
Administration Guide

OpenSwitch
15.0

DOCUMENT ID: DC20191-01-1500-01

LAST REVISED: December 2005

Copyright © 1999-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Search Anywhere,
Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SOA Anywhere, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/
Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle,
Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System
11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse
Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of
Sybase, Inc. 06/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Administration Guide iii

About This Book .. vii

CHAPTER 1 Overview .. 1
What is OpenSwitch?... 1
Connection management ... 2

Connection migration .. 2
Failure detection and recovery .. 2
Connection termination ... 3
Suspending and resuming connections 3
Server pools and routing ... 4
Mutually-aware OpenSwitch server support.............................. 8
External coordination using coordination modules.................... 9
Resource governing .. 11
User messaging .. 12
Dynamic SQL support ... 12
International character sets ... 13

Configuration.. 13
Standalone GUI configuration ... 13
Dynamic configuration... 14

Deployment issues ... 14
Connection context.. 14
Deadlocks and RPCs .. 15
Temporary tables and cursors... 15
Performance.. 15
Number of user connections ... 16
Java-based jConnect client applications 16

CHAPTER 2 Concepts and Procedures.. 19
Defining servers ... 19

Defining a server ... 19
Server state ... 20
Server status and existing conditions...................................... 21
Listing available servers .. 22

Contents

iv OpenSwitch

Changing the status of a server .. 22
Setting server options.. 22

Defining pools .. 23
Defining a pool .. 24
Routing and collisions ... 24
Pools and servers.. 25
Pools and connections .. 25
Pool states... 26
Listing available pools ... 27
Changing pool status... 28

Managing connections and threads ... 28
Establishing an outgoing connection....................................... 29
Forwarding queries and results ... 32
Monitoring connection state .. 32
Managing switch requests... 33
Using connection caching ... 34

Managing failures... 38
Failure detection.. 38
Deadlock messages .. 39

Working with client-side cursors... 39
Cursors within dynamic SQL ... 40
Failover handling ... 40
Cursor repositioning .. 41

Enabling SSL support .. 42

CHAPTER 3 Starting and Stopping OpenSwitch and RCMs........................... 43
Starting and stopping OpenSwitch on UNIX 43
Starting and stopping OpenSwitch on Windows 44
Using encrypted user names and passwords 48
Using command line options .. 49
Starting and stopping the RCM from OpenSwitch 54

Requirements .. 55
Configuring an RCM to start automatically from OpenSwitch . 55

CHAPTER 4 Using the Configuration File... 59
Introduction .. 59
Editing the OpenSwitch configuration file....................................... 60

Using wildcards ... 60
Creating or editing a configuration file.. 62
Manually editing configuration options ... 63

[CONFIG] .. 64
[SERVER].. 83
[POOL] .. 86

Contents

Administration Guide v

[LIMIT_RESOURCE]... 89
[COMPANION] .. 91

CHAPTER 5 Using Mutually-aware OpenSwitch Servers 93
Introduction .. 93
Requirements... 94

Installation ... 94
Configuration and use ... 95

Configuring OpenSwitch servers to be mutually aware 99
Configuration file parameters .. 99
Mutually-aware configuration table.. 104
Configuration data precedence ... 107

OpenSwitch mutually-aware operations....................................... 109
Active Adaptive Server failover ... 109
Failback ... 110

Invoking custom and manual scripts .. 111
Overview ... 111
CMON_FAIL_ACTION .. 119
CMP_FAIL_ACTION ... 120
NET_FAIL_ACTION .. 121
SVR_FAIL_ACTION.. 122

CHAPTER 6 Registered Procedures... 125
Invoking registered procedures.. 126

Remote procedure call invocation ... 127
Direct invocation.. 127

rp_cancel.. 128
rp_cfg ... 130
rp_debug .. 133
rp_dump ... 137
rp_go .. 137
rp_help ... 139
rp_kill .. 141
rp_msg ... 143
rp_pool_addattrib ... 145
rp_pool_addserver ... 147
rp_pool_cache.. 152
rp_pool_create ... 154
rp_pool_drop .. 157
rp_pool_help .. 158
rp_pool_remattrib ... 160
rp_pool_remserver ... 162
rp_pool_server_status.. 163

Contents

vi OpenSwitch

rp_pool_status.. 165
rp_rcm_connect_primary ... 169
rp_rcm_list.. 170
rp_rcm_shutdown... 171
rp_rcm_startup ... 172
rp_replay .. 174
rp_rmon.. 179
rp_server_help ... 180
rp_server_status .. 181
rp_set ... 185
rp_set_srv .. 188
rp_showquery... 189
rp_shutdown... 190
rp_start ... 191
rp_stop ... 192
rp_switch .. 195
rp_traceflag .. 198
rp_version .. 200
rp_who ... 201

CHAPTER 7 Notification Procedures .. 205
Introduction .. 205
Using notifications .. 205
Notification registered procedures ... 206

np_req_srv .. 206
np_switch_start ... 208
np_switch_end .. 208

Index ... 211

Administration Guide vii

About This Book

Audience This book is for OpenSwitch version 15.0 system administrators and
assumes that you have:

• General knowledge of your operating system platform

• Familiarity with platform-specific commands used to manipulate the
software and hardware

• General knowledge of Sybase™ servers

• General knowledge of failover systems

How to use this book This document describes OpenSwitch version 15.0 administration and
contains the following chapters:

• Chapter 1, “Overview” – describes OpenSwitch functionality,
features, and deployment issues.

• Chapter 2, “Concepts and Procedures” – covers concepts,
terminology, and procedures.

• Chapter 3, “Starting and Stopping OpenSwitch and RCMs” –
describes how to start and stop OpenSwitch from the command line,
and provides an easy-reference table of flags used to enable Open
Server™ debugging messages.

• Chapter 4, “Using the Configuration File” – describes the sections of
the configuration file.

• Chapter 5, “Using Mutually-aware OpenSwitch Servers,” describes
how to configure and use mutually-aware OpenSwitch servers.

• Chapter 6, “Registered Procedures” – describes how to invoke
registered procedures directly or via remote procedure calls, and
provides reference pages for each registered procedure.

• Chapter 7, “Notification Procedures” – describes a special kind of
registered procedure that can be used by applications outside Open
Client™ to be notified when certain events occur within OpenSwitch.

viii OpenSwitch

Related documents OpenSwitch documentation The following documents are available on the
Sybase Getting Started CD in the OpenSwitch 15.0 product container:

• The OpenSwitch installation guide explains how to install the OpenSwitch
software.

• The OpenSwitch release bulletin contains last-minute information not
documented elsewhere.

OpenSwitch online documentation The following OpenSwitch documents
are available in PDF and Eclipse format on the OpenSwitch 15.0 SyBooks CD:

• What’s New? describes new features in the product.

• The OpenSwitch Administration Guide explains how to administer
OpenSwitch and how to reconfigure the product after installation.

• The OpenSwitch Coordination Module Reference Manual describes how
to develop and use OpenSwitch coordination modules.

• The OpenSwitch Error Message Guide explains how to troubleshoot
problems that you may encounter when using OpenSwitch, and provides
explanations of error messages.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

 About This Book

Administration Guide ix

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/
http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

x OpenSwitch

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following style conventions are used in this manual:

Commands for both the C shell and the Bourne shell are provided in this
document, when they differ. The initialization file for the C shell is called
.cshrc. The initialization file for the Bourne shell is called .profile. If you are
using a different shell, such as the Korn shell, refer to your shell-specific
documentation for the correct command syntax.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Key Definition

commands and methods Command names, command option names, utility
names, utility flags, Java methods/classes/packages,
and other keywords are in lowercase Arial font.

variable Italic font indicates:

• Program variables, such as myServer

• Parts of input text that must be substituted, for
example:

Server.log

• File names

File | Save Menu names and menu items are displayed in plain
text. The vertical bar shows you how to navigate menu
selections. For example, File | Save indicates “select
Save from the File menu.”

package 1 Monospace font indicates:

• Information that you enter in a GUI interface, a
command line, or as program text

• Sample program fragments

• Sample output fragments

 About This Book

Administration Guide xi

OpenSwitch version 15.0 and the HTML documentation have been tested for
compliance with U.S. government Section 508 Accessibility requirements.
Documents that comply with Section 508 generally also meet non-U.S.
accessibility guidelines, such as the World Wide Web Consortium (W3C)
guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and Mixed Case Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

http://www.sybase.com/accessibility

xii OpenSwitch

Administration Guide 1

C H A P T E R 1 Overview

This chapter introduces important concepts about OpenSwitch.

What is OpenSwitch?
OpenSwitch is a Sybase Open Server gateway placed between client
connections such as isql, or any application developed using Sybase Open
Client, ODBC, or JDBC libraries, and two or more Adaptive Servers®.

OpenSwitch transparently transfers incoming connections to Sybase
server products, such as an Adaptive Server or another Sybase Open
Server application (including another instance of OpenSwitch), either
manually in response to an administrative request, or automatically in
response to an Adaptive Server failure.

Figure 1-1: Basic OpenSwitch functionality

Topic Page
What is OpenSwitch? 1

Connection management 2

Configuration 13

Deployment issues 14

Connection management

2 OpenSwitch

Any OpenSwitch connection switch remains transparent to the client
application, and does not require disconnecting and reconnecting. Client
applications are presented with a view of one stable connection while behind
the scenes, servers are started and stopped for maintenance, failover, batch
processing, and so on.

Connection management
This section describes how OpenSwitch manages connections between client
applications and Audiotapes Servers and includes references to more detailed
information.

Connection migration
Each incoming client application connection is loosely coupled via an outgoing
connection to a remote Adaptive Server, allowing OpenSwitch to transparently
replace the outgoing connection with a connection to any other server without
disturbing the client connection. OpenSwitch attempts to track and restore as
much connection state information as possible on each client, such as current
database context and transaction state, to ensure that no connection is disturbed
while information is being actively transferred between the client and the
remote Adaptive Server. See “Managing connections and threads” on page 28
for more information.

Failure detection and recovery
OpenSwitch monitors several important aspects of communication between an
incoming client connections and remote Adaptive Servers:

• Transaction state – whether the connection is in the middle of an open
transaction.

• Communications state – whether the connection is actively
communicating with the Adaptive Server.

• Connection state – whether the connection is currently established with the
Adaptive Server.

Chapter 1 Overview

Administration Guide 3

If the connection to the remote Adaptive Server is shut down, or the connection
is killed, OpenSwitch automatically transfers the connection to the next
available Adaptive Server.

At the time of failure, if the client connection is either actively communicating
with the Adaptive Server (based upon the communications state), or is
involved in an open transaction (based upon the transaction state), the client is
issued a “deadlock” message indicating that the client should reissue the last
transaction sent. For example:

Msg 1205, Level 13, State 0

Server 'OpenSwitch'

Your command (process id #8) was deadlocked with another process and has been
chosen as deadlock victim. Re-run your command

If the client connection is idle, the switch to the failover server is completely
transparent.

See “Failure detection” on page 38 for more information.

Connection termination
When OpenSwitch begins switching connections, all idle connections are
immediately switched to the secondary Adaptive Server, and all busy
connections are tagged to be switched when they go idle. An internal service
thread within OpenSwitch tracks busy connections that are tagged for
switching. If the connection remains busy for a period of time that is defined
by the system administrator, the connection is terminated or canceled. See
“Managing switch requests” on page 33.

Suspending and resuming connections
Under some circumstances, you may need to shut down a remote server for a
period of time to perform some maintenance task. For example, to synchronize
two servers, you must suspend all of that server’s activity.

Connection management

4 OpenSwitch

Figure 1-2: Suspend and resume example

OpenSwitch provides a mechanism to suspend a group of connections (either
by pool, server, or individual connection) so that no activity is performed on
the server until the connections are resumed.

See rp_stop on page 192 and rp_start on page 191 for instructions.

Server pools and routing
OpenSwitch allows you to create one or more logical groups of servers (each
group containing any number of Adaptive Servers), and to route individual
connections to a given pool of servers using the incoming user name, the host
name, or the application name of the connection as illustrated in Figure 1-3 on
page 5. This ensures that administrative requests or automatic failover occurs
at the same time and in the same way for all application users.

Chapter 1 Overview

Administration Guide 5

Figure 1-3: Routing example

In this example, all incoming PowerBuilder® connections are routed to Pool A,
for which the primary server is Server 1 and the failover server is Server 2. The
JCBC client connections are routed to Pool C, for which the primary server is
Server 2 and the failover server is Server 3. All isql connections are routed to
Pool B, for which the primary server is Server 3 and the failover server is
Server 4.

See “Defining pools” on page 23 for more information about using server
pools and routing.

Load balancing and chaining

When you define a pool, you can assign it one of two modes—chained or
balanced. The mode determines how connections are assigned or routed to
servers in the pool and how connections are managed during failover.

Connection management

6 OpenSwitch

Chained mode

In chained mode, all connections are routed to the first server defined within
the pool that has a status of “UP” or “LOCKED,” and administrative switch
requests or automatic failover sends all connections to the next server in the
pool, as illustrated in Figure 1-4. The order in which servers are accessed is the
same order in which they were defined in the pool.

Figure 1-4: Chained mode failover

Balanced mode

In balanced mode, incoming connections are simultaneously routed to all
servers in a pool that have a status of “UP” or “LOCKED” until a server fails,
effectively balancing the user load across all servers. When a server fails, all
connections on the failed server are redistributed, in round-robin fashion,
among the remaining servers, as illustrated in Figure 1-5 on page 7. The order
in which servers are assigned is determined by the order in which they are
defined in the pool.

Chapter 1 Overview

Administration Guide 7

Figure 1-5: Balanced mode failover

In both chained and balanced modes, any failed attempt to log in to, or fail over
to, a server that has a state of “UP” routes the client connection to the next
server in the pool with a status of “UP” or “LOCKED.” If all servers within the
pool are exhausted, incoming connections are disconnected from OpenSwitch,
and a message indicating that no servers are available is returned.

Connection pools and caching

With its default behavior, OpenSwitch uses approximately twice the amount of
time normally taken by an application to connect to an Adaptive Server. After
a connection has been established to OpenSwitch, another outgoing connection
must be established to the remote Adaptive Server.

Connection management

8 OpenSwitch

To reduce this overhead, OpenSwitch provides connection pool caching, which
allows you to retain connections from specific applications, users, or clients
following their disconnection from the client. If the same client reconnects
before a specified caching timeout period, the cached connection is reassigned.

Connection caching can benefit applications that rapidly create and drop
connections during normal work, such as Web applications or queries through
Adaptive Server site handlers. See “Using connection caching” on page 34.

Mutually-aware OpenSwitch server support
OpenSwitch supports a redundant environment with two “mutually-aware”
OpenSwitch servers that serve the same pools of two database servers. Each
OpenSwitch server is aware of the other OpenSwitch server and whether the
connections and Adaptive Server for which that server is responsible are
running or not, which prevents a OpenSwitch from being a single point of
failure.

Figure 1-6: Mutually-aware OpenSwitch servers

Chapter 1 Overview

Administration Guide 9

See Chapter 5, “Using Mutually-aware OpenSwitch Servers,” detailed
information about how to configure this functionality.

External coordination using coordination modules
The default behavior of OpenSwitch is to automatically attempt to migrate
individual failed connections as they fail. That is, if a single connection fails,
it is immediately migrated to the next available server according to the mode
of the pool in which the connection resides. However, you may want to
coordinate the switching process around certain operation or business
requirements.

For example, rather than immediately migrating a connection to the next
available Adaptive Server, you may first want to attempt to reconnect to the
failed server to ensure that it has failed. Or, you may want to switch all
connections to the server if a single connection fails unexpectedly.

More importantly, you may need to coordinate the switching process with an
external high-availability (HA) solution such as Sybase Replication Server®.
In this case, a failover should not occur until the HA service has completed the
necessary steps to bring the backup server online, such as waiting until
replication queues are synchronized between servers.

For these situations, OpenSwitch provides a simple application programming
interface (API) for developing an external coordination module (CM). When
connected to an OpenSwitch, a coordination module receives event
notifications based on connection state changes (for example, a user attempts
to log in, or a connection is lost to a server), and is expected to respond to
OpenSwitch, informing it of any actions to take, as illustrated in Figure 1-7 on
page 10.

Connection management

10 OpenSwitch

Figure 1-7: Coordination module example

In this example:

1 Server 1 goes down unexpectedly; for example, due to a power outage or
an explicit shutdown.

2 As soon as the connection is lost, the coordination module receives a
message indicating which connection was lost, and to which Adaptive
Server that connection was communicating. The connection that was lost
suspends within the OpenSwitch until the coordination module responds
with what should happen to the connection.

3 The coordination module now communicates with the high-availability
solution, in this case, a replication agent, to ensure that Server 2 is in a state
that all users can rely on, such as ensuring that all transactions have been
successfully migrated through the replication agent. The coordination
module could, at this point, attempt to automatically recover Server 1
before attempting to switch users to Server 2.

4 The coordination module responds to the OpenSwitch server that all
connections that are using Server 1 should now switch to the next available
Adaptive Server, in this case, Server 2.

5 All connections are switched, as requested by the coordination module, to
the next available server. Connections are issued a “deadlock” message, if
necessary.

Chapter 1 Overview

Administration Guide 11

Because the coordination module can intercept and respond to every
connection state change, including client login, you can also use it to override
any of the built-in OpenSwitch pooling and routing mechanisms with
application- or business-specific logic.

If the OpenSwitch is configured to use a coordination module and one is not
available when a connection changes state, the connection suspends until a
coordination module comes online, at which time all pending notifications are
delivered.

See the OpenSwitch Coordination Module Reference Manual for instructions
about developing and using OpenSwitch coordination modules.

Resource governing
Often, when attempting to coordinate a combined decision-support system
(DSS) where users read the data in the database but never write to it, and an
online transaction processing (OLTP) environment where application end
users write to the back-end database, DSS users tend to use large amounts of
resources on the remote Adaptive Server.

OpenSwitch allows you to automatically cancel or terminate connections that
overuse Adaptive Server by setting the RMON parameter to 1 in the [CONFIG]
section of the OpenSwitch configuration file, then using the
[LIMIT_RESOURCE] section to set the maximum amount of a resource that
can be consumed by a given connection.

Note You must set the RMON parameter in the [CONFIG] section to have the
options in the [LIMIT_RESOURCE] section take effect.

This allows you to define resource limits in terms of user name, application
name, and host name of incoming user connections, so you can define different
resource limits based on the type of incoming connection. You can also
configure the resource monitor to either forcibly terminate offending
connections, or cancel the current query and return control to the client
application with a notification of the reason for the cancellation.

See “[CONFIG]” on page 64 and “[LIMIT_RESOURCE]” on page 89 for
more information.

Connection management

12 OpenSwitch

User messaging
Similar to the standard UNIX wall or write command, OpenSwitch can
selectively broadcast administrative messages to client connections that are
being actively managed. These messages display as informational server
messages during the next executed command batch.

See “Notification Procedures” on page 205.

Dynamic SQL support
Dynamic SQL is the process of generating, preparing, and executing SQL
statements at runtime using commands initiated by the Client-Library™
ct_dynamic routine.

These dynamic SQL statements are supported in OpenSwitch:

• CS_PREPARE – OpenSwitch stores prepared statements in an internal list.
If the connected Adaptive Server fails, OpenSwitch fails over to the next
Adaptive Server in the pool and re-prepares any existing prepared
statements. If CS_DEALLOC is used for a particular statement, that
statement is removed from the list and is not failed over.

• CS_EXECUTE, CS_EXECUTE_IMMEDIATE, CS_DESCRIBE_INPUT,
CS_DESCRIBE_OUTPUT – if a failover occurs while these statements are
active, a 1205 error is returned to the client, and the client must reissue
these statements.

• CS_CURSOR_DECLARE – if a dynamic cursor is active during a failover,
the cursor is redeclared to the new server and the cursor is positioned to
the point of the last successful fetch. A 1205 error is issued to the client,
and the client must reissue the last fetch.

See Chapter 8, “Using Dynamic SQL Commands” in the Open Client
Client-Library/C Programmer’s Guide for more information.

There are two methods of executing dynamic SQL commands—
execute-immediate, and prepare-and-execute.

Execute-immediate

In the execute-immediate method, the client application sends the server a
ct_dynamic command that executes a literal statement.

Chapter 1 Overview

Administration Guide 13

Execute-immediate is usually used for one-time execution, and does not
involve fetchable data. Also, it does not use a unique identifier. Therefore, if a
failover were to occur in the middle of its execution, the entire transaction is
rolled back, and a 1205 deadlock message is sent to the client application.

Prepare-and-execute

In the prepare-and-execute method, the client application sends the server a
sequence of server commands that prepares a statement, and executes it one or
more times. The application can send additional commands to query the server
for the formats of the statements’ input parameters and the result set it returns.

Prepare-and-execute is used for commands that are usually executed multiple
times, perhaps with different parameters each time. It can involve fetchable
data as well as cursors. It uses a unique identifier that must be preserved during
a failover.

International character sets
OpenSwitch supports international character sets. OpenSwitch performs
character set conversion of SQL result sets and error messages if the client
character set differs from the OpenSwitch default character set.

See the International Developer’s Guide in the Software Developer’s Kit
version 15.0 documentation collection for more information.

Configuration
To configure OpenSwitch, use the standalone configuration tool or manually
edit the OpenSwitch configuration file.

Standalone GUI configuration
OpenSwitch includes a configuration tool with a graphical user interface
(GUI). Access the configuration tool either directly from the OpenSwitch
installation program, or by starting it as a standalone application after
installation.

Deployment issues

14 OpenSwitch

See the OpenSwitch Installation Guide, Chapter 3, “Configuring
OpenSwitch,” for specific instructions.

Dynamic configuration
You can also define all configurable features of OpenSwitch using a text editor
to modify the external configuration file, which can be reread without
restarting OpenSwitch. This allows for major behavior changes without
interrupting user connections.

See the OpenSwitch installation guide for your platform, and “Using the
Configuration File” on page 59 for details.

Deployment issues
OpenSwitch has several inherent limitations that may affect different
application environments. Use the descriptions of the following issues to
determine if OpenSwitch is an appropriate tool for a particular environment.

Connection context
OpenSwitch tracks and restores database context changes per incoming user
connections provided that the context changes are made using remote
procedure calls (RPCs) or a language call (an explicit USE statement). It does
not, however, track and restore current character set or language context for a
given connection, if the context is changed following the initial connection.
This may affect multilingual environments.

Additionally, OpenSwitch cannot track and restore other connection-based
context information stored within Adaptive Server, such as session settings.
For example, a connection that has issued a SET SHOWPLAN ON option
resets to OFF following an OpenSwitch switch request. However, when these
options are set programmatically (via dboption() or ct_options()), they are
properly restored following a switch request.

Chapter 1 Overview

Administration Guide 15

Deadlocks and RPCs
OpenSwitch uses the Adaptive Server deadlock message (message number
1205) to notify clients when a switch has occurred that has either caused a
transaction to be rolled back or has returned an incomplete result set. Under
normal circumstances, Adaptive Server also returns a status of -3 from a stored
procedure, which indicates that the execution has been halted due to deadlock.
OpenSwitch attempts to emulate this behavior. However, for performance
reasons, OpenSwitch does not return a status of -3 from stored procedures
executed through a SQL language request, such as exec procedure.

Temporary tables and cursors
OpenSwitch attempts to restore as much of the original connection context as
possible during a switch, however, it cannot directly restore temporary tables
or server-side cursors established by the client prior to the switch. For details
on handling CT-Lib client-side cursors, see “Working with client-side cursors”
on page 39. Ensure that all temporary tables and cursors exist only within
single SQL batches or stored procedures submitted by a client.

Performance
Adding an extra tier of processing in any environment adds overhead between
the client connections and Adaptive Server. When establishing a connection,
the connect time is essentially doubled, as the connection must first be
established to OpenSwitch, which in turn establishes a connection to the
remote Adaptive Server. This may cause performance difficulties for
applications that require the ability to rapidly create and destroy connections.
However, under many circumstances, you can address this issue using
connection caching. See “Connection pools and caching” on page 7.

Additionally, OpenSwitch must closely monitor all traffic passing between the
Adaptive Server and the client connection to detect things such as connection
context information (current database context and transaction state), which has
an impact on performance, especially when large result sets are involved.

Deployment issues

16 OpenSwitch

When you run OpenSwitch in full pass-through mode, it creates a pipeline for
the requests from the clients to reach the server, and the results from the server
to reach the client, without monitoring and processing each individual request
and result. This reduces the overhead introduced by OpenSwitch in both
directions, and can improve performance significantly. However, it comes at
the loss of the ability to perform context failover (specifically, preserving
connection state information, especially database context) when a server
failure occurs, so it is only recommended for special cases where context
failovers are not needed and failovers need not be seamless.

Note For information about configuring “full pass-thru mode” using the
FULL_PASSTHRU OpenSwitch configuration parameter, see “[CONFIG]” on
page 64.

Number of user connections
Because OpenSwitch runs as a single process, it is constrained by the host
environment operating system and any limitation on the number of open files
per user process. In most environments, the open files allowed per user process
is between 1024 to 8192.

Furthermore, OpenSwitch maintains two open connections, one from the client
and one to the remote server.

You can address these issues by running multiple instances of the OpenSwitch
process.

Java-based jConnect client applications
Because OpenSwitch is based on Open Client-Library, it does not by default
relay the Tabular Data Stream™ (TDS) tokens DONEPROC and
DONEINPROC from Adaptive Server to the client.

Although this does not affect other Client-Library-based client applications, a
Java-based jConnect™ for JDBC™ client application’s behavior may be
different connecting through Adaptive Server directly versus connecting
through OpenSwitch. For example, when returning from an update table
command, the jConnect client application might compute a row update count
of zero when it is going through OpenSwitch, even though the update itself was
successful and involved several rows.

Chapter 1 Overview

Administration Guide 17

To achieve the behavior that you get using TDS DONEPROC and
DONEINPROC tokens, set the USE_DONEINPROCS option to 1 in the
[CONFIG] section of the OpenSwitch configuration file.

Deployment issues

18 OpenSwitch

Administration Guide 19

C H A P T E R 2 Concepts and Procedures

This chapter describes OpenSwitch concepts and provides procedures for
performing tasks.

Defining servers
In OpenSwitch terminology, a server is a remote application capable of
receiving and processing TDS requests (the protocol used by clients to
communicate with the OpenSwitch server), and returning results back to
client applications; for example, Sybase Adaptive Server Enterprise,
Sybase IQ, or any Sybase Open Server application.

A server is made available or visible to OpenSwitch via the configuration
file at start-up (specified in the [SERVER] section), or through registered
procedures such as rp_pool_addserver.

Defining a server
Define a server and its associated state using the OpenSwitch
configuration tool or within the [SERVER] section of the OpenSwitch
configuration file:

[SERVER=SYB_SERV1]
STATUS=UP

Topic Page
Defining servers 19

Defining pools 23

Managing connections and threads 28

Managing failures 38

Working with client-side cursors 39

Enabling SSL support 42

Defining servers

20 OpenSwitch

Servers are implicitly created when you add them to a pool.

Note OpenSwitch 15.0 includes a configuration tool with a graphical user
interface (GUI). Access the configuration tool either directly from the
OpenSwitch installation program, or by starting it as a standalone application
after installation. See the OpenSwitch installation guide, Chapter 3,
“Configuring OpenSwitch” for more information.

See “Using the Configuration File” on page 59 for instructions on manually
editing the OpenSwitch configuration file.

Server state
Internally, OpenSwitch maintains a state disposition for each server. The state
indicates whether the server is available for use by the connections that it
manages. Table 2-1 lists the possible server states:

Table 2-1: Server states

State Description

PRE_UP Mutually-aware-specific server status. The server is either in the process of being
marked as UP, or has encountered a problem during that process. Check the error log
to troubleshoot the problem. After you resolve the problem, manually set the server
status to UP on one of the mutually-aware companion OpenSwitch servers. The
command will be propagated to the other OpenSwitch companion if it is running.

 Warning! Do not manually set a server’s status to PRE_UP.

UP The server is immediately available for use.

PRE_DOWN Mutually-aware specific server status. The server is either in the process of being
marked as DOWN, or has encountered a problem during that process. Check the error
log to troubleshoot the problem. After you resolve the problem, manually set the
server status to DOWN on one of the mutually-aware companion OpenSwitch servers.
The command will be propagated to the other OpenSwitch companion if it is running.

 Warning! Do not manually set a server’s status to PRE_DOWN.

DOWN The server is unavailable, and is not considered for use by any new client connections
established to OpenSwitch.

Chapter 2 Concepts and Procedures

Administration Guide 21

Server state changes

OpenSwitch does not determine the state of a server, even if a connection to the
server failed. The server state can be assigned only by an administrator or a
coordination module via an RPC such as rp_server_status or within the
configuration file.

A server that has a state of UP remains UP, even if the actual server process is
no longer running. New connections attempt to establish connections to the
server, even though it is actually unavailable. The connections are
automatically routed to the next available server after the initial failure.

You can employ a coordination module to have server state established
automatically. See the OpenSwitch Coordination Module Reference Manual
for instructions on creating and using coordination modules.

Server status and existing conditions
The status of a server is used by OpenSwitch only when an incoming
connection is established or when a server is needed for failover. Therefore,
changing the state of a server where existing connections have already been
established has no effect on the connections. For example, after issuing the
following statement, any existing connections to SERVER3 remain connected.
However, new connections to OpenSwitch are no longer routed to SERVER3.

rp_server_status "SERVER3", "DOWN"

PRE_LOCKED Mutually-aware specific server status. The server is either in the process of being
marked as LOCKED, or has encountered a problem during that process. doing so.
Check the error log to troubleshoot the problem. After you resolve the problem,
manually set the server status to LOCKED on one of the mutually-aware companion
OpenSwitch servers. The command will be propagated to the other OpenSwitch
companion if it is running.

 Warning! Do not manually set a server’s status to PRE_LOCKED.

LOCKED The server is available, but any new incoming connections actively being connected
through the pool are blocked (or stopped) until the status is changed to UP or DOWN.
Blocked connections appear to the client applications to have stopped responding
until the pool is unlocked.

State Description

Defining servers

22 OpenSwitch

Listing available servers
Use rp_server_status without any arguments to display available servers and
their status. For example:

rp_server_status

returns:

server status
----------- -----------
SERVER1 UP
SERVER2 UP
SERVER3 LOCKED

See rp_server_status on page 181 for more information.

Changing the status of a server
Use rp_server_status to change the status of a server at runtime. For example:

rp_server_status "SERVER1","DOWN"

returns:

server status
----------- -----------
SERVER1 DOWN

Setting server options
Server options refer to Adaptive Server option settings, which are session-level
settings that affect the way Adaptive Server handles results and various aspects
of a client connection. For example, when setting the ROWCOUNT option,
Adaptive Server limits all result sets to the number of rows specified with the
option.

Chapter 2 Concepts and Procedures

Administration Guide 23

To set such options within Adaptive Server, use a language command, an
explicit Adaptive Server Enterprise system procedure (sp_dboption), or an
Open Client API request (ct_options).

Note See the Adaptive Server Enterprise Reference Manual: Procedures,
Chapter 1, “System Procedures,” for instructions on using the system
procedure sp_dboption. See the Open Client Client-Library/C Reference
Manual for instructions on using ct_options.

OpenSwitch does not parse the SQL code passed between Adaptive Server and
the client. Therefore, it is not aware of options set with either language
commands or the SET command. Such option settings are lost when the
connection is switched from one server to another.

OpenSwitch is aware of options set using Open Client API calls, and internally
tracks the options that are currently set on the connection. These settings are
restored correctly on any new servers to which the connection is switched.

Note Sybase strongly recommends that client applications use an Adaptive
Server Enterprise system procedure or an Open Client API call rather than
language commands to set options.

Defining pools
A pool is a group of servers within OpenSwitch. A pool can contain one or
more servers that are treated as a self-contained failover group, so all
connections within the group fail over only to servers defined within the group.

A pool can also optionally define the set of connections or connection
attributes that it manages. This association between a connection and a pool is
determined based on the user name, application name, or connection type.

Defining pools

24 OpenSwitch

Defining a pool

Note The order in which pools are defined is important; all connections are
routed to the first matching pool according to the attribute/value pairs
established using rp_pool_addattrib. See rp_pool_addattrib on page 145 for
details.

You define a pool using the OpenSwitch GUI configuration tool during or after
installation, or by manually editing the OpenSwitch OpenSwitch configuration
file. For example:

[POOL=POOL_A:MODE=CHAINED,CACHE=0]
servers:

SYB_SERV1
SYB_SERV2
SYB_SERV3

connections:
type: client, site
appname: isql
username: ^test.*

In this example, POOL_A contains three servers: SYB_SERV1, SYB_SERV2,
and SYB_SERV3. It can be used by regular client and site handler
connections created by isql, or any user that starts with “test.”

If you do not supply any “connections” attributes when defining a pool, all
connections are candidates for the pool.

Routing and collisions
You can define multiple pools that all match connection properties of a single
incoming client connection. For example:

[POOL=POOL_A:MODE=CHAINED]
servers:

...
connections:

appname: isql

[POOL=POOL_B:MODE=CHAINED]
servers:

...
connections:

Chapter 2 Concepts and Procedures

Administration Guide 25

username: test%

If the user “test” attempts to connect to OpenSwitch using isql, he or she is a
candidate for both POOL_A and POOL_B. In this case, OpenSwitch uses the
first matching pool as defined in the configuration file or as listed in
rp_pool_help.

Pools and servers
Usually, servers and pools are only loosely associated within OpenSwitch; that
is, when a server’s state changes, the change is reflected across all pools in
which the server is defined. However, you can create a tighter association
between a pool and a server by setting the pool-specific server status.

Use any of these procedures to set the pool-specific status of a server:

• Execute rp_pool_addserver and specify the status of the server being added
to the pool. See rp_pool_addserver on page 147.

• Call rp_pool_server_status to set a server’s status within a pool. See
rp_pool_server_status on page 163.

• Specify a server’s status in the [POOL] section of the OpenSwitch
configuration file. See “[POOL]” on page 86.

When you set a pool-specific server status, that status affects only the specified
pool. If you do not explicitly set a server’s status for a specific pool, each
server’s status defaults to the general server status, which is defined in the
[SERVER] section of the OpenSwitch configuration file).

Pools and connections
When an incoming connection is received, the pool name determines the server
that the connection should be using. Once the server is determined, the pool
name is discarded. No relationship is maintained between the pool name and
the server.

Therefore, removing a server from a pool using rp_pool_remserver
"Pool_A", "SYB_SERV3" does not affect any of the existing OpenSwitch
connections that have been routed to SYB_SERV3 via pool POOL_A. This
removal causes only SYB_SERV3 to be removed from consideration by
subsequent connections established to OpenSwitch.

Defining pools

26 OpenSwitch

Pool states
The state of a pool applies only to connections that are actively requesting a
server to be used from the pool during login or during failover. Table 2-2 lists
possible pool states:

Table 2-2: Pool states

Status Description

PRE_UP Mutually-aware-specific pool status. The pool is either in the process of being marked
as UP, or has encountered a problem during that process. Check the error log to
troubleshoot the problem. After you resolve the problem, manually set the pool status
to UP on one of the mutually-aware companion OpenSwitch servers. The command
will be propagated to the other OpenSwitch companion if it is running.

 Warning! Do not manually set a pool’s status to PRE_UP.

UP The pool is immediately available for use.

PRE_DOWN Mutually-aware specific pool status. The pool is either in the process of being marked
as DOWN, or has encountered a problem during that process. Check the error log to
troubleshoot the problem. After you resolve the problem, manually set the pool status
to DOWN on one of the mutually-aware companion OpenSwitch servers. The
command will be propagated to the other OpenSwitch companion if it is running.

 Warning! Do not manually set a pool’s status to PRE_DOWN.

DOWN The pool is unavailable, and is not considered for use by any new client connections
established to OpenSwitch.

PRE_LOCKED Mutually-aware specific pool status. The pool is either in the process of being marked
as LOCKED, or has encountered a problem during that process. doing so. Check the
error log to troubleshoot the problem. After you resolve the problem, manually set the
pool status to LOCKED on one of the mutually-aware companion OpenSwitch
servers. The command will be propagated to the other OpenSwitch companion if it is
running.

 Warning! Do not manually set a pool’s status to PRE_LOCKED.

LOCKED The pool is available, but any new incoming connections actively being connected
through the pool are blocked (or stopped) until the status is changed to UP or DOWN.
Blocked connections appear to the client applications to have stopped responding
until the pool is unlocked.

Chapter 2 Concepts and Procedures

Administration Guide 27

Listing available pools
To list the set of available pools, enter:

rp_pool_help

Sample results are:

pool_name mode status block next_server
---------- -------- -------- ------ ------------
POOL_A CHAINED UP 0 SYB_SERV1
POOL_B BALANCED UP 0 SYB_SERV2
POOL_C BALANCED LOCKED 0 SYB_SERV3

To list details about a specific pool, add the name of the pool about which you
are inquiring. For example:

rp_pool_help "POOL_A"

Sample results are:

pool_name mode status block next_server
---------- -------- -------- ------ ------------
POOL_A CHAINED UP 0 SYB_SERV1

server_name

SYB_SERV1
SYB_SERV3

attribute value
---------- ------------------
appname sql
hostname test.sybase.com

See rp_pool_help on page 158 for more information.

SUSPENDED The pool is being suspended by OpenSwitch due to a failure that requires an
administrator’s manual intervention. See “Invoking custom and manual scripts” on
page 111 for more information. The pool blocks on all new connections until rp_go is
issued.

 Warning! Do not manually set a pool’s status to SUSPENDED.

Status Description

Managing connections and threads

28 OpenSwitch

Changing pool status
Use rp_pool_status to change the status of a pool. For example:

rp_pool_status "POOL_A", "LOCKED"

returns:

pool_name status
---------- --------
POOL_A LOCKED

See rp_pool_status on page 165 for more details.

Managing connections and threads
The primary task of OpenSwitch is to manage incoming user client application
connections. OpenSwitch does this by capturing connection information about
the client, such as user name and password, and using this information to
establish an Open Client connection to the remote database server. This
connection is bonded, or attached, to the incoming client connection so that
each incoming connection has its own outgoing server connection for the life
of the client application session. Each bond between connections is managed
by an Open Server thread so that multiple bonds are managed simultaneously.

Figure 2-1: Connections and threads

Chapter 2 Concepts and Procedures

Administration Guide 29

Each OpenSwitch thread is responsible for these tasks:

• Establishing an outgoing connection

• Forwarding queries and results

• Monitoring connection state

• Managing switch requests

Establishing an outgoing connection
When a client connection is established to OpenSwitch, a thread is spawned to
manage this connection. The thread performs these tasks:

1 Based on the user name, application name, and host name of the incoming
client connection, the thread determines which pool to use. The pool must
have a state of either UP or LOCKED. If the pool state is UP, the thread
proceeds to step 2. If the pool state is LOCKED, the thread sleeps until the
state changes to either UP or DOWN, unless NOWAIT_ON_LOCKED is
set to “1” in the OpenSwitch configuration file, in which case the thread
returns to the client with a descriptive message, and no connection is
established with the data server. See “Defining pools” on page 23.

2 The thread requests the name of the next available server from the pool.
The choice of server is based on the mode of the pool (CHAINED or
BALANCED), as well as the state of the server (UP, DOWN, or
LOCKED). A server is considered available only if its state is UP or
LOCKED. If it is UP, the thread proceeds to step 3. If it is LOCKED, the
thread sleeps until the server state changes to either UP or DOWN, unless
NOWAIT_ON_LOCKED is set to 1 in the configuration file, in which
case this thread returns to the client with a descriptive message and no
connection is established with the data server.

3 Using the user name and password of the incoming connection, an
outgoing connection is established to the data server, and then bound to the
incoming connection.

The following sections outline how the managing thread responds to various
failure conditions during this process.

Managing connections and threads

30 OpenSwitch

Server unavailable

If the remote server chosen from the pool is unavailable, or if there is no
appropriate entry in the $SYBASE/interfaces file on UNIX or the
%SYBASE%\sql.ini file on Windows:

1 The name of the next available server is requested from the pool, and a
connection is attempted on that server.

2 If the connection attempt fails, the name of the next available server in the
pool is requested. If there are no remaining servers, the client is
disconnected and the login process fails.

Login denied

If the remote server denies a login for any reason, the client connection is
removed from OpenSwitch and no failover or attempt to reconnect is tried.

Connection refused

If the Adaptive Server max network packet size configuration parameter is set
to 512 (the default), clients connections to OpenSwitch fail and the client
receives this error message:

The packet size (2048) specified at login time is
illegal. Legal values are between 512 and 512.

To correct this problem you can reconfigure the Adaptive Server max network
packet size to be 2048, or you can reconfigure the OpenSwitch
MAX_PACKETSIZE to be 512.

❖ Reconfiguring Adaptive Servermax network packet size to be 2048

1 Set the SYBASE environment variable. In a Command Prompt window,
go to %SYBASE% on Windows and $SYBASE on UNIX and enter:

SYBASE.bat (Windows)

or

SYBASE.csh (UNIX)

2 Use isql to log in to the Adaptive Server as an administrator:

isql -Usa -P -S <Adaptive_Server_server_name>

3 Execute:

sp_configure 'max network packet size', 2048

Chapter 2 Concepts and Procedures

Administration Guide 31

go

4 Restart the Adaptive Server.

5 Restart OpenSwitch to establish the client connection.

❖ Reconfiguring OpenSwitch MAX_PACKETSIZE to be 512

Remember that MAX_PACKETSIZE refers to the maximum size of the TDS
packet. This option is used to tune the data throughput across the network and
can significantly improve performance when larger packet sizes are used.

1 Shut down the OpenSwitch server:

a Set the SYBASE environment variable. In a Command Prompt
window, go to %SYBASE% on Windows and $SYBASE on UNIX and
enter:

SYBASE.bat (Windows)

or

SYBASE.csh (UNIX)

b Use isql to log in to OpenSwitch as an administrator:

isql -U<ADMIN_USERNAME>
-P<ADMIN_PASSWORD>
-S <OpenSwitch_server_name>

c Execute:

rp_shutdown
go

2 Use a text editor to modify the OpenSwitch configuration file
(<OpenSwitch_server>.cfg), which is located in
%OPENSWITCH%\config on Windows and in $OPENSWITCH/config on
UNIX.

Change the MAX_PACKETSIZE value from 2048 (the default) to 512. For
example:

MAX_PACKETSIZE=512

3 Restart the OpenSwitch server.

Managing connections and threads

32 OpenSwitch

Forwarding queries and results
When a server request is made by the client, usually in the form of a SQL
language request, or a call to a registered procedure, the thread receives the
query and forwards it to the remote Adaptive Server.

When results are ready from the remote server, the thread returns the results to
the client.

If, at any time during this process, a problem is encountered by the thread (such
as the loss of the connection to the remote server, or an internal OpenSwitch
error), the result set is stopped, and an error condition is returned to the client.

Monitoring connection state
While forwarding client query requests and returning server results,
OpenSwitch monitors several aspects of the client connection, including
database context, communications state, and transaction state.

Database context

Each time the client connection changes its database context (usually by
issuing a USE statement), OpenSwitch captures the context change information
and keeps track of the current database in use by the connection. This
information is used during a switch or failover to restore the user’s database
context back to its original state.

Communications state

Each time a client request is received by the thread, the client connection is
marked as “busy.” This protects the connection from being switched by an
administrative request while it is in the middle of a query (this behavior can be
overridden by an administrative request to force the communications to be
broken).

Chapter 2 Concepts and Procedures

Administration Guide 33

Transaction state

Each time the client connection changes transaction state, for example, by
issuing an explicit BEGIN TRAN, ROLLBACK TRAN, or COMMIT TRAN
statement, this state is monitored by the OpenSwitch thread. The thread
attempts to protect the connection against administrative switch requests until
the connection is no longer in an open transaction. This behavior can be
overridden by an administrative request to force the transaction to be broken.

Client-side cursor state

All client-side cursor requests are monitored and managed by OpenSwitch so
that, during failover, all client-side cursors can be restored on the secondary
server. See “Working with client-side cursors” on page 39.

Managing switch requests
A switch or failover request can occur due to either an administrative request
or a failed server.

Each thread manages its own outgoing connection and responds to these switch
requests.

When a switch request is received, the thread behaves in the following manner:

1 If the current connection is completely idle (that is, not actively being used
to communicate with a remote server, and not involved in an open
transaction), the thread immediately switches the connection without any
interruption of activity.

2 If the connection is not idle, and the switch request explicitly requests that
the connection be switched immediately, or the switch request is due to a
failed remote server, a deadlock message is issued to the client (indicating
that the current transaction has been rolled back), and the connection is
switched.

3 If the connection is not idle, and the switch request did not specify any
limit on how long the switch is to take, the thread switches the connection
as soon as the client finishes communicating with the remote server, and
exits the top level transaction.

Managing connections and threads

34 OpenSwitch

Using connection caching
Use the connection caching feature of OpenSwitch to improve the performance
of applications that rapidly create and destroy connections while running. For
example:

• Web applications – the majority of Web applications are built around small
common gateway interface (CGI) programs or scripts that run
independently of the actual Web server. Due to the transitory nature of CGI
applications, these programs are implemented to hold a database
connection only for the duration of the query issued by the CGI.

• Site handlers – a site handler refers to a special Adaptive Server
connection that is created when a query is issued between two servers,
such as:

exec SERVER2...sp_helpdb

When this type of query is issued, the source Adaptive Server creates a site
handler to multiplex all future queries to SERVER2. Only one physical
connection is maintained between the two servers and future queries are
initiated faster.

However, when SERVER2 is an instance of OpenSwitch, even though
only one physical connection is coming in, multiple outgoing connections
must still be maintained by OpenSwitch, one for each query issued over
the site handler. OpenSwitch drops its outgoing connection after each
remote procedure call (RPC) that is issued over the site handler.

Defining connection pools and caching

When a client connection fails, the OpenSwitch default behavior is to
immediately close down the outgoing connection to the remote Adaptive
Server. However, for applications that rapidly create connections, issue a small
query, then close the connection, the OpenSwitch default behavior can impose
significant overhead.

Chapter 2 Concepts and Procedures

Administration Guide 35

To override the default OpenSwitch behavior, supply the optional CACHE
value when you define a pool.

Note You create pools and specify CACHE values when you configure
OpenSwitch, either using the GUI configuration tool during or after installation
(see the OpenSwitch installation guide, Chapter 3, “Configuring
OpenSwitch”), or by manually editing the OpenSwitch configuration file (see
Chapter 4, “Using the Configuration File”).

The CACHE value indicates the number of seconds that an outgoing
connection is maintained after a client application disconnects from an
Adaptive Server.

For example:

[POOL=POOL_A:MODE=CHAINED,CACHE=30]
servers:

...
connections:

type: site

This configuration example specifies that all users of the pool maintain cached
copies of their outgoing connection for up to 30 seconds following a
disconnection.

If the same client attempts to reconnect using the same user name and
password, the connection is immediately reassigned to the user without
creating a new outgoing connection. If 30 seconds has passed (the CACHE
value) and no client has attempted a connection, the connection is dropped.

Changing a pool’s CACHE duration does not affect existing cached
connections—it only affects the caching of future connections.To manage or
change the cache value associated with a pool in a running OpenSwitch, use
the rp_pool_cache registered procedure. Changing the caching time on a pool
does not affect existing cached connections, it affects only the caching of future
connections. See rp_pool_cache on page 152 for more information.

Restoring cached connections

When a user connects to OpenSwitch, the list of cached connections is
searched, in an unspecified order, for the first connection owned by the same
user name and password. If a cached connection is not found, a new connection
is established as though caching were not enabled in the pool.

Managing connections and threads

36 OpenSwitch

However, when a cached connection is found, the connection is re-established
to the thread representing the newly connected user. The database context
(transaction state) is then cleared to ensure that the new connection has a fresh
context to work in, without any residual settings from the previous login
session.

Uncached connections

When a client disconnects from an Adaptive Server, the state of the connection
is evaluated to determine whether to cache the connection. OpenSwitch does
not cache these connections:

• Connections with an open transaction

• Connections not established due to login failure

• Connections with Open Client-side cursors

• Connections where the maximum number of cache threads is reached, as
specified by CACHE_THREAD option in the [CONFIG] section of the
OpenSwitch configuration file

In all of these states, restoring the connection to a user would place the user’s
application in an uncertain state. To avoid this risk, OpenSwitch discards these
connections when the client exits.

Caching and state

Because a cached connection never disconnects from the remote server, any
state information held in that server regarding the user’s session is maintained
between the time the user disconnects from OpenSwitch and reconnects to the
cached connection.

This mean that temporary tables and “SET” options (except for “set database,”
which is cleared) are maintained even after a user disconnects. Evaluate
carefully how you use connection caching.

Viewing cached connection details

When a user disconnects from a pool that has connection caching enabled, the
query currently running on the connection is canceled, and the outgoing
connection to the Adaptive Serve is stored in an internal list. These connections
are not associated with any particular thread, and therefore, cannot be queried
through sp_who.

Chapter 2 Concepts and Procedures

Administration Guide 37

To establish how many cached connections there are for a server, particular
user, application, or host, execute rp_who. See rp_who on page 201 for syntax,
instructions, and examples.

To determine how long a connection has been cached, execute rp_dump
registered procedure, where all connections show up with a state of “CACHE.”
For example:

<Cache thread: state=CACHE coord=<NONE>>
server mask=0x0, busy time='04/30/04 21:52:57',
transtate=CS_TRAN_UNDEFINED,
app='isql', user='sa', host='oswaix1', db='master',
conn=0x3114e368, current='monsoon_ASE1', next='monsoon_ASE1', pool='POOL1',
proc=0x0, cap set=CS_FALSE, next cursor=0, reason code=0,
reason text='', function=''

(return status = 0)

See rp_dump on page 137 for more information.

Setting connection caching properties, options, and database context

The connection’s server name, user name, and password are fixed when a
cache is established. However, you can change other connection properties
dynamically when the connection is opened.

Follow these guidelines to avoid problems with inconsistent connection state:

• Connection properties – connection properties affect client-side
connection behavior.

• Server-side connections options – use the Client-Library ct_options
routine to set language commands or equivalent ODBC calls. All options
affect the server’s response to commands sent on the connection. See
Chapter 3, “Routines,” in the Open Client Client-Library/C Reference
Manual for details.

• Database contexts – different applications from the same user may use
different databases. To avoid problems, explicitly specify the database
within an applications when caching is turned on.

• Set options and properties that your code requires when the client
application obtains a connection.

• If an application shares cached connections with other applications, set
properties and options that have been changed back to the original values
before releasing the connection.

Managing failures

38 OpenSwitch

• If an application is the only connection allowed for a cached pool, and no
other components use the same pool, you do not need to set options and
properties back to the original values. However, you should still set the
database context every time the client application reconnects, even if the
application is using cached connections.

Managing failures
This section discusses how failures are detected and how OpenSwitch responds
to each type of failure.

Failure detection
OpenSwitch has a connection monitor (CMON) thread that monitors Adaptive
Server and asynchronously notifies threads as soon as connectivity to the
remote server is lost.

At the first successful connection attempt to a remote server, OpenSwitch starts
a new CMON thread to monitor the state of the remote server. This thread runs
as long as the remote server it is monitoring remains online. At the first
indication of a remote server failure, the CMON thread notifies all client
threads currently connected to the failed server that they (or a server specified
by the coordination module) should connect to the next available server in the
pool. The busy clients are issued a deadlock error (1205) message and switched
immediately to the next server while the idle clients are switched when they
attempt to execute their next commands. This failover detection process is
always localized to a single connection, and connections are never
automatically switched by OpenSwitch without either a switch request or a
server down event. If you want all client connections to fail over to the
secondary data server at the same time, you can use a coordination module to
coordinate the various connections. See the OpenSwitch Coordination Module
Reference Manual for complete instructions on creating and using coordination
modules.

Chapter 2 Concepts and Procedures

Administration Guide 39

Deadlock messages
If the client connection is actively in the middle of communications with the
remote server, or in the middle of a transaction (or a nested transaction), the
thread notifies the client that the connection has been lost by issuing a deadlock
message. For example:

Msg 1205, Level 13, State 0

Server 'OpenSwitch'

Your command (process id #8) was deadlocked with another process and has been
chosen as deadlock victim. Re-run your command.

The message is used by an Adaptive Server to indicate that the current
transaction has been aborted due to a resource contention issue, and should be
restarted.

Note An Adaptive Server issues a return status of -3 to all client applications
running a stored procedure when a deadlock message is issued. Because
OpenSwitch cannot detect when a client is running a stored procedure from
within a language batch, the return status of -3 is returned only to those clients
that issued the RPC request through the Open Client RPC mechanism.

Working with client-side cursors
A cursor is a record pointer in Adaptive Server. The cursor points to the first
record in the file when a database file is selected and the cursor is opened.
Using various commands, you can move the cursor forward, backward, to the
top of the file, the bottom of file, and so on.

A client-side cursor is a cursor declared through Open Client calls or
Embedded SQL™. Open Client keeps track of the rows returned from Adaptive
Server and buffers them for the application. Client-side cursors are similar to
regular server-side cursors created with an explicit declare cursor command.
Client-side cursors, however, are declared and controlled through special Open
Client API calls in the client application, and Open Client itself manages
portions of the cursor context information, whereas server-side cursors are
managed only within Adaptive Server.

Working with client-side cursors

40 OpenSwitch

Because OpenSwitch manages client-side cursors for the client application, it
can restore the state of a given cursor during failover.

The default behavior of most Sybase ODBC drivers is to use client-side cursors
rather than issuing direct SQL against the database. Sybase strongly
recommends that you read this section carefully before deciding to use
client-side cursors.

Cursors within dynamic SQL
A cursor within dynamic SQL comes in two forms from the client:

• ct_cursor

• ct_dynamic

Each of these generates a different type of event notification; SRV_CURSOR,
and SRV_DYNAMIC respectively.

Failover handling
During an automatic failover due to a remote server failure, or an explicit
administrative switch request, OpenSwitch manages active client-side cursors
in the following manner:

1 If an outgoing connection is still available to the remote server, the cursor
is explicitly closed on the server.

2 If the client connection managing the cursor was involved in an open
transaction at the time of the switch request or failure, a deadlock is issued
to notify the client application that any updates or deletes performed upon
the cursor have been rolled back.

3 After the outgoing connection to the failover remote server has been
reestablished, all client-side cursors managed by OpenSwitch are
re-created on the server.

4 After a client-side cursor has been re-created, it is repositioned on the
same row as it was on the previous server.

Chapter 2 Concepts and Procedures

Administration Guide 41

OpenSwitch Sybase Failover support

Adaptive Server Enterprise 12.0 and later support Sybase Failover capability,
which enables the secondary, or companion, server to take over when the
primary server goes down. OpenSwitch works with Adaptive Server clusters
and processes failover events.

Failover behavior with dynamic SQL

OpenSwitch maintains a list of any dynamic SQL commands that are prepared
but not yet deallocated. If the list is not null, OpenSwitch resends the
DYNAMIC_PREPARE statements for each command to the secondary server
using statement ID and query content stored in the list for each of the threads.
The clients are then switched over to the secondary server.

If a client connection is busy during failover, a 1205 error is issued back to the
client. It is left to the client to reissue the command.

If any client was in a busy state at the time of failover, an error message is
issued and the statement must be rerun.

If there are open cursors in the dynamic SQL statement, OpenSwitch
redeclares the open cursors on the secondary server.

Cursor repositioning
As noted in step 4 in “Failover handling” on page 40, all cursors that are
re-created due to a failover are automatically repositioned by OpenSwitch to
the same row as the cursor that was sitting on the primary server. This has
several implications concerning application performance and reliability.

To perform this repositioning, OpenSwitch tracks the number of rows that have
been explicitly fetched by the client application. During the repositioning
process, an identical number of fetches are performed against the secondary
server to place the cursor on the appropriate row. Sybase recommends that
client applications not use cursors to fetch unusually large result sets to avoid
long delays during failover while client-side cursors are repositioned.

Enabling SSL support

42 OpenSwitch

Repositioning is based only upon the number of rows returned; not upon row
contents. Therefore, both the primary and secondary servers must be
configured identically and must be synchronized with each other to avoid
situations in which the cursor is restored upon an inappropriate row. In
particular, avoid using cursors on partitioned tables without supplying an
explicit ORDER BY clause in the cursor, otherwise, Adaptive Server cannot
guarantee the order of rows returned during the cursor fetch.

Enabling SSL support
Secure Sockets Layer (SSL) is supported between clients and OpenSwitch. To
enable SSL in OpenSwitch, you must:

• Have a trusted.txt file in %SYBASE%\ini on Windows and in
$SYBASE/config on UNIX.

• Specify the SSL security mechanism as a filter on the master and query
lines in the sql.ini on Windows and in the interfaces file on UNIX.

• Define the SSL filter in the libtcl.cfg file; for example:

[FILTERS]
ssl=libsybfssl.so

See the SSL overview section in Chapter 2 of the Open Client Client-Library/C
Reference Manual for details.

Administration Guide 43

C H A P T E R 3 Starting and Stopping
OpenSwitch and RCMs

This chapter describes how to start and stop OpenSwitch.

Starting and stopping OpenSwitch on UNIX
OpenSwitch starts automatically after installation and configuration.

❖ Restarting OpenSwitch

1 In a terminal window, go to the $SYBASE directory.

2 In a C Shell, enter:

source SYBASE.csh

In a Bourne or Korn Shell, enter:

. ./SYBASE.csh

3 Go to $SYBASE/OpenSwitch-15_0/bin, and enter the following,
where -c specifies the name of OpenSwitch configuration file to be
used during start-up:

./OpenSwitch -c ../config/OpenSwitch.cfg

You can configure OpenSwitch to use encrypted user names and
passwords for the user name and password entries that are in the
OpenSwitch configuration file. See “Using encrypted user names and
passwords” on page 48.

Topic Page
Starting and stopping OpenSwitch on UNIX 43

Starting and stopping OpenSwitch on Windows 44

Using encrypted user names and passwords 48

Using command line options 49

Starting and stopping the RCM from OpenSwitch 54

Starting and stopping OpenSwitch on Windows

44 OpenSwitch

See “Using command line options” on page 49 for a list of options you can use
to adjust the behavior of OpenSwitch.

❖ Stopping OpenSwitch

1 Connect to isql in administrative mode. In a terminal window, enter:

isql -U <admin_username> -P <admin_password> -S <server_name>

2 Enter:

rp_shutdown

Starting and stopping OpenSwitch on Windows
OpenSwitch starts automatically after you install and configure the product.

Note You cannot start OpenSwitch until you have configured the product. If
you chose not to configure OpenSwitch during installation, see Chapter 4,
“Using the Configuration File,” in this guide, and the OpenSwitch Installation
Guide, Chapter 3, Configuring OpenSwitch.”

❖ Starting OpenSwitch from the Start menu

If you added OpenSwitch to the Windows Start menu (see Chapter 4, “Post
Installation Tasks” in the OpenSwitch Installation Guide), use these
instructions to start the product.

• Select Start | Programs | OpenSwitch | OpenSwitch.

❖ Starting OpenSwitch from a command prompt

1 Open a Command Prompt window, and go to the %SYBASE% directory.

2 In the same window, enter:

SYBASE.bat

3 At the command prompt, enter:

cd %SYBASE%\OpenSwitch-15_0\bin

4 In the same window, enter the following command, then press Enter the
following, where -c is the name of the OpenSwitch configuration file to
use during start-up:

Chapter 3 Starting and Stopping OpenSwitch and RCMs

Administration Guide 45

start OpenSwitch.bat -c ..\config\OpenSwitch.cfg

You can configure OpenSwitch to use encrypted user names and passwords for
the user name and password entries that are in the OpenSwitch configuration
file. See “Using encrypted user names and passwords” on page 48.

❖ Stopping OpenSwitch from the command line on Windows

1 Open a Command Prompt window and go to %SYBASE%.

2 Enter:

.\SYBASE.bat

3 At the command prompt, log in to OpenSwitch as an administrator enter
the following, where <OpenSwitch_server_name> is the name of the
OpenSwitch server you want to stop:

isql -Usa -Psa -S<OpenSwitch_server_name>

4 Issue this command:

rp_shutdown
go

❖ Starting OpenSwitch as a Windows service

1 Go to %OPENSWITCH%\bin and use a text editor to set the
OPENSWITCH and SYBASE_OCS variables to the correct path in the
OpenSwitch.bat file. Save the file and close the text editor.

2 From %OPENSWITCH%\bin, open a Command Prompt window, enter
the following, where <OpenSwitch configuration file path> is the location
of the OpenSwitch configuration file:

.\OpenSwitch.bat -c <OpenSwitch configuration file path> -R install

For example:

D:\Sybase\OpenSwitch-15.0\config\OpenSwitch.cfg

3 Open the Registry Editor. Select Start | Run, enter regedit in the Open
text field, then click OK.

4 In the Registry Editor window, go to HKEY_LOCAL_MACHINE |
SYSTEM | CurrentControlSet | Services and click the OpenSwitch server
name.

a Select Edit | New | Key, then enter “Parameters” as the key name.

b Click the new Parameters key, select Edit | New | String Value, then
enter “Application” as the new string value.

Starting and stopping OpenSwitch on Windows

46 OpenSwitch

c Double-click Application. When the Edit String dialog box appears,
enter the following text on one line in Value Data field:

<OpenSwitch installation directory>\bin\OpenSwitch.bat -c
<OpenSwitch configuration file path> -l <OpenSwitch log file path>

Where:

• <OpenSwitch installation directory> – is the drive and directory
in which OpenSwitch is installed; for example:

D:\Sybase\OpenSwitch-15_0

• <OpenSwitch configuration file path> – is the location of the
OpenSwitch configuration file; for example:

D:\Sybase\OpenSwitch-15.0\config\OpenSwitch.cfg

• <OpenSwitch log file path> – is the file location of the
OpenSwitch log file; for example:

D:\Sybase\OpenSwitch-15_0\bin\OSWServer.log

Note Use the name of your actual OpenSwitch configuration file and
log file when entering this information.

Click OK.

d In the left pane of the Registry Editor window, click your service
name. In the right pane of the Registry Editor, double-click the
“ImagePath” string and delete the text in the Edit String dialog box.

Enter the full path to the srvany.exe file. For example:

D:\engapps\NTResKit\srvany.exe

Click OK.

Note srvany.exe is installed on Windows operating systems as part of
the Resource Kit. If servany.exe is not on your machine, download the
file as part of the Windows Resource Kit for your platform at the
Microsoft Windows Resource Kit Web page at
http://www.microsoft.com/windows/reskits/default.asp.

e Select Registry | Exit to close the Registry Editor.

5 Select Start | Settings | Control Panel | Administrative Tools | Services,
right-click OpenSwitch <OpenSwitch server name> in the Services right
pane, then click Properties.

http://www.microsoft.com/windows/reskits/default.asp

Chapter 3 Starting and Stopping OpenSwitch and RCMs

Administration Guide 47

6 In the Properties dialog box:

a Select the Log On tab.

b Select Local System Account and Allow Service To Interact With
Desktop.

c Select the General tab.

d In the Startup Type box, select Automatic.

If you do not want OpenSwitch to start automatically the next time the
Windows machine is restarted, change the Startup Type to Manual.

e Click Apply, then click OK to close the Properties dialog box.

7 In the Services right pane, right-click the OpenSwitch service and select
Start.

8 Close the Services window.

❖ Stopping the OpenSwitch service on WIndows

1 Right-click an empty space on the Windows taskbar, then click Task
Manager.

2 Select the Processes tab.

3 Click on the OpenSwitch process and select End Process.

4 Close the Windows Task Manager window.

5 If this fails because the process is being used by an application, select Start
| Settings | Control Panel | Administrative Tools | Services.

6 In the Services window, right-click the OpenSwitch service and select
Stop.

7 Close the Services window.

❖ Removing OpenSwitch as a service

1 Shut down OpenSwitch if it is running.

2 Open a Command Prompt window and go to %OPENSWITCH%\bin.

3 At a command prompt, enter the following, where <OpenSwitch
configuration file path> is the location of the OpenSwitch configuration
file:

.\OpenSwitch.bat -c <OpenSwitch configuration file path> -R remove

For example:

Using encrypted user names and passwords

48 OpenSwitch

D:\Sybase\OpenSwitch-15.0\config\OpenSwitch.cfg

This stops the service and removes it from the Windows Registry.

Using encrypted user names and passwords
Configure OpenSwitch to use encrypted user names and passwords by using a
text editor to modify the following parameters in the OpenSwitch
configuration file:

• ADMIN_USER

• ADMIN_PASSWORD

• COORD_USER

• COORD_PASSWORD

• CMON_USER

• CMON_PASSWORD

• COMPANION_ADMIN_USER

• COMPANION_ADMIN_PASSWORD

If OpenSwitch is configured for user name and password encryption, all user
names and passwords in the OpenSwitch configuration file as well as those in
the coordination module must be encrypted. See “Manually editing
configuration options” on page 63.

❖ Encrypting user names and passwords in the configuration file

1 Shut down OpenSwitch using rp_shutdown (see rp_shutdown on page
190).

2 Restart OpenSwitch with the -E flag (see “Using command line options”
on page 49).

3 OpenSwitch prompts for each user name and password in the
configuration file. Once all of the entries are made, OpenSwitch writes the
encrypted user names and passwords to the console.

You can use a file name as an optional argument with the -E flag so the
encrypted user names and passwords are written to the specified file as
well as the console. If an argument is not given, OpenSwitch writes the
information only to the console. This is an example of the output:

Chapter 3 Starting and Stopping OpenSwitch and RCMs

Administration Guide 49

ADMIN_USER =<encrypted username>
ADMIN_PASSWORD = <encrypted password>
COORD_USER = <encrypted username>
COORD_PASSWORD = <encrypted password>
CMON_USER = <encrypted username>
CMON_PASSWORD = <encrypted password>
COMPANION_ADMIN_USER = <encrypted username>
COMPANION_ADMIN_PASSWORD =<encrypted password>
CMON_USER = <encrypted username>
CMON_PASSWORD = <encrypted password>
SERVER NAME = <server name in plain text>
USERNAME_PASSWORD_ENCRYPTED = 1

Note In this example, two CMON_USER and CMON_PASSWORD
entries display. The first entry applies to all the servers for which the user
has not explicitly set the CMON_USER and CMON_PASSWORD. The
second CMON_USER and CMON_PASSWORD was explicitly set by the
user for a specific server.

4 With a text editor, modify the configuration file to replace the non-
encrypted values with the new encrypted values. Verify the
USERNAME_PASSWORD_ENCRYPTED option is set to 1.

5 Restart OpenSwitch.

To encrypt a user name and password that are not in the OpenSwitch
configuration file, such as ping_user and ping_password, which are in the cm1.c
sample, start OpenSwitch with -p<username> or -p<password>. See “Using
command line options” on page 49. The encrypted string displays on the
console, which you can then cut and paste to where it is needed.

Using command line options
Use the command line options described in this section to adjust the behavior
of OpenSwitch.

Use the configuration GUI to set these options during or after installation; see
Chapter 3, “Configuring OpenSwitch” in the OpenSwitch Installation Guide.
You can also set or change these options using a text editor to manually modify
the OpenSwitch configuration file. See Chapter 4, “Using the Configuration
File.”

Using command line options

50 OpenSwitch

• -a charset – sets the name of the default character set used during
communications between the client connections and OpenSwitch. You can
also set this option using the CHARSET configuration option.

• -c conflictive – specifies the name of a configuration file to read during
start-up. If supplied, this option must be the first option on the command
line. All other occurrences of -c are ignored. Portions of the configuration
file contents are overridden by any subsequent command line options that
you supply.

• -C conn_flags – when running the symbolic (debug) version of
OpenSwitch (located in $OPENSWITCH/devbin on UNIX and in
%OPENSWITCH%\devbin on Windows) and linking with the Sybase
instrumented libraries (located in $SYBASE/OCS-15_0/devlib on UNIX
and in %OPENSWITCH%\devlib on Windows), you can supply one or
more of the flags described below to turn on connection-level debugging.

• -d dbg_log – when used in conjunction with -C and -X, all debugging
output is redirected to the file dbg_log, rather than the default
OpenSwitch.log.

This option is valid only when running the symbolic (debug) version of
OpenSwitch (located in $OPENSWITCH/devbin on UNIX and in
%OPENSWITCH%\devbin on Windows) and linking with the Sybase
instrumented libraries (located in $SYBASE/OCS-15_0/devlib on UNIX
and in %OPENSWITCH%\devlib on Windows).

• -e – enables echoing of all message log information is sent to stderr while
OpenSwitch is running (all log messages go directly to the log_file).

• -E <filename> – use when encryption is required for the user names and
passwords in the OpenSwitch configuration file. By default, -E sends its
output to stderr. If the optional file name is given, the output is also sent
to the specified file. When the -E flag is used, OpenSwitch prompts you
for values for each of the following options in the [CONFIG] section:

• ADMIN_USER

• ADMIN_PASSWORD

Value Description

a All debugging messages

d Diagnostic messages

p Networking protocols

s Protocol state

Chapter 3 Starting and Stopping OpenSwitch and RCMs

Administration Guide 51

• COORD_USER

• COORD_PASSWORD

• CMON_USER

• CMON_PASSWORD

OpenSwitch allows up to 29 cleartext characters to be entered for each
request.

• -f – enables full pass-through mode for language commands and RPC
commands. This mode may improve performance, but disables the server
from tracking database context and transaction states during the switching
process.

Note For information about configuring “full pass-through mode” using
the FULL_PASSTHRU OpenSwitch configuration parameter, see
“[CONFIG]” on page 64.

• -h – prints usage message.

• -I interfaces – indicates that OpenSwitch should start using the specified
interfaces (UNIX) or sql.ini (Windows) file rather than the default of
$SYBASE/interfaces (UNIX) or %SYBASE%\ini\sql.ini (Windows). This
option is an uppercase “I”.

• -l log_file – sends all OpenSwitch output to log_file rather than the default
file of OpenSwitch.log. (This option is a lowercase “l”.)

• -n server_name – specifies the name of the OpenSwitch in the interfaces
file; or the Windows sql.ini file. If not supplied, server_name defaults to
OPENSWITCH.

• -O – when you have MUTUAL_AWARE set to 1, which enables
mutually-aware OpenSwitch servers, using -O overrides the data in the
Adaptive Server configuration tables with the information from the
OpenSwitch configuration file.

• -p – allows you to encrypt a particular string. The output is written only to
the console. This is useful for applications (such as coordination module
applications) where an encrypted user name or password is needed and it
is a user name or password that is not processed with the -E option.

• -r – enables the resource monitor thread.

Using command line options

52 OpenSwitch

• -s srv_flags – when OpenSwitch is started using the Sybase instrumented
libraries (located in $SYBASE/OCS-15_0/devlib on UNIX and in
%SYBASE%\OCS-15_0\devlib on Windows), you can use one or more of
the flags described in the following table to enable Open Server-level
debugging messages.

• -S stacksize – specifies the stack size for the OpenSwitch server. This
overwrites the STACKSIZE setting in the configuration file.

• -t dbg_flags – enables OpenSwitch specific debugging messages. Use one
or more of the options described below for dbg_flags.

Note You can turn these flags on and off at runtime using rp_debug.

Value Displays

a TDS attention packets

d TDS data information

e Server events

h TDS header information

m Message queue usage

n Network driver information

p Network driver parameter information

q Run queue information

r Network driver data information

s Network driver memory information

t TDS tokens

w TCL wake-up request

Value Description

a Enables all possible debugging flags.

b Displays attempts to set or test configuration options as described in
the configuration file.

c Displays information about result handling of client-side cursors.

C Logs interactions between a mutually-aware OpenSwitch, its
companion OpenSwitch, and Adaptive Servers.

d Logs access to data items attached to each thread’s user data.

D Displays information about the handling of dynamic SQL statements.

e Logs all error messages passing through the OpenSwitch error
handlers, even those that are normally suppressed.

Chapter 3 Starting and Stopping OpenSwitch and RCMs

Administration Guide 53

f Shows connection progress information when OpenSwitch is
interacting with the coordination module.

F Display messages related to a coordination module (CM).

g Displays operations involving security negotiations.

h Displays messages when entering each event handler.

i Displays progress information concerning the switching process
during a call to rp_switch, such as success or failure of each switch,
and which connections fail to go idle within the specified period of
time.

j Shows the connection caching activity.

k Displays activity of the timer thread (the thread that is responsible for
calling timed callbacks within OpenSwitch).

l Dumps every SQL statement issued through the SRV_LANGUAGE
event handler to log_file.

m Displays every memory allocation and de-allocation (more extensive
information may be available at compile time).

n Displays receipt and handling of cancel or attention requests from
client connections.

o Displays a message each time a command line option value is set or
tested.

p Displays manipulation, use, and assignments of server pools.

q Displays information about the connection monitor activity.

r Displays current state and actions of the internal resource monitoring
thread.

R Logs interactions between an OpenSwitch and replication
coordination modules (RCMs).

s Shows access and release of shared and exclusive internal locks (used
to prevent concurrent access to internal data structures).

S Displays the SQL statement that is being executed as part of
rp_replay calls.

t Displays activities of the timer thread that is responsible for
periodically waking other sleeping threads.

u Displays information about result sets being returned to client threads.

U Logs the user action, such as CUSTOM or MANUAL script
execution during a companion OpenSwitch or Adaptive Server
failure.

v Logs ping operations and responses from remote machines.

x Displays mutex accesses (more detailed view on shared locks).

Value Description

Starting and stopping the RCM from OpenSwitch

54 OpenSwitch

• -T – truncates log_file at start-up rather than appending to the end of an
existing file.

• -u nusers – sets the maximum number of client connections allowed
(default is 1000).

• -v – displays the OpenSwitch version numbers to stderr, then exits.

• -X ctx_flags – when running the symbolic (debug) version of OpenSwitch
and linking with the Sybase instrumented libraries located in
$SYBASE/OCS-15_0/devlib on UNIX and in
%SYBASE%\OCS-15_0\devlib on Windows, you can supply one or more
of the flags listing in the following table to turn on context level debugging
in the server.

Starting and stopping the RCM from OpenSwitch
OpenSwitch version 15.0 and later allows the replication coordination module
(RCM) to automatically start and stop when you start and stop OpenSwitch.
This functionality is supported by:

• Parameters RCM_AUTOSTART, RCM_RETRIES, RCM_PATH,
RCM_CFG_FILE, RCM_LOG_FILE, and RCM_SECONDARY in the
[CONFIG] section of the OpenSwitch configuration file.

• Registered procedures rp_rcm_startup, rp_rcm_shutdown,
rp_rcm_connect_primary, and rp_rcm_list. See “Registered Procedures” on
page 125 for syntax and use instructions.

• RCMNAME parameter in the RCM configuration file.

Value Description

s API state messages

e API error messages

m Memory allocation messages

n Network accesses

Chapter 3 Starting and Stopping OpenSwitch and RCMs

Administration Guide 55

Requirements
See the OpenSwitch Coordination Module Reference Manual, Chapter 4,
“Using the Replication Coordination Module,” for requirements and
instructions on implementing a redundant high-availability, warm-standby
environment.

Configuring an RCM to start automatically from OpenSwitch
When you configure OpenSwitch using the configuration GUI during or after
installation, and select replication coordination module on the second
configuration screen, the product is automatically configured to start and stop
the RCM when you start and stop OpenSwitch.

If you did not select replication coordination module in your initial
OpenSwitch configuration, you must re-run the configuration GUI, make this
selection, and complete the associated options on the various screens that
display. Use the instructions in this section to complete these tasks.

❖ Configuring an RCM autostart

1 Shut down OpenSwitch if it is running.

2 Start the OpenSwitch configuration GUI.

Note You must configure OpenSwitch to use an RCM by selecting
Replication Coordination Module on the second screen of the OpenSwitch
configuration GUI.

If you chose not to configure OpenSwitch during installation, start the
configuration tool and use the instructions in “Configuring OpenSwitch
using the GUI” in Chapter 2 of the OpenSwitch Installation Guide to
complete the configuration.

3 After you complete the configuration and close the configuration GUI, use
a text editor to open the OpenSwitch configuration file.

The configuration file is located at %OPENSWITCH%\config\<cfg_file>
on Windows and at $OPENSWITCH/config/<cfg_file> on UNIX, where
<cfg_file> is the name of your configuration file, for example,
OpenSwitch.cfg.

4 Edit the following values in the file:

Starting and stopping the RCM from OpenSwitch

56 OpenSwitch

See “OpenSwitch sample configuration file” on page 57 for sample
values.

5 Save the configuration file, close the text editor and restart OpenSwitch.

6 In a text editor, open the RCM configuration file located in
%OPENSWITCH%\config on Windows and in $OPENSWITCH/config on
UNIX.

Parameter Description

RCM_AUTOSTART Instructs OpenSwitch whether to start the RCM.

Enter:

• 0 – zero (0) for false. If you do not select Replication Coordination Module, this
value defaults to 0.

• 1 – for true, which autostarts the RCM. When you choose Replication
Coordination Module on the second screen of the configuration GUI, the value for
this parameter is set to 1.

RCM_RETRIES Tells OpenSwitch how many times to retry starting the RCM. If the RCM fails for
reasons other than the user requesting that the RCM be shut down, OpenSwitch
attempts to restart the RCM. If an unrequested shutdown of the RCM occurs within
one minute of starting, OpenSwitch logs an error and does not attempt to restart the
RCM.

Enter:

• 0 – zero (0). OpenSwitch does not attempt to restart the RCM. If you do not select
Replication Coordination Module, this value defaults to zero (0).

• 1 to ... – any numeric value that represents the number of times OpenSwitch
should attempt to restart the RCM.

This parameter is set to 1 when you choose Replication Coordination Module.

RCM_PATH Enter the location where OpenSwitch should look for the RCM executable. If you do
not enter a value, OpenSwitch runs the RCM located in $OPENSWITCH/bin on
UNIX systems or in %OPENSWITCH%\bin on Windows systems; where
OPENSWITCH is the installation directory.

This parameter has a null value if you do not specify a path.

RCM_CFG_FILE Enter the file and directory path where the RCM configuration file is located. This
parameter has a null value if you do not specify a path.

RCM_LOG_FILE Enter the file and directory path where the RCM log file should be created. This
parameter has a null value if you do not specify a path.

RCM_SECONDARY Instructs OpenSwitch whether the RCM that is being started is a primary or a
secondary RCM.

Enter:

• 0 – zero for a primary RCM. This is the default value.

• 1 – for a secondary RCM.

Chapter 3 Starting and Stopping OpenSwitch and RCMs

Administration Guide 57

7 Edit the RCMNAME configuration parameter. To enter a unique name that
allows OpenSwitch to identify the RCMs to which it is attached.
OpenSwitch maintains an internal list of registered RCMs and uses the list
to identify RCMs to shut down, or to display to the client application when
rp_rcm_list is issued.

8 Save the file and close the text editor.

9 Optionally, use these RCM registered procedures to work with this
feature: rp_rcm_startup, rp_rcm_shutdown, rp_rcm_connect_primary,
rp_rcm_list. See “Registered Procedures” on page 125 for syntax and use
instructions

OpenSwitch sample configuration file

The following example displays the parameters used in the [CONFIG] section
of a sample OpenSwitch configuration file that are applicable to automatically
starting the RCM when OpenSwitch starts.

[CONFIG]
SERVER_NAME = rcm_osw
...
...
...
RCM_AUTOSTART = 1
RCM_RETRIES = 3
RCM_PATH = /OpenSwitch-15_0/bin/rcm
RCM_CFG_FILE = /OpenSwitch-15_0/config/rcm1.cfg
RCM_LOG_FILE = /OpenSwitch-15_0/logs/rcm.err
RCM_SECONDARY = 0.........

RCM sample configuration file example

Shows the RCMNAME parameter used in a sample RCM configuration file.

LANGUAGE = us_english
CHARSET = iso_1
OPENSWITCH = rcm_osw
SECONDARY_OPENSWITCH = rcm_osw2
COORD_USER = switch_coord
COORD_PASSWORD = switch_coord

RCMNAME = rcm1

REP_SERVER = osw_rs

Starting and stopping the RCM from OpenSwitch

58 OpenSwitch

RS_USER = sa
RS_PASSWORD =

ACTIVE_ASE = active_ase
ACTIVE_USER = burt
ACTIVE_PASSWORD = burt_pwd
ACTIVE_DBS = pubs2

STANDBY_ASE = standby_ase
STANDBY_USER = alice
STANDBY_PASSWORD = alice_pwd
STANDBY_DBS = pubs2

LOGICAL_CONN = LDS.LDB

REQUIRED_DBS = pubs2

APP_POOL = Application

FAILOVER_WAIT = 30
MONITOR_WAIT = 30

RS_FAILOVER_MODE = SWITCH
SWITCH_USERS = 1

Administration Guide 59

C H A P T E R 4 Using the Configuration File

This chapter describes the contents of the OpenSwitch configuration file,
which you can specify when you start OpenSwitch.

Introduction
When you install OpenSwitch, you can use the graphical configuration
tool to configure the product. When you finish the configuration,
OpenSwitch creates a configuration file that stores your selected
configuration settings. If you choose not to use the configuration tool
during or after installation, you must manually create a configuration file
with the settings appropriate to your installation.

You may want to manually create or edit the OpenSwitch configuration
file to:

• Use an existing configuration file from an earlier version of
OpenSwitch and add parameters from the version of OpenSwitch to
which you have upgraded.

• Configure the OpenSwitch manually.

• Manually change configuration values after the initial OpenSwitch
configuration.

This chapter contains instructions on creating a new configuration file,
formatting tips for editing a new or existing configuration file, and a list
of all configuration file parameters for the current version of OpenSwitch.

Topic Page
Introduction 59

Editing the OpenSwitch configuration file 60

Creating or editing a configuration file 62

Manually editing configuration options 63

Editing the OpenSwitch configuration file

60 OpenSwitch

You can also use the details provided for configuration parameters as a
reference when using the configuration tool.

Note If you manually edit the OpenSwitch configuration file to initially
configure OpenSwitch, or to change configuration values after initial
configuration, you may also need to edit the sql.ini (Windows) or interfaces
(UNIX) file. See the OpenSwitch Installation Guide, Chapter 3, “Configuring
OpenSwitch” for more information.

Editing the OpenSwitch configuration file
The OpenSwitch configuration file consists of multiple sections, each of which
is identified by the name of the section enclosed in square brackets. For
example:

[SECTION_NAME]

No section is required. Empty lines, or lines that begin with a pound sign (#)
are ignored by OpenSwitch.

You can specify options in some sections like this:

[SECTION_NAME:OPTION1=VALUE,OPTION2]

Set true and false, or on and off options using zero (0) to indicate off or false,
and one (1) to indicate on or true.

Using wildcards
OpenSwitch allows you to use wildcard expressions in its configuration file to
represent values for the connection attributes.

If a you use a wildcard expression to define an attribute under the [POOL]
connections section, for example:

[POOL=POOL1:MODE=CHAINED,CACHE=0]
connections:
username=[abcde]%

Then all users whose user names start with a letter from a to e are channeled to
POOL1.

Chapter 4 Using the Configuration File

Administration Guide 61

Or, if you use a wildcard expression to define an attribute under the
[LIMIT_RESOURCE] section, for example:

[LIMIT_RESOURCE:ACTION=KILL,BUSY=100]
appname: [ei]sql

Then an application with the name of “esql” or “isql” is governed by the
resource monitor and killed if it spends longer than 100 seconds in a
transaction.

OpenSwitch wildcard expressions are identical to those used in Adaptive
Server Enterprise, except for the escape expression.

Brackets ([]) Use square brackets ([]) to enclose a range of characters, such as “[a–f]”, or
a set of characters, such as “[85Rza].” When ranges are used such as
[char1-char2], all values in the ASCII range between char1 and char2
match.

For example, if you use 8-bit ASCII, “[0–z]” matches 0–9, A–Z, and a–z, as
well as several punctuation characters.

The wildcard expression: [dD]og matches these strings:

dog
Dog

The wildcard expression [A-Z]at matches these strings:

Pat
Hat
Cat

Caret (^) When included as the first character within a set of brackets, you can use the
caret symbol (^) to negate matching a set of characters within the brackets.

For example, the expression: “[^A–Z]at” matches these strings:

cat
hat
pat

It does not, however, match:

Cat
Hat
Pat

Escape (\) Use the escape (\) wildcard to negate special meaning of another wildcard
character. For example, to include the “%” as a literal part of an expression,
“90\%” matches the string 90%.

Creating or editing a configuration file

62 OpenSwitch

You can use the escape wildcard to negate the meaning of any character within
a wildcard expression.

Percent (%) The percent (%) wildcard represents a string of zero or more characters. For
example, the wildcard expression “sco%” matches these strings:

scott
scooter
scope

But it does not match:

escort

Underscore (_) The underscore (_) wildcard matches any single character. For example, the
expression “_op” matches these strings:

pop
mop
top

But it does not match:

stop

Creating or editing a configuration file
Use the procedures in this section to create a new OpenSwitch configuration
file or edit an existing one.

❖ Setting up the OpenSwitch configuration file

1 To create a new OpenSwitch configuration file, go to
%OPENSWITCH%\config on Windows or $OPENSWITCH/config on
UNIX and copy the sample.cfg file by entering the following, where
<cfg_file> is the name of your server configuration:

cp sample.cfg <cfg_file>

For example, OpenSwitch.cfg.

Chapter 4 Using the Configuration File

Administration Guide 63

Use a text editor to set the values in the configuration file you just created.
Use the information in the tables in “Manually editing configuration
options” on page 63 for the definitions of the values to provide.

Note You can also run the standalone configuration GUI to set the
configuration parameters. See Chapter 3, “Configuring OpenSwitch” in
the OpenSwitch Installation Guide.

2 Save the file and close the text editor.

3 Go to %OPENSWITCH% and create a logs directory:

mkdir logs

4 Start OpenSwitch. You cannot start OpenSwitch until you have configured
the product.

❖ Editing an existing OpenSwitch configuration file

1 Stop OpenSwitch if it is running.

2 Go to go to %OPENSWITCH%\config on Windows or
$OPENSWITCH/config on UNIX.

3 In a text editor, open the OpenSwitch configuration file; for example,
OpenSwitch.cfg.

4 Modify the files as necessary using the remainder of this chapter for
reference.

5 Save the updated file and close the text editor.

6 Restart OpenSwitch.

Manually editing configuration options
The configuration file contains these sections:

• [CONFIG] – OpenSwitch server configuration values, which you can also
set individually at a command line.

• [SERVER] – defines the settings and status of Adaptive Servers available
for use within OpenSwitch.

• [POOL] – defines a group of Adaptive Servers and the set of connections
for each group.

Manually editing configuration options

64 OpenSwitch

• [LIMIT_RESOURCE] – if you enable the OpenSwitch resource limiting
feature at start-up with the -r flag or the RMON configuration option, use
this section to specify the connections that are candidates for resource
governing and which resources to limit.

• [COMPANION] – name of the OpenSwitch companion, and the
administrator user name and password used to make a connection.

[CONFIG]
Description Allows you to set OpenSwitch command line options. The [CONFIG] section

can contain zero or more NAME options.

Format [CONFIG]
NAME = VALUE
NAME = VALUE
NAME = VALUE

Parameters • NAME and VALUE – configuration options specific to OpenSwitch, which
are entered in the format:

NAME=VALUE

Where:

• NAME – is the option being set

• VALUE – is the option’s setting

Table 4-1 on page 65 describes the options you can set (NAME), and the
setting available for each option’s VALUE.

Note The options shown in Table 4-1 are listed alphabetically for easy
reference. This is not the order in which the options appear in the
configuration file.

In the table, the VALUE description includes the command line option,
being set with this parameter. When you start OpenSwitch at the command
line, you can enter the command line option to achieve the same results.
For more information, see “Using command line options” on page 49.

Chapter 4 Using the Configuration File

Administration Guide 65

The VALUE description also indicates whether an option is configured
dynamically or statically. A dynamic option indicates a newly configured
value that takes effect immediately and affects all future connections;
existing connections are not affected. Dynamic options usually affect
individual connections. Static options cannot be changed by the user while
OpenSwitch is running. You must stop and restart OpenSwitch before the
changes take effect. Static options usually define the overall
characteristics of the OpenSwitch server and its start-up options.

Note A value of DEFAULT sets the default values for any server not
explicitly listed in a this section.

Table 4-1: [CONFIG] NAME and VALUE options

NAME VALUE

ADMIN_PASSWORD This option has no command line equivalent.

Enter the administrative user password. If
USERNAME_PASSWORD_ENCRYPTED is set to 1, this option should contain
the encrypted string of the administrative user password. To encrypt a password,
use the -E or -p command line option. See “Using encrypted user names and
passwords” on page 48.

This option is configured dynamically.

ADMIN_USER This option has no command line equivalent.

Enter the name of the incoming user connections that should be considered
administrative users. An administrative user has no outgoing connection to the
remote Adaptive Server and is intended to perform only administrative tasks,
mostly through registered procedure calls (RPCs).

If the USERNAME_PASSWORD_ENCRYPTED option is set to 1, this option
should contain the encrypted string of the administrative user name. To encrypt
a user name, use the -E or -p command line options.

This option is configured dynamically.

Manually editing configuration options

66 OpenSwitch

API_CHECK There is no command line equivalent for this option.

This option indicates whether to enable or disable the validation of
Server-Library arguments and state checking, and may be useful for debugging.

Enter:

• 1 – to check all APIs internally for invalid parameters before execution. This
is the default.

• 0 – to execute all internal APIs without checking for invalid parameters. This
setting can speed up performance, but it should be used with caution.

This option is configured statically.

 Warning! Do not set API_CHECK to zero (FALSE) unless your application
has been completely debugged with the default setting of 1 (TRUE). If
API_CHECK is 0 (zero), arguments are not validated before they are used. If
OpenSwitch passes invalid arguments to Open Client or Client-Library, then
OpenSwitch does not work correctly, resulting in memory corruption, memory
access violations (UNIX core dumps), or incorrect results. No error messages
are generated warning of the condition.

BCP_LOGGED There is no command line equivalent for this option.

Indicates whether the OpenSwitch supports bcp in operations. If a bcp operation
is not logged and a failure occurs while the operation is executing, OpenSwitch
cannot guarantee the recovery of all bcp committed transactions after the
failover.Therefore, OpenSwitch allows only bcp in operations if the
administrator explicitly confirms that the bcp operations are being logged, and
are therefore recoverable through the Replication Server.

Enter:

• 1 – to specify that bcp operations are being logged and are recoverable
through the Replication Server.

• 0 – to specify that bcp operations are not being logged and are not allowed to
go through OpenSwitch.This is the default setting.

This option is configured dynamically.

CACHE_THREADS There is no command line equivalent for this option.

Enter an integer value that represents the maximum number of connection
threads saved in the OpenSwitch server connection cache.

This option is configured dynamically.

CHARSET Sets the -a command line option.

Specifies the default character set used by OpenSwitch. This character set is
used in communications with client connections.

This option is configured statically.

NAME VALUE

Chapter 4 Using the Configuration File

Administration Guide 67

CMON There is no command line equivalent for this option.

Enter:

• 1 – to use a single monitoring thread to monitor the health of each of the
Adaptive Servers connected to OpenSwitch and to facilitate a failover when
necessary. This must be set for OpenSwitch to support Adaptive Server HA
clusters, but is also recommended for other non-cluster servers. This is the
default.

• 0 – to have each thread rely on receiving its own asynchronous notification
from the Adaptive Server to tell it whether a failover is necessary. This
setting can be used if there are no Adaptive Server HA clusters among the
servers being connected to.

This option is configured statically.

CMON_FAIL_ACTION

Note Required only when
MUTUAL_AWARE=1.

Enter one of these actions:

• DEFAULT

• CUSTOM

• MANUAL

• CUSTOM_MANUAL

This parameter is read-only when the CMON configuration parameter is set to
1 (the recommended setting), and when the CMON thread that monitors the
health of the Adaptive Server fails to start. See Table 4-1 on page 65 for
information about the CMON parameter.

See “CMON_FAIL_ACTION” on page 119 for more information about this
parameter. See “User-specified actions” on page 113 for details about each
action.

CMON_PASSWORD There is no command line equivalent for this option.

Enter the password for CMON_USER. The default is (empty string).

If the USERNAME_PASSWORD_ENCRYPTED option is set to 1, this should
contain the encrypted string of the CMON user password. To encrypt a
password, use the -E or -p command line options. See “Using encrypted user
names and passwords” on page 48.

This option is configured statically.

NAME VALUE

Manually editing configuration options

68 OpenSwitch

CMON_USER There is no command line equivalent for this option.

Enter the user login used by the connection monitor (CMON) thread to connect
to the back-end server. This must be an existing, valid login on each of the
Adaptive Servers being used. Verify this user has basic privileges and can issue
a “wait for delay” query to the remote data server.

If the CMON_USER is not a valid Adaptive Server user, the client can be left in
an undefined state when OpenSwitch is configured for failover mode and a
failover occurs to the secondary Adaptive Server.

Be sure to specify a valid CMON user name and that the user is a valid Adaptive
Server user. For CMON_WAITFOR_DELAY to work properly, this user should
not be an administrative user on the remote data server.

If USERNAME_PASSWORD_ENCRYPTED is set to 1, this should contain the
encrypted string of the CMON user name. To encrypt a user name, use the -E or
-p command line options.

This option is configured statically.

CMON_WAITFOR_DELAY There is no command line equivalent for this option.

Allows the user to configure the amount of time the CMON thread delays before
the WAITFOR expires when it issues the “wait for delay” query.

Enter an integer representing seconds. The default is 3600 (1 hour). Set the
CMON_WAITFOR_DELAY to a lesser value if you want the shutdown to occur
more quickly.

Use this when you want the graceful shutdown of an Adaptive Server rather than
a shutdown with no wait.

This option is configured dynamically.

CMP_FAIL_ACTION

Note Required only when
MUTUAL_AWARE=1.

Enter one of these actions:

• DEFAULT

• CUSTOM

• MANUAL

• CUSTOM_MANUAL

This parameter is used when network connectivity is lost to the companion
OpenSwitch in a mutually-aware setup. Once the network is restored and the
connection to the companion is re-established, the two OpenSwitch servers
synchronize their configurations.

See “CMP_FAIL_ACTION” on page 120 for more information about this
parameter. See “User-specified actions” on page 113 for details about each
action.

NAME VALUE

Chapter 4 Using the Configuration File

Administration Guide 69

CON_TRACE Sets the -C command line option.

Set connection-level tracing flags. See “Using command line options” on page
49 for the available settings. The output of CON_TRACE is directed to the file
specified by the DEBUG_FILE.

This option is configured dynamically.

CONNECTIONS Sets the -u command line option.

Enter the maximum number of user or threads the server can handle.

Note Set this parameter to a value smaller than the maximum number of file
descriptors (see UNIX ulimit -Ha command) to prevent OpenSwitch from using
more descriptors than are available.

This option is configured statically.

COORD_MODE There is no command line equivalent for this option.

Determines how OpenSwitch behaves when a coordination module (CM or
RCM) is used. Enter:

• NONE – to not use a coordination module. This still allows coordination
modules to be connected, but the modules do not receive any OpenSwitch
notifications.

• AVAIL – to use a coordination module if one is available. If a coordination
module is not available, OpenSwitch decides how to deal with client
connections.

• ALWAYS – to use a coordination module, which must be available. If none
is attached, all user connections requiring the services of a coordination
module are refused until one becomes available.

Note To use the RCM, you must set COORD_MODE to ALWAYS. The
RCM can then coordinate the switch of users between the active and the
standby Adaptive Servers so the OpenSwitch server does not allow users to
connect unless the RCM is available. See the OpenSwitch Coordination
Module Reference Manual for details.

• ENFORCED – to use a coordination module, which must be available. If
none is attached, all user connections requiring the services of a coordination
module are refused with an informational message.

This option is configured dynamically.

NAME VALUE

Manually editing configuration options

70 OpenSwitch

COORD_PASSWORD There is no command line equivalent for this option.

Enter the password used by the coordination module (CM or RCM) logging in
as COORD_USER. If the password is not correctly supplied, the coordination
module is treated like any other OpenSwitch user and attempts to establish an
outgoing server connection.

If USERNAME_PASSWORD_ENCRYPTED is set to 1, this option should
contain the encrypted string of the coordination module (CM or RCM) user
password. To encrypt a password, use the -E or -p command line option. See
“Using encrypted user names and passwords” on page 48.

This option is configured dynamically.

COORD_TIMEOUT The maximum amount of time (in seconds) it should take for a coordination
module to respond to a notification before OpenSwitch makes the next CM ID
active. When this parameter is set to zero (0), the default, the concurrent CM
feature is disabled. See the OpenSwitch Coordination Module Reference
Manual for more information about using concurrent coordination modules.

Note If you are using an RCM, COORD_TIMEOUT must be set to zero (0) for
the RCM to start.

COORD_USER There is no command line equivalent for this option.

Enter the user name used by coordination modules (CM or RCM) to connect to
OpenSwitch. This user does not have an outgoing server connection established
with it, and can register to receive coordination notifications.

If USERNAME_PASSWORD_ENCRYPTED is set to 1, this option should
contain the encrypted string of the coordination module (CM or RCM) user
name. To encrypt a user name, use the -E or -p command line option. See “Using
encrypted user names and passwords” on page 48.

This option is configured dynamically.

CTX_TRACE Sets the -X command line option.

Enter context-level tracing flags. See “Using command line options” on page
49 for the available settings. The output of the CTX_TRACE is directed to the
file specified by DEBUG_FILE.

This option is configured statically.

CURSOR_PREREAD There is no command line equivalent for this option.

Enter an integer value that represents the number of rows to be returned with a
single fetch request for a cursor.

This option is configured dynamically.

NAME VALUE

Chapter 4 Using the Configuration File

Administration Guide 71

CUSTOM_SCRIPT The path to the user-created script to invoke.

Note When MUTUAL_AWARE=1, the scripts for both OpenSwitch companions
must perform the same action. When a server fails over and
SVR_FAIL_ACTION is set to MANUAL or CUSTOM, only one of the
companions executes the script that notifies the administrator or restarts the
server.

See “Invoking custom and manual scripts” on page 111 for details about which
exit codes to use in custom scripts.

DEBUG Sets the -t command line option.

Enter OpenSwitch debugging flags. See “Using command line options” on page
49 for valid flags to set.

This option is configured dynamically.

DEBUG_FILE Sets the -d command line option.

Enter the path to and name of the file in which to place debugging output. This
option is used only for the context CTX_TRACE and connection CON_TRACE
tracing debugging output.

This option is configured statically.

ECHO_LOG Sets the -e command line option. Enter:

• 1 – to have all messages that are sent to the log display simultaneously to
stderr while the current session of OpenSwitch is running.This is the default.

• 0 – to have all messages sent only to the log and not display to stderr.

This option is configured statically.

FREEZE_CFG_ON_FAIL Whether OpenSwitch locks all server and pool configurations (forbids all
changes) when a network break is suspected between the companions during
CMP_FAIL_ACTION. Enter:

• 0 – to have the OpenSwitch server continue servicing clients as if it were the
only OpenSwitch running in a mutually-aware cluster. All configuration
changes, including server and pool status changes, are permitted. This is the
default.

• 1 – to have the OpenSwitch server continue servicing clients, but forbids any
changes to the server or pool configuration and status.

NAME VALUE

Manually editing configuration options

72 OpenSwitch

FULL_PASSTHRU Sets the -f command line option.

Full pass-through mode creates a pipeline for client requests to the server, and
for results from the server to the client, which can reduce the overhead
introduced by OpenSwitch in both directions, and can improve performance
significantly. See “Performance” on page 15 for more information. Enter:

• 1 – to turn on full pass-through mode for communication between clients and
the remote database servers.

• 0 – to turn off full pass-through mode. All communications between the
clients and the database servers are tracked by OpenSwitch so they can be
restored properly during a failover.This is the default.

This option is configured statically.

HAFAILOVER There is no command line equivalent for this option.

This is property is required to enable HAFAILOVER. Enter:

• 0 – to disable OpenSwitch from recognizing Adaptive Server HA events and
error messages. This is the default.

• 1 – to enable OpenSwitch to recognize Adaptive Server HA events and error
messages.

This option is configured dynamically.

INTERFACES Sets the -I (uppercase “i”) command line option.

Enter an alternate location for the sql.ini (Windows) or interfaces (UNIX) file,
rather than the default of %SYBASE%\ini\sql.ini (Windows) and
$SYBASE/interfaces (UNIX).

This option is configured statically.

KEEPALIVE There is no command line equivalent for this option. Enter:

• 1 – to turn KEEPALIVE on.

• 0 – to turn KEEPALIVE off. This is the default.

See the Open Client documentation for CS_CON_KEEPALIVE for more
information.

This option is configured dynamically.

LOG_FILE Sets the -l command line option.

Enter the file name in which to save all messages to log_file rather than the
default of OpenSwitch.log.

This option is configured statically.

LOGIN_TIMEOUT There is no command line equivalent for this option.

Enter the login timeout (CS_LOGIN_TIMEOUT property). The default is 60
seconds.

This option is configured statically.

NAME VALUE

Chapter 4 Using the Configuration File

Administration Guide 73

MANUAL_SCRIPT The path to the user-created manual script.

Note When you set MUTUAL_AWARE=1, the scripts for both OpenSwitch
companions must perform the same action. This is because during a server
failover, if you have set SVR_FAIL_ACTION to MANUAL or CUSTOM, only
one of the companions executes the script that notifies the administrator or
restarts the server.

See “Invoking custom and manual scripts” on page 111 for details about which
exit codes to use in manual scripts.

MAX_LOG_MSG_SIZE There is no command line equivalent for this option.

Set this property when messages are bigger than 2048 characters. By default,
OpenSwitch can log messages up to 2048 characters.

This option is configured dynamically.

MAX_LOGSIZE There is no command line equivalent for this option.

Enter the maximum size of the log_file (the default is 4194304). If log_file
exceeds the size you set, OpenSwitch moves the current contents of log_file to
a file named currentfilename_old and truncates the current log to 0 bytes.

This option is configured statically.

MAX_PACKETSIZE There is no command line equivalent for this option.

Enter the maximum size of a TDS packet. The default is 2048. Used to tune
throughput across the network.

This option is configured statically.

 Warning! If the Adaptive Server max network packet size configuration
parameter is set to 512 (the default), clients connections to OpenSwitch fail and
the client receives this error message:

The packet size (2048) specified at login time is
illegal. Legal values are between 512 and 512.

See “Connection refused” on page 30 for corrective actions.

MSGQ_SIZE There is no command line equivalent for this option.

Enter the deferred event queue size (SRV_S_DEFQUEUESIZE) for the context
of OpenSwitch.The default is 2048.

See the Open Server Server-Library/C Reference Manual for more information.

This option is configured statically.

MUTUAL_AWARE Specifies whether to use mutually-aware OpenSwitch servers. Enter:

• 1 for a mutually-aware OpenSwitch.

• 0 for a non-mutually-aware OpenSwitch, which is the default.

NAME VALUE

Manually editing configuration options

74 OpenSwitch

MUTUAL_CLUSTER

Note Required only when
MUTUAL_AWARE=1.

A string that represents a mutually-aware cluster. This string must be exactly the
same on both OpenSwitch servers, and is used to name the configuration table
in the CFG_STORAGE servers (see the [SERVER] section).

When this parameter is not set, it defaults to “CLUSTER1”.

NET_FAIL_ACTION

Note Required only when
MUTUAL_AWARE=1. However,
this parameter is not specific to
only mutually-aware
OpenSwitch servers; it applies to
all OpenSwitch servers with
CMON set to 1.

Enter one of these actions:

• DEFAULT

• CUSTOM

• MANUAL

• CUSTOM_MANUAL

This parameter is used when the local OpenSwitch is experiencing a network
outage and cannot communicate with the Adaptive Servers or companion
OpenSwitch hosts.

See “NET_FAIL_ACTION” on page 121 for more information about this
parameter. See “User-specified actions” on page 113 for details about each
action.

NOWAIT_ON_LOCKED There is no command line equivalent for this option.

If a client tries to log in or fail over to a server or pool that has a LOCKED state,
the client connection is refused (by default) until either the status of the locked
server or pool is changed to UP or DOWN, or the client times out and
disconnects. If the status is set to UP, the client tries to connect to the server. If
the status is set to DOWN, the client proceeds to the next available server or
pool. To have the clients return immediately without being refused, set this
option to 1; OpenSwitch returns an informational message to the clients
describing the reason for the failure, without establishing the outgoing
connections to the Adaptive Servers.

Enter:

• 1 – to not block clients trying to connect to a LOCKED server or pool.
Instead, return error message 20103 to them immediately. If the client is an
administrator (ADMIN_USER) trying to execute rp_switch to switch
connections to a LOCKED server, error message 20104 is sent to the
administrator instead.

• 0 – to block clients trying to connect to a LOCKED server or pool. The
blocked clients appears to have stopped responding until the affected server
or pool is marked as either UP or DOWN. This is the default.

This option is configured dynamically.

NAME VALUE

Chapter 4 Using the Configuration File

Administration Guide 75

OPTIMIZE_TEXT There is no command line equivalent for this option. Enter:

• 1 – to optimize the processing of text or image data returned from the server
by sending the data in “chunks” to the client. This option is used only in the
processing of result rows where the result consists of a single column of the
text or image datatype. This is the default.

• 0 – to conserve memory, which is preferable, especially when the text/image
data received are usually small in size (less than 100 rows).

This option is configured dynamically.

PING_BINARY The absolute path to the system ping command. When this parameter is not set,
it defaults to ping, which relies on the PATH environment variable to locate the
correct binary.

PING_RETRIES The number of times that OpenSwitch should ping a server to rule out possible
network problems. This parameter is used in numerous places, when the status
must be known of a companion or Adaptive Server.

The default is “1”.

PING_THREAD Valid values are 0 (zero) or 1. The default is zero (0).

When set to 1, PING_THREAD detects the failure when an Adaptive Server host
or network stops running. Internally, the primary companion OpenSwitch
checks to see if the entire network has failed or only the Adaptive Server host
network. If the Adaptive Server host network has failed, the primary companion
OpenSwitch is notified immediately and the action set for SVR_FAIL_ACTION
is invoked.

When set to zero (0), the primary companion OpenSwitch is notified of a
network failure with Adaptive Server after only 8 minutes, which is the default
TCP/IP tcp_ip_abort_interval configuration parameter.

Note Do not use this parameter to monitor the network between clients and
OpenSwitch. If the network connection from the client to the OpenSwitch fails,
the client detects the failure only when the tcp_ip_abort_interval time has
elapsed. This is a kernel parameter that defaults to 8 minutes, but can be tuned
to a lower value if the default is unacceptable.

PING_WAIT The number of seconds that the ping command should wait before returning a
failure. This parameter is used in conjunction with PING_RETRIES, on
platforms where the ping command blocks instead of returning right away.

The default is 10 (seconds).

PRIMARY_COMPANION

Note Required only when
MUTUAL_AWARE=1.

Enter:

• 0 – when this is not the primary companion. Zero (0) is the default.

• 1 – when this is the designated primary companion. A primary companion is
responsible for writing to the Adaptive Server cluster tables.

NAME VALUE

Manually editing configuration options

76 OpenSwitch

RCM_AUTOSTART Instruct OpenSwitch whether to start the replication coordination module
(RCM). Enter:

• 0 – to not automatically start the RCM when OpenSwitch starts. This is the
default value.

• 1 – to start the RCM automatically when you start OpenSwitch.

This parameter is configured dynamically.

RCM_CFG_FILE Enter the path where the RCM configuration file is located. This parameter has
a null value if you do not specify a path.

This parameter is configured statically.

RCM_LOG_FILE Enter the path where the RCM log file should be created. This parameter has a
NULL value if you do not specify a path.

This parameter is configured statically.

RCM_PATH Enter the path where OpenSwitch should look for the RCM executable.

If you do not enter this path, and are using an RCM, OpenSwitch runs the RCM
located in $OPENSWITCH/bin on UNIX systems or in %OPENSWITCH%\bin
on Windows systems; where OPENSWITCH is the installation directory.

This parameter has a NULL value if you do not specify a path. This parameter
is configured statically.

RCM_RETRIES Enter how many times OpenSwitch should retry starting the RCM.

If the RCM fails for reasons other than the user requesting that the RCM be shut
down, OpenSwitch attempts to restart the RCM. If an unrequested shutdown of
the RCM occurs within one minute of starting, OpenSwitch logs an error and
does not attempt to restart the RCM.

• 0 – OpenSwitch does not attempt to restart the RCM.

• Any numeric value – enter the number of times OpenSwitch should attempt
to start the RCM.

This parameter is configured statically.

RCM_SECONDARY Indicate to OpenSwitch whether the RCM it is launching is a primary or a
secondary RCM. Valid values are zero (0, primary) or 1 (secondary). If you do
not set this value, it remains at zero (0).

This parameter is configured dynamically.

RESPONSE_TIMEOUT There is no command line equivalent for this option.

Enter the timeout period for a response to a command (CS_TIMOUT property).
The default is 60 seconds.

This option is configured statically.

NAME VALUE

Chapter 4 Using the Configuration File

Administration Guide 77

RMON
Note You must set this option for attributes under the [LIMIT_RESOURCE]
section to take effect.

Sets the -r command line option. Enter:

• 1 –to enable the OpenSwitch resource monitoring thread.

• 0 – to disable the resource monitoring thread so resource governing is turned
off. This is the default. See “Resource governing” on page 11 for more
information.

This option is configured statically.

RMON_INTERVAL There is no command line equivalent for this option.

Set the frequency, in seconds, in which the resource monitoring thread awakens
to check for offending connections.The default is 60 seconds.

This option is configured statically.

RPC_SETFMT There is no command line equivalent for this option. Enter:

• 0 – to have OpenSwitch return the results for an RPC in the order that is
specified by the client return format. This is the default.

• 1 – to have OpenSwitch return the results in the order that they are returned
from the Adaptive Server.

This option is configured dynamically.

SEC_PRINCIPAL Sets the -U command line option.

Enter the principal name by which OpenSwitch is known to the security service
provider. This sets the SRV_S_SEC_PRINCIPAL property in the Open Server
if you are using a third-party security mechanism to check credentials. The
default is NULL.

This option is configured statically.

SERVER_NAME Sets the -n command line option.

Enter the name in the interfaces file on UNIX and the sql.ini file on Windows
by which the OpenSwitch is to be referred.

This option is configured statically.

SHOW_CONNECT_ERROR There is no command line equivalent for this option. Enter:

• 1 – to have all ct_connect failure messages sent to the OpenSwitch log file.

• 0 – the default. To not send ct_connect failure messages.

This option is configured dynamically.

NAME VALUE

Manually editing configuration options

78 OpenSwitch

SHOW_SPID There is no command line equivalent for this option. Enter:

• 0 – to prevent rp_who from showing the corresponding spid of a client
connection to Adaptive Server.

• 1 – to allow rp_who to show the corresponding spid of a client connection to
Adaptive Server.

See rp_who on page 201 for more information on this command.

A value of 1 introduces a small overhead to each new connection and should be
set only when necessary. The default is 0.

This option is configured statically.

SITE_PASSTHRU There is no command line equivalent for this option.

Determines whether connections from site handlers can be passed through
OpenSwitch. Enter:

• 1 – to have connections pass through as normal client connection.

• 0 – to have connections treated as from an administrator and not establish the
outgoing connection.

This option is configured dynamically.

SQL_WRAP There is no command line equivalent for this option.

Enter the maximum number of characters per line for a SQL statement. Used
when OpenSwitch writes SQL statements to a log file if the language debug
logging option is turned on.

This option is configured dynamically.

SRV_TRACE Sets the -s command line option.

Enter server-level tracing flags. The output is placed into the location of
LOG_FILE. See “Using command line options” on page 49 for available
settings.

This option is configured statically.

STACKSIZE Sets the -S command line option.

Enter the stack size for each thread. The default is 40960.

Note On 64-bit platforms, double this value to prevent a stack overflow.

This option is configured statically.

NAME VALUE

Chapter 4 Using the Configuration File

Administration Guide 79

SUPPRESS_CHARSET There is no command line equivalent for this option. Enter:

• 1 – to suppress the 5704 error message from the server and the informational
message reported by OpenSwitch when the OpenSwitch character set is
different from the client application character set. The default is 1.

• 0 – to log a warning message in the LOG_FILE (and also sent to stderr if
ECHO_LOG=1) when a client connects to OpenSwitch with a character set
different from the one defined in CHARSET.

This option is configured dynamically.

SUPPRESS_DBCTX There is no command line equivalent for this option.

Enter:

• 0 – to allow the database context change error message (5701).

• 1 – suppresses the database context change error message (5701). The default
is 1.

This option is configured dynamically.

SUPPRESS_LANG There is no command line equivalent for this option.

• 0 – to allow the database language change error message (5703).

• 1 – to suppress the language change error message (5703) from the server.
The default is 1.

This option is configured dynamically.

SVR_FAIL_ACTION

Note Required only when
MUTUAL_AWARE=1.

Enter one of these actions:

• DEFAULT

• CUSTOM

• MANUAL

• CUSTOM_MANUAL

This parameter is used when an Adaptive Server fails to respond in a timely
manner, or when the Adaptive Server host cannot be pinged by either
OpenSwitch server in a cluster.

See “SVR_FAIL_ACTION” on page 122 for more information. See “User-
specified actions” on page 113 for details about the available actions.

NAME VALUE

Manually editing configuration options

80 OpenSwitch

SWITCH_AT_LOGIN_TIMEOU
T

There is no command line equivalent for this option.

This option works in conjunction with LOGIN_TIMEOUT and
RESPONSE_TIMEOUT. If a new connection takes longer than the
LOGIN_TIMEOUT value to complete, or an existing connection takes longer
than RESPONSE_TIMEOUT to receive a reply back from the Adaptive Server,
this option tells OpenSwitch whether to switch the affected client to the next
available Adaptive Server.

Note If this option is set to 1, you must ensure that LOGIN_TIMEOUT and
RESPONSE_TIMEOUT are both set to realistic values that, when exceeded,
indicate a real problem in the server that warrants a failover.

Enter:

• 0 – to have the connection try the next server only if a connection failure error
is received (CS_SV_COMM_FAIL). The default is zero (0).

• 1 – to have the connection try the next server if there is a time-out error.
OpenSwitch fails over to a backup server, even if the network is just slow or
Adaptive Server is too busy to respond.

This option is configured dynamically.

TCP_NODELAY There is no command line equivalent for this option. Enter:

• 1 – to turn TCP_NODELAY on.

• 0 – to turn TCP_NODELAY off. This is the default.

See the Open Client documentation for CS_CON_TCP_NODELAY for more
information.

This option is configured dynamically.

TEXTSIZE There is no command line equivalent for this option.

Enter the maximum size, in bytes, of text or image columns that can be handled
by OpenSwitch. Due to the way in which Open Server handles large text
columns, memory must be allocated in which to hold the entire column while a
result set is processed. Although this memory is held only long enough for the
entire result set to be returned to the client, setting this option to an unusually
large value can affect the total memory consumed by OpenSwitch.

This option is configured dynamically.

TRUNCATE_LOG Sets the -T command line option. Enter:

• 1 – to truncate the output logging file prior to start-up. For more information
on the output logging file, see LOG_FILE in this table.

• 0 – to append the log file rather than truncate it. This is the default.

This option is configured statically.

NAME VALUE

Chapter 4 Using the Configuration File

Administration Guide 81

UPDATE_CFG When set to 1, the configuration file is updated each time a reconfiguration takes
place. Zero (0) is the default setting. You must run mutual-aware support with
UPDATE_CFG=1.

USE_AND_TO_POOL_ATTRIB There is no command line equivalent for this option.

Indicates whether all or only one of the connection attributes in the [POOL]
section are to be satisfied by a client.

Enter:

• 1 – to specify that only a client that satisfies all the connection attributes
under a pool is allowed to use the pool.

• 0 – to specify that only a client that satisfies any one of the connection
attributes under a pool is allowed to use the pool. This is the default.

For example:
[CONFIG]
USE_AND_TO_POOL_ATTRIB = 1
[POOl=POOL1:MODE=CHAINED,CACHE=0]

servers:
ASE1

connections:
username: john
appname: isql

In this example, if USE_AND_TO_POOL_ATTRIB is set to 1, only clients with
the user name of “john” and the application name of “isql” are allowed to use
POOL1.

If USE_AND_TO_POOL_ATTRIB is set to 0, any client with either the user
name of “john” or the application name “isql” is allowed to use POOL1.

This option is configured dynamically.

NAME VALUE

Manually editing configuration options

82 OpenSwitch

USE_AND_TO_RMON_ATTRIB There is no command line equivalent for this option.

Indicates whether the connection attributes in the [LIMIT_RESOURCE]
section can use “AND” or “OR.”

Enter:

• 1 – to specify that only a client that satisfies all the attributes under the
[LIMIT_RESOURCE] sections is subject to the resource governing rules.

• 0 – to specify that any client that satisfies any one of the attributes under the
[LIMIT_RESOURCE] section is subject to resource governing rules. This is
the default.

For example:
[CONFIG]
RMON= 1
USE_AND_TO_RMON_ATTRIB=1

[LIMIT_RESOURCE:ACTION=KILL,BUSY=60]
username: john
appname: isql
hostname: machine
type:client

In the example, set to 1, only connections from the user “john” running the
application “isql” from the host “machine” and not a site-handler are monitored
and disconnected by the resource manager if their transactions take longer than
60 seconds to complete.

If the example used “0”, all connections from the user “john” or from the
application “isql” or from the host “machine” or of the client type are monitored
and disconnected by the resource manager if their transactions take longer than
60 seconds to complete.

This option is configured dynamically.

USE_DONEINPROCS When set to 1, OpenSwitch sends the TDS DONEPROC and DONEINPROCS
tokens received from the Adaptive Server to connected clients. The default is
zero (0).

USERNAME_PASSWORD_ENC
RYPTED

There is no command line equivalent for this option.

Enter:

• 1– to indicate user name and password encryption. OpenSwitch expects
ADMIN_USER, ADMIN_PASSWORD, COORD_USER,
COORD_PASSWORD, CMON_USER, and CMON_PASSWORD to be
encrypted.

• 0 – to specify no user name and password encryption. OpenSwitch expects
clear text for ADMIN_USER, ADMIN_PASSWORD, COORD_USER,
COORD_PASSWORD, CMON_USER, and CMON_PASSWORD.

This option is configured statically.

NAME VALUE

Chapter 4 Using the Configuration File

Administration Guide 83

Example In this example, “LOG_FILE” identifies that the -l flag is being set, and
OpenSwitch.log is the value to use.

[CONFIG]
LOG_FILE = OpenSwitch.log
...
COORD_MODE = ALWAYS
RCM_AUTOSTART = 1
RCM_RETRIES = 3
RCM_PATH = /OpenSwitch-15_0/bin/rcm
RCM_CFG_FILE = /OpenSwitch-15_0/config/rcm1.cfg
RCM_LOG_FILE = /OpenSwitch-15_0/logs/rcm.err
RCM_SECONDARY = 0
...
...
...

[SERVER]
Description This section of the configuration file defines the set of remote servers available

for use within pools. Use this section to predefine the disposition of a server
before you start OpenSwitch.

Complete the [SERVER] parameters once for each remote server to be
accessed.

Format [SERVER=SERVER_NAME]
OPTION = VALUE
OPTION = VALUE
CMON_USER = CMON user name
CMON_PASSWORD = CMON password

Parameters • SERVER_NAME – the name of the remote server as listed in the
$SYBASE/interfaces file on UNIX and in the %SYBASE%\sql.ini file on
Windows.

A value of DEFAULT sets the default values for any server not explicitly
listed in a this section.

• OPTION and VALUE – additional parameters specific to SERVER_NAME.
Table 4-2 on page 84 shows valid input for these parameters, which are
entered in the format:

OPTION=VALUE

Manually editing configuration options

84 OpenSwitch

Table 4-2: [SERVER] OPTION and VALUE settings

OPTION VALUE

CFG_STORAGE When this property is set for an Adaptive Server, that Adaptive Server is used to store the
configuration information of the mutually-aware OpenSwitch clusters.

• 0 – do not use this Adaptive Server to store the configuration information of the
mutually-aware OpenSwitch clusters.This is the default value.

• 1 – store the configuration information of the mutually-aware OpenSwitch clusters on
this Adaptive Server.

In a mutually-aware setup, you must include this parameter under the two Adaptive Server
entries; for example:

[SERVER=ASE1]
STATUS=UP
CFG_STORAGE=1

[SERVER=ASE2]
STATUS=UP
CFG_STORAGE=1

See Chapter 5, “Using Mutually-aware OpenSwitch Servers,” for more information.

STATUS Enter the status of the server, which is the state of the server within OpenSwitch:

• UP – the server is currently available.

• DOWN – the server is unavailable, and will not be considered for use by any new client
connections established to the OpenSwitch.

• LOCKED – the server is available, but any new incoming connections or existing
connections switching to the server are blocked (or stopped) until the status is changed
to UP or DOWN. Blocked connections appear to client applications to have stopped
responding until the server is unlocked.

Servers can also have a PRE_UP, PRE_DOWN, or PRE_LOCKED status. These are states
specific to mutually-aware OpenSwitch servers. Never manually set a server’s status to
these states. For more information, see “Server state” on page 20.

Note You cannot start OpenSwitch with a server in the LOCKED state. To start
OpenSwitch, all servers must be either UP or DOWN. Once OpenSwitch starts, use
rp_server_status to change the server STATUS to LOCKED.

Chapter 4 Using the Configuration File

Administration Guide 85

• CMON_USER – the user login used by the connection monitor (CMON)
thread to connect to the back-end server. This must be an existing, valid
login on each of the Adaptive Servers being used. Verify this user has basic
privileges and can issue a “wait for delay” query to the remote data serve.

This value supersedes the value you set for CMON_USER in the
[CONFIG] section. If you do not set a value here, OpenSwitch uses the
value you set for CMON_USER in the [CONFIG] section.

Also, if the CMON_USER is not a valid Adaptive Server user, the client
can be left in an undefined state when OpenSwitch is configured for
failover mode and a failover occurs to the secondary Adaptive Server. Be
sure to specify a valid CMON user name and that the user is a valid
Adaptive Server user.

If the USERNAME_PASSWORD_ENCRYPTED option is set to 1, this
should contain the encrypted string of the CMON user name. To encrypt a
user name, use the -E or -p command line options.

• CMON_PASSWORD – the password for the CMON_USER. The default is
an empty string.

This value supersedes the value you set for CMON_PASSWORD in the
[CONFIG] section. If you do not set a value here, OpenSwitch uses the
value you set for CMON_PASSWORD in the [CONFIG] section.

Examples In the example above, the latest OpenSwitch configuration is always stored in
the syso_<cluster> table in ASE1 and ASE2 (as long as they are running and
connected). Therefore, when a mutually-aware OpenSwitch server fails to
connect to its companion OpenSwitch for the latest configuration information,
it queries both ASE1 and ASE2 to retrieve that information.

[SERVER=ASE1]

TYPE If the server in a pool is HA-enabled, enter HA for this parameter. If the server is not HA-
enabled, you can exclude this parameter or leave it blank.

If the server is in an Adaptive Server HA cluster, verify this property is set to “HA” in that
Adaptive Server [SERVER] sections. For example:

[CONFIG]
HAFAILOVER = 1
CMON_USER = cmon_user
CMON_PASSWORD = cmon_password

[SERVER = nlatke_ASE1]
STATUS = UP
TYPE = HA

OPTION VALUE

Manually editing configuration options

86 OpenSwitch

STATUS = UP
CFG_STORAGE = 1
TYPE = HA
CMON_USER = ASE1usr
CMON_PASSWORD = ASE1pwd

[SERVER=ASE2]
STATUS = UP
CFG_STORAGE = 1
CMON_USER = sa
CMON_PASSWORD = sa

[POOL]
Description Complete this section once for each Adaptive Server pool you want defined

within OpenSwitch. The section includes the pool name, any attributes of the
pool, the set of servers contained within the pool, and the set of connections
that the pool serves.

Format [POOL=POOL_NAME[: OPTION=VALUE[, OPTION=VALUE]]]
[servers:]

SERVER_NAME
[SERVER_NAME ...]

[connections:
attribute: regex [, regex]
[attribute: regex [, regex] ...]]

Parameters • POOL_NAME – a unique pool name up to 30 characters in length.

• OPTION and VALUE – a configuration option specific to POOL. Table 4-
3 shows valid input for these parameters, which are entered in the format
OPTION = VALUE.

Table 4-3: [POOL] OPTION and VALUE settings

OPTION VALUE

MODE The operational mode of the pool:

• CHAINED – all clients qualified to use the pool are channeled to the first server in
the pool that has a status of UP or LOCKED. When the first server fails or has a status
of DOWN, the clients are channeled to the next server within the same pool with a
status of UP or LOCKED.

• BALANCED – all qualifying clients are distributed among all the servers within the
pool in a round-robin fashion. When one of the servers fails or is marked as DOWN,
its clients are then distributed among the other servers within the same pool.

Chapter 4 Using the Configuration File

Administration Guide 87

• [servers:
server_name=status
server_name=status]

“servers” is an optional [POOL] subsection that lists the servers in the
pool, and optionally the server’s status.

• server_name – the remote server defined in the $SYBASE/interfaces
file on UNIX and %SYBASE%\ini\sql.ini on Windows.

Note During OpenSwitch start-up, no validation is done to verify
whether or not these servers exists.

• status – (optional) enter the status of the specified server
(server_name) at the pool level. When you specify the server status in
the [SERVER] section of the configuration file, the status is applied
globally. When you supply a status here, the value overwrites the
server’s global status with the status you enter for this server in this
pool. This allows the same server to have a different status in different
pools, allowing you to failover selected applications to back-up
servers. Enter:

• UP – the server is currently available.

• DOWN – the server is unavailable, and will not be considered for
use by any new client connections established to the OpenSwitch.

STATUS The status of the pool:

• UP – the pool is up and ready for connections. All new and failover clients that satisfy
its connection attributes are channeled to it.

• DOWN – the pool is currently unavailable. All new and failover clients skip over it
to proceed to the next UP or LOCKED pool.

• LOCKED – the pool is designated to serve the connections, but is temporarily
unavailable. By default, the qualifying clients are blocked until the pool is marked as
UP or DOWN. However, if NOWAIT_ON_LOCKED is set to 1, the clients
immediately receive a descriptive error message from OpenSwitch.

Pools can also have a PRE_UP, PRE_DOWN, PRE_LOCKED, or SUSPENDED status.
These states are specific to pools in a mutually-aware implementation. Never manually
set a pool’s status to these states. For more information, see “Pool states” on page 26.

CACHE The number of seconds that connections are cached following a user disconnect. See
“Using connection caching” on page 34.

The value is an integer in seconds.

OPTION VALUE

Manually editing configuration options

88 OpenSwitch

• LOCKED – the server is available, but any new incoming
connections or existing connections switching to the server are
blocked (or stopped) until the status is changed to UP or DOWN.
Blocked connections appear to client applications to have
stopped responding until the server is unlocked.

Servers can also have a PRE_UP, PRE_DOWN, or PRE_LOCKED
status; however, you should never manually set a server’s status to
these states. For more information, see “Server state” on page 20.

Note You cannot start OpenSwitch with a server in the LOCKED
state. To start OpenSwitch, all servers must be either UP or DOWN.
Once OpenSwitch starts, use rp_server_status to change the server
STATUS to LOCKED.

For more information, see “Server state” on page 20.

• [connections:
attribute: regex [, regex]
[attribute: regex [, regex] ...]]

Optional [POOL] subsection that lists the attributes that define a set of
connections that use this pool.

• attribute – the name of a connection attribute. Valid attributes are:

• regex – the value for the specified attribute. This can also be a
standard SQL-style extended regular expression that describes values
for a given attribute that uses this pool. You can use wildcard
expressions to specify a range or group of acceptable attribute values.

Attribute Description

username Match the user name supplied by the Open Client connection.

appname Match the application name declared by the Open Client
connection.

hostname Match the host name on which the Open Client connection is
running.

type Match the type of incoming connection as either a site
connection or a client connection. Possible values are:

• Client – for regular client connections.

• Site – for site-handler connections.

Chapter 4 Using the Configuration File

Administration Guide 89

If you omit the [connections] subsection of the pool configuration, all
connections are a match for the pool. However, the order in which pools
are defined is important; a connection is routed to the first matching pool.
Therefore, Sybase suggests that you keep a “catch-all” pool without a
[connections] section at the end of the pool list.

Examples In this example, any client that logs in to OpenSwitch with the user name of
“john” or the application name “isql” (depending on the
USE_AND_TO_POOL_ATTRIB setting) is first channeled to the Adaptive
Server ASESRV1, which has a status of UP in POOL1.

If the client fails to connect to ASESRV1, or it has been marked as DOWN
explicitly by the coordination module or the administrator, the clients are
channeled to ASESRV3 because ASESRV2 is marked as DOWN in POOL1.

When a client disconnects, its connection to the Adaptive Server is cached for
as long as five minutes. If the same user with the same password reconnects
within that period, he or she can reuse the cached connection, thereby saving
the overhead of creating a new outgoing connection.

In this example, “john” is the regex value for the “username” attribute, and
“isql” is the regex value for the “application” attribute:

[POOL=POOL1:MODE=CHAINED,CACHE=300]
servers:

ASESRV1=UP
ASESRV2=DOWN
ASESRV3=UP

connections:
username: john
appname: isql

[LIMIT_RESOURCE]
Description The options in this section indicate the resource to be constrained and the

maximum amount of the resource that can be consumed by a given connection.

Note You must set the RMON parameter in the [CONFIG] section to have the
options in the [LIMIT_RESOURCE] section take effect.

Format [LIMIT_RESOURCE:ACTION=[{KILL|CANCEL}][BUSY=value]
attribute: regex [, regex]
[attribute: regex [, regex]]

Manually editing configuration options

90 OpenSwitch

Parameters • ACTION {KILL | CANCEL}– select the action to be taken by the resource
monitor upon detecting a connection that has exceeded one or more
resource limits. Enter:

• KILL – to disconnect the connection from the server with no warning.

• CANCEL – to cancel the connection and send a message to the client.

• value – enter a value, in seconds, to limit connections to a maximum
amount of busy-time. Busy-time includes the time it takes to process a
query and return the results to the caller. Connections currently in the
middle of a transaction but not actively processing a query are still
considered busy.

• attribute – the name of a connection attribute. Valid attributes are:

• regex – the value for the specified attribute. This can also be a standard
SQL-style extended regular expression that describes values for a given
attribute that uses this pool. You can use wildcard expressions to specify a
range or group of acceptable attribute values.

Examples This example indicates that the attribute: regex pairs that follow the header are
to be constrained to a single query lasting no longer than 5 minutes (300
seconds). You can specify multiple attributes in the configuration file:

[LIMIT_RESOURCE:ACTION=KILL,BUSY=60]
username: john
appname: isql
hostname: machine
type: client

Attribute Description

username Match the user name supplied by the Open Client connection.

appname Match the application name declared by the Open Client
connection.

hostname Match the host name on which the Open Client connection is
running.

type Match the type of incoming connection as either a site connection
or a client connection. Possible values are:

• Client – for regular client connections.

• Site – for site-handler connections.

Chapter 4 Using the Configuration File

Administration Guide 91

[COMPANION]
Description Name of the OpenSwitch companion, and the administrator user name and

password used to make a connection. For example:

Format [COMPANION=companion_name]
admin_user=ADMIN_USER
admin_password=ADMIN_PASSWORD

Parameters • companion_name – the SERVER_NAME from the companion
OpenSwitch configuration file. This is a static parameter; if you change
this value, you must restart the OpenSwitch server for the change to take
effect.

• admin_user – the ADMIN_USER from the companion OpenSwitch
configuration file. This is a dynamic parameter, which means that you can
change the value using rp_cfg while OpenSwitch is running, and the
changes take effect immediately.

• admin_password – the ADMIN_PASSWORD from the companion
OpenSwitch configuration file. This is a dynamic parameter, which means
that you can change the value using rp_cfg while OpenSwitch is running,
and the changes take effect immediately

Examples [COMPANION=OSW2]
admin_user=sa
admin_password=sa

Manually editing configuration options

92 OpenSwitch

Administration Guide 93

C H A P T E R 5 Using Mutually-aware
OpenSwitch Servers

This chapter describes the support in OpenSwitch 15.0 and later for
mutually-aware OpenSwitch servers, and how to implement this
functionality.

Introduction
OpenSwitch supports a redundant environment with two “mutually-
aware” OpenSwitch servers that serve the same pools of two Adaptive
Servers. Each OpenSwitch server is aware of the other OpenSwitch server
and whether the Adaptive Servers for which that server is responsible are
ready to accept client connections.

For example, let’s say you have one OpenSwitch server (OSW1)
connected to one Adaptive Server (Server1). You have another
OpenSwitch server (OSW2) and another Adaptive Server (Server2) set up
for failovers. OSW1 fails and its connections to Server1 fail over to
OSW2. Then Server1 fails over to Server2. In versions earlier than 15.0,
when you restarted OSW1, it would continually try to reconnect to
Server1 because it had no knowledge that Server1 was not running.

In a mutually-aware OpenSwitch implementation, when OSW1 restarts, it
queries the companion OpenSwitch server (OSW2), which tells it that
Server1 has failed, therefore, it does not try to reconnect to the unavailable
server.

To ensure that this setup works properly, both OpenSwitch servers must:

Topic Page
Introduction 93

Requirements 94

Configuring OpenSwitch servers to be mutually aware 99

OpenSwitch mutually-aware operations 109

Invoking custom and manual scripts 111

Requirements

94 OpenSwitch

• Have the same knowledge about each pool’s and server’s status at any
given time.

• Store and retrieve the redundancy information from a set of locations that
are accessible to all components in the OpenSwitch implementation to
ensure that the effective status persists between OpenSwitch restarts.

Before you install and configure mutually-aware OpenSwitch servers, be sure
to read this chapter and make sure that you review the mutually-aware
OpenSwitch server “Requirements” on page 94.

Requirements
This section lists the installation, configuration, and use requirements for a
successful OpenSwitch mutually-aware implementation. The remainder of this
chapter discusses all requirement in more detail.

Installation
A mutually-aware OpenSwitch implementation requires that you install:

• Two mutually aware, companion OpenSwitch servers, preferably on a
different host than the Adaptive Servers. Both mutually aware
OpenSwitch servers within the same cluster regard each other as
companions and are both aware of each other’s state and the state of the
other servers.

Note You can also use two coordination modules or two replication
coordination modules, but these OpenSwitch CM applications are
optional. See the OpenSwitch Coordination Module Reference Guide.

• Two Adaptive Servers, which may be configured for high-availability.

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 95

Configuration and use
When you complete the OpenSwitch installation, you can configure
OpenSwitch immediately using the GUI configuration tool, or you can
configure the product manually by editing the OpenSwitch configuration file
(see “Editing the OpenSwitch configuration file” on page 60). You can also
run the standalone configuration tool after installation (see “Starting the
Configuration tool,” in Chapter 3 of the OpenSwitch Installation Guide.

Regardless of the configuration method used, you must configure OpenSwitch
for mutually-aware behavior:

• Configuration GUI – select Use Mutual Aware Support? in the
OpenSwitch Configuration dialog box.

• Configuration file – enter 1 for the MUTUAL_AWARE parameter
(MUTUAL_AWARE=1).

You must also complete specify the action OpenSwitch should take when
certain failure types occur. See “Failure types” on page 112.

Requirements

When you configure and use mutually-aware OpenSwitch servers, keep these
requirements in mind:

• Server and pool names are limited to a maximum of 31 characters.

• Both OpenSwitch servers must have the same pool and server
configurations in their configuration files. When they are not the same, the
OpenSwitch that starts first takes precedence.

• The following [CONFIG] parameters must be the same in both
OpenSwitch server configuration files:

• MUTUAL_AWARE

• MUTUAL_CLUSTER

• UPDATE_CFG

• SVR_FAIL_ACTION

• NET_FAIL_ACTION

• CMP_FAIL_ACTION

• CMON_FAIL_ACTION

• FREEZE_CFG_ON_FAIL

Requirements

96 OpenSwitch

• USERNAME_PASSWORD_ENCRYPTED

Each of these parameters is checked and compared when a mutually-aware
OpenSwitch server starts, and monitored by the mutually-aware
OpenSwitch server during runtime. If there is a difference in parameter
values between the companions during startup, the OpenSwitch that is
being started fails. If any parameter is found to be different between
mutually-aware companions at runtime, both companions are suspended
until the difference is resolved and the administrator issues rp_go on each
companion. In either case, an error message is logged regarding the
dissimilar parameters to help you diagnose and correct the problem.

• Set UPDATE_CFG to 1 when you set MUTUAL_AWARE to 1.

• When starting mutually-aware OpenSwitch servers, verify that the first
server starts properly before starting the next server.

• When it is preferable for clients to fail over from one OpenSwitch server
to the companion, you must set up the sql.ini file (Windows), interfaces
file (UNIX), or LDAP directory service to facilitate this failover. For the
sql.ini or interfaces file, enter the second OpenSwitch query address under
the first OpenSwitch name as a secondary address. For example:

OSW1
query tcp ether <host> 4405
query tcp ether <host> 4406

OSW2
query tcp ether <host> 4406
query tcp ether <host> 4405

Note When you configure a mutually-aware OpenSwitch server using the
GUI configuration tool, these entries are created for you automatically.

When you configure a mutually-aware OpenSwitch server by manually
editing the configuration files, you must manually create these entries in
the sql.ini (Windows) or interfaces (UNIX) file.

• When the data in the OpenSwitch configuration file is more recent than the
configuration used by OpenSwitch when it last ran, start the OpenSwitch
server with the “-O” parameter to override the data in the Adaptive Server
configuration tables with the information from the OpenSwitch
configuration file. For example:

On Windows:

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 97

%OPENSWITCH%\bin\OpenSwitch.bat -c \
%OPENSWITCH%\config\<config_file_name>.cfg -O

On UNIX:

$OPENSWITCH/bin/OpenSwitch -c \
$OPENSWITCH/config/<config_file_name>.cfg -O

• The configuration table is created in the default database of the CMON
user in the Adaptive Servers where CFG_STORAGE=1. When the default
database is not explicitly set, it defaults to “master.”

• When an Adaptive Server has not been used for a long time and may have
legacy information from an outdated OpenSwitch setup, the administrator
can truncate the table before starting the new OpenSwitch server, or start
the OpenSwitch server with the “-O” parameter to override the
information in the OpenSwitch configuration file.

• Only the first two pools defined in the OpenSwitch configuration file are
mutually aware.

Note Sybase recommends that you not have other pools in a
mutually-aware OpenSwitch, unless the pool is a “catch-all pool” that is
not crucial to production.

Pools other than the first two pools in the configuration file assume their
original behavior. However, if failover occurs in either of the first two
pools, a mutually-aware OpenSwitch acts in the best interest of the first
two pools. This may involve shutting down to allow the clients to fail over
to the companion OpenSwitch server in case of a total network failure.

Verify that all the pools are defined identically in the primary and
secondary companion OpenSwitch servers; that is, pools with the same
name must contain the same Adaptive Servers and have the same
connection attributes.

• Each of the first two pools must contain two servers. The two servers must
be defined the same in both pools, but defined in reverse order:

[POOL=POOL1]
servers:

ASE1
ASE2[POOL=POOL2]

servers:
ASE2
ASE1

Requirements

98 OpenSwitch

• Currently, only two OpenSwitch servers are supported in a
mutually-aware cluster; that is, there can be only one companion
OpenSwitch for each mutually-aware OpenSwitch server. Both
OpenSwitch servers in the cluster must be mutually aware.

If one of the OpenSwitch companions does not have MUTUAL_AWARE
set to 1, the other OpenSwitch companion marks that OpenSwitch server
as “down.” This inconsistency is noted in the error log. Until the
non-mutually-aware OpenSwitch server is restarted with
MUTUAL_AWARE set to 1, it receives no communication from the
companion that does have MUTUAL_AWARE set to 1, which acts as the
only mutually-aware OpenSwitch server running in the cluster.

Note Sybase recommends that you never have two OpenSwitch servers
use the same pools of servers, or be the failover entries for each other in
the sql.ini (Windows) or interfaces (UNIX) file without being mutually
aware. Always set MUTUAL_AWARE to 1 in both companion
OpenSwitch server configuration files.

• A mutually-aware configuration does not require a coordination module
(CM) or replication coordination module (RCM) to run. However, a
mutually-aware implementation can work with a CM or RCM solution.

• If you are using a CM or RCM, set SVR_FAIL_ACTION to DEFAULT.
Specifically, you cannot run custom or manual scripts for server failure
when you are using a CM or RCM because each CM and RCM is coded
differently and its failover procedure may contradict the actions invoked
by a custom or manual script.

• If you use a system router, it should not block system commands, such as
“ping.” OpenSwitch uses ping to monitor the network between
mutually-aware OpenSwitch companions and between OpenSwitch and
the Adaptive Servers. A ping failure can be incorrectly interpreted as a
network failure.

• Start the primary OpenSwitch first, then start the secondary (companion)
OpenSwitch. See Chapter 3, “Starting and Stopping OpenSwitch and
RCMs.”

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 99

Configuring OpenSwitch servers to be mutually aware
To implement mutually-aware OpenSwitch servers, install and configure two
OpenSwitch servers.

Note In a production environment, the Adaptive Servers are generally
installed on a different host than the OpenSwitch servers. When both
OpenSwitch servers are installed on the same host machine, each OpenSwitch
server must be installed in a different Sybase directory.

When you install OpenSwitch and configure it using the configuration tool, the
process creates two files:

• sql.ini (Windows) or interfaces (UNIX) – contains information about the
network locations of servers. The file contains at least one entry that
specifies the network connection information for the default server. This
files is saved in the SYBASE root directory.

• <OpenSwitch_sever_name>.cfg – data gathered during OpenSwitch
configuration. By default, the file is given the name of the OpenSwitch
server being configured, followed by the .cfg file name extension.

Note You can also manually create and edit the OpenSwitch configuration
file.

When you specify during configuration that an OpenSwitch server should be
mutually aware, the configuration process also creates a mutually-aware
configuration table in both Adaptive Servers, which can be read by both
OpenSwitch servers.

Configuration file parameters
Table 5-1 lists the OpenSwitch configuration parameters specific to mutually-
aware OpenSwitch servers. Parameters are listed alphabetically within each
configuration file section for ease of reference.

Configuring OpenSwitch servers to be mutually aware

100 OpenSwitch

Table 5-1: Mutually-aware configuration parameters

Section Parameter Description

[CONFIG] CMON_FAIL_ACTION

Note Required only when
MUTUAL_AWARE=1.
However, this parameter is
not specific to only
mutually-aware
OpenSwitch servers; it
applies to all OpenSwitch
servers with CMON set to
1.

Enter one of these actions:

• DEFAULT

• CUSTOM

• MANUAL

• CUSTOM_MANUAL

The selected action is invoked only when the CMON configuration
parameter is set to 1 (the recommended setting), and when the
CMON thread that monitors the health of the Adaptive Server fails
to start. See Table 4-1 on page 65 for information about the CMON
parameter.

See “CMON_FAIL_ACTION” on page 119 for more information
about this parameter. See “User-specified actions” on page 113 for
details about each action.

[CONFIG] CMP_FAIL_ACTION

Note Required only when
MUTUAL_AWARE=1.

Enter one of these actions:

• DEFAULT

• CUSTOM

• MANUAL

• CUSTOM_MANUAL

This parameter is used when network connectivity is lost to the
companion OpenSwitch in a mutually-aware setup. Once the
network is restored and the connection to the companion is
re-established, the two OpenSwitch servers synchronize their
configurations.

See “CMP_FAIL_ACTION” on page 120 for more information
about this parameter. See “User-specified actions” on page 113 for
details about each action.

[CONFIG] CUSTOM_SCRIPT The path to the user-created script to invoke.

Note When MUTUAL_AWARE=1, the scripts for both OpenSwitch
companions must perform the same action. When a server fails
over and SVR_FAIL_ACTION is set to to MANUAL or CUSTOM,
only one of the companions executes the script that notifies the
administrator or restarts the server.

See “User-specified actions” on page 113 for details about which
exit codes to use in custom scripts.

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 101

[CONFIG] FREEZE_CFG_ON_FAIL Whether OpenSwitch locks all server and pool configurations
(forbids all changes) when a network break is suspected between
the companions during CMP_FAIL_ACTION. Enter:

• 0 – allows the OpenSwitch server to continue servicing clients
as if it were the only OpenSwitch running in a mutually-aware
cluster. All configuration changes, including server and pool
status changes, are permitted. This is the default.

• 1 – allows the OpenSwitch server to continue servicing clients,
but forbids any changes to the server or pool configuration and
status.

[CONFIG] MANUAL_SCRIPT The path to the user-created manual script.

See “User-specified actions” on page 113 for details about which
exit codes to use in manual scripts.

[CONFIG] MUTUAL_AWARE Specifies whether to use mutually-aware OpenSwitch servers.
Enter:

• 1 for a mutually-aware OpenSwitch.

• 0 for a non-mutually-aware OpenSwitch, which is the default.

[CONFIG] MUTUAL_CLUSTER

Note Required only when
MUTUAL_AWARE=1.

A string that represents a mutually-aware cluster. This string must
be exactly the same on both OpenSwitch servers, and is used to
name the configuration table in the CFG_STORAGE servers (see
“[SERVER]” on page 83).

When this parameter is not set, it defaults to “CLUSTER1”.

[CONFIG] NET_FAIL_ACTION

Note Required only when
MUTUAL_AWARE=1.

Enter one of these actions:

• DEFAULT

• CUSTOM

• MANUAL

• CUSTOM_MANUAL

This parameter is used when the local OpenSwitch is experiencing
a network outage and cannot communicate with the Adaptive
Servers or companion OpenSwitch hosts.

See “NET_FAIL_ACTION” on page 121 for more information
about this parameter. See “User-specified actions” on page 113 for
details about each action.

[CONFIG] PING_BINARY The absolute path to the system ping command. When this
parameter is not set, it defaults to ping, which relies on the PATH
environment variable to locate the correct binary.

Section Parameter Description

Configuring OpenSwitch servers to be mutually aware

102 OpenSwitch

[CONFIG] PING_RETRIES The number of times that OpenSwitch should ping a server to rule
out possible network problems. This parameter is used in
numerous places, when the status must be known of a companion
or Adaptive Server.

The default is “1”.

[CONFIG] PING_THREAD Valid values are 0 (zero) or 1. The default is zero (0).

When set to 1, PING_THREAD detects the failure when an
Adaptive Server host or network stops running. Internally, the
primary companion OpenSwitch checks to see if the entire network
has failed or only the Adaptive Server host network. If the
Adaptive Server host network has failed, the primary companion
OpenSwitch is notified immediately and the action set for
SVR_FAIL_ACTION is invoked.

When set to zero (0), the primary companion OpenSwitch is
notified of a network failure with Adaptive Server after only 8
minutes, which is the default TCP/IP tcp_ip_abort_interval
configuration parameter.

Note Do not use this parameter to monitor the network between
clients and OpenSwitch. If the network connection from the client
to the OpenSwitch fails, the client detects the failure only when the
tcp_ip_abort_interval time has elapsed. This is a kernel parameter
that defaults to 8 minutes, but can be tuned to a lower value if the
default is unacceptable.

[CONFIG] PING_WAIT The number of seconds that the ping command should wait before
returning a failure. This parameter is used in conjunction with
PING_RETRIES, on platforms where the ping command blocks
instead of returning right away.

The default is 10 (seconds).

[CONFIG] PRIMARY_COMPANION

Note Required only when
MUTUAL_AWARE=1.

Enter:

• 0 – the default.

• 1 – when this is the designated primary companion. A primary
companion is responsible for writing to the Adaptive Server
cluster tables.

Section Parameter Description

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 103

[CONFIG] SVR_FAIL_ACTION

Note Required only when
MUTUAL_AWARE=1.

Enter one of these actions:

• DEFAULT

• CUSTOM

• MANUAL

• CUSTOM_MANUAL

This parameter is used when an Adaptive Server fails to respond in
a timely manner, or when the Adaptive Server host cannot be
pinged by either OpenSwitch server in a cluster.

See “SVR_FAIL_ACTION” on page 122 for more information.
See “User-specified actions” on page 113 for details about the
available actions.

[CONFIG] UPDATE_CFG When set to 1, the configuration file is updated each time a
reconfiguration takes place. Zero (0) is the default setting. You
must run mutual-aware support with UPDATE_CFG=1.

[SERVER] CFG_STORAGE When this property is set for an Adaptive Server, that Adaptive
Server is used to store the configuration information of the
mutually-aware OpenSwitch clusters. Enter:

• 0 – do not use this Adaptive Server to store the configuration
information of the mutually-aware OpenSwitch clusters.This is
the default value.

• 1 – store the configuration information of the mutually-aware
OpenSwitch clusters on this Adaptive Server.

In a mutually-aware setup, you must include this parameter under
the two Adaptive Server entries; for example:

[SERVER=ASE1]
STATUS=UP
CFG_STORAGE=1

[SERVER=ASE2]
STATUS=UP
CFG_STORAGE=1

In the example above, the most recent OpenSwitch configuration
is stored in the syso_<cluster> table in ASE1 and ASE2. Therefore,
when a mutually-aware OpenSwitch server fails to connect to its
companion OpenSwitch for the latest configuration information, it
queries both ASE1 and ASE2 to retrieve that information.

Section Parameter Description

Configuring OpenSwitch servers to be mutually aware

104 OpenSwitch

Mutually-aware configuration table
When you configure an OpenSwitch to be mutually aware, a configuration
table is created and saved to both Adaptive Servers, which eliminates any
single point of failure created by one Adaptive Server. This table can be
accessed by both the primary and secondary OpenSwitch servers.

The primary OpenSwitch server is responsible for updating the configuration
table on the Adaptive Servers.

Note When you configure OpenSwitch by manually editing the configuration
file, the mutually-aware configuration table is created the first time you start
the OpenSwitch server.

Table 5-2 on page 105 lists the columns in the mutually-aware configuration
table created in the Adaptive Servers:

[COMPANION] companion_name

admin_user

admin_password

Name of the OpenSwitch companion, and the administrator user
name and password used to make a connection. For example:

[COMPANION=OSW2]
admin_user=sa
admin_password=sa

These should be the same as the values for SERVER_NAME,
ADMIN_USER and ADMIN_PASSWORD in the companion
OpenSwitch configuration file.

companion_name is a static parameter, while admin_user and
admin_password are dynamic parameters. This means that after an
OpenSwitch server starts running, you can change the companion’s
admin_user and admin_password using rp_cfg and the changes
take effect immediately. However, if you change
companion_name, you must restart the OpenSwitch server for the
change to take effect.

Note If USERNAME_PASSWORD_ENCRYPTED is set to 1,
admin_user and admin_password should contain the encrypted
string (as should ADMIN_USER and ADMIN_PASSWORD in the
OpenSwitch configuration file). Use the -E or -p command line
options for encryption. See “Using encrypted user names and
passwords” on page 48.

Section Parameter Description

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 105

Table 5-2: Mutually-aware configuration table

Column Description

Pool Name of the Adaptive Server connection pool. Each pool corresponds to exactly one row.

Pool_status Status of this pool in the OpenSwitch configuration.

Pool_mode Select:

• Chained – to have all connections routed to the first server defined within the pool, and
have administrative switch requests or automatic failovers send all connections to the
next server in the pool.

• Balanced – to have all servers in a pool used simultaneously (load-balanced) until a
server fails, at which time all connections on the failed server are redistributed, in
round-robin fashion, among the remaining servers.

Pool_cache The number of seconds a connection is kept alive after a client disconnects. If the same
client, using the same user name and password, reconnects during this duration, the
connection can be handed off without establishing a new connection, which reduces the
overhead of establishing connections each time a client connects.

Attr_username User name attribute for this pool, if any.

Attr_appname Application name attribute for this pool, if any.

Attr_hostname Host name attribute for this pool, if any.

Attr_type Whether this pool handles “site” or “client” connections.

Primary_server Name of the primary server in this pool.

Primary_status The status of the primary server in the OpenSwitch configuration. Primary_status is the
same as the server status in the [SERVER] section of the OpenSwitch configuration file,
which may be different from the pool-specific server status under the [POOL] section. A
mutually-aware OpenSwitch server does not currently support pool-based server status.

Primary_type Whether the primary server is a high-availability server.

Primary_cfgstore Whether CFG_STORAGE is set for the primary server.

Primary_cmonuser The primary server-specific CMON user name.

Primary_cmonpwd The primary server-specific CMON password.

Secondary_server Name of the secondary server in this pool.

Secondary_status The status of the secondary server in the OpenSwitch configuration. Secondary_status is
the same as the server status in the [SERVER] section of the OpenSwitch configuration file,
which may be different from the pool-specific server status under the [POOL] section. A
mutually-aware OpenSwitch server does not currently support pool-based server status

Secondary_type Whether the secondary server is a high-availability server.

Secondary_cfgstore Whether CFG_STORAGE is set for the secondary server.

Secondary_cmonuser The secondary server-specific CMON user name.

Secondary_cmonpwd The secondary server-specific CMON user name.

Configuring OpenSwitch servers to be mutually aware

106 OpenSwitch

If you use rp_pool_status or rp_server_status to change the status of a pool or
server at runtime for a mutually-aware OpenSwitch, the change is propagated
to the companion OpenSwitch server and stored in the Adaptive Server
configuration table to ensure maximum redundancy and persistence between
OpenSwitch start-ups.

Note Currently, only changes to the pool and server status made using
rp_pool_status and rp_server_status are propagated to the companion and
stored in the configuration tables. Runtime changes to other pool or server
attributes, and changes to the pool and server status made using rp_cfg, are not
propagated to the companion and stored in the configuration tables.

Table name

The default configuration table name is syso_<cluster>, where <cluster> is the
value of the MUTUAL_CLUSTER parameter set in the OpenSwitch server
configuration file. This parameter must be the same for both OpenSwitch
servers in a mutually-aware implementation.

The table name begins with “sys” so that the table cannot be replicated. This
table is created in the default database for the CMON user in the Adaptive
Server. When the default database is not explicitly set for the CMON user, the
table is created in the master database.

Note If you want the table created in an Adaptive Server database other than
the master database, the administrator should set the CMON user’s default
database to a database that is suitable for such use. The administrator must
understand the relationship between the mutually-aware OpenSwitch and this
table.

Replication_status The status of the pool replication direction, as determined by the RCM. Currently displays
only “Normal.”

Note Reserved for future use.

Timestamp The timestamp for this entry.

Updated_by Name of the OpenSwitch server that updated this entry.

Sequence_num A unique identification number generated by the master OpenSwitch for each update event.

Column Description

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 107

When a companion OpenSwitch is not running and a mutually-aware
OpenSwitch starts up, the information in the configuration table overrides the
information in the OpenSwitch’s configuration file. To change this order of
precedence, start the mutually-aware OpenSwitch with the “-O” option. See
“Requirements” on page 94.

OpenSwitch servers from one cluster write only to the table for that cluster, and
as much as possible, a write is carried out in both Adaptive Servers in an atomic
fashion to ensure redundancy in the stored configuration information.

Because only one row is entered for each pool, and there can be only two pools,
there are only two rows in this table.

Configuration data precedence
Mutually-aware OpenSwitch servers use SQL queries, configuration files, and
configuration tables that reside on the Adaptive Servers to communicate with
each other and stay in sync about effective pool and server properties.

When a mutually-aware OpenSwitch server (for example, OSW1 with
MUTUAL_AWARE set to “1”) starts up, it takes the following steps to retrieve
the latest effective pool and server configuration to use for startup:

1 First, the OpenSwitch server that is being started queries its mutually-
aware companion to ascertain all server and pool configuration
information.

2 If the companion OpenSwitch server does not respond, the OpenSwitch
server queries the Adaptive Server mutually-aware configuration table for
the same server and pool configuration information.

• If only one Adaptive Server responds, and the query was successful,
the primary OpenSwitch server uses the query results to start the
OpenSwitch server.

• If both Adaptive Servers respond, OpenSwitch compares the query
results from both of them, and uses the entry with the latest sequence
number to start.

3 If the Adaptive Servers do not respond, the OpenSwitch server starts using
its own configuration file.

Configuring OpenSwitch servers to be mutually aware

108 OpenSwitch

4 After all configuration information has been updated and the OpenSwitch
server starts, OpenSwitch tries to update its companion OpenSwitch
server, and the Adaptive Servers that can be reached, with the latest
information. For each Adaptive Server defined with CFG_STORAGE,
OpenSwitch spawns a thread to monitor the health of the Adaptive Server
and update the Adaptive Server if it comes online.

5 To ensure that both Adaptive Servers have the same data in their cluster
table, each time an Adaptive Server is updated (including through a timer),
the update is also carried out in the other Adaptive Server, as long as the
other Adaptive Server is running and reachable.

6 If the cluster table does not exist on a CFG_STORAGE Adaptive Server,
OpenSwitch creates the cluster table and populates it with the current
information the first time it starts with the CFG_STORAGE Adaptive
Server.

When the system administrator or an RCM executes rp_stop, rp_start, or
rp_switch on a mutually-aware OpenSwitch server for an entire pool or
Adaptive Server, the commands are propagated to the companion OpenSwitch
server to be executed on that server as well. If the command fails on the
companion OpenSwitch server, an error message is logged.

When the system administrator or an RCM executes rp_server_status or
rp_pool_status to SET the status for a pool or Adaptive Server, the
mutually-aware OpenSwitch server repeats the command on the companion
OpenSwitch server, and records the change in the OpenSwitch configuration
table on each CFG_STORAGE Adaptive Server.

If the preceding steps fail, the operation is rolled back and the status of the pool
or Adaptive Server is returned to its original state.

Note Commands such as rp_pool_{add | rem} attrib, rp_pool_{add | rem} server,
and rp_pool_cache cannot be propagated to the companion OpenSwitch.

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 109

OpenSwitch mutually-aware operations
When an OpenSwitch server starts, it sends an RPC to the companion
OpenSwitch server to inform the companion that it is running. When the
companion OpenSwitch server receives this information, it marks the starting
companion server as running, and thereafter communicates with the
companion server whenever the pool or server status changes.

To override saved configuration information and start OpenSwitch with the
current configuration file, use the “-O” option. See “Starting and stopping
OpenSwitch on UNIX” on page 43 or “Starting and stopping OpenSwitch on
Windows” on page 44 for details.

When an OpenSwitch server fails in a mutually-aware configuration, the
companion OpenSwitch server detects the failure and marks the failed server
as “down.” If the failed OpenSwitch server is a primary companion, the
secondary OpenSwitch server assumes the role of the primary OpenSwitch
server. As the primary, this OpenSwitch server updates the Adaptive Server
mutually-aware configuration table.

Active Adaptive Server failover
When an Adaptive Server fails, the OpenSwitch configuration tries to
reconnect to the Adaptive Server several times before initiating failover. The
following checks are performed to ensure that a failover is really necessary:

1 First, the OpenSwitch server that detected the failure tries to connect to the
primary Adaptive Server using the CMON user name and password. If the
connection succeeds, the failure is treated as an isolated or client-specific
incident, and no server-wide failover is performed. The threads that
encounter the failure are terminated, and all future incoming clients are
directed to the same primary Adaptive Server.

2 If step 1 fails, but the host of the first OpenSwitch can still communicate
with the host of the primary Adaptive Server, the primary Adaptive Server
is assumed to have stopped responding, and the user-specified behavior for
the SVR_FAIL_ACTION parameter in the configuration file is performed.

3 If step 1 fails because the host of the first OpenSwitch cannot
communicate with the host of the primary Adaptive Server, the first
OpenSwitch checks with the companion OpenSwitch to see if the latter
also has trouble communicating with the primary Adaptive Server host.

OpenSwitch mutually-aware operations

110 OpenSwitch

4 If step 3 succeeds, and the companion OpenSwitch host has no problem
communicating with the primary Adaptive Server host, the local network
of the first OpenSwitch becomes a suspect, and the user-specified behavior
for the NET_FAIL_ACTION parameter in the configuration file is
performed on the first OpenSwitch, which allows its clients to fail over to
its companion OpenSwitch. The clients must reconnect, and are directed
to the companion OpenSwitch via the Client-Library failover feature.

However, if the companion OpenSwitch also cannot communicate with
the primary Adaptive Server host, a failure at the primary Adaptive Server
site or network is assumed, and the user-specified behavior for the
SVR_FAIL_ACTION parameter in the configuration file is performed on
the first OpenSwitch.

5 If step 3 fails because the first OpenSwitch host cannot communicate with
the companion OpenSwitch host, the first OpenSwitch attempts to ping the
secondary Adaptive Server host to determine whether its own host has
completely gone off the network. If the communication is also broken
between the first OpenSwitch and the secondary Adaptive Server host, the
first OpenSwitch assumes that it is experiencing a local network failure,
and the user-specified behavior for the NET_FAIL_ACTION parameter in
the configuration file is performed.

However, if communication still exists with the secondary Adaptive
Server host, the first OpenSwitch performs the user-specified behavior for
the SVR_FAIL_ACTION parameter to fail over the clients to the secondary
Adaptive Server.

See “Invoking custom and manual scripts” on page 111 for more information
about *_FAIL_ACTION functionality.

Failback
Failback is a manual process that should be performed with careful planning.
It may involve manually restarting the RCM (when an RCM is used), and
manually reversing the replication direction of the Replication Server:

1 Ensure that the primary Adaptive Server is in its normal running state and
accepting connections.

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 111

2 If there is a secondary Adaptive Server running, and the direction of the
replication has been switched during the failover, restore the replication
direction to its original state so that the primary Adaptive Server is
properly updated with the latest transactions. See the Replication Server
Administration Guide for instructions.

3 If you are using an RCM, restart it. When the RCM is started using the
OpenSwitch RCM_AUTOSTART parameter, you may need to restart the
OpenSwitch servers to restart the RCM. See “Configuring an RCM to
start automatically from OpenSwitch” on page 55 for details.

4 Log in to the mutually-aware OpenSwitch as an administrator, and execute
the following commands. Perform this step on only one of the OpenSwitch
servers (either the primary or the secondary); the commands are
automatically propagated to the other companion OpenSwitch.

rp_stop <POOL>, <secondary_ASE>, NULL, 0, 1
rp_server_status <primary_ASE>, UP
rp_switch <POOL>, <secondary_ASE>, NULL,

<primary_ASE>, 0, 1
rp_start <POOL>, <secondary_ASE> NULL

All future incoming clients are redirected back to the primary Adaptive Server.

Invoking custom and manual scripts
This section provides an overview of using custom and manual scripts when a
problem or failure occurs in a mutually-aware environment. It also explains
how to use each failure type, describes possible actions that you can invoke for
each failure type, and discusses the use of reason and exit codes.

Overview
In a mutually-aware setup, problems may occur with an Adaptive Server or
companion OpenSwitch (for example, the server stops responding or there is a
network failure) that require a system administrator to perform certain actions.
These actions are never required at startup, because any or all servers may not
be responding at that time.

Invoking custom and manual scripts

112 OpenSwitch

When a problem occurs after startup, OpenSwitch invokes the action specified
in the OpenSwitch configuration file for that failure type. Depending on the
failure type and the corresponding user-specified action, either a custom or
manual script is launched, or a default action is taken, or both.

Failure types

OpenSwitch provides four failure type configuration parameters for
mutually-aware OpenSwitch servers:

• CMON_FAIL_ACTION – used when the CMON thread that monitors the
health of the Adaptive Server fails to start.

Note CMON_FAIL_ACTION is not specific to only mutually-aware
OpenSwitch servers; it applies to all OpenSwitch servers with CMON set
to 1.

• CMP_FAIL_ACTION – used when a network failure is detected between
the local host and the host of the companion OpenSwitch in a
mutually-aware setup.

• NET_FAIL_ACTION – used when the local OpenSwitch is experiencing
a network outage and cannot communicate with the Adaptive Servers or
companion OpenSwitch hosts.

• SVR_FAIL_ACTION – used when an Adaptive Server fails to respond in
a timely manner, or when the Adaptive Server host cannot be pinged by
either companion OpenSwitch server in a cluster.

When you use the OpenSwitch GUI configuration tool to configure
mutually-aware behavior, you specify the actions that should occur for each
failure type in the Failure Type dialog box, shown in Figure 5-1 on page 113.

When you manually configure OpenSwitch by editing the configuration file,
you specify the action that should occur for each failure type parameter (listed
above).

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 113

Figure 5-1: Mutually-aware failure types and actions

User-specified actions

During OpenSwitch configuration, you specify one action for each failure type
parameter. This section describes each available action.

When a user-created script executes, OpenSwitch suspends all pools and puts
all threads to sleep. OpenSwitch resumes the pools and wakes all threads when
the specified action completes execution.

Note Because only one of the companions may execute a script that notifies
the administrator or restarts the server, the scripts for both OpenSwitch
companions should perform the same action.

Invoking custom and manual scripts

114 OpenSwitch

For details about each action’s specific use with each failure type, refer to
“CMON_FAIL_ACTION” on page 119, “CMP_FAIL_ACTION” on page
120, “NET_FAIL_ACTION” on page 121, and “SVR_FAIL_ACTION” on
page 122.

DEFAULT

Invokes the default OpenSwitch behavior for the failure type. The activity that
occurs depends on the failure type. See “Failure types” on page 112.

CUSTOM

When you specify CUSTOM for a problem parameter, the path of the script is
retrieved from the CUSTOM_SCRIPT parameter, and the custom script is
executed with the appropriate server name and reason code that OpenSwitch
passed as arguments. The custom script should process the server name and
reason code to determine the nature of the failure and the appropriate solution.

Note When the failure type is SRV_FAIL_ACTION or CMON_FAIL_ACTION,
the first argument passed to the user action script is the server name.

When the failure type is CMP_FAIL_ACTION, the first argument passed to the
script is the name of the companion OpenSwitch.

When the failure type is NET_FAIL_ACTION, the first argument passed to the
script is “NET.”

The second argument passed to the script is always the reason code.

Based on the specified reason code provided by the user in the custom script,
the script can perform the appropriate actions—restart an Adaptive Server that
has stopped running, perform operating system-level checks, or notify the
system administrator via an e-mail message that a problem has occurred.

When the custom script completes execution, the exit code of the script is
returned in the return code argument.

Note When you set MUTUAL_AWARE to 1, the scripts for both OpenSwitch
companions must contain the same information. This is because during a server
failover, if you have set SVR_FAIL_ACTION to MANUAL or CUSTOM, only
one of the companions executes the script that notifies the administrator or
restarts the server.

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 115

See “CMP_FAIL_ACTION” on page 120, “SVR_FAIL_ACTION” on page
122, and “NET_FAIL_ACTION” on page 121 for details.

Example The following code is a sample of a custom script.

Sample custom script for OpenSwitch
#!/bin/sh

server=$1
reason=$2

case "$reason" in
"1000")

mailx -s "OpenSwitch failure Alert!" osw_dba << EOF
The OpenSwitch CMON thread failed to start because $server is not
running.
EOF

r=0
;;

"1001")
mailx -s "OpenSwitch failure Alert!" osw_dba << EOF

The OpenSwitch CMON thread failed to start because the maximum
connection on $server has been exceeded.
EOF

r=0
;;

"1004")
Remotely restart the ASE server.
rsh bluebird /sybase/ASE-15_0/scripts/RUN_$server &
if ($? != 0)
then

mailx -s "OpenSwitch failure Alert!" osw_dba << EOF
The Adaptive Server $server went down, and the effort to restart it
failed.
EOF

r=1
else
mailx -s "OpenSwitch failure Alert!" osw_dba << EOF

The Adaptive Server $server went down and was successfully
restarted.
EOF

r=0
fi
sleep 10
;;

"1005")
mailx -s "OpenSwitch failure Alert!" osw_dba << EOF

The Mutually-aware OpenSwitch detected a complete network failure.
Please check the network of the OpenSwitch server hosts.

Invoking custom and manual scripts

116 OpenSwitch

EOF
r=5

#Example of nondefault return code.
;;

"1006")
mailx -s "OpenSwitch failure Alert!" osw_dba << EOF

The Mutually-aware OpenSwitch has encountered a network failure
with its companion OpenSwitch host. Please check the network
between the two mutually-aware OpenSwitch servers hosts.
EOF

r=0
;;

*)
mailx -s "OpenSwitch failure Alert!" osw_dba << EOF

A problem was encountered and an invalid reason code $reason was
received. Please check the OpenSwitch error log for any failure
messages.
EOF

r=99
;;

esac

exit $r

This example invokes a custom user script, specified by the
CUSTOM_SCRIPT parameter in the OpenSwitch configuration file, that
performs different tasks depending on the reason code passed into the script.

MANUAL

When you specify MANUAL, the path of the manual script is retrieved from
the MANUAL_SCRIPT parameter in the configuration file and executed. While
the script is executed, OpenSwitch locks all pools and prevents new clients
from logging in to the server, while existing client are unaffected and continue
normal operation. Similar to a custom script, you must pass in arguments to
help the script determine the action to take and the object on which to take that
action.

• When the failure type is SRV_FAIL_ACTION or CMON_FAIL_ACTION,
the first argument passed to the user action script is the server name.

• When the failure type is CMP_FAIL_ACTION, the first argument passed
to the script is the name of the companion OpenSwitch.

• When the failure type is NET_FAIL_ACTION, the first argument passed to
the script is “NET.”

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 117

• The second argument passed to the script is always the reason code.

OpenSwitch is suspended until the system administrator executes rp_go. After
the script finishes execution, the exit code of the script is returned in the return
code argument.

If an administrator misses the message issued from MANUAL, issue
rp_pool_help to see if the status is SUSPENDED. If the status is SUSPENDED,
fix the problem and issue rp_go.

Note When MUTUAL_AWARE is set to 1, the scripts for both OpenSwitch
companions must contain the same information. This is because during a server
failover, if you have set SVR_FAIL_ACTION to MANUAL or CUSTOM, only
one of the companions executes the script that notifies the administrator or
restarts the server.

CUSTOM_MANUAL

Useful to perform a manual intervention and suspend the entire OpenSwitch if
a custom script fails.

When you specify CUSTOM_MANUAL, the custom script is executed first.
The manual script is executed only if the custom script fails with an exit code
nonzero.

Reason codes

When you specify CUSTOM, MANUAL, or CUSTOM_MANUAL for a
failure type parameter, a user-created custom or manual script is executed with
a reason code specific to that failure type. Table 5-3 on page 118 lists the
reason codes associated with each failure type.

Invoking custom and manual scripts

118 OpenSwitch

Table 5-3: Custom and manual script reason codes

Exit codes

When you use custom or manual scripts, your script must exit with a valid exit
code. Generally, exit codes are a way to notify an administrator whether or not
the script ran successfully.

The section on each failure type contains the exit codes specific to using
custom or manual scripts with that type of failure.

See “CMON_FAIL_ACTION” on page 119, “CMP_FAIL_ACTION” on
page 120, “NET_FAIL_ACTION” on page 121, and “SVR_FAIL_ACTION”
on page 122 for details.

When you create a script for execution with CUSTOM, MANUAL, or
CUSTOM_MANUAL actions, the script must use the exit command to
complete, not use any exit command switches, and provide a valid exit code:

exit <Any valid exit code>

The exit code you provide dictates what OpenSwitch should do after the script
executes. The following sample input would be allowed in a custom or
manual-invoked script. The sample uses the exit command, does not use any
exit command switches, and uses a valid exit code.

@echo off

Code Failure type Description

1000 CMON_FAIL_ACTION The Adaptive Server cannot be connected to
because it is not running.

1001 CMON_FAIL_ACTION The number of connections to the Adaptive
Server has exceeded the maximum user
connections limit.

1004 SVR_FAIL_ACTION A primary Adaptive Server failed, and a restart
or failover is necessary.

1005 NET_FAIL_ACTION The network of the local OpenSwitch host is
disabled.

1006 CMP_FAIL_ACTION The companion OpenSwitch stops
unexpectedly.

2000 CMON_FAIL_ACTION The user name or password for the CMON user
is invalid on this Adaptive Server.

3000 CMON_FAIL_ACTION An unknown error was encountered while
starting the CMON thread. Check the Adaptive
Server to make sure that it is accepting
connections.

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 119

...

...
exit 3

However, this sample input would not be allowed because it uses the “/B” exit
command switch:

@echo off
...
...
exit/B 3

 Warning! Never use an exit code of -1. OpenSwitch uses this value internally
to determine the reason for a failure. If a script returns -1, it may interfere with
this diagnosis and cause the wrong error to be logged.

The remainder of this document describes each failure type parameter in detail,
including the behavior invoked by each action for that parameter, and the
reason and exit codes specific to that failure type and action.

CMON_FAIL_ACTION
This parameter is used only when the CMON configuration parameter is set to
1 (the recommended setting), and when the CMON thread that monitors the
health of the Adaptive Server fails to start. See “[CONFIG]” on page 64 for
details about the CMON parameter.

Note CMON_FAIL_ACTION is not specific to only mutually-aware
OpenSwitch servers; it applies to all OpenSwitch servers with CMON set to 1.

Actions and reason
codes

Use:

• DEFAULT – to try and restart the CMON connection. If the problem has
been resolved, OpenSwitch continues with its normal activity. If the
problem is unresolved, OpenSwitch fails the client over to the next server.

• CUSTOM, MANUAL, or CUSTOM_MANUAL – to execute a
user-specified custom or manual script with a reason code of 1000, 1001,
2000, or 3000 (see Table 5-3 on page 118). OpenSwitch is suspended and
waits indefinitely until the system administrator executes rp_go.

See “User-specified actions” on page 113 for additional details about these
actions.

Invoking custom and manual scripts

120 OpenSwitch

Exit codes for custom
and manual scripts

Use an exit code of 0 (zero). For CMON_FAIL_ACTION, the exit code only
provides a way to notify the administrator how the script ran. Regardless of the
exit code you provide, CMON_FAIL_ACTION performs the DEFAULT action
after the script executes.

CMP_FAIL_ACTION
This parameter is used when a network failure is detected between the local
host and the host of the companion OpenSwitch in a mutually-aware setup.

Actions and reason
codes

Use:

• DEFAULT – to check whether FREEZE_CFG_ON_FAIL is set. When
FREEZE_CFG_ON_FAIL is set, all future configuration changes for pool
or server status are prohibited until the connection to the companion
OpenSwitch is restored.

If FREEZE_CFG_ON_FAIL is not set, no action occurs. See “[CONFIG]”
on page 64 for details about this parameter.

• CUSTOM, MANUAL, or CUSTOM_MANUAL – to execute the
specified custom or manual script with the reason code 1006. OpenSwitch
is suspended and waits indefinitely until the system administrator executes
rp_go.

Note If CMP_FAIL_ACTION is set to CUSTOM or MANUAL, the
respective script that is executed must reside on a local file system. This is
because the script executes when the network is not responding and access
to remote mounted file systems may no longer exist.

See “User-specified actions” on page 113 for additional details about these
actions.

Exit codes for custom
and manual scripts

Valid exit codes are:

• 0 (zero) – the default exit code. If the script exits with a zero (0) status,
OpenSwitch performs the DEFAULT action
(CMP_FAIL_ACTION=DEFAULT).

• 1 – if the script exits with a code of 1, no further action is performed.

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 121

NET_FAIL_ACTION
This parameter is used when the local OpenSwitch is experiencing a network
outage and cannot communicate with the Adaptive Servers or companion
OpenSwitch hosts. However, the specified action is invoked only when each
ping has repeatedly failed more than the number of PING_RETRIES, while
waiting for a response for longer than the amount of time of PING_WAIT.

Actions and reason
types

Use:

• DEFAULT – to clean up and exit, so that existing clients disconnect. When
existing clients reconnect, they fail over to the active OpenSwitch
companion.

• CUSTOM, MANUAL, or CUSTOM_MANUAL – OpenSwitch is
suspended and the specified custom or manual script is executed with the
reason code 1005. OpenSwitch is suspended and waits indefinitely until
the system administrator executes rp_go.

Note If NET_FAIL_ACTION is set to CUSTOM or MANUAL, the
respective script that is executed must reside on a local file system. This is
because the script executes when the network is not responding and access
to remote mounted file systems may no longer exist.

See “User-specified actions” on page 113 for additional details about these
actions.

Exit codes for custom
and manual scripts

Valid exit codes are:

• 0 (zero) – the default exit code. When the script exits with a zero (0),
OpenSwitch performs the default action (NET_FAIL_ACTION=DEFAULT).

• 1 – if you do not want the DEFAULT action performed, use an exit code
of 1 for reason code 1005. For CUSTOM and MANUAL, when the script
exits with 1, OpenSwitch remains up until it can reconnect to the network
hosted Adaptive Server or companion OpenSwitch.

When you use CUSTOM_MANUAL, the manual script is executed only
if the custom script exits with 1 (which indicates failure). When the
manual script exits with 1, OpenSwitch remains up until it can reconnect
to the network hosted Adaptive Server or companion OpenSwitch.

Invoking custom and manual scripts

122 OpenSwitch

SVR_FAIL_ACTION
This parameter is used when an Adaptive Server fails to respond in a timely
manner, or when the Adaptive Server host cannot be pinged by either
OpenSwitch server in a cluster.

 Warning! If you are using a CM or RCM, set SVR_FAIL_ACTION to
DEFAULT. Specifically, you cannot run custom or manual scripts for a server
failure when you are using a CM or RCM because each CM and RCM is coded
differently and its failover procedure may contradict the actions invoked by a
custom or manual script.

When you specify DEFAULT for SVR_FAIL_ACTION, OpenSwitch checks
whether any CMs or RCMs are connected. When there are CM or RCM
connections, OpenSwitch returns, leaving failover actions to be executed by
the CM or RCM. When there are no CM or RCM connections, OpenSwitch:

1 Marks the primary (failed) Adaptive Server as locked

2 Stops all clients on the failed Adaptive Server

3 Marks the primary Adaptive Server as DOWN

4 Marks the secondary Adaptive Server as UP

5 Switches clients from the primary Adaptive Server to the secondary
Adaptive Server

6 Restarts all clients

7 Directs all new connections to the secondary Adaptive Server

Actions and reason
codes

Use:

• DEFAULT – to mark the Adaptive Server as not running and initiate a
failover process.

• CUSTOM, MANUAL, or CUSTOM_MANUAL – to execute the
specified custom or manual script with the reason code 1004, unless you
are using a CM or RCM, in which case the action and reason code are
ignored, and OpenSwitch allows the CM or RCM to handle the failover.

CHAPTER 5 Using Mutually-aware OpenSwitch Servers

Administration Guide 123

It is important that the scripts on both OpenSwitch companions perform
the same actions because during SVR_FAIL_ACTION, only one of the
companions executes the script. For example, if the script for OSW1
restarts the server or notifies the administrator, the script for OSW2 should
also restart the server or notify the administrator. Although the actions
must be the same in both scripts, the commands that invoke those actions
can be different; that is, you could use different commands to restart the
server as long as the commands produce the same result.

When you specify MANUAL or CUSTOM_MANUAL, OpenSwitch is
suspended and waits indefinitely until the system administrator executes
rp_go.

See “User-specified actions” on page 113 for additional details about these
actions.

Exit codes for custom
and manual scripts

Valid exit codes are:

• 0 – the script was successful and OpenSwitch should reconnect all existing
clients to the same primary Adaptive Server. This exit code should be
returned by a script that has succeeded in restarting the primary Adaptive
Server.

OpenSwitch does not change the status of the primary Adaptive Server to
DOWN and future connections continue to be routed to that Adaptive
Server.

• 1 – the script was successful and OpenSwitch should fail over all existing
clients to the secondary Adaptive Server. This exit code should be returned
by a script that sends a notification about the server error, but does not
restart the server that is not responding.

OpenSwitch changes the status of the primary Adaptive Server to DOWN
and future connections are routed to the next available Adaptive Server in
the pool.

• 2 – the script was unsuccessful and OpenSwitch should terminate all
existing clients connections. This exit code should be returned if the script
has failed and no automatic failover is to be performed.

If the primary Adaptive Server is down, but is restarted before new client
connections occur, clients reconnect to the primary Adaptive Server.

If the primary Adaptive Server has not been restarted, new client
connections failover to the secondary Adaptive Server and OpenSwitch
changes the status of the primary Adaptive Server to DOWN.

Invoking custom and manual scripts

124 OpenSwitch

• 3 – the script was unsuccessful and OpenSwitch should fail over all
existing clients to the secondary Adaptive Server. This exit code should be
returned if the script has failed, and you want to perform an automatic
failover to the next available server.

OpenSwitch changes the status of the primary Adaptive Server to DOWN
and all future connections are routed to the next available Adaptive Server
in the pool.

Administration Guide 125

C H A P T E R 6 Registered Procedures

This chapter describes the registered procedures that you can execute from
the command line to perform the switching process, and to monitor and
administer user activities. These procedures are provided in addition to the
default registered procedures that are built into every Open Server.

Registered procedure Description

rp_cancel Cancels processing of a query by one or more clients.

rp_cfg Causes a given configuration file to be reread while the server is running. Similar to
sp_configure.

rp_debug Turns on and off all debugging options available with the -t command line option.

rp_dump Dumps connection state information.

rp_go Resumes all suspended pools after a manual intervention has been requested, and
performed by OpenSwitch.

rp_help Displays every registered procedure in OpenSwitch.

rp_kill Kills a group of OpenSwitch connections.

rp_msg Queues a text message to be sent to one or more client connections.

rp_pool_addattrib Adds an connection attribute name/value pair from a pool.

rp_pool_addserver Adds a new server to the list of servers within a pool.

rp_pool_cache Changes or displays the connection caching status for a pool.

rp_pool_create Creates a new pool of servers.

rp_pool_drop Drops an existing pool.

rp_pool_help Displays detailed information about a pool.

rp_pool_remattrib Removes a connection attribute=value pair to a pool.

rp_pool_remserver Removes a server from the list of available servers within a pool.

rp_pool_server_status Displays or sets the status of the server present in the pool. If you use
rp_pool_server_status to set the server status for a pool, this value overrides the
generic server status set using rp_server_status.

rp_pool_status Changes the status of a pool.

rp_rcm_connect_primary Run rp_rcm_connect_primary on a secondary OpenSwitch in a redundant RCM setup,
after the primary OpenSwitch is shut down and restarted, to notify the secondary
RCM to establish a connection to the primary OpenSwitch.

rp_rcm_list Displays a list of RCMs known to this OpenSwitch.

rp_rcm_shutdown Shuts down the specified RCM through OpenSwitch.

rp_rcm_startup Starts an RCM using the specified path and RCM configuration file.

Invoking registered procedures

126 OpenSwitch

See Chapter 2, “Coordination Module Routines and Registered Procedures,” in
the OpenSwitch Coordination Module Reference Manual for a list of registered
procedures that you can issue from a coordination module.

Invoking registered procedures
Registered procedures are a form of stored procedure that are built into
OpenSwitch, rather than being implemented in Adaptive Server. You can
invoke registered procedures within OpenSwitch either:

• As part of an RPC through an Adaptive Server, or

• Directly, as a SQL language command.

rp_replay Replays SQL statements during failover.

rp_rmon Displays the contents of all [LIMIT_RESOURCE] sections of the configuration file.

rp_server_help Displays the name, status, HA-type, configuration storage definition, CMON user
name and CMON password for the specified server.

rp_server_status Displays or changes the status of a remote server. This is a generic server status across
all pools, for pools that do not have a pool-specific server status defined.

rp_set Changes a configuration value.

rp_set_srv Sets server name for a connection that is requesting a server name from a
coordination module.

rp_showquery Displays query being executed by a spid. rp_showquery only works when
OpenSwitch is not in FULL_PASSTHRU mode.

rp_shutdown Shuts down an OpenSwitch server.

rp_start Starts a group of connections that were previously stopped with rp_stop.

rp_stop Stops a group of connections.

rp_switch Switches one or more connections to another server.

rp_traceflag Enables or disables SRV_TRACE flags for debugging messages.

rp_version Displays OpenSwitch version number.

rp_who Displays information about the current set of user connections. Similar to sp_who.

Registered procedure Description

CHAPTER 6 Registered Procedures

Administration Guide 127

Remote procedure call invocation
To execute a registered procedure within OpenSwitch through an Adaptive
Server remote procedure call, Adaptive Server must first be informed of the
OpenSwitch server’s existence. Issue the following, where
OPENSWITCH_NAME is the name of the OpenSwitch server in the interfaces
file being used by the Adaptive Server:

sp_addserver OPENSWITCH_NAME

After this has been accomplished, OpenSwitch registered procedures can be
invoked by connecting directly to the Adaptive Server using isql or something
similar, and performing:

1> exec OPENSWITCH_NAME...rp_who
2> go

You can find details on setting up and invoking remote procedures in the
Adaptive Server Enterprise System Administration Guide.

Direct invocation
Any user who is connected using the name ADMIN_USER and password
ADMIN_PASSWORD, as defined in the configuration file, can invoke registered
procedures directly through OpenSwitch’s built-in RPC parser. OpenSwitch
attempts to capture all language commands and parse them as if they were RPC
calls.

RPC calls executed in this fashion must be formatted like this:

[EXEC[UTE]] rp_name [value[, value...]]

Where:

• rp_name – is the registered procedure to be executed

• value – is the value of the parameter

Note You cannot pass parameters by name.

rp_cancel

128 OpenSwitch

rp_cancel
Description Cancels processing of a client connection.

Syntax rp_cancel [pool_name, srv_name, spid, why]

Parameters pool_name
The name of the pool in which the connections should be canceled.
Supplying only this argument causes all connections within pool_name to be
canceled.

srv_name
Cancels connections to remote server srv_name. Supplying only this
argument cancels all connections to srv_name.

spid
Cancels the connection identified within OpenSwitch by spid. If this
parameter is specified while pool_name and srv_name are both NULL,
OpenSwitch cancels the spid as specified by this parameter.

If either pool_name or srv_name are not NULL, those parameters are
verified against the actual pool_name or srv_name of the specified spid. The
connection for the specified spid is cancelled only if the supplied pool_name
and srv_name exactly match the actual _pool_name and srv_name that the
specified spid is connected to. Otherwise, no connection is cancelled.

why
Message to be sent to the user of a canceled query. If you do not supply a
message, the default is: “Your query was canceled by administrative request
(spid #n)”.

Examples Example 1 Cancels the OpenSwitch connection represented by spid 8.

1> rp_cancel NULL, NULL, 8
2> go

Example 2 Cancels all connections currently established to pool POOL_A.

1> rp_cancel "POOL_A", NULL, NULL
2> go

Example 3 Cancels all connections currently established to pool POOL_A on
server SYB_SERV2, sending the message, “Sorry! Your connection was
canceled.” to each user.

1> rp_cancel "POOL_A", "SYB_SERV2", NULL, "Sorry! Your connection was
canceled."
2> go

CHAPTER 6 Registered Procedures

Administration Guide 129

Usage • Use this procedure with caution. If you do not include any arguments with
rp_cancel, all OpenSwitch connections are canceled.

• spid refers to the OpenSwitch process ID, not the process ID in the remote
Adaptive Server.

• To generate a report on the current connections, execute rp_who.

Messages

• Indicates the number of OpenSwitch connections that were canceled:

rp_cancel: Canceled n spids.

• The pool name you supplied does not exist:

rp_cancel: Invalid pool name 'pool_name'.

• The server name you supplied does not exist or has not been defined within
OpenSwitch:

rp_cancel: Invalid server name 'srv_name'.

See also rp_kill, rp_who

rp_cfg

130 OpenSwitch

rp_cfg
Description Rereads the OpenSwitch configuration file at runtime.

Syntax rp_cfg config_file

Parameters config_file
The name of the configuration file to be reread. Passing a file name of
NULL, default, an empty string, or simply deleting a previous entry, causes
the previously processed configuration file to be reread.

Examples Example 1 This command causes the configuration file to be processed.

1> rp_cfg "OpenSwitch.cfg"
2> go

Example 2 This command causes the previously processed configuration file
to be reread.

1> rp_cfg "default"
2> go

Example 3 This command processes the OpenSwitch.cfg file in
/usr/sybase/config on the same host as the OpenSwitch server.

1> rp_cfg "/usr/sybase/config/OpenSwitch.cfg"
2> go

On the Windows platform:

rp_cfg "c:\Sybase\OSW\config\OpenSwitch.cfg"

This command processes the OpenSwitch.cfg file in c:\sybase\OSW\config on
the same Windows host as the OpenSwitch server.

Usage • When a new configuration file is processed, the way each section of the
configuration file is processed differs, as described in Table 6-1.

Table 6-1: Effects of rp_cfg on existing configuration settings

Section Behavior

[CONFIG] As new name=value pairs are processed within this section, the current value of name in
OpenSwitch is replaced with value. Also, some variables, such as RMON, are meaningful
only during start-up, so changing the value of these variables at runtime has no effect (for
example, setting RMON to zero (0) does not cause the resource governor to be shut down
after OpenSwitch has been started).

[SERVER] All existing server information is replaced with the contents of the new configuration file.

[COMPANION] The admin_user and admin_password is replaced with the values from the new
configuration file if the companion server name remains the same.

If you specify a different companion server name, restart OpenSwitch instead of
reconfiguring it using rp_cfg.

CHAPTER 6 Registered Procedures

Administration Guide 131

• After verifying that the specified config_file exists, rp_cfg clears all
[LIMIT_RESOURCE] settings before processing the contents. Therefore,
if this processing stops before completion, due to a syntax error, these
settings may be only partially available within OpenSwitch, and the
configuration file must be corrected and reprocessed.

• rp_cfg removes all available pools in OpenSwitch before it processes the
new configuration file. Therefore, there is a small window where no pools
are available, and if a client connects at that time, it is disconnected.
However, this does not affect existing connections, and since rp_cfg
executes quickly and the window is almost negligible. If this causes
concern, run rp_cfg when there is are fewer clients connecting to
OpenSwitch.

• Do not use rp_cfg to reconfigure OpenSwitch; use another registered
procedure call instead. For example, to change a [CONFIG] parameter,
use rp_set (see rp_set on page 185); to add a server from to pool, use
rp_pool_addserver (see rp_pool_addserver on page 147); to remove a
server from a pool, use rp_pool_remserver (see rp_pool_remserver on page
162).

• Do not use rp_cfg to change the following configuration parameters.
Because these parameters are read only once when OpenSwitch starts,
changing them at runtime has no effect on a running OpenSwitch. To
change these parameters, stop and restart OpenSwitch with new values set
in the configuration file.

[POOL] All existing pool information is replaced with the contents of the new configuration file.

[LIMIT_RESOURCE] When the new configuration file is processed, all existing [LIMIT_RESOURCE] settings
are cleared and replaced by the contents of this section.

Section Behavior

API_CHECK LOGIN_TIMEOUT RMON_INTERVAL

CHARSET MAX_LOGSIZE SEC_PRINCIPAL

CMON MAX_PACKETSIZE SERVER_NAME

CONNECTIONS MSGQ_SIZE SRV_TRACE

CTX_TRACE MUTUAL_AWARE STACKSIZE

DEBUG_FILE MUTUAL_CLUSTER TRUNCATE_LOG

ECHO_LOG PING_THREAD UPDATE_CFG

INTERFACES RESPONSE_TIMEOUT USE_DONEINPROCS

LOG_FILE RMON USERNAME_PASSWORD_ENCRYPTED

rp_cfg

132 OpenSwitch

Messages

• rp_cfg was run with an argument of default or “” and no previous
configuration file is available:

rp_cfg: No default configuration is available.

For example, this message appears if OpenSwitch was started without a
configuration file.

• This message usually indicates that a syntax error was encountered while
processing the configuration file:

rp_cfg: Error while processing 'config_file'. See
error logs.

You can find detailed information in the OpenSwitch error logs.

• The configuration file was successfully processed, and new settings have
taken effect:

 rp_cfg: Successfully processed configuration file
'config_file'.

CHAPTER 6 Registered Procedures

Administration Guide 133

rp_debug
Description Enables or disables OpenSwitch debugging messages.

Syntax rp_debug [options, [on|off]]

Parameters options
A list of one or more single-character option flags. Each flag is a toggle;
supplying it once enables the option, supplying it again disables the option.
Passing an option of “” lists the debugging flags that are currently enabled.

Table 6-2 shows the valid debugging options. These are identical to the
options you can use with the -t flag at the command line.

rp_debug

134 OpenSwitch

Table 6-2: Valid options values

Value Description

a Enables all possible debugging flags.

b Displays attempts to set or test configuration options as described in
the configuration file.

c Displays information about result handling of client-side cursors.

C Logs interactions between a mutually-aware OpenSwitch, its
companion OpenSwitch, and Adaptive Servers.

d Logs access to data items attached to each thread’s user data.

D Displays information about the handling of dynamic SQL statements.

e Logs all error messages passing through the OpenSwitch error
handlers, even those that are normally suppressed.

f Shows connection progress information when OpenSwitch is
interacting with the coordination module.

F Display messages related to a coordination module (CM).

g Displays operations involving security negotiations.

h Displays messages when entering each event handler.

i Displays progress information concerning the switching process
during a call to rp_switch, such as success or failure of each switch, and
which connections fail to go idle within the specified period of time.

j Shows the connection caching activity.

k Displays activity of the timer thread (the thread that is responsible for
calling timed callbacks within OpenSwitch).

l Dumps every SQL statement issued through the SRV_LANGUAGE
event handler to log_file.

m Displays every memory allocation and de-allocation (more extensive
information may be available at compile time).

n Displays receipt and handling of cancel or attention requests from
client connections.

o Displays a message each time a command line option value is set or
tested.

p Displays manipulation, use, and assignments of server pools.

q Displays information about the connection monitor activity.

r Displays current state and actions of the internal resource monitoring
thread.

R Logs interactions between an OpenSwitch and replication
coordination modules (RCMs).

s Shows access and release of shared and exclusive internal locks (used
to prevent concurrent access to internal data structures).

CHAPTER 6 Registered Procedures

Administration Guide 135

on
Turns on debugging options, which causes debugging messages to be
dumped to the error log file.

off
Turns off debugging options.

Examples Example 1 Displays all debugging flags and their current state.

1> rp_debug
2> go

Returns:

flag description state
---- ---------------------------------- ------
b Attribute set/test off
c Client cursor handling off
C Mutual Aware on
d Thread data access requests off
D Dynamic SQL handling off
e Error handler calls on
f Coordination Module info on
F Full Passthru mode off
g Open Client/Server security off
h Open Server handler calls off
i Switching process info off
j Connection caching info off
k Timer thread state off
l Output all language requests off
m Memory allocation/deallocation off
n Client attention requests off
o Command line option set/test off
p Pool access requests off
q Connection monitor (CMON) thread off

S Displays the SQL statement that is being executed as part of rp_replay
calls.

t Displays activities of the timer thread that is responsible for
periodically waking other sleeping threads.

u Displays information about result sets being returned to client threads.

U Logs the user action, such as CUSTOM or MANUAL script execution
during a companion OpenSwitch or Adaptive Server failure.

v Logs ping operations and responses from remote machines.

x Displays mutex accesses (more detailed view on shared locks).

Value Description

rp_debug

136 OpenSwitch

r Resource monitoring (RMON) thread off
R RCM start thread off
s Shared lock acquisition off
S SQL Statements to be replayed off
t Timed sleep thread off
u Result set handling off
U User Action off
v Network ping thread off
x Internal mutex grab/release off
(28 rows affected)

Example 2 Causes all switching information and all attention requests to be
reported in the OpenSwitch log file.

1> rp_debug "in"
2> go

Returns:

flag description status
---- ---------------------------- ------
i Switching progress info Off
n Client attention requests On

Usage • Debugging messages are intended primarily for use by individuals testing
functionality, and are not intended for day-to-day use.

• Many of the debugging options dump large amount of information to the
log file and may significantly impact OpenSwitch performance.

Messages

Indicates that an invalid option was supplied.

rp_debug: Invalid debug flag 'flag'.

For valid options, see Table 6-2 on page 134.

CHAPTER 6 Registered Procedures

Administration Guide 137

rp_dump
Description Dumps connection state information.

Syntax rp_dump [[thread|mutex|all]]

Parameters thread
Dumps information about all user connection threads in OpenSwitch.

mutex
Dumps information about all mutexes that OpenSwitch owns.

all
Dumps information about all OpenSwitch threads and mutexes. This is the
default if no parameters are specified.

Examples 1> rp_dump thread
2> go

Returns:

******** THREAD DUMP *********
<spid #15 system pid 21337 state=<NONE> coord=<NONE>>
server mask=0x0, busy time='11/06/05 21:53:09',
transtate=CS_TRAN_UNDEFINED,
app='isql', user='sa', host='loka', db='master',
conn=0xee12ac8, current='ase2', next='ase2', pool='POOL1',
proc=0x4095b4, cap set=CS_FALSE, next cursor=0, reason code=0,
reason text='', function=''

(return status = 0)

Usage • This procedure is provided only for debugging purposes.

• The output of rp_dump resembles a more detailed output of rp_who.

rp_go
Description Restarts all pools that were suspended by a MANUAL action or script.

Syntax rp_go

Parameters None

rp_go

138 OpenSwitch

Usage • Issued during an Adaptive Server or companion OpenSwitch failure, after
a MANUAL intervention has been requested and performed by the
administrator. Failure types are CMON_FAIL_ACTION,
CMP_FAIL_ACTION, NET_FAIL_ACTION, SVR_FAIL_ACTION, or
when a mutually-aware OpenSwitch detects that its companion has a
different set of mutually-aware configuration parameters, and suspends
the pools as a result of it.

• Returns all pools to their original states, which allows all pending clients
applications that are running to login.

• rp_go has no effect on an OpenSwitch server that is not running.

• If you add a new pool during a MANUAL intervention, rp_go adds the
new pool to the existing pool list.

• If a problem is not resolved by the time rp_go is issued, depending on
problem type, occasionally, the MANUAL intervention is requested
repeatedly until the problem is resolved. In this case, you may need to
issue rp_go each time a manual intervention is performed.

• If a mutually-aware OpenSwitch detects that its companion has different
configuration parameters, both OpenSwitch servers are suspended, and
you must issue rp_go on both companions to resume the mutually-aware
behavior.

See also “Invoking custom and manual scripts” on page 111.

CHAPTER 6 Registered Procedures

Administration Guide 139

rp_help
Description Displays complete set of registered procedures, and their respective

parameters, recognized by OpenSwitch.

Syntax rp_help

Examples 1> rp_help
2> go

Returns:

Procedure Name Parameters
---------------------------- -----------------
help NULL
np_switch_end NULL
np_switch_start NULL
rp_cancel @pool_name, @srv_name,

@spid, @why
rp_cfg @file_name
rp_debug @flags, @state
rp_dump @what, @sendtolog
rp_help NULL
rp_kill @pool_name, @srv_name,

@spid
rp_go NULL
rp_msg @pool_name, @srv_name,

@spid, @msg
rp_pool_addattrib @pool_name, @attrib,

@value
rp_pool_addserver @pool_name, @server,

@rel_server, @status,
@position

rp_pool_cache @pool_name, @cache
rp_pool_create @pool_name, @rel_pool,

@position, @status,
@mode

rp_pool_drop @pool_name
rp_pool_help @pool_name
rp_pool_remattrib @pool_name, @attrib,

@value
rp_pool_remserver @pool_name, @server
rp_pool_status @pool_name, @status
rp_pool_server_status @pool_name, @server,

@status
rp_rcm_connect_primary NULL
rp_rcm_list NULL
rp_rcm_shutdown @rcm_name

rp_help

140 OpenSwitch

rp_rcm_startup @rcm_path, @rcm_cfg,
@rcm_log, @rcm_retries,
@rcm_redundant

rp_rmon NULL
rp_replay @spid, @action, @name,

@sql, @canfail
rp_server_status @server_name, @status
rp_server_help @server_name
rp_set @parm_name, @parm_value
rp_set_srv @spid, @server
rp_showquery @spid
rp_shutdown NULL
rp_start @pool_name, @srv_name,

@spid
rp_stop @pool_name, @srv_name,

@spid, @ign_tran,
@ign_fail

rp_switch @pool, @srcsrv, @spid,
@dstsrv, @grace_period,
@force

rp_traceflag @flags, @state
rp_version NULL
rp_who @spid
sp_ps @spid
sp_serverinfo @function, @name
sp_who @spid
(42 rows affected)
(return status = 0)

Usage rp_help

CHAPTER 6 Registered Procedures

Administration Guide 141

rp_kill
Description Shut down a group of OpenSwitch connections.

Syntax rp_kill [pool_name, srv_name, spid]

Parameters pool_name
The name of the pool for which the connections should be shut down.
Supplying only this argument causes all connections within pool_name to be
shut down.

srv_name
Shuts down connections to remote server srv_name. Supplying only this
argument causes all connections to srv_name to be shut down.

spid
Shuts down the connection identified within OpenSwitch by spid. If this
argument is specified, pool_name and srv_name are ignored.

Examples Example 1 Shuts down the OpenSwitch connection represented by spid 8 (as
identified by rp_who).

1> rp_kill NULL, NULL, 8
2> go

Example 2 Shuts down all connections currently established to pool POOL_A.

1> rp_kill "POOL_A", NULL, NULL
2> go

Example 3 Shuts down all connections currently established to pool POOL_A
on server SYB_SERV2.

1> rp_kill "POOL_A", "SYB_SERV2", NULL
2> go

Usage • If no arguments are supplied to rp_kill, all connections are killed within
OpenSwitch. Use this procedure with caution.

• spid refers to the OpenSwitch process ID, not the process ID in the remote
Adaptive Server.

• To generate a report on the current connections, execute rp_who.

• Shutting down a connection causes it to be forcibly removed from
OpenSwitch. No messages are delivered to the client.

Messages

• Indicates the number of OpenSwitch connections that were killed:

rp_kill: Killed n spids.

rp_kill

142 OpenSwitch

• The pool name you supplied does not exist:

rp_kill: Invalid pool name 'pool_name'.

• The server name you supplied does not exist or has not been defined within
OpenSwitch:

rp_kill: Invalid server name 'srv_name'.

See also rp_cancel, rp_who, sp_who

CHAPTER 6 Registered Procedures

Administration Guide 143

rp_msg
Description Queues text message to be broadcast to one or more client connections.

Syntax rp_msg [pool_name], [srv_name], [spid], msg

Parameters pool_name
The name of the pool to which the message should be delivered. Supplying
only this argument sends the message to all connections in the specified
pool.

srv_name
Sends the message to connections currently established to srv_name.

spid
The OpenSwitch process ID of the client connection to receive the message.
Connection spid numbers can be obtained using rp_who.

msg
The text of the message to be delivered. This message must be less than 255
characters in length.

Examples 1> rp_msg POOL1, ase2, 19, "TEST"
2> go

Results:

Successfully queued message to spid 19
(return status = 0)

Usage • Due to the nature of TDS (the protocol used by clients to communicate
with the OpenSwitch server), messages cannot be delivered immediately
and, instead, are queued to be sent to clients during the next activity. All
clients that were actively processing a result set at the time that rp_msg is
issued receive the message at the very end of their result set, and all idle
clients receive the message as soon as they initiate a new request of the
server.

• Idle clients that disconnect without issuing a subsequent query never
receive the message.

• Do not issue rp_msg from a client connection that is passing through
OpenSwitch and using Adaptive Server to invoke the rp_msg RPC in
OpenSwitch. This causes the issuing connection to be locked in a
transaction, which means that the connection cannot be switched.

Messages

• See the OpenSwitch error log (specified via the -l flag or LOG_FILE
configuration option variable) for details:

rp_msg

144 OpenSwitch

rp_msg: Error while queuing message. See OpenSwitch
error logs.

• The spid supplied is not a valid spid in OpenSwitch:

rp_msg: spid is not a valid spid.

This may be because the spid has disconnected since the rp_msg request
was issued.

• The message has been queued to be delivered to the specified spid:

rp_msg: Successfully queued message to spid spid.

• This message is displayed when the spid argument is -1:

rp_msg: Successfully queued message to N spids.

 It indicates the total number of spids that have been scheduled to receive
the message.

See also rp_who, sp_who

CHAPTER 6 Registered Procedures

Administration Guide 145

rp_pool_addattrib
Description Adds connection attribute/value pair to a pool.

Syntax rp_pool_addattrib pool_name, attrib, value

Parameters pool_name
Identifies the name of the pool to which the attribute/value pair is to be
added.

attrib
The name of the attribute to be added to the pool. Table 6-3 shows the valid
values.

Table 6-3: Attribute names for rp_pool_addattrib

value
A standard SQL wildcard expression use to match attrib.

Examples Example 1 Routes any connection created by a user name beginning with
“Sybase” or “sybase” to POOL_A.

1> rp_pool_addattrib "POOL_A", "username", "[sS]ybase%"
2> go

Example 2 Routes any connection created with an application name of “isql”
to POOL_A.

1> rp_pool_addattrib "POOL_A", "appname", "isql"
2> go

Example 3 Routes any incoming connection from this particular host to
POOL_A.

1> rp_pool_addattrib "POOL_A", "hostname",
"name of host"

2> go

Usage • An attribute/value pair is used to route connections to a pool. At the time
a connection is established to OpenSwitch, the attribute of the connection
identified by attrib is compared to the regular expression value. If a match
is found, the connection is routed to pool_name.

Attribute Description

username value must match the user name of an incoming client connection.

appname value must match the application name identified by the incoming
client connection.

hostname value must match the host machine name identified by the
incoming client connection.

rp_pool_addattrib

146 OpenSwitch

• Adding or removing attribute/value pairs from a pool has no effect on
existing connections; however, the changes apply to existing connections
during a failover.

• Both the application name and host name attributes of a client connection
must be explicitly set by the client application and cannot actually reflect
the real application name and host name that the user is using.

• Changes applied to a pool are not reflected in the configuration file. You
must manually change the configuration file.

• Use rp_pool_help to display the current set of attributes.

Messages

• The named pool does not exist within OpenSwitch:

rp_pool_addattrib: There is no such pool
'pool_name'.

Use rp_pool_create to create pools. See “rp_pool_create” on page 154.

• The attribute named “attrib” is invalid:

rp_pool_addattrib: Invalid attribute name 'attrib'.

• This message is usually encountered due to an invalid regular expression
syntax:

rp_pool_addattrib: Error adding attribute 'attrib'
to pool 'pool_name'.

Details can be found in the OpenSwitch error log.

• Registered procedure execution succeeded:

rp_pool_addattrib: Attribute successfully added to
pool 'pool_name'

See also rp_pool_create, rp_pool_help, rp_pool_remattrib

CHAPTER 6 Registered Procedures

Administration Guide 147

rp_pool_addserver
Description Adds a remote server name to a pool.

Note rp_pool_addserver is not currently support by mutually-aware
OpenSwitch servers.

Syntax rp_pool_addserver pool_name, server [, rel_server, status, position]

Parameters pool_name
Name of the pool to which the server is being added.

server
Name of the remote server being added to the pool.

rel_server
Name of the server within the pool relative to the server being added.

rp_pool_addserver

148 OpenSwitch

status
The status of the server being added.

• When status is NULL, the generic status of this server is used for all
pools if it exists in the [SERVER] section of the OpenSwitch
configuration file or the status can be retrieved using rp_server_status.

• If the server does not exist in the [SERVER] section, OpenSwitch uses
the status of the DEFAULT server in the [SERVER] section.

• When status is not NULL, the value is used for the server’s effective
status in this pool, regardless of the generic server status. The status
value is used until you change it using rp_pool_server_status, or until
the server is removed from this pool using rp_pool_remserver and re-
added with status set to NULL. This is called a pool-specific server
status, which facilitates pool-based failover, where individual pools fail
over clients to the secondary Adaptive Server even though the primary
Adaptive Server is still considered running in other pools.

Once you set a pool’s server status using rp_pool_addserver or
rp_pool_server_status, always verify the status using
rp_pool_server_status, not rp_server_status, because the effective
pool-specific server status can be different from the generic server
status.

Note Pool-specific server status and pool-based failover are not supported by
mutually-aware OpenSwitch servers.

Valid status values are:

Value Description

UP The server is immediately available for use.

DOWN The server is unavailable, and is not considered for new client
connections to OpenSwitch.

LOCKED The server is available, but new incoming connections being
actively connected through the pool are blocked (or stopped) until
the status is changed to UP or DOWN. Blocked connections appear
to client applications to be “stuck” until the pool is unlocked.

CHAPTER 6 Registered Procedures

Administration Guide 149

position
Valid values are:

Examples Example 1 Adds server SYB_SERV1 to the end of the list of servers associated
with POOL_A with no pool-specific server status.

1> rp_pool_addserver "POOL_A", "SYB_SERV1"
2> go

Example 2 Adds server SYB_SERV2 with a DOWN status to a position
immediately before SYB_SERV1 in the list of servers associated with
POOL_A.

1> rp_pool_addserver "POOL_A", "SYB_SERV2", "SYB_SERV1", DOWN, "BEFORE"
2> go

Example 3 Adds server SYB_SERV3 with status UP as the first server in the
list of servers associated with POOL_A.

1> rp_pool_addserver "POOL_A", "SYB_SERV3", NULL, UP, "HEAD"
2> go

Example 4 Adds server SYB_SERV2 to a position immediately before
SYB_SERV1 in the list of servers associated with POOL_A. The status of
SYB_SERV2 is the status of the DEFAULT server.

1> rp_pool_addserver "POOL_A", "SYB_SERV2", "SYB_SERV1", NULL,"BEFORE"
2> go

Example 5 Adds server “ase3” to a position immediately before the server
“ase1” in the list of servers associated with pool POOL1.

1> rp_pool_addserver "POOL1", "ase3", "ase1", NULL, "BEFORE"
2> go

Returns:

rp_pool_addserver: Server ase3 added to pool POOL1

Value Description

HEAD rel_server is ignored, and server is placed at the beginning of the list
of servers in the pool

TAIL rel_server is ignored, and server is placed at the end of the list of
servers in the pool. This is the default position if no value is supplied
for position.

BEFORE server is added immediately before rel_server in the list of servers in
the pool.

AFTER server is added immediately after rel_server in the list of servers in
the pool.

rp_pool_addserver

150 OpenSwitch

(return status = 0)

Afterward, the rp_pool_help command is issued to display the information
below about POOL1, such as status and mode (chained or balanced).

1> rp_pool_help POOL12> go

Returns:

pool_name mode cache status block next_server
---------- -------- ---------- --------- ----------- --------------
POOL1 CHAINED 0 UP 0 ase3
(1 row affected)

server_name

ase3
ase1
ase2
(3 rows affected)

attribute value
------------ --------
(0 rows affected)(return status = 0)

Usage • When a connection is first established within a pool, it is routed to the first
(in chained mode) or next (in balanced mode) available server, therefore,
the order in which you define servers in the pool is important.

• To display the current set of servers within a pool, enter:

rp_pool_help "pool_name"

• At the time a server is added to a pool, OpenSwitch does not validate the
name of the server in the interfaces file. Make sure that the server name is
accurate.

Messages

• The supplied pool name does not exist in OpenSwitch:

rp_pool_addserver: There is no such pool
'pool_name'.

You can create a new pool with rp_pool_create.

• The server does not exist in the pool:

rp_pool_addserver: There is no such server as
'rel_server' in pool 'pool_name'.

You can add a server using rp_pool_addserver.

CHAPTER 6 Registered Procedures

Administration Guide 151

• Registered procedure call succeeded:

rp_pool_addserver: Server 'server' added to pool
'pool_name'.

See also rp_pool_create, rp_pool_remattrib, rp_pool_server_status, rp_pool_remserver

rp_pool_cache

152 OpenSwitch

rp_pool_cache
Description Sets or displays pool cache setting.

Syntax rp_pool_cache [pool_name, cache]

Parameters pool_name
Name of the pool to be displayed or changed.

cache
The number of seconds that connection caches are held in the pool. Setting
this to a value of zero (0) disables future connection caching.

Examples Example 1 Displays the list of all pools and their current cache values.

1> rp_pool_cache
2> go

Returns:

pool_name cache
--------------------- ---------
POOL_A 0
POOL_B 30
POOL_C 0

Example 2 Displays the current cache value for POOL_A.

1> rp_pool_cache "POOL_A"
2> go

Returns:

pool_name cache
--------------------- ---------
POOL_A 0

Example 3 Changes the cache of POOL_A to 10 seconds.

1> rp_pool_cache "POOL_A", 102
> go

Returns:

pool_name cache
--------------------- ---------
POOL_A 10

Example 4 Changes the cache of all pools to 30 seconds.

1> rp_pool_cache NULL, 30
2> go

CHAPTER 6 Registered Procedures

Administration Guide 153

Returns:

pool_name cache
--------------------- ---------
POOL_A 30
POOL_B 30
POOL_C 30

Usage • The cache value for a pool indicates the number of seconds that an
outgoing connection is to be maintained following a disconnection from a
client application. Connection caching can greatly improve performance
of applications that rapidly create short-duration connections.

• If you use connection caching, verify that the client application resets all
necessary connection options after every new connection. OpenSwitch
does not reset connection options when it reuses a cached connection to
the Adaptive Server. Option settings from a previous connection continue
to take effect for new client connections that use the same user name and
password until you reset the options.

• Changing the cache duration for a pool does not affect those connections
that are already cached; it only affects future connections.

• For more details, see “Using connection caching” on page 34.

Messages

• The pool does not exist within OpenSwitch:

rp_pool_cache: There is no such pool 'pool_name'.

The list of existing pools can be determined using rp_pool_help. New pools
can be defined using rp_pool_create.

See also rp_pool_create, rp_pool_help

rp_pool_create

154 OpenSwitch

rp_pool_create
Description Creates a new pool.

Syntax rp_pool_create pool_name [, rel_pool, position, status, mode]

Parameters pool_name
Name of the pool to be created.

rel_pool
Name of an existing pool, relative to which pool_name will be created.

position
Position of pool_name relative to rel_pool. Table 6-4 describes the values for
position.

Table 6-4: Position values for rp_pool_create

status
The initial status of the pool. Table 6-5 describes the values for status.

Table 6-5: Status values for rp_pool_create

mode
The routing and switching mode of the pool. Table 6-6 on page 155
describes the values for mode.

Position Description

HEAD rel_pool is ignored, and pool_name is placed at the beginning of the
list of pools.

TAIL rel_pool is ignored, and pool_name is placed at the end of the list of
servers within the pool. This is the default position if position is not
supplied.

BEFORE pool_name is added immediately before rel_pool in the list of pools.

AFTER pool_name is added immediately after rel_pool in the list of pools.

Status Description

UP The pool is immediately available for use.

DOWN The pool is unavailable, and will not be considered for use by any
new client connections established to OpenSwitch. This is the default
value.

LOCKED The pool is available, but any new incoming connections actively
being connected through the pool are blocked (or stopped) until the
status is changed to UP or DOWN. Blocked connections appear to the
client applications to have stopped responding until the pool is
unlocked.

CHAPTER 6 Registered Procedures

Administration Guide 155

Table 6-6: Mode values for rp_pool_create

Examples Example 1 Creates chained mode POOL_A at the end of the list of existing
pools. This pool has a status of DOWN.

1> rp_pool_create "POOL_A"
2> go

Example 2 Creates chained mode POOL_A immediately before POOL_B in
the list of existing pools. This pool has a status of DOWN.

1> rp_pool_create "POOL_A", "POOL_B", "BEFORE"
2> go

Example 3 Creates balanced mode POOL_A at the end of the list of existing
pools. This pool has a status of LOCKED.

1> rp_pool_create "POOL_A", NULL, NULL, "LOCKED",
"BALANCED"

2> go

Example 4 Creates chained mode POOL_C at the end of the list of existing
pools. This pool has a status of DOWN.

1> rp_pool_create "POOL_C", NULL, TAIL
2> go

Example 5 Creates a chained mode POOL_D after POOL_B with status equal
to UP.

1> rp_pool_create "POOL_D", POOL_B, AFTER, UP, CHAINED
2> go

Usage • The order in which pools are defined is important; all connections are
routed to the first matching pool according to the attribute/value pairs
established using rp_pool_addattrib. See rp_pool_addattrib on page 145.

• Pools are initially created with no associated servers or attributes.
Therefore, Sybase strongly recommends that you assign pools a status of
DOWN. This prevents connections from being routed to the pool until its
construction is complete.

Mode Description

CHAINED All connections are routed to the first server in the pool that has a
status of UP or LOCKED.

BALANCED Incoming connections are routed to servers in round-robin fashion
among every server within the pool that has a status of UP or
LOCKED, effectively balancing user load across all servers.

rp_pool_create

156 OpenSwitch

• Creating a new pool has no effect on existing connections. However, a new
pool is considered when existing connections are being switched (for
example, due to failover).

• To specify a position of BEFORE or AFTER, you must also supply a
relative pool.

Messages

• The supplied pool name has already been created:

rp_pool_create: There is already a pool named
'pool_name'.

 Either destroy or modify the existing pool.

• The name of the relative pool supplied does not exist:

 rp_pool_create: There is no such pool as 'rel_pool'.

• A position of BEFORE or AFTER was specified without a corresponding
relative pool:

rp_pool_create: NULL @rel_pool with 'position'
position.

See also rp_pool_addserver, rp_pool_addattrib

CHAPTER 6 Registered Procedures

Administration Guide 157

rp_pool_drop
Description Drops an existing pool.

Syntax rp_pool_drop pool_name

Parameters pool_name
Name of the pool to be dropped.

Examples Drops the pool named “POOL2” from the pool list in the OpenSwitch server.

1> rp_pool_drop POOL2
2> go

Returns:

rp_pool_drop: Pool POOL2 dropped
(return status = 0)

Usage • You must supply the name of the pool to be dropped. The pool name must
be exactly the same as what is declared in the config file.

• You can use rp_pool_help to get a list of the current pool names.

Messages

• You did not supply a pool name for the pool to be dropped:

Procedure rp_pool_drop expects parameter @pool_name,
which was not supplied

• The pool with the supplied pool name does not exist:

rp_pool_drop: There is no such pool as 'pool_name'

Run rp_pool_status pool_name to check your pool list.

See also rp_pool_create, rp_pool_status

rp_pool_help

158 OpenSwitch

rp_pool_help
Description Displays information about pools.

Syntax rp_pool_help [pool_name]

Parameters pool_name
Name of the pool about which information is to be displayed. Without this
parameter, rp_pool_help issues a report about all available pools.

Examples Example 1 Displays information about all pools.

1> rp_pool_help
2> go

Returns:

pool_name mode status block next_server
---------- -------- -------- ------ -------------
POOL_A CHAINED UP 0 SYB_SERV1
POOL_B BALANCED UP 0 SYB_SERV2
POOL_C BALANCED LOCKED 0 SYB_SERV3

Example 2 Displays information about POOL_A.

1> rp_pool_help "POOL_A"
2> go

Returns:

pool_name mode status block next_server
---------- -------- -------- ------ -------------
POOL_A CHAINED UP 0 SYB_SERV1
(1 row affected)

server_name

SYB_SERV1
SYB_SERV3
(2 rows affected)

attribute value
---------- -------------------
appname isql
hostname test.sybase.com

Usage • The block column indicates the number of spids that are current blocked on
a LOCKED pool.

CHAPTER 6 Registered Procedures

Administration Guide 159

• The next_server column indicates the name of the next server to be
assigned to an incoming connection or a connection in the process of
switching.

Messages

• The specified pool does not exist in the OpenSwitch:

rp_pool_help: Invalid pool name 'pool_name'.

Run rp_pool_help without pool_name to determine the set of available
pools.

See also rp_pool_addattrib, rp_pool_addserver, rp_pool_create

rp_pool_remattrib

160 OpenSwitch

rp_pool_remattrib
Description Removes a connection attribute/value from a pool.

Syntax rp_pool_remattrib pool_name, attrib, value

Parameters pool_name
Identifies the name of the pool from which the attribute/value pair is to be
removed.

attrib
The name of the attribute to be removed from the pool. Table 6-7 describes
the values for attrib.

Table 6-7: Attribute names for rp_pool_remattrib

value
A standard SQL wildcard expression used to match attrib.

Examples Example 1 Removes attribute appname, with a value of “isql%” from
POOL_A.

1> rp_pool_remattrib "POOL_A", "appname", "isql%"
2> go

Example 2 Removes the attribute hostname with the a value of “[Cc]rater”
from POOL_A.

1> rp_pool_remattrib "POOL_A", "hostname", "[Cc]rater"
2> go

Example 3 Removes the attribute username with a value of “Moon” from
POOL_A.

1> rp_pool_remattrib "POOL_A", "username", "Moon"
2> go

Usage • The value parameter must exactly match the actual attribute’s value, either
as specified in the configuration file, or by using rp_pool_remattrib to
successfully remove the attribute.

• Adding or removing attribute=value pairs from a pool has no effect on
existing connections except during a failover.

Attribute Description

username Value must match the user name of an incoming client connection.

appname Value must match the application name identified by the incoming
client connection.

hostname Value must match the host machine name identified by the
incoming client connection.

CHAPTER 6 Registered Procedures

Administration Guide 161

• Any changes you make to a pool using rp_pool_remattrib are not reflected
in the configuration file; you must make those changes manually.

• You can use rp_pool_help to display the current attributes.

Messages

• The named pool does not exist within OpenSwitch:

rp_pool_remattrib: There is no such pool
'pool_name'.

• The named attribute is not one of user name, host name, or application
name:

rp_pool_remattrib: Invalid attribute name 'attrib'.

• Registered procedure execution succeeded:

rp_pool_addattrib: Attribute successfully removed
from pool 'pool_name'

See also rp_pool_addattrib, rp_pool_create, rp_pool_help

rp_pool_remserver

162 OpenSwitch

rp_pool_remserver
Description Removes a server from a pool.

Note rp_pool_remserver is not currently support by mutually-aware
OpenSwitch servers.

Syntax rp_pool_remserver pool_name, server

Parameters pool_name
The name of the pool from which the server is to be removed.

server
The name of a remote server that belongs to pool_name.

Examples Removes SYB_SERV1 from the list of servers available in POOL_A.

1> rp_pool_remserver "POOL_A", "SYB_SERV1"
2> go

Usage • Removing a server from a pool has no effect on existing connections using
the server; they remain attached to the server. To remove connections from
server, use rp_switch.

• Leaving a pool with no available servers causes all connections routed to
the pool to fail to connect due to lack of available servers.

• You can use rp_pool_help to determine the set of servers available within
a pool.

Messages

• The pool does not exist within OpenSwitch:

rp_pool_remserver: There is no such pool
'pool_name'.

• The server does not exist within the pool:

rp_pool_remserver: There is no server 'server' in
pool 'pool_name'

• The registered procedure executed successfully:

rp_pool_remserver: Server 'server' removed from pool

See also rp_pool_addserver, rp_pool_help

CHAPTER 6 Registered Procedures

Administration Guide 163

rp_pool_server_status
Description Displays or sets the status of the server present in any pool that is defined in the

[POOL] section of the OpenSwitch configuration file.

Syntax rp_pool_server_status pool [server, status]

Parameters pool
The name of the pool. The pool you specify must be defined in the [POOL]
section of the OpenSwitch configuration file.

server
Name of the server. If server name is NULL, rp_pool_server_status displays
the status of all servers present in the pool.

status
The status of the server. If status is NULL, then rp_pool_server_status
displays the status of the specified server that is present in the pool. If status
is not NULL, the status value is used to set the pool-specific server status for
this pool.

Valid status values are:

Examples Example 1 Displays the status of all the servers present in the “POOL1.”

1> rp_pool_server_status "POOL1", NULL, NULL
2> go

Returns:

pool_name server_name status

POOL1 ase1 UP
POOL1 ase2 UP
POOL1 ase3 UP

Example 2 Displays the status of the “ase1” server that is present in “POOL1.”

1> rp_pool_server_status "POOL1", ”ase1”, NULL

Value Description

UP The server is immediately available for use.

DOWN The server is unavailable, and is not considered for new client
connections to OpenSwitch.

LOCKED The server is available, but new incoming connections being actively
connected through the pool are blocked (or stopped) until the status is
changed to UP or DOWN. Blocked connections appear to client
applications to be “stuck” until the pool is unlocked.

rp_pool_server_status

164 OpenSwitch

2> go

Returns:

pool_name server_name status

POOL1 ase1 UP

Example 3 Sets the status to DOWN of the “ase1” server that is present in the
“POOL1.”

1> rp_pool_server_status "POOL1", "ase1", "DOWN"
2> go

Returns:

pool_name server_name status
--
POOL1 ase1 DOWN

Usage The status set by rp_pool_server_status, if any, takes precedence over the status
set by rp_server_status for a server status within a pool.

• Once a pool is assigned a pool-specific server status, it always uses that
server status, instead of the generic server status, to determine where to
send incoming client connections. This allows pool-based failover, where
two or more pools share the same primary Adaptive Server, some pools
channel client connections to the secondary Adaptive Server, and other
pools continue to send client connections to the same primary Adaptive
Server.

• After you use rp_pool_server_status to set a server’s pool status, you can
no longer use rp_server_status to accurately display the status for that
server pool. Use rp_pool_server_status to verify the server status instead.

• To remove a pool-specific server status that you set using either
rp_pool_server_status or rp_pool_addserver, first drop the server from the
pool using rp_pool_remserver, then re-add the server using
rp_pool_addserver with NULL as the status.

• Do not use rp_pool_server_status when MUTUAL_AWARE is set to 1.
Pool-based failover is not supported by mutually-aware OpenSwitch
servers, and a pool-specific server status may not match the generic server
status set by the default SVR_FAIL_ACTION during a failover.

See also rp_pool_addserver, rp_server_status

CHAPTER 6 Registered Procedures

Administration Guide 165

rp_pool_status
Description Sets or displays pool status.

Syntax rp_pool_status [pool_name, status]

Parameters pool_name
Name of the pool to be displayed or changed.

status
The status to which the pool is to be changed. If you supply a status value,
but no pool name, the status of all pools is changed. Table 6-8 describes the
values for status.

Table 6-8: Status values for rp_pool_status

Status Description

PRE_UP Mutually-aware-specific pool status. The pool is either in the process of being marked as UP, or
has encountered a problem during that process. Check the error log to troubleshoot the problem.
After you resolve the problem, manually set the pool status to UP on one of the mutually-aware
companion OpenSwitch servers. The command will be propagated to the other OpenSwitch
companion if it is running.

 Warning! Do not manually set a pool’s status to PRE_UP.

UP The pool is immediately available for use.

PRE_DOWN Mutually-aware specific pool status. The pool is either in the process of being marked as DOWN,
or has encountered a problem during that process. Check the error log to troubleshoot the problem.
After you resolve the problem, manually set the pool status to DOWN on one of the
mutually-aware companion OpenSwitch servers. The command will be propagated to the other
OpenSwitch companion if it is running.

 Warning! Do not manually set a pool’s status to PRE_DOWN.

DOWN The pool is unavailable, and is not considered for use by any new client connections established
to OpenSwitch.

PRE_LOCKED Mutually-aware specific pool status. The pool is either in the process of being marked as
LOCKED, or has encountered a problem during that process. doing so. Check the error log to
troubleshoot the problem. After you resolve the problem, manually set the pool status to LOCKED
on one of the mutually-aware companion OpenSwitch servers. The command will be propagated
to the other OpenSwitch companion if it is running.

 Warning! Do not manually set a pool’s status to PRE_LOCKED.

rp_pool_status

166 OpenSwitch

Examples Example 1 Displays the list of all pools and their current status:

1> rp_pool_status
2> go

Returns:

pool_name status
------------- ---------
POOL_A UP
POOL_B UP
POOL_C UP

Example 2 Displays the current status of POOL_A:

1> rp_pool_status "POOL_A"
2> go

Returns:

pool_name status
------------- ---------
POOL_A UP

Example 3 Changes the status of POOL_A to LOCKED and displays the
results:

1> rp_pool_status "POOL_A", "LOCKED"
2> go

Returns:

pool_name status
------------- ---------
POOL_A LOCKED

LOCKED The pool is available, but any new incoming connections actively being connected through the
pool are blocked (or stopped) until the status is changed to UP or DOWN. Blocked connections
appear to the client applications to have stopped responding until the pool is unlocked.

SUSPENDED The pool is being suspended by OpenSwitch due to a failure that requires an administrator’s
manual intervention. See “Invoking custom and manual scripts” on page 111 for more
information. The pool blocks on all new connections until rp_go is issued.

 Warning! Do not manually set a pool’s status to SUSPENDED.

Status Description

CHAPTER 6 Registered Procedures

Administration Guide 167

Usage • Changing the status of a pool does not affect users that are currently using
the pool.

• Changing the status of a pool has no affect on existing connections.

• If you do not have a pool-based server, use rp_server_status to set and
check a server’s status.

If you have a pool-based server, use rp_pool_server_status to set and verify
the server’s status.

• rp_server_status displays the status of a server only if that server is listed
in the [SERVER] section of the OpenSwitch configuration file, which may
not be the same as a pool’s actual server status.

• Connections that are currently blocked on a LOCKED pool continue to
remain blocked until either the pool is unlocked or the client application
disconnects. This means that any administrative requests made of the
connection, such as a call to rp_switch, or rp_stop, are queued until the pool
changes status.

• Use rp_pool_status with the LOCKED argument, followed by a call to
rp_stop, to display all activity on a pool.

• If you issue rp_pool_status to set the pool status on a mutually-aware
OpenSwitch server, the command is propagated to the companion
OpenSwitch if it is running. The new pool status is also recorded in the
mutually-aware configuration tables on the Adaptive Servers. If these
steps fail, the pool status is reset to its original value and an error message
is logged.

• If FREEZE_CFG_ON_FAIL is enabled and the network fails between the
local OpenSwitch server and the companion OpenSwitch server, you can
use rp_pool_status only to display, not set, a pool’s status. This prevents the
companion OpenSwitch servers from switching client connections to
different Adaptive Servers while the network between OpenSwitch
servers is not responding, which could cause data loss when replication is
performed in only one direction. rp_pool_status allows you to reset the
pool status when the network is restored between the companion
OpenSwitch servers, or if FREEZE_CFG_ON_FAIL is disabled.

Messages

• The pool name does not exist within OpenSwitch:

rp_pool_status: There is no such pool 'pool_name'.

To list the existing pools, use rp_pool_help.

rp_pool_status

168 OpenSwitch

• A mutually-aware OpenSwitch server has detected a problem in the
network with its companion, and has stopped all future status changes until
the network is restored and the status of the companion can be verified:

rp_pool_status:Status cannot be set/changed until
connectivity is restored with the companion
OpenSwitch site or the FREEZE_CFG_ON_FAIL parameter
is turned OFF.

See also rp_pool_create, rp_pool_help

CHAPTER 6 Registered Procedures

Administration Guide 169

rp_rcm_connect_primary
Description Instructs the secondary RCM to establish a connection to the primary

OpenSwitch after it restarts.

Syntax rp_rcm_connect_primary

Parameters None.

Usage In a redundant RCM environment, issue rp_rcm_connect_primary on the
secondary OpenSwitch after the primary OpenSwitch has gone down and been
restarted.

See also rp_rcm_list

rp_rcm_list

170 OpenSwitch

rp_rcm_list
Description Displays a list of RCMs known to the OpenSwitch on which rp_rcm_list is

executed. The list displays the RCM name and whether the RCM is a primary
or secondary RCM.

Syntax rp_rcm_list

Parameters None.

Usage • Used to check which RCMs are connected to an OpenSwitch.

• You can also use rp_rcm_list to generate the name of the RCM to shut down
through OpenSwitch using rp_rcm_shutdown.

See also rp_rcm_shutdown, rp_rcm_connect_primary, rp_rcm_startup

CHAPTER 6 Registered Procedures

Administration Guide 171

rp_rcm_shutdown
Description Shuts down the named RCM through OpenSwitch.

Syntax rp_rcm_shutdown rcm_name

Parameters rcm_name
The name of the RCM specified for the RCM_NAME parameter in the RCM
configuration file.

• If you do not specify rcm_name, this parameter’s value defaults to
“<OPENSWITCH>_rcm,” where <OPENSWITCH> is another
parameter set in the RCM configuration file.

• If RCMNAME is not set in the RCM configuration file, enter
“<OPENSWITCH>_rcm” for rcm_name to shut down the RCM that was
started by this OpenSwitch.

Examples Shuts down the RCM named “osw_primary_rcm.”

1> rp_rcm_shutdown osw_primary_rcm
2> go

Returns:

gap: DEBUG: spid 10: coord_rcm_notif succeeded.

Msg 20108, Level 16, State 0:
Server 'gap':
rp_rcm_shutdown: The Primary RCM osw_primary_rcm will
be shutdown.
(return status = 0)

Usage Shuts down an RCM through OpenSwitch. The RCM does not have to have
been started by OpenSwitch to be shut down using rp_rcm_shutdown.

After issuing rp_rcm_shutdown, execute rp_rcm_list and ps to verify that the
RCM has shut down.

See also rp_rcm_list, rp_rcm_startup

rp_rcm_startup

172 OpenSwitch

rp_rcm_startup
Description Starts an RCM using the specified path and configuration file.

Syntax rp_rcm_startup [rcm_path, rcm_cfg, rcm_log, rcm_retries, rcm_redundant]

Parameters rcm_path
Path to the RCM binary.

• If not provided (NULL), the RCM binary is executed using the value of
the RCM_PATH parameter set in the OpenSwitch configuration file. If
RCM_PATH is not set, the RCM binary is executed from
$OPENSWITCH/bin/rcm on UNIX and from
%OPENSWITCH%\bin\rcm on Windows.

• When you provide rcm_path, the RCM executable is invoked from the
specified location. You must have execution permission on the RCM
binary.

rcm_cfg
Absolute path to the RCM configuration file. If not provided, the value
specified by the RCM_CFG_FILE parameter in the OpenSwitch
configuration file is used. You must have read access on this file.

rcm_log
Absolute path to the RCM log. If not provided, the value specified by the
RCM_LOG_FILE parameter in the OpenSwitch configuration file is used.

rcm_retries
An integer value to specify the number of times OpenSwitch restarts the
RCM if it fails. If NULL, the value specified by RCM_RETRIES parameter
in the OpenSwitch configuration file is used.

rcm_redundant
An Boolean value (1 is “true” and zero (0) is “false”) to specify whether or
not the RCM being started is a redundant RCM. If 1, the RCM binary is
executed with the “-R” option. If zero (0), the RCM binary is not executed
with the “-R” option.

Examples Starts the RCM with the default RCM binary, trying twice, with no redundancy.

1> rp_rcm_startup NULL, /scratch/15.0_bld2/OpenSwitch-15_0/config/rcm.cfg,
/scratch/15.0_bld2/OpenSwitch-15_0/logs/rcm.log, 2, 0

2> go

Returns:

Msg 20107, Level 16, State 0:
Server 'monsoon_OSW':rp_rcm_startup:

CHAPTER 6 Registered Procedures

Administration Guide 173

The RCM has been started.
(return status = 0)

Usage • RCM_AUTOSTART must be set to 1 in the OpenSwitch configuration file
to run this command. Use rp_set to dynamically configure
RCM_AUTOSTART.

• Verify that RCM_CFG_FILE and RCM_LOG_FILE are pointing to valid
locations and that the files to which these parameters point have the proper
access permissions before executing rp_rcm_startup.

• Always check the OpenSwitch error log after you run rp_rcm_startup to
verify that the RCM has started; the command can sometimes return a
success before the RCM has completely started. When rp_rcm_startup is
successful, you see this message in the OpenSwitch error log:

INFO: spid 19: rp_rcm_startup: The RCM has been started.
INFO: spid 22: rcm__thread: Service thread spawned.

• After you start the RCM, use rp_rcm_list to verify that the RCM has
started.

See also rp_rcm_shutdown, rp_rcm_list

rp_replay

174 OpenSwitch

rp_replay
Description Replays SQL statements after the connection is established to the failover

server and before a new client request is accepted using that connection. Use
rp_replay to specify to the connection before the failover occurs the SQL
statements to be replayed.

Syntax rp_replay spid, action, name, sql, canfail

Parameters spid
Either an OpenSwitch process ID, or NULL.

action
The action to be performed on the SQL statements. Action can be ADD,
DELETE, CLEAR, or SHOW. If the action is CLEAR, the name parameter
must be NULL; if the action is SHOW, the name parameter can be NULL. See
the Usage section for more information.

name
The name of the SQL statement, which must be unique within a thread

sql
A SQL statement. The maximum length of the SQL statement is 2048 bytes.
Supply this parameter when the action is ADD.

canfail
Checks whether or not the statement is allowed to fail. If you do not supply
this parameter, canfail has a value of zero (0). If canfail is 1, the connection
is still considered properly failed over even if the statement did not execute
on the remote server. Supply this parameter only when the action is ADD.

Examples Example 1 Creates multiple rp_replay SQL statements for spid 8.

1> rp_replay 8, "add", "a1", "create table temp1(a int, b char)", 0
2> go
(return status = 0)

1> rp_replay 8, "add", "a2", "insert into temp1 values (15, 'w')", 1
2> go
(return status = 0)

1> rp_replay 8, "add", "a3", "insert into temp1 values (17, 'x')", 0
2> go
(return status = 0)

1> rp_replay 8, "add", "a4", "insert into temp1 values (22, 'y')", 0
2> go
(return status = 0)

CHAPTER 6 Registered Procedures

Administration Guide 175

1> rp_replay 8, "add", "a5", "insert into temp1 values (78, 'z')", 0
2> go
(return status = 0)

Example 2 Displays the rp_replay SQL statement for “a2” and spid 8.

1> rp_replay 8, "show", "a2"
2> go

Returns:

spid SQL_Name SQL_Statement canfail
-------- ------------ ------------------------------------- -------
8 a2 insert into temp1 values (15, 'w') 1
(return status = 0)

Example 3 Displays the rp_replay SQL statements for spid 8.

1> rp_replay 8, "show", NULL
2> go

Returns:

spid SQL_Name SQL_Statement canfail
-------- ------------ ------------------------------------- -------
8 a1 create table temp1(a int, b char) 0
8 a2 insert into temp1 values (15, 'w') 1
8 a3 insert into temp1 values (17, 'x') 0
8 a4 insert into temp1 values (22, 'y') 0
8 a5 insert into temp1 values (78, 'z') 0
(return status = 0)

Example 4 Displays all rp_replay SQL statements for “a1.”

1> rp_replay NULL, "show", "a1"
2> go

Results:

spid SQL_Name SQL_Statement canfail
-------- ------------ ------------------------------------- -------
8 a1 create table temp1(a int, b char) 0
11 a1 insert into temp1 values (97, 'q') 0
(return status = 0)

Example 5 Adds the same re_replay SQL statement to all spids that are
currently active in the OpenSwitch server.

1> rp_replay NULL, "add", "a7", "set textsize 17889", 1
2> go
(return status = 0)

rp_replay

176 OpenSwitch

1> rp_replay NULL, "show", "a7"
2> go

Returns:

spid SQL_Name SQL_Statement canfail
-------- ------------ ------------------------------------- -------
8 a7 set textsize 17889 1
11 a7 set textsize 17889 1
(return status = 0)

Example 6 Displays all SQL statements for all spids.

1> rp_replay NULL, "show", NULL
2> go

Returns:

spid SQL_Name SQL_Statement canfail

8 a1 create table temp1(a int, b char) 0
8 a2 insert into temp1 values (15, 'w') 1
8 a3 insert into temp1 values (17, 'x') 0
8 a4 insert into temp1 values (22, 'y') 0
8 a5 insert into temp1 values (78, 'z') 0
8 a7 set textsize 17889 1
11 a1 insert into temp1 values (97, 'q') 0
11 a2 insert into temp1 values (98, 'r') 1
11 a8 insert into temp1 values (100, 's') 0
11 a9 delete from temp1 where a = 22 0
11 a10 set textsize 32567 0
11 a3 set rowcount 2 1
11 a7 set textsize 17889 1
(return status = 0)

Usage • rp_replay replays SQL statements after the connection is established to the
failover server and before a new client request is accepted using that
connection.

• rp_replay parameters allows users to add, delete, clear, and display the
SQL statements.

• If the user gives NULL for the spid parameter, the action is applied only to
existing spids and not new spids.

• DELETE removes the SQL statement based on the name parameter, while
CLEAR removes all SQL statements attached to the specified spid.

CHAPTER 6 Registered Procedures

Administration Guide 177

Messages

• The user has supplied an action parameter other than ADD, CLEAR,
DELETE, or SHOW:

rp_replay: The @action parameter must be ADD, CLEAR,
DELETE, or SHOW surrounded by double quotes.

• The user has not supplied the SQL statement to add:

rp_replay: The @sql parameter must be supplied with
an "add" action

• The user has supplied the sql parameter when the action parameter is not
ADD:

rp_replay: The @sql parameter must be supplied with
an "add" action.

• The user has supplied the canfail parameter when the action parameter is
not ADD:

rp_replay: The @canfail parameter must be supplied
with an "add" action

• The action is CLEAR but the name parameter is not NULL:

rp_replay: @name should be NULL for CLEAR action. To
remove a specific statement, use action=delete
instead.

• The user is trying to delete a SQL statement that does not exist:

thrd_sql_rem: Attempt to remove nonexistent SQL ̀ a1'

Msg 20075, Level 13, State 0:

Server 'test_osw':
rp_replay:
Internal thrd_sql_rem error, see log file
(return status = -1)

• The user is trying to add a SQL statement with a nonunique name:

Messsage – test_osw: INFO: spid 10: thrd_sql_add:
@name should be unique, 'insert into temp1 values
(15, 'w')' already have name 'a2' for spid '8'.
Unable to add statement for spid '8'.

Msg 20075, Level 13, State 0:
Server 'test_osw':
rp_replay:

rp_replay

178 OpenSwitch

Internal thrd_sql_add error, see log file
(return status = -1)

CHAPTER 6 Registered Procedures

Administration Guide 179

rp_rmon
Description Displays the current set of attribute/value pairs being used by the resource

governor thread.

Syntax rp_rmon

Parameters None.

Examples rp_rmon

Returns:

busy attribute entry action
------ --------- ---------------------- ------
300 hostname clientsrv1.sample.com CANCEL
300 hostname clientsrv2.sample.com KILL
30 username batch[0-9]% CANCEL
30 appname isql CANCEL

Usage • Displays the current set of attribute/value pairs being used by the resource
governor thread.

• To change the entries shown by rp_rmon while the server is running, you
must edit the configuration file and restart OpenSwitch.

See also rp_cfg

rp_server_help

180 OpenSwitch

rp_server_help
Description Displays the name, status, HA-type, configuration storage definition, CMON

username and CMON password for the specified server as defined in the
[SERVER] section.

Syntax rp_server_help [server]

Parameters server
Name of the OpenSwitch server for which to display properties. If you do
not provide this parameter, OpenSwitch displays the properties of all
OpenSwitch servers in the [SERVER] section of the OpenSwitch
configuration file.

Examples Example 1 Displays the properties of server “itan1.”

1> rp_server_help itan1
2> go

Returns:

server status type cfg_storage cmon_user cmon_pwd
------ --------- ----- ------------- ---------- ---------
itan1 UP NULL 1 NULL NULL
(1 row affected)
(return status = 0

Example 2 Displays the properties of all the servers known to the OpenSwitch
on which rp_server_help is executed.

1> rp_server_help
2> go

Returns:

server status type cfg_storage cmon_user cmon_pwd
------ --------- ----- ------------- ---------- ---------
DEFAULT UP NULL 0 NULL NULL
itan1 UP NULL 1 NULL NULL
callie1 UP NULL 1 NULL NULL
(3 rows affected)
(return status = 0)

Usage Used to find out the properties of a specific server, or of all the servers known
to a specific OpenSwitch.

CHAPTER 6 Registered Procedures

Administration Guide 181

rp_server_status
Description Sets or displays the status of any remote server that is defined in the [SERVER]

section of the OpenSwitch configuration file.

Syntax rp_server_status [server, status]

Parameters server
The name of a remote server as listed in the interfaces file on UNIX, or
sql.ini on Windows of OpenSwitch. The server must also be defined in the
[SERVER] section of the OpenSwitch configuration file. If a server name is
supplied, but the status is not supplied, the status of the specified server is
displayed.

status
The disposition to which the server is to be changed. If status is supplied,
but a server is not, then the current status of all servers is changed.

Table 6-9: Status values for rp_server_status

Status Description

PRE_UP Mutually-aware-specific server status. The server is either in the process of being marked as UP,
or has encountered a problem during that process. Check the error log to troubleshoot the problem.
After you resolve the problem, manually set the server status to UP on one of the mutually-aware
companion OpenSwitch servers. The command will be propagated to the other OpenSwitch
companion if it is running.

 Warning! Do not manually set a server’s status to PRE_UP.

UP The server is immediately available for use.

PRE_DOWN Mutually-aware specific server status. The server is either in the process of being marked as
DOWN, or has encountered a problem during that process. Check the error log to troubleshoot the
problem. After you resolve the problem, manually set the server status to DOWN on one of the
mutually-aware companion OpenSwitch servers. The command will be propagated to the other
OpenSwitch companion if it is running.

 Warning! Do not manually set a server’s status to PRE_DOWN.

DOWN The server is unavailable, and is not considered for use by any new client connections established
to OpenSwitch.

rp_server_status

182 OpenSwitch

Examples Example 1 Displays the current status of all servers:

1> rp_server_status
2> go

Returns:

server status
------------- --------------
DEFAULT UP
SYB_SERV1 UP
SYB_SERV2 UP
SYB_SERV3 UP

Example 2 Displays the current status of server SYB_SERV1:

1> rp_server_status "SYB_SERV1"
2> go

Returns:

server status
-------------- --------------
SYB_SERV1 UP

Example 3 Sets the status of SYB_SERV1 to LOCKED:

1> rp_server_status "SYB_SERV1", "LOCKED"
2> go

Returns:

server status
------------------ --------------
SYB_SERV1 LOCKED

PRE_LOCKED Mutually-aware specific server status. The server is either in the process of being marked as
LOCKED, or has encountered a problem during that process. doing so. Check the error log to
troubleshoot the problem. After you resolve the problem, manually set the server status to
LOCKED on one of the mutually-aware companion OpenSwitch servers. The command will be
propagated to the other OpenSwitch companion if it is running.

 Warning! Do not manually set a server’s status to PRE_LOCKED.

LOCKED The server is available, but any new incoming connections actively being connected through the
pool are blocked (or stopped) until the status is changed to UP or DOWN. Blocked connections
appear to the client applications to have stopped responding until the pool is unlocked.

Status Description

CHAPTER 6 Registered Procedures

Administration Guide 183

Usage • Changing the status of a server has no effect on existing connections.

• The special server, DEFAULT, applies to all servers that have not had their
status explicitly set (either through the configuration file or a call to
rp_server_status). That is, if a server that is not currently listed in
rp_server_status is added to an existing pool, that server inherits the status
of the DEFAULT server.

• Connections that are currently blocked on a LOCKED pool continue to
remain blocked until either the pool is unlocked or the client application
disconnects. This means that any administrative requests made of the
connection, such as a call to rp_switch, or rp_stop, are queued until the pool
changes status.

• The server status set for a pool using rp_pool_server_status or
rp_pool_addserver takes precedence over a server’s status set within that
pool using rp_server_status.

• If a server does not have a pool-specific status, it inherits the generic status
set using rp_server_status.

• If you issue rp_pool_status to set the pool status on a mutually-aware
OpenSwitch server, the command is propagated to the companion
OpenSwitch if it is running. The new pool status is also recorded in the
mutually-aware configuration tables on the Adaptive Servers. If these
steps fail, the pool status is reset to its original value and an error message
is logged.

• If FREEZE_CFG_ON_FAIL is enabled and the network fails between the
local OpenSwitch server and the companion OpenSwitch server, you can
use rp_pool_status only to display, not set, a pool’s status. This prevents the
companion OpenSwitch servers from switching client connections to
different Adaptive Servers while the network between OpenSwitch
servers is not responding, which could cause data loss when replication is
performed in only one direction. rp_pool_status allows you to reset the
pool status when the network is restored between the companion
OpenSwitch servers, or if FREEZE_CFG_ON_FAIL is disabled.

Messages

• The server does not exist within OpenSwitch:

rp_server_status: There is no such server 'server'.

To display a list of existing pools, use rp_server_status with a server
parameter of NULL.

rp_server_status

184 OpenSwitch

• This mutually-aware OpenSwitch server has detected a network problem
with its companion, and prohibits all future status changes until the
network is restored and the status of the companion can be verified:

rp_server_status: Status cannot be set/changed until
connectivity is restored with the companion
OpenSwitch site or the FREEZE_CFG_ON_FAIL parameter
is turned OFF.

See also rp_pool_addserver, rp_pool_server_status

CHAPTER 6 Registered Procedures

Administration Guide 185

rp_set
Description Sets or displays configuration parameters.

Syntax rp_set [parm_name, parm_value]

Parameters parm_name
Name of a parameter as listed in the configuration file.

parm_value
Value to which the parameter is to be set. The meaning of the value depends
on which parameter is being set.

Examples Example 1 Displays the value of the TEXTSIZE configuration parameter.

rp_set TEXTSIZE

Example 2 Sets the TEXTSIZE configuration parameter to 1MB.

rp_set TEXTSIZE, 1048576

Example 3 Displays all the configuration options and their current values.
Only the first 27 characters of the configuration parameter and the first 50
characters of the value display.

1> rp_set
2> go

Returns:

parameter value
------------------------- -----------------
SERVER_NAME posw
MUTUAL_AWARE 1
MUTUAL_CLUSTER owsCluster
PRIMARY_COMPANION 1
FREEZE_CFG_ON_FAIL 0
LOG_FILE posw.log
LOT_TO_OS 0
CFG_FILE ./posw.cfg
CUSTOM_SCRIPT /usr/u/johndoe/custom.sh
MANUAL_SCRIPT /usr/u/johndoe/manual.sh
RCM_CFG_FILE /oswitch/config/
RCM_PATH NULL
RCM_AUTOSTART 0R
CM_SECONDARY 0R
CM_RETRIES 0R
CM_LOG_FILE /oswitch/bin/rcm
UPDATE_CFG 1
DEBUG_FILE posw.dbg

rp_set

186 OpenSwitch

ADMIN_USER sa
ADMIN_PASSWORD *****
INTERFACES NULL
CHARSET iso_1
CONNECTIONS 1000
CON_TRACE 0
CTX_TRACE 0
SRV_TRACE 0
TRUNCATE_LOG 1
SITE_PASSTHRU 1
ECHO_LOG 1
DEBUG eCf
FULL_PASSTHRU 0
RMON 0
RMON_INTERVAL 10
SEC_PRINCIPAL NULL
SHOW_SPID 0
STACKSIZE 40960
TCP_KEEPALIVE 1
TCP_NODELAY 1
COORD_MODE AVAIL
COORD_USER switch_coord
COORD_PASSWORD *****
TEXTSIZE 102400
SUPPRESS_CHARSET 1
SUPPRESS_DBCTX 1
SUPPRESS_LANG 1
CURSOR_PREREAD 20
OPTIMIZE_TEXT 1
MAX_LOGSIZE 4194304
MSGQ_SIZE 2048
API_CHECK 1
HAFAILOVER 0
SQL_WRAP 80
CACHE_THREADS 100
BCP_LOGGED 0
MAX_PACKETSIZE 2048
COORD_TIMEOUT 30
LOGIN_TIMEOUT 60
RESPONSE_TIMEOUT 3600
CMON 1
CMON_USER sa
CMON_PASSWORD *****
CMON_WAITFOR_DELAY 3600
SWITCH_AT_LOGIN_TIMEOUT 0
MAX_LOG_MSG_SIZE 1024

CHAPTER 6 Registered Procedures

Administration Guide 187

USERNAME_PASSWORD_ENCRYPT 0
USE_AND_TO_POOL_ATTRIB 0
USE_AND_TO_RMON_ATTRIB 0
USE_DONEINPROCS 0
SHOW_CONNECT_ERROR 0
NOWAIT_ON_LOCKED 0
SVR_FAIL_ACTION DEFAULT
NET_FAIL_ACTION DEFAULT
CMP_FAIL_ACTION DEFAULT
CMON_FAIL_ACTION DEFAULT
PING_THREAD 1
PING_BINARY /usr/sbin/ping
PING_WAIT 10
PING_RETRIES 1
RPC_SETFMT 0
TEST_PING_COUNT 5
(84 rows affected)
(return status = 0)

Usage • Use rp_set to query or set the value of a configuration parameter.

• Not all configuration parameters are dynamic. For example, parameters
such as maximum number of connection (CONNECTIONS) and whether
or not the resource monitor thread is running (RMON) are read by
OpenSwitch only at start-up.

Messages

• The parameter name supplied does not exist or the value supplied is illegal
for the parameter name:

rp_set: Invalid parameter name or value.

See the OpenSwitch error log for more information.

• The parameter specified is a static parameter that cannot be changed using
rp_set:

rp_set: Cannot modify Static or Non-Existing
parameter <parameter> at runtime. Please refer to
OpenSwitch Documentation for additional information.

 To enable the parameter, restart OpenSwitch with the new value in the
configuration file.

See also The [CONFIG] section in Chapter 4, “Using the Configuration File.”

rp_set_srv

188 OpenSwitch

rp_set_srv
Description Responds to spid waiting for coordination module response.

Syntax rp_set_srv spid, srv_name

Parameters spid
The OpenSwitch process identifier of the connection waiting for a response
from a coordination module.

srv_name
The name of the remote server to which the connection, represented by spid,
should be switched. Passing a server name of NULL or “” causes the spid to
switch to the next available server according to the mode of the pool to
which it belongs.

Examples Example 1 Connects spid 8 to SYB_SERV3.

rp_set_srv 8, "SYB_SERV3"

Example 2 Connects spid 8 to the next available server in its pool.

rp_set_srv 8, ""

Usage • When a connection requests a server name from a coordination module,
for any reason (including a login attempt or a failure detected from an
existing server), the failing connection issues an np_req_srv notification
procedure call that is detected by the coordination module (see
“np_req_srv” on page 206). The requesting connection suspends until the
coordination module responds with a call to rp_set_srv, rp_switch, or
rp_kill.

• rp_set_srv is intended for use by the coordination module to set the server
for a spid through cm_set_srv, but an administrator can also manually set
the server for a spid if the spid is at a “SERVER REQ” state. This can
happen if COORD_MODE is set to ALWAYS and no coordination module
is running.

• You can list the set of spids awaiting a response from the coordination
module using the Open Server built-in registered procedure sp_ps. These
spids display a sleep_label of “SERVER REQ”.

• Calling rp_req_srv on a spid that is not actively waiting for a response from
a coordination module has no effect.

See also rp_kill, rp_switch

CHAPTER 6 Registered Procedures

Administration Guide 189

rp_showquery
Description Displays query being executed by a spid. rp_showquery works only when

OpenSwitch in not in FULL_PASSTHRU mode.

Syntax rp_showquery spid

Parameters spid
The OpenSwitch process identifier of the connection executing a query.

Examples 1> rp_showquery 8
2> go

Returns:

Statement

sp_who

Usage • Use rp_who to list valid spids.

• Output is displayed only for spids that are actively processing a query (the
state field of rp_who shows BUSY), or executing registered procedures or
SQL queries. Cursors are not currently supported.

Messages

• spid x is not a valid spid as listed in rp_who:

rp_showquery: spid #x is invalid.

See also rp_who

rp_shutdown

190 OpenSwitch

rp_shutdown
Description Shuts down the OpenSwitch server.

Syntax rp_shutdown

Usage Use with caution. No verification or authentication is performed before the
server is shut down.

See also rp_stop, rp_switch

CHAPTER 6 Registered Procedures

Administration Guide 191

rp_start
Description Starts a group of previously stopped connections.

Syntax rp_start pool_name, server, spid

Parameters pool_name
Name of the pool in which to restart connections. If you do not supply a
parameter, or use NULL, all pools are started.

server
Indicates that all connections using the remote server are to be started. If you
do not supply a server name, or use NULL, all servers are started.

spid
The OpenSwitch process ID of the connection to be started. If you do not
supply an argument, or use NULL, all connections are started.

Examples Example 1 Starts previously stopped spid number 8.

rp_start NULL, NULL, 8

Example 2 Starts all connections that are currently using remote server
SYB_SERV1.

rp_start NULL, "SYB_SERV1", NULL

Example 3 Starts all connections established through POOL_A.

rp_start "POOL_A", NULL, NULL

Example 4 Starts all connections established to SYB_SERV1 through
POOL_A.

rp_start "POOL_A", "SYB_SERV1", NULL

Usage Attempting to start a connection that was not previously stopped has no effect.

Messages

• The pool_name does not exist. Use rp_pool_help to list valid pool names:

rp_start: Invalid pool name 'pool_name'.

• The server does not exist:

rp_start: Invalid server name 'server'.

Use rp_server_status to list valid servers.

See also rp_pool_help, rp_server_status, rp_stop, rp_who

rp_stop

192 OpenSwitch

rp_stop
Description Stops a group of connections from issuing new queries.

Syntax rp_stop [pool_name], [server], [spid], [ign_tran], [ign_fail]

Parameters pool_name
The name of the pool in which connections are to be stopped. If you do not
supply a parameter, or use NULL, all pools are stopped.

server
Indicates that all connections using the remote server are to be stopped. If
you do not supply a server name or use NULL, all servers are stopped.

spid
The OpenSwitch process ID of the connection to be stopped. If you do not
supply an argument, or use NULL, all connections are stopped.

ign_tran
Indicates whether or not rp_stop ignores transaction state when pausing a
connection.

Table 6-10: Values for ign_tran

ign_fail
Indicates whether or not stopped connections ignore remote server failures
while they are stopped.

Table 6-11: Values for ign_fail

Examples Example 1 Stops spid number 8 regardless of the pool or server it is associated
with.

rp_stop NULL, NULL, 8

Value Description

1 All connections are stopped whether or not they are involved in an
open transaction. This is the default value if ign_tran is not supplied.

0 All connections are stopped as soon as they complete their current
transaction.

Value Description

1 If an Adaptive Server actively being used by a stopped connection
fails, an attempt is made to reestablish the connection silently without
notifying a coordination module when rp_start is issued.

0 If an Adaptive Server actively being used by a stopped connection
fails, the normal failover process proceeds for the connection as soon
as rp_start is issued. This is the default value.

CHAPTER 6 Registered Procedures

Administration Guide 193

Example 2 Stops all connections currently using remote server SYB_SERV1.

rp_stop NULL, "SYB_SERV1", NULL

Example 3 Stops all connections established through POOL_A.

rp_stop "POOL_A", NULL, NULL

Example 4 Stops all connections established to server SYB_SERV1 through
pool POOL_A.

rp_stop "POOL_A", "SYB_SERV1", NULL

Example 5 Stops spid number nine in POOL_A when it is finished with its
current transaction.

rp_stop "POOL_A", NULL, 9, 0

Usage • rp_stop broadcasts a request to all connections matching the pool_name,
server, and spid parameters. Each connection polls to see if it has received
a stop request immediately before and immediately after processing a new
client query, at which time the connection sleeps (or appears to the client
to have stopped responding) until an rp_start request is issued.

• Use the Open Server registered procedure sp_ps to determine if
connections that are not responding are indicated by a Sleep Label of
“COORD_STOP.” See the Sybase Open Server documentation for more
information about using sp_ps.

Note In the return data for sp_ps, the Sleep Label is a column that
describes the sleep event. COORD_STOP is a status that OpenSwitch sets
in the thread when an administrator or CM stops the threads using cm_stop
or rp_stop. Use rp_start or cm_start to “wake up” threads that have been put
to sleep.

However, since connections only actually respond to an rp_stop request
when starting or completing communication with the remote server (for
example, a query is issued), COORD_STOP does not display for
connections that have remained idle since the request was issued.

• rp_stop applies only to connections that are already established to
OpenSwitch.

• Attempting to stop a connection that is already stopped has no effect.

Messages

• The supplied pool name does not exist in OpenSwitch:

rp_stop: Invalid pool name 'pool_name'.

rp_stop

194 OpenSwitch

Use rp_pool_help to list valid pool names.

• The supplied server does not exist in OpenSwitch:

rp_stop: Invalid server name 'server'.

Use rp_server_status to list valid servers.

CHAPTER 6 Registered Procedures

Administration Guide 195

rp_switch
Description Manually switches user connections to an alternate Adaptive Server.

Syntax rp_switch [pool_name], [src_server], [spid], [dst_server], [grace_period],
[force]

Parameters pool_name
All connections established through the pool_name you specify are switched
to the server specified by dst_server. If you do not supply this parameter, or
specify NULL, all pools are assumed.

src_server
All the connections that are currently established to this remote server
(src_server) switch to the dst_server. If you do not supply this parameter, or
specify NULL, all servers are assumed.

spid
The OpenSwitch spid to be switched to the remote server dst_server. If you
do not supply this parameter, or specify NULL, all spids are assumed.

dst_server
The remote server to which all connections identified by pool_name,
srv_server, and spid should be switched. If you do not supply this parameter,
or specify NULL or “”, the connections are switched to the first available
server as identified by their associated pool.

Use care when specifying this parameter. No verification is performed for
dst_server. Passing an invalid value causes all incoming client connections
to be lost.

grace_period
The maximum number of seconds to wait before forcefully switching busy
connections. A value of 0 indicates that no grace period is to be enforced.

force
If passed with a value of 1, all connections are forcefully switched, even if
they are currently busy (either actively in the middle of communicating with
a remote server, or in the middle of an open transaction). If you do not
supply a value, or specify NULL, the value defaults to 0.

Examples Example 1 Causes OpenSwitch spid number 8 to be switched to the remote
server SYB_SERV1. If the spid does not successfully switch in 60 seconds, its
current query is canceled and the client receives a “deadlock” message, and the
connection is then switched.

rp_switch NULL, NULL, 8, "SYB_SERV1", 60, 0

rp_switch

196 OpenSwitch

Example 2 Switches all connections established through POOL_A to
SYB_SERV1 immediately. Any busy connections receive a “deadlock”
message and the current query is canceled.

rp_switch "POOL_A", NULL, NULL, "SYB_SERV1", 0, 1

Example 3 Switches all connections to SYB_SERV1, established through
POOL_A to SYB_SERV2, within 60 seconds.

rp_switch "POOL_A", "SYB_SERV1", NULL, "SYB_SERV2", 60,
0

Example 4 Switches all connections in POOL_A to the next available server
(as defined by the mode of the pool) within 60 seconds.

rp_switch "POOL_A", NULL, NULL, NULL, 60, 0

Example 5 Switches all existing connections to OpenSwitch to the next
available server within the pool associated with each connection. There is no
limit on how long the switching process is to take.

rp_switch

Usage • A call to rp_switch causes a switch request to be issued to all connections
matching pool_name, src_server, or spid. The switch request is processed
by each connection under the following conditions:

• If the connection is completely idle, it is switched immediately.

• If the connection is busy (either communicating with a remote server
or involved in an open transaction) and grace_period is zero (0) and
force is zero (0), the connection switches as soon as it becomes idle.

• If the connection is busy, and grace_period is a positive value and
force is 0, the connection switches as soon as it becomes idle, or if the
number of seconds specified in grace_period pass before it becomes
idle, the current query is canceled, and a “deadlock” message is issued
to the client, and then its connection is switched.

• If the connection is busy and force has a value of 1, the connection
immediately cancels its query, receives a “deadlock” message, then
switches the connection.

• Use caution when specifying the dst_server parameter. No verification is
performed for this parameter. The administrator must verify that the
dst_server is UP and that its entry exists in the sql.ini (Windows) or
interfaces (UNIX) file before executing rp_switch to switch connections to
it.

CHAPTER 6 Registered Procedures

Administration Guide 197

If the dst_server being passed to does not exist, is not running, or cannot
be connected to, all the switched connections, as well as the incoming
client connections are lost.

• dst_server does not need to be a server within the pool of a given
connection, or even a server within any pool. It simply must be a valid
server.

• If force is 1, then grace_period must be 0, since grace_period does not
make sense in this context.

• A switch request issued to a connection that is blocked due to either a call
to rp_stop, a LOCKED pool, or a LOCKED src_server is processed as
soon as the connection becomes unblocked. Existing connections that are
not blocked are switched immediately to the next available server, or the
dst_server if it is specified.

• The user performing the switch cannot do so while passing through
OpenSwitch. The switch does not complete because the connection is not
idle.

Messages

• An invalid value was supplied for the force parameter:

rp_switch: @force must be 0 or 1

Valid values are 0 and 1.

• A nonzero value was supplied for grace_period, and a value of 1 was
supplied for the force parameter:

rp_switch: @grace_period must be 0 when @force is 1.

• The supplied pool_name does not exist:

rp_switch: Invalid pool name 'pool_name'.

Use rp_pool_help to list valid pools.

• The supplied server name is not known among the existing remote servers:

rp_switch: Invalid source server name 'src_server'.

Use rp_server_status to list valid servers.

• The procedure ran normally, and n spids have been requested to switch:

rp_switch: Queued switch request for n spids.

See also rp_who

rp_traceflag

198 OpenSwitch

rp_traceflag
Description Enables or disables SRV_TRACE flags for debugging messages.

Syntax rp_traceflag [options, {on|off}]

Parameters options
A list of one or more single-character option flags.

The following table shows the valid debugging options. These options are
identical to the options you can use with the -s flag at the command line.

on
Turns on debugging options, which causes debugging messages to be
dumped to the error log file.

off
Turns off debugging options.

Examples Example 1 Displays all debugging flags and their current state.

rp_traceflag

Returns:

flag description state
---- --- -----
a TDS attention packets on
d TDS data information on
e Server events on
h TDS header information on
m Message queue usage on
n Network driver information and TCL

Value Displays

a TDS attention packets

d TDS data information

e Server events

h TDS header information

m Message queue usage

n Network driver information and TCL requests

p Network driver parameter information

q Run queue information

r Network driver data information

s Network driver memory information

t TDS tokens

w TCL wake-up request

CHAPTER 6 Registered Procedures

Administration Guide 199

 requests on
p Network driver param information on
q Run queue information on
r Network driver data information on
s Network driver memory information on
t TDS tokens on
w TCL wakeup request on

Example 2 Switches off TDS data information and server events flags.

rp_traceflag "de", off

Returns:

flag description state
---- --- -----
d TDS data information off
e Server events off

Example 3 Displays the current status of the -d flag.

rp_traceflag d

Returns:

flag description state
---- -- -----
d TDS data information off

Usage Messages

• If the state parameter is supplied, then the flags parameter cannot be
NULL:

rp_traceflag: @flags cannot be NULL if @state is
supplied

• The valid value for the state parameter is either on or off:

rp_traceflag: @state must be on or off

rp_version

200 OpenSwitch

rp_version
Description Returns the OpenSwitch version number.

Syntax rp_version

Examples 1> rp_version
2> GO

Returns:

Version

Sybase OpenSwitch/15.0/P/SPARC/Solaris 2.8/0/OPT/
Fri Sep 9 15:55:28 2005
(1 row affected)

Usage rp_version

CHAPTER 6 Registered Procedures

Administration Guide 201

rp_who
Description Displays detailed information about user connections.

Syntax rp_who [spid]

Parameters spid
The OpenSwitch spid value to be displayed.

Examples

spid state actions user host database current next pool
---- -------- -------- ------ ---- --------- ---------- --------- -----
1 BUSY NULL elyse NULL testdb SYB_SRV1 SYB_SRV1 POOL1
2 BUSY,TRAN NULL athena NULL master SYB_SRV1 SYB_SRV1 POOL

Usage Table 6-12 describes the contents of each column returned by rp_who.

Table 6-12: Columns returned by rp_who

Table 6-13 describes the state of each connection returned by rp_who.

Table 6-13: Values for state

Column Description

spid The internal Open Server process ID of the user connection.

rspid The spid of the user connection on the remote server. This display only if SHOW_SPID is set to 1
in your OpenSwitch configuration. Otherwise, it displays as NULL.

state A comma-delimited list of connection state information. Table 6-13 on page 201 describes the
possible values for state.

actions Pending actions that have been queued for the thread. These actions are typically initiated by an
administrator by calling such registered procedures as rp_switch, but some of them may arise
internally due to things like an Adaptive Server failing.Table 6-14 on page 202 describes the
possible values for actions. Zero or more of these may be active at any time.

application The name of the application used to establish the client connection.

user The user name of the client connection.

host The host machine from which the client connection was established.

database The current database context of the user connection.

current The name of the remote server actively being used by the client connection.

next The name of the remote server that the client connection should be using. This information may
differ from that in current if a switch is actively being performed.

pool The name of the pool the user connection is using.

function A debugging field.This describes which ctlib function this connection may be blocked on.

Value Description

ATTNWAIT Internal flag.

rp_who

202 OpenSwitch

Table 6-14 describes the value for each action returned by rp_who.

Table 6-14: Values for actions

BLOCKED The client thread is currently performing a blocking activity, such as a read or a write, upon its
outgoing connection.

BUSY The client is actively communicating with a remote server, either sending or receiving results.
While the connection is in this state, it is considered busy and is not be switched by a nonforced
administrative switch request (see rp_switch on page 195).

CACHE The thread owning the connection is a CACHE thread and does not belong to a “real” client.

CANCAN Internal flag.

CANCELED Indicates that the GOTATTN flag has been acted upon and the current query has been canceled.

CLOSED Internal state indicating that the client connection is currently closed.

GOTATTN Flag that is set when the client has raised an attention via a cancel request (such as a call to
dbcancel() or ct_cancel()). This state should be followed later by a CANCELED state.

IGNOREMSG Internal state. This state indicates that the connection is ignoring error or informational messages
received from the remote server. It is set while a connection is being switched to another server to
ensure that the client does not see the database context change messages issued while logging in to
the remote server.

KILL Indicates that the connection is in the process of being killed and will soon be removed from
OpenSwitch.

LOGIN Set while the connection is actively logging in to a remote server.

LOGINFAIL Used to indicate that the connection was denied to the remote server due to things like an invalid
password. This is a transient state that is usually immediately followed by the client connection
being disconnected from OpenSwitch.

LOST Indicates that the client’s outgoing connection to a remote server has been lost. This state is
transitory and remains in effect until OpenSwitch either fails the connection over or disconnects the
client.

STOPPED The client is currently stopped due to an administrative STOP request.

TRAN The client is actively engaged in an open transaction. While the connection is in this state, it is
considered busy and will not be switched by a nonforced administrative request (see rp_switch on
page 195).

Value Description

Value Description

DEADLOCK Indicates that a “deadlock” message is pending delivery to the client. The message is sent as soon
as the client is in a state in which it can receive the message. This action is usually set due to a call
to rp_switch with a value of 1, or when the grace period has expired.

NORETRY Internal state. This should only appear in conjunction with the SWITCH action. It indicates that,
should the switch fail for any reason, the connection is removed from OpenSwitch without
attempting to switch to another server.

SERVER Indicates that the connection is requesting the name of a remote server from a coordination module,
to be used either to log in to or to switch to.

CHAPTER 6 Registered Procedures

Administration Guide 203

See also rp_dump

STIME Set in conjunction with SWITCH, this indicates that a grace period has been specified.

STOP Indicates that the connection is stopped or will stop as soon as possible due to a call to rp_stop.

SWITCH The remote connection is being switched to another server. The next column indicates the name of
the server being switched to.

Value Description

rp_who

204 OpenSwitch

Administration Guide 205

C H A P T E R 7 Notification Procedures

This chapter describes notification registered procedures.

Introduction
A notification is a special registered procedure that has no associated
action or code, but can be used to notify Open Client applications when
certain events occur within OpenSwitch.

For details on programming for notification procedures, see the Open
Client Client-Library/C Programmers Guide.

Using notifications
Use notifications to register multiple client applications with OpenSwitch
and provide asynchronous event notification within the server. When the
client application receives an event notification, it can take appropriate
action; for example, send an e-mail message, as illustrated in Figure 7-1
on page 206.

Topic Page
Introduction 205

Using notifications 205

Notification registered procedures 208

Notification registered procedures

206 OpenSwitch

Figure 7-1: Using notifications

OpenSwitch supports these registered procedures to create notification events:

• np_req_srv – notifies the client that a connection blocked a request for the name
of a remote server.

• np_switch_start – notifies the client that the switching process has been manually
started via rp_switch.

• np_switch_end – notifies the client that switching process started via rp_switch
has ended.

The next section describes each registered procedure.

Notification registered procedures

np_req_srv
Description np_req_srv communicates with a CM and notify it of connections that are

waiting for a response. This procedure is used internally by OpenSwitch and
cannot be used by clients. See “Usage” on page 209 for more information.

Syntax np_req_srv spid, username, appname, hostname, database, pool,
rsn_code, rsn_text, cur_server, nxt_server

Parameters • spid – the OpenSwitch process ID of the requesting connection.

Chapter 7 Notification Procedures

Administration Guide 207

• username – the user name of the requesting connection.

• appname – the application that established the requesting connection.

• hostname – the client machine.

• database – the current database context of the connection. If the server
request is the result of a new login, this value is NULL.

• pool – the pool name in which the connection is being established.

• rsn_code – the reason code that describes why the request is blocked.

Table 7-1: rsn_code valid values

• rsn_text – text description of the rsn_code field.

• cur_server – the name of the remote server currently being used by the
connection, determined by the value of rsn_code.

• nxt_server – the name of the remote server that the OpenSwitch has chosen
for the connection based upon the pool in which the connection resides.

Return values Example return values for np_req_srv are:

Value Description

1 The connection is logging in. cur_server is NULL, and nxt_server
indicates the name of the remote server to use according to the pool
in which the connection resides.

2 A login retry. This code indicates that a previous attempt to log in to
a server has failed, and that another server name is needed to retry.
cur_server contains the name of the server that failed, and nxt_server
contains the name of the server to use according to the pool in which
the connection resides.

3 Connection lost to remote server. This code indicates that a remote
server unexpectedly dropped a connection and that the connection
should be switched to the next available server. cur_server contains
the name of the failed server, and nxt_server contains the name of the
next available server within the pool in which the connection resides.

4 Connection failed. This code indicates that a previous attempt to
switch to the next available server failed. cur_server contains the
name of the failed server, and nxt_server contains the name of the
next available server in the pool in which the connection resides.

Parameter Example return value

spid 11

username sa

appname ctisql

Notification registered procedures

208 OpenSwitch

Usage • np_req_srv is used to communicate with a coordination module to notify it
of connections that are awaiting a response. This procedure is used by
OpenSwitch internally to indicate that the connection is blocked and is
awaiting a response from the coordination module, which can come in the
form of a call to rp_set_srv, rp_switch, or rp_kill. Only these registered
procedures or a disconnect from the client can wake up a connection
waiting for a response.

• np_req_srv is only issued if at least one coordination module is attached
and the coordination mode is AVAIL, ALWAYS, or ENFORCED. For
more information, see the OpenSwitch Coordination Module Reference
Manual.

See also rp_kill, rp_set_srv, rp_switch

np_switch_start
Description Notifies the client that the switching process has been manually started via

rp_switch.

Syntax np_switch_start

Usage np_switch_start is broadcast to all listening clients as soon as rp_switch is
executed. It indicates nothing about the success or failure of the switching
process, only that it has begun.

See also rp_switch, np_switch_end

np_switch_end
Description Notifies the client that switching process started via rp_switch has ended.

Syntax np_switch_end

hostname rhino

database NULL

pool pool1

rsn_code 1

rsn_text Login attempt

cur_server NULL

nxt_server mayura

Parameter Example return value

Chapter 7 Notification Procedures

Administration Guide 209

Usage np_switch_end is broadcast when rp_switch completes. This does not indicate
the success or failure of the procedure, only that is has completed.

See also rp_switch, np_switch_start

Notification registered procedures

210 OpenSwitch

Administration Guide 211

Index

Symbols
[COMPANION] section 91

example 91
[CONFIG] section 64

example 83
[LIMIT_RESOURCE] section 89

example 90
[POOL] section 86

example 89
[SERVER] section 83

example 85

A
actions for mutually-aware failure types 113
Adaptive Server

connection context 14
deadlocks and RPCs 15
failover in mutually-aware OpenSwitch servers

109
max network packet size causing failed client

connection 30
temporary tables and cursors 15
using server pools 4

application
connection 2
remote 19

applications, Open Client 205
attributes, adding to pools 145
automatic failover 105
automatically starting an RCM from OpenSwitch 55

B
balanced mode 6
bracket wildcard 61
breaking connections 141

broadcasting messages to connections 143

C
caching

and state 36
connections 34
defining 34
restoring connections 35
setting connection properties 37
viewing connection details 36

cancelling client connection processing 128
caret wildcard 61
chained mode 6
changing

pool status 28
server status 22

character sets, international 13
characters

grouping with brackets 61
literal 61
negating with caret 61
negating with escape 61
range of, specifying 61
single, wildcard for 62
string of, specifying 62

client-side cursor state, monitoring 33
client-side cursors 39
CMON_FAIL_ACTION 119
CMP_FAIL_ACTION 120
CMs. See coordination modules
communication state, monitoring 32
communication states

connection 2
transaction 2

configuration
dynamic 14
mutually-aware OpenSwitch server support 99
mutually-aware OpenSwitch server support

Index

212 OpenSwitch

configuration data precedence 107
mutually-aware OpenSwitch server support parameters

99
mutually-aware OpenSwitch server support table 104
OpenSwitch MAX_PACKETSIZE to match max

network packet size on Adaptive Server 30
OpenSwitch to start an RCM automatically 55
replication coordination module configuration file

additions 57
configuration file

[COMPANION] section 91
[CONFIG] section 64
[LIMIT_RESOURCE] section 89
[POOL] section 24, 86
[SERVER] section 83
creating or editing 62
editing the OpenSwitch 60
empty lines 60
false 60
off 60
on 60
OpenSwitch additions 57
parameters that cannot be changed using rp_cfg 131
pound sign (#) 60
requirements 60
rereading at runtime 130
specifying when starting OpenSwitch 59
syntax 60
true 60
using 59
using wildcards 60

configuration tool 13
connections

and pools 25
attributes, adding 145
breaking 141
caching 34
cancelling client 128
context 14
defining pools and caching 34
establishing an outgoing 29
idle client 3
killing 141
login denied 30
managing 28
monitoring state 32

number of user 16
restoring cached 35
sending messages to 143
server unavailable 30
setting caching properties 37
state 2
state information, dumping 137
suspending and resuming 3
terminating 3
uncached 36
viewing cached details 36

conventions used in this manual x
COORD_STOP sleep event 193
coordination modules

requirements 9
using 9

creating a new OpenSwitch configuration file 62
cursors

client-side 39
repositioning 41
within dynamic SQL 40

cursors, Adaptive Server 15
CUSTOM action for mutually-aware mutually-aware

OpenSwitch server failures 116
custom script example 115
CUSTOM_MANUAL action for mutually-aware

mutually-aware OpenSwitch server failures
117

D
database context 32
deadlock messages 39
deadlocks, Adaptive Server 15
debugging

disabling messages for 133
enabling messages for 133

DECLARE CURSOR 39
DEFAULT action for mutually-aware mutually-aware

OpenSwitch server failures 114
deployment issues 14
detecting failures 38
direct invocation of registered procedures 127
disabling debugging messages 133
displaying registered procedures 139

Index

Administration Guide 213

documentation
conventions used in this manual x
OpenSwitch online viii

dumping connection state information 137
dynamic

configuration of OpenSwitch 14
SQL support 12

dynamic SQL
cursors within 40
execute-immediate method 12
failover behavior 41
prepare-and-execute method 13

E
editing the OpenSwitch configuration file 60, 62
e-mail, result of a notification 205
empty lines in configuration file 60
enabling debugging messages 133
escape wildcard 61
examples

[COMPANION] file 91
[CONFIG] file 83
[LIMIT_RESOURCE] file 90
[POOL] file 89
[SERVER] file 85
custom script for mutually-aware OpenSwitch

server failures 115
notification 205
np_req_srv return values 207

execute-immediate method of executing dynamic SQL
12

exiting custom and manual scripts 118

F
failback in mutually-aware OpenSwitch servers 110
failover

Adaptive Server in mutually-aware OpenSwitch
109

automatic 105
behavior with dynamic SQL 41

Failover, Sybase 41

failure type configuration parameters for mutually-aware
support 112

failures
deadlock messages 39
detecting 38
failover behavior within dynamic SQL 41
handling 40
managing 38

files
OpenSwitch configuration 60

forwarding queries and results 32
FREEZE_CFG_ON_FAIL

and rp_pool_status 167, 183
FREEZE_CFG_ON_FAIL and CMP_FAIL_ACTION

configuration parameters association 120
FULL_PASSTHRU mode, configuring for OpenSwitch

16, 72

H
help for registered procedures 139
high availability, warm standby environment 55

I
ignore line in configuration file 60
information, connection state 137
international character sets 13
invoking registered procedures 126
isql, using registered procedures in 127

J
jConnect client application deployment update 16

L
listing available servers 22
listsing available pools 27
literal characters, specifying 61
load balancing and chaining 5
login denied 30

Index

214 OpenSwitch

M
managing

connections and threads 28
switch requests 33

managing failures 38
max network packet size on Adaptive Server causing failed

client connection 30
MAX_PACKETSIZE

problem if Adaptive Server max network packet size is
set to 512K 73

resetting to match max network packet size on
Adaptive Server 30

messages
deadlock 39
debugging 133
notifications 12
sending to connections 143

modes
balanced 6
chained 6

monitoring
client-side cursor state 33
communication state 32
connection state 32
transaction state 33

monitoring user connections 89
mutually-aware OpenSwitch servers 8

Adaptive Server failover 109
CMON_FAIL_ACTION 119
CMP_FAIL_ACTION 120
configuration data precedence 107
configuration parameters 99
configuration table 104
configuring 99
CUSTOM action 116
CUSTOM_MANUAL action 117
DEFAULT action 114
exiting custom and manual scripts 118
failback 110
failure type actions 113
failure type configuration parameters 112
invoking manual actions and custom scripts 111
NET_FAIL_ACTION 121
operations 109
requirements 94
shutdown 109

startup 109
SVR_FAIL_ACTION 122

N
negating characters 61
NET_FAIL_ACTION 121
notifications 12

described 205
example 205
np_req_srv 206
np_switch_end 208
np_switch_start 208
programming for 205
summary 206
using 206

number of user connections 16

O
Open Client applications 205
OpenSwitch

[COMPANION] section in OpenSwitch
configuration file 91

[CONFIG] section in OpenSwitch configuration file
64

[LIMIT_RESOURCE] section in OpenSwitch
configuration file 89

[POOL] section in OpenSwitch configuration file
86

[SERVER] section in OpenSwitch configuration file
83

configuration file additions 57
configuration tool 13
debugging messages 133
deployment issues 14
dynamic configuration 14
dynamic SQL support 12
editing the configuration file 60
FULL_PASSTHRU mode 16, 72
performance 15
removing as a service on Windows 47
starting 44
starting and stopping the RCM from 54

Index

Administration Guide 215

starting as a service on Windows 45
using coordination modules 9
using replication coordination modules 55
using server pools and routing 4

operations, mutually-aware OpenSwitch server support
109

options, setting server 22
outgoing connections, transparent 2

P
percent wildcard 62
performance 15
pools

adding attributes to 145
adding servers to 147
and connections 25
and servers 25
balanced mode 6
chained mode 6
changing status 27, 28
defining 23, 34
defining in configuration file 24
importance of creation order and rp_pool_create

155
listing available 27
load balancing and chaining 5
routing and collisions 24
state 26
using server 4

pound sign (#) 60
prepare-and-execute method of executing dynamic

SQL 13
properties

setting cached connection 37

Q
queries and results, forwarding 32

R
range of characters, specifying 61

RCMs. See replication coordination modules
registered procedures

described 125
help 139
invoking 126
notifications 205
replication coordination module, new 57
rp_cancel 128
rp_cfg 130, 131
rp_debug 133
rp_dump 137
rp_go 137
rp_help 139
rp_kill 141
rp_msg 143
rp_pool_addattrib 145
rp_pool_addserver 147
rp_pool_cache 152
rp_pool_create 154
rp_pool_drop 157
rp_pool_help 158
rp_pool_remattrib 160
rp_pool_remserver 162
rp_pool_server_status 163
rp_pool_status 165
rp_rcm_connect_primary 169
rp_rcm_list 170
rp_rcm_shutdown 171
rp_rcm_startup 172
rp_replay 174
rp_rmon 179
rp_server_help 180
rp_server_status 181
rp_set 185
rp_set_srv 188
rp_showquery 189
rp_shutdown 190
rp_start 191
rp_stop 192
rp_switch 195
rp_traceflag 198
rp_version 200
rp_who 201
sp_ps Open Server 193
using in isql 127

related documents viii

Index

216 OpenSwitch

remote server, adding to pool 147
replication coordination module

configuration file additions 57
registered procedures, new 57
requirements 55
starting and stopping from OpenSwitch 54

repositioning cursors 41
requirements

coordination module 9
mutually-aware OpenSwitch server support 94
replication coordination module 55

re-reading configuration file 130
resource

governing 11
monitoring limits 89

restoring cached connections 35
routing and collisions in pools 24
routing and server pools 4
rp_pool_status registered procedure and

FREEZE_CFG_ON_FAIL 167, 183
RPC invocation of registered procedures 127
runtime, rereading configuration file 130

S
scripts

exiting custom and manual 118
invoking custom and manual in mutually-aware

OpenSwitch servers 111
security, enabling SSL 42
servers

adding pools 4
adding to pool 147
and pools 25
changing the status of 22
listing available 22
setting options 22
state 20
state changes 21
states 20
status of 21
unavailable for connection 30

setting
connection caching properties 37

shutdown, mutually-aware OpenSwitch servers 109

single character wildcard 62
sp_ps Open Server registered procedure 193
SQL

cursors within dynamic 40
executing dynamic with execute-immediate 12
executing dynamic with prepare-and-execute 13
failover behavior with dynamic 41
forwarding queries and results 32

SQL, dynamic support 12
SSL support, enabling 42
starting

and stopping the RCM from OpenSwitch 54
mutually-aware OpenSwitch servers 109
OpenSwitch 44
OpenSwitch as a service on Windows 45

state
and caching 36
client-side cursor 33
monitoring communication 32
monitoring connections 32
monitoring transaction 33

state changes, server 21
states, server 20
status

changing pool 27, 28
status, changing server 22
status, server 21
string of characters, specifying 62
summary notifications 206
suspending and resuming connections 3
SVR_FAIL_ACTION 122
switch requests, monitoring 33
Sybase Failover support 41
syntax of OpenSwitch configuration file 60

T
temporary tables, Adaptive Server 15
terminating connections 3
threads

managing 28
transaction

last 3
state 2

transaction state 2

Index

Administration Guide 217

transactions
monitoring state 33

transparent outgoing connection 2
triggers 205
troubleshooting

connection refused when Adaptive Server packet
size is set to 512 30

login denied 30
server unavailable 30

U
uncached connections 36
underscore wildcard 62
updates for jConnect client application deployment

16
user connections

for resource monitoring 89
number of 16

user messaging 12
using notifications 206

V
viewing cached connection details 36

W
wildcards

brackets [] 61
caret (^) 61
escaping 61
percent % 62
underscore _ 62

wildcards, using in the configuration file 60

218 OpenSwitch

	Administration Guide
	About This Book
	CHAPTER 1 Overview
	What is OpenSwitch?
	Connection management
	Connection migration
	Failure detection and recovery
	Connection termination
	Suspending and resuming connections
	Server pools and routing
	Load balancing and chaining
	Connection pools and caching

	Mutually-aware OpenSwitch server support
	External coordination using coordination modules
	Resource governing
	User messaging
	Dynamic SQL support
	Execute-immediate
	Prepare-and-execute

	International character sets

	Configuration
	Standalone GUI configuration
	Dynamic configuration

	Deployment issues
	Connection context
	Deadlocks and RPCs
	Temporary tables and cursors
	Performance
	Number of user connections
	Java-based jConnect client applications

	CHAPTER 2 Concepts and Procedures
	Defining servers
	Defining a server
	Server state
	Server state changes

	Server status and existing conditions
	Listing available servers
	Changing the status of a server
	Setting server options

	Defining pools
	Defining a pool
	Routing and collisions
	Pools and servers
	Pools and connections
	Pool states
	Listing available pools
	Changing pool status

	Managing connections and threads
	Establishing an outgoing connection
	Server unavailable
	Login denied
	Connection refused

	Forwarding queries and results
	Monitoring connection state
	Database context
	Communications state
	Transaction state
	Client-side cursor state

	Managing switch requests
	Using connection caching
	Defining connection pools and caching
	Restoring cached connections
	Uncached connections
	Viewing cached connection details
	Setting connection caching properties, options, and database context

	Managing failures
	Failure detection
	Deadlock messages

	Working with client-side cursors
	Cursors within dynamic SQL
	Failover handling
	OpenSwitch Sybase Failover support
	Failover behavior with dynamic SQL

	Cursor repositioning

	Enabling SSL support

	CHAPTER 3 Starting and Stopping OpenSwitch and RCMs
	Starting and stopping OpenSwitch on UNIX
	Starting and stopping OpenSwitch on Windows
	Using encrypted user names and passwords
	Using command line options
	Starting and stopping the RCM from OpenSwitch
	Requirements
	Configuring an RCM to start automatically from OpenSwitch
	OpenSwitch sample configuration file
	RCM sample configuration file example

	CHAPTER 4 Using the Configuration File
	Introduction
	Editing the OpenSwitch configuration file
	Using wildcards

	Creating or editing a configuration file
	Manually editing configuration options
	[CONFIG]
	[SERVER]
	[POOL]
	[LIMIT_RESOURCE]
	[COMPANION]

	CHAPTER 5 Using Mutually-aware OpenSwitch Servers
	Introduction
	Requirements
	Installation
	Configuration and use
	Requirements

	Configuring OpenSwitch servers to be mutually aware
	Configuration file parameters
	Mutually-aware configuration table
	Table name

	Configuration data precedence

	OpenSwitch mutually-aware operations
	Active Adaptive Server failover
	Failback

	Invoking custom and manual scripts
	Overview
	Failure types
	User-specified actions
	Reason codes
	Exit codes

	CMON_FAIL_ACTION
	CMP_FAIL_ACTION
	NET_FAIL_ACTION
	SVR_FAIL_ACTION

	CHAPTER 6 Registered Procedures
	Invoking registered procedures
	Remote procedure call invocation
	Direct invocation

	rp_cancel
	rp_cfg
	rp_debug
	rp_dump
	rp_go
	rp_help
	rp_kill
	rp_msg
	rp_pool_addattrib
	rp_pool_addserver
	rp_pool_cache
	rp_pool_create
	rp_pool_drop
	rp_pool_help
	rp_pool_remattrib
	rp_pool_remserver
	rp_pool_server_status
	rp_pool_status
	rp_rcm_connect_primary
	rp_rcm_list
	rp_rcm_shutdown
	rp_rcm_startup
	rp_replay
	rp_rmon
	rp_server_help
	rp_server_status
	rp_set
	rp_set_srv
	rp_showquery
	rp_shutdown
	rp_start
	rp_stop
	rp_switch
	rp_traceflag
	rp_version
	rp_who

	CHAPTER 7 Notification Procedures
	Introduction
	Using notifications
	Notification registered procedures
	np_req_srv
	np_switch_start
	np_switch_end

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

