
Feature Guide

EAServer

5.0

DOCUMENT ID: DC38033-01-0500-01

LAST REVISED: December 2003

Copyright © 1997-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen,
PC APT Execute, PC Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnalyst, Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase
Financial Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User
Workbench, SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data
Stream, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK
Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control
Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc.
07/03

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Feature Guide iii

About This Book .. v

CHAPTER 1 Introducing EAServer ... 1
Overview .. 1
EAServer execution engine.. 3
Component support.. 4
J2EE platform support.. 5
Network protocol support ... 7
Dynamic HTML support.. 9

PowerDynamo Web site conversion utility 10
Web server redirector plug-in .. 10

Administration and development tools ... 10
Client-session and component-lifecycle management 14
Naming services... 17
Connection caching.. 18
Transaction management .. 19
Result-set support .. 19
Support for asynchronous messaging.. 20
Asynchronous processing support ... 21
Systems management support .. 21
Support for legacy Open Server applications................................. 22

CHAPTER 2 Developing an EAServer Application.. 23
Introductory concepts ... 23
Developing an EAServer application.. 25
EAServer runtime environment .. 26

CHAPTER 3 EAServer Components ... 29
Overview .. 29
Enterprise JavaBeans components ... 33

EJB component types ... 34
EJB transaction attribute values.. 36
EJB container services.. 36

Contents

iv EAServer

Java components ... 37
CORBA-C++ components.. 38
PowerBuilder components ... 38
ActiveX components .. 39
C components .. 39

CHAPTER 4 Web Applications... 41
What is a Web application?.. 41
Contents of a Web application ... 42

Servlet files.. 42
JSP files and tag libraries.. 42
Static files .. 42
Java classes.. 43
Deployment descriptor .. 43

CHAPTER 5 Using PowerDynamo with EAServer ... 45
Converting PowerDynamo scripts to JavaServer Pages 46
PowerDynamo overview .. 46
EAServer and PowerDynamo architecture 49

Benefits of using EAServer components with PowerDynamo. 51
Calling EAServer components from Dynamo scripts 51

Setting up PowerDynamo as a client ... 53

CHAPTER 6 Using Message Bridge for Java with EAServer 55
Message Bridge overview .. 55
Using Message Bridge ... 56
Message Bridge and EAServer architecture 56

For more information ... 58

Index ... 59

Feature Guide v

About This Book

Subject This book describes EAServer, which is an integrated set of application
servers that you use to deploy Web applications that support high-volume
traffic, dynamic content, and intensive online transaction processing. The
EAServer product set consists of PowerDynamo™ (Dynamo) and
Adaptive Server® Anywhere.

Note Products described in this manual may not be available on some
UNIX platforms. See the Release Bulletin and the Installation Guide for a
list of products included in your EAServer edition.

Audience This book is written for new users of EAServer.

How to use this book The following chapters are included in this book:

• Chapter 1, “Introducing EAServer,” includes a description of
EAServer’s features and use.

• Chapter 2, “Developing an EAServer Application,” explains some of
the basic concepts and terminology associated with developing
component-based EAServer applications.

• Chapter 3, “EAServer Components,” discusses developing EJB,
Java, C/C++, and ActiveX components that run on EAServer.

• Chapter 4, “Web Applications,” describes the components of Web
applications.

• Chapter 5, “Using PowerDynamo with EAServer,” discusses calling
methods in EAServer components from PowerDynamo templates
and scripts.

• Chapter 6, “Using Message Bridge for Java with EAServer,”
describes how Message Bridge is used to build applications that make
use of structured messages, such as XML documents or messages
exchanged between enterprise systems or business partners through
New Era adapters, using EAServer components.

vi EAServer

Related documents Core EAServer documentation The core EAServer documents are
available in HTML format in your EAServer software installation, and in PDF
and DynaText format on the Technical Library CD.

What’s New in EAServer summarizes new functionality in this version.

The EAServer Cookbook contains tutorials and explains how to use the sample
applications included with your EAServer software.

The EAServer Feature Guide (this book) explains application server concepts
and architecture, such as supported component models, network protocols,
server-managed transactions, and Web applications.

The EAServer System Administration Guide explains how to:

• Start the preconfigured Jaguar server and manage it with the EAServer
Manager plug-in for Sybase Central™

• Create, configure, and start new application servers

• Define connection caches

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools or
the Repository API

The EAServer Programmer’s Guide explains how to:

• Create, deploy, and configure components and component-based
applications

• Create, deploy, and configure Web applications, Java servlets, and
JavaServer Pages

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Security Administration and Programming Guide explains how
to:

 About This Book

Feature Guide vii

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections using the
Security Manager plug-in for Sybase Central

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer API Reference Manual contains reference pages for proprietary
EAServer Java classes, ActiveX interfaces, and C routines.

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://www.sybase.com/detail?id=1024509.

Message Bridge for Java™ Message Bridge for Java simplifies the parsing
and formatting of structured documents in Java applications. Message Bridge
allows you to define structures in XML or other formats, and generates Java
classes to parse and build documents and messages that follow the format. The
Message Bridge for Java User's Guide describes how to use the Message
Bridge tools and runtime APIs. This document is included in PDF and
DynaText format on your EAServer 5.0 Technical Library CD.

Adaptive Server Anywhere documents EAServer includes a limited-
license version of Adaptive Server Anywhere for use in running the samples
and tutorials included with EAServer. Adaptive Server Anywhere documents
are available on the Sybase Web site at http://sybooks.sybase.com/aw.html.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ driver to allow JDBC access to Sybase database servers and gateways.
The Programmer’s Reference jConnect for JDBC is available on the Sybase
Web site at http://sybooks.sybase.com/jc.html.

Conventions The formatting conventions used in this manual are:

viii EAServer

Other sources of
information

Use the Sybase Getting Started CD, the Sybase Technical Library CD and the
Technical Library Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using jagtool to configure applications
rather than EAServer Manager

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in EAServer Manager, a command line, or as program text

• Example program fragments

• Example output fragments

 About This Book

Feature Guide ix

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

v For the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

v For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Specify a time frame and click Go.

4 Select a product.

5 Click an EBF/Update title to display the report.

v To create a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

x EAServer

Accessibility
features

EAServer 5.0 has been tested for compliance with U.S. government Section
508 Accessibility requirements. The online help for this product is also
provided in HTML, JavaHelp, and Eclipse help formats, which you can
navigate using a screen reader.

EAServer Manager supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Sybase Central Overview,” in the
EAServer System Administration Guide.

The WST plug-in for Eclipse supports accessibility features for those that
cannot use a mouse, are visually impaired or have other special needs. For
information about these features refer to Eclipse help:

1 Start Eclipse

2 Select Help | Help Contents

3 Enter Accessibility in the Search dialog box

4 Select Accessible user interfaces or Accessibility features for Eclipse

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Feature Guide 1

C H A P T E R 1 Introducing EAServer

This chapter describes the EAServer features.

For a description of the features that are new in this version, see What’s
New in EAServer.

Overview
EAServer is an application server, which includes an integrated set of
development tools that you use to deploy Web applications that support
high-volume traffic, dynamic content, and intensive online transaction
processing. The EAServer product set includes PowerDynamo and
Adaptive Server Anywhere.

Topic Page
Overview 1

EAServer execution engine 3

Component support 4

J2EE platform support 5

Network protocol support 7

Dynamic HTML support 9

Administration and development tools 10

Client-session and component-lifecycle management 14

Naming services 17

Connection caching 18

Transaction management 19

Result-set support 19

Support for asynchronous messaging 20

Asynchronous processing support 21

Systems management support 21

Support for legacy Open Server applications 22

Overview

2 EAServer

EAServer provides a framework for deploying the middle-tier logic of
distributed component-based applications.

EAServer simplifies the creation and administration of Internet applications
that service thousands of clients simultaneously. EAServer components
execute on the middle-tier between end-user client applications and remote
databases. EAServer provides efficient management of client sessions,
security, threads, third-tier database connections, and transaction flow, without
requiring specialized knowledge on the part of the component developer.

EAServer’s scalability and platform independence allow you to develop your
application on inexpensive single processor machines and then deploy the
application on an enterprise-grade multiprocessor server.

EAServer provides the following features:

• A scalable, multithreaded, platform-independent execution engine

• Dispatch and stub/proxy support for all major component models,
including JavaBeans, PowerBuilder®, Java, ActiveX, and C/C++

• Dynamic HTML support using Java servlet, JavaServer Pages, and
PowerDynamo Web sites

• Java 2 Enterprise Edition (J2EE) platform support

• Graphical administration with Sybase Central, including component
interface browsing, declarative role-based security, password, and
required SSL session characteristics, server and user certificate
management, IDL module support, transaction monitoring, and runtime
monitoring

• Tight integration with the PowerBuilder development environment

• Transparent client-session and component-lifecycle management

• Connection caching to allow reuse of remote database connections

• Industry-standard naming services to resolve components using logical
names rather than server addresses

• Transaction management to simplify the design and implementation of an
application’s transactions

• Transparent thread-safety features to simplify use of shared data and
resources

• Result-set support to enable efficient retrieval of tabular data in client
applications

CHAPTER 1 Introducing EAServer

Feature Guide 3

• Declarative, role-based security to restrict client connections and the
components that can be invoked by a specific client session

• Identity-based security to restrict intercomponent calls

• Asynchronous messaging support

• Asynchronous processing support

• Web server redirector plug-in forwards client requests directly to a Web
server

• EAServer version 5.0 is available as a plug-in for Borland JBuilder version
10. The EAServer plug-in conforms to Section 508 guidelines, and is
internationalized and localizable.

The following sections explain these features in detail.

EAServer execution engine
EAServer’s runtime engine provides a scalable and platform-independent
environment for the execution of component based applications. EAServer is
scalable because it is multithreaded and multiprocessor safe.

The EAServer execution environment is the same across all platforms, with the
exception of ActiveX component support. ActiveX requires platform support
and is currently available only on Windows.

The EAServer runtime engine provides the following services:

• Network listeners for the connections on which clients send remote
component invocations. EAServer’s core network server technology is
based on Sybase’s Open Client/Server™ technology. “Network protocol
support” on page 7 details the supported application protocols.

• An execution environment for middle-tier components. See “Server-side
component support” on page 29.

• A built-in HTTP server. You can use EAServer’s HTTP support to deploy
your application’s Java applets and HTML pages.

• Hosting of Dynamo Web sites so that you can access those sites from a
browser.

• Ability to run with different Java virtual machines.

Component support

4 EAServer

• A JagRepair server that you can use to repair your application server if you
cannot start it up because of an incorrect configuration setting.

• Declarative security. You can use roles to authenticate and authorize users.
See the EAServer Security Administration and Programming Guide for
more information.

• Connection caching. You can define caches of connections for interacting
with remote databases from EAServer components. See “Connection
caching” on page 18 for more information.

• Open Server™ event handler support. See “Support for legacy Open
Server applications” on page 22 for more information.

In addition to these built-in services, you can install service components that
run in the background and provide customized services to clients or other
components. See Chapter 33, “Creating Service Components,” in the
EAServer Programmer’s Guide for more information.

Component support
Components are reusable modules of code that combine related tasks
(methods) into a well-defined interface. EAServer components are installed on
an EAServer application server and contain the methods that execute business
logic and access data sources. You or your administrator install the
component’s executable code on the server. Components can be distributed
throughout a network, including the Internet or an intranet, on different servers.
Installed components can be used by any number of independent applications.

Since EAServer components reside on the server, components do not contain
methods to display graphics or user interfaces—that is, EAServer components
are inherently nonvisual.

User-interface developers or other component developers can browse a
component’s interface in EAServer Manager; in their code, they use a client
stub or proxy to invoke the component’s methods. The stub or proxy acts as a
local surrogate for the remote component, providing the same method
signatures as the component and hiding the details of remote server
communication.

CHAPTER 1 Introducing EAServer

Feature Guide 5

EAServer’s server-side component support and client-side stub or proxy
support are independent. Any EAServer client can execute any type of
component. A component of any model can execute components of another
model using intercomponent calls without the use of additional gateway
software. Additionally, since EAServer uses standard CORBA IIOP as its core
network protocol, you can use CORBA client runtimes from other vendors to
invoke components installed on EAServer.

All clients and components share a common interface repository. Component
interfaces are stored in standard CORBA interface definition language (IDL).
Component developers can define, edit, and browse interfaces in EAServer
Manager, which allows you to edit interfaces graphically or as raw IDL. You
can also define interfaces by importing compiled Java classes, standard-format
EJB-JAR files, or ActiveX type libraries.

For more information about the component models that EAServer supports, see
Chapter 3, “EAServer Components.”

J2EE platform support
EAServer implements the Java 2 Enterprise Edition (J2EE) 1.3 specification,
with support for EJB 2.0 components, J2EE applications, J2EE Web
applications, object caching, the JavaMail electronic mail API, the connector
architecture, Java API for XML Parsing, and the Java Authentication and
Authorization Services.

“Component support” on page 4 describes EAServer’s supported component
models, including EJB.

A Web application is a unit of deployment for interrelated Web content,
JavaServer Pages (JSPs), and Java servlets. The Web application contains static
files, servlet and JSP implementation classes, and a deployment descriptor that
describes how the files, servlets, and JSPs are configured on the host server.
See Chapter 21, “Creating Web Applications,” in the EAServer Programmer’s
Guide for more information.

J2EE applications allow you to group related EJB 2.0 components and Web
applications into a single entity. In this way, you can deploy related business
logic components, Java servlets, JavaServer Pages, and Web pages as a single
unit between servers. Using the J2EE Application Client model, you can create
clients that call the components and Web pages in the application. For more
information, see these chapters in the EAServer Programmer’s Guide:

J2EE platform support

6 EAServer

• Chapter 3, “Managing Applications and Packages in EAServer Manager”

• Chapter 10, “Creating Application Clients”

EAServer supports EJB 2.0 container-managed persistence (CMP) for EJB
entity bean components, as well as supporting an automatic persistence model
for components of other types. EAServer also supports entity instance and
finder-query caching, which can improve performance by minimizing the
number of database select queries required to execute business logic. For
information on entity components, automatic persistence, and object/query
caching, see Chapter 27, “Creating Entity Components,” in the EAServer
Programmer’s Guide.

The JavaMail API provides a standard Java interface to the most widely-used
Internet mail protocols. See Chapter 35, “Creating JavaMail,” in the EAServer
Programmer’s Guide for more information.

The J2EE connector architecture enables you to write portable Java
applications that can access multiple transactional enterprise information
systems. A connector is a specialized connection factory that provides
connections for EJBs, Java servlets, JSPs, and CORBA-Java components. For
more information, see Chapter 4, “Database Access,” in the EAServer System
Administration Guide.

EAServer can host Web applications in popular Web servers such as Apache,
iPlanet, and Netscape. For more information, see the EAServer Installation
Guide for your platform.

EAServer implements J2EE version 1.3 security requirements including Java
and C++ ORB support and CORBA Secure Interoperable version 2 protocol
(CSIv2). For more information see the EAServer Security Administration and
Programming Guide.

EAServer includes support for the Java API for XML Parsing 1.1. You can
configure the parser and transformer implementations for servers, components,
Web applications, and application clients.

Java Authentication and Authorization Services (JAAS) provide a framework
and standard programming interface for authenticating users and assigning
privileges. JAAS is based on the Pluggable Authentication Module standard,
which extends the access-control architecture of the Java 2 platform to support
user-based authentication and authorization. For more information, see the
EAServer Security Administration and Programming Guide.

CHAPTER 1 Introducing EAServer

Feature Guide 7

Network protocol support
EAServer supports the following protocols:

• Internet Inter-ORB Protocol (IIOP) IIOP is the standard protocol for
communication between CORBA ORBs over TCP/IP networks. All
EAServer client models except MASP use IIOP or IIOP tunnelled inside
of SSL (referred to as IIOPS). IIOP connections can also be tunnelled
inside of HTTP to allow connections through firewalls that do not allow
passage of IIOP traffic, as discussed in “HTTP tunnelling support” on
page 8.

• Sybase Tabular Data Stream™ (TDS) TDS is a proprietary protocol
used in two-tier database applications that connect to Sybase database
servers or gateways. Two types of clients connect to EAServer using TDS:

• MASP MASP and TDS allow you to incorporate EAServer
components into applications that were developed with traditional
two-tier development tools.

• Legacy Open Server clients If you have converted an Open Server
application to run in EAServer, legacy clients for the application
connect to EAServer using TDS.

To separate MASP and Open Server requests, EAServer requires different
listener ports for each type of client. To support MASP clients, your server
must have at least one TDS listener installed. You must define an Open
Server listener to support legacy Open Server clients.

• Hypertext Transfer Protocol (HTTP) HTTP is used by Web browsers
for file downloads and uploads. EAServer provides HTTP support to
allow you to deploy HTML pages and Java applets on EAServer itself.

• Secure Sockets Layer (SSL) The SSL protocol allows connections to
be secured using public-key encryption and authentication algorithms.
“SSL support” on page 8 describes EAServer’s SSL support.

To enable support for each protocol, you must define a listener in EAServer
Manager. The listener configuration specifies a server address (host name and
port number) as well as the network protocol and security settings to be used
by clients that connect to that listener. SSL support requires installation of a
server certificate. See the EAServer Security Administration and Programming
Guide for more information.

Network protocol support

8 EAServer

HTTP 1.1 support EAServer supports for HTTP/1.1, and complies with features listed as must
and required for origin server and client in the W3C spec for HTTP/1.1. For
more information about HTTP/1.1, see the HTTP/1.1 specification at
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

HTTP tunnelling
support

Almost all network firewalls allow HTTP traffic to pass, but some reject IIOP
packets. When IIOP traffic is tunnelled inside of HTTP, your clients can
connect to EAServer through a firewall that does not allow IIOP traffic to pass.

EAServer’s Java client ORB performs HTTP tunnelling automatically using
the designated IIOP port. No additional configuration or proxies are required.
When connecting, the EAServer client-side ORB first tries to open an IIOP
connection to the specified address and port. If the IIOP connection fails, the
ORB tries an HTTP-tunnelled connection to the same address and port. The
default behavior is appropriate when some users connect through firewalls that
require tunnelling and others do not; the same application can serve both types.
If you know HTTP tunnelling is always required for a Java client, you can set
the ORBHttp property to cause the ORB to use HTTP tunnelling without trying
plain IIOP connections first.

The C++ client ORB supports tunnelling when clients explicitly request it by
setting the ORBHttp property.

SSL support The SSL protocol allows connections to be secured using public-key
encryption and authentication algorithms that are based on digital certificates.
SSL is a wrapper protocol: packets for another protocol are secured by
embedding them inside of SSL packets. For example, HTTPS is HTTP-secured
by embedding each HTTP packet within an SSL packet. Likewise, IIOPS is
IIOP embedded within SSL. HTTPS and IIOPS are also commonly called
secure HTTP and secure IIOP, respectively.

EAServer provides native SSL protocol support. Specifically, EAServer’s
built-in SSL driver supports dynamic negotiation, cached and shared sessions,
and authorization for client and server using X.509 Digital Certificate Support.

In EAServer Manager, you configure a secure IIOP or HTTP port by defining
an IIOP or HTTP listener, then associating a security profile with the listener.
The security profile designates a server certificate which is sent to clients to
verify that the connection ends at the intended server. The security profile also
specifies the connection’s required security settings, such as:

• Whether a client certificate is required to open connections. The client
certificate serves as proof of the client user’s identity.

• What data security options, such as the encryption algorithm, are used to
secure data transmitted over the connection.

CHAPTER 1 Introducing EAServer

Feature Guide 9

For detailed instructions on configuring secure ports, see the EAServer Security
Administration and Programming Guide.

On the client-side, the following types of clients can open SSL connections to
EAServer:

• Java applets hosted by SSL-capable Web browsers.

• Java applications

• C++ clients

• PowerBuilder clients

• ActiveX clients

Dynamic HTML support
You can use Java servlets, JavaServer Pages (JSPs), or PowerDynamo Web
sites to dynamically create HTML pages and interactive HTML forms. Both
PowerDynamo and Java servlets can call methods in EAServer components.

Java servlets are Java classes that use the standard javax.servlet API to respond
to HTTP requests. EAServer can host Java servlets natively, and you can use
EAServer Manager to associate logical paths in a HTTP URL with a Java
servlet. JavaServer Pages extend the HTML page description language,
allowing you to embed Java scriptlets within HTML tags. See these chapters in
the EAServer Programmer’s Guide for more information:

• Chapter 22, “Creating Java Servlets”

• Chapter 24, “Creating JavaServer Pages”

If you have the PowerBuilder IDE, you can deploy JSP-based Web applications
from PowerBuilder to EAServer. For more information, see Working with Web
and JSP Targets in your PowerBuilder documentation.

PowerDynamo Web sites contain static HTML pages and dynamic pages
implemented in the DynaScript language. You can configure EAServer to host
PowerDynamo Web sites natively. Chapter 3, “Creating and Configuring
Servers,” in the EAServer System Administration Guide describes how to
configure EAServer to host PowerDynamo Web sites. See the PowerDynamo
User’s Guide for information on creating Web sites and dynamic pages.

Administration and development tools

10 EAServer

PowerDynamo Web site conversion utility
EAServer 5.0 includes the Dyn2JSP utility to convert PowerDynamo™ Web
sites into JSP-based J2EE Web applications. Sybase recommends that you
migrate your PowerDynamo Web sites to the J2EE model. Support for
PowerDynamo will be removed from later versions of EAServer. For
information on using the Dyn2JSP utility, see the HTML documentation
included in the PDynamo2JSP directory of the installation.

Web server redirector plug-in
EAServer hosts Web applications and functions as a Web server. You can
install a redirector plug-in on the Web server host that allows you to send client
requests directly to the Web server. The redirector plug-in enables
communication between the Web server and the EAServer HTTP protocol
listener. The redirector plug-in forwards requests to EAServer that need to
access servlets, JSPs, and so on. EAServer processes the requests and returns
the results back to the Web server.

EAServer 5.0 includes redirector plug-ins for the Web servers described in
Table 1-1. For more information, see the EAServer Installation Guide.

Table 1-1: Web server redirector plug-ins

Administration and development tools
Sybase Central is a common management framework for Sybase application
and database servers. EAServer provides two Sybase Central plug-ins for use
by developers and administrators:

 Platform Web servers supported

Solaris Netscape 3.6.x, iPlanet 4.1, Sun ONE (iPlanet 6.0), Apache 1.3
and 2.0.x

Windows Netscape 3.6.x, Apache 1.3 and 2.0.x, iPlanet 4.1, Sun ONE
(iPlanet 6.0), Microsoft IIS (Internet Information Server) 5.0

HP-UX Apache 1.3.26

AIX iPlanet 4.1

CHAPTER 1 Introducing EAServer

Feature Guide 11

• EAServer Manager provides graphical administration facilities for
EAServer, including support for development, deployment, runtime
monitoring of applications, and management of the server’s SSL digital
certificate database.

• Standalone Security Manager can be installed on client machines where a
full EAServer installation is not required and provides a graphical user
interface for managing SSL digital certificates, which can be used by end
users to manage the certificates used in client applications.

For detailed instructions on running EAServer Manager and the standalone
Security Manager, see the EAServer System Administration Guide and the
EAServer Security Administration and Programming Guide.

Development support Sybase PowerBuilder has been integrated with EAServer. Using this tool, you
can develop, deploy, and debug EAServer components entirely within the
development environment. You can also generate the proxies required for
client application development. For more information, see the Application
Techniques manual included in the PowerBuilder documentation.

Application developers using other tools can use EAServer Manager to view
the method definitions for any installed component in EAServer Manager. You
can view and edit method definitions graphically, or you can directly edit the
IDL datatype and interface definitions with EAServer Manager’s IDL editor.
Interface definitions can be imported from existing Java classes, ActiveX
component type library files, or from standard CORBA IDL files. See
“Defining Component Interfaces” in the EAServer Programmer’s Guide for
more information.

EAServer Manager also generates stub classes for use in Java and C++ client
applications and ActiveX type libraries for use in ActiveX client applications.

Deployment support To simplify application deployment, EAServer Manager defines the following
basic, middle-tier application units:

• Clusters A cluster represents a set of servers that share configuration
information and run the same set of components. For applications with
thousands of clients, clusters provide support for load balancing and high
availability. EAServer Manager includes a synchronization feature, which
replicates component files and configuration information from a primary
server to other servers in a cluster.

• Servers A server represents one EAServer runtime process. Each server
has its own network addresses for client session connections and for HTTP
(HTML) connections. All servers on one host machine share the same
configuration repository. For administration purposes, you can connect to
any server on the host machine to configure other servers on the same host.

Administration and development tools

12 EAServer

• Applications Applications allow you to group packages (groups of
related components) and Web applications (bundled static Web content,
servlets, and JSPs) into a single unit for easy deployment between servers.

• Packages A package organizes components into cohesive, secure units
that can be easily deployed on another EAServer installation. Packages
can be exported, or saved, as a Java archive (JAR) file. The package
archive includes the definition of all components in a package, plus any
supporting files (such as source code and client files) that you specify.
Package archives exported from one server can easily be imported for
redeployment on another server.

Roles attached to packages control access to components in a package. For
more information about roles and package security, see the EAServer
Security Administration and Programming Guide.

• Components A component definition consists of the component’s
method signatures and other properties, such as component type,
transaction support, threading model, and the name of the Java class or
executable library that implements the component.

• Web applications Web applications allow you to group static Web
content, servlets, and JSPs into a single unit for easy deployment and
configuration.

• Web components You can install servlets and JSPs in a Web application
as Web components. This allows you to configure request path mappings
and other useful settings within the Web application properties.

Before a client application can execute a component, the component must be
installed in an EAServer package, and that package must be installed in the
server to which the client connects.

Hot refresh support EAServer Manager includes an option that allows you to refresh components,
packages, and servers, enabling you to test and debug component
implementation changes without restarting the server.

Runtime monitoring
support

The EAServer Manager plug-in for Sybase Central provides allows you to
remotely view server log files and to monitor statistics for component
execution and network activity.

Use the EAServer Manager File Viewer to connect to EAServer and view the
contents of these server log files:

• The EAServer log file, where the server records errors related to
component execution.

CHAPTER 1 Introducing EAServer

Feature Guide 13

• The HTTP protocol request and error log files, where EAServer’s built-in
Web server records successful and unsuccessful file requests.

Runtime Monitoring allows you to view statistics on component and network
activity. You can view counts of active client sessions, components, and
transactions.

See the EAServer System Administration Guide for more information on these
features.

Certificate
management support

EAServer Manager | Certificates folder (server) or the standalone Security
Manager (client) allows you to manage the server and user certificates that are
required for SSL-protocol support. This allows you to:

• Install server certificates Server certificates are required to establish
secure IIOP and HTTP ports. The certificate is presented to the client
application as proof that the application has connected to the server that
the user intends to interact with.

• Install Certificate Administrator (CA) certificates CA certificates,
also called signing certificates, are attached to client and server
certificates to validate the origin of the certificate. For example, if you
obtain a certificate from VeriSign, your certificate will include a copy of
the VeriSign CA certificate. Using the Certificates folder you can install
CA certificates into EAServer and indicate which CAs are trusted. When
client applications present certificates to EAServer, the signing certificate
must be present in the list of trusted CAs in the Certificates folder | Trusted
CAs folder or the connection fails.

• Issue certificates for testing purposes EAServer Manager |
Certificates folder allows you to create new client and server certificates
for use in testing your applications. To deploy Internet applications, you
must obtain server certificates from a well-known Certificate Authority
(CA) such as VeriSign or Thawte. Certificates signed by the internal
Sybase Jaguar User Test CA will not be recognized by client browsers
unless the end user has installed the Sybase Test CA in their browser’s
database of trusted CAs.

See the EAServer Security Administration and Programming Guide for more
information on SSL certificates.

jagtool and jagant jagtool is a command-line interface that allows you to automate some of
EAServer’s development and deployment tasks. jagant lets you run jagtool
commands from Jakarta Ant build files.

Client-session and component-lifecycle management

14 EAServer

Ant is similar to make, but is platform-independent, and allows you to
incorporate jagtool commands into build files. This powerful feature allows
you to write build files that automate many development and deployment tasks.
For more information, see Chapter 12, “Using jagtool and jagant,” in the
EAServer System Administration Guide.

Repository versioning
support

The EAServer configuration repository stores configuration and
implementation files for installed application entities such as components, Web
applications, JSPs, and Java servlets. Repository versioning allows you to save
numbered versions of an entity. Each version archive contains configuration
properties and implementation files associated with the entity. For example,
before undertaking a new development phase, you might save a new major
version of your J2EE application.

Client-session and component-lifecycle management
EAServer client sessions are established internally by the client stubs and
proxies that applications use to invoke EAServer component methods. A
component’s lifecycle determines how instances are allocated, bound to client
sessions, and destroyed. EAServer manages both client sessions and
component lifecycles without requiring any specialized knowledge on the part
of the application developer.

Client-session
management

Client applications use a stub or proxy object to invoke methods on EAServer.
Internally, the stub or proxy object establishes a network connection between
EAServer and a remote client. All the stub/proxy models discussed in “Client
stub and proxy support” on page 31 require user-authentication parameters to
instantiate a stub or proxy object. The communication protocol is also
determined when the stub or proxy object is instantiated. Once the stub or
proxy object exists, all details of network communication are hidden from the
application developer.

The user name determines which components a client session can access. If a
component does not allow access to the user, then attempts to instantiate a
proxy or stub fail. The EAServer Security Administration and Programming
Guide describes security support in detail.

All stubs and proxies use IIOP to communicate with EAServer. MASP clients
use the TDS protocol. “Network protocol support” on page 7 discusses client
protocols in detail.

CHAPTER 1 Introducing EAServer

Feature Guide 15

Component-lifecycle
management

A component’s lifecycle determines how instances of a component are
allocated, bound to specific client sessions, and destroyed. In the simplest case,
an instance is allocated for each stub or proxy created by the client and is
destroyed when the client explicitly requests destruction or when it
disconnects, whichever happens first.

More sophisticated components can be coded to support instance pooling.
Instance pooling allows EAServer to maintain a cache of component instances
and bind them to client sessions on an as-needed basis. Instance pooling
requires the following changes to your component:

• The component must provide activate and deactivate methods. EAServer
calls the activate method just before an instance is bound to a client
session. activate must be able to reset the component to an as-allocated
state. EAServer calls deactivate just before an instance is unbound from a
client session (that is, made idle again).

• Methods in the component must use the EAServer transaction state
primitives to request early deactivation—see Chapter 2, “Understanding
Transactions and Component Lifecycles,” in the EAServer Programmer’s
Guide.

For components that support EAServer transactions, the time between
EAServer’s activate and deactivate calls coincides with the beginning and end
of that instance’s participation in an EAServer transaction.

Using components that support instance pooling increases the scalability of
your application. Instance pooling eliminates execution time and memory
consumption that would otherwise be spent allocating unnecessary component
instances.

Chapter 2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide describes how components participate in
instance pooling and EAServer transactions.

Load balancing and
failover

In the simplest scenario, your application’s components are deployed to one
server, and all clients connect to that server to execute the component’s
business logic. This scenario works well when the number of simultaneous
clients is not too large.

For applications with thousands of clients, you can define an EAServer cluster
with several redundant servers to run the application’s components. The cluster
allows load balancing and failover as follows:

Client-session and component-lifecycle management

16 EAServer

• Load balancing EAServer can use load balancing, which optimizes
performance for your EAServer cluster by adjusting the load across the
servers, based on load metrics and a distribution policy or based on a
random algorithm. When a client resolves the name of an EAServer
component, the name server returns several candidate server addresses.
When you allow the algorithm to randomly distribute the processing load
over servers in the cluster, the client ORB tries the addresses in random
order. When you specify the load metrics and distribution policy, the load
is distributed according to each server's current load.

• Failover Components can be configured to allow automatic failover that
is transparent to client applications. If a component allows automatic
failover, the client ORB automatically reconnects to another server within
the cluster when a previously connected server goes offline.

In-memory failover support allows component state to be maintained on a
pair of servers, without incurring the overhead of using a remote database
to store component state. See Chapter 28, “Configuring Persistence for
Stateful Session Components,” in the EAServer Programmer’s Guide for
more information about in-memory stateful failover.

For more information, see Chapter 7, “Load Balancing, Failover, and
Component Availability,” in the EAServer System Administration Guide.

Coded character set
conversions

EAServer supports multiple coded character sets for clients and components.
When a client and component use different coded character sets, EAServer
automatically converts character data from one character set to another. For
example, if the client uses the roman8 character set and the component uses
iso_1, EAServer converts string parameters and return values automatically
from roman8 to iso_1 when the client calls the component methods.

In accordance with the Java and ActiveX standards, Java components, Java
clients, ActiveX components, and ActiveX clients all use 16-bit Unicode.
Unicode contains mappings for all characters in all other known coded
character sets.

For C and C++ components, you can specify code sets using EAServer
Manager. The server Codeset property specifies the default for all C and C++
components (this property is set on the General tab in the Server Properties
window). You can override the default for an individual component by setting
the Codeset component property (located on the General tab of the Component
Properties window).

CHAPTER 1 Introducing EAServer

Feature Guide 17

For C++ clients, you can specify a character set when initializing the EAServer
client ORB by setting the ORBCodeSet property. See Chapter 15, “Creating
CORBA C++ Clients,” in the EAServer Programmer’s Guide for more
information.

For MASP clients, the code set is specified as an Open Client or ODBC
property before the client connection is opened. See Appendix A, “Executing
Methods As Stored Procedures,” in the EAServer Programmer’s Guide for
more information.

Naming services
When multiple servers are involved in your application, the naming service
allows you to specify logical server names rather than server addresses. For
example, instead of connecting to your finance component server at host
badger using port 9000, you can specify the initial naming context for that
server, such as USA/MyCompany/FinanceServer. Components are identified
by specifying an initial server name context plus the package and component
name. For example:

 USA/MyCompany/FinanceServer/FinancePackage/PayrollAdmin

This layer of abstraction allows you to move a server to another host without
affecting deployed client applications. Naming does require that one EAServer
installation use a well-known, stable host and port. This server acts as the name
server for other servers that participate in your application, and clients connect
to that server to resolve name requests.

You can use either persistent or transient storage for the naming database. For
transient storage, EAServer builds the name database in memory when it starts,
based on the contents of the EAServer configuration repository. For persistent
storage, you must provide a third-party directory server that accepts
connections using the Lightweight Directory Access Protocol (LDAP). When
using persistent storage, EAServer connects to the third-party directory server
to create and edit name database entries, and to resolve client name requests.

Configuring naming
services

Naming configuration for a multiserver application is briefly summarized as
follows:

1 Choose one server to act as name server for the application. You can
configure this server to store names in memory (transient storage), or to
store names in a third-party directory server (persistent storage).

Connection caching

18 EAServer

2 Configure each of the remaining servers to connect to the designated
EAServer naming server to resolve names. Each server also updates the
name space when packages and components are added or deleted in
EAServer Manager.

For detailed instructions, see Chapter 5, “Naming Services,” in the EAServer
System Administration Guide.

Client APIs for naming For Java and C++ clients, EAServer provides industry-standard client-side
APIs for naming services.

For Java clients, EAServer provides implementations of the CORBA standard
CosNaming API and the Java Naming and Directory (JNDI) API. See Chapter
8, “Creating Enterprise JavaBeans Clients,” and Chapter 12, “Creating
CORBA Java Clients,” in the EAServer Programmer’s Guide and for more
information.

For C++ clients, EAServer provides an implementation of the CORBA
standard CosNaming API. See Chapter 15, “Creating CORBA C++ Clients,”
in the EAServer Programmer’s Guide for more information.

PowerBuilder clients use the naming service implicitly. The name resolution is
performed automatically when you create EAServer component instances
using the CreateInstance and Lookup functions of the Connection object. You
can browse the naming service using the CosNaming API, but such complexity
is not necessary. For more information, see the Application Techniques manual
in the PowerBuilder documentation.

ActiveX clients use the naming service implicitly.

Connection caching
Connection caching allows EAServer components to share pools of
preallocated connections to a remote database server, avoiding the overhead
imposed when each instance of a component creates a separate connection.
Components that support transactions must use a connection from an EAServer
connection cache to interact with remote databases.

For components coded in C, EAServer supports Open DataBase Connectivity
(ODBC) and Client-Library™ connection caches. For Java components,
EAServer provides JDBC connection caches. Each component model provides
an interface for connection pooling. See Chapter 26, “Using Connection
Management,” in the EAServer Programmer’s Guide for more information.

CHAPTER 1 Introducing EAServer

Feature Guide 19

The J2EE connector architecture enables you to write portable Java
applications that can access multiple transactional enterprise information
systems. A connector is a specialized connection factory that provides
connections for EJBs, Java servlets, JSPs, and CORBA-Java components.

Transaction management
EAServer’s transaction management feature allows you to specify a
transaction coordinator—Java Transaction Service (JTS) or Microsoft
Distributed Transaction Coordinator (DTC)—and define a component’s
transactional semantics as part of the component interface. See Chapter 2,
“Understanding Transactions and Component Lifecycles,” in the EAServer
Programmer’s Guide for more information.

Result-set support
EAServer methods can return tabular data to the calling client. This feature can
be useful for the following reasons:

• Use with data-aware controls Some front-end tools provide objects
that can automatically display a result set. For example, if using
PowerBuilder, you can return results in a or DataStore object from
component methods and display the results using a DataWindow® control
in the client. PowerBuilder’s DataWindow technology, available in both
Web and PowerBuilder clients, allows you to display result sets and
synchronize updates with a minimum of coding.

• Efficiency For tasks that require returning tabular data, using an
EAServer result set is the most efficient alternative. Common uses of
result sets include menu and pick-list population. For example, in an
online clothing catalog, you need to list in-stock sizes for each item.

The EAServer result set allows data to be sent all at once (rather than
requiring a get-next-row method and one client-server round trip per
method). A large EAServer result set can be sent with less overhead than
is required to encapsulate tabular data as an object and send a serialized
version of the object to the client.

Support for asynchronous messaging

20 EAServer

Each component model provides an interface that allows you to define result
sets from scratch or to forward results from a remote database query directly to
the client. See Chapter 25, “Sending Result Sets,” in the EAServer
Programmer’s Guide for more information.

For information on using the PowerBuilder DataWindow, see the
PowerBuilder Application Techniques manual.

Support for asynchronous messaging
Chapter 31, “Using the Message Service,” in the EAServer Programmer’s
Guide describes EAServer messaging support. The EAServer message service
supports the Java Message Service (JMS) 1.0.2 specification, which addresses
the demands of distributed systems in a coherent manner. JMS offers an API
and a set of semantics that prescribe the interface and general behavior of a
messaging service.

The message service allows you to publish or send messages to a queue, where
they are stored until they can be delivered to the queue’s recipient, which is
either a client or a component. The message service provides a pull-style
mechanism for client notification and a push-style mechanism for component
notification. Clients can check their queue for new messages, or spawn a thread
to wait for a message’s arrival. Components can also check for new messages
and they can register to be notified when messages arrive in their queue.

The message service provides transient and persistent message storage for
message consumers and allows message producers to send messages to a
particular message queue, or to publish messages with specific topics,
available to all message queues.

The message service is implemented as an EAServer component with
interfaces specified in standard CORBA IDL. Consequently, it can be used by
all types of clients and components.

CHAPTER 1 Introducing EAServer

Feature Guide 21

Asynchronous processing support
Most server processing is driven by client interaction. However, some tasks are
best performed asynchronously. For example, you may need to maintain copies
of cached data retrieved from a slower source, update search indexes on a
regular schedule, or perform lengthy calculations. EAServer provides two
vehicles to support asynchronous processing:

• Service components can be used for processing that must run continuously
for the life of the server process, or must be performed once each time the
server is started. Service components run in a thread that is started when
the server starts. See Chapter 33, “Creating Service Components,” in the
EAServer Programmer’s Guide for more information.

• The EAServer thread manager allows you to run threads at any time.
Threads started by the thread manager execute independently of the client
or component that starts them, and can be configured to run once or
periodically at regular intervals. See Chapter 32, “Using the Thread
Manager,” in the EAServer Programmer’s Guide for more information.

External processing EAServer’s C++ component model allows you incorporate legacy C and C++
business logic code into a component. However, if legacy code is unstable, it
can cause the server to crash.

Beginning in version 4.0, you can configure C++ components to execute
within a dedicated external process. EAServer spawns a subprocess to execute
the component, and issues component invocations using interprocess
communication. See Chapter 14, “Creating CORBA C++ Components,” in the
EAServer Programmer’s Guide for more information.

Systems management support
EAServer 5.0 includes enhanced support for remote systems management. The
implementation is based on the Java Management Extensions (JMX) agent
management framework. It provides the following enhancements:

• Allows you to create management beans (MBeans) that can be run in a
JMX framework.

• Supports both SNMP and JMX management tools.

• Allows you to monitor servers, clusters, and key server subsystems such
as the message service, the component dispatcher, and network listeners.

Support for legacy Open Server applications

22 EAServer

For more information on this feature, see Chapter 13, “Using Systems
Management,” in the EAServer System Administration Guide.

Support for legacy Open Server applications
You can easily convert existing applications that are coded for Sybase Open
Server to run in EAServer. You can recompile and link your existing event
handler code into a DLL or shared library, then install it into EAServer. After
you define an Open Server listener, your existing clients can connect to the
listener’s port. No client changes are required, aside from the possible
requirement that you change the address to which the client connects.

EAServer allows you to run your Open Server application on multiprocessor
machines, and simplifies server administration. See Appendix B, “Migrating
Open Server Applications to EAServer,” in the EAServer Programmer’s Guide
for more information.

Feature Guide 23

C H A P T E R 2 Developing an EAServer
Application

This chapter explains some of the basic concepts and terminology
associated with developing component-based EAServer applications in a
three-tier environment.

Introductory concepts
An EAServer application consists of one or more packages and a client
application or applet. Packages consist of components, and components
are made up of one or more methods.

• EAServer can host, manage, and execute components such as
ActiveX programmable objects, JavaBeans, or CORBA-compliant
components. In EAServer, a component is simply an application
object that consists of one or more methods. EAServer components
typically execute business logic, access data sources, and return
results to the client. Clients (applets) create an instance of a
component and execute methods associated with that component.
Components run only within EAServer.

• A package is a collection of components that work together to
provide a service or some aspect of your application’s business logic.
A package defines a boundary of trust within which components
can easily communicate. Each package acts as a unit of distribution,
grouping together application resources for ease of deployment and
management.

 EAServer supports the following types of components:

• EJB

Topic Page
Introductory concepts 23

Developing an EAServer application 25

EAServer runtime environment 26

Introductory concepts

24 EAServer

• Java

• CORBA C++

• PowerBuilder NVO

• ActiveX

• C

• A stub is a Java class or a C++ stub generated by EAServer Manager and
acts as a proxy object for an EAServer component. A stub is compiled and
linked with your Java applets or client application. A stub communicates
with EAServer to instantiate and invoke a method on a component in the
middle tier. Stubs make a remote EAServer component appear local to the
client.

• A skeleton acts as the interface between the EAServer runtime
environment and the user code that implements the method. Skeletons are
compiled and linked with each of the components, and at runtime they
enable EAServer to locate and invoke an appropriate method.

• EAServer transparently maintains a session between a client application
and EAServer. Unlike a typical HTTP scenario, where a new connection
is created for each request and response, sessions allow a browser to
maintain a connection with the server across a multiple request-response
cycle.

• A Web application is a collection of static HTML pages, Java servlets,
and JavaServer Pages. You can develop Web applications to provide a
browser-based user interface as an alternative to standalone clients or Java
applet clients.

You can develop and distribute an EAServer application across the network.
EAServer implements a three-tier or multitier distributed computing
architecture. In this model, three distinct elements work together to give users
access to data:

• Client-side applet or application

• Middle-tier components

• The back-end database

Java applets are downloaded to clients, which instantiate components on the
server. Client applications are installed on client machines, from which they
also instantiate components on the server.

CHAPTER 2 Developing an EAServer Application

Feature Guide 25

An applet, standalone application, or Web application manages presentation
and interaction with an end user. Middle-tier components, which run in
EAServer, handle much of the application processing. Finally, the database
stores, manages, and processes data.

If the client is an applet, users find and launch applications from traditional
HTML pages. Instead of simply loading a static page, EAServer downloads an
executable applet to the individual’s browser. If the client is an already-
installed application, the user launches the application from his or her machine.
Clients communicate directly with an application component running in the
middle tier. Server components access data from one or more databases, apply
business logic, and return results to the client applet for display.

When a proxy object is created on the client applet, it instantiates a
corresponding component registered with EAServer. On the server side, a
component is instantiated in response to a request from the proxy object
running in the client environment. A method on a component is executed when
it is invoked by a proxy object on the client applet.

Web applications can call EAServer components using the same proxies as
used by standalone Java clients and applet clients.

Developing an EAServer application
There are three basic steps involved in creating and deploying an EAServer
application that employs a Java applet as a client. For information on other
types of EAServer clients, see the EAServer Programmer’s Guide.

v Creating and deploying an EAServer application

1 Use EAServer Manager to define packages, components, and methods.
EAServer Manager generates:

• Client-side stub files – contain interface information used by the
client to invoke EAServer component methods.

• Server-side skeleton files – provide the interface information of each
component method.

2 Once you have generated the stubs and skeletons, write the user interface
logic for the client model that you have chosen.

EAServer runtime environment

26 EAServer

Develop the server-side components that link with the skeletons to form
the business logic of your servlet. EAServer supports many of the
integrated development environment (IDE) tools available today.

3 Deploy the application. You can register components on any EAServer
installation. Because EAServer is also a Web server, you can write an
HTML page for your applet and install it on EAServer.

EAServer runtime environment
A typical EAServer application has an applet or HTML page associated with
it. Once you build and deploy such an application, it runs in the following
fashion:

1 EAServer receives an HTTP request and downloads the requested HTML
page or applet. Included with the applet are the Java stubs, which through
a proxy, instantiate components and invoke the methods on those
components.

2 The client establishes a session with EAServer. The session, unlike an
HTTP connection, allows the client and EAServer to maintain a
connection throughout the transaction.

3 The client creates a component instance through a client-side proxy. The
proxy used depends on the type of component being instantiated.
EAServer validates the user against the component’s access list. If the user
is validated, the dispatcher checks the location and status of the component
and creates an instance.

4 The client invokes the component’s business logic by executing its
methods.

5 The component may interact with remote databases. If it does:

• The component obtains a connection to the database using
EAServer’s connection caching feature.

• EAServer checks the component’s transaction property. If the
component is marked as transactional, EAServer ensures that remote
database commands execute as part of a larger transaction.

6 EAServer returns the results from the database to the client.

CHAPTER 2 Developing an EAServer Application

Feature Guide 27

7 The client indicates that it has completed the operation. EAServer destroys
the component instance or returns it to a pool for future client
instantiations. The client disconnects from EAServer.

EAServer runtime environment

28 EAServer

Feature Guide 29

C H A P T E R 3 EAServer Components

This chapter discusses the component models that EAServer supports.

Overview
EAServer components contain the methods that execute business logic
and access data sources. EAServer’s server-side component support and
client-side stub or proxy support are independent. Any EAServer client
can execute any type of component. A component of any model can
execute components of another model using intercomponent calls without
the use of additional gateway software.

Server-side component
support

EAServer provides support for several major component models,
including:

• Enterprise JavaBeans EAServer supports Java components that
follow the Java Software Enterprise JavaBean (EJB) specification,
versions 1.0, 1.1, and 2.0. An Enterprise JavaBean is a nonvisual,
transactional component that is implemented in Java. For more
information, see “Enterprise JavaBeans components” on page 33,
and Chapter 7, “Creating Enterprise JavaBeans Components,” in the
EAServer Programmer’s Guide.

Topic Page
Overview 29

Enterprise JavaBeans components 33

Java components 37

CORBA-C++ components 38

PowerBuilder components 38

ActiveX components 39

C components 39

Overview

30 EAServer

A message-driven bean (MDB) is a type of EJB specifically designed as a
Java Message Service consumer. Chapter 31, “Using the Message
Service,” in the EAServer Programmer’s Guide describes how to create
MDBs.

• CORBA-Java CORBA-Java components follow the CORBA
component model and use standard CORBA interfaces for transaction
management. Almost any Java class with nonvisual behavior can be
adapted to run as an EAServer component. Chapter 11, “Creating CORBA
Java Components,” in the EAServer Programmer’s Guide describes
EAServer’s Java component support in detail.

• PowerBuilder NVO components Using PowerBuilder 7.0 or later, you
can create nonvisual objects (NVOs) that run natively in EAServer as
EAServer components. You can also create NVO proxies for EAServer
components, then use the proxies in PowerBuilder client applications. For
more information, see the Application Techniques manual included in the
PowerBuilder documentation.

• CORBA-C++ components EAServer C++ components are C++ classes
that contain methods with similar prototypes to the EAServer component
interface; the exact interface mapping complies with the CORBA
specification for IDL/C++ language bindings.

Chapter 14, “Creating CORBA C++ Components,” in the EAServer
Programmer’s Guide describes C++ component support in detail.

• ActiveX You can install any nonvisual ActiveX component as an
EAServer component (though you may need to define an “adaptor,” or
wrapper class to handle methods that use unsupported parameter
datatypes). EAServer uses the Component Object Model (COM) and
ActiveX automation support to execute ActiveX component methods.
Consequently, all EAServer ActiveX components must support COM’s
automation interface (the IDispatch interface). Many application
development tools, such as Microsoft Visual Basic, can be used to create
ActiveX components that are compatible with EAServer.

Chapter 19, “Creating ActiveX Components,” in the EAServer
Programmer’s Guide describes EAServer’s ActiveX support in detail.

EAServer currently implements subsets of the Microsoft Transaction
Server (MTS) ActiveX interface with the goal of providing full
compatibility in the future.

CHAPTER 3 EAServer Components

Feature Guide 31

• C components EAServer provides a C “pseudo” component model that
can be used to adapt existing C procedural applications as EAServer
components. C components are dynamic link libraries (DLLs) or UNIX
shared libraries that contain C or C++ methods and method skeletons.
Method skeletons contain C functions that retrieve the RPC’s parameters
and invoke C component methods.

Appendix C, “Creating C Components,” in the EAServer Programmer’s
Guide describes support for this component model.

C++ classes can be run as C++ components Developers using
EAServer version 1.1 may have adapted C++ classes to run as EAServer
C components. In version 2.0 and later, these classes can be run directly as
C++ components.

Client stub and proxy
support

Applications invoke an EAServer component using a stub or proxy object. The
stub or proxy acts as a local surrogate for the remote component; it provides
the same method signatures as the component and hides the details of remote
server communication. Stubs and proxies are available for:

• Java (CORBA and EJB) Any component can be invoked via a Java stub
class. EAServer Manager generates source code for Java stubs. At
runtime, your client program instantiates the stub. When you call methods
on the stub class, the stub transparently invokes the component method on
EAServer. You can also create Java servlets or JavaServer pages that run
in EAServer and call components. Using this model, you can create “zero-
install” applications. With EAServer’s built-in HTTP support, these
applications have no client-machine installation requirements other than
the presence of a Web browser. You can add additional interactive
functionality to browser-based clients using Java applets that run in the
browser.

EAServer supports three Java client models:

• EJB Your program uses the EJB (javax.ejb) classes and EAServer’s
EJB stubs to call EAServer component methods. This client model
follows the EJB 2.0 Specification and is backward compatible with
the EJB 1.1 and 1.0 specifications. Chapter 8, “Creating Enterprise
JavaBeans Clients,” in the EAServer Programmer’s Guide describes
how to implement EJB clients.

Overview

32 EAServer

• CORBA-Java Your program uses EAServer’s CORBA-compliant
Java ORB or any other CORBA-compliant Java ORB to instantiate
stubs. Stub method signatures are mapped from the component’s
interface definition, based on the CORBA specification of IDL-Java
language bindings. Chapter 12, “Creating CORBA Java Clients,” in
the EAServer Programmer’s Guide describes how to implement
CORBA-Java clients.

• PowerBuilder PowerBuilder 7.0 or later allows you to generate NVOs
that act as proxies for EAServer components. Using a proxy, you can call
component methods as if they were implemented as local NVO methods.
See the Application Techniques manual included in the PowerBuilder
documentation for more information.

• C++ (CORBA) Your program uses EAServer’s CORBA-compliant C++
ORB or any other CORBA-compliant C++ ORB to instantiate stubs. Stub
method signatures are mapped from the component’s interface definition,
based on the CORBA specification of IDL-C++ language bindings.
Chapter 15, “Creating CORBA C++ Clients,” in the EAServer
Programmer’s Guide describes how to implement C++ clients.

• ActiveX Your program invokes EAServer components using EAServer’s
ActiveX proxy. The ActiveX proxy allows you to invoke EAServer
components from ActiveX-enabled visual builder tools such as Microsoft
Visual Basic. Used on the server, the ActiveX proxy allows you to invoke
any EAServer component from an ActiveX component. EAServer
Manager generates the type-library information that is required to register
the component interface with your development tool. The ActiveX proxy
uses the EAServer C++ client ORB to communicate with EAServer.
Chapter 20, “Creating ActiveX Clients,” in the EAServer Programmer’s
Guide describes how to use the ActiveX proxy.

• Methods As Stored Procedures (MASP) EAServer provides a built-in
interface that allows you to execute component methods as if they were
stored procedures in an Adaptive Server Enterprise database. You can use
this interface to call EAServer components from scripting and user-
interface-builder tools that are database-aware but that do not support
ActiveX. Appendix A, “Executing Methods As Stored Procedures,” in the
EAServer Programmer’s Guide describes how to use this client interface.

CORBA CORBA is a distributed component architecture defined by the Object
Management Group (OMG). EAServer supports the CORBA IIOP.

For information on the CORBA architecture, see the specifications available at
the OMG Web site at http://www.omg.org.

CHAPTER 3 EAServer Components

Feature Guide 33

Enterprise JavaBeans components
The Enterprise JavaBeans (EJB) technology defines a model for the
development and deployment of reusable Java server components, called EJB
components.

An EJB component is a nonvisual server component with methods that
typically provide business logic in distributed applications. A remote client,
called an EJB client, can invoke these methods, which typically results in
database updates. Since EAServer uses CORBA as the basis for the EJB
component support, EJB components running in EAServer can be called by
any other type of EAServer client or component, and even CORBA clients
using ORBs from other vendors that are compatible with CORBA 2.3.

The EJB architecture looks like this:

EJB server The EJB server contains the EJB container, which provides the
services required by the EJB component. EAServer is an EJB server.

EJB client An EJB client usually provides the user-interface logic on a client
machine. The EJB client makes calls to remote EJB components on a server
and needs to know how to find the EJB server and how to interact with the EJB
components. An EJB component can act as an EJB client by calling methods
in another EJB component.

An EJB client does not communicate directly with an EJB component. The
container provides proxy objects that implement the components home and
remote interfaces. The component’s remote interface defines the business
methods that can be called by the client. The client calls the home interface
methods to create and destroy proxies for the remote interface.

Enterprise JavaBeans components

34 EAServer

EJB container The EJB specification defines a container as the environment
in which one or more EJB components execute. The container provides the
infrastructure required to run distributed components, allowing client and
component developers to focus on programming business logic, and not
system-level code. In EAServer, the container encapsulates:

• The client runtime and generated stub classes, which allow clients to
execute components on a remote server as if they were local objects.

• The naming service, which allows clients to instantiate components by
name, and components to obtain resources such as database connections
by name.

• The EAServer component dispatcher, which executes the component’s
implementation class and provides services such as transaction
management, database connection pooling, and instance lifecycle
management.

EJB component implementation The Java class that runs in the server
implements the bean’s business logic. The class must implement the remote
interface methods and additional methods for lifecycle management.

EJB component types
You can implement three types of EJB components, each for a different
purpose:

• Stateful session beans

• Stateless session beans

• Entity beans

Stateful session beans

A stateful session bean manages complex processes or tasks that require the
accumulation of data, such as adding items to a Web catalog’s shopping cart.
Stateful session beans have the following characteristics:

• They manage tasks that require more than one method call to complete,
but are relatively short-lived. For example, a session bean might manage
the process of making an airline reservation.

CHAPTER 3 EAServer Components

Feature Guide 35

• They typically store session state information in class instance data, and
do not survive server crashes unless they are run in a cluster that has
persistent storage enabled for the component.

• There is an affinity between each instance and one client from the time the
client creates the instance until it is destroyed by the client or by the server
in response to an expired instance timeout limit.

For example, if you create a session bean on a Web server that tracks a user’s
path through the site, the session bean is destroyed when the user leaves the site
or idles beyond a specified time

Stateless session beans

A stateless session bean manages tasks that do not require the keeping of client
session data between method calls. Stateless session beans have the following
characteristics:

• Method invocations do not depend on data stored by previous method
invocations.

• There is no affinity between a component instance and a particular client.
Each call to a client’s proxy can invoke a different instance.

• From the client’s perspective, different instances of the same component
are identical.

Unlike stateful session beans, stateless session beans can be pooled by the
server, improving overall application performance.

Entity beans

An entity bean models a business concept that is a real-world object. For
example, an entity bean might represent a scheduled airplane flight, a seat on
the airplane, or a passenger’s frequent-flyer account. Entity beans have the
following characteristics:

• Each instance represents a row in a persistent database relation, such as a
table, view, or the results of a complex query.

• The bean has a primary key that corresponds to the database relation’s key,
and is represented by a Java datatype or class.

Enterprise JavaBeans components

36 EAServer

EJB transaction attribute values
Each EJB component has a transaction attribute that determines how instances
of the component participate in transactions. In EAServer, you set the
transaction attribute in the Transaction tab of the Component Properties dialog
box.

When you design an EJB component, you must decide how the bean will
manage transaction demarcation: either programmatically in the business
methods, or by the container, based on the value of the transaction attribute in
the deployment descriptor.

A session bean can use either bean-managed transaction demarcation or
container-managed transaction demarcation; you cannot create a session bean
where some methods use container-managed demarcation and others use bean-
managed demarcation. An entity bean must use container-managed transaction
demarcation.

EJB container services
The EJB container provides services to EJB components. The services include
transaction and persistence support.

Transaction support An EJB container must support transactions. EJB
specifications provide an approach to transaction management called
declarative transaction management. In declarative transaction management,
you specify the type of transaction support required by your EJB component.
When the bean is deployed, the container provides the necessary transaction
support.

Persistence support An EJB container can provide support for persistence
of EJB components. An EJB component is persistent if it is capable of saving
and retrieving its state. A persistent EJB component saves its state to some type
of persistent storage (usually a file or a database). With persistence, an EJB
component does not have to be re-created with each use.

An EJB component can manage its own persistence (by means of the logic you
provide in the bean) or delegate persistence services to the EJB container.
Container-managed persistence means that the data appears as member data
and the container performs all data retrieval and storage operations for the EJB
component. See Chapter 27, “Creating Entity Components,” in the EAServer
Programmer’s Guide for more information.

CHAPTER 3 EAServer Components

Feature Guide 37

Java components
EAServer can load and execute a Java class file as a component. The class can
be a stand-alone class or part of a JavaBeans component that does not display
any graphics or text, that is, a nonvisual JavaBeans component.

Defining the
component’s
interfaces

The definition of a Java component specifies the interfaces that the component
implements as well as its other properties.

All component interfaces for EAServer components are defined in CORBA
IDL modules that are stored in EAServer’s IDL repository. Chapter 5,
“Defining Component Interfaces,” in the EAServer Programmer’s Guide
describes how to define IDL interfaces.

Java component developers typically use one of the following to define the
interface or interfaces that their component implements:

• Implement a Java source file and import the methods from it As an
alternative to IDL, you can define a Java class or interface, then use
EAServer Manager to import the method definitions from the compiled
Java byte code file. EAServer creates a new component definition and an
IDL interface that matches the methods defined in the Java file. For more
information on this feature, see “Importing interfaces from compiled Java
files” in “Defining Component Interfaces” in the EAServer Programmer’s
Guide.

• Use existing interfaces from EAServer’s IDL repository In some
cases, client and server component developers may have agreed upon an
existing interface or several interfaces that a component must implement.
In this case, it is up to the component developer to implement the specified
interface. EAServer stores HTML documentation for all interfaces in the
IDL repository in the html/ir subdirectory of your EAServer installation.

• Define one or more new IDL interfaces If you are defining the
interface yourself, you can use EAServer Manager’s IDL editor to create
a new interface for the component. “Defining modules, interfaces, and
types in IDL” in “Defining Component Interfaces” in the EAServer
Programmer’s Guide describes how.

CORBA-C++ components

38 EAServer

CORBA-C++ components
EAServer provides a CORBA-compatible C++ client-side interface. This
allows you to create CORBA EAServer C++ applications. C++ components
and clients are also interoperable with clients and components using other
technologies.

The dynamic invocation interface (DII) is not supported.

Defining components You use EAServer Manager to define basic information (such as the
component name and methods) about a C++ component, and generate files that
are required to write the component’s class implementation and to compile the
class into a dynamic link library (on Windows) or shared library (on UNIX).

You write your component as a C++ class; the generated files include a class
implementation template in which you can write your method logic. In
addition, EAServer supplies an application programming interface that
contains classes and methods that you can use to perform EAServer-specific
tasks. You can use the EAServer API to write code to handle errors, cache
connections to third-tier database servers, return result sets, manage
transactions, share data between instances of the same component, retrieve a
client’s SSL certificate information, and make intercomponent calls.

PowerBuilder components
Using PowerBuilder 7.0 or later, you can create nonvisual objects (NVOs) that
run natively in EAServer as EAServer components. You can also create NVO
proxies for EAServer components, then use the proxies in PowerBuilder client
applications. Inside EAServer, PowerBuilder components run in the
PowerBuilder Virtual Machine (PBVM), which allows the EAServer
component dispatcher to call the methods in your NVO component.

The PowerBuilder integrated development environment (IDE) includes
wizards to create and deploy components, and generate proxies for use in
PowerBuilder based client applications. For details, see the Application
Techniques manual included in the PowerBuilder documentation.

The PowerBuilder IDE runs on Windows platforms, but you can deploy
PowerBuilder components to EAServer on any platform for which a
compatible PBVM is available, including most UNIX platforms. For more
information, see the EAServer Release Bulletin for your platform.

CHAPTER 3 EAServer Components

Feature Guide 39

ActiveX components
ActiveX/COM is a Microsoft component technology. Many IDE tools such as
Visual Basic allow you to create ActiveX components and write code to call
methods in registered ActiveX components.

Any nonvisual ActiveX component can be installed as an EAServer
component (though you may need to define an “adaptor,” or wrapper class to
handle methods that use unsupported parameter datatypes). EAServer uses
COM and ActiveX automation support to execute ActiveX component
methods. Consequently, all EAServer ActiveX components must support
COM’s automation interface (the IDispatch interface). Many application
development tools can be used to create ActiveX components that are
compatible with EAServer. Once installed in EAServer, ActiveX components
can be called by clients of any type.

To support ActiveX clients, EAServer provides an ActiveX automation server
that interacts with the server using the C++ CORBA ORB and standard
CORBA IIOP. Because ActiveX clients use IIOP rather than the DCOM
network protocol, they can call EAServer components of any type and interact
with servers running on platforms that do not support ActiveX.

No client managed transactions This version of EAServer does not
provide an ActiveX client interface to manage transactions. Consequently,
ActiveX clients cannot call component methods that have the Mandatory
transaction attribute.

C components
C components provide a quasi-object model for the execution of a group of
related C functions. Unlike a C++ object, separate instances of a C component
lack a private data space. However, you can implement create and destroy
methods to associate data with an instance of a C component.

C components

40 EAServer

Feature Guide 41

C H A P T E R 4 Web Applications

A Web application allows you to deploy interrelated Web content,
JavaServer Pages (JSPs), and Java servlets as a cohesive unit, and
configure the Web server properties required by the servlets and JSPs.

This chapter presents an overview of Web applications. For detailed
information on developing Web applications, see Chapter 21, “Creating
Web Applications,” in the EAServer Programmer’s Guide.

What is a Web application?
A Web application is a unit of deployment for interrelated Web content,
JavaServer Pages (JSPs), and Java servlets. The Web application contains
static files, servlet and JSP implementation classes, and a deployment
descriptor that describes how the files, servlets, and JSPs are configured
on the host server. The deployment descriptor also allows you to configure
application-specific HTTP properties, such as MIME types and per-file
security constraints. To tie it all together, a Web application provides an
abstract naming convention for the JNDI names of database connections
and EJBs.

A Web application represents a subset of the files available on a Web
server. Each Web application has a root request path that forms a prefix
for URLs that access the JSPs, servlets, and static pages. For example,
http://myhost/Finance. Each Web application also has a context root,
which is a directory in the server’s file system where the Web application’s
files are deployed. In EAServer, the context root for Web application
wapp is this directory in your EAServer installation:

$JAGUAR/Repository/WebApplication/wapp

Topic Page
What is a Web application? 41

Contents of a Web application 42

Contents of a Web application

42 EAServer

Contents of a Web application
Web applications contain several types of components.

Servlet files
Servlets are Java classes that create HTML pages with dynamic content and
respond to requests from client applications that are implemented as HTML
forms. Servlets also allow you to execute business logic from a Web browser
or any other client application that connects using the Hypertext Transfer
Protocol (HTTP). For more information, see Chapter 22, “Creating Java
Servlets,” in the EAServer Programmer’s Guide.

Web clients invoke your Web application’s servlets by prepending the Web
application’s root request path to an alias that is mapped to the servlet. For
example, the following URL invokes a servlet mapped to the alias “Account”
in the application with root request path “Finance”:

http://myhost/Finance/Account?type=add

JSP files and tag libraries
JavaServer Pages (JSPs) allow you to embed snippets of Java code into HTML
pages to create dynamic content. JSP tag libraries allow you to extend the
standard HTML markup tags with custom tags backed by Java classes. See
Chapter 24, “Creating JavaServer Pages,” in the EAServer Programmer’s
Guide for more information on creating JSPs. If you have the PowerBuilder
IDE, you can deploy JSP-based Web applications from PowerBuilder to
EAServer. For more information, see Working with Web and JSP Targets in
your PowerBuilder documentation.

Static files
You can include files that provide static content for the site in the Web site,
including HTML, images, sounds, and so forth. You can also include Java
applet files. You can configure the application’s deployment descriptor to
specify security constraints for static files and any unique MIME types
required by your content.

CHAPTER 4 Web Applications

Feature Guide 43

You must deploy static files to the following subdirectory in your EAServer
installation directory:

Repository/WebApplication/web-app

Where web-app is the name of the Web application. You can include
subdirectories, which are reflected in your application’s URL namespace.

If you import a Web archive (WAR) file, the importer expands the application’s
static files to this location.

Java classes
A Web application’s Java classes include the implementation class for each
servlet and JSP, and any server-side utility classes used by the servlets and
JSPs.

EAServer uses a custom class loader to run a Web application’s servlets and
classes referenced by servlet and JSP code. This feature allows hot refresh of
servlets and JSPs. The custom class loader also allows each Web application to
run with its own effective Java class path.

EAServer also supports class sharing among components and servlets. You can
configure custom class lists for components, Web applications, J2EE
applications, or a server process. The custom list allows you to support hot
refresh of the implementation and limit the number of copies of shared classes
that are loaded into server memory. For example, if a Web application calls an
EJB component, you can configure the component and the Web application to
share instances of the component stub classes and common utility classes. See
the Chapter 30, “Configuring Custom Java Class Lists,” in the EAServer
Programmer’s Guide for more information.

Deployment descriptor
The application’s deployment descriptor catalogs the servlets, JSPs, and files
contained in the application, as well as the properties of each. The descriptor
must be formatted in XML, using the DTD specified in the Java Servlet
Specification Version 2.3. You can create a descriptor using EAServer Manager
or another J2EE-compliant development tool.

Contents of a Web application

44 EAServer

Feature Guide 45

C H A P T E R 5 Using PowerDynamo with
EAServer

This chapter looks at how you can use PowerDynamo and EAServer
together to serve up applications that require dynamic Web pages as well
as the ability to access components (Java/Enterprise JavaBeans, ActiveX,
and C/C++) that run in EAServer.

The examples in this chapter use the components of the Sybase Virtual
University (SVU) sample that comes with EAServer.

Do not use PowerDynamo for new application development
Sybase recommends that you do not use PowerDynamo for new
application development. Instead, use the J2EE-standard Java servlet and
JSP technologies. Support for PowerDynamo will be removed from later
versions of EAServer.

PowerDynamo on UNIX platforms
Some UNIX versions of EAServer do not include PowerDynamo. See
your release notes and install documentation for a list of products included
with your EAServer software.

Topic Page
Converting PowerDynamo scripts to JavaServer Pages 46

PowerDynamo overview 46

EAServer and PowerDynamo architecture 49

Setting up PowerDynamo as a client 53

Converting PowerDynamo scripts to JavaServer Pages

46 EAServer

Converting PowerDynamo scripts to JavaServer Pages
EAServer 5.0 includes the Dyn2JSP utility to convert PowerDynamo™ Web
sites into JSP-based J2EE Web applications. Sybase recommends that you
migrate your PowerDynamo Web sites to the J2EE model. Support for
PowerDynamo will be removed from later versions of EAServer. For
information on using the Dyn2JSP utility, see the HTML documentation
included in the PDynamo2JSP directory of the installation.

Sybase recommends that you do not use PowerDynamo for new application
development. Instead, use the J2EE-standard Java servlet and JSP
technologies. Support for PowerDynamo will be removed from later versions
of EAServer.

The remainder of this chapter provides information that may be useful for
maintenance of existing PowerDynamo applications.

PowerDynamo overview
You can use PowerDynamo to implement thin-client Web applications for an
Internet or intranet site that can support millions of hits per day. Dynamo
provides the tools necessary to build and manage a thin-client Web application
containing both static HTML and dynamic, data-driven content.

Not only does Dynamo leverage a powerful object-oriented scripting language
called DynaScript, but Dynamo applications can be extended to call any
component supported by EAServer. The Dynamo application server acts as an
intermediary between the Web server and the database management system.
The application server processes templates, which are HTML pages with
embedded SQL or COMPONENT statements and DynaScript scripts, and
serves the resulting output, together with static HTML, to the Web server.
Dynamo's unique use of the database as a Web repository allows for entire
applications to be distributed using existing database replication facilities.

With Dynamo, you can:

• Build templates, SQL statements, and scripts for Web pages by using a
collection of powerful, customizable wizards.

• Modify the source for your Web pages by using a syntax-highlighting
editor.

CHAPTER 5 Using PowerDynamo with EAServer

Feature Guide 47

• Write scripts in DynaScript, which is designed specifically for server-side
scripting with the Dynamo application server. DynaScript is fully
compatible with ECMAScript. ECMAScript is the standard for JavaScript
and JScript-like languages.

• Store and execute the thin-client Web application in a database and
manage it using Sybase Central, a graphical server administration tool.

• Use existing database replication technologies to distribute entire Web
solutions (including both application and data) to wherever the application
is needed. Web solutions can be distributed to multiple servers for load
balancing, various offline workgroups, or even to laptops for mobile users.

• Use the PowerDynamo Personal Web Server to test Web sites locally and
to provide offline access.

• Invoke EAServer components. PowerDynamo can access EAServer
components through Java, ActiveX, SQL queries, or PowerDynamo tags.
Access the EJB interfaces of the components.

• Integrate with other Web development tools, including PowerBuilder.

• Access Java classes from within Dynamo scripts. These classes may be
stored within a database or a file system.

• Create and manipulate XML. The template wizard from Sybase Central
can be used to create queries that generate output in either HTML or XML.
The XML Document Object Model may be used to manipulate XML
documents. Dynamo tags and built-in functions are also available for the
creation and manipulation of XML documents.

• Send, receive, and manipulate mail from within a PowerDynamo Web site.

• Enable FTP functions in PowerDynamo Web sites.

Dynamo provides the following additional services:

• Database connection pooling to allow for reuse of database connections
and eliminate the time-consuming and resource-intensive process of
constantly creating new database connections.

• End user session management to maintain client state information.

• Page caching the HTML output of frequently accessed pages, improving
retrieval time.

• Document generation scheduling to schedule the processing of specific
templates or scripts, whose content generation may be lengthy.

PowerDynamo overview

48 EAServer

Dynamo is available on AIX with NSAPI, CGI, and the Personal Web Server.
CGI and the Personal Web Server are available on Solaris (NSAPI is supported
from earlier versions of Dynamo.)

For more information For more information, see the PowerDynamo documentation, which includes
these books:

• User’s Guide

• Reference Manual

CHAPTER 5 Using PowerDynamo with EAServer

Feature Guide 49

EAServer and PowerDynamo architecture
Figure 5-1 demonstrates one scenario in which a Dynamo client connects to
EAServer to process a Dynamo script, which contains a Methods As Stored
Procedures (MASP) call to an EAServer component.

Figure 5-1: EAServer and Dynamo

These steps correspond to the numbers in the diagram:

1 A browser requests a Web page. The Web page is a Dynamo script that
contains HTML, SQL queries and a MASP call to an EAServer
component in that order.

2 The Web server passes the request to Dynamo.

W e b S e r ve r
2 1 0

P o w e r D yn a m o
3

EAServer

Cl ient

E x e c u t e d D y n a m o
S c r i p t

C o n t a i n s : H T M L
E x e c u t i n g D y n a m o S c r i p t

C o n t a i n s (i n o r d e r) :
H T M L

S Q L Q u e r i e s
E A S e r v e r C o m p o n e n t C a l l s

O D B C o r O p e n C l i e n t 9

6 O D B C o r O p e n C l i e n t

4
5

O D B C o r O p e n
C l i e n t C o n n e c t i o n

8
7

O D B C , O p e n C l i e n t , o r
J D B C C o n n e c t i o n

H T T P
1

H T T P
1 1

EAServer and PowerDynamo architecture

50 EAServer

3 The script is retrieved from the Web site (not shown in the diagram).
Processing of the script begins. The HTML and SQL queries within the
Dynamo script are processed.

4 An ODBC or Open Client connection is made to a database to retrieve the
necessary information for the SQL query.

5 The data is returned to Dynamo. Processing of the script continues until
the EAServer component call is encountered.

6 Because a MASP call is being made, an ODBC or Open Client connection
is made to access the EAServer component and the called method.

7 The component method is executed. If the method requires database
access, a connection is made to a database to retrieve the appropriate data.

8 The data is returned to EAServer through an ODBC, Open Client, or
JDBC connection.

9 The results from the EAServer function are returned to Dynamo through
an ODBC or Open Client connection.

10 Dynamo passes the results, in HTML format, back to the Web server.

11 The results are passed back to the client through an HTTP connection.

Notes • EAServer and Dynamo can access several different databases; this
diagram displays only one database.

• EAServer components can access data from many different types of
databases; you do not need a Sybase database to store data.

• The client, Dynamo, and EAServer can all reside on either one machine or
on separate machines.

A Web author can embed calls to EAServer components within a Dynamo
script or template. The Dynamo script executes in the regular manner until it
encounters the call to the EAServer component. At this point, a connection
(through Dynamo) is made to EAServer, the appropriate method is executed,
and the results are returned to Dynamo. Dynamo processes the information and
returns HTML to the client.

CHAPTER 5 Using PowerDynamo with EAServer

Feature Guide 51

Benefits of using EAServer components with PowerDynamo
You can call EAServer components from within a Dynamo script as though
they were stored procedures, Java objects, or ActiveX objects. As long as the
client has been set up properly to access the component, you can write Dynamo
scripts to use EAServer components as though a stored procedure was being
called (referred to as the MASP feature in EAServer), or by creating an
instance of a Java or ActiveX object.

The three main benefits to using EAServer components in Dynamo scripts are:

• Business logic stored in one EAServer component becomes available to
many clients.

• EAServer makes powerful native code components such as C and C++
available for execution by Dynamo scripts that would otherwise not have
access to methods written in C and C++. This extends Dynamo's
capabilities to an even greater extent, as there are few limitations being put
on the languages that Dynamo scripts may make use of.

• You can update components in one location. Without EAServer, changes
to a component or a stored procedure would be required at each client.

The way in which EAServer components are independently accessible by
clients such as Dynamo is advantageous because no restrictions have been put
on the way in which the client can manipulate the component results. The
component results are wholly controlled by the client which, in the case of
Dynamo, is by HTML pages.

The ability to access these components at one central repository is appealing
from a setup point of view. Setting up Dynamo to access EAServer components
can be as simple as creating a connection to EAServer or installing the ActiveX
proxy automation server. For detailed information on setting up clients that
require EAServer access, see the EAServer Programmer's Guide.

Calling EAServer components from Dynamo scripts
You can call EAServer components from within a Dynamo script by using:

• The Dynamo SQL tag (must return a result set)

• The Dynamo COMPONENT tag (may return a result set)

• The connection.CreateQuery method (must return a result set)

• The connection.CreateComponent method (must return a result set)

EAServer and PowerDynamo architecture

52 EAServer

• The java.CreateComponent method (no restriction on the return)

• An ActiveX object through the Dynamo CreateObject method (no
restriction on the return)

The SQL tag, COMPONENT tag, and the connection.CreateQuery and
connection.CreateComponent methods allow Dynamo to call EAServer
components as though they were MASP. Each MASP invocation creates an
instance of the component, invokes the method and then destroys the
component instance. You can also use the COMPONENT tag to access
ActiveX and Java objects—however, just as with MASP, each invocation
creates an instance of the component, invokes the method, and then destroys
the component instance. The Dynamo CreateObject method allows you to
create an instance of an ActiveX object and access its methods and properties
from within a script. The ActiveX object exists until it goes out of scope or until
the ActiveX variable is assigned a new value. The Dynamo
java.CreateComponent method allows you to create an instance of a Java object
and access its methods and properties from within a script. The Java object
exists until it goes out of scope.

Using MASP verses ActiveX and Java

Within an application, there are a few benefits to creating an instance of an
ActiveX (using the CreateObject method) or Java object (using the
java.CreateComponent method) against an EAServer component instead of
making a MASP method call:

• ActiveX or Java objects exist until they go out of scope, whereas MASP
calls create an instance of the component, execute it, and destroy it
immediately.

• ActiveX or Java objects can give any type of return. MASP calls from
Dynamo can return only a result set.

• Once ActiveX or Java objects are created, they are treated like normal
DynaScript objects. MASP calls (except the connection.CreateComponent
method) require that you enter a full string each time a call is made. For
more information about DynaScript objects, see “Writing DynaScripts” in
the PowerDynamo User’s Guide.

CHAPTER 5 Using PowerDynamo with EAServer

Feature Guide 53

If a script requires repeated use of an EAServer component, the creation of an
ActiveX object or Java stub is the preferred method of working with an
EAServer component and its methods. ActiveX, however, is a Microsoft
technology, which means that it is available only on Microsoft operating
systems. Java, on the other hand, is platform-independent, which means that
Java objects can run anywhere. For a detailed explanation of MASP, see the
EAServer Programmer's Guide.

Setting up PowerDynamo as a client
For Dynamo to access EAServer as a client, the machine on which Dynamo is
installed must be set up properly. This setup depends on whether you are using
ActiveX, Java, or MASP calls from the Dynamo client to the EAServer
components.

Setting up
PowerDynamo to use
ActiveX

To create ActiveX objects to access an EAServer component:

1 Ensure that EAServer Manager is installed on the Dynamo machine. If you
do not install EAServer Manager on the Dynamo machine, you must copy
and register the TLB/REG files for the package onto the Dynamo machine.

2 Install the ActiveX Proxy Automation Server on the Dynamo machine.

3 From EAServer Manager, connect to the server that contains the required
components.

4 Generate TLB/REG files for the package, which generates ActiveX proxy
objects that are used to create instances on the client and invoke methods
on remote EAServer components.

5 Verify that the package has been registered.

Setting up
PowerDynamo to use
Java

To create Java objects to access an EAServer component:

1 Ensure that EAServer Manager is installed on the Dynamo machine.

2 From EAServer Manager, generate stubs for the desired package.

3 Ensure that the Java Code Base path is in your CLASSPATH.

4 Compile the generated Java files.

5 Ensure that the Sun Java VM has been set. This is the only VM that works
with EAServer.

6 Ensure that Dynamo is configured for Java support.

Setting up PowerDynamo as a client

54 EAServer

7 Set your default EAServer settings.

Setting up
PowerDynamo to use
MASP

Setting up Dynamo as a client machine to use MASP calls requires only that a
connection to EAServer exists. There are two types of connections that you can
create:

• System 11 ODBC data source connection

• Open Client connection

For detailed information on setting up Java or ActiveX clients, or accessing
EAServer MASP methods from a client, see the EAServer Programmer's
Guide.

Feature Guide 55

C H A P T E R 6 Using Message Bridge for Java
with EAServer

This chapter discusses Message Bridge and how you can use it with
EAServer.

Message Bridge overview
Message Bridge is a powerful, easy-to-use tool you can use to build
applications that generate and consume documents and messages. It
generates Java classes that can be used as part of an EAServer component
to assist in parsing and constructing XML documents that conform to a
known schema. It includes:

• A GUI to access to all its features

• Importers that support different types of schemas

• Schema compilers to generate DataBeans

• DataBean runtime infrastructure

• Developer artifacts that support use of DataBeans

Message Bridge helps you build applications that make use of structured
messages, such as XML documents or messages exchanged between
enterprise systems or business partners through New Era adapters, using
EAServer components. Message Bridge improves your productivity by
modeling the schema of a document or message as Java classes. When
used in an EAServer application, these classes provide an intuitive way to
access and manipulate message content in memory, and to read and write
messages to and from the network.

Topic Page
Message Bridge overview 55

Using Message Bridge 56

Message Bridge and EAServer architecture 56

Using Message Bridge

56 EAServer

Message Bridge provides a schema compiler that binds a document or message
schema into Java classes. Each class provides access to the data content of the
corresponding schema component through accessor (get) and mutator (set)
methods similar to those used in standard JavaBeans. Because these classes
model the data content of a document or message instance, they are called
DataBeans. In short, a DataBean is a Java binding of a particular schema.

Using Message Bridge
Using the Message Bridge GUI, you can import two types of schemas: DTDs
and XML Schemas. Message Bridge converts the imported schemas into
neutral representations that you can modify, enhance, and group into projects
with other related schemas.

Then you can generate DataBeans for the individual schema definitions you
select. These DataBean classes abstract the data contained in documents or
messages. Each DataBean leverages shared runtime classes—the DataBean
framework—to perform its functions: serializing and deserializing content
from the data stream, validating content, and providing a read/write in-memory
representation of message data.

During design, Message Bridge also generates artifacts to assist you in using
DataBeans in your applications. These artifacts—XML DTDs, XML Schemas,
and HTML documentation for DataBeans—facilitate development in various
ways. For example, the XML DTD and Schema provide you with content
model descriptions of each DataBean. By using these content models, you can
use your own XML-based tools, easily modeling runtime systems based on
XML data authoring, manipulation, and transmission. The HTML
documentation provides Java developers with a detailed view of each
particular DataBean’s content model.

Message Bridge and EAServer architecture
Figure 6-1 demonstrates Message Bridge creating a DataBean from a schema.
A developer uses the DataBean to parse and construct the XML documents.

CHAPTER 6 Using Message Bridge for Java with EAServer

Feature Guide 57

Figure 6-1: EAServer and Message Bridge

These steps correspond with the numbers in Figure 6-1.

Steps 1 through 3 are performed at design time. Steps 4 through 7 are
performed at runtime.

1 Import a schema into Message Bridge and define your message.

2 Generate a DataBean.

3 Write an EJB component with a method that accepts an XML document
and uses the DataBean for parsing it. Write a servlet that accepts an XML
document.

4 EAServer accepts an HTTP request that contains an XML document.

5 EAServer invokes the servlet.

6 The servlet calls the EJB component method. The EJB component uses the
DataBean to parse the XML document and perform business logic. The
EJB component uses another DataBean to build an XML reply document
and return the XML to the servlet.

7 The servlet returns the XML document in an HTTP response to the caller.

Message Bridge and EAServer architecture

58 EAServer

For more information
For more information see the Message Bridge for Java™ User’s Guide.

Also see the Message Bridge samples and tutorial in the Messagebridge
subdirectory of your EAServer installation.

Feature Guide 59

A
ActiveX

See also ActiveX clients
client-side support 32
server-side support 30
setting up Dynamo to use 53
versus MASP 52

ActiveX clients, character sets for 16
addresses, configuring network 7
architecture

EJB components 33
Message Bridge 56

asynchronous processing
using service components 21
using the message service 20
using the Thread Manager 21

authentication, support for mutual SSL 8

C
C components, introduction to 39
C language

See also C components
implementing components in 31

C++
client support 32
clients, introduction to 38
components 30
components, development procedure for 38

caches, connection 18
certificates, SSL

managing in Security Manager 13
character sets, conversions to and from 16
clients

See also ActiveX clients, C++ clients, Java clients
creating a component instance 26
establishing a session 26
session management and 14

types of 31
code set. See character sets
component methods

calling 51
calling from Dynamo 45
example of calling from Dynamo 49

component models supported 23
component, definition of 23
components

ActiveX 39
and connection caches 26
C 39
client stubs and proxies for 31
CORBA-C++ 38
creation and destruction of 15
EJB 33
executing methods on 25
instantiating 25
introduction to 4
Java 37
lifecycle management 15
overview 4
refreshing after modifying 12
reloading with EAServer Manager 12
supported types 29
transactional 26
types of 4, 29

concepts 23
connection caches, support for 18
connections, types of 54
context root for a Web application 41
conventions vii
CORBA and C++ clients 38
creating

ActiveX components 39
an EAServer application 25
C components 39
C++ components 38
Java components 37

Index

Index

60 EAServer

D
DataBeans, Message Bridge 56
debugging, refreshing components to allow 12
deploying

an EAServer application 25
deployment of EAServer packages 11
developing an application 25
Dyn2PSP, conversion utility for PowerDynamo 10, 46
dynamic HTML, EAServer support for 9
Dynamo

benefits of using EAServer with 51
documentation 48
setting up MASP 54

DynaScript 46, 47

E
EAServer

benefits of using Dynamo with 51
components 29
connecting to Dynamo 54
creating an application 25
deploying an application 25
developing an application 25
HTML support in 9
overview 1
PowerDynamo example 49
runtime environment 26
server runtime 3
services 3
using Message Bridge with 55
using with PowerDynamo 45

EAServer Manager
application objects managed in 11
developer use of 11
overview of 11
reloading components with 12
runtime monitoring in 12
use during debugging 12
viewing log files with 12

EJB components
introduction to 33
types of 34
using transactions in 36

entity bean, EJB component type 34

errors, viewing in log files 12

F
features

administration and development tools 10
asynchronous messaging support 20
asynchronous processing support 21
client-session and component-lifecycle management

14
component support 4
connection caching 18
dynamic HTML support 9
EAServer execution engine 3
J2EE platform support 5
legacy Open Server application support 22
naming services 17
network protocol support 7
PowerDynamo 46
result-set support 19
transaction management 19
Web-server redirector plug-in 10

H
HTML files in Web applications 42
HTTP

request 26
support for 7
tunneling 8

HTTPS
definition of 8
support for 8

I
IDL and C++ clients 38
IIOP, support for 7
IIOPS

definition of 8
support for 8

importing schemas, Message Bridge 56
instantiating components 25

Index

Feature Guide 61

introductory concepts 23

J
J2EE

application support 5
EJB component support 5
platform support in EAServer 5
Web application support 5

JAGUAR environment variable 41
Jaguar Manager. See EAServer Manager
Java

See also Java clients; Java components
clients 31
components 29, 30
creating components 37
setting up Dynamo to use 53
versus MASP 52

Java classes for Web applications 43
Java clients, character sets for 16
Java components, character sets for 16
JBuilder plug-in 3
JSP

adding to a Web application 42
converting PowerDynamo to 10, 46

L
listeners, configuring 7
log file, viewing with EAServer Manager 12

M
MASP

setting up Dynamo for 54
versus ActiveX 52
versus Java 52

Message Bridge 55
architecture 56
DataBeans 56
importing schemas 56
overview 55

message service, overview of 20

monitoring, runtime 12
multitier application development overview 24
mutual SSL authentication 8

N
naming services

explanation of 17
support for 17

network
addresses 7
protocols 7

O
overview

EAServer application development 23
multitier application development 24
PowerDynamo 46

P
package, EAServer

definition 23
refreshing after modifying 12
uses of 12

Personal Web Server 47
plug-in for JBuilder 3
port numbers, configuring for servers 7
ports, configuring secure 8
PowerDynamo

calling component methods 49, 51
connecting to EAServer 54
EAServer example 49
features 46
running in EAServer 9
setting up ActiveX 53
setting up as an EAServer client 53
setting up Java 53
using with EAServer 45
Web site conversion utility 10, 46

profiles, security 8
protocols

Index

62 EAServer

HTTP 7, 8
IIOP 7
SSL 7
supported 7
TDS 7

proxy objects
and stubs 24
definition of 31
purpose of 31

R
redirector plug-ins for Web servers 10
result sets 19
root request path, Web application 41
runtime

monitoring with EAServer Manager 12
server engine 3

runtime environment, EAServer 26

S
secure ports, configuring 8
Security Manager, definition of 11
security profile, use of 8
servers

as managed in EAServer Manager 11
configuring network addresses for 7
overview of 3
protocols supported by 7
services provided by 3

service components, definition of 4
services provided by EAServer 3
servlets, running in Web applications 42
session bean, EJB component type 34
session management 14
session, definition of 24
setting up MASP access 54
skeleton, definition of 24
SSL authentication, mutual 8
SSL certificates, managing with Security Manager 13
SSL protocol

explanation of 8
support for 7, 8

stub object, definition of 31
stubs and proxy objects 24
Sybase Central

EAServer plug-ins for 10
explanation of 10

T
TDS protocol 7
terminology of component based applications 23
Thread Manager, overview of 21
transactions, use in EJB components 36
tunnelling, HTTP 8
typographical conventions vii

U
Unicode coded character set 16

W
Web applications

contents of 42
converting PowerDynamo Web sites to JSP-based

10, 46
definition of 41
deploying files in 42
deployment descriptor for 43
Java classes for 43
overview 41

Web server redirector plug-ins 10

	Feature Guide
	About This Book
	CHAPTER 1 Introducing EAServer
	Overview
	EAServer execution engine
	Component support
	J2EE platform support
	Network protocol support
	Dynamic HTML support
	PowerDynamo Web site conversion utility
	Web server redirector plug-in

	Administration and development tools
	Client-session and component-lifecycle management
	Naming services
	Connection caching
	Transaction management
	Result-set support
	Support for asynchronous messaging
	Asynchronous processing support
	Systems management support
	Support for legacy Open Server applications

	CHAPTER 2 Developing an EAServer Application
	Introductory concepts
	Developing an EAServer application
	EAServer runtime environment

	CHAPTER 3 EAServer Components
	Overview
	Enterprise JavaBeans components
	EJB component types
	Stateful session beans
	Stateless session beans
	Entity beans

	EJB transaction attribute values
	EJB container services

	Java components
	CORBA-C++ components
	PowerBuilder components
	ActiveX components
	C components

	CHAPTER 4 Web Applications
	What is a Web application?
	Contents of a Web application
	Servlet files
	JSP files and tag libraries
	Static files
	Java classes
	Deployment descriptor

	CHAPTER 5 Using PowerDynamo with EAServer
	Converting PowerDynamo scripts to JavaServer Pages
	PowerDynamo overview
	EAServer and PowerDynamo architecture
	Benefits of using EAServer components with PowerDynamo
	Calling EAServer components from Dynamo scripts
	Using MASP verses ActiveX and Java

	Setting up PowerDynamo as a client

	CHAPTER 6 Using Message Bridge for Java with EAServer
	Message Bridge overview
	Using Message Bridge
	Message Bridge and EAServer architecture
	For more information

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

