
Getting Started

PowerBuilder®

10.5

DOCUMENT ID: DC37772-01-1050-01

LAST REVISED: March 2006

Copyright © 1991-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Anywhere, M-Business Channel,
M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror
Activator, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL
Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces,
Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
Pharma Anywhere, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation
Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library,
Sales Anywhere, SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SOA Anywhere, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug,
SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL
Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber
Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce,
Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for
UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom,
Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-
Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc. 10/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Getting Started iii

About This Book ... ix

PART 1 WELCOME TO POWERBUILDER

CHAPTER 1 Introduction to PowerBuilder... 3
What PowerBuilder is ... 3
The PowerBuilder environment .. 6
PowerBuilder objects ... 11

CHAPTER 2 About the PowerBuilder Tutorial ... 19
Learning to build a client/server application 19
Learning to build a Web application ... 21
Learning to build a JSP Web services application 22
How you will proceed ... 23

How long it will take... 24
What you will learn .. 24

Setting up for the tutorial .. 25

PART 2 BUILDING A CLIENT/SERVER APPLICATION

LESSON 1 Starting PowerBuilder .. 29
Create a new workspace.. 30
Create a target ... 33
Specify an icon for the application ... 38
Change the size of the main window ... 41
Run the application .. 44

LESSON 2 Customizing the PowerBuilder Environment 49
Manipulate the System Tree window ... 50
Open an object ... 52

Contents

iv PowerBuilder

Manipulate views.. 54
Add an extra Script view.. 55
Display view title bars.. 56
Float and dock views... 56
Manipulate tabbed views... 57
Save a view layout scheme... 58
Reset the default view layout scheme..................................... 58

Set up the toolbars ... 59
Show labels on toolbar buttons ... 59
Float the toolbars... 60
Reposition the toolbars.. 61

LESSON 3 Building a Login Window.. 63
Create a new window... 64
Add controls to the window .. 68

Add a Picture control ... 70
Add StaticText controls ... 71
Specify properties of the StaticText controls 72
Add SingleLineEdit controls .. 74
Specify properties of the SingleLineEdit controls 75
Add CommandButton controls .. 75
Specify properties of the CommandButton controls 76

Change the tab order on the window ... 77
Code some Help events and preview the window 79
Write the script to open the window ... 83

Modify the frame window Open event 84
Compile the script.. 87

LESSON 4 Connecting to the Database ... 89
Look at the EAS Demo DB database... 90

Look at the database profile for the EAS Demo DB database 92
Look at table definitions in the EAS Demo DB database 96

Run the Connection Object wizard... 100
Declare a global variable.. 103
Modify the connection information ... 107

Modify the of_GetConnectionInfo function 107
Call the connection service manager 109

Complete the login and logout scripts .. 112
Set up shortcuts for AutoScript.. 113
Add code to the OK button Clicked event 114
Add code to the Cancel button Clicked event 116
Add code to the application Close event 116

Run the application .. 119

Contents

Getting Started v

LESSON 5 Modifying the Ancestor Window ... 121
Add a library to the search path ... 122
Create a new ancestor sheet window .. 124

Create a new sheet window inheritance hierarchy................ 125
Add a DataWindow control for the master DataWindow 127
Add a DataWindow control for the detail DataWindow.......... 129
View the scripts inherited from the user object...................... 130

Add user events and event scripts ... 132
Add scripts to retrieve data for the DataWindow controls 136
Adjust a runtime setting for sheet window size 139

LESSON 6 Setting Up the Menus ... 141
Modify the frame menu .. 142

Modify the File menu ... 142
Enable Help menu items ... 145

Create a new sheet menu .. 146
Inherit and save a new menu .. 146
Add items to the new menu... 147
Add a new toolbar for the new menu items 150

Add menu scripts to trigger user events....................................... 152
Attach the new menu and run the application 154

LESSON 7 Building DataWindow Objects... 157
Create and preview a new DataWindow object 158
Save the DataWindow object ... 163
Make cosmetic changes to the first DataWindow object 164
Create a second DataWindow object... 166

Select the data source and style ... 166
Select the table and columns .. 167
Define a retrieval argument ... 168
Specify a WHERE clause.. 169
View the DataWindow in the DataWindow painter 170
Save the DataWindow object .. 173

Make cosmetic changes to the second DataWindow object 174
Rearrange the columns and labels.. 174
Align the columns and labels... 176
Display the arrow for a drop-down DataWindow edit style.... 177

Contents

vi PowerBuilder

LESSON 8 Attaching the DataWindow Objects ... 179
Attach the DataWindow object to the master DataWindow control 180
Attach the DataWindow object to the detail DataWindow control 182
Run the application .. 183
Attach DataWindow objects to the Product window..................... 186
Run the application again... 188

LESSON 9 Running the Debugger .. 191
Add breakpoints in application scripts.. 192
Run in debug mode.. 196
Set a watch and a conditional breakpoint 201

LESSON 10 Exception Handling ... 203
Add a new sheet window to the existing application 204

Create the sheet window... 205
Provide access to the sheet window from the main application

frame .. 207
Create user-defined exception objects... 210
Create a new user function and user event 212
Call the methods and catch the exceptions 215
Run the application .. 218

Test the new sheet window ... 218
Add a test for the divide-by-zero error................................... 221

LESSON 11 Preparing the Application for Deployment................................ 225
Create the Project object.. 226
Create the executable file .. 230
Create a shortcut.. 233
Test the executable file .. 235

Contents

Getting Started vii

PART 3 BUILDING A WEB APPLICATION

LESSON 12 Creating a JSP Web Site .. 239
Set up an EAServer connection profile .. 241
Create a JSP Web site... 243
Create and modify a basic JSP.. 246

Create a 4GL introductory JSP page 247
Change type face .. 249
Add a graphic .. 250
Add absolute positioning to a graphic 252

Add page navigation .. 253
Create a 4GL product information Web page........................ 254
Add a hyperlink.. 255
Add a button .. 256

Create a login page with validation and redirection 258
Create a basic login page.. 259
Add session variables ... 260
Add single line text controls... 262
Add password validation ... 264
Add server redirection ... 266

Designate a start page ... 267
Deploy and run the Web site.. 268

LESSON 13 Using Web DataWindows... 271
Build a Web DataWindow container... 272
Create a Web page with a Web DataWindow container 274
Add other controls to the DataWindow Web page 278

Enable a new product information button.............................. 279
Add a button to update the database 282
Add a hyperlink to the Add Product page.............................. 283

Add a DataWindow to an existing Web page............................... 284
Add the ability to retrieve product information.............................. 287
Test and run the Web application .. 289

Test the Addproduct.jsp Web page 290
Add a new product to the database....................................... 292
Run the Web application ... 294

viii PowerBuilder

PART 4 BUILDING A JSP WEB SERVICES APPLICATION

LESSON 14 Creating a JSP Web Services Application................................ 303
Create a JSP target .. 304
Use a Web service with a simple JSP application........................ 306

Create non-4GL pages for a JSP application 307
Complete the application start page 309
Use the JSP Web Service Proxy wizard................................ 312
Add calls to the Web service ... 316
Build, deploy, and run the application.................................... 320

Use a Web service with a 4GL JSP application 322
Create a 4GL JSP page... 323
Add the Web service and a page variable to the 4GL page .. 324
Add a table to the 4GL JSP page .. 325
Complete the call to the Web service 327
Build, deploy, and run the 4GL JSP page.............................. 329

Index.. 333

Getting Started ix

About This Book

Audience This book is for anyone using PowerBuilder® to build applications.

How to use this book This book provides information that enables you to start using
PowerBuilder:

• Part 1 is an overview of the PowerBuilder development
environment.

• Part 2 is a tutorial in which you build your first PowerBuilder
application.

• Part 3 is a tutorial in which you create a JSP target containing a
Web/JSP DataWindow page and use Web DataWindows.

• Part 4 is a tutorial in which you create and run a JSP Web target that
includes client pages for a Web service.

Related documents This table lists the information in the PowerBuilder documentation set,
grouped by topic:

Topic Book Description

Installation Installation Guide Tells you how to install
PowerBuilder

Introduction
and use of
PowerBuilder
features

Getting Started Introduces you to PowerBuilder
and provides a tutorial you can step
through to learn the basics

Programmer’s
information

User’s Guide Tells how to use the painters to
build objects in PowerBuilder

Application
Techniques

Presents collections of techniques
for implementing many common
application features, along with
deployment details and tips for
cross-platform and international
development and deployment

x PowerBuilder

Topic Book Description

DataWindow
Programmer’s Guide

Explains how to use DataWindows
in all the supported environments
(PowerBuilder, Web pages, Java)
and describes programming
techniques for accessing,
displaying, manipulating, and
updating data

Web and JSP
targets
information

Working with Web
and JSP Targets

Tells how to build, deploy, debug,
and run PowerBuilder Web targets

Web and JSP Target
Reference

Provides reference information for
objects and classes in the Web
Target object model

Reference
information

PowerScript
Reference

Describes syntax and usage
information for the PowerScript
language, including variables,
expressions, statements, functions,
and events

DataWindow
Reference

Provides reference information for
the DataWindow object, including
properties and functions for
expressions; syntax for accessing
properties and data; and reference
information for the methods,
events, and properties of
DataWindow controls and
DataStores in all supported
environments

Objects and Controls Lists properties, events, and related
functions for PowerBuilder system
objects and controls

PowerBuilder Native
Interface (PBNI)
Programmer’s Guide
and Reference

Contains how-to and reference
information for using PBNI to
create PowerBuilder extensions
and interact with C++ applications

PowerBuilder
Extension Reference

Contains reference information for
PowerBuilder extension modules
created with PBNI (such as
PBDOM, EJBClient, and Web
services)

 About This Book

Getting Started xi

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Communicating
with a database

Connecting to Your
Database

Tells how to connect to a database
from PowerBuilder; describes how
to set up, define, and manage
database connections accessed
through the ODBC interface or one
of the native database interfaces

Connection
Reference

Includes procedures for preparing,
defining, establishing, maintaining,
and troubleshooting your database
connections

Topic Book Description

xii PowerBuilder

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

 About This Book

Getting Started xiii

Sybase EBFs and
software
maintenance

You can find information about EBFs and software maintenance on the Sybase
Web site.

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xiv PowerBuilder

P A R T 1 Welcome to PowerBuilder

This part is an overview of the PowerBuilder development
environment.

Getting Started 3

C H A P T E R 1 Introduction to PowerBuilder

About this chapter This chapter introduces the PowerBuilder development environment,
which you use in the tutorials in Parts 2-4. It also describes the building
blocks of a PowerBuilder application.

Contents

For more information For a more detailed description of the PowerBuilder development
environment, see the PowerBuilder User’s Guide.

What PowerBuilder is
PowerBuilder is an enterprise development tool that allows you to build
many types of applications and components. It is one of a group of Sybase
products that together provide the tools to develop client/server, multitier,
and Internet applications.

What’s in a PowerBuilder
application?

A PowerBuilder client application can contain:

• A user interface Menus, windows, and window controls that users
interact with to direct an application.

• Application processing logic Event and function scripts in which
you code business rules, validation rules, and other application
processing. PowerBuilder allows you to code application processing
logic as part of the user interface or in separate modules called custom
class user objects.

What is a PowerBuilder
component?

In a multitier application, modules containing application processing logic
(that you deploy to a server) are called components. You can design and
build components to work as EAServer or COM+ components.

Topic Page

What PowerBuilder is 3

The PowerBuilder environment 6

PowerBuilder objects 11

What PowerBuilder is

4 PowerBuilder

PowerBuilder
applications are event
driven

In a client application, users control what happens by the actions they take. For
example, when a user clicks a button, chooses an item from a menu, or enters
data into a text box, one or more events are triggered. You write scripts that
specify the processing that should happen when events are triggered.

Windows, controls, and other application components you create with
PowerBuilder each have a set of predefined events. For example, each button
has a Clicked event associated with it and each text box has a Modified event.
Most of the time, the predefined events are all you need. However, in some
situations, you may want to define your own events.

PowerScript language You write scripts using PowerScript, the PowerBuilder language. Scripts
consist of PowerScript commands, functions, and statements that perform
processing in response to an event.

For example, the script for a button’s Clicked event might retrieve and display
information from the database; the script for a text box’s Modified event might
evaluate the data and perform processing based on the data.

The execution of an event script can also cause other events to be triggered. For
example, the script for a Clicked event in a button might open another window,
triggering the Open event in that window.

PowerScript functions PowerScript provides a rich assortment of built-in functions that can act on the
various components of your application. For example, there is a function to
open a window, a function to close a window, a function to enable a button, a
function to update the database, and so on.

You can also build your own functions to define processing unique to your
application.

Object-oriented
programming with
PowerBuilder

Each menu or window you create with PowerBuilder is a self-contained
module called an object. The basic building blocks of a PowerBuilder
application are the objects you create. Each object contains the particular
characteristics and behaviors (properties, events, and functions) that are
appropriate to it. By taking advantage of object-oriented programming
techniques such as encapsulation, inheritance, and polymorphism, you can get
the most out of each object you create, making your work more reusable,
extensible, and powerful.

CHAPTER 1 Introduction to PowerBuilder

Getting Started 5

Internet applications If you are using the Enterprise edition of PowerBuilder, you can develop
PowerBuilder applications that run on the Web using Web targets technology.
With Web targets, you can build complex Web pages that can include client-
and server-side scripting, database content, Web DataWindows, and EAServer
components.

In all editions of PowerBuilder, you can use the DataWindow and
PowerBuilder window plug-ins, the PowerBuilder window ActiveX, and the
DataWindow Web control for ActiveX.

For information about Web targets, see Working with Web and JSP Targets. For
information about PowerBuilder plug-ins, see Application Techniques. For
information about the DataWindow Web control for ActiveX, see the
DataWindow Programmer’s Guide and the DataWindow Reference.

Multitier applications PowerBuilder lets you build applications that run in a distributed computing
environment. A multitier application lets you:

• Centralize business logic on servers, such as EAServer or COM+

• Partition application functions between the client and the server, thereby
reducing the client workload

• Build scalable applications that are easy to maintain

For information about multitier applications, see the sections on distributed
application techniques in Application Techniques.

Database connectivity PowerBuilder provides easy access to corporate information stored in a wide
variety of databases. Data can be accessed through the PowerBuilder ODBC or
JDBC interfaces, through a middle-tier data access server like the Sybase
DirectCONNECT server, or through a native or direct connection to a
database.

For information on database connectivity, see Connecting to Your Database.

Online Help and
documentation

PowerBuilder online Help can be accessed using Help buttons and menu items,
or by selecting the F1 key from anywhere in PowerBuilder. There are jumps in
several places from the online Help to books in HTML format. Manuals are
also available on the Sybase Web site.

The PowerBuilder environment

6 PowerBuilder

The PowerBuilder environment
Workspaces and
targets

In PowerBuilder, you work with one or more targets in a workspace. You can
add as many targets to the workspace as you want, open and edit objects in
multiple targets, and build and deploy multiple targets at once.

A PowerBuilder target can be one of two types:

• PowerScript target A client/server or multitier executable application
or a server component.

• Web target A Web application. A Web target can include all the
elements you need to build a Web site—HTML files, scripts, images,
downloaded components—as well as settings for build options, database
connections, and deployment.

The first lesson in the tutorial shows you how to create a workspace and a
PowerScript target. Later you learn how to create a Web target.

The development
environment

When you start PowerBuilder, it opens in a window that contains a menu bar
and the PowerBar at the top, and the System Tree and Clip windows on the left.

System Tree The System Tree window can serve as the hub of your development activities.
You use it to open, run, debug, and build your targets, and for drag-and-drop
programming.

Clip window The Clip window lets you store code fragments that you use frequently.

CHAPTER 1 Introduction to PowerBuilder

Getting Started 7

Output window The output of a variety of operations (migration, builds, deployment, project
execution, object saves, and searches) displays in an Output window at the
bottom of the main window. The Output window opens automatically when
output information is generated, but you can open the Output window at any
time by clicking the Output window toolbar button.

Painters Once you have created a workspace and a PowerScript target, you build the
components of the target using painters. Painters provide an assortment of tools
for enhancing and fine tuning the objects in a target.

PowerBuilder provides a painter for each type of object you build. For
example, you build a window in the Window painter. There you define the
properties of the window and add controls, such as buttons and text boxes.

Editors For Web targets, PowerBuilder provides HTML, style sheet, and frame set
editors. In the HTML editor you can edit pages in source or display format and
preview the results. You can use a standalone script editor or one that is built
into the HTML editor. The style sheet editor lets you create external style
sheets that you link to your HTML pages, and the frame set editor lets you
select and edit frame structures for HTML pages if you want to divide a Web
page into frames.

Wizards Wizards simplify the creation of applications, objects, components, Web sites,
and Web pages.

Design-time controls Design-time controls (DTCs) create basic HTML and scripts from information
you provide in property sheets. The property sheets display when you drop a
DTC on a Web page in the HTML editor.

The Web DataWindow DTC provides an easy way to access a database from a
Web page. It displays dynamic database content in a variety of presentation
styles and supports inserts, updates, and deletes against the database.

To-Do List The To-Do List displays a list of development tasks you need to do for the
current target. Entries on the To-Do list can be created automatically by most
PowerBuilder wizards. You can also type in entries or import them from a text
file and then link them to a task that you want to complete.

Browser The Browser lets you see all the objects, methods, variables, and structures that
are defined for or available to your PowerScript target. Objects in the Browser
can be displayed in alphabetic or hierarchical order. The Browser displays
methods with their complete prototypes (signatures), which include the
datatypes of all arguments and return values.

The PowerBuilder environment

8 PowerBuilder

PowerBar The PowerBar displays when you begin a PowerBuilder session. The
PowerBar is the main control point for building PowerBuilder applications.
You can use the New, Inherit, or Open buttons on the PowerBar to open all of
the PowerBuilder painters. From the PowerBar, you can also open the Browser,
debug or run the current application, and build and deploy the workspace.

PainterBar When you open a painter or editor, PowerBuilder displays a new window that
has a workspace in which you design the object you are building. PowerBuilder
also displays one or more PainterBars with buttons that provide easy access to
the tools available in the painter or editor. For example, here is the PainterBar
for the DataWindow painter.

StyleBar The StyleBar displays when you open any painter that can contain text
controls, such as the Window painter. Using buttons on the StyleBar, you can
modify text properties such as the font and point size.

PowerTips When you leave the mouse pointer over a button for a second or two,
PowerBuilder can display a brief description of the button (a PowerTip). The
ability to display PowerTips is toggled on and off by selecting the Show
PowerTips menu item in any toolbar pop-up menu.

You can also include brief descriptive texts on all toolbar buttons by selecting
ShowText from any toolbar pop-up menu.

Customizing the
environment

In addition to displaying text in toolbar buttons, you can move the toolbars
around, add new toolbars, and customize existing ones. You can add buttons
for opening painters and performing other activities.

You can also rearrange the System Tree, Clip, and Output views, set up custom
layouts for each painter, choose whether PowerBuilder opens your last
workspace at start-up with or without painters and editors open, customize
shortcut keys, and change the colors and fonts used in scripts.

CHAPTER 1 Introduction to PowerBuilder

Getting Started 9

PowerBar buttons The buttons in the PowerBar give you quick access to the most common
PowerBuilder tasks:

Table 1-1: Buttons in the PowerBar

Button Use to

Create new workspace, target, component, or other object, or open a
tool.

Inherit from menu, user object, or window.

Open an existing application, DataWindow, function, menu, pipeline,
project, query, structure, user object, window, HTML page, HTML
frame, style sheet, or script file.

Preview a window or DataWindow object.

Show or hide the System Tree window.

Show or hide the Output window.

Move to the next line in the Output window.

Move to the previous line in the Output window.

Display a list of development tasks you need to do. These can be self
entered or entered automatically by PowerBuilder wizards.

View object information (such as object properties or global variables)
and copy, export, or print it.

Show or hide the Clip window.

Create and maintain libraries of PowerBuilder objects.

Specify how to connect to a database.

Specify how to connect to EAServer.

The PowerBuilder environment

10 PowerBuilder

Maintain databases, control user access to databases, and manipulate
data in databases.

Edit a file.

Start an incremental build of the workspace.

Start a full build of the workspace.

Deploy the workspace.

When a series of operations is in progress, such as a full deploy of the
workspace, skip to the next operation.

Stop a build or deploy operation or series of operations.

Debug the current target.

Select a target and debug it.

Run the current target.

Select a target and run it.

Exit from PowerBuilder.

Button Use to

CHAPTER 1 Introduction to PowerBuilder

Getting Started 11

PowerBuilder objects
The basic building blocks of a PowerScript target are objects:

Table 1-2: Basic building blocks of a PowerScript target

These objects are described in more detail in the sections that follow.

Application object The Application object is the entry point into an application. It is a discrete
object that is saved in a PowerBuilder library (PBL file), just like a window,
menu, function, or DataWindow object.

The Application object defines application-level behavior, such as which fonts
are used by default for text, and what processing should occur when the
application begins and ends.

When a user runs the application, an Open event is triggered in the Application
object. The script you write for the Open event initiates the activity in the
application. When the user ends the application, the Close event in the
Application object is triggered.

The script you write for the Close event typically does all the cleanup required,
such as closing a database or writing to a preferences file. If there are serious
errors during execution that are not caught using PowerBuilder’s exception
handling mechanism, the Application object’s SystemError event is triggered.

Object Use

Application Entry point into an application

Window Primary interface between the user and a PowerBuilder
application

DataWindow Retrieves and manipulates data from a relational database or
other data source

Menu List of commands or options that a user can select in the
currently active window

Global function Performs general-purpose processing

Query SQL statement used repeatedly as the data source for a
DataWindow object

Structure Collection of one or more related variables grouped under a
single name

User object Reusable processing module or set of controls, either visual or
nonvisual

Pipeline Reproduces data within a database or across databases

Project Packages application for distribution to users

PowerBuilder objects

12 PowerBuilder

Figure 1-1: Application life cycle

Windows Windows are the primary interface between the user and a PowerBuilder
application. Windows can display information, request information from a
user, and respond to the user’s mouse or keyboard actions.

A window consists of:

• Properties that define the window’s appearance and behavior (for
example, a window might have a title bar and a Minimize box)

• Events triggered by user actions

• Controls placed in the window

CHAPTER 1 Introduction to PowerBuilder

Getting Started 13

Windows can have various kinds of controls, as illustrated in the following
picture:

On the left of the window is a DataWindow control with horizontal and vertical
trackbars. On the right is a group box that contains static text controls
(containing descriptive labels), edit mask controls (as they appear when the
SpinControl property is on), a check box, and two smaller group boxes with
radio buttons. Under the main group box is a command button.

DataWindow objects A DataWindow object is an object that you use to retrieve and manipulate data
from a relational database or other data source (such as an Excel worksheet or
dBASE file).

Presentation styles DataWindow objects also handle the way data is
presented to the user. You can choose from several presentation styles. For
example, you can display the data in Tabular or Freeform style.

PowerBuilder objects

14 PowerBuilder

There are many ways to enhance the presentation and manipulation of data in
a DataWindow object. For example, you can include computed fields, pictures,
and graphs that are tied directly to the data retrieved by the DataWindow.

Display formats, edit styles, and validation You can specify how to
display the values for each column, and you can validate data entered by users
in a DataWindow object. You do this by defining display formats, edit styles,
and validation rules for columns.

For example:

• If a column can take only a small number of mutually exclusive values,
you can have the data appear as radio buttons in a DataWindow so users
know what their choices are.

CHAPTER 1 Introduction to PowerBuilder

Getting Started 15

• If the data includes phone numbers, salaries, and dates, you can format the
display to suit the data.

• If a column can take numbers only in a specific range, you can specify a
simple validation rule for the data. This can spare you from writing code
to make sure users enter valid data.

Web DataWindow Using the XML Web DataWindow, the XHTML Web
Data Window, or the HTML Web DataWindow, you can generate DataWindow
objects in XML (with subsequent XSLT transformation to XHTML), XHTML
directly, or HTML and display them in a browser, using a PowerBuilder
component running in either EAServer or COM+ to generate the Web
DataWindow. One of the lessons in the tutorial shows you how to use an XML
Web DataWindow in a Web target.

Menus Menus are lists of items that a user can select from a menu bar for the active
window. The items on a menu are usually related. They provide the user with
commands (such as Open and Save As on the PowerBuilder File menu) or
alternate ways of performing a task (for example, the items on the Edit menu
in the Window painter correspond to buttons in the PainterBar).

You can select menu items with the mouse or with the keyboard, or use
accelerator (mnemonic access) keys defined for the items. You can define your
own keyboard shortcuts for any PowerBuilder menu item from a dialog box
that you open with the Tools>Keyboard Shortcuts menu item.

A drop-down menu is a menu under an item in the menu bar. A cascading menu
is a menu that appears to the side of an item in a drop-down menu.

PowerBuilder objects

16 PowerBuilder

Each choice in a menu is defined as a Menu object in PowerBuilder. The
preceding window shows two Menu objects on the menu bar (File and Data),
three Menu objects on the drop-down Data menu (Update, Delete, and Cancel),
and two Menu objects on the cascading menu beside Update (Current Row and
All Rows).

Global functions PowerBuilder lets you define two types of functions:

• Object-level functions are defined for a particular type of window, menu,
or other object type and are encapsulated within the object for which they
are defined. These are further divided into system functions (functions that
are always available for objects of a certain object class) and user-defined
functions.

• Global functions are not encapsulated within another object, but instead
are stored as independent objects.

Unlike object-level functions, global functions do not act on particular
instances of an object. Instead, they perform general-purpose processing
such as mathematical calculations or string handling.

Queries A query is a SQL statement that is saved with a name so that it can be used
repeatedly as the data source for a DataWindow object. Queries enhance
developer productivity, because they can be coded once but reused as often as
necessary.

Structures A structure is a collection of one or more related variables of the same or
different data types grouped under a single name. In some languages, such as
Pascal and COBOL, structures are called records.

Structures allow you to refer to related entities as a unit rather than individually.
For example, you can define the user’s ID, address, access level, and a picture
(bitmap) of the employee as a structure called user_struct, and then refer to this
collection of variables as user_struct.

There are two kinds of structures:

• Object-level structures are associated with a particular type of object such
as a window or menu. These structures can always be used in scripts for
the object itself. You can also choose to make the structures accessible
from other scripts.

• Global structures are not associated with any object or type of object in an
application. You can declare an instance of the structure and reference it in
any script in an application.

CHAPTER 1 Introduction to PowerBuilder

Getting Started 17

User objects Applications often have features in common. For example, several applications
might have a Close button that performs a certain set of operations and then
closes the window, or they might have DataWindow controls that perform the
same type of error checking. Several applications might all require a standard
file viewer.

If you find yourself using the same application feature repeatedly, you should
define a user object. You define the user object once and use it as many times
as you need.

User objects can be visual or class (nonvisual). They can be further divided into
standard or custom user objects. Standard user objects, whether visual or
nonvisual, are system objects that are always available with PowerBuilder. You
can also use controls for external visual objects that were created outside
PowerBuilder. The main types of user objects are:

• Visual user objects These are reusable controls or sets of controls that
have a consistent behavior. For example, a visual user object could consist
of several buttons that function as a unit. The buttons could have scripts
associated with them that perform standard processing. Once the object is
defined, you can use it as often as you need.

• Class user objects These are reusable processing modules that have no
visual component. You typically use class objects to define business rules
and other processing that acts as a unit. For example, you might want to
calculate commissions or perform statistical analysis in several
applications. To do this, you could define a class user object. To use a class
user object, you create an instance of the object in a script and call its
functions.

Custom class user objects, which define functions and variables, are the
foundation of PowerBuilder multitier applications. This is because you
typically use nonvisual components for applications that are run on a
server.

Libraries You save objects, such as windows and menus, in PowerBuilder libraries (PBL
files). When you run an application, PowerBuilder retrieves the objects from
the library. Applications can use as many libraries as you want. When you
create an application, you specify which libraries it uses.

Projects You can create Project objects that build executable applications and
components you can deploy to a server, as well as proxy objects you use in
EAServer applications.

PowerBuilder objects

18 PowerBuilder

Getting Started 19

C H A P T E R 2 About the PowerBuilder Tutorial

About this chapter This chapter describes what you will do in the PowerBuilder tutorial and
how to get set up for it.

Contents

Learning to build a client/server application
The PowerBuilder tutorial is divided into parts. The first part of the
tutorial is a set of eleven exercises in which you build a Multiple
Document Interface (MDI) database application for a fictional company
called SportsWear, Inc. The application allows you to retrieve customer
and product information from the database and perform insert, update, and
delete functions against the customer and product data.

Topic Page

Learning to build a client/server application 19

Learning to build a Web application 21

Learning to build a JSP Web services application 22

How you will proceed 23

Setting up for the tutorial 25

Learning to build a client/server application

20 PowerBuilder

Customer and Product
windows

The MDI application includes two windows that provide access to the
Customer and Product tables in the EAS Demo DB database.

These windows are master/detail windows: each allows you to display a master
list of rows in a particular table and also see detailed information for each row
in the table. For example, the top half of the Maintain Products window
contains a list of products with a pointer to a single product; the bottom half of
the window displays extra detail for the current product.

Login window The MDI application also includes a login window that allows you to connect
to the database at start-up time.

CHAPTER 2 About the PowerBuilder Tutorial

Getting Started 21

Learning to build a Web application
In the second set of exercises, you build a Web interface that allows you to add
and retrieve information from the same database, but this time through a
browser.

Tutorial Web pages The Web target part of the tutorial has five Web pages that enable the user to
log in, access a Welcome page, add products to the database, and view product
information. Here is one example, the Welcome page.

The Web pages enable access to the data sources and display the Web
DataWindows previously created.

PowerBuilder Enterprise
To complete the Web application portion of the tutorial, you must have:

• The Enterprise edition of PowerBuilder

• The Web Target option of PowerBuilder installed

• Access to EAServer

Learning to build a JSP Web services application

22 PowerBuilder

Learning to build a JSP Web services application
In the Java Server Pages (JSP) Web target part of the tutorial, you create three
JSP pages, including a 4GL JSP Web page. On two of the pages you will call
a Web service to calculate currency exchange rates.

The following is a picture of the 4GL Web page that you create in this tutorial:

CHAPTER 2 About the PowerBuilder Tutorial

Getting Started 23

How you will proceed
Table 2-1 describes what you will do in each of the tutorial lessons.

Table 2-1: Tutorial lessons and what you will accomplish

If you want to complete only the JSP Web target lessons, you can use the
solution provided for the first part of the tutorial as a starting point. The
solution is in the Tutorial\Solutions directory.

Lesson What you will do

1 Start PowerBuilder; begin familiarizing yourself with the
development environment; use the Workspace wizard and the
Template Application wizard to create an Application object,
windows, and menus in a PowerBuilder workspace and target.

2 Explore the PowerBuilder environment and customize the workspace.

3 Create a login window to allow the user to enter database connection
parameters (user ID and password).

4 Connect to the database using the Transaction object and user-entry
parameters; see how database profiles are defined in the PowerBuilder
environment.

5 Change the base sheet window by adding master and detail
DataWindow controls; add scripts to allow users to retrieve data and
perform insert, update, and delete operations against the database.

6 Modify the frame menu and create a new sheet menu for the
application.

7-8 Build the DataWindow objects that retrieve customer and product
information, then add them to the Customer and Product windows.

9 Run the tutorial application in debug mode; see how to set breakpoints
in scripts, step through the code, and display the contents of variables.

10 Create a new window to test exception handling in PowerBuilder.

11 Create an executable file that you can use to run the application outside
the PowerBuilder development environment.

12 Create a Web target, create Web pages with hyperlinks and graphics,
create a login page using a validation script, and deploy and build the
Web pages.

13 Add Web DataWindows to the existing Web pages. Create the ability
for the user to add product information to the data source and view
information.

14 Create a JSP Web target using 4GL and non-4GL pages and calls to a
Web service available through the Internet.

How you will proceed

24 PowerBuilder

How long it will take
You can do all the tutorials in about six hours, or you can stop after any lesson
and continue at another time.

If you are interrupted
You can save your work and exit PowerBuilder at any time. When you are
ready to continue, you can open the tutorial workspace and continue where you
left off.

What you will learn
This tutorial will not make you an expert in PowerBuilder. Only experience
building real-world applications can do that. It will give you hands-on
experience, though, and provide a foundation for continued growth.

Client/server
applications

You will learn basic PowerBuilder techniques and concepts, including those
listed in Table 2-2:

Table 2-2: Features demonstrated in the PowerScript tutorial

How to use the To

Application painter Define an Application object and application-level scripts

Window painter Create SingleLineEdit controls, StaticText controls,
CommandButton controls, DataWindow controls,
window-level scripts, and control-level scripts

DataWindow
painter

Define selection and display options

Menu painter Define menus, menu items, accelerators, and shortcut keys

Layout view Design how the windows, menus, and DataWindows will look
when you run the application

Script view Define scripts for applications, windows, window controls,
and menus

Debugger Identify logic errors that may cause problems when you run the
application

Project painter Create an executable version of an application

CHAPTER 2 About the PowerBuilder Tutorial

Getting Started 25

JSP Web applications You will learn basic Web target techniques and concepts, including those listed
in Table 2-3:

Table 2-3: Features demonstrated in the Web target tutorial

Setting up for the tutorial
Before you start the tutorial, you need to make sure that you can connect to a
database and that you have the tutorial files.

Connecting to a
database

The tutorial uses the EAS Demo DB V105 database that installs with
PowerBuilder. This is an Adaptive Server Anywhere database and requires the
Sybase Adaptive Server Anywhere engine.

If you do not already have Adaptive Server Anywhere on your local machine
or server, you must install it now. You can install it from the PowerBuilder CD.
If you installed PowerBuilder in a nondefault location, you must make sure that
the odbc.ini registry entry defining the EAS Demo DB as a data source points
to the correct location of the Adaptive Server Anywhere engine.

The Tutorial directory The tutorial also uses the files listed in Table 2-4:

Table 2-4: Files required by the PowerScript tutorial

When you install PowerBuilder, these files are installed in the Tutorial
directory, which is a subdirectory of the PowerBuilder installation directory.

When you have finished the tutorial, you can delete the files.

How to use the To

Web target wizards Design Web pages, add server interaction, and meet other
requirements for working in the browser environment

Script view Define scripts for applications, Web pages, and Web controls

HTML editor Edit Web pages using the Page and Source views and learn the
advantages of 4GL page design

File Contents

tutor_pb.pbl PowerBuilder library that contains several objects that you
use in the tutorial

pbtutor.hlp A Help file that provides context-sensitive Help to a window
that you build in the tutorial

tutsport.bmp A bitmap

tshirtw.jpg A graphic

tutorial.ico An icon

Setting up for the tutorial

26 PowerBuilder

The Tutorial\Solutions
directory

The Tutorial\Solutions directory contains a PowerBuilder library called
pbtutor.pbl that contains all the objects and scripts that you create in the first
part of the tutorial, as well as workspace and target files. You can use this
solutions library as a reference while you complete the first part of the tutorial.

You can also use it as a starting point if you want to complete only the Web
application part of the tutorial. See “Getting the files you need for the tutorial”
on page 240.

The Web targets
tutorials

Before you start the JSP target or JSP Web services tutorial, you must make
sure the following tools are installed on your computer:

• EAServer 4.2.2 or EAServer 5.0 or later

• Adaptive Server Anywhere 8.0 or later

• JSP targets feature of PowerBuilder

• Internet Explorer 6.0

P A R T 2 Building a Client/Server
Application

This part is a tutorial that shows you how to get started
with PowerBuilder. It provides step-by-step instructions for
creating a simple database application.

Getting Started 29

L E S S O N 1 Starting PowerBuilder

This lesson provides the information you need to start PowerBuilder and
create an application.

In this lesson you:

• Create a new workspace

• Create a target

• Specify an icon for the application

• Change the size of the main window

• Run the application

How long does it take?
About 20 minutes.

Create a new workspace

30 PowerBuilder

Create a new workspace

Where you are
> Create a new workspace

Create a target
Specify an icon for the application
Change the size of the main window
Run the application

The workspace is where you build, edit, debug, and run PowerBuilder targets.
You can build several targets within a single workspace, including Web targets,
which are covered in Part 3 of this tutorial.

Now you start PowerBuilder and create a new workspace.

First read the Release Bulletin for this release
Any last-minute items are documented in the Release Bulletin. To make sure
you have all the files necessary to complete the tutorial, see “Setting up for the
tutorial” on page 25.

1 Double-click the PowerBuilder icon (representing PB105.EXE) in the
Sybase>PowerBuilder 10.5 path
or
Select Programs>Sybase>PowerBuilder 10.5>PowerBuilder 10.5
from the Windows Start menu.

If the Welcome to PowerBuilder dialog box displays
You can select the Don’t Show This Dialog Again check box to keep
PowerBuilder from displaying the welcome dialog box every time you
start PowerBuilder. Select the Reload Last Workspace On Starting
PowerBuilder check box to load the most recently used workspace each
time you start a PowerBuilder session. Then click Close This Dialog.

The PowerBuilder development environment displays.

Lesson 1 Starting PowerBuilder

Getting Started 31

If this is the first time you are opening PowerBuilder on your machine, you
see only a top-level entry in the System Tree to indicate that no workspace
is currently open. Otherwise, the System Tree might show a workspace
with targets and objects in it.

2 Select New from the File menu
or
Click the New button in the PowerBar.

The Workspace page of the New dialog box displays.

PowerBuilder displays the page of the New dialog box that was used
before the dialog box was last closed. In this exercise, make sure that the
Workspace page of the New dialog box displays.

Create a new workspace

32 PowerBuilder

3 Select Workspace from the Workspace page of the New dialog box.
Click OK.

The New Workspace dialog box displays.

4 Navigate to the Tutorial folder.

The Tutorial folder is located directly under the PowerBuilder 10.5 folder.

5 Type MyWorkspace in the File name text box.
Click Save.

The New Workspace dialog box closes and the workspace you created
appears as the first item in the System Tree.

Lesson 1 Starting PowerBuilder

Getting Started 33

Create a target

Where you are
Create a new workspace

> Create a target
Specify an icon for the application
Change the size of the main window
Run the application

Now you create a new target using the Template Application wizard. Based on
the choices you make, the Template Application wizard creates precoded
events, menus, windows, and user objects in addition to the application object.

1 Select New from the File menu and click the Target tab
or
Right-click MyWorkspace in the System Tree, select New from the
pop-up menu, and click the Target tab.

The Target page of the New dialog box displays.

2 Select the Template Application icon and click OK.

The Template Application wizard displays. The first page of most wizards
explains what the wizard is used for. As you step through the wizard, you
can press F1 to get Help on most fields.

Create a target

34 PowerBuilder

3 Click Next until the Specify New Application and Library page
displays.

4 Type pbtutor in the Application Name text box.

The wizard automatically assigns file names to a library and target that use
this application name. It assigns the library a PBL extension and the target
a PBT extension.

5 Click Next.

The Specify Template Type page displays. The MDI Application with
Microhelp radio button is selected. You will create an MDI template
application, so you do not need to change this selection.

About MDI
MDI stands for multiple document interface. In an MDI application, the
main window for the application is called the MDI frame. Using the MDI
frame menu bar, you can open additional windows known as sheet
windows that display inside the frame window.

6 Click Next 4 times until the Name Individual Sheets page displays.

In this tutorial you accept the default application type, library search path,
frame and frame menu names, sheet menu and manager service, and MDI
base sheet.

If you have clicked Next too many times
You can use the wizard’s Back button to navigate back to the correct
wizard page.

Lesson 1 Starting PowerBuilder

Getting Started 35

7 On the Name Individual Sheets page, type w_customers for Sheet 1,
w_products for Sheet 2, and clear the Sheet 3 text box.

PowerBuilder will generate two windows based on the default basesheet
(w_pbtutor_basesheet), one for customers and one for products. You will
add a third sheet window later—in the lesson on exception handling.

8 Click Next.
Type Maintain Customers as the display name for Sheet 1.
Type Maintain Products as the display name for Sheet 2.

The names you type will display in the title bars of these sheet windows.

Create a target

36 PowerBuilder

9 Click Next twice.

You do not need to change the names of the About and Toolbar windows.

10 On the Specify Connectivity page, select None.

You will add a Connection object later.

11 Click Next twice to display the Ready To Create Application page.

You will create a project later.

This is the last wizard page. It lists your current selections so that you can
review them and use the Back button to go back and change them if
necessary.

12 Make sure the Generate To-Do List check box is selected.
Click Finish.

The Template Application wizard creates the pbtutor.pbt target and the
pbtutor.pbl library, and sets the new pbtutor application as the default
application.

You can expand the System Tree to view all the objects that have been
created by the Template Application wizard. The System Tree does not
display the file extension of the pbtutor target, but it does display the
directory where the target file is saved.

Lesson 1 Starting PowerBuilder

Getting Started 37

The pbtutor.pbl library displays under the pbtutor target in the System
Tree. It contains the target Application object, which has the same name
as the target object but displays under the library file. Other objects
generated by the wizard also display under the library file.

Specify an icon for the application

38 PowerBuilder

Specify an icon for the application

Where you are
Create a new workspace
Create a target

> Specify an icon for the application
Change the size of the main window
Run the application

Now you specify an icon for the application. The icon appears in the workspace
when you minimize the application during execution. PowerBuilder includes
the icon automatically when you create an executable file. You specify an icon
from the Properties view in the Application painter.

1 Double-click the pbtutor Application object in the System Tree
or
Right-click the pbtutor Application object in the System Tree and
select Edit from the pop-up menu.

The pbtutor Application object is located under the pbtutor library, which
is under the pbtutor target object that you created with the Template
Application wizard. Different views of the Application object display in
the Application painter.

Lesson 1 Starting PowerBuilder

Getting Started 39

2 Make sure the Properties view displays in the Application painter.

If the Properties view is not open, you can open it by selecting
View>Properties from the menu bar. The menu item is grayed out if the
Properties view is already open.

3 Click the Additional Properties button in the Properties view.

A tabbed Application property sheet displays.

4 Select the Icon tab.

5 Click Browse.
Navigate to the Tutorial directory.

Specify an icon for the application

40 PowerBuilder

6 Select the tutorial.ico file.
Click Open.

If you do not see the ICO file extension
You do not see ICO file extensions if the Hide File Extensions for Known
File Types check box is selected in the Options dialog box of your
Windows Explorer.

The tutorial icon displays on the Icon page of the Application property
sheet.

7 Click OK.
Click the Save button in PainterBar1 or select File>Save.
Click the Close button in PainterBar1 or select File>Close.

Lesson 1 Starting PowerBuilder

Getting Started 41

Change the size of the main window

Where you are
Create a new workspace
Create a target
Specify an icon for the application

> Change the size of the main window
Run the application

Now you change the size of the application’s main window. When you run the
application, the main window displays in the position and size that you specify.

1 Double-click w_pbtutor_frame in the System Tree.

The Window painter opens the application’s frame window.

2 Check the Center check box on the General page in the Properties
view.

Now when you run the application, the frame window will be centered.

Change the size of the main window

42 PowerBuilder

3 Scroll down and select normal! in the WindowState drop-down list
box.

If your Properties view looks different
You can change the position of Properties view labels by right-clicking the
Properties view and selecting a preference from the pop-up menu. You can
position the labels either to the left of all fields, or on top of the text fields
and to the right of the check boxes.

4 Click the Other tab in the Properties view.
Type 3000 in the Width text box and 2400 in the Height text box.
Press the Tab key.

The size of the window rectangle in the Layout view changes. The values
you type are in PowerBuilder Units (PBUs).

Lesson 1 Starting PowerBuilder

Getting Started 43

5 Select File>Close from the PowerBuilder menu.
Click Yes when you are prompted to save your changes.

The Window painter closes.

Next you run the application. When you run the application, the frame
window will be centered and sized as you specified.

Run the application

44 PowerBuilder

Run the application

Where you are
Create a new workspace
Create a target
Specify an icon for the application
Change the size of the main window

> Run the application

Now you run the application to see how it works. At this point the application
does not do very much. By running the application, you can see the windows
and menus that were created for you when PowerBuilder generated the
application based on your choices. You will modify them later.

1 Click the Run button on the PowerBar.

The MDI frame window displays and is maximized. All MDI applications
created using the Wizard have a menu bar and a toolbar with some items
already coded for you.

2 Select File>New>Maintain Customers.

The application opens a sheet window. The display name that you typed in
the Template Application wizard for Sheet 1 appears in the title bar. The
sheet window title has a number after it to indicate the instance of the
window that displays.

Lesson 1 Starting PowerBuilder

Getting Started 45

About the number in the window title bar
The number 1 appears following the window title because this is the first
instance of the w_customers sheet window that is open. The code that adds
the instance number to the title bar is in the ue_postopen event of the
w_master_detail_ancestor base sheet window.

3 Select File>New>Maintain Products.

A second application sheet window displays.

4 Select Window>Tile Horizontal.

The sheet windows are arranged horizontally inside the MDI frame, with
the active sheet window at the top.

5 Select File>Toolbars from the menu bar.

The application displays the Toolbars dialog box.

Run the application

46 PowerBuilder

6 Select Floating in the Toolbars dialog box.

The toolbar floats within the MDI frame. You might need to move the
Toolbars dialog box to see the floating toolbar.

7 Select Top.

The toolbar is repositioned at the top of the frame.

8 Click Done to close the Toolbars dialog box.

9 Select File>Exit.

The application closes and you return to the PowerBuilder development
environment.

When you exit and restart PowerBuilder, you might want to have
PowerBuilder in the state it was in when you exited, with the workspace
and painters you were working in open.

10 Select Tools>System Options from the menu bar and then click the
Workspaces tab.

Lesson 1 Starting PowerBuilder

Getting Started 47

11 Make sure the Reopen Workspace On Startup and the Reload Painters
When Opening Workspace check boxes are selected.
Click OK.

Now when PowerBuilder starts up, it opens the workspace and the painters
that were open when you exited. If you were coding in PowerBuilder when
you exited, the last script you were working on opens at the last line you
edited.

Run the application

48 PowerBuilder

Getting Started 49

L E S S O N 2 Customizing the PowerBuilder
Environment

This lesson provides the information you need in order to become familiar
with the PowerBuilder environment and to customize the workspace. This
lesson is optional—you can skip to Lesson 3 if you want to.

In this lesson you:

• Manipulate the System Tree window

• Open an object

• Manipulate views

• Set up the toolbars

How long does it take?
About 25 minutes.

Manipulate the System Tree window

50 PowerBuilder

Manipulate the System Tree window

Where you are
> Manipulate the System Tree window

Open an object
Manipulate views
Set up the toolbars

The Workspace page in the System Tree provides you with an overview of your
work. (The other pages of the System Tree are relevant for Web targets, but not
for PowerScript targets). By expanding the workspace and the objects it
contains, you can see the content and structure of your target.

You can work directly with all the objects in the workspace. For example, you
can edit, run, search, or regenerate a window using its pop-up menu in the
System Tree. In this exercise you reposition, close, and open the System Tree.
You can reposition the System Tree in relation to the main window using its
drag bar. You can also change the way the System Tree, Clip, and Output
windows are arranged.

1 Click the Output button in the PowerBar to display the Output
window.

2 Select Tools>System Options from the menu bar.
Clear the Horizontal Dock Windows Dominate check box on the
General page and click OK.

The System Tree and Clip windows now occupy the full height of the main
window.

3 Click and hold the drag bar at the top of the System Tree.
Drag the System Tree to position it above, below, or to the right of the
painter workspace.

The painter workspace is the gray (blank) area, initially to the right of the
System Tree, where painters display when you open an object.

When you start dragging the System Tree, a gray rectangular outline
displays. It indicates the area that the System Tree would occupy if you
released the mouse button.

Lesson 2 Customizing the PowerBuilder Environment

Getting Started 51

4 When the gray rectangular outline is positioned where you want the
System Tree to display, release the mouse button.

The System Tree displays in the new location.

5 Close the System Tree by clicking the SysTree button in the
PowerBar.

The current workspace remains open, but the System Tree closes. Closing
the System Tree leaves more space for the painter workspace views.

6 Reopen the System Tree by clicking the SysTree button in the
PowerBar again.

7 Select Tools>System Options from the menu bar.
Select the Horizontal Dock Windows Dominate check box on the
General page and click OK.

You change back to the default selection for this design-time property.

8 Close the Clip and Output windows by clicking their buttons on the
PowerBar or by clicking the small x in the corner of each window.

9 Right-click MyWorkspace and select Close from the pop-up menu.

The workspace closes. No workspaces display in the System Tree.

Open an object

52 PowerBuilder

Open an object

Where you are
Manipulate the System Tree window

> Open an object
Manipulate views
Set up the toolbars

Now you open an object created by the Template Application wizard.

1 Select File>Recent Workspaces from the menu bar, then
MyWorkspace from the cascading menu.

2 In the System Tree, expand MyWorkspace, the pbtutor target, and
pbtutor.pbl.

3 Double-click the pbtutor Application object
or
Right-click the pbtutor Application object and select Edit from the
pop-up menu.

The Application painter opens. It displays different views of the pbtutor
Application object. Your view layout scheme may look different. To
display the default layout, select View>Layouts>Default.

Lesson 2 Customizing the PowerBuilder Environment

Getting Started 53

The default Application painter layout displays two stacks of tabbed
panes. The left stack contains tabs for a Script view (Open tab—it is set to
the Open event on the Application object), an Event List view, a Function
List view, and the Declare Instance Variables view. The right stack
contains tabs for the Properties view and a Non-Visual Object List view.

4 Look at the code in the Open event in the Script view.

The PowerScript code that was generated by the wizard in the Application
Object Open event calls a PowerScript function to open the main window
in the application. You will modify this code later in the tutorial.

Manipulate views

54 PowerBuilder

Manipulate views

Where you are
Manipulate the System Tree window
Open an object

> Manipulate views
Set up the toolbars

Now you learn to control the location and appearance of PowerBuilder painter
views. You can add views to a painter workspace by selecting them from the
View menu in the workspace menu bar.

You can add multiple views of the same type and you can combine views into
a stack of panes with selection tabs at the bottom. You can resize a view by
grabbing and dragging the separator bars that surround it or that surround
neighboring views in the painter workspace.

These exercises demonstrate how you can change the appearance of
Application painter views, but you can manipulate views in all painters in the
same way.

Now you:

• Add an extra Script view

• Display view title bars

• Float and dock views

• Manipulate tabbed views

• Save a view layout scheme

• Reset the default view layout scheme

Lesson 2 Customizing the PowerBuilder Environment

Getting Started 55

Add an extra Script view
The default Application painter layout actually has two Script views. One of
the Script views displays the script for an Application object event, and the
other Script view displays the declared variables for the object instance or the
entire application. Both of these Script views are in the same stack of tabbed
views (panes).

Now you add a third Script view that is not part of a stack of tabbed panes. You
can add multiple Script views to your painter layout, but no two Script views
can display the same script at the same time.

1 Select View>Script from the menu bar.

A new Script view displays. It is not attached to a stack of tabbed panes. It
lists the Application object in the left drop-down list box. The other two
drop-down lists are empty and the right drop-down list is grayed out.

If an existing Script view shows the Open event, the new Script view is
empty. Otherwise it displays the Open event.

2 Select the Close event from the second drop-down list box.

If another Script view is already open to the Close event, an error message
displays in the PowerBuilder status bar.

Manipulate views

56 PowerBuilder

Display view title bars
Now you display a view title bar by pinning it to the painter workspace
background. If a title bar is unpinned, you see it only when your cursor pauses
near the top edge of a view.

1 Move the cursor to the top of the extra Script view you just added.

The view title bar rolls down. It contains a pushpin button on the left and
a maximize/minimize button and a close button on the right. The name of
the view displays on the left side of the title bar, next to the pushpin button.

2 Click the pushpin in the title bar
or
Right-click the view title bar and click Pinned from the pop-up menu.

The pushpin button and the Pinned menu item are toggle switches. You
can click the pushpin button or the pop-up menu item to pin and unpin the
view title bars.

Float and dock views
Now you float and dock a view in the painter workspace. Floating a view
enables you to move it around outside the painter frame.

1 Right-click the title bar of an unstacked view you want to float
or
Right-click the tab of a view in a stack of tabbed panes.

If the title bar is not pinned, move the cursor over the title bar area and wait
until it displays before you right-click it.

2 Click Float in the pop-up menu.

When a view is floated, the Float menu item is not enabled. When a view
is docked, the Dock menu item is not enabled.

3 Drag the view around the screen.

Notice that the floating property allows you to move the view outside the
painter workspace.

Lesson 2 Customizing the PowerBuilder Environment

Getting Started 57

4 Right-click the title bar of the floating view.
Click Dock in the pop-up menu.

The view returns to its original location.

Manipulate tabbed views
Now you separate a view from a stack of tabbed panes and place it above the
stack. You then return it to the stack and change its position in the stack.

1 Press and hold the mouse button on the Function List tab.
Drag the tab onto the separator bar that separates the two default
stacks in the Application painter.
Release the mouse button.

When you release the mouse button, the Function List view is no longer
part of a stack. If you drag the tab too far and release it over the right stack
with the Properties view and Non-Visual Object List, the Function List
becomes part of that stack.

Alternate way to float a view from a stack
If you hold the Ctrl or Shift key down as you drag a tabbed pane from a
stack, the pane becomes a floating view.

2 Press and hold the mouse button on the Function List title bar.
Drag it over the stack from which you separated it.
Release the mouse button when the gray rectangular outline of the
Function List view overlaps the stack.

The Function List view returns to its original stack, but it is added as the
last pane in the stack.

3 Press and hold the mouse button on the Function List tab.
Drag it sideways over the other tabs in the same stack.
Release the mouse button when the small gray rectangular outline
overlaps another tab in the stack of tabbed panes.

The Function List view moves to the position in the stack where you
release the mouse button.

Manipulate views

58 PowerBuilder

Save a view layout scheme
You can save view layout schemes for a PowerBuilder painter and use them
every time you open the painter.

1 Arrange the views in the painter as you like.

2 Select View>Layouts>Manage from the menu bar.

3 Click the New Layout button in the Layout dialog box.

4 Enter a name for your layout in the text field, click the background of
the dialog box, and then click the x button in the upper right corner of
the dialog box to close it.

Your layout scheme is saved. Now, when you select View>Layouts, you
see your layout listed on the cascading menu.

Saving the toolbars and System Tree layouts
PowerBuilder saves the customizations you make to the toolbars and
System Tree separately from the view layout. It retains those settings and
reapplies them to every workspace you access and every view layout you
select.

Reset the default view layout scheme
Each PowerBuilder painter has a default view layout scheme. You can always
reset the layout scheme to this default layout.

1 Select View>Layouts from the menu bar.

2 Choose Default from the cascading menu.

The default view layout scheme displays in the painter workspace.

Lesson 2 Customizing the PowerBuilder Environment

Getting Started 59

Set up the toolbars

Where you are
Manipulate the System Tree window
Open an object
Manipulate views

> Set up the toolbars

A painter workspace always includes the PowerBar and other PainterBar
toolbars that you can use as you work. The buttons in the toolbars change
depending on the type of target or object you are working with. You can also
customize the toolbars to include additional functionality.

Now you change the appearance of the toolbars to:

• Show labels on toolbar buttons

• Float the toolbars

• Reposition the toolbars

Show labels on toolbar buttons
You can learn a toolbar button’s function by placing the cursor over it to view
its PowerTip. A PowerTip is pop-up text that indicates a button’s function.

You can also display a label on each toolbar button.

1 Move the pointer to any button on the PowerBar, but do not click.

The button’s PowerTip displays.

2 Select Tools>Toolbars from the menu bar.

The Toolbars dialog box displays.

3 Select the Show Text check box, then click the Close button.

PowerBuilder displays a label on each of the buttons in the PowerBar and
the PainterBars.

Set up the toolbars

60 PowerBuilder

Float the toolbars
You can float the toolbars so that you can move them around the painter
workspace as you work.

1 Right-click anywhere in the PowerBar.

The pop-up menu for the toolbars displays. From the pop-up menu you can
set the toolbar’s location to the left, top, right, or bottom of the workspace.
You can also set it to floating.

About pop-up menus
Throughout PowerBuilder, pop-up menus provide a fast way to do things.
The menu items available in the pop-up depend on the painter you are
using and where you are in the workspace when you click the right mouse
button.

2 Select Floating from the pop-up menu.

The PowerBar changes to a floating toolbar. You can adjust its shape.

Lesson 2 Customizing the PowerBuilder Environment

Getting Started 61

3 Move the pointer to an edge or border area in the PowerBar.
Press and drag the PowerBar toward the left side of the workspace.
Release the mouse button when the PowerBar becomes a vertical bar.

The PowerBar is docked at the left side of the frame.

Reposition the toolbars
You can customize the position of the toolbars to suit your work style.

1 Select Tools>Toolbars from the menu bar.

The Toolbars dialog box displays. The selected Move radio button
indicates the position of the currently selected toolbar.

Set up the toolbars

62 PowerBuilder

2 Click Top.

This repositions the PowerBar at the top of the workspace.

Radio buttons are grayed if a selected toolbar is hidden
If a selected toolbar is hidden (not visible) in the painter, you cannot select
where it appears in the workspace. In this case, the radio buttons are
grayed and you must first click the Show button before you can select a
radio button. The Show button replaces the Hide button when a toolbar is
hidden.

3 Click PainterBar1 in the Select Toolbar list box and select Right.
Click Close in the Toolbars dialog box.

4 Right-click PainterBar2 and select Left from the pop-up menu.

You have swapped the locations of the two painter bars.

5 Arrange the toolbars to suit your preferences.

You can also drag the toolbars to the top, bottom, left, or right of the
painter workspace. When a toolbar is in a fixed location, it has a drag bar
at the left or top of its buttons. You can click the drag bar and drag the
mouse to move the toolbar around the painter workspace.

PowerBuilder applies toolbar configuration properties to all painters and
saves them for the next PowerBuilder session.

6 Close the Application painter.

If you are not continuing immediately with the tutorial
You can close PowerBuilder or the tutorial workspace if you want. In that case,
you must open the tutorial workspace before you continue with the next lesson.

Getting Started 63

L E S S O N 3 Building a Login Window

Windows are the main interface between users and PowerBuilder
applications. Windows can display information, request information from
a user, and respond to mouse or keyboard actions.

Windows are separate objects that you create using the Window painter.
In PowerBuilder, you can create windows anytime during the application
development process.

In this lesson you:

• Create a new window

• Add controls to the window

• Change the tab order on the window

• Code some Help events and preview the window

• Write the script to open the window

How long does it take?
About 25 minutes.

Create a new window

64 PowerBuilder

Create a new window

Where you are
> Create a new window

Add controls to the window
Change the tab order on the window
Code some Help events and preview the window
Write the script to open the window

Now you create a new window for the application. The window you create is a
login window that allows the user to enter a user ID and password and connect
to the database. The login window is a response window.

About response windows
Response windows are dialog boxes that require information from the user.
Response windows are application modal. When a response window displays,
it is the active window (it has focus) and no other window in the application is
accessible until the user responds. The user can go to other applications, but
when the user returns to the application, the response window is still active.

1 Click the New button in the PowerBar.

The New dialog box displays.

2 Click the PB Object tab.
Select the Window icon and click OK.

The Window painter opens. Notice that you have two new toolbars, the
StyleBar (with character style and text alignment buttons) and PainterBar3
(with color and border buttons, as well as grayed out control alignment
buttons).

3 Make sure that the Layout view and the Properties view display in the
Window painter.

You can display these views by selecting them from the View menu. If
they are grayed out in the menu, the views are already displayed in the
painter.

The default view layout scheme contains both views.

Lesson 3 Building a Login Window

Getting Started 65

To retrieve the default painter layout
Select View>Layouts>Default from the workspace menu bar.

The rectangle in the Layout view represents the window you are building.
The default properties in the Properties view indicate that the window is
visible and enabled, and has the Main window type. You might need to
scroll down in the Properties view to see the window type.

If your window does not have a pegboard look
If the window in your Layout view displays as a solid color, the Show Grid
option has been disabled. To enable it, select Design>Options from the
menu bar. Then select the Show Grid check box on the General page of the
Options dialog box. Click Apply, then OK to save the change and close the
dialog box.

Create a new window

66 PowerBuilder

4 Type Welcome in the Title text box on the General page of the
Properties view.

5 Select response! in the Window Type drop-down list box.
Make sure the TitleBar and ControlMenu check boxes are selected.
Select the ContextHelp check box.

The ContextHelp property adds a question-mark button next to the
(ControlMenu) close button in the login window’s title bar. Users of your
application can click the question-mark button to trigger Help events for
the window controls. You can add a question-mark button to a response
window, but not to a main window.

6 Click the Other tab in the Properties view.
Type 2300 in the Width text box and 1000 in the Height text box.
Press the Tab key.

The size of the window rectangle in the Layout view changes. The values
you type are in PowerBuilder Units (PBUs). You might need to modify
these values later, while you are adding controls to the window.

Other methods for entering position properties
You can use the spin controls to enter values instead of typing them.

Alternatively, you can change the size of the login window in the Layout
view by moving the pointer to the bottom or right edge of the window.
When it turns into a double-headed arrow, you can drag the arrow to
change the window size.

7 Select File>Save from the menu bar.

The Save Window dialog box displays. The only library in the Application
Libraries text box is pbtutor.pbl, and it is selected.

8 Type w_welcome for the window name.

The prefix w_ is standard for windows.

Lesson 3 Building a Login Window

Getting Started 67

9 (Optional) Type the following lines in the Comments text box:

This is the login window. It requires the application
user to enter an ID and a password before continuing.

These comments are visible in the List view of the Library painter.

10 Click OK.

PowerBuilder saves the new login window. If you expand MyWorkspace,
pbtutor, and pbtutor.pbl in the system tree, you can see w_welcome listed
under it.

Add controls to the window

68 PowerBuilder

Add controls to the window

Where you are
Create a new window

> Add controls to the window
Change the tab order on the window
Code some Help events and preview the window
Write the script to open the window

Controls allow users to interact with PowerBuilder objects, such as windows
and DataWindows. You set properties of these controls and later add script for
control events and functions.

Selecting a control button from the PainterBar You can add controls from
the Insert menu or by selecting a control button in PainterBar1. Unless you
customize your toolbars, there is only one control button that appears in the
PainterBar. When you first open a painter, PainterBar1 includes the
CommandButton control button, which has a down arrow to its right. Clicking
the down arrow displays a drop-down list of control buttons.

Some of the controls you can select from the drop-down list are described in
the table below:

Button
appearance Control type Use in tutorial

CommandButton Default icon for the control button in
PainterBar1. You add command buttons
later in this lesson.

Picture To add a picture to the login window.

PictureHyperlink Not used in tutorial. Its purpose is to
provide a link to a Web site.

PictureButton Not used in tutorial. It is like a command
button, but it displays a picture as well as
text.

StaticText To add text labels to the login window.

StaticHyperLink To provide a link to a Web site.

Lesson 3 Building a Login Window

Getting Started 69

After you select a control, it appears in place of the CommandButton button on
PainterBar1.

Adding controls with a 3D appearance
To make your controls look three dimensional, select Design>Options from the
menu bar and make sure that the Default To 3D check box is selected on the
General page of the Options dialog box. You can change the window
background color from the default color of ButtonFace gray using the
Properties view in the Window painter.

Now you modify the login window you just created by adding controls and
changing some of their properties. You:

• Add a Picture control

• Add StaticText controls

• Specify properties of the StaticText controls

• Add SingleLineEdit controls

• Specify properties of the SingleLineEdit controls

• Add CommandButton controls

• Specify properties of the CommandButton controls

SingleLineEdit To add user entry text boxes to the login
window.

MultiLineEdit Not used in tutorial. Its purpose is to add a
multiline edit text box.

Button
appearance Control type Use in tutorial

Add controls to the window

70 PowerBuilder

Add a Picture control
Now you add a Picture control to the login window.

1 Select the Picture button from the drop-down list of controls
or
Select Insert>Control>Picture from the menu bar.

2 Click inside the rectangular window in the Layout view.

A Picture control displays at the selected location. At the same time you
add the control, the Properties view switches from displaying the window
properties to displaying the control properties.

If you do not see the Properties view, select View>Properties from the
menu bar. If the Properties view does not display the control properties,
click the picture control in the Layout view.

How to delete controls
If you add a control to the window and later decide you do not want it,
select the control and press the Delete key. This deletes the control and its
scripts.

3 Select the text p_1 in the Name text box on the General tab of the
Properties view.
Type p_sports in the Name text box.

This names the Picture control. The prefix p_ is standard for Picture
controls.

4 Click the ellipsis button next to the PictureName text box.

The Select Picture dialog box displays.

5 Navigate to the Tutorial directory if it is not already selected.
Select the tutsport.bmp file.

The bitmap you selected appears in the control you added to the Layout
view. The Visible, Enabled, and OriginalSize check boxes are selected by
default in the Properties view.

Lesson 3 Building a Login Window

Getting Started 71

6 Make sure the picture control is selected in the Layout view.
Click the Other tab in the Properties view.
Type 40 in the X text box and 50 in the Y text box.

You can use the spin controls in the X and Y text boxes to enter these
values. You might want to adjust the position of the picture control again
after you preview the window at the end of this lesson.

7 Type 300 in the Width text box and 250 in the Height text box.

You change the size of the picture control. You might want to adjust the
picture size again after you preview the window.

Add StaticText controls
Now you add StaticText controls to the login window. You will use these
controls to add descriptive labels to the login window.

1 Select the Text button from the drop-down list of controls
or
Select Insert>Control>StaticText from the menu bar.

2 Click to the right of the Picture control you added in the Layout view.

A StaticText control displays at the selected location.

Add controls to the window

72 PowerBuilder

3 Right-click the StaticText control and select Duplicate from the
pop-up menu.

PowerBuilder creates a duplicate of the selected control.

4 Select Duplicate from the StaticText control’s pop-up menu again.

PowerBuilder creates another duplicate.

You now have three StaticText controls arranged vertically at the top of the
window.

5 Adjust the location of the Static Text controls so that there are at least
two grid lines between them.

Specify properties of the StaticText controls
Now you specify the properties of the StaticText controls (label text boxes) to
define how they should appear on the login window.

1 Select the first StaticText control you added by clicking on it.

The Properties view displays properties of the StaticText control. If you do
not see the Properties view, select View>Properties from the menu bar.

2 Select the text st_1 in the Name text box on the General page of the
Properties view.
Type st_welcome in the Name text box.

Now the control has a more descriptive name. The prefix st_ is standard
for StaticText controls.

3 Select the text none in the Text text box.
Type Welcome to SportsWear, Inc.

If you press Enter, click to another field or tab to another page in the
Properties view, or click in a different view, the text you typed replaces
none in the Layout view.

4 Click the Font tab in the Properties view.
Change the TextSize property for this control to 18 points.

The size of the text in the control changes.

Lesson 3 Building a Login Window

Getting Started 73

The default typeface is Arial TrueType. You can select a different typeface
and font size if this one is not available on your system.

Using the StyleBar
You can also use the StyleBar to change fonts. If you do not see the
StyleBar, select Tools>Toolbars from the menu bar, click StyleBar in the
Select Toolbar list box, and then select one of the Move positions such as
bottom or floating.

5 Adjust the size of the StaticText control to fit the text you entered.
Keep adjusting the size until you see all of the text you entered.

To adjust the size, drag the upper-right corner of the control toward the
upper-right corner of the window in the Layout view.

You can also adjust the size by entering appropriate values on the Other
page of the Properties view for this control.

6 Select the second StaticText control you added in the Layout view.
Type st_userid in the Name text box on the Properties view General
page.
Type User ID: in the Text text box and press the Tab key.

The text displayed in the control changes.

7 Select the third StaticText control you added in the Layout view.
Type st_password in the Name text box on the Properties view
General page.
Type Password: in the Text text box and press the Tab key.

Your changes display in the Layout view.

Add controls to the window

74 PowerBuilder

Add SingleLineEdit controls
Now you add two SingleLineEdit controls to the window to allow the user to
enter a user ID and password for connecting to the database. A SingleLineEdit
control is a text box in which the user can enter a single line of text.
SingleLineEdit controls are typically used for the input and output of data.

1 Select the SingleLineEdit button from the drop-down list of controls
or
Select Insert>Control>SingleLineEdit from the menu bar.

2 Click to the right of the st_userid StaticText control in the Layout view.

A SingleLineEdit control displays where you clicked.

3 Increase the width of the SingleLineEdit control.

4 Right-click the SingleLineEdit control and select Duplicate from the
pop-up menu.
Adjust the position of this SingleLineEdit control so that it is just to
the right of the st_password StaticText control.

You should now have two SingleLineEdit controls arranged vertically to
the right of the StaticText controls.

Lesson 3 Building a Login Window

Getting Started 75

Specify properties of the SingleLineEdit controls
Now you define the properties of the SingleLineEdit controls you just added to
the login window.

1 Select the first SingleLineEdit control you added.

The General page of the Properties view displays properties of the
SingleLineEdit control. If you do not see the Properties view, select
View>Properties from the menu bar.

2 Select the text sle_1 in the Name text box.
Type sle_userid in the Name text box.
Clear the default text none in the Text text box.

The prefix sle_ is standard for SingleLineEdit controls.

3 Select the second SingleLineEdit control you added.
Type sle_password in the Name text box.
Clear the default text none in the Text text box.
Select the Password check box.

Because you checked the Password check box, the password the user types
at runtime will display as a string of asterisks.

Add CommandButton controls
Now you add CommandButton controls. Later you define scripts that execute
when users click these buttons.

1 Select the CommandButton button from the drop-down list of
controls
or
Select Insert>Control>CommandButton from the menu bar.

2 Click to the right of the sle_userid SingleLineEdit control.

A CommandButton control displays where you clicked.

3 Right-click the CommandButton control and select Duplicate from the
pop-up menu.

PowerBuilder creates a duplicate of the selected control.

Add controls to the window

76 PowerBuilder

4 Adjust the location of the controls as needed so that there is some
space between them.

Specify properties of the CommandButton controls
Now you define the properties of the CommandButton controls.

1 Select the top CommandButton control.

The General page of the Properties view displays properties of the
CommandButton control.

2 Type cb_ok in the Name text box on the Properties view General page.
Type OK in the Text text box.
Select the Default check box.

This step changes the default name of the control to something more
descriptive and adds a text label (OK) to the button. Because you selected
the Default check box, when an application user presses the Enter key, the
Clicked event for this button will be triggered. (The user does not have to
click the button itself for the event to be triggered.)

3 Select the bottom CommandButton control.
Type cb_cancel in the Name text box.
Type Cancel in the Text text box.
Select the Cancel check box.

Because you selected the Cancel check box, when an application user
presses the Esc key, the Clicked event for this button will be triggered.

Lesson 3 Building a Login Window

Getting Started 77

Change the tab order on the window

Where you are
Create a new window
Add controls to the window

> Change the tab order on the window
Code some Help events and preview the window
Write the script to open the window

When you place controls in a window, PowerBuilder assigns them a default tab
order. The tab order determines the sequence in which focus moves from
control to control when the user presses the Tab key.

Now you change the tab order for the window you created.

1 Select Format>Tab Order from the menu bar.

PowerBuilder displays the default tab order. The number in red at the right
of each control shows the control’s relative position in the tab order.
Controls with the number zero are skipped when the user tabs in the
window.

2 Click the tab order number for the sle_userid control.
Type 10 if the tab order value for this control is not already 10.

You can type a new tab order number only when the old number turns blue
against a red background.

3 Make changes as needed so that the other controls have these
values:

Click this control Control name Has this value

SingleLineEdit control for entering a
password

sle_password 20

CommandButton control for the OK
button

cb_ok 30

CommandButton control for the Cancel
button

cb_cancel 40

Change the tab order on the window

78 PowerBuilder

4 Select Format>Tab Order from the menu bar.

This is a toggle switch. Selecting this menu item a second time saves your
changes and clears the tab order numbers from the login window. You can
also use the Tab Order button on the PainterBar.

Lesson 3 Building a Login Window

Getting Started 79

Code some Help events and preview the window

Where you are
Create a new window
Add controls to the window
Change the tab order on the window

> Code some Help events and preview the window
Write the script to open the window

Now you use the Script view to add context-sensitive Help messages to the
SingleLineEdit controls that you placed on the login window, and you preview
the window.

Using the Script view The Script view has three drop-down list boxes.
The first drop-down list box displays the list of available controls for the
current object plus two special entries, Functions and Declare. The contents of
the second drop-down list box depend on the selection in the first drop-down
list box. The third drop-down list box contains all ancestor objects of the
current object, if any.

If the Script view is not currently displayed in your Window painter, you can
open it by double-clicking an object in the Layout view.

1 Double-click the top SingleLineEdit control in the Layout view.

The object name, sle_userid, appears in the first drop-down list box in the
Script view.

Selection in first
drop-down list box

Contents of second
drop-down list box

Contents of third
drop-down list box

An object or control
name

List of events for the
selected object or control.

All of the ancestor objects of
the current object, if any

Functions List of editable functions.
Displays (New Function) if
no editable functions exist.

All ancestor objects with
functions having the same
signature as selected function

Declare List of declaration types:
global, shared, and instance
variables, and global and
local external functions.

Empty

Code some Help events and preview the window

80 PowerBuilder

2 Select the Help event in the second drop-down list box in the Script
view.

The Help event has the prototype: help (integer xpos, integer
ypos) returns long [pbm_help]

3 Type the following line of PowerScript code in the script area:

ShowPopupHelp("pbtutor.hlp", this, 100)

You can find the pbtutor.hlp file in the Tutorial directory. The second
argument refers to the current SingleLineEdit control, and the last
argument refers to a context ID in the pbtutor.hlp file.

As you type text in the Script view, notice that PowerBuilder changes the
text colors to show what kind of syntax element you have entered (such as
keywords, variables, and comments).

4 Select sle_password from the first drop-down list box in the Script
view.
Select the Help event in the second drop-down list box.

PowerBuilder compiles the code you typed for the Help event of the
sle_userid SingleLineEdit text box. You now add a Help event for the
sle_password SingleLineEdit text box.

5 Type the following lines in the script area:

ShowPopupHelp("pbtutor.hlp", this, 200)

6 Select File>Run/Preview from the menu bar
or
Click the Run/Preview Object in the PowerBar.

The Run dialog box displays. Be sure the Objects of Type list box displays
Windows and the w_welcome object is selected.

Lesson 3 Building a Login Window

Getting Started 81

Previewing the window
You can preview the window without running scripts by selecting
Design>Preview on the menu bar or the Preview button in PainterBar1
(which uses the same icon as the Run/Preview Object button in the
PowerBar). However, you must run scripts to view the results of the Help
event scripts you just entered.

7 Click OK.

A message box prompts you to save your changes.

8 Click Yes.

The login window appears as it would at runtime. If you do not like the
window layout, you can change the size, location, and fonts of the window
controls when you go back to the Window painter workspace.

9 Click the question-mark button in the login window title bar.
Click inside the sle_userid SingleLineEdit text box.

A message displays: Type your user ID here. This text is associated
with context ID 100 in the pbtutor.hlp file. You entered the context ID as
an argument of the ShowPopupHelp call for the sle_userid Help event.

10 Click anywhere in the window to close the message.
Click inside the sle_password SingleLineEdit text box.
Press F1.

A message displays: Type your password here. This text is associated
with context ID 200 in the pbtutor.hlp file.

Code some Help events and preview the window

82 PowerBuilder

11 Click anywhere in the window to close the message.
Click the close button in the login window title bar.

You return to the Window painter workspace.

Later you add code to the Clicked event for the Cancel button that closes
the application.

12 Close the Window painter by clicking the close button in PainterBar 1.

The close button is labeled with an x.

Lesson 3 Building a Login Window

Getting Started 83

Write the script to open the window

Where you are
Create a new window
Add controls to the window
Change the tab order on the window
Code some Help events and preview the window

> Write the script to open the window

Now you add a one-line script to open the login window as soon as the
application starts executing. Although you could change the script in the
Application object Open event to open the login window, in this tutorial you
make the call to open the login window from the Open event of the MDI frame
window. This window (w_pbtutor_frame) was created by the Template
Application wizard.

In wizard-generated script, the frame window is called by the Application
object Open event. When you add a call to open the login window from the
MDI frame window Open event, the login window still displays before the
frame window. Because the login window is a response window, it temporarily
blocks execution of the remainder of the frame window Open event script.

In this exercise you:

• Modify the frame window Open event

• Compile the script

Write the script to open the window

84 PowerBuilder

Modify the frame window Open event
Now you modify the frame window Open event script to open the login
window.

Wizard-generated script
The frame window Open event already has a script associated with it that was
generated by the Template Application wizard. The script creates an instance
of a wizard-generated user object that serves as a sheet (window) manager. The
Open script then calls the ue_postopen event.

The ue_postopen event registers sheet windows with the sheet manager. The
event is posted to the end of the messaging queue for the window and is not
processed until the remainder of the Open script (that you add in this lesson) is
executed.

1 Select File>Open from the menu bar.
Make or verify the following selections in the Open dialog box:

The w_pbtutor_frame object is the main application window created by
the Template Application wizard.

2 Click OK.

The Window painter opens and displays views of the main application
window in the painter workspace.

If the Script view is not open, you can open it by selecting View>Script in
the workspace menu bar or by double-clicking inside the Layout view.

Open dialog box item Selection to make (or verify)

Target pbtutor—currently your only target

Libraries pbtutor.pbl—currently your only library; if you
cannot see the full library name, you can drag the
edge of the dialog box to increase its size

Object Name w_pbtutor_frame

Objects of Type Windows—you must make sure this is selected
before you can select a named object of this type

Using Painter

Lesson 3 Building a Login Window

Getting Started 85

3 Move the cursor to the top of the Script view.

The view title bar rolls down. It contains a pushpin button on the left and
a maximize/minimize button and a close button on the right.

4 Click the pushpin in the title bar of the Script view.

The title bar of the Script view reads:

Script - open for w_pbtutor_frame returns long

5 Make sure the Open event displays in the Script view.

The PowerScript code in the Script view is preceded by comments.

Using comments
A comment in PowerScript is indicated by either two forward slashes (//)
at the start of a single-line comment, or a slash and an asterisk (/*) at the
start and an asterisk and a slash (*/) at the end of a single-line or multiline
comment. Comments are not parsed by the script compiler.

You now modify the Open event script to cause the login window to
display.

6 Click after the parentheses in the line that reads:

this.Post Event ue_postopen ()

The ue_postopen event does not take any arguments.

7 Press Enter twice.

This adds a blank line in the Script view for legibility. The cursor moves
to a new line following the blank line.

Write the script to open the window

86 PowerBuilder

8 Type Open the login window on the new line in the Script view.
Click the Comment button in PainterBar2.

Two slashes appear in front of the line you typed—it is changed into a
comment.

9 Move the cursor to the end of the comment.
Press Enter to add a new line.
Type open (w_welcome) on the new line.

This calls the Open function to display the login window you created.

Accessing context-sensitive Help
To access context-sensitive Help for a function or reserved word (such as
Open), select the function or reserved word in the Script view and press
Shift+F1. You can always open the main Help screen by pressing F1.

Lesson 3 Building a Login Window

Getting Started 87

Compile the script
Now you compile the script you just typed. In this exercise, you use a pop-up
menu item to compile the script. PowerBuilder also compiles a script when you
close the Script view or when you select a different object, event, or function
for display in the Script view.

Handling errors in scripts
When there is an error in a script, an error window displays at the bottom of the
Script view with the line number of the error and the error message.

To find an error Click on an error message to move the cursor to the line that
contains that error. After you correct the error, you can try to compile the script
again.

Commenting out errors PowerBuilder does not save scripts that have
errors. If you want to save a script that has errors, select the entire script and
click the Comment button to comment out the code. You can come back later,
uncomment the code, and fix the problem.

1 Right-click anywhere in the Script view script area.
Select Compile from the pop-up menu.

The script compiles. You do not leave the Script view or the Window
painter workspace.

2 Select File>Save from the menu bar.
Select File>Close from the menu bar.

The Window painter closes.

Write the script to open the window

88 PowerBuilder

Getting Started 89

L E S S O N 4 Connecting to the Database

This lesson shows you how to make the application connect to the
Enterprise Application Sample demonstration database (EAS Demo DB)
at execution time and how to use the Database painter to look at the table
definitions and database profile for this database.

In this lesson you:

• Look at the EAS Demo DB database

• Run the Connection Object wizard

• Declare a global variable

• Modify the connection information

• Complete the login and logout scripts

• Run the application

How long does it take?
About 30 minutes.

Look at the EAS Demo DB database

90 PowerBuilder

Look at the EAS Demo DB database

Where you are
> Look at the EAS Demo DB database

Run the Connection Object wizard
Declare a global variable
Modify the connection information
Complete the login and logout scripts
Run the application

In many organizations, database specialists maintain the database. If this is true
in your organization, you might not need to create and maintain tables within
the database. However, to take full advantage of PowerBuilder, you should
know how to work with databases.

Defining a data source Using the ODBC administrator or other database
connection utilities, you can define a database as a data source for your
application. You can access the ODBC Administrator from the DataBase
Profiles dialog box. The definitions of ODBC data sources are stored in the
odbc.ini registry key.

Using database profiles to connect Once you define a data source, you can
create a database profile for it. A database profile is a named set of parameters
that specifies a connection to a particular data source or database. Database
profiles provide an easy way for you to manage database connections that you
use frequently. When you are developing an application, you can change
database profiles to connect to a different data source.

When database connections occur PowerBuilder can establish a
connection to the database in either the design-time or runtime environment.
PowerBuilder connects to a database when you open certain painters, when
you compile or save a PowerBuilder script that contains embedded SQL
statements, or when you run a PowerBuilder application that accesses the
database.

To maintain database definitions with PowerBuilder, you do most of your work
using the Database painter. The Database painter allows you to:

• Create, alter, and drop tables

• Create, alter, and drop primary and foreign keys

• Create and drop indexes

• Define and modify extended attributes for columns

• Drop views

Lesson 4 Connecting to the Database

Getting Started 91

In this exercise you:

• Look at the database profile for the EAS Demo DB database

• Look at table definitions in the EAS Demo DB database

Look at the EAS Demo DB database

92 PowerBuilder

Look at the database profile for the EAS Demo DB database
If you installed PowerBuilder with standard options, you already have a data
source and a database profile defined for the EAS Demo DB database. You use
the EAS Demo DB database in this tutorial.

The EAS Demo DB database is an Adaptive Server Anywhere database that is
accessed through ODBC. In this lesson you look at the database profile for the
EAS Demo DB database. PowerBuilder stores database profile parameters in
the registry.

1 Click the Database Profile button in the PowerBar
or
Select Tools>Database Profile from the menu bar.

PowerBuilder displays the Database Profiles dialog box, which includes a
tree view of the installed database interfaces and defined database profiles
for each interface. You can click the + signs or double-click the icons next
to items in the tree view to expand or contract tree view nodes.

2 Expand the ODB ODBC node by clicking on the plus sign, and select
EAS Demo DB V105.

PowerBuilder created this profile during installation.

Lesson 4 Connecting to the Database

Getting Started 93

If you do not see the EAS Demo DB V105 database profile
If there is no profile for the EAS Demo DB V105 database, you may not
have installed the database. You can install it now from the product CD.

If you did install the database and it is defined as a data source in the
ODBC Administrator, select ODBC in the tree view of the Database
Profile painter and click New. In the Database Profile Setup dialog box,
select the data source from the Data Source drop-down list and type EAS
Demo DB V105 in the Profile Name text box. Type dba for the user ID and
sql for the password, then click OK to return to the painter.

3 Click Edit.

Look at the EAS Demo DB database

94 PowerBuilder

PowerBuilder displays the Connection page of the Database Profile Setup
dialog box.

4 Select the Preview tab.

The PowerScript connection syntax for the selected profile is shown on the
Preview tab. If you change the profile connection options, the syntax
changes accordingly.

Lesson 4 Connecting to the Database

Getting Started 95

5 Click the Test Connection button.

A message box tells you that the connection is successful.

If the message box tells you the connection is not successful
Close the message box and verify that the information on the Connection
page of the Database Profile Setup dialog box is correct. Then check the
configuration of the data source in the ODBC Administrator. You can run
the ODBC Administrator by expanding the Utilities folder under the
ODB ODBC node of the Database Profile painter and double-clicking the
ODBC Administrator item.

6 Click OK to close the message box.
Click Cancel to close the Database Profile Setup dialog box.
Click Close to close the Database Profiles dialog box.

Look at the EAS Demo DB database

96 PowerBuilder

Look at table definitions in the EAS Demo DB database
Now you look at the definitions for the Customer and Product tables in the EAS
Demo DB database. This helps you become familiar with the Database painter
and the tables you will use in the tutorial.

What happens when you connect To look at the table definitions, you have
to connect to the database. When you connect to a database in the development
environment, PowerBuilder writes the connection parameters to the Windows
registry.

Each time you connect to a different database, PowerBuilder overwrites the
existing parameters in the registry with those for the new database connection.
When you open a PowerBuilder painter that accesses the database, you
automatically connect to the last database used. PowerBuilder determines
which database this is by reading the registry.

1 Click the Database button in the PowerBar.

PowerBuilder connects to the database and the Database painter opens.
The Database painter title bar identifies the active database connection.

The Objects view of the Database painter displays all existing database
profiles in a tree view under the Installed Database Interfaces heading. The
EAS Demo DB V105 database is visible under the ODB ODBC node in
the tree view.

If the Objects view is not open
The Objects view is part of the default view layout scheme. To reset to this
scheme, select View>Layouts>Default. You can also open an Objects
view by selecting View>Objects from the menu bar.

2 Expand the EAS Demo DB V105 database node in the Objects view.

Lesson 4 Connecting to the Database

Getting Started 97

Notice the folders under the EAS Demo DB V105 database node.

3 Expand the Tables folder.

You see the list of tables in the database.

Table names might have a prefix
The table names in the Select Tables dialog box might have a prefix such
as dba or dbo. This depends on the login ID you are using. You can ignore
the prefix.

4 Right-click the customer table and select Add To Layout from the
pop-up menu
or
Drag the customer table from the Objects view to the Object Layout
view.

Dragging an object from one view to another
When you start dragging an object from the Objects view to another view,
the pointer changes to a barred circle. If you continue moving the cursor
to a view that can accept the object, the barred circle changes back to a
pointer with an additional arrow symbol in a small box. When you see this
symbol, you can release the object.

Look at the EAS Demo DB database

98 PowerBuilder

5 Repeat step 4 for the product table.

Widening the Object Layout view
You can widen the Object Layout view by dragging its separator bars
toward the painter frame. If the Object Layout view is part of a stack, you
might find it easier to separate it from the stack before you change its size.

The Object Layout view shows the two tables you selected.

Viewing table data types, comments, keys, and indexes
In the Object Layout view, you can see a description for each column, as
well as icons for keys and indexes. If you do not see this, right-click a
blank area inside the view and select Show Comments, Show Referential
Integrity, and then Show Index Keys from the pop-up menu. If you select
Show Datatypes, you also see the data type for each column in the selected
tables.

Lesson 4 Connecting to the Database

Getting Started 99

6 Right-click the title bar of the customer table in the Object Layout view
and select Alter Table from the pop-up menu
or
Right-click the customer table in the Objects tree view and select Alter
Table from the pop-up menu.

The Columns view displays the column definitions for the table.

7 Right-click a column in the customer table in the Object Layout view.
Select Properties from the pop-up menu.

In the Database painter, the Properties view is also called the Object
Details view.

The title bar and tab headings for the Object Details view change
dynamically depending on the current object selection. The title bar gives
the object type, the database connection, and the object identifier.

The Object Details view for a column has five tabs, one for general
database properties, one for column header information, and the others for
column extended attributes.

About extended attributes
PowerBuilder stores extended attribute information in system tables of the
database. Extended attributes include headers and labels for columns,
initial values for columns, validation rules, and display formats.

You can define new extended attributes or change the definitions of
existing extended attributes from the pop-up menus of items in the
Extended Attributes view of the Database painter.

8 Close the Database painter.

Run the Connection Object wizard

100 PowerBuilder

Run the Connection Object wizard

Where you are
Look at the EAS Demo DB database

> Run the Connection Object wizard
Declare a global variable
Modify the connection information
Complete the login and logout scripts
Run the application

Now you run the Connection Object wizard to create a connection service
manager, which you use to establish the runtime database connection.

The connection service manager is a nonvisual user object. It is nonvisual
because it does not have a graphic representation in the runtime application; it
is a user object because it is a customized object. You use it to perform database
connection processing in a PowerBuilder application.

Why you run a second wizard
If you had specified connection information in the Template Application
wizard, you would have created the connection service manager when you
generated the application. You can use multiple wizards in building your
application.

1 Click the To-Do List button in the PowerBar.

The To-Do List was generated by the Template Application wizard.

Lesson 4 Connecting to the Database

Getting Started 101

2 Double-click the Run Connection Object Wizard item in the list
or
Right-click the Run Connection Object Wizard item.
Select Go To Link from the pop-up menu.

This is the next-to-last item in the list. The To-Do List lists what you need
to do to complete the application. You can also use the list to make
comments to yourself or other developers working on the application.

You can also run the Connection Object wizard from the PB Object page
of the New dialog box. You used the New dialog box to run the Template
Application wizard in Lesson 1, “Starting PowerBuilder.”

The first page of the wizard tells you what it can do.

3 Click Next until the Choose Database Profile page displays.

You accept the wizard’s default selections for the destination library
(pbtutor.pbl) and the database connectivity options (SQL). The Choose
Database Connection Profile page lists all the database profiles stored in
the registry.

4 Select EAS Demo DB V105 in the Database Profiles list box if it is not
already selected.

5 Click Next until the Ready To Create Connection Object page
displays.

You accept the default settings for the following items:

The wizard creates the n_pbtutor_connectservice user object to manage
your database connections. If you change an instance variable in this
connection service object, you can change the source of connection
information to the registry or to a script file. Otherwise, the pbtutor.ini
file—created by the wizard—is used for application connection
information.

Wizard page Option Default selection

Specify
Connectivity Source
Info

Source of Connection
Information

Application INI File

Connection Service
Object

n_pbtutor_connectservice

Name Application
INI File

Application INI File pbtutor.ini

Run the Connection Object wizard

102 PowerBuilder

The last wizard page contains a summary of your choices, including the
default selections.

6 Click Finish.

The wizard creates the connection service object and opens it in the User
Object painter. You can see n_pbtutor_connectservice in the System Tree.
The wizard also creates the application INI file. The To-Do List is still
open.

7 Close the To-Do List.

Lesson 4 Connecting to the Database

Getting Started 103

Declare a global variable

Where you are
Look at the EAS Demo DB database
Run the Connection Object wizard

> Declare a global variable
Modify the connection information
Complete the login and logout scripts
Run the application

You will next examine the new connection service manager and create a global
variable to reference it. A global variable is available to all objects in the
application.

In more complex applications, you might prefer to reference the connection
service manager with local variables. This would release more memory as soon
as the local variable went out of scope. But in the tutorial, you should keep an
instance of the connection service manager available as long as the database
connection is open.

Establishing a connection To make it possible for an application to
connect to the database at execution time, the connection service manager calls
a wizard-generated function to set properties for a Transaction object that
serves as a communications area between the application and the database.

SQLCA Transaction object The connection service manager uses a built-in
nonvisual system object, the SQL Communications Area (SQLCA) object, as
the default Transaction object. The SQLCA object has several default
properties (including database name, login ID, and password) that are
populated by the connection service manager.

If an application communicates with multiple databases, you can create
additional Transaction objects as needed, one for each database connection.

What is required and what is not
You must have a Transaction object to connect to a database. The connection
service manager is not required, but is used in the tutorial because it generates
Transaction object properties you would otherwise have to type in an
application script.

Declare a global variable

104 PowerBuilder

1 Make sure n_pbtutor_connectservice is open in the User Object
painter.

Opening the connection service manager
If the n_pbtutor_connectservice object is not open in the User Object
painter, double-click n_pbtutor_connectservice in the System Tree.

The default view layout scheme for the User Object painter includes a
Script view and a Declare Instance Variables view as part of a stack of
tabbed panes.

2 Make sure n_pbtutor_connectservice is selected in the first drop-
down list box of the Script view.
Make sure the Constructor event is selected in the second drop-down
list box.

The Script view displays the script created by the Connection Object
wizard for the Constructor event.

The script calls the function of_GetConnectionInfo to obtain connection
information. You will next look at the script for this function.

3 Select Functions in the first drop-down list box in a Script view.
Select of_GetConnectionInfo in the second drop-down list box.

The script for this function passes database connection information to the
Constructor event of the connection service manager. The information
passed depends on an instance variable. In this case, the value of the
is_connectfrom variable is 1. You will verify this in a moment. The
instance variable is available to all functions and events of the
n_pbtutor_connectservice object.

Lesson 4 Connecting to the Database

Getting Started 105

Because the is_connectfrom variable is 1, the connection service manager
looks to the Database section of the named INI file to get database
connection information using ProfileString function calls. In this case, the
named INI file is pbtutor.ini. You created this file with the Connection
Object wizard.

Later you modify the pbtutor.ini file and the of_GetConnectionInfo
function to make sure that user ID and password information comes from
the login window instead of the INI file.

4 Select of_ConnectDB in the second drop-down list box.

This is the connection service manager function that actually connects to
the database using the SQLCA Transaction object. You call this function
from the login window you created in Lesson 3, “Building a Login
Window.”

Notice that the wizard-generated script for this function also opens a
message box if the database connection fails.

5 Select of_DisconnectDB in the second drop-down list box.

This is the connection service manager function that disconnects from the
database. You call this function from the application Close event.

6 Click the Declare Instance Variables tab.
Make sure Instance Variables is selected in the second drop-down list
box.

Selecting Declare in Script views
The Declare Instance Variables view is a special instance of the Script
view. It displays when you select Declare in the first drop-down list box of
the Script view. However, you cannot select Declare if a second Script
view already displays instance variables.

You can now verify that the value of the is_connectfrom variable is 1.

Declare a global variable

106 PowerBuilder

7 Select Global Variables in the second drop-down list box.
Drag n_pbtutor_connectservice from the System Tree to the Script
view.

Dragging object and function names from the System Tree to the Script
view saves time and helps avoid typing errors.

8 Complete the line by typing the variable name after the object name:

n_pbtutor_connectservice gnv_connect

Although you declare this object in the Script view for the
n_pbtutor_connectservice user object, it is available everywhere in the
application.

Naming conventions for variables
To make scripts easier to read, it is best to follow a standard naming
convention. The recommended standard is to give each variable a 2-letter
or 3-letter prefix followed by an underscore (_). The first letter of the
prefix identifies the scope of the variable (for example: g for global, l for
local) and the next letter or letters identify the data type (for example: s for
string, l for long, or nv for nonvisual object).

9 Click the Save button in the PainterBar
or
Select File>Save from the menu bar.

PowerBuilder compiles the script and saves it. If you had typed the global
variable data type (instead of dragging it from the System Tree) and you
made a typing error, an error message would display. You would then
correct the error and select Save again.

Lesson 4 Connecting to the Database

Getting Started 107

Modify the connection information

Where you are
Look at the EAS Demo DB database
Run the Connection Object wizard
Declare a global variable

> Modify the connection information
Complete the login and logout scripts
Run the application

You can now call the connection service manager to establish a database
connection, but you should open a database connection only if the user enters
a valid ID and password in the login window. You will therefore add the
connection service call to the Clicked event of the OK button on this window,
substituting user-entered information for information from the pbtutor.ini file.

Before you do that though, you remove or comment out the ProfileString calls
that the connection service manager makes to get user ID and password
information from the INI file. Then you modify the DBParm parameter in the
pbtutor.ini file, because it includes hard-coded user ID and password values
that were copied from the pb.ini file.

In this exercise you:

• Modify the of_GetConnectionInfo function

• Call the connection service manager

Modify the of_GetConnectionInfo function
You looked at the of_GetConnectionInfo function in the last exercise. Now you
comment out the information that the function returns for the user ID and
password information.

If you closed the User Object painter, you must open it again for the
n_pbtutor_connectservice user object. You can use the File>Recent Objects
menu to redisplay it.

1 Select Functions in the first drop-down list box in the Script view.
Select of_GetConnectionInfo in the second drop-down list box.

Modify the connection information

108 PowerBuilder

2 Select the two ProfileString assignment lines that begin:

as_userid = ProfileString (...)
as_dbpass = ProfileString (...)

The four arguments of a ProfileString call are the INI file name or variable,
the INI file section, the INI file key, and the default value to be used if the
INI file name, section, or key is incorrect. These lines are part of the
IS_USE_INIFILE case of the CHOOSE CASE statement for the
of_GetConnectionInfo function.

3 Click the Comment button in PainterBar2.

By commenting out these lines, you make sure that the user ID and
password information do not come from the pbtutor.ini file.

4 Click anywhere in the line that begins:

as_dbparm = ProfileString (...)

5 Click the Comment button in PainterBar2.

The DBParm parameter in the ptutor.ini file includes hard-coded values
for the user ID and password as well as the database name. You do not use
these values. Instead, you assign values to the DBParm parameter from
user-entry information for user ID and password.

The SQLCA DBParm parameter
Although the user ID and password are not required for the DBParm
ConnectString, assigning them to the ConnectString overwrites user ID
and password values in the data source definition for an Adaptive Server
Anywhere database. For this DBMS, the DBParm parameter also takes
precedence over the SQLCA UserID and DBPass parameters.

6 Click the Save button in PainterBar1.
Click the Close button in PainterBar1.

Lesson 4 Connecting to the Database

Getting Started 109

Call the connection service manager
You will next call the connection service manager to connect to the database.
Because you eventually need to add user-entry information from the login
window, you add the call to the Clicked event for the OK button on this
window.

An object is considered to be the parent of the controls that are added to it. The
login window is therefore the parent of the OK button.

When referring to a parent object in a script, it is usually better practice to use
the qualifier parent than to name the object explicitly. This allows the code to
be reused more easily for controls placed on a different object. In the script for
the Clicked event, you refer to the login window as parent.

Using a single wizard to create the application and connection
If you had created the connection service user object with the Template
Application wizard, the code you enter in this exercise to call the connection
service manager would have been generated automatically, but it would have
been added to the application Open event, not to a Clicked event in a login
window. It would also have used a local variable, not a global variable.

1 Double-click w_welcome in the System Tree.

The Window painter opens.

2 Select cb_ok in the first drop-down list box of the Script view
or
Double-click the OK button in the Layout view.

The Clicked event should be the selected event in the second drop-down
list box. If it is not, select it. The Clicked event script is empty.

3 Type these lines:

// 1) Instantiate the Transaction object
// 2) Close login window if connection successful

These lines explain the code you add to the Clicked event. Adding double
slash marks at the front of a line turns it into a comment.

4 Type the following assignment statement below the comments:

gnv_connect = CREATE &
n_pbtutor_connectservice

Modify the connection information

110 PowerBuilder

Do not type the ampersand (&) if you combine the lines of the script into
a single line. The ampersand character indicates that a line of script is
continued on the next line.

The CREATE statement instantiates the SQLCA Transaction object with
all the values retrieved by the of_GetConnectionInfo function from the
pbtutor.ini file. Because you previously commented out the lines for the
user ID and password, this information is not retrieved.

For ease of reading, you can add blank lines between the comments and
the assignment statement for the global variable gnv_connect.

5 Type the following lines below the CREATE statement:

IF gnv_connect.of_ConnectDB () = 0 THEN
Close (parent)

END IF

The of_ConnectDB function connects the application to the database. As
you saw earlier in this lesson, if the connection fails (the SQLCode is
not 0), a message box opens and displays the SQL error text.

If of_ConnectDB returns a zero (the SQLCode for a successful
connection), the lines that follow the IF-THEN statement line are parsed.
In this case, the parent window for the cb_ok control (w_welcome) closes.

6 Click the Compile button in PainterBar2
or
Right-click inside the Script view and click Compile in the pop-up
menu.

The script should compile without error. If you get an error message, make
sure you have typed object and function names correctly and saved
gnv_connect as a global variable.

Lesson 4 Connecting to the Database

Getting Started 111

Toggling the Error window of the Script view
You can show or hide the Error window by clicking the icon at the far right
of the Script view just under the title bar.

You still need to code the Clicked event to instantiate the Transaction
object with user-entered connection information.

Complete the login and logout scripts

112 PowerBuilder

Complete the login and logout scripts

Where you are
Look at the EAS Demo DB database
Run the Connection Object wizard
Declare a global variable
Modify the connection information

> Complete the login and logout scripts
Run the application

Earlier in this lesson, you called the connection service manager from the
Clicked event for the login window OK button. Next you add code to the same
Clicked event to instantiate the Transaction object with information entered by
the user.

You also add code to the login window Cancel button Clicked event and to the
application Closed event.

Minimizing typing errors in the Script view
If you right-click inside the scripting area, you open a pop-up menu that
includes Paste Special commands. You can use these commands to paste
statements, objects, functions or even the contents of text files into the event
script. This reduces the risk of typing errors. You can also use AutoScript to
complete code, as you will see in this lesson.

In this exercise you:

• Set up shortcuts for AutoScript

• Add code to the OK button Clicked event

• Add code to the Cancel button Clicked event

• Add code to the application Close event

Lesson 4 Connecting to the Database

Getting Started 113

Set up shortcuts for AutoScript
When you are coding scripts, AutoScript provides help by completing the
statement you are typing or displaying a list of language elements that are
appropriate to insert in the script at the cursor location.

1 Select Design>Options from the menu bar and click the AutoScript
tab.

2 Make sure all the check boxes in the first three group boxes are
selected.

3 Make sure the Activate Only After A Dot and Automatic Popup check
boxes in the fourth group box are cleared, and click OK.

With these settings, AutoScript provides Help wherever it has enough
information to determine what code to insert, but it does not pop up
automatically when you pause. By selecting the Statement Templates
check box (not selected by default), you can use AutoScript to enter
structures for a multiple line PowerScript statement.

4 Select Tools>Keyboard Shortcuts from the menu bar.
Expand the Edit node in the tree.

5 Scroll down and select Activate AutoScript.
With your cursor in the Press Keys For Shortcut box, press
Ctrl+space.

6 Expand the Edit>Go To node in the Current Menu list and select Next
Marker.
Type Ctrl+M in the shortcut box and click OK.

Now whenever you want help completing code, you can press Ctrl+space
to pop up a list of possible completions. If you paste in a statement or
function with comments, you can press Ctrl+M to move to the next
comment.

Complete the login and logout scripts

114 PowerBuilder

Add code to the OK button Clicked event
As is often the case when you are developing production applications, you get
some of the connection properties from an initialization file and some from
user input.

For the tutorial application, you should not get the user ID and password from
the tutorial INI file. Get them directly from the user in the login window and
then pass the database information in a script.

1 Make sure you are looking at the Clicked event script for the cb_ok
control.

This is the script in which you added the call to the Connection Service
object.

2 Click before the IF-THEN statement.
Type the following lines:

//Local variable declarations
string ls_database, ls_userid, ls_password

//Assignment statements
ls_userid = Trim (sle_userid.text)
ls_password = Trim (sle_password.text)
ls_database = "ConnectString='DSN=EAS Demo DB V105;"

With these lines you declare local variables and assign them values. Do not
use blank spaces around the = signs in the ConnectString text. Do not
worry about the lone single quotation mark. You will add a single
quotation mark in the next step to complete the connection script.

Using AutoScript to help code the assignment statements
When you type the assignment statements, if you type the letters before the
underscore in a variable name and then press Ctrl+space, AutoScript pops
up a list of possible completions. Use the arrow keys to move to the correct
completion and the Tab key to paste it into your script. If you type the
underscore and the first letter after the underscore and then press
Ctrl+space, AutoScript pastes the completion directly into your script, as
long as there is a unique completion.

The Trim function removes leading and trailing spaces from the user ID
and password values passed as arguments to the function from the
SingleLineEdit boxes on the login window.

Lesson 4 Connecting to the Database

Getting Started 115

3 Click after the lines you just added (which follow the CREATE
statement) but before the IF-THEN statement.
Type the following lines:

//Instantiate with user-entry values
SQLCA.userid = ls_userid
SQLCA.dbpass = ls_password
SQLCA.dbparm = ls_database + "UID=" + &

ls_userid + ";PWD=" + ls_password + "'"

These lines instantiate SQLCA parameters with values from the
SingleLineEdit text boxes.

The lines must be added to the script after the CREATE statement to keep
them from being overwritten with blank values from the Constructor event
of the connection service manager. They must be added before the IF-
THEN statement or their values are not used by the Transaction object
when it is called by the of_ConnectDB function of the connection service
manager.

4 Click the Compile button in PainterBar2
or
Right-click inside the Script view and click Compile in the pop-up
menu.

The script should compile without error. If you get an error message, make
sure you have typed object and function names correctly.

Complete the login and logout scripts

116 PowerBuilder

Add code to the Cancel button Clicked event
Now you add code to the Cancel button to stop the application when this button
is clicked.

1 Double-click the Cancel button in the Layout view
or
Select cb_cancel in the first drop-down list box of the Script view.

The script area for the Cancel button is blank.

2 Type this one-line script for the Clicked event:

HALT

This statement terminates the application immediately when the user
clicks Cancel on the login window.

3 Click the Save button in the PainterBar
or
Select File>Save from the menu bar.

PowerBuilder compiles the script.

4 Click the Close button in the PainterBar
or
Select File>Close from the menu bar.

The Window painter closes.

Add code to the application Close event
Because the connection service manager was called by a global variable, it is
still available to the application and does not need to be instantiated again (as
it would if you had used a local variable).

Now you call the connection service manager disconnect function to close the
database connection.

1 Double-click the pbtutor application icon in the System Tree.

The Application painter displays different views of the tutorial application
object. The Script view is part of a stack in the default layout, but you
might find it easier to detach it from the stack or open a second Script view.

Lesson 4 Connecting to the Database

Getting Started 117

2 Select close () returns (none) in the second drop-down list box
of the Script view.

There is no code yet for the application Close event.

3 Type the following lines for the Close event comment:

Application Close script:
Disconnect from the database

4 Select all or part of the lines you just added.
Click the Comment button.

5 Type the following line below the comment you typed (you can use
AutoScript to complete the variable name and the function name):

gnv_connect.of_DisconnectDB ()

Releasing memory by setting global variables to null
If this were not the application Close event and you no longer needed an
instance of the global connection variable, you could release the memory
it occupies by calling the SetNull function.

PowerBuilder also provides a DESTROY statement to destroy object
instances. Do not use the DESTROY statement for local or global
variables for nonvisual objects. PowerBuilder garbage collection removes
any local variables that go out of scope.

6 Right-click anywhere in the script area of the Script view.
Click Compile in the pop-up menu.

PowerBuilder compiles the Close script. If you get an error message, look
carefully at the lines you typed to make sure there is no mistyped variable
or object name.

Complete the login and logout scripts

118 PowerBuilder

7 Click the Close button in PainterBar1.

A message box asks if you want to save your changes to the Application
object in the application library file.

8 Click Yes.

This saves your changes and closes the Application painter.

Lesson 4 Connecting to the Database

Getting Started 119

Run the application

Where you are
Look at the EAS Demo DB database
Run the Connection Object wizard
Declare a global variable
Modify the connection information
Complete the login and logout scripts

> Run the application

Now you run the application.

1 Click the Run button in the PowerBar.
If a message box prompts you to save changes, click Yes to save
them.

The workspace closes and your application runs.

2 Type dba in the User ID box.
Type sql in the Password box.

The password text is displayed as asterisks. Because you set the tab order
for this window, you can tab from the User ID box to the Password box,
and then to the OK button.

3 Click OK.

The database connection is established and the MDI frame for your
application displays.

If you enter an invalid user ID or password
If you mistyped the user ID or password, the Connect to Adaptive Server
Anywhere (ODBC Configuration) dialog box displays. You get a second
chance to enter a valid user ID and password on the Login page of this
dialog box. If you click the Test Connection button on the ODBC page of
the dialog box without changing this information, a message box tells you
that your user ID or password is not valid.

4 Select File>Exit from the menu bar.

The application terminates and you return to the development
environment.

Run the application

120 PowerBuilder

Getting Started 121

L E S S O N 5 Modifying the Ancestor Window

In this lesson you create a window that inherits from the basesheet
window that you generated with the Application Template wizard. You
add predefined user objects containing DataWindow controls to the
inherited window. You then create new w_customers and w_products
windows that inherit from this extension layer window instead of from the
original basesheet. Finally you make sure that the sheet windows open at
runtime with the size you set at design time.

But first you add a library to the library list that contains the predefined
user objects with DataWindow controls. In this lesson you:

• Add a library to the search path

• Create a new ancestor sheet window

• Add user events and event scripts

• Add scripts to retrieve data for the DataWindow controls

• Adjust a runtime setting for sheet window size

How long does it take?
About 30 minutes.

Add a library to the search path

122 PowerBuilder

Add a library to the search path

Where you are
> Add a library to the search path

Create a new ancestor sheet window
Add user events and event scripts
Add scripts to retrieve data for the DataWindow controls
Adjust a runtime setting for sheet window size

Next you add a library to the tutorial application search path. You must add all
libraries on which an application depends.

The library you add to the current application contains some precoded objects,
including the user object (u_dwstandard) that you will later add to the base
sheet window.

1 Right-click the pbtutor target (not the pbtutor application object) in
the System Tree.

The pbtutor target contains the pbtutor.pbl and the pbtutor application.

2 Select Properties from the pop-up menu.

The pbtutor target properties dialog box displays.

3 Make sure the Library List page displays.
Click Browse.

The Select Library dialog box displays.

Lesson 5 Modifying the Ancestor Window

Getting Started 123

4 Navigate to the Tutorial folder.
Select tutor_pb.pbl and click Open.

You return to the Library List page. The tutor_pb.pbl file is now included
in the search path for the tutorial application.

5 Click OK.

Create a new ancestor sheet window

124 PowerBuilder

Create a new ancestor sheet window

Where you are
Add a library to the search path

> Create a new ancestor sheet window
Add user events and event scripts
Add scripts to retrieve data for the DataWindow controls
Adjust a runtime setting for sheet window size

Now you create a window that inherits from the basesheet window you
generated with the Template Application wizard and add DataWindow controls
to it. In the Source editor, you change the inheritance of the generated sheet
windows (w_customers and w_products) to use the new window.

The DataWindow controls you add to the new ancestor window inherit their
definitions from a user object that was created for the tutorial application. The
user object is provided in the PBL file that you just added to the target library
list. The user object is a customized DataWindow control that includes scripts
to perform standard database error checking.

Why use a user object
You can build a user object in PowerBuilder to perform processing that you use
frequently in applications. Once you have defined a user object, you can reuse
it as many times as you need without any additional work.

In this exercise you:

• Create a new sheet window inheritance hierarchy

• Add a DataWindow control for the master DataWindow

• Add a DataWindow control for the detail DataWindow

• View the scripts inherited from the user object

Lesson 5 Modifying the Ancestor Window

Getting Started 125

Create a new sheet window inheritance hierarchy
Now you create a new window that inherits from the basesheet window. In this
tutorial, you use the new window as an extension layer between the basesheet
window and application sheet windows. Later in this lesson you make changes
to the extension layer window. The changes you make are automatically
extended to any new sheet windows that you inherit from the extension layer
window.

In the current tutorial application, the w_customers and w_products windows
already inherit from the w_pbtutor_basesheet window. Because you have not
yet added any non-generic property values or functions to these sheet windows
(other than their names and display text), you can write over these
wizard-generated windows without having to transfer any code to the
replacement windows. In this lesson you overwrite these windows with new
windows that inherit from the extension layer window.

1 Select File>Inherit from the PowerBuilder menu.

The Inherit from Object dialog box displays.

2 Make sure that pbtutor.pbl is selected in the Libraries list box and that
Windows is selected in the Objects Of Type drop-down list.

If you cannot see the full library list, you can change the size of the dialog
box by clicking on one of its edges and holding down the mouse button
while you drag the edge toward a corner of the screen. The pbtutor.pbl
should be the first of two libraries listed in the Libraries list box.

3 Select w_pbtutor_basesheet in the Object column of the main list box
and click OK.

4 Select File>Save Window, and in the Save Window dialog box, type
w_master_detail_ancestor in the Windows field for the new
window name.

5 (Optional) Type the following text in the Comments box:

New ancestor basesheet for the w_customers and
w_products sheet windows.

Create a new ancestor sheet window

126 PowerBuilder

6 Make sure that pbtutor.pbl is selected in the Application Libraries list
box and click OK.
Select File>Close to close the new ancestor basesheet.

You cannot create descendant windows if an ancestor window is open in
the Window painter.

7 Select File>Inherit from the PowerBuilder menu.

8 Make sure that pbtutor.pbl is selected in the Libraries list box and that
Windows is selected in the Objects Of Type drop-down list box.
Select w_master_detail_ancestor and click OK.

9 Type Maintain Customers in the Tag text box on the General page
of the Properties view.
Select File>Save As from the PowerBuilder menu and select
w_customers in the Windows list box.

10 Change the Comments text to:

Customer sheet window inheriting from
w_master_detail_ancestor.

11 Click OK, then click Yes in the Save Window message box that asks
if you want to replace the existing w_customers window.

The new sheet window inherits from w_master_detail_ancestor instead of
from w_pbtutor_basesheet.

12 Repeat steps 7-11, with the following modifications:

13 Close the new w_customers and w_products windows.

You cannot open an ancestor window in the Window painter if any of its
descendants are already displayed in the painter.

Step Modified instruction

9 Type Maintain Products in the Tag text box on the General
page of the Properties view. Select File>Save As from the
PowerBuilder menu and select w_products in the Windows list
box.

10 Change the Comments text to: Product sheet window
inheriting from w_master_detail_ancestor.

11 Replace the existing w_products window.

Lesson 5 Modifying the Ancestor Window

Getting Started 127

14 From the PowerBuilder menu, select Run>Full Build Workspace.

You should rebuild the workspace after changing the inheritance hierarchy
and before making modifications to the new ancestor window. You can see
the status of the build in the Output window, which displays below the
System Tree at the bottom of the PowerBuilder main window. The build is
finished when the Output window displays Finished Full build of
workspace MyWorkspace.

15 Close the Output window.

Add a DataWindow control for the master DataWindow
Now you add a DataWindow control (saved as the user object, u_dwstandard)
to the w_master_detail_ancestor window. It serves as the master DataWindow
for the ancestor window and its descendants.

How to create a user object like u_dwstandard
You can create a user object based on a DataWindow control by clicking the
New button and selecting Standard Visual from the PB Object page of the New
dialog box. This opens the Select Standard Visual Type dialog box. You can
then select DataWindow in the Types text box and add user events as needed.
You see how to add user events later in this tutorial.

1 Double-click w_master_detail_ancestor in the System Tree.

The w_master_detail_ancestor window opens in the Window painter. You
generated this window with the Template Application wizard. The wizard
also created and attached a menu to this window, m_pbtutor_sheet. The
menu is indicated in the Properties view for the window. You change this
property later.

2 Make sure the Layout view is visible in the Window painter.

3 Expand tutor_pb.pbl by double-clicking it in the System Tree.
Drag u_dwstandard from the System Tree to the
w_master_detail_ancestor window in the Layout view.

4 Widen the window so that the control is completely visible inside the
window.

Create a new ancestor sheet window

128 PowerBuilder

PowerBuilder creates a DataWindow control that inherits its definition
from the user object.

5 Make sure the new control is selected in the Layout view.

Small black squares at the corners indicate that the control is selected. The
Properties view displays the properties of the selected control.

6 Select the text dw_1 in the Name text box in the Properties view.
Type dw_master in the Name text box.
Select the VScrollBar check box.

PowerBuilder adds a vertical scroll bar to the control. It also changes its
name to dw_master.

The prefix dw_ is standard for DataWindow controls.

Lesson 5 Modifying the Ancestor Window

Getting Started 129

Add a DataWindow control for the detail DataWindow
Now you add a second DataWindow control that is the detail DataWindow in
the application.

1 Resize the window so that there is room for a second DataWindow
control below the first.
Drag u_dwstandard from the System Tree to below the dw_master
control in the Layout view.

PowerBuilder creates another DataWindow control that inherits its
definition from the user object u_dwstandard.

2 Move the DataWindow control so that it is completely visible inside
the window.

If you need to, you can maximize the Layout view and enlarge the window
object inside it to make more room for the DataWindow controls.

3 Make sure that the new control is selected in the Layout view.

The Properties view displays the properties of the selected control.

4 Replace the text dw_1 in the Name text box in the Properties view with
dw_detail.

PowerBuilder changes the name of the control to dw_detail.

Create a new ancestor sheet window

130 PowerBuilder

View the scripts inherited from the user object
Now you view the scripts the DataWindow controls inherited from
u_dwstandard.

1 Double-click the dw_detail DataWindow in the Layout view
or
Select dw_detail from the first drop-down list box in the Script view if
it is not already selected.

The Script view opens to the empty script for the dw_detail control’s
ItemChanged event.

Unscripted events are alphabetized separately from scripted events.
Scripted events are listed at the top of the drop-down list box. You will
next look at the dberror event, which contains an ancestor script, so you
need to scroll up in the event drop-down list box to find it.

2 Select dberror from the second drop-down list box in the Script view.

This script is also empty, but a purple script icon displays next to the event
name. This indicates that the ancestor control (u_dwstandard) has an
associated script.

3 Select Edit>Go To>Ancestor Script from the menu bar
or
Select u_dwstandard in the third drop-down list box.

PowerBuilder displays the script for the DBError event in the Script view.
The ancestor script is read-only when it is accessed from the Script view
for one of its descendants.

Lesson 5 Modifying the Ancestor Window

Getting Started 131

4 Scroll through the window to view the database error-handling logic
defined for the DBError event.

The script suppresses the default error message that the DBError event
normally displays. Instead, it causes an appropriate message to be
displayed for each database error that might occur. The script makes calls
to user events that were declared for the user object.

Because you used the u_dwstandard object to define both DataWindow
controls in the window, this logic is automatically reused in both controls.

5 Select Edit>Go To>Descendant Script from the menu bar
or
Right-click inside the script area of the Script view.
Select Go To>Descendant Script from the pop-up menu.

The third drop-down list box again displays w_master_detail_ancestor, the
identifier of the object that contains the current control. The script for the
DBError event of this control (dw_detail) is still blank.

Add user events and event scripts

132 PowerBuilder

Add user events and event scripts

Where you are
Add a library to the search path
Create a new ancestor sheet window

> Add user events and event scripts
Add scripts to retrieve data for the DataWindow controls
Adjust a runtime setting for sheet window size

Windows, user objects, and controls have predefined events associated with
them. Most of the time, the predefined events are all you need, but there are
times when you want to declare your own events. Events that you define are
called user events.

Purpose of user events One reason to define a user event is to reduce
coding in situations where an application provides several ways to perform a
particular task. For example, a task like updating the database can be
performed by clicking a button, selecting a menu item, or closing a window.
Instead of writing the code to update the database in each of these places, you
can define a user event, then trigger that user event in each place in which you
update the database.

Now you define some user events to handle retrieval, insert, update, and delete
operations against the tutorial database. You make these changes in the Script
view of the Window painter. Later in the tutorial, you add code in the Menu
painter to trigger these events.

1 Select w_master_detail_ancestor in the first drop-down list box of the
Script view.

2 Select Insert>Event from the menu bar
or
Select New Event in the second drop-down list box of the Script view.

The Script view displays the Prototype window for defining a new event.

Lesson 5 Modifying the Ancestor Window

Getting Started 133

The first button to the right of the third drop-down list box is a toggle
switch that displays or hides the Prototype window.

3 Type ue_retrieve in the Event Name text box in the Prototype
window.
Click inside the Script view below the Prototype window.
Type these lines (or use AutoScript as described below):

IF dw_master.Retrieve() <> -1 THEN
 dw_master.SetFocus()

 dw_master.SetRowFocusIndicator(Hand!)
END IF

Using AutoScript instead of typing
You can use AutoScript to paste in the IF THEN template as well as the
variables and function names:

Type IF, then press Ctrl+space.
Press Tab to paste an IF THEN statement.
Type dw_m, then press Ctrl+space.
Place the cursor after dw_master, type a dot, then type Ctrl+space.
Scroll and select retrieve(), press Tab, and type the rest of the line.
Press Ctrl+M to jump to the next comment.
Enter the other function calls by typing them or using AutoScript.

As soon as you clicked in the script area, the text in the second drop-down
list box of the Script view changed from New Event to ue_retrieve. It has
no arguments, does not return a value, and does not throw user-defined
exceptions. For information on throwing user-defined exceptions, see
Lesson 10, “Exception Handling.”

Add user events and event scripts

134 PowerBuilder

The script lines you entered execute the Retrieve function and place the
retrieved rows in the dw_master DataWindow control. If the retrieval
operation succeeds, the script sets the focus to the first row in the
DataWindow control and establishes the hand pointer as the current row
indicator.

If the retrieve fails
If the retrieval operation does not succeed, PowerBuilder triggers the
DBError event. The logic for the DBError event is handled in the user
object u_dwstandard. You looked at this script in the previous exercise.

4 Select File>Save from the menu bar.
Right-click the Prototype window and select New Event from the
pop-up menu.

PowerBuilder compiles the script you entered for the ue_retrieve event.
The Script view displays the Prototype window for another new user
event.

If you get an error message
Mistyped or incomplete script entries generate compiler errors. If you
select No when prompted to ignore compilation errors, a compiler error
area displays at the bottom of the Script view, identifying your error. If this
happens, retype the script for the ue_retrieve event.

You can display or hide the compiler error area by clicking the second
toggle switch at the top right of the Script view.

Lesson 5 Modifying the Ancestor Window

Getting Started 135

5 Repeat steps 3 and 4 for the following entries:

What the scripts do The first line of the script for the ue_insert event
clears the dw_detail DataWindow control. The second line inserts a new
row after the last row in the DataWindow (the argument zero specifies the
last row). The third line positions the cursor in the dw_detail control.

The ue_insert and ue_delete events operate on the DataWindow buffer, not
on the database. When these events are triggered, a row is not inserted or
deleted from the database unless the Update function is also called (the
ue_update event calls this function). If the Update function returns the
integer 1, changes made to the buffer are committed to the database. If it
returns a different integer, changes to the buffer are rolled back.

In the script for the ue_delete event, the argument zero in the DeleteRow
function specifies that the current row in the dw_detail control be deleted.

6 Make sure your work is saved.

If you repeated step 4 for each new event and script that you added, you
have already saved your work.

Event name Script

ue_insert dw_detail.Reset()

dw_detail.InsertRow(0)

dw_detail.SetFocus()

ue_update IF dw_detail.Update() = 1 THEN

 COMMIT using SQLCA;

 MessageBox("Save","Save succeeded")

ELSE

 ROLLBACK using SQLCA;

END IF

ue_delete dw_detail.DeleteRow(0)

Add scripts to retrieve data for the DataWindow controls

136 PowerBuilder

Add scripts to retrieve data for the DataWindow
controls

Where you are
Add a library to the search path
Create a new ancestor sheet window
Add user events and event scripts

> Add scripts to retrieve data for the DataWindow controls
Adjust a runtime setting for sheet window size

The scripts you just typed have no effect on the dw_master DataWindow
control, but now that you have a script for the ue_retrieve event, you need only
trigger this event to retrieve data into the dw_master DataWindow.

You trigger the ue_retrieve event from the sheet window Open event. This
retrieves data into the dw_master DataWindow as soon as the window (or one
of its descendent windows) opens. Then you add a script for the
RowFocusChanged event of dw_master to retrieve data into the dw_detail
DataWindow. The RowFocusChanged event is triggered each time the focus is
changed inside the dw_master DataWindow.

RowFocusChanged occurs upon DataWindow display
The RowFocusChanged event also occurs when the w_master DataWindow is
first displayed. This allows the application to retrieve and display detail
information for the first row retrieved in the master DataWindow.

Here is how the script works for the w_master_detail_ancestor window and its
descendants when you are done:

• When a sheet window first opens, a list (of all customers or products)
displays in the top DataWindow control. Detail information for the first
item in the list displays in the bottom DataWindow control.

• When a user moves through the list in the top DataWindow control using
the up arrow and down arrow keys or by clicking in a row, the details for
the current row display in the bottom DataWindow control.

1 Select open from the second drop-down list box in the Script view for
w_master_detail_ancestor.

The Open event has a purple script icon indicating it has an ancestor script.
If you check the ancestor script, you see that it calls the ue_postopen event
and posts it to the end of the window’s message queue.

Lesson 5 Modifying the Ancestor Window

Getting Started 137

2 Type these new lines in the script area for the
w_master_detail_ancestor Open event:

dw_master.settransobject (sqlca)
dw_detail.settransobject (sqlca)
this.EVENT ue_retrieve()

The first two lines tell the dw_master and dw_detail DataWindows to look
in the SQLCA Transaction object for the values of the database variables.
The third line triggers the ue_retrieve event. The pronoun This refers to the
current object. In this example, the w_master_detail_ancestor window is
the current object.

3 Select dw_master in the first drop-down list box of the Script view.
Select rowfocuschanged in the second drop-down list box.

Read the event name carefully
Make sure you select the RowFocusChanged event, and not the
RowFocusChanging event.

You now add a script for the RowFocusChanged event of the dw_master
DataWindow control. This script sends a retrieval request and the ID
number of the selected row to the dw_detail DataWindow control.

4 Type this line in the script area for the RowFocusChanged event:

long ll_itemnum

This line declares the local variable ll_itemnum (l is a letter, not a number),
which has the long data type.

5 Type this line below the variable declaration line you just typed:

ll_itemnum = this.object.data[currentrow, 1]

Use square brackets
The expression shown above requires square brackets, not parentheses.

This line uses a DataWindow data expression to obtain the item number in
column 1 of the currently selected row of dw_master. It stores the number
in the variable ll_itemnum.

Add scripts to retrieve data for the DataWindow controls

138 PowerBuilder

CurrentRow is an argument passed to the RowFocusChanged event that
specifies the current row in the DataWindow control. The current row is
the row the user has selected by clicking or by scrolling with the arrow or
tab keys.

6 Type these lines below the data expression line you just typed:

IF dw_detail.Retrieve(ll_itemnum) = -1 THEN
 MessageBox("Retrieve","Retrieve error-detail")
END IF

This group of lines sends a retrieval request to the dw_detail DataWindow
along with the argument the DataWindow expects (an ID number stored in
the ll_itemnum variable). The IF statement that encloses the Retrieve
function checks for successful completion. If the retrieval operation fails,
it displays an error message box.

7 Click the Save button in PainterBar1.
Click the Close button in PainterBar1.

PowerBuilder compiles the script you typed and saves it.

8 Click the Full Build Workspace button in the PowerBar.

It is a good idea to rebuild all your objects after modifying an ancestor
object.

9 Close the Output window.

Lesson 5 Modifying the Ancestor Window

Getting Started 139

Adjust a runtime setting for sheet window size

Where you are
Add a library to the search path
Create a new ancestor sheet window
Add user events and event scripts
Add scripts to retrieve data for the DataWindow controls

> Adjust a runtime setting for sheet window size

The Template Application wizard creates a sheet manager that makes the
OpenSheet function call to open a sheet window. The OpenSheet function has
an argument that can affect the sheet window size at runtime. By default the
wizard sets this argument to the Cascaded! value that overrides the sheet
window size you set at design time. Now you change this value to allow the
runtime window size to be the same as the design time size.

1 Double-click n_pbtutor_sheetmanager in the System Tree
or
Right-click n_pbtutor_sheetmanager in the System Tree and select
Edit from the pop-up menu.

2 In the Script view, select (Functions) in the first drop-down list box.
Select of_opensheet in the second drop-down list box.

3 Go to the following line in the script:

li_rc = OpenSheet (lw_sheet, as_sheetname, w_pbtutor_frame, 0, Cascaded!)

4 Change the Cascaded! argument to Original!:

li_rc = OpenSheet (lw_sheet, as_sheetname, w_pbtutor_frame, 0, Original!)

5 Click the Save button in PainterBar1.
Click the Close button in PainterBar1.

The next time you run the tutorial application, the sheet windows will open
in the size you set at design time. They will still be cascaded relative to
other open sheets.

Adjust a runtime setting for sheet window size

140 PowerBuilder

Getting Started 141

L E S S O N 6 Setting Up the Menus

In this lesson you set up the menus for the application. You:

• Modify the frame menu

• Create a new sheet menu

• Add menu scripts to trigger user events

• Attach the new menu and run the application

Menus are separate objects that you create using the Menu painter. After
you create a menu, you can attach it to as many windows as you want. You
can create menus at any time during the application development process.

How long does it take?
About 30 minutes.

Modify the frame menu

142 PowerBuilder

Modify the frame menu

Where you are
> Modify the frame menu

Create a new sheet menu
Add menu scripts to trigger user events
Attach the new menu and run the application

The frame menu was created automatically by the Template Application
wizard. The m_pbtutor_frame menu is the ancestor of all the other menus you
work with in the tutorial. Changes you make to this menu are automatically
propagated to descendent menus.

In the WYSIWYG (What You See Is What You Get) view of the Menu painter,
you see menus as they appear when the application is running. In this tutorial,
you use the WYSIWYG view to make changes to the application menus, but
you can make the same changes from the Tree Menu view. You use the
Properties view to change a toolbar button.

In this exercise you:

• Modify the File menu

• Enable Help menu items

Modify the File menu
Now you modify the File cascading menu of the m_pbtutor_frame menu.

1 Double-click m_pbtutor_frame in the System Tree.

The Menu painter displays the menu associated with the MDI frame
window in the application. Because m_pbtutor_sheet inherits from
m_pbtutor_frame, changes you make to the frame menu are propagated to
the sheet menu.

In the WYSIWIG view, the menu items appear across the top of the view.
If a WYSIWYG view is not open, you can select it from the View menu in
the Menu painter menu bar.

Lesson 6 Setting Up the Menus

Getting Started 143

2 Click the File menu in the WYSIWYG view of m_pbtutor_frame.

When you click a menu item in the WYSIWYG view, its menu items
appear just as they would at runtime.

If the File menu does not display its menu items
The File menu is selected when you display the WYSIWYG view. You
might need to click one of the other menus (Edit, Window, or Help) and
then click again on the File menu to display its menu items.

3 Right-click New under the File menu.
Select Edit Menu Item Text in the pop-up menu.
Type &Report and press Enter.

You change the display name of the New menu item to Report. The menu
name remains m_new and its purpose (to open new sheet windows)
remains the same.

Define accelerator keys with the ampersand character
The character following the ampersand is used as an accelerator key
(mnemonic) and appears with an underscore in the WYSIWYG display. In
the runtime application, the user can access the File>Report menu by
pressing Alt+F+R.

4 Make sure that &Report appears in the Text text box in the Properties
view.
Click the Toolbar tab in the Properties view.

The toolbar item text is New,Open New Sheet. There is no selection in
the ToolbarItemName box, so no toolbar button appears at runtime for the
Report menu item. You do not add a toolbar button here, because you use
the Report menu item to access cascading menu items rather than as a
command to open a new sheet.

Modify the frame menu

144 PowerBuilder

5 Click the Open menu item under the File menu in the WYSIWYG view.
Click the General tab in the Properties view.
Clear the Visible and Enabled check boxes on the General page of the
Properties view.

You hide the Open menu item in all runtime menus. When you clear the
Visible property, the WYSIWYG view displays the menu item with a
dithered (broken) appearance. It is not visible at runtime. When you clear
the Enabled property, the WYSIWIG view displays the menu item with a
very faint and inverted relief appearance. If it is visible at runtime, the
menu item will still be grayed out.

6 Click the Toolbar tab of the Properties view.
Clear the ToolbarItemVisible check box.

This prevents the toolbar button for this menu item from appearing in the
frame menu toolbar (a button can be included in a toolbar even if its
corresponding menu item is not visible or enabled).

7 Click Exit under the File menu in the WYSIWYG view.

The Toolbar page of the Properties view remains open. The
ToolbarItemText and ToolbarItemName values change to show the values
for the m_exit menu item.

Lesson 6 Setting Up the Menus

Getting Started 145

Enable Help menu items
The Help menu has three items, but only one, Help>About, is enabled. Now
you enable the other menu items, using commented-out code that was provided
by the Template Application wizard and the pbtutor.hlp file in the Tutorial
directory.

You call application Help topics with the ShowHelp function, passing it an
enumerated value that identifies whether you want the Help contents or index
to display, or a specific topic or keyword. ShowHelp can open Windows Help
or compiled HTML Help (CHM) files.

1 Click the Help menu in the WYSIWYG view and then double-click the
Help Index menu item.

You can double-click the Help Index item even though it is not currently
enabled. The full name of the Help Index menu item,
m_help.m_helpindex, displays in the Script view. It includes the m_help
prefix to indicate that it is in the Help menu.

2 Select Clicked in the second drop-down box if it is not already
selected.

3 Position the cursor in the line that contains the ShowHelp function
and click the Uncomment button in the PowerBar.
Change myapp.hlp to pbtutor.hlp:

 ShowHelp ("pbtutor.hlp", Index!)

This displays the default topic in the Help file.

4 Select the Enabled check box on the General page of the Properties
view for the m_helpindex menu item.

5 Repeat the preceding steps for the Search For Help On menu item
using the following Show Help function.

ShowHelp ("pbtutor.hlp", Keyword!, "")

If the third argument contained a string that was a keyword in the Help file,
the associated topic would display. Because the argument is an empty
string, the Help Search window displays.

6 Select File>Save from the main PowerBuilder menu bar.
Select File>Close from the main PowerBuilder menu bar.

Create a new sheet menu

146 PowerBuilder

Create a new sheet menu

Where you are
Modify the frame menu

> Create a new sheet menu
Add menu scripts to trigger user events
Attach the new menu and run the application

Now you create a new menu that displays whenever the user opens an MDI
sheet to look at customer or product information. The menu you create is a
descendant of the m_pbtutor_sheet menu that was generated by the Template
Application wizard.

The m_pbtutor_sheet menu inherits in turn from m_pbtutor_frame, but has
some additional menu items enabled. In the menu you create, you add menu
items that are not present in the ancestor menus.

In this exercise you:

• Inherit and save a new menu

• Add items to the new menu

• Add a new toolbar for the new menu items

Inherit and save a new menu
By inheriting from the application sheet menu, you retain the sheet menu
characteristics without modifying the ancestor menu. It is good practice to save
the new menu immediately, then save it again after you modify it.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Make sure Menus is selected in the Objects of Type drop-down list
box.
Select m_pbtutor_sheet in the Object list box and click OK.

PowerBuilder displays an untitled menu that has all the characteristics of
m_pbtutor_sheet.

Lesson 6 Setting Up the Menus

Getting Started 147

On the inherited sheet menu, the Window menu items are enabled to allow
for tiling and cascading windows, just as they are for the m_pbtutor_sheet
menu. These items are disabled on the m_pbtutor_frame menu.

Changes made to the MDI frame menu
If you click the File menu in the WYSIWYG view, you see that the first
item is now Report. The Open item is dithered to indicate that it is not
visible and is grayed to indicate that it is disabled. These characteristics
were propagated through the inheritance chain from m_pbtutor_frame.

3 Select File>Save from the menu bar.

The Save Menu dialog box displays.

4 Type m_my_sheet as the menu name in the Menus box.
Type the following line in the Comments box:

New sheet menu for w_master_detail_ancestor and its
descendants.

5 Click OK.

This names the menu. The prefix m_ is standard for menus.

The name you just assigned to the new menu displays in the title bar of the
Menu painter workspace and the m_my_sheet menu appears in the system
tree.

Add items to the new menu
Next you add items to the Edit menu of the menu you just inherited from
m_pbtutor_sheet. You use the WYSIWYG and Properties views.

1 Click the Edit menu in the WYSIWYG view for the new menu.

The list of Edit menu items appears just as it would in a runtime
application. All items of the Edit menu are visible but disabled (they
appear gray—but not dithered—in the WYSIWYG view).

Create a new sheet menu

148 PowerBuilder

2 Right-click a menu item under the Edit menu in the WYSIWYG view.
Select Insert Menu Item At End from the pop-up menu.

The cursor moves into a blank box that appears at the end of the Edit menu
list.

3 Type - (hyphen) and press Enter.

The hyphen changes into a separator line. In the Properties view, the menu
item name changes to m_-. Even the separator lines between menu items
must have unique names. Other separator lines in the menu have a unique
index number preceded by the prefix m_dash.

4 Clear the Enabled check box in the Properties view for the new
separator line.

5 Right-click the new separator line in the WYSIWYG view.
Select Insert Menu Item At End from the pop-up menu.
Type &Insert in the box that appears under the new separator and
press Enter.

The menu item name is set automatically to m_insert. If PowerBuilder
displays a message that the default name is incorrect, it suggests an
alternative name. If this occurs, click OK to accept the suggested name.

Alternative method of inserting menu item names
You can type &Insert in the Text box in the Properties view instead of
typing it in the box that appears in the WYSIWYG view. In this case, you
do not need to press Enter afterwards. First, however, you have to clear the
Lock Name check box if the Name box is grayed (otherwise, the menu
name does not reset to m_insert).

6 Type Insert a row in the Microhelp box in the Properties view.

The new menu item is visible and enabled by default.

The text Insert a row displays in the Microhelp line at the bottom of
the application window whenever the user selects the menu item.

7 Repeat steps 5 and 6 for the following menu items:

Menu item Microhelp text

Upd&ate Update the database

&Delete Delete the current row

Lesson 6 Setting Up the Menus

Getting Started 149

You add Edit menu items for updating and deleting database records. Even
though it is not enabled, the Undo item already uses the letter U as an
accelerator key, so you should not use the same accelerator key for the
Update menu item. Instead, you use the letter A for this purpose.

Create a new sheet menu

150 PowerBuilder

Add a new toolbar for the new menu items
Now you add toolbar buttons for the menu items you just defined and then
place them in a second toolbar.

1 Click the new Insert menu item in the WYSIWYG view Edit menu.

2 Click the Toolbar tab in the Properties view.
Type Insert in the ToolbarItemText box.
Type or select Insert! in the ToolbarItemName drop-down list.

This defines a toolbar button for the Insert menu item that uses the stock
picture called Insert!. When the Show Text option in the runtime
application is enabled for toolbars, the text Insert appears on the button.

3 Type or click to 1 in the ToolbarItemSpace spin control.
Type or click to 1 in the ToolbarItemOrder spin control.
Type or click to 2 in the ToolbarItemBarIndex spin control.

When you start a new toolbar for the added menu items, the Insert button
will be the first item in this toolbar.

4 Click the new Update menu item in the WYSIWYG view Edit menu.
Make sure it is also diplayed on the title bar in the Properties view.

5 Click the Toolbar tab if the Toolbar page is not already open.
Type Update in the ToolbarItemText box.
Type or select Update! in the ToolbarItemName drop-down list box.

This defines a toolbar button for the Update menu item that uses the stock
picture called Update!. The button text is Update.

6 Type or click to 2 in the ToolbarItemOrder spin control.
Type or click to 2 in the ToolbarItemBarIndex spin control.

This will add the Update button after the Insert button in the new toolbar.

7 Click the new Delete menu item in the WYSIWYG view Edit menu.
Make sure it is also displayed on the title bar in the Properties view.

Lesson 6 Setting Up the Menus

Getting Started 151

8 Click the Toolbar tab if the Toolbar page is not already open.
Type Delete in the ToolbarItemText box.
Type or select DeleteRow! in the ToolbarItemName drop-down list
box.

This defines a toolbar button for the Delete menu item that uses the stock
picture called DeleteRow!. The button text is Delete.

9 Type or click to 3 in the ToolbarItemOrder spin control.
Type or click to 2 in the ToolbarItemBarIndex spin control.

You add the Delete button after the Update button in the new toolbar.

10 Select File>Save from the PowerBuilder menu bar.

Add menu scripts to trigger user events

152 PowerBuilder

Add menu scripts to trigger user events

Where you are
Modify the frame menu
Create a new sheet menu

> Add menu scripts to trigger user events
Attach the new menu and run the application

Now you add scripts to trigger user events from the sheet window menu bar.
You added these user events in Lesson 5, “Modifying the Ancestor Window.”
The Menu painter should still be open for the m_my_sheet menu. If it is not,
you can open it using the Open button in the PowerBar.

1 Select m_edit.m_insert in the first list box in the Script view
or
Double-click the Insert menu item in the WYSIWYG view.

The full name of the Insert menu item displays in the first list box of the
Script view. It includes the m_edit prefix to indicate that it is in the Edit
menu.

2 Select Clicked in the second drop-down box if it is not already
selected.
Type these lines for the Clicked event:

w_master_detail_ancestor lw_activesheet
lw_activesheet = w_pbtutor_frame.GetActiveSheet()
lw_activesheet.EVENT ue_insert()

The first two lines determine which sheet in the MDI frame is currently
active. The third line triggers the user event ue_insert for the active sheet.

3 Repeat steps 1 and 2 for the following menu items and scripts:

Menu name Script for Clicked event

m_edit.m_update w_master_detail_ancestor lw_activesheet

lw_activesheet=w_pbtutor_frame.GetActiveSheet()

lw_activesheet.EVENT ue_update()

m_edit.m_delete w_master_detail_ancestor lw_activesheet

lw_activesheet = w_pbtutor_frame.GetActiveSheet()

lw_activesheet.EVENT ue_delete()

Lesson 6 Setting Up the Menus

Getting Started 153

4 Select File>Save from the PowerBuilder menu bar.

PowerBuilder compiles and saves the menu scripts.

5 Click the Close button in PainterBar1
or
Select File>Close from the PowerBuilder menu bar.

Attach the new menu and run the application

154 PowerBuilder

Attach the new menu and run the application

Where you are
Modify the frame menu
Create a new sheet menu
Add menu scripts to trigger user events

> Attach the new menu and run the application

Now you attach the new sheet menu and run the application again.

1 Double-click w_master_detail_ancestor in the System Tree.

If you cannot see the Properties view
Select View>Properties from the menu bar.

The menu listed in the MenuName box in the Properties view of the
Window painter is still m_pbtutor_sheet.

2 Click the ellipsis button next to the MenuName box.

The Select Object dialog box displays.

3 Select m_my_sheet in the Menus list box and click OK.

This is the sheet menu you modified after inheriting it from
m_pbtutor_sheet. It is now listed as the menu name in the Properties view.

4 Click the Save button in PainterBar1.
Click the Run button in the PowerBar.

The application login window displays.

5 Type dba in the User ID box.
Type sql in the Password box and click OK.

The database connection is established, and the MDI frame for the
application displays. The File menu now includes a Report cascading
menu in place of the New menu item. The Open menu item is no longer
visible.

Lesson 6 Setting Up the Menus

Getting Started 155

6 Select File>Report>Maintain Customers from the menu bar.

Notice that a second toolbar appears and the Edit and Window cascading
menus include enabled menu items.

7 Select the Edit menu.

The Edit menu has the Insert, Update, and Delete options you added.
These options do not function yet, because the DataWindow controls in
the Customer window do not have DataWindow objects associated with
them.

8 Select the Window menu.

Notice that a new menu item has been added for the sheet you just opened.

9 Select File>Report>Maintain Products from the menu bar.

A second MDI sheet opens. This sheet cascades relative to the first sheet.
The menu bar does not change. That is because m_my_sheet is the menu
for both w_customers and w_products.

10 Select the Edit menu.

Because the w_products window uses the m_my_sheet menu, the Insert,
Update, and Delete options are also available when the Product window is
open.

11 Select the Window menu.

Another menu item has been added for the second sheet you opened. The
checkmark next to this menu item indicates that it is the active sheet.

12 Select File>Exit from the menu bar.

The application terminates and you return to the Window painter
workspace.

13 Close the Window painter.

Attach the new menu and run the application

156 PowerBuilder

Getting Started 157

L E S S O N 7 Building DataWindow Objects

The DataWindow object is one of the most powerful and useful features
of PowerBuilder. A DataWindow object can connect to a database,
retrieve rows, display the rows in various presentation styles, and update
the database.

In this lesson you:

• Create and preview a new DataWindow object

• Save the DataWindow object

• Make cosmetic changes to the first DataWindow object

• Create a second DataWindow object

• Make cosmetic changes to the second DataWindow object

How long does it take?
About 20 minutes.

Create and preview a new DataWindow object

158 PowerBuilder

Create and preview a new DataWindow object

Where you are
> Create and preview a new DataWindow object

Save the DataWindow object
Make cosmetic changes to the first DataWindow object
Create a second DataWindow object
Make cosmetic changes to the second DataWindow object

Now you create a new DataWindow object and display it in the DataWindow
painter. Like other painters, the DataWindow painter has an assortment of
views that you can open simultaneously.

About the Design view of the DataWindow painter
The Design view in the DataWindow painter is similar to the Layout view in
other painters. You can open only one Design view at a time.

The Design view is divided into four areas called bands: header, detail,
summary, and footer. You can modify the contents of these bands. For example,
you can change their sizes, add objects (controls, text, lines, boxes, or ovals),
and change colors and fonts.

In the Preview view of the DataWindow painter, you can see how the object
looks in an application at runtime, complete with table data.

1 Click the New button in the PowerBar.

The New dialog box displays.

2 Click the DataWindow tab.

Lesson 7 Building DataWindow Objects

Getting Started 159

3 Select Tabular from the list of presentation styles.

4 Click OK.

The Choose Data Source for Tabular DataWindow page of the
DataWindow wizard displays.

5 Select Quick Select as the data source and select the Retrieve On
Preview check box if it is not already selected.
Click Next.

PowerBuilder connects to the EAS Demo DB Database, and the Quick
Select dialog box displays.

Create and preview a new DataWindow object

160 PowerBuilder

6 Click the customer table in the Tables list box.

This opens the table and lists its columns as shown in the illustration
below. For this DataWindow, you will select four columns.

7 Click id, fname, and lname in the Columns list box in the order listed.
Scroll down the list and click company_name.

PowerBuilder displays the selected columns in a grid at the bottom of the
Quick Select dialog box.

Selection order determines display order
The order in which you select the columns determines their left-to-right
display order in the DataWindow object. If you clicked a column by
mistake, you can click it again to clear the selection.

You can use the grid area at the bottom of the dialog box to specify sort
criteria (for the SQL ORDER BY clause) and selection criteria (for the
SQL WHERE clause). Now you specify sort criteria only. You sort the id
column in ascending order.

Lesson 7 Building DataWindow Objects

Getting Started 161

8 In the grid area of the Quick Select dialog box, click in the cell next to
Sort and below Id.

A drop-down list box displays.

9 Select Ascending from the drop-down list box.

This specifies that the id column is to be sorted in ascending order.

10 Click OK.

The DataWindow wizard asks you to select the colors and borders for the
new DataWindow object. By default, there are no borders for text or for
columns.

11 Click Next.

You accept the border and color defaults. The DataWindow wizard
summarizes your selections.

Create and preview a new DataWindow object

162 PowerBuilder

12 Click Finish.

PowerBuilder creates the new DataWindow object and opens the
DataWindow painter.

In the Design view, PowerBuilder displays a Heading band with default
headings and a Detail band with the columns you selected:

The Preview view displays the DataWindow as it appears during
execution. PowerBuilder displays data for all customers. The data is sorted
in ascending order by customer ID, just as you specified.

Displaying the Preview view
If the Preview view is not displayed, select View>Preview from the menu
bar. If Preview is grayed, it is already displayed and you cannot select it.
You can open only one Preview view at a time.

Lesson 7 Building DataWindow Objects

Getting Started 163

Save the DataWindow object

Where you are
Create and preview a new DataWindow object

> Save the DataWindow object
Make cosmetic changes to the first DataWindow object
Create a second DataWindow object
Make cosmetic changes to the second DataWindow object

Now you name the DataWindow object and save it in the pbtutor.pbl library.

Saving to another library
You can save objects to different application libraries, but to avoid
complications, you save all your new tutorial objects in one library. You can
also copy or move objects from one library to another using the Library painter.

1 Select File>Save from the menu bar.

The Save DataWindow dialog box displays with the insertion point in the
DataWindows box.

2 Make sure pbtutor.pbl is selected in the Application Libraries box.
Type d_custlist in the DataWindows box.

This names the DataWindow object. The prefix d_ is standard for
DataWindow objects.

3 (Optional) Type the following comments in the Comments box:

This DataWindow object retrieves customer names and
company associations.

4 Click OK.

PowerBuilder saves the DataWindow object and closes the Save
DataWindow dialog box.

Make cosmetic changes to the first DataWindow object

164 PowerBuilder

Make cosmetic changes to the first DataWindow object

Where you are
Create and preview a new DataWindow object
Save the DataWindow object

> Make cosmetic changes to the first DataWindow object
Create a second DataWindow object
Make cosmetic changes to the second DataWindow object

Now you can make cosmetic changes to the DataWindow. You reposition the
columns and column headings to make room for the hand pointer, which
displays to the left of the currently selected row. You also move some of the
columns to make them line up with their headings.

You make these changes in the Design view. You can keep the Preview view
open at the same time to see how the changes you make affect the appearance
of the DataWindow at runtime.

1 Select Edit>Select>Select All from the menu bar
or
Press Ctrl+A.

All of the controls in the DataWindow object are selected in the Design
view.

2 Position the mouse pointer over one of the selected objects.
Drag the object to the right about one inch.

All of the selected objects move together.

3 Click in a blank area in the Design view.

You clear the object selection.

4 Click the Customer ID header above the Header band.
Hold down the Ctrl key and click the id column above the Detail band.
Release the Ctrl key and drag the id column to the left about one-half
inch.

The column and its header move together.

Lesson 7 Building DataWindow Objects

Getting Started 165

5 Click the Center button in the StyleBar.
Click in a blank area in the Design view.

This centers the Customer ID column header text and the column data.

6 Click the First Name header.
Hold down the Ctrl key and click the Last Name and Company Name
headers.
Click the Left button in the StyleBar.

When you have finished, the Design view should look something like this:

7 Select File>Close from the menu bar.

A message box asks if you want to save your changes.

8 Click Yes.

PowerBuilder saves the DataWindow object and closes the DataWindow
painter.

Create a second DataWindow object

166 PowerBuilder

Create a second DataWindow object

Where you are
Create and preview a new DataWindow object
Save the DataWindow object
Make cosmetic changes to the first DataWindow object

> Create a second DataWindow object
Make cosmetic changes to the second DataWindow object

When you built the first DataWindow object, you used Quick Select to specify
the table and columns. This let you retrieve all the customers without having to
use the Select painter.

To build the second DataWindow object, you use the Select painter. You need
to define a retrieval argument and WHERE criteria so you can pass an
argument to the DataWindow object during execution. In this case, you will
pass the customer ID.

In this section, you:

• Select the data source and style

• Select the table and columns

• Define a retrieval argument

• Specify a WHERE clause

• View the DataWindow in the DataWindow painter

• Save the DataWindow object

Select the data source and style
Now you select a data source and define how the data is to be presented.

1 Click the New button in the PowerBar.

The New dialog box appears.

2 Click the DataWindow tab if it is not already selected.
Select Freeform from the list of presentation styles and click OK.

Lesson 7 Building DataWindow Objects

Getting Started 167

3 Select SQL Select as the data source and select the Retrieve On
Preview if it is not already selected.

Since the data source is SQL Select, you go to the Select painter and the
Select Tables dialog box displays.

Selecting the Retrieve On Preview check box allows you to view the data
returned by a query in the development environment, but you need to
provide initial values for any retrieval arguments that you specify.

4 Click Next.

Select the table and columns
Now you select the table and the columns from that table to use in the
DataWindow object.

1 Select customer in the list of tables and click Open.

The Select painter displays the customer table and its columns.

Alternative method
If you double-click the customer table instead of selecting it and clicking
Open, the Select Tables dialog box remains open. In this case, you must
click Cancel to continue.

2 Right-click the header area of the Customer table in the Table Layout
view.
Select Select All from the pop-up menu.

The column names appear in the Selection List area above the table in the
Table Layout view.

The column order in the Selection List reflects the order in which columns
are selected. Since you selected all the columns at once, the order
displayed is the original order of the columns in the database. You change
the column presentation order later.

Create a second DataWindow object

168 PowerBuilder

You can also see the order of selection in the Syntax view. Display the
Syntax view by clicking the Syntax tab at the bottom of the stack of tabbed
panes. The Syntax view displays the generated Select statement.

Define a retrieval argument
Now you define a retrieval argument.

1 Select Design>Retrieval Arguments from the menu bar.

The Specify Retrieval Arguments dialog box displays.

2 Type cust_id in the Name box.

Lesson 7 Building DataWindow Objects

Getting Started 169

The default data type is Number, which is what you want.

About retrieval argument names
You can choose any name you want for the retrieval argument; it is just a
placeholder for the value you pass during execution. Nonetheless, it is a
good idea to make the name meaningful.

3 Click OK.

The retrieval argument is defined.

Specify a WHERE clause
Now you specify a WHERE clause using the retrieval argument to retrieve a
specific customer.

1 Click the Where tab in the stack.

The Where view displays.

2 Click in the box below Column in the Where view.

A down arrow displays, and the box becomes a drop-down list box.

3 Select "customer"."id".

Create a second DataWindow object

170 PowerBuilder

Your selection displays immediately below the Column heading. An equal
sign (=) appears in the Operator box. This is correct, so do not change it.

4 Right-click in the box below the Value column header in the Where
view.
Select Arguments from the pop-up menu, select :cust_id, and click
Paste.

5 Click the Syntax tab in the stack.

The Syntax view displays the modified SELECT statement.

6 Scroll down until you see the generated WHERE clause.

You have now created a complete SQL SELECT statement that retrieves
data from several columns in the customer table where the id column is
equal to an argument that will be supplied during execution.

View the DataWindow in the DataWindow painter
Now you view the DataWindow in the DataWindow painter using the Design
and Preview views.

1 Click the Return button in the PainterBar
or
Select File>Return To DataWindow Painter from the menu bar.

Lesson 7 Building DataWindow Objects

Getting Started 171

The DataWindow wizard asks you to select the borders and colors for the
new DataWindow object.

2 Select Raised from the Border drop-down list box for columns.
Click Next.

You have added raised borders to the columns, but not to the labels in the
DataWindow object. The DataWindow wizard summarizes your
selections.

3 Click Finish.

Because you selected the Retrieve On Preview check box and because the
Preview view is part of the default layout scheme for the DataWindow
painter, the Specify Retrieval Arguments dialog box appears.

This dialog box prompts you for an argument value. When you put this
DataWindow object into the tutorial application, you write a script that
passes the required argument to the DataWindow object automatically.

Create a second DataWindow object

172 PowerBuilder

4 Type a customer ID (such as 101, 102, or 103) in the Value field.
Click OK.

The DataWindow painter opens. The Design view displays the new
DataWindow object.

Changing font sizes
If you cannot see all letters in a label, press Ctrl+A to select all the items
in the DataWindow, then select a smaller font size in the StyleBar.

The DataWindow Preview view retrieves the requested customer data.

Lesson 7 Building DataWindow Objects

Getting Started 173

Retrieving other records
If you want to preview the record for another customer, you can right-click
inside the DataWindow Preview view, select Retrieve from the pop-up
menu, then specify a different customer ID in the Specify Retrieval
Arguments dialog box.

Save the DataWindow object
Now you name the DataWindow object and save it. You could wait to save it
until you leave the painter, but it is good practice to save your work frequently.

1 Select File>Save from the menu bar.

The Save DataWindow dialog box displays.

2 Make sure pbtutor.pbl is selected in the Application Libraries box.
Type d_customer in the DataWindows box.

Earlier you saved a DataWindow object as d_custlist.

3 (Optional) Type the following comments in the Comments box.

This DataWindow retrieves all columns for the
Customer table. It is useful as a detail DataWindow.

4 Click OK.

You return to the DataWindow painter.

Make cosmetic changes to the second DataWindow object

174 PowerBuilder

Make cosmetic changes to the second DataWindow
object

Where you are
Create and preview a new DataWindow object
Save the DataWindow object
Make cosmetic changes to the first DataWindow object
Create a second DataWindow object

> Make cosmetic changes to the second DataWindow object

Now you modify the DataWindow object. You:

• Rearrange the columns and labels

• Align the columns and labels

• Display the arrow for a drop-down DataWindow edit style

Columns on freeform DataWindows
Data fields on freeform DataWindow objects are still called columns, even
though they are shown in a nontabular display.

Rearrange the columns and labels
Now you rearrange the columns and labels in the new DataWindow object. You
can maximize the Design view for greater ease in manipulating the columns
and their labels.

1 Click the Address: label in the Design view.
Hold the Ctrl key and click the address column.

The two items are selected.

2 Keep the Ctrl key pressed and click the following column labels and
column controls:

Label Column

City: city

State: state

Zip Code: zip

Lesson 7 Building DataWindow Objects

Getting Started 175

If necessary, scroll down until you can see all the columns in the
DataWindow.

3 Release the Ctrl key.
Position the cursor on one of the selected objects and drag it to the
top-right corner of the DataWindow object.

The objects move together.

4 Use the Ctrl+click technique to move the following label and column
controls to the location indicated:

5 Drag the Detail band up below the last column label.

This removes any extra space in the detail area.

Some of the fields might overlap others. You fix this in the next exercise.
The DataWindow should now look like this in the Design view:

The DataWindow Preview view looks like this:

Label Move with column Move under

Company Name: company_name Last Name:

Phone Number: phone Company Name:

Make cosmetic changes to the second DataWindow object

176 PowerBuilder

Align the columns and labels
Now you align the columns and labels on the new DataWindow.

1 Select the Zip Code: label in the Design view.
Move the Zip Code: label as close as possible to the company_name
column.

A narrow space should separate the left edge of the label box from the right
edge of the column box.

2 While the Zip Code: label is still selected, use the Ctrl+click technique
to select the Address:, City:, and State: labels.

3 Select Format>Align from the menu bar.

A cascading menu of align options displays.

4 Select the first option (Align left edges).

PowerBuilder aligns the left edges of the selected objects with the left edge
of the first item you selected (the Zip Code: label).

Selecting an alignment tool from the PainterBar
You can access a drop-down list of alignment tools by clicking the Align
button on PainterBar2.

5 Move the zip column so that it is next to the Zip Code: label.
Align the address, city, and state columns with the zip column, just as
you aligned the column labels.

Lesson 7 Building DataWindow Objects

Getting Started 177

Display the arrow for a drop-down DataWindow edit style
The column for the customer state of residence has a DropdownDataWindow
edit style. This is an extended attribute associated with the State column in the
EAS Demo DB database. The (drop-down) DataWindow with which the
column is associated has a list of states and their two-letter postal codes.

You can make the state selection list visible at all times in your application or
you can display an arrow at all times to indicate that a selection list is available.
Now you change the property for the state column to show the arrow at all
times.

1 Click the state column in the Design view.
Make sure the Properties view displays.

The Properties view displays properties of the column.

2 Click the Edit tab in the Properties view.

You might need to click the arrow keys near the top of the Properties view
to display the Edit tab before you can click it. Notice that the Style Type
selection is DropDownDW.

3 Select the Always Show Arrow check box.
Make sure the state column in the Design view is wide enough to
display two characters plus the arrow symbol.

An arrow appears next to the state column in the Design and Preview
views. While the column is selected in Design view, you can make the
column wider by holding the cursor over the right edge of the column until
the cursor symbol changes to a double-headed arrow, then dragging the
edge toward the rightmost frame of the view.

4 Click the Save button in PainterBar1.
Click the Close button in PainterBar1.

Make cosmetic changes to the second DataWindow object

178 PowerBuilder

Getting Started 179

L E S S O N 8 Attaching the DataWindow
Objects

After you create and save a DataWindow object, you can use it in a
window. You have already created the d_custlist and the d_customer
DataWindow objects. Now you associate each of these DataWindow
objects with a DataWindow control in the w_customers window.

In this lesson you:

• Attach the DataWindow object to the master DataWindow control

• Attach the DataWindow object to the detail DataWindow control

• Run the application

• Attach DataWindow objects to the Product window

• Run the application again

How long does it take?
About 15 minutes.

Attach the DataWindow object to the master DataWindow control

180 PowerBuilder

Attach the DataWindow object to the master
DataWindow control

Where you are
> Attach the DataWindow object to the master DataWindow control

Attach the DataWindow object to the detail DataWindow control
Run the application
Attach DataWindow objects to the Product window
Run the application again

Now you attach the DataWindow object to a DataWindow control in the
w_customers window.

1 Expand the pbtutor.pbl branch in the System Tree.

2 Right-click w_customers and select Edit from the pop-up menu
or
Double-click w_customers in the System Tree.

The Window painter displays the w_customers window.

Lesson 8 Attaching the DataWindow Objects

Getting Started 181

3 Right-click the top DataWindow control (dw_master) in the Layout
view.
If the Properties view is not displayed, select Properties from the
pop-up menu.
Click the ellipsis button next to the DataObject box in the Properties
view.

The Select Object dialog box displays.

4 Select d_custlist in the DataWindows list box and click OK.

PowerBuilder associates the d_custlist DataWindow object with the
dw_master DataWindow control.

The Layout view now shows the d_custlist DataWindow headings inside
the dw_master control, but you do not see any data yet. The DataWindow
does not execute its SELECT statement until you run the application.

Adding DataWindow objects to the window using drag and drop
In this tutorial, you use a custom DataWindow control that has built-in error
handling. If you want to use the standard DataWindow control, you do not need
to add the control to the window and then attach a DataWindow object to it as
you did in this lesson. You can simply select the DataWindow object you want
from the System Tree and drag it onto the window in the Layout view.
PowerBuilder creates the DataWindow control for you.

Attach the DataWindow object to the detail DataWindow control

182 PowerBuilder

Attach the DataWindow object to the detail
DataWindow control

Where you are
Attach the DataWindow object to the master DataWindow control

> Attach the DataWindow object to the detail DataWindow control
Run the application
Attach DataWindow objects to the Product window
Run the application again

Now you attach a DataWindow object to the detail DataWindow control. The
Window painter should still be open for the w_customers window.

1 Select the bottom DataWindow control (dw_detail) in the Layout view.
Click the ellipsis button next to the DataObject box in the Properties
view.
Select d_customer in the Select Object dialog box and click OK.

PowerBuilder associates the d_customer DataWindow object with the
dw_detail DataWindow control. The Window painter workspace now
shows the d_customer DataWindow object inside the dw_detail control.

2 In the Layout view, make the dw_detail control larger so that you can
see all of the columns you added to the DataWindow object.

If you need to, you can also enlarge the window to make more room. If you
make the dw_detail control wider, you may also want to make the
dw_master control the same width.

Lesson 8 Attaching the DataWindow Objects

Getting Started 183

Run the application

Where you are
Attach the DataWindow object to the master DataWindow control
Attach the DataWindow object to the detail DataWindow control

> Run the application
Attach DataWindow objects to the Product window
Run the application again

Now you run the application again to test the insert, update, and delete
capabilities of the second DataWindow.

1 Click the Run button in the PowerBar.

PowerBuilder prompts you to save your changes.

2 Click Yes.

The application begins running, and the login window displays.

3 Type dba in the User ID box.
Type sql in the Password box and click OK.

The database connection is established, and the MDI frame for the
application displays.

4 Select File>Report>Maintain Customers from the menu bar.

The Customer window displays.

Run the application

184 PowerBuilder

The top DataWindow control (dw_master) shows all of the rows retrieved
from the Customer table. The hand pointer shows which row is selected.

The bottom DataWindow control (dw_detail) shows further information
about the selected customer.

5 In the running application, click the Insert button in the toolbar
or
Select Edit>Insert from the Frame window menu bar.

This clears (resets) the dw_detail DataWindow, allowing you to add
information for a new row that you will insert into the data source. The
cursor is in the Customer ID box in the dw_detail control.

6 Add a new customer row by entering information in the boxes in the
detail DataWindow.

Typing information for a new customer
The Customer ID number must be unique. To avoid duplicate numbers,
use a four-digit number for your new database entry, or scroll down the list
of three-digit customer numbers in the master DataWindow and select an
ID number that does not appear in the list.

Enter values for the remaining fields.

The phone number and zip code use edit masks to display the information
you type. You must enter numbers only for these data fields. To specify the
state in which the customer resides, you must click the arrow next to the
state column and select an entry from the drop-down list box.

7 Click the Update button in the toolbar
or
Select Edit>Update from the menu bar.

This sends the new customer data to the database and displays a
confirmation message, as coded in the script for the ue_update event.

The new customer does not yet display in the master DataWindow. (You
could add code to include this feature). However, if you open another
instance of the w_customers sheet, the new customer data is visible in both
the master and detail DataWindow controls.

8 Click OK in the message box.
Click a customer in the master DataWindow.

Lesson 8 Attaching the DataWindow Objects

Getting Started 185

That customer data displays in the lower DataWindow.

9 Change the customer address in the detail DataWindow.

10 Click the Update button in the toolbar
or
Select Edit>Update from the menu bar.

This sends the revised customer data to the database and displays another
confirmation message.

11 Click OK in the message box.
Select another customer in the master DataWindow.

That customer data displays in the detail DataWindow.

12 Click the Delete button in the toolbar
or
Select Edit>Delete from the menu bar.

The customer is deleted from the DataWindow immediately but is not
deleted from the database unless you select the Update option on the Edit
menu. In this particular situation, the Update operation may fail, because
rows in other tables in the EAS Demo DB database may refer to the row
that you are trying to delete.

You should be able to delete any row that you have added to the database.

13 Select File>Exit from the menu bar.

The application terminates and you return to the Window painter.

14 Close the Window painter.

Attach DataWindow objects to the Product window

186 PowerBuilder

Attach DataWindow objects to the Product window

Where you are
Attach the DataWindow object to the master DataWindow control
Attach the DataWindow object to the detail DataWindow control
Run the application

> Attach DataWindow objects to the Product window
Run the application again

Now you add two DataWindow objects to the w_products window. These
DataWindow objects are provided for you in the tutor_pb.pbl library.

1 Right-click w_products in the System Tree and select Edit from the
pop-up menu
or
Double-click w_products in the System Tree.

The Window painter displays the w_products window.

2 If the Control List view is not open, select View>Control List from the
View menu.
Select the dw_master DataWindow control in the Control List view.
Click the ellipsis button next to the DataObject box in the Properties
view.

PowerBuilder displays the Select Object dialog box.

3 Select tutor_pb.pbl in the Application Libraries box.
Select d_prodlist in the DataWindows box and click OK.

The Data Object box in the Properties view of the Window painter now
displays d_prodlist.

Lesson 8 Attaching the DataWindow Objects

Getting Started 187

PowerBuilder associates the d_prodlist DataWindow object with the
dw_master DataWindow control in the w_products window. You see the
headings for the DataWindow object in the Layout view. You might need
to resize the control and/or the window.

4 Click the dw_detail DataWindow control in the Control List view.
Click the ellipsis button next to the DataObject box in the Properties
view.

The Select Object dialog box displays.

5 Select tutor_pb.pbl in the Application Libraries box.
Select d_product in the DataWindows list box and click OK.

You return to the Window painter.

PowerBuilder associates the d_product DataWindow object with the
dw_detail DataWindow control. The Layout view now shows the
d_product DataWindow object inside the dw_detail control. The
d_product DataWindow object has seven columns labeled Product ID,
Product Name, Product Description, Size, Color, Quantity, and Unit Price.

If necessary, in the Layout view, make the dw_detail control larger so that
you can see all of the columns in the DataWindow object. You can also
enlarge the window to make more room.

Run the application again

188 PowerBuilder

Run the application again

Where you are
Attach the DataWindow object to the master DataWindow control
Attach the DataWindow object to the detail DataWindow control
Run the application
Attach DataWindow objects to the Product window

> Run the application again

Now you run the application again to test the Product window.

At this point the Product window should have all of the capabilities of the
Customer window. Like the Customer window, the Product window functions
as a master/detail window, providing support for retrieval, insert, update, and
delete operations against the database.

1 Click the Run button in the PowerBar.

PowerBuilder prompts you to save your changes.

2 Click Yes.

The application begins running, and the login window displays.

3 Type dba in the User ID box.
Type sql in the Password box and click OK.

The database connection is established, and the MDI frame for the
application displays.

4 Select File>Report>Maintain Products from the menu bar.

The Product window displays. The top DataWindow control shows all of
the rows retrieved from the Product table.

Lesson 8 Attaching the DataWindow Objects

Getting Started 189

The bottom DataWindow control shows information about the product
selection in the top DataWindow control.

5 Select Edit>Insert from the menu bar.

This clears the dw_detail DataWindow and allows you to add a new row
to the DataWindow. The cursor is in the Product ID box in the dw_detail
control.

6 Add a new product row by entering information in the boxes in the
lower DataWindow.

Use the Tab key to move from box to box.

7 Select Edit>Update from the menu bar.

This sends the new product data to the database and displays a
confirmation message, as coded in the script for the ue_update event.

The new product does not display yet in the top DataWindow, but if you
open another product sheet, the new information displays. If you want, you
can add code to the Clicked event of the update button to automatically
refresh the data in the master DataWindow control.

8 Click OK in the message box.
Click a product in the master DataWindow.

That product data displays in the detail DataWindow.

Run the application again

190 PowerBuilder

9 Change the product’s unit price.
Select Edit>Update from the menu bar.

This sends the revised product data to the database and displays another
confirmation message.

10 Click OK in the message box.
Select another product in the master DataWindow.

That product’s data displays in the detail DataWindow.

11 Select Edit>Delete from the menu bar.

The product is deleted from the DataWindow immediately but is not
deleted from the database until you select the Update option on the Edit
menu.

12 Select File>Exit from the menu bar.

The application closes and you return to the Window painter.

13 Close the Window painter.

Getting Started 191

L E S S O N 9 Running the Debugger

Sometimes your application does not behave the way you think it will.
Perhaps a variable is not being assigned the value you expect, or a script
does not do what you want it to. In these situations, you can closely
examine your application by running it in debug mode.

In debug mode, you can set breakpoints (stops) in scripts and functions,
step through the code line by line, and display the contents of variables to
locate logic errors and mistakes that result in errors during execution.
When you run your application in debug mode, PowerBuilder suspends
execution just before it hits a line containing a breakpoint. You can then
look at and correct the values of variables.

In this lesson you:

• Add breakpoints in application scripts

• Run in debug mode

• Set a watch and a conditional breakpoint

How long does it take?
About 20 minutes.

Add breakpoints in application scripts

192 PowerBuilder

Add breakpoints in application scripts

Where you are
> Add breakpoints in application scripts

Run in debug mode
Set a watch and a conditional breakpoint

Now you open the Debugger and add breakpoints to examine the behavior of
the login and Customer windows. When PowerBuilder runs the application in
debug mode, it stops just before executing a line containing a breakpoint.

When you insert breakpoints in a script, you should select lines that contain
executable statements. If you try to set a breakpoint in variable-declaration
lines, comment lines, or blank lines, PowerBuilder sets the breakpoint at the
next executable line.

1 Click the Debug button in the PowerBar.

PowerBuilder opens the Debugger. There are three stacks of tabbed panes
in the default view layout scheme. The Source view is visible in a single
pane at the top left of the Debug window. The Source Browser view is
open in the pane at the top right.

If the Debug window looks different
If you have opened the Debug window before and opened, moved, or
closed any views, your display may look different. To restore the default
view layout scheme, select View>Layouts>Default from the menu bar.

Lesson 9 Running the Debugger

Getting Started 193

The source code for the application Open event displays in the Source
view at top left. If it does not display, expand the Application node in the
Source Browser view’s tree view and double-click the Open event under
the pbtutor application.

2 In the Source view, double-click the line containing the following
assignment statement:

this.ToolBarSheetTitle = "MDI Application Toolbar"

A red symbol displays at the start of the line to show that a breakpoint has
been set on the statement.

3 Expand the following node in the Source Browser view:
Windows>w_welcome>cb_ok

The Source Browser view lists only events that have been coded. The only
event for the login window OK button is the Clicked event.

4 Double-click the Clicked event for the cb_ok button in the Source
Browser view.

The code for the Clicked event displays in the Source view.

5 Double-click the following line:

gnv_connect = CREATE &
n_pbtutor_connectservice

Add breakpoints in application scripts

194 PowerBuilder

A breakpoint symbol displays at the start of the line.

6 Double-click w_master_detail_ancestor in the Source Browser view.
Double-click dw_master, then rowfocuschanged.

PowerBuilder displays the script for the RowFocusChanged event of the
dw_master DataWindow control in the Source view.

7 Double-click this line:

IF dw_detail.Retrieve(ll_itemnum) = -1 THEN

A breakpoint symbol displays at the start of the line.

Lesson 9 Running the Debugger

Getting Started 195

8 Select the Breakpoints tab in the lower-right stack.

You should see the breakpoints you set in the Breakpoints view. To
complete this lesson, you need to have these breakpoints set correctly.

If you have additional breakpoints
You can clear any excess breakpoints using the pop-up menu in the
Breakpoints view.

Run in debug mode

196 PowerBuilder

Run in debug mode

Where you are
Add breakpoints in application scripts

> Run in debug mode
Set a watch and a conditional breakpoint

Now you run the application in debug mode. You step through the code line by
line.

About the Step buttons
You can use either Step In or Step Over to step through an application one
statement at a time. They have the same result except when the next statement
contains a call to a function.

Use Step Over to execute the function as a single statement. Use Step In if you
want to step into a function and examine the effects of each statement in the
function.

If you have stepped into a function, you can use Step Out to execute the rest of
the function as a single step and return to the next statement in the script that
called the function.

1 Click the Start button in PainterBar1
or
Select Debug>Start from the menu bar.

The application starts and runs until it hits a breakpoint (in this case, the
call to the assignment statement for the toolbar title for sheet windows).

You return to the Debug window, with the line containing the breakpoint
displayed. The yellow arrow cursor means that this line contains the next
statement to be executed.

2 Click the Global tab in the lower-left stack.

The Global Variables view displays.

Lesson 9 Running the Debugger

Getting Started 197

3 Double-click transaction sqlca.
Find the DBMS property, which has a String datatype.

Notice that this property does not yet have a value associated with it
because the Debugger interrupted execution before the ProfileString
function executed.

4 To execute the next statement, click the Step In button in PainterBar1
or
Select Debug>Step In from the menu bar.

The application starts execution of the Open event for the MDI frame
window.

5 Use Step In or Step Over to step through the code until you reach this
statement in the script for the frame window Open event:

open(w_welcome)

After PowerBuilder finishes executing this statement, the login window
displays and the Debug window is minimized.

The Open event for the frame window also has a posted call to the
ue_postopen function (that you stepped through without examining). This
function in turn includes code that starts the processing of a chain of sheet
manager functions. These functions are processed at the end of the script
for the Open event, after the login window displays.

Run in debug mode

198 PowerBuilder

6 Click Step Over until the login window displays and the Debugger is
minimized.
Type dba in the User ID box of the login window.
Type sql in the Password box and click OK.

You return to the Debug window. The yellow arrow in the Source view
points to the next executable statement, the CREATE statement for the
connection service object. This is the first executable line in the script for
the Clicked event of the cb_ok command button.

7 Select the Call Stack tab in the lower-right stack.

The yellow arrow in the Call Stack view indicates the current location in
the call stack. If you double-click another line in the stack, the Source and
Variables views change to display the context of that line, and a green
arrow indicates the line in the Source view. If you then single-click another
line in the stack, a green arrow displays in the Call Stack view to indicate
the line for which context is displayed. When you continue to step through
the code, the Source and Variables views return to the current context.

8 Click the Step In button.

The Debugger takes you to the script for the Constructor event of the
connection service object.

9 Click the Step Out button.
Click the Global tab in the lower-left stack.
Look again at the Transaction object properties.

You step out of the Constructor event in a single step and return to the
script for the OK button Clicked event. Now the value of sqlcode has
changed, and the sqlerrortext and DBMS property have values, but the
UserID, DBPass, and DBParm properties do not.

Lesson 9 Running the Debugger

Getting Started 199

The values were assigned during execution of the Constructor event of the
connection service object after the of_GetConnectionInfo function
returned information from the INI file, but because you commented out the
lines in the code for the UserID, DBPass, and DBParm properties, these
values were not retrieved.

10 Click on the Local tab in the lower-left stack.

The local variables for the Clicked script have not yet been assigned
values.

11 Use the Step In button to step through the three assignment
statements for the local variables.

As you step through each statement, you can check that the values
assigned to the local variables are what you expected.

Run in debug mode

200 PowerBuilder

12 Click again on the Global tab in the lower-left stack and expand the
Transaction object.
Use the Step In button to step through the three lines that instantiate
the Transaction object (SQLCA) with user-entry values for UserID,
DBPass, and DBParm.

As you step through each statement, you can check that the values you
entered in the login window are being assigned to the Transaction object.
You are still not connected to the database until the connection service
object of_Connect function is executed.

13 Click the Continue button in PainterBar1.

The Continue button resumes execution until the next breakpoint. The
database connection is established, the login window closes, and the MDI
frame for your application displays. The application is waiting for user
input.

14 Select File>Report>Maintain Customers from the menu bar.

The application continues until it reaches the line in the
RowFocusChanged event that contains the next breakpoint you added.

The RowFocusChanged event for a DataWindow occurs before the
DataWindow is displayed. For this reason, execution stops before the
Customer window is opened.

Lesson 9 Running the Debugger

Getting Started 201

Set a watch and a conditional breakpoint

Where you are
Add breakpoints in application scripts
Run in debug mode

> Set a watch and a conditional breakpoint

Next you set a watch on a variable whose value changes when the user selects
a row in the Customer window. You then change one of the simple breakpoints
you have set into a conditional breakpoint that is triggered only when a variable
has a specific value.

1 Click the Watch tab in the lower-right stack.
Click the Local tab in the lower-left stack.
Select the ll_itemnum variable in the Local view and drag it to the
Watch view.

The ll_itemnum variable is set to 101, the ID of the first customer
retrieved. Displaying it in the Watch view makes it easier to observe when
its value changes. You can also drag Global, Instance, and Parent variables
to the Watch view so that you can easily keep track of several variables of
different types.

2 Click the Continue button.

The application resumes execution. The Customer window displays and
shows the list of customers retrieved from the database. The detail
DataWindow shows information about customer 101.

3 Select a different row in the master DataWindow of the Customer
window.

You return to the Debug window. The new value of ll_itemnum displays
in both the Local Variables view and the Watch view.

4 Click the Breakpoints tab in the lower-right stack.
Double-click the rowfocuschanged breakpoint.

The Edit Breakpoints dialog box opens with the breakpoint in the
RowFocusChanged event selected.

Set a watch and a conditional breakpoint

202 PowerBuilder

5 Type the following line in the Condition text box and click OK:

ll_itemnum = 107

The breakpoint in the RowFocusChanged event script is now a conditional
breakpoint. PowerBuilder suspends execution only when it reaches this
statement and the value of ll_itemnum is 107.

6 Click OK to close the dialog box.
Click the Continue button.

The application resumes execution. Now you can select different rows in
the Customer window, and the Debug window opens at the breakpoint
only if you select the customer whose ID is 107.

If you select customer 107, click the Continue button again to return to the
application.

7 Select File>Exit from the application’s menu bar.

The application terminates and you return to the Debug window.

8 Select File>Close from the menu bar.

You return to the PowerBuilder development environment.

Getting Started 203

L E S S O N 1 0 Exception Handling

Exception handling allows you to trap errors that occur during the
execution of a program and to provide useful information about those
errors to the application user. This lesson describes how to create
user-defined exception objects and use them to catch exceptions that you
throw from a method in a TRY-CATCH statement.

In this lesson you:

• Add a new sheet window to the existing application

• Create user-defined exception objects

• Create a new user function and user event

• Call the methods and catch the exceptions

• Run the application

How long does it take?
About 45 minutes.

Add a new sheet window to the existing application

204 PowerBuilder

Add a new sheet window to the existing application

Where you are
> Add a new sheet window to the existing application

Create user-defined exception objects
Create a new user function and user event
Call the methods and catch the exceptions
Run the application

In this lesson you add a third sheet window to the main tutorial application. You
create and call a function to perform a routine operation (calculate a
percentage) on values returned from embedded SQL commands and a value
selected by the application user from a drop-down list box control.

The prototype for the function you create throws user-defined exceptions. You
call the function in a TRY-CATCH block inside the Clicked event on a
command button control. The CATCH clauses in the Clicked event catch
user-defined exceptions thrown by the new function as well as a system
exception thrown up the application call stack.

You use the new sheet window to calculate the percentage of customers that
resides in a selected state. The controls you add to the new sheet window are:

• Two static text boxes that you change programmatically to display
read-only results

• A command button to call a function that calculates percentages

• A drop-down list box for a list of states where customers reside

• A text box that displays the percentage of customers residing in the state
that application users select from the drop-down list box

To add a sheet window to the existing application, you must:

• Create the sheet window

• Provide access to the sheet window from the main application frame

Lesson 10 Exception Handling

Getting Started 205

Create the sheet window
You inherit the sheet window from the w_pbtutor_basesheet window. This is
the base class for sheet windows that you generated with the Template
Application wizard. You do not use the w_master_detail_ancestor extension
layer window, since the modifications you made to it are not useful in the new
sheet window.

1 Select File>Inherit from the PowerBuilder menu.
Make sure the Objects of Type box displays Windows.
Select w_pbtutor_basesheet from the available windows in the
pbtutor.pbl library and click OK.

2 Make sure the Layout view displays in the Window painter.
Select Insert>Control>StaticText and click near the top left corner of
the Layout view.

3 In the Properties view, highlight the default text in the Text text box
and type the following:

1. Select or type a state code in drop-down list:

4 Lengthen the control width and the width of the sheet window to
display the entire text and allow room for a drop-down list control at
the top right of the window.

A length of 2250 should be sufficient for the sheet window width. You can
set this on the Other tab of the Properties view for the window, or you can
drag the window edge in the Layout view to make room for an additional
control.

5 Right-click the static text control in the Layout view and click
Duplicate from the pop-up menu.
In the Properties view, highlight the default text in the Text text box of
the new static text control and type the following:

2. Click Percentage button

Add a new sheet window to the existing application

206 PowerBuilder

6 Select Insert>Control>DropDownListBox and click to the right of the
static text boxes near the top right corner of the Layout view.

7 In the Properties view for the drop-down list box, type ddlb_state
for the control name.
Select the AllowEdit and the VScrollBar check boxes.

8 Click the command button in the painter bar and click below the two
static text boxes.
In the Properties view, type cb_percent for the button name and type
Percentage for the button text.

9 Select Insert>Control>SingleLineEdit and click below the command
button in the Layout view.
In the Properties view, type sle_result for the control name and
type the following for the control text:

Text box for percent of customers in the selected
state

10 Lengthen the control width to display the entire text.

Lesson 10 Exception Handling

Getting Started 207

11 Make sure no control is selected and the sheet window properties are
displayed in the Properties view.
Type Customer Location for the Tag property.

The text you typed will be visible in the sheet window title at runtime.
Code in the basesheet ue_postopen event assigns the Tag text to the sheet
window title.

12 Select File>Save from the PowerBuilder menu.
Select pbtutor.pbl for the application library, type w_cust_pct for the
new sheet window name, and click OK.

This saves the new sheet window with all its controls to the main tutorial
library.

Provide access to the sheet window from the main application
frame

You must register the new sheet with the sheet manager.

1 Double-click w_pbtutor_frame in the System Tree.

2 If the ue_postopen event is not visible in the Script view, click the
Event List tab and double-click ue_postopen.

The ue_postopen event script displays in the Script view.

3 Type the following line in the list of registered sheet windows:

ls_sheets[3] = "w_cust_pct"

Add a new sheet window to the existing application

208 PowerBuilder

4 Type the following line below the list of sheet window titles to display:

ls_display[3] = "Customer Location"

Better coding practice
You could reduce the six lines of code for defining sheet windows and
their display names by replacing them with the following lines of code:

// Define sheet windows and their display names
string ls_sheets[]={"w_customers", "w_products",&

"w_cust_pct"}
string ls_display[]={"Maintain Customers", &

"Maintain Products", "Customer Location" }

5 Select File>Save and close the w_pbtutor_frame window.

The next time you run the pbtutor application, you should be able to open
the new sheet window from the File menu of the main frame window.
Although you can now run the new sheet window from the development
environment, you must make sure that you can run it from a compiled
application as well.

For this purpose, you reference the sheet windows as window objects in
the sheet manager of_registersheet script. The reference is necessary for
the compiler to know that this object is used in the application so that it
will include it in the executable.

You create a compiled application in Lesson 11, “Preparing the
Application for Deployment.”

Lesson 10 Exception Handling

Getting Started 209

6 Double-click n_pbtutor_sheetmanager in the System Tree.

7 Click the Function List tab and double-click of_registersheet.

The script for the of_registersheet function displays in the Script view.

8 Type the following after the lines declaring sheet window variables for
the w_customers and w_products windows:

w_cust_pct lw_sheet3

9 Save and close the n_pbtutor_sheetmanager user object.

Create user-defined exception objects

210 PowerBuilder

Create user-defined exception objects

Where you are
Add a new sheet window to the existing application

> Create user-defined exception objects
Create a new user function and user event
Call the methods and catch the exceptions
Run the application

Now you create two user-defined exception objects that you will throw from a
function that is invoked when the user clicks the command button on the
w_cust_pct window. You also create a user-defined exception object that you
throw from a user event on the drop-down list box control that you added to the
w_cust_pct window.

1 Select File>New from the PowerBuilder menu and click the PBObject
tab in the New dialog box.

2 Select the Standard Class icon and click OK.
Select throwable from the Types list box and click OK.

The new exception object displays in the User Object painter.

3 In the Text box of the Properties view, type the following:

No rows were returned from the database. If you typed
or selected a state code in the drop-down list box
and the database connection has not been closed,
either the state you entered has no customers or you
entered the state code incorrectly.

The exception object has get and set methods for handling the Text
property. Here you set the text property directly in the user interface.

4 Click outside the Properties view to enable the Save button.
Select File>Save, select the pbtutor.pbl application library, and type
exc_no_rows in the User Objects box for the new exception object
name, and click OK.

5 Select File>Close.

Lesson 10 Exception Handling

Getting Started 211

6 Repeat steps 1-5 using the following values for the Text property and
the exception object name:

7 Repeat steps 1-5 using the following values for the Text property and
the exception object name:

Property Value

Text Percentage too low. Only one customer

in this state. Notify regional sales

manager...

Exception object name exc_low_number

Property Value

Text You must use the two-letter postal

code for the state name.

Exception object name exc_bad_entry

Create a new user function and user event

212 PowerBuilder

Create a new user function and user event

Where you are
Add a new sheet window to the existing application
Create user-defined exception objects

> Create a new user function and user event
Call the methods and catch the exceptions
Run the application

Now you add a function that you invoke from the Percentage command
button’s Clicked event and an event that is triggered when the focus is changed
from the drop-down list box on the w_cust_pct window. The function
calculates the percentage of customers living in a particular state. The event
processes the current value of the drop-down list box control to make sure it is
two characters in length (for the state code).

1 Open w_cust_pct in the Window painter if it is not already open.
Select Insert>Function from the Window painter menu.

The Script view displays the Prototype window. The first drop-down list
box in the Script view displays (Functions) and the second drop-down list
box displays (New Function).

2 Select decimal for the Return Type and type uf_percentage for
Function Name.

3 Select integer for the Argument Type and type ai_custbystate for
the Argument Name.

You will add a second argument in the next step.

4 Right-click anywhere in the Prototype window and select Add
Parameter from the pop-up menu.

5 Select integer for the second Argument Type and type ai_totalcust
for the second Argument Name.

6 Type exc_no_rows,exc_low_number in the Throws box.

Lesson 10 Exception Handling

Getting Started 213

7 Type the following script for the new function:

Decimal my_result
exc_no_rows le_nr
exc_low_number le_ex

/* Process two integers passed as parameters.
Instantiate and throw exceptions if the first
integer value is 0 or 1. Otherwise calculate a
percentage and return a numeric value truncated to a
single decimal place. If the second integer value is
0, catch and rethrow the runtime dividebyzero error
during the calculation.
*/
CHOOSE CASE ai_custbystate
CASE 0

le_nr = create exc_no_rows
throw le_nr

CASE 1
le_ex = create exc_low_number
throw le_ex

CASE ELSE
TRY

my_result=(ai_custbystate/ai_totalcust)*100
CATCH (dividebyzeroerror le_zero)

throw le_zero
End TRY

END CHOOSE
return truncate(my_result,1)

Later in this tutorial, you will call the uf_percentage function from the
Clicked event on the command button, passing in two integers and
processing the return value.

You now add a user event for the drop-down list box that throws the
exc_bad_entry exception object when a user-entered state code is not
exactly two characters in length.

8 Select ddlb_state in the first drop-down list box of the Script view and
select (New Event) in the second drop-down list box.

Create a new user function and user event

214 PowerBuilder

9 Select integer for Return Type and type ue_modified for Event
Name.
Select string for Argument Type and type as_statecode for
Argument Name.
Type exc_bad_entry in the Throws box or drag it from the System
Tree to the Throws box.

Note that the Event ID is (None). You do not select an Event ID for the
ue_modified event. If you selected an Event ID, you could not enter
user-defined exception objects in the event Throws clause.

10 Type the following script for the new ue_modified event:

exc_bad_entry le_ex
//Make sure the current text in the drop-down list
//box is two characters in length. Otherwise,
//instantiate the exc_bad_entry exception object and
//throw the exception.
IF len(this.text)<>2 Then

le_ex = create exc_bad_entry
throw le_ex

END IF
Return 1

Next you call the ue_modified event and the uf_percentage function, and
catch the exceptions thrown by these methods.

Lesson 10 Exception Handling

Getting Started 215

Call the methods and catch the exceptions

Where you are
Add a new sheet window to the existing application
Create user-defined exception objects
Create a new user function and user event

> Call the methods and catch the exceptions
Run the application

You now write code to populate the drop-down list box controls with state
codes from the customer table in the EAS Demo DB database. Since you made
the control editable, an application user can also type in a value for the state
code. Before you process a user-entered value, you check to make sure the
value conforms to the conditions you set in the ue_modified event, namely that
it is two characters in length.

You also add code to the Clicked event of the command button control to
process the current state code in the drop-down list box control. In the Clicked
event you call the uf_percentage function to calculate the percentage of
customers from the selected state and catch all exceptions that can be thrown
by the function.

1 Make sure the w_cust_pct is open in the Window painter and that
ddlb_state displays in the first drop-down list box of the Script view.

2 Select losefocus () returns long [pbm_cbnkillfocus] in the
second drop-down list box.

3 Call the ue_modified event and catch the exception object that it
throws by typing the following lines for the losefocus event script:

Try
this.EVENT ue_modified(this.text)

Catch (exc_bad_entry le_be)
messagebox ("from exc_bad_entry", &

le_be.getmessage())
End Try

return 1

4 Select constructor () returns long [pbm_constructor]
from the second drop-down list box in the Script view prototype
window for the ddlb_state control.

Call the methods and catch the exceptions

216 PowerBuilder

5 Type the following lines in the Constructor event to populate the
drop-down list box control:

int li_nrows, n
string ls_state

//Get the distinct count of all states in the
//customer table
SELECT count(distinct state) INTO :li_nrows
FROM customer;

//Declare the SQL cursor to select all states
//in customer table but avoid
//rows with duplicate values for state.
DECLARE custstatecursor CURSOR FOR
SELECT state FROM customer
GROUP BY state HAVING count(state)=1
UNION
SELECT state FROM customer
GROUP BY state
HAVING count(state)>1;
OPEN custstatecursor ;
//Populate the control with a single entry for
//every state in the customer table.
FOR n=1 TO li_nrows

FETCH NEXT custstatecursor INTO :ls_state;
this.additem(ls_state)

NEXT
CLOSE custstatecursor ;
//Set first item in list as selected item
this.selectitem (1)

6 Select cb_percent from the first drop-down list in the Script view.
Make sure clicked () returns long [pbm_bnclicked]
displays in the second drop-down list box.

7 Type the following lines for the Clicked event script:

Decimal my_result
Double entry_1, entry_2
Int li_int, li_rtn
String sel_state

sel_state=ddlb_state.text
//Get the number of rows with customers from the
//selected states and place in the entry_1 variable.

Lesson 10 Exception Handling

Getting Started 217

//Change the first static control to display this
//number.

SELECT count(*) INTO :entry_1 FROM customer
WHERE customer.state=:sel_state;

st_1.text="Customers in state: " + string(entry_1)

//Get the total number of customers and place in
//the entry_2 variable.
//Change the second static control to display this
//number.
SELECT count(*) INTO :entry_2 FROM customer;
st_2.text="Total number of customers: " &

+ string(entry_2)

//Call uf_percentage and catch its exceptions.
TRY

my_result = uf_percentage (entry_1, entry_2)
CATCH (exc_no_rows e_nr)

MessageBox("From exc_no_rows", &
e_nr.getmessage())

CATCH (exc_low_number e_ln)
li_int=1
MessageBox("From exc_low_number", &

e_ln.getmessage())
CATCH (dividebyzeroerror e_zero)

li_rtn = MessageBox("No Customers", &
"Terminate Application?", Stopsign!, YesNo!)

IF li_rtn=1 THEN
HALT

END IF
END TRY

//Display the message in the text box. Vary the
//message depending on whether there is only one
//customer for the selected state or if more than
//one customer resides in selected state.
IF li_int=1 THEN

sle_result.text ="Value not calculated for " &
+ sel_state + "." + " Try another state."

ELSE
sle_result.text = String (my_result) + &

" % of customers are in " + sel_state + "."
END IF

Run the application

218 PowerBuilder

Run the application

Where you are
Add a new sheet window to the existing application
Create user-defined exception objects
Create a new user function and user event
Call the methods and catch the exceptions

> Run the application

You are now ready to run the application and calculate the percentage of
customers in a selected state.

You can test the exception conditions you scripted, but to test the
divide-by-zero error condition, you need to artificially set the number of
customers in the database to zero. You do this by adding a check box to the
sheet window, then setting the number of customers to zero if the check box is
selected.

In this exercise you:

• Test the new sheet window

• Add a test for the divide-by-zero error

Test the new sheet window

1 Click the Run button in the PowerBar.

If PowerBuilder prompts you to save changes, click Yes.

2 Type dba in the User ID box.
Type sql in the Password box and click OK.

The database connection is established, and the MDI frame for the
application displays.

Lesson 10 Exception Handling

Getting Started 219

3 Select File>Report>Customer Location from the menu bar.

The Customer Location window displays. The current entry in the
drop-down list is AB for Alberta.

4 Click the Percentage button.

Because there is only one customer in Alberta, the exc_low_number
user-defined exception is thrown. The message from the exception is
displayed in a message box that was defined in a CATCH clause in the
button Clicked event.

5 Click OK to close the message box.

The text in the static text boxes now displays the number of customers in
Alberta and the total number of customers in the database. The text in the
editable text box tells you the value was not calculated and prompts you to
select another state.

Run the application

220 PowerBuilder

6 Select or type CA in the drop-down list box and click the Percentage
button.

The results from the database show 10 customers in California for a total
of 7.9% of all customers in the database. The percentage may be different
if you have modified the database.

7 Type Ohio into the drop-down list box and click the Percentage
button.

When you lose focus from the drop-down list box by clicking the
Percentage button control, the LoseFocus event fires. This event calls the
ue_modified event that throws the exc_bad_entry user-defined exception.
The exception message tells you to use a two-letter postal code for the state
name.

8 Click OK to close the message box, type US in the drop-down list box,
and click the Percentage button.

Because no rows are found in the database with US as the state code, the
exc_no_rows exception is thrown. A message displays indicating no rows
have been returned and suggests reasons why that might be the case. A
more robust application might compare the typed text to a list of state
codes and throw the exc_bad_entry exception instead, letting you know
that US is not a state code.

9 Click OK to close the message box.

Lesson 10 Exception Handling

Getting Started 221

10 Right-click the database icon for the EAS Demo DB, a red and yellow
SQL symbol, in your Windows System Tray.
Select Exit from the pop-up menu, and click Yes in the Warning
message box that displays.

This shuts down the connection to the EAS Demo DB database.

11 Select or type AB again in the drop-down list box and click the
Percentage button.

The message from the exc_no_rows exception object displays for Alberta
because the connection to the database was closed. To obtain results again,
you need to terminate the application and restart it. PowerBuilder
reestablishes a connection to the database at runtime when you restart the
application.

12 Click OK to close the message box and select File>Exit from the
application menu to return to the development environment.

The Database painter and the Database Profile painter might still list the
database connection as being open. In this case you can use either painter
to disconnect and reconnect to the database at design time.

Add a test for the divide-by-zero error
You now add a check box to the w_cust_pct window. You then write code to
force a divide-by-zero error if the check box is selected. Because this test
requires an instantiated check box object, you surround the new code in a
TRY-CATCH statement that checks for null object errors.

1 Make sure the w_cust_pct window is open in the Layout view.
Select Insert>Control>CheckBox from the Window painter menu.

2 Click in the window just to the right of the Percentage command
button.

3 In the Name box in the Properties view, type cbx_zero.
In the Text box, type Test divide-by-zero error.

4 Click the Function List tab.
Double-click the uf_percentage function.

Run the application

222 PowerBuilder

5 Type the following text just above the CHOOSE CASE statement:

//Set denominator to zero to test error condition
//Numerator unimportant, avoid user exception cases
TRY
IF cbx_zero.checked=TRUE THEN

ai_totalcust=0
ai_custbystate=2

END IF
CATCH (nullobjecterror e_no)

MessageBox ("Null object", "Invalid Test")
END TRY

Testing for the null object error
After you finish this lesson, you can test for the null object error by adding
the following line above the TRY statement: DESTROY cbx_zero.

6 Click the Run button in the PowerBar.

If PowerBuilder prompts you to save changes, click Yes.

7 Type dba in the User ID box.
Type sql in the Password box and click OK.

The database connection is established, and the MDI frame for the
application displays.

8 Select File>Report>Customer Location from the menu bar.
Select a state code from the drop-down list box.

9 Select the Test divide-by-zero check box.

Lesson 10 Exception Handling

Getting Started 223

10 Click the Percentage button.

The division by zero error is thrown during the percentage calculation and
caught by the button Clicked event. The message box that you coded in the
CATCH clause for this error displays.

11 Click No to continue running the application.
Continue to test the application by selecting another state code and
optionally clearing the check box.

If the check box is selected when you click the button again and you select
Yes in the error message box, the application closes and you return to the
development environment.

12 Close the application when you have finished testing it.

Run the application

224 PowerBuilder

Getting Started 225

L E S S O N 1 1 Preparing the Application for
Deployment

In this lesson you create an executable version of the application for
distribution to users. Users can run this executable version of the
application just as they can any other application.

You:

• Create the Project object

• Create the executable file

• Create a shortcut

• Test the executable file

How long does it take?
About 10 minutes.

Create the Project object

226 PowerBuilder

Create the Project object

Where you are
> Create the Project object

Create the executable file
Create a shortcut
Test the executable file

Now you create the PBTUTOR Project object. You can then use the Project
object to create the executable file for the application.

About machine code If you are running PowerBuilder Enterprise, you can
choose between Pcode (pseudocode) and machine code as the compile method
for your project executable file. However, you cannot select machine code as
the compile method for the tutorial application because it contains Try-Catch
statements.

When you deploy an application to users, you may want to take advantage of
the execution speed of machine code for some computations, such as loops,
floating point or integer arithmetic, and function calls. While you are
developing the application, you usually use Pcode because it is faster to
generate.

About dynamic libraries You can also create dynamic libraries for your
application. Dynamic libraries can be used to store the objects in the
application. By using dynamic libraries, you can break the application into
smaller units that are easier to manage and also reduce the size of the
executable file.

For small applications like the one that you are working on now, you do not
need to use dynamic libraries.

Lesson 11 Preparing the Application for Deployment

Getting Started 227

1 Click the New button in the PowerBar.
Click the Project tab in the New dialog box.

2 Select the Application Wizard icon and click OK.

Using the Project painter
If you clicked the Application icon on the Project page instead of the
Application Wizard icon, you open the Project painter. You can make the
same selections in the Project painter that you make with the wizard, but
the wizard prompts you for this information.

3 Click Next.

The Specify Destination Library page displays.

4 Select pbtutor.pbl in the Application Libraries list box if it is not
already selected.
Click Next until the Specify Build Options page displays.

The wizard will generate a project with the following default selections:

Wizard property Default value

Project name p_pbtutor_exe

Executable filename pbtutor.exe

Optional resource file none

Create the Project object

228 PowerBuilder

5 Select Incremental Build for the Build Option.
Click Next until the Specify Version Information page displays.

The wizard will generate a project with the following default selections:

6 If you want to, enter your own version information on the Specify
Version Information page.

If you do not change the information on this page, the defaults display in
Windows Explorer when you look at the properties of the executable.

7 Click Next.
Review the information on the Ready to Create Application page.
Click the Finish button.

PowerBuilder creates a Project object for your application and displays it
in the Project painter workspace.

Wizard property Default value

Generate machine code No

Build dynamic libraries No

Lesson 11 Preparing the Application for Deployment

Getting Started 229

After a project is defined, you can easily create an executable version of
the application. Using a project saves time when you are working on an
application that includes dynamic libraries that you expect to rebuild
often. Selecting incremental build means that if you make a few changes,
you can rebuild your project quickly, rebuilding only files that have
changed or files that depend on files that have changed.

Create the executable file

230 PowerBuilder

Create the executable file

Where you are
Create the Project object

> Create the executable file
Create a shortcut
Test the executable file

Now you create the executable file for your application. The executable file
you generate contains definitions for all the objects in the application. For the
tutorial application, this includes the bitmap file used in the login window,
since you did not include a separate resource file with your project.

You can create the executable in the Project painter, but usually, once you have
defined the project, you do not need to open the painter again.

Workspaces and targets in the System Tree have Incremental Build, Full Build,
and Deploy items on their pop-up menus that enable you to build and deploy
some or all of the projects in a target or in the whole workspace. Incremental
Build and Full Build compile your code. Deploy compiles the code and, for
applications like the one you built in this tutorial, creates an executable file and
optional dynamic libraries. For other projects, such as server component
projects, Deploy also deploys the component and supporting files to the server.

In this lesson you look at the property sheets where build and deploy options
are specified and then create the executable from the PowerBar.

1 Close the Project painter.
Click Yes if prompted to save changes.

2 Right-click the pbtutor target in the System Tree.
Select Properties and select the Deploy tab.

Lesson 11 Preparing the Application for Deployment

Getting Started 231

This page shows all the projects in this target (currently only one).

If you have more than one project in the target, you can change the order
in which they are executed and select which projects you want to build.

3 Leaving p_pbtutor_exe checked, click the Cancel button.
Right-click MyWorkspace in the System Tree.
Select Properties and select the Deploy Preview tab.

The Deploy Preview page shows all the targets in your workspace and the
projects in each that have been selected for deployment, in the order in
which they are to be deployed. You cannot change anything on this page—
you use it to check that you have set up deployment options for your
workspace the way you want to. All the projects shown on this page are
deployed when you click the Deploy button in the PowerBar.

This workspace has only one target and only one project, so you can use
the Deploy button to create the executable.

Create the executable file

232 PowerBuilder

4 Click the Cancel button to close the property sheet.
Click the Deploy button in the PowerBar.

The process of creating the executable file might take a few moments.
While PowerBuilder is working, you can look at the Output window at the
bottom of the screen to see what PowerBuilder is doing.

If you wanted to stop the deployment process, you could click the Stop
button in the PowerBar. When deployment is complete, the Output
window displays the following text: Finished Deploy of workspace
MyWorkspace.

Lesson 11 Preparing the Application for Deployment

Getting Started 233

Create a shortcut

Where you are
Create the Project object
Create the executable file

> Create a shortcut
Test the executable file

Now you create a shortcut for the executable file. The icon serves as a shortcut
to open the executable file. You can add the shortcut directly to the desktop or
to the program group of your choosing.

1 Minimize PowerBuilder.

PowerBuilder is minimized to an icon on the taskbar.

2 Right-click on a blank area of the desktop.
Select New>Shortcut from the pop-up menu.

The Create Shortcut dialog box displays.

3 Click the Browse button and locate pbtutor.exe.

If you accepted the default installation folder, this is the location:

C:\Program Files\Sybase\PowerBuilder 10.5\Tutorial
\pbtutor.exe

4 Click Next.

5 Type SportsWear, Inc. as the name of the shortcut.

6 Click Finish.

An icon and name display on the desktop.

Now you must modify a property of the shortcut so that you can run the
application. You can also change the icon.

7 Right-click the SportsWear, Inc. icon on the desktop.
Select Properties in the pop-up menu.

The properties sheet for the desktop shortcut displays.

Create a shortcut

234 PowerBuilder

8 Select the Shortcut tab.
Type the path to the PowerBuilder shared modules in the Start In box.
Click OK.

About the location of the shared modules
When you install PowerBuilder, the installation process puts the DLLs in
a shared directory. The default location is:
C:\Program Files\Sybase\Shared\PowerBuilder.

If you want the user to be able to run the application by double-clicking
the executable file, you must include the shared directory location in the
system environment path.

Lesson 11 Preparing the Application for Deployment

Getting Started 235

Test the executable file

Where you are
Create the Project object
Create the executable file
Create a shortcut

> Test the executable file

Now you test the new executable file.

1 Make sure the pbtutor.ini file is in the same directory as the
pbtutor.exe executable file.

2 Double-click the icon for the tutorial application.

The application begins running.

3 Test the application.
Notice the changes you made to the customer information.

4 When you have finished testing the application, select File>Exit from
the menu bar.

What to do next
Congratulations. You have completed the first two parts of the tutorial. Now
you know the basics of application development with PowerBuilder. If you are
a PowerBuilder Enterprise developer, you can continue to the Web targets
lessons.

The Preface to this book includes a guide to the PowerBuilder documentation.
To further your education, you should continue with these books:

User’s Guide
Application Techniques
DataWindow Programmer’s Guide

All the PowerBuilder books are available in the Online Books and on the
Sybase Web site at http://www.sybase.com/support/manuals/. For information
on how to install the Online Books, see the Installation Guide.

What to do next

236 PowerBuilder

P A R T 3 Building a
Web Application

This part is a tutorial that shows you how to get started
using JSP targets. It provides step-by-step instructions for
creating a simple Web application.

Getting Started 239

L E S S O N 1 2 Creating a JSP Web Site

Using PowerBuilder Web targets, you can develop a Web site in a
workspace that stores JavaServer Pages (JSPs), scripts, multimedia,
images, and links to data from various sources.

In this lesson you:

• Set up an EAServer connection profile

• Create a JSP Web site

• Create and modify a basic JSP

• Add page navigation

• Create a login page with validation and redirection

• Designate a start page

• Deploy and run the Web site

How long does it take?
About 40 minutes.

Before you begin this tutorial

240 PowerBuilder

Before you begin this tutorial
What must be
installed

This Web target tutorial requires that you have the following available on your
local machine:

• EAServer 5.1 or later

• Internet Explorer 6.0 or later

Getting the files you
need for the tutorial

The tutorial also requires you to use several files created in Part 2 of this book.

If you recently completed Part 2 The files you need should already be
available. Before you begin, make sure you have the following files in your
Tutorial directory: myworkspace.pbw, pbtutor.pbt, pbtutor.pbl, tshirtw.jpg,
tutor_pb.pbl, and Tutorial.ico.

If you are completing only Part 3 The files you need are in the Solutions
directory. Before you begin, copy myworkspace.pbw, pbtutor.pbt, and
pbtutor.pbl into your Tutorial directory.

Lesson 12 Creating a JSP Web Site

Getting Started 241

Set up an EAServer connection profile

Where you are
> Set up an EAServer connection profile

Create a JSP Web site
Create and modify a basic JSP
Add page navigation
Create a login page with validation and redirection
Designate a start page
Deploy and run the Web site

Now you set up a connection profile to EAServer. This tutorial assumes that
you are using EAServer on your local machine.

1 From the Windows Start menu, select
Programs>Sybase>EAServer 5.x>Jaguar Server to start EAServer.

A DOS window displays as the server starts. You can minimize this
window when it displays the message Accepting Connections.

2 From the PowerBuilder menu bar, select Tools>EAServer Profile.

The following screen displays.

Set up an EAServer connection profile

242 PowerBuilder

3 Click Add.

The Edit EAServer Profile dialog box opens.

4 Enter the following information.

5 Click Test when complete.

The Connection Successful message displays.

6 Click OK twice and click Done.

Profile Property Type this value

Profile Name local

Server Name machineName
(Type the name of your local machine. By default,
EAServer installs a listener for this server name.)

Port Number 9000

Login jagadmin

Password none (leave blank)

Lesson 12 Creating a JSP Web Site

Getting Started 243

Create a JSP Web site

Where you are
Set up an EAServer connection profile

> Create a JSP Web site
Create and modify a basic JSP
Add page navigation
Create a login page with validation and redirection
Designate a start page
Deploy and run the Web site

JavaServer Pages (JSP) technology provides a quick and easy way to create
Web pages with both static and dynamic content. JSPs are text-based
documents that contain static markup, usually in HTML or XML, as well as
Java content in the form of scripts and/or calls to Java components. JSPs extend
the Java Servlet API and have access to all Java APIs and components.

You can use JSPs in many ways in Web-based applications. As part of the J2EE
application model, JSPs typically run on a Web server in the middle tier,
responding to HTTP requests from clients, and invoking the business methods
of Enterprise JavaBeans (EJB) components on a transaction server.

You begin creating a JSP Web site by creating a JSP target that provides a
directory structure for creating, storing, and managing your JSPs. Then you
create JSPs to add to the target.

1 In PowerBuilder, select File>Open Workspace and navigate to the
Tutorial folder.
Select MyWorkspace.pbw and click Open.

If you recently completed the first tutorial, this workspace might already
be open. If you did not, and you cannot find MyWorkspace.pbw, make sure
you follow the instructions in “Setting up for the tutorial” on page 25.

2 Click the New button in the PowerBar.
Click the Target tab in the New dialog box and select JSP Target.
Click OK.

The introductory page of the JSP Web Target wizard displays.

3 Click Next.

The Specify New JSP Target wizard page displays. The default name for
the Web target is Target1.

Create a JSP Web site

244 PowerBuilder

4 Type Customer.pbt in place of Target1.pbt.
Press the Tab key.

PowerBuilder automatically changes the name of the JSP target source
folder to \Customer\Source and the name of the build folder to
\Customer\Build.

5 Click Next.

You accept the default deployment configuration name.

6 Click Next.
Select the check box for automatically clearing the temp folder for the
XML Web DataWindow.

You accept use of the default object model. By accepting the default Web
target object model, you can write server-side logic that can be deployed
to several server platforms from a single source. The deployment engine
converts the source to the appropriate syntax for these target platforms.

You also specify temp folder clearing for the XML Web DataWindow; you
will be creating and using an XML Web DataWindow for your Web site in
the next lesson.

7 Click Next until the Ready to Create JSP Target page displays.

You accept the default setting for the following items:

Wizard Option Default

Select JSP Server EAServer

Choose EAServer Profile local

HTTP Port 8080

Choose File Deployment Options Deploy All or Nothing

Rebuild Incremental

Specify Local Copy Folder \Program Files\Sybase\PowerBuilder 10.5
\Tutorial\Customer
\CustomerDeployConfiguration1

WAR Filename Customer.war

Lesson 12 Creating a JSP Web Site

Getting Started 245

Using the integrated server
If you plan to use the Web server that is integrated in EAServer, you must
select an HTTP server name and port number for which you have an HTTP
listener. By default, this is your machine name for the server name and
8080 for the port number.

8 Review your selections on the Ready to Create JSP Target page.
Click Finish to accept the selections.

The wizard creates the Customer target, a directory structure that stores
your files, and a deployment configuration. If you expand MyWorkspace
in the System Tree, you can see Customer, your new Web target, listed
under it.

Create and modify a basic JSP

246 PowerBuilder

Create and modify a basic JSP

Where you are
Set up an EAServer connection profile

 Create a JSP Web site
> Create and modify a basic JSP

Add page navigation
Create a login page with validation and redirection
Designate a start page
Deploy and run the Web site

In this lesson you create an introductory Web page and modify the look and feel
of the page. Not all functionality is added at this time. The purpose is to
demonstrate how easy it is to create a working Web site.

• Create a 4GL introductory JSP page

• Change type face

• Add a graphic

• Add absolute positioning to a graphic

Lesson 12 Creating a JSP Web Site

Getting Started 247

Create a 4GL introductory JSP page
In this lesson you create a Welcome.jsp page. This page provides access to other
pages you create in this tutorial. You use the 4GL JSP Page wizard to create the
Welcome page. 4GL capabilities make it easy to develop pages with dynamic
user-driven content.

4GL JSP pages are enhanced Web pages that incorporate extensions to the Web
Target object model to produce template (source) files for dynamic Web pages
(where part of the Web page content changes without changing the Web page).
4GL JSP pages rely on the object model to handle data transfer, HTML
generation, and JavaScript generation for server scripts.

1 Right-click on the Customer target icon and select New.
Click the Web tab in the New dialog box.

Five wizards are available to create Web pages: Quick Web/JSP Page,
Web/JSP Page, 4GL JSP Page, Web/JSP DataWindow Page, and Frameset
Page. In this lesson and the next two lessons, you will use the Web/JSP
Page, the 4GL JSP Page, and the Web/JSP DataWindow Page wizards.

Review the Target Name
Targets created by the Target wizards are added to the Target list box at the
bottom of the New dialog box. The Customer target you created displays.

2 Double-click the 4GL JSP Page icon.

Create and modify a basic JSP

248 PowerBuilder

3 Click Next.
Type the Title Welcome in the Title text box and press Tab.

The filename in the File Name text box defaults to Welcome.jsp.

4 Click Next until the Specify Background Characteristics page
displays.
Specify yellow as the background color.

5 Click Next until the Define Page Parameters page displays, accepting
the wizard defaults.
Type ID for the Parameter Name and leave the Default value empty.
Click Next.

6 Select the Skip EAServer Components check box.

You add EAServer information in the next lesson.

7 Click Next.
Click Finish.

The wizard creates the new Web page and the page opens in Page view.
The filename is Welcome.jsp.

Lesson 12 Creating a JSP Web Site

Getting Started 249

8 In Page view, select the default text Put your data here.
Type Welcome to Sportswear Inc.

In this tutorial, you make all changes to Web pages in Page view.
Knowledge of HTML is required to make the same changes in Source
view.

9 Select File>Save from the menu bar to save the changes.

Change type face
It is easy to change the look of a Web page in the HTML editor.

1 Place the cursor at the end of the text and press Enter.
Place the cursor in the text Welcome to Sportswear Inc.
Right-click and select Paragraph Properties from the drop-down list
box.

2 Click the Inline Styles tab.
Select Inline and click the Edit button, then click the Font tab.

3 Scroll through the Available Fonts list and select the Comic Sans MS
font.
Click the arrow button to move Comic Sans MS to the Selected Fonts
list box.

4 In Font Size click the Specific radio button.
Type 20 and select pt (point size) from the box next to the Specific
radio button.
Select Red from the Color Selection drop-down list box.

5 Click the Background tab, then click the Relative radio button.
Select center from the drop-down list box under Horizontal and
Vertical.
Select Blue from the drop-down list box next to Background Color.

Create and modify a basic JSP

250 PowerBuilder

6 Click OK twice.

Your type face changes are applied to the text.

The paragraph tags display only if the Show Non-Visual Tags menu item
is checked in the Page view pop-up menu. You access the pop-up menu by
right-clicking the page in Page view.

7 Select File>Save from the menu bar.

Add a graphic
Next you add an image file to the Welcome page.

1 Right-click on the Customer target in the System Tree.
Select New Folder from the pop-up menu.

2 Type Graphics for the folder name and press Enter.

3 Right-click on the Graphics folder and select Import Files.
Select All Files from the Files of Type drop-down list box.

4 Navigate to the Tutorial folder and select Image Files for the file type.
Select tshirtw.jpg and click Open.

The image file is copied to the Graphics folder.

5 Click in the Welcome.jsp page.
Place the cursor in the paragraph below the Welcome title.
Press Enter to add more space below the title.

Lesson 12 Creating a JSP Web Site

Getting Started 251

6 Place the cursor again in the paragraph below the Welcome title.
Select Insert >Image from the menu bar.

7 Click the browse button (...) next to the Image Location text box.

8 Open the Graphics folder on the Target page of the Choose URL
dialog box.

9 Select the filename tshirtw.jpg from the folder.

10 Click OK in the Choose URL dialog box, and again in the Image
Properties dialog box.

The white T-shirt (tshirtw.jpg) image displays on the Welcome page.

Create and modify a basic JSP

252 PowerBuilder

Add absolute positioning to a graphic
Now you fix the image at a specific location on your page. Absolute
positioning lets you fix where the graphic displays on the page regardless of
screen size.

1 Right-click on the T-shirt graphic.
Select Position>Use Absolute Positioning from the pop-up menu.

2 Drag the graphic below the heading, centering it under the blue bar.

3 Click the Preview tab to view what the page looks like when deployed.

4 Select File>Save from the menu bar.

Lesson 12 Creating a JSP Web Site

Getting Started 253

Add page navigation

Where you are
Set up an EAServer connection profile
Create a JSP Web site
Create and modify a basic JSP

> Add page navigation
Create a login page with validation and redirection
Designate a start page
Deploy and run the Web site

In this lesson you add a new Web page for displaying product information. You
also add a hyperlink to the Welcome page to access this new page. Lastly you
add a button to the new page that eventually navigates to a Web page in which
you can add new product information. Additional features are added to this
Web page in a later lesson.

• Create a 4GL product information Web page

• Add a hyperlink

• Add a button

Add page navigation

254 PowerBuilder

Create a 4GL product information Web page
Now you create a Web page for viewing and adding product information. You
access the new Web page from the Welcome page.

1 Right-click the Customer target in the System Tree.
Select New from the pop-up menu.

2 Click the 4GL JSP Page icon and click OK.

The About the 4GL JSP Page Wizard page displays.

3 Click Next.
Type the Title Product in the Title text box and press Tab.

The filename in the File Name text box defaults to Product.jsp.

4 Click Next until the Define Page Parameters page displays (accept the
wizard defaults).
Type ID for the Parameter Name and leave the Default Value empty.
Click Next.

The Choose EAServer Profile page displays.

5 Select the Skip EAServer Components check box.

6 Click Next.
Review the summary of page properties and click Finish.

The Product.jsp page displays in Page view.

7 Highlight the default text Put your data here.
Type the words Product Information.
Press Enter.

8 Select File>Save to save these changes.

Lesson 12 Creating a JSP Web Site

Getting Started 255

Add a hyperlink
Next you add a hyperlink in the Welcome page to access the Product Web page.

1 Display the Welcome page (Welcome.jsp).
Place the cursor in the paragraph near the bottom of the product
picture and press Enter twice.

2 Select Format>Hyperlink from the menu bar.

The Hyperlink Properties dialog box displays.

3 Type View Product Information in the Text of the Hyperlink text
box.
Click the browse (...) button next to the Destination text box.

The Choose URL dialog box opens and displays the Web pages already
created in the Customer target.

4 Select Product.jsp and click OK.

5 Click OK again to add the hyperlink to the Web page.

The Welcome page displays an underlined View Product Information
hyperlink.

6 Select File>Save from the menu bar.
Close the Welcome page.

Add page navigation

256 PowerBuilder

Add a button
Next you add a button to the Product page. Buttons are a typical navigation tool
on Web pages. Later in the tutorial, you add navigation logic to this button.

1 Display the Product page (Product.jsp).
Place the cursor in the paragraph under the heading Product
Information.

2 Select Insert>Form Field>Push Button from the menu bar.

The Button INPUT1 Properties dialog box displays.

3 Select the Button Type Button from the drop-down list.
Type cb_addproduct in the Name text box.
Type Add New Product in the Label text box.

Lesson 12 Creating a JSP Web Site

Getting Started 257

4 Click OK.

The button displays on the Product.jsp page.

You will connect this button to a Web page in the next lesson.

5 Select File>Save from the menu bar.

6 Close the Product page.

Create a login page with validation and redirection

258 PowerBuilder

Create a login page with validation and redirection

Where you are
Set up an EAServer connection profile
Create a JSP Web site
Create and modify a basic JSP
Add page navigation

> Create a login page with validation and redirection
Designate a start page
Deploy and run the Web site

Now you add a Login Web page (Login.jsp) with 4GL capabilities. The login
page is a simple design. For the purposes of this tutorial, a server-side
validation script determines whether the user name and password are the same.
This is determined with validation logic. In production applications you would
use more sophisticated validation logic.

Once the login information has passed validation, you add server redirection to
move the user to the Welcome page.

The user name and password are saved as session variables that are valid for
the entire Web session.

In this lesson you:

• Create a basic login page

• Add session variables

• Add single line text controls

• Add password validation

• Add server redirection

Lesson 12 Creating a JSP Web Site

Getting Started 259

Create a basic login page
First you create a login page using the 4GL JSP Page wizard.

1 With the Customer target selected, select File>New from the menu
bar.
Click the Web tab.

2 Click the 4GL JSP Page icon.
Click OK.

The About the 4GL JSP Page Wizard page displays.

3 Click Next.
Type the Title Login in the Title text box and press Tab.

The file name in the File Name text box defaults to Login.jsp.

4 Click Next until the Choose EAServer Profile page displays (accept
the wizard defaults).

5 Select the Skip EAServer Components check box.

6 Click Next.
Review the summary of page properties and click Finish.

The Login.jsp page displays in Page view.

7 Select File>Save from the menu bar.

Create a login page with validation and redirection

260 PowerBuilder

Add session variables
A session variable can keep track of user login information and other data that
you want available to all the pages in your Web application during a user's
browser session.

1 In Page view, highlight the default text Put your data here.
Replace this highlighted text with the following:

Log in, please:

2 Press Enter.
On a new line, type the following text, pressing Enter after each line.

Name

Password

3 Right-click the Login.jsp page and select Page Properties from the
pop-up menu.
Click the Variables tab.

4 Click under Variable Name, click again, and type user for the new
variable name.

5 Tab to the Data Type column and select String from the drop-down
list box.

6 Tab to the Life Time column and select session from the drop-down
list box.
Tab to the Client Access column and select Read/Write from the
drop-down list box.

7 Click under user in the Variable Name column, click again, and type
pswd for the new variable name.

Lesson 12 Creating a JSP Web Site

Getting Started 261

8 Tab to the Data Type column and select String from the drop-down
list box.

9 Tab to the Life Time column and select session from the drop-down
list box.
Tab to the Client Access column and select Read/Write from the
drop-down list box.

10 Click OK.

Two session variables for the user login information are now defined.

Create a login page with validation and redirection

262 PowerBuilder

Add single line text controls
Text controls are specialized text fields that can be manipulated by server
scripts. The client cannot change the value of this text. It is available only on
4GL Web pages.

1 On the Login.jsp page, place the cursor in the paragraph after the
word Name and type two spaces.
Select Insert>Form Field>Single Line Text from the menu bar.

The Text Control INPUT1 Properties dialog box displays.

2 Type sle_user in the Name text box and make sure the Server Side
Scriptable check box is selected.

3 Click the Bind tab.
Select <Session Variable> from the Component name drop-down
list box.
Select user from the Property name drop-down list box and click OK.

A text box is inserted after the text Name.

4 In Page view, place the cursor in the paragraph after the word
Password and type two spaces.
Select Insert>Form Field>Single Line Text.

Lesson 12 Creating a JSP Web Site

Getting Started 263

5 Type sle_pswd in the Name text box.
Select the Password check box.
Make sure the Server Side Scriptable check box is selected.

Selecting the Password check box causes the user-entered password to
display as asterisks. You cannot add this ability after the text box is added
to the Web page.

6 Click the Bind tab.
Select <Session Variable> from the Component Name drop-down
list box.
Select pswd from the Property name drop-down list box and click OK.

A text box is inserted after the text Password.

7 Select File>Save from the menu bar.

Create a login page with validation and redirection

264 PowerBuilder

Add password validation
Validation can be done using client-side or server-side scripting. In this
exercise, the password validation rule is that the user name must be the same
as the password, so you use a server-side script to determine whether the
user-entered user name is the same as the user-entered password. This
validation code is provided only as an example. Typically you would validate
the user name and password against a database.

In the next lesson you will add code to display the Welcome page after login is
complete. If the user name and password are not the same, an error message
displays, asking the user to try again.

1 Place the cursor on the page in the paragraph below the Password
text box and press Enter.
Select Insert>Form Field>Push Button from the menu bar.

The Button Properties dialog box displays.

2 Select the Button Type Button from the drop-down list box.
Type cb_login in the Name text box.
Type Login in the Label text box.

On a 4GL Web page, a submit button type and a standard button type
(button) work in the same way; both have client-side onclick events and
server-side Server Action events.

3 Click OK.

The new Login button displays under the Password text box.

4 In the Script editor at the bottom of Page view, select cb_login in the
first drop-down list box.

Lesson 12 Creating a JSP Web Site

Getting Started 265

5 In the center drop-down list box, scroll to the bottom of the list and
select ServerAction().

Server-side events display in blue text.

6 Type the following in the Script editor:

if(psPage.sle_user.value.compareTo(psPage.sle_pswd
 .value)==0){

This script tests to see whether the user name and password are the same.
It assigns the client-entered values for user name and password to the
session variables.

7 Press Enter.
Type the following comment line below the script just entered:

//Add redirection here

You add a redirection call in the next lesson of the tutorial.

8 Press Enter twice.
Type the else statement as shown below to add the error message:

} else {

psPage.Alert("User name and Password are invalid.
Please try again.");

}

9 Click the Save button in the PainterBar.

Create a login page with validation and redirection

266 PowerBuilder

Add server redirection
Most 4GL Web pages navigate to other pages by server redirection. Server
redirection is the most flexible way to navigate from one page to another.

Server redirection is used when a parameter value passed to another page relies
on user input, or when you want to validate user input. Now you alter your 4GL
Login page to include a server script that specifies the target (Welcome) page
and validates the user-input values of the Login page.

1 In the Script editor at the bottom of the Login.jsp page, place the
cursor after the comment line //Add redirection here.
Right-click and select Insert Redirect from the pop-up menu.

The Redirect Properties dialog box displays.

2 Click the browse button (...) next to the Destination text box.
Select Welcome.jsp from the Contents of Customer tree view.

3 Click OK twice.

The Script editor inserts a block of code. The ability to modify or remove
this block of code using the Edit Redirect or Delete Redirect commands is
available in the pop-up menu.

4 Select File>Save from the menu bar.

Lesson 12 Creating a JSP Web Site

Getting Started 267

Designate a start page

Where you are
Set up an EAServer connection profile
Create a JSP Web site
Create and modify a basic JSP
Add page navigation
Create a login page with validation and redirection

> Designate a start page
Deploy and run the Web site

Now you select a start page from which you can test and run your Web site
directly from PowerBuilder.

1 In the System Tree, right-click Customer.
Select Properties from the pop-up menu.

The Properties of Target Customer dialog box displays.

2 Click the Run tab and click the browse button (...) next to the Start
page text box.

3 In the Target page of the Choose URL dialog box, select Login.jsp as
the start page, and click OK.

The Properties of Target Customer dialog box displays again.

4 Select CustomerDeployConfiguration1 as the deployment
configuration for running, and click OK.

The Customer target is now ready to deploy.

5 Select File>Save from the menu bar.

Deploy and run the Web site

268 PowerBuilder

Deploy and run the Web site

Where you are
Set up an EAServer connection profile
Create a JSP Web site
Create and modify a basic JSP
Add page navigation
Create a login page with validation and redirection
Designate a start page

> Deploy and run the Web site

Now you deploy the Web site.

1 In the System Tree, right-click the Customer target.
Select Deploy from the pop-up menu.

Deployment is done when the Output window displays Finished Deploy
of Target Customer.

2 Select Run>Select And Run from the menu bar.
Select Customer in the Select a Target dialog box.
Click OK.

Your default browser opens. The URL address box contains the file path
for your Login.jsp Web page. Your login page displays.

Lesson 12 Creating a JSP Web Site

Getting Started 269

3 Type Hello in the Name text box and Good-bye in the Password text
box.
Click the Login button.

An error message displays since the user name and password are not the
same.

4 Click OK.
Type Hello in both the Name and Password text boxes.
Click the Login button.

Now the Welcome page displays.

Deploy and run the Web site

270 PowerBuilder

5 Click the View Product Information hyperlink.

The Product Information Web page (Product.jsp) displays.

In the next lesson, you add an XML Web DataWindow to the Product
Information page.

6 Close the Browser.

Getting Started 271

L E S S O N 1 3 Using Web DataWindows

Web DataWindows provide an interface between a data source and a client
browser, displaying a result set from the data source on a Web page.

In this lesson you:

• Build a Web DataWindow container

• Create a Web page with a Web DataWindow container

• Add other controls to the DataWindow Web page

• Add a DataWindow to an existing Web page

• Add the ability to retrieve product information

• Test and run the Web application

How long does it take?
About 40 minutes.

Before you begin this
lesson

To prevent problems during this Web DataWindow lesson, make sure that
the Sybase\EAServer\Html\Classes folder is listed in your system PATH
environment variable.

Build a Web DataWindow container

272 PowerBuilder

Build a Web DataWindow container

Where you are
> Build a Web DataWindow container

Create a Web page with a Web DataWindow container
Add other controls to the DataWindow Web page
Add a DataWindow to an existing Web page
Add the ability to retrieve product information
Test and run the Web application

A Web DataWindow container gathers all the supporting files and properties
that your page needs into a single area installed on the server.

The Web DataWindow Container wizard creates a custom EAServer
component that implements the HTMLGenerator105 interface and packages
all the DataWindow objects together with database connection information.

In this lesson you build a Web DataWindow container using the Web
DataWindow Container wizard, and you deploy the component directly to the
server for use by your Web application.

1 Select File>New from the menu bar, then click the Project tab of the
New dialog box.

2 Select the Web DW Container Wizard icon (not the Web DataWindow
Container icon) and click OK.
Click Next on the first page of the wizard.

Lesson 13 Using Web DataWindows

Getting Started 273

3 Make sure the pbtutor.pbl file is selected in the Application libraries
list and click Next.

The Specify Project Object page displays.

4 Click Next.

You accept the default project object name: p_pbtutor_webdw.

5 Select the EAS Demo DB V105 from the Database Profiles list if it is
not already selected.

6 Click Next until the final wizard page displays, accepting the defaults
as listed:

7 Click Finish.

The p_pbtutor_webdw project displays in the Project painter.

8 Select Design>Deploy Project from the menu bar.

This builds and deploys the project as a package and component to the
EAServer running on your local machine. The component deployed is a
custom Web DataWindow Container using the
DataWindow::HTMLGenerator105 interface.

9 Select File>Close from the menu bar to close the project.
Select Yes if PowerBuilder prompts you to save the project file.

Wizard Options Default Value

Choose EAServer Profile local

Specify EAServer Container
and Package Name

pbtutor_component

pbtutor_package

Specify Instance Pooling
Options

Supported

Specify Other Component
Options

None

Specify Dynamic Library
Options

Build consolidated dynamic library (selected)

Include unreferenced objects in consolidated
PBD (selected)

pbtutor.pbd (name of consolidated PBD file)

Create a Web page with a Web DataWindow container

274 PowerBuilder

Create a Web page with a Web DataWindow container

Where you are
Build a Web DataWindow container

> Create a Web page with a Web DataWindow container
Add other controls to the DataWindow Web page
Add a DataWindow to an existing Web page
Add the ability to retrieve product information
Test and run the Web application

In this lesson you create a new Web page, Addproduct.jsp, that uses the Web
DataWindow container you just created.

1 Right-click the Customer target in the System Tree and select New
from the pop-up menu.

2 Click the Web tab in the New dialog box.
Double-click the Web/JSP DataWindow Page icon.
Click Next on the first wizard page.

The Specify New JSP File page displays.

3 Type Addproduct in the Title text box and click Next twice.

The file name changes automatically to use the text you typed for the page
title. Addproduct.jsp is now the name of your Web page file. In this
exercise, you do not specify a style sheet for the new page.

Lesson 13 Using Web DataWindows

Getting Started 275

4 Select the local EAServer profile, if it is not already selected.
Select the XML generation format.
Click Next.

About the XML Web generation format
The Web DataWindow is a thin-client DataWindow implementation for
Web applications that can be implemented in XML (separate XML
content, XSLT layout, and CSS style with a subsequent transformation to
XHTML), XHTML directly, or HTML. You use the XML Web
DataWindow when you want industry-standard Web pages and the ability
to customize pages using an XHTML export template.

The Choose Web DW Component Type page displays.

5 Select the Web DW Container radio button and click Next.

The Select EAServer DataWindow Component page displays.

Create a Web page with a Web DataWindow container

276 PowerBuilder

6 Expand the items below the local server.
Under pbtutor_package, select the pbtutor_component.

7 Click Next.

The Choose DataWindow Object page displays.

8 Select d_product.

Lesson 13 Using Web DataWindows

Getting Started 277

9 Click Next.
Click Finish to accept your selections.

The Addproduct.jsp Web page displays in Page view.

The name of the Web DataWindow is webDW. This is the default name for
a DataWindow control on a page that is not a 4GL page.

Add other controls to the DataWindow Web page

278 PowerBuilder

Add other controls to the DataWindow Web page

Where you are
Build a Web DataWindow container
Create a Web page with a Web DataWindow container

> Add other controls to the DataWindow Web page
Add a DataWindow to an existing Web page
Add the ability to retrieve product information
Test and run the Web application

Now you complete the Addproduct.jsp page design by adding button controls
to insert a row into the product table of the database and to update the database.
You also add a hyperlink to the Product.jsp page.

To complete the page design, you:

• Enable a new product information button

• Add a button to update the database

• Add a hyperlink to the Add Product page

Lesson 13 Using Web DataWindows

Getting Started 279

Enable a new product information button
So far the Addproduct.jsp page contains a Web DataWindow. Now you add
text, link to the database, enable users to add product information to the
database, and link to the Product.jsp page where users can view the
information they have added.

1 Right-click on the Addproduct.jsp page and select Page Properties
from the pop-up menu.
Select the Enable 4GL Web Server Side Event Model check box and
click OK.

The page is now 4GL enabled. This allows you to code server-side events
and to bind variables and components to controls on your Web page.

2 Place the cursor to the left of the DataWindow (in the lower left corner)
and press Enter.
Insert the following text in the paragraph above the Web DataWindow:

Click here to add new product information

Under this text you will add a new button which will display a blank row
in the DataWindow.

3 Press Enter after the text.
Select Insert>Form Field>Push Button from the menu bar.

The Button INPUT1 Properties page displays.

4 Select Button from the Button Type drop-down list box.
Type cb_addproduct in the Button Name text box.
Type Add New Product Information in the Label text box.

5 Click OK to close the Button Properties dialog box.
Select cb_addproduct from the first drop-down list box in the Script
editor.

If you click the Add New Product Information button in Page view, the
Script editor displays cb_addproduct in the first drop-down list box.

Add other controls to the DataWindow Web page

280 PowerBuilder

6 Select ServerAction() from the center drop-down list box.
Type the following script:

psPage.webDW.InsertRow(0);

When the end user clicks the Add New Product Information button on the
Web page, the Web DataWindow displays with empty text boxes for user
input.

7 In Page view, place the cursor to the right of the Add New Product
Information button and press Enter.
Type the following text:

Add a new product. Enter information into all the
text boxes and click Update Database.

8 Right-click on the Web DataWindow.
Select Sybase Web DataWindow DTC Properties from the drop-down
list box.

9 Click the Control tab and select the Override box next to the Weight
panel.
Select all the items in the Weight panel.

The HTML page generated will include JavaScript code that supports all
the client-side features selected.

Size of the generated page
Each feature selected generates JavaScript code for the Web page. You can
reduce the size of a Web page by selecting only the features you need.

Lesson 13 Using Web DataWindows

Getting Started 281

10 Select the Override check box for Rows Per Page field.
Type 1 in the Rows Per Page box.

This limits the amount of product information displayed to one record.

11 Click the Retrieval tab, clear the Automatic Retrieval option, and click
OK.

12 Click the Save button in the PainterBar.

Add other controls to the DataWindow Web page

282 PowerBuilder

Add a button to update the database
After you add product information, you must update the database, so now you
add a button for updating the database.

1 Place the cursor in the paragraph at the bottom right of the Web
DataWindow and press Enter.
Select Insert>Form Field>Push Button from the menu bar.

The Button Properties page displays.

2 Select Button from the Button Type drop-down list box.
Type cb_update in the Button Name text box.
Type Update Database in the Label text box.

3 Click OK to close the Button INPUT2 Properties dialog box.

4 Select cb_update in the first drop-down list box of the Script editor.
Select ServerAction() from the center drop-down list box.

5 In the Script editor window, type:

psPage.webDW.Update();

Pressing the Update Database button from the Web page adds the
information entered by the end user to the database.

Lesson 13 Using Web DataWindows

Getting Started 283

Add a hyperlink to the Add Product page
You now add a link to the Addproduct.jsp page so that a user can view product
information that was updated.

1 In Page view, place the cursor to the right of the Update Database
button and press Enter.
Select Format>Hyperlink.

2 Type Product Information in the Text of the Hyperlink text box.
Click the browse (...) button next to the Destination text box.

The window opens to display the target list of Web pages already created.

3 Select the Product Information page (Product.jsp).

4 Click OK twice to add the hyperlink to the Web page.

Product Information appears on the Addproduct.jsp page as an underlined
hyperlink.

5 Select File>Save from the menu bar.

Add a DataWindow to an existing Web page

284 PowerBuilder

Add a DataWindow to an existing Web page

Where you are
Build a Web DataWindow container
Create a Web page with a Web DataWindow container
Add other controls to the DataWindow Web page

> Add a DataWindow to an existing Web page
Add the ability to retrieve product information
Test and run the Web application

Now you add a DataWindow to an existing Web page. You clear the automatic
retrieval check box for this DataWindow. This prevents automatic insertion
into your page of the script that accesses the Web DataWindow. You then link
a specific DataWindow retrieval argument to a parameter on the Web page and
retrieve the DataWindow programmatically.

1 Open the Product.jsp file.

2 Place the cursor at the end of the Product Information paragraph and
press Enter.
Select Insert>Form Field>DataWindow from the menu bar.

The Sybase Web DataWindow DTC Properties dialog box displays.

3 Select the Library radio button on the DataWindow page.
Click the browse (...) button next to the DataWindow Library text box.

4 Select tutor_pb.pbl and click Open.

The path to the tutor_pb.pbl library displays in the Library text box of the
Sybase Web DataWindow DTC Properties dialog box.

Lesson 13 Using Web DataWindows

Getting Started 285

5 In the Generate Path In Script group box, select Absolute.
Select d_product from the DataWindow drop-down list box.

An absolute path is used here for the purposes of the tutorial only. In a
production environment, you should use a relative path.

6 Click the Connection tab.
Select EAS Demo DB V105 from the drop-down list box.

7 Click the Retrieval tab.
Clear the Automatic Retrieval option.

Later you will write a script to retrieve product data during a button
Clicked event.

8 Click the HTML Generator tab.
Select local (your EAServer profile) and click OK.

The d_product Web DataWindow is inserted in the page.

Add a DataWindow to an existing Web page

286 PowerBuilder

9 Select the cb_addproduct button in the first drop-down list box in the
Script editor.
Select ServerAction() from the second drop-down list box.

10 Right-click inside the Script editor.
Select Insert Redirect from the drop-down list box.

11 Click the browse (...) button next to the Destination text box.
Select Addproduct.jsp from the Contents of Customer list box.

You add a link from the Product.jsp page to the Addproduct.jsp page.

12 Click OK twice.

13 Select File>Save from the menu bar.

Lesson 13 Using Web DataWindows

Getting Started 287

Add the ability to retrieve product information

Where you are
Build a Web DataWindow container
Create a Web page with a Web DataWindow container
Add other controls to the DataWindow Web page
Add a DataWindow to an existing Web page

> Add the ability to retrieve product information
Test and run the Web application

Now you add a retrieve function to the Product.jsp page. It will allow you to
request the product ID for any product in the database and display the product
information on the page.

1 Open Product.jsp in Page view if it is not already open.
Place the cursor at the end of the paragraph above the Web
DataWindow and press Enter.

2 Select Table>Table Wizard from the menu bar.
Type 1 for the Number of Rows and click Next.
Type 2 for the Number of Columns.
Click Finish and OK.

A table displays on the Web page.

3 Highlight the word Cell in the first column and type Display Product
Information by Product ID.

4 Highlight the word Cell in the second column.
Select Insert >Form Field >Single Line Text and click OK.

Add the ability to retrieve product information

288 PowerBuilder

5 Place the cursor after the table.
Press the Enter key once to create and move the cursor to a new line.
Select Insert>Form Field>Push Button from the menu bar.

The Button Properties page displays.

6 Select Button Type Button.
Type cb_get in the Name text box.
Type Product by ID in the Label text box and click OK.

7 Select cb_get in the first drop-down list box of the Script editor.
Select ServerAction() from the center drop-down list box.

8 Add the following code to the script window:

psPage.dw_1.Reset();
psPage.dw_1.Retrieve(psPage.sle_1.value);

9 Select File>Save from the menu bar.

Lesson 13 Using Web DataWindows

Getting Started 289

Test and run the Web application

Where you are
Build a Web DataWindow container
Create a Web page with a Web DataWindow container
Add other controls to the DataWindow Web page
Add a DataWindow to an existing Web page
Add the ability to retrieve product information

> Test and run the Web application

You can now test the new Web page and see if you can add a product to the
database. If this is successful, you can run the complete Web application,
starting from the Login page.

In this exercise, you:

• Test the Addproduct.jsp Web page

• Add a new product to the database

• Run the Web application

Test and run the Web application

290 PowerBuilder

Test the Addproduct.jsp Web page
Before you test your Web application, it is useful to first test the
Addproduct.jsp Web page to see if you can add a product. To do this, you can
temporarily change the start page for the Customer target from Login.jsp to
Addproduct.jsp and then deploy and run the target.

1 In the System Tree, right-click Customer.
Select Properties from the pop-up menu.

The Properties of Target Customer dialog box displays.

2 Click the Run tab and click the browse (...) button.
Make sure the Target tab of the Choose URL dialog box displays.

3 Select Addproduct.jsp from the Contents of Customer list box and
click OK twice.

4 Check to see that your local EAServer is running.

EAServer is a Web server as well as a component transaction server.

5 In the System Tree, right-click Customer.
Select Deploy from the pop-up menu.
If PowerBuilder prompts you to save the Addproduct page, click Yes.

The Output window opens and displays informational messages as the
target is built and deployed.

Lesson 13 Using Web DataWindows

Getting Started 291

6 Select Run>Run Customer from the PowerBuilder menu.

Your default browser opens. The URL address box contains the file path
for the Addproduct.jsp Web page.

Next you add new product information using this Web page.

Test and run the Web application

292 PowerBuilder

Add a new product to the database
Next you add new product information and update the database with the new
information.

1 Click the Add New Product Information button on the Addproduct.jsp
page.

The Web page is reloaded and an empty Web DataWindow row displays.

2 Type the following information in the Web DataWindow:

Text box Value

Product ID 9999

Product Name Shirt

Product Description Denim shirt

Size Large

Color Blue (select from drop-down list)

Quantity 6

Unit Price 27.95

Lesson 13 Using Web DataWindows

Getting Started 293

3 Click the Update Database button.

This information is now in the database. You review the information next.

4 Click the Product Information hyperlink.

The Product.jsp page displays.

5 Type 9999 in the Display Product information by Product ID text box.
Click the Product by ID button.

The Product.jsp Web page is reloaded with the product information you
entered in the previous exercise.

Test and run the Web application

294 PowerBuilder

Run the Web application
You have completed the development of your Web application. Now you
change the start page back to the Login.jsp page, redeploy, run, and test the
Web application.

1 In the System Tree, right-click Customer.
Select Properties from the pop-up menu.

The Properties of Target Customer dialog box displays.

2 Click the Run tab and then click the browse (...) button.
Click the Target tab in the Choose URL dialog box.

3 Select Login.jsp from the Contents of Customer list box and click OK
twice.

4 Check to see that your local EAServer is running.

5 In the System Tree, right-click Customer.
Select Deploy from the pop-up menu.

When the Output window indicates that deployment is complete, you can
run the application.

6 Click the Run button in the PowerBar.

Your default browser displays the Login.jsp page.

Lesson 13 Using Web DataWindows

Getting Started 295

7 Type your first name in both the Name and Password text boxes.
Click the Login button.

The Welcome page displays.

8 Click the View Product Information hyperlink.

The Product Information Web page (Product.jsp) displays.

Test and run the Web application

296 PowerBuilder

9 Click the Add New Product button.

The Addproduct.jsp page displays.

Lesson 13 Using Web DataWindows

Getting Started 297

10 Click the Add New Product Information button.

The Web DataWindow displays with an empty row.

11 Type the following information in the Web DataWindow:

12 Click the Update Database button.

13 Click the Product Information hyperlink.

The Product.jsp page displays.

Text box Value

Product ID 4321

Product Name Tee Shirt

Product Description Cotton tee shirt

Size Small

Color White (select from drop-down list)

Quantity 100

Unit Price 15.95

Test and run the Web application

298 PowerBuilder

14 Type 4321 in the Display Product information by Product ID text box.
Click the Product By ID button.

The Product.jsp Web page is reloaded with the product information you
just entered.

15 Close the Browser.

Lesson 13 Using Web DataWindows

Getting Started 299

What to do next
Congratulations. You have completed Part 3 of the tutorial. Now you know the
basics of working with Web targets in PowerBuilder. You can continue with the
tutorial lesson in Part 4 to learn how to create and use JSP Web targets.

Web target books to
use next

The Preface to this book includes a guide to the PowerBuilder documentation.
To further your understanding of Web targets and Web DataWindows, you
should continue with these books:

Working with Web and JSP Targets
Web and JSP Target Reference
DataWindow Programmer’s Guide
DataWindow Reference

All the PowerBuilder books are available in the Online Books and on the
Sybase Web site at http://www.sybase.com/support/manuals/.

For information on how to install the Online Books, see the Installation Guide.

Looking at the Web
target sample

To see examples of PowerBuilder code, including a Web target sample, you
should look at the examples that are available by selecting
Programs>Sybase>PowerBuilder 10.5>PB 10.5 Code Samples from your
Windows Start menu.

What to do next

300 PowerBuilder

P A R T 4 Building a JSP Web
Services Application

This part is a tutorial that shows you how to get started using
JSP Web targets. It includes step-by-step instructions for
using Web services from a JSP client.

Getting Started 303

L E S S O N 1 4 Creating a JSP Web Services
Application

JSP targets can be deployed to any JSP 1.2 server of your choice through
customized command line configurations. However, deployment to
EAServer and Tomcat requires only that you fill in the information needed
to connect to these servers. For this tutorial, you create a JSP Web service
application, including a 4GL JSP page, that you deploy to EAServer.

In this lesson you:

• Create a JSP target

• Use a Web service with a simple JSP application

• Use a Web service with a 4GL JSP application

How long does it take?
About 45 minutes.

Before you begin The JSP Web Services tutorial requires that you have the following
available on your local machine:

• Internet Explorer 6.0 or later

• EAServer 5.3 with an EBF, or a later version of EAServer

For more information about getting the EAServer version you need,
see the PowerBuilder Release Bulletin.

You must also set up an EAServer connection profile in PowerBuilder.
Setting up an EAServer profile is part of the Web Target tutorial. If you
skipped the Web Target tutorial, you can still follow the instructions in
“Set up an EAServer connection profile” on page 241.

You need a live connection to the Internet when you run the JSP Web
Services application. At design time, a live connection is not necessary if
you copy the Web Service Definition Language (WSDL) file used in this
tutorial to your local machine. The WSDL file is described in this lesson.

Create a JSP target

304 PowerBuilder

Create a JSP target

Where you are
> Create a JSP target

Use a Web service with a simple JSP application
Use a Web service with a 4GL JSP application

You run the JSP Target wizard to create a JSP target in PowerBuilder.

1 In PowerBuilder, select File>Open Workspace and navigate to the
Tutorial folder.
Select MyWorkspace.pbw and click Open.

If you recently completed the Client/Server or the Web Target tutorial, this
workspace might already be open. If you did not, and you cannot find
MyWorkspace.pbw, make sure you follow the instructions in “Setting up
for the tutorial” on page 25.

2 Click the New button in the PowerBar.
Click the Target tab in the New dialog box and select JSP Target.
Click OK.

The introductory page of the JSP Web Target wizard displays.

3 Click Next.

The Specify New JSP Target wizard page displays. The default name for
the Web target is Target1.

4 Type jspTutorial.pbt in place of Target1.pbt.

The Source folder and Build folder names will change automatically to
reflect the target name change when you click Next.

5 Click Next until the Choose EAServer Profile page displays.

You accept the default settings for the following items:

Wizard Option Default

Deployment Configuration Name jspTutorialDeployConfiguration1

Description Deployment Configuration

Object Model I am using the default object model

JSP Server EAServer

Lesson 14 Creating a JSP Web Services Application

Getting Started 305

6 Make sure the EAServer profile you want is selected.

If you completed the Web Target tutorial, select the profile named local.
This profile uses the name of your local machine as the server name. If you
do not have an EAServer profile, click Cancel to exit the wizard, follow
the instructions to “Set up an EAServer connection profile” on page 241,
then restart the current lesson.

The Choose EAServer Profile page of the wizard page also has an HTTP
Port field that displays the default value 8080. Do not change this port
number unless you also change the HTTP listener port for EAServer in
Jaguar Manager.

7 Click Next until the Ready to Create JSP Target page displays.

You accept the default settings for the following items:

8 Review your selections on the Ready to Create JSP Target page.
Click Finish to accept the selections.

The wizard creates the jspTutorial target, a directory structure that stores
your files, and a deployment configuration. The Source and Build folders
do not display in the System Tree, but a wizard-created WEB-INF
directory is visible in the System Tree along with two subdirectories and
the web.xml file for your target.

Wizard option Default

Deploy What Deploy All or Nothing

Rebuild Incremental

Local Copy Folder Program Files\Sybase\PowerBuilder 10.5\Tutorial
\jspTutorial\jspTutorialDeployConfiguration1

WAR File Name jspTutorial.war

Use a Web service with a simple JSP application

306 PowerBuilder

Use a Web service with a simple JSP application

Where you are
Create a JSP target

> Use a Web service with a simple JSP application
Use a Web service with a 4GL JSP application

In this lesson you create a simple JSP application. The non-4GL application
consists of two pages; a start page where you select an item from a drop-down
list that you pass as a page parameter, and a target page that includes a call to
a Web service. The Web service is the currency exchange Web service
available on the XMethods Web site at www.xmethods.net.

• Create non-4GL pages for a JSP application

• Complete the application start page

• Use the JSP Web Service Proxy wizard

• Add calls to the Web service

• Build, deploy, and run the application

Lesson 14 Creating a JSP Web Services Application

Getting Started 307

Create non-4GL pages for a JSP application
You create two pages in the non-4GL part of this JSP Web Services tutorial: a
start page and a main page. You then add a page parameter on the main page of
the application that will be used to obtain a value submitted from the start page.

1 Select File>New from the PowerBuilder menu and click the Web tab.
Make sure jspTutorial is selected in the Target drop-down list at the
bottom of the New dialog box.

If you do not have other Web targets in your workspace, jspTutorial will
be selected automatically when you click the Web tab.

2 Select the Web/JSP Page icon, click OK, then click Next.

The Web Page wizard opens to the Specify New JSP File page.

3 Type simplestart in the Title text box and click Next 4 times.

The name in the File Name field changes to simplestart.jsp.

You accept the defaults on the remaining wizard pages.

4 Click Finish.

The wizard creates the simplestart.jsp page in the jspTutorial target. The
page opens in the HTML editor. It is also listed under the jspTutorial target
in the System Tree.

5 Repeat steps 1-4, typing simple instead of simplestart in step 3.

The wizard creates the simple.jsp page. The following default text displays
in Page view: Put your data here.

6 Highlight the default text on the simple.jsp page.
Press Enter and type Currency Converter for the new text.

7 Place the cursor inside the text you just typed and select
Format>Paragraph in the PowerBuilder menu.

The Paragraph dialog box displays.

Use a Web service with a simple JSP application

308 PowerBuilder

8 Select Heading 1 from the Paragraph Style drop-down list.
Select Center for the Align Text field, then click OK.

The text you typed is formatted in the Heading 1 font style.

9 Place the cursor at the end of the text and press Enter.
Type (Simple Version).

You will create a 4GL version of this page in the next lesson.

If you do not see the paragraph symbols in Page view, you can display
them by right-clicking the page and selecting Show Non-Visual Tags from
the pop-up menu.

10 Right-click the page in Page view and select Page Properties from the
pop-up menu.
Click the Parameters tab.

11 Click in the first line under the Parameter Name column, type
country_2, and click OK.

You cannot enter a default value for a page parameter on a non-4GL page.
In this tutorial application, the column_2 parameter will be passed to the
simple.jsp page from the simplestart.jsp page.

12 Click the Save button.

Lesson 14 Creating a JSP Web Services Application

Getting Started 309

Complete the application start page
Now you complete the simplestart.jsp page by adding a drop-down list and a
Submit button.

1 Select the simplestart.jsp page from the PowerBuilder Window menu.

The simplestart.jsp page receives the focus of the HTML editor. If you had
already closed simplestart.jsp, you can open it again by double-clicking
the simplestart.jsp entry in the System Tree.

2 Highlight the default text and press Enter.
Type the following lines directly in Page view or in Source view:

Select a country where you expect to be travelling:

3 Press Enter after the text you typed.
Select Insert>Form Field>List Box from the PowerBuilder menu.

4 Type country_2 in the Name To Send To Server text box.

5 Click the Options tab, enter the following display text and values, and
click OK:

The list box is added to the page and is surrounded by opening and closing
FORM tags.

6 Place the cursor after the list box but before the closing FORM tag.
Press Enter.

You can do this in Page view or Source view. The Submit button that you
will add to the page must be inside the same FORM tag as the drop-down
list.

Text Value

China china

France euro

Germany euro

Great Britain united kingdom

Singapore singapore

Use a Web service with a simple JSP application

310 PowerBuilder

7 Type the following text and press Enter:

Click the Submit Query button to find the value of
an American dollar relative to the principle
currency of the country you selected:

8 Select Insert>Form Field>Push Button from the PowerBuilder menu
and click OK.

The Submit button is given the default label "Submit Query". You do not
need to supply a name for the button, since you do not want to pass the
name of the button to the simple.jsp page. However, you do want to pass
the value of the drop-down list item that the user selects.

9 Right-click the button or the drop-down list and select Form
Properties from the pop-up menu.

The Form Properties dialog box displays.

10 Type simple.jsp in the text box for the "URL where form information
is sent."

Instead of typing, you can click the browse button next to the text box to
open the Choose URL dialog box. You can then select simple.jsp on the
Target tab and click OK.

11 Select GET in the Submit Method drop-down list and click OK.

If you leave POST as the submit method, you will not see the parameter
included in the URL to access the simple.jsp page after you click the
Submit Query button.

Lesson 14 Creating a JSP Web Services Application

Getting Started 311

The following picture shows how the simplestart.jsp page should look in
Page view when the Show Non-Visual Tags pop-up menu item is not
selected:

Make sure the Submit Query button is inside the FORM tags.

You can click the Preview tab in the HTML editor to view the
simplestart.jsp page as it will look in a client browser. It will not have the
FORM tags that you see in Page view.

12 Save your changes to the simplestart.jsp page.
Select File>Close to close the simplestart.jsp page.

The simple.jsp page remains open in the HTML editor.

Use a Web service with a simple JSP application

312 PowerBuilder

Use the JSP Web Service Proxy wizard
Now you add a Web service to your JSP target.

1 Right-click the jspTutorial target in the System Tree and select New
from the pop-up menu.
Click the Web tab if it is not already displayed.

2 Double-click the JSP Web Service Proxy Wizard and click Next.

The Select WSDL File page of the wizard displays. A WSDL file is a Web
Service Definition Language file that defines a Web service.

Lesson 14 Creating a JSP Web Services Application

Getting Started 313

3 In the WSDL File Name box, type
http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl.

4 Click Next.

The CurrencyExchangeService Web service displays.

Use a Web service with a simple JSP application

314 PowerBuilder

5 Click Next.

The getRate operation displays and it is selected by default.

6 Click Next.
Click Next again.

How you display parameter and port names
There is only one parameter and one port. To display the parameter and
port names in the wizard, you must select getRate in the left frame of the
Modify Parameters wizard page and the Select Ports wizard page. The
CurrencyExchangeService_getRate_returnValue parameter is the only
parameter and the CurrencyExchangePort is the only port.

Lesson 14 Creating a JSP Web Services Application

Getting Started 315

7 Click Next again.

The Input Destination Value page displays the package name for the Web
service, the TLD file name, and the JAR file name.

8 Click Next.

The Ready to Create Proxy page displays.

Use a Web service with a simple JSP application

316 PowerBuilder

9 Scan the list of proxy characteristics.
Click Finish.

The wizard adds the following files to subdirectories of the target
WEB-INF directory:

The wizard also adds the CurrencyExchangeService.tld file to your
custom tag library search path and adds it to the Components tab of the
System Tree.

Add calls to the Web service
Now you add a page directive to use the TLD with the simple.jsp page. You
add a custom tag to define arguments for the getRate class of the Web service,
and you add a server script to return a conversion rate calculated by the service.

1 Click the Components tab of the System Tree.

2 Expand the list of custom tag libraries to display the
CurrencyExchangeService.tld file.

3 Drag the CurrencyExchangeService.tld file to the simple.jsp page in
the HTML editor.

A dialog box prompts you to enter a prefix as a shorthand to refer to the
TLD file.

4 Type cur for the prefix and click OK.

PowerBuilder adds a taglib directive to the page.

Subdirectory Files added

Lib CurrencyExchangeService.jar

Tlds CurrencyExchangeService.tld

Lesson 14 Creating a JSP Web Services Application

Getting Started 317

5 Expand the listing for the CurrencyExchangeService.tld file on the
Components tab of the System Tree.

6 Drag the getRate class to the bottom of the simple.jsp page in Page
view.

The cur:getRate Properties dialog box displays.

7 In the Values column, type the following values for the listed
attributes and click OK:

In Page view, the symbol: <ctl:/> displays on the page to indicate that a
custom JSP action has been added. In Source view, the code for the custom
action tag looks like the following:

<cur:getRate country1="usa" country2=
'<%= request.getParameter ("country_2") %>' />

8 Type the following line in Source view near the bottom of the page:

<P>The conversion rate for 1 US dollar
to <%= request.getParameter ("country_2") %>
 currency is: </P>

This line contains both server script and HTML script. Each instance of
the HTML script " " adds a nonbreaking space to the text at the
location where you type it.

Attribute Name Value

country1 usa

country2 <%= request.getParameter ("country_2") %>

Use a Web service with a simple JSP application

318 PowerBuilder

9 Switch to Page view and click the <%=> symbol in the line you just
typed.

ServerScript[0] displays in the first drop-down list in the Script view. The
server script is an expression script that you typed in Source view.

10 In Page view, place the cursor at the end of the line that you typed.

If you did not add a nonbreaking space after the colon in Source view, you
can add it now in Page view by pressing the space bar.

11 Right-click in the Script view and select
New Script>Server>"<%= ... %>" from the pop-up menu.

The Script view now displays ServerScript[1] in the first drop-down list
box. In Page view you see a second <%=> symbol.

If the second <%=> symbol is not at the end of the line of text, select the
symbol and drag it to the end of the line, making sure it is separated from
the colon by a single space.

12 On the Components tab of the System Tree, expand the listing for the
getRate class under the CurrencyExchangeService.tld listing.

Lesson 14 Creating a JSP Web Services Application

Getting Started 319

13 Drag the CurrencyExchangeService_getRate_returnValue variable to
the Script view for ServerScript[1].

14 Click the Save button.
(Optional) Close the simple.jsp page and the HTML editor.

Use a Web service with a simple JSP application

320 PowerBuilder

Build, deploy, and run the application
Now you deploy and run the JSP application.

1 Make sure that the EAServer you selected in your target profile is
running.

2 On the Workspace tab of the System Tree, right-click jspTutorial.
Select Deploy from the pop-up menu.

Deployment is done when the Output window displays Finished Deploy
of target jspTutorial.

3 Right-click the jspTutorial target again.
Select Properties from the pop-up menu.

4 Click the Run tab of the target properties dialog box.
Click the browse button next to the Start Page text box.

The Choose URL dialog box displays.

5 Select simplestart.jsp in the list box showing the contents of the
jspTutorial target and click OK.

The target properties dialog box now displays /simplestart.jsp for the
target start page.

6 Select jspTutorialDeployConfiguration1 in the Deploy Configuration
For Running drop-down list and click OK.

Lesson 14 Creating a JSP Web Services Application

Getting Started 321

7 Select Run>Select And Run from the menu bar.
Select jspTutorial in the Select a Target dialog box.
Click OK.

Your default browser displays the simplestart.jsp Web page.

8 Select a country from the drop-down list and click Submit Query.

The conversion rate is calculated for the currency of the country you
selected and the result is displayed on the simple.jsp page.

Use a Web service with a 4GL JSP application

322 PowerBuilder

Use a Web service with a 4GL JSP application

Where you are
Create a JSP target
Use a Web service with a simple JSP application

> Use a Web service with a 4GL JSP application

In this lesson you create a 4GL JSP and add a Web service to it. You use the
same Web service that you used for the simple.jsp page.

• Create a 4GL JSP page

• Add the Web service and a page variable to the 4GL page

• Add a table to the 4GL JSP page

• Complete the call to the Web service

• Build, deploy, and run the 4GL JSP page

Lesson 14 Creating a JSP Web Services Application

Getting Started 323

Create a 4GL JSP page

1 Click File>New from the PowerBuilder menu and click the Web tab.

2 Make sure jspTutorial is selected in the Target drop-down list.
Select the 4GL JSP Page icon, click OK, then click Next.

The 4GL JSP Page wizard opens to the Specify New JSP File page.

3 Type fourgl in the Title text box and click Next until the Choose
EAServer Profile page displays.

The name in the File Name field changes to fourgl.jsp the first time you
click Next. You accept the default values for the other pages on which you
click Next.

4 Select the Skip EAServer Components check box on the Choose
EAServer Profile page of the wizard and click Next.

5 Click Finish.

The wizard creates the fourgl.jsp page in the jspTutorial target. The page
opens in the HTML editor. It is also listed in the System Tree along with
the other pages you created for the target.

6 Highlight the default text on the fourgl.jsp page: Put your data here.
Type Currency Converter for the new text.

7 With the cursor in the same line as the text you typed, select
Format>Paragraph in the PowerBuilder menu.

The Paragraph dialog box displays.

8 Select Heading 1 from the Paragraph Style drop-down list, select
Center for the Align Text field, and click OK.

The text you typed is formatted to the Heading 1 font style.

9 Place the cursor at the end of the text and press Enter.
Type (4GL Version) and press Enter.

10 Click the Save button on the HTML editor toolbar.

Use a Web service with a 4GL JSP application

324 PowerBuilder

Add the Web service and a page variable to the 4GL page

1 Click the Components tab of the System Tree.

2 Expand the list of custom tag libraries to display the
CurrencyExchangeService.tld file.

The Currency Exchange Service library was added to the list of custom tag
libraries by the JSP Web Service Proxy wizard. This is the same library
that you added in a taglib directive to the simple.jsp page.

3 Drag the CurrencyExchangeService.tld file to the fourgl.jsp page in
the HTML editor.

A dialog box prompts you to enter a prefix as a shorthand to refer to the
TLD file.

4 Type cur for the prefix and click OK.

PowerBuilder adds a taglib directive to the page.

5 Right-click the fourgl.jsp page in Page view.
Select Page Properties from the pop-up menu and click the Variables
tab.

6 Add a variable with the following properties and click OK:

7 Click the Save button on the HTML editor toolbar.

Column Type or select

Variable Name v_units

Data Type double

Initial Value 100.

Life Time page

Client Access NONE

Lesson 14 Creating a JSP Web Services Application

Getting Started 325

Add a table to the 4GL JSP page

1 In Page view, place the cursor on the fourgl.jsp page below the lines
containing the text that you typed.

2 Select Table>Table Wizard from the PowerBuilder menu.

3 Type 2 for the number of rows in the table and click Next.
Type 3 for the number of columns in the table, click Finish, then OK.

PowerBuilder adds a table to the fourgl.jsp page. The word Cell appears in
each table cell by default.

4 Highlight the default text in the top left cell of the table.
Type the following text in the cell: Currency From:

5 Highlight the default text in the bottom left cell of the table.
Type the following text in the cell: Currency To:

6 Highlight the default text in the top middle cell in the table.
Select Insert>Form Field>List Box from the PowerBuilder menu.

The List Box Properties dialog box displays.

7 Type country_from in the Name To Send To Server text box.
Click the Options tab of the List Box Properties dialog box.
Type the following display text and values in the Options list:

8 Select the check box in the Selected column next to the entry you
made for the United States, and click OK.

The list box displays in the top middle cell of the table. The only value you
see in Page view is for the United States. If you view the page in Preview
view, you can see all the countries that you entered in the drop-down list.
However, you must return to Page view to continue editing.

Text Value

China china

France euro

Great Britain united kingdom

Singapore singapore

United States usa

Use a Web service with a 4GL JSP application

326 PowerBuilder

9 Highlight the default text in the bottom middle cell in the table.
Select Insert>Form Field>List Box from the PowerBuilder menu.

10 Type country_to in the Name To Send To Server text box.
Click the Options tab of the List Box Properties dialog box.
Type the same display text and values that you typed in step 7.

11 Select the check box in the Selected column next to the entry you
made for France, and click OK.

The list box displays in the bottom middle cell of the table. The only value
you see in Page view is for France.

12 Highlight the default text in the top right cell of the table.
Select Insert>Form Field>Single Line Text from the PowerBuilder
menu.

13 Type units in the Name box of the Text Control INPUT1 Properties
dialog box.

14 Click the Bind tab in the Text Control Properties dialog box.
Select <Page Variable> for the component name, v_units for the
property name, and click OK.

The fourgl.jsp page should now look like this:

15 Highlight the default text in the bottom right table cell and press
Delete.

You clear the default text. Next you will enter a call to the getRate Web
service and return a calculated value into this table cell.

Lesson 14 Creating a JSP Web Services Application

Getting Started 327

Complete the call to the Web service

1 On the Components tab of the System Tree, expand the listing for the
CurrencyExchangeService.tld file.
Drag the getRate class to the bottom right cell of the table on the
fourgl.jsp page.

The cur:getRate Properties dialog box displays.

2 In the Values column, type the following values for the listed
attributes and click OK:

In Page view, the bottom right table cell displays the symbol: <ctl:/> to
indicate that a custom JSP action has been added. In Source view, the code
inside the last table cell looks like the following:

<cur:getRate
country1="<%=psPage.country_from.value %>"
country2="<%= psPage.country_to.value %>" />

3 Right-click inside the Script view and select
New Script>Server>"<%= ... %>" from the pop-up menu.

The Script view displays ServerScript[0] in the first drop-down list box.

4 Expand the listing for the getRate class under the
CurrencyExchangeService.tld listing on the Components tab.
Drag the CurrencyExchangeService_getRate_returnValue variable to
the Script view for ServerScript[0].

CurrencyExchangeService_getRate_returnValue displays in the Script
view.

5 Type .floatValue()* v_units immediately after the text you
dragged to the Script view.

Using dot notation, the server script now calls the floatValue method to
cast the return value before multiplying it by the value of the v_units page
variable to obtain a final result. The full script looks like this:

CurrencyExchangeService_getRate_returnValue.floatValue()* v_units

Attribute Name Value

country1 <%= psPage.country_from.value %>

country2 <%= psPage.country_to.value %>

Use a Web service with a 4GL JSP application

328 PowerBuilder

6 Make sure the server script symbol "<%=>" displays in the bottom
right table cell after the "<ctl:/>" symbol.

In Page view, you can drag and drop the server script <%=> symbol to the
location where you want to place it. It must be placed after the call to the
custom tag library that is represented in Page view by the <ctl:/>
symbol.

7 Place the cursor to the right of the table and press Enter.
With the cursor in the new line, select Insert>Form Field>Push
Button.

The Button Properties dialog box displays.

8 Type Get Conversion Result in the Label text box and click OK.

9 (Optional) In Source view, add the following text after the code for the
Submit button but before the closing Body tag:

<HR id="HR1">
<P>Currency Converter Web Service is from
www.xmethods.net </P>
<P>wsdl: <A id="WSDLURL" href=
"http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl">
http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl
</P>

You credit the owners of the Web service for the use of their service.

10 Save the changes you made to the fourgl.jsp page.

Lesson 14 Creating a JSP Web Services Application

Getting Started 329

Build, deploy, and run the 4GL JSP page
Now you deploy and run the JSP application.

1 Make sure that EAServer is running.

2 On the Workspace tab of the System Tree, right-click the jspTutorial
target and select Deploy from the pop-up menu.

Deployment is done when the Output window displays Finished Deploy
of target jspTutorial.

3 Right-click the jspTutorial target.
Select Properties from the pop-up menu.

4 Click the Run tab of the target properties dialog box.
Click the browse button next to the Start Page text box.

The Choose URL dialog box displays.

5 Select fourgl.jsp in the list box showing the contents of the jspTutorial
target and click OK.

The target properties dialog box now displays /fourgl.jsp for the target
start page.

6 Click OK again.

Use a Web service with a 4GL JSP application

330 PowerBuilder

7 Right-click the jspTutorial target in the System Tree.
Select Run from the pop-up menu.

Your default browser opens. The URL address box contains the file path
for your fourgl.jsp Web page.

The conversion rate is calculated and displayed for the default values you
selected:

8 In your browser, select a different country from the Currency From or
Currency To drop-down lists.
Click the Get Conversion Result button.

The new result displays in the bottom right cell of the table on the
fourgl.jsp Web page.

9 Type a different unit number in the top right cell of the table on the
fourgl.jsp Web page and click the Get Conversion Result button.

The calculation of the conversion value takes into account the units you
entered.

Parameter or variable Default value

country1 United States

country2 France

v_units 100

Lesson 14 Creating a JSP Web Services Application

Getting Started 331

What to do next
Congratulations. You have completed Part 4 of the tutorial. Now you know the
basics of working with JSP targets and JSP Web services in PowerBuilder.

For additional practice, you can try deploying the JSP application described in
this tutorial to a Tomcat server or to another JSP 1.2 compatible server. You can
also try using other Web services, including those with user-defined datatypes.
For information about user-defined datatypes, see the chapter on JSP targets in
the Working with Web and JSP Targets book.

The Preface to this book includes a guide to the PowerBuilder documentation.
All the PowerBuilder books are available in the Online Books and on the
Sybase Web site at http://www.sybase.com/support/manuals/.

For information on how to install the Online Books, see the Installation Guide.

To see examples of PowerBuilder code, including a Web target sample, you
should look at the examples that are available by selecting
Programs>Sybase>PowerBuilder 10.5>PB 10.5 Code Samples from your
Windows Start menu.

What to do next

332 PowerBuilder

Getting Started 333

A
aligning columns in DataWindow objects 176
ampersand (&), menu item accelerator key 143
ancestor

windows 121
Application object

definition 11
icon 38, 41
Open event 52

applications
building 225
debugging 191
definition 11
distributed 5
internet 5
MDI 19, 21
running 44, 241

AutoScript
setting up shortcuts for 113
using 114, 133

B
background color, window 65
breakpoints 192
Button, adding 282

C
CHOOSE CASE statement 212
class user objects 17
Clicked event

CommandButton control 114, 116
menu item 152

Clip window 6
Close event, Application object 117

columns on DataWindow objects
aligning 176
rearranging 174

comments
DataWindow 163, 173
menu 147
Script view 85
window 67

COMMIT statement 135
connection service manager 100
Constructor event, user object 104
context Help, adding 79
controls

CommandButton 75
deleting 70
duplicating 72
Picture 70
specifying properties for 72, 75, 76
StaticText 71

Creating Web pages 239

D
data source

Quick Select 159
SQL Select 166

database connectivity
about 5, 90
Transaction object 103

Database painter, using 96
database profiles 90
databases

connecting to 5
connecting to at execution time 103
extended attributes 99
retrieving, presenting, and manipulating data 13
table definitions in 96
update 292, 294

DataWindow controls 124

Index

Index

334 PowerBuilder

DataWindow data expressions 137
DataWindow objects

about 157
aligning columns 176
attaching to DataWindow controls 180, 182, 186
creating 159, 166
data source 159, 166
display order 160
enhancing 174
overview 13
presentation style 159, 166
rearranging columns 174
retrieval arguments 168
saving 163, 173
selecting columns with Quick Select 160
WHERE clause 169

DataWindow painter
bands 158
retrieval argument 168
WHERE clause 169

DBError event 130, 134
DBParm parameter 108
debugging

about 191
adding breakpoints 192
running in debug mode 196
setting a watch 201
stepping through code 196

declaring global variables 105
default to 3D window option 69
DeleteRow function 135
deleting controls 70
detail band in DataWindow objects 158
docking views 56
drop-down DataWindow edit style 177
drop-down menus

adding items 142
description 15

E
EAS Demo DB Database

connecting to 89
setting up 25

EAServer 241
edit style, drop-down DataWindow 177
events

about 4
adding 212
Clicked 112, 152
Close 117
Constructor 104, 215
DBError 130
LoseFocus 215
RowFocusChanged 136
triggering from menu scripts 152

exceptions
catching 215
throwing 212
user-defined 210

executable file
application icon 38, 41
generating machine code 226
regenerating objects 230

extended attributes 99, 177

F
floating

toolbars 60
views 56

footer band in DataWindow objects 158
frame window 83
Freeform presentation style

columns 174
DataWindow definition 166

functions
about 4
adding 212
DeleteRow 135
GetActiveSheet 152
global 16
InsertRow 135
object-level 16
ProfileString 105
Reset 135
Retrieve 134
SetFocus 134, 135

Index

Getting Started 335

SetRowFocusIndicator 134
SetTransObject 137
Update 135

G
GetActiveSheet function 152
global

functions 16
structures 16
variables 105

graphics 250

H
HALT statement 116
header band in DataWindow objects 158, 162
Help

context messages 79
Microhelp 148

I
icons, application 38
inheritance

and menus 146
and object-oriented programming 4
and user objects 124
and windows 121

initialization files
odbc.ini 90
pb.ini 96
pbtutor.ini 105

InsertRow function 135

J
J2EE, JSP support 243
JSP (JavaServer Pages)

Web application development and 243
JSP target wizard 304, 306, 322
JSP Web Service Proxy Wizard 312

JSP Web services 303
custom tag library calls 316, 327
wizard 312

JSP Web site 243

L
libraries

about 17
dynamic 226
JSP custom tags 316
rebuild objects in 139
search path for application 122

M
machine code 226
main window, size 41
manager, connection service 100
MDI applications 19, 21
menu bars, description 15
menu items

adding scripts for 152
defining 142
description 15

Menu painter, using 142
menus

about 15
adding scripts for 152
and toolbars 144, 150
creating 146
inheriting 146
menu items 142
saving 147

MicroHelp 148

O
object orientation 4
object-level

functions 16
structures 16

Index

336 PowerBuilder

Open event
frame window 83
sheet window 136

Output window 7

P
PainterBar

adding controls from 68
pop-up menus 60
using 8

painters 7
Parent (PowerScript pronoun) 109
PBL see PowerBuilder Library (PBL)
Pcode (pseudocode) 226
pop-up menus

about 60
PainterBar 60

PowerBar 8
PowerBuilder Library (PBL) 17
PowerScript 4
PowerTips 8
presentation styles

DataWindow object 159, 166
Freeform 166
Tabular 159

Profile String function 105
Project wizards 227
pronouns, PowerScript

Parent 109, 110
This 137

Q
queries 16
Quick Select

sort criteria 161
using 159

R
retrieval arguments

creating 168
WHERE clause 169

Retrieve function
about 134
specifying an argument for 138

retrive, data from database 287
right mouse button, and pop-up menus 60
ROLLBACK statement 135
RowFocusChanged event 136

S
Script view

description 79
error window 87
Paste Special commands 112
prototype area 134
using comments 85

scripts
about 4
compiling 87
error window 87
for user events 132
setting up shortcuts for AutoScript 113
using AutoScript 114, 133

scrollbars, vertical 128
Select painter

about 167
tab area 168

SELECT statement 168
SetFocus function 134, 135
SetRowFocusIndicator function 134
SetTransObject function 137
setup for tutorial 25
sheet windows, menus 146
size, main window 41
SQL painter 166
SQL Select data source 166

Index

Getting Started 337

SQL statements
COMMIT 135
ROLLBACK 135
SELECT 168

SQL syntax, in Select painter 168
SQLCA (SQL Communications Area) 103, 137
structures 16
StyleBar 8
summary band in DataWindow objects 158
System Tree 6

T
tab order 77
Table wizard 325
Tabular presentation style 159
targets 6
This (PowerScript pronoun) 137
To-Do List 100
toolbars

runtime application 150
showing text 59

Transaction object 103, 137
TRY-CATCH statement 212, 215
tutorial

files 25
initialization file 105
setup 25

U
Update function 135
user events

adding scripts for 132
defining 132
triggering from menu scripts 152

user objects
about 17
using 124

V
validation 264
variables

global 105
gnv_connect 106
instance 105
naming conventions 106
validation 264

vertical scrollbars 128
view, types of

Design (DataWindow painter) 158
HTML Preview (DataWindow painter) 162
Layout 65
Object Details (Database painter) 99
Object Layout (Database painter) 98
Objects (Database painter) 96
Preview (DataWindow painter) 162
Properties 65
Script 79
Syntax (Select painter) 168
Table Layout (Select painter) 167
WYSIWYG (Menu painter) 142

views
docking 56
floating 56
manipulating 54
pinning 56
saving layout schemes 58
stacks 57

visual user objects 17

W
Web DataWindow 284
Web DataWindow Container 272
Web pages

deploy 289
graphics for 250
introduction 239
with DataWindows 274

Index

338 PowerBuilder

Web services 303
Web targets

about 6
JSP 239, 303

WHERE clause 169
Window painter, deleting a control 70
window size 41
windows

about 12
ancestor 121
CommandButton controls on 75
creating 64
DataWindow controls on 124
deleting a control 70
Picture controls on 70
previewing 80
response 64
saving 64
StaticText controls on 71
tab order in 77

wizards
4GL 259
Connection Object 100
DataWindow 159
JSP target 304
JSP Web page 306
JSP Web service 312
Project 227
Table 325
Web page 247, 274

workspaces 6

	Getting Started
	About This Book
	CHAPTER 1 Introduction to PowerBuilder
	What PowerBuilder is
	The PowerBuilder environment
	PowerBuilder objects

	CHAPTER 2 About the PowerBuilder Tutorial
	Learning to build a client/server application
	Learning to build a Web application
	Learning to build a JSP Web services application
	How you will proceed
	How long it will take
	What you will learn

	Setting up for the tutorial

	LESSON 1 Starting PowerBuilder
	Create a new workspace
	Create a target
	Specify an icon for the application
	Change the size of the main window
	Run the application

	LESSON 2 Customizing the PowerBuilder Environment
	Manipulate the System Tree window
	Open an object
	Manipulate views
	Set up the toolbars

	LESSON 3 Building a Login Window
	Create a new window
	Add controls to the window
	Change the tab order on the window
	Code some Help events and preview the window
	Write the script to open the window

	LESSON 4 Connecting to the Database
	Look at the EAS Demo DB database
	Run the Connection Object wizard
	Declare a global variable
	Modify the connection information
	Complete the login and logout scripts
	Run the application

	LESSON 5 Modifying the Ancestor Window
	Add a library to the search path
	Create a new ancestor sheet window
	Add user events and event scripts
	Add scripts to retrieve data for the DataWindow controls
	Adjust a runtime setting for sheet window size

	LESSON 6 Setting Up the Menus
	Modify the frame menu
	Create a new sheet menu
	Add menu scripts to trigger user events
	Attach the new menu and run the application

	LESSON 7 Building DataWindow Objects
	Create and preview a new DataWindow object
	Save the DataWindow object
	Make cosmetic changes to the first DataWindow object
	Create a second DataWindow object
	Make cosmetic changes to the second DataWindow object

	LESSON 8 Attaching the DataWindow Objects
	Attach the DataWindow object to the master DataWindow control
	Attach the DataWindow object to the detail DataWindow control
	Run the application
	Attach DataWindow objects to the Product window
	Run the application again

	LESSON 9 Running the Debugger
	Add breakpoints in application scripts
	Run in debug mode
	Set a watch and a conditional breakpoint

	LESSON 10 Exception Handling
	Add a new sheet window to the existing application
	Create user-defined exception objects
	Create a new user function and user event
	Call the methods and catch the exceptions
	Run the application

	LESSON 11 Preparing the Application for Deployment
	Create the Project object
	Create the executable file
	Create a shortcut
	Test the executable file
	What to do next

	LESSON 12 Creating a JSP Web Site
	Before you begin this tutorial
	Set up an EAServer connection profile
	Create a JSP Web site
	Create and modify a basic JSP
	Add page navigation
	Create a login page with validation and redirection
	Designate a start page
	Deploy and run the Web site

	LESSON 13 Using Web DataWindows
	Build a Web DataWindow container
	Create a Web page with a Web DataWindow container
	Add other controls to the DataWindow Web page
	Add a DataWindow to an existing Web page
	Add the ability to retrieve product information
	Test and run the Web application
	What to do next

	LESSON 14 Creating a JSP Web Services Application
	Create a JSP target
	Use a Web service with a simple JSP application
	Use a Web service with a 4GL JSP application
	What to do next

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

