edition of PowerBuilder

• SourcePBLError!—The source libraries cannot be found

Usage You use this syntax to access the contents of a specified trace file created from
a running PocketBuilder application. You can then use the properties and
functions provided by the TraceFile object to perform your own analysis of
tracing data instead of using the available modeling objects.

Argument Description

instancename Instancename of the TraceFile object

filename A string identifying the name of the trace file you want to read

Chapter 10 PowerScript Functions

PowerScript Reference 713

Examples This example opens a trace file:

TraceFile ltf_file
String ls_filename

ltf_file = CREATE TraceFile
ltf_file.Open(ls_filename)
...

See also Close
NextActivity
Reset

OpenChannel
Description Opens a channel to a DDE server application.

Syntax OpenChannel (applname, topicname {, windowhandle })

Return value Long. Returns the handle to the channel (a positive integer) if it succeeds. If an
error occurs, OpenChannel returns a negative integer.

OpenSheet
Description Opens a sheet within an MDI (multiple document interface) frame window and

creates a menu item for selecting the sheet on the specified menu.

Applies to Window objects

Syntax OpenSheet (sheetrefvar {, windowtype }, mdiframe {, position
{, arrangeopen } })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenSheet returns null.

OpenSheetWithParm

714 PocketBuilder

OpenSheetWithParm
Description Opens a sheet within an MDI (multiple document interface) frame window and

creates a menu item for selecting the sheet on the specified menu, as
OpenSheet does. OpenSheetWithParm also stores a parameter in the system’s
Message object so that it is accessible to the opened sheet.

Applies to Window objects

Syntax OpenSheetWithParm (sheetrefvar, parameter {, windowtype }, mdiframe
{, position {, arrangeopen } })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenSheetWithParm returns null.

OpenTab
Opens a visual user object and makes it a tab page in the specified Tab control
and makes all its properties and controls available to scripts.

Syntax 1 For user objects of a known datatype
Description Opens a custom visual user object of a known datatype as a tab page in a Tab

control.

Applies to Tab controls

To open Use

A user object as a tab page Syntax 1

A user object as a tab page, allowing the application to
select the user object’s type during execution

Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 715

Syntax tabcontrolname.OpenTab (userobjectvar, index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenTab returns null.

Usage Use Syntax 1 when you know what user object you want to open. Use Syntax
2 when the application will determine what type of user object to open when
the script runs.

The tab page for the user object does not become selected. Scripts for
constructor events of the controls on the user object do not run until the tab
page is selected.

You must open a user object before you can access the properties of the user
object. If you access the user object’s properties before you open it, an
execution error will occur.

A user object that is part of a Tab control’s definition (that is, it was added to
the Tab control in the Window painter) does not have to be opened in a script.
PocketBuilder opens it when it opens the window containing the Tab control.

OpenTab adds the newly opened user object to the Tab control’s Control array,
which is a property that lists the tab pages within the Tab control.

Opening the same object twice
If you call Syntax 1 twice to open the same user object, PocketBuilder does
open the user object again as another tab page, in contrast to the behavior of
Open and OpenUserObject.

Examples This statement opens an instance of a user object named u_Employee as a tab
page in the Tab control tab_1:

tab_1.OpenTab(u_Employee, 0)

Argument Description

tabcontrolname The name of the Tab control in which you want to open the
user object as a tab page.

userobjectvar The name of the custom visual user object you want to open as
a tab page. You can specify a custom visual user object defined
in the User Object painter (which is a user object datatype) or
a variable of the desired user object datatype. OpenTab places
a reference to the opened custom visual user object in
userobjectvar.

index The number of the tab before which you want to insert the new
tab. If index is 0 or greater than the number of tabs, the tab
page is inserted at the end.

OpenTab

716 PocketBuilder

The following statements open an instance of a user object u_to_open as a tab
page in the Tab control tab_1. It becomes the first tab in the control:

u_employee u_to_open
tab_1.OpenTab(u_to_open, 1)

See also OpenTabWithParm

Syntax 2 For user objects of unknown datatype
Description Opens a visual user object as a tab page within a Tab control when the datatype

of the user object is not known until the script is executed.

Applies to Tab controls

Syntax tabcontrolname.OpenTab (userobjectvar, userobjecttype, index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenTab returns null.

Usage Use Syntax 1 when you know what user object you want to open. Use Syntax
2 when the application will determine what type of user object to open when
the script runs.

The tab page for the user object does not become selected. Scripts for
Constructor events of the controls on the user object do not run until the tab
page is selected.

Argument Description

tabcontrolname The name of the Tab control in which you want to open the
user object as a tab page.

userobjectvar A variable of datatype UserObject. OpenTab places a
reference to the opened user object in userobjectvar.

userobjecttype A string whose value is the name of the user object you want
to open. The datatype of userobjecttype must be a descendant
of userobjectvar.

index The number of the tab before which you want to insert the new
tab. If index is 0 or greater than the number of tabs, the tab
page is inserted at the end

Chapter 10 PowerScript Functions

PowerScript Reference 717

You must open a user object before you can access the properties of the user
object. If you access the user object’s properties before you open it, an
execution error will occur.

A user object that is part of a Tab control’s definition (that is, it was added to
the Tab control in the Window painter) does not have to be opened in a script.
PocketBuilder opens it when it opens the window containing the Tab control.

OpenTab adds the newly opened user object to the Tab control’s Control array,
which is a property that lists the tab pages within the Tab control.

Considerations when specifying a user object type
When you use Syntax 2, PocketBuilder opens an instance of a user object of
the datatype specified in userobjecttype and places a reference to this instance
in the variable userobjectvar. To refer to the instance in scripts, use
userobjectvar.

If userobjecttype is a descendent user object, you can only refer to properties,
events, functions, or structures that are part of the definition of userobjectvar.
For example, if a user event is declared for userobjecttype, you cannot
reference it.

The object specified in userobjecttype is not automatically included in your
executable application. To include it, you must save it in a PKD file
(PocketBuilder dynamic library) that you deliver with you application.

Examples The following example opens a user object as the last tab page in the Tab
control tab_1. The user object is of the type specified in the string s_u_name
and stores the reference to the user object in the variable u_to_open:

UserObject u_to_open
string s_u_name

s_u_name = sle_user.Text
tab_1.OpenTab(u_to_open, s_u_name, 0)

See also OpenTabWithParm

OpenTabWithParm

718 PocketBuilder

OpenTabWithParm
Adds a visual user object to the specified window and makes all its properties
and controls available to scripts, as OpenTab does. OpenTabWithParm also
stores a parameter in the system’s Message object so that it is accessible to the
opened object.

Syntax 1 For user objects of a known datatype
Description Opens a custom visual user object of a known datatype as a tab page in a Tab

control and stores a parameter in the system’s Message object.

Applies to Tab controls

Syntax tabcontrolname.OpenTabWithParm (userobjectvar, parameter, index)

To open Use

A user object as a tab page Syntax 1

A user object as a tab page, allowing the application to
select the user object’s type during execution

Syntax 2

Argument Description

tabcontrolname The name of the Tab control in which you want to open the
user object as a tab page.

userobjectvar The name of the custom visual user object you want to open
as a tab page. You can specify a custom visual user object
defined in the User Object painter (which is a user object
datatype) or a variable of the desired user object datatype.
OpenTabWithParm places a reference to the opened custom
visual user object in userobjectvar.

parameter The parameter you want to store in the Message object when
the user object is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

Chapter 10 PowerScript Functions

PowerScript Reference 719

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenTabWithParm returns null.

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenTabWithParm, scripts for the
opened user object would check one of the following properties.

In the opened user object, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

See also the usage notes for OpenTab, all of which apply to OpenTabWithParm.

Examples This statement opens an instance of a user object named u_Employee as a tab
page in the Tab control tab_empsettings. It also stores the string James
Newton in Message.StringParm. The Constructor event script for the user
object uses the string parameter as the text of a StaticText control st_empname
in the object. The script that opens the tab page has the following statement:

tab_empsettings.OpenTabWithParm(u_Employee, &
"James Newton", 0)

The user object’s Constructor event script has the following statement:

st_empname.Text = Message.StringParm

index The number of the tab before which you want to insert the new
tab. If index is 0 or greater than the number of tabs, the tab
page is inserted at the end.

Argument Description

Message object property Argument datatype

message.DoubleParm Numeric

message.PowerObjectParm PowerObject (PocketBuilder objects, including
user-defined structures)

message.StringParm String

OpenTabWithParm

720 PocketBuilder

The following statements open an instance of a user object u_to_open as the
first tab page in the Tab control tab_empsettings and store a number in
message.DoubleParm. The last statement selects the tab page:

u_employee u_to_open
integer age = 50
tab_1.OpenTabWithParm(u_to_open, age, 1)
tab_1.SelectTab(u_to_open)

See also OpenTab

Syntax 2 For user objects of unknown datatype
Description Opens a visual user object as a tab page within a Tab control when the datatype

of the user object is not known until the script is executed. In addition,
OpenTabWithParm stores a parameter in the system’s Message object so that it
is accessible to the opened object.

Applies to Tab controls

Syntax tabcontrolname.OpenTabWithParm (userobjectvar, parameter,
userobjecttype, index)

Argument Description

tabcontrolname The name of the Tab control in which you want to open the
user object as a tab page.

userobjectvar A variable of datatype UserObject. OpenTabWithParm
places a reference to the opened user object in userobjectvar

parameter The parameter you want to store in the Message object when
the user object is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

Chapter 10 PowerScript Functions

PowerScript Reference 721

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenTabWithParm returns null.

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenTabWithParm, scripts for the
opened user object would check one of the following properties.

In the opened user object, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you will get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

See also the usage notes for OpenTab, all of which apply to OpenTabWithParm.

Examples The following statement opens an instance of a user object u_data of type
u_benefit_plan as the last tab page in the Tab control tab_1. The parameter
"Benefits" is stored in message.StringParm:

UserObject u_data
tab_1.OpenTabWithParm(u_data, &

"Benefits", "u_benefit_plan", 0)

userobjecttype A string whose value is the datatype of the user object you
want to open. The datatype of userobjecttype must be a
descendant of userobjectvar.

index The number of the tab before which you want to insert the new
tab. If index is 0 or greater than the number of tabs, the tab
page is inserted at the end.

Argument Description

Message object property Argument datatype

message.DoubleParm Numeric

message.PowerObjectParm PowerObject (PocketBuilder objects, including
user-defined structures)

message.StringParm String

OpenUserObject

722 PocketBuilder

These statements open a user object of the type specified in the string
s_u_name and store the reference to the user object in the variable u_to_open.
The script gets the value of s_u_name, the type of user object to open, from the
database. The parameter is the text of the SingleLineEdit sle_loc, so it is stored
in Message.StringParm. The user object becomes the third tab page in the Tab
control tab_1:

UserObject u_to_open
string s_u_name, e_location

e_location = sle_location.Text

SELECT next_userobj INTO : s_u_name
FROM routing_table
WHERE ... ;

tab_1.OpenTabWithParm(u_to_open, &
e_location, s_u_name, 3)

The following statements open a user object of the type specified in the string
s_u_name and store the reference to the user object in the variable u_to_open.
The parameter is numeric so it is stored in message.DoubleParm. The user
object becomes the first tab page in the Tab control tab_1:

UserObject u_to_open
integer age = 60
string s_u_name

s_u_name = sle_user.Text
tab_1.OpenTabWithParm(u_to_open, age, &

s_u_name, 1)

See also OpenTab

OpenUserObject
Adds a user object to the specified window and makes all its properties and
controls available to scripts.

To Use

Open an instance of a particular user object Syntax 1

Open a user object, allowing the application to select the
user object’s type during execution

Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 723

Syntax 1 For user objects of a known datatype
Description Opens a user object of a known datatype.

Applies to Window objects

Syntax windowname.OpenUserObject (userobjectvar {, x, y })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenUserObject returns null.

Usage Use Syntax 1 when you know what user object you want to open. Use Syntax
2 when the application will determine what type of user object to open when
the script runs.

You must open a user object before you can access the properties of the user
object. If you access the user object’s properties before you open it, an
execution error will occur.

A user object that is part of a window’s definition (that is, it was added to the
window in the Window painter) does not have to opened in a script.
PocketBuilder opens it when it opens the window.

OpenUserObject adds the newly opened user object to the window’s Control
array, which is a property that lists the window’s controls.

Argument Description

windowname The name of the window in which you want to open the user
object.

userobjectvar The name of the user object you want to display. You can
specify a user object defined in the User Object painter (which
is a user object datatype) or a variable of the desired user
object datatype. OpenUserObject places a reference to the
opened user object in userobjectvar.

x
(optional)

The x coordinate in PowerBuilder units of the user object
within the window’s frame. The default is 0.

y
(optional)

The y coordinate in PowerBuilder units of the user object
within the window’s frame. The default is 0.

OpenUserObject

724 PocketBuilder

When you open a user object during execution, the window does not destroy
the user object automatically when you close the window. You need to call
CloseUserObject to destroy the user object, usually when the window closes. If
you do not destroy the user object, it holds on to its allocated memory, resulting
in a memory leak.

PocketBuilder displays the user object when it next updates the display or at
the end of the script, whichever comes first. For example, if you open several
user objects in a script, they will all display at once when the script is complete,
unless some other statements cause a change in the screen’s appearance (for
example, the MessageBox function displays a message or the script changes a
visual property of a control).

Calling OpenUserObject twice
If you call Syntax 1 twice to open the same user object, PocketBuilder activates
the user object twice; it does not open two instances of the user object.

Examples This statement displays an instance of a user object named u_Employee in the
upper left corner of the window w_emp (coordinates 0,0):

w_emp.OpenUserObject(u_Employee)

The following statements display an instance of a user object u_to_open at
200,100 in the window w_empstatus:

u_employee u_to_open
w_empstatus.OpenUserObject(u_to_open, 200, 100)

The following statement displays an instance of a user object u_data at location
20,100 in w_info:

w_info.OpenUserObject(u_data, 20, 100)

See also OpenUserObjectWithParm

Syntax 2 For user objects of unknown datatype
Description Opens a user object when the datatype of the user object is not known until the

script is executed.

Chapter 10 PowerScript Functions

PowerScript Reference 725

Applies to Window objects

Syntax windowname.OpenUserObject (userobjectvar, userobjecttype {, x, y })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenUserObject returns null.

Usage Use Syntax 1 when you know what user object you want to open. Use Syntax
2 when the application will determine what type of user object to open when
the script runs.

You must open a user object before you can access the properties of the user
object. If you access the user object’s properties before you open it, an
execution error will occur.

A user object that is part of a window’s definition (that is, it was added to the
window in the Window painter) does not have to be opened in a script.
PocketBuilder opens it when it opens the window.

OpenUserObject adds the newly opened user object to the window’s Control
array, which is a property that lists the window’s controls.

When you open a user object during execution, the window does not destroy
the user object automatically when you close the window. You need to call
CloseUserObject to destroy the user object, usually when the window closes. If
you do not destroy the user object, it holds on to its allocated memory, resulting
in a memory leak.

PocketBuilder displays the user object when it next updates the display or at
the end of the script, whichever comes first. For example, if you open several
user objects in a script, they will all display at once when the script is complete,
unless some other statements cause a change in the screen’s appearance (for
example, the MessageBox function displays a message or the script changes a
visual property of a control).

Argument Description

windowname The name of the window in which you want to open the user
object.

userobjectvar A variable of datatype DragObject. OpenUserObject places a
reference to the opened user object in userobjectvar.

userobjecttype A string whose value is the name of the user object you want
to display. The datatype of userobjecttype must be a
descendant of userobjectvar.

x
(optional)

The x coordinate in PowerBuilder units of the user object
within the window’s frame. The default is 0.

y
(optional)

The y coordinate in PowerBuilder units of the user object
within the window’s frame. The default is 0.

OpenUserObjectWithParm

726 PocketBuilder

The userobjecttype argument
When you use Syntax 2, PocketBuilder opens an instance of a user object of
the datatype specified in userobjecttype and places a reference to this instance
in the variable userobjectvar. To refer to the instance in scripts, use
userobjectvar.

If userobjecttype is a descendent user object, you can only refer to properties,
events, functions, or structures that are part of the definition of userobjectvar.
For example, if a user event is declared for userobjecttype, you cannot
reference it.

The object specified in userobjecttype is not automatically included in your
executable application. To include it, you must save it in a PKD file
(PocketBuilder dynamic library) that you deliver with your application.

Examples The following example displays a user object of the type specified in the string
s_u_name and stores the reference to the user object in the variable u_to_open.
The user object is located at 100,200 in the window w_info:

DragObject u_to_open
string s_u_name

s_u_name = sle_user.Text
w_info.OpenUserObject(u_to_open, s_u_name, 100, 200)

See also OpenUserObjectWithParm

OpenUserObjectWithParm
Adds a user object to the specified window and makes all its properties and
controls available to scripts, as OpenUserObject does.
OpenUserObjectWithParm also stores a parameter in the system’s Message
object so that it is accessible to the opened object.

To Use

Open an instance of a particular user object Syntax 1

Open a user object, allowing the application to select the
user object’s type during execution

Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 727

Syntax 1 For user objects of a known datatype
Description Opens a user object of a known datatype and stores a parameter in the system’s

Message object.

Applies to Window objects

Syntax windowname.OpenUserObjectWithParm (userobjectvar, parameter
{, x, y })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenUserObjectWithParm returns null.

Argument Description

windowname The name of the window in which you want to open the user
object.

userobjectvar The name of the user object you want to display. You can specify
a user object defined in the User Object painter (which is a user
object datatype) or a variable of the desired user object datatype.
OpenUserObjectWithParm places a reference to the opened
user object in userobjectvar.

parameter The parameter you want to store in the Message object when the
user object is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

x
(optional)

The x coordinate in PowerBuilder units of the user object within
the window’s frame. The default is 0.

y
(optional)

The y coordinate in PowerBuilder units of the user object within
the window’s frame. The default is 0.

OpenUserObjectWithParm

728 PocketBuilder

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenUserObjectWithParm, scripts
for the opened user object would check one of the following properties:

In the opened user object, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

See also the usage notes for OpenUserObject, all of which apply to
OpenUserObjectWithParm.

Examples This statement displays an instance of a user object named u_Employee in the
window w_emp and stores the string James Newton in Message.StringParm.
The Constructor event script for the user object uses the string parameter as the
text of a StaticText control st_empname in the object. The script that opens the
user object has the following statement:

w_emp.OpenUserObjectWithParm(u_Employee, "Jim Newton")

The user object’s Constructor event script has the following statement:

st_empname.Text = Message.StringParm

The following statements display an instance of a user object u_to_open in the
window w_emp and store a number in message.DoubleParm:

u_employee u_to_open
integer age = 50
w_emp.OpenUserObjectWithParm(u_to_open, age)

See also CloseWithReturn
OpenUserObject
OpenWithParm

Message object property Argument datatype

message.DoubleParm Numeric

message.PowerObjectParm PowerObject (PocketBuilder objects, including
user-defined structures)

message.StringParm String

Chapter 10 PowerScript Functions

PowerScript Reference 729

Syntax 2 For user objects of unknown datatype
Description Opens a user object when the datatype of the user object is not known until the

script is executed. In addition, OpenUserObjectWithParm stores a parameter in
the system’s Message object so that it is accessible to the opened object.

Applies to Window objects

Syntax windowname.OpenUserObjectWithParm (userobjectvar, parameter,
userobjecttype {, x, y })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenUserObjectWithParm returns null.

Argument Description

windowname The name of the window in which you want to open the user
object.

userobjectvar A variable of datatype DragObject.
OpenUserObjectWithParm places a reference to the opened
user object in userobjectvar.

parameter The parameter you want to store in the Message object when
the user object is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

userobjecttype A string whose value is the datatype of the user object you
want to open. The datatype of userobjecttype must be a
descendant of userobjectvar.

x
(optional)

The x coordinate in PowerBuilder units of the user object
within the window’s frame. The default is 0.

y
(optional)

The y coordinate in PowerBuilder units of the user object
within the window’s frame. The default is 0.

OpenUserObjectWithParm

730 PocketBuilder

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenUserObjectWithParm, scripts
for the opened user object would check one of the following properties.

In the opened user object, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you will get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

See also the usage notes for OpenUserObject, all of which apply to
OpenUserObjectWithParm.

Examples The following statement displays an instance of a user object u_data of type
u_benefit_plan at location 20,100 in the window w_hresource. The parameter
"Benefits" is stored in message.StringParm:

DragObject u_data
w_hresource.OpenUserObjectWithParm(u_data, &

"Benefits", "u_benefit_plan", 20, 100)

These statements open a user object of the type specified in the string
s_u_name and store the reference to the user object in the variable u_to_open.
The script gets the value of s_u_name, the type of user object to open, from the
database. The parameter is the text of the SingleLineEdit sle_loc, so it is stored
in Message.StringParm. The user object is at the default coordinates 0,0 in the
window w_info:

DragObject u_to_open
string s_u_name, e_location

e_location = sle_location.Text

Message object property Argument datatype

message.DoubleParm Numeric

message.PowerObjectParm PowerObject (PocketBuilder objects, including
user-defined structures)

message.StringParm String

Chapter 10 PowerScript Functions

PowerScript Reference 731

SELECT next_userobj INTO : s_u_name
FROM routing_table
WHERE ... ;

w_info.OpenUserObjectWithParm(u_to_open, &
e_location, s_u_name)

The following statements display a user object of the type specified in the
string s_u_name and store the reference to the user object in the variable
u_to_open. The parameter is numeric so it is stored in message.DoubleParm.
The user object is at the coordinates 100,200 in the window w_emp:

userobject u_to_open
integer age = 60
string s_u_name

s_u_name = sle_user.Text
w_emp.OpenUserObjectWithParm(u_to_open, age, &

s_u_name, 100, 200)

See also CloseWithReturn
OpenUserObject
OpenWithParm

OpenWithParm
Displays a window and makes all its properties and controls available to
scripts, as Open does. OpenWithParm also stores a parameter in the system’s
Message object so that it is accessible to the opened window.

To Use

Open an instance of a particular user object Syntax 1

Open a user object, allowing the application to select the
user object’s type during execution

Syntax 2

OpenWithParm

732 PocketBuilder

Syntax 1 For windows of a known datatype
Description Opens a window object of a known datatype. OpenWithParm displays the

window and makes all its properties and controls available to scripts. It also
stores a parameter in the system’s Message object.

Applies to Window objects

Syntax OpenWithParm (windowvar, parameter {, parent })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenWithParm returns null.

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenWithParm, your scripts for the
opened window would check one of the following properties.

Argument Description

windowvar The name of the window you want to display. You can specify
a window object defined in the Window painter (which is a
window datatype) or a variable of the desired window
datatype. OpenWithParm places a reference to the open
window in windowvar.

parameter The parameter you want to store in the Message object when
the window is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

parent
(child and pop-up
windows only)
(optional)

The window you want make the parent of the child or pop-up
window you are opening. If you open a child or pop-up
window and omit parent, PowerBuilder associates the
window being opened with the currently active window.

Message object property Argument datatype

Message.DoubleParm Numeric

Message.PowerObjectParm PowerObject (PocketBuilder objects, including
user-defined structures)

Message.StringParm String

Chapter 10 PowerScript Functions

PowerScript Reference 733

In the opened window, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Avoiding null object references When you pass a PowerObject as a
parameter, you are passing a reference to the object. The object must exist
when you refer to it later or you will get a null object reference, which causes
an error. For example, if you pass the name of a control on a window that is
being closed, that control will not exist when a script accesses the parameter.

Passing several values as a structure To pass several values, create a
user-defined structure to hold the values and access the PowerObjectParm
property of the Message object in the opened window. The structure is passed
by value, not by reference, so you can access the information even if the
original structure has been destroyed.

See also the usage notes for Open, all of which apply to OpenWithParm.

Examples This statement opens an instance of a window named w_employee and stores
the string parameter in Message.StringParm. The script for the window’s Open
event uses the string parameter as the text of a StaticText control st_empname.
The script that opens the window has the following statement:

OpenWithParm(w_employee, "James Newton")

The window’s Open event script has the following statement:

st_empname.Text = Message.StringParm

The following statements open an instance of a window of the type
w_employee. Since the parameter is a number it is stored in
Message.DoubleParm:

w_employee w_to_open
integer age = 50
OpenWithParm(w_to_open, age)

The following statement opens an instance of a child window named cw_data
and makes w_employee the parent. The window w_employee must already be
open. The parameter benefit_plan is a string and is stored in
Message.StringParm:

OpenWithParm(cw_data, "benefit_plan", w_employee)

See also CloseWithReturn
Open

OpenWithParm

734 PocketBuilder

Syntax 2 For windows of unknown datatype
Description Opens a window object when you do not know its datatype until the application

is running. OpenWithParm displays the window and makes all its properties and
controls available to scripts. It also stores a parameter in the system’s Message
object.

Applies to Window objects

Syntax OpenWithParm (windowvar, parameter, windowtype {, parent })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenWithParm returns null.

Argument Description

windowvar A window variable, usually of datatype window.
OpenWithParm places a reference to the open window in
windowvar.

parameter The parameter you want to store in the Message object when
the window is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

windowtype A string whose value is the datatype of the window you want
to open. The datatype of windowtype must be the same or a
descendant of windowvar.

parent
(child and pop-up
windows only)

The window you want to make the parent of the child or
pop-up window you are opening. If you open a child or pop-up
window and omit parent, PowerBuilder associates the
window being opened with the currently active window.

Chapter 10 PowerScript Functions

PowerScript Reference 735

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenWithParm, your scripts for the
opened window would check one of the following properties.

In the opened window, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Avoiding null object references When you pass a PowerObject as a
parameter, you are passing a reference to the object. The object must exist
when you refer to it later or you will get a null object reference, which causes
an error. For example, if you pass the name of a control on a window that is
being closed, that control will not exist when a script accesses the parameter.

Passing several values as a structure To pass several values, create a
user-defined structure to hold the values and access the PowerObjectParm
property of the Message object in the opened window. The structure is passed
by value, not by reference, so you can access the information even if the
original structure has been destroyed.

See also the usage notes for Open, all of which apply to OpenWithParm.

Examples These statements open a window of the type specified in the string s_w_name
and store the reference to the window in the variable w_to_open. The script
gets the value of s_w_name, the type of window to open, from the database.
The parameter in e_location is text, so it is stored in Message.StringParm:

window w_to_open
string s_w_name, e_location

e_location = sle_location.Text

SELECT next_window INTO :s_w_name
FROM routing_table
WHERE ... ;

OpenWithParm(w_to_open, e_location, s_w_name)

Message object property Argument datatype

Message.DoubleParm Numeric

Message.PowerObjectParm PowerObject (PocketBuilder objects, including
user-defined structures)

Message.StringParm String

OutgoingCallList

736 PocketBuilder

The following statements open a window of the type specified in the string
c_w_name, store the reference to the window in the variable wc_to_open, and
make w_emp the parent window of wc_to_open. The parameter is numeric, so
it is stored in Message.DoubleParm:

window wc_to_open
string c_w_name
integer age = 60

c_w_name = "w_c_emp1"

OpenWithParm(wc_to_open, age, c_w_name, w_emp)

See also CloseWithReturn
Open

OutgoingCallList
Description Provides a list of the calls to other routines included in a performance analysis

model.

Applies to ProfileLine and ProfileRoutine objects

Syntax instancename.OutgoingCallList (list, aggregate)

Argument Description

instancename Instance name of the ProfileLine or ProfileRoutine object.

list An unbounded array variable of datatype ProfileCall in
which OutgoingCallList stores a ProfileCall object for each
call to other routines from within this routine. This argument
is passed by reference.

aggregate
(ProfileRoutine only)

A boolean indicating whether duplicate routine calls will
result in the creation of a single or of multiple ProfileCall
objects.

Chapter 10 PowerScript Functions

PowerScript Reference 737

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• ModelNotExistsError!—The model does not exist

Usage You use the OutgoingCallList function to extract a list of the calls from a line
and/or routine to other routines in a performance analysis model. You must
have previously created the performance analysis model from a trace file using
the BuildModel function. Each caller is defined as a ProfileCall object and
provides the called routine and the calling routine, the number of times the call
was made, and the elapsed time. The routines are listed in no particular order.

The aggregate argument indicates whether duplicate routine calls result in the
creation of a single or of multiple ProfileCall objects. This argument has no
effect unless line tracing is enabled and a calling routine calls the current
routine from more than one line. If aggregate is true, a new ProfileCall object
is created that aggregates all calls from the calling routine to the current
routine. If aggregate is false, multiple ProfileCall objects are returned, one for
each line from which the calling routine called the called routine.

Examples This example gets a list of the routines included in a performance analysis
model and then gets a list of the routines called by each routine:

Long ll_cnt
ProfileCall lproc_call[]

lpro_model.BuildModel()
lpro_model.RoutineList(iprort_list)

FOR ll_cnt = 1 TO UpperBound(iprort_list)

iprort_list[ll_cnt].OutgoingCallList(lproc_call, &
TRUE)

...
NEXT

See also BuildModel
IncomingCallList

PageCount

738 PocketBuilder

PageCount
Description Returns the total number of pages in the document in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.PageCount ()

Return value Integer. Returns the number of pages in the RichTextEdit control. Returns 1 if
the control contains no text and -1 if an error occurs.

PageCreated
Description Reports whether a tab page has been created.

Applies to User objects used as tab pages

Syntax userobject.PageCreated ()

Return value Boolean. Returns true if the user object is a tab page and has been created and
false if the user object is not a tab page or has not been created.

ParentWindow
Description Obtains the parent window of a window.

Applies to Window objects

Chapter 10 PowerScript Functions

PowerScript Reference 739

Syntax windowname.ParentWindow ()

Return value Window. Returns the parent of windowname. Returns a null object reference if
an error occurs or if windowname is null.

Usage The ParentWindow function, along with the pronoun Parent, allows you to write
more general scripts by avoiding the coding of actual window names. Parent
refers to the window that contains the current object or control—the local
environment. ParentWindow returns the parent window of a specified window.

Whether a window has a parent depends on its type and how it was opened. You
can specify the parent when you open the window. For windows that always
have parents, PocketBuilder chooses the parent if you do not specify it.
Response windows always have a parent window.

The ParentWindow property of the Menu object can be used like a pronoun in
Menu scripts. It identifies the window with which the menu is associated when
your program is running. For more information, see the User’s Guide.

Examples These statements return the parent of child_1. The parent is a window of the
datatype Win1:

Win1 w_parent
w_parent = child_1.ParentWindow()

The following script for a Cancel button in a pop-up window triggers an event
for the parent window of the button’s parent window (the window that contains
the button). Then it closes the button’s window. The parent window of that
window will have a script for the cancelrequested event:

Parent.ParentWindow().TriggerEvent("cancelrequested")
Close(Parent)

Argument Description

windowname The name of a window for which you want to obtain the parent
object

Paste

740 PocketBuilder

Paste
Description Inserts (pastes) the contents of the clipboard into the specified control. For

editable controls, text on the clipboard is pasted at the insertion point. For OLE
controls, the OLE object on the clipboard replaces any object already in the
control.

Applies to EditMask, MultiLineEdit, SingleLineEdit, RichTextEdit, DropDownListBox,
DropDownPictureListBox, DataWindow, OLE controls

Syntax controlname.Paste ()

Return value Long. If controlname is null, Paste returns null.

For edit controls, returns the number of characters that were pasted into
controlname. If nothing has been cut or copied (the clipboard is empty), the
Paste function does not change the contents of the edit control and returns 0. If
the clipboard contains nontext data (for example, a bitmap or OLE object) and
the control cannot accept that data, Paste does not change the contents and
returns 0.

Usage For editable controls, if text is selected in controlname, Paste replaces the text
with the contents of the clipboard. If the clipboard contains more lines than fit
in the edit control, only the number of lines that fit are pasted.

In a DataWindow control, the text is pasted into the edit control over the current
row and column. If the clipboard contains more text that is allowed for that
column, the text is truncated. If the clipboard text does not match the column’s
datatype, all the text is truncated, so that any selected text is replaced with an
empty string.

To insert a specific string in controlname or to replace selected text with a
specific string, use the ReplaceText function.

Argument Description

controlname The name of the control into which you want to insert the contents
of the clipboard.

If controlname is a DataWindow, text is pasted into the edit control
over the current row and column.

If controlname is a DropDownListBox the AllowEdit property
must be true

Chapter 10 PowerScript Functions

PowerScript Reference 741

Examples If the clipboard contains Proposal good for 90 days and no text is
selected, this statement pastes Proposal good for 90 days in
mle_Comment1 at the insertion point and returns 25:

mle_Comment1.Paste()

If the clipboard contains the string Final Edition, mle_Comment2 contains
This is a Preliminary Draft, and the text in mle_Comment2 is selected,
this statement deletes This is a Preliminary Draft, replaces it with
Final Edition, and returns 13:

mle_Comment2.Paste()

See also Copy
Cut
PasteLink
PasteSpecial
ReplaceText

PasteLink
Description Pastes a link to the contents of the clipboard into the control. The server

application for the object on the clipboard must be running.

Applies to OLE controls

Syntax olecontrol.PasteLink ()

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

PasteRTF
Description Pastes rich text data from a string into a DataWindow control, DataStore

object, or RichTextEdit control.

PasteSpecial

742 PocketBuilder

Applies to DataWindow controls, DataStore objects, and RichTextEdit controls

Syntax rtename.PasteRTF (richtextstring, { band })

Return value Long. Returns the number of characters pasted if it succeeds and -1 if an error
occurs. If richtextstring is null, PasteRTF returns null.

PasteSpecial
Description Displays a standard OLE dialog allowing the user to choose whether to embed

or link the OLE object on the clipboard when pasting it in the specified control.
Embedding is the equivalent of calling the Paste function, and linking is the
same as calling PasteLink.

Applies to OLE controls

Syntax olecontrol.PasteSpecial ()

Return value Integer. Returns 0 if it succeeds and one of the following values if an error
occurs:

 1 User canceled without selecting a paste option
-1 No data found
-9 Other error

If ole2control is null, PasteSpecial returns null.

Pi
Description Multiplies pi by a specified number.

Argument Description

olecontrol The name of the OLE control into which you want to paste the
object on the clipboard

Chapter 10 PowerScript Functions

PowerScript Reference 743

Syntax Pi (n)

Return value Double. Returns the result of multiplying n by pi if it succeeds and -1 if an error
occurs. If n is null, Pi returns null.

Usage Use Pi to convert angles to and from radians.

Examples This statement returns pi:

Pi(1)

Both these statements return the area of a circle with the radius id_Rad, an
instance variable of type double:

Pi(1) * id_Rad^2

Pi(id_Rad^2)

The following statements compute the cosine of a 45-degree angle:

real degree = 45.0, cosine
cosine = Cos(degree * (Pi(2)/360))

See also Cos
Sin
Tan
Pi method for DataWindows in the DataWindow Reference

PixelsToUnits
Description Converts pixels to PowerBuilder units. Because pixels are not usually square,

you also specify whether you are converting the pixels’ horizontal or vertical
measurement.

Argument Description

n The number you want to multiply by pi (3.14159265358979323...)

PointerX

744 PocketBuilder

Syntax PixelsToUnits (pixels, type)

Return value Integer. Returns the converted value if it succeeds and -1 if an error occurs. If
any argument’s value is null, PixelsToUnits returns null.

Examples These statements convert 35 horizontal pixels to PowerBuilder units and set the
variable Value equal to the converted value:

integer Value
Value = PixelsToUnits(35, XPixelsToUnits!)

See also UnitsToPixels

PointerX
Description Determines the distance of the pointer from the left edge of the specified

object.

Applies to Any object or control

Syntax objectname.PointerX ()

Argument Description

pixels An integer whose value is the number of pixels you want to convert
to PowerBuilder units.

type A value of the ConvertType enumerated datatype value indicating
how to convert the value:

• XPixelsToUnits! — Convert the pixels in the horizontal
direction.

• YPixelsToUnits! — Convert the pixels in the vertical direction.

Argument Description

objectname The name of the control or window for which you want the
pointer’s distance from the left edge. If you do not specify
objectname, PointerX reports the distance from the left edge of the
current sheet or window.

Chapter 10 PowerScript Functions

PowerScript Reference 745

Return value Integer. Returns the pointer’s distance from the left edge of objectname in
PowerBuilder units if it succeeds and -1 if an error occurs. If objectname is null,
PointerX returns null.

Examples In a script for a control in a window, the following example stores the distance
of the pointer from the edge of the window in the variable li_dist. If the pointer
is 5 units from the left edge of the window, li_dist equals 5:

integer li_dist
li_dist = Parent.PointerX()

This statement in a control’s RButtonDown script displays a pop-up menu
m_Appl.M_Help at the cursor position:

m_Appl.m_Help.PopMenu(Parent.PointerX(), &
Parent.PointerY())

If the previous example was part of the window’s RButtonDown script, instead
of a control in the window, the following statement displays the pop-up menu
at the cursor position:

m_Appl.m_Help.PopMenu(This.PointerX(), &
This.PointerY())

See also PointerY
PopMenu
WorkSpaceHeight
WorkSpaceWidth
WorkSpaceX
WorkSpaceY

PointerY
Description Determines the distance of the pointer from the top of the specified object.

Applies to Any object or control

PopMenu

746 PocketBuilder

Syntax objectname.PointerY ()

Return value Integer. Returns the pointer’s distance from the top of objectname in
PowerBuilder units if it succeeds and -1 if an error occurs. If objectname is null,
PointerY returns null.

Examples In a script for a control in a window, the following example stores the distance
of the pointer from the top of the window in the variable li_dist. If the pointer
is 10 units from the top of the window, li_dist equals 10:

integer li_Dist
li_Dist = Parent.PointerY()

This statement in a control’s RButtonDown script displays a pop-up menu
m_Appl.M_Help at the cursor position:

m_Appl.M_Help.PopMenu(Parent.PointerX(), &
Parent.PointerY())

See also PointerX
PopMenu
WorkSpaceHeight
WorkSpaceWidth
WorkSpaceX
WorkSpaceY

PopMenu
Description Displays a menu at the specified location.

Applies to Menu objects

Argument Description

objectname The name of the control or window for which you want the
pointer’s distance from the top. If you do not specify objectname,
PointerY reports the distance from the top of the current sheet or
window.

Chapter 10 PowerScript Functions

PowerScript Reference 747

Syntax menuname.PopMenu (xlocation, ylocation)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PopMenu returns null.

Usage If the menu object is not associated with the window so that it was opened
when the window was opened, you must use CREATE to allocated memory for
the menu (see the last example).

If the Visible property of the menu is false, you must make the menu visible
before you can display it as a pop-up menu.

The coordinates you specify for PopMenu are relative to the active window. In
an MDI application, the coordinates are relative to the frame window, which is
the active window. To display a menu at the cursor position, call PointerX and
PointerY for the active window (the frame window in an MDI application) to
get the coordinates of the cursor. (See the examples.)

Calling PopMenu in an object script
PopMenu must be called in an object script. It should not be called in a global
function.

Examples These statements display the menu m_Emp.M_Procedures at location 100, 200
in the active window. M_Emp is the menu associated with the window:

m_Emp.M_Procedures.PopMenu(100, 200)

This statement displays the menu m_Appl.M_File at the cursor position, where
m_Appl is the menu associated with the window.

m_Appl.M_file.PopMenu(PointerX(), PointerY())

Argument Description

menuname The fully qualified name of a menu on a menu bar you want to
display at the specified location

xlocation The distance in PowerBuilder units of the displayed menu from the
left edge of the window

ylocation The distance in PowerBuilder units of the displayed menu from the
top of the window

PopulateError

748 PocketBuilder

These statements display a pop-up menu at the cursor position. Menu4 was
created in the Menu painter and includes a menu called m_language. Menu4 is
not the menu for the active window. NewMenu is an instance of Menu4
(datatype Menu4):

Menu4 NewMenu
NewMenu = CREATE Menu4
NewMenu.m_language.PopMenu(PointerX(), PointerY())

PopulateError
Description Fills in the Error object without causing a SystemError event.

Syntax PopulateError (number, text)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. The return value is
usually not used.

Usage If the values you want to populate the Error object with depend on the current
value of a variable in your script, you can use PopulateError to assign values to
the number and text fields in the Error object (the remaining fields of the Error
object will be populated automatically, including the line number of the error).
Then you can call SignalError without arguments to trigger a SystemError. You
will need to include code in the SystemError event script to recognize and
handle the error you have created. If there is no script for the SystemError
event, the SignalError function does nothing.

Examples The gf_DoSomething function takes a table name and a record and returns 0 for
success and a negative number for an error. The following statements set the
number and text values in the Error object according to a script variable, then
trigger a SystemError event once the processing is complete:

li_result = gf_DoSomething("Company", record_id)

Argument Description

number The integer to be stored in the number property of the Error object

text The string to be stored in text property of the Error object

Chapter 10 PowerScript Functions

PowerScript Reference 749

IF (li_result < 0) THEN
CHOOSE CASE li_result
CASE -1

PopulateError(1, "No company record exists &
record id: " + record_id)

CASE -2
PopulateError(2, "That company record is &
currently locked. Please try again later.")

CASE -3
PopulateError(3, "The company record could &
not be updated.")

CASE else
PopulateError(999, "Update failed.")

END CHOOSE
SignalError()

END IF

See also SignalError

Pos
Description Finds one string within another string.

Syntax Pos (string1, string2 {, start })

Return value Long. Returns a long whose value is the starting position of the first occurrence
of string2 in string1 after the position specified in start. If string2 is not found
in string1 or if start is not within string1, Pos returns 0. If any argument’s value
is null, Pos returns null.

Usage The Pos function is case sensitive.

Argument Description

string1 The string in which you want to find string2.

string2 The string you want to find in string1.

start
(optional)

A long indicating where the search will begin in string1. The
default is 1.

Pos

750 PocketBuilder

Examples This statement returns 6:

Pos("BABE RUTH", "RU")

This statement returns 1:

Pos("BABE RUTH", "B")

This statement returns 0, because the case does not match:

Pos("BABE RUTH", "be")

This statement starts searching at position 4 and returns 0, because position 4
is after the occurrence of BE:

Pos("BABE RUTH", "BE", 4)

These statements change the text NY in the SingleLineEdit sle_group to North
East:

long place_nbr
place_nbr = Pos(sle_group.Text, "NY")
sle_group.SelectText(place_nbr, 2)
sle_group.ReplaceText("North East")

These statements separate the return value of GetBandAtPointer into the band
name and row number. The Pos function finds the position of the tab in the
string and the Left and Mid functions extract the information to the left and right
of the tab:

string s, ls_left, ls_right
integer li_tab

s = dw_groups.GetBandAtPointer()
li_tab = Pos(s, "~t", 1)

ls_left = Left(s, li_tab - 1)
ls_right = Mid(s, li_tab + 1)

You could write similar code for a generic parsing function with three
arguments. The string s would be an argument passed by value and ls_left and
ls_right would be strings passed by reference.

Other functions that return a pair of tab-separated values for which you could
use the parsing function are GetObjectAtPointer and GetValue.

See also GetValue method for DataWindows in the DataWindow Reference
GetObjectAtPointer method for DataWindows in the DataWindow Reference
LastPos
Left

Chapter 10 PowerScript Functions

PowerScript Reference 751

Mid
Right
Pos method for DataWindows in the DataWindow Reference

PosW
Description Finds one string within another string.

Obsolete function
PosW is an obsolete function. It has the same behavior as Pos.

Syntax PosW (string1, string2 {, start })

Return value Long. Returns a long whose value is the starting position of the first occurrence
of string2 in string1 after the position specified in start.

Position
Reports the position of the insertion point in an editable control.

To report Use

The position of the insertion point in any editable control (except
RichTextEdit)

Syntax 1

The position of the insertion point or the start and end of selected text
in a RichTextEdit control or a DataWindow whose object has the
RichTextEdit presentation style

Syntax 2

Position

752 PocketBuilder

Syntax 1 For editable controls, except RichTextEdit
Description Determines the position of the insertion point in an edit control.

Applies to DataWindow, EditMask, MultiLineEdit, SingleLineEdit, or
DropDownListBox, DropDownPictureListBox controls

Syntax editname.Position ()

Return value Long. Returns the location of the insertion point in editname if it succeeds and
-1 if an error occurs. If editname is null, Position returns null.

Usage Position reports the position number of the character immediately following the
insertion point. For example, Position returns 1 if the cursor is at the beginning
of editname. If text is selected in editname, Position reports the number of the
first character of the selected text.

In a DataWindow control, Position reports the insertion point’s position in the
edit control over the current row and column.

Examples If mle_EmpAddress contains Boston Street, the cursor is immediately after the
n in Boston, and no text is selected, this statement returns 7:

mle_EmpAddress.Position()

If mle_EmpAddress contains Boston Street and Street is selected, this statement
returns 8 (the position of the S in Street):

mle_EmpAddress.Position()

See also SelectedLine
SelectedStart

Argument Description

editname The name of the control in which you want to find the location of the
insertion point

Chapter 10 PowerScript Functions

PowerScript Reference 753

Syntax 2 For RichTextEdit controls
Description Determines the line and column position of the insertion point or the start and

end of selected text in an RichTextEdit control.

Applies to RichTextEdit and DataWindow controls

Syntax rtename.Position (fromline, fromchar {, toline, tochar })

Return value Band enumerated datatype. Returns the band (Detail!, Header!, or Footer!)
containing the selection or insertion point.

Post
Description Adds a message to the message queue for a window, either a PocketBuilder

window or window of another application.

Syntax Post (handle, message#, word, long)

Return value Boolean. If any argument’s value is null, Post returns null.

Usage Use Post or Send when you want to trigger system events that are not
PocketBuilder-defined events. Post is asynchronous; it adds a message to the
end of the window’s message queue. Send is synchronous; its message triggers
an event immediately.

Argument Description

handle A long whose value is the system handle of a window (that you have
created in PocketBuilder or another application) to which you want
to post a message.

message# An UnsignedInteger whose value is the system message number of
the message you want to post.

word A long whose value is the integer value of the message. If this
argument is not used by the message, enter 0.

long The long value of the message or a string.

PostEvent

754 PocketBuilder

To obtain the handle of a PocketBuilder window, use the Handle function.

To trigger PocketBuilder events, use TriggerEvent or PostEvent. These
functions run the script associated with the event. They are easier to code and
bypass the messaging queue.

When you specify a string for long, Post stores a copy of the string and passes
a pointer to it.

Examples This statement scrolls the window w_date down one page after all the previous
messages in the message queue for the window have been processed:

Post(Handle(w_date), 277, 3, 0)

See also Handle
PostEvent
Send
TriggerEvent

PostEvent
Description Adds an event to the end of the event queue of an object.

Applies to Any object, except the application object

Syntax objectname.PostEvent (event, { word, long })

Argument Description

objectname The name of any PocketBuilder object or control (except an
application) that has events associated with it.

event A value of the TrigEvent enumerated datatype that identifies a
PocketBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event.
The event must be a valid event for objectname and a script must
exist for the event in objectname.

Chapter 10 PowerScript Functions

PowerScript Reference 755

Return value Boolean. Returns true if it is successful and false if the event is not a valid event
for objectname or no script exists for the event in objectname. If any
argument’s value is null, PostEvent returns null.

Usage You cannot post events to the event queue for an application object. Use
TriggerEvent instead.

You cannot post or trigger events for objects that do not have events, such as
drawing objects. You cannot post or trigger events in a batch application that
has no user interface because the application has no event queue.

After you call PostEvent, check the return code to determine whether PostEvent
succeeded.

You can pass information to the event script with the word and long arguments.
The information is stored in the Message object. In your script, you can
reference the WordParm and LongParm fields of the Message object to access
the information. Note that the Message object is saved and restored just before
the posted event script runs so that the information you passed is available even
if other code has used the Message object too.

If you have specified a string for long, you can access it in the triggered event
by using the String function with the keyword "address" as the format
parameter. (Note that PocketBuilder has stored the string at an arbitrary
memory location and you are relying on nothing else having altered the pointer
or the stored string.) Your event script might begin as follows:

string PassedString
PassedString = String(Message.LongParm, "address")

word
(optional)

A long value to be stored in the WordParm property of the system’s
Message object. If you want to specify a value for long, but not
word, enter 0. (For cross-platform compatibility, WordParm and
LongParm are both longs).

long
(optional)

A long value or a string that you want to store in the LongParm
property of the system’s Message object. When you specify a string,
a pointer to the string is stored in the LongParm property, which you
can access with the String function (see Usage).

Argument Description

PostEvent

756 PocketBuilder

TriggerEvent and PostEvent are useful for preventing duplication of code. If two
controls perform the same task, you can use PostEvent in one control’s event
script to execute the other’s script, instead of repeating the code in two places.
For example, if both a button and a menu delete data, the button’s Clicked
script can perform the deletion and the menu’s Clicked event script can post an
event that runs the button’s Clicked event script.

Choosing PostEvent or TriggerEvent Both PostEvent and TriggerEvent cause
event scripts to be executed. PostEvent is asynchronous; it adds the event to the
end of an object’s event queue. TriggerEvent is synchronous; the event is
triggered immediately.

Use PostEvent when you want the current event script to complete before the
posted event script runs. TriggerEvent interrupts the current script to run the
triggered event’s script. Use it when you need to interrupt a process, such as
canceling printing.

If the function is the last line in an event script and there are no other events
pending, PostEvent and TriggerEvent have the same effect.

Events and messages in Windows Both PostEvent and TriggerEvent cause a
script associated with an event to be executed. However, these functions do not
send the actual event message. This is important when you are choosing the
target object and event. The following background information explains this
concept.

Many PocketBuilder functions send Windows messages, which in turn trigger
events and run scripts. For example, the Close function sends a Windows close
message (WM_CLOSE). PocketBuilder maps the message to its internal close
message (PBM_CLOSE), then runs the Close event’s script and closes the
window.

If you use TriggerEvent or PostEvent with Close! as the argument,
PocketBuilder runs the Close event’s script but it does not close the window
because it did not receive the close message. Therefore, the choice of which
event to trigger is important. If you trigger the Clicked! event for a button
whose script calls the Close function, PocketBuilder runs the Close event’s
script and closes the window.

Use Post or Send when you want to trigger system events that are not
PocketBuilder-defined events.

Chapter 10 PowerScript Functions

PowerScript Reference 757

Examples This statement adds the Clicked event to the event queue for CommandButton
cb_OK. The event script will be executed after any other pending event scripts
are run:

cb_OK.PostEvent(Clicked!)

This statement adds the user-defined event cb_exit_request to the event queue
in the parent window:

Parent.PostEvent("cb_exit_request")

This example posts an event for cb_exit_request with an argument and then
retrieves that value from the Message object in the event’s script.

The first part of the example is code for a button in a window. It adds the
user-defined event cb_exit_request to the event queue in the parent window.
The value 455 is stored in the Message object for the use of the event’s script:

Parent.PostEvent("cb_exit_request", 455, 0)

The second part of the example is the beginning of the cb_exit_request event
script, which assigns the value passed in the Message object to a local variable.
The script can use the value in whatever way is appropriate to the situation:

integer numarg
numarg = Message.WordParm

See also Post
Send
TriggerEvent

PostURL
Description Performs an HTTP Post, allowing a PowerBuilder application to send a request

through CGI, NSAPI, or ISAPI.

Applies to Inet objects

PostURL

758 PocketBuilder

Syntax servicereference.PostURL (urlname, urldata, headers, {serverport, } data)

Return value Integer. Returns one of the following values:

1 Success
-1 General error
-2 Invalid URL
-4 Cannot connect to the Internet
-5 Unsupported secure (HTTPS) connection attempted
-6 Internet request failed

Usage Call this function to invoke a CGI, NSAPI, or ISAPI function.

Data references a standard class user object that descends from InternetResult
and that has an overridden InternetData function. This overridden function then
performs the required processing with the returned HTML. Because the
Internet returns data asynchronously, data must reference a variable that
remains in scope after the function executes (such as a window-level instance
variable).

To simulate a form submission, you need to send a header that indicates the
proper Content-Type. For forms, the proper Content-Type header is:

Content-Type: application/x-www-form-urlencoded

Examples This example calls the PostURL function using server port 8080. Iinet is an
instance variable of type inet:

Blob lblb_args
String ls_headers
String ls_url
Long ll_length

Argument Description

servicereference Reference to the Internet service instance.

urlname String specifying the URL to post.

urldata Blob specifying arguments to the URL specified by urlname.

headers String specifying HTML headers. In Netscape, a newline (~n) is
required after each HTTP header and a final newline after all
headers.

serverport
(optional)

Specifies the server port number for the request. The default
value for this argument is 0, which means that the port number
is determined by the system (port 80 for HTTP requests).

data InternetResult instance into which the function returns HTML.

Chapter 10 PowerScript Functions

PowerScript Reference 759

iir_msgbox = CREATE n_ir_msgbox
ls_url = "http://coltrane.sybase.com/"
ls_url += "cgi-bin/pbcgi60.exe/"
ls_url += "myapp/n_cst_html/f_test?"
lblb_args = blob("")
ll_length = Len(lblb_args)
ls_headers = "Content-Length: " &

+ String(ll_length) + "~n~n"
iinet.PostURL &

(ls_url, lblb_args, ls_headers, 8080, iir_msgbox)

This example shows the use of a header with the correct content-type for a
form:

Blob lblb_args
String ls_headers
String ls_url
String ls_args
long ll_length
integer li_rc

li_rc = GetContextService("Internet", iinet_base)
IF li_rc = 1 THEN

ir = CREATE n_ir
ls_url = "http://localhost/Site/testurl.stm?"
ls_args = "user=MyName&pwd=MyPasswd"
lblb_args = Blob(ls_args)
ll_length = Len(lblb_args)
ls_header = "Content-Type: " + &

"application/x-www-form-urlencoded~n" + &
"Content-Length: " + String(ll_length) + "~n~n"

li_rc = iinet.PostURL(ls_url, lblb_args, &
ls_header, ir)

END IF

See also GetURL
HyperLinkToURL
InternetData

Preview

760 PocketBuilder

Preview
Description Displays the contents of a RichTextEdit control as either a preview of the

document as it would print or in an editing view.

Applies to RichTextEdit controls

Syntax rtename.Preview (previewsetting)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Print
Sends data to the current printer (or spooler, if the user has a spooler set up).
There are several syntaxes.

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a device or emulator. An
evaluation version of this software is available from the FieldSoftware Web site
at http://www.fieldsoftware.com.

For syntax for DataWindows or DataStores, see the Print method for
DataWindows in the DataWindow Reference or the online Help.

To Use

Include a visual object, such as a window or a graph control in a
print job

Syntax 1

Send one or more lines of text as part of a print job Syntax 2

Print the contents of an RTE control Syntax 3

Chapter 10 PowerScript Functions

PowerScript Reference 761

Syntax 1 For printing a visual object in a print job
Description Includes a visual object, such as a window or a graph control, in a print job that

you have started with the PrintOpen function.

Applies to Any object

Syntax objectname.Print (printjobnumber, x, y {, width, height })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Print returns null.

Usage PocketBuilder manages print jobs by opening the job, sending data, and closing
the job. When you use Syntax 2 or 3, you must call the PrintOpen and PrintClose
functions yourself to manage the process.

Print area and margins The print area is the physical page size minus any
margins in the printer itself.

Argument Description

objectname The name of the object that you want to print. The object must
either be a window or an object whose ancestor type is
DragObject, which includes all the controls that you can place
in a window.

printjobnumber The number the PrintOpen function assigns to the print job.

x An integer whose value is the x coordinate on the page of the
left corner of the object, in thousandths of an inch.

y An integer whose value is the y coordinate on the page of the
left corner of the object, in thousandths of an inch.

width
(optional)

An integer specifying the printed width of the object in
thousandths of an inch. If omitted, PocketBuilder uses the
object’s original width.

height
(optional)

An integer specifying the printed height of the object in
thousandths of an inch. If omitted, PocketBuilder uses the
object’s original height.

Print

762 PocketBuilder

Examples This example prints the CommandButton cb_close in its original size at
location 500, 1000:

long Job
Job = PrintOpen()
cb_close.Print(Job, 500,1000)
PrintClose(Job)

This example opens a print job, which defines a new page, then prints a title
using the third syntax of Print. Then it uses this syntax of Print to print a graph
on the first page and a window on the second page:

long Job
Job = PrintOpen()
Print(Job, "Report of Year-to-Date Sales")
gr_sales1.Print(Job, 1000,PrintY(Job)+500, &

6000,4500)
PrintPage(Job)
w_sales.Print(Job, 1000,500, 6000,4500)
PrintClose(Job)

See also PrintCancel
PrintClose
PrintOpen
PrintScreen

Syntax 2 For printing text in a print job
Description Sends one or more lines of text as part of a print job that you have opened with

the PrintOpen function. You can specify tab settings before or after the text. The
tab settings control the text’s horizontal position on the page.

Applies to Not object-specific

Syntax Print (printjobnumber, { tab1, } string {, tab2 })

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

Chapter 10 PowerScript Functions

PowerScript Reference 763

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Print returns null.

Usage PocketBuilder manages print jobs by opening the job, sending data, and closing
the job. When you use Syntax 2 or 3, you must call the PrintOpen and PrintClose
functions yourself to manage the process.

Print cursor In a print job, PocketBuilder uses a print cursor to keep track of
the print location. The print cursor stores the coordinates of the upper-left
corner of the location at which print will being. PocketBuilder updates the print
cursor after printing text with Print.

Line spacing when printing text Line spacing in PocketBuilder is
proportional to character height. The default line spacing is 1.2 times the
character height. When Print starts a new line, it sets the x coordinate of the
cursor to 0 and increases the y coordinate by the current line spacing. You can
change the line spacing with the PrintSetSpacing function, which lets you
specify a new factor to be multiplied by the character height.

Because Syntax 3 of Print increments the y coordinate each time it creates a
new line, it also handles page breaks automatically. When the y coordinate
exceeds the page size, PocketBuilder automatically creates a new page in the
print job. You do not need to call the PrintPage function, as you would if you
were using the printing functions that control the cursor position (for example,
PrintText or PrintLine).

Print area and margins The print area is the physical page size minus any
margins in the printer itself.

tab1
(optional)

The position, measured from the left edge of the print area in
thousandths of a inch, to which the print cursor should move
before string is printed. If the print cursor is already at or
beyond the position or if you omit tab1, Print starts printing at
the current position of the print cursor.

string The string you want to print. If the string includes carriage
return-newline character pairs (~r~n), the string will print on
multiple lines. However, the initial tab position is ignored on
subsequent lines.

tab2
(optional)

The new position, measured from the left edge of the print area
in thousandths of a inch, of the print cursor after string printed.
If the print cursor is already at or beyond the specified
position, Print ignores tab2 and the print cursor remains at the
end of the text. If you omit tab2, Print moves the print cursor
to the beginning of a new line.

Argument Description

Print

764 PocketBuilder

Using fonts You can use PrintDefineFont and PrintSetFont to specify the font
used by the Print function when you are printing a string.

Fonts for multiple languages The default font for print functions is the
system font, but multiple languages cannot be printed correctly using the
system font. The Tahoma font typically produces good results. However, if the
printer font is set to Tahoma and the Tahoma font is not installed on the printer,
PowerBuilder downloads the entire font set to the printer when it encounters a
multilanguage character. Use the PrintDefineFont and PrintSetFont functions to
specify a font that is available on users’ printers and supports multiple
languages.

Examples This example opens a print job, prints the string Sybase Corporation in the
default font, and then starts a new line:

long Job

// Define a blank page and assign the job an ID
Job = PrintOpen()

// Print the string and then start a new line
Print(Job, "Sybase Corporation")
...
PrintClose(Job)

This example opens a print job, prints the string Sybase Corporation in the
default font, tabs 5 inches from the left edge of the print area but does not start
a new line:

long Job

// Define a blank page and assign the job an ID
Job = PrintOpen()

// Print the string but do not start a new line
Print(Job, "Sybase Corporation", 5000)
...
PrintClose(Job)

The first Print statement below tabs half an inch from the left edge of the print
area, prints the string Sybase Corporation, and then starts a new line. The
second Print statement tabs one inch from the left edge of the print area, prints
the string Directors:, and then starts a new line:

long Job

// Define a blank page and assign the job an ID
Job = PrintOpen()

Chapter 10 PowerScript Functions

PowerScript Reference 765

// Print the string and start a new line
Print(Job, 500, "Sybase Corporation")

// Tab 1 inch from the left edge and print
Print(Job, 1000, "Directors:")
...
PrintClose(Job)

The first Print statement below tabs half an inch from the left edge of the print
area prints the string Sybase Corporation, and then tabs 6 inches from the
left edge of the print area but does not start a new line. The second Print
statement prints the current date and then starts a new line:

long Job

// Define a blank page and assign the job an ID
Job = PrintOpen()

// Print string and tab 6 inches from the left edge
Print(Job, 500, "Sybase Corporation", 6000)

// Print the current date on the same line
Print(Job, String(Today()))
...
PrintClose(Job)

In a window that displays a database error message in a MultiLineEdit
mle_message, the following script for a Print button prints a title with the date
and time and the message:

long li_prt

li_prt = PrintOpen("Database Error")

Print(li_prt, "Database error - " &
+ String(Today(), "mm/dd/yyyy") &

+ " - " &
+ String(Now(), "HH:MM:SS"))

Print(li_prt, " ")
Print(li_prt, mle_message.text)

PrintClose(li_prt)

See also PrintCancel
PrintClose
PrintDataWindow
PrintOpen

PrintBitmap

766 PocketBuilder

PrintScreen
PrintSetFont
PrintSetSpacing

Syntax 3 For RichTextEdit controls
Description Prints the contents of a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.Print (copies, pagerange, collate, canceldialog)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

PrintBitmap
Description Writes a bitmap at the specified location on the current page.

Syntax PrintBitmap (printjobnumber, bitmap, x, y, width, height)

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

bitmap A string whose value is the file name of the bitmap image.

x An integer whose value is the x coordinate (in thousandths of
an inch) on the page of the bitmap image.

y An integer whose value is the y coordinate (in thousandths of
an inch) on the page of the bitmap image.

width The integer width of the bitmap image in thousandths of an
inch. If width is 0, PocketBuilder uses the original width of the
image.

height The integer height of the bitmap image in thousandths of an
inch. If height is 0, PocketBuilder uses the original height of
the image.

Chapter 10 PowerScript Functions

PowerScript Reference 767

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintBitmap returns null.

Usage PrintBitmap does not change the position of the print cursor, which remains
where it was before the function was called. In general, print functions in which
you specify coordinates do not affect the print cursor (see the functions listed
in See also).

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a Pocket PC device or
emulator. An evaluation version of this software is available from the
FieldSoftware Web site at http://www.fieldsoftware.com.

Examples These statements define a new blank page and then print the bitmap in file
d:\PB\BITMAP1.BMP in its original size at location 50,100:

long Job

// Define a new blank page.
Job = PrintOpen()

// Print the bitmap in its original size.
PrintBitmap(Job, "d:\PB\BITMAP1.BMP", 50,100, 0,0)
// Send the page to the printer and close Job.
PrintClose(Job)

See also PrintClose
PrintLine
PrintRect
PrintRoundRect
PrintOval
PrintOpen

PrintCancel
Description Cancels printing and deletes the spool file, if any. Cancels printing of a print

job that you opened with the PrintOpen function. The print job is identified by
the number returned by PrintOpen.

PrintClose

768 PocketBuilder

Syntax PrintCancel (printjobnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If printjobnumber is
null, PrintCancel returns null.

PrintClose
Description Sends the current page to the printer (or spooler) and closes the job. Call

PrintClose as the last command of a print job unless PrintCancel function has
closed the job.

Syntax PrintClose (printjobnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If printjobnumber is
null, PrintClose returns null.

Usage When you open a print job, you must close (or cancel) it. To avoid hung print
jobs, process and close a print job in the same event in which you open it.

Examples This example opens a print job, which creates a blank page, prints a bitmap on
the page, then sends the current page to the printer or spooler and closes the job:

ulong Job

// Begin a new job and a new page.
Job = PrintOpen()

// Print the bitmap in its original size.
PrintBitmap(Job, d:\PB\BITMAP1, 5,10, 0,0)

// Send the page to the printer and close Job.
PrintClose(Job)

See also PrintCancel
PrintOpen

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

Chapter 10 PowerScript Functions

PowerScript Reference 769

PrintDataWindow
Description Prints the contents of a DataWindow control or DataStore as a print job.

Syntax PrintDataWindow (printjobnumber, dwcontrol)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintDataWindow returns null.

Usage Do not use PrintDataWindow with any Print functions except PrintOpen and
PrintClose.

When you use PrintDataWindow with PrintOpen and PrintClose, you can print
several DataWindows in one print job. The information in each DataWindow
control starts printing on a new page.

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a Pocket PC device or
emulator. An evaluation version of this software is available from the
FieldSoftware Web site at http://www.fieldsoftware.com.

When you print a DataWindow using PrintDataWindow, PocketBuilder uses the
fonts and layout specified in the computer’s printer setup, not the fonts and
layout specified in the DataWindow. The PrintDefineFont and PrintSetFont
methods also have no effect.

When the DataWindow’s presentation style is RichTextEdit, each row begins a
new page in the printed output.

For information on skipping individual pages with return codes in the
PrintPage event, see the Print function.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

dwcontrol The name of the DataWindow control, child DataWindow, or
DataStore containing the DataWindow object you want to
print

PrintDefineFont

770 PocketBuilder

Examples These statements send the contents of three DataWindow controls to the
current printer in a single print job:

long job
job = PrintOpen()
// Each DataWindow starts printing on a new page.
PrintDataWindow(job, dw_EmpHeader)
PrintDataWindow(job, dw_EmpDetail)
PrintDataWindow(job, dw_EmpDptSum)
PrintClose(job)

See also Print
PrintClose
PrintOpen

PrintDefineFont
Description Creates a numbered font definition that consists of a font supported by your

printer and a set of font properties. You can use the font number in the
PrintSetFont or PrintText functions. You can define up to eight fonts at a time.

Syntax PrintDefineFont (printjobnumber, fontnumber, facename, height, weight,
fontpitch, fontfamily, italic, underline)

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

fontnumber The number (1 to 8) you want to assign to the font.

facename A string whose value is the name of a typeface supported by
your printer (for example, Courier 10Cpi).

height An integer whose value is the height of the type in thousandths
of an inch (for example, 250 for 18-point 10Cpi) or a negative
number representing the point size (for example, -18 for 18-
point). Specifying the point size is more exact; the height in
thousandths of an inch only approximates the point size.

weight The stroke weight of the type. Normal weight is 400 and bold
is 700.

Chapter 10 PowerScript Functions

PowerScript Reference 771

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintDefineFont returns null.

Usage You can use as many as eight fonts in one print job. If you require more than
eight fonts in one job, you can call PrintDefineFont again to change the settings
for a font number.

Use PrintSetFont to make a font number the current font for the open print job.

Fonts in Microsoft Windows
Although the fontfamily argument seems to duplicate information in the font
name, Windows uses it along with the font name to identify the correct font or
substitute a similar font if the named font is unavailable.

Font names and sizes
Some font names include a size, especially monospaced fonts which include
characters per inch. This is the recommended size for the font and does not
affect the printed size, which you specify with the height argument.

fontpitch A value of the FontPitch enumerated datatype indicating the
pitch of the font:

Default!
Fixed!
Variable!

fontfamily A value of the FontFamily enumerated datatype indicating the
family of the font:

AnyFont!
Decorative!
Modern!
Roman!
Script!
Swiss!

italic A boolean value indicating whether the font is italic. The
default is false (not italic).

underline A boolean value indicating whether the font is underlined. The
default is false (not underlined).

Argument Description

PrintGetPrinter

772 PocketBuilder

Examples These statements define a new blank page, and then define print font 1 for Job
as Courier 10Cpi, 18 point, normal weight, default pitch, Decorative font, with
no italic or underline:

long Job
Job = PrintOpen()
PrintDefineFont(Job, 1, "Courier 10Cpi", &

-18, 400, Default!, Decorative!, FALSE, FALSE)

See also PrintClose
PrintOpen
PrintSetFont

PrintGetPrinter
Description Gets the current printer name.

Syntax PrintGetPrinter ()

Return value String. Returns current printer information in a tab-delimited format:
printername ~t drivername ~t port.

PrintGetPrinters
Description Gets the list of available printers.

Syntax PrintGetPrinters ()

Return value String. Each printer is listed in the string in the format printername ~t
drivername ~t port ~n.

Chapter 10 PowerScript Functions

PowerScript Reference 773

PrintLine
Description Draws a line of a specified thickness between the specified endpoints on the

current print page.

Syntax PrintLine (printjobnumber, x1, y1, x2, y2, thickness)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintLine returns null.

Usage PrintLine does not change the position of the print cursor, which remains where
it was before the function was called.

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a Pocket PC device or
emulator. An evaluation version of this software is available from the
FieldSoftware Web site at http://www.fieldsoftware.com.

Examples These statements start a new page in a print job and then print a line starting at
0,5 and ending at 7500,5 with a thickness of 10/1000 of an inch:

long Job
Job = PrintOpen()
... // various print commands

// Start a new page.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x1 An integer specifying the x coordinate in thousandths of an
inch of the start of the line

y1 An integer specifying the y coordinate in thousandths of an
inch of the start of the line

x2 An integer specifying the x coordinate in thousandths of an
inch of the end of the line

y2 An integer specifying the y coordinate in thousandths of an
inch of the end of the line

thickness An integer specifying the thickness of the line in thousandths
of an inch

PrintOpen

774 PocketBuilder

PrintPage(Job)
// Print a line at the top of the page
PrintLine(Job,0,5,7500,5,10)
... // Other printing
PrintClose(Job)

See also PrintBitmap
PrintClose
PrintOpen
PrintOval
PrintRect
PrintRoundRect

PrintOpen
Description Opens a print job and assigns it a number, which you use in other printing

statements.

Syntax PrintOpen ({ jobname })

Return value Long. Returns the job number if it succeeds and -1 if an error occurs. If any
argument’s value is null, PrintOpen returns null.

Usage A new print job begins on a new page and the font is set to the default font for
the printer. The print cursor is at the upper left corner of the print area.

Use the job number that PrintOpen returns to identify this print job in all
subsequent print functions.

Argument Description

jobname
(optional)

A string specifying a name for the print job. The name is displayed
in the Windows Print Manager dialog box and in the Spooler dialog
box.

Chapter 10 PowerScript Functions

PowerScript Reference 775

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a device or emulator. An
evaluation version of this software is available from the FieldSoftware Web site
at http://www.fieldsoftware.com.

Calling MessageBox after PrintOpen can cause undesirable behavior that is
confusing to a user. Calling PrintOpen causes the currently active window in
PocketBuilder to be disabled to allow Windows to handle printing. If you
display a MessageBox after calling PrintOpen, Windows assigns the active
window to be its parent, which is often another application, causing that
application to become active.

Balancing PrintOpen and PrintClose
When you open a print job, you must close (or cancel) it. To avoid hung print
jobs, process and close a print job in the same event in which you open it.

Examples This example opens a job but does not give it a name:

ulong li_job
li_job = PrintOpen()

This example opens a job and gives it a name:

ulong li_job
li_job = PrintOpen("Phone List")

See also Print
PrintBitmap
PrintCancel
PrintClose
PrintDataWindow
PrintDefineFont
PrintLine
PrintOval
PrintPage
PrintRect
PrintRoundRect
PrintSend
PrintSetFont
PrintSetup
PrintText
PrintWidth

PrintOval

776 PocketBuilder

PrintX
PrintY

PrintOval
Description Draws a white oval outlined in a line of the specified thickness on the print

page.

Syntax PrintOval (printjobnumber, x, y, width, height, thickness)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintOval returns null.

Usage The PrintOval, PrintRect, and PrintRoundRect functions draw filled shapes. To
print other shapes or text inside the shapes, draw the filled shape first and then
add text and other shapes or lines inside it. If you draw the filled shape after
other printing functions, it will cover anything inside it. For example, to draw
a border around text and lines, draw the oval or rectangular border first and
then use PrintLine and PrintText to position the lines and text inside.

PrintOval does not change the position of the print cursor, which remains where
it was before the function was called. In general, print functions in which you
specify coordinates do not affect the print cursor.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x An integer specifying the x coordinate in thousandths of an
inch of the upper-left corner of the oval’s bounding box

y An integer specifying the y coordinate in thousandths of an
inch of the upper-left corner of the oval’s bounding box

width An integer specifying the width in thousandths of an inch of
the oval’s bounding box

height An integer specifying the height in thousandths of an inch of
the oval’s bounding box

thickness An integer specifying the thickness of the line that outlines the
oval in thousandths of an inch

Chapter 10 PowerScript Functions

PowerScript Reference 777

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a device or emulator. An
evaluation version of this software is available from the FieldSoftware Web site
at http://www.fieldsoftware.com.

Examples This example starts a print job with a new blank page, and then prints an oval
that fits in a 1-inch square. The upper-left corner of the oval’s bounding box is
four inches from the top and three inches from the left edge of the print area.
Because its height and width are equal, the oval is actually a circle:

long Job

// Define a new blank page.
Job = PrintOpen()

// Print an oval.
PrintOval(Job, 4000, 3000, 1000, 1000, 10)

... // Other printing
PrintClose(Job)

See also PrintBitmap
PrintClose
PrintLine
PrintOpen
PrintRect
PrintRoundRect

PrintPage

778 PocketBuilder

PrintPage
Description Sends the current page to the printer or spooler and begins a new blank page in

the current print job.

Syntax PrintPage (printjobnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintPage returns null.

Usage You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a Pocket PC device or
emulator. An evaluation version of this software is available from the
FieldSoftware Web site at http://www.fieldsoftware.com.

Examples This example opens a print job with a new blank page, prints a bitmap on the
page, and then sends the page to the printer and sets up a new blank page.
Finally, the last Print statement prints the company name on the new page:

long Job

// Open a job with new blank page.
Job = PrintOpen()

// Print a bitmap on the page.
PrintBitmap(Job, "d:\PB\BITMAP1.BMP", 100,250, 0,0)

// Begin a new page.
PrintPage(Job)

// Print the company name on the new page.
Print(Job, "Sybase Corporation")

See also PrintClose
PrintOpen

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

Chapter 10 PowerScript Functions

PowerScript Reference 779

PrintRect
Description Draws a white rectangle with a border of the specified thickness on the print

page.

Syntax PrintRect (printjobnumber, x, y, width, height, thickness)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintRect returns null.

Usage The PrintOval, PrintRect, and PrintRoundRect functions draw filled shapes. To
print other shapes or text inside the shapes, draw the filled shape first and then
add text and other shapes or lines inside it. If you draw the filled shape after
other printing functions, it will cover anything inside it. For example, to draw
a border around text and lines, draw the oval or rectangular border first and
then use PrintLine and PrintText to position the lines and text inside.

PrintRect does not change the position of the print cursor, which remains where
it was before the function was called. In general, print functions in which you
specify coordinates do not affect the print cursor.

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a device or emulator. An
evaluation version of this software is available from the FieldSoftware Web site
at http://www.fieldsoftware.com.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x An integer specifying the x coordinate in thousandths of an
inch of the upper-left corner of the rectangle

y An integer specifying the y coordinate in thousandths of an
inch of the upper-left corner of the rectangle

width An integer specifying the rectangle’s width in thousandths of
an inch

height An integer specifying the rectangle’s height in thousandths of
an inch

thickness An integer specifying the thickness of the rectangle’s border
line in thousandths of an inch

PrintRoundRect

780 PocketBuilder

Examples These statements open a print job with a new page and draw a 1-inch square
with a line thickness of 1/8 of an inch. The square’s upper left corner is four
inches from the left and three inches from the top of the print area:

long Job
// Define a new blank page.
Job = PrintOpen()
// Print the rectangle on the page.
PrintRect(Job, 4000,3000, 1000,1000, 125)
... // Other printing
PrintClose(Job)

See also PrintBitmap
PrintClose
PrintLine
PrintOpen
PrintOval
PrintRoundRect

PrintRoundRect
Description Draws a white rectangle with rounded corners and a border of the specified

thickness on the print page.

Syntax PrintRoundRect (printjobnumber, x, y, width, height, xradius, yradius,
thickness)

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x An integer specifying the x coordinate in thousandths of an
inch of the upper-left corner of the rectangle

y An integer specifying the y coordinate in thousandths of an
inch of the upper-left corner of the rectangle

width An integer specifying the rectangle’s width in thousandths of
an inch

height An integer specifying the rectangle’s height in thousandths of
an inch

Chapter 10 PowerScript Functions

PowerScript Reference 781

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintRoundRect returns null.

Usage The PrintOval, PrintRect, and PrintRoundRect functions draw filled shapes. To
print other shapes or text inside the shapes, draw the filled shape first and then
add text and other shapes or lines inside it. If you draw the filled shape after
other printing functions, it will cover anything inside it. For example, to draw
a border around text and lines, draw the oval or rectangular border first and
then use PrintLine and PrintText to position the lines and text inside.

PrintRoundRect does not change the position of the print cursor, which remains
where it was before the function was called. In general, print functions in which
you specify coordinates do not affect the print cursor.

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a device or emulator. An
evaluation version of this software is available from the FieldSoftware Web site
at http://www.fieldsoftware.com.

Examples This example starts a new print job, which begins a new page, and prints a
rectangle with rounded corners as a page border. Then it closes the print job,
which sends the page to the printer.

The rectangle is 6 1/4 inches wide by 9 inches high and its upper corner is one
inch from the top and one inch from the left edge of the print area. The border
has a line thickness of 1/8 of an inch and the corner radius is 300:

long Job

// Define a new blank page.
Job = PrintOpen()

// Print a RoundRectangle on the page.
PrintRoundRect(Job, 1000,1000, 6250,9000, &

300,300, 125)

// Send the page to the printer.
PrintClose(Job)

xradius An integer specifying the x radius of the corner rounding

yradius An integer specifying the y radius of the corner rounding

thickness An integer specifying the thickness of the rectangle’s border
line in thousandths of an inch

Argument Description

PrintScreen

782 PocketBuilder

See also PrintBitmap
PrintClose
PrintLine
PrintOpen
PrintOval
PrintRect

PrintScreen
Description Prints the screen image as part of a print job.

Syntax PrintScreen (printjobnumber, x, y {, width, height })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintScreen returns null.

Usage You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a device or emulator. An
evaluation version of this software is available from the FieldSoftware Web site
at http://www.fieldsoftware.com.

Argument Description

printjobnumber The number the PrintOpen function assigns to the print job.

x An integer whose value is the x coordinate on the page, in
thousandths of an inch, of the upper-left corner of the screen
image.

y An integer whose value is the y coordinate on the page, in
thousandths of an inch, of the upper-left corner of the screen
image.

width
(optional)

The integer width of the printed screen in thousandths of an
inch. If you omit width, PocketBuilder prints the screen at its
original width. If you specify width, you must also specify
height.

height
(optional)

The integer height of the printed screen in thousandths of an
inch. If you omit height, PocketBuilder prints the screen at its
original height.

Chapter 10 PowerScript Functions

PowerScript Reference 783

Examples This statement prints the current screen image in its original size at location
500, 1000:

long Job
Job = PrintOpen()
PrintScreen(Job, 500,1000)
PrintClose(Job)

See also Print
PrintClose
PrintOpen

PrintSend
Description Sends an arbitrary string of characters to the printer. PrintSend is usually used

for sending escape sequences that change the printer’s setup.

Obsolete function
PrintSend is an obsolete function. The ability to use this function is dependent
upon the printer driver.

Syntax PrintSend (printjobnumber, string {, zerochar })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintSend returns null.

PrintSetFont

784 PocketBuilder

PrintSetFont
Description Designates a font to be used for text printed with the Print function. You specify

the font by number. Use PrintDefineFont to associate a font number with the
desired font, a size, and a set of properties.

Syntax PrintSetFont (printjobnumber, fontnumber)

Return value Integer. Returns the character height of the current font if it succeeds and -1 if
an error occurs. If any argument’s value is null, PrintSetFont returns null.

Examples This example starts a new print job and specifies that font number 2 is Courier,
18 point, bold, default pitch, in modern font, with no italic or underline. The
PrintSetFont statement sets the current font to font 2. Then the Print statement
prints the company name:

long Job

// Start a new print job and a new page.
Job = PrintOpen()

// Define the font for Job.
PrintDefineFont(Job, 2, "Courier 10Cps", &

250, 700, Default!, Modern!, FALSE, FALSE)

// Set the font for Job.
PrintSetFont(Job, 2)

// Print the company name in the specified font.
Print(Job,"Sybase Corporation")

See also PrintDefineFont
PrintOpen

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

fontnumber The number (1 to 8) of a font defined for the job in
PrintDefineFont or 0 (the default font for the printer)

Chapter 10 PowerScript Functions

PowerScript Reference 785

PrintSetPrinter
Description Sets the printer to use for the next print function call. This function does not

affect open jobs.

Syntax PrintSetPrinter (printername)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

PrintSetSpacing
Description Sets the factor that PocketBuilder uses to calculate line spacing.

Syntax PrintSetSpacing (printjobnumber, spacingfactor)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintSetSpacing returns null.

Usage Line spacing in PocketBuilder is proportional to character height. The default
line spacing is 1.2 times the character height. When Print starts a new line, it
sets the x coordinate of the cursor to 0 and increases the y coordinate by the
current line spacing. The PrintSetSpacing function lets you specify a new factor
to be multiplied by the character height for an open print job.

Examples These statements start a new print job and set the vertical spacing factor to 1.5
(one and a half spacing):

long Job

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

spacingfactor The number by which you want to multiply the character
height to determine the vertical line-to-line spacing. The
default is 1.2.

PrintSetup

786 PocketBuilder

// Define a new blank page.
Job = PrintOpen()

// Set the spacing factor.
PrintSetSpacing(Job, 1.5)

See also PrintOpen

PrintSetup
Description Calls the Printer Setup dialog box provided by the system printer driver and lets

the user specify settings for the printer.

Syntax PrintSetup ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

PrintSetupPrinter
Description Displays the printer setup dialog box

Syntax PrintSetupPrinter ()

Return value Integer. Returns 1 if the function succeeds, 0 for cancel, -1 if an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 787

PrintText
Description Prints a single line of text starting at the specified coordinates.

Syntax PrintText (printjobnumber, string, x, y {, fontnumber })

Return value Integer. Returns the x coordinate of the new cursor location (that is, the value
of the parameter x plus the width of the text) if it succeeds. PrintText returns -1
if an error occurs. If any argument’s value is null, PrintText returns null.

Usage PrintText does change the position of the print cursor, unlike the other print
functions for which you specify coordinates. The print cursor moves to the end
of the printed text. PrintText also returns the x coordinate of the print cursor.
You can use the return value to determine where to begin printing additional
text.

PrintText does not change the print cursor’s y coordinate, which is its vertical
position on the page.

Required third-party software
You must install the FieldSoftware PrinterCE SDK before you can use print
methods in PocketBuilder applications deployed to a device or emulator. An
evaluation version of this software is available from the FieldSoftware Web site
at http://www.fieldsoftware.com.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

string A string whose value is the text you want to print.

x An integer specifying the x coordinate in thousandths of an inch
of the beginning of the text.

y An integer specifying the y coordinate in thousandths of an inch
of the beginning of the text.

fontnumber
(optional)

The number (1 to 8) of a font defined for the job by using the
PrintDefineFont function or 0 (the default font for the printer). If
you omit fontnumber, the text prints in the current font for the
print job.

PrintText

788 PocketBuilder

Examples These statements start a new print job and then print PocketBuilder in the
current font 3.7 inches from the left edge at the top of the page (location
3700,10):

long Job

// Define a new blank page.
Job = PrintOpen()

// Print the text.
PrintText(Job,"PocketBuilder", 3700, 10)
... // Other printing
PrintClose(Job)

The following statements define a new blank page and then print
Confidential in bold (as defined for font number 3), centered at the top of
the page:

long Job

// Start a new job and a new page.
Job = PrintOpen()

// Define the font.
PrintDefineFont(Job, 3, &

"Courier 10Cps", 250,700, &
Default!, AnyFont!, FALSE, FALSE)

// Print the text.
PrintText(Job, "Confidential", 3700, 10, 3)
... // Other printing
PrintClose(Job)

This example prints four lines of text in the middle of the page. The coordinates
for PrintText establish a new vertical position for the print cursor, which the
subsequent Print functions use and increment. The first Print function uses the
x coordinate returned by PrintText to continue the first line. The rest of the Print
functions print additional lines of text, after tabbing to the x coordinate used
initially by PrintText. In this example, each Print function increments the y
coordinate so that the following Print function starts a new line:

long Job

// Start a new job and a new page.
Job = PrintOpen()

// Print the text.
x = PrintText(Job,"The material ", 2000, 4000)

Chapter 10 PowerScript Functions

PowerScript Reference 789

Print(Job, x, " in this report")
Print(Job, 2000, "is confidential and should not")
Print(Job, 2000, "be disclosed to anyone who")
Print(Job, 2000, "is not at this meeting.")
... // Other printing
PrintClose(Job)

See also Print
PrintClose
PrintOpen

PrintWidth
Description Determines the width of a string using the current font of the specified print

job.

Syntax PrintWidth (printjobnumber, string)

Return value Integer. Returns the width of string in thousandths of an inch using the current
font of printjobnumber if it succeeds and -1 if an error occurs. If any
argument’s value is null, PrintWidth returns null. If the returned width exceeds
the maximum integer limit (+32767), PrintWidth returns -1.

Examples These statements define a new blank page and then set W to the length of the
string PowerBuilder in the current font and then use the length to position the
next text line:

long Job
int W

// Start a new print job.
Job = PrintOpen()

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

string A string whose value is the text for which you want to
determine the width

PrintX

790 PocketBuilder

// Determine the width of the text.
W = PrintWidth(Job,"PowerBuilder")

// Use the width to get the next print position.
Print(Job, W - 500, "Features List")

See also PrintClose
PrintOpen

PrintX
Description Reports the x coordinate of the print cursor.

Syntax PrintX (printjobnumber)

Return value Integer. Returns the x coordinate of the print cursor if it succeeds and -1 if an
error occurs. If any argument’s value is null, PrintX returns null.

Examples These statements set LocX to the x coordinate of the cursor and print End of
Report an inch beyond that location:

integer LocX
long Job

Job = PrintOpen()
... //Print statements
LocX = PrintX(Job)
Print(LocX+1000, "End of Report")

See also PrintY

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

Chapter 10 PowerScript Functions

PowerScript Reference 791

PrintY
Description Reports the y coordinate of the print cursor.

Syntax PrintY (printjobnumber)

Return value Integer. Returns the y coordinate of the cursor if it succeeds and -1 if an error
occurs. If any argument’s value is null, PrintY returns null.

Examples These statements print a bitmap one inch below the location of the print cursor:

integer LocX, LocY
long Job

Job = PrintOpen()
... //Print statements
LocX = PrintX(Job)
LocY = PrintY(Job) + 1000
PrintBitmap(Job, "CORP.BMP", LocX, LocY, 1000,1000)

See also PrintX

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

ProfileInt

792 PocketBuilder

ProfileInt
Description Obtains the integer value of a setting in the profile file for your application.

File format
ProfileInt can read either ANSI or Unicode files.

Syntax ProfileInt (filename, section, key, default)

Return value Integer. Returns default if filename is not found, section is not found in
filename, or key is not found in section, or the value of key is not an integer.
Returns -1 if an error occurs. If any argument’s value is null, ProfileInt returns
null.

Usage Use ProfileInt or ProfileString to get configuration settings from a profile file that
you have designed for your application.

You can use SetProfileString to change values in the profile file to customize
your application’s configuration during execution. Before you make changes,
you can use ProfileInt and ProfileString to obtain the original settings so you can
restore them when the user exits the application.

Argument Description

filename A string whose value is the name of the profile file. If you do not
specify a full path, ProfileInt uses the operating system’s standard
file search order to find the file.

section A string whose value is the name of a group of related values in the
profile file. In the file, section names are in square brackets. Do not
include the brackets in section. Section is not case sensitive.

key A string specifying the setting name in section whose value you
want. The setting name is followed by an equal sign in the file. Do
not include the equal sign in key. Key is not case sensitive.

default An integer value that ProfileInt will return if filename is not found,
if section or key does not exist in filename, or if the value of key
cannot be converted to an integer.

Chapter 10 PowerScript Functions

PowerScript Reference 793

Windows registry
ProfileInt can also be used to obtain configuration settings from the Windows
system registry. For information on how to use the system registry, see the
discussion of initialization files and the Windows registry in the Resource
Guide.

Examples These examples use a file called PROFILE.INI, which contains the following:

[Pb]
Maximized=1
[security]
Class=7

This statement returns the integer value for the keyword Maximized in section
PB of file PROFILE.INI. If there were no PB section or no Maximized
keyword in the PB section, it would return 3:

ProfileInt("C:\PROFILE.INI", "PB", "maximized", 3)

The following statements display a MessageBox if the integer value for the
Class setting in section Security of file C:\PROFILE.INI is less than 10. The
default security setting is 6 if the profile file is not found or does not contain a
Class setting:

IF ProfileInt("C:\PROFILE.INI", "Security", &
"Class", 6) < 10 THEN
// Class is < 10
MessageBox("Warning", "Access Denied")

ELSE
 ... // Some processing
END IF

See also ProfileString
SetProfileString
ProfileInt method for DataWindows in the DataWindow Reference

ProfileString

794 PocketBuilder

ProfileString
Description Obtains the string value of a setting in the profile file for your application.

File format
ProfileString can read either ANSI or Unicode files.

Syntax ProfileString (filename, section, key, default)

Return value String, with a maximum length of 4096 characters. Returns the string from key
within section within filename. If filename is not found, section is not found in
filename, or key is not found in section, ProfileString returns default. If an error
occurs, it returns the empty string (""). If any argument’s value is null,
ProfileString returns null.

Usage Use ProfileInt or ProfileString to get configuration settings from a profile file that
you have designed for your application.

You can use SetProfileString to change values in the profile file to customize
your application’s configuration during execution. Before you make changes,
you can use ProfileInt and ProfileString to obtain the original settings so you can
restore them when the user exits the application.

Argument Description

filename A string whose value is the name of the profile file. If you do not
specify a full path, ProfileString uses the operating system’s
standard file search order to find the file.

section A string whose value is the name of a group of related values in the
profile file. In the file, section names are in square brackets. Do not
include the brackets in section. Section is not case sensitive.

key A string specifying the setting name in section whose value you
want. The setting name is followed by an equal sign in the file. Do
not include the equal sign in key. Key is not case sensitive.

default A string value that ProfileString will return if filename is not found,
if section or key does not exist in filename, or if the value of key
cannot be converted to an integer.

Chapter 10 PowerScript Functions

PowerScript Reference 795

Windows registry
ProfileString can also be used to obtain configuration settings from the
Windows system registry. For information on how to use the system registry,
see the discussion of initialization files and the Windows registry in the
Resource Guide.

Examples These examples use a file called PROFILE.INI, which contains the following
lines. Quotes around string values in the INI file are optional:

[Employee]
Name=Smith

[Dept]
Name=Marketing

This statement returns the string contained in keyword Name in section
Employee in file C:\PROFILE.INI and returns None if there is an error. In the
example, the return value is Smith:

ProfileString("C:\PROFILE.INI", "Employee", &
"Name", "None")

The following statements open w_marketing if the string in the keyword Name
in section Department of file C:\PROFILE.INI is Marketing:

IF ProfileString("C:\PROFILE.INI", "Department", &
"Name", "None") = "Marketing" THEN
Open(w_marketing)

END IF

See also ProfileInt
SetProfileString
ProfileString method for DataWindows in the DataWindow Reference

Rand

796 PocketBuilder

Rand
Description Obtains a random whole number between 1 and a specified upper limit.

Syntax Rand (n)

Return value A numeric datatype, the datatype of n. Returns a random whole number
between 1 and n inclusive. If n is null, Rand returns null.

Usage The sequence of numbers generated by repeated calls to the Rand function is a
pseudorandom sequence. You can control whether the sequence is different
each time your application runs by calling the Randomize function to initialize
the random number generator.

Examples This statement returns a random whole number between 1 and 10:

Rand(10)

See also Randomize

Randomize
Description Initializes the random number generator so that the Rand function begins a new

series of pseudorandom numbers.

Argument Description

n The upper limit of the range of random numbers you want returned.
The lower limit is always 1. The upper limit is 32,767.

Chapter 10 PowerScript Functions

PowerScript Reference 797

Syntax Randomize (n)

Return value Integer. If n is null, Randomize returns null. The return value is never used.

Usage The sequence of numbers generated by repeated calls to the Rand function is a
computer-generated pseudorandom sequence. You can use the Randomize
function to initialize the random number generator with a value from the
system clock, or some other changing value, so that the sequence is always
different. For testing purposes, you can select a specific seed value, which you
can reuse to make the pseudorandom sequence repeatable each time you run
the application.

Include Randomize in the script for the Open event in the application.

Examples This statement sets the seed for the random number generator to 0 so that calls
to Rand generate a new sequence each time the script is run:

Randomize(0)

This statement sets the seed for the random number generator to 4 so that calls
to Rand repeat a specific sequence each time the random number generator is
initialized:

Randomize(4)

See also Rand

Read
For OLE stream objects Reads data from an opened OLE stream object.

Argument Description

n The starting value (seed) for the random number generator. When n
is 0, PocketBuilder takes the seed from the system clock and begins
a nonrepeatable sequence. A nonzero number generates a different
but repeatable sequence for each seed value. n cannot exceed
32,767.

To Use

Read data into a string Syntax 1

Read data into a character array or blob Syntax 2

Read

798 PocketBuilder

For FileDirect objects Reads a file that you open using the FileDirect object.

Syntax 1 For reading into a string
Description Reads data from an OLE stream object into a string.

Applies to OLEStream objects

Syntax olestream.Read (variable {, stopforline })

Return value Integer. Returns the number of characters or bytes read. If an end-of-file mark
(EOF) is encountered before any characters are read, Read returns -100. Read
returns a negative integer if an error occurs.

Syntax 2 For character arrays or blobs
Description Reads data from an OLE stream object into a character array or blob.

Applies to OLEStream objects

Syntax olestream.Read (variable {, maximumread })

Return value Integer. Returns 0 if it succeeds and a negative integer if an error occurs.

Syntax 3 For reading data into an array
Description Reads data from an open file into an array.

To Use

Read data into an array Syntax 3

Read data into a blob Syntax 4

Chapter 10 PowerScript Functions

PowerScript Reference 799

Applies to FileDirect objects

Syntax Integer instancename.Read (data[], bytesrequested, bytesread)

Return value Integer. Returns 1 for success and a negative number for any error.

Usage Use this function to read a file that you open with the FileDirect object in read
mode. The FileDirect object supports only the synchronous style of file output;
further file-related commands cannot be called until after the Read function is
fully processed or an error in reading the file is caught.

Examples The following example calls the FileDirect user object nvo_fileDirect to open
a file, read some data, store the data in an array, and close the file:

Integer li_ret, li_AmountRead
Unsignedlong li_data []
li_ret = nvo_fileDirect.Open ("COM8:", stgReadWrite!)
li_ret = nvo_fileDirect.Read (li_data[], 100,

li_amountRead)
li_ret = nvo_fileDirect.Close ()

See also Write

Syntax 4 For reading data into a blob
Description Reads data from an open file into a blob.

Applies to FileDirect objects

Syntax Integer instancename.Read (bdata, bytesrequested, bytesread)

Argument Description

instancename Name of the instance of the FileDirect object

data[] An array of unsignedlong datatypes to contain the data that
you read from a file

bytesrequested Integer for the number of bytes that you want to read in the
open file

bytesread Integer for storing the number of bytes read in the file

Argument Description

instancename Name of the instance of the FileDirect object

Real

800 PocketBuilder

Return value Integer. Returns 1 for success and a negative number for any error.

Usage Use this function to read a file that you open with the FileDirect object in read
mode. The FileDirect object supports only the synchronous style of file output;
further file-related commands cannot be called until after the Read function is
successfully processed or until an error in reading the file is caught.

Examples The following example calls the FileDirect user object nvo_fileDirect to open
a file, read some data, store the data in a blob variable, and close the file:

Integer li_ret, li_AmountRead
Blob lb_data
li_ret = nvo_fileDirect.Open ("MyDoc.txt", stgRead!)
li_ret = nvo_fileDirect.Read (lb_data, 100,

li_amountRead)
li_ret = nvo_fileDirect.Close ()

See also Open
Seek
Write

Real
Description Converts a string value to a real datatype or obtains a real value that is stored

in a blob.

bdata A blob variable to hold the data that you read from a file

bytesrequested Integer for the number of bytes that you want to read in the
open file

bytesread Integer for for storing the number of bytes read in the file

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 801

Syntax Real (stringorblob)

Return value Real. Returns the value of stringorblob as a real. If stringorblob is not a valid
PowerScript number or is an incompatible datatype, Real returns 0. If
stringorblob is null, Real returns null.

Examples This statement returns 24 as a real:

Real("24")

This statement returns the contents of the SingleLineEdit sle_Temp as a real:

Real(sle_Temp.Text)

The following example, although of no practical value, illustrates how to
assign real values to a blob and how to use Real to extract those values. The
two BlobEdit statements store two real values in the blob, one after the other. In
the statements that use Real to extract the values, you have to know where the
beginning of each real value is. Specifying the correct length in BlobMid is not
important because the Real function knows how many bytes to evaluate:

blob{20} lb_blob
real r1, r2
integer len1, len2

len1 = BlobEdit(lb_blob, 1, 32750E0)
len2 = BlobEdit(lb_blob, len1, 43750E0)

// Extract the real value at the beginning and
// ignore the rest of the blob
r1 = Real(lb_blob)
// Extract the second real value stored in the blob
r2 = Real(BlobMid(lb_blob, len1, len2 - len1))

See also Double
Integer
Long
Real method for DataWindows in the DataWindow Reference

Argument Description

stringorblob The string whose value you want returned as a real value or a blob
in which the first value is the real value. The rest of the contents of
the blob is ignored. Stringorblob can also be an Any variable
containing a string or blob.

ReceiveFromInfrared

802 PocketBuilder

ReceiveFromInfrared
Description Receives items over an infrared link and distributes them to destination folders.

Applies to POOM objects

Syntax Integer objectname.ReceiveFromInfrared ()

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Usage A user must be logged in to a POOM object to receive an infrared queue.
Calling ReceiveFromInfrared turns on the infrared receivers and places the
POOM objects it receives into the correct appointment, task, and contact
categories in the POOM repository.

Examples The following example retrieves items from an infrared queue:

li_rtn = po_1.ReceiveFromInfrared()

See also AddToInfraredQueue
SendToInfrared

Argument Description

objectname The name of the POOM object

Chapter 10 PowerScript Functions

PowerScript Reference 803

RegistryDelete
Description Deletes a key or a value for a key in the Windows system registry.

Syntax RegistryDelete (key, valuename)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage For more information about entries in the system registry, see RegistrySet.

Examples This statement deletes the value name Title and its associated value from the
registry. The key is not deleted:

RegistryDelete(&
 "HKEY_LOCAL_MACHINE\Software\MyApp.Settings\Fonts", &
 "Title")

See also RegistryGet
RegistryKeys
RegistrySet
RegistryValues

Argument Description

key A string whose value is the key in the system registry you
want to delete or whose value you want to delete.

To uniquely identify a key, specify the list of parent keys
above it in the hierarchy, starting with the root key. The
keys in the list are separated by backslashes.

valuename A string containing the name of a value in the registry. If
the specified key does not have a subkey, specifying an
empty string deletes the key and its named values.

RegistryGet

804 PocketBuilder

RegistryGet
Description Gets a value from the Windows system registry.

Syntax RegistryGet (key, valuename, { valuetype }, valuevariable)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. An error is returned
if the datatype of valuevariable does not correspond to the datatype specified
in valuetype.

Usage Long string values (more than 2048 bytes) should be stored as files and the file
name stored in the registry.

For more information about keys and value names in the system registry, see
RegistrySet.

Argument Description

key A string whose value names the key in the system registry whose
value you want.

To uniquely identify a key, specify the list of parent keys above it in
the hierarchy, starting with the root key. The keys in the list are
separated by backslashes.

valuename A string containing the name of a value in the registry. Each key can
have one unnamed value and several named values. For the
unnamed value, specify an empty string.

valuetype A value of the RegistryValueType enumerated datatype identifying
the datatype of a value in the registry. Values are:

• RegString!—A null-terminated string

• RegExpandString!—A null-terminated string that contains
unexpanded references to environment variables

• RegBinary!—Binary data

• ReguLong!—A 32-bit number

• ReguLongBigEndian!—A 32-bit number

• RegLink!—A Unicode symbolic link

• RegMultiString!—An unbounded array of strings

valuevariable A variable corresponding to the datatype of valuetype in which you
want to store the value obtained from the system registry for the
specified key and value name.

Chapter 10 PowerScript Functions

PowerScript Reference 805

Examples This statement obtains the value for the name Title and stores it in the string
ls_titlefont:

string ls_titlefont
RegistryGet(&
 "HKEY_LOCAL_MACHINE\Software\MyApp.Settings\Fonts", &
"Title", RegString!, ls_titlefont)

This statement obtains the value for the name NameOfEntryNum and stores it in
the long ul_num:

ulong ul_num
RegistryGet(&
 "HKEY_USERS\MyApp.Settings\Fonts", &
 "NameOfEntryNum", RegULong!, ul_num)

See also RegistryDelete
RegistryKeys
RegistrySet
RegistryValues

RegistryKeys
Description Obtains a list of the keys that are child items (subkeys) one level below a key

in the Windows system registry.

RegistryKeys

806 PocketBuilder

Syntax RegistryKeys (key, subkeys)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage For more information about entries in the system registry, see RegistrySet.

Examples This example obtains the subkeys associated with the key
HKEY_CLASSES_ROOT\MyApp. The subkeys are stored in the variable-size
array ls_subkeylist:

string ls_subkeylist[]
integer li_rtn
li_rtn = RegistryKeys("HKEY_CLASSES_ROOT\MyApp", &
 ls_subkeylist)
IF li_rtn = -1 THEN
 ... // Error processing
END IF

See also RegistryDelete
RegistryGet
RegistrySet
RegistryValues

Argument Description

key A string whose value names the key in the system registry whose
subkeys you want.

To uniquely identify a key, specify the list of parent keys above it in
the hierarchy, starting with the root key. The keys in the list are
separated by backslashes.

subkeys An array variable of strings in which you want to store the subkeys.

If the array is variable size, its upper bound will reflect the number
of subkeys found.

If the array is fixed size, it must be large enough to hold all the
subkeys. However, there will be no way to know how many
subkeys were actually found.

Chapter 10 PowerScript Functions

PowerScript Reference 807

RegistrySet
Description Sets the value for a key and value name in the system registry. If the key or

value name does not exist, RegistrySet creates a new key or name and sets its
value.

Syntax RegistrySet (key, valuename, valuetype, value)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. An error is returned
if the datatype of valuevariable does not correspond to the datatype specified
in valuetype.

Argument Description

key A string whose value names the key in the system registry whose
value you want to set.

To uniquely identify a key, specify the list of parent keys above it in
the hierarchy, starting with the root key. The keys in the list are
separated by backslashes.

If key does not exist in the registry, RegistrySet creates a new key.
To create a key without a named value, specify an empty string for
valuename.

valuename A string containing the name of a value in the registry. Each key
may have several named values. To specify the unnamed value,
specify an empty string.

If valuename does not exist in the registry, RegistrySet causes a
new name to be created for key.

valuetype A value of the RegistryValueType enumerated datatype identifying
the datatype of a value in the registry. Values are:

• RegString!—A null-terminated string

• RegExpandString!—A null-terminated string that contains
unexpanded references to environment variables

• RegBinary!—Binary data

• ReguLong!—A 32-bit number

• ReguLongBigEndian!—A 32-bit number

• RegLink!—A Unicode symbolic link

• RegMultiString!—An unbounded array of strings

value A variable corresponding to the datatype of valuetype containing a
value to be set in the registry.

RegistrySet

808 PocketBuilder

Usage Long string values (more than 2048 bytes) should be stored as files and the file
name stored in the registry.

Examples This example sets a value for the key Fonts and the value name Title:

RegistrySet(&
 "HKEY_LOCAL_MACHINE\Software\MyApp\Fonts", &
 "Title", RegString!, sle_font.Text)

This statement sets a value for the key Fonts and the value name
NameOfEntryNum:

ulong ul_num
RegistrySet(&
 "HKEY_USERS\MyApp.Settings\Fonts", &
 "NameOfEntryNum", RegULong!, ul_num)

See also RegistryDelete
RegistryGet
RegistryKeys
RegistryValues

Item Description

Key An element in the registry. A key is part of a tree of keys,
descending from one of the predefined root keys. Each key is
a subkey or child of the parent key above it in the hierarchy.

There are four root strings:

• HKEY_CLASSES_ROOT

• HKEY_LOCAL_MACHINE

• HKEY_USERS

• HKEY_CURRENT_USER

A key is uniquely identified by the list of parent keys above
it. The keys in the list are separated by slashes, as shown in
these examples:

HKEY_CLASSES_ROOT\Sybase.Application

HKEY_USERS\MyApp\Display\Fonts

Value name The name of a value belonging to the key. A key can have one
unnamed value and one or more named values.

Value type A value identifying the datatype of a value in the registry.

Value A value associated with a value name or an unnamed value.
Several string, numeric, and binary datatypes are supported
by the registry.

Chapter 10 PowerScript Functions

PowerScript Reference 809

RegistryValues
Description Obtains the list of named values associated with a key.

Syntax RegistryValues (key, valuename)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage For more information about entries in the system registry, see RegistrySet.

Examples This example gets the value names associated with the key Fonts and stores
them in the array ls_valuearray:

string ls_valuearray[]
RegistryValues(&
 "HKEY_LOCAL_MACHINE\Software\MyApp.Settings\Fonts",&
 ls_valuearray)

See also RegistryDelete
RegistryGet
RegistryKeys
RegistrySet

Argument Description

key A string whose value is the key in the system registry for which you
want the values of its subkeys.

To uniquely identify a key, specify the list of parent keys above it in
the hierarchy, starting with the root key. The keys in the list are
separated by backslashes.

valuename An array variable of strings in which you want to store the names.

If the array is variable size, its upper bound will reflect the number
of named values found.

If the array is fixed size, it must be large enough to hold all the
names. However, there will be no way to know how many names
were actually found.

RelativeDate

810 PocketBuilder

RelativeDate
Description Obtains the date that occurs a specified number of days after or before another

date.

Syntax RelativeDate (date, n)

Return value Date. Returns the date that occurs n days after date if n is greater than 0.
Returns the date that occurs n days before date if n is less than 0. If any
argument’s value is null, RelativeDate returns null.

Examples This statement returns 1990-02-10:

RelativeDate(1990-01-31, 10)

This statement returns 1990-01-21:

RelativeDate(1990-01-31, - 10)

See also DaysAfter
RelativeDate method for DataWindows in the DataWindow Reference

RelativeTime
Description Obtains a time that occurs a specified number of seconds after or before

another time within a 24-hour period.

Argument Description

date A value of type date

n An integer indicating a number of days

Chapter 10 PowerScript Functions

PowerScript Reference 811

Syntax RelativeTime (time, n)

Return value Time. Returns the time that occurs n seconds after time if n is greater than 0.
Returns the time that occurs n seconds before time if n is less than 0. The
maximum return value is 23:59:59. If any argument’s value is null, RelativeTime
returns null.

Examples This statement returns 19:01:41:

RelativeTime(19:01:31, 10)

This statement returns 19:01:21:

RelativeTime(19:01:31, - 10)

See also SecondsAfter
RelativeTime method for DataWindows in the DataWindow Reference

ReleaseAutomationNativePointer
Description Releases the pointer to an OLE object that you got with

GetAutomationNativePointer.

Applies to OLEObject

Syntax oleobject.ReleaseAutomationNativePointer (pointer)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

ReleaseNativePointer
Description Releases the pointer to an OLE object that you got with GetNativePointer.

Argument Description

time A value of type time

n A long number of seconds

Remove

812 PocketBuilder

Applies to OLE controls and OLE custom controls

Syntax olename.ReleaseNativePointer (pointer)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Remove
Removes an object or item at runtime.

Syntax 1 For NotificationBubble objects
Description Removes a notification bubble and its icon in the notification tray.

Applies to NotificationBubble object

Syntax Integer controlname.Remove ()

Return value Integer. Returns 1 for success, -1 if an error occurs. Typically this is a benign
error, because the user has already acknowledged the notification.

Usage If you do not remove the notification bubble and the user does not acknowledge
the notification, the NotificationBubble object could remain in memory and its
icon in the notification tray.

Examples The following example removes a NotificationBubble from a user’s system:

li_rtn = nb_myBubble.Remove()

See also Icon
SetMessageSink

To remove Use

A NotificationBubble object Syntax 1

An appointment, contact, or task from Pocket Outlook Syntax 2

Argument Description

controlname The name of the notification bubble that you want to remove

Chapter 10 PowerScript Functions

PowerScript Reference 813

Syntax 2 For POOM objects
Description Removes an appointment, contact, or task from Pocket Outlook.

Applies to POOM objects

Syntax Integer objectname.Remove (entity)

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Usage A user must be logged in to a POOM object to remove an appointment, contact,
or task.

Examples The following example gets the task with the index 3 and removes it from the
repository:

integer li_rc
POOMTask task

task = g_poom.GetTask(3)
li_rc = g_poom.Remove(task)

See also Add

Argument Description

objectname The name of the POOM object

entity Entity of type POOMAppointment, POOMContact, or
POOMTask that you want to remove

RemoveDirectory

814 PocketBuilder

RemoveDirectory
Description Removes a directory.

Syntax RemoveDirectory (directoryname)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage The directory must be empty and must not be the current directory for this
function to succeed.

Examples This example removes a subdirectory from the current directory:

string ls_path="my targets"
integer li_filenum

li_filenum = RemoveDirectory (ls_path)
If li_filename <> 1 then
MessageBox("Remove directory failed", &

+ "Check that the directory exists, is empty, and " &
+ "is not the current directory")

else
MessageBox("Success", "Directory " + ls_path + &
 " deleted")
end if

See also DirectoryExists
GetCurrentDirectory

Argument Description

directoryname String for the name of the directory you want to remove. If you
do not specify an absolute path, this function deletes relative to
the current working directory.

Chapter 10 PowerScript Functions

PowerScript Reference 815

RemoveRecipient
Description Removes the specified recipient for the appointment.

Applies to POOMAppointment

Syntax Integer objectname.RemoveRecipient (recipient)

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

See also AddRecipient
GetRecipients

Argument Description

objectname The name of the POOMAppointment object

recipient The POOMRecipient you want to remove from the appointment

Repair

816 PocketBuilder

Repair
Description Updates the target database with corrections that have been made in the

pipeline user object’s Error DataWindow.

Applies to Pipeline objects

Syntax pipelineobject.Repair (destinationtrans)

Return value Integer. Returns 1 if it succeeds and a negative number if an error occurs.

Replace
Description Replaces a portion of one string with another.

Syntax Replace (string1, start, n, string2)

Return value String. Returns the string with the characters replaced if it succeeds and the
empty string if it fails. If any argument’s value is null, Replace returns null.

Usage If the start position is beyond the end of the string, Replace appends string2 to
string1. If there are fewer characters after the start position than specified in n,
Replace replaces all the characters to the right of character start.

If n is zero, then, in effect, Replace inserts string2 into string1.

Argument Description

string1 The string in which you want to replace characters with string2.

start A long whose value is the number of the first character you want
replaced. (The first character in the string is number 1.)

n A long whose value is the number of characters you want to replace.

string2 The string that will replace characters in string1. The number of
characters in string2 can be greater than, equal to, or less than the
number of characters you are replacing.

Chapter 10 PowerScript Functions

PowerScript Reference 817

Examples These statements change the value of Name from Davis to Dave:

string Name
Name = "Davis"
Name = Replace(Name, 4, 2, "e")

This statement returns BABY RUTH:

Replace("BABE RUTH", 1, 4, "BABY")

This statement returns Closed for the Winter:

Replace("Closed for Vacation", 12, 8, "the Winter")

This statement returns ABZZZZEF:

Replace("ABCDEF", 3, 2, "ZZZZ")

This statement returns ABZZZZ:

Replace("ABCDEF", 3, 50, "ZZZZ")

This statement returns ABCDEFZZZZ:

Replace("ABCDEF", 50, 3, "ZZZZ")

These statements replace all occurrences of red within the string mystring with
green. The original string is taken from the SingleLineEdit sle_1 and the result
becomes the new text of sle_1:

long start_pos=1
string old_str, new_str, mystring

mystring = sle_1.Text
old_str = "red"
new_str = "green"

// Find the first occurrence of old_str.
start_pos = Pos(mystring, old_str, start_pos)

// Only enter the loop if you find old_str.
DO WHILE start_pos > 0

 // Replace old_str with new_str.
 mystring = Replace(mystring, start_pos, &
 Len(old_str), new_str)
 // Find the next occurrence of old_str.
 start_pos = Pos(mystring, old_str, &
 start_pos+Len(new_str))
LOOP

ReplaceW

818 PocketBuilder

sle_1.Text = mystring

See also Replace method for DataWindows in the DataWindow Reference

ReplaceW
Description Replaces a portion of one string with another.

Obsolete function
This function is obsolete. It has the same behavior as Replace.

Syntax ReplaceW (string1, start, n, string2)

Return value String. Returns the string with the characters replaced if it succeeds and the
empty string if it fails.

ReplaceText
Description Replaces selected text in an edit control with a specified string.

Applies to DataWindow, EditMask, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, and DropDownPictureListBox controls

Syntax editname.ReplaceText (string)

Argument Description

editname The name of the control in which you want to replace the selected
string.

In a DataWindow control, the text is replaced in the edit control
over the current row and column.

string The string that replaces the selected text.

Chapter 10 PowerScript Functions

PowerScript Reference 819

Return value Long. Returns the number of characters in string and -1 if an error occurs. If
any argument’s value is null, ReplaceText returns null.

Usage If there is no selection, ReplaceText inserts the replacement text at the cursor
position.

In a RichTextEdit control, the selection can include pictures.

Other ways to replace text
To use the contents of the clipboard as the replacement text, call the Paste
function, instead of ReplaceText.

To replace text in a string, rather than a control, use the Replace function.

Examples If the MultiLineEdit mle_Comment contains Offer Good for 3 Months and
the selected text is 3 Months, this statement replaces 3 Months with 60 Days
and returns 7. The resulting value of mle_Comment is Offer Good for 60
Days:

mle_Comment.ReplaceText("60 Days")

If there is no selected text, this statement inserts "Draft" at the cursor position
in the SingleLineEdit sle_Comment3:

sle_Comment3.ReplaceText("Draft")

See also Copy
Cut
Paste

Reset
Clears data from a control or object. The syntax you choose depends on the
target object.

For syntax for DataWindows and DataStores see the Reset method for
DataWindows in the DataWindow Reference or the online Help.

To Use

Delete all items from a list Syntax 1

Delete all the data (and optionally the series and categories)
from a graph

Syntax 2

Return to the beginning of a trace file Syntax 3

Reset

820 PocketBuilder

Syntax 1 For list boxes
Description Deletes all the items from a list.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.Reset ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If listboxname is null,
Reset returns null. The return value is usually not used.

Examples This statement deletes all items in the ListBox portion of ddlb_Actions:

ddlb_Actions.Reset()

See also DeleteItem

Syntax 2 For graphs
Description Deletes the data, the categories, or the series from a graph.

Applies to Graph controls in windows and user objects and graphs within a DataWindow
object with an external data source.

Does not apply to other graphs within DataWindow objects because their data
comes directly from the DataWindow.

Argument Description

listboxname The name of the ListBox control from which to delete all items

Chapter 10 PowerScript Functions

PowerScript Reference 821

Syntax controlname.Reset (graphresettype)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Reset returns null. The return value is usually not used.

Usage Use Reset to clear the data in a graph before you add new data.

Examples This statement deletes the series and data, but leaves the categories, in the
graph gr_product_data:

gr_product_data.Reset(Series!)

See also AddData
AddSeries

Syntax 3 For trace files
Description Goes back to the beginning of the trace file so you can begin rereading the file

contents.

Applies to TraceFile objects

Syntax instancename.Reset ()

Argument Description

controlname The name of the graph object in which you want to delete all
the data values or all series and all data values

graphresettype A value of the grResetType enumerated datatype specifying
whether you want to delete only data values or all series and
all data values:

• All! — Delete all series, categories, and data in
controlname

• Category! — Delete categories and data in controlname

• Data! — Delete data in controlname

• Series! — Delete the series and data in controlname

Argument Description

instancename Instance name of the TraceFile object

ResetArgElements

822 PocketBuilder

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileNotOpenError!—The specified trace file has not been opened

Usage Use this function to return to the start of the open trace file and begin rereading
the contents of the file. To use the Reset function, you must have previously
opened the trace file with the Open function. You use the Reset and Open
functions as well as the other properties and functions provided by the
TraceFile object to access the contents of a trace file directly. You use these
functions if you want to perform your own analysis of the tracing data instead
of using the available modeling objects.

Examples This example returns execution to the start of the open trace file ltf_file so that
the file’s contents can be reread:

TraceFile ltf_file
string ls_filename

ltf_file = CREATE TraceFile
ltf_file.Open(ls_filename)
...
ltf_file.Reset(ls_filename)
...

See also Open
NextActivity
Close

ResetArgElements
Description Clears the argument list.

Applies to Window ActiveX controls

Syntax activexcontrol.ResetArgElements ()

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 823

ResetDataColors
Description Restores the color of a data point to the default color for its series.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.ResetDataColors ({ graphcontrol, } seriesnumber,
 datapointnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, ResetDataColors returns null.

Default color for data points
To set the color for a series, use SetSeriesStyle. The color you set for the series
is the default color for all data points in the series.

Examples These statements change the color of data point 10 in the series named Costs
in the graph gr_product_data to the color for the series:

SeriesNbr = gr_product_data.FinSeries("Costs")
gr_product_data.ResetDataColors(SeriesNbr, 10)

These statements change the color of data point 10 in the series named Costs
in the graph gr_comps in the DataWindow control dw_equip to the color for the
series:

SeriesNbr = dw_equipment.FindSeries("Costs")
dw_equip.ResetDataColors("gr_comps", SeriesNbr, 10)

Argument Description

controlname The name of the graph in which you want to reset the color of
a data point, or the name of the DataWindow containing the
graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to reset the color

seriesnumber The number of the series in which you want to reset the color
of a data point

datapointnumber The number of the data point for which you want to reset the
color

Resize

824 PocketBuilder

See also GetDataStyle
SeriesName
GetSeriesStyle
SetDataStyle
SetSeriesStyle

Resize
Description Resizes an object or control by setting its Width and Height properties and then

redraws the object.

Applies to Any object, except a child DataWindow

Syntax objectname.Resize (width, height)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs or if objectname is a
minimized or maximized window. If any argument’s value is null, Resize
returns null.

Usage You cannot use Resize for a child DataWindow.

Resize does not resize a minimized or maximized sheet or window. If the
window is minimized or maximized, Resize returns –1.

Equivalent syntax You can set object’s Width and Height properties instead
of calling the Resize function. However, the two statements cause
PocketBuilder to redraw objectname twice; first with the new width, and then
with the new width and height.

objectname.Width = width

objectname.Height = height

Argument Description

objectname The name of the object or control you want to resize

width The new width in PowerBuilder units

height The new height in PowerBuilder units

Chapter 10 PowerScript Functions

PowerScript Reference 825

The first two statements, although they redraw gb_box1 twice, achieve the
same result as the third statement:

gb_box1.Width = 100 // These lines resize
gb_box1.Height = 150 // gb_box1 to 100 x 150
gb_box1.Resize(100, 150)// So does this line

Examples This statement changes the Width and Height properties of gb_box1 and
redraws gb_box1 with the new properties:

gb_box1.Resize(100, 150)

This statement doubles the width and height of the picture control p_1:

p_1.Resize(p_1.Width*2, p_1.Height*2)

Resolve_Initial_References
Description Uses the CORBA naming service API to obtain the initial naming context for

an EAServer component.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to JaguarORB objects

Syntax jaguarorb.Resolve_Initial_References (objstring, object)

Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

RespondRemote
Description Sends a DDE message indicating whether the command or data received from

a remote DDE application was acceptable.

Syntax RespondRemote (boolean)

Restart

826 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (for example, the
function was called in wrong context). If boolean is null, RespondRemote
returns null.

Restart
Description Stops the execution of all scripts, closes all windows (without executing the

scripts for the Close events), commits and disconnects from the database,
restarts the application, and executes the application-level script for the Open
event.

Syntax Restart ()

Return value Integer. Returns 1 if it succeeds and -1 if it fails. The return value is usually not
used.

Usage You can use Restart in the application-level script for the Idle event to restart
the application after a period of user inactivity, a typical behavior of kiosk
applications.

Examples In the application-level script for the Idle event, this statement restarts the
application:

Restart()

See also HALT on page 130

ResumeTransaction
Description Associates the EAServer transaction passed as an argument with the calling

thread.

Applies to CORBACurrent objects

Chapter 10 PowerScript Functions

PowerScript Reference 827

Syntax CORBACurrent.ResumeTransaction (handletrans)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Unknown failure

-2 The transaction referred to by handletrans is no longer valid

RetrieveData
Description Retrieves data from scanner firmware and places it in instance properties of the

scanner object.

Applies to BarcodeScanner objects

Syntax Integer scanner.RetrieveData ()

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -9 Incorrect scan state for the requested action (typically benign)

• -10 Low level device error

Argument Description

scanner The scanner object linked to the scanner from which you want to
retrieve data

Reverse

828 PocketBuilder

• -11 Read is already pending (typically benign)

• -12 Read is cancelled (typically benign)

• -13 Timeout period expired on the read (typically benign)

• -14 Error creating the asynchronous read from the message sink

• -100 Feature not implemented

Usage After you call RetrieveData, the data from the most recent scan are saved in the
BarcodeScanner object’s ScannedSymbology and ScannedData properties
(data members). You can retrieve the data by assigning these properties to
string variables or by displaying them in a text control.

Examples The following example retrieves data from a single scan:

Integer l_iret
l_iret = l_scanner.Open()
l_iret = l_scanner.ScanWait(30)
l_iret = l_scanner.RetrieveData()
sle_symbology.text=string(l_scanner.ScannedSymbology)
sle_data.text = l_scanner.ScannedData

See also Open

Reverse
Description Reverses the order or characters in a string.

Syntax Reverse (string)

Return value String. Returns a string with the characters of string in reversed order. Returns
the empty string if it fails.

Argument Description

string A string whose characters you want to reorder so that the last
character is first and the first character is last

Chapter 10 PowerScript Functions

PowerScript Reference 829

Usage Reverse is useful with the IsArabic and IsHebrew functions, which help you
implement right-to-left character display when you are using a version of
Windows that supports right-to-left languages.

Examples Under a a version of Windows that supports right-to-left languages, this
statement returns a string with the characters in reverse order from the
characters entered in sle_name:

string ls_name
ls_name = Reverse(sle_name.Text)

See also IsArabic
IsHebrew

RevertToSelf
Description Restores the security attributes for a COM object that is running on MTS and

impersonating the client.

Applies to TransactionServer objects

Syntax transactionserver.RevertToSelf ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

RGB
Description Calculates the long value that represents the color specified by numeric values

for the red, green, and blue components of the color.

RGB

830 PocketBuilder

Syntax RGB (red, green, blue)

Return value Long. Returns the long that represents the color created by combining the
values specified in red, green, and blue. If an error occurs, RGB returns -1. If
any argument’s value is null, RGB returns null.

Usage The formula for combining the colors is:

65536 * Blue+ 256 * Green+ Red

Use RGB to obtain the long value required to set the color for text and drawing
objects. You can also set an object’s color to the long value that represents the
color. The RGB function provides an easy way to calculate that value.

About color values
The value of a component of a color is an integer between 0 and 255 that
represents the amount of the color that is required to create the color you want.
The lower the value, the darker the color; the higher the value, the lighter the
color.

To determine the values for the components of a color (known as the RGB
values), use the Edit Color Entry window. To access the Edit Color Entry
window, select a color in the color bar at the bottom of the workspace and then
double-click the selected color when it displays in the first box of the color bar.

Argument Description

red The integer value of the red component of the desired color

green The integer value of the green component of the desired color

blue The integer value of the blue component of the desired color

Chapter 10 PowerScript Functions

PowerScript Reference 831

The following table lists red, green, and blue values for the 16 standard colors.

Table 10-9: Red, green, and blue color values for use with RGB

Examples This statement returns a long that represents black:

RGB(0, 0, 0)

This statement returns a long that represents white:

RGB(255, 255, 255)

These statements set the color properties of the StaticText st_title to be green
letters on a dark magenta background:

st_title.TextColor = RGB(0, 255, 0)
st_title.BackColor = RGB(128, 0, 128)

See also RGB method for DataWindows in the DataWindow Reference

Color Red value Green value Blue value

Black 0 0 0

White 255 255 255

Light Gray 192 192 192

Dark Gray 128 128 128

Red 255 0 0

Dark Red 128 0 0

Green 0 255 0

Dark Green 0 128 0

Blue 0 0 255

Dark Blue 0 0 128

Magenta 255 0 255

Dark Magenta 128 0 128

Cyan 0 255 255

Dark Cyan 0 128 128

Yellow 255 255 0

Brown 128 128 0

Right

832 PocketBuilder

Right
Description Obtains a specified number of characters from the end of a string.

Syntax Right (string, n)

Return value String. Returns the rightmost n characters in string if it succeeds and the empty
string ("") if an error occurs. If any argument’s value is null, Right returns null.
If n is greater than or equal to the length of the string, Right returns the entire
string. It does not add spaces to make the return value’s length equal to n.

Examples This statement returns RUTH:

Right("BABE RUTH", 4)

This statement returns BABE RUTH:

Right("BABE RUTH", 75)

See also Left
Mid
Pos
Right method for DataWindows in the DataWindow Reference

RightW
Description Obtains a specified number of characters from the end of a string.

Argument Description

string The string from which you want characters returned

n A long whose value is the number of characters you want returned
from the right end of string

Chapter 10 PowerScript Functions

PowerScript Reference 833

Obsolete function
This function is obsolete. It has the same behavior as Right in all environments.

Syntax RightW (string, n)

Return value String. Returns the rightmost n characters in string if it succeeds and the empty
string ("") if an error occurs.

RightTrim
Description Removes spaces from the end of a string.

Syntax RightTrim (string)

Return value String. Returns a copy of string with trailing blanks deleted if it succeeds and
the empty string ("") if an error occurs. If any argument’s value is null, RightTrim
returns null.

Usage In SBCS environments, the RightTrim and RightTrimW functiones return the
same results. Although you can use the RightTrim function in DBCS
environments, it cannot remove double-byte spaces. You must use the
RightTrimW function to remove double-byte or mixed single-byte and
double-byte spaces.

Examples This statement returns RUTH:

RightTrim("RUTH ")

See also LeftTrim
Trim
RightTrim method for DataWindows in the DataWindow Reference

Argument Description

string The string you want returned with trailing blanks deleted

RightTrimW

834 PocketBuilder

RightTrimW
Description Removes spaces from the end of a string.

Obsolete function
This function is obsolete. It has the same behavior as RightTrim in all
environments.

Syntax RightTrimW (string)

Return value String. Returns a copy of string with trailing blanks deleted if it succeeds and
the empty string ("") if an error occurs.

RollbackOnly
Description Modifies an EAServer transaction associated with a calling thread so that the

only possible outcome is to roll back the transaction.

Applies to CORBACurrent objects

Syntax CORBACurrent.RollbackOnly ()

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

RollbackTransaction
Description Rolls back the EAServer transaction associated with the calling thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.RollbackTransaction ()

Chapter 10 PowerScript Functions

PowerScript Reference 835

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

Round
Description Rounds a number to the specified number of decimal places.

Syntax Round (x, n)

Return value Decimal. Returns x rounded to the specified number of decimal places if it
succeeds, and null if it fails or if any argument’s value is null.

Examples This statement returns 9.62:

Round(9.624, 2)

This statement returns 9.63:

Round(9.625, 2)

This statement returns 9.600:

Round(9.6, 3)

This statement returns –9.63:

Round(-9.625, 2)

This statement returns null:

Round(-9.625, -1)

See also Ceiling
Int
Truncate
Round method for DataWindows in the DataWindow Reference

Argument Description

x The number you want to round.

n The number of decimal places to which you want to round x. Valid
values are 0 through 18.

RoutineList

836 PocketBuilder

RoutineList
Description Provides a list of the routines included in a performance analysis model.

Applies to ProfileClass and Profiling objects

Syntax instancename.RoutineList (list)

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• ModelNotExistsError! —No model exists

Usage Use this function to extract a list of the routines included in the performance
analysis model in a particular class. You must have previously created the
performance analysis model from a trace file using the BuildModel function.
Each routine is defined as a ProfileRoutine object and provides the time spent
in the routine, any called routines, the number of times each routine was called,
and the class to which the routine belongs. The routines are listed in no
particular order.

Object creation and destruction for a class are each indicated by a routine in this
list as well as by embedded SQL statements.

Examples This example lists the routines included in each class found in a performance
analysis model:

Long ll_cnt
ProfileCall lproc_call[]

lpro_model.BuildModel()
lpro_model.RoutineList(iprort_list)
...

Argument Description

instancename Instance name of the ProfileClass or Profiling object.

list An unbounded array variable of datatype ProfileRoutine in
which RoutineList stores a ProfileRoutine object for each routine
that exists in the model within a class. This argument is passed
by reference.

Chapter 10 PowerScript Functions

PowerScript Reference 837

See also ClassList

Run
Description Runs the specified application program.

Syntax Run (string {, windowstate })

Return value Integer. Returns 1 if it is successful and -1 if an error occurs. If any argument’s
value is null, Run returns null.

Usage You can use Run for any program that you can run from the operating system.
If you do not specify parameters, Run opens the application and displays the
first application window. If you specify windowstate, the application window
is displayed in the specified state.

If you specify parameters, the application determines the meaning of those
parameters. A typical use is to identify a data file to be opened when the
program is executed. If you are running another PocketBuilder application, that
application can call the CommandParm function to retrieve the parameters and
process them as it sees fit.

Argument Description

string A string whose value is the file name of the program you want to
execute. Optionally, string can contain one or more parameters for
the program.

windowstate
(optional)

A value of the WindowState enumerated datatype indicating the
state in which you want to run the program:

• Maximized! — Maximized; enlarge the program window to its
maximum size when it starts

• Minimized! — Minimized; shrink the program window to an
icon when it starts

• Normal! — (Default) Run the program window in its normal
size

Run

838 PocketBuilder

If the file extension is omitted from the file name, PocketBuilder assumes the
extension is .EXE. To run a program with another extension (for example,
.BAT, .COM, or .PIF), you must specify the extension.

Examples This statement runs the Microsoft Windows Clock accessory application in its
normal size:

Run("Clock")

This statement runs the Microsoft Windows Clock accessory application
minimized:

Run("Clock", Minimized!)

This statement runs the program WINNER.COM on the C drive in a maximized
state. The parameter passed to WINNER.COM opens the file EMPLOYEE.INF:

Run("C:\WINNER.COM EMPLOYEE.INF", Maximized!)

This example runs the DOS batch file MYBATCH.BAT and passes the
parameter TEST to the batch file. In the batch file, you include percent
substitution characters in the commands to indicate where the parameter is
used:

Run("MYBATCH.BAT TEST")

In the batch file the following statement renames FILE1 to TEST:

RENAME c:\PB\FILE1 %1

Chapter 10 PowerScript Functions

PowerScript Reference 839

Save
Description Saves an OLE object in an OLE control or an OLE storage object.

Syntax oleobject.Save ()

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

SaveAs
Saves the contents of a DataWindow, DataStore, graph, OLE control, or OLE
storage in a file. The syntax you use depends on the type of object you want to
save.

For DataWindow and DataStore syntax, see the SaveAs method for
DataWindows in the DataWindow Reference or the online Help.

Syntax 1 For graph objects
Description Saves the data in a graph in the format you specify.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls and DataStores

To Use

Save the data in a graph Syntax 1

Save the OLE object in an OLE control to a storage file Syntax 2

Save the OLE object in an OLE control to a storage object
in memory

Syntax 3

Save an OLE storage and any controls that have opened that
storage in a file

Syntax 4

Save an OLE storage object in another OLE storage object Syntax 5

SaveAs

840 PocketBuilder

Syntax controlname.SaveAs ({ filename, } { graphcontrol, saveastype, colheading })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SaveAs returns null.

Argument Description

controlname The name of the graph control whose contents you want to
save or the name of the DataWindow DataStore containing the
graph.

filename
(optional)

A string whose value is the name of the file in which you want
to save the data in the graph. If you omit filename or specify
an empty string (""), PocketBuilder prompts the user for a file
name.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control or DataStore whose contents you want to
save.

saveastype
(optional)

A value of the SaveAsType enumerated datatype specifying
the format in which to save the data represented in the graph.
Values are:

• Clipboard! — Save an image of the graph to the clipboard

• CSV! — Comma-separated values

• dBASE2! — dBASE-II format

• dBASE3! — dBASE-III format

• DIF! — Data Interchange Format

• Excel! — Microsoft Excel format

• PSReport! — Powersoft Report (PSR) format

• SQLInsert! — SQL syntax

• SYLK! — Microsoft Multiplan format

• Text! — (Default) Tab-separated columns with a return at
the end of each row

• WKS! — Lotus 1-2-3 format

• WK1! — Lotus 1-2-3 format

• WMF! — Windows Metafile format

• XML! — Extensible Markup Language

colheading
(optional)

A boolean value indicating whether you want column
headings with the saved data. The default value is true.
Colheading is ignored for dBASE files; column headings are
always saved.

Chapter 10 PowerScript Functions

PowerScript Reference 841

Usage You must use zero or three arguments. If you do not specify any arguments for
SaveAs, PocketBuilder displays the Save As dialog box, letting the user specify
the format of the saved data.

Regional settings
If you use date formats in your graph, you must verify that yyyy is the Short
Date Style for year in the Regional Settings of the user’s Control Panel. Your
program can check this with the RegistryGet function.

If the setting is not correct, you can ask the user to change it manually or to
have the application change it (by calling the RegistrySet function). The user
may need to reboot after the setting is changed.

Examples This statement saves the contents of the graph gr_History. The file and format
information are not specified, so PocketBuilder prompts for the file name and
save the graph as tab-delimited text:

gr_History.SaveAs()

This statement saves the contents of gr_History to the file
\WINDOWS\HR\EMPLOYEE.HIS. The format is CSV without column
headings:

gr_History.SaveAs("\WINDOWS\HR\EMPLOYEE.HIS",CSV!,&
FALSE)

This statement saves the contents of gr_computers in the DataWindow control
dw_equipmt to the file G:\INVENTORY\SALES.XLS. The format is Excel with
column headings:

dw_equipmt.SaveAs("gr_computers", &
"G:\INVENTORY\SALES.XLS", Excel!, TRUE)

See also Print

Syntax 2 For saving an OLE control to a file
Description Saves the object in an OLE control in a storage file.

Applies to OLE controls

SaveAs

842 PocketBuilder

Syntax olecontrol.SaveAs (OLEtargetfile)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

Syntax 3 For saving an OLE control to an OLE storage
Description Saves the object in an OLE control to an OLE storage object in memory.

Applies to OLE controls

Syntax olecontrol.SaveAs (targetstorage, substoragename)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

Syntax 4 For saving an OLE storage object to a file
Description Saves an OLE storage object to a file. If OLE controls have opened the OLE

storage object, this syntax of SaveAs puts them in a saved state too.

Applies to OLE storage objects

Syntax olestorage.SaveAs (OLEtargetfile)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

Syntax 5 For saving an OLE storage object in another OLE
storage

Description Saves an OLE storage object to another OLE storage object variable in
memory.

Applies to OLE storage objects

Chapter 10 PowerScript Functions

PowerScript Reference 843

Syntax olestorage.SaveAs (substoragename, targetstorage)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

SaveDocument
Description Saves the contents of a RichTextEdit control in a file. You can specify either

rich-text format (RTF) or ASCII text format for the file.

Applies to RichTextEdit controls

Syntax rtename.SaveDocument (filename {, filetype })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

ScanAbort
Description Aborts any outstanding scan requests.

Applies to BarcodeScanner objects

Syntax Integer scanner.ScanAbort ()

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

Argument Description

scanner The scanner object for which you abort a scan

ScanCapture

844 PocketBuilder

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -10 Low level device error

• -100 Feature not implemented

Examples The following example aborts the scan operation for the l_scanner bar code
scanner:

li_rtn = l_scanner.ScanAbort()

See also Flush
ScanWait

ScanCapture
Description Starts a synchronous scan.

Applies to BiometricScanner objects

Syntax Integer scanner.ScanCapture (timeout, biometricpurpose)

Argument Description

scanner The scanner object associated with the device you want to use
to complete a scan

timeout Integer value for the period in seconds after which a scan will
return

biometricpurpose Enumerated value for the type of scan. Values are:

• purposeaudit!

• purposeenroll!

• purposeenrollforidentificationonly!

• purposeenrollforverificationonly!

• purposeidentify!

• purposeverify!

Chapter 10 PowerScript Functions

PowerScript Reference 845

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

Usage Calling ScanCapture starts a synchronous scan operation. The scan returns
only when a value has been scanned or the timeout period has expired.

Examples The following scenario scans a fingerprint and compares it to stored data for
verification purposes:

Integer l_iret
Integer l_iQuality
Blob l_blbMinutiae, l_blbMinutiaeFromScan

BiometricScanner l_scanner
l_scanner = CREATE HPBiometricScanner
l_iret = l_scanner.Open()

Error Description

-1 General error

-2 Supporting DLL not loaded error

-3 Initialization error other than DLL not loaded

-4 Error in the passed in arguments

-5 Something in the object instance is inconsistent

-6 Call to the driver failed

-7 Error opening the specific scan device

-8 Error in the internal buffer allocation

-9 Incorrect scan state for the requested action

-10 Low level device error

-11 Read is already pending

-12 Read is cancelled

-13 Timeout period expired on the read

-14 Verification error

-15 Signature error

-16 Data handle error

-17 Inconsistent purpose error

-18 Unsupported purpose error

-19 Record not found error

-20 Scan capture error

-21, -22, -23, -24 Internal scanner error

-25 No image available error

-100 Feature not implemented

ScannedBitmap

846 PocketBuilder

l_iret = l_scanner.ScanCapture(30, &
EnrollForVerification!)

sle_quality.text = string(l_scanner.ScannedQuality())
l_iret = l_scanner.ScannedMinutiae(l_blbMinutiae)

l_iret = l_scanner.VerifyMatch(l_blbMinutiaeFromScan, &
l_blbMinutiae)

DESTROY l_scanner

See also ScannedQuality
VerifyMatch

ScannedBitmap
Description Retrieves a Windows bitmap image from the most recent scan.

Applies to BiometricScanner objects

Syntax Integer scanner.ScannedBitmap (data {, height, width})

Return value Integer. Returns 1 for success or a negative value if an error occurs. For a list
of possible errors and their definitions, see ScanCapture on page 844.

Usage The ScannedBitmap function provides visual feedback about the actual
fingerprint scanned. This function is not used in verification calculations—it
has no algorithmic purpose.

For HPBiometricScanner objects, use the syntax with the data argument only.

Argument Description

scanner The scanner object associated with the device you want to use to
complete a scan

data Blob value for the image passed by reference

height Integer value in pixels for the height of the scanned image (not
implemented by the HPBiometricScanner object)

width Integer value in pixels for the width of the scanned image (not
implemented by the HPBiometricScanner object)

Chapter 10 PowerScript Functions

PowerScript Reference 847

Examples The following example passes the scanned image to a local variable with a blob
datatype, and uses the default image size:

li_rtn = l_bioscanner.ScannedBitmap(lb_mydata)

See also ScanCapture
ScannedMinutiae
ScannedQuality
SetPicture

ScannedMinutiae
Description Retrieves the encoded minutiae buffer from the most recent scan.

Applies to BiometricScanner objects

Syntax Integer scanner.ScannedMinutiae (data)

Return value Integer. Returns 1 for success or a negative value if an error occurs. For a list
of possible errors and their definitions, see ScanCapture on page 844.

Usage The value passed in the data argument is either stored in a database or used for
verification. It represents, in an abstract manner, the structure of a fingerprint
(its loops and whorls) for use by verification algorithms.

Examples The following example passes the scanned data to a local variable with a blob
datatype:

li_rtn = l_bioscanner.ScannedMinutiae(lb_mydata)

See also ScanCapture
ScannedBitmap
ScannedQuality

Argument Description

scanner The scanner object associated with the device you want to use to
complete a scan

data Blob value for the encoded data passed by reference

ScannedQuality

848 PocketBuilder

ScannedQuality
Description Retrieves the quality rating from the most recent scan.

Applies to BiometricScanner objects

Syntax Integer scanner.ScannedQuality ()

Return value Integer. Returns one of the following values for the quality of the most recent
scan:

• 0 Poor quality

• 1 Acceptable quality

• 2 Good quality

Usage The quality value is generated during a scan by an algorithm set on the scanner.

Examples The following example passes the quality of the most recent scan to a local
variable:

li_rtn = l_bioscanner.ScannedQuality()

See also ScanCapture
ScannedBitmap
ScannedMinutiae

ScanNoWait
Description Starts a scan operation, but returns immediately, permitting continuous scans.

Argument Description

scanner The scanner object associated with the device you want to use to
complete a scan

Chapter 10 PowerScript Functions

PowerScript Reference 849

Applies to BarcodeScanner objects

Syntax Integer scanner.ScanNoWait ()

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -9 Incorrect scan state for the requested action (typically benign)

• -10 Low level device error

• -11 Read is already pending (typically benign)

• -12 Read is cancelled (typically benign)

• -14 Error creating the asynchronous read from the message sink

• -100 Feature not implemented

Usage The ScanNoWait function is used to set an asynchronous scan operation. In a
typical implementation, the ScanNoWait call is made in the ScanTriggered
event, which leads to continuous (asynchronous) scan readings.

Examples The following example in the script for the ScanTriggered event sets the
scanner for continuous operation:

li_rtn = l_scanner.ScanNoWait()

See also ScanWait

Argument Description

scanner The scanner object for which you want to set up continuous
scanning

ScanWait

850 PocketBuilder

ScanWait
Description Starts a scan operation that returns only after the scan data has been read or the

scan timeout period has expired.

Applies to BarcodeScanner objects

Syntax Integer scanner.ScanWait (timeout)

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -9 Incorrect scan state for the requested action (typically benign)

• -10 Low level device error

• -11 Read is already pending (typically benign)

• -12 Read is cancelled (typically benign)

• -13 Timeout period expired on the read (typically benign)

• -100 Feature not implemented

Usage For a synchronous scan operation, the scanner object returns data either
immediately upon expiration of the timeout period set in the ScanWait call, or
when a new scan is started.

Argument Description

scanner The scanner object for which you want to perform the scan

timeout Integer value for the time period in seconds after which scan data is
returned

Chapter 10 PowerScript Functions

PowerScript Reference 851

Socket bar code scanner
ScanWait is not supported by the Socket bar code scanner.

Examples The following example starts a scan and reads the data:

li_rtn = l_scanner.ScanWait(30)
li_rtn = l_scanner.RetrieveData()
ls_value = l_scanner.ScannedData

See also RetrieveData
ScanAbort
ScanNoWait

Scroll
Description Scrolls a multiline edit control or the edit control of a DataWindow a specified

number of lines up or down.

Applies to DataWindow, MultiLineEdit, and RichTextEdit controls

Syntax editname.Scroll (number)

Return value Long. Scroll returns the line number of the first visible line in editname if it
succeeds. Scroll returns -1 if an error occurs. If any argument’s value is null,
Scroll returns null.

Usage If the number of lines left in the list is less than the number of lines that you
want to scroll, then Scroll scrolls to the beginning or end, depending on the
direction specified.

Argument Description

editname The name of the DataWindow, RichTextEdit, or MultiLineEdit in
which you want to scroll up or down. If editname is a DataWindow,
then Scroll affects its edit control.

number A long specifying the direction and number of lines you want to
scroll. To scroll down, use a positive long value. To scroll up, use a
negative long value.

ScrollNextPage

852 PocketBuilder

Examples This statement scrolls mle_Employee down 4 lines:

mle_Employee.Scroll(4)

This statement scrolls mle_Employee up 4 lines:

mle_Employee.Scroll(-4)

See also ScrollNextPage
ScrollNextRow
ScrollPriorPage
ScrollPriorRow
ScrollToRow

ScrollNextPage
Description Scrolls to the next page of the document in a RichTextEdit control or

RichTextEdit DataWindow.

For DataWindow syntax, see the ScrollNextPage method for DataWindows in
the DataWindow Reference or the online Help.

Applies to RichTextEdit controls

Syntax rtename.ScrollNextPage ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

ScrollNextRow
Description Scrolls to the next instance of the document in a RichTextEdit control or

RichTextEdit DataWindow. A RichTextEdit control has multiple instances of
its document when it shares data with a DataWindow. The next instance of the
document is associated with the next row in the DataWindow.

Chapter 10 PowerScript Functions

PowerScript Reference 853

For syntax specific to DataWindow controls and child DataWindows, see the
ScrollNextRow method for DataWindows in the DataWindow Reference or the
online Help.

Applies to DataWindow and RichTextEdit controls

Syntax rtename.ScrollNextRow ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

ScrollPriorPage
Description Scrolls to the prior page of the document in a RichTextEdit control or

RichTextEdit DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the
ScrollPriorPage method for DataWindows in the DataWindow Reference or the
online Help.

Applies to DataWindow and RichTextEdit controls

Syntax rtename.ScrollPriorPage ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

ScrollPriorRow
Description Scrolls to the prior instance of the document in a RichTextEdit control or

RichTextEdit DataWindow. A RichTextEdit control has multiple instances of
its document when it shares data with a DataWindow. The next instance of the
document is associated with the next row in the DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the
ScrollPriorRow method for DataWindows in the DataWindow Reference or the
online Help.

ScrollToRow

854 PocketBuilder

Applies to DataWindow and RichTextEdit controls

Syntax rtename.ScrollPriorRow ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

ScrollToRow
Description Scrolls to the document instance associated with the specified row when the

RichTextEdit controls shares data with a DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the
ScrollToRow method for DataWindows in the DataWindow Reference or the
online Help.

Applies to RichTextEdit controls

Syntax rtename.ScrollToRow (row)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Second
Description Obtains the number of seconds in the seconds portion of a time value.

Syntax Second (time)

Return value Integer. Returns the seconds portion of time (00 to 59). If time is null, Second
returns null.

Argument Description

time The time value from which you want the seconds

Chapter 10 PowerScript Functions

PowerScript Reference 855

Examples This statement returns 31:

Second(19:01:31)

See also Hour
Minute
Second method for DataWindows in the DataWindow Reference

SecondsAfter
Description Determines the number of seconds one time occurs after another.

Syntax SecondsAfter (time1, time2)

Return value Long. Returns the number of seconds time2 occurs after time1. If time2 occurs
before time1, SecondsAfter returns a negative number. If any argument’s value
is null, SecondsAfter returns null.

Examples This statement returns 15:

SecondsAfter(21:15:30, 21:15:45)

This statement returns -15:

SecondsAfter(21:15:45, 21:15:30)

This statement returns 0:

SecondsAfter(21:15:45, 21:15:45)

If you declare start_time and end_time time variables and assign 19:02:16 to
start_time and 19:02:28 to end_time as shown below:

time start_time, end_time
start_time = 19:02:16
end_time = 19:02:28

Argument Description

time1 A time value that is the start time of the interval being measured

time2 A time value that is the end time of the interval

Seek

856 PocketBuilder

then each of these statements returns 12:

SecondsAfter(start_time, end_time)
SecondsAfter(19:02:16, end_time)
SecondsAfter(start_time, 19:02:28)
SecondsAfter(19:02:16, 19:02:28)

See also DaysAfter
RelativeDate
RelativeTime
SecondsAfter method for DataWindows in the DataWindow Reference

Seek
Moves the pointer to the specified position in an OLEStream object or in a file
that you open using the FileDirect object.

Syntax 1 For OLEStream objects
Description Moves the read/write pointer to the specified position in an OLE stream object.

The pointer is the position in the stream at which the next read or write begins.

Applies to OLEStream objects

Syntax olestream.Seek (position {, origin })

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

To move the pointer in Use

an OLEStream object Syntax 1

a file opened by the FileDirect object Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 857

Syntax 2 For FileDirect objects
Description Moves the pointer in a file that you open with the FileDirect object.

Applies to FileDirect objects

Syntax instancename.Seek (distanceToMove, mode)

Return value Integer. Returns 1 for success and a negative number for an error.

Usage Use the Seek function to place the file pointer at a specified position before you
begin to read from or write to the file.

Examples The following script moves the file pointer 100 bytes from the file end before
the Read function is called:

li_ret = nvo_FileDirect.seek (100, fromend!)
li_ret = nvo_FileDirect.read (lb_data, 100, li_amount)

See also Open
Read
SetEndOfFile

Argument Description

instancename Instance name of the FileDirect object

distanceToMove Long for the number of bytes by which you want to move the file
pointer. You move the pointer from the position specified by the
mode argument

mode Enumerated value of type seektype. Values can be:

• frombeginning! Move the pointer from the file beginning

• fromcurrent! Move the pointer from the current position

• fromend! Move the pointer from the end of the file

SelectedColumn

858 PocketBuilder

SelectedColumn
Description Obtains the number of the character column just after the insertion point in a

RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SelectedColumn ()

Return value Integer. Returns the number of the character before the insertion point in
rtename. If an error occurs, SelectedColumn returns -1.

SelectedIndex
Description Obtains the number of the selected item in a ListBox or ListView control.

Applies to ListBox and ListView controls

Syntax listcontrolname.SelectedIndex ()

Return value Integer. Returns the index of the selected item in listcontrolname. If more than
one item is selected, SelectedIndex returns the index of the first selected item.
If there are no selected items or an error occurs, SelectedIndex returns -1. If
listcontrolname is null, SelectedIndex returns null.

Usage SelectedIndex and SelectedItem are meant for lists that allow a single selection
only (when the MultiSelect property for the control is false).

When the MultiSelect property is true, SelectedIndex gets the index of the first
selected item only. Use the State function, instead of SelectedIndex, to check
each item in the list and find out if it is selected. Use the Text function to get the
text of any item in the list.

Argument Description

listcontrolname The name of the ListBox or ListView control in which you
want to locate the selected item

Chapter 10 PowerScript Functions

PowerScript Reference 859

Examples If item 5 in lb_actions is selected, then this example sets li_Index to 5:

integer li_Index
li_Index = lb_actions.SelectedIndex()

These statements open the window w_emp if item 5 in lb_actions is selected:

integer li_X
li_X = lb_actions.SelectedIndex()
If li_X = 5 then Open(w_emp)

See also SelectedItem

SelectedItem
Description Obtains the text of the selected item in a ListBox control.

Applies to ListBox and PictureListBox controls

Syntax listboxname.SelectedItem ()

Return value String. Returns the text of the selected item in listboxname. Returns the empty
string ("") if no items are selected. If listboxname is null, SelectedItem returns
null.

Usage SelectedIndex and SelectedItem are meant for lists that allow a single selection
only (when the MultiSelect property for the control is false).

When the MultiSelect property is true, SelectedItem gets the text of the first
selected item only. Use the State function, instead of SelectedItem, to check
each item in the list and find out if it is selected. Use the Text function to get the
text of any item in the list.

Examples If the text of the selected item in the ListBox lb_shortcuts is F1, then this
example sets ls_item to F1:

string ls_Item

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want the
text of the currently selected item

SelectedLength

860 PocketBuilder

ls_Item = lb_Shortcuts.SelectedItem()

See also SelectedIndex
State

SelectedLength
Description Determines the total number of characters in the selected text in an editable

control, including spaces and line endings.

Applies to DataWindow, EditMask, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, and DropDownPictureListBox controls

Syntax editname.SelectedLength ()

Return value Long. Returns the length of the selected text in editname. If no text is selected,
SelectedLength returns 0. If an error occurs, it returns -1. If editname is null,
SelectedLength returns null.

Usage The characters that make up a line ending, produced by typing Ctrl+Enter or
Enter, is different on different platforms. On Windows, it is a carriage return
plus a line feed and equals two characters when calculating the length. On other
platforms, a line ending is a single character. A line that has wrapped has no
line-ending character. For DropDownListBox and DropDownPictureListBox
controls, SelectedLength returns -1 if the control’s AllowEdit property is set to
false.

Focus and the selection in a drop-down list
When a DropDownListBox or DropDownPictureListBox loses focus, the
selected text is no longer selected.

Argument Description

editname The name of the control in which you want the length of the selected
text.

For a DataWindow, it reports the length of the selected text in the
edit control over the current row and column.

Chapter 10 PowerScript Functions

PowerScript Reference 861

Examples If the selected text in the MultiLineEdit mle_Contact is John Smith, then this
example sets li_length to 10:

integer li_length
li_length = mle_Contact.SelectedLength()

See also LineLength
SelectedItem
SelectedLine
SelectedPage
SelectedStart
TextLine

SelectedLine
Description Obtains the number of the line that contains the insertion point in an editable

control.

Applies to DataWindow, MultiLineEdit, and RichTextEdit controls

Syntax editname.SelectedLine ()

Return value Long. Returns the number of the line containing the insertion point in
editname. If an error occurs, SelectedLine returns -1. If editname is null,
SelectedLine returns null.

Usage For EditMask controls, SelectedLine compiles but always returns 1.

The insertion point can be at the beginning or end of the selection. Therefore,
SelectedLine can return the first or last selected line, depending on the position
of the insertion point.

Argument Description

editname The name of the DataWindow, MultiLineEdit, or RichTextEdit in
which you want the number of the line containing the insertion
point. For a DataWindow, it reports the line number in the edit
control over the current row and column.

SelectedPage

862 PocketBuilder

Examples If the insertion point is positioned anywhere in line 5 of the MultiLineEdit
mle_Contact, the following example sets li_SL to 5:

integer li_SL
li_SL = mle_Contact.SelectedLine()

In this example, the line the user selects in the MultiLineEdit mle_winselect
determines which window to open:

integer li_SL
li_SL = mle_winselect.SelectedLine()
IF li_SL = 1 THEN

Open(w_emp_data)
ELSEIF li_SL = 2 THEN

Open(w_dept_data)
END IF

See also LineLength
Position
SelectedColumn
SelectedPage
SelectedText
TextLine

SelectedPage
Description Obtains the number of the current page in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SelectedPage ()

Return value Integer. Returns the number of the current page in rtename. If an error occurs,
SelectedPage returns -1.

Chapter 10 PowerScript Functions

PowerScript Reference 863

SelectedStart
Description Reports the position of the first selected character in an editable control.

Applies to DataWindow, EditMask, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, and DropDownPictureListBox controls

Syntax editname.SelectedStart ()

Return value Long. Returns the starting position of the selected text in editname. If no text is
selected, SelectedStart returns the position of the character immediately
following the insertion point. If an error occurs, SelectedStart returns -1. If
editname is null, SelectedStart returns null.

Usage For all controls except RichTextEdit, SelectedStart counts from the start of the
text and includes spaces and line endings.

For RichTextEdit controls, SelectedStart counts from the start of the line on
which the selection begins. The start is at the opposite end of the selection from
the insertion point. For example, if the user dragged back to make the selection,
the start of the selection is at the end of the highlighted text and the insertion
point is before the start. Use the Position function to get information about the
start and end of the selection.

Focus and the selection in a drop-down list
When a DropDownListBox or DropDownPictureListBox loses focus, the
selected text is no longer selected.

Examples If the MultiLineEdit mle_Comment contains Closed for Vacation July
3 to July 10, and Vacation is selected, then this example sets li_Start to
12 (the position of the first character in Vacation):

integer li_Start
li_Start = mle_Comment.SelectedStart()

Argument Description

editname The name of the control in which you want to determine the starting
position of selected text.

For a DataWindow, it reports the starting position in the edit control
over the current row and column.

SelectedText

864 PocketBuilder

See also Position
SelectedLine
SelectedPage

SelectedText
Description Obtains the selected text in an editable control.

Applies to DataWindow, EditMask, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, and DropDownPictureListBox controls

Syntax editname.SelectedText ()

Return value String. Returns the selected text in editname. If there is no selected text or if an
error occurs, SelectedText returns the empty string (""). If editname is null,
SelectedText returns null.

Usage In a RichTextEdit control, any pictures in the selection are ignored. If the
selection contains input fields, the names of the input fields, enclosed in
brackets, become part of the string SelectedText returns. The contents of the
input fields are not returned.

For example, when the salutation of a letter is selected, SelectedText might
return:

Dear {title} {lastname}:

Focus and the selection in a drop-down list
When a DropDownListBox or DropDownPictureListBox loses focus, the
selected text is no longer selected.

Argument Description

editname The name of the control from which you want the selected text.

For a DropDownListBox or DropDownPictureListBox, the
AllowEdit property must be true.

For a DataWindow, it reports the selected text in the edit control
over the current row and column.

Chapter 10 PowerScript Functions

PowerScript Reference 865

Examples If the text in the MultiLineEdit mle_Contact is James B. Smith and James
B. is selected, these statements set the value of emp_fname to James B:

string ls_emp_fname
ls_emp_fname = mle_Contact.SelectedText()

If the selected text in the edit portion of the DropDownListBox ddlb_Location
is Maine, these statements display the ListBox lb_LBMaine:

string ls_Loc
ls_Loc = ddlb_Location.SelectedText()
IF ls_Loc = "Maine" THEN

lb_LBMaine.Show()
ELSE

...
END IF

See also SelectText

SelectionRange
Description Highlights a range of contiguous values in a trackbar control. The range you

select is highlighted in the trackbar channel, with an arrow at each end of the
range.

Applies to Trackbar controls

Syntax control.SelectionRange (startpos, endpos)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use this function to indicate a range of preferred values.

Argument Description

control The name of the trackbar control

startpos An integer that specifies the starting position of the range

endpos An integer that specifies the ending position of the range

SelectItem

866 PocketBuilder

In a scheduling application, the selection range could indicate a block of time
that is unavailable. Setting a selection range does not prevent the user from
selecting a value either inside or outside the range.

Examples This statement highlights the trackbar values between 30 and 70:

HTrackBar.SelectionRange(30, 70)

See also HTrackBar in Objects and Controls
VTrackBar in Objects and Controls

SelectItem
Finds and highlights an item in a ListBox, DropDownListBox, or TreeView
control.

Syntax 1 When you know the text of an item
Description Finds and highlights an item in a ListBox when you can specify some or all of

the text of the item.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.SelectItem (item, index)

To select an item Use

In a ListBox control when you know the text of the item, but
not its position

Syntax 1

In a ListBox control when you know the position of the item
in the control’s list, or to clear the current selection

Syntax 2

In a TreeView control Syntax 3

Argument Description

listboxname The name of the ListBox control in which you want to select a line

Chapter 10 PowerScript Functions

PowerScript Reference 867

Return value Integer. Returns the index number of the selected item. If no match is found,
SelectItem returns 0; it returns -1 if an error occurs. If any argument’s value is
null, SelectItem returns null.

Usage SelectItem begins searching for the desired item after the item identified by
index. To match, the item must start with the specified text; however, the text
in the item can be longer than the specified text.

To find an item but not select it, use the FindItem function.

MultiSelect ListBoxes
SelectItem has no effect on a ListBox or PictureListBox whose MultiSelect
property is true. Instead, use SetState to select items without affecting the
selected state of other items in the list.

Clearing the edit box of a drop-down list
To clear the edit box of a DropDownListBox or DropDownPictureListBox that
the user cannot edit, use Syntax 2 of SelectItem.

Examples If item 5 in lb_Actions is Delete Files, this example starts searching after item
2, finds and highlights Delete Files, and sets li_Index to 5:

integer li_Index
li_Index = lb_Actions.SelectItem("Delete Files", 2)

If item 4 in lb_Actions is Select Objects, this example starts searching after item
2, finds and highlights Select Objects, and sets li_Index to 4:

integer li_Index
li_Index = lb_Actions.SelectItem("Sel", 2)

See also AddItem
DeleteItem
FindItem
InsertItem
SetState

item A string whose value is the starting text of the item you want to
select

index The number of the item after which you want to begin the search

Argument Description

SelectItem

868 PocketBuilder

Syntax 2 When you know the item number
Description Finds and highlights an item in a ListBox when you can specify the index

number of the item. You can also clear the selection by specifying zero as the
index number.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.SelectItem (itemnumber)

Return value Integer. Returns the index number of the selected item. SelectItem returns 0 if
itemnumber is not valid or if you specified 0 in order to clear the selected item.
It returns -1 if an error occurs. If any argument’s value is null, SelectItem returns
null.

Usage To find an item but not select it, use the FindItem function.

MultiSelect ListBoxes
SelectItem has no effect on a ListBox or PictureListBox whose MultiSelect
property is true. Instead, use SetState to select items without affecting the
selected state of other items in the list.

Clearing the text box of a drop-down list
To clear the text box of a DropDownListBox or DropDownPictureListBox that
the user cannot edit, set itemnumber to 0. Setting the control’s text to the empty
string does not work if the control’s AllowEdit property is false.

Argument Description

listboxname The name of the ListBox control in which you want to select an item

itemnumber An integer whose value is the location (index) of the item in the
ListBox or the ListBox portion of the drop-down list.

Specify 0 for itemnumber to clear the selected item. For a ListBox
or PictureListBox, 0 removes highlighting from the selected item.
For a DropDownListBox or DropDownPictureListBox, 0 clears the
text box.

Chapter 10 PowerScript Functions

PowerScript Reference 869

Examples This example highlights item number 5:

integer li_Index
li_Index = lb_Actions.SelectItem(5)

This example clears the selection from the text box of the DropDownListBox
ddlb_choices and sets li_Index to 0:

integer li_Index
li_Index = ddlb_choices.SelectItem(0)

See also AddItem
DeleteItem
FindItem
InsertItem
SetState

Syntax 3 For TreeView controls
Description Selects a specified item.

Applies to TreeView controls

Syntax treeviewname.SelectItem (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use the FindItem function to get handles for items at specific positions in the
TreeView control.

Examples This example selects the parent of the current TreeView item:

long ll_tvi, ll_tvparent
int li_tvret
ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)
ll_tvparent = tv_list.FindItem(ParentTreeItem! , &

ll_tvi)
li_tvret = tv_list.SelectItem(ll_tvparent)

Argument Description

treeviewname The name of the TreeView control in which you want to select
an item

itemhandle The handle of the specified item

SelectObject

870 PocketBuilder

See also FindItem

SelectObject
Description Selects or clears the object in an OLE control but does not activate the server

application. The server’s menus are added to the PowerBuilder application’s
menus.

Applies to OLE controls

Syntax olecontrol.SelectObject (selectstate)

Return value Integer. Returns 0 if it succeeds and a negative number if an error occurs.

SelectTab
Description Selects the specified tab, displaying its tab page in the Tab control.

Applies to Tab controls

Syntax tabcontrolname.SelectTab (tabidentifier)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

tabcontrolname The name of the Tab control in which you want to select a tab

tabidentifier The tab you want to select. You can specify:

• The tab page index (an integer)

• The name of the user object (datatype DragObject or
UserObject)

• A string holding the name of the user object

Chapter 10 PowerScript Functions

PowerScript Reference 871

Usage Equivalent syntax You can select a tab by setting the SelectedTab property
to the tab’s index number:

tab_1.SelectedTab = 3

Examples These three examples select the third tab in tab_1. They could be in the script
for a CommandButton on the window containing the Tab control tab_1:

tab_1.SelectTab(3)

tab_1.SelectTab(tab_1.uo_3)

string ls_tabpage
ls_tabpage = "uo_3"
tab_1.SelectTab(ls_tabpage)

This example opens an instance of the user object uo_fontsettings as a tab page
and selects it:

userobject uo_tabpage
string ls_tabpage
ls_tabpage = "uo_fontsettings"
tab_1.OpenTab(uo_tabpage, ls_tabpage, 0)
tab_1.SelectTab(uo_tabpage)

See also OpenTab

SelectText
Selects text in an editable control.

To select text in Use

Any editable control, other than a RichTextEdit Syntax 1

A RichTextEdit control or a DataWindow whose object has
the RichTextEdit presentation style

Syntax 2

SelectText

872 PocketBuilder

Syntax 1 For editable controls (except RichTextEdit)
Description Selects text in an editable control. You specify where the selection begins and

how many characters to select.

Applies to DataWindow, EditMask, MultiLineEdit, SingleLineEdit, DropDownListBox,
and DropDownPictureListBox controls

Syntax editname.SelectText (start, length)

Return value Long. Returns the number of characters selected. If an error occurs, SelectText
returns -1. If any argument’s value is null, SelectText returns null.

Usage If the control does not have the focus when you call SelectText, then the text is
not highlighted until the control has focus. To set focus on the control so that
the selected text is highlighted, call the SetFocus function.

How much to select
When you want to select all the text of a line edit or select the contents from a
specified position to the end of the edit, use the Len function to obtain the
length of the control’s text.

To select text in a DataWindow with the RichTextEdit presentation style, use
Syntax 2.

Examples This statement sets the insertion point at the end of the text in the
SingleLineEdit sle_name:

sle_name.SelectText(Len(sle_name.Text), 0)

Argument Description

editname The name of the DataWindow, EditMask, MultiLineEdit,
SingleLineEdit, DropDownListBox, or DropDownPictureListBox
control in which you want to select text.

start A long specifying the position at which you want to start the
selection.

length A long specifying the number of characters you want to select. If
length is 0, no text is selected but PocketBuilder moves the insertion
point to the location specified in start.

Chapter 10 PowerScript Functions

PowerScript Reference 873

This statement selects the entire contents of the SingleLineEdit sle_name:

sle_name.SelectText(1, Len(sle_name.Text))

The rest of these examples assume the MultiLineEdit mle_EmpAddress
contains Boston Street.

The following statement selects the string ost and returns 3:

mle_EmpAddress.SelectText(2, 3)

The next statement selects the string oston Street and returns 12:

mle_EmpAddress.SelectText(2, &
Len(mle_EmpAddress.Text))

These statements select the string Bos, returns 3, and sets the focus to
mle_EmpAddress so that Bos is highlighted:

mle_EmpAddress.SelectText(1, 3)
mle_EmpAddress.SetFocus()

See also Len
Position
SelectedItem
SelectedText
SetFocus
TextLine

Syntax 2 For RichTextEdit controls and presentation styles
Description Selects text beginning and ending at a line and character position in a

RichTextEdit control.

Applies to RichTextEdit and DataWindow controls

Syntax rtename.SelectText (fromline, fromchar, toline, tochar { band })

Return value Long. Returns the number of characters selected. If an error occurs it returns -1.
If any argument’s value is null, SelectText returns null.

SelectTextAll

874 PocketBuilder

SelectTextAll
Description Selects all the contents of a RichTextEdit control including any special

characters such as a carriage return (CR), line feel (LF), and end-of-file (EOF).

Applies to RichTextEdit and DataWindow controls

Syntax rtename.SelectTextAll ({ band })

Return value Integer. Returns the number of characters selected. If an error occurs,
SelectTextAll returns -1.

SelectTextLine
Description Selects the line containing the insertion point in a RichTextEdit control.

Applies to RichTextEdit and DataWindow controls

Syntax rtename.SelectTextLine ()

Return value Integer. Returns the number of characters selected if it succeeds and -1 if an
error occurs.

SelectTextWord
Description Selects the word containing the insertion point in a RichTextEdit control.

Applies to RichTextEdit and DataWindow controls

Syntax rtename.SelectTextWord ()

Return value Integer. Returns the number of characters selected if it succeeds and -1 if a
word cannot be selected or an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 875

Send
Sends messages to a window, appointment notices to recipients, or SMS
messages to a specified address.

Syntax 1 For sending messages to a window
Description Sends a message to a window so that it is executed immediately.

Syntax Send (handle, message#, lowword, long)

Return value Long. Returns the value returned by SendMessage in Windows if it succeeds
and -1 if an error occurs. If any argument’s value is null, Send returns null.

Usage PocketBuilder’s Send function sends the message identified by message# and
optionally, lowword and long, to the window identified by handle to the
Windows function SendMessage. The message is sent directly to the object,
bypassing the object’s message queue. Send waits until the message is
processed and obtains the value returned by SendMessage.

To send Use

A message to a window Syntax 1

A Pocket Outlook appointment to a recipient Syntax 2

An SMS message Syntax 3

Argument Description

handle A long whose value is the system handle of a window (that you have
created in PocketBuilder or another application) to which you want
to send a message.

message# An UnsignedInteger whose value is the system message number of
the message you want to send.

lowword A long whose value is the integer value of the message. If this
argument is not used by the message, enter 0.

long The long value of the message or a string.

Send

876 PocketBuilder

Messages in Windows
Use the Handle function to get the Windows handle of a PocketBuilder object.

You specify Windows messages by number. They are documented in the file
WINDOWS.H that is part of the Microsoft Windows Software Development
Kit (SDK) and other Windows development tools.

Posting a message
Messages sent with Send are executed immediately. To post a message to the
end of an object’s message queue, use the Post function.

Examples This statement scrolls the window w_emp up one page:

Send(Handle(w_emp), 277, 2, 0)

Both of the following statements click the CommandButton cb_OK:

Send(Handle(Parent), 273, 0, Handle(cb_OK))

cb_OK.TriggerEvent(Clicked!)

You can send messages to maximize or minimize a DataWindow, and return it
to normal. To use these messages, enable the TitleBar, Minimize, and
Maximize properties of your DataWindow control. Also, you should give your
DataWindow control an icon for its minimized state.

This statement minimizes the DataWindow:

Send(Handle(dw_whatever), 274, 61472, 0)

This statement maximizes the DataWindow:

Send(Handle(dw_whatever), 274, 61488, 0)

This statement returns the DataWindow to its normal, defined size:

Send(Handle(dw_whatever), 274, 61728, 0)

You can send a Windows message to determine the last item clicked in a
multiselect ListBox. The following script for the SelectionChanged event of a
ListBox control gets the return value of the LB_GETCURSEL message which is
the item number in the list (where the first item is 0, not 1). To get
PocketBuilder’s index for the list item, the example adds 1 to the return value
from Send. In this example, idx is an integer instance variable for the window:

// Send the Windows message for LB_GETCURSEL
// to the list box

Chapter 10 PowerScript Functions

PowerScript Reference 877

idx = Send(Handle(This), 1033, 0, 0)
idx = idx + 1

See also Handle
Post

Syntax 2 For POOMAppointment objects
Description Sends the appointment (meeting request) to all recipients.

Applies to POOMAppointment objects

Syntax Integer objectname.send ()

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

See also AddToInfraredQueue

Argument Description

objectname The name of the POOMAppointment or POOMTask object

Send

878 PocketBuilder

Syntax 3 For SMSSession objects
Description Send an SMS message.

Applies to SMSSession objects

Syntax objectname.Send (smsmsg, destaddr)

Return value Integer. Returns 1 for success and a negative value if an error occurs.

Usage The Send function sends an SMSMessage structure to an address specified in
an SMSAddress structure.

Examples The following example sets the text of the g_smsMsg SMSMessage structure
from a multiline edit box, sets the address from a single-line edit, and sends the
message to an international phone number:

// Global variables:
// SMSSession g_smsSess
// SMSMessage g_smsMsg
// SMSAddress g_smsmAddr

g_smsMsg.Text = mle_msg.text
g_smsAddr.AddressType = SMSAT_INTERNATIONAL!
g_smsAddr.Address = sle_addr.text
g_smsSess.Send(g_smsMsg, g_smsAddr)

See also Open
GetMessageStatus

Argument Description

objectname The name of the SMSSession object

smsmsg An SMSMessage structure returned by reference that contains
information about the message

destaddr An SMSAddress structure that contains the address to which the
message should be sent

Chapter 10 PowerScript Functions

PowerScript Reference 879

SendToInfrared
Description Sends the entire infrared queue.

Applies to POOM objects

Syntax Integer objectname.SendToInfrared ()

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

Usage A user must be logged in to a POOM object to send an infrared queue. Calling
SendToInfrared turns on the infrared beam and drains the queue.

Examples The following example sends an infrared queue:

li_rtn = g_poom.SendToInfrared()

See also AddToInfraredQueue
ReceiveFromInfrared

Argument Description

objectname The name of the POOM object

SeriesCount

880 PocketBuilder

SeriesCount
Description Counts the number of series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SeriesCount ({ graphcontrol })

Return value Integer. Returns the number of series in the graph if it succeeds and -1 if an
error occurs. If any argument’s value is null, SeriesCount returns null.

Examples These statements store in the variable li_series_count the number of series in
the graph gr_product_data:

integer li_series_count
li_series_count = gr_product_data.SeriesCount()

These statements store in the variable li_series_count the number of series in
the graph gr_computers in the DataWindow control dw_equipment:

integer li_series_count
li_series_count = &

dw_equipment.SeriesCount("gr_computers")

See also CategoryCount
DataCount

Argument Description

controlname The name of the graph for which you want the number of
series, or the name of the DataWindow control containing the
graph

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control for which you want the number of series

Chapter 10 PowerScript Functions

PowerScript Reference 881

SeriesName
Description Obtains the series name associated with the specified series number.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SeriesName ({ graphcontrol, } seriesnumber)

Return value String. Returns the name assigned to the series. If an error occurs, it returns the
empty string (""). If any argument’s value is null, SeriesName returns null.

Usage Series are numbered consecutively, from 1 to the value returned by
SeriesCount. When you delete a series, the series are renumbered to keep the
numbering consecutive. You can use SeriesName to find out the name of the
series associated with a series number.

Examples These statements store in the variable ls_SeriesName the name of series 5 in
the graph gr_product_data:

string ls_SeriesName
ls_SeriesName = gr_product_data.SeriesName(5)

These statements store in the variable ls_SeriesName the name of series 5 in
the graph gr_computers in the DataWindow control dw_equipment:

string ls_SeriesName
ls_SeriesName = &

dw_equipment.SeriesName("gr_computers", 5)

See also CategoryName
DeleteSeries
FindSeries

Argument Description

controlname The name of the graph in which you want the name of a series,
or the name of the DataWindow containing the graph

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control for which you want the name of a series

seriesnumber The number of the series for which you want to obtain the
name

SetAbort

882 PocketBuilder

SetAbort
Declares that a transaction on a transaction server should be rolled back.

Syntax 1 For OLETxnObject objects
Description Declares that the current transaction should be rolled back.

Applies to OLETxnObject objects

Syntax oletxnobject.SetAbort ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Syntax 2 For TransactionServer objects
Description Declares that a component cannot complete its work for the current transaction

and that the transaction should be rolled back. The component instance are
deactivated when the method returns.

Applies to TransactionServer objects

Syntax transactionserver.SetAbort ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

To roll back a transaction Use

For OLETxnObject objects Syntax 1

For TransactionServer objects Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 883

SetAlignment
Description Sets the alignment of the selected paragraphs in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SetAlignment (align)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

SetArgElement
Description Sets the value in the specified argument element.

Applies to Window ActiveX controls

Syntax activexcontrol.SetArgElement (index, argument)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

SetAutomationLocale
Description Sets the language to be used in automation programming for an OLE object.

Call SetAutomationLocale if you have programmed automation commands in a
language other than the user’s locale.

Applies to OLE objects

Syntax olename.SetAutomationLocale (language, sortorder)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

SetAutomationPointer

884 PocketBuilder

SetAutomationPointer
Description Sets the automation pointer of an OLEObject object to the value of the

automation pointer of another object.

Applies to OLEObject

Syntax oleobject.SetAutomationPointer (object)

Return value Integer. Returns 0 if it succeeds and -1 if the object does not contain a valid
OLE automation pointer.

SetAutomationTimeout
Description Sets the number of milliseconds that a PowerBuilder client waits before

canceling an OLE procedure call to the server.

Applies to OLEObject objects

Syntax oleobject.SetAutomationTimeout (interval)

Return value Integer. Returns 0 if it succeeds and -1 if it fails.

SetCaptureImageAttributes
Description Sets image attributes such as picture size and zoom value for capturing a

picture.

Applies to Camera objects

Chapter 10 PowerScript Functions

PowerScript Reference 885

Syntax objectname.SetCaptureImageAttributes (attrValue)

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Supporting DLL not loaded

-3 Other initialization error

-5 Inconsistency in this object instance

-6 Call to the driver or device failed

-7 Unsupported option

-8 Value for option is out of range

Usage You can set different attributes for previewing and capturing images. Typical
capture values are 640 and 480 pixels for width and height and 2 for zoom.

Examples This example gets the attributes that are available for a device in an array of
CameraImageAttributes structures and displays them to the user so that the
user can select the set of attributes to be used for preview and capture:

CameraImageAttributes AllowedConfigs[]
g_myCam.GetAllowedImageAttributes(AllowedConfigs)

// Display choices to user and let user select
// a preview and capture configuration
...
// User chose 1 for preview, 3 for capture
g_myCam.SetPreviewImageAttributes(AllowedConfigs[1])
g_myCam.SetCaptureImageAttributes(AllowedConfigs[3])

See also CaptureImage
GetOption
IsReadyToCapture
Open
SetOption
SetPreviewImageAttributes

Argument Description

objectname The name of the camera object for which you want to set capture
attributes

attrValue A CameraImageAttributes structure that contains the attributes to
be set for the device

SetColumn

886 PocketBuilder

SetColumn
Description Sets column information for a DataWindow, child DataWindow, or ListView

control.

For syntax for a DataWindow or child DataWindow, see the SetColumn method
for DataWindows in the DataWindow Reference or the online Help.

Applies to ListView controls

Syntax listviewname.SetColumn (index, label, alignment, width)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage SetColumn is used only in report views.

Examples This example sets the second column of a ListView:

lv_list.SetColumn(2 , "Order" , Center! , 800)

See also AddColumn
AddItem
SetItem

Argument Description

listviewname The name of the ListView control for which you want to set column
properties.

index The number of the column for which you want to set column
properties.

label The label of the column for which you want to set column
properties.

alignment A value of the Alignment enumerated datatype specifying how to
align the column. Values are:

• Left! — Align the column at the left margin

• Right! — Align the column at the right margin

• Center! — Center the column between the left and right margins

• Justify! — Not valid for the SetColumn function

width The width of the column for which you want to set column
properties.

Chapter 10 PowerScript Functions

PowerScript Reference 887

SetComplete
Declares that a transaction on a transaction server should be committed.

Syntax 1 For OLETxnObject objects
Description Declares that the current transaction should be committed.

Applies to OLETxnObject objects

Syntax oletxnobject.SetComplete ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Syntax 2 For TransactionServer objects
Description Declares that the transaction in which a component is participating should be

committed and the component instance should be deactivated.

Applies to TransactionServer objects

Syntax transactionserver.SetComplete ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

To commit a transaction Use

For OLETxnObject objects Syntax 1

For TransactionServer objects Syntax 2

SetData

888 PocketBuilder

SetData
Description Sets data in the OLE server associated with an OLE control using Uniform

Data Transfer.

Applies to OLE controls and OLE custom controls

Syntax olename.SetData (clipboardformat, data)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

SetDataAsInk
Description Sets the data in the control in Pocket Word Ink (PWI) format. This format is

compatible with Pocket Word.

Applies to Signature controls

Syntax Integer controlname.SetDataAsInk (data)

Return value Integer. Returns 1 for success and a negative integer for failure.

Usage The SetDataAsInk function can set both typed and freehand drawing or writing
into a Signature control.

Examples The following example reads data in PWI format from a file into a blob, then
sets the data into a Signature control:

blob lblb_ink
integer li_file, li_rtn

li_file = FileOpen("\My Documents\testpwi.pwi", &
StreamMode!, Read!)

Argument Description

controlname The name of the control for which you want to set the data

data The blob containing the data in PWI format

Chapter 10 PowerScript Functions

PowerScript Reference 889

FileRead(li_file, lblb_ink)
FileClose(li_file)

li_rtn = sig_1.SetDataAsInk(lblb_ink)
sle_1.text = string(li_rtn)

See also GetDataAsRTF
SetDataAsInk
SetDataAsText

SetDataAsRTF
Description Sets the contents of a control from the data in a string. The text formatting in

the string is maintained in the control.

Applies to Signature controls

Syntax Integer controlname.SetDataAsInk (data)

Return value Integer. Returns 1 for success and a negative integer for failure.

Usage The SetDataAsRTF function can set only text data into a Signature control.

Examples The following example reads data in RTF format from a file into a blob, then
sets the data into a Signature control:

blob lblb_rtf
integer li_file, li_rtn

li_file = FileOpen("\My Documents\testb.rtf", &
StreamMode!, Read!)

FileRead(li_file, lblb_rtf)
FileClose(li_file)

li_rtn = sig_1.SetDataAsRTF(lblb_rtf)

Argument Description

controlname The name of the control for which you want to set the data

data The blob or Unicode string containing the data

SetDataAsText

890 PocketBuilder

The following example reads data in RTF format from a file into a Unicode
string, then sets the data into a Signature control:

string ls_rtf
integer li_file, li_rtn

li_file = FileOpen("\My Documents\tests.rtf", &
StreamMode!, Read!)

FileRead(li_file, ls_rtf)
FileClose(li_file)

li_rtn = sig_1.SetDataAsRTF(ls_rtf)

See also GetDataAsRTF
SetDataAsInk
SetDataAsText

SetDataAsText
Description Formats data in a control as plain text.

Applies to Signature controls

Syntax Integer controlname.SetDataAsText (data)

Return value Integer. Returns 1 for success and a negative integer for failure.

Usage The SetDataAsText function can set only text data into a Signature control.

Examples The following example reads data in text format from a file into a Unicode
string, then sets the data into a Signature control:

string ls_txt
integer li_file, li_rtn

li_file = FileOpen("\My Documents\tests.txt", &
StreamMode!, Read!)

Argument Description

controlname The name of the control for which you want to set the data

data The Unicode string containing the text data

Chapter 10 PowerScript Functions

PowerScript Reference 891

FileRead(li_file, ls_txt)
FileClose(li_file)

li_rtn = sig_1.SetDataAsText(ls_txt)

See also GetDataAsText
SetDataAsInk
SetDataAsRTF

SetDataDDE
Description Sends data to a DDE client application when PowerBuilder is acting as a DDE

server. You would usually call SetDataDDE in the script for the RemoteRequest
event, which is triggered by a DDE request for data from the client application.

Syntax SetDataDDE (string {, applname, topic, item })

Return value Integer. Returns 1 if it succeeds. If an error occurs, SetDataDDE returns a
negative integer.

SetDataPieExplode
Description Explodes a pie slice in a pie graph. The exploded slice is moved away from the

center of the pie, which draws attention to the data. You can explode any
number of slices of the pie.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

SetDataPieExplode

892 PocketBuilder

Syntax controlname.SetDataPieExplode ({ graphcontrol, } seriesnumber,
datapoint, percentage)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDataPieExplode returns null.

Usage If the graph is not a pie graph, the function has no effect.

Examples This example explodes the pie slice under the pointer to 50% when the user
double-clicks within the graph. The code checks the property GraphType to
make sure the graph is a pie graph. It then finds out whether the user clicked on
a pie slice by checking the series and data point values set by ObjectAtPointer.
The script is for the DoubleClicked event of a graph object:

integer series, datapoint
grObjectType clickedtype
integer percentage

percentage = 50
IF (This.GraphType <> PieGraph! AND &

This.GraphType <> Pie3D!) THEN RETURN
clickedtype = This.ObjectAtPointer(&

series, datapoint)
IF (series > 0 and datapoint > 0) THEN

This.SetDataPieExplode(series, datapoint, &
percentage)

END IF

See also GetDataPieExplode

Argument Description

controlname The name of the graph in which you want to explode a pie
slice, or the name of the DataWindow containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to explode a pie slice.

seriesnumber The number that identifies the series.

datapoint The number of the data point (that is, the pie slice) to be
exploded.

percentage A number between 0 and 100 which is the percentage of the
radius that the pie slice is moved away from the center. When
percentage is 100, the tip of the slice is even with the
circumference of the pie’s circle.

Chapter 10 PowerScript Functions

PowerScript Reference 893

SetDataStyle
Specifies the appearance of a data point in a graph. The data point’s series has
appearance settings that you can override with SetDataStyle.

Syntax 1 For setting a data point’s colors
Description Specifies the colors of a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetDataStyle ({ graphcontrol, } seriesnumber,
datapointnumber, colortype, color)

To Use

Set the data point’s colors Syntax 1

Set the line style and width for the data point Syntax 2

Set the fill pattern or symbol for the data point Syntax 3

Argument Description

controlname The name of the graph in which you want to set the color of a
data point, or the DataWindow containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the color of a
data point.

seriesnumber The number of the series in which you want to set the color of
a data point.

datapointnumber The number of the data point for which you want to set the
color.

SetDataStyle

894 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDataStyle returns null.

Usage To change the appearance of a series, use SetSeriesStyle. The settings you make
for the series are the defaults for all data points in the series.

To reset the color of individual points back to the series color, call
ResetDataColors.

For a graph in a DataWindow, you can specify the appearance of a data point
in the graph before PocketBuilder draws the graph. To do so, define a user
event for pbm_dwngraphcreate and call SetDataStyle in the script for that event.
The event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Examples This example checks the background color for data point 6 in the series named
Salary in the graph gr_emp_data. If it is red, SetDataStyle sets it to black:

long color_nbr
integer SeriesNbr
// Get the number of the series
SeriesNbr = gr_emp_data.FindSeries("Salary")
// Get the background color
gr_emp_data.GetDataStyle(SeriesNbr, 6, &

Background!, color_nbr)
// If color is red, change it to black
IF color_nbr = 255 THEN &

gr_emp_data.SetDataStyle(SeriesNbr, 6, &
Background!, 0)

These statements set the text (foreground) color to black for data point 6 in the
series named Salary in the graph gr_depts in the DataWindow control
dw_employees:

integer SeriesNbr

colortype A value of the grColorType enumerated datatype specifying
the aspect of the data point for which you want to set the color.
Values are:

• Foreground! — Text color

• Background! — Background color

• LineColor! — Line color

• Shade! — Shade (for graphics that are three-dimensional or
have solid objects)

color A long whose value is the new color for colortype.

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 895

// Get the number of the series
SeriesNbr = &

dw_employees.FindSeries("gr_depts" , "Salary")
// Set the background color
dw_employees.SetDataStyle("gr_depts" , SeriesNbr, &

6, Background!, 0)

See also GetDataStyle
GetSeriesStyle
ResetDataColors
SeriesName
SetSeriesStyle

Syntax 2 For the line associated with a data point
Description Specifies the style and width of a data point’s line in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetDataStyle ({ graphcontrol, } seriesnumber,
datapointnumber, linestyle, linewidth)

Argument Description

controlname The name of the graph in which you want to set the line style
and width of a data point, or the name of the DataWindow
containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the line style
and width.

seriesnumber The number of the series in which you want to set the line style
and width of a data point.

datapointnumber The number of the data point for which you want to set the line
style and width.

SetDataStyle

896 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDataStyle returns null.

Usage To change the appearance of a series, use SetSeriesStyle. The settings you make
for the series are the defaults for all data points in the series.

For a graph in a DataWindow, you can specify the appearance of a data point
in the graph before PocketBuilder draws the graph. To do so, define a user
event for pbm_dwngraphcreate and call SetDataStyle in the script for that event.
The event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Examples This example checks the line style used for data point 10 in the series named
Costs in the graph gr_computers in the DataWindow control dw_equipment. If
it is dash-dot, the SetDataStyle sets it to continuous. The line width stays the
same:

integer SeriesNbr, line_width
LineStyle line_style

// Get the number of the series
SeriesNbr = dw_equipment.FindSeries(&

"gr_computers", "Costs")

// Get the current line style
dw_equipment.GetDataStyle("gr_computers", &

SeriesNbr, 10, line_style, line_width)

// If the pattern is dash-dot, change to continuous
IF line_style = DashDot! THEN &

dw_equipment.SetDataStyle("gr_computers", &
SeriesNbr, 10, Continuous!, line_width)

linestyle A value of the LineStyle enumerated datatype. Values are:

Continuous!
Dash!
DashDot!
DashDotDot!
Dot!
Transparent!

linewidth An integer whose value is the width of the line in pixels.

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 897

See also GetDataStyle
GetSeriesStyle
SeriesName
SetSeriesStyle

Syntax 3 For the fill pattern and symbol of a data point
Description Specifies the fill pattern and symbol for a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetDataStyle ({ graphcontrol, } seriesnumber,
datapointnumber, enumvalue)

Argument Description

controlname The name of the graph in which you want to set the
appearance of a data point, or the name of the DataWindow
containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the appearance.

seriesnumber The number of the series in which you want to set the
appearance of a data point.

datapointnumber The number of the data point for which you want to set the
appearance.

SetDataStyle

898 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDataStyle returns null.

Usage To change the appearance of a series, use SetSeriesStyle. The settings you make
for the series are the defaults for all data points in the series.

For a graph in a DataWindow, you can specify the appearance of a data point
in the graph before PocketBuilder draws the graph. To do so, define a user
event for pbm_dwngraphcreate and call SetDataStyle in the script for that event.
The event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Examples This example checks the fill pattern used for data point 10 in the series named
Costs in the graph gr_product_data. If it is diamond, then SetDataStyle changes
it to solid:

integer SeriesNbr
FillPattern data_pattern

enumvalue An enumerated datatype specifying the appearance setting for
the data point. You can specify a FillPattern or grSymbolType
value.

To change the fill pattern, use a FillPattern value:

Bdiagonal! — Lines from lower left to upper right
Diamond!
Fdiagonal! — Lines from upper left to lower right
Horizontal!
Solid!
Square!
Vertical!

To change the symbol type, use a grSymbolType value:

NoSymbol!
SymbolHollowBox!
SymbolX!
SymbolStar!
SymbolHollowUpArrow!
SymbolHollowCircle!
SymbolHollowDiamond!
SymbolSolidDownArrow!
SymbolSolidUpArrow!
SymbolSolidCircle!
SymbolSolidDiamond!
SymbolPlus!
SymbolHollowDownArrow!
SymbolSolidBox!

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 899

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")

// Get the current fill pattern
gr_product_data.GetDataStyle(SeriesNbr, 10, &

data_pattern)

// If the pattern is diamond, change it to solid
IF data_pattern = Diamond! THEN &

gr_product_data.SetDataStyle(SeriesNbr, &
10, Solid!)

See also GetDataStyle
GetSeriesStyle
SeriesName
SetSeriesStyle

SetDisplayZoom
Description Sets the zoom factor of controls as a percent of their size at design time.

Syntax SetDisplayZoom (izoom, rebuild)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

izoom Integer for the zoom factor that you want to set for all application
controls.

rebuild Boolean that determines whether the zoom factor applies to new
controls only or to all controls in the application. Values are:

• true All controls are resized

• false Only controls in new windows are resized

SetDisplayZoom

900 PocketBuilder

Usage The current zoom factor that you set in a SetDisplayZoom call applies to all
controls (when rebuild = true) or all newly instantiated controls (when rebuild
= false) in an application. However, when rebuild = true, the sizes of the
bitmaps for radio buttons, check boxes, and the edit boxes of drop-down lists
are not changed by a SetDisplayZoom call unless they are used as display
formats for columns in a DataWindow. When the same controls are placed on
application windows, the sizes of these controls’ bitmaps are fixed by the
Windows CE operating system and can be modified only by a SetDisplayZoom
call before they are loaded.

Setting the zoom factor for windows with DataWindow controls
The zoom value should be set before any dynamic changes are made to the
DataWindow content since changing the display zoom value resets the
DataWindow content.

The zoom factor is a percent of the size of the controls at design time.
SetDisplayZoom works best for devices that have a VGA screen, such as the
ASUS MyPal A730. The permissible zoom factor range is 10 to 500 percent.
If you set a zoom factor outside of this range, PocketBuilder automatically
resets the zoom factor to 100.

Although horizontal and vertical scroll bars are resized based on the zoom
factor that you set in a SetDisplayZoom call, a threshold exists beyond which
these controls cannot be painted. The threshold depends on the device
resolution. For example, a scroll bar is not visible on a Dell Axim device with
a 240 x 320 screen resolution if its height is less than 28 pixels.

Drawing objects, such as lines and ovals, are automatically repainted with the
current zoom factor when an action causes the application window to be
refreshed. This occurs even if you called SetDisplayZoom with the rebuild
argument set to false.

See also GetDisplayZoom

Chapter 10 PowerScript Functions

PowerScript Reference 901

SetDropHighlight
Description Highlights the specified item as the drop target.

Applies to TreeView controls

Syntax treeviewname.SetDropHighlight (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use in a drag operation to specify a drop target.

Examples This example uses the TreeView Clicked event to set the current TreeView item
as the drop target:

handle = tv_list.FindItem(CurrentTreeItem!,0)
tv_list.SetDropHighlight(handle)

See also FindItem
SetItem

SetDynamicParm
Description Specifies a value for an input parameter in the DynamicDescriptionArea that is

used in an SQL OPEN or EXECUTE statement.

Syntax DynamicDescriptionArea.SetDynamicParm (index, value)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDynamicParm returns null.

Argument Description

treeviewname The TreeView control in which you want to highlight an item
as the target of a drag-and-drop operation

itemhandle The handle of the item you want to highlight as the target in a
drag-and-drop operation

SetEndOfFile

902 PocketBuilder

SetEndOfFile
Description Sets the current position in a file as the last position in the file.

Applies to FileDirect objects

Syntax instancename.SetEndOfFile ()

Return value Integer. Returns 1 for success and a negative number for an error.

Usage Use the SetEndOfFile function to reset the current file position as the last
position in the file.

Examples The following script moves the file pointer 100 bytes from the file end before
the Read function is called:

li_ret = nvo_FileDirect.setendoffile ()

See also Open
Seek

SetFirstVisible
Description Sets the specified item as the first visible item in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.SetFirstVisible (itemhandle)

Argument Description

instancename Instance name of the FileDirect object

Argument Description

treeviewname The TreeView control in which you want to identify an item as the
first visible item

Chapter 10 PowerScript Functions

PowerScript Reference 903

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use to give focus to the TreeView item specified by the itemhandle and scroll
it to the top of the TreeView control (or as close to the top as the item list
allows; if the item is the last item in a TreeView control, for example, it cannot
scroll to the top of the control).

Examples This example sets the current TreeView item as the first item visible in a
TreeView control:

long ll_tvi
int li_tvret

ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)

li_tvret = tv_list.SetFirstVisible(ll_tvi)
IF li_tvret = -1 THEN

MessageBox("Warning!" , "Didn't Work")
END IF

See also FindItem
SetItem

SetFocus
Description Sets the focus on the specified object or control.

Applies to Any object

Syntax objectname.SetFocus ()

itemhandle The handle of the item you are identifying as the first visible item
in the TreeView control

Argument Description

Argument Description

objectname The name of the object or control in which you want to set the focus

SetGlobalProperty

904 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If objectname is null,
SetFocus returns null.

Usage If objectname is a ListBox, SetFocus displays the focus rectangle around the
first item. If objectname is a DropDownListBox, SetFocus highlights the edit
box. To select an item in a ListBox or DropDownListBox, use SelectItem.

Drawing objects cannot have focus. Therefore, you cannot use SetFocus to set
focus to in a Line, Oval, Rectangle, or RoundRectangle.

Examples This statement in the script for the Open event in a window moves the focus to
the first item in lb_Actions:

lb_Actions.SetFocus()

See also SetItem
SetState
SetTop

SetGlobalProperty
Description Sets the value of an SSL global property.

Applies to SSLServiceProvider object

Syntax sslserviceprovider.SetGlobalProperty (property, value)

Return value Long. Returns 0 for success and a negative number if an error occurs.

SetHold
Description Allows the user to put the current call on hold or retrieve a call that is on hold.

Applies to PhoneCall objects

Chapter 10 PowerScript Functions

PowerScript Reference 905

Syntax objectname.SetHold (holdstate)

Return value Integer. Returns a value that indicates the state of the phone call before SetHold
is called, if it succeeds. Returns a negative value if an error occurs. Values are:

• 1 On hold

• 2 Not on hold

Examples The following script for a Hold button puts a call on hold if it was not on hold
and retrieves a call from hold if it was on hold:

// Global variable: Long g_phInit = 0
// set to 1 in pcall_1 constructor
// Global variable gb_holdstate
integer li_ret
if (g_phInit > 0) then

li_ret = pcall_1.SetHold(gb_holdstate)
if (gb_holdstate = true) then

gb_holdstate = false
else

gb_holdstate = true
end if

else
sle_1.text = "Call not initialized"

end if

See also AcceptCall
AllowReceivingCalls
DropCall
MakeCall
SetMute
SetRingTone

Argument Description

objectname The name of the PhoneCall object.

holdstate A boolean that indicates whether the call is to be put on hold or
retrieved from hold. Values are:

• true Hold the current call

• false Retrieve a call that is on hold

SetItem

906 PocketBuilder

SetItem
Sets the value of an item in a list.

For use with DataWindows and DataStores, see the SetItem method for
DataWindows in the DataWindow Reference or the online Help.

Syntax 1 For ListView controls
Description Sets data associated with a ListView item to the property values you specify in

a ListViewItem variable.

Applies to ListView controls

Syntax listviewname.SetItem (index, { column }, item)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage You can set properties for any ListView item with this syntax. If you do not
specify a column, SetItem sets properties for the first column of an item. Only
report views display multiple columns.

To add items to a ListView control, use the AddItem function. To add columns
to a ListView control, use AddColumn. To set display values for the columns of
a ListView item, use Syntax 2.

To set the values of Use

A ListView control item Syntax 1

A ListView control item and column Syntax 2

A TreeView control item Syntax 3

Argument Description

listviewname The ListView for which you are setting item properties

index The index number of the item for which you are setting properties

column The index number of the column of the item for which you want to
set properties

item The ListViewItem variable containing property values you want to
assign to a ListView item

Chapter 10 PowerScript Functions

PowerScript Reference 907

If you want to set column properties, such as alignment or width, use
SetColumn. These column properties are independent of the ListViewItem
objects.

To change pictures and other property values associated with a ListView item,
use GetItem, change the property values, and use SetItem to apply the changes
back to the ListView.

Examples This example uses SetItem to change the state picture index for the selected
lv_list ListView item:

listviewitem lvi_1

lv_list.GetItem(lv_list.SelectedIndex(), lvi_1)
lvi_1.StatePictureIndex = 2
lv_list.SetItem(lv_list.SelectedIndex () , lvi_1)

See also AddColumn
AddItem
GetItem
SetColumn

Syntax 2 For ListView controls
Description Sets the value displayed for a particular column of a ListView item.

Applies to ListView control

Syntax listviewname.SetItem (index, column, label)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

listviewname The ListView control for which you are setting a display value

index The index number of the item for which you are setting a display
value

column The index number of the column for which you want to set a display
value

label The string value or variable which you are assigning to the specified
column of the specified ListView item

SetItem

908 PocketBuilder

Usage You must include the column number as an argument, even if you are only
assigning values to a single-column ListView control. To specify the properties
for a ListView item, use Syntax 1.

Examples This example assigns display values to three columns in a report view for three
lv_list ListView items:

listviewitem l_lvi
integer li_count, li_index

FOR li_index = 1 to 3
li_count=li_count+1
lv_1ist.AddItem("Category " + String(li_index),

1)
NEXT

lv_list.AddColumn("Composition", Left! , 860)
lv_list.AddColumn(" Album", Left! , 610)
lv_list.AddColumn(" Artist", Left! , 710)

lv_list.SetItem(1 , 1 , "St. Thomas")
lv_list.SetItem(1 , 2 , "The Bridge")
lv_list.SetItem(1 , 3 , "Sonny Rollins")

lv_list.SetItem(2 , 1 , "So What")
lv_list.SetItem(2 , 2 , "Kind of Blue")
lv_list.SetItem(2 , 3 , "Miles Davis")

lv_list.SetItem(3 , 1 , "Goodbye, Porkpie Hat")
lv_list.SetItem(3 , 2 , "Mingus-Ah-Um")
lv_list.SetItem(3 , 3 , "Charles Mingus")

See also GetItem

Syntax 3 For TreeView controls
Description Sets the data associated with a specified item.

Applies to TreeView controls

Chapter 10 PowerScript Functions

PowerScript Reference 909

Syntax treeviewname.SetItem (itemhandle, item)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Typically, you would call GetItem first, edit the data, and then call SetItem to
reflect your changes in the TreeView control.

Examples This example uses the ItemExpanding event to change the picture index and
selected picture index of the current TreeView item:

treeviewitem l_tvi
long ll_tvi

ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)
tv_list.GetItem(ll_tvi , l_tvi)
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 5

tv_list.SetItem(ll_tvi, l_tvi)

See also GetItem

SetItemPictureIndex
Description Sets the picture for the item index of a toolbar item.

Applies to Toolbar controls

Argument Description

treeviewname The name of the TreeView control in which you want to set the
data for a specific item

itemhandle The handle associated with the item you want to change

item The TreeView item you want to change

SetItemState

910 PocketBuilder

Syntax Integer controlname.GetItemPictureIndex (toolbarindex, pictureindex)

Return value Integer. Returns 1 for success and -1 if an error occurs.

Examples The following example sets the picture index for the second item in the toolbar,
assigning it the first picture in the toolbar picture name array:

Integer li_rtn
li_rtn = tlbr_mytoolbar.SetItemPictureIndex(2, 1)

See also GetItemPictureIndex

SetItemState
Description Sets the state of a toolbar item.

Applies to Toolbar controls

Syntax Integer controlname.SetItemState (toolbarindex, itemstate)

Argument Description

controlname The name of the toolbar control

toolbarindex Integer for the index of a toolbar item

pictureindex Integer for the index of the picture you want to set for a toolbar
item

Argument Description

controlname The name of the toolbar control

toolbarindex Integer for the index of the toolbar item

Chapter 10 PowerScript Functions

PowerScript Reference 911

Return value Integer. Returns 1 for success and -1 if an error occurs.

Examples The following example sets the state for the second item in the toolbar:

Integer li_rtn
li_rtn = tlbr_mytoolbar.SetItemState(2, 33)

See also GetItemState

SetLevelPictures
Description Sets the picture indexes for all items at a particular level.

Applies to TreeView controls

Syntax treeviewname.SetLevelPictures (level, pictureindex, selectedpictureindex,
statepictureindex, overlaypictureindex)

itemstate Integer value to indicate the state of the toolbar item that you want
to set. Values are:

• 1 Sets a StyleCheck! or StyleCheckGroup! toolbar button in
the depressed state

• 2 Sets a StyleButton! toolbar button in a transitional
depressed state

• 4 Enables a toolbar item for selection

• 32 Sets the next item in the toolbar on a separate line if it is
not part of the same group

Values are additive. For example, suppose you want to set a toolbar
button with the checked state (1) and enable it (4), with the next set
of buttons wrapped to a different line (32). You would enter 37 for
the itemstate argument.

Argument Description

Argument Description

treeviewname The TreeView control in which you want to set the
pictures for a given TreeView level

level The TreeView level for which you are setting the picture
indexes

SetLibraryList

912 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage To set pictures for individual items, call GetItem, set the picture properties, and
call SetItem to copy the changes to the TreeView. You must specify a value for
all four indexes. To display nothing, specify 0.

Examples This example sets the pictures for TreeView level 3, then inserts two new
TreeView items:

long ll_tvi, ll_child, ll_child2
int li_pict, li_level
treeviewitem l_tvi

li_level = 6
tv_list.SetLevelPictures(3, li_level, li_level, &

li_level, li_level)

ll_tvi = tv_list.FindItem(RootTreeItem! , 0)
ll_child = tv_list.InsertItemLast(ll_tvi, "Walton",2)
ll_child2 = tv_list.InsertItemLast(ll_child, &

"Spitfire Suite", li_level)
tv_list.ExpandItem(ll_child)
tv_list.SetFirstVisible(ll_child)

See also AddPicture

SetLibraryList
Description Changes the files in the library search path of the application at runtime.

pictureindex An index from the regular picture list specifying the
picture to be displayed when the item is not selected

selectedpictureindex An index from the regular picture list specifying the
picture to be displayed when the item is selected

statepictureindex An index from the state picture list specifying the picture
to be displayed to the left of the regular picture

overlaypictureindex An index from the overlay picture list specifying the
picture to be displayed on top of the regular picture

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 913

Obsolete syntax
You can still use the old syntax with the name of the application object before
the function call: applicationname.SetLibraryList (filelist).

Syntax SetLibraryList (filelist)

Return value Integer. Returns 1 if it succeeds. If an error occurs, it returns:

-1 The application is being run from PowerBuilder, rather than from a
standalone executable.

-2 A currently instantiated object is in a library that is not on the new list. If
any argument’s value is null, SetLibraryList returns null.

SetMask
Description Sets the edit mask and edit mask datatype for an EditMask control.

Applies to EditMask controls

Syntax editmaskname.SetMask (maskdatatype, mask)

Argument Description

editmaskname The name of the EditMask for which you want to specify the
edit mask.

maskdatatype A MaskDataType enumerated datatype indicating the
datatype of the mask. Values are:

• DateMask!

• DateTimeMask!

• DecimalMask!

• NumericMask!

• StringMask!

• TimeMask!

mask A string whose value is the edit mask.

SetMask

914 PocketBuilder

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetMask returns null.

Usage In an edit mask, a fixed set of characters represent a type of character that the
user can enter. In addition, punctuation controls the format of the entered value.
Each mask datatype has its own set of valid characters.

For example, the following is a mask of type string for a telephone number. The
EditMask control displays the punctuation (the parentheses and dash). The
pound signs represent the digits that the user enters. The user cannot enter any
characters other than digits.

(###) ###-####

For help in specifying a valid mask, see the Edit Mask Style dialog box for an
EditMask control in the Window painter. A ListBox in the dialog box shows
the meaning of the special mask characters for each datatype, as well as masks
that have already been defined.

If you are specifying the mask for a number, the format must use U.S. notation.
That is, comma represents the thousands delimiter and a period represents the
decimal place. During execution, the locally correct symbols are displayed.

You cannot use color for edit masks as you can for display formats.

Examples These statements set the mask for the EditMask password_mask to the mask in
pword_code. The mask requires the user to enter a digit followed by four
characters of any type:

string pword_code
pword_code = "#xxxx"
password_mask.SetMask(StringMask!, pword_code)

This statement sets the mask for the EditMask password_mask to a 5-digit
numeric mask:

password_mask.SetMask(NumericMask!, "#####")

Chapter 10 PowerScript Functions

PowerScript Reference 915

SetMessage
Description Sets an error message for an object of type Throwable.

Syntax throwableobject.SetMessage (newMessage)

Return value None

Usage Use to set a customized message on a user-defined exception object. Although
it is possible to use SetMessage to modify the preset error messages for
RuntimeError objects, this is not recommended.

Examples This statement is an example of a message set on a user object of type
Throwable:

MyException.SetMessage ("MyException thrown")

This example uses SetMessage in the try-catch block for a user-defined
function that takes an input value from one text box and outputs the arccosine
for that value into another text box:

uo_exception lu_error
Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

lu_error = Create uo_exception
lu_error.SetMessage("Value must be between -1" +&

"and 1")
Throw lu_error

END TRY

See also GetMessage

Argument Description

throwableobject Object of type Throwable for which you want to set an error
message.

newMessage String containing the message you want to set. Must be
surrounded by quotation marks.

SetMessageSink

916 PocketBuilder

SetMessageSink
Description Specifies a visual object that will receive event notifications from user events

with the pbm_command event ID.

Applies to NotificationBubble objects

Syntax Integer controlname.SetMessageSink (sinkWindow)

Return value Integer. Returns 1 for success and -1 if an error occurs.

Usage The NotificationBubble object contains HTML text that can include input
controls with a command ID and number as a name attribute. For example, the
HTML text could include the following command button element:

<input type=button name="cmd:10" value="OK">

If you create a user event on the NotificationBubble object with a
pbm_command event ID, the event will be triggered when an application user
taps the OK command button. Notification of the user action will be set to the
visual object that you name in the sinkWindow argument.

Command IDs in the NotificationBubble’s HTML text typically have values of
3 or greater. A value of cmd:1 sends a notification, but does not close the
notification bubble. A value of cmd:2 closes the notification bubble but does
not remove the notification from the notification tray, making it ideally suitable
as the command ID for a Cancel button.

Examples The following example sets the parent window of a notification bubble object
to receive notifications from a user event:

li_rtn = nb_myBubble.SetMessageSink(parent)

See also Icon
Update

Argument Description

controlname The name of the notification bubble that has a user event with the
pbm_command event ID

sinkWindow GraphicObject that you want to have receive event notifications

Chapter 10 PowerScript Functions

PowerScript Reference 917

SetMicroHelp
Description Specifies the text to be displayed in the MicroHelp box in an MDI frame

window.

Applies to MDI frame windows

Syntax windowname.SetMicroHelp (string)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetMicroHelp returns null.

SetMute
Description Allows the user to mute or unmute the line.

Applies to PhoneCall objects

Syntax objectname.SetMute (mutestate)

Return value Integer. Returns a value that indicates the state of the phone line before SetMute
is called if it succeeds and a negative value if an error occurs. Values are:

• 1 Muted

• 2 Not muted

Examples The following script for a Mute button mutes a line if it was muted and unmutes
it if it was not muted:

Argument Description

objectname The name of the PhoneCall object

mutestate A boolean that indicates whether the line is to be muted or
unmuted. Values are:

• true Mute the line

• false Unmute the line

SetNull

918 PocketBuilder

// Global variable: Long g_phInit = 0
// set to 1 in pcall_1 constructor
// Global variable gb_mutestate
integer li_ret
if (g_phInit > 0) then

li_ret = pcall_1.SetMute(gb_mutestate)
if (gb_mutestate = true) then

gb_mutestate = false
else

gb_mutestate = true
end if

else
sle_1.text = "Call not initialized"

end if

See also AcceptCall
AllowReceivingCalls
DropCall
MakeCall
SetHold
SetRingTone

SetNull
Description Sets a variable to null. The variable can be any datatype except for an array,

structure, or autoinstantiated object.

Syntax SetNull (anyvariable)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetNull returns null.

Argument Description

anyvariable The variable you want to set to null

Chapter 10 PowerScript Functions

PowerScript Reference 919

SetOption
Description Sets an option for a camera device.

Applies to Camera objects

Syntax Boolean objectname.SetOption (Opt, iOptValue)

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Supporting DLL not loaded

-3 Other initialization error

-5 Inconsistency in this object instance

-6 Call to the driver or device failed

-7 Unsupported option

-8 Value for option is out of range

Usage Use the SetOption function to set the value of a specific option.

Examples The following statements set the value of the CamOptWhiteBalance option to
3, which means fluorescent:

integer li_return
li_return = g_myCamera.SetOption(CamOptWhiteBalance, 3)

See also CaptureImage
GetOption
IsReadyToCapture

Argument Description

objectname The name of the camera object for which you want to set an option.

Opt A value of the CameraOption enumerated variable that specifies
the name of the option that you want to want to inquire about. For
a list of options, see GetOption.

iOptValue An integer that specifies the value to which you want to set the
option.

SetOverlayPicture

920 PocketBuilder

Open
SetPreviewImageAttributes

SetOverlayPicture
Description Puts an image in the control’s image list into an overlay image list.

Applies to ListView and TreeView controls

Syntax controlname.SetOverlayPicture (overlayindex, imageindex)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage An overlay picture must have the same height and width as the picture it is used
to overlay.

The color specified in the SetPictureMask property when the picture is inserted
becomes transparent when the picture is used as an overlay, allowing part of
the original image to be visible beneath the overlay.

The overlay list acts as a pointer back to the source image in the regular picture
lists. If you delete an image that is also used in the overlay list, the displayed
overlay pictures are affected too.

Argument Description

controlname The name of the ListView or TreeView control to which you
want to add an overlay image.

overlayindex The index number of the overlay picture in the overlay image
list. The overlay image list is a 1-based array. Overlayindex
must be 1 (for the first image), a previously designated index
(replacing an image), or 1 greater than the current largest
index (adding another image). SetOverlayPicture fails if you
specify an index that creates gaps in the array.

imageindex The index number of an image in the control’s main image list.
For ListViews, both the large and small pictures at that index
become overlay images. The image is still available for use as
an item’s main image.

Chapter 10 PowerScript Functions

PowerScript Reference 921

Examples This example designates overlay images in a ListView control. The same
picture is used for large and small images:

// Set up the overlay images
integer index
index = lv_1.AddLargePicture("shortcut.ico")
index = lv_1.AddSmallPicture("shortcut.ico")
lv_1.SetOverlayPicture(1, index)
index = lv_1.AddLargePicture("not.ico")
index = lv_1.AddSmallPicture("not.ico")
lv_1.SetOverlayPicture(2, index)

// Assign the second overlay image to the first item
listviewitem lvi
integer i
i = lv_1.GetItem(1, lvi)
lvi.OverlayPictureIndex = 2
i = lv_1.SetItem(1, lvi)

This example designates the first picture in the TreeView’s main image list as
the first overlay picture. The picture was added to the main image list on the
TreeView’s property sheet:

tv_list.SetOverlayPicture(1, 1)

This code in the TreeView’s Clicked event assigns the overlay image to the
clicked item:

treeviewitem tvi
tv_list.GetItem(handle, tvi)
tvi.OverlayPictureIndex = 1
tv_list.SetItem(handle, tvi)

SetParagraphSetting

922 PocketBuilder

SetParagraphSetting
Description Sets the size of the indentation, left margin, or right margin of the paragraph

containing the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtecontrol.SetParagraphSetting (whichsetting, value)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument is null,
it returns null.

SetPicture
Description Assigns an image stored in a blob to be the image in a Picture control.

Applies to Picture controls

Syntax picturecontrol.SetPicture (bimage)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetPicture returns null.

Usage If you use FileRead to get the bitmap image from a file, remember that the
FileRead function can read a maximum of 32765 characters at a time. To check
the length of a file, call FileLength. If the file is over 32765 characters, you can
call FileRead more than once and concatenate the return values.

Argument Description

picturecontrol The name of a Picture control in which you want to set the bitmap.

bimage A blob containing the new bitmap. bimage must be a valid picture
in bitmap (BMP), Compuserve Graphics Interchange Format
(GIF), Joint Photographic Experts Group (JPEG), run-length
encoded (RLE), or Windows Metafile (WMF).

Chapter 10 PowerScript Functions

PowerScript Reference 923

Examples These statements allow the user to select a file and then open the file and set
the Picture control p_1 to the bitmap in the selected file:

integer fh, ret
blob Emp_pic
string txtname, named
string defext = "BMP"
string Filter = "bitmap Files (*.bmp), *.bmp"
ret = GetFileOpenName("Open Bitmap", txtname, &

named, defext, filter)
IF ret = 1 THEN

fh = FileOpen(txtname, StreamMode!)
IF fh <> -1 THEN

FileRead(fh, Emp_pic)
FileClose(fh)
p_1.SetPicture(Emp_pic)

END IF
END IF

SetPointer
Description Sets the mouse pointer to the specified shape.

Windows CE platforms
The SetPointer function works with only the Hourglass! and Arrow! values in
applications deployed to Windows CE platforms. The pointer is an arrow by
default. If you set the pointer to an hourglass in a desktop application, the
pointer reverts to an arrow after the script is run. On a Windows CE device, you
must explicitly call SetPointer a second time to reset the pointer.

SetPointer

924 PocketBuilder

Syntax SetPointer (type)

Return value Pointer. Returns the enumerated type of the pointer it replaced so the script can
restore it, if necessary. If type is null, SetPointer returns null.

Usage Use SetPointer to display an hourglass at the beginning of a script when the
script will take a long time to execute. The pointer remains set until you change
it again in the script or the script terminates.

Restoring the arrow pointer
The pointer automatically changes back to an arrow when the script finishes
executing. You do not have to change it back to an arrow.

In PocketBuilder’s painters, you can specify the pointer shape that
PocketBuilder displays when the user moves the pointer over a window, a
control, or specific parts of a DataWindow object. The available shapes include
the stock pointers listed above, as well as any custom cursor files you have.

Examples This statement sets the pointer to the hourglass shape:

SetPointer(HourGlass!)

This example saves the old pointer and restores it when a long activity is
completed:

pointer oldpointer // Declares a pointer variable
oldpointer = SetPointer(HourGlass!)
... // Performs some long activity
SetPointer(oldpointer)

Argument Description

type A value of the Pointer enumerated datatype indicating the type of
pointer you want. Values are:

Arrow!
Cross!
Beam!
HourGlass!
SizeNS!
SizeNESW!
SizeWE!
SizeNWSE!
UpArrow!

Chapter 10 PowerScript Functions

PowerScript Reference 925

SetPosition
Specifies the front-to-back position of a control in a window, a window, or an
object within a DataWindow.

Syntax 1 For positioning windows and controls in windows
Description For controls in a window, specifies the position of a control in the front-to-back

order within a window. For a window, specifies whether it always displays on
top of other open windows.

Applies to A control within a window or a window

Syntax objectname.SetPosition (position {, precedingobject })

To Use

Specify the front-to-back position of a control in a window, or specify
that a window should always display on top of other windows

Syntax 1

Move an object in a DataWindow to another band or to specify its front-
to-back position within a band

Syntax 2

Argument Description

objectname The name of a control for which you want to specify a location
in the front-to-back order within the window, or the name of a
window for which you want to specify whether it always
displays on top. Objectname cannot be a child window or a
sheet.

SetPosition

926 PocketBuilder

Return value Integer. Returns 1 when it succeeds and -1 if an error occurs. If any argument’s
value is null, SetPosition returns null.

Usage The front-to-back order for controls determines which control covers another
when they overlap. If a control completely covers another control, the control
that is in back becomes inaccessible to the user.

When you specify TopMost! for more than one window, the most recently
executed SetPosition function controls which window displays on top.

Examples This statement positions cb_two on top:

cb_two.SetPosition(ToTop!)

This statement positions cb_two behind cb_three:

cb_two.SetPosition(Behind!, cb_three)

This statement makes the window w_signon the topmost window:

w_signon.SetPosition(TopMost!)

This statement makes the window w_signon no longer necessarily the topmost
window:

w_signon.SetPosition(NoTopMost!)

position A SetPosType enumerated datatype. The values you can
specify depend on whether objectname is a control or a
window.

For controls, values are:

• Behind! — Position objectname behind precedingobject in
the order

• ToTop! — Position objectname on top of all other controls

• ToBottom! — Position objectname behind all other
controls

For windows, values are:

• TopMost! — Always display objectname on top of all other
open windows

• NoTopMost! — Do not always display objectname on top
of all other open windows

precedingobject
(optional)

The name of the object you want to position objectname
behind. Precedingobject is required if position is Behind!.

Argument Description

Chapter 10 PowerScript Functions

PowerScript Reference 927

Syntax 2 For positioning objects within a DataWindow
Description Moves an object within the DataWindow to another band or changes the front-

to-back order of objects within a band.

Applies to DataWindow controls and DataStores

Syntax dwcontrol.SetPosition (objectname, band, bringtofront)

Return value Integer. Returns 1 when it succeeds and -1 if an error occurs. If any argument’s
value is null, SetPosition returns null.

Examples This statement moves oval_red in dw_rpt to the header and brings it to the front:

dw_rpt.SetPosition("oval_red", "header", TRUE)

This statement does not change the position of oval_red , but does bring it to
the front:

dw_rpt.SetPosition("oval_red", "", TRUE)

This statement moves oval_red to the footer but does not bring it to the front:

dw_rpt.SetPosition("oval_red", "footer", FALSE)

Argument Description

dwcontrol The name of the DataWindow control or DataStore containing the
object.

objectname The name of the object within the DataWindow that you want to
move. You assign names to the DataWindow objects in the
DataWindow painter.

band The name of the band or layer in which you want to position
objectname.

Layer names are background and foreground.

Band names are detail, header, footer, summary, header.#, and
trailer.#.

is the group level number. Enter the empty string ("") if you do not
want to change the band

bringtofront A boolean indicating whether you want to bring objectname to the
front within the band:

• true — Bring it to the front

• false — Do not bring it to the front

SetPreviewImageAttributes

928 PocketBuilder

SetPreviewImageAttributes
Description Sets image attributes such as picture size and zoom value for previewing a

picture.

Applies to Camera objects

Syntax objectname.SetPreviewImageAttributes (attrValue)

Return value Integer. Returns 1 for success, and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Supporting DLL not loaded

-3 Other initialization error

-5 Inconsistency in this object instance

-6 Call to the driver or device failed

-7 Unsupported option

-8 Value for option is out of range

Usage You can set different attributes for previewing and capturing images. Typical
preview values are 160 and 120 pixels for width and height and 2 for zoom.
Image sizes available depend on the device, but usually fewer sizes are
available for preview.

Examples This example gets the attributes that are available for a device in an array of
CameraImageAttributes structures and displays them to the user so that the
user can select the set of attributes to be used for preview and capture:

CameraImageAttributes AllowedConfigs[]
g_myCam.GetAllowedImageAttributes(AllowedConfigs)

Argument Description

objectname The name of the camera object for which you want to set preview
attributes

attrValue A CameraImageAttributes structure that contains the attributes to
be set for the device

Chapter 10 PowerScript Functions

PowerScript Reference 929

// Display choices to user and let user select
// a preview and capture configuration
...
// User chose 1 for preview, 3 for capture
g_myCam.SetPreviewImageAttributes(AllowedConfigs[1])
g_myCam.SetCaptureImageAttributes(AllowedConfigs[3])

See also CaptureImage
GetOption
IsReadyToCapture
Open
SetCaptureImageAttributes
SetOption

SetProfileString
Description Writes a value in a profile file for a PocketBuilder application.

File format
SetProfileString writes to the file in the format, ANSI or Unicode, in which it
was opened. To write Unicode characters to an initialization file, open the file
and save it as Unicode before calling SetProfileString.

Syntax SetProfileString (filename, section, key, value)

Argument Description

filename A string whose value is the name of the profile file. For desktop
applications, if you do not include the full path in filename,
PocketBuilder searches the DOS path for filename.

section A string whose value is the name of a group of related values in the
profile file. If section does not exist in the file, PocketBuilder adds
it.

key A string whose value is the key in section for which you want to
specify a value. If key does not exist in section, PocketBuilder adds
it.

value A string whose value is the value you want to specify for key.

SetProfileString

930 PocketBuilder

Return value Integer. Returns 1 when it succeeds and -1 if it fails because filename is not
found or cannot be accessed. If any argument’s value is null, SetProfileString
returns null.

Usage A profile file consists of section labels, which are enclosed in square brackets,
and keys, which are followed by an equal sign and a value. By changing the
values assigned to the keys, you can specify custom settings for each
installation of your application. When you are planning your own profile file,
you select the section and key names and determine how the values are used.

For example, a profile file might contain information about the user. In the
sample below, User Info is the section name and the other values are the keys.
There is no space before and after the equal sign used in the keys or in the
section label (if you use a section name such as Section=1):

[User Info]
Name="James Smith"
JobTitle="Window Washer"
SecurityClearance=9
Password=

Call SetProfileString to store configuration information, supplied by you or the
user, in a profile file. You can call the functions ProfileInt and ProfileString to use
that information to customize your PocketBuilder application during
execution.

Accessing the profile file SetProfileString uses profile calls to write data to the
profile file. Consequently it does not control when the profile file is written and
closed. If you try to read data from the profile file immediately after calling
SetProfileString, the file may still be open and you will receive incomplete or
incorrect data.

To avoid this problem, you can use the PowerScript FileOpen, FileWrite, and
FileClose functions to write data to the profile file instead of using
SetProfileString. Or you can add some additional processing after the
SetProfileString call so that the profile calls have time to complete before you
try to read from the profile file.

Windows registry
SetProfileString can also be used to obtain configuration settings from the
Windows system registry. For information on how to use the system registry,
see the discussion of initialization files and the Windows registry in the
Resource Guide.

Chapter 10 PowerScript Functions

PowerScript Reference 931

Examples This statement sets the keyword Title in section Position of file
C:\PROFILE.INI to the string MGR:

SetProfileString("C:\PROFILE.INI", &
"Position", "Title", "MGR")

See also ProfileInt
ProfileString

SetRange
Description Sets a duration for a progress bar control or sets the start and end position for

a trackbar control.

Applies to Progress bar and trackbar controls

Syntax controlname.SetRange (startpos, endpos)

Return value Integer. Returns 1 if it succeeds and -1 if there is an error.

Usage The default range for the progress bar controls is 0 to 100.

Examples This statement sets a range of 1 to 10 for a progress bar control:

HProgressBar.SetRange (1, 10)

See also OffsetPos
SelectionRange
StepIt

Argument Description

controlname The name of the progress bar or trackbar

startpos Integer indicating the initial position of the range

endpos Integer indicating the terminal position of the range

SetRecordSet

932 PocketBuilder

SetRecordSet
Description Sets an ADOResultSet object to obtain its data and metadata from a passed

ADO Recordset.

Applies to ADOResultSet objects

Syntax adoresultset.SetRecordSet (adorecordsetobject)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

SetRecurrence
Description Sets a recurrence pattern for an appointment or task.

Applies to POOMAppointment, POOMTask objects

Syntax Integer objectname.SetRecurrence (pattern)

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

Argument Description

objectname The name of the POOMAppointment or POOMTask object

pattern The POOMRecurrence object with the pattern you want to set

Chapter 10 PowerScript Functions

PowerScript Reference 933

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

See also ClearRecurrencePattern
GetRecurrence
SkipRecurrence

SetRedraw
Description Controls the automatic redrawing of an object or control after each change to

its properties.

Windows CE platforms
In PocketBuilder applications, SetRedraw (false) works only for the ListBox,
DropDownListBox, and TreeView controls. SetRedraw (true) forces a repaint
of all control types. This can lead to unexpected performance penalties in
applications that you deploy to Pocket PC or Smartphone devices.

Applies to Any object except a Menu

Syntax objectname.SetRedraw (boolean)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If boolean is null,
SetRedraw returns null.

Usage By default, PocketBuilder redraws a control after each change to properties
that affect appearance. Use SetRedraw to turn off redrawing temporarily in
order to avoid flicker and reduce redrawing time when you are making several
changes to the properties of an object or control. If the window is not visible,
SetRedraw fails.

Caution
If you turn redraw off, you must turn it on again. Otherwise, problems may
result. In addition, if redraw is off and you change the Visible or Enabled
property of an object in the window, the tabbing order may be affected.

SetRegistrationCode

934 PocketBuilder

Examples This statement turns off redraw for lb_Location:

lb_Location.SetRedraw(FALSE)

If lb_Location is sorted (lb_Location.Sorted = TRUE), these statements use
SetRedraw to avoid sorting and redrawing the list of lb_Location until all the
new items have been added:

lb_Location.SetRedraw(FALSE)
lb_Location.AddItem("Atlanta")
lb_Location.AddItem("Boston")
lb_Location.AddItem("Washington")
lb_Location.SetRedraw(TRUE)

SetRegistrationCode
Description Enables support for third-party software packages that require a registration

code.

Syntax SetRegistrationCode (idPackage, regvalue)

Return value Integer. Returns 1 for success and -1 for failure. When an application is running
on the desktop or in the development environment, SetRegistrationCode always
returns -1.

Usage Before you call print functions from an application that you deploy to a Pocket
PC device or emulator, you can supply the registration code for third-party
print software in the regvalue argument to the SetRegistrationCode function.

Argument Description

idPackage An integer that references the software package on the Pocket PC
device or emulator. Currently, the only recognized value is 1. This
value references the FieldSoftware PrinterCE SDK.

regvalue A string that sets the registration code supplied by the third-party
software.

Chapter 10 PowerScript Functions

PowerScript Reference 935

If you do not call SetRegistrationCode before you try to print from a deployed
application, PocketBuilder assumes you are using an evaluation copy of the
FieldSoftware PrinterCE SDK and attempts to make application print function
calls using the evaluation software.

Examples These statements in a Clicked event send the registration code for authorized
use of the FieldSoftware PrinterCE SDK from a Pocket PC, then access this
software to print the current page.

integer li_return
long ll_job

li_return = SetRegistrationCode(1,"555A55B555")
ll_job = PrintOpen("myprintjob")
li_return = PrintPage (li_job)
li_return = PrintClose (li_job)

See also Print
Print method for DataWindows in the DataWindow Reference

SetRemote
Asks a DDE server application to accept data and store it in the specified
location. There are two ways of calling SetRemote, depending on the type of
DDE connection you have established.

Syntax 1 For single DDE requests
Description Asks a DDE server application to accept data to be stored in the specified

location without requiring an open channel. This syntax is appropriate when
you will make only one or two requests of the server.

Syntax SetRemote (location, value, applname, topicname)

To Use

Make a single DDE request of a server application (a cold
link)

Syntax 1

Make a DDE request of a server application when you have
established a warm link by opening a channel

Syntax 2

SetResultSet

936 PocketBuilder

Return value Integer. Returns 1 if it succeeds and a negative integer if an error occurs.

Syntax 2 For DDE requests via an open channel
Description Asks a DDE server application to accept data to be stored in the specified

location when you have already established a warm link by opening a channel
to the server. A warm link, with an open channel, is more efficient when you
intend to make several DDE requests.

Syntax SetRemote (location, value, handle {, windowhandle })

Return value Integer. Returns 1 if it succeeds and a negative integer if an error occurs.

SetResultSet
Description Populates a new ADOResultSet object with data passed in a ResultSet object.

Applies to ADOResultSet objects

Syntax adoresultset.SetResultSet (resultsetobject)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

SetRingTone
Description Specifies whether the receipt of an incoming call will play a sound file assigned by the

PhoneCall object’s RingTone property.

Chapter 10 PowerScript Functions

PowerScript Reference 937

Applies to PhoneCall objects

Syntax objectname.SetRingTone (wavefile)

Return value Integer. Returns 1 for success and a negative value if an error occurs.

Usage You can use an empty string for the wavefile argument to set the ring tone to
the default ring (typically \Windows\Rings\DefaultRing.wav) stored on the
device.

Examples The following script for a Set Ring button sets the ring tone for the PhoneCall
object.

String ls_sound
Integer li_return

ls_sound = "\Windows\Rings\MySpecialRing.wav"
if FileExists(ls_sound) = false then

MessageBox("Error", "Sound file does not exist: " &
+ ls_sound)

else
li_return = pcall_1.SetRingTone (ls_sound)

end if

See also AcceptCall
AllowReceivingCalls
DropCall
MakeCall
SetHold
SetMute

SetScreenOrientation
Description Sets the screen orientation of a device or emulator capable of screen rotation.

Argument Description

objectname The name of the PhoneCall object.

wavefile A read-only string that assigns a WAV sound file to the PhoneCall
object’s RingTone property.

SetSeriesStyle

938 PocketBuilder

Syntax Integer SetScreenOrientation (iOrientation)

Return value Returns 0 for success or a negative number for failure.

Usage This function is supported on the Windows Mobile 2003 Second Edition
platform. However, not all devices using this platform support screen rotation.

Examples The following lines rotate the current screen to a right-handed landscape
orientation:

integer iRotate, iRet
iRotate = 1
iRet = SetScreenOrientation(iRotate)

See also GetScreenOrientation

SetSeriesStyle
Specifies the appearance of a series in a graph. There are several syntaxes,
depending on what settings you want to change.

Argument Description

iOrientation A value corresponding to the screen orientation that you want to
set. Values are:

• 0 0 degrees (the native orientation for the device)

• 1 90 degrees (right-handed landscape orientation)

• 2 180 degrees (upside down)

• 4 270 degrees (left-handed landscape orientation)

To Use

Set the series’ colors Syntax 1

Set the line style and width Syntax 2

Set the fill pattern or symbol for the series Syntax 3

Specify that the series is an overlay Syntax 4

Chapter 10 PowerScript Functions

PowerScript Reference 939

Syntax 1 For setting a series’ colors
Description Specifies the colors of a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetSeriesStyle ({ graphcontrol, } seriesname, colortype, color)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetSeriesStyle returns null.

Usage Data points in a series can have their own style settings. Settings made with
SetDataStyle set the style of individual data points and override series settings.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can set the fill pattern in a
two-dimensional line graph or the line style in a bar graph, but that fill pattern
or line style will not be visible.

Argument Description

controlname The name of the graph in which you want to set the color of a
series, or the name of the DataWindow control containing the
graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control for which you want to set the color of a
series.

seriesname A string whose value is the name of the series for which you
want to set the color.

colortype A value of the grColorType enumerated datatype specifying
the item for which you want to set the color. Values are:

• Foreground! — Text color

• Background! — Background color

• LineColor! — Line color

• Shade! — Shade (for graphics that are three-dimensional
or have solid objects)

color A long specifying the new color for colortype.

SetSeriesStyle

940 PocketBuilder

For a graph in a DataWindow, you can specify the appearance of a series in the
graph before PocketBuilder draws the graph. To do so, define a user event for
pbm_dwngraphcreate and call SetSeriesStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Examples This statement sets the text (foreground) color of the series named Salary in the
graph gr_emp_data to black:

gr_emp_data.SetSeriesStyle("Salary", &
Foreground!, 0)

This statement sets the background color of the series named Salary in the
graph gr_depts in the DataWindow control dw_employees to black:

dw_employees.SetSeriesStyle("gr_depts", &
"Salary", Background!, 0)

These statements in the Clicked event of the graph control gr_product_data
coordinate line color between it and the graph gr_sales_data. The script stores
the line color for the series under the mouse pointer in the graph
gr_product_data in the variable line_color. Then it sets the line color for the
series northeast in the graph gr_sales_data to that color:

string SeriesName
integer SeriesNbr, Series_Point
long line_color
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr,Series_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &

gr_product_data.SeriesName(SeriesNbr)

gr_product_data.GetSeriesStyle(SeriesName, &
LineColor!, line_color)

gr_sales_data.SetSeriesStyle("Northeast", &
LineColor!, line_color)

END IF

See also GetDataStyle
GetSeriesStyle
SeriesName
SetDataStyle

Chapter 10 PowerScript Functions

PowerScript Reference 941

Syntax 2 For lines in a graph
Description Specifies the style and width of a series’ lines in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls objects

Syntax controlname.SetSeriesStyle ({ graphcontrol, } seriesname, linestyle,
linewidth)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetSeriesStyle returns null.

Usage Data points in a series can have their own style settings. Settings made with
SetDataStyle set the style of individual data points and override series settings.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can set the fill pattern in a
two-dimensional line graph or the line style in a bar graph, but that fill pattern
or line style will not be visible.

Argument Description

controlname The name of the graph in which you want to set the line style
and width of a series, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the line style
and width.

seriesname A string whose value is the name of the series for which you
want to set the line style and width.

linestyle A value of the LineStyle enumerated datatype. Values are:

Continuous!
Dash!
DashDot!
DashDotDot!
Dot!
Transparent!

linewidth An integer specifying the width of the line in pixels.

SetSeriesStyle

942 PocketBuilder

For a graph in a DataWindow, you can specify the appearance of a series in the
graph before PocketBuilder draws the graph. To do so, define a user event for
pbm_dwngraphcreate and call SetSeriesStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Examples This statement sets the line style and width for the series named Costs in the
graph gr_product_data:

gr_product_data.SetSeriesStyle("Costs", &
Dot!, 5)

See also GetDataStyle
GetSeriesStyle
SeriesName
SetDataStyle

Syntax 3 For the fill pattern and symbols in a graph
Description Specifies the fill pattern and symbol for data markers in a series.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetSeriesStyle ({ graphcontrol, } seriesname, enumvalue)

Argument Description

controlname The name of the graph in which you want to set the
appearance of a series, or the name of the DataWindow
control containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the appearance.

Chapter 10 PowerScript Functions

PowerScript Reference 943

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetSeriesStyle returns null.

Usage Data points in a series can have their own style settings. Settings made with
SetDataStyle set the style of individual data points and override series settings.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can set the fill pattern in a
two-dimensional line graph or the line style in a bar graph, but that fill pattern
or line style will not be visible.

seriesname A string whose value is the name of the series in which you
want to set the appearance.

enumvalue A value of an enumerated datatype specifying an appearance
setting for the series.

To change the fill pattern, use a FillPattern enumerated
datatype. FillPatter values are:

Bdiagonal! (Lines from lower left to upper right)
Diamond!
Fdiagonal! (Lines from upper left to lower right)
Horizontal!
Solid!
Square!
Vertical!

To change the symbol type, use a grSymbolType enumerated
datatype. Values for grSymbolType are:

NoSymbol!
SymbolHollowBox!
SymbolX!
SymbolStar!
SymbolHollowUpArrow!
SymbolHollowCircle!
SymbolHollowDiamond!
SymbolSolidDownArrow!
SymbolSolidUpArrow!
SymbolSolidCircle!
SymbolSolidDiamond!
SymbolPlus!
SymbolHollowDownArrow!
SymbolSolidBox!

Argument Description

SetSeriesStyle

944 PocketBuilder

For a graph in a DataWindow, you can specify the appearance of a series in the
graph before PocketBuilder draws the graph. To do so, define a user event for
pbm_dwngraphcreate and call SetSeriesStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Examples This statement sets the symbol used for the series named Costs in the graph
gr_product_data to a plus sign:

gr_product_data.SetSeriesStyle("Costs", &
SymbolPlus!)

This statement sets the symbol used for the series named Costs in the graph
gr_computers in the DataWindow control dw_equipment to X:

dw_equipment.SetSeriesStyle("gr_computers", &
"Costs", SymbolX!)

See also GetDataStyle
GetSeriesStyle
SeriesName
SetDataStyle

Syntax 4 For creating an overlay in a graph
Description Specifies whether a series is an overlay, meaning that the series is represented

by a line on top of another graph type.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetSeriesStyle ({ graphcontrol, } seriesname, overlaystyle)

Argument Description

controlname The name of the graph in which you want to set the overlay
status of a series, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the overlay
status.

Chapter 10 PowerScript Functions

PowerScript Reference 945

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetSeriesStyle returns null.

Usage For a graph in a DataWindow, you can specify the appearance of a series in the
graph before PocketBuilder draws the graph. To do so, define a user event for
pbm_dwngraphcreate and call SetSeriesStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Examples This statement sets the style of the series named Costs in the graph
gr_product_data to overlay:

gr_product_data.SetSeriesStyle("Costs", TRUE)

These statements in the Clicked event of the DataWindow control
dw_employees store the style of the series under the pointer in the graph
gr_depts in the variable style_type. If the style of the series is overlay (true), the
script changes the style to normal (false):

string SeriesName
integer SeriesNbr, Data_Point
boolean overlay_style
grObjectType MouseHit

MouseHit = dw_employees.ObjectAtPointer(&
"gr_depts", SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &

dw_employees.SeriesName("gr_depts",SeriesNbr)

dw_employees.GetSeriesStyle("gr_depts", &
SeriesName, overlay_style)

IF overlay_style THEN &
dw_employees.SetSeriesStyle("gr_depts", &

SeriesName, FALSE)
END IF

seriesname A string whose value is the name of the series whose overlay
status you want to change.

overlaystyle A boolean value indicating whether you want the series to be
an overlay, meaning that the series is shown in front as a line.
Set overlaystyle to true to make the specified series an
overlay. Set it to false to remove the overlay setting.

Argument Description

SetSIPPreferredState

946 PocketBuilder

See also GetDataStyle
GetSeriesStyle
SeriesName
SetDataStyle

SetSIPPreferredState
Description Displays or hides the soft input panel (SIP) used on the Pocket PC.

Syntax SetSIPPreferredState (hwnd, SIPState)

Return value Integer. Returns 0 for success and a negative value for failure. When running
on the desktop or in the development environment, SetSIPPreferredState
always returns 0.

Usage Use SetSIPPreferredState to display the input panel when the application
requires user input and hide it otherwise.

If you specify SipUp!, any pending SipDown requests are ignored. When you
specify SipDown!, a timer is set and the input panel is hidden when the timer
expires. This prevents the input panel from flashing if another control requests
SipUp!.

If you want the input panel hidden immediately and you are sure there will be
no SipUp! requests, specify SipForceDown!.

Argument Description

hwnd A long that is the handle of the window or control that receives the
SIP input.

SIPState A value of the SIPState enumerated datatype that specifies the
display state of the SIP. Values are:

• SIPUp! – display the input panel

• SIPDown! – hide the input panel after a timer expires

• SIPForceDown! – hide the input panel immediately

• SIPUnchanged! – ignore any pending requests to hide the input
panel

Chapter 10 PowerScript Functions

PowerScript Reference 947

If you specify SipDown! and then specify SipUnchanged! before the timer
expires, the input panel remains in its current state.

Examples These statements in the GetFocus event of a SingleLineEdit control display the
input panel when the control gets focus:

integer li_return
li_return = SetSIPPreferredState(Handle(This),SIPUp!)

See also IsSIPVisible
SetSIPType

SetSIPType
Description Specifies the type of soft input panel (SIP) used on the Pocket PC.

Syntax SetSIPType (SIPIMType)

Return value Integer. Returns 0 for success and a negative value for failure. When running
on the desktop or in the development environment, SetSIPType always
returns 0.

Usage Use SetSIPType to set the input method (IM) used in the soft input panel on the
Pocket PC. SetSIPType changes the global default SIP on the device and should
therefore be used with caution. The IM requested must be installed on the
Pocket PC. SetSIPType does not display or hide the input panel.

Argument Description

SIPIMType A value of the SIPIMType enumerated datatype that specifies the
type of input panel you want to display. Values are:

• SIPKeyboard! – standard keyboard

• SIPJot! – letter recognizer

• SIPBlock! – block recognizer

• SIPWordLogic! – WordLogic keyboard

• SIPTranscriber! – Microsoft Transcriber

• SIPFitaly! – Fitaly keyboard for the Pocket PC

SetSpacing

948 PocketBuilder

Examples These statements set the Microsoft Transcriber as the default SIP type on the
Pocket PC:

integer li_return
li_return = SetSIPType(SIPTranscriber!)

See also GetSIPType
SetSIPPreferredState

SetSpacing
Description Sets the line spacing for the selected paragraphs or the paragraph containing

the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SetSpacing (spacing)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

SetState
Description Sets the highlighted state of an item in a list box. SetState is only applicable to

a list box control whose MultiSelect property is set to true.

Applies to ListBox and PictureListBox controls

Syntax listboxname.SetState (index, state)

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want to
set the state (highlighted or not highlighted) for an item. The
MultiSelect property for the control must be set to true.

Chapter 10 PowerScript Functions

PowerScript Reference 949

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetState returns null.

Usage When the MultiSelect property for the control is false, use SelectItem, instead
of SetState, to select one item at a time.

Examples This statement turns on the highlight for item 6 in lb_Actions:

lb_Actions.SetState(6, TRUE)

This statement deselects all items in lb_Actions:

lb_Actions.SetState(0, FALSE)

This statement turns off the highlight for item 6 in lb_Actions if it is selected
and turns it on again if it is not selected:

IF lb_Actions.State(6) = 1 THEN
lb_Actions.SetState(6, FALSE)

ELSE
lb_Actions.SetState(6, TRUE)

END IF

See also SelectItem
SetTop
State

SetTextColor
Description Sets the color of selected text in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SetTextColor (colornumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

index The number of the item for which you want to set the state. Specify
0 to set the state of all the items in the ListBox.

state A boolean value that determines the state of the item:

• true — Selected

• false — Not selected

Argument Description

SetTextStyle

950 PocketBuilder

SetTextStyle
Description Specifies the text formatting for selected text in a RichTextEdit control. You

can make the text bold, underlined, italic, and struck out. You can also make it
either a subscript or superscript.

Applies to RichTextEdit controls

Syntax rtename.SetTextStyle (bold, underline, subscript, superscript, italic,
strikeout)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

SetToolbar
Description Specifies the alignment, visibility, and title for the specified toolbar.

Applies to MDI frame and sheet windows

Syntax window.SetToolbar (toolbarindex, visible {, alignment {, floatingtitle } })

Return value Integer. Returns 1 if it succeeds. SetToolbar returns -1 if there is no toolbar for
the index you specify or if an error occurs. If any argument’s value is null,
returns null.

SetToolbarPos
Sets the position of the specified toolbar.

To set Use

Docking position of a docked toolbar Syntax 1

Coordinates and size of a floating toolbar Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 951

Syntax 1 For docked toolbars
Description Sets the position of a docked toolbar.

Applies to MDI frame and sheet windows

Syntax window.SetToolbarPos (toolbarindex, dockrow, offset, insert)

Return value Integer. Returns 1 if it succeeds. SetToolbarPos returns -1 if there is no toolbar
for the index you specify or if an error occurs. If any argument’s value is null,
returns null.

Syntax 2 For floating toolbars
Description Sets the position and size of a floating toolbar.

Applies to MDI frame and sheet windows

Syntax window.SetToolbarPos (toolbarindex, x, y, width, height)

Return value Integer. Returns 1 if it succeeds. SetToolbarPos returns -1 if there is no toolbar
for the index you specify or if an error occurs. If any argument’s value is null,
SetToolbarPos returns null.

SetTop
Description Scrolls a list box control so that the specified item is the first visible item.

Applies to ListBox and PictureListBox controls

SetTraceFileName

952 PocketBuilder

Syntax listboxname.SetTop (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetTop returns null.

Examples This statement scrolls item 6 in lb_Actions to the top of the ListBox so that it is
the first visible item:

lb_Actions.SetTop(6)

The following statement scrolls the currently selected item in lb_Actions to the
top of the list of items:

lb_Actions.SetTop(lb_Actions.SelectedIndex())

See also SetFocus
SetState

SetTraceFileName
Description Specifies the name of the trace file PocketBuilder will analyze when the

BuildModel function is called.

Applies to Profiling and TraceTree objects

Syntax instancename.SetTraceFileName (tracefilename)

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

Argument Description

listboxname The name of the ListBox or PictureListBox that you want to scroll

index The number of the item you want to become the first visible item

Argument Description

instancename Instance name of the Profiling or TraceTree object

tracefilename A string that identifies the name of the trace file PocketBuilder
will analyze

Chapter 10 PowerScript Functions

PowerScript Reference 953

• FileOpenError!—The file could not be opened

• FileInvalidFormatError!—The trace file is not in the correct format

• ModelExistsError!—A model has already been built

If an error occurs, the name is not set.

Usage Use this function to specify the trace file PocketBuilder should analyze with
the BuildModel function. You call the SetTraceFileName function before calling
the BuildModel function.

Examples This example provides the name of the trace file for which a performance
analysis model is to be built:

Profiling lpro_model
String ls_line

lpro_model = CREATE Profiling

lpro_model.SetTraceFileName (filename)
ls_line = "CollectionTime = " + &

String(lpro_model.CollectionTime) + "~r~n" &
+ "Num Activities = " &
+ String(lpro_model.NumberOfActivities) +

"~r~n"

lpro_model.BuildModel()
...

See also BuildModel

SetTransPool
Description Sets up a pool of database transactions for an application. SetTransPool allows

you to minimize the overhead associated with database connections and also
limit the total number of database connections permitted.

Applies to Application object

Syntax applicationname.SetTransPool (minimum, maximum, timeout)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

SharedObjectDirectory

954 PocketBuilder

SharedObjectDirectory
Description Retrieves the list of objects that have been registered for sharing.

Syntax SharedObjectDirectory (instancenames {, classnames })

Return value ErrorReturn. Returns one of the following values:

• Success! — The function succeeded

• FeatureNotSupportedError! — This function is not supported on this
platform

SharedObjectGet
Description Gets a reference to a shared object instance.

Syntax SharedObjectGet (instancename , objectinstance)

Return value ErrorReturn. Returns one of the following values:

• Success! — The function succeeded

• SharedObjectCreateInstanceError! — The local reference to the shared
object could not be created

• SharedObjectNotExistsError! — The instance name has not been
registered

SharedObjectRegister
Description Registers a user object so that it can be shared.

Chapter 10 PowerScript Functions

PowerScript Reference 955

Syntax SharedObjectRegister (classname , instancename)

Return value ErrorReturn. Returns one of the following values:

• Success! — The function succeeded

• SharedObjectExistsError! — The instance name has already been used

• SharedObjectCreateInstanceError! — The object could not be created

• SharedObjectCreatePBSessionError! — The shared object session could
not be created

SharedObjectUnregister
Description Unregisters a user object that was previously registered.

Syntax SharedObjectUnregister (instancename)

Return value ErrorReturn. Returns one of the following values:

• Success! — The function succeeded

• SharedObjectNotExistsError! — The instance name has not been
registered

Show
Description Makes an object or control visible, if it is hidden. If the object is already visible,

Show brings it to the top.

Applies to Any object

ShowHeadFoot

956 PocketBuilder

Syntax objectname.Show ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If objectname is null,
Show returns null.

Usage If the specified object is a window that is not open, an execution error occurs.

You cannot use Show to show a drop-down or cascading menu, or any menu
that has an MDI frame window as its parent window.

Equivalent syntax You can set the object’s Visible property instead of
calling Show:

objectname.Visible = true

This statement:

m_status.m_options.Visible = TRUE

is equivalent to:

m_status.m_options.Show()

Examples This statement makes visible the menu selection called m_options on the menu
m_status:

m_status.m_options.Show()

This statement makes the child window w_child visible:

w_child.Show()

See also Hide

ShowHeadFoot
Description Displays the panels for editing the header and footer in a RichTextEdit control

or hides the panels and returns to editing the main text.

Applies to RichTextEdit controls and DataWindow controls with the RichTextEdit
presentation style

Argument Description

objectname The name of the object or control you want to make visible (show)

Chapter 10 PowerScript Functions

PowerScript Reference 957

Syntax rtename.ShowHeadFoot (editheadfoot)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

ShowHelp
Description Provides access to a Microsoft Windows-based Help system or to compiled

HTML Help files that you have created for your PowerBuilder application.
When you call ShowHelp, PowerBuilder starts the Help executable and
displays the Help file you specify.

Syntax ShowHelp (helpfile, helpcommand {, typeid })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. ShowHelp returns -1
if you specify typeid when helpcommand is Finder! or Index!. If any
argument’s value is null, ShowHelp returns null.

ShowPopupHelp
Description Displays pop-up help for the specified control.

Applies to Any control

Syntax ShowPopupHelp (helpfile, control, contextid)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Sign

958 PocketBuilder

Sign
Description Reports whether a number is negative, zero, or positive.

Syntax Sign (n)

Return value Integer. Returns a number (-1, 0, or 1) indicating the sign of n. If n is null, Sign
returns null.

Examples This statement returns 1 (the number is positive):

Sign(5)

This statement returns 0 (zero has no sign):

Sign(0)

This statement returns -1 (the number is negative):

Sign(-5)

See also Sign method for DataWindows in the DataWindow Reference

SignalError
Description Causes a SystemError event at the application level.

Argument Description

n The number for which you want to find out the sign

Chapter 10 PowerScript Functions

PowerScript Reference 959

Syntax SignalError ({ number }, { text })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. The return value is
usually not used.

Usage During development you can use SignalError to test error-processing
scripts.You can call PopulateError to populate the Error object and call
SignalError without arguments. You can examine how the SystemError event
script handles the forced error. If you pass the optional number and text
arguments to SignalError, it populates all the fields in the Error object and then
triggers a SystemError event.

In an application, SignalError can also be useful. For example, if a user error is
so severe that you do not want the application to continue, you can set values
in the Error object, including your own error number, and call SignalError. You
need to include code in the SystemError event script to recognize and handle
the error you have created.If there is no script for the SystemError event, the
SignalError function does nothing.

For the execution-time error numbers assigned to the Number property of the
Error object when an application error occurs, see the User’s Guide.

Examples These statements set values in the Error object and then trigger a SystemError
event so the error processing for these values can be tested:

int error_number
string error_text
Error.Number = 1010
Error.Text = "Salary must be a positive number."
Error.Windowmenu = "w_emp"

error_number = Error.Number
error_text = Error.Text

SignalError(error_number, error_text)

See also PopulateError

Argument Description

number
(optional)

The integer (stored in the number property of the Error
object) to be used in the message object

text
(optional)

The string (stored in the text property of the Error object) to
be used in the message object

Sin

960 PocketBuilder

Sin
Description Calculates the sine of an angle.

Syntax Sin (n)

Return value Double. Returns the sine of n. If n is null, Sin returns null.

Examples This statement returns .8414709848078965:

Sin(1)

This statement returns 0:

Sin(0)

This statement returns 0:

Sin(Pi(1))

See also ASin
Cos
Pi
Tan
Sin method for DataWindows in the DataWindow Reference

SkipRecurrence
Description Moves to the next occurrence in a recurring task.

Applies to POOMTask objects

Argument Description

n The angle (in radians) for which you want the sine

Chapter 10 PowerScript Functions

PowerScript Reference 961

Syntax Integer objectname.SkipRecurrence ()

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

See also ClearRecurrencePattern
GetRecurrence
SetRecurrence

Sleep
Description Causes the application to pause for a specified time.

Syntax Sleep (seconds)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Examples This example pauses the application for 5 seconds:

Sleep (5)

Argument Description

objectname The name of the POOMTask object

Argument Description

seconds Long for the number of seconds you want the application to pause

SoftTrigger

962 PocketBuilder

SoftTrigger
Sets or retrieves the state of the soft trigger feature of a scanner. The soft trigger
is a common feature that enables a scanner laser through software, rather than
through a trigger button.

Syntax 1 For retrieving the soft trigger state
Description Retrieves the soft trigger state of a scanner.

Applies to BarcodeScanner

Syntax Boolean scannerobject.SoftTrigger ()

Return value Boolean. Value are:

• True The soft trigger feature is on.

• False The soft trigger feature is off.

Examples The following example returns the state of the soft trigger feature of the
scanner asscociated with the BarcodeScanner object l_scanner:

lb_softstate = l_scanner.SoftTrigger()

To Use

Retrieve the state of the soft trigger feature Syntax 1

Set the state of the soft trigger feature Syntax 2

Argument Description

scannerobject The name of the bar code scanner object

Chapter 10 PowerScript Functions

PowerScript Reference 963

Syntax 2 For setting the soft trigger state
Description Sets the soft trigger state of a scanner.

Applies to BarcodeScanner

Syntax Integer scannerobject.SoftTrigger (newState)

Return value Integer. Returns 1 for success or one of the following negative values if an error
occurs:

• -1 Unspecified error

• -2 Supporting DLL not loaded error

• -3 Initialization error other than DLL not loaded

• -4 Error in the passed in arguments

• -5 Something in the object instance is inconsistent

• -6 Call to the driver failed

• -7 Error opening the specific scan device

• -8 Error in the internal buffer allocation

• -9 Incorrect scan state for the requested action (typically benign)

• -10 Low level device error

• -11 Read is already pending (typically benign)

• -12 Read is cancelled (typically benign)

• -13 Timeout period expired on the read (typically benign)

• -14 Error creating the asynchronous read from the message sink

• -100 Feature not implemented

Examples The following example turns off the soft trigger feature of the scanner
asscociated with the BarcodeScanner object l_scanner:

li_rtn = l_scanner.SoftTrigger(false)

Argument Description

scannerobject The name of the bar code scanner object

newState Boolean value that is used to set the soft trigger state

Sort

964 PocketBuilder

Sort
Sorts rows in a DataWindow control, DataStore, or child DataWindow, or
items in a TreeView or ListView control.

For syntax for DataWindows and DataStores, see the Sort method for
DataWindows in the DataWindow Reference or the online Help.

Syntax 1 For TreeView controls
Description Sorts the children of an item in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.Sort (itemhandle , sorttype)

Return value Integer. Returns 1 if it succeeds and -1 if it fails.

Usage The Sort function only sorts the immediate level beneath the specified item. If
you want to sort multiple levels, use SortAll. If you specify UserDefinedSort!
as your sorttype, define your sort criteria in the Sort event of the TreeView
control. The Sort function cannot sort level 1 of a TreeView. However, level 1
is sorted automatically when the TreeView’s SortType property calls for
sorting.

Examples This example sorts the children of the current TreeView item:

long ll_tvi

To sort Use

Items in a TreeView Syntax 1

Items in a ListView Syntax 2

Argument Description

treeviewname The name of the TreeView control in which you want to sort items.

itemhandle The item for which you want to sort its children.

sorttype The sort method you want to use. Valid values are:

Ascending!
Descending!
UserDefinedSort!

Chapter 10 PowerScript Functions

PowerScript Reference 965

ll_tvi = tv_foo.FindItem(CurrentTreeItem! , 0)
tv_foo.SetRedraw(false)
tv_foo.Sort(ll_tvi , Ascending!)
tv_foo.SetRedraw(true)

See also SortAll

Syntax 2 For ListView controls
Description Sorts items in ListView controls.

Applies to ListView controls

Syntax listviewname.Sort (sorttype, { column })

Return value Integer. Returns 1 if it succeeds and -1 if it fails.

Usage The default sort is alphanumeric.

If you do not specify a column to sort, the first column is sorted.

Examples This example sorts the items in column three of a ListView:

lv_list.SetRedraw(false)
lv_list.Sort(Ascending! , 3)
lv_list.SetRedraw(true)

See also SortAll

Argument Description

listviewname The ListView in which you want to sort items.

sorttype The method you want to use when you sort the ListView items.
Values are:

Ascending!
Descending!
Unsorted!
UserDefinedSort!

column
(optional)

The number of the column by which you wish to sort the ListView
items.

SortAll

966 PocketBuilder

SortAll
Description Sorts all the levels below an item in the TreeView item hierarchy.

Applies to TreeView controls

Syntax treeviewname.SortAll (itemhandle, sorttype)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage If you specify UserDefinedSort! as your sorttype, define your sort criteria in
the Sort event of the TreeView control.

The SortAll function cannot sort level 1 of a TreeView. However, level 1 is
sorted automatically when the TreeView’s SortType property calls for sorting.

Examples This example sorts the subsequent levels recursively under the current
TreeView item:

long ll_tvi

//Find the current treeitem
ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)

//Sort all children
tv_list.SortAll(ll_tvi , Ascending!)

This example recursively sorts the entire TreeView control:

long ll_tvi

//Find the root treeitem
ll_tvi = tv_list.FindItem(RootTreeItem! , 0)

Argument Description

treeviewname The TreeView control in which you want to sort the
subsequent levels in an item’s hierarchy.

itemhandle The item for which you want to sort all the levels below it.

sorttype The sort method you want to use. Values are:

Ascending!
Descending!
Unsorted!
UserDefinedSort!

Chapter 10 PowerScript Functions

PowerScript Reference 967

//Sort all children
tv_list.SortAll(ll_tvi , Ascending!)

See also Sort

Space
Description Builds a string of the specified length whose value consists of spaces.

Syntax Space (n)

Return value String. Returns a string filled with n spaces if it succeeds and the empty string
("") if an error occurs. If n is null, Space returns null.

Examples This statement puts a string whose value is four spaces in Name:

string Name
Name = Space(4)

This statement assigns 40 spaces to the string Name:

string Name
Name = Space(40)

See also Fill
Space method for DataWindows in the DataWindow Reference

Argument Description

n A long whose value is the length of the string you want filled with
spaces. The maximum value is 2,147,483,647, which is the
maximum size for strings.

Sqrt

968 PocketBuilder

Sqrt
Description Calculates the square root of a number.

Syntax Sqrt (n)

Return value Double. Returns the square root of n. If n is null, Sqrt returns null.

Usage Sqrt(n) is the same as n^.5.

Taking the square root of a negative number causes an execution error.

Examples This statement returns 1.414213562373095:

Sqrt(2)

This statement results in an error at execution time:

Sqrt(-2)

See also Sqrt method for DataWindows in the DataWindow Reference

Start
Start has two basic syntaxes.

Argument Description

n The number for which you want the square root

To Use

Execute a pipeline object Syntax 1

Activate a timing object Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 969

Syntax 1 For executing pipeline objects
Description Executes a pipeline object, which transfers data from the source to the

destination as specified by the SQL query in the pipeline object. This pipeline
object is a property of a user object inherited from the pipeline system object.

Applies to Pipeline objects

Syntax pipelineobject.Start (sourcetrans, destinationtrans, errorobject
 {, arg1, arg2,..., argn })

Return value Integer. Returns 1 if it succeeds and a negative number if an error occurs.

Syntax 2 For activating timing objects
Description Activates a timing object causing a Timer event to occur repeatedly at the

specified interval.

Applies to Timing objects

Syntax timingobject.Start (interval)

Return value Integer. Returns 1 if it succeeds and -1 if the timer is already running, the
interval specified is invalid, or there are no system timers available.

StartHotLink
Description Establishes a hot link with a DDE server application so that PowerBuilder is

notified immediately of any changes in the specified data. When the data
changes in the server application, it triggers a HotLinkAlarm event in the
current application.

StartServerDDE

970 PocketBuilder

Syntax StartHotLink (location, applname, topic)

Return value Integer. Returns 1 if it succeeds. If an error occurs, StartHotLink returns a
negative integer.

StartServerDDE
Description Establishes your application as a DDE server. You specify the DDE name,

topic, and items that you support.

Syntax StartServerDDE ({ windowname, } applname, topic {, item })

Return value Integer. Returns 1 if it succeeds. If an error occurs, StartServerDDE returns -1,
meaning the your application is already started as a server. If any argument’s
value is null, StartServerDDE returns null.

State
Description Determines whether an item in a ListBox control is highlighted.

Applies to ListBox and PictureListBox controls

Syntax listboxname.State (index)

Return value Integer. Returns 1 if the item in listboxname identified by index is highlighted
and 0 if it is not. If the index does not point to a valid item number, State returns
-1. If any argument’s value is null, State returns null.

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want to
obtain the state (highlighted or not highlighted) of the item
identified by index

index The number of the item for which you want to obtain the state

Chapter 10 PowerScript Functions

PowerScript Reference 971

Usage The State and SetState functions are meant for a ListBox that allows multiple
selections (its MultiSelect property is true). To find all of a list’s selected items,
loop through the list, checking the state of each item.

The SelectedItem and SelectItem functions are meant for single-selection
ListBox controls. SelectedItem reports the selection directly with no need for
looping. In a multiple-selection ListBox control, SelectedItem reports the first
selected item only.

When you know the index of an item, you can use the Text function to get the
item’s text.

Examples If item 3 in lb_Contact is selected (highlighted), then this example sets li_Item
to 1:

integer li_Item
li_Item = lb_Contact.State(3)

The following statements obtain the text of all the selected items in a ListBox
that allows the user to select more than one item. The MessageBox function
displays each item as it is found. You could include other processing that
created an array or list of the selected values:

integer li_ItemTotal, li_ItemCount

// Get the number of items in the ListBox.
li_ItemTotal = lb_contact.TotalItems()

// Loop through all the items.
FOR li_ItemCount = 1 to li_ItemTotal
 // Is the item selected? If so, display the text
 IF lb_Contact.State(li_ItemCount) = 1 THEN &
 MessageBox("Selected Item", &
 lb_Contact.text(li_ItemCount))
NEXT

This statement executes some statements if item 3 in the ListBox lb_Contact is
highlighted:

IF lb_Contact.State(3) = 1 THEN ...

See also SelectedItem
SetState

Status

972 PocketBuilder

Status
Description Returns the current status of the scanner.

Applies to BarcodeScanner

Syntax Integer scannerobject.ScannerStatus ()

Return value Integer. Returns one of the following values:

• 11 Scanner not enabled

• 12 Scanner is enabled, but no reads are pending

• 13 One or more reads are pending, waiting for trigger event

• 14 Beam is on and acquiring data

• 15 Beam is on for aiming

• 16 Beam is off and waiting for firmware buffers to recover

Usage Typically you might call the Status function during exception processing to
determine why the scanner error occured or a RetrieveData call failed.

Examples The following example returns the status of the scanner asscociated with the
BarcodeScanner object l_scanner:

li_rtn = l_scanner.Status()

See also RetrieveData

Argument Description

scannerobject The name of the bar code scanner object

Chapter 10 PowerScript Functions

PowerScript Reference 973

StepIt
Description Increments the current position in a progress bar control by the value specified

in the SetStep property of the control.

Applies to Progress bar controls

Syntax control.StepIt ()

Return value Integer. Returns 1 if it succeeds and -1 if there is an error.

Usage StepIt causes the position in a progress bar to wrap if the value of the SetStep
takes the current position out of range. For example, if the SetStep value is 40,
the current position 80, and the range is set from 0 to 100, the position on the
redrawn progress bar after you call StepIt is 20.

The SetStep property can have a negative value. The default value for SetStep
is 10.

Examples This statement adds the SetStep increment to a progress bar control:

HProgressBar.StepIt ()

See also SetRange

Stop
Description Deactivates a timing object.

Applies to Timing objects

Syntax timingobject.Stop ()

Return value Integer. Returns 1 if it succeeds and -1 if the timer is not running or could not
be stopped.

Argument Description

control The name of the progress bar

StopHotLink

974 PocketBuilder

StopHotLink
Description Terminates a hot link with a DDE server application.

Caution
All arguments must match the arguments in an earlier StartHotLink call.

Syntax StopHotLink (location, applname, topic)

Return value Integer. Returns 1 if it succeeds. If an error occurs, StopHotLink returns a
negative integer.

StopServerDDE
Description Causes your application to stop acting as a DDE server application. Any

subsequent requests from a DDE client application fail.

Syntax StopServerDDE ({ windowname, } applname, topic)

Return value Integer. Returns 1 if it succeeds. If an error occurs, StopServerDDE returns -1,
meaning the DDE server was not started. If any argument’s value is null,
StopServerDDE returns null.

String
String has two syntaxes.

To Use

Format data as a string according to a specified display
format mask

Syntax 1

Convert a blob to a string Syntax 2

Chapter 10 PowerScript Functions

PowerScript Reference 975

Syntax 1 For formatting data
Description Formats data, such as time or date values, according to a format mask. You can

convert and format date, DateTime, numeric, and time data. You can also apply
a display format to a string.

Syntax String (data, { format })

Return value String. Returns data in the specified format if it succeeds and the empty string
("") if the datatype of data does not match the type of display mask specified,
format is not a valid mask, or data is an incompatible datatype.

Usage For date, DateTime, numeric, and time data, PocketBuilder uses the system’s
default format for the returned string if you do not specify a format. For
numeric data, the default format is the [General] format.

For string data, a display format mask is required. (Otherwise, the function
would have nothing to do.)

The format can consist of one or more masks:

• Formats for date, DateTime, string, and time data can include one or two
masks. The first mask is the format for the data; the second mask is the
format for a null value.

• Formats for numeric data can have up to four masks. A format with a
single mask handles both positive and negative data. If there are additional
masks, the first mask is for positive values, and the additional masks are
for negative, zero, and null values.

Argument Description

data The data you want returned as a string with the specified formatting.
Data can have a date, DateTime, numeric, time, or string datatype.
Data can also be an Any variable containing one of these datatypes.

format
(optional)

A string whose value is the display masks you want to use to format
the data. The masks consists of formatting information specific to
the datatype of data. If data is type string, format is required.

The format can consist of more than one mask, depending on the
datatype of data. Each mask is separated by a semicolon. (For
details on each datatype, see Usage).

String

976 PocketBuilder

To display additional characters as part of the mask for a decimal value, you
must precede each character with a backslash. For example, to display a
decimal number with two digits of precision preceded by four asterisks, you
must type a backslash before each asterisk:

dec{2} amount
string = ls_result
amount = 123456.32
ls_result = string(amount,"****0.00")

The resulting string is ****123456.32.

For more information on specifying display formats, see the User’s Guide.
Note that, although a format can include color specifications, the colors are
ignored when you use String in PowerScript. Colors appear only for display
formats specified in the DataWindow painter.

If the display format does not match the datatype, PocketBuilder tries to apply
the mask, which can produce unpredictable results.

Times and dates from a DataWindow control
When you call GetItemTime or GetItemString as an argument for the String
function and do not specify a display format, the value is formatted as a
DateTime value. This statement returns a string like "2/26/03 00:00:00":

String(dw_1.GetItemTime(1, "start_date"))

International deployment When you use String to format a date and the
month is displayed as text (for example, the display format includes "mmm"),
the month is in the language of the runtime DLLs available when the
application is run. If you have installed localized runtime files in the
development environment or on a user’s machine, then on that machine, the
month in the resulting string is in the language of the localized files.

For information about the localized runtime files, which are available in
French, German, Italian, Spanish, Dutch, Danish, Norwegian, and Swedish,
see the chapter on internationalization in Application Techniques.

Message object You can also use String to extract a string from the Message
object after calling TriggerEvent or PostEvent. For more information, see the
TriggerEvent or PostEvent functions.

Examples This statement applies a display format to a date value and returns Jan 31,
2002:

String(2002-01-31, "mmm dd, yyyy")

Chapter 10 PowerScript Functions

PowerScript Reference 977

This example applies a format to the value in order_date and sets date1 to
6-11-02:

Date order_date = 2002-06-11
string date1
date1 = String(order_date,"m-d-yy")

This example includes a format for a null date value so that when order_date is
null, date1 is set to none:

Date order_date = 2002-06-11
string date1
SetNull(order_date)
date1 = String(order_date, "m-d-yy;'none'")

This statement applies a format to a DateTime value and returns Jan 31,
2001 6 hrs and 8 min:

String(DateTime(2001-01-31, 06:08:00), &
 'mmm dd, yyyy h "hrs and" m "min"')

This example builds a DateTime value from the system date and time using the
Today and Now functions. The String function applies formatting and sets the
text of sle_date to that value, for example, 6-11-02 8:06 pm:

DateTime sys_datetime
string datetime1
sys_datetime = DateTime(Today(), Now())
sle_date.text = String(sys_datetime, &
 "m-d-yy h:mm am/pm;'none'")

This statement applies a format to a numeric value and returns $5.00:

String(5,"$#,##0.00")

These statements set string1 to 0123:

integer nbr = 123
string string1
string1 = String(nbr,"0000;(000);****;empty")

These statements set string1 to (123):

integer nbr = -123
string string1
string1 = String(nbr,"000;(000);****;empty")

These statements set string1 to ****:

integer nbr = 0
string string1
string1 = String(nbr,"0000;(000);****;empty")

String

978 PocketBuilder

These statements set string1 to "empty":

integer nbr
string string1
SetNull(nbr)
string1 = String(nbr,"0000;(000);****;empty")

This statement formats string data and returns A-B-C. The display format
assigns a character in the source string to each @ and inserts other characters in
the format at the appropriate positions:

String("ABC", "@-@-@")

This statement returns A*B:

String("ABC", "@*@")

This statement returns ABC:

String("ABC", "@@@")

This statement returns a space:

String("ABC", " ")

This statement applies a display format to time data and returns 6 hrs and 8
min:

String(06:08:02,'h "hrs and" m "min"')

This statement returns 08:06:04 pm:

String(20:06:04,"hh:mm:ss am/pm")

This statement returns 8:06:04 am:

String(08:06:04,"h:mm:ss am/pm")

See also String method for DataWindows in the DataWindow Reference

Syntax 2 For blobs
Description Converts data in a blob to a string value. If the blob’s value is not text data,

String attempts to interpret the data as characters.

Chapter 10 PowerScript Functions

PowerScript Reference 979

Syntax String (blob)

Return value String. Returns the value of blob as a string if it succeeds and the empty string
("") if it fails. It the blob does not contain string data, String interprets the data
as characters, if possible, and returns a string. If blob is null, String returns null.

Usage You can also use String to extract a string from the Message object after calling
TriggerEvent or PostEvent. For more information, see the TriggerEvent or
PostEvent functions.

Examples This example converts the blob instance variable ib_sblob, which contains
string data, to a string and stores the result in sstr:

string sstr
sstr = String(ib_sblob)

This example stores today’s date and test status information in the blob bb.
Pos1 and pos2 store the beginning and end of the status text in the blob. Finally,
BlobMid extracts a "sub-blob" that String converts to a string. Sle_status
displays the returned status text:

blob{100} bb
long pos1, pos2
string test_status
date test_date

test_date = Today()
IF DayName(test_date) = "Wednesday" THEN &
 test_status = "Coolant Test"
IF DayName(test_date) = "Thursday" THEN &
 test_status = "Emissions Test"

// Store data in the blob
pos1 = BlobEdit(bb, 1, test_date)
pos2 = BlobEdit(bb, pos1, test_status)

... // Some processing

// Extract the status stored in bb and display it
sle_status.text = String(&
 BlobMid(bb, pos1, pos2 - pos1))

See also String method for DataWindows in the DataWindow Reference

Argument Description

blob The blob whose value you want returned as a string. Blob can also
be an Any variable containing a blob.

String_To_Object

980 PocketBuilder

String_To_Object
Description Gets an object reference based on a passed string.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to JaguarORB objects

Syntax jaguarorb.String_To_Object (objstring , object)

Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

SuspendTransaction
Description Suspends the EAServer transaction associated with the calling thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.SuspendTransaction ()

Return value Unsigned long. Returns a handle that refers to the transaction associated with
the thread or 0 if an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 981

SyntaxFromSQL
Description Generates DataWindow source code based on a SQL SELECT statement.

Applies to Transaction objects

Syntax transaction.SyntaxFromSQL (sqlselect, presentation, err)

Return value String. Returns the empty string ("") if an error occurs. If SyntaxFromSQL fails,
err may contain error messages if warnings or soft errors occur (for example,
a syntax error). If any argument’s value is null, SyntaxFromSQL returns null.

Usage To create a DataWindow object, you can pass the source code returned by
SyntaxFromSQL directly to the Create function.

Table owner in the SQL statement If the value of the LogID property of the
Transaction object is not the owner of the table being accessed in the SQL
statement for the SyntaxFromSQL function, then the table name in the SQL
SELECT statement must be qualified with the owner name.

Argument Description

transaction The name of a connected transaction object.

sqlselect A string whose value is a valid SQL SELECT statement.

presentation A string whose value is the default presentation style you want
for the DataWindow. The simple format is:

Style(Type=presentationstyle)
Values for presentationstyle correspond to the styles in the
New DataWindow dialog box in the DataWindow painter.
Keywords are:

(Default) Tabular
Grid
Form (for freeform)
Graph
Group
Label
Nup

The Usage section lists the keywords you can use in
presentation.

err A string variable to which PocketBuilder will assign any error
messages that occur.

SyntaxFromSQL

982 PocketBuilder

The presentation string can also specify object keywords followed by
properties and values to customize the DataWindow. You can specify the style
of a column, the entire DataWindow, areas of the DataWindow, and text in the
DataWindow. The object keywords are:

A full presentation string has the format:

"Style (Type=value property=value ...)

 DataWindow (property=value ...)

 Column (property=value ...)

 Group groupby_colnum1 Fby_colnum2 ... property ...)

 Text property=value ...)

 Title ('titlestring')"

The checklists in the DataWindow object properties chapter in the
DataWindow Reference identify the properties that you can use for each object
keyword.

If a database column has extended attributes with font information, then font
information you specify in the SyntaxFromSQL presentation string is ignored.

Examples The following statements display the DataWindow source for a tabular
DataWindow object generated by the SyntaxFromSQL function in a
MultiLineEdit. If errors occur, PocketBuilder fills the string ERRORS with any
error messages that are generated:

string ERRORS, sql_syntax

sql_syntax = "SELECT emp_data.emp_id," &
 + "emp_data.emp_name FROM emp_data " &
 + "WHERE emp_data.emp_salary >45000"

mle_sql.text = &
 SQLCA.SyntaxFromSQL(sql_syntax, "", ERRORS)

The following statements create a grid DataWindow dw_1 from the
DataWindow source generated in the SyntaxFromSQL function. If errors occur,
the string ERRORS contains any error messages that are generated, which are
displayed to the user in a message box. Note that you need to call
SetTransObject with SQLCA as its argument before you can call the Retrieve
function:

string ERRORS, sql_syntax

Column Group Text

DataWindow Style Title

Chapter 10 PowerScript Functions

PowerScript Reference 983

string presentation_str, dwsyntax_str

sql_syntax = "SELECT emp_data.emp_id,"&
 + "emp_data.emp_name FROM emp_data "&
 + "WHERE emp_data.emp_salary > 45000"

presentation_str = "style(type=grid)"

dwsyntax_str = SQLCA.SyntaxFromSQL(sql_syntax, &
 presentation_str, ERRORS)

IF Len(ERRORS) > 0 THEN
 MessageBox("Caution", &
 "SyntaxFromSQL caused these errors: " + ERRORS)
 RETURN
END IF

dw_1.Create(dwsyntax_str, ERRORS)

IF Len(ERRORS) > 0 THEN
 MessageBox("Caution", &
 "Create cause these errors: " + ERRORS)
 RETURN
END IF

See also Create method for DataWindows in the DataWindow Reference

SystemRoutine
Description Provides the routine node representing the system root in a performance

analysis model.

Applies to Profiling object

SystemRoutine

984 PocketBuilder

Syntax instancename.SystemRoutine (theroutine)

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• ModelNotExistsError!—The function failed because no model exists

Usage Use this function to extract the routine node representing the system root in a
performance analysis model. You must have previously created the
performance analysis model from a trace file using the BuildModel function.
The routine node is defined as a ProfileRoutine object and provides the time
spent in the routine, any called routines, the number of times each routine was
called, and the class to which the routine belongs.

Examples This example provides the routine that represents the system root in a
performance analysis model:

Profiling lpro_model
ProfileRoutine lprort_routine

lpro_model.BuildModel()
lpro_model.SystemRoutine(lprort_routine)
...

See also BuildModel

Argument Description

instancename Instance name of the Profiling object.

theroutine A value of type ProfileRoutine containing the routine node
representing the system root. This argument is passed by
reference.

Chapter 10 PowerScript Functions

PowerScript Reference 985

TabPostEvent
Description Posts the specified event for each tab page in a Tab control, adding them to the

end of the event queues for the tab page user objects.

Applies to Tab controls

Syntax tabcontrolname.TabPostEvent (event {, word, long })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs, if the event is not a
valid event for the tab page user object, or if a script does not exist for the event.

Examples Suppose tab_address contains several tab pages inherited from uo_list and
uo_list has a user event called ue_display. This statement posts the event
ue_display for each the tab pages in tab_address:

tab_address.TabPostEvent("ue_display")

See also TabTriggerEvent

Argument Description

tabcontrolname The name of the Tab control for which you want to post events
for its tab page user objects.

event A value of the TrigEvent enumerated datatype that identifies a
PocketBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event.
The event must be a valid event for a tab page user object in
tabcontrolname and a script must exist for the event in
tabcontrolname.

word
(optional)

A long value to be stored in the WordParm property of the
system’s Message object. If you want to specify a value for long,
but not word, enter 0. (For cross-platform compatibility,
WordParm and LongParm are both longs).

long
(optional)

A long value or a string that you want to store in the LongParm
property of the system’s Message object. When you specify a
string, a pointer to the string is stored in the LongParm property,
which you can access with the String function (see Usage for
PostEvent).

TabTriggerEvent

986 PocketBuilder

TabTriggerEvent
Description Triggers the specified event for each tab page in a Tab control, which executes

the scripts immediately in the index order of the tab pages.

Applies to Tab controls

Syntax tabcontrolname.TabTriggerEvent (event {, word, long })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs, if the event is not a
valid event for the tab page user object, or if a script does not exist for the event.

Examples Suppose tab_address contains several tab pages inherited from uo_list and
uo_list has a user event called ue_display. This statement executes immediately
the script for ue_display for each the tab pages in tab_address:

tab_address.TabTriggerEvent("ue_display")

See also TabPostEvent

Argument Description

tabcontrolname The name of the Tab control for which you want to trigger
events for its tab page user objects.

event A value of the TrigEvent enumerated datatype that identifies
a PocketBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an
event. The event must be a valid event for a tab page user
object in tabcontrolname and a script must exist for the event
in tabcontrolname.

word
(optional)

A long value to be stored in the WordParm property of the
system’s Message object. If you want to specify a value for
long, but not word, enter 0. (For cross-platform compatibility,
WordParm and LongParm are both longs).

long
(optional)

A long value or a string that you want to store in the LongParm
property of the system’s Message object. When you specify a
string, a pointer to the string is stored in the LongParm
property, which you can access with the String function (see
Usage for TriggerEvent).

Chapter 10 PowerScript Functions

PowerScript Reference 987

Tan
Description Calculates the tangent of an angle.

Syntax Tan (n)

Return value Double. Returns the tangent of n. An execution error occurs if n is not valid. If
n is null, Tan returns null.

Examples Both these statements return 0:

Tan(0)
Tan(Pi(1))

This statement returns 1.55741:

Tan(1)

See also ATan
Cos
Pi
Sin
Tan method for DataWindows in the DataWindow Reference

Text
Description Obtains the text of an item in a ListBox control.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Argument Description

n The angle (in radians) for which you want the tangent

TextLine

988 PocketBuilder

Syntax listboxname.Text (index)

Return value String. Returns the text of the item in listboxname identified by index. If the
index does not point to a valid item number, Text returns the empty string ("").
If any argument’s value is null, Text returns null.

Examples Assume the ListBox lb_Cities contains:

Atlanta
Boston
Chicago
Denver

Then these statements store the text of item 3, which is Chicago, in
current_city:

string current_city
current_city = lb_Cities.Text(3)

See also FindItem
SelectedItem
SelectedText

TextLine
Description Obtains the text of the line that contains the insertion point. TextLine works for

controls that can contain multiple lines.

Applies to DataWindow, EditMask, MultiLineEdit, and RichTextEdit controls

Syntax editname.TextLine ()

Argument Description

listboxname The name of the ListBox control in which you want the text of an
item

index The number of the item for which you want the text

Argument Description

editname The name of the control in which you want the text on the line that
contains the insertion point

Chapter 10 PowerScript Functions

PowerScript Reference 989

Return value String. Returns the text on the line with the insertion point in editname. If an
error occurs, TextLine returns the empty string (""). If editname is null, TextLine
returns null.

Usage If editname is a DataWindow control, then TextLine reports information about
the edit control over the current row and column.

Examples In the MultiLineEdit mle_state, if the insertion point is on line 4 and its text is
North Carolina, then this example sets linetext to North Carolina:

string linetext
linetext = mle_state.TextLine()

If the insertion point is on a line whose text is Y in the MultiLineEdit
mle_contact, then some processing takes place:

IF mle_contact.TextLine() = "Y" THEN ...

See also SelectedItem
SelectTextLine

Time
Converts DateTime, string, or numeric data to data of type time. It also extracts
a time value from a blob. You can use one of three syntaxes, depending on the
datatype of the source data.

Syntax 1 For DateTime and blob values
Description Extracts a time value from a DateTime value or a blob.

To Use

Extract the time from DateTime data, or to extract a time
stored in a blob

Syntax 1

Convert a string to a time Syntax 2

Combine numbers for hours, minutes, and seconds into a
time value

Syntax 3

Time

990 PocketBuilder

Syntax Time (datetime)

Return value Time. Returns the time in datetime as a time. If datetime does not contain a
valid time or is an incompatible datatype, Time returns 00:00:00.000000. If
datetime is null, Time returns null.

Examples After StartDateTime has been retrieved from the database, this example sets
StartTime equal to the time in StartDateTime:

DateTime StartDateTime
time StartTime
...
StartTime = Time(StartDateTime)

Suppose that the value of a blob variable ib_blob contains a DateTime value
beginning at byte 32. The following statement extracts the time from the value:

time lt_time
lt_time = Time(BlobMid(ib_blob, 32))

See also Time method for DataWindows in the DataWindow Reference

Syntax 2 For strings
Description Converts a string containing a valid time into a time value.

Argument Description

datetime A DateTime value or a blob in which the first value is a time or
DateTime value. The rest of the contents of the blob is ignored.
Datetime can also be an Any variable containing a DateTime or
blob.

Chapter 10 PowerScript Functions

PowerScript Reference 991

Syntax Time (string)

Return value Time. Returns the time in string as a time. If string does not contain a valid time
or is an incompatible datatype, Time returns 00:00:00.000000. If string is null,
Time returns null.

Usage Valid times can include any combination of hours (00 to 23), minutes (00 to
59), seconds (00 to 59), and microseconds (0 to 999999).

Examples These statements set What_Time to null:

Time What_Time
string null_string

SetNull(null_string)
What_Time = Time(null_string)

This statement returns a time value for 45 seconds before midnight (23:59:15),
which is specified as a string:

Time("23:59:15")

This statement converts the text in the SingleLineEdit sle_Time_Received to a
time value:

Time(sle_Time_Received.Text)

See also Time method for DataWindows in the DataWindow Reference

Argument Description

string A string whose value is a valid time (such as 8am or 10:25) that you
want returned as a time. Only the hour is required; you do not have
to include the minutes, seconds, or microseconds of the time or am
or pm.

The default value is 00 for minutes and seconds and 000000 for
microseconds. PocketBuilder determines whether the time is am or
pm based on a 24-hour clock.

String can also be an Any variable containing a string or blob.

Time

992 PocketBuilder

Syntax 3 For integers
Description Combines integers representing hours, minutes, seconds, and microseconds

into a time value.

Syntax Time (hour, minute, second {, microsecond })

Return value Time. Returns the time as a time datatype and 00:00:00 if the value in any
argument is not valid (out of the specified range of values). If any argument is
null, Time returns null.

Examples These statements set What_Time to a time value with microseconds, and
display the resulting time as a string in st_1. The default display format does
not include microseconds, so the String function specifies a display format with
microseconds. Leading zeros are appended to the string value for
microseconds:

Time What_Time
What_Time = Time(10, 15, 45, 234)
st_1.Text = String(What_Time, "hh:mm:ss:ffffff")

The time in the string variable is set to 10:15:45:000234.

These statements set What_Time to 10:15:45:

Time What_Time
What_Time = Time(10, 15, 45)

See also Time method for DataWindows in the DataWindow Reference

Argument Description

hour The integer for the hour (00 to 23) of the time

minute The integer for the minutes (00 to 59) of the time

second The integer for the seconds (0 to 59) of the time

microsecond
(optional)

The integer for the microseconds (0 to 32767) of the time (note that
the range of values supported for this argument is less than the total
range of values possible for a microsecond)

Chapter 10 PowerScript Functions

PowerScript Reference 993

Timer
Description Causes a Timer event in a window to occur repeatedly at the specified interval.

When you call Timer, it starts a timer. When the interval is over, PocketBuilder
triggers the Timer event and resets the timer.

Syntax Timer (interval {, windowname })

Return value Integer. Returns 1 if succeeds and -1 if an error occurs. If any argument’s value
is null, Timer returns null.

Usage Do not call the Timer function in the Timer event. The timer gets reset
automatically and the Timer event retrigger sat the interval that has already
been established. Call the Timer function in another event’s script when you
want to stop the timer or change the interval.

Examples This statement triggers a Timer event every two seconds in the active window:

Timer(2)

This statement stops the triggering of the Timer event in the active window:

Timer(0)

These statements trigger a Timer event every half second in the window
w_Train:

Open(w_Train)
Timer(0.5, w_Train)

This example causes the current time to be displayed in a StaticText control in
a window. Calling Timer in the window’s Open event script starts the timer. The
script for the Timer event refreshes the displayed time.

Argument Description

interval The number of seconds that you want between Timer events.
interval can be a whole number or fraction greater than 0 and less
than or equal to 4,294,967 seconds. If interval is 0, Timer turns off
the timer so that it no longer triggers Timer events.

windowname
(optional)

The window in which you want the timer event to be triggered.
The window must be an open window. If you do not specify a
window, the Timer event occurs in the current window.

ToAnsi

994 PocketBuilder

In the window’s Open event script, the following code displays the time
initially and starts the timer:

st_time.Text = String(Now(), "hh:mm")
Timer(60)

In the window’s Timer event, which is triggered every minute, this code
displays the current time in the StaticText st_time:

st_time.Text = String(Now(), "hh:mm")

See also Idle

ToAnsi
Description Converts a character string to an ANSI blob.

Syntax ToAnsi (string)

Return value Blob. Returns an ANSI blob if it succeeds and an empty blob if it fails.

Usage In PocketBuilder, the ToAnsi function converts a Unicode character string to an
ANSI blob.

Unicode file format
Unicode files sometimes have two extra bytes at the start of the file to indicate
that they are Unicode files.If the two bytes are missing, PocketBuilder assumes
“little endian” format. If you are opening a Unicode file in stream mode, skip
the first two bytes if they are present

Examples This example converts a string into an ANSI blob using the ToAnsi function and
then writes the blob to a file.

integer li_filenum
blob lblb_text
string ls_native

Argument Description

string A character string you want to convert to an ANSI blob

Chapter 10 PowerScript Functions

PowerScript Reference 995

ls_native = "Sample text in native format"
lblb_text = ToAnsi(ls_native)

li_filenum = FileOpen("ansi.txt", StreamMode!, &
 Write!, LockWrite!, Replace!)

FileWrite(li_filenum, lblb_text)
FileClose(li_filenum)

See also Blob
FromAnsi
FromUnicode
ToUnicode

Today
Description Obtains the system date and, in some cases, the system time.

Syntax Today ()

Return value Date. Returns the current system date.

Usage Although the datatype of the Today function is date, it can also return the
current time. This occurs when Today is used as an argument for another
function and that argument allows different datatypes.

For example, if you call Today as an argument to the String function, String
returns both the date and time when you use a date-plus-time display format. A
second example: if you call Today as an argument for the SetItem function and
the datatype of the target column is DateTime, both the date and time are
assigned to the DataWindow.

Examples This statement returns the current system date:

Today()

This statement executes some statements when the current system date is
before April 15, 2003:

TodaySave

996 PocketBuilder

IF Today() < 2003-04-15 THEN ...

This statement displays the current date in the StaticText st_date in the corner
of a window:

st_date.Text = String(Today(), "m/d/yy")

This statement displays the current date and time in the StaticText st_date:

st_date.Text = String(Today(), "m/d/yy hh:mm")

See also Now
Today method for DataWindows in the DataWindow Reference

TodaySave
Description Saves changes to the Today item in the device registry and refreshes the Today

screen.

Applies to Application object

Syntax Integer appname.TodaySave ()

Return value Integer. Returns 1 for success, -1 if there is an error.

Usage Use the TodaySave function to permanently save any property changes to the
custom Today item. When you call this function, any changes you make to the
custom item’s display text, to its order in the Today screen, or to its display or
run application, are saved to the registry. After the user restarts the device, the
properties of the custom item are initialized to the changed values in the device
registry.

Argument Description

controlname The name of the application for which you want to save and
display changes to the Today screen

Chapter 10 PowerScript Functions

PowerScript Reference 997

Examples The following example updates the registry for a Today item display text
associated with the SyncDisplay application:

SyncDisplay.TodayDisplayText="Sync Update Count is " &
 + string(counter)
li_rtn = SyncDisplay.TodaySave()

Top
Description Obtains the index number of the first visible item in a ListBox control. Top lets

you to find out how the user has scrolled the list.

Applies to ListBox and PictureListBox controls

Syntax listboxname.Top ()

Return value Integer. Returns the index of the first visible item in listboxname. Top returns -
1 if an error occurs. If listboxname is null, Top returns null.

Usage The index of a list item is its position in the full list of items, regardless of how
many are currently visible in the control.

Examples If item 15 has been scrolled to the top of the list in lb_Contacts, then this
example sets Num to 15:

integer Num
Num = lb_Contacts.Top()

If the user has not scrolled the list in lb_Contacts, then Num is set to 1:

integer Num
Num = lb_Contacts.Top()

If the item at the top of the list in lb_Contacts is not the currently selected item,
the following statements scroll the currently selected item to the top:

integer Num

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want the
index of the first visible item in the list

TotalColumns

998 PocketBuilder

Num = lb_Contacts.SelectedIndex()
IF lb_Contacts.Top() <> Num THEN &
 lb_contacts.SetTop(Num)

See also SelectedIndex
SetTop

TotalColumns
Description Finds the number of columns in a ListView control.

Applies to ListView controls

Syntax listviewname.TotalColumns ()

Return value Integer. Returns the number of columns if it succeeds and -1 if an error occurs.

Usage Use when the ListView control is set to report view.

Examples This example displays the number of columns in a ListView report view in a
SingleLineEdit:

int li_cols
li_cols = lv_list.TotalColumns()
sle_info.text = "Total columns = " + string(li_cols)

See also TotalItems
TotalSelected

Argument Description

listviewname The name of the ListView control for which you want to find the
number of columns

Chapter 10 PowerScript Functions

PowerScript Reference 999

TotalItems
Description Determines the total number of items in a ListBox control.

Applies to ListBox, DropDownListBox, PictureListBox, DropDownPictureListBox, and
ListView controls

Syntax listcontrolname.TotalItems ()

Return value Integer. Returns the total number of items in listcontrolname. If
listcontrolname contains no items, TotalItems returns 0. If an error occurs, it
returns -1. If listcontrolname is null, TotalItems returns null.

Examples If lb_Actions contains a total of five items, this example sets Total to 5:

integer Total
Total = lbx_Actions.TotalItems()

This FOR loop is executed for each item in lb_Actions:

integer Total, n
Total = lb_Actions.TotalItems()
FOR n = 1 to Total
... // Some processing
NEXT

See also TotalSelected

TotalSelected
Description Determines the number of items in a ListBox control that are selected.

Argument Description

listcontrolname The name of the control in which you want the total number
of items

ToUnicode

1000 PocketBuilder

Applies to ListBox, PictureListBox, and ListView controls

Syntax listcontrolname.TotalSelected ()

Return value Integer. Returns the number of items in listcontrolname that are selected. If no
items in listcontrolname are selected, TotalSelected returns 0. If an error occurs,
it returns -1. If listcontrolname is null, TotalSelected returns null.

Usage TotalSelected works only if the MultiSelect property of listcontrolname is
TRUE.

Examples If three items are selected in lb_Actions, this example sets SelectedTotal to 3:

integer SelectedTotal
SelectedTotal = lb_Actions.TotalSelected()

These statements in the SelectionChanged event of lb_Actions display a
MessageBox if the user tries to select more than three items:

IF lb_Actions.TotalSelected() > 3 THEN
 MessageBox("Warning", &
 "You can only select 3 items!")
ELSE
... // Some processing
END IF

See also TotalItems

ToUnicode
Description Converts a character string to a Unicode blob.

Syntax ToUnicode (string)

Argument Description

listcontrolname The name of the control in which you want the number of
items that are selected

Argument Description

string A character string you want to convert to a Unicode blob

Chapter 10 PowerScript Functions

PowerScript Reference 1001

Return value Blob. Returns a Unicode blob if it succeeds and an empty blob if it fails.

Usage In PocketBuilder, the ToUnicode function converts a Unicode character string
to a blob and has the same result as Blob(string). In PowerBuilder, the
ToUnicode function converts an ANSI character string to a Unicode blob.

Unicode file format
Unicode files sometimes have two extra bytes at the start of the file to indicate
that they are Unicode files.

Examples This example illustrates the use of the ToUnicode function to convert a string
entered in a MultilineEdit control into a Unicode blob:

blob lblb_text
string ls_native

ls_native = mle_entry.Text
lblb_text = ToUnicode(ls_native)

See also FromAnsi
FromUnicode
ToAnsi

TraceBegin
Description Inserts an activity type value in the trace file indicating that logging has begun

and then starts logging all the enabled application trace activities. Before
calling TraceBegin, you must have opened the trace file using the TraceOpen
function.

Syntax TraceBegin (identifier)

Argument Description

identifier A read-only string, logged to the trace file, used to identify a
tracing block. If identifier is null, an empty string is placed in the
trace file.

TraceBegin

1002 PocketBuilder

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileNotOpenError!—TraceOpen has not been called yet

• TraceStartedError!—TraceBegin has already been called

Usage The TraceBegin call inserts an activity type value of ActBegin! in the trace file
to indicate that logging has begun and then begins logging all the application
activities you have selected for tracing.

TraceBegin can only be called following a TraceOpen call. And all activities to
be logged must be enabled using the TraceEnableActivity function before
calling TraceBegin.

If you want to generate a trace file for an entire application run, you typically
include the TraceBegin function in your application’s open script. If you want
to generate a trace file for only a portion of the application run, you typically
include the TraceBegin function in the script that initiates the functionality on
which you’re trying to collect data.

You can use the identifier argument to identify the tracing blocks within a trace
file. A tracing block represents the data logged between calls to TraceBegin and
TraceEnd. There may be multiple tracing blocks within a single trace file if you
are tracing more than one portion of the application run.

Examples This example opens a trace file with the name you entered in a single line edit
box and a timer kind selected from a drop-down list. It then begins logging the
enabled activities for the first block of code to be traced:

TimerKind ltk_kind

CHOOSE CASE ddlb_timestamp.text
CASE "None"
 ltk_kind = TimerNone!
CASE "Clock"
 ltk_kind = Clock!
CASE "Process"
 ltk_kind = Process!
CASE "Thread"
 ltk_kind = Thread!
END CHOOSE

TraceOpen(sle_filename.text,ltk_kind)

TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActGarbageCollect!)
TraceEnableActivity(ActObjectCreate!)

Chapter 10 PowerScript Functions

PowerScript Reference 1003

TraceEnableActivity(ActObjectDestroy!)

TraceBegin("Trace_block_1")

See also TraceOpen
TraceEnableActivity
TraceEnd

TraceClose
Description Closes the trace file.

Syntax TraceClose ()

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileNotOpenError!—TraceOpen has not been called yet

• FileCloseError!—The log file is full

Usage TraceClose closes the trace file. If you have not already called TraceEnd,
TraceClose will call that function before proceeding with its processing.

You typically include the TraceClose function in your application’s Close
script.

Examples This example stops logging of application trace activities and then closes the
open trace file:

TraceEnd()
TraceClose()

See also TraceBegin
TraceEnd
TraceOpen

TraceDisableActivity

1004 PocketBuilder

TraceDisableActivity
Description Disables logging of the specified trace activity.

Syntax TraceDisableActivity (activity)

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileNotOpenError!—TraceOpen has not been called yet

• TraceStartedError!—You have called TraceDisableActivity after
TraceBegin and before TraceEnd

Usage Use this function to disable the logging of the specified trace activities. You
typically use this function if you are tracing only portions of an application run
(and thus you are calling TraceBegin multiple times) and you want to log
different activities during each portion of the application.

Unless specifically disabled with TraceDisableActivity, activities that were
previously enabled with a call to the TraceEnableActivity function remain
enabled throughout the entire application run.

Argument Description

activity A value of the enumerated datatype TraceActivity that identifies
the activity for which logging should be disabled. Values are:

• ActError!—Occurrences of system errors and warnings

• ActESQL!—Embedded SQL statement entry and exit

• ActGarbageCollect!—Start and finish of garbage collection

• ActLine!—Routine line hits

• ActObjectCreate!—Object creation entry and exit

• ActObjectDestroy!—Object destruction entry and exit

• ActProfile!—Abbreviation for the ActRoutine!, ActESQL!,
ActObjectCreate!, ActObjectDestroy!, and
ActGarbageCollect! values

• ActRoutine!—Routine entry and exit (if this value is disabled,
ActLine! is automatically disabled)

• ActTrace!—Abbreviation for all activities except ActLine!

• ActUser!—Occurrences of an activity you selected

Chapter 10 PowerScript Functions

PowerScript Reference 1005

You must always call the TraceEnd function before calling TraceDisableActivity.

Examples This example logs the enabled activities for the first block of code to be traced.
Then it stops logging and disables two activity types for a second trace block.
When logging is resumed for another portion of the application run, the
activities that are not specifically disabled remain enabled until TraceClose is
called:

TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActGarbageCollect)
TraceEnableActivity(ActObjectCreate!)
TraceEnableActivity(ActObjectDestroy!)

TraceBegin("Trace_block_1")

TraceEnd()

TraceDisableActivity(ActESQL!)
TraceDisableActivity(ActGarbageCollect!)

TraceBegin("Trace_block_2")

See also TraceEnd
TraceEnableActivity

TraceEnableActivity
Description Enables logging of the specified trace activity.

TraceEnableActivity

1006 PocketBuilder

Syntax TraceEnableActivity (activity)

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileNotOpenError!—TraceOpen has not been called yet

• TraceStartedError!—You have called TraceEnableActivity after TraceBegin
and before TraceEnd

Usage Call the TraceEnableActivity function following the TraceOpen function.
TraceEnableActivity allows you to specify the types of activities you want
logged in the trace file. The default activity type logged is a user-defined
activity type identified by the value ActUser!. This activity is enabled by the
TraceOpen call. You must call TraceEnableActivity to specify the activities to be
logged before you call TraceBegin.

Each call to TraceOpen resets the activity types to be logged to the default (that
is, only ActUser! activities are logged).

Since the ActError! and ActUser! values require the passing of strings to the
trace file, you must call the TraceError and TraceUser functions to log this
information.

Unless specifically disabled with a call to the TraceDisableActivity function,
activities that are enabled with TraceEnableActivity remain enabled throughout
the entire application run.

Argument Description

activity A value of the enumerated datatype TraceActivity that identifies
the activity to be logged. Values are:

• ActError!—Occurrences of system errors and warnings

• ActESQL!—Embedded SQL statement entry and exit

• ActGarbageCollect!—Start and finish of garbage collection

• ActLine!—Routine line hits (if this value is enabled,
ActRoutine! is automatically enabled)

• ActObjectCreate!—Object creation entry and exit

• ActObjectDestroy!—Object destruction entry and exit

• ActProfile!—Abbreviation for the ActRoutine!, ActESQL!,
ActObjectCreate!, ActObjectDestroy, and
ActGarbageCollect! values

• ActRoutine!—Routine entry and exit

• ActTrace!—Abbreviation for all activities except ActLine!

Chapter 10 PowerScript Functions

PowerScript Reference 1007

Examples This example opens a trace file with the name you entered in a single line edit
box and a timer kind selected from a drop-down list. Then it begins logging the
enabled activities for the first block of code to be traced:

TimerKindltk_kind

CHOOSE CASE ddlb_timestamp.text
CASE "None"
 ltk_kind = TimerNone!
CASE "Clock"
 ltk_kind = Clock!
CASE "Process"
 ltk_kind = Process!
CASE "Thread"
 ltk_kind = Thread!
END CHOOSE

TraceOpen(sle_filename.text,ltk_kind)

TraceEnableActivity(ActRoutine!)
TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActGarbageCollect!)
TraceEnableActivity(ActError!)
TraceEnableActivity(ActCreateObject!)
TraceEnableActivity(ActDestroyObject!)

TraceBegin("Trace_block_1")

See also TraceOpen
TraceBegin
TraceDisableActivity

TraceEnd
Description Inserts an activity type value in the trace file indicating that logging has ended

and then stops logging application trace activities.

Syntax TraceEnd ()

TraceError

1008 PocketBuilder

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileNotOpenError!—TraceOpen has not been called yet

• TraceNotStartedError!—TraceBegin has not been called yet

Usage The TraceEnd call inserts an activity type value of ActBegin! in the trace file
to indicate that logging has ended and then stops logging all application
activities that you selected for tracing.

If you have not already called TraceEnd when you call TraceClose, TraceClose
calls TraceEnd before proceeding.

If you want to generate a trace file for an entire application run, you would
typically include the TraceEnd function in your application’s Close script. If
you want to generate a trace file for only a portion of the application run, you
typically include the TraceEnd function in the script that terminates the
functionality on which you’re trying to collect data.

Examples This example stops logging of application trace activities and then closes the
open trace file:

TraceEnd()
TraceClose()

See also TraceOpen
TraceBegin
TraceClose
TraceDisableActivity

TraceError
Description Logs your own error message and its severity level to the trace file if tracing of

this activity type has been enabled.

Syntax TraceError (severity, message)

Argument Description

severity A long whose value is a number you want to indicate the severity
of the error

Chapter 10 PowerScript Functions

PowerScript Reference 1009

Return value ErrorReturn. This function always returns Success!.

If severity or message is null, TraceError returns null and no entry is made in the
trace file.

Usage TraceError logs an activity type value of ActError! to the trace file if you
enabled the tracing of this type with the TraceEnableActivity function and then
called the TraceBegin function. You use the TraceError function to record your
own error message. It works just like the TraceUser function except that you
use it to identify more severe problems. The severity and message values are
passed without modification to the trace file.

Examples This example logs an error message to the trace file when a database retrieval
fails:

dw_1.SetTransObject(SQLCA)

TraceUser(100, "Starting database retrieval")
IF dw_1.Retrieve() = -1 THEN
 TraceError(999, "Retrieve for dw_1 failed")
ELSE
 TraceUser(200, "Database retrieval complete")
END IF

See also TraceEnableActivity
TraceUser

TraceOpen
Description Opens a trace file with the specified name and enables logging of application

trace activities.

message A string whose value is the error message you want to add to the
trace file

Argument Description

TraceOpen

1010 PocketBuilder

Syntax TraceOpen (filename, timer)

Return value ErrorReturn. Returns one of the following values:

• Success!—The function succeeded

• FileAlreadyOpenError!—TraceOpen has been called again without an
intervening TraceClose

• FileOpenError!—The file could not be opened for writing

• EnterpriseOnlyFeature!—This function is only supported in the Enterprise
edition of PowerBuilder.

If filename is null, TraceOpen returns null.

Usage TraceOpen opens the specified trace file and enables logging of application
trace activities. When it opens the trace file, TraceOpen logs the current
application and library list to the trace file. It also enables logging of the default
activity type, a user-defined activity type identified by the value ActUser!.

After calling TraceOpen, you can select any additional activities to be logged
in the trace file using the TraceEnableActivity function. Once you have called
TraceOpen and TraceEnableActivity, you must then call TraceBegin for logging
to begin.

To stop logging of application trace activity, you must call the TraceEnd
function followed by TraceClose to close the trace file. Each call to TraceOpen
resets the logging of activity types to the default ActUser!

You typically include the TraceOpen function in your application’s Open script.

Argument Description

filename A read-only string used to identify the trace file

timer A value of the enumerated datatype TimerKind that identifies
the timer. Values are:

• Clock!—Use the wall clock timer

• Process!—Use the process timer

• Thread!—Use the thread timer

• TimeNone!—Do not log timer values

Clock timers and thread timers are the only kinds of
timers supported on handheld devices. If you select the
process timer for an application running on a device, the
thread timer is used instead.

Chapter 10 PowerScript Functions

PowerScript Reference 1011

Caution
If the trace file runs out of disk space, no error is generated, but logging is
stopped, and the trace file cannot be used for analysis.

By default, the time at which each activity begins and ends is recorded using
the clock timer, which measures an absolute time with reference to an external
activity, such as the machine’s startup time. The clock timer measures time in
microseconds. Depending on the speed of your machine’s central processing
unit, the clock timer can offer a resolution of less than one microsecond. A
timer’s resolution is the smallest unit of time the timer can measure.

You can also use process or thread timers in a desktop application. These timers
measure time in microseconds with reference to when the process or thread
being executed started. You can use only the clock or thread timers for
applications running on handheld devices. Both process and thread timers give
you a more accurate measurement of how long the process or thread is taking
to execute, but both have a lower resolution than the clock timer.

If your analysis does not require timing information, you can omit timing
information from the trace file.

Collection time The timestamps in the trace file exclude the time taken to
collect the trace data.

Examples This example opens a trace file with the name you entered in a single line edit
box and a timer kind selected from a drop-down list. Then it begins logging the
enabled activities for the first block of code to be traced:

TimerKindltk_kind

CHOOSE CASE ddlb_timestamp.text
CASE "None"
 ltk_kind = TimerNone!
CASE "Clock"
 ltk_kind = Clock!
CASE "Process"
 ltk_kind = Process!
CASE "Thread"
 ltk_kind = Thread!
END CHOOSE

TraceOpen(sle_filename.text,ltk_kind)

TraceUser

1012 PocketBuilder

See also TraceBegin
TraceClose
TraceEnableActivity
TraceEnd

TraceUser
Description Logs the activity type value you specify to the trace file.

Syntax TraceUser (info, message)

Return value ErrorReturn. This function always returns Success!.

If info or message is null, TraceUser returns null and no entry is made in the log
file.

Usage TraceUser logs an activity type value of ActUser! to the trace file. This is the
default activity type and is enabled when the TraceOpen function is called. You
use the TraceUser function to record your own message identifying a specific
occurrence during an application run. For example, you may want to log the
occurrences of a specific return value or the beginning and end of a body of
code. TraceUser works just like the TraceError function except that you use
TraceError to identify more severe problems. The info and message values are
passed without modification to the trace file.

Examples This example logs user messages to the trace file identifying when a database
retrieval is started and when it is completed:

dw_1.SetTransObject(SQLCA)

TraceUser(100, "Starting database retrieval")
IF dw_1.Retrieve() = -1 THEN
 TraceError(999, "Retrieve for dw_1 failed")

Argument Description

info A long whose value is a reference number you want to associate
with the logged activity

message A string whose value is the activity type value you want to add
to the trace file

Chapter 10 PowerScript Functions

PowerScript Reference 1013

ELSE
 TraceUser(200, "Database retrieval complete")
END IF

See also TraceEnableActivity
TraceError

TriggerEvent
Description Triggers an event associated with the specified object, which executes the

script for that event immediately.

Applies to Any object

Syntax objectname.TriggerEvent (event {, word, long })

Return value Integer. Returns 1 if it is successful and the event script runs and -1 if the event
is not a valid event for objectname, or no script exists for the event in
objectname. If any argument’s value is null, TriggerEvent returns null.

Argument Description

objectname The name of any PocketBuilder object or control that has events
associated with it.

event A value of the TrigEvent enumerated datatype that identifies a
PocketBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event.
The event must be a valid event for objectname and a script must
exist for the event in objectname.

word
(optional)

A long value to be stored in the WordParm property of the system’s
Message object. If you want to specify a value for long, but not
word, enter 0. (For cross-platform compatibility, WordParm and
LongParm are both longs.)

long
(optional)

A long value or a string that you want to store in the LongParm
property of the system’s Message object. When you specify a string,
a pointer to the string is stored in the LongParm property, which you
can access with the String function (see Usage).

TriggerEvent

1014 PocketBuilder

Usage If you specify the name of an event instead of a value of the TrigEvent
enumerated datatype, enclose the name in double quotation marks.

Check return code
It is a good idea to check the return code to determine whether TriggerEvent
succeeded and, based on the result, perform the appropriate processing.

You can pass information to the event script with the word and long arguments.
The information is stored in the Message object. In your script, you can
reference the WordParm and LongParm fields of the Message object to access
the information.

If you have specified a string for long, you can access it in the triggered event
by using the String function with the keyword "address" as the format
parameter. Your event script might begin as follows:

string PassedString
PassedString = String(Message.LongParm, "address")

Caution
Do not use this syntax unless you are certain the long argument contains a valid
string value.

For more information about events and when to use PostEvent and
TriggerEvent, see PostEvent.

To trigger system events that are not PocketBuilder-defined events, use Post or
Send, instead of PostEvent and TriggerEvent. Although Send can send
messages that trigger PocketBuilder events, as shown below, you have to know
the codes for a particular message. It is easier to use the PocketBuilder
functions that trigger the desired events.

Equivalent syntax Both of the following statements click the CheckBox
cb_OK. The following call to the Send function:

Send(Handle(Parent), 273, 0, Long(Handle(cb_OK), 0))

is equivalent to:

cb_OK.TriggerEvent(Clicked!)

Examples This statement executes the script for the Clicked event in the CommandButton
cb_OK immediately:

cb_OK.TriggerEvent(Clicked!)

Chapter 10 PowerScript Functions

PowerScript Reference 1015

This statement executes the script for the user-defined event cb_exit_request in
the parent window:

Parent.TriggerEvent("cb_exit_request")

This statement executes the script for the Clicked event in the menu selection
m_File on the menu m_Appl:

m_Appl.m_File.TriggerEvent(Clicked!)

See also Post
PostEvent
Send

TriggerPBEvent
Description Triggers the specified user event in the child window contained in a

PowerBuilder window ActiveX control.

Applies to Window ActiveX controls

Syntax activexcontrol.TriggerPBEvent (name {, numarguments {, arguments } })

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Trim
Description Removes leading and trailing spaces from a string.

Syntax Trim (string)

Argument Description

string The string you want returned with leading and trailing spaces
deleted

TrimW

1016 PocketBuilder

Return value String. Returns a copy of string with all leading and trailing spaces deleted if it
succeeds and the empty string ("") if an error occurs. If string is null, Trim
returns null.

Usage Trim is useful for removing spaces that a user may have typed before or after
newly entered data.

Examples This statement returns BABE RUTH:

Trim(" BABE RUTH ")

This example removes the leading and trailing spaces from the user-entered
value in the SingleLineEdit sle_emp_fname and saves the value in emp_fname:

string emp_fname
emp_fname = Trim(sle_emp_fname.Text)

See also LeftTrim
RightTrim
Trim method for DataWindows in the DataWindow Reference

TrimW
Description Removes leading and trailing spaces from a string.

Obsolete function
TrimW is an obsolete function. It has the same behavior as Trim.

Syntax TrimW (string)

Return value String. Returns a copy of string with all leading and trailing spaces deleted if it
succeeds and the empty string ("") if an error occurs.

Chapter 10 PowerScript Functions

PowerScript Reference 1017

Truncate
Description Truncates a number to the specified number of decimal places.

Syntax Truncate (x, n)

Return value Decimal. Returns the result of the truncation if it succeeds and null if it fails or
if any argument is null.

Using Truncate on a computed field
A real number loaded into a floating point register (used for calculation) is
represented as precisely as the binary storage will permit. For example, the real
number displayed as 2.07 is actually stored as 2.0699999999999997.

Truncating such a number may not give the expected result. To avoid this
problem, you can change the initial real datatype to long, Integer, or decimal,
or you can append a constant in the truncate argument:
Truncate (x + 0.0000001, n)

Examples This statement returns 9.2:

Truncate(9.22, 1)

This statement returns 9.2:

Truncate(9.28, 1)

This statement returns 9:

Truncate(9.9, 0)

This statement returns –9.2:

Truncate(-9.29, 1)

Argument Description

x The number you want to truncate

n The number of decimal places to which you want to truncate x
(valid values are 0 through 18)

TrustVerify

1018 PocketBuilder

See also Ceiling
Int
Round
Truncate method for DataWindows in the DataWindow Reference

TrustVerify
Description Called by EAServer when an SSL certificate chain needs to be approved for

use by a client. This function is used by PowerBuilder clients connecting to
EAServer.

Applies to SSLCallBack objects

Syntax sslcallback.TrustVerify (thesessioninfo, reason)

Return value Long. Returns one of the following values:

1 TRUST_ONCE (accept the current connection)
2 TRUST_FAIL (reject the current connection)
3 TRUST_ALWAYS (accept and mark as trusted in the database)
4 TRUST_NEVER (reject and mark as untrusted in the database)
5 TRUST_SESSION (accept now and throughout the current session)
6 TRUST_FAIL_SESSION (reject throughout the current session)

TypeOf
Description Determines the type of an object or control, reported as a value of the Object

enumerated datatype.

Applies to Any object

Chapter 10 PowerScript Functions

PowerScript Reference 1019

Syntax objectname.TypeOf ()

Return value Object enumerated datatype. Returns the type of objectname. If objectname is
null, TypeOf returns null.

Usage Use TypeOf to determine the type of a selected or dragged control.

Examples If dw_Customer is a DataWindow control, this statement returns DataWindow!:

dw_Customer.Typeof()

This example looks at the first five controls in the w_dept window’s Control
array property. The loop executes some statements for each control that is a
CheckBox:

integer n
FOR n = 1 to 5
 IF w_dept.Control[n].TypeOf() = CheckBox! THEN
 ... // Some processing
 END IF
NEXT

This loop stores in the winobject array the type of each object in the window’s
Control array property:

object winobjecttype[]
long ll_count

FOR ll_count = 1 to UpperBound(Control[])
 winobjecttype[ll_count] = &
 TypeOf(Control[ll_count])
NEXT

If you do not know the type of a control passed via PowerObjectParm in the
Message object, the following example assigns the passed object to a graphic
object variable, the ancestor of all the control types, and assigns the type to a
variable of type object, which is the enumerated datatype that TypeOf returns.
The CHOOSE CASE statement can include processing for each control type
that you want to handle. This code would be in the Open event for a window
that was opened with OpenWithParm:

graphicobject stp_obj
object type_obj

stp_obj = Message.PowerObjectParm
type_obj = stp_obj.TypeOf()

Argument Description

objectname The name of the object or control for which you want the type

Uncheck

1020 PocketBuilder

CHOOSE CASE type_obj
CASE DataWindow!
 MessageBox("The object"," Is a datawindow")

CASE SingleLineEdit!
 MessageBox("The object"," Is a sle")

... // Cases for additional object types
CASE ELSE
 MessageBox("The object"," Is irrelevant!")
END CHOOSE

See also ClassName

Uncheck
Description Removes the check mark, if any, next to an item a drop-down or cascading

menu and sets the item’s Checked property to false.

Applies to Menu objects

Syntax menuname.Uncheck ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If menuname is null,
Uncheck returns null.

Usage A checkmark next to a menu item indicates that the menu option is currently
on and that the user can turn the option on and off by choosing it. For example,
in the Window painter’s Design menu, a checkmark is displayed next to Grid
when the grid is on.

Argument Description

menuname The fully qualified name of the menu selection from which you
want to remove the checkmark, if any. The menu must be on a drop-
down or cascading menu, not an item on a menu bar.

Chapter 10 PowerScript Functions

PowerScript Reference 1021

You can use Check in an item’s Clicked script to mark a menu item when the
user turns the option on and Uncheck to remove the check when the user turns
the option off.

Equivalent syntax You can set the object’s Checked property instead of
calling Uncheck:

menuname.Checked = false

This statement:

m_appl.m_view.m_grid.Checked = FALSE

is equivalent to:

m_appl.m_view.m_grid.Uncheck()

Examples This statement removes the checkmark next to the m_grid menu selection in the
drop-down menu m_view on the menu bar m_appl:

m_appl.m_view.m_grid.Uncheck()

This example checks whether the m_grid menu selection in the drop-down
menu m_view of the menu bar m_appl is currently checked. If so, the script
unchecks the item. If it is not checked, the script checks the item:

IF m_appl.m_view.m_grid.Checked = TRUE THEN
 m_appl.m_view.m_grid.Uncheck()
ELSE
 m_appl.m_view.m_grid.Check()
END IF

See also Check

Undo
Description Cancels the last edit in an edit control, restoring the text to the content before

the last change.

Applies to DataWindow, MultiLineEdit, RichTextEdit, and SingleLineEdit controls

Syntax editname.Undo ()

UnitsToPixels

1022 PocketBuilder

Return value Integer. Returns 1 when it succeeds and -1 if an error occurs. If editname is null,
Undo returns null.

Usage To determine whether the last action can be canceled, call the CanUndo
function.

Examples This statement reverses the last edit in MultiLineEdit mle_Contact:

mle_Contact.Undo()

The following statement checks to see if the last edit in the MultiLineEdit
mle_Contact can be reversed, and if so reverse it:

IF mle_Contact.CanUndo() THEN mle_Contact.Undo()

See also CanUndo

UnitsToPixels
Description Converts PowerBuilder units to pixels and reports the measurement. Because

pixels are not usually square, you also specify whether to convert in the
horizontal or vertical direction.

Syntax UnitsToPixels (units, type)

Argument Description

editname The name of the control in which you want to cancel (reverse) the
last edit. For a DataWindow control, reverses the last edit in the edit
control over the current row and column.

Argument Description

units An integer whose value is the number of PowerBuilder units you
want to convert to pixels

type A value of the ConvertType enumerated datatype indicating how to
convert the value:

• XUnitsToPixels! — Convert the units in the horizontal direction

• YUnitsToPixels! — Convert the units in the vertical direction

Chapter 10 PowerScript Functions

PowerScript Reference 1023

Return value Integer. Returns the converted value if it succeeds and -1 if an error occurs. If
any argument’s value is null, UnitsToPixels returns null.

Examples These statements convert 350 vertical PowerBuilder units to vertical pixels and
set value equal to the converted value:

integer Value
Value = UnitsToPixels(350, YUnitsToPixels!)

See also PixelsToUnits

Update
Updates a change to an object or to a repository item at runtime.

For syntax for DataWindows and DataStores, see the Update method for
DataWindows in the online Help.

Syntax 1 For NotificationBubble objects
Description Notifies the Windows CE operating system that properties of a notification

bubble control have changed.

Applies to NotificationBubble objects

Syntax Integer controlname.Update ()

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Initial creation notification failed

To update Use

A NotificationBubble object Syntax 1

An appointment, contact, or task from Pocket Outlook Syntax 2

Argument Description

controlname The name of the notification bubble that has been created

Update

1024 PocketBuilder

-2 Notification failed

-3 Notification received, but nothing changed

-4 Mandatory message sink has not been specified

Usage The Update function is the main action method for a NotificationBubble
object. The first time it is called, it creates the notification bubble in the
operating system. Subsequent calls notify the operating system that
notification fields have changed.

The NotificationBubble must be associated with a visual control. You assign
the visual control with the SetMessageSink function. If the NotificationBubble
object is not associated with a visual control, the Update function returns a -4
error.

Examples The following example notifies Windows CE that a notification event has
occurred and that the nb_myBubble NotificationBubble object has been
created or updated:

nb_myBubble.caption = "Updated Caption"
li_rtn = nb_myBubble.Update()

See also Remove
SetMessageSink

Syntax 2 For POOM-related objects
Description Updates an existing appointment, contact, or task in the POOM repository.

Applies to POOMAppointment, POOMContact, POOMTask objects

Syntax Integer objectname.Update ()

Return value Integer. Returns 1 for success and one of the following negative values if an
error occurs:

-1 Unspecified error

Argument Description

objectname The name of the POOMAppointment, POOMContact, or
POOMTask object

Chapter 10 PowerScript Functions

PowerScript Reference 1025

-2 Cannot connect to the repository or a required internal subobject failed to
connect to the repository

-3 Cannot log in to the repository

-4 Incorrect input argument

-5 Action cannot be performed

-6 The object identifier (OID) is not in the repository

-7 Feature is not implemented yet

-8 No matching entries found for the criteria

See also Add
Cancel
Remove

UpdateEntry
Description Updates an entry in a dialing directory.

Applies to DialingDirectory objects

Syntax Integer objectname.UpdateEntry (entry)

Return value Integer. Returns 1 for success, and a negative value if an error occurs.

See also AcceptCall
GetEntry
GetEntries
Update for POOM-related objects

Argument Description

objectname The name of the DialingDirectory object to which you want to
add an entry.

entry A DialingDirectoryEntry structure that holds the replacement
value.

UpdateLinksDialog

1026 PocketBuilder

UpdateLinksDialog
Description Attempts to find a file linked to an OLE container. If the linked file is not found,

a dialog box tells the user and lets them bring up a second dialog box for find
the file or changing the link.

Applies to OLE controls and OLE DWObjects (objects within a DataWindow object that
is within a DataWindow control)

Syntax objectref.UpdateLinksDialog ()

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Upper
Description Converts all the characters in a string to uppercase.

Syntax Upper (string)

Return value String. Returns string with lowercase letters changed to uppercase if it succeeds
and the empty string ("") if an error occurs. If string is null, Upper returns null.

Examples This statement returns BABE RUTH:

Upper("Babe Ruth")

See also Lower
Upper method for DataWindows in the DataWindow Reference

Argument Description

string The string you want to convert to uppercase letters

Chapter 10 PowerScript Functions

PowerScript Reference 1027

UpperBound
Description Obtains the upper bound of a dimension of an array.

Syntax UpperBound (array {, n })

Return value Long. Returns the upper bound of dimension n of array. If n is greater than the
number of dimensions of the array, UpperBound returns -1. If any argument’s
value is null, UpperBound returns null.

Usage For variable-size arrays, memory is allocated for the array when you assign
values to it. UpperBound returns the largest value that has been defined for the
array in the current script. Before you assign values, the lower bound is 1 and
the upper bound is 0. For fixed arrays, whose size is specified when it is
declared, UpperBound always returns the declared size.

Examples The following statements illustrate the values UpperBound reports for
fixed-size arrays and for variable-size arrays before and after memory has been
allocated:

integer a[5]
UpperBound(a) // Returns 5
UpperBound(a,1) // Returns 5
UpperBound(a,2) // Returns -1; no 2nd dimension

integer b[10,20]
UpperBound(b,1) // Returns 10
UpperBound(b,2) // Returns 20

integer c[]
UpperBound(c) // Returns 0; no memory allocated
c[50] = 900
UpperBound(c) // Returns 50
c[60] = 800
UpperBound(c) // Returns 60

Argument Description

array The name of the array for which you want the upper bound of a
dimension

n
(optional)

The number of the dimension for which you want the upper bound.
The default is 1

UpperBound

1028 PocketBuilder

c[60] = 800
c[50] = 700
UpperBound(c) // Returns 60

integer d[10 to 50]
UpperBound(d) // Returns 50

This example determines the position of a menu bar item called File, and if the
item has a cascading menu with an item called Update, disables the Update
item. The code could be a script for a control in a window.

The code includes a rather complicated construct: Parent.Menuid.Item. Its
components are:

• Parent — The parent window of the control that is running the script.

• Menuid — A property of a window whose value identifies the menu
associated with the window.

• Item — A property of a menu that is an array of items in that menu. If Item
is itself a drop-down or cascading menu, it has its own item array, which
can be a fourth qualifier.

The script is:

long i, k, tot1, tot2

// Determine how many menu bar items there are.
tot1 = UpperBound(Parent.Menuid.Item)

FOR i = 1 to tot1
 // Find the position of the File item.
 IF Parent.Menuid.Item[i].text = "File" THEN
 MessageBox("Position", &
 "File is in Position "+ string(i))
 tot2 = UpperBound(Parent.Menuid.Item[i].Item)

 FOR k = 1 to tot2
 // Find the Update item under File.
 IF Parent.Menuid.Item[i].Item[k].Text = &
 "Update" THEN
 // Disable the Update menu option.
 Parent.Menuid.Item[i].Item[k].Disable()
 EXIT
 END IF
 NEXT
 EXIT
 END IF

Chapter 10 PowerScript Functions

PowerScript Reference 1029

NEXT

See also LowerBound

VerifyMatch
Description Verifies the similarity between two fingerprints.

Applies to BiometricScanner objects

Syntax Integer scanner.VerifyMatch (candidate, template, {FARAchieved})

Return value Integer. Returns 1 for a successful match within the specified FAR/FRR ratio.
A return value of -14 indicates that the comparison value falls outside this ratio.
For a list of all possible errors and their definitions, see ScanCapture on page
844.

Usage Call VerifyMatch to compare two fingerprint scans. Typically the result of a
current candidate scan is compared against a fingerprint scan stored in a
database. The scan stored in the database is also known as a template scan.

Examples The following example compares the scanned data against a local variable with
a blob datatype:

li_rtn = l_bioscanner.VerifyMatch (lb_MinutiaeFromScan,
lb_MinutiaeFromTemplate)

See also ScanCapture
ScannedBitmap
ScannedMinutiae
ScannedQuality

Argument Description

scanner The scanner object associated with the device you want to use to
complete a scan

candidate Blob value for the current minutiae data that you want to compare

template Blob value for a stored minutiae record

FARAchieved Integer value, passed by reference, for the false acceptance rate of
the most recent scan

Which

1030 PocketBuilder

Which
Description Allows a component to find out whether it is running on a transaction server.

Applies to TransactionServer objects

Syntax transactionserver.Which ()

Return value Integer. Returns 0 if the object is not running on a transaction server, 1 if it is
running on EAServer, or 2 if it is running on Microsoft MTS or IIS4.

WordCap
Description Capitalizes the first letter of each word in a passed script. It sets the remaining

letters in each word to lowercase.

Applies to All text objects

Syntax WordCap (text)

Return value String. If it succeeds, returns the text passed in the function argument with the
first letter of each word in uppercase and the remaining letters in lowercase.
Returns null if an error occurs.

Examples This example takes user-entered text from a SingleLineEdit control,
capitalizing the first letter in each word and setting the other letters to
lowercase, before passing it in a string variable:

string ls_fullname
ls_fullname = WordCap (sle_1.text)

The text joe MaCdonald would be rendered as Joe Macdonald by the
WordCap function.

Argument Description

text String to be modified

Chapter 10 PowerScript Functions

PowerScript Reference 1031

WorkSpaceHeight
Description Obtains the height of the workspace within the boundaries of the specified

window.

Applies to Window objects

Syntax windowname.WorkSpaceHeight ()

Return value Integer. Returns the height of the workspace area in PowerBuilder units in
windowname. If an error occurs, WorkSpaceHeight returns -1. If windowname
is null, WorkSpaceHeight returns null.

Usage The workspace height does not include the thickness of the frame, the title bar,
menu bar, horizontal scrollbar, or any toolbars at the top or bottom.

The workspace width does not include the thickness of the frame, the vertical
scrollbar, or any toolbars on the left or right.

Examples This example returns the height of the workspace area in the w_employee
window:

Integer Height
Height = W_employee.WorkSpaceHeight()

See also WorkSpaceWidth
WorkSpaceX
WorkSpaceY
PointerX
PointerY

Argument Description

windowname The name of the window for which you want the height of the
workspace area

WorkSpaceWidth

1032 PocketBuilder

WorkSpaceWidth
Description Obtains the width of the workspace within the boundaries of the specified

window.

Applies to Window objects

Syntax windowname.WorkSpaceWidth ()

Return value Integer. Returns the width of the workspace area (in PowerBuilder units) in
windowname. If an error occurs, WorkSpaceWidth returns -1. If windowname is
null, WorkSpaceWidth returns null.

Usage The workspace height does not include the thickness of the frame, the title bar,
menu bar, horizontal scrollbar, or any toolbars at the top or bottom.

The workspace width does not include the thickness of the frame, the vertical
scrollbar, or any toolbars on the left or right.

Examples This example returns the width of the workspace area in the w_employee
window:

integer Width
Width = w_employee.WorkSpaceWidth()

See also PointerX
PointerY
WorkSpaceHeight
WorkSpaceX
WorkSpaceY

Argument Description

windowname The name of the window for which you want the width of the
workspace area

Chapter 10 PowerScript Functions

PowerScript Reference 1033

WorkSpaceX
Description Obtains the distance between the left edge of a window’s workspace and the

left edge of the screen.

Applies to Window objects

Syntax windowname.WorkSpaceX ()

Return value Integer. Returns the distance that the left edge of the workspace area of
windowname is from the left edge of the screen (in PowerBuilder units).
WorkSpaceX returns -1 if an error occurs. If windowname is null, WorkSpaceX
returns null.

Usage The workspace area is the area between the sides of the window (not including
the thickness of the frame or the vertical scrollbar, if any) and the top and
bottom of the window (not including the thickness of the frame or the title bar,
menu bar, or horizontal scrollbar, if any).

Examples This example returns the distance from the left edge of the screen to the left
edge of the workspace area in the w_employee window:

integer workx
workx = w_employee.WorkSpaceX()

See also PointerX
PointerY
WorkSpaceHeight
WorkSpaceWidth
WorkSpaceY

Argument Description

windowname The name of the window for which you want the distance
between the left edge of the workspace area and the left edge
of the screen

WorkSpaceY

1034 PocketBuilder

WorkSpaceY
Description Obtains the distance between the top of a window’s workspace and the top of

the screen.

Applies to Window objects

Syntax windowname.WorkSpaceY ()

Return value Integer. Returns the distance that the top of the workspace area of windowname
is from the top of the screen (in PowerBuilder units). If an error occurs,
WorkSpaceY returns -1. If windowname is null, WorkSpaceY returns null.

Usage The workspace area is the area between the sides of the window (not including
the thickness of the frame or the vertical scrollbar, if any) and the top and
bottom of the window (not including the thickness of the frame or the title bar,
menu bar, or horizontal scrollbar, if any).

Examples This example returns the distance from the top of the screen to the top of the
workspace area in the w_employee window:

integer worky
worky = w_employee.WorkSpaceY()

See also PointerX
PointerY
WorkSpaceHeight
WorkSpaceWidth
WorkSpaceX

Argument Description

windowname The name of the window for which you want the distance
between the top of the workspace area and the top of the
screen

Chapter 10 PowerScript Functions

PowerScript Reference 1035

Write
Writes data to an OLE stream object or a file that you open with the FileDirect
object.

Syntax 1 For an OLE stream object
Description Writes data to an opened OLE stream object.

Applies to OLEStream objects

Syntax olestream.Write (dataforstream)

Return value Integer. Returns the number of characters or bytes written if it succeeds and A
negative integer if an error occurs.

Syntax 2 For writing data from an array of bytes
Description Writes data from an array into an open file.

Applies to FileDirect objects

Syntax Integer instancename.Write (data[], bytecount)

To Use

Write data to an OLE stream object Syntax 1

Write data into an array Syntax 2

Write data into a blob Syntax 3

Argument Description

instancename Name of the instance of the FileDirect object

data[] An array of integers representing bytes of data

bytecount Integer for the number of bytes that you want to write in the
open file

Write

1036 PocketBuilder

Return value Integer. Returns 1 for success and a negative number for any error.

Usage Use this function to write to a file that you open with the FileDirect object in
write mode. The FileDirect object supports only the synchronous style of file
input; further file-related commands cannot be called until after the Write
function is fully processed or an error in writing to the file is caught.

Examples The following example calls the FileDirect user object nvo_fileDirect to open
a file, write some data, and close the file:

Integer li_ret, li_AmountRead, li_data []
li_ret = nvo_fileDirect.Open ("COM8:", stgReadWrite!)
li_ret = nvo_fileDirect.Write (li_data[], 100)
li_ret = nvo_fileDirect.Close ()

See also Read

Syntax 3 For writing data from a blob
Description Writes data from a blob to an open file.

Applies to FileDirect objects

Syntax Integer instancename.Write (bdata, bytecount)

Return value Integer. Returns 1 for success and a negative number for any error.

Usage Use this function to write to a file that you open with the FileDirect object in
write mode. The FileDirect object supports only the synchronous style of file
input; further file-related commands cannot be called until after the Write
function is successfully processed or until an error in writing to the file is
caught.

Argument Description

instancename Name of the instance of the FileDirect object

bdata A blob variable holding the data that you write to a file

bytescount Integer for the number of bytes that you want to write to the
open file

Chapter 10 PowerScript Functions

PowerScript Reference 1037

Examples The following example calls the FileDirect user object nvo_fileDirect to open
a file, write some data, and close the file:

Integer li_ret, li_AmountRead
Blob lb_data
li_ret = nvo_fileDirect.Open ("MyDoc.txt", stgRead!)
li_ret = nvo_fileDirect.Write (lb_data, 100)
li_ret = nvo_fileDirect.Close ()

See also Open
Read

Year
Description Determines the year of a date value.

Syntax Year (date)

Return value Integer. Returns an integer whose value is a 4-digit year adapted from the year
portion of date if it succeeds and 1900 if an error occurs. If date is null, Year
returns null.

When you convert a string that has a two-digit year to a date, then
PocketBuilder chooses the century, as follows. If the year is between 00 to 49,
PocketBuilder assumes 20 as the first two digits; if it is between 50 and 99,
PocketBuilder assumes 19.

Usage PocketBuilder handles years from 1000 to 3000 inclusive.

If your data includes date before 1950, such as birth dates, always specify a
4-digit year so that Year and other PocketBuilder functions, such as Sort,
interpret the date as intended.

Argument Description

date The date from which you want the year

Yield

1038 PocketBuilder

Windows settings
To make sure you get correct return values for the year, you must verify that
yyyy is the Short Date Style for year in the Regional Settings of the user’s
Control Panel. Your program can check this with the RegistryGet function.

If the setting is not correct, you can ask the user to change it manually or have
the application change it (by calling the RegistrySet function). The user may
need to reboot after the setting is changed.

Examples This statement returns 1995:

Year(1995-01-31)

See also Day
Month
Year method for DataWindows in the DataWindow Reference

Yield
Description Yields control to other graphic objects, including objects that are not

PocketBuilder objects. Yield checks the message queue and if there are
messages in the queue, it pulls them from the queue.

Syntax Yield ()

Return value Boolean. Returns true if it pulls messages from the message queue and false if
there are no messages.

Usage Include Yield within a loop so that other processes can happen. For example,
use Yield to allow end users to interrupt a loop. By yielding control, you allow
the user time to click on a cancel button in another window. Then code in the
loop can check whether a global variable’s status has changed. You can also use
Yield in a loop in which you are waiting for something to finish so that other
processing can take place, in either your or some other application.

Chapter 10 PowerScript Functions

PowerScript Reference 1039

Using other applications while retrieving data
Although the user cannot do other activities in a PocketBuilder application
while retrieving data, you can allow them to use other applications on their
system. Put Yield in the RetrieveRow event so that other applications can run
during the retrieval.

Of course, Yield will make your PocketBuilder application run slower because
processing time will be shared with other applications.

Examples In this example, some code is processing a long task. A second window
includes a button that the user can click to interrupt the loop by setting a shared
boolean variable sb_interrupt. When the user clicks the button, its Clicked
script sets sb_interrupt, shown here:

sb_interrupt = TRUE

The script that is doing the processing checks the shared variable sb_interrupt
and interrupts the processing if it is true. The Yield function allows a break in
the processing so the user has the opportunity to click the button:

integer n
// sb_interrupt is a shared variable.
sb_interrupt = FALSE

FOR n = 1 to 3000
 Yield()
 IF sb_interrupt THEN // var set in other script
 MessageBox("Debug","Interrupted!")
 sb_interrupt = FALSE
 EXIT
 ELSE
 ... // Some processing
 END IF
NEXT

In this example, this script doing some processing runs in one window while
users interact with controls in a second window. Without Yield, users could
click in the second window, but they would not see focus change or their
actions processed until the loop completed:

integer n

FOR n = 1 to 3000
 Yield()
 ... // Some processing
NEXT

Yield

1040 PocketBuilder

In this example, a script wants to open a DDE channel with Lotus Notes, whose
executable name is stored in the variable mailprogram. If the program is not
running, the script starts it and loops, waiting until the program’s startup is
finished and it can establish a DDE channel. The loop includes Yield, so that the
computer can spend time actually starting the other program:

time starttime
long hndl

SetPointer(HourGlass!)
//Try to establish a handle; SendMail is the topic.
hndl = OpenChannel("Notes","SendMail")

//If the program is not running, start it
IF hndl < 1 then
 Run(mailprogram, Minimized!)
 starttime = Now()

 // Wait up to 2 minutes for Notes to load
 // and the user to log on.
 DO
 //Yield control occasionally.
 Yield()
 //Is Notes active yet?
 hndl = OpenChannel("Notes","SendMail")
 // If Notes is active.
 IF hndl > 0 THEN EXIT
 LOOP Until SecondsAfter(StartTime,Now()) > 120

 // If 2 minutes pass without opening a channel
 IF hndl < 1 THEN
 MessageBox("Error", &
 "Can't start Notes.", StopSign!)
 SetPointer(Arrow!)
 RETURN
 END IF
END IF

PowerScript Reference 1041

-- (assignment shortcut) 116
- see dashes

Symbols
! (enumerated value) 28
& see ampersand
* (multiplication) 64
+ (addition) 64
++, += (assignment shortcuts) 116
/ (division) 64
// (comments) 4
/= (assignment shortcut) 116
; (SQL) 15
< (less than) 66
<= (less than or equal) 66
= (assignment) 38
= (relational) 66
> (greater than) 66
>= (greater than or equal) 66
? (dynamic SQL) 162, 163, 166
^ (exponentiation) 64
_Is_A function 630
_Narrow function 694
~ see tilde
’ see quotes

A
Abs function 292
absolute value 292
AcceptCall function 292
access levels

functions 56
group label 43
variables 40

ACos function 293
Activate event 174

Activate function 294
active window 747
Add function 295
AddCategory function 296
AddColumn function 298
AddData function 299
AddEntry function 301
AddItem function 302, 307
addition operator 64
AddLargePicture function 308
AddPicture function 309, 310
AddRecipient function 311
address keyword 1014
address, mail 670
AddSeries function 312
AddSmallPicture function 313
AddStatePicture function 314
AddToInfraredQueue function 315
AddToLibraryList function 316
AllowEdit property 868
AllowReceivingCalls function 317
ampersand (&) 15
ancestor

calling function or event 108
hierarchy 343
objects 77
return values from events 108
script, calling 116

AncestorReturnValue variable 108
AND operator 66
angle

calculating arccosine 293
calculating arcsine 320
calculating arctangent 321
calculating cosine 368
calculating sine 960
calculating tangent 987
converting to/from radians 743

ANSI, string conversion 462, 463, 994, 1000
Any datatype 24

Index

Index

1042 PocketBuilder

API and database handles 385
application

connecting to 364, 365
elapsed time 369
exporting object as syntax 652
handle 469, 577
listing objects 651
posting messages 753
recreating objects from syntax 652
restarting 826
retrieving arguments 362
running 837
server 970, 974
terminating 130
yielding to 1038

application name 970, 974
Application objects, SetTransPool function 953
Arabic functions

IsAllArabic 631
IsAnyArabic 632
IsArabic 632
IsArabicAndNumbers 633

arccosine 293
arcsine 320
arctangent 321
arguments

command line 362
for events 172
functions and events 99
hot link 969
server application 970

arithmetic operators 64
Arrange function 318
ArrangeOpen enumerated datatype 713
ArrangeSheets function 318
array functions

LowerBound 663
UpperBound 1027

arraylists 53
arrays

about 45
assigning values 51, 53, 114
chars and strings 72
copying 114
default values 48
errors 54

example 319
initializing 53
mailRecipient 665
passing as arguments 101
reading data into 798
stream 798, 1035
variable-size 50

arrow pointer 923
Asc function 319
ASCII values

converting characters to 319
of nonprinting characters 783

ASin function 320
assignment

arrays 48, 51, 53
overflow 70
shortcut operators 116
statements 113

asterisk in text patterns 675
ATan function 321
audio (beep) 322
Autoinstantiate setting 79
automation 883, 884
axis, graphs

categories 297, 334, 388, 603
inserting data 606

B
back quote 116
background color, graphs

data points 497, 894
series 557, 939

background layer of DataWindow 927
backslash in text patterns 675
backspace, specifying 7
bands, DataWindow, moving objects to 927
BAT file 837
batch applications 755
beam pointer 923
Beep function 322
BeginDrag event 175
BeginLabelEdit event 178
BeginPreview function 322
BeginRightDrag event 180

Index

PowerScript Reference 1043

BeginTransaction function 323
birth dates 1037
bitmaps

assigning to picture control 922
in rich text 624
printing 766
retrieving from clipboard 347

blob datatype 19
Blob function 324
blob functions

Blob 324
BlobEdit 324
BlobMid 326
Len 647, 648

BlobEdit function 324
BlobMid function 326
blobs

assigning to picture control 922
converting to string 324, 975
declaring 35
extracting values from 376, 380, 386, 627, 662,

800, 989
inserting data into 324
reading data into 799
reading streams into 798
selecting from database 153
updating 155
writing to stream 1035

boolean datatype 19
border

determining distance from 744, 745
printing 776, 779, 780

bottom layer of DataWindow 927
bound 663, 1027
brackets in text patterns 675
BuildModel function 327

C
C functions

decoding returned values 628, 629
passing values to 661

CALL statement
about 116
not using 172

Cancel button 681
Cancel function 331
cancellation

allowing 1038
of edits 1021
of pipeline object 331
of printing 767

CanUndo function 332
capitalization

in category names 297, 603
in series names 312
lowercase 663
uppercase 1026

CaptureImage function 333
caret in text patterns 675
carriage return

in INI files 794
specifying 7

cascading opened windows 713
case sensitivity, comparisons 66
categories, graphs

adding data values to series 297, 300
adding to a series 297
clicked 697
counting 334
deleting 388, 821
identifying 335, 336
importing data 587, 590, 594
InsertCategory function 297
inserting 603
new 296

CategoryCount function 334
CategoryName function 335
Ceiling function 336
century 1037
ChangeDirectory function 337
ChangeMenu function 338
channel, DDE 355, 713
char datatype

about 19
array 72
converting to string 72

Char function 338
character array 1035
characters

array 798

Index

1044 PocketBuilder

changing capitalization 663, 1026
converting to ASCII values 319
extracting 338, 683
mask 914
matching 674
returning rightmost 832, 833, 834
selected 860, 863
selecting 871

Check function 339
Checked property 1020
child windows

obtaining parent 738
opening 731

CHOOSE CASE statement 117
ChooseColor function 340
class

contrasted with object 74
of object 343
OLE 604

class hierarchy 27
class user objects 76
ClassDefinition objects, FindMatchingFunction 454
ClassList function 341
ClassName function 343
Clear function 344, 345
clearing text 345
ClearRecurrencePattern function 346
Clicked event 181
clipboard

contents as replacement text 819
copying 366
cutting 372
importing data from 587
pasting and linking 741
pasting from 740
retrieving and replacing contents 347

Clipboard function 347
CLOSE Cursor statement 141
Close event 188, 350, 826
Close function 350, 351
CLOSE Procedure statement 141
CloseChannel function 355
CloseQuery event 189, 351
CloseTab function 356
CloseUserObject function 357
CloseWithReturn function 358

closing
DDE channel 355
print job 768
windows 350

code
generating DataWindow 981
object 652
reusing 756

cold link 424, 552, 935
CollapseItem function 361
colors

and edit masks 914
data point 497, 823, 893
red, green, and blue components of 829
series 556, 939
supported 513
table of standard colors 830

ColumnClick event 190
columns

determining insertion point position 751
in list 605
pasting text into 740

COM file 837
command line, retrieving arguments 362
CommandParm function 362
commands

getting from DDE client 478
receiving form DDE application 825

comments
in library 649
using 4

COMMIT statement 142
CommitTransaction function 364
comparing

numbers 626, 677, 686
comparing strings 66
computer

beeping 322
reporting CPU time 369

concatenation operator 67
configuration settings

reading 792, 794
saving 930

CONNECT statement 143
Connection objects

ConnectToServer function 366

Index

PowerScript Reference 1045

CreateInstance function 371
DisconnectServer function 410

connections, to OLE object 364
ConnectToNewObject function 364
ConnectToNewRemoteObject function 364
ConnectToServer function 366
constants

assigning values 38
declaring 44
where to declare 31

Constructor event 191
ContextInformation objects

GetCompanyName function 479
GetFixesVersion function 523
GetHostObject function 528
GetMajorVersion function 537
GetMinorVersion function 540
GetName function 541
GetShortName function 562
GetVersionName function 576

ContextKeyword objects, GetContextKeywords
function 483

context-sensitive Help 957
continuation character 15
CONTINUE statement 119
continuous line style

setting for data points 896
setting for series 941

Control array 723, 725
control structures

CHOOSE CASE 117
DO...LOOP 124
FOR...NEXT 127
IF...THEN 130

controls
determining type 1018
dragging 413
focus of 524, 903
hiding 581, 691
moving 691
obtaining handle 577
redrawing 933
referencing 360
resizing 824
yielding 1038

conventions xxvii

coordinates
ListView items 546
of print cursor 790, 791
of print objects 767, 776, 779, 780

Copy function 366
copying

importing from clipboard 587
to clipboard 366

CopyRTF function 368
CORBACurrent, initializing 509, 511, 598
Cos function 368
cosine 368
count, of data points in a series 374
CPU

getting information about 513
time 369

Cpu function 369
CREATE statement 120, 747
CreateDirectory function 370
CreateInstance function 371
CreatePage function 372
cross mouse pointer 923
crosstabs, creating from source code 981
current

row and scrolling 852, 853
cursor

custom 924
displaying popup menus 747
print 763

cursors, database
closing 141
declaring 140, 143
opening 151

custom class user objects 79
Cut function 372
cutting, to clipboard 372

D
dash line style

about 896, 941
setting for series 941

dashes, prohibiting in variable names 5
DashesInIdentifiers option 5
data

Index

1046 PocketBuilder

adding to a graph series 299, 301
clearing 819
converting to type long 661
correcting pipeline 816
finding in DataWindow 443
from OLE server 490
getting DDE 494
importing 587
inserting into a blob 324
obtaining from control 487
receiving from DDE application 825
sending to DDE client 891
to OLE server 888
transferring 969
writing to file 440
writing to stream 1035

data expressions
Any datatype 26

data points
adding to a scatter graph 301
clicked 697
deleting 388
inserting 606
reporting appearance of 496
reporting explosion percent 495
resetting colors 823
setting style 893
value of 487, 503

database stored procedures 137
databases

canceling changes 151
commiting changes 142
connecting to 143
cursor, opening 151
deleting rows 146, 147
disconnecting from 147
fetching rows 149
handle 385
inserting rows 150
on restart 826
repairing 816
selecting rows 152
transactions 953
transferring data between 969
updating 154
updating cursored row 157

DataChange event 192
datatype checking and conversion functions

Asc 319
Char 338
Date 375
DateTime 379
Dec 386
Double 412
Integer 627
IsDate 633
IsNull 636
IsNumber 637
IsTime 639
Long 661
Real 800
String 974
Time 989

datatypes
about 19
assignment 70
blob 324
date 378
determining 343
effect of operators 69
enumerated 28
external functions 58
literals 20, 21, 22, 24, 70
mismatch when pasting 740
numeric 69
promotion 69
promotion for function arguments 98
real 800
setting to NULL 918
standard 19
string 974
system object 27
time 989
unknown 24
windows 698

DataWindow control
data expressions and Any datatype 26

DataWindow functions
CanUndo 332
CategoryCount 334
CategoryName 335
Clear 345

Index

PowerScript Reference 1047

Clipboard 347
Copy 366
Cut 372
DataCount 374
FindCategory 444
FindNext 457
FindSeries 457
GetData 487
GetDataPieExplode 495
GetDataStyle 496
GetSeriesStyle 556
LineCount 652
ObjectAtPointer 697
Paste 740
PasteRTF 741
Position 752
ReplaceText 818
ResetDataColors 823
Scroll 851
SelectedLength 860
SelectedLine 861
SelectedStart 863
SelectedText 864
SelectText 872
SeriesCount 880
SeriesName 881
SetDataPieExplode 891
SetDataStyle 893
SetPosition 927
SetSeriesStyle 938
TextLine 988
Undo 1021

DataWindow object
creating from SELECT statement 981
deleting from libraries 650
exporting as syntax 652
listing 651
recreating from syntax 652

date datatype 20
Date function 375
date, day, and time functions

Day 381
DayName 382
DayNumber 383
DaysAfter 384
Hour 582

Minute 687
Month 690
Now 696
RelativeDate 810
RelativeTime 810
Second 854
SecondsAfter 855
Today 995
Year 1037

dates
checking string 633
converting to 376
DateTime datatype 376, 379
day of week 382, 383
determining interval 384
getting dynamic 506, 507
in blobs 376
obtaining current 995
obtaining day of month 381

DateTime datatype 20
DateTime function 379
Day function 381
DayName function 382
DayNumber function 383
DaysAfter function 384
dBase file, importing data from 590, 594
DBHandle function 385
DDE channel

closing 355
requesting data 552

DDE client functions
CloseChannel 355
ExecRemote 424
GetDataDDE 494
GetDataDDEOrigin 495
GetRemote 552
OpenChannel 713
RespondRemote 825
SetRemote 935
StartHotLink 969
StopHotLink 974

DDE server functions
GetCommandDDE 478
GetCommandDDEOrigin 478
GetDataDDE 494
GetDataDDEOrigin 495

Index

1048 PocketBuilder

RespondRemote 825
SetDataDDE 891
StartServerDDE 970
StopServerDDE 974

DDL, executing through dynamic SQL 161, 162
Deactivate event 193
DebugBreak function 386
Dec function 386
decimal datatype

about 20
converting to 386
declaring 35

declarations
access levels 40
arrays 45
constants 44
expressions as initial values 39
syntax 35
variables 31
where to declare 31

DECLARE Cursor statement 143
DECLARE Procedure statement 144
DecoderName function 387
definition, font for printing 770
DELETE statement 146
DELETE Where Current of Cursor statement 147
DeleteAllItems event 193
DeleteCategory function 388
DeleteColumn function 389
DeleteColumns function 389
DeleteData function 390
DeleteItem event 194
DeleteItem function 391, 394
DeleteLargePicture function 395
DeleteLargePictures function 396
DeletePicture function 396
DeletePictures function 397
DeleteSeries function 398
DeleteSmallPicture function 399
DeleteSmallPictures function 399
DeleteStatePicture function 400
DeleteStatePictures function 400
descendant

determining class of 343
opening user object 715, 717, 724, 725

opening window 702
return values from events 108

DESTROY statement
about 123
ending a mail session 667

DestroyModel function 401
Destructor event 195, 356, 357
detail bands, moving objects to 927
DeviceInfo function 402
DeviceNames function 403
diagonal fill pattern 898, 942
dialog

Insert Object 624
Open File 515
PasteSpecial 742
Save File 518

diamond fill pattern 898
dimension 663
dimension of array 1027
directory, of library 651
DirectoryExists function 405
DirList function 406
DirSelect function 407
Disable function 409
DisableCommit function 409
DISCONNECT statement 147
DisconnectObject function 410
DisconnectServer function 410
display format, applying to string 974
Display function 411
distributed applications

ConnectToServer function 366
DisconnectServer function 410
SharedObjectDirectory function 954
SharedObjectGet function 954
SharedObjectRegister function 954, 955

division 687
division operator 64, 65
DLL files

executing functions from 60
DLLs for external functions 56
dollar sign in text patterns 675
dot notation

about 34
instance variables 33
structures 73

Index

PowerScript Reference 1049

dotted line style
setting for data points 896
setting for series 941

double colon 116
double datatype 21
Double function 412
DoubleClicked event 196
DoubleParm property 719, 721, 728, 730
DoVerb function 413
Drag function 413
DragDrop event 200
DragEnter event 205
DraggedObject function 415
dragging, TreeView items 901
DragLeave event 206
DragObject functions

ClassName 343
Drag 413
Hide 581
Move 691
PointerX 744
PointerY 745
PostEvent 754
Print 761
Resize 824
SetFocus 903
SetPosition 925
SetRedraw 933
Show 955
TriggerEvent 1013
TypeOf 1018

DragWithin event 207
Draw function 416
drawing objects

and SetFocus function 904
posting events 755
setting color of 830

DrawObject functions
ClassName 343
Hide 581
Move 691
Print 761
Resize 824
Show 955
TypeOf 1018

DropCall function 417
DropDownListBox control, deleting text 345
DropDownListBox functions

AddItem 303
Clear 345
Copy 366
Cut 372
DeleteItem 391
DirList 406
DirSelect 407
DraggedObject 415
FindItem 448
InsertItem 609
Paste 740
Position 752
Post 753
ReplaceText 818
Reset 820
SelectedLength 860
SelectedStart 863
SelectedText 864
SelectItem 866
SelectText 872
Text 987
TotalItems 999

DropDownPictureListBox functions
AddItem 304
AddPicture 309
Clear 345
Copy 366
Cut 372
DeletePicture 396
DeletePictures 397
FindItem 448
InsertItem 611
Paste 740
Position 752
ReplaceText 818
SelectedLength 860
SelectedStart 863
SelectedText 864
SelectItem 866
SelectText 872
Text 987
TotalItems 999

DWObjects, OLE functions 294, 366, 413, 1026

Index

1050 PocketBuilder

dynamic calls
about 92
errors 94

dynamic libraries 316, 912
dynamic library (DLL) 969
dynamic SQL

about 157
considerations 159
DynamicDescriptionArea 159
DynamicStagingArea 159
Format 1 161
Format 2 162
Format 3 163
Format 4 165
formats listed 158
NULL values 162, 163
ordering statements 160
preparing DynamicStagingArea 160
statements 158

dynamic SQL functions
GetDynamicDate 506
GetDynamicDateTime 507
GetDynamicNumber 507
GetDynamicString 508
GetDynamicTime 508
SetDynamicParm 901

DynamicDescriptionArea
about 159
properties 167

DynamicStagingArea
about 159
preparing 160

E
edit control

counting lines in 652
deleting text from 345
determining insertion point position 751
inserting clipboard contents 348
replacing text 818
selected text 860, 863

EditLabel function 370, 418
EditMask functions

CanUndo 332

Clear 345
Copy 366
Cut 372
GetData 489
LineCount 652
LineLength 654
Paste 740
Position 752
ReplaceText 818
Scroll 851
SelectedLength 860
SelectedLine 861
SelectedStart 863
SelectedText 864
SelectText 872
SetMask 913
TextLine 988
Undo 1021

embedded SQL 137
Enable function 419
EnableCommit function 420
Enabled property 581, 933
EnableDecoder function 421
EndLabelEdit event 210
EndPreview function 422
EntryList function 423
enumerated datatypes 28
envelope, mail message header 669
environment, getting information about 513
error checking

cascaded calls 104
compiling scripts 93

Error DataWindow 816
Error event 212
error handling

after SQL statements 139
calling functions or events 94, 96

error objects, creating 120
errors, during execution 65
escape sequences 783
events

about 85, 171
adding to queue 754
ancestor 108
and hidden objects 581
and print jobs 768

Index

PowerScript Reference 1051

arguments 99, 172
cascaded calls 103, 106
defined 86
errors when calling 94
extending 99
finding 89
overriding 99
posting 90, 104, 985
return codes 172
return values 103, 172
similarities to functions 87
static and dynamic 91
system 86, 171
triggering 90, 172, 986, 1013
user-defined 171, 173

exclamation point icon 681
ExecRemote function 424
executable

returning application handle 577
running 837

EXECUTE statement 148, 901
execution errors 93
EXIT statement 126
Exp function 425
ExpandAll function 425
ExpandItem function 426
exponent 425
exponentiation operator 64
expressions

Any datatype 25
checking for NULL 636
datatype promotion 69
datatypes 69
DataWindows and Any datatype 26
in declaration 39
literals 70
operators and datatypes 69

external functions 54
ExternalException event 214

F
Fact function 427
FARPrecedence function 428
FETCH statement 149

file functions
FileClose 429
FileDelete 430
FileExists 431
FileLength 432
FileOpen 434
FileRead 436
FileSeek 439
FileWrite 440
GetFileOpenName 515
GetFileSaveName 518

FileClose function 429
FileCopy function 429
FileDelete function 430
FileExists event 214
FileExists function 431
FileLength function 432
FileMove function 433
FileOpen function 434
FileRead function 436
files

importing data from 590
linking 656
security and sharing violation 432

FileSeek function 439
FileWrite function 440
Fill function

about 442
and printing 442

FillPattern 499, 897, 942
FillW function 442, 443
filtering filenames 515, 518
Find function 443
FindCategory function 444
FindClassDefinition function 445
FindFunctionDefinition function 446
FindItem function 447
FindMatchingFunction function 454
FindNext function 457
FindSeries function 457
FindTypeDefinition function 458
flicker 933
Flush function 461
focus

and line length 654
finding control with 524

Index

1052 PocketBuilder

selected text 861, 863, 865, 872
setting 903

FocusToPreviousInstance function 462
folder 651
fonts

and string length when printing 789
defining for printing 770
FontFamily enumerated datatype 770
FontPitch enumerated datatype 770
names and sizes 771
setting 784
when printing 763
when printing DataWindow controls 769

footer, moving objects to 927
foreground color

data points 497, 894
series 557, 939

foreground layer of DataWindow 927
Form presentation style 981
formats, applying to strings 975
formfeed, specifying 7
frame window 747
FromAnsi function 462
FromUnicode function 463
function object

exporting as syntax 652
listing 651
re-creating from syntax 652

functions
about 85
access level for external 56
ancestor 108
arguments 99
calling global and system 105
cascaded calls 103, 106
case sensitivity 105
chars as arguments 72
DLLs 56
errors when calling 94
external 54
external datatypes 58
external, defined 86
external, mail 666
external, reporting database handle 385
finding 88
overloading 97

overriding 97
posting 90, 104
return values 102
similarities to events 87
static and dynamic 91
system, defined 86
triggering 90
type promotion 98
user-defined 86

G
garbage collection 78, 121, 123
GarbageCollect function 465
GarbageCollectGetTimeLimit function 465
GarbageCollectSetTimeLimit function 466
GetActiveSheet function 467
GetAlignment function 467
GetAllowedImageAttributes function 467
GetApplication function 469
GetAppointment function 469
GetAppointmentFromOID function 471
GetAppointments function 472
GetArgElement function 473
GetAsBitmap function 474
GetAutomationNativePointer function 474
GetCertificateLabel function 475
GetChildrenList function 475
GetColumn function 477
GetCommandDDE function 478
GetCommandDDEOrigin function 478
GetCompanyName function 479
GetContact function 480
GetContactFromOID function 481
GetContacts function 481
GetContextKeywords function 483
GetContextService function 484
GetCredentialAttribute function 486
GetCurrentDirectory function 486
GetData function 487
GetDataAsBitmap function 490
GetDataAsInk function 491
GetDataAsRTF function 492
GetDataAsText function 493
GetDataDDE function 494

Index

PowerScript Reference 1053

GetDataDDEOrigin function 495
GetDataPieExplode function 495
GetDataStyle function 496
GetDataValue function 503
GetDeskRect function 505
GetDisplayZoom function 506
GetDynamicDate 167
GetDynamicDate function 506
GetDynamicDateTime 167
GetDynamicDateTime function 507
GetDynamicNumber 167
GetDynamicNumber function 507
GetDynamicString 167
GetDynamicString function 508
GetDynamicTime 167
GetDynamicTime function 508
GetEnabledDecoders function 508
GetEntry function 509, 510, 511, 512
GetEnvironment function 513
GetFileOpenName function 515
GetFileSaveName function 518
GetFirstSheet function 520
GetFix function 521
GetFixesVersion function 523
GetFocus event 215
GetFocus function 524
GetFolder function 525
GetGlobalProperty function 526
GetHeading function 526
GetHostObject function 528
GetItem function 529, 532
GetItemAtPointer function 533
GetItemPictureIndex function 534
GetItemState function 534
GetLastReturn function 536
GetLibraryList function 536
GetMajorVersion function 537
GetMessageStatus function 539
GetMinorVersion function 540
GetName function 541
GetNativePointer function 543
GetNextSheet function 543
GetOption function 543
GetOrigin function 546
GetParagraphSetting function 548
GetParent function 548

GetPin function 550
GetRecipients function 550
GetRecordSet function 551
GetRecurrence function 551
GetRemote function 552
GetSatellitesInView function 553, 555, 937
GetSeriesStyle function 556
GetShortName function 562
GetSIPRect function 563
GetSIPType function 564
GetSpecialFolder function 566
GetStatus function 568
GetSupportedDecoders function 568
GetTask function 569
GetTaskFromOID function 570
GetTasks function 571
GetToolbar function 573
GetToolbarPos function 573, 950
GetTransactionName function 574
GetURL function 575
GetVersionName function 576
global functions

calling 105
defined 86

global scope operator 33
global variables

about 32
scope operator 33

GOTO statement 129
Graph functions

AddCategory 296
AddData 299
AddSeries 312
CategoryCount 334
CategoryName 335
Clipboard 349
DataCount 374
DeleteCategory 388
DeleteData 390
DeleteSeries 398
FindCategory 444
FindSeries 457
GetData 487
GetDataPieExplode 495
GetDataStyle 496
GetSeriesStyle 556

Index

1054 PocketBuilder

ImportClipboard 587
ImportFile 590
ImportString 594
InsertCategory 603
InsertData 606
InsertSeries 624
ModifyData 688
Reset 820
SaveAs 839
SeriesCount 880
SeriesName 881
SetDataPieExplode 891
SetDataStyle 893
SetSeriesStyle 938

graphics, printing 766
graphs

categories 300
overlay 561
series 312

grColorType enumerated datatype 497
grDataType enumerated datatype 488, 503
Grid presentation style 981
Group presentation style 981
grResetType enumerated datatype 821

H
HALT statement 130
handle

database 385
DDE 713
mailSession object 666, 875
validating 641

Handle function 577
HasOption function 579
header band, moving objects to 927
Hebrew functions

IsAllHebrew 631
IsAnyHebrew 632
IsHebrew 634
IsHebrewAndNumbers 635

height
object 824
workspace 1031

Help event 216

hidden objects 955
Hide event 216
Hide function 581
hierarchies

child items in a list 616, 619, 621
items in TreeView 361, 426
sorting 966
sorting children 964
system 27, 343

high word of long 628
highlighting

items in lists 866, 970
scrolling 853
setting 948

horizontal fill pattern 898
horizontal scrollbar for lists 303
horizontal scrolling, when adding items to lists 303
host variables in SQL 138
hot link

determining origin of 495
establishing 969
terminating 974

HotLinkAlarm event 217
Hour function 582
hourglass pointer 923
HyperlinkToURL function 583
hyphens, prohibiting in variable names 5

I
Icon function 584
icons

arranging in ListView 318
in message box 681

identifier names, rules for 5
Idle event 218
IDs for events 171
IF...THEN statement

about 130
multiline 131
single-line 130

image
assigning to picture control 922
retrieving from clipboard 348

ImpersonateClient function 586

Index

PowerScript Reference 1055

ImportClipboard function 587
ImportFile function 590
importing, data 590, 594
ImportString function 594
inbox

deleting messages from 665
reading mail messages 669
retrieving message IDs from 666
saving messages in 671

IncomingCallList function 597
IncomingMessage event 218
index

highlight state of 948, 970
obtaining top 997
of listbox item 858, 868

indicator variables in SQL 138
Inet objects

GetURL function 575
HyperlinkToURL function 583
PostURL function 757

Information icon 681
inheritance 77

back quote 116
double colon 116
PocketBuilder objects 27

INI file
reading 792, 794
writing values to 930

Init function 598, 599
input fields in rich text 599, 600, 601
InputFieldChangeData function 599
InputFieldCurrentName function 600
InputFieldDeleteCurrent function 600
InputFieldGetData function 600
InputFieldInsert function 601
InputFieldLocate function 601
InputFieldSelected event 220
Insert Object dialog 624
INSERT statement 150
InsertCategory function 603
InsertClass function 604
InsertColumn function 605
InsertData function 606
InsertFile function 609
inserting strings 816, 818
insertion point

character position 858
in editable controls 654
in text line 861, 988
when pasting from clipboard 740

InsertItem event 220
InsertItem function 609, 616
InsertItemFirst function 616
InsertItemLast function 619
InsertItemSort function 621
InsertObject function 624
InsertPicture function 624
InsertSeries function 624
instance variables

about 32
class of 343
dot notation 33
initialized 40

instances
checking if valid 641
defined 74
of user object 714, 718, 722, 726

Int function 626
integer

combining into long value 661
converting to 627
converting to char 338
obtaining from blob 627

integer datatype 21
Integer function 627
Intel 513
InternetData function 628
InternetRequest objects, InternetData function 628
interpersonal messages 666
interprocess messages 666
interval 993
IntHigh function 628
IntLow function 629
InvokePBFunction function 630
Is_A (_Is_A) function 630
IsAlive function 631
IsAllArabic function 631
IsAllHebrew function 631
IsAnyArabic function 632
IsAnyHebrew function 632
IsArabic function 632
IsArabicAndNumbers function 633

Index

1056 PocketBuilder

IsCallerInRole function 633
IsDate function 633
IsHebrew function 634
IsHebrewAndNumbers function 635
IsImpersonating function 635
IsInTransaction function 635
IsNull function 636
IsNumber function 627, 637
IsPreview function 638
IsReadyToCapture function 601
IsSecurityEnabled function 638
IsSIPVisible function 638
IsTime function 639
IsTransactionAborted function 640
IsValid function

about 641
and Handle function 577
description 641
getting active sheet 467
getting open sheets 520, 543

ItemActivate event 221
ItemChanging event 223
ItemCollapsed event 224
ItemCollapsing event 225
ItemExpanded event 226
ItemExpanding event 227
ItemPopulate event 228
items

adding to lists 302, 609
deleting from list 391, 820
determining number of selected 999
determining total number of 999
highlight state of 948, 970
index number of 858
linking 656
selecting 866
text of 859, 987
top 951, 997

J
JaguarORB, initializing 509, 511, 598

K
Key event 229
keyboard

determining key pressed 641
selecting text 367

KeyCode enumerated datatype
about 641
values 642

KeyDown function 642
keywords 9

L
Label presentation style 981
labels for GOTO 6
language for OLE automation 883, 884
LastPos function 642
Layered window 714
layering opened windows 713
layout 769
Left function 644, 645
LeftTrim function 645, 646
LeftW function 644, 645
Len function 647, 648
length

line 654
OLE stream 648
selected text 860
string or blob 647, 648

Length function 648
LibDirType enumerated datatype 651
LibExportType enumerated datatype 652
libraries

deleting objects from 651
pasting and linking object from 741
search path 316, 536, 912

Library functions
LibraryCreate 649
LibraryDelete 650
LibraryDirectory 651
LibraryDirectoryEx 651
LibraryExport 652
LibraryImport 652

LibraryCreate function 649
LibraryDelete function 650

Index

PowerScript Reference 1057

LibraryDirectory function 651
LibraryDirectoryEx function 651
LibraryExport function 652
LibraryImport function 652
limit, numeric 336
line spacing

setting 785
when printing text 763

LineCount function 652
LineDown event 231
LineLeft event 232
LineLength function 654
LineList function 655
LineRight event 233
lines

and SetFocus function 904
color for data points 497
counting number of 652
determining length 654
graphs, color for data points 894
graphs, color for series 557, 939
graphs, style for data points 499, 895
graphs, style for series 558, 559, 941
printing 773, 787
scrolling 851
selected text 861
spacing in rich text 567
text 988
width 499

LineUp event 234
linking

clipboard contents 741, 742
establishing 656

LinkTo function 656
ListBox functions

AddItem 303
DeleteItem 391
DirList 406
DirSelect 407
FindItem 448
InsertItem 609
Reset 820
SelectedIndex 858
SelectedItem 859
SelectItem 866
SetState 948

SetTop 951
State 970
Text 987
Top 997
TotalItems 999
TotalSelected 999

lists
adding items 609
adding new item 302
deleting items from 820
horizontal scrollbar 303
of files in listbox 406
of objects in libraries 651
sorted 304

ListView control, columns 907
ListView functions

AddColumn 298
AddItem 305, 306
AddLargePicture 308
AddSmallPicture 313
AddStatePicture 314
Arrange 318
DeleteColumn 389
DeleteColumns 389
DeleteItem 392
DeleteLargePicture 395
DeleteLargePictures 396
DeleteSmallPicture 399
DeleteSmallPictures 399
DeleteStatePicture 400
DeleteStatePictures 400
EditLabel 418
FindItem 449, 450
GetColumn 477
GetItem 530
GetOrigin 546
InsertColumn 605
InsertItem 612
ListView 998
SelectedIndex 858
SetItem 906
SetOverlayPicture 920
Sort 965
TotalItems 999
TotalSelected 999

Index

1058 PocketBuilder

literals
datatypes of 70
specifying 20, 21, 22, 24

local variables 32
Log function

about 658
inverse 657
natural logarithm 657

logarithms 657, 660
logical operators 66
Login function 658
Logout function 659
LogTen function

about 660
inverse 660

long datatype
about 21
converting to 661
returning high word 628
returning low word 629

Long function 661
LongParm

posting events 755
specifying values for 661
triggering events 1014

LOOP 124
LOOP, in DO...LOOP statement 125
loops

about 124
iterative 127
leaving 126
skipping current iteration 119
yielding within 1038

LoseFocus event 235, 682
low word of long 629
Lower function 663
LowerBound function 663
lowercase 663

M
mail functions

mailDeleteMessage 665
mailGetMessages 666
mailHandle 666

mailLogoff 667
mailLogon 668
mailReadMessage 669
mailRecipientDetails 670
mailResolveRecipient 670
mailReturnCode 668
mailSaveMessage 671
mailSend 671

mailAddress function 665
mailDeleteMessage function 665
mailHandle function 666
mailLogoff function 667
mailLogon function 668
mailLogonOption enumerated datatype 668
mailReadMessage function 669
mailRecipientDetails function 670
mailResolveRecipient function 670
mailReturnCode function 668
mailSaveMessage function 671
mailSend function 671
main window 691
MakeCall function 673
MAPI 666
margins 763, 922
masks

applying to strings 975
matching 674
reporting length of 654
setting 913

Match function 674
Max function 677
MaxFARRequested function 678
MaxFRRRequested function 679
maximum value below a limit 626
maximum value of two numbers 677
MDI Client (MDI_1) functions

ClassName 343
Hide 581
Print 761
Resize 824
SetRedraw 933
Show 956
TypeOf 1018

MDI frame functions
ArrangeSheets 319
GetActiveSheet 467

Index

PowerScript Reference 1059

GetFirstSheet 520
GetNextSheet 543
GetToolbar 573
GetToolbarPos 573, 950
OpenSheet 713
OpenSheetWithParm 714
Print 761
SetMicroHelp 917
SetToolbar 950

measurement 1022
member, OLE 680, 681
MemberDelete function 680
MemberExists function 680
MemberRename function 681
memory

allocation for arrays 50
and variable-sized arrays 1027
releasing after mail session 667

Menu functions
Check 339
ClassName 343
Disable 409
Enable 419
PopMenu 746
Show 955
TriggerEvent 1013
TypeOf 1018
Uncheck 1020

Menu objects
exporting as syntax 652
listing 651
recreating from syntax 652

menus
Checked property 339
creating object 120
displaying 746

message ID array 666
Message object

accessing parameters 731
and TriggerEvent function 1014
close return value 358
creating 120
determining type 1020
extracting strings from 976, 979
open sheet parameters 714
PowerObjectParm property 359

properties 719, 721, 728, 730
specifying values for 661

MessageBox function 681, 775
messages

deleting 665
posting 753
saving 671
sending to a window 875

metacharacters 674, 675
MicroHelp 917
Microsoft Windows

and DDE 552
and timers 993
calling Winhelp 957
defining fonts for printing 771
displaying Save File response window 518
events and messages in 756
getting filenames 515
getting information about 513
message numbers 875
obtaining handle 577
returned messages 628, 629
RightToLeft version 631, 632, 633, 634, 635, 828

Mid function 683
MidW function 683, 685
Min function 686
minimum value

above a limit 336
of two numbers 686

Minute function 687
miscellaneous functions

IsValid 641
KeyDown 642
MessageBox 743
PixelsToUnits 743
RGB 829
SetNull 918
SetPointer 923
TypeOf 1018
UnitsToPixels 1022

Mod function 687
Modified event 237
ModifyData function 688
modulus 687
monitor 513
Month function 690

Index

1060 PocketBuilder

month, obtaining the day of 381
mouse

selecting text 367
setting shape of pointer 923

MouseDown event 239
MouseMove event 241
MouseUp event 244
Move function 691
Moved event 247
multidimensional arrays 48, 51
MultiLineEdit functions

CanUndo 332
Clear 345
Copy 366
Cut 372
LineCount 652
LineLength 654
Paste 740
Position 752
ReplaceText 818
Scroll 851
SelectedLength 860
SelectedLine 861
SelectedStart 863
SelectedText 864
SelectText 872
TextLine 988
Undo 1021

multiplication operator 64, 65
MultiSelect property

highlighted state 948, 974
selecting items 858, 859, 868

N
names, rules for 5
naming conventions 37
Narrow (_Narrow) function 694
negative numbers 958
newline, specifying 7
NEXT, in FOR...NEXTstatement 127
NextActivity function 694
NOT operator 66
Now function 696
null object references 719, 721, 728, 730, 733, 735

NULL values
about 8
checking 636
dynamic SQL 163
in boolean expressions 66
setting variables to 918
testing for 8

numbers
category 336
checking string 637
comparing 677, 686
converting char 339, 376, 386
determining maximum 336
determining sign of 958
getting dynamic 507
logarithm of 657, 660
multiplying by pi 742
of day of week 383
of lines, counting 652
random 796
returning remainder 687
rounding 835
truncating 1017

numeric functions
Abs 292
ACos 293
ASin 320
ATan 321
Ceiling 336
Cos 368
Exp 425
Fact 427
Int 626
Log 657
Max 677
Min 686
Mod 687
Pi 742
Rand 796
Randomize 796
Round 835
Sign 958
Sin 960
Sqrt 968
Tan 987
Truncate 1017

Index

PowerScript Reference 1061

N-Up presentation style 981

O
ObjectAtPointer function 697
objects

about 74
ancestor 77
assignment 80
changing position 927
creating instance 120
deleting from libraries 650
destroying instance 123
determining class of 343
determining type 1018
garbage collection 78, 123
general references 10
hiding 581, 691
inserting 604, 609, 624
instantiating 76
linking 656
loading 316, 912
moving 691
obtaining handle 577
parent object 548
passing as arguments 100
posting events 754
recreating 652
redrawing 933
reference handle 74
saving OLE 839
selecting 870
setting focus 904
triggering events 1013
under pointer 697

objects, Connection
ConnectToServer function 366
CreateInstance function 371
DisconnectServer function 410

objects, shared
SharedObjectDirectory function 954
SharedObjectGet function 954
SharedObjectRegister function 954
SharedObjectUnregister function 955

ObjectToString function 697

OffsetPos function 698
OK button 681
OLE DWObject functions

Activate 294
Copy 366
DoVerb 413
UpdateLinksDialog 1026

OLE expressions and Any datatype 26
OLEControl functions

Activate 294
Clear 345
Copy 366
Cut 372
DoVerb 413
GetData 490
GetNativePointer 543
InsertClass 604
InsertFile 609
InsertObject 624
LinkTo 656
Paste 740
PasteLink 741
PasteSpecial 742
ReleaseAutomationPointer 811
Save 839
SaveAs 841, 842
SelectObject 870
SetAutomationLocale 883
SetData 888
UpdateLinksDialog 1026

OLECustomControl functions
GetData 490
GetNativePointer 543
ReleaseAutomationPointer 811
SetAutomationLocale 883
SetData 888

OLEObject functions
ConnectNewToObject 364
ConnectToNewRemoteObject 364
ConnectToObject 365
ConnectToRemoteObject 365
DisconnectObject 410
GetAutomationNativePointer 474
ReleaseAutomationPointer 811
SetAutomationPointer 884
SetAutomationTimeout 884

Index

1062 PocketBuilder

OLEStorage functions
Clear 345
MemberDelete 680
MemberExists 680
MemberRename 681
SaveAs 842

OLEStream functions
Length 648
Read 797
Seek 856
Write 1035

OPEN Cursor statement 151
Open event 248, 826
Open function 698, 699, 704
OpenChannel function 713
OpenSheet function 713
OpenSheetWithParm 714
OpenTab function 714
OpenTabWithParm function 718
OpenUserObject function 722
OpenUserObjectWithParm function 726
OpenWithParm 731
operating system

information about 513
RightToLeft version 631, 632, 633, 634, 635, 828

operators
about 63
arithmetic 64
assignment shortcuts 113, 116
concatenation 67
effect on datatypes 69
logical 66
precedence 68
relational 66

OR operator 66
Original window 714
Other event 251
OutgoingCallList function 736
oval

and SetFocus function 904
printing 776

overflow on assignment 70
overlay 561, 944
overloading functions 97
overriding functions 97

P
page

printing 778
printing borders 776, 779, 780
size 763

PageCreated function 738
PageDown event 252
PageLeft event 253
PageRight event 254
PageUp event 255
paging functions

ScrollNextPage 852
ScrollPriorPage 853

paragraphs 922
parameters

command line 362
opening sheets with 714
opening tab pages with 718
opening user objects with 715, 717, 724, 725, 726
opening windows with 731
specifying for DynamicDescriptionArea 901

Parent pronoun 12
parent window

changing position relative to 691
obtaining 738
of open window 700, 731

parentheses in expressions 68
ParentWindow function 738
parsing strings 749, 751
password 669
Paste function 740
PasteLink function 741
PasteSpecial function 742
pasting

embedding or linking 742
from clipboard 740, 741

path
of library file 649
returning 515
saving files 518

pattern matching 674
PBL file

listing contents of 651
pbm_dwngraphcreate event 939
performance

and Yield function 1038

Index

PowerScript Reference 1063

Any datatype 27
dynamic function and event calls 93

period in text patterns 675
Pi function 742
Picture functions

ClassName 343
Drag 413
Draw 416
Hide 581
Move 691
PointerX 744
PointerY 745
PostEvent 754
Print 761
SetFocus 903
SetPicture 922
SetPosition 925
SetRedraw 933
Show 955
TriggerEvent 1013
TypeOf 1018

PictureListBox functions
AddItem 304
AddPicture 309
DeletePicture 396
DeletePictures 397
FindItem 448
InsertItem 611
SelectedItem 859
SelectItem 866
SetTop 951
State 970
Text 987
Top 997
TotalItems 999
TotalSelected 999

pictures
for TreeView items 911
in listboxes 309
in rich text 624
in TreeView controls 309
ListView controls 308, 313, 314
overlay in lists 920
TreeView controls 314

PictureSelected event 256
pie graphs 495, 891

PIF file 837
PipeEnd event 256
Pipeline functions

Cancel 331
Repair 816
Start 969

PipeMeter event 257
PipeStart event 257
pixels 743, 1022
PixelsToUnits function 743
PKD file 702
PKL file

creating 649
deleting 650
listing contents of 651

plus sign in text patterns 675
PocketBuilder, datatypes for external functions 58
point size 770
pointer

determining distance from edge 744
distance from top 745
file 439, 440
read/write 856
returning object under 697
setting shape 923

PointerX function 744
PointerY function 745
polymorphism for functions and events 91
PopMenu function 746
PopulateError function 748
popup windows

moving 691
obtaining parent 738
opening 731

Pos function 749, 751
position

changing 691
of insertion point 751
setting for control 925

Position function 751
positive numbers 958
Post function 753
PostEvent function 754
posting functions or events 90
PostURL function 757
PowerBuilder units 743, 1022

Index

1064 PocketBuilder

PowerObject base class 27, 75
PowerObject functions

ClassName 343
GetContextService 484
GetParent 548

PowerObjectParm
and CloseWithReturn function 359
determining type 1020
opening sheets with parameters 719, 721, 728, 730

PowerScript statements 113
precedence of numeric datatypes 69
precedence of operators 68
presentation styles 981
print cursor

getting coordinates of 790, 791
in print jobs 763

Print function 760
print functions

Print 760
PrintBitmap 766
PrintCancel 767
PrintClose 768
PrintDataWindow 769
PrintDefineFont 770
PrintOpen 774
PrintOval 776
PrintPage 778
PrintRect 779
PrintRoundRect 780
PrintScreen 782
PrintSend 783
PrintSetFont 784
PrintSetSpacing 785
PrintSetup 786
PrintText 787
PrintWidth 789
PrintX 790
PrintY 791

print job 774
PrintBitmap function 766
PrintCancel function 767
PrintClose function 768
PrintDataWindow function 769
PrintDefineFont function 770
printer setup 783

Printer Setup dialog box 786
PrintFooter event 258
PrintGetPrinter function 772
PrintGetPrinters function 772
PrintHeader event 258
PrintLine function 773
PrintOpen function

about 774
and message boxes 682

PrintOval function 776
PrintPage function 778
PrintRect function 779
PrintRoundRect function 780
PrintScreen function 782
PrintSend function 783
PrintSetFont function 784
PrintSetPrinter function 785
PrintSetSpacing function 785
PrintSetup function 786
PrintSetupPrinter function 786
PrintText function 787
PrintWidth function 789
PrintX function 790
PrintY function 791
private access

functions 56
variables and constants 41

PRIVATEREAD access modifier 41
PRIVATEWRITE access modifier 41
processor 513
profile files

reading 792, 794
writing to 929

ProfileClass objects, RoutineList function 836
ProfileInt function 792
ProfileLine objects, OutgoingCallList function 736
ProfileRoutine objects

IncomingCallList function 597
LineList function 655
OutgoingCallList function 736

ProfileString function 794
Profiling functions

BuildModel 327
ClassList 341
DestroyModel 401
RoutineList 836

Index

PowerScript Reference 1065

SetTraceFileName 952
SystemRoutine 983

pronouns
about 10
instance variables 34
Parent 12
Super 14
This 13

properties
and GetFocus function 524
font, for printing 770
getting and setting 469
setting width and height 824
window 700, 702

property expressions
Any datatype 26

PropertyChanged event 259
PropertyRequestEdit event 259
protected access

functions 56
variables and constants 41

PROTECTEDREAD access modifier 41
PROTECTEDWRITE access modifier 41
public access

functions 56
variables and constants 41

Q
question mark

dynamic SQL 162, 163, 166
icon in message box 681
in text patterns 675

quoted strings, continuing 15
quotes

nesting 22
rules for 23
specifying 7
with tilde 22

R
radians 743
Rand function 796

random numbers
initializing generator 796
obtaining 796

Randomize function 796
RButtonDown event 259
RButtonUp event 262
Read function 797
read-only arguments 100
real datatype 21
Real function 800
ReceiveFromInfrared function 802
recipient, mail 670
rectangle

and SetFocus function 904
printing 779, 781

references
and CloseWithReturn function 360
passing arguments by 100
passing parameters 719, 721, 728, 730, 733, 735

Registration database 606
RegistryDelete function 803
RegistryGet function 804
RegistryKeys function 805
RegistrySet function 807
RegistryValues function 809
relational operators 66
RelativeDate function 810
RelativeTime function 810
ReleaseAutomationNativePointer function 811
ReleaseNativePointer function 811
remainder 687
remote DDE application 825
remote procedure calls

declaring 61
defined 86

RemoteExec event 262
RemoteHotLink event 262
RemoteHotLinkStop event 263
RemoteRequest event 263, 891
RemoteSend event 264
Remove function 812, 813
RemoveDirectory function 814
RemoveRecipient function 815
Rename event 264
Repair function 816
repairing pipeline, canceling 331

Index

1066 PocketBuilder

Replace function 816, 818
ReplaceText function 818
report view for ListView 530
reserved words 9
Reset function 819
ResetArgElements function 822
ResetDataColors function 823
Resize event 265
Resize function 824
ResolveInitialReferences function 825
RespondRemote function 825
response windows

closing 358
moving 691

Restart function 826
ResumeTransaction function 826
RetrieveData function 827
retry button 681
RETURN statement 132
return values

about 102
event return codes 172
from ancestor events 108
from mail session 668
TriggerEvent function 1014

Reverse function 828
RevertToSelf function 829
RGB function 829
rich text

alignment 467, 883
copying with formatting 368, 741
data 599, 600, 601
determining insertion point position 753
editing header and footer 956
find again 457
finding text 443
formatting 548, 567, 572, 922
line spacing 948
preview 638
preview document 638, 760
printing 766
save file 843
selecting 873
selecting a line 874
selecting a word 874
selecting all 874

text color 572, 949
text settings 950

RichTextEdit functions
CanUndo 332
Clear 345
Copy 366
CopyRTF 368
Cut 372
Find 443
FindNext 457
GetAlignment 467
GetParagraphSetting 548
GetSpacing 567
GetTextColor 572
GetTextStyle 572
InputFieldChangeData 599
InputFieldCurrentName 600
InputFieldDeleteCurrent 600
InputFieldGetData 600
InputFieldInsert 601
InputFieldLocate 601
InsertPicture 624
IsPreview 638
LineCount 652
LineLength 654
Paste 740
PasteRTF 741
Position 753
Preview 760
Print 766
ReplaceText 818
SaveDocument 843
Scroll 851
ScrollNextPage 852
ScrollPriorPage 853
ScrollPriorRow 853
ScrollToRow 854
SelectedColumn 858
SelectedLength 860
SelectedLine 861
SelectedPage 862
SelectedStart 863
SelectedText 864
SelectText 873
SelectTextAll 874
SelectTextLine 874

Index

PowerScript Reference 1067

SelectTextWord 874
SetAlignment 883
SetParagraphSetting 922
SetSpacing 948
SetTextColor 949
SetTextStyle 950
ShowHeadFoot 956
Undo 1021

Right function 832
RightClicked event 266
RightDoubleClicked event 268
RightToLeft operating system 828
RightToLeft software 631, 632, 633, 634, 635
RightTrim function 833, 834
RightW function 833, 834
ROLLBACK statement 151
RollbackOnly function 834
RollbackTransaction function 834
Round function 835
RoutineList function 836
rows

correcting pipeline data 816
determining insertion point position 752
scrolling 852, 853, 854

rows, database
deleting 146, 147
fetching 149
inserting 150
updating 154
updating cursored row 157

RPC see remote procedure calls
Run function 837

S
Save As dialog box 841
Save event 269
Save File response window 518
Save function 839
SaveDocument function 843
SaveObject event 270
ScanAbort function 843
ScanCapture function 844
ScannedBitmap function 846
ScannedMinutiae function 847

ScannedQuality function 848
ScanNoWait function 848
ScanTriggered event 270
ScanWait function 850
scatter graphs

adding values to series 301
changing data point values 689
importing data 587, 590, 592, 594
inserting data from strings 596
obtaining data point values 488

scope operator 106
screen

changing position relative to 691
display 513
printing 782

scripts
stopping execution 826
terminating 132
triggering events 1013

Scroll function 851
ScrollHorizontal event 682
scrolling

ListBox 951
TreeView 902

scrolling functions
Scroll 851
ScrollNextPage 852
ScrollNextRow 852
ScrollPriorPage 853
ScrollPriorRow 853
ScrollToRow 854
Top 997

ScrollNextPage function 852
ScrollNextRow function 852
ScrollPriorPage function 853
ScrollPriorRow function 853
ScrollToRow function 854
ScrollVertical event 682
searching, rich text 443, 457
Second function 854
SecondsAfter function 855
Seek function 856, 857
SeekType enumerated datatype 856
SELECT statement 152
SELECTBLOB statement 153
Selected event 272

Index

1068 PocketBuilder

SelectedColumn function 858
SelectedIndex function 858
SelectedItem function 859
SelectedLength function 860
SelectedLine function 861
SelectedPage function 862
SelectedStart function 863
SelectedText function 864
selection, clearing in list 868
SelectionChanged event 273
SelectionChanging event 277
SelectionRange function 865
SelectItem function 866
SelectObject function 870
SelectText function

about 871
copying to clipboard 367

SelectTextAll function 874
SelectTextLine function 874
SelectTextWord function 874
Send function 875, 877, 878
sender 669
SendMessage function 875
SendToInfrared function 879
series, graphs

adding to 312
adding values to 299
clicked 697
counting 880
data points 374, 390, 488, 503, 688, 823
deleting 398, 821
finding number of 457
importing 587, 590, 594
inserting 624
inserting data 606
obtaining name 881
reporting appearance of 556
setting style 938

SeriesCount function 880
SeriesName function 881
server application

activating 870
closing DDE channel 358
connecting to 364, 365
pasting and linking 741
providing data 552

sending data to 935
sending to DDE client 891
stopping 974

SetAbort function 882
SetAlignment function 883
SetArgElement function 883
SetAutomationPointer function 884
SetAutomationTimeout function 884
SetCaptureImageAttributes function 884
SetComplete function 887
SetData function 888
SetDataAsInk function 888
SetDataAsRTF function 889
SetDataAsText function 890
SetDataDDE function 891
SetDataPieExplode function 891
SetDataStyle function 893
SetDisplayZoom function 899
SetDropHighlight function 901
SetDynamicParm function 901
SetEndOfFile function 902
SetFirstVisible function 902
SetFocus function 903
SetGlobalProperty function 904
SetHold function 904
SetItem function 906
SetItemPictureIndex function 909
SetItemState function 910
SetLevelPictures function 911
SetLibraryList function 912
SetMask function 913
SetMessageSink function 916
SetMicroHelp function 917
SetMute function 917
SetNull function 918
SetOption function 919
SetOverlayPicture function 920
SetPicture function 922
SetPointer function 923
SetPosition function 925
SetPreviewImageAttributes function 928
SetProfileString function 929
SetRange function 931
SetRecordSet function 932
SetRecurrence function 932
SetRedraw function 933

Index

PowerScript Reference 1069

SetRegistrationCode function 934
SetRemote function 935
SetResultSet function 936
SetRingTone function 936
SetSeriesStyle function 938
SetSIPPreferredState function 946
SetSIPType function 947
SetState function 948
SetToolbar function 950
SetTop function 951
SetTraceFileName function 952
SetTransPool function 953
setup printer 783
shade

data points 497, 894
series 557, 939

shapes
mouse pointer 923
printing 776, 779, 781

shared objects
SharedObjectDirectory function 954
SharedObjectGet function 954
SharedObjectRegister function 954
SharedObjectUnregister function 955

shared variables
about 32
initialized 39

SharedObjectDirectory function 954
SharedObjectGet function 954
SharedObjectRegister function 954
SharedObjectUnregister function 955
sheets

arranging 318
getting active 467
getting first open 520
getting next open 543
obtaining parent 738
opening 713, 714
toolbars 573, 950

Show event 279
Show function 955
ShowHeadFoot function 956
ShowHelp function 957
ShowPopupHelp function 957
Sign function 958
SignalError function 958

Sin function 960
sine 960
SingleLineEdit functions

CanUndo 332
Clear 345
Copy 366
Cut 372
Move 691
Paste 740
Position 752
ReplaceText 818
SelectedLength 860
SelectedStart 863
SelectedText 864
SelectText 872
Undo 1021

SIP functions 505, 563, 564, 638, 946, 947
SipDown event 281
SipUp event 280
size

changing 824
of screen 513
of string or blob 647, 648

SkipRecurrence function 960
Sleep function 961
solid fill pattern 898
Sort event 283
Sort function 964
sort order

and GetCalc function 577
when inserting items into lists 610

SortAll function 966
sounds (beep) 322
source database 969
Space function 967
spaces

deleting leading 645, 646
deleting trailing 833, 834
inserting in a string 967
removing from strings 1015, 1016

special ASCII characters in strings 6
SQL statements

about 138
CLOSE Cursor 141
CLOSE Procedure 141
COMMIT 142

Index

1070 PocketBuilder

CONNECT 143
continuing 15
DECLARE Procedure 144
DISCONNECT 147
error handling 139
EXECUTE 148, 901
FETCH 149
INSERT 150
OPEN 901
OPEN Cursor 151
painting 140
ROLLBACK 151
SELECT 152
SELECTBLOB 153
UPDATE 154
UPDATE Where Current of Cursor 157
UPDATEBLOB 155

SQLCode property 139
SQLDBCode property 139
SQLErrText property 139
Sqrt function 968
square fill pattern 898
square root 968
Start function

about 968
server application 365

StartHotLink function 969
StartServerDDE function 970
state

of listbox items 970
setting highlighted 948

State function 970
statements, PowerScript

assignment 113
CALL 116
CHOOSE CASE 117
CONTINUE 119
CREATE 120
DESTROY 123
DO...LOOP 124
EXIT 126
FOR...NEXT 127
GOTO 129
HALT 130
IF...THEN 130
listed 113

RETURN 132
separating 16

static calls 92
StaticText control, inserting clipboard 348
Stop function 973
stop sign icon 681
StopHotLink function 974
StopServerDDE function 974
storages, OLE

file 841
saving 839

stored procedures
closing 141
declaring 140, 144
executing 148

stored procedures, declaring 61
string datatype 21
String function 974
string functions

Asc 319
Char 338
Fill 442
FillW 442, 443
Left 644, 645
LeftTrim 645, 646
LeftW 644, 645
Len 647, 648
Lower 663
Match 674
Mid 683
MidW 683
Pos 749, 751
Replace 816, 818
Right 832
RightTrim 833, 834
RightW 833, 834
Space 967
Trim 1015, 1016
Upper 1026

StringParm property 719, 721, 728, 730
strings

char arrays 72
comparing 66
concatenating 67
continuing 15
converting 319, 324, 376, 386, 412, 662, 800

Index

PowerScript Reference 1071

converting to char 72
deleting leading spaces 645, 646
detecting contents 633, 637, 639
determining width for printing 789
extracting 339, 683
finding substrings 749, 751
getting dynamic 508
importing data from 594
lowercase 663
nested 22
uppercase 1026
writing to stream 1035

StringToObject function 980
structure objects

exporting as syntax 652
listing 651
recreating from syntax 652

structures
about 73
assignment 80
autoinstantiated user objects 79
for return values 359
passing as arguments 101
passing to external functions 60
passing values as 733, 735

substorages, OLE
checking 680
deleting 680
renaming 681
saving 841

substrings
extracting 683
finding 749, 751
replacing 816, 818

subtraction operator
about 64
surrounded by spaces 16, 64

summary, moving objects to 927
Super pronoun 14
SuspendTransaction function 980
symbol types, graphs

data points 499, 897
series 942

syntax
exporting object as 652
recreating objects from 652

SyntaxFromSQL function 981
system

date 995
events 171, 753
events, defined 86
functions 105
object classes 75
object datatypes 27
object hierarchy 27
registry 803, 804, 805, 807, 809
time 696

system and environment functions
Clipboard 347
CommandParm 362
DebugBreak 386
FindClassDefinition 445
FindFunctionDefinition 446
FindTypeDefinition 458
GarbageCollect 465
GarbageCollectGetTimeLimit 465
GarbageCollectSetTimeLimit 466
GetApplication 469
GetEnvironment 513
Handle 577
PopulateError 748
Post 753
ProfileInt 792
ProfileString 794
Restart 826
Run 837
Send 875
SetProfileString 929
ShowHelp 957
SignalError 958
Yield 1038

SystemError event 286
SystemKey event 287
SYSTEMREAD modifier 42
SystemRoutine function 983
SYSTEMWRITE modifier 42

T
tab character, specifying 7

Index

1072 PocketBuilder

Tab functions
CloseTab 356
MoveTab 693
SelectTab 870
TabPostEvent 985
TabTriggerEvent 986

tab pages
changing order 693
CreatePage function 372
opening user objects 714, 718
PageCreated function 738
selecting 870

tables, database, transferring data between databases 969
Tabular presentation style 981
Tag property, and GetFocus function 524
Tan function 987
tangent 987
target database for pipeline 969
temporary files 669
terminator for string 326
text

deleting from edit controls 345
finding in RichTextEdit 443, 457
finding substrings 749, 751
importing data from string 594
line spacing when printing 763
metacharacters 675
MicroHelp 917
obtaining current line 987, 988
of listbox item 859
of message box 681
on clipboard 347, 367, 372
pasting over 740
printing 762, 787
replacing 818
restoring 1021
save rich text as ASCII 843
selecting 860, 864, 871
setting color of 830

text file
importing data from 590
saving to 839

Text function 987
Text property 524
TextLine function 988
This pronoun 13

tilde
in strings 22
rules for 23
specifying 7

time
checking string 639
converting to datatype 989
CPU 369
DateTime datatype 379
getting dynamic 507, 508
minutes 687
now 696
relative 810
seconds 854, 855

time datatype 23
Time function 989
Timer event 288
Timer function 993
timers, triggering event 993
timing functions

CPU 369
Idle 585
Timer 993

timing object
starting 969
stopping 973

title of message box 681
ToAnsi function 994
Today function 995
TodaySave function 996
ToolbarMoved event 290
toolbars 573, 950
top

bringing object to 955
determining distance from 745
moving listbox item to 951
moving objects to 927

Top function 997
topics

calling Help 957
ending server application 974
starting server application 970

TotalColumns function 998
TotalItems function 999
TotalSelected function 999
ToUnicode 1000

Index

PowerScript Reference 1073

ToUnicode function 1000
TraceBegin function 1001
TraceClose function 1003
TraceDisableActivity function 1004
TraceEnableActivity function 1005
TraceEnd function 1007
TraceError function 1008
TraceFile objects

Close function 355
NextActivity function 694
Reset function 821

TraceOpen function 1009
TraceTree objects

BuildModel function 327
DestroyModel function 401
EntryList function 423
SetTraceFileName function 952

TraceTreeGarbageCollect objects,
GetChildrenList function 475

TraceTreeObject objects, GetChildrenList
function 475

TraceTreeRoutine objects, GetChildrenList
function 475

TraceUser function 1012
tracing functions

TraceBegin 1001
TraceClose 1003
TraceDisableActivity 1004
TraceEnableActivity 1005
TraceEnd 1007
TraceError 1008
TraceOpen 1009
TraceUser 1012

trailer, moving objects to 927
Transaction object functions

DBHandle 385
SyntaxFromSQL 981

Transaction objects, creating 120
transparent line style, graphs

setting for data points 896
setting for series 941

TreeView functions
AddPicture 309
CollapseItem 361
DeleteItem 393
DeletePicture 396

DeletePictures 397
DeleteStatePicture 400
DeleteStatePictures 400
EditLabel 419
ExpandAll 425
ExpandItem 426
FindItem 452
GetItem 531
InsertItem 614, 615
InsertItemFirst 616
InsertItemLast 619
InsertItemSort 621
SelectItem 869
SetDropHighlight 901
SetFirstVisible 902
SetItem 908
SetLevelPictures 911
SetOverlayPicture 920
Sort 964
SortAll 966

TrigEvent enumerated datatype 754
TriggerEvent function 1013
triggering

events 172
functions or events 90

TriggerPBEvent function 1015
Trim function 1015, 1016
Truncate function 1017
TrustVerify function 1018
TypeOf function 1018
typographical conventions xxvii

U
Uncheck function 1020
Undo function 1021
Undo, testing 332
Unicode, string conversion 462, 463, 994, 1000
Uniform Data Transfer 490, 888
units

converting from pixels 743
converting to pixels 1022
distance from edge 744

UnitsToPixels function 1022
unread messages 666

Index

1074 PocketBuilder

unsigned integer datatype 24
unsigned long datatype 24
UNTIL, in DO...LOOP statement 124
Update function 1023, 1024
UPDATE statement 154
UPDATE Where Current of Cursor statement 157
UPDATEBLOB statement 155
UpdateEntry function 1025
Upper function 1026
UpperBound function 1027
uppercase 1026
user events

defined 86
pbm_dwngraphcreate 939

user ID 668
user name 670
user objects

about 75
autoinstantiated 79
closing 357
closing tab page 356
creating 120
creating dynamically 121
exporting as syntax 652
listing 651
opening 714, 715, 717, 722, 724, 725, 726
pipeline 969
re-creating from syntax 652
tab pages 714, 718
used like structures 79

user-defined events 171, 173

V
value, passing arguments by 99
values

adding to lists 302
checking for NULL 636
data points 503
deleting from list 391
detecting numeric 637
inserting into lists 609

variables
access levels 40
assigning literals 20, 21, 22, 24

assigning values 38
checking for NULL 636
datatype 37
declaring 31
declaring initial values 38
default values 38
determining datatype of 343
extracting data from a blob 326
host 138
indicator 138
initializing with expression 39
inserting data into a blob 325
names 37
referencing in SQL 138
search order 33
setting to NULL 8, 918
validating 642
where to declare 31

variable-size arrays, memory allocation 50, 1027
VerifyMatch function 1029
vertical fill pattern 898
video monitor 513
ViewChange event 290
Visible property

and SetRedraw function 933
displaying popup menus 747
setting 955

visual user objects 75

W
warm link 424, 552, 936
week, day of 382, 383
Which function 1030
WHILE, in DO...LOOP statement 125
white space 16
width

data point's line 895
series line 941
setting 824
string 789
workspace 1032

Window ActiveX controls
GetArgElement function 473
GetLastReturn function 536

Index

PowerScript Reference 1075

InvokePBFunction function 630
ResetArgElements function 822
SetArgElement function 883
TriggerPBEvent function 1015

Window functions
ArrangeSheets 318
ChangeMenu 338
ClassName 343
CloseUserObject 357
Draw 416
GetActiveSheet 467
GetFirstSheet 520
GetNextSheet 543
Hide 581
Move 691
Open 698
OpenSheet 713
OpenSheetWith Parm 714
OpenTab 714
OpenUserObject 722
OpenWith Parm 731
ParentWindow 738
PointerX 744
PointerY 745
PostEvent 754
print 761
Resize 824
SetFocus 903
SetMicroHelp 917
SetPosition 925
SetRedraw 933
Show 955
TriggerEvent 1013
TypeOf 1018
WorkSpaceHeight 1031
WorkSpaceWidth 1032

Window objects
closing user objects 357
exporting as syntax 652
listing 651
recreating from syntax 652
setting focus to 462

Window painter 723, 725
windows

adding user objects 714, 722, 726
arranging 318, 713

closing 350
datatype of 698
getting active 467
obtaining handle 577
obtaining workspace height 1031
obtaining workspace width 1032
opening 698, 731
posting messages 753
setting position of 925

WordCap function 1030
WordParm field

and TriggerEvent function 1014
posting events 755

workspace
obtaining height of 1031
obtaining width 1032

WorkSpaceHeight function 1031
WorkSpaceWidth function 1032
Write function 1035
Writes 1035

X
x value

data point 488, 503, 689
importing data 587, 590, 592, 594
inserting from strings 596

xValue enumerated datatype 488, 503

Y
y value

data point 488, 503, 689
importing data 587, 590, 592, 594
inserting from strings 596

Year function 1037
year, about 378
Yield function 1038
yValue enumerated datatype 488, 503

Z
zero, determining 958

Index

1076 PocketBuilder

	PowerScript® Reference
	About This Book
	CHAPTER 1 Language Basics
	Comments
	Identifier names
	Labels
	Special ASCII characters
	NULL values
	Reserved words
	Pronouns
	Parent pronoun
	This pronoun
	Super pronoun

	Statement continuation
	Statement separation
	White space

	CHAPTER 2 Datatypes
	Standard datatypes
	The Any datatype
	System object datatypes
	Enumerated datatypes

	CHAPTER 3 Declarations
	Declaring variables
	Where to declare variables
	About using variables
	Syntax of a variable declaration
	Datatype of a variable
	Variable names
	Initial values for variables
	Access for instance variables
	Another format for access-right keywords

	Declaring constants
	Declaring arrays
	Values for array elements
	Size of variable-size arrays
	More about arrays
	Assigning one array to another
	Using arraylists to assign values to an array
	Errors that occur when addressing arrays

	Declaring external functions
	Datatypes for external function arguments
	Calling external functions
	Defining source for external functions

	Declaring DBMS stored procedures as remote procedure calls

	CHAPTER 4 Operators and Expressions
	Operators in PocketBuilder
	Arithmetic operators in PocketBuilder
	Relational operators in PocketBuilder
	Concatenation operator in PocketBuilder

	Operator precedence in PocketBuilder expressions
	Datatype of PocketBuilder expressions
	Numeric datatypes in PocketBuilder
	Datatype promotion when evaluating numeric expressions
	Assignment and datatypes

	String and char datatypes in PocketBuilder

	CHAPTER 5 Structures and Objects
	About structures
	About objects
	About user objects
	Instantiating objects
	Using ancestors and descendants
	Garbage collection
	User objects that behave like structures

	Assignment for objects and structures
	Assignment for structures
	Assignment for objects
	Assignment for autoinstantiated user objects

	CHAPTER 6 Calling Functions and Events
	About functions and events
	Finding and executing functions and events
	Finding functions
	Finding events

	Triggering versus posting functions and events
	Static versus dynamic calls
	Static calls
	Dynamic calls
	Errors when calling functions and events dynamically

	Overloading, overriding, and extending functions and events
	Overloading and overriding functions
	Type promotion when matching arguments for overloaded functions

	Extending and overriding events

	Passing arguments to functions and events
	Passing objects
	Passing structures
	Passing arrays

	Using return values
	Functions
	Events
	Using cascaded calling and return values

	Syntax for calling PocketBuilder functions and events
	Calling functions and events in an object’s ancestor

	CHAPTER 7 PowerScript Statements
	Assignment
	CALL
	CHOOSE CASE
	CONTINUE
	CREATE
	DESTROY
	DO...LOOP
	EXIT
	FOR...NEXT
	GOTO
	HALT
	IF...THEN
	RETURN
	THROW
	THROWS
	TRY...CATCH...FINALLY...END TRY

	CHAPTER 8 SQL Statements
	Using SQL in scripts
	CLOSE Cursor
	CLOSE Procedure
	COMMIT
	CONNECT
	DECLARE Cursor
	DECLARE Procedure
	DELETE
	DELETE Where Current of Cursor
	DISCONNECT
	EXECUTE
	FETCH
	INSERT
	OPEN Cursor
	ROLLBACK
	SELECT
	SELECTBLOB
	UPDATE
	UPDATEBLOB
	UPDATE Where Current of Cursor
	Using dynamic SQL
	Dynamic SQL Format 1
	Dynamic SQL Format 2
	Dynamic SQL Format 3
	Dynamic SQL Format 4

	CHAPTER 9 PowerScript Events
	About events
	Activate
	BeginDrag
	BeginLabelEdit
	BeginRightDrag
	Clicked
	Close
	CloseQuery
	ColumnClick
	Constructor
	DataChange
	Deactivate
	DeleteAllItems
	DeleteItem
	Destructor
	DoubleClicked
	DragDrop
	DragEnter
	DragLeave
	DragWithin
	EndLabelEdit
	Error
	ExternalException
	FileExists
	GetFocus
	Help
	Hide
	HotLinkAlarm
	Idle
	IncomingMessage
	InputFieldSelected
	InsertItem
	ItemActivate
	ItemChanged
	ItemChanging
	ItemCollapsed
	ItemCollapsing
	ItemExpanded
	ItemExpanding
	ItemPopulate
	Key
	LineDown
	LineLeft
	LineRight
	LineUp
	LoseFocus
	Modified
	MouseDown
	MouseMove
	MouseUp
	Moved
	Open
	Other
	PageDown
	PageLeft
	PageRight
	PageUp
	PictureSelected
	PipeEnd
	PipeMeter
	PipeStart
	PrintFooter
	PrintHeader
	PropertyChanged
	PropertyRequestEdit
	RButtonDown
	RButtonUp
	RemoteExec
	RemoteHotLinkStart
	RemoteHotLinkStop
	RemoteRequest
	RemoteSend
	Rename
	Resize
	RightClicked
	RightDoubleClicked
	Save
	SaveObject
	ScanTriggered
	Selected
	SelectionChanged
	SelectionChanging
	Show
	SipUp
	SipDown
	Snapped
	Sort
	SystemError
	SystemKey
	Timer
	ToolbarMoved
	ViewChange

	CHAPTER 10 PowerScript Functions
	Abs
	AcceptCall
	ACos
	Activate
	Add
	AddCategory
	AddColumn
	AddData
	AddEntry
	AddItem
	AddLargePicture
	AddPicture
	AddRecipient
	AddSeries
	AddSmallPicture
	AddStatePicture
	AddToInfraredQueue
	AddToLibraryList
	AllowReceivingCalls
	Arrange
	ArrangeSheets
	Asc
	ASin
	ATan
	Beep
	BeginPreview
	BeginTransaction
	Blob
	BlobEdit
	BlobMid
	BuildModel
	Cancel
	CanUndo
	CaptureImage
	CategoryCount
	CategoryName
	Ceiling
	ChangeDirectory
	ChangeMenu
	Char
	Check
	ChooseColor
	ClassList
	ClassName
	Clear
	ClearRecurrencePattern
	Clipboard
	Close
	CloseChannel
	CloseTab
	CloseUserObject
	CloseWithReturn
	CollapseItem
	CommandParm
	CommitTransaction
	ConnectToNewObject
	ConnectToNewRemoteObject
	ConnectToObject
	ConnectToRemoteObject
	ConnectToServer
	Copy
	CopyRTF
	Cos
	Cpu
	CreateDirectory
	CreateInstance
	CreatePage
	Cut
	DataCount
	DataSource
	Date
	DateTime
	Day
	DayName
	DayNumber
	DaysAfter
	DBHandle
	DebugBreak
	Dec
	DecoderName
	DeleteCategory
	DeleteColumn
	DeleteColumns
	DeleteData
	DeleteItem
	DeleteItems
	DeleteLargePicture
	DeleteLargePictures
	DeletePicture
	DeletePictures
	DeleteSeries
	DeleteSmallPicture
	DeleteSmallPictures
	DeleteStatePicture
	DeleteStatePictures
	DestroyModel
	DeviceInfo
	DeviceNames
	DirectoryExists
	DirList
	DirSelect
	Disable
	DisableCommit
	DisconnectObject
	DisconnectServer
	Display
	Double
	DoVerb
	Drag
	DraggedObject
	Draw
	DropCall
	EditLabel
	Enable
	EnableCommit
	EnableDecoder
	EndPreview
	EntryList
	ExecRemote
	Exp
	ExpandAll
	ExpandItem
	Fact
	FARPrecedence
	FileClose
	FileCopy
	FileDelete
	FileExists
	FileLength
	FileMove
	FileOpen
	FileRead
	FileSeek
	FileWrite
	Fill
	FillW
	Find
	FindCategory
	FindClassDefinition
	FindFunctionDefinition
	FindItem
	FindMatchingFunction
	FindNext
	FindSeries
	FindTypeDefinition
	Flush
	FocusToPreviousInstance
	FromAnsi
	FromUnicode
	GarbageCollect
	GarbageCollectGetTimeLimit
	GarbageCollectSetTimeLimit
	GetActiveSheet
	GetAlignment
	GetAllowedImageAttributes
	GetApplication
	GetAppointment
	GetAppointmentFromOID
	GetAppointments
	GetArgElement
	GetAsBitmap
	GetAutomationNativePointer
	GetCertificateLabel
	GetChildrenList
	GetColumn
	GetCommandDDE
	GetCommandDDEOrigin
	GetCompanyName
	GetContact
	GetContactFromOID
	GetContacts
	GetContextKeywords
	GetContextService
	GetCredentialAttribute
	GetCurrentDirectory
	GetData
	GetDataAsBitmap
	GetDataAsInk
	GetDataAsRTF
	GetDataAsText
	GetDataDDE
	GetDataDDEOrigin
	GetDataPieExplode
	GetDataStyle
	GetDataValue
	GetDeskRect
	GetDisplayZoom
	GetDynamicDate
	GetDynamicDateTime
	GetDynamicNumber
	GetDynamicString
	GetDynamicTime
	GetEnabledDecoders
	GetEntry
	GetEntries
	GetEnvironment
	GetFileOpenName
	GetFileSaveName
	GetFirstSheet
	GetFix
	GetFixesVersion
	GetFocus
	GetFolder
	GetGlobalProperty
	GetHeading
	GetHostObject
	GetItem
	GetItemAtPointer
	GetItemPictureIndex
	GetItemState
	GetLastReturn
	GetLibraryList
	GetMajorVersion
	GetMessage
	GetMessageStatus
	GetMinorVersion
	GetName
	GetNativePointer
	GetNextSheet
	GetOption
	GetOrigin
	GetParagraphSetting
	GetParent
	GetPin
	GetRecipients
	GetRecordSet
	GetRecurrence
	GetRemote
	GetSatellitesInView
	GetScreenOrientation
	GetSeriesStyle
	GetShortName
	GetSIPRect
	GetSIPType
	GetSpecialFolder
	GetSpacing
	GetStatus
	GetSupportedDecoders
	GetTask
	GetTaskFromOID
	GetTasks
	GetTextColor
	GetTextStyle
	GetToolbar
	GetToolbarPos
	GetTransactionName
	GetURL
	GetVersionName
	Handle
	HasOption
	Hide
	Hour
	HyperLinkToURL
	Icon
	Idle
	ImpersonateClient
	ImportClipboard
	ImportFile
	ImportString
	IncomingCallList
	Init
	InputFieldChangeData
	InputFieldCurrentName
	InputFieldDeleteCurrent
	InputFieldGetData
	InputFieldInsert
	InputFieldLocate
	IsReadyToCapture
	InsertCategory
	InsertClass
	InsertColumn
	InsertData
	InsertDocument
	InsertFile
	InsertItem
	InsertItemFirst
	InsertItemLast
	InsertItemSort
	InsertObject
	InsertPicture
	InsertSeries
	Int
	Integer
	InternetData
	IntHigh
	IntLow
	InvokePBFunction
	_Is_A
	IsAlive
	IsAllArabic
	IsAllHebrew
	IsAnyArabic
	IsAnyHebrew
	IsArabic
	IsArabicAndNumbers
	IsCallerInRole
	IsDate
	IsHebrew
	IsHebrewAndNumbers
	IsImpersonating
	IsInTransaction
	IsNull
	IsNumber
	IsPreview
	IsSecurityEnabled
	IsSIPVisible
	IsTime
	IsTransactionAborted
	IsValid
	KeyDown
	LastPos
	Left
	LeftW
	LeftTrim
	LeftTrimW
	Len
	LenW
	Length
	LibraryCreate
	LibraryDelete
	LibraryDirectory
	LibraryDirectoryEx
	LibraryExport
	LibraryImport
	LineCount
	LineLength
	LineList
	LinkTo
	Log
	Login
	Logout
	LogTen
	Long
	Lower
	LowerBound
	mailAddress
	mailDeleteMessage
	mailGetMessages
	mailHandle
	mailLogoff
	mailLogon
	mailReadMessage
	mailRecipientDetails
	mailResolveRecipient
	mailSaveMessage
	mailSend
	MakeCall
	Match
	MatchW
	Max
	MaxFARRequested
	MaxFRRRequested
	MemberDelete
	MemberExists
	MemberRename
	MessageBox
	Mid
	MidW
	Min
	Minute
	Mod
	ModifyData
	Month
	Move
	MoveTab
	_Narrow
	NextActivity
	Now
	ObjectAtPointer
	Object_To_String
	OffsetPos
	Open
	OpenChannel
	OpenSheet
	OpenSheetWithParm
	OpenTab
	OpenTabWithParm
	OpenUserObject
	OpenUserObjectWithParm
	OpenWithParm
	OutgoingCallList
	PageCount
	PageCreated
	ParentWindow
	Paste
	PasteLink
	PasteRTF
	PasteSpecial
	Pi
	PixelsToUnits
	PointerX
	PointerY
	PopMenu
	PopulateError
	Pos
	PosW
	Position
	Post
	PostEvent
	PostURL
	Preview
	Print
	PrintBitmap
	PrintCancel
	PrintClose
	PrintDataWindow
	PrintDefineFont
	PrintGetPrinter
	PrintGetPrinters
	PrintLine
	PrintOpen
	PrintOval
	PrintPage
	PrintRect
	PrintRoundRect
	PrintScreen
	PrintSend
	PrintSetFont
	PrintSetPrinter
	PrintSetSpacing
	PrintSetup
	PrintSetupPrinter
	PrintText
	PrintWidth
	PrintX
	PrintY
	ProfileInt
	ProfileString
	Rand
	Randomize
	Read
	Real
	ReceiveFromInfrared
	RegistryDelete
	RegistryGet
	RegistryKeys
	RegistrySet
	RegistryValues
	RelativeDate
	RelativeTime
	ReleaseAutomationNativePointer
	ReleaseNativePointer
	Remove
	RemoveDirectory
	RemoveRecipient
	Repair
	Replace
	ReplaceW
	ReplaceText
	Reset
	ResetArgElements
	ResetDataColors
	Resize
	Resolve_Initial_References
	RespondRemote
	Restart
	ResumeTransaction
	RetrieveData
	Reverse
	RevertToSelf
	RGB
	Right
	RightW
	RightTrim
	RightTrimW
	RollbackOnly
	RollbackTransaction
	Round
	RoutineList
	Run
	Save
	SaveAs
	SaveDocument
	ScanAbort
	ScanCapture
	ScannedBitmap
	ScannedMinutiae
	ScannedQuality
	ScanNoWait
	ScanWait
	Scroll
	ScrollNextPage
	ScrollNextRow
	ScrollPriorPage
	ScrollPriorRow
	ScrollToRow
	Second
	SecondsAfter
	Seek
	SelectedColumn
	SelectedIndex
	SelectedItem
	SelectedLength
	SelectedLine
	SelectedPage
	SelectedStart
	SelectedText
	SelectionRange
	SelectItem
	SelectObject
	SelectTab
	SelectText
	SelectTextAll
	SelectTextLine
	SelectTextWord
	Send
	SendToInfrared
	SeriesCount
	SeriesName
	SetAbort
	SetAlignment
	SetArgElement
	SetAutomationLocale
	SetAutomationPointer
	SetAutomationTimeout
	SetCaptureImageAttributes
	SetColumn
	SetComplete
	SetData
	SetDataAsInk
	SetDataAsRTF
	SetDataAsText
	SetDataDDE
	SetDataPieExplode
	SetDataStyle
	SetDisplayZoom
	SetDropHighlight
	SetDynamicParm
	SetEndOfFile
	SetFirstVisible
	SetFocus
	SetGlobalProperty
	SetHold
	SetItem
	SetItemPictureIndex
	SetItemState
	SetLevelPictures
	SetLibraryList
	SetMask
	SetMessage
	SetMessageSink
	SetMicroHelp
	SetMute
	SetNull
	SetOption
	SetOverlayPicture
	SetParagraphSetting
	SetPicture
	SetPointer
	SetPosition
	SetPreviewImageAttributes
	SetProfileString
	SetRange
	SetRecordSet
	SetRecurrence
	SetRedraw
	SetRegistrationCode
	SetRemote
	SetResultSet
	SetRingTone
	SetScreenOrientation
	SetSeriesStyle
	SetSIPPreferredState
	SetSIPType
	SetSpacing
	SetState
	SetTextColor
	SetTextStyle
	SetToolbar
	SetToolbarPos
	SetTop
	SetTraceFileName
	SetTransPool
	SharedObjectDirectory
	SharedObjectGet
	SharedObjectRegister
	SharedObjectUnregister
	Show
	ShowHeadFoot
	ShowHelp
	ShowPopupHelp
	Sign
	SignalError
	Sin
	SkipRecurrence
	Sleep
	SoftTrigger
	Sort
	SortAll
	Space
	Sqrt
	Start
	StartHotLink
	StartServerDDE
	State
	Status
	StepIt
	Stop
	StopHotLink
	StopServerDDE
	String
	String_To_Object
	SuspendTransaction
	SyntaxFromSQL
	SystemRoutine
	TabPostEvent
	TabTriggerEvent
	Tan
	Text
	TextLine
	Time
	Timer
	ToAnsi
	Today
	TodaySave
	Top
	TotalColumns
	TotalItems
	TotalSelected
	ToUnicode
	TraceBegin
	TraceClose
	TraceDisableActivity
	TraceEnableActivity
	TraceEnd
	TraceError
	TraceOpen
	TraceUser
	TriggerEvent
	TriggerPBEvent
	Trim
	TrimW
	Truncate
	TrustVerify
	TypeOf
	Uncheck
	Undo
	UnitsToPixels
	Update
	UpdateEntry
	UpdateLinksDialog
	Upper
	UpperBound
	VerifyMatch
	Which
	WordCap
	WorkSpaceHeight
	WorkSpaceWidth
	WorkSpaceX
	WorkSpaceY
	Write
	Year
	Yield

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

