SYBASE

TRAN-IDE Guide

e-Biz Impact™
5.4.5

DOCUMENT ID: DC10096-01-0545-01
LAST REVISED: July 2005

Copyright © 1999-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Trand ator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, Datawindow, Datawindow .NET, DB-Library, doQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, eeADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financia Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoM aker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, i Script, Jaguar CTS, jConnect for JIDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Eraof Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, Omni SQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optimat++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, Power Script, PowerSite, PowerSocket, Powersoft, PowerStage, Power Studio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server,
Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, SW.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase
Financial Server, Sybase Gateways, Sybase 1Q, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup,
Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System X1 (logo),
SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Trandation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib,
Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center,
Warehouse Studio, Warehouse WORK'S, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL,
WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc.
02/05

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

CHAPTER 1

TRAN-IDE Guide

.. vii
OVEBIVIBW ..ttt ettt e e e e e e e s bbb r e e e e e e e e e e aans 1
What transaction production iS...........ccccceeerererniiiee e 1
How transaction production WOrKScccoceieiiiiiieniiee e 2
ROULING TYPES ittt e 3
Transaction production elements ... 5
Production ObJECtS........cceviiiiiii 5
Field ODJECES ..o 6
RUIE ODJECES ... 6
Rule component ObJECESuuvvieeiiiiiiiiiiiiee e 7
11 1=T o] o] (=) OSSR 8
Qualification ODJECESccvveeiiiiiiiiiie e 8
Datalink ObJECEScoeiiiiii e 11
Table ODJECES .. 11
ODL fUNCHONSceeeeeiiee ettt e e e e 12
How production objects WOrKcccoeeiiiviiieeeei e 12
Multiple rules and components examplecccccceveeeviiivinnenn. 13
Qualification failure eXxampleccccccoiiiiiiieiiei e 15
General processing eXample.... ..o 16
Rule component processing exampleccocccvvveeveeeeeiiniiennnn, 20
Multiple rule and component processing example 21
Building production OBJecCtSccevviiiiiiiiiiii e, 23
REQUINEMENTS ...ttt 24
Building a sample production object.............ccccvvveevieeeiiiciinne. 26
Using name/Value Pairing.........ccueeeeaoereeineieeareeeeeseeee e eee e 28
Input transaction format...........ccceeeeeiciiiiiiee e 28
Building field objects.........oociiiieee e 29
USING GFOUPS -eneeieeeeiiieeatieeeeaeteeeeaanteeeeanteeeeaneeeeeamseeeesaneeeeeanneneens 29
Specifying grouP tYPES ...cvveee i 30
Building field 0bjectS.......cccvvviiiiiei 30
Building rule ObJECESooiiiiiiiieee e 31
Building component 0bJECtScccvvvieiiieeiiiiiiee e 31
N2 (=Te [0 (01U PSRRI 32

iii

Contents

CHAPTER 2

CHAPTER 3

L8[gTo I eto] 1= Tox 1 o] o PSR 34
Defining atable ... 35
Defining the Key field ... 36
General information and rules..........ccccocveiiiiiiciiicee 36
Data Organizationocceeeeeiereeeeiee e e e e eeee e eeeeee e 37
Implementing COllECiON.........cceeriiiie e 38
Data Size limitationscccoeiiiiiiiiie e 39

TRAN-IDE ODJECES ..ottt 40

SFM [0Q OVEIVIEW ...ttt 43
sfmlog utility OPtIONScooviiiiiieie e 43

USIiNG TRAN-IDE ... 49

INEFOUCTION ..o 49
Transaction production ODJECESccovviiiiiiiieeeiiiiiiiiiee e 50
MOUIES ...t 53
REPOSITOMIES ...vviiiiiiee ettt 54

GENETAI USE...ciiiiiiie ittt 55
REQUITEMENTS ...t 55
Object naming CONVENLIONSccveireiiiiiee e e 55
Starting TRAN-IDE ... 56
Creating projects and modules............ccccvveeeiiiciiiiieee e, 57
Working with repoSItoriescccoeeiiiiiiiiee e 58
Selecting a data StruCture............occoveiiiiee e 63
Import and exXport OPLIONS..........occiiiiiiiee e 64
Using the TRAN-IDE OptioNS MENU.........ccoovivviiiereeeesiiiiiinenn. 68

Building Production ODjJectsccccvviiiiiiiiii e 71

INEFOUCTION ..t 71

Building production ObJECESeevviiiiiiiiiiiiieeee e 72
Starting TRAN-IDEcoooiiiiiiieice e 72
Selecting a data StrUCtUre..........cveeeiiiiiiiiiiiee e 72
Building tree-to-stream production objects.............ccccvvvveeeenn. 73
Building stream-to-tree production objects.............ccccvvvvenenn. 74
Building tree-to-tree production objects.........ccccccceevevciiieeneenn. 76
Building stream-to-stream production objects...............ccc...... 77
Defining iNput fieldsccoveiii e 80
Deleting production ObJeCtScoiiiiieiiiiie e 86
Editing production objJectScccvveviieiiiiiii e, 86

WS gTo ITaq] oTe] g o] o] 1Te] o I PP 87
Importing comma-separated fieldS...........ccccveeeiieiiiiiiienneen, 87
Building field objects using Custom Importcccccvveeeeennnn. 87
EXporting teXt filleScccuvvieiie e 90

Defining stream OULPUL FUIESvviiiieie i 91

e-Biz Impact

TRAN-IDE Guide

Defining rule components (SUBIUIES)..........ccccoeviiiieiiiiiie e 93

Adding field separatorsccccee e 96
Defining filter ODJECtSoiiiiee e 96
Creating table object filtersccccccoviiiiiiiiei e 99
Creating built-in fItErs ... 100
Creating custom filters ... 142
Creating datalink filterscccvvviee i 145
Creating edit mask filtersccccceeei i 146
Creating database interface filters.........cccccccciiiii s 147
Creating production object filterscccccccveeiiiiciiinie s 148
Creating DFC filtersccvvieiiiiieee e 148
Changing filter 0bJectscccvvveiiie e 149
Deleting filter 0bJECtSovvvveiiiiiiiiee e, 149
Attaching post-filters to production objects.............ccccvveeeeenn. 150
Creating table 0bJeCtS.........oiiiieie 150
Changing the Table Objects directoryccceccvvveeeieeeriiinnns 151
Formatting tables.........ccveeviieiiii 151
Creating tables...........eovii i 152
Importing table ObJECES........cvvviiiiiie 155
Working with key columns and duplicate entries.................... 156
Deleting table objectscccccovviiiiiiii 157
Defining qualification 0ObjectSc.ooiiiriiiiieee e 158
Creating table object qualifications...........ccc.cccoecvvvieereeeniinns 160
Creating custom code qualifications............cccccceviiieiiiienens 160
Using built-in qualificationsccooooeiiiie e 163
Using compare operation qualifications..............cccccccoeevvneeen. 167
Creating DB object qualifications............ccccocooviviiiiieiicines 168
Creating bitwise operator qualifications.............cccvvevveeeiiinns 168
Attaching qualification objects to rule components................ 169
Defining data ObJECEScoovviiiiiie e 170
Writing error fUNCLIONScvvviiiiieii e 172
Error functions attached to rule objectsccccccovvvcviieennnnn, 172
Error functions attached to production objectscc....... 173
EITOr COUBS ..ot 175
Defining ODL fUNCHONS........oueiieiiieie e 178
Building generic ODL functionscccoccveiiiiee e, 178
Defining production object Optionscoccoceieiiiiieiceeeeee e 179
UsiNg the test driVe ..o 181
Test Drive menu and control panel optionscccccceeeee... 182

Contents

Vi e-Biz Impact

About This Book

Audience

How to use this book

Related documents

TRAN-IDE Guide

The book iswritten for application devel opersinvol ved with e-Biz Impact
transaction production.

This book contains these chapters:

Chapter 1, “Overview,” describes transaction production, which
allows you to manipulate or transform acquired transactions before
sending the data to its target destination.

Chapter 2, “Using TRAN-IDE,” describes TRAN-IDE concepts and
procedures and describes general TRAN-IDE use.

Chapter 3, “Building Production Objects,” explains how to build
productions objects.

e-Biz Impact documentation The following documents are available
on the Sybase™ Getting Started CD in the e-Biz Impact 5.4.5 product
container:

The e-Biz Impact installation guide explains how to install the e-Biz
Impact software.

The e-Biz Impact release bulletin contains last-minute information
not documented el sewhere.

e-Biz Impact online documentation The following e-Biz Impact
documents are availablein PDF and DynaText format on the e-Biz Impact
5.4.5 SyBooks CD:

The e-Biz Impact Application Guide provides information about the
different types of applicationsyou create and usein an e-Biz Impact
implementation.

The e-Biz Impact Authorization Guide explains how to configure
e-Biz Impact security.

e-Biz Impact Command Line Tools Guide describes how to execute
e-Biz Impact functionality from a command line.

The e-Biz Impact Configurator Guide explains how to configure
e-Biz Impact using the Configurator.

vii

Viii

¢ Thee-BizImpact Feature Guide describes new features, documentation
updates, and fixed bugs in this version of e-Biz Impact.

¢ Thee-BizImpact Getting Sarted Guide providesinformation to help you
quickly become familiar with e-Biz Impact.

¢ TheMonitoring e-Biz Impact explains how to use the Global Console, the
Event Monitor, and a ertsto monitor e-Biz I mpact transactions and events.
It also describes how e-Biz Impact uses the standard Simple Network
Management Protocol (SNMP).

e Java Support in e-Biz Impact describesthe Java support availablein e-Biz
Impact 5.4.5.

¢ TheeBizImpact MSG-IDE Guide describes M SG-1DE terminology and
explains basic concepts that are used to build Object Definition Language
(ODL) applications.

¢ Thee-BizImpact ODL Guide provides areference to Object Definition
Language (ODL) functionsand objects. ODL isahigh-level programming
language that lets the devel oper further customize programs created with
the IDE tools.

¢ Thee-BizImpact TRAN-IDE Guide (this book) describes how to use the
TRAN-IDE tool to build e-Biz Impact production objects, which define
incoming data and the output transactions produced from that data.

Note The e-Biz Impact ODL Application Guide has been incorporated
into the e-Biz Impact ODL Guide.

The e-Biz Impact Alerts Guide, the e-Biz Impact SNMP Guide, and the
e-Biz Impact Global Console Guide have been combined into a new
guide—Monitoring e-Biz Impact.

Adaptive Server Anywhere documentation The e-Biz Impact installation

includes Adaptive Server® Anywhere, which is used to set up a Data Source
Name (DSN) used with e-Biz Impact security and authorization. To reference
Adaptive Server Anywhere documentation, go to the Sybase Product Manuals
Web site at Product Manuals at http://www.sybase.com/support/manuals/, select
SQL Anywhere Studio from the product drop-down list, and click Go.

Note the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and starting
SyBooks.

e-Biz Impact

About This Book

Other sources of

information

Sybasecertifications

on the Web

TRAN-IDE Guide

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manuals Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

[IFinding the latest information on product certifications

1

a b~ W N

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.
Sybase EBFs and

software
maintenance

[IFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFSMaintenance. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

3 Select aproduct.
4 Specify atime frame and click Go.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The syntax conventions used in this manual are:
Key Definition
commands and methods Command names, command option names,
utility names, utility flags, Java
methods/classes/packages, and other
keywords arein lowercase Arial font.
variable Italic font indicates:

» Program variables, such as myServer

» Partsof input text that must be substituted,
for example:

Server.log
» Filenames
File| Save Menu names and menu items are displayed in
plain text. The vertical bar shows you how to
navigate menu selections. For example, File |
Saveindicates “select Save from the File
menu.”

X e-Biz Impact

About This Book

Accessibility
features

If you need help

TRAN-IDE Guide

Key Definition

package 1 Monospaced font indicates:

¢ Information that you enter in agraphical
user interface, at acommand line, or as
program text

e Sample program fragments
e Sample output fragments

This document isavailablein an HTML version that is specialized for
accessibility. You can navigatethe HTML with an adaptive technol ogy such as
ascreen reader, or view it with a screen enlarger.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase A ccessibility
siteincludes links to information on Section 508 and W3C standards.

Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Xi

Xii e-Biz Impact

CHAPTER 1

Overview

This chapter describes transaction production, which allowsthe Store and
Forward Manager (SFM) to manipulate transactions received from
acquisition AIM applications.

Topic Page
What transaction production is 1
How transaction production works 5
How production objects work 12
Building production objects 23
Using name/value pairing 28
Using groups 29
Using collection 34
TRAN-IDE objects 40
SFM log overview 43

What transaction production is

TRAN-IDE Guide

Transaction production is the process through which an SFM can
manipulate an incoming transaction.

Transaction production allows you to transform, enhance, collect, and
route data to one or more destinations. When the SFM receives data from
an acquisition AIM (or another SFM), it parses the incoming data,
evaluates the data, and builds output transactions based on the
requirements of the receiving endpoint application.

Using transaction production, the SFM can:

¢ Manipulate an incoming transaction’s data to produce a different
output transaction by adding or removing data, transforming the data
based on preset rules or information contained in atable; or
rearranging the datainto a new format.

¢ Send one transaction to many destinations.

How transaction production works

¢ Collect several incoming transactions and place them into one outgoing
transaction.

Transaction production isan optional step, whichisnecessary only if you need
to validate or manipulate datareceived from an acquisition AIM or to passthe
data to more than one endpoint application.

An SFM sends data through transaction production when you use the
route_vprod routing function, or when you use atransaction ID of “ENGINE”
in the route_vrec or route_recx routing functions. SFM performs transaction
production before sending the transaction to its destination.

How transaction production works

Transaction production uses production objects to manipulate incoming data
before the datais sent to an endpoint destination.

A production object isa container for several other object types that perform
different functions at specific points in transaction processing. These objects
parse the incoming transaction, test the data, and make any necessary changes
to create the outgoing transaction.

Production objects are stored in production files, which must be located where
the e-Biz Impact server in installed. A production file may contain more than
one production object.

Figure 1-1is a simple representation of a production object and some of its
pieces. The arrows show how transaction production processes a transaction
using the objects contained in the production object.

2 e-Biz Impact

CHAPTER 1 Overview

Figure 1-1: Production object

L1

Production object

Input
transaction

Routing types

TRAN-IDE Guide

Qualifications

Qutput
transaction

1 Theinputtransaction arrivesfroman acquisition AIM or another SFM and

is delivered to the production object.

2 Thefield objects parse the transaction's datainto fiel ds, which can then be

manipul ated.

3 Thequalification objectstest the datato make sureit fitsthe specifications
for transaction production to be performed. Qualification can also be used
to direct the data to a specific section of production. If atransaction fails
qualification, it does not proceed through the rest of the production object.

4 Theruleobjectsusefilter objectsto changeindividual pieces of data, tofit
incoming data into the format necessary for the output transaction.

5 The output transaction moves from the production object to its next
destination, which can be another production object, another SFM, or a

delivery AIM.

The transaction routing type determines the production objects to which a

transaction is submitted.

e route_vprod —submits the transaction to one specific production object, as
specified by the transaction’s production 1Ds defined in the e-Biz Impact

Configurator.

e route_veng — submits a transaction to a specific group of production

objects as specified with the EngGroup parameter.

How transaction production works

e route_vrec Of route_recx —submitsthetransactionto all production objects.
You must specify atransaction ID of “ENGINE” in the function
commands.

Transaction production can submit atransaction to one or more production
files, and to one or more production objects within each production file. If a
transaction is not accepted and processed by any production objects, the
transaction isin error. To avoid an error, use a null destination.

Submitting a transaction to a production object does not mean the production
object generates an output transaction, because atransaction may fail to qualify
for production.

Figure 1-2 is represents the path an input transaction could take. The
transaction is submitted to three production files, each of which has multiple
production objects.

Figure 1-2: Sample transaction production

Production Files/Projects

=) |
File A \\ Output

File B L
File C L

4 e-Biz Impact

Output

Input

Failed to qualify

l—l

I
3

Output

HERRN

Output

CHAPTER 1 Overview

The transaction in File A passes qualification in all three production objects.
Each production object generates an output transaction, which is sent to a
single destination. Thetransaction in File B passes qualification in only two of
the three production objects. Each of the two production objects for which the
transaction does qualify generates an output transaction, which is sent to one
destination. The transaction in File C passes qualification in both production
objects. Each production object generates an output transaction, one of which
iS sent to one destination and the other sent to three destinations.

Transaction production elements

Input

Figure 1-3 shows the main elements of a production object—field objects, a
rule object, and rule component objects. These objects are the most essential in
turning an input transaction into an output transaction. The other two elements
most often used in transaction production are filter objects and qualification
objects.

Figure 1-3: Simple production object

Production object

Field

transaction objects | Rule -:om|mnent|

Rule object

|Rule component|

Qutput
transaction

| Rule -:.omponent|

Production objects

TRAN-IDE Guide

A production object is a container for other TRAN-IDE objects. A production
object describes the relationship between an input transaction and the
processes and procedures that transaction’s data must go through to produce
the output transaction.

Transaction production elements

Field objects

Rule objects

A production object must contain at |east one field object, one rule object, and
one rule component object. A production object may contain any number of
TRAN-IDE objects.

The name of the production object is used to identify it when setting up a SFM
in the Configurator. The production objects and production object groups that
you define with the Configurator specify the output destinations for
transactions processed by a production object. See Chapter 3, “Building
Production Objects,” for more information on defining production objects.

Field objects break down the data of the incoming transaction into fields. Each
field represents asingle piece of datathat you want to manipulate or placeinto
the output transaction. A field object has a data type, alength, and areference
to the location of the field in the incoming data.

For example, if an incoming transaction contained this data:
first name|last name|street|city]|state]|zipcode

you would build afield object for each discrete piece of data—first_name,
last_name, street, and so on.

Note Beforeyou build any other objects, build field objectsto define all of a
transaction’s data.

A rule object isalogical container for components and filters that manipul ate
apiece of an input transaction to produce a part of the output transaction. Once
theinput datais placed into field objects, transaction production starts with the
first rule object in the production object and continues through each rule object
in presentation sequence.

Each rule object contains:

¢ Oneor morerule component objects, which operate on theindividual field
objects. Component objects are executed in serial order.

e-Biz Impact

CHAPTER 1 Overview

e A storage area, called ablob, where the output from the rule components
is assembled. As the output of each rule component is generated, it is
appended to the blob.

* Oneor morefilters, which operate on the blob after all rule components
have finished processing.

Rule component objects

TRAN-IDE Guide

Each rule component object generates a piece of the output transaction by
manipulating the datain afield object with afilter object or, aternatively,
defining aliteral value to place into the output transaction.

A rule component object can also manipulate the rule object’s blob, affecting
the output transaction up to and including its own contribution to the blob.

For example, if arule has four components:
e Component 1 makes all lettersin the input lower case.
* Component 2 reverses the order of the charactersin the input.

« Component 3 adds “zzz" to the end of the input, and makes all lettersin
the output transaction up to that point upper case.

« Component 4 adds “abc” to the beginning of the transaction.

When the components act on a field with the data“123JKLM,” each
component’s output would be:

e Component 1 — 123jklm

e Component 2 — mlkj321

e Component 3 — mlkj321zzz, then MLKJ3212727

e Component 4 —abcMLKJ12372727

The output of the rule object would be “abcMLKJ321277" .

Transaction production elements

Filter objects

Filter objects are used to change data. The change can involve adding,
changing, or removing characters, comparing the datato atable or database, or
substituting a completely different piece of data. When afield object is
operated on by arule object to generate an output transaction, filter objects are
most often the means of creating the new data from the old.

Filter objects can be used within rule component objects, rule objects, and
production objects, working on data either before or after it has been processed
by an object. Which data a filter object acts upon depends on which object
contains the filter object and where the filter object is placed in that object.

Qualification objects

Qualification objects are used to test data. You can compare the datato atable
entry, aliteral, or another piece of data. The results of the qualification
determine whether transaction production runs an input transaction through a
specific production object, rule object, or rule component object.

At the production object level, use qualification objectsin environmentswhere
an input transaction contains specific types of datain agiven field (likea
transaction code, date, or state) and you want to process only certain forms of
the transaction with the current production object.

For example, all input transactions associated to a set of production objects
may havethe sameformat, but contain different data depending on the 1D code
field. The current production object should only process transactions that have
an ID code of 10. You can have a qualification object check for an ID code of
10to determineif atransaction should be processed. An input transaction must
pass al of aproduction object’s non-optional qualification objects before the
production object begins processing the transaction.

Quialification objects can be attached to field objectsin two positions. Thefirst
position, candidacy, determines whether or not the field object should attempt
to parsethe next part of the transaction. Candidacy isamethod for using earlier
data to dictate the use of later data. For example, an input transaction could
contain different data depending on the contents of the first field. If an input
transaction contained this data:

1234 |John Doe|Acctg
you could set up five field objects:
e ID—thefirst field

e-Biz Impact

CHAPTER 1 Overview

TRAN-IDE Guide

* NameNum —the second field if ID is numeric
¢ NameAlph —the second field if 1D is a phabetic
e DeptNum —thethird field if ID isnumeric

e DeptAlph —thethird field if ID is alphabetic

Using candidacy in the name and department fields allows more precise
processing of input transactions.

Once afield object receives the data, you can use qualification to determine if
the transaction should be processed. If the transaction does not pass this level
of qualification, transaction production passes the input transaction to the next
production object if the input transaction’stransaction ID is“ENGINE.” If the
transaction is routed to only one production object and the transaction fails
qualification, the transaction is sent to the unrouteable log file.

At the rule or rule component level, use qualification objects when the input
transaction may or may not contain datathe rule or rule component needsto act
upon. For example, a qualification object can check for the existence of an
optional field object. When the production object contains optional field
objects, if datafor thosefield objectsisnot present in theinput transaction, then
transaction production should not run the transaction through rules or rule
components designed to act on that specific piece of theinput transaction. If an
input transaction does not passall of arule or component object’s non-optional
qualification objects, then transaction production does not process the
transaction through that specific rule or rule component.

Figure 1-4 illustrates amore complex production object that uses qualification
and filter objects in addition to field and rule objects.

Transaction production elements

Figure 1-4: Complex production object

Field
objects

E— Rule object
S — —F 0 Component

L)
— 4 =

Legend;<}>ﬂualiﬁcatinn object

@ Filter object

\

Production
| obhject post
\ filters
Rule object
post filters

10

Field objects containinput transaction dataand can place that datainto datalink
objects. Datalink objectsallow you to change the content of apiece of dataand
use the changed data within other TRAN-IDE objects. The dataretainsits
original content in the field object.

A quadlification object determines if transaction production should continue
processing the transaction through the TRAN-IDE object that the qualification
object is attached to. You can attach a qualification object to afield object,
production object, rule object, and rule component object.

A ruleobjectisalogical container for the rule components and their filtersthat
generate the pieces of the output transaction. A rule component determines
which pieces of the data (that is, which field objects) to manipulate and place
into the rule object’s output message area.

Filter objects perform further and more complex data manipulation on the
piece of the input transaction that its parent object is processing.

e-Biz Impact

CHAPTER 1 Overview

Datalink objects

Table objects

TRAN-IDE Guide

Use datalinks in a qualification function to access the contents of other field
objects. A datalink definesadata variablethat can hold a copy of the datafrom
afield object or the results of acalculation, or any other purpose for which a
variable field might be useful. Datalinks are optional.

When you attach a datalink to afield object, transaction production places a
copy of the field object’s data into the datalink after the transaction has been
parsed, and before it undergoes field and production object qualification.

Useadatalink when you need to reference afield object’sdataina TRAN-IDE
object that does not work directly with the current field. For example, arule
object may have to check for an age range before allowing a senior citizen
discount to go through. You can also attach a datalink to a field object that
redefines afield to generate other data, like a sum, or counter, or average.

Note Manipulating the valuein adatalink does not affect the object from
which the datalink originally received the data. For example, afield object
containsthevalue“helloworld” in lowercase and so does the datalink attached
to that field object. When you run the ToUpper Built-in Filters function on the
datalink, the datalink now contains the “HELLO WORLD” in uppercase.
However, the field object’s value does not change; it is still “hello world” in
lowercase.

Table objects contain one or more data columns that you use to specify which
datashould go into the output transaction. Field datathat matchesavalueinthe
designated search column of the table is replaced with the corresponding
values in the specified columns.

Usetable objectsin filter or qualification objects. When used in afilter object,
you specify within the filter which table column in which to search for amatch
to the data passed to thefilter. You also specify which columns’ corresponding
values to place into the output transaction when data matches the search
column.

When used in a qualification object, you also specify within the qualification
object which table column in which to search for amatch to the data passed to
thequalification object. If the datadoes not match, then the qualification object
fails.

11

How production objects work

ODL functions

In most cases, you want to build special or custom tables before you define the
filter objects that will use the tables.

See “ Creating table object filters’ on page 99 for more information on using
tables.

ODL functions are user-written functions that perform data validation or
manipulation. Use these functionsto perform any type of data manipulation or
validation not availablethrough a TRAN-IDE object. You code ODL functions
using the Object Definition Language (ODL).

You can build several different types of ODL functions and attach them to
different TRAN-IDE objects. These ODL functions have a specific purpose,
are passed specific arguments, and transaction production executes them at
pre-determined pointswhen processing atransaction. See Chapter 3, “Building
Production Objects,” for more information about the types of ODL functions.

You can aso build generic ODL functions directly from TRAN-IDE. Generic
ODL functions have a slightly different format than other functions because
they do not have a specific purpose determined by a TRAN-IDE object, and
because you determine what arguments to pass to them. Also, you cannot
attach a generic ODL function to a TRAN-IDE object. You must call generic
functions from within other functions attached to TRAN-IDE objects. See
“Defining ODL functions’ on page 178 for more information.

How production objects work

12

Thefollowing list gives an overview of how production objects (and all of the
objects they can contain) work. You should have a good understanding of this
sequence of events before you start defining your own system’s production
objects.

For each production object:
1 Runany production object prefilter against the entire input transaction.

2 Parseinput byte stream into field objects and perform field object
qualification. If errors are found, stop processing the current transaction.

3 Perform production object qualification.

e-Biz Impact

CHAPTER 1 Overview

10

If data does not pass qualification, stop processing the current transaction.

For each rule object, starting with first in the list and proceeding
sequentially:

a Process each qualification object.

b If data does not pass, go to the next rule.

For each rule component object (sequentially from first in list):

a Process each qualification object.

b If datadoes not pass, go to next rule component.

¢ Movefidd, literal, nested group, or datalink to atemporary work area.
For each rule component prefilter (sequentialy from first in list):

a Runthe specified filter on the information in the temp work area.

b Moveresult to rule object’s output transaction.

For each rule component post filter (sequentialy from first in list):

a Runthe specified filter against the rule object’s output transaction.
For each rule post-filter (sequentially from first in list):

a Runthe specified filter against the rule object’s output message area.
b Combine the result onto the production object’s output message area.

After the last rule object runs, run any production object post-filters
against the entire transaction.

Thefollowing section provides examples of sequential processing through rule
and rule component objects, examples of the path processing takeswhen a
qualification object fails, and detailed examples and descriptions of processing
through a production object and its various objects.

Multiple rules and components example

The picture below shows the contents of a simple production object. The
arrows indicate the order in which transaction production processes the input
transaction through the production object’s various objects. Thisexampleis
designed to show you how processing occurs sequentially through ruleand rule
component objects. It assumes that the input transaction passes all of the
qualification objects.

TRAN-IDE Guide

13

How production objects work

Input
transaction

14

This example does not cover al of the stepsin detail that occur asthe
transaction passes through each object. See General processing example”’ on
page 16 and “ Rule component processing example” on page 20 for more
information.

Figure 1-5: Simple production object

Field

B@_’ c1

objects c2
cz2
r2 c3
4
R2 —& c3

o 01 A W DN

~

Qutput
transaction

Input transaction — transaction production passes the input transaction to
the production object.

Field objects — the input transaction is parsed into the field objects.

Qpl — executes the qualification objects attached to the production object.
Qr1 — executes the qualification objects attached to the first rule object.
R1 —entersthefirst rule object (R1).

Qcl — executes the qualification objects for R1's first component object
(C1).

C1 —enters C1 and generates a piece of the output transaction.

Qc2 —executesthe qualification objectsfor R1's second component object
(C2).

C2 —enters C2 and generates a piece of the output transaction.

e-Biz Impact

CHAPTER 1 Overview

10
11
12

13
14

15
16

Qr2 — executes the qualification objects attached to the second rule object.
R2 — enters the second rule object (R2).

Qc3 — executes the qualification objects for R2's first component object
(C3).

C3 - enters C3 and generates a piece of the output transaction.

Qc4 —executesthe qualification objectsfor R2's second component object
(C4).

C4 — enters C4 and generates a piece of the output transaction.

Output transaction — sends the completed output transaction to its
destinations.

Qualification failure example

Thisexample hasthe same production object contents asthe previous example,
however, two of the qualification objectsfail, which illustrates how processing
occurs when qualification fails on arule object and on a component object.

Figure 1-6: Simple production object with qualification failures

Input
transaction

Field
objects c2

p1 r1 ci

—rﬁ—r{@a@—p c

@_.cz

TRAN-IDE Guide

ré
@-u(R2 —r&—b c3
- Qutput
@ * C4 | transaction

15

How production objects work

1 Input transaction — transaction production passes the input transaction to
the production object.

2 Field objects—the input transaction is parsed into the field objects.
Qp1 — executes the qualification objects attached to the production object.

4 Qrl-executesthequalification objectsattached to thefirst rule object, but
fals.

5 Qr2-executesthe qualification objects attached to the second rule object.
6 R2-entersthe second rule object (R2).

7 Qc3 - executes the qualification objects for R2's first component object
(C3), but fails.

8 Qc4-executesthe qualification objectsfor R2's second component object
(C4).

9 C4-enters C4 and generates a piece of the output transaction.

10 Output transaction — sends the completed output transaction to its
destinations.

General processing example

16

This exampl e describes most of the steps that occur as a transaction passes
through each object in a production object. Processing at the rule component
level isquite detailed and iscovered in “ Rule component processing example’
on page 20.

This example also introduces the blob work areas attached to rule component
objects, rule objects, and production objects. The blobs are where transaction
production assembles the pieces of the output transaction as it processes the
input transaction through the production object. Whenever processing entersa
rule or rule component, the object’s blob isinitially empty.

The component’s blob contains the data you choose to manipulate in that
component. The component’s filters act upon the data in this blob and
concatenate the resultsinto the rule’s blob. The rule'sblob contains all of the
output from its components. When the rule is done processing, it concatenates
the contents of its blob into the production object’s blob. The production
object’s blob contains all of the output from its rule objects. When processing
through all of aproduction object’s rulesis complete, that production object’s
blob contains the final output transaction.

e-Biz Impact

CHAPTER 1 Overview

Input
transaction

iz

TRAN-IDE Guide

Datalink
objects

In this example, the input transaction contains a name, address, and age. The
examples given with the various object descriptions refer to different pieces of
this transaction and will not relate sequentially. For a step-by-step exampl e of
the objects needed to produce an output transaction from specific input
transaction data, see the examplesin “Building production objects” on page

23.

Whenever transaction production encounters a processing error in this
example, it stops processing the transaction and does one of the following:

If the SFM receives the transaction with route_vprod, it writes the
transaction to the unrouteable log file and starts processing the next
transaction.

If the SFM receives the transaction with route_vrec, it passes the
transaction to the next production object associated with the SFM and
begins this processing sequence again.

If the SFM receives the transaction with route_recx and the Options
argument contains RO_ BYPRODNAME, it performs the same actions as
for route_vprod. Otherwise, it performs the same actions asfor route_vrec.

Figure 1-7: General processing example

Rule object

Role object
. post filters

@D
Input transaction —the SFM receives the transaction with the route_vprod
routing function command or with the route_recx routing function
command that contains RO_BYPRODNAME in the Options argument.

Transaction production passes the transaction to the production object
listed in the routing function.

Cutput
transaction

17

How production objects work

18

or

The SFM receives the transaction with a Tran ID of “ENGINE” in the
route_vrec routing function or with the route_recx routing function that
contains RO_BYENGINENAME in the Options argument or with the
route_vprod function specifying an engine grouping containing this
production object. Transaction production passes the transaction to the
first production object associated with the SFM.

Field objects — transaction production parses the contents of the input
transaction into the field objects and performs data type validation. If
parsing or validation fail, transaction production stops processing the
transaction through this production object.

If the transaction passes parsing and validation, the object popul ates any
datalink objects attached to the field objects.

Qf —executes any qualification objects attached to the field objects. If any
required (the “Optional” preference is not selected) qualification objects
fail, processing through this production object stops.

The purpose of aqualification object attached to afield object isto
determine if the input transaction contains the data that the field objects
should receive. This should be abroader check than that donein a
production object’s qualification object, since al of the production objects
in a project share the same field objects.

For example, for afield object that contains an age value, check that the
valueisbetween 21 and 55. Then individual production objects can check
for an exact ages within that range.

Qp — executes any qualification objects attached to the production object.
If any required (the “Optiona” preference is not selected) qualification
objectsfail, then stop processing through this production object.

The purpose of aqualification object attached to a production object isto
determine if the production object should process the transaction. Often,
several input transactions contain the type of datathat passes field object
parsing, validation, and qualification, but you want the production object
to processonly those transactionsthat have aspecific valuein apart of the
data.

For example, apiece of theinput transactions may contain any valuein the
range between 21and 55. However, this production object should process
only those transactions with that piece of datain the range 35 to 45, so the
qualification object checks for that range.

e-Biz Impact

CHAPTER 1 Overview

TRAN-IDE Guide

Qr — executes any qualification objects attached to the rule object. If any
required (the “Optional” preferenceis not selected) qualification objects
fail, processing stops through this rule object.

The purpose of a qualification object attached to arule object isto
determineif the rule object should process the transaction. Often, an input
transaction may contain data that a particular rule object does not need to
act upon.

For example, part of the input transaction is a zip code. This rule object
should run only when the zip code is “94553,” so the qualification object
checks the zip code data for that value.

R —enters the rule object.

A rule object isalogical container for the components and filters that
mani pulate a piece of the input transaction to produce a part of the output
transaction.

Qc —executes any qualification objects attached to the component object.
If any required (the “Optional” preferenceis not selected) qualification
objectsfail, then stop processing through this component object.

The purpose of aqualification object attached to a component object isto
determineif the component object should processthe transaction. Often, a
rule object has one or more components that you want to run only when
the dataisin a specific form or when a specific piece of datais present in
the input transaction.

For example, the component contains afilter that truncates the first name
datato ten characters. If thefirst nameislessthan ten characters, then you
do not want to enter the component and run that filter, so the qualification
object checks the length of the first name data.

C - copiesthe datain the selected field object, literal, group, or datalink
object into the component’s blob.

A component object defines the piece of the input transaction to
manipulate and place into the output transaction. A component object is
also alogica container for filters.

Fc—runsthe component’sfilters on the datain the component’sblob. Once
all data manipulation is finished, concatenates the contents of the
component’s blob into the rule's blob. Processing through a component’s
filtersisvery detailed. See “ Rule component processing example” on
page 20 more information.

19

How production objects work

10

1

12

A component’s filters perform additional data manipulation on the piece
of the input transaction defined by the component. Use filters to perform
any action necessary when processing the input transaction into the
required output transaction. Use of filtersisoptional. When filters are not
present in the component, then the data that the component definesis
placed unchanged into the output transaction.

For example, the component’s blob contains afirst name. The destination
only needsthefirst ten characters of the name, so thisfilter runsthetruncL
built-in filter function on the component’s blob data.

Fr —runsthe rul€’s post-filters on the datain the rule’s blob. Once all data
manipulation is finished, concatenates the contents of the rule’s blob into
the production object’s blob.

A rul€e's post-filters perform additional data manipulation on the final
output of all of the rule’'s component objects.

For example, the destination needs a separator pattern added to the piece
of the output transaction that the componentsjust built, so one of therule’s
post-filters appends “[*[*[" onto the rule’s blob data.

Fp — runsthe production object’s post-filters on the datain the production
object’s blob.

A production object’s post-filters perform additional data manipulation on
the final output of al rule objects.

For example, the destination needs the entire output transaction in upper
case letters, so one of the production object’s post-filters runs the Toupper
built-in filter function on the production object’s blob data.

Output transaction — the SFM sends the output transaction to its
destinations as configured in the e-Biz Impact Configurator.

Rule component processing example

20

This example describes how processing occurs through a rule component.

Processing through a component object and itsfiltersisimportant because the

output from the component’s pre-filtersis concatenated into the rule's blob,
then the component’s post-filters are run on the contents of the rule’s blob, not
on the component’s blob.

e-Biz Impact

CHAPTER 1 Overview

Figure 1-8: Rule component processing

From rule object Rule

* component ‘.

posst-filters @

1 Enter the rule component object. The component’s blob is empty.

2 Copy thedatain the selected field object, literal, group, or datalink object
into the component’s blob.

3 Movethe datain the component’s blob to the rule’s blob.

4 Run the post-filters sequentialy, from the first listed in the component to
the last, against the datain the rule’s blob. As each post-filter finishes, its
output becomes the current contents of the rule's blob and the next post-
filter operates on those contents.

Note Since acomponent’s post-filtersrun on the rule object’s blob, this means
that when there are multiple components within the rule object, each
component’s post-filters act upon the entire contents of the rule’s blob, not just
on the part that the post-filters' component had placed into the rule’s blob.

Multiple rule and component processing example

TRAN-IDE Guide

This section covers how transaction production builds an output transaction
from multiple rules and multiple components. In the picture below, the arrows
show the order in which transaction production processesthe objects. The open
arrows indicate that the blob isempty for the object that processing is entering,
and the black arrows indicate that the object’s blob contains data. Remember
that each rule object and each component object hasits own blob and that a
component’s post-filters run on the contents of the rule object’s blob. Refer to
the “Rule Component Processing Example’ topic for more detailed
information about a rule component’sfilters.

21

How production objects work

Figure 1-9: Building output transactions from multiple rules and

components
o S e
-~ ,—h\ 5, r,,—h\\\
R1 i - F F
bl L Cl s @ @
- _\'\ N
r ’_;_\ - w . b ,,f_\\\
r-post 1 €2 |—m» F " F
P pre 2 post 2
rFy
| |
hd Vo —
e ,—h\ o, f’,—h\\\
R2 >—'t C3 |—» F —» F
pre 3 post 3
I
— ¥

o pm—— ™,

A S A A~ e M
F Cal o, F F
r-post 2 | pre 4 post 4

¥
To production
objects post-filters

1 R1l-enterthefirst rule object, R1. R’s blob is empty.

2 Cl-—enter R1l'sfirst component object, C1. C1'sblob is empty. Copy the
datain the selected field object, literal, group, or datalink object into C1's
blob.

3 Fprel-runCl'sprefilters on the contents of C1'sblob. Once al of the
pre-filters are finished, move the contents of C1’sblob to R1’s blob.

4 Fpost 1-run C1's post-filters on the contents of R1’s blob.

C2 —enter R1’s second component object, C2. C2's blob is empty. Copy
the datain the selected field object, literal, group, or datalink object into
C2'sblob.

6 Fpre2-runC2'spre-filters on the contents of C2'sblob. Once al of the
pre-filters are finished, concatenate the contents of C2's blob onto the
contents of R1’s blob.

7 Fpost 2—run C2's post-filters on the contents of R1’s blob.

8 Fr-post 1-run R1's post-filters on the contents of R1’s blob. Move the
contents of R1’s blob into the production object’s blob.

22 e-Biz Impact

CHAPTER 1 Overview

9 R2-enter the second rule object, R2. R2's blob is empty.

10 C3-enter R2'sfirst component object, C3. C3'sblob is empty. Copy the
datain the selected field object, literal, group, or datalink object into C3's
blob.

11 F pre 3 —run C3's pre-filters on the contents of C3'sblob. Once al of the
pre-filters are finished, move the contents of C3's blob to R2's blob.

12 F post 3—run C3's post-filters on the contents of R2's blob.

13 C4 —enter R2's second component object, C4. C4’s blob is empty. Copy
the datain the selected field object, literal, group, or datalink object into
C4’sblob.

14 F pre4 —run C4’s pre-filters on the contents of C4’sblob. Once al of the
pre-filters are finished, concatenate the contents of C4's blob onto the
contents of R2's blob.

15 F post 4 —run C4's post-filters on the contents of R2's blob.

16 Fr-post 2—run R2 s post-filters on the contents of R2'sblob. Concatenate
the contents of R2's blob onto the contents of the production object’s blob.

Building production objects

TRAN-IDE Guide

This section describes the basic steps for building a simple production object.
The exampleis not designed to show you how to use the TRAN-IDE tool to
build each of the objects (that is, which entries to place in the various fields).
Rather, it is meant to show you how to determine what objects you need to
build and the sequence in which they should be built for the production object
to produce the required output transaction from the input transaction.

This section uses the simplest forms of the TRAN-IDE objects and does not
cover any of the variousoptionsavailableto these objects. L ater sectionsin this
guide cover these options, including using groups or nested groups, how to use
name/val ue pairing, and performing collection. Most of the examplesin these
sections use an input transaction that is a variation on the transaction in this
section, allowing you to build upon previous knowledge as you learn about the
various options availablein TRAN-IDE.

23

Building production objects

Requirements
Before you build a production object, you must know:

1 Theformat of theinput transaction.
2 Theformat of the output transaction.

3 What the production object needs to do to produce the output transaction
from the input transaction’s data.

4 What objects the production object needs to use to produce the output
transaction from the input transaction’s data.

Input transaction format

Before you build a production object, determine the format of the incoming
transaction. You need to know what dataisin the input transaction, and, either
what separates one piece of datafrom another, or the length of the piece of data.
For this example, thisis the incoming transaction:

John Smith|114 Center Ave|Pacheco|ca94553|123456789|758.15

This input transaction has seven pieces of data with each piece separated by a
“I" symbol, except for the state data (“ca”) which has no separator because it
will always be two charactersin length.

Output transaction format

Next, determinetheformat in which the output transaction needsto be. In other
words, you have to know what format the destination application requires for
the data. Decideif the production object needs to add data, delete data,

rearrange data, and/or change data to produce the required output transaction.

This example generates this outgoing transaction:

HEADER | 123456789 |758.15***JOHN SMITH|114
CenterAve |Pacheco|California| 94553

This output transaction has eight pieces of datawith a“|" symbol separating
each piece except for the “758.15" and “JOHN SMITH” pieces which are
Separated by “***”.

What the production object needs to do

Plan exactly what the production object needs to do to generate the required
output transaction from the input transaction’s data.

24 e-Biz Impact

CHAPTER 1 Overview

For this example, to produce the specified output transaction, the production

object needs to:

1 Add header information (HEADER).

2 Placetheinput transaction’s last two pieces of data (123456789|758.15)
after the header in the output transaction, then put the remaining pieces of
the input transaction into the output.

3 Add the required separator characters.

4 Change the name data (John Smith) to uppercase | etters.

5 Changethe state datafrom “ca’ to “California.”

What a production object requires

Before build a production object, determine what objects are necessary to
produce the required output transaction. Generally, a production object needs
at least one field, one rule, and rule component objects.

TRAN-IDE Guide

Field objects—you need afield object for each piece of datain the input
transaction that the production object needs to manipulate and/or place
into the output transaction. For this example, since every piece of the
incoming transaction goes into the output transaction, seven field objects
are needed.

Rul e objects— depending on the kind of data mani pulation the production
object needs to do, more than one rule object may be needed. Thisis
because of the way that transaction production uses the blob work areasin
rules and components to build up the output transaction. See “ General
processing example” on page 16 for more information about blob work
areas. While onerule object issufficient to produce the output transaction,
this example usesthree rule objectsto demonstrate the use of multiplerule
objects.

Component objects —a component object is needed for each piece of data
that the production object places into the output transaction. For this
exampl e, eight component objects are necessary—one to place each piece
of the input transaction into the output, and one to add the header
information to the output transaction.

25

Building production objects

e Filter objects—filter objects are needed to perform any data manipulation
and tranglation. For this example, two filters objects are needed to
manipul ate data into the correct format—one to change the name datato
uppercase letters, and one to change the state data. The example also uses
filter objects to add the necessary separator characters to the output
transaction—oneto add the “|” separator, and one to add the “***”
separator.

e Table objects—table objects are asimple way to replace one piece of data
with another. This example uses a table object within thefilter object that
changes the state data.

Building a sample production object

26

Once you determine what the production object needs to do and what objects
it requires, you are ready to build the production object.

This example discusses only the objects you need to build and the order in
which to build them; it does not give step-by-step instructions on how to build
those objects. See Chapter 3, “Building Production Objects.”

Sybase recommends that you build all of the objects that the production object
requires from within the Production Object Information window. This allows
you to build each set of objectsin alogical order that generates each piece of
the output transaction.

There are severa waysto build the desired output transaction for thisexample.
You could build arule object to add the header information, then build a quick
rulefor each field object. This method works when there are asmall number of
field objects in the transaction. However, most transactions require hundreds
of field objects and using the quick rule method producestoo many rule objects
that are difficult to track and manage. You could also build onerule object with
components and filters that produce the entire output transaction. However, to
demonstrate multiple rule objects in a production object, the following steps
build three rule objects—Rulel, Rule2, and Rule3—to produce the output
transaction.

1 Buildthefield objects. For the remainder of this example, the pieces of
datain the input transaction are referenced by these field object names:

e-Biz Impact

CHAPTER 1 Overview

TRAN-IDE Guide

Data Field object name
John Smith name_fld

114 Center Ave street_fld

Pacheco city fld

ca state fld

94553 zip_fid

123456 id_fld

789758.15 total_fld

Build the Rulel rule object to place the header information, the 1D, and the
total into the output transaction (HEADER|123456789|758.15** *).

a Build acomponent (C1) that addsthe literal value“HEADER” to the
output transaction.

b InC1, build aprefilter that adds the “|" symbol to the outpuit.

¢ Buildanother component (C2) to place the contents of theid_fld field
object into the output transaction.

d Inthe C2 component, reuse the Pre-Filter that adds the “|” symbol.

e Build another component (C3) to place the contents of total_fld into
the output transaction.

f Incomponent C3, reuse a pre-filter that adds the “***” separator to
the output.

Build Rule2 to place the name, street, and city into the output transaction
(JOHN SMITH|114 Center Ave|Pacheco).

a Build acomponent (C4) to place the contents of name_fld into the
output transaction.

b InC4, build aprefilter that changes the data to uppercase.
¢ Incomponent C4, reuse the pre-filter that adds the “|” symbol.

d Build another component (C5) to place the contents of street_fld into
the output transaction.

e InC5, reuse the pre-filter that adds the “|” symbol.

f Build another component (C6) to place the contents of city_fld into
the output transaction.

g InC®6, reuse the pre-filter that adds the “|” symbol.

27

Using name/value pairing

4 Build Rule3 to place the state and zip code into the output transaction.

a Build acomponent (C7) to place the contents of state fld into the
output transaction.

b InC7, build apre-filter that usesatable object to change thedatafrom
“ca’ to “California”

¢ InC7, reusethe pre-filter that adds the “|” symbol.

d Buildanother component (C8) to placethe contentsof zip_fldintothe
output transaction.

The production object now contains all the pieces it needs to generate the
desired output transaction from the given input transaction.

Using name/value pairing

Input transaction

28

Name/value pairing describes a particular way for a data source to send a
transaction to an SFM. With name/value pairing, a unique hame is associated
with each piece of data (value) in the input transaction. This allows the data
source to place the pieces of datain any order in the input transaction instead
of requiring the pieces of datato be in the same order for each transaction the
data source sendsto the SFM. The data source must use the same unique names
for the same values in each input transaction.

When using name/value pairing, you still build the production object as
described in “Building a sample production object” on page 26. However, for
each field object you have to use a specific offset that is determined by the
unigque name used with each name/value pair. See “ Building field objects’ on
page 29 for more information.

format

For an input transaction to use name/value pairing, each piece of data must be
in this format:

name=value

where name is the unique name that identifies the data and value is the actual
data.

When using name/value pairing, this input transaction becomes:

e-Biz Impact

CHAPTER 1 Overview

John Smith|114 Center Ave|Pacheco|ca|94553
name=John Smith|street=114 Center Ave|city=Pacheco|state=ca]

And, as shown below, the pieces of the input transaction can bein any order.

city=Pacheco|name=John Smith|street=114 Center Ave|state=ca
street=114 Center Ave|name=John Smith|state=ca|city=Pacheco|
street=114 Center Ave|state=ca|name=John Smith|city=Pacheco

Building field objects

When you build each field object for the datain the input transaction, you must
select the “ Follows-pattern, anchor field” option as the offset. In the Pattern
entry field, enter the unique name (and the =) associated with the data for that
field object. For example, for the field object that definesthe city=pacheco
pair, the offset is“city=".

For more information, see Chapter 3, “Building Production Objects.”

Using groups

A group isadata area (afield) in an incoming transaction that contains a
repeated set of elements, asillustrated in Figure 1-10.

Figure 1-10: Incoming transaction group

|—| Incoming Transaction |—|

alb|clalblclalblclalb|c|lalb|c

(repeating elements)

A group has specific values separating each element, separating each set of
elements, and to indicate the end of the group:

a*b*c|a*b®c|a*b®c|a*b”c|###

where:

TRAN-IDE Guide 29

Using groups

e “*"jsthe separator for the“a’ element.
e “Njsthe separator for the “b” element.
e “|" isthe separator for a set of elements.

e “## identifies the end of the group.

Specifying group types

Groups may be homogeneous or heterogeneous. A homogeneous group
contains one repeating element (for example, alist of names). A heterogeneous
group contains repeating sets of elements, for example, alist of names and
phone numbers where a set of elementsis a name and the person’s phone
number.

Datain a homogeneous group looks like this:
John Smith|Jane Jones|Tom White |###
Datain a heterogeneous group looks like this:

John Smith”680-7800|Jane Jones”680-7092|Tom White”685-8564 |###

Building field objects

When you are building thefield objectsfor theinput transaction, you build one
field object that defines the group’s entire dataarea, then build onefield object
for each element in the group. You do not build afield object for every instance
of each element.

For this group:
John Smith”*680-7800|Jane Jones*680-7092|Tom White”685-8564 | ###
you would build three field objects:
Table 1-1: Group field objects

Field object name Data it defines

group_example Defines the group’s entire data area.
name_element Defines the name element.
phone_element Defines the phone number element.

When building field objectsfor agroup, the Offset, L ength, and Optionsentries
are the key to describing each part of the group.

30 e-Biz Impact

CHAPTER 1 Overview

Table 1-2: Group field object settings

Field object

Offset

Length

Option to set

group_example

The offset for thisfield
object is based upon the
group's location in the
input transaction.

Separator pattern:
LHHE

Select the “This Field object defines
agroup” option.

Name_element By Vaue: 0 Separator: » Select “Member of ‘Group’ Field
Thefirgt dement in the Object” option and select the
group aways has an group_example field object in the
Offset of zero. related entry field.

Phone_element Follows-fld: Separator: | Select “Member of ‘group’ Field
name_element object” and select the

group_example field object in the
related entry field.

Set the Offset and L ength through the Field Object I nformation window. Refer
to “Building production objects’ on page 72 for more information about these
entries.

For a homogeneous group, you would build just two Field objects, one to
define the entire data area of the group and one to define the group element.
The Offset and Options entries required for these Field objects are the same as
those used by group_example and name_element in the table above. The
Length entries depend upon the separators used within the homogeneous

group.

Building rule objects

You build arule object that will process only the group’s data areaand no other
part of the input transaction. In the FIdGrp entry field for thisrule object, enter
the name of the field object that “ defines the group” (in this case, the
group_example field object).

Building component objects

TRAN-IDE Guide

Build a component to process each element in the group. In other words, you
need one component object for each field object that is defined as a“ member
of” the group. Within each component, you select the field option and, in the
related entry field, enter the name of afield object that defines a“member of”
the group. You then build any necessary pre-filters and/or post-filters.

31

Using groups

Nested groups

A nested group is a group within another group. A single element within the
first group (the “parent” group) is actually another group, a*“nested” group. In
Figure 1-11, “b” isasingle element in the parent group. It contains two
separate pieces of data, “x” and “y,” which are the nested group.

Figure 1-11: Incoming transaction nested group

I—| Incoming Transaction I_I

alb|clalblclalblclalb|c|alb|c

L
Hested group

An example of data that fits this example is a parent group containing the
elementsitem_number (“a"), description (“b"), and amount (“c”). The
description element containswithin it anested group consi sting of acolor (“x”
andasize (“y").

Building field objects

32

You build field objects for nested groups the same as for a group, one field
object defines the nested group's entire data area, and then one field object
defines each element in the nested group.

For the nested group—a”color|size#$c*—where color|size is the nested
group contained in element “b” in Figure 1-11, you would build two field
objects and modify an existing object as shown in Table 1-3.

Table 1-3: Nested group field objects

Field name Data it defines

nested_grp Thisfield object aready exists as a“member of” the parent
group. Youmodify itsoptions so that it al so defines the nested
group’s entire data area.

color_element Defines the color element.

size_element Defines the size element.

Table 1-4 givesthe offset, length, and options settings for these field objects.

e-Biz Impact

CHAPTER 1 Overview

Table 1-4: Nested group field object settings

Field object Offset Length Option
nested_grp Follows-fld: a Separator: $ Select the Member of Group Field Object
option and in the rel ated entry field select the
field object that defines the parent group.
Select the This Field Object Definesa Group
option.
color_element By Vaue: 0 Separator: | Select the Member of Group Field Object
Thefirst dement in the option and select the nested_grp field object
group aways has an in the related entry field.
offset of zero.
size_element Follows-fld: Separator: # Select the Member of Group Field Object
color_element option and select the nested_grp field object
in the related entry field.

Building rule objects for a nested group

Build arule object to process only the nested group’s data area and no other
part of the input transaction. In the FIdGrp entry field for this rule object, you
must enter the name of the field object that “defines the group” (in this
example, the nested_grp field object).

Warning! Do not build this rule object from within the Production Object
Information window. You must build the rule object that processes a nested
group from within the main TRAN-IDE window. L ater, you associate thisrule
object with the component object that processesthe element in the parent group
that contains the nested group. See“Modifying component objects from the
parent group” on page 34 for more information.

Building component objects for a nested group

TRAN-IDE Guide

Build acomponent to process each element in the nested group. In other words,
you need one component object for each field object that is defined as a
“member of” the nested group. Within each component, you select the Field
option and, in the related entry field, enter the name of afield object that
defines a“member of” the nested group; then build any necessary pre-filters
and/or post-filters.

33

Using collection

Modifying component objects from the parent group

In the component objects that process the members of the parent group, the
component that acts upon the field object that defines the nested group (in this
case, the nested _grp field object) needs to have the Group option selected, not
the Field option. Thistellsthe component that this member of the parent group
is actually a nested group.

After selecting the Group option, in the first entry field, enter the name of the
field object that defines the nested group. In the second entry field, enter the
name of the rule object that should process the nested group. Thisistherule
object discussed in “Building rule objects for a nested group.” For more
information about this Group option, see Chapter 3, “Building Production
Objects.”

Using collection

34

Collection is gathering together several transactions, or pieces of those
transactions, and placing them into onelarger transaction. Use collection when
an application endpoint requires a single transaction containing data sent by
severa different acquisition AIMs. For example, an endpoint that generates
patient billing may require selected information from lab, pharmacy, and
admitting applications.

TRAN-IDE provides the dbinsert, dbDiskList, dbSelect, and doDelete built-in
filter functions and the dbExist and dbNotExist built-in qualification functions
to facilitate collection.

« dbinsert —copiesthe contents of the current message areato the referenced
collection file.

« dbSelect — copiesthe specified entry from the referenced collection file to
the current message area in the production object.

e dbDiskList —finds al key fields that fit a certain search mask.
« dbDelete — deletes the specified entry from the referenced collection file.
* dbExist — verifies the existence of datain the specified collection file.

e dbNotExist — verifiesthat datadoes not exist in the specified collectionfile.

e-Biz Impact

CHAPTER 1 Overview

Defining a table

TRAN-IDE Guide

Production objects gather the different pieces of data from the various
incoming transactionsand usethedbinsert filter to storethemin collectionfiles
on the network server or on a personal computer workstation. If desired, use
dbNotExist before using dbinsert to determine if the insertion will copy over
data already present in the collection file. Once all the pieces of dataare
present, use dbDiskList to list al the relevant files and dbSelect to collect all
relevant data from these files and send the output transaction to a delivery
AIM. If necessary, use dbExist to verify whether datais present in the collection
file before calling dbSelect. Use dbDelete to remove datafrom acollection file.

To use adatabase to perform collection, use the Databasefilter. You can create
a database interface object that includes SQL statements to manipul ate the
transaction elements. See the e-Biz Impact ODL Guide for more information.

A “table,” inthise-Biz Impact context, is auser-defined name that you specify
in the argumentsto db filters and functions. Each table name must be unique
for each acquisition AIM, and a good suggestion is to make each table name
similar to the reference name of the acquisition AIM. For example, for
transactions sent by a general ledger application, use the table name
“GENLEDGE.”

For thedbinsert, dbDiskList, dbSelect, and dbDelete built-in filter functions, you
place this table name into the Table argument field in the Filter Information
window. For the dbExist and dbNotExist built-in qualification functions, you
place this table name into the Args argument field in the Qualification Object
Information window.

When necessary, transaction production truncates the table’'s name to meet
your system'’s file name limitations. Within the file name, transaction
production maps all a pha charactersto uppercase and converts\ . : / and space
charactersto % #” $and _respectively. Any character that islessthan a space
or greater than atilde is mapped to a question mark.

Warning! The table name must be unique enough to be truncated and mapped
to aunique name. If two transactions with the same Key have different table
names that map to the same table name, transaction production writes the
second transaction’s data over the first transaction’s data in the collection file.

35

Using collection

Defining the Key field

The Key field is apiece of an incoming transaction’s datathat is unique to al
transactionsthat transaction production should collect together for an endpoint.
You may define afield object or adatalink object for this data area. For
example, if the relevant transactions gathered from the lab, pharmacy, and
admitting applicationsall contained thepatient ID “ 123456789” in the data, the
production objects that gather and process these transactions would define a
field object or datalink object for the “ 123456789 segment of data. Thisfield
object or datalink object becomes the key for those transactions.

For the dbinsert, dbDiskList, dbSelect, and dbDelete built-in filter functions, in
the Filter Information window, place either thefield object’snameinto the Key
field argument field or the datalink object’s name into the Key Datal.ink
argument field. If you place an entry in both the Key field and Datalink
argument fields, TRAN-IDE alwaysusesthevalueinthefield object asthekey
unless the field object is empty or missing in the transaction. When using the
dbDiskList Builtin Filter Function, you can also supply aliteral search mask in
the “Key Lit” field, using wild cardsif necessary. Thisfieldisused only if the
“Key Field” and “Key Datalink” fields are empty. For the dbExist and
dbNotExist Built-in Qualification functions, select the FIdObj option in the
Qualification Object Information Window and place this field object’s name
into the entry field.

When necessary, transaction production truncates and maps the Key’s name
following the conventions listed in “ Defining atable” on page 35.

The dbDiskList also requires a separator, which is placed between the results of
the search. That separator is user-provided, and can be entered in the Sep Lit
field. The default isacolon (:).

Note The key must be unique enough that it truncates and maps to a unique
name. If two transactionsfor the same table have different keysthat map to the
same name, then transaction production writes the second transaction's data
over thefirst'sin the collection file.

General information and rules

General information

36

The following general information applies to using collection:

e-Biz Impact

CHAPTER 1 Overview

Rules

Data organization

TRAN-IDE Guide

Thedblnsert filter overwrites any existing dataif the key isalready present
in the specified table name. Usethe dbNotExist function to verify that there
is not aready data present in the collection file.

The dbSelect filter copies the datafrom the collection files, so production
objects can collect the data more than once and place it into different
output transactions. However, the dbSelect filter does not perform
concatenation, so if there is aready data present in the current message
area, thisfilter overwritesit. Therefore, call thisfilter from within an
empty rule component object each time you want to copy an entry from a
collection file to the output transaction.

Onceyou no longer need the data, usethedbDelete filer to removethe data
from the collection file. However, do not delete datafrom acollection file
until al outstanding transactions using that data have a successful return
from their delivery AIMs. This keeps the data available in case a system
failure results in the loss of the collected transaction.

When using collection, keep these rulesin mind:

Place transactions from different acquisition AIM into different tables.

All transactions that transaction production should collect together must
have the same key, even if they are in separate Tables.

Each transaction placed into a table must have a unique key.

You can perform collection on either anetwork server or using the test drive
feature on a personal computer workstation. Transaction production stores the
collectionfilesin different locati ons depending on whether you are performing
collection on a server or aworkstation.

Collection files are organized by table name. Within each collection file, each
transaction’sdataisin a separate file with the same name as the data content of
the Key field.

37

Using collection

Implementing collection

Format 1

Format 2

38

For transactions that always arrive in the same known order:

1
2

Define afield or datalink object for the data area that is the key.

Use the dbinsert filter to copy the data to the appropriate collection file.
The production object can then send the transaction off to anull
destination or to any delivery AIM that may need just that transaction’s
data.

Once an acquisition AIM sends the last necessary piece of data, use the
dbSelect filter to copy the other pieces of datafrom the collection filesinto
that output transaction. Remember to make each call to the dbSelect filter
from within an empty rule component object.

Note Remember, the dbSelect filter does not perform concatenation. If
there is already data present in the current message area, this filter
overwritesit.

Send the output transaction to the delivery AIM that routes to the
application endpoint that required these pieces of datain one transaction.
Optionally, use recycling to send the output transaction back through
transaction production for further processing before passing it on to the
delivery AIM.

If desired, use the dbDelete filter to delete the entries from the collection
files.

For transactions that do not arrive in aknown order:

Define afield or datalink object for the data area that is the key.

Use the dbinsert filter to copy the data to the appropriate collection file.
The production object then sends the transaction off to a null destination
or to any delivery AIM that may need just that transaction’s data.

e-Biz Impact

CHAPTER 1 Overview

3 Becausetheacquisition AIMsdo not send thetransactionsin apredictable
order, each production object needs to contain the rules for gathering all
the data from the collection files. In other words, each production object
must make all of the dbSelect calls needed to gather all of the necessary
data from the collection files.

To find out which files hold the data you want, call dbDiskList with the
appropriate search field. Remember to make each call to the dbSelect filter
from within an empty rule component object.

Note Remember, the dbSelect filter does not perform concatenation. If
thereis already data present in the current message area, thisfilter
overwritesit.

Before each dbSelect call, use the dbExist qualification function in the
qualification object of the rule component that makes the dbSelect call. If
the dbExist function fails, then some of the transactions have not arrived
yet and the production object should stop trying to gather the datafrom the
collection files.

4 Send the output transaction to the delivery AIM that routes to the
application endpoint that required these pieces of data in one transaction.
Optionally, use recycling to send the output transaction back through
transaction production for further processing before passing it on to the
delivery AIM.

Each production object must contain either all the logic necessary for
processing and sending the compl eted transaction to the delivery AIM, or
the production objects must all recycle to another production object that
contains that logic.

5 If desired, use the dbDelete filter to delete the entries from the collection
files.

Data size limitations

TRAN-IDE Guide

The dbSelect filter does not restrict the amount of data you can copy into a
production object’s output transaction. However, it is possible to exceed the
system resources available using the collection option.

Do not use collection if it will generate an output transaction that exceeds the
resources available on the server where the software will be put into
production.

39

TRAN-IDE objects

If you haveto use coll ection because manipul ation of one piece of datarequires
knowledge of the contents of other pieces, then you must segment the output
transaction into smaller pieces and have the delivery AIM put it back together
before passing it on to the endpoint application. In such a case, the delivery
AIM must be located on a server with enough system resources to handle the
combined transaction.

TRAN-IDE objects

Thissection liststhe various objectsthat you can include in aproduction object
to manipulate the incoming transaction’s data. Thereis also abrief description
of each object’s purpose.

TRAN-IDE objects can be parent and/or child objects. A parent object is any
object that contains other objects. Transaction production always processes an
input transaction through a parent object, then through its child objects. See
“How production objects work” on page 12 for more information about
production object processing.

Object Description

Datalinks A datalink defines a data variable. The common usefor adatalink object isto hold a
copy of afield object’s data. You can then use the datalink in qualification and filter
objects. To use the data variable outside of its module, you must makeit “public.” A
datalink contains:

¢ Datalink name

* Module name

« Datatype

¢ Private (static) or public state

Fields A field object defines a single piece of an input transaction (that is, arecord or
message) gathered by an acquisition AIM. A field object may contain one or more;

» Datalocation and length information (required)
¢ Datatypeinformation

« Datalink object references

o Default literal values

¢ Member-of references

« Quadlification object references

e Options

40 e-Biz Impact

CHAPTER 1 Overview

Object

Description

Filters

A filter object manipulates the datain one or more field objects. It can validate, add
to, copy, trandate, and transform data, or perform any other type of datamanipulation
you require. A filter object may contain one or more:

* Built-in filter function references

¢ Custom code references

¢ Function arguments

« Field object references

e Datalink object references

« Datalink operation codes (for example, <, and so on)
¢ Table object reference names

¢ Edit masks

e Options

ODL functions

Object Definition Language (ODL) functions are user-written functions that perform
data validation or manipulation. Use ODL functions to perform any type of data
manipulation or validation not available through a TRAN-IDE object. Seethe e-Biz
Impact ODL Guidefor information about thislanguage. An ODL functionisattached
to or referenced within:

 Filter objects (custom filter function)

« Production objects (error function)

¢ Quadlification objects (qualification function)
« Rule objects (error function)

Production

A production object defines the requirements and procedures needed to produce a
single output transaction from theinput transaction. A production object may contain
one or more:

« Field object references (required)

¢ Quadlification object references (optional)
* Rule object references (at least one)

» Post-filter object references (optional)

e Comments

TRAN-IDE Guide

41

TRAN-IDE objects

Object

Description

Qualifications

A qualification object determinesif transaction production should process a
transaction through a specific production, rule, or rule component object. A
qualification object may contain one or more:

« Field objects or datalink object references (required)
¢ Litera vaues

e Operation codes

¢ Custom code references

¢ Table object references

e Options

Rules

A rule object containsthe components and filters that act on theincoming transaction
to produce the output transaction. A rule object may contain one or more;

« Normalized lengths

e Qualification objects

« Rule component objects (one required)
« Post-filter object references

e Options

Rule components

A rule component object defines one or more specific filter objectsto process against
the transaction, and also defines what piece of data or field object to process. A rule
component object may contain one or more:

« Field object references

« Prefilter object references
« Post-filter object references
e Litera values

¢ Options

Tables

42

A table object contains columns of data. You use one of the columnsto search for a
match to field object data, then place datafrom one or more of the other columnsinto
the output transaction. A table object may contain one or more:

» Columns of data
» Descriptions
¢ Options

e-Biz Impact

CHAPTER 1 Overview

SFM log overview

Thedatainthe SFM transaction log file (including unprocessabl e transactions)
and the unrouteabl e transaction fileisin binary format. The sfmlog utility isan
application that parses the SFM log files to display transaction information. It
provides options to:

» Filter transactions according to attributes

» Extract data from a transaction record

e Settransaction status.

sfmlog is run from a Windows command-line or UNIX terminal window.

The transaction log file maintenance features available in Global Console can
be used to view and modify specific transactionsin the unrouteabl e transaction
file, and to view and modify transactions in the unprocessabl e transaction log
file. However, use the sfmlog utility to view al transactions, or to print
transactionsthat are separated and includes serial number, time, date received,
transaction 1D, status, and contents.

The sfmlog utility can also be used to create a back-up copy of thelog filesfor
an SFM. Do not use the name of the sfmlog utility input file as the name of the
output file for this command.

sfmlog utility options

When you execute the sfmlog utility, use the optionsin Table 1-5 to specify
actions, including input and output files used by the utility, filter behavior, and
the output format of the data.

To run sfmlog, enter:

ims sfmlog options

Note Thereis no space between the option flag and the argument value. For
example:

ims sfmlog -ftestfile -v2

Table 1-5: sfmlog Display and output options

Options Description
-h Displays a summary of sfmlog options and their associated functions.
-ffile Specifies the input log file to parse. You can specify multiple log files.

TRAN-IDE Guide 43

SFM log overview

Options Description
-ofileName (lowercase “0") Specifiesthe file to receive sfmlog output.
-OfileName (uppercase “O") Specifies the output file and overwrites the existing output fileif it exists.
-vievel Use to set the verbosity of the result display. Three levels are available: 0, 1, and 2, with 2 being
the most verbose.
-Q Quiet mode. This option suppress all output to the console.
-S Summary mode. This option displays only the result summary to the console.
-l Information mode. This option displays the overall transaction status and route status for each
transaction.
-T This option sorts by transaction entry time during display. sfmlog displays transactions according
to timestamp rather than order within the log file.
-X This option sorts by transaction serial number during display. sfmlog displays transactions
according to their serial number rather than order within the log file.
-Z Sets transaction and associated route status to specified status and output to file. Requires the -o
option to provide the output file name to which sfmlog writes data. Valid status codes are:
* PENDING
¢ COMPLETE
« CANCELLED
¢ SKIPPED
Example—
ims sfmlog -fPending.log -ooutput.log
-ZPENDING
-G Extracts transaction record and outputs to afile. Requires the -o option to provide the output file

name. This option retains the log file format recognized by the SFM.
Example—
ims sfmlog -fPending.log -ooutput.log -G

-gLh, o] pattern

Extractstransaction data and output to file. Requiresthe -0 option to provide the output file name.
You can provide an optional delimiter pattern to separate transaction data within the output file.
The delimiter pattern can be hexadecimal or octal, with each byte separated by a comma.

Example 1 —this sample extracts all transaction data from the Complete.log and writes to the
output.log file. Each transaction data is separated by the hexidecimal pattern 41, 42, 43, 20, 31,
32, and 33:

ims sfmlog -fComplete.log -ooutput.log

-gh41,42,43,20,31,32,33
Example 2 —this sample performs the same operation as the previous sample. The only difference
isthat the data pattern is specified in octal format. Notice three digits are required for each byte,
thus 040 instead of 40 are in the pattern):

ims sfmlog -fComplete.log -output.log
-gol01,102,103,040,061,052,063

44

Creates a summary file in plain text format. Requires the -o (output file) option.

e-Biz Impact

CHAPTER 1 Overview

Transaction filtering options

Option

These options filter all transactionsin the input file. Only transactions that
satisfy the filtering condition areincluded in the result set.

Key:

e gt—greater than

e ge-—greater than or equal to
e It—lessthan

* le—lessthan or equal to

Description

-X[gt,ge lt,l€] sernum

Filters by seriad number. See key for description type.
Example —to display all transactions with serial number greater than 150:
ims sfmlog -fPending.log -xgtl50

-w{ gt,ge,lt,le] pronum

Filters by progenitor number. See key for description type.
Example —to display al transactions with progenitor number |ess than or equal to 150:
ims sfmlog -fPending.log -wlel50

-ytranid Filters by transaction ID, which corresponds to the Fkey field passed into aroute call.
Example —to display all transactions with transaction ID equal to “id1”:
ims sfmlog -fPending.log -yidl
-eprodname Filters by production object name.
Example —to display all transactions routed by production object “prod1”:
ims sfmlog -fPending.log -eprodl
-ddestflavor Filters by destination flavor.
Example —to display all transactions that are or will be dispatched to the destination with
aflavor of 5:
ims sfmlog -fPending.log -d5
-algt,It]age Filters by transaction age from current time. The age format isin DDD:HH:MM:SS This

option can filter older transactions, but not older than a certain age.

Example—to display all transactions older than 5 hours 30 nominates from current timein
thelog file:

ims sfmlog -fPending.log -agt0:5:30:0

-t[gt,ge/lt,le]time

TRAN-IDE Guide

Filters by transaction timestamp. The time format is YYYY/MM/DD: HH:MM: S§ .mmm]
(milliseconds are optional). This option filters transactions with timestamps greater than,
greater than or equal to, lessthan, or less than or equal to the time argument.

Example —to display al transactions with timestamps greater than or equal to
2003/04/01:15:30:00.000:

ims sfmlog -fPending.log -tge2003/04/01:15:30:00.000

45

SFM log overview

Option

Description

-ppat

Filters by transaction data ASCI| string pattern. Thisoption filterstransactionsthat contain
the specified ASCII string patterns in the data portion.

Example—to display al transactions that contain the string pattern “hello world” in the
data portion:

ims sfmlog -fPending.log -p”hello world”

-bhexpat

Filters by transaction datahexadecimal pattern. This option filterstransactionsthat contain
certain hexadecimal patterns and takesthe data pattern argument in hexadecimal, separated
by commas.

Example—to display al transactions that contain the hexidecimal pattern 41, 42, 43, 44,
and 45 in the data portion:

ims sfmlog -fPending.log
-b41,42,43,44,45

-zstat[stat]

Filters by transaction status. Thisfilter takes more than one status code as a parameter, and
filters out transactions with the same status as the status parameters.

Example —to display al transactions having a COMPLETE or SKIPPED status:

ims sfmlog -fComplete.log
-zCOMPLETE, SKIPPED

-rroute

Filters by route name. This route name corresponds to the TranI D field passed into aroute
cal.

Example —to display all transactions with route name equal to “R1":
ims sfmlog -fPending.log -rR1

-usrcname

Filters by source name. This source name corresponds to the Source field passed into a
route call.

Example —to display al transactions that originate from SRC1:
ims sfmlog -fPending.log -uSRC1l

Filters by incomplete transactions.

Example —to display all transactions that are not complete. The same result can be
achieved using the -z option:

ims sfmlog -fPending.log -i

Filters by completed transactions.

Example—to display all completed transactions. The same result can be achieved using the
-zoption.:
ims sfmlog -fCompleted.log -c

46

Reversefilter. This option reverses the result of the filter so that it does not return
transactions that satisfy the filtering condition, but all transactions that do not.

Example —to display all transactions that do not have a CANCELLED status:
ims sfmlog -fPending.log -zCANCELLED -R

e-Biz Impact

CHAPTER 1 Overview

Description

Option
]

Filters transactions by destination status. Valid parameters are jdesttype, destflavor, and
status.
Example —filters for transactions containing pending instances for destination (aim, 1) in
the pending log:

ims sfmlog -fPending.log -jaim, 1, PENDING

Transaction status

TRAN-IDE Guide

The output of the sfmlog utility can include transaction status. Possible values
are;

* PENDING —the SFM still needs to submit the transaction to one or more
destinations.

¢ COMPLETE - the transaction successfully passed through the SFM.
e CANCELLED —adestination “cancelled” the transaction.
e SKIPPED - the transaction was skipped. You can returnto it later.

47

SFM log overview

48 e-Biz Impact

CHAPTER 2

Introduction

TRAN-IDE Guide

Using TRAN-IDE

This chapter describes production objects and their components, lists
object requirements, and provides instructions for general TRAN-IDE
use.

Topic Page
I ntroduction 49
General use 55

The Transaction Integrated Devel opment Environment (TRAN-IDE) tool
allows you to define incoming data, and to develop rules for producing
output transactions from that data that gets passed on to applications for
processing. In most cases, you can perform all output generation
procedures with the capabilities TRAN-IDE. However, in the event that
custom functions are necessary, e-Biz Impact allows you to build and use
them accordingly.

You can use TRAN-IDE to gather data received by an application to
update one or more other applications. For example, the datagoing into an
order processing application can be gathered and used to update both an
inventory application and an accounts receivable application.

As another example, TRAN-IDE allows data received by a hospital’s
admitting application to be used to update lab, radiology, and pharmacy
applications, even though these applications require the data in different
formats and with different values in certain fields.

TRAN-IDE organizes the different processes of transaction production
into several specific types of objects. See “ Transaction production
objects’ on page 50.

49

Introduction

Transaction production objects

50

Transaction production uses the following types of objects, which you create
and configure using TRAN-IDE.

A production object isalogical container for other TRAN-IDE objects.
Production objects describe the rel ationship between an input transaction and
the processing a transaction’s data must go through to produce the output
transaction.

Note A production object may contain any number of objects, but must
contain at least one input object (input field), one rule object (output rule), and
one rule component object (rule component).

The production object’s name is used to identify the production object when
you configure an SFM in the e-Biz Impact Configurator. See the e-Biz Impact
Configuration Guide.

Production objects can include:

* Input objects Input objects (input fields) are required for each piece of
datain theinput transaction that the production object needsto manipul ate
or place into the output transaction. For example, if an incoming
transaction contained the following data, you would build an input field
object for each discrete piece of data—first_name, last_name, street, and
soon.

first name|last name|street|city|state|zipcode

Note Build input field objects to define al of atransaction’s data before
you build any other objects.

* Rule objects Ruleobjectsarealogical container for the components
and filtersthat manipul ate a pi ece of theinput transaction to produce a part
of the output transaction. Once you place the input datainto input field
objects, transaction production starts with the first rule object in the
production object and continues through each rule in the list.

Each rule object contains:

e One or more rule component objects, which operate on individual
input field objects. Component objects are executed in serial order.

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

TRAN-IDE Guide

« A storage areq, called ablob, where the output from the rule
components is assembled. As the output of each rule component is
generated, it is appended to the blob.

¢ Oneor morefilters, which operate on the blob after all rule
components have finished processing.

Subrule (rule component) objects Each rule component object
generates a piece of the output transaction by manipulating the datain an
input field object with afilter object, or by defining aliteral valueto place
into the output transaction.

A rule component object can aso manipulate arule object’sblob, affecting
the output transaction up to and including its own contribution to the blob.

Filter objects Filter objects perform further and more complex data
mani pulation on the piece of an input transaction that its parent object is
processing.

Filter object changes can add, change, or remove characters, compare the
datato atable or database, or substitute adifferent piece of data. When an
input field object is operated on by arule object to generate an output
transaction, filter objects are most often the means of creating the new data
from the old.

You can use filter objects within rule component objects, or rule objects,

working on data either before or after it has been processed by an object.
The datathat thefilter object acts upon depends on which object contains
the filter object and where the filter object is placed in that object.

Table objects Table objects contain one or more columns of data that
specify data that should go into the output transaction. Field data that
matches a value in the designated search column of thetableis replaced
with the corresponding values in the specified columns.

You can use table objectsin filter or qualification objects. When you use
them in afilter object, specify within the filter the table column to search
for data that matches the data passed to the filter. You can also specify
which columns’ corresponding valuesto put in the output transaction
when data matches on the search column.

When you use table objects in a qualification object, specify which table
column to search for datathat matches the data passed to the qualification
object. If the data does not match, the qualification object fails.

51

Introduction

52

Variable (datalink) objects A datalink defines a data variable used to
hold a copy of data from an input field object, results of a calculation, or
any other datafor which avariable field is useful. Datalinks objects are
optional.

When you attach adatalink to aninput field object, transaction production
places a copy of the input field object’s data into the datalink after the
transaction has been parsed and before it undergoes field and production
object qualification. You can use datalink objects in aqualification
function to access the contents of other input field objects.

You can aso use datalinks to reference an input field object’s datain an
object that does not work directly with the current field. For example, a
rule object may check for an age range before allowing a senior citizen
discount to go through.

Qualification objects Qualification objects are used to test data. The
data can be compared to atable entry, aliteral value, or another piece of
data. Qualification results determinewhether or not transaction production
should run an input transaction through a specific production object, rule
object, or rule component object.

At the production object level, use qualification objects when an input
transaction contains specific types of datain afield (like a transaction
code, date, or state) and you want to process only certain forms of the
transaction with the current production object. For example, if a
production object’s input transactions have the same format, but contain
different data depending on the ID code field, the production object could
process only transactions that have an ID code of “10”. You have a
qualification object check for an ID code of “10” to determine if a
transaction should be processed. An input transaction must pass all of a
production object’s required qualification objects before the transaction
begins processing.

You can attach qualification objectsto input field objectsin two positions.
The first position, candidacy, determines whether the field object should
try to parse the next part of the transaction. Candidacy isaway to use
earlier data to dictate the use of later data.

At therule or rule component level, use qualification objects when the
input transaction may contain data that the rule or rule component needs
to act upon. If an input transaction does not passall of arule or component
object’s required qualification objects, transaction production does not
process the transaction through that specific rule or rule component.

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

Modules

TRAN-IDE Guide

Function objects ODL functions are user-written functions that
perform datavalidation or manipulation. ODL function objectsare used to
perform any type of data manipulation or validation not available through
other TRAN-IDE objects. ODL function code is developed using
MSG-IDE.

You can build several types of ODL functions and attach them to different
TRAN-IDE objects. ODL functions have a specific purpose, receive
specific arguments, and transaction production executes them at pre-
determined points when processing a transaction.

You can aso build generic ODL functionsdirectly in the TRAN-IDE tool.
Generic ODL functions have a dlightly different format than other
functions because they do not have a specific purpose determined by a
TRAN-IDE object, and because you determine what arguments to passto
them. Generic ODL functions cannot be attached to a TRAN-IDE object;
they must be called from within other functions attached to TRAN-IDE
objects.

Production objects are grouped together in logical containers—modules— and
stored in project files (.prj), which must be on the SFM server (specifically,
wherethe e-Biz Impact serverisinstaled). A project file can contain more than
one module.

Figure 2-1: Project module files

Project

’ N

Module 1 Module 2

Module 5

Module 4

A module may have:

One set of input fields

53

Introduction

Repositories

54

One input transaction format definition
As many production objects as needed to update all endpoint destinations

Multiple output transactions per module

When using multiple modules in a project, follow these rules:

All TRAN-IDE objects, except for datalinks and functions (custom filter,
error, and qualification functions), must reside within only one project
module.

Note A function can belocated in adifferent module, but the TRAN-IDE
object containing that function must be in the module that contains all of
the TRAN-IDE objects.

To place datalinks or functions into other modules, select the Public
option.

If you use the File | Include Module to include a module in your project
that contains TRAN-IDE objects other than datalinks or functions, the
included module must be the only one in the project that contains
non-datalink or non-function objects. If, after including the module, you
have to build additional non-datalink or non-function objects, you must
place them in this same module.

You must save all project modules in the same directory.

M odule names must be unique within aproject. No TRAN-IDE objects or
functions can share a name even if they reside within different modules.

Place datalink objects and functionsin a separate module when they can
be used by several projects, then include the module in each project for
which it is required. When you include a module of functionsin another
project, remember to build production objectsthat contain those functions.

Repositories allow you to load production objects from or save production
objectsto a predefined Adaptive Server Anywhere database. Repositories et
you reuse production objectsin different modules without having to re-create
the objects each time. Therepository must have an associated data source name
(DSN) to establish connectivity for TRAN-IDE.

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

General use

Requirements

TRAN-IDE provides pre-built Health Level 7 (HL7) formats you can use with
the database repository. See” Using the HL 7 objectsrepository” on page 59 for
details.

This section provides general information on how to use TRAN-IDE to build
transaction production files (*.prj and *.mod).

Before you define production objects using TRAN-IDE, have the following
information available:

» Specifications and samples for the data that you are receiving from the
initial source. Thisinformation is used to define the input data. Datais
defined as a transaction.

» For each definition, you must have the destination requirements for each
of the endpoints that receive some part or al of the transaction data. This
information is used to define the output format required by the endpoints.
Based on your specifications and input format definitions, e-Biz Impact
transforms and routes the data in the format required by the endpoint.

« A namefor the production object that produces the transaction, and the
transaction | D name for the output transaction. These namesare placed in
the transaction ID and production ID recordsin the SFM configuration
file.

Object naming conventions

TRAN-IDE Guide

When you build new objects, TRAN-IDE assigns the object a default name.
You can accept the default name or enter a new name, following these rules:

e Table object names are limited to eight characters because they are saved
to adirectory on your Windows machine. Names for other TRAN-IDE
objects can contain unlimited characters.

55

General use

e Table object names are not case sensitive. All other TRAN-IDE objects
names are case sensitive.

¢ Allowable charactersinclude A —Z, a—z, 0— 9, and underscore ().

Starting TRAN-IDE

56

Note TRAN-IDE runs only on Windows systems.

To start TRAN-IDE, select Start | Programs | Sybase | e-Biz Impact 5.4 |
Tran-IDE. You see the TRAN-IDE main window.

Figure 2-2: TRAN-IDE tool

* TRAN-IDE: {untitied) i :]:lﬂ

Ble Mew Options Help
I fx) H
Duality || Function |

HNew H File ﬂﬂ I Pro-Obj Iu Inpug Obj HH Table= R.ll::

MMB” Uhriables

Production Hodule
[newned =

Production Objects Object Description

Hew. . . Delete Apply

[Peady 1t

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

Note To reduceinitial loading time, TRAN-IDE does not load all project
modulesinto memory when you launch it. It loads the filter, upload/download,
repository, and table modules into memory the first time you access or build
one of these objects, resulting in aslight delay before the specified window
loads the first time.

Creating projects and modules

When you start TRAN-IDE, you can start a new project or open an existing
project.

TRAN-IDE Guide

To open anew project In TRAN-IDE, select File | New, or click the
New button below the menu.

You may then start by building TRAN-IDE objects or by including
modules that containing the objects you need.

To build a new module Select File | Build New Module. When the
Build a New Module window displays, enter a name for the new module
and click OK, or click Cancel to exit the window.

To open an existing project Select File | Open, or click File below the
menu bar. When the Open window displays, navigate to the project to
open, select the project (.prj), then click Open.

To include an existing module Select File | Include Module. When the
Open window displays, navigate to the module to include, select the
module (.mod) then click Open. This option allows you use the same
module in multiple projects.

To remove a module Select File | Remove Module. When the Remove
aModule window displays, select the module you want to remove from
the drop-down ligt, then click OK. Removing the module from the project
does not delete the modul e from your computer; you can till includeit in
other projects.

To save a project Select File | Save, or click the Save button below the
menu bar.

57

General use

When you save a project for the first time, you are first prompted to save
the module (default name, newmod.mod), then prompted to save the
project (default name newproj.prj). Thereafter, click Saveto save a
module and existing project with the same name, or select File | Save As
to save amodule and project under adifferent name. You can also savethe
module under a new name, but save the project under the same name and
vice versa

Note Project names cannot start with anumber. All files must begin with
either aletter or an underscore (_). For example, 1del.prj isanillegal file
name, while _del1.prjisalegal file name.

Working with repositories

58

You can load production objects from or save production objectsto a pre-
defined database repository. The repository must have an associated Data
Source Name (DSN).

To load existing production objects from a repository Select File |
Repository | Load Objects From. When the Select Data Source window
displays, select the Data Source Name of the repository on the Machine Data
Source tab, then click OK.

To save production objects to a repository Follow these steps:
1 Select File| Repository | Save Objects To.

When the Save to Repository window displays, select the Data Source
Name of the repository in which you want to save the objects, then click
OK.

2 Loginto the selected database server using the trusted connection.
The Save Object to Repository window appears.

4 Usethefieldsto filter production objects according to type, name, or
project. The production objects that meet the filter criteria appear in the
right panel according to type and name.

5 Select Sort by Type/name to sort the objects.
6 Click Select Individual Objects, or click Select All to select all objects.
7 Click Done to add the objects to the repository.

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

Using the HL7 objects repository

TRAN-IDE provides prebuilt Health Level 7 (HL7) formats you can use with
the database repository. The HL 7 repository contains TRAN-IDE field objects
for standard 2.1, 2.2, and 2.3 inbound HL 7 message segments, and skeleton
TRAN-IDE rule objects with rule component objects for standard 2.1, 2.2, or
2.3 outbound HL 7 message segments.

TRAN-IDE Guide

These objects are stored in the HL 7 repository with a

Type —cITrFId for field objects and a clRule for rule objects.

Name —in the format “ segname_ver,” where “segname” isthe three | etter
name for the segment (for example, OBX for observation segment), and
“ver” isthe version of the segment (2.1, 2.2, or 2.3).

Keyword —in the format “ segname_ver_in” for field objects and
“segname_ver_out” for the rule objects, where “segname” is the three
letter name for the segment (for example, “OBX” for observation
segment), and “ver” isthe version of the segment (2.1, 2.2, or 2.3).

Some of these objects require that other objects be loaded first.

Before you can use the HL 7 repository, you must set up the database
connection to the repository.

[—IConfiguring the HL7 repository connection

1
2
3

On Windows, select Start | Settings | Control Panel.
Select Administrative Tools.

Select Data Sources (ODBC). The ODBC Data Source Administrator
window appears.

Select the System DSN tab and click Add.

From the driver list, select “imc54 Adaptive Server Anywhere 8.0” and
click Finish.

Note Typically, thee-Biz Impact server isinstalled on adifferent machine
from the e-Biz Impact client. If you have the server and client installed on
the same machine, two entries display in the driver list; however, both
entries represent the same driver.

The ODBC Configuration for Adaptive Server Anywhere 8 window
appears.

Complete these options on the ODBC tab:

59

General use

60

Data Source Name — enter HL7repo. Thistellsthe ODBC driver
manager or Embedded SQL library where to look in the file or
registry to find the ODBC data source information.

Description — enter an optional longer description of the data source
to help you or end usersto identify this data source from among their
list of available data sources.

L eave the remaining fields blank.

Note Seethe ASA Database Administration Guide for more
information:

a GototheTechnica Library Product Manuals Web site at Product
Manuals at http://www.sybase.com/support/manuals/, select SQL
Anywhere Studio from the product drop-down list, and click Go.

b When the Core Documentation list displays, select SQL
Anywhere Studio 8.0, then choose the PDF or online version of
the ASA Database Administration Guide.

Select the Login tab, then select Supply User ID and Password, but leave
the actual user ID and password fields blank.

Select the Database tab and compl ete these options:

Server Name—the name of thelocal machine or network server where
the HL7 repository is located and the e-Biz Impact client isinstalled.

Start Line — leave blank.

Database Name — enter HL7repo, Which isthe name of the HL7
database to which you want to connect. This entry is case sensitive.

Database file — enter the full path and name of the Adaptive Server
Anywhere databasefile. Click Browseto locate thefile. For example:

x:\Sybase\ImpactClient-5 4\DevApplication\.bin\hl7repo.db
9 Accept the defaults for the remaining options.
10 Click OK to saveyour entriesand close the ODBC Configuration window.
11 Click OK to exit the ODBC Data Source Administrator.

[IStarting the database

Start Adaptive Server Anywhere.

Windows

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

1 Gotox:\Sybase\lmpactServer-5_4\asa\ on Windows (where“x” isthe
drive or network server where the e-Biz Impact server isinstalled),
and double-click dbsrv8.exe.

2 When the Server Startup Options dia og box appears, compl ete these
fields:

» Database — browse to
x:\Sybase\ImpactClient-5_4\DevApplication\bin (where “x” is
the drive where the client isinstalled) and select hl7repo.db.

e Server Name — enter the name of your local hogt; that isthe PC
on which the e-Biz Impact client isinstalled.

e Cache Size — accept the default.
e Options—enter -n hl7repo.

3 Click OK. You see the Sybase Adaptive Server Anywhere window
that confirms the database start up.

UNIX

1 Inatermina window, goto ~/Sybase/lmpactServer-5_ 4/asa (where
“~" iswhere the e-Biz Impact server isinstalled) and enter:

dbsrv8 -n hl7repo.db

[ILoading the repository in TRAN-IDE

Note TRAN-IDE isavailable only on Windows.

1 OnWindows, select Start | Programs | Sybase | e-Biz Impact 5.4 |
TRAN-IDE.

2 When the TRAN-IDE window appears, select File | Repository | Load
Objects From.

3 When the Select Data Source window appears, select HL 7repo and click
OK.

4 Whenthe Connect to Adaptive Server Anywhere window appearsand you
seethe User ID of “cai” on the Login tab, click OK. You seethe Load
From Repository window with the HL7 objects listed in the Repository
pane (Figure 2-3).

TRAN-IDE Guide 61

General use

62

Figure 2-3: HL7 repository objects

Key Repozitony
Type I j [Type Hame
cITeFId T 2.2 &
Name | B BT IHL2.5
ST 233
CATT .
Descr | I b H IHE 2.2
SRS Lte5.3
CLIT .
KeyWords| B 5t LCH 2.3
i s
s CATY in
Project | c1TrFld LRL-2.3
elTF1d HFA_2. 2
clTrfld HF&_2.3
clTrFld HFE_2. 2
cATrFl1d HFE_2. 3
clTrF1d HFI 2.2
clTrFld HFI“2.5
clTrF1d HRG_ 2. 1
clTrFld HRG 2. 2 e
clTrFld HRG_Z. 3
ciTrFld HEA_ 2.1
clTrFld W34 2. 2
clTrFld HEA_ 2.3
cllrfld MEH 2.1 it
1| 3
F Load Search I_ Display All Eop{ Delete [Done

[1Using TRAN-IDE field objects
1 Determine what HL7 message segments are in the incoming transaction.

2 Scroll down thelist to the beginning of the cITrfld types. Select the
appropriate version of the field object for the inbound message header
(MSH) segment in the Repository list. The selection’s properties display

on theleft.
Click Load.

3 Repest step 2 to load in the other inbound segments required to define the
transaction, following these load order restrictions:

a Load the batch header segment (BHS) before the batch trailer

segment (BTS).

b Load thefile header segment (FHS) before the file trailer segment

(FTS).

¢ Whenyou finish, click Done. Your selections display in the Input
Fieldslist in main TRAN-IDE window.

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

[1Using TRAN-IDE rule objects and their rule component objects

1
2

In the main TRAN-IDE window, click Rules.

Select File| Repository | Load Objects. Becauseyou previously opened the
repository to use the field objects, you see the Load From Repository
window.

Determine which HL7 message segments should be in the outgoing
transaction.

Select the appropriate version of the rule object (clRule type) for the
outbound M SH segment, then click Load.

Repeat step 4 to load in the other rule objects for the outbound segments
required to build the outgoing transaction, following the load order
restrictions listed below.

a Load the BHS segment before the BTS segment.
b Load the FHS segment before the FTS segment.

For each rule object, double-click the rulein the Output Ruleslist to build
the outgoing transaction. The rule and rule component objects are only
blank templates; you must edit them to specify what the object should
place in the outgoing transaction.

Selecting a data structure

For each module you create, before you create production objects, select the
structure of the incoming data to parse (Input Mode) and the structure of the
data to generate going out (Output Mode). The selection applies to the entire
module, but you can create production objects in this module later that output
adifferent type of data.

Inthe TRAN-IDE main window, click the Pro-Obj icon, then click New below
the left pane. You see the Production Object Input and Output M odes window.
Onceyou select the modes, click OK to save your entries and close the window.

Supported data structures
e-Biz Impact supports these data structures for incoming and outgoing data:

TRAN-IDE Guide

63

General use

« Stream-to-stream Default. Parses binary large object (blob) data as
input, generates blob data as output.

Note blobs can contain any binary or ASCII data, for example, large text
files, data processing documents, CAD program files, graphics and

images, videos, music files, and so on. blobs are defined astable columns.
Their memory sizeis nearly unlimited as they can be stored across several

pages.

« Stream-to-tree Parsesblob data asinput, generates an output New Era
Data Object (NDO) tree.

Note NDO isageneric structure that allows named data with hierarchy,
data typing, optionality, and repetition. NDO is composed of two trees: a
datatree and aschematree. A datatree has two data nodes, each of which
can contain oneitem of data, which can beof severa different types. It aso
contains an unlimited number of attributes, which are name-value pairs. A
schema tree has schema nodes, which contain metadata describing the
organization of adocument represented by a data node.

* Tree-to-stream ParsesNDO datatree asinput, generates blob data on
output.

» Tree-to-tree Parses NDO datatree asinput, generates anew NDO tree
as output.

Import and export options

Use predefined formatsto build field object definitions; for example, aflat text
filethat lists the fields in a message, delimited by commas. Currently, TRAN-
IDE supports commarseparated fields and custom import.

Select File | Import from the main TRAN-IDE window, then select the import
option to use.

Importing comma-separated fields

64

Select File| Import | Comma Sep. Fieldsto open the Import Text File window,
astandard Windows open file window. After you select afile, TRAN-IDE
opensit and attemptsto build field objects with the data contained in the file.

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

Building field objects using Custom Import

The Custom Import Feature gives you the ability to build field objects from an
externa file when you know the format of thefile.

1 Select File|Import | Custom Import. The Custom Import Criteriawindow
opens where you define the format of a series of records in the external
file, where each record identifies the characteristics of asingle field.

2 Complete the fields in the window with the values that correspond to the
datafor the field object definitions. See

3 Click one of these options:

e OK —to have TRAN-IDE build the field objects from the datain the
file using the values you entered in the Custom Import Criteria
window. When you click OK, the Import Custom File window opens.
Navigate to and select the file that contains data for the field object
definitions and click OK.

* Save Settings—to savethe settings asafilewith a.cisextension. You
can usethe L oad Settings option later to use previously saved settings.

» Load Settings—load settings that you saved previously with the Save
Settings option.

¢ Close - close the window.

Entering values in the Custom Import Criteria fields

The Start column valueisthe column position in the datafilefor that entry. The
Length column value is the number of columnsin the datafile for that entry.
Column positionsfor each record inthefilestart at “ 1.” Useavalue of zero (0)
to tell TRAN-IDE to use the default value for a particular field.

Example This example shows content from a metadata file that describes field objects,
which allows TRAN-IDE to build production object fields automatically.

Note Thisfunctionality appliesonly to stream fields (not tree fields).

12345678910111213141516171819202122232425262728

@ partl 0 12 nNo
@ part26 12 8 nNo
@ part305 20 15 nN9

TRAN-IDE Guide 65

General use

66

Each line of thefile (except thefirst line), represents data describing one field
object. When you enter values in the Custom Import Criteria window, you
instruct TRAN-IDE where in theline to find the data needed to build thefield

object. The example entries are shown in Figure 2-4.

Figure 2-4: Custom Import example input

Fisld nams
Field offset
Filzld length
Fisld sap.
Field twpe

+ Key Field
Key wvalue

Custorn Innpork Criteria

Fill out =tarting column nuaber and length for the reaion of
each data-line that describes an 'Input Field'
HOTE: column positions skart with '1°

uze 'B' for optlonal fields

start length

[@ remudrsd

17 [F optional: default is "follows-previous'
EL . [F optdonal: default is ‘Field sep,
@ [@ optional: default iz '[!

2 [z optdoral: default is °alphanumeric’
L [

[=]

[ok | save settings | Load Settings |

Default Field Separator ||

LClose I

Note Remember that the values shown in the metadata file are not the values
you enter in the Custom Import Criteriafields. The file values describe the
actual content for thefield object. The values you enter describe wherethe data
begins and the data’s length, so TRAN-IDE knows what data to extract to

create the production object fields.

¢ Field Name—in the example, thefirst field is “part1” and the field name
gtarts at position 6 on aline and has alength of 10 characters, whichis

what you would enter in the Start and Length fields.

¢ Field Offset —thefield's offset (“0”) starts at position 17 on each line and

has alength of 2 characters.

¢ Field Length—thefield' slength (“12") starts at the position 21 and can be

up to two charactersin length.

e Field Separator —this example uses the default field separator (the pipe

symbol), so no entries are required in these fields.

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

e Field Type—thefield's datatype. The example's datatype (“nN9” for
numeric) begins at the position 26 and is one character long. Thefield type
isthe character in the datafile that specifiesthe field object’s data type as

listed in Table 2-1.

Table 2-1: Data type values
Value Description
aAxX Alphanumeric
fF Alpha
hH Hex16
bB Unsigned binary
pP Printable
tT Text
nN9 Numeric
rR Raw

Any other value in the datafile results in a data type of raw for the field
object.

« KeyField—if part of the datafile (for example, headers, footers, and titles)
should not be included when building the field objects, use this setting.
Every line that should be included must start with the same pattern. Enter
the line position where the key field begins and its character length. Inthe
example, thekey fieldis" @”, which beginsin position 1 andis 1 character
in length.

« Key Vaue — enter the pattern with which each line you want to include
begins. For the example, you would enter e.

e Default Field Separator —to use adifferent field separator character asthe
default character, enter the character in thisfield.

Note Each column should be 1 character only, although the example displays
2 digit numbersin thefirst line for simplification.

Exporting text files

Select File | Export to export atext file that contains comma-delimited
production object fields.

TRAN-IDE Guide 67

General use

Using the TRAN-IDE Options menu

Action

The main TRAN-IDE window provides and Options menu to help you find
errors in production rule objects, to return to the TRAN-IDE state when you
exited the utility, and to set the directory to which table objects are saved.

Table 2-2 list the selections available from the Option menu.

Table 2-2: Option menu selections
Description

Symbol Dump

¢ Module Dump — writes areport containing information about all TRAN-IDE objectsin
all of the modules in the project.

« Dump All —writesareport containing information about the project and about all TRAN-
IDE objectsin all of the modules in the project.

Debug

Causes the TRAN-IDE test drive to write alarge volume of messagesto the local xlog file
(xlog.dv or 32xlog.dv on a persona computer workstation). This gives you the ability to
view the detailed actions of your production rule objects against an incoming transaction
from adata file you load, or against specific data you enter in the production object’s test
value that tests a single specific rule. You can also see what the field objects look like after
parsing.

AutolL oad

Records the loaded file name and view state of TRAN-IDE, so that when you exit and re-
start the program, it opens the last loaded file and returns to the same view state.

Table Scan

Opensthe Table Object Directory window where you specify thedirectory location inwhich
to save all table objects in a project.

Hardcopy

Generates a hardcopy.txt file containing, for each production object, all rule objects, rule
component objects, filter objects, and the rel ationships between them.

AutoFldSort

Selecting this option toggles the option on and off. Displays acheck mark next to the option
when “on.” When this option is turned “on,” it automatically sorts the field object list
whenever you create or change afield object. Field object sorting is by offset position, not
aphabetical by name.

Warning! Turning this option on greatly reduces the speed at which TRAN-IDE can build
new field objects or make changes to existing ones.

AutoFldIndent

Selecting this option toggles the option on and off. Displays a chicanery next to the option
when “on.” When AutoFldindentisturned “on,” thefield object list indentsfiel d objectsthat
are group members or subfields.

Warning! We do not recommend using this option when there are more than 1000 field
objectsin the project.

68

e-Biz Impact

CHAPTER 2 Using TRAN-IDE

Action

Description

Object Tracking

Selecting this option toggl es the option on and off. Displays acheck mark next to the option
when “on.” When Object Tracking isturned “on,” and you click afield, datalink, rule, or
rule component object, the relevant object is highlighted. For example, Fld1 is referenced
by Rulel and Fld2 by Rule2. In the Production Object Information window, when you
highlight Rulel in the Production Rules list, FId1 is automatically highlighted in the Field
Objectslist. When you select FId2, Rule2 is automatically highlighted in the Production
Rules list.

Display Referential | Selecting this option toggles the option on and off. Displays a chicanery next to the option

Bitmaps when “on.” If an object contains a reference to another object that does not exist, the
referring object has a symbol similar to:
next to its name in the Production Object Information window. Thisindicates somethingis
wrong with the object and that it has a rel ationship with a non-existent object.

TestDrive Opts * Non-self-describing NCF (New Era Canonical Format) — opensthe .ncm Files Directory

window where you specify the location to save all NCM files associated with the project.

When you “test drive” production objects, the production object parses the data stream
in NCF (New Era Canonica Format). NCF comesin two forms—self describing and
non-self describing.

A self describing format data stream does not need to provide a schemawhen parsed by
production objects.

A data stream formatted as non-self describing is parsed only if aschema (metadata) file,
in the form of a.ncm (New Era Canonical Metadata), is provided. The .ncmfileis
imported by TRAN-IDE when the test driveis run.

» Auto Save - selecting this option togglesthe option on and off. Displays a chicanery next
totheoptionwhen“on.” If you make changesto afileand usethetest drive functiondity,
this saves the .mod files to a bak directory under the current working directory before
running the test drive.

Obj Pre/Suffix Opts

» Set Pre/Suffixes — alows you to edit standardized names and conventions.

e Use Pre/Suffixes — allows you to automatically implement standardized names and
conventions.

Subfield Opts

TRAN-IDE Guide

Dependencies On —any changeto a parent field resultsin a prompt that asksif you want to
update the child fields with the change. For example, if Field A is changed to a group,
TRAN-IDE asksif you want to have the children be members of that group.

Auto Propagate Group Settings — (only available when you select Dependencies On) when
you change aparent field and thefield is part of agroup, this option automatically updates
all child fieldsin the group with the changes. For example, if Field A ischanged in agroup,
that change is automatically propagated to al children in that group.

69

General use

70 e-Biz Impact

CHAPTER 3

Introduction

TRAN-IDE Guide

Building Production Objects

This chapter explains how to build productions objects.

Topic Page
Introduction 71
Building production objects 72
Using import options 87
Defining stream output rules 91
Defining rule components (subrules) 93
Defining filter objects 96
Creating table objects 150
Defining qualification objects 158
Defining data objects 170
Writing error functions 172
Defining ODL functions 178
Defining production object options 179
Using the test drive 181

A production object defines the requirements and procedures needed to

produce a single output transaction from the input transaction.

Onceyou start TRAN-IDE (see “ Starting TRAN-IDE” on page 56), and

create anew project and module (“ Creating projects and modules’ on

page 57), usethefollowing stepsto build production objects and popul ate

them with other TRAN-IDE objects

1 Definethe production object and its associated input fields. See

“Defining input fields’” on page 80.

2 Build output rules. See “Defining stream output rules’ on page 91.

3 Build rule components. See “ Defining rule components (subrules)”

on page 93.

71

Building production objects

Build optional filter objects. See “Defining filter objects’ on page 96.
Build optional table objects. See " Creating table objects’ on page 150.

Build optional qualification objects. See “Defining qualification objects’
on page 158.

Build optional error handling routines. See “Writing error functions” on
page 172.

Test therulesand the production object. See“Using thetest drive” on page
181.

Repeat this procedure until all output transactions are defined.

Building production objects

This chapter describes how to build e-Biz Impact production object using
TRAN-IDE.

Starting TRAN-IDE

Select Start | Programs | Sybase | e-Biz Impact 5.4 | Tran-IDE.

Selecting a data structure

1

72

In the TRAN-IDE main window, click the Pro-Obj icon, then click New
below the left pane. You see the Production Object Input and Output
M odes window.

Select the data structure. See “ Sel ecting a data structure” on page 63 for a
description of the available choices.

Once you select the modes, click OK to save your entries and close the
window.

e-Biz Impact

CHAPTER 3 Building Production Objects

Building tree-to-stream production objects

A tree-to-stream production object uses new tree field objects and existing
production rules. Thetreeinput fields describe an incoming transaction. A tree
input field referencesanode in theincoming tree data by name or datalocation.
With tree input, you can import a Document Type Definition (DTD).

You can also import a New Era Canonical Metadata (NCM) schemafile when
you are using e-Biz Integrator or a New Era of Networks adapter. The NCM
schemafile is metadata of the adapter When the schemais imported, TRAN-
IDE automatically generates tree fields.

1 Click the Pro-Obj icon in the TRAN-IDE main window, then click New
below the left pane. The Production Object Information window opens
and displays the Tree Input Fields pane on the left and the Stream Output
Rules pane on the right.

2 Click New below the Tree Input Fields pane.

3 Completethefields asfollows:
« Name - enter the field object name or accept the default.
* Node— enter the NDO node name.
o Datatype —this option is not available to tree-to-stream.

e Datalink — (optional) select the datalink in which to store node data,
then select a predefined datalink option from the drop-down list.

4 Inthe Options section, select any of the following:

Option Description

Alternatives Checksif the NDO node is dternative. Set this property to describe mutually
exclusive child nodes beneath a parent.

Invisible Checksif the NDO nodeis invisible. Describes alogica node used to group a set of
nodes.

Repeats Set the NDO node to be repeating or not.

Field must be leaf | Select thisoption if the NDO node the field object parses must be aleaf node.

Field may be Select this option if the NDO node the field object parses may be aleaf node.

empty

Optional Set the NDO node to optional or not.

TRAN-IDE Guide

5 Select afilter from the Filterslist or define a new one.

6 Select an attribute from the Attributes list or define anew one.

73

Building production objects

Importing a DTD

7 Select aqualification object from the Qualification field or define a new
one.

8 Click OK to save your entries and close the window.

Define rule objects and rule component objects. See “ Defining rule
components (subrules)” on page 93 for instructions.

Note When selecting input fields, click the T button to view aread-only tree
representation of input tree field objects.

The Group Rule Component object must reference a repeating field object. If
arule component object gets data from tree field object (defined earlier), you
can access either data or an attribute of the field by selecting the appropriate
radio button.

Toimport aDTD, select File | Tree Input Fields | Import DTD.

[limporting an NCM file

You can import an NCM file, generated by e-Biz Integrator or a New Era of
Networks Adapter, to create the input tree fields and their associated
properties.

1 From the Production Object Information window, select File | Tree Input
Fields | Import NCM.

2 Select the appropriate ncm file and click OK.
TRAN-IDE generates tree input fields based on the NCM file schema.

Building stream-to-tree production objects

74

The stream-to-tree production object comprises existing stream field objects
and tree output node component objects defined to include all information
required to generate schema. Nodes describe the structured output required for
stream-to-tree and tree-to-tree production objects. Each node component
objectisahierarchical list of child objectsof the sametype. You can a so attach
alist of attributes represented by the attribute object.

e-Biz Impact

CHAPTER 3 Building Production Objects

TRAN-IDE Guide

[IDefining tree output nodes
Click New below the Tree Output Nodes pane.

1
2

When the Node Component |nformation window opens, complete the
fields and options as follows:

* Name - enter the name of the current node component.

* Node — enter the physical NDO data hode name.

* Node Type — select one of the options to create a branch node. This
disablesthe data source selections unless you are creating arepesting

node:

Option

Description

Branch

Create a branch node. When you select branch node, you
can make the branch invisible or alternative. Theinitia
node cannot be invisible.

» Invisible—checksif the NDO nodeisinvisible. Describes a
logical node used to group a set of nodes.

 Alternatives—checksif theNDO nodeisalternative. Set this
property to describe mutually exclusive child nodes beneath
aparent.

Clone

Copy the input node to the output tree, inheriting al
attributes and child nodes.

Leaf

Create aleaf node. When you select aleaf node, select a
datatype from the drop-down list that displays.

» Data Source (only for leaf nodes) — select the source of node data for

leaf nodes:
Option | Description
Field Assign aninput field’sdatato the output node. When you select

Field, select Dataor Attribute, then from the attributeslist,
select the associated attributes.

To create node attributes, assign the following propertiesto the
attribute object—name, data source (stream or tree field object,
literal, or datalink), qualification list, and filter list.

Datalink | The output node data comes from a selected variable.

Literal Theoutput nodedataisaliteral valuethat you enter inthe
field that displays by this option.

None No data. Run the output node with no data or with afilter.

75

Building production objects

Repeats — select this option to indicate that the node is repeating. If
you sel ect repeating, a so indicate the maximum number of instances.
Add an optional break qualification to stop iteration when a certain
conditionismet. Select Use Field Object info and select afield object
name in the Field drop-down list only if repeating datais retrieved
from the input transaction. You can also select other data sources for
arepeating node.

Note Whenthe Alternatives property is set, itsassociated child nodes
may not be repeating. A qualification attached to this child node
becomesthe rule for whether the child nodeis selected to produce the
output data. If a qualification on the child is not set, production fails.
Repeating nodes can be built from groups or repeating tree field
object. The number of instancesis determined using the maximum
number of instances property, number of instances of the sourcefield
or node, and optionally break qualifications.

Filters (only for leaf and branch nodes) — select or create filters that
apply to leaf and branch nodes.

Importing tree output nodes

[limport tree output nodes

1

From the Production Object Information window, select File| Tree Output
Nodes.

Select Import NCM or Import DTD.
Select the appropriate file and click OK.

Building tree-to-tree production objects

A tree-to-tree production object must have tree field objects defined for the
input and node component objects defined for the output. See the preceding
sectionsfor moreinformation on treefield objects (input) and node component
objects (output).

76

e-Biz Impact

CHAPTER 3 Building Production Objects

Building stream-to-stream production objects

Stream-to-stream mode, which is the new production object default, parses
binary large object (blob) data as input, and generates blob data as output.

Note blobs can contain any binary or ASCII data, for example, large text files,
data processing documents, CAD program files, graphics and images, videos,
music files, and so on. blobs are defined as table columns. Their memory size
is nearly unlimited as they can be stored across severa pages.

[ICreate stream-to-stream production object

1 Click New below the Stream Input Fields pane.The Input Field
Information window appears. An input field defines asingle piece of an
input transaction, for example, arecord or message, gathered by an
acquisition AIM.

2 When the Input Field Information window displays, complete these
options:

¢ Name-enter theinput field’'s name. To make the name easily
recognizable, append _fld or _f to the name.

Note Thedefault field namesareFieldl, Field2, and soon. Allowable
charactersare A —Z, a-z, 0-9, and underscore (_). The name must start
with an underscore or alphabetic character. Append “_f”, “_fld”, or

“ field” to thefield name, asin “pid_f”, “pid_fld”, or “pid_field.”

e Offset — select one of the following option to define the Offset:

TRAN-IDE Guide 77

Building production objects

Option

Description

By Value
Offset

If the input field always lives at a specific location in the input transaction.,
enter the input field location relative to the beginning of the valuein the
Offset field. Thefirst position in afield is always byte 0 (zero), and the
maximum record sizeis 9,999. Set the associated length to the field length.
For example, if thefield isan ID number that is aways six nhumbers, set the
length to 6.

Follows-fld

If the current input field location might change, sel ect the name of the preceding input
field from the drop-down list, which displays only if you have previously defined a
field.

Always define the position of the first field in an input transaction with the value
offset and define all subsequent fields with the Follows-fld offset. If the transaction
format changes at alater time and you must insert afield, you only need to modify
the entry for the input field that follows the new inserted field.

Redefines-fld

If the current input field begins at the same |ocation as another input field, select the
other input field name from the drop-down list

Follows-Pattern, Anchor
Field

Option

If the input field begins after a specific character pattern., enter a unique
pattern in the Pattern field.

Set the additional field options as necessary:
e Select Inclusive to include the pattern when computing the input field offset.

» Select Anchor to indicate which input field the pattern startswith or follows. This
field isreguired if theinput field is optional. Use this field whenever possible,
because Impact searches for the pattern at the start of the transaction if thisfield
is not defined.

» Select Redefine Anchor to indicate that the pattern begins with the Anchor field
value. If thisfield isnot selected, Impact searches for the pattern after the Anchor
field value.

3 When you select Follows-Pattern, Anchor Field, additional options display:

Description

Pattern
Anchor

78

» Pattern —when the input field begins after a specific character pattern., enter a
unique pattern.

* Inclusive —include the pattern when computing the input field offset.

¢ Anchor —indicate which input field the pattern startswith or follows. Thisfieldis
required if the input field is optional . Use this field whenever possible, because e-
Biz Impact searches for the pattern at the start of the transaction if thisfield is not
defined.

» Redefine Anchor —indicate that the pattern begins with the Anchor field value. If
thisfield is not selected, e-Biz Impact searches for the pattern after the Anchor

field vaue.

e-Biz Impact

CHAPTER 3 Building Production Objects

Option

Description

Scope

Option

¢ Limit —search from the beginning of the transaction for the number of characters
specified in the associated field.

« Separator — search from the beginning of the transaction to thefirst occurrence of
the character selected from the drop-down list.

¢ End-of-data (default) — search from the beginning of the transaction.

* Sep. patterns—search from the beginning of the transaction to thefirst occurrence
of one of the specified patterns entered in the associated field. e-Biz Impact uses
the first encountered pattern as the offset location

4 Define the Length:

Description

By Vdue

If the current input field is always a specific number of charactersin length, select
this option and enter the number of charactersin the associated field.

Separator

If the end of the field isidentified by a specific character., select the appropriate
character from the drop-down list, or enter your own. Separator values include \t
(tab), \r (CR), \n (CRLF).

Separator Patterns

If the field ends after a specific pattern of charactersisfound, enter the
separator used to separate the patterns in the Pattern Separator List. To
separate the patterns in the list with a carriage return or line feed (CRLF),
accept the default. The prefix or suffix used in the Pattern Separator List is
not part of the actual pattern separator.

Discard — discard the separator and start at the next defined field, rather than
starting at the separator itself.

Optional Sep —indicates that the separator is optional, and if e-Biz Impact
does not find the separator, the ending location for thisinput field is the end
of the data.

Separator-1s-Fld/Datalink

TRAN-IDE Guide

Separator-1s-Fld/Datalink — if the field ending location is identified by the another
input field's content, select this option and select the field name from the Use Input
Field drop-down list.

If the input field ending location is identified by a datalink, select this option and
select the datalink name from the Use the Datalink field, or click the ellipsis button
to create anew datalink.

« Pattern — select this option to use the entire contents of the identified Input Field
as a separator pattern for this Input Field’s ending location. If this option is not
selected, TRAN-IDE uses thefirst byte of the identified Input Field as the
separator character for this Input Field's ending location.

« Discard — discard the separator and start at the next defined field, rather than
starting at the separator itself. If you do not select this option, the separator pattern
isincluded in the data of the Input Field that follows this Input Field.

¢ Optiona Sep. —indicates that the separator is optional, and if e-Biz Impact does
not find the separator, the ending location for thisinput field isthe end of the data.

79

Building production objects

Option Description

Value-of-FId If another input field holds a vaue that identifies the current field length,
select that input field name from the drop-down list.

Multiple Separators If theinput field end location can beidentified by morethan one character, enter those

charactersin the associated field, separating them with a space character, or select
them from the drop-down list.

e-Biz Impact uses, as the ending location, the location of whichever separator it finds
first in the incoming transaction.

End-of-data If the field ends at the end of the incoming data stream, select this option.

Note If you want separatorsin the output transaction, you must add them
back into the data stream.

5 Click OK to save your entries and close the window.

Defining input fields

Input fields describe an incoming transaction received from an acquisition
AIM. Input fields:

e Break atransaction into logical units.
e Define starting and ending |l ocations.

Figure 3-1: Production object input fields

ADTOOO0000001Wade A, Mucked@
351 Clarescastle,Vacaville®*CA
94540very good@00000004

Input
fields

80 e-Biz Impact

CHAPTER 3 Building Production Objects

Before you create input fields, have a sample, or specifications, of the
transaction’s data format. Figure 3-2 shows general information about a
customer transaction record.

Figure 3-2: Transaction sample record

|T1,-'pe | Cust 1D# [Full namelﬂddress | City |State|2ip] ,,,,,

= Transaction type, length 3

= Customer ID number, length 9

+ Customer name, length variable, EOF = @, format Fname Mi

Lnarme

TRAN-IDE Guide

[JAdding input field options

1 Click Options at the bottom of the Input Field Information window to
further define options for the selected input field. You see the Input Field

Options window.

2 Complete these options:

e Char. Set — select the field's character set—ASCI| (the default) or
EBCDIC (Extended Binary-Coded Decimal Interchange Code),
whichisan IBM codefor representing characters as numbers, mostly
on large IBM computers.

» Datatype—enablesfield datatypevalidation. Thedefaultisraw. Select
thefield's datatype:

Datatype Description

Alpha Lettersonly

Alpha-numeric Any letter, number, or space character

Hex16 A 2-byte hexadecimal representation of a number
Hex32 A 4-byte hexadecimal representation of a number
Numeric Includes numbers and a sign character

Printable Any printable character

Raw (default) Any character the system can transmit, including control

characters

Signed binary

A binary representation of a signed integer value

Text

Any letter, number, punctuation, or space character

81

Building production objects

82

Datatype ‘ Description

Unsigned binary A binary representation of an integer value
(default for auto-

parented

subfields)

Default Value — enter aliteral value. e-Biz Impact puts thisvalue in
theinput field if theinput field is empty.

If you leave this option blank and the input field is empty, e-Biz
Impact does not give the field avalue. To include anull bytein the
literal value, use “\NUL", not “\000".”

Note You can also usethe Default Value during atest drivetotest the
action of one or more fields through a production rule. If you do this,
deletethis value after you runthetest drive and before you use thefile
in a production setting.

Filters— see “ Defining filter objects’ on page 96.

Datalink — select an existing datalink or create anew one. A datalink
isaglobal variablefor temporary storage. After you assign thisname,
use the name to reference the field’s contents. Thisis especially
important in filter objects. See “Building a datalink” on page 85.

Note Thisisan advanced programming option. Use this option with
caution and only for input fields that define the same data, such asa
name or address, or phone number. Also, the contents of datalinks are
not automatically cleared between uses. The devel oper must clear the
contents.

Operation —when you select a datalink, select the operation to
perform on the selected datalink:

¢ Add-addinput to the datalink.

e Set (default) — place input into the datalink.

e Clear —make the datalink value zero.

e Increment — add 1 to the datalink.

e Decrement — subtract 1 from the datalink.

e Subtract — subtract input from the datalink.

e Multiply — multiply the datalink by the input.

e-Biz Impact

CHAPTER 3 Building Production Objects

TRAN-IDE Guide

Divide — divide the datalink by the input.

Note Some options may not display unless other options are sel ected.

* Options— selection from these options:

This Input Field Defines a Group — identifies the input field's
data area as a group. Use the “Member of group input field” to
identify other input fields as elements of the object’s group. A
group isthe data area of the incoming transaction that contains
repeating sets of elements.

Figure 3-3: Incoming transaction group with repeating elements

|—| Incomning Transaction |—|

albl|clalblclalblclalb|clalb|c

(repeating elements)

Group

¢ Instance Separator —the character that separates each group
instance. A group instanceisone set of repeating elementsin
agroup. As shown in Figure 3-3, the elements a, b, and ¢
comprise one group instance.

Select acharacter from the drop-down list or type asingle
character into the entry field.

Member of Group Input Field — defines input fields as elements
of agroup defined by a previous input field. You need not build
theinput fieldsin the order of the element’s occurrence, but you
must still definethem in the order of theinput field's occurrence.
In other words, using Figure 3-3, element “b” comes after “a’
and element “c” comes after “b”, and you must define the input
field offsets and lengths appropriately.

The drop-down list displays al input fields that have the “ This
Input Field Defines a Group” option selected.

For parsing to occur correctly, you must account for al bytesin
aset of group elementseven if you do not intend to process some
of those bytes. For example, in Figure 3-3, evenif you wanted to
process only the contents of elements“a” and “c”, you must till
define oneinput field for each of the three elements.

83

Building production objects

84

Subfield of Parent Input Field — creates a parent/child
relationship between fields, with the subfield used by the child.
You must define subfieldsin order of occurrence. Enter the name
of the parent input field in the entry field or select it from the pull-
down list.

If the parent input field isa member of a group, you must also
select “Member of Group Input Field” for the subfield.

If the parent input field is optional, then you must also make the
subfield optional.

e ThisInput Field Is Optional — displays only when “ Subfield
of Parent Input Field” is selected, and “Best fit data from
parent field” is not selected.

When set, e-Biz Impact skipsthisfield if the separator is not
found.

e Best Fit Data From Parent Field — displays only when
“Subfield of Parent Input Field” is selected.

e« Make Input Field Missing If Empty — displays only when
“Best Fit Data From Parent Field” is selected. e-Biz Impact
marks thisfield as“missing” if it is empty.

Candidacy — use as a pre-screening qualification object that is
executed before the input field has parsed the data. If the data
does not pass this qualification object, the input field does not
exist. You can use the Candidacy option to route data to specific
input fields depending on the dataiin a previous input field.

Select an existing qualification object from the list, or click to
create anew qualification object. The input field referenced in
the qualification object must already have been parsed—it cannot
be an input field from later in the same transaction. If all
candidacy failsfor a particular object, the datais moved to the
next field, so failing candidacy does not alwaysfail the
transaction. Candidacy can aso reference the field that the
candidacy belongs to in a compare filter.

e-Biz Impact

CHAPTER 3 Building Production Objects

Building a datalink

Changing an input field

TRAN-IDE Guide

1

¢ Quadlifications — use as a post-screening qualification object that
is executed after the input field has parsed the data. If the data
doesnot passthisqualification object, thetransaction fails. Select
an existing qualification object from the list, or click to create a
new qualification object. If you use aqualification object in more
than one place, it must conform in expectations of size and
datatypeto al of the input fields where it is used.

Click Doneto save your entries and close the window.

In the Input Field Information window, click OK to exit the window.

Note To move between input fields in the Input Field Information
window, use the << and >> and buttons.

In the Production Object Information window, select File | Save to save
your work.

Repeat this procedure as needed for additional input fields.

In the Input Field Options window, click the ellipsis button to the left of
the Datalink drop-down list. The Datalink Information window appears.

Complete these options:
¢ Name - Enter the datalink object Name.

¢ Module — enter the module name or select the name from the drop-
down list.

* Type-enter thedatalink type or select atype from the drop-down list.

e Public —select this option if the datalink can be shared in other
modules.

Click OK to save the datalink.

Inthe Input Fieldslist, double-click on heinput field you want to change.
The Input Field Information window appears.

Changes the appropriate data.

Do one of the following:

85

Building production objects

Deleting an input field
1

2

Deleting production
1

¢ Click New to update the Input Field and remain in the Input Field
window.

¢ Click OK to update the Input Field and return to the Production
Object Information window.

e Click Cancel to the update of the Input Field and return to the
Production Object Information window.

In the Input Fields list, select the input field you want to del ete.

Click Delete. A warning message displays and asks you to confirm the
deletion.

Click Yesto complete the deletion. Click No to cancel the deletion.

objects

In the TRAN-IDE window’s Production Objects list, right-click the
production object you want to delete and select Delete.

You can aso highlight the production object you want to delete and click
the Delete button below the list pane.

A Warning message displaysasking you to confirm that you want to delete
the production object. Click Yesto delete the production object, or click
No to cancel the deletion.

Warning! Any production object name with asymbol nexttoitis
referencing a non-existent object and should be repaired. The symbol
appearsonly if Display Referential Bitmaps is selected from the Options
menu in the main TRAN-IDE screen.

Editing production objects

1

2
3

86

In the Production Objectslist, double-click the production object that you
want to edit. The Production object Information window appears.

Make your changes to the data, as necessary.

Do one of the following:

e-Biz Impact

CHAPTER 3 Building Production Objects

e To save your changes to the production object, click OK.

» To save your changes and close the window, select File | Accept and
Close.

e To cancel your changes, click Cancel.

» Tocancel your changes and close the window, select File | Cancel and
Close.

Using import options

You can use definitions already availablein other forms (like atext file (*.txt)
or some other ASCI| file) to build field objects definitions. TRAN-IDE
provides two options for that allow you to import these file types—Comma
Separated Fields and Custom Import.

Importing comma-separated fields

Select File | Import | Comma Sep. Fieldsto open the Import Text File window,
a standard Windows open file window. After you select afile, TRAN-IDE
opensit and attempts to build field objects with the data contained in thefile.

Building field objects using Custom Import

TRAN-IDE Guide

The Custom Import Feature gives you the ability to build field objectsfrom an
external file when you know the format of thefile.

1 Select File|Import | Custom Import. The Custom Import Criteriawindow
opens where you define the format of a series of records in the external
file, where each record identifies the characteristics of asingle field.

2 Complete the fields in the window with the values that correspond to the
datafor thefield object definitions. See

3 Click one of these options:

87

Using import options

¢ OK —tohave TRAN-IDE build the field objects from the datain the
file using the values you entered in the Custom Import Criteria
window. When you click OK, the Import Custom File window opens.
Navigate to and select the file that contains data for the field object
definitions and click OK.

e Save Settings—to savethe settings asafilewith a.cis extension. You
can usethe Load Settings option later to use previously saved settings.

e Load Settings—load settings that you saved previously with the Save
Settings option.

¢ Close - close the window.

Entering values in the Custom Import Criteria fields

Example

88

The Start column valueisthe column positioninthe datafile for that entry. The
Length column value is the number of columnsin the datafile for that entry.
Column positionsfor each record inthefile start at “1.” Use avalue of zero (0)
to tell TRAN-IDE to use the default value for a particular field.

This example shows content from a metadata file that describes field objects,
which allows TRAN-IDE to build production object fields automatically.

Note Thisfunctionality appliesonly to stream fields (not tree fields).

12345678910111213141516171819202122232425262728

@ partl 0 12 nN9
@ part26 12 8 nN9
@ part305 20 15 nN9

Each line of thefile (except thefirst line), represents data describing one field
object. When you enter values in the Custom Import Criteria window, you
instruct TRAN-IDE where in theline to find the data needed to build thefield
object. The example entries are shown in Figure 3-4.

e-Biz Impact

CHAPTER 3 Building Production Objects

TRAN-IDE Guide

Figure 3-4: Custom Import example input

Custorn Innpork Criteria

Fill out =tarting column nuaber and length for the reaion of
each data-line that describes an 'Input Field'
HOTE: column positions skart with '1°

uze 'B' for optlonal fields

start lendth

Fizld nams & 1 reguired
Field offset 17 [F optional: default is "follows-previous'
Field length 21 [optdoral: default is *Field sep.’
Field sep. lm [@ optional: default iz '|°
Field type P2 [z optional: default iz “alphammeric'
 Key Field L 1

kKey walue]

Default Field Separator ||

[ok | save settings | Load Settings | Cloze |

Note Remember that the values shown in the metadata file are not the values
you enter in the Custom Import Criteriafields. The file values describe the
actual content for thefield object. The valuesyou enter describe wherethe data
begins and the data’s length, so TRAN-IDE knows what data to extract to
create the production object fields.

* Field Name—in the example, thefirst field is“part1” and the field name
starts at position 6 on aline and has alength of 10 characters, which is
what you would enter in the Start and Length fields.

» Field Offset —the field’s offset (“0”) starts at position 17 on each line and
has alength of 2 characters.

« Field Length—thefield’slength (“12") starts at the position 21 and can be
up to two charactersin length.

» Field Separator — this example uses the default field separator (the pipe
symbol), so no entries are required in these fields.

» Field Type—thefield's datatype. The example's datatype (“nN9” for
numeric) begins at the position 26 and is one character long. Thefield type
isthe character in the data file that specifies the field object’s datatype as
listed in Table 3-1.

89

Using import options

Table 3-1: Datatype values

Value Description
aAxX Alphanumeric
fF Alpha

hH Hex16

bB Unsigned binary
pP Printable

tT Text

nN9 Numeric

rR Raw

Any other value in the datafile results in a datatype of raw for the field
object.

« Key Field—if part of thedatafile (for example, headers, footers, and titles)
should not be included when building the field objects, use this setting.
Every line that should be included must start with the same pattern. Enter
the line position where the key field begins and its character length. In the
example, thekey fieldis“ @”, which beginsinposition 1 andis 1 character
in length.

« Key Vaue — enter the pattern with which each line you want to include
begins. For the example, you would enter e.

e Default Field Separator —to use adifferent field separator character asthe
default character, enter the character in thisfield.

Note Each column should be 1 character only, although the example displays
2 digit numbersin thefirst line for simplification.

Exporting text files

Select File | Export to export atext file that contains comma-delimited
production object fields.

90 e-Biz Impact

CHAPTER 3 Building Production Objects

Defining stream output rules

Field (key)

When you select stream as the output mode, the right pane of the Production
Object Information window displays Stream Output Rules.

An output ruleisalogical container for a single discrete portion of an output
transaction and includes the rule components and filters. A rule component
determines which pieces of data (which input objects) to manipulate and place
into the rule object’s output message area.

Output rules are contained in an output rules list that describes the order in
which rules are run. A concatenation of each output rule’s output creates the
output transaction.

You can view all existing rulesin the TRAN-IDE main window.

[—IDefining output rules

1 Inthe main TRAN-IDE window, select View | Output Rules or click the
Rulesicon to list existing output rules for aloaded project and module.

Click the SubRulesiconto view all rule component objectsfor the sel ected
project and module.

2 Tobuildanew output rule, click New bel ow the Stream Output Rules pane
in the TRAN-IDE window.

Note To change an existing output rule, double-click the rule namein the
list.

The Current Output Rule window appears.
3 Complete these options:

Description

Name

Anoutput rule’'sname. If you select an existing rule, its name appearsin thisfield. If
you are building a new rule, enter a name in the space provided. Recommendation:
Append“_r” or “rule’ to al rule names.

Size

Enter zero, unless the rule output must equal a specific size. Zero tellsthe SFM that
it can use as many or asfew characters as necessary to build the output field from the
output rule’'s components and filters.

If the rule output must be a specific size, enter the number of required characters.

Iterative

Run the output rule the number of times specified.

TRAN-IDE Guide

91

Defining stream output rules

Field (key)

Description

Error Function

Optional, but recommended. This error function runsin the event an error occurs
during processing. In most cases, this function should attempt to fix the problem. If
it cannot, the function must return a value of zero (0) to indicate that processing
cannot continue. The SFM then performs the error function specified in the
Production Object Information window.

Select an existing error function from the drop-down list, or click the ellipsis
to define a new Error Function.

FldGrp

Usethisfield to execute the output rule and its components and filters on input field
objects that are defined as members of a group. Enter the name of the input field
object for which theoption“ ThisField Object Defines A Group” isselected, or select
the field from the drop-down list.

If you have Iterative set, thisfield isno longer used to specify agroup to run through
the output rule. Instead, the label changesto Max D/L and the field identifies the
number of times to execute the Rule. See “Iterative” in thislist for more information

Max D/L

When Iterative is selected, the FIdGrp option changesto Max D/L, which identifies
the datalink object that specifies the number of times to run the output rule. The
output rule’s post-filter isrun after each iteration of the rule. The datalink object in
the Max D/L field can be an integer, along integer, or an array. If the datalink
specified inthe Max D/L field isan array, the size of the array isthe number of times
the SFM runs the output rule. Otherwise, the numeric value in the datalink object is
the number of times the SFM runsthe rule. Select from the drop-down list of exiting
datalinks or click the ellipsis to define a new datalink object.

If the datalink specified for the Max D/L field is an array, eNULL appears. If, this
option isselected, on each iteration, the rule checks the contents of the corresponding
element of thearray. Therule stopsif anull valueis encountered in an element of the
array.

Index D/L

Optional. The name of the datalink object to hold the group instance number. Useful
only when the ruleis processing a group of input field objects (see FIdGrp, above).
Qualification objects can check the value in this datalink and only run the rule when
this value equals 3.

Length D/L

Optional. The name of the datalink object to hold the size of the datagenerated by the
rule object. e-Biz Impact calculates the size of the rule€'s output blob after executing
therule’s post-filters, then placesthe sizeinto thisdatalink object. The datalink object
is aways set to the size of the rule object’s output blob.

Vaue D/L

Optional. The name of the datalink object to hold acopy of the data generated by the
rule object. e-Biz Impact places a copy of the rule’s output into this datalink object
after executing the rule’s post-filters. Click the down arrow to theright of thefield to
select from alist of existing datalinks. Click the ellipsis button to open the Datalink
Information window and define a new datalink object.

92

e-Biz Impact

CHAPTER 3 Building Production Objects

Field (key)

Description

Default Value

A literal value that the rule places into the output transaction if:
« The group specified in the FIdGroup entry is empty or missing.

¢ A rule component fails and the component does not have an entry in its Default
Val field.

e A rule post-filter fails.
¢ The rule has no components or post-filters defined.

When one of these conditions occurs, the SFM deletes all the output generated so far
by the rule's components from the rule object’s blob, places the default valueinto the
blob, and continues processing the next rule.

Note If thisfield is empty and one of the above conditions occurs, the SFM stops
processing the transaction and places it in the unprocessable log file.

Components

Describe the pieces or parts of asingle output rule. The output rule processes each
component in order, starting with the first item in the list. When you click New, the
Rule Component Information window appears. See “ Defining rule components
(subrules)” on page 93.

Post Filters

Performs additional processing on the output transaction. The output rule processes
each filter in order, starting with the first item in the list. When you click New, the
Filter Information window displays. See “ Defining filter objects’ on page 96.

No Default Separator

Do not automatically append the default rule separator to this rule object’s output.
Useful only when rule separator is selected in the Production Object Information
Options window.

4 Click OK to savetherule.

Defining rule components (subrules)

TRAN-IDE Guide

Rule components (subrules) determine which pieces of data (which input
objects) to manipulate and placeinto arule object’s output message area. Each
rule component generates a piece of the output transaction by manipulating the
datain aninput field object with afilter object, or by defining aliteral valueto
place into the output transaction.

A rule component object can also manipulate arule object’sblob, affecting the

output transaction up to and including its own contribution to the blob.

93

Defining rule components (subrules)

[IDefining rule components
1 When an existing project isloaded, select View | Rules Component

Objects or click the SubRulesicon to display alist of al rule component
objects defined in the current file.

2 To build anew rule component object, click New below the Rule

Component Objectslist in the TRAN-IDE window.

Note To change an existing rule component object, double-click its name
inthelist.

The Rule Component Information window appears.

3 Complete these options:

Field (key)

Description

Name

A rule component’s name. If you select an existing rule, its name displaysin this
field. If you are building a new rule component, enter the name here. Append “_rc”
or“_part” to al rule component names.

Field

Have the current rule component consist of or act on afield that is already defined.
Enter the field object’s name in the space provided, or choose the name from the list
that displays.

Note If the specified field object is defined as optional and is not present in the
incoming transaction, the rule component’s filters are still run. If you do not want
these filters run when the optional field object is not present, use a qualification
object to check for the presence of thefield object before entering the rule component
object.

Literal

Add aliteral value to the output transaction, then enter the literal’s value, up to 255
bytes, in the space provided. This value will be modified by any pre-and post-filters
defined in this rule component. The literal’s value can contain embedded escape
sequences (for example, “\015"). When including a null bytein the literal value, use
“\NUL"” instead of “\000".

Group

94

Have the current rule component consist of or act on anested group. Inthefirst entry
field, enter the name of the field object that defines the nested group, or click the
down-arrow to choose the name from the list of field objects.

In the second entry field, enter the name of the rule object that should process the
nested group, or click the down-arrow to choose the from alist of rule objects.

Warning! Rule objects that use the Group option should not be attached to a specific
production object. Define the rule object from the main TRAN-IDE window (this
procedure) instead of creating the rule from the Product Object Information window.

e-Biz Impact

CHAPTER 3 Building Production Objects

Field (key)

Description

Datalink

Have the current rule component consist of or act on adatalink. Enter the datalink’s
name or choose it from the drop-down list. Click the ellipsis button to view
information about the selected datalink or to create a new datalink on the fly.

Note When the datalink is a character array, the rule component object acts on the
entirearray asif it wereastring; it cannot accesstheindividual elements of the array.
Access the array elements using ODL code in custom filter functions. See “Writing
custom filter functions” on page 142.

None

If you do not want the current rule component to use afield object, aliteral, agroup,
or adatalink, select this option. Use this option when you want the filter to generate
the data or afilter function is used to perform some action that does not require the
addition of new data.

Default Value

Optiond. Theliteral value to place into the output transaction if one of the
component'sfiltersfailsor if the component’s data source is empty. When one of the
component's pre- or post-filtersfails or its data source is empty, the SFM removesall
output generated by that Component from the outgoing transaction, placesthisliteral
value into the outgoing transaction instead, and continues to process the transaction
with the next component.

If you do not have avaluein thisentry field, but do have avaluein the Default Value
field for the rule, and one of the component’s filtersfails or the component’s data
source is empty, the SFM removes all output generated by the component’s rule
object from the outgoing transaction, places the default value for the rule into the
outgoing transaction instead, and continues to process the transaction with the next
rule object. If you do not have avaluein either the component’s or rule’s Default
Value field, the SFM stops processing the transaction.

The literal value uses these format specifiers: “%s” for spaces, “%d” for zeros, and
“%b” for binary zeros. Place an integer number after the % to indicate the number of
spaces or zeros to use. The literal value can aso contain other characters that are
copiedinto theblob exactly as entered. When including anull byteintheliteral value,
use “\NUL" instead of “\000".

Example —“$5dempty%5d” resultsin“00000empty00000”.

Length D/L

(Optional.) The name of the datalink to hold the size of the data generated by therule
component object. e-Biz Impact calculates the size of the component’s output blob
after executing the component’s post-filters, then places the size into this datalink
object. Because the datalink is set to the size of the component’s output blob, if the
rule component has a qualification object associated with it, the datalink object is set
to the size of the output blob if the rule component qualified. If the rule component
does not qualify, the datalink object is set to zero since no output was generated.

Vaue D/L

TRAN-IDE Guide

(Optional.) The name of the datalink object to hold a copy of the data generated by
the rule component object. e-Biz Impact puts a copy of the component’s output into
this datalink object after executing the component’s post-filters.

95

Defining filter objects

Field (key) Description

Pre-Filters A list of the pre-filter functions. Thefilters work on the data source you specify. The
SFM runs the filters in sequence, from the top to bottom. See “ Defining filter
objects’ on page 96.

Post-Filters Post filters perform additional processing on the outgoing transaction asit has been
built up to that point. The SFM performs each post-filter in sequence. See “ Defining
filter objects’ on page 96.

No Default Separator Select to not automatically append the default rule component separator to thisrule

component object’s output. This option is useful only when the rule component
separator is selected in the production object Options window.

Adding field separators

Defining filter

96

e-Biz Impact stripsfield separators out of the data stream before presenting the
contents of any field object to any rule component or placing the datain a
datalink. To use the same data characters as a field separator in the output of a
rule object, add the separator back into the output data stream.

To add afield separator to an output data stream, build afilter that performs
thisfunction, then add it into the pre-filter or post-filter in the Rule Component
Information window.

objects

This section describes each filter type that you can build.

Filter objects are used to alter the output of rule components, output rules, and
production objects. Filter objects can validate, add to, copy, trandate,
transform data, or perform any other type of data manipulation you require.

A filter object can be of these types:

e Table objects— add to or remove table columns from generated output.

¢ Built-in functions — translate and modify data using predefined functions.
¢ Custom functions — use custom code for complex or custom trand ations.
¢ Datalink objects — modify global datalink variables.

e-Biz Impact

CHAPTER 3 Building Production Objects

TRAN-IDE Guide

e Edit masks—Ilimit the number of characters, suppress|eading zeros, add a
fixed or floating currency symbol, add comma and decimal separators,
insert characters, display plus and minus signs, and display negative
valuesin brackets (<>).

« Database objects — modify data using user-defined SQL statements.

« Production objects —send output to another nonstatic production object in
another module within the current project.

« DFC - make distributed function calls from within a production object.

In addition to creating filters directly from the TRAN-IDE main window (click
the Filtersicon, then click New), filters can a so be created from a production
object’s Input Field Options window, from Current Output Rule window, and
from the Rule Component Information window.

Production objects input field filters Production object filters modify
input transactions. Thesetype of filters are often used to initialize datalinks, to
establish destination routing, and to set transaction priority.

Production object post-production filters modify the transaction output.

Output rule filters Output rule post-production filters modify output rules,
including all rule components.

Rule component filters Rule component filters modify the component’s
input; post-production filters modify the rule component’s output up to and
including itself.

When you create afilter during the creation of another object, the filter is
automatically attached to the object you are creating, and is added to the main
filter list from which you can select it to use when you create other objects.

[—ICreating filter objects

1 Fromthe main TRAN-IDE window, select View | Filter Objects or click
theFiltericontodisplay alist of all filter objectsdefinedin the current file.

2 Double-click an existing filter in the Filter Objectslist to modify an
existing filter, or click New below the Filter Objects list to create a new
filter. The Filter Information window appears.

Note When filter options (for example, Pre-Filters or Post-Filters) appear
in an object information window (for example, the Rule Component
Information window), and you can click New to create a new filter, the
same Filter Information window displays as when you accessfilters from
the main TRAN-IDE window.

97

Defining filter objects

Filter type

3 Click the button for the type of filter you want to create; for example, to
create atable object filter, click Table Obj. The options on the right of the
window change depending on thefilter option you select. Supported filters
are

Description

Table Obj

Compare the data in the current blob with the entries in the key column specified for
the referenced table object. See “Creating table object filters’ on page 99.

Built-in

Provides pre-built filters—formatting, editing, text manipulation, date and time,
miscellaneous, and TDM-related (dynamic routing). See“ Creating built-in filters’ on
page 100.

For al filters, the current blob areareferencesthe data that the filter receives. Exactly
what the filter receivesis dependent on how and when you use it.

Note Using built-in filters does not require programming knowledge, however, you
must know the type of data you expect to process.

Custom

Provides custom filter functions—findYear_func, stuck_cust, and set_age_func,
which you can append and save. See “ Creating custom filters’ on page 142.

Datalink

Performs the specified operation between the incoming data and the value in the
specified datalink and placestheresult in the datalink. See“ Creating datalink filters”
on page 145.

Edit Mask

Runs the edit mask against the datain the current blob and replaces the data
in the current blob with the result. See “Creating edit mask filters’ on page 146.

Database

Executesthe statement in the database interface object. See“ Creating database
interface filters” on page 147.

Prod Obj

Setsdatalinks or performs alternate processing of data based on the result of
qualification objects. See “ Creating production object filters’ on page 148.

DFC

98

Makes a DFC call from a production object, which avoids using ODL to
make the DFC call. Use thisfilter to handle throughput issues. See “Creating
production object filters” on page 148.

4 When you complete your entries, click OK to save the filter and close the
window.

e-Biz Impact

CHAPTER 3 Building Production Objects

Creating table object filters

Create table object filters to compare the data in the current blob with the
entriesin the key column specified for the referenced table object. If the data
matches an entry in the key column, e-Biz Impact places into the output
transaction the values in the corresponding entry of the columns listed in the
Selected Colslist. If the data does not match any valuesin the key column, the
filter fails.

Thekey valuesfor table object filters specify how e-Biz Impact should identify
the table name, which can be eight characters long and contain only letters,
numbers, and the underscore () character.

Note Table objectsare different than collection tables. See “ Using collection”
on page 34.

Table 3-2: Table object filter keys
Field (key) Description
Basic Name The table name for which e-Biz Impact should look. Use this option when you have
static tableswith fixed names. Enter the table name, or click the down-arrow to select
the name from alist of existing tables. Click the ellipsis to open the Table
Maintenance window. See “ Creating table objects’ on page 150.

Use FieldObj Use the data referenced by the field object as the table’'s name. (See the Name Mask
field description below.) Click the down-arrow to select from alist of existing field
objects.

Use Datalink Use the contents of the datalink as the table’'s name. (See the Name Mask field

description below.) Click the down-arrow to select from alist of existing datalinks.

Click the ellipsis button to open the Datalink Information window. See “Building a

datalink” on page 85.

Name Mask This option displays only when you select Use FieldObj or Use Datalink to specify

the content of the table's name.

If you enter nothing, TRAN-IDE placesa“%s’ mask in thisfield and e-Biz Impact

uses the data value in the selected field object or datalink as the table’'s name. If you

enter other values with the “%s” mask, e-Biz Impact combines these values to form

the table’s name.

* Example 1 —the content of the p_state field object is“ca”, the Name mask field
containsonly “ss”; the SFM looks for atable file named “CA.TBL.”

* Example 2 —the content of p_stateis“ca” and the Name mask field contains
“Mysscc”; the SFM looks for the table file named “MYCACC.TBL.”

Key Column The column contents that e-Biz Impact should compare for amatch against the data
in the current blob area.
All Cols A list of dl the table columns.

TRAN-IDE Guide 99

Defining filter objects

Field (key)

Description

Selected Cols

A list of the columnsto place into the output transaction when the datain the current
blob area matches on data in the key column. The column datais placed into the
output transaction in the order that the columns display in this list. When there are
multiple columnsin thislist, e-Biz Impact uses the value in the Sep-Fld or Sep-Lit
field to separate each column.

Sep-Fid

Usethe contents of afield object asthe separator between the columnsin the Selected
Colslist. Type the name of thefield object or click on the down-arrow to select from
alist of field objects.

Sep-Lit

Use aliteral value as the separator between the columns in the Selected Cols list.
Type in the character or pattern to use as the separator.

Tokenized Vaue Table

Thisfield is visible only when you have loaded an old table object into the Table
Options window that isin the tag/value or tokenized value format.

Select this option when the entries in the Value fields of the table contain multiple
token “columns” of data with each token separated by the same character. An

AN

example of tokenized value datais“name*addr*city”*st*zip*ID"".

Col#

Thisfield is visible only when Tokenized Value Table is selected. Enter the number
of the token “column” in the Value field that contains the data you want placed into
the output transaction. For the example, in a Value entry of
“name”*addr”city”st*zip*ID*", token 3is“city”. If the token in thisentry
does not exist in the table or is empty, then thefilter fails.

Separator

Thisfield isvisible only when Tokenized Value Tableis selected. Enter the character

that separates the token “columns” of data or select the character from the list.

Creating built-in filters

100

Built-in filters executes against the datain the current blob and replacesthe data
in the blob with the result. If the function returns false—zero (0), thefilter fails.

When you select Built-in, the only field you see initiadly is the Name field.
Enter the name of the built-in function you want to use or click the ellipsis button to
open the Built-in Filter Functions window and make a selection.

Depending on the built-in function you select, arguments may be required, in
which case, additional fields display.

TheBuilt-in Filter Functionswindow displaysall of the pre-supplied functions
in groups that identify their purpose. For example, al functionsin the
Date/Time list perform some kind of conversion or translation on date and/or
time values.

You must know the type of datayou expect to processto correctly use the built-
in filter functions.

e-Biz Impact

CHAPTER 3 Building Production Objects

Current blob area

Where filter is selected
Component pre-filter

For al dynamic routing filter functions, the current blob areareferences the
data that the filter receives. Exactly what the filter receivesis dependent on
how and when you use it.

Filters always receive the current blob areain the form of ablob.

“Current blob area” reference

Temporary work area containing the data in the selected field object, literal, group,
or datalink object.

Component post-filter

Temporary work area containing the output generated by any of therule's
components that ran before this component; plus, the output generated by this
component’s pre-filters; plus, the output generated by any post-filters that ran before
the current filter.

Rule post-filter

Temporary work area containing the combined output of al the current rule's
Components.

Production object post filter

Return values

Output areathat contains the entire data stream assembled from all the current
production object’s rules. Especially useful for adding on protocol data.

When abuilt-infilter function fails, itsfilter object failsand writesinformation
about the cause of the failure to the production object’s error log.

When the dbDelete, dbinsert, dbSelect, loadFile, logger, shellCmd, and writeFile
built-in filter functionsfail, also included in the error log isthe negative value
of the UNIX error number for the problem that caused the method to fail.

Warning! You cannot use the octal value “\000” in afilter’s arguments to
indicate anull value. Use “\NUL" to place anull character into afilter
argument.

[—ICreating built-in filter functions

1 Toseect afunctionintheBuilt-in Filter Function window, double-click a
function or select afunction and click OK.

2 Click Cancel toreturn to the Filter Information window without accepting
the your selection.

Function categories include:

Category Description
Formatting Help perform basic formatting actions on the output data.
Editing Edit the current blob area’s datain some way, like adding data to it, or eliminating

TRAN-IDE Guide

dataor extraspaces. Somefilter functionsin this section allow you to use octal escape
sequences or ASCII characters. When using octal escape sequencesin afilter’'s

arguments, you must use “\NUL" instead of “\000" to indicate a null value.

101

Defining filter objects

Category Description
Text Manipulation Manipul ate the data content of the current blob area.

Note If afield filtered by text manipulation functions has a zero length, the filter
function returns zero (0). The SFM treats thisreturn as afailure. To alow azero
length on afield:

e Usearule-level error function to trap this condition and force a continuation of
processing.

e Userulellevel qualification to skip the entire transaction.

e Provide adefault value in the related field object.

Date and Time Append the date and/or time in a specific format to the current output blob area.

Miscellaneous Thesefunctionsdo not fit in any of the other categories, but perform useful functions,
like conversion of EBCDIC datato ASCII and vice versa, sending datathrough mail,
and so on.

TDM Related (dynamic Built-in dynamic routing functions. These functions allow you to add, delete, or

routing) specify destinations for the transaction that were not originally part of the
transaction’s route. When you use dynamic routing (TDM related) filter functions,
note that:

¢ You can use only destinations or a distributed SFM that is already defined to the
local SFM through ID recordsin the SFM’s configuration file.

 If oneof the destinationsyou add or specify isaNullDest, or if the ID recordin the
configuration file specifies a NullDest, only the NullDest is used. Other
destinations are ignored.

« If the SFM does not recognize a destination or distributed SFM asvalid, the

transaction fails production object qualification. These filter functions do not
change the SFM configuration file in any way.

* A dynamic routing function can only be used as part of a post-qualification rule.
Any other rule that uses a dynamic routing function isignored.

¢ When atransaction qualifies for multiple production objects, and one or more of
those production objects uses dynamic routing, the SFM rejects the transaction.

Formatting filter functions
These functions help you perform basic formatting actions on the output data.

charHexConv()

Description Expands each byte of character datainto the ASCI| hexadecimal equivalent. If
reverse modeis selected, the filter converts hexadecimal datato character data.

Argument None.

102 e-Biz Impact

CHAPTER 3 Building Production Objects

Example

Reverse example

COBOLpack()
Description

Arguments

Examples

COBOLunpack()
Description

Arguments

TRAN-IDE Guide

Data:

935-0488, charHexConv ()
Resultsin:

3933352D30343838
Data:

536D697468, charHexConv ()
Resultsin:

Smith

Converts decimal datainto a packed hex format using the COBOL
computational -3trailing sign half-character. The COBOL computation -3 sign
digit representation is shown below.

Sign value in decimal Sign half-character in hexadecimal
unsigned OxOF
+ 0x0C
- 0x0D
None.
Data:
-47325, COBOLpack ()
Resultsin:
-G2]

Converts packed hexadecimal datathat isin the COBOL computational -3
trailing half-character signed format into one of avariety of formats, including
astring format and various numeric formats, depending on theformat specifier
used.

A printf() format specifier — specifies how the result of unpacking the
hexadecimal datais stored and displayed. Use any of these specifiers—
“EdFfGgdiuoXxs’. Refer to a C\C++ reference manual for more information
about the printf format specifier.

103

Defining filter objects

Examples

hex16()
Description

Arguments

Examples

hex32()
Description

Arguments

Examples

104

Positively signed data (0xOC trailing half-character) is not signed when
converted. Place aplus sign (+) in the format specifier to explicitly sign the
unpacked data (for example, s+d) If the datais negatively signed, then aplus
sign in the format specifier has no effect.

Using the “s” specifier results in formatting the output from unpacking the
packed hexadecimal dataas astring of digits, where each digitisadigitinthe
decimal value that was originally COBOLpacked. When reverse mode is
unselected, aleading zero isinserted at the beginning of the string. When
Reverse Mode is selected, no leading zero isinserted.

Usethe®s’ specifier in cases where the decimal value of the number you want
to display istoo largeto storein anumeric format but still needsto display. An
example of thiswould be a telephone number that is being COBOLunpacked.

Data:
-G2], COBOLunpack ()
Resultsin:

-47325

Converts numeric data to a machine-independent two byte binary
representation of the data. 65535 is the maximum value on which thisfunction
can operate. If the datais greater than 65535, the hexadecimal 16 function
truncates the result.

None.
Data:

4867, hex16 ()
Resultsin:

1303

Converts numeric data to a machine-independent four byte binary
representation of the data. 4294967295 is the maximum value on which this
function can operate. If the datais greater than 4294967295, the hexadecimal
32 function truncates the result.

None.
Data:

e-Biz Impact

CHAPTER 3 Building Production Objects

hexDecConv()
Description

Arguments

Examples

hl7FixedChar()
Description

Arguments

Examples

TRAN-IDE Guide

93024718, hex32()
Resultsin:

058b71ce

Converts hexadecimal datato decimal data. If Reverse Mode is selected, the
filter converts decimal datato hexadecimal data. FFFF isthe maximum vaue
that this function can handle. If the datais greater than FFFF, the filter fails.

None.
e Data
35AC, hexDecConv ()
Resultsin:

13740
* Reverse example. Data:
7598, hexDecConv ()
Resultsin:

1DAE

L eft justifies the data and uses space characters to pad the current blob areato
the length indicated in the argument. If the current blob areais an empty string
(containsonly “ "), then this built-in filter function pads the current blob area
with space charactersto thelength indicated in the argument. If the current blob
area contains nothing (it is null), then this builtins uses null characters to pad
current blob area to the length indicated in the argument.

Length of resultant field.
Data:

foo hl7FixedChar (8)
Resultsin:

“foo w

105

Defining filter objects

hl7FixedNum()
Description

Arguments

Examples

justify()
Description

Arguments

Examples

libf()

Description

Arguments

ljzf()
Description

Arguments

106

Right justifiesthe data and uses zerosto pad the current blob areato the length
indicated in the argument. If the current blob areais an empty string (contains
only “), then this built-in filter function pads the current blob areawith zeros
tothelength indicated in the argument. If the current blob area contains nothing
(itisnull), then this built-in filter function uses null characters to pad current

blob areato the length indicated in the argument.

Length of resultant field.
Data:

12345 hl7FixedChar (10)
Resultsin:

0000012345

Justifies the dataiin the specified direction and uses the specified fill character
to increase the current blob areato the indicated length.

» Direction of justification—Ieft or right.

e Fill character.

e Length of resultant field.

L$24 left justifies and fillswith adollar sign ($) to alength of 24.
R*126 right justifies using an asterisk (*) asfill to alength of 126.

Left justifies the current data and blank (space) fill for the length given in the
argument.

Length of resultant field; for example, “44”.

Left justifiesthe current dataand zero fillsfor the length given in the argument
string.

Length of resultant field; for example, “123".

e-Biz Impact

CHAPTER 3 Building Production Objects

pack()
Description

Arguments

ribf()
Description

Arguments

rjzf()
Description

Arguments

strTruncL()
Description

Arguments

Examples

strTruncR()
Description

Arguments

Examples

TRAN-IDE Guide

Convertsincoming decimal datato the A S/400 compatible packed format. Any
incoming data that is not an integer or a sign extension is skipped and not
packed.

Note If afield object or datalink object contains the packed data, then that
object can be any datatype that accepts digits and printable characters (for
example, raw, alphanumeric, printable, and so on).

None.

Right justifiesthe current datainto afield length identified by theargument and
blank (space) fill extra characters.

Length of resultant field; for example“22”.

Right justifiesthe current datainto afield length identified by the argument and
zero fills extra characters.

Length of resultant field; for example“14”.

Truncates the current blob area after the pattern specified in the arguments.
The character or pattern after which to truncate the data.
Data:
123hellozvt, strTruncL(hello)
Resultsin:

123hello

Truncates the current blob area up to the pattern specified in the arguments.
The character or pattern up to which to truncate the data.
Data:

“123hellozvt”, strTruncR (hello)

107

Defining filter objects

truncL()
Description

Arguments

Examples

truncR()
Description

Arguments

Examples

108

Resultsin:

“‘hellozvt”

Truncatesthe current blob areato aspecified length, starting from itsright-most
position. In other words, truncates the current blob areato the left-most values
for the specified length. If you do not pass an argument to this built-in filter
function, then it clears the current blob area of all data.

The length of the data you want to retain, with left justification; for example,

122",
Data:

ABCDE, truncL(3)
Resultsin:

ABC

Note BothtruncL andtruncR filtersinsert null characterswhen theoriginal blob
is shorter than the new length

Truncates the current blob areato a specified length, starting from its left-most
position. In other words, truncatesthe current blob areato the right-most values
for the specified length. If you do not pass an argument to thisfunction, it clears
the current blob area of al data.

The length of the datayou want to retain, with right justification; for example,

23 .
Data:
ABCDE, truncR(3)
Resultsin:

CDE

e-Biz Impact

CHAPTER 3 Building Production Objects

unpack()
Description

Arguments

Examples

Editing functions

append()
Description

Arguments

delimit()
Description

Arguments

TRAN-IDE Guide

Convertsincoming A S/400 packed datato decimal format. Optional argument
string allows printf style formatting of the unpacked data.

Note Thefield object or datalink object containing the packed data can be any
datatype that accepts digits and printable characters (for example, raw,
alphanumeric, printable).

Optional. The printf style formatting string; for example, “s.2£".
Data:

0x123C, unpack(%.2f)
Resultsin:

-1.23

Editing filter functions edit the datain the current blob area; for example,
adding data or eliminating data or extra spaces. With some of the filter
functionsin this category, you can use octal escape sequences or ASCI|
characters. When using octa escape sequencesin afilter's arguments, use
“\NUL" instead of “\00Q” to indicate a null value.

Addsthe datain the argument string (for example, add literals, or punctuation
values to an existing field or component) to the end of the current blob area.

The text you want to add to the blob area; for example, “mM.D.".

Removes all datafrom the current blob areathat follows aspecific character as
identified by the value in the argument, and a so removes the specified
character. Adjustsitsinternal information to the new shorter length value. This
function works from | eft to right in the blob area and stops when it reaches the
first occurrence of the specified character.

The character that delimits the field; for example, » (quote) or \ (backslash)
or , (comma).

109

Defining filter objects

insert()
Description

Arguments

modChar()
Description

Arguments

Examples

modFirstChar()
Description

Arguments

Examples

modLastChar()
Description

Arguments

Examples

110

Inserts a character into an output blob area at the specified location and for the
length given.

OOO,LLL,X

where “O0Q" isoffset in current blob area; “LLL" isthe length of the datato
insert; and “X” is character to insert (optional); for example, “20,10,q".

The default is null (binary zero).

Replaces all charactersin the current blob areathat match thefirst character in
the arguments field with the second character in the argumentsfield. You can
also use octal escape sequences to specify avalue.

The character you want replaced and its replacement.

e Anargument of “#s” causes replacement of all “#” in the blob areawith
‘g

e Anargument of “\101\141" causesreplacement of all values that match
“\101” withthevalue“\141".

Replaces the first occurrence of a character in the blob area that matches the
first character in the argumentsfield with the second character in the arguments
field. You can also use octal escape sequences to specify avalue.

The character you want the first occurrence of replaced, and its replacement.

An argument of “e*" causes replacement of the first occurrence of “e” with

u*n.

Replacesthelast occurrence of acharacter intheblob areathat matchesthefirst
character in the arguments field with the second character in the arguments
field. You can also use octal escape sequences to specify avalue.

The character you want the last occurrence of replaced, and its replacement.

Anargument of “~ |” causes replacement of the last occurrence of “~” with® |”.

e-Biz Impact

CHAPTER 3 Building Production Objects

modLeadChar()
Description

Arguments

Examples

modTrailChar()
Description

Arguments

Examples

modPattern()
Description

Arguments

Examples

snip()
Description

Arguments

Examples

strinsChar()
Description

TRAN-IDE Guide

Replaces all leading charactersin the current blob areathat match the first
character in the arguments field with the second character in the arguments
field. You can also use octal escape sequences to specify avalue.

The character you want replaced, and its replacement.

An argument of “#s” causes replacement of leading “#” with “s”.

Replacesall trailing characters specified in the argumentsfrom the current blob
area. You can also use octal escape sequences to specify avalue.

The character you want replaced, and its replacement.
e Anargument of “#s$” causes replacement of trailing “#” with “s”.

¢ Anargument of “\NUL\003" causes replacement of trailing” \ooo” with
“\003".

Replaces the characters specified in the arguments from the current blob area.
You can use octal escape sequences to specify avalue.

Search pattern | replacement pattern.

An argument of “\o12123|a\o10Bc” causes replacement of al “ <Form
FEED>123" With “A<LINE FEED>BC”".

Removes part of the current output blob area at the specified location (offset)
and for the given length.

OOO,LLL

where“O0Q0” isthe offset in current blob area; “LLL” isthelength to cut with
amaximum of 32767. To cut to end of blob, use the maximum value.

012,003 specifiesthat at offset position 12, remove 3 characters.

Inserts a string into the current blob areafollowing the first occurrence of the
specified character. You can also use octal escape sequences for the specified
character. Use a comma or a pipe to separate the arguments.

111

Defining filter objects

Arguments

Examples

strinsert()
Description

Arguments

Examples

strinsPattern()
Description

Arguments

Examples

112

character, string

where“ character” isthe character after which to insert the string, and “string”
isthe datato insert.

$,new data Specifiesthat after thefirst s, insert “new data”.

Inserts a string into the current blob area at the specified offset location
(optional). If you do not specify an offset, the filter inserts the string at the
beginning of the blob area. When not using an offset, the string must start with
an aphabetic character. Use a comma to separate the arguments.

offset,string

where “offset” is the location to insert the string, starting from zero (0), and
“string” isthe datato insert.

e ‘“25,123aBC” gpecifiesthat at offset position “25”, insert “123aBc”.

e “aBc123” specifiestoinsert “asc123” at the beginning of the current blob
area (position 0).

e “0,123aBC” specifiestoinsert “123aBc” at the beginning of the current
blob area (position 0).

Inserts a string into the current blob area following the first occurrence of the
specified pattern. Use acommaor apipeto separate the arguments. The pattern
cannot contain acomma or a pipe; the filter treats it as the argument
“separator.”

pattern,string

where “pattern” is the pattern after which to insert the string, and “string” is
the data to insert.

e ****new data Specifiesthat after the first occurrence of “~***”, insert

“new data”.

e “put here|new data” specifiesthat after the first occurrence of “put
here”, insert “new data”.

e-Biz Impact

CHAPTER 3 Building Production Objects

zap()
Description

Arguments

Examples

zapChar()
Description

Arguments

Examples

zapFirstChar()
Description

Arguments

Examples

zaplLastChar()
Description

Arguments

Examples

zapLeadChar()
Description

TRAN-IDE Guide

Removesthe characterslisted in the arguments from the current blob area. You
cannot use octal escape segquences to specify avalue.

The characters you want removed.
e Anargument of “4" causes remova of all “#” from the blob area.

e Anargument of “and” causesremoval of al “a”, “n”, and “d” characters.

Removes the character specified in the arguments from the current blob area.
You can also use octal escape sequences to specify avalue.

The character you want removed.
e Anargument of “#” causes removal of all “#” from the blob area.

e Anargument of “\003” causesremoval of all “\003” valuesfrom theblob
area.

Removesthefirst occurrence of the character specified in the arguments from
the current blob area. You can also use octal escape sequences to specify a
value.

The character that you want the first occurrence of removed.

Anargument of “@” causesremoval of thefirst occurrence of “@” from the blob
area.

Removes the last occurrence of the character specified in the arguments from
the current blob area. You can aso use octal escape segquences to specify a
value.

The character that you want the last occurrence of removed.

Anargument of “&” causesremoval of thefirst occurrence of “&” from the blob
area.

Removes all leading characters specified in args from the current blob area.
You can also use octal escape sequences to specify avalue.

113

Defining filter objects

Arguments

Examples

zapLeadSpaces()

Description

Arguments

zapPattern()
Description

Arguments

Examples

zapRange()
Description

Arguments

Examples

zapSpaces()
Description

Arguments

zapTrailChar()
Description

Arguments

Examples

114

None.

An argument of “#” causes removal of leading “#” from the blob area.

Removes all leading spaces from the current blob area.

None.

Removes the sequence of characters specified in the arguments from the
current blob area. You cannot use octal escape sequences to specify avalue.

The pattern of characters you want removed.

An argument of “123aBc” causes removal of al “123asc” from the blob area.

Removes the range of characters specified in the arguments from the current
blob area. You can also use octal escape seguences to specify avalue.

The beginning and end of the range of characters that you want removed.

e Anargument of “az” causesremoval of al charactersfrom“a” to“z
inclusive.

e Anargument of “\133\177" causesremoval of all charactersfrom* [to
hexadecimal “ 77" inclusive.

Removes all spaces from the current blob area.

None.

Removes all trailing characters specified in the arguments field from the
current blob area. You can also use octal escape sequences to specify avalue.

The character you want removed.
e Anargument of “#" causes removal of al trailing “#” values.

e Anargument of “\o003” causes removal of atrailing octal values that
match “\oo3”".

e-Biz Impact

CHAPTER 3 Building Production Objects

zapTrailSpaces()
Description Removes all trailing spaces from the current blob area.

Arguments None.

Text manipulation functions
These functions manipulate the data content of the current blob area.

Note If thefield filtered by thesefunctions hasazerolength, thefilter function
returns zero (0). Transaction production treats thisreturn asafailure. To allow
a zero length on the field, do one of the following:

e Usearule-level error function to trap this condition and force a
continuation of processing.

e Userule-level quaification to skip the whole transaction.
e Provide adefault value in the related field object.

squish()

Description Removes white space (blanks) between acommaand any valuethat followsit.
Use thisfilter function to shrink words into a single, unified whole.

Arguments None.

ToLower()

Description Converts a phabetic characters in the current blob areato lower case. Returns
the number of characters filtered.

Arguments None.

ToUpper()

Description Converts a phabetic charactersin the current blob areato upper case. Returns
the number of characters filtered.

Arguments None.

TRAN-IDE Guide 115

Defining filter objects

trim()
Description

Arguments

wordcap()
Description

Arguments

Date/time functions

currDateHL7()
Description

Arguments

Examples

currEuroDate()
Description

Arguments

currMMDDYY()
Description

Arguments

116

Starts from the blob area’s right-most position and removes trailing spaces
and/or form manipulation control characters until it finds a specific character,
asidentified by theargument, or finds another character. If it findsthe character
in the argument, it also removes that character from the blob area. Form
manipulation control charactersinclude FF, LF, CR, VT, HT, and TAB. The
function then adjustsitsinternal dataabout the current blob area’slength to the
new value.

A character that delimits the trailing spaces del etion.

Capitalizesthefirst letter of every wordinthe current datafield. Words are data
elementsin the current data field that are delimited by spaces, tabs, or
backspace characters.

None.

These functions append the date and/or time in a specific format to the current
output blob area.

Addsthecurrent datein HL 7 format YYYYMMDDHHMMSS #PPPP Where” #pppp”
is plus or minus hours and minutes from Greenwich Mean Time (GMT).

None.

“0844” is8 hours and 44 minutes from GMT.

Adds the current date in the format: pp.mM. Yyyy; for example,
“20.12.2005".

None.

Adds the current date in the format MMDDYY; for example, “032005”.

None.

e-Biz Impact

CHAPTER 3 Building Production Objects

currMMDDYYSlash()
Description

Arguments

currMMDDYYYY()
Description

Arguments

currYYMMDD()
Description

Arguments

currHHMMSS()
Description

Arguments

currHHMMSSColon()
Description

Arguments

fmtAge()
Description

Arguments

TRAN-IDE Guide

Adds the current date in the format mv/DpD/Yy; for example, “02/17/05".

None.

Adds the current date in the format MMDDYYYY, for example, “09072005".

None.

Adds the current date in the format yymmpD; for example, “050501”.

None.

Adds the current time in the format HEMMSS; for example, “231104”.

None.

Adds the current time to current output blob areain the format HH: MM: SS.

None.

Calculates as an age the difference between the current date and the date in the
current blob area, and replaces the current blob area with the result. If the date
in the current blob areaisin the future, thisfunction returnsthe difference asa
negative value. Thedatein the current blob areamust bein one of thefollowing
formats—yymmdd, yyyymmdd, yy/mm/dd, Of yyyy/mm/dd.

Date Format — use one or more format specifiers and any ordinary characters. Valid
specifiersare 3y for theageinyears, $d for the remainder of the agein days (use with
the %y specifier), and $D for the entire age in days.

¢ Year 1900 Base — use this option when both dates being passed have a
1900 base century (1900 — 1999). For example, the two dates that are
passed are 85/03/29 and 99/03/29. When Year 1900 Base is selected,
85 and 99 are considered to be the years 1985 and 1999.

117

Defining filter objects

Examples

fmtCurrDate()
Description

118

e Year 2000 Base - use this option when both dates being passed have a 2000
base century (2000-2999). For example, the two datesthat are passed are
01/03/29 and 05/03/29. When Year 2000 Baseis selected, 01 and 03
are considered to be 2001 and 2003.

e Trust Current OS Base — use this option when you want to apply the base
century of the operating system (OS) being used to the dates being passed.
For example, thetwo datesthat are passed are 85/03 /29 and 99/03/29.
When Trust Current OS Base is selected, 85 and 99 are considered to be
1985 and 1999 if the Current OS Baseis also a 1900 base century, or 2085
and 2099 if the Current OS Base is a 2000 base century.

¢ Window Year — use this option when you want to set atwo-digit window
year to be applied by the engine to determine base century of the dates
passed. Enter the two-digit window year in the field next to the Window
Year option. If the two-digit dates that are passed are greater than the
number in the Window Year field, the engine assigns a 1900 base century.
If the two-digit dates are less than or equal to that number, the engine
assigns a 2000 base century.

Thetwo-digit datein the Window Year fieldis“50”. The two dates passed are
“01/01/01" and“99/12/31”. The 01 and 99 are compared to the 50 that is
in the Window Year filed, and 01 isassigned a 2000 base (2001) becauseit is
less than or equal to 50, and the 99 isassigned a 1900 base (1999) because it
is greater than s0.

When setting the Window Year date, if you set it to adate that islow, you must
increase it to before the end of the year so the engine does not revert to 1900
when the year is over.

Adds the current date and/or time to the current output blob area. Format
depends on the format specifier used. All characters that are not format
specifiers are copied unchanged into the output blob areain the same position
asthey are in the arguments.

This string consists of zero or more conversion specifications and ordinary
characters. Ordinary characters, such as dashes, are copied directly into the
buffer. A conversion specification consists of a percent sign and one other
character.

e-Biz Impact

CHAPTER 3 Building Production Objects

Arguments

fmtDateDiff()
Description

Arguments

Examples

TRAN-IDE Guide

Date Format — any format specifier that is valid with the C function strftime(),
and any ordinary characters; for example, “sm - $d - 3y”.

Note Refer to your platform and version-specific C developers guide for the
valid strftime() arguments available to you. These arguments may vary
depending on platform and OS version.

Calculates the difference between the date in the current blob and the date
specified in either the FieldObj argument or the Datalink argument, and
replaces the current blob areawith the result. The date in the current blob area
must be in one of the following formats. yymmdd, yyyymmdd, yy/mm/dd, or
yyyy/mm/dd.

Note If either of the dates you are passing have a base year of 1800, you must
use either the yyyymmdd or yyyy/mm/dd format. If the date specified in either
the FieldObj argument or the Datalink argument is earlier, chronologically,
than the current blob, the result is a negative number.

¢ Format — enter the output format:

e %Y —years between two dates, without limitation to a 365 day year.
For example, the two dates passed are 00/01/01 and 01/01/01,
withaformat argument of $v. The output would be 1, even though the
year 2000 actually has 366 days.

e %y —total days between the two dates, divided by 365. For example,
The two dates passed are 00/01/01 and 01/01/01, with aformat
argument of %y. The output would be 1, even though the year 2000
actually has 366 days.

e %D —tota days between the two dates. For example, the two dates
passedare00/01/01 and 01/01/01, withaformat argument of $D.
The output would be 366, because the year 2000 is aleap year and
has 366 days.

¢ FieldObj — enter adate.
e Dataink —enter adate.
e With aFormat argument field of:

$D, %Y, %y, Sr

119

Defining filter objects

fmtDate()
Description

Arguments

120

adatalink dateof “01/01/01", and acurrent blob date of “00/01/01",
the output is:

366,1,0,1,1
e With aFormat argument field of:
%D, %Y, %y, %r

acurrent blob date of “01/01/01", and adatalink date of “00/01/01",
the output is:

-366,-1,0,-1,-1

Convertsfrom an input date format to an output date format. The format of the
incoming data can be described by afield object, adatalink, or aliteral. The
fieldsaremutually exclusive. If no field object isspecified, the datalink isused;
if no datalink is specified, the literal is used.

The format of the incoming date is specified using any number of these
characters and any other ordinary characters:

Character Description

Day of the month.

Month of the year.

Year.

Julian date (1-366).

Julian date (0-365).

Day of the week, starting Sunday (1-7).
Day of the week, starting Sunday (0-6).

s|s|—|«|<|z|lo

The output format must be described by aliteral, using C date-formatting
specifiers. yvggg formats use a century value based on the option button
selected in the Filter Information window. In the Filter Information window
you can select a 1900 or 2000 year base. You can also trust the current OS base.

¢ InFieldObj — the name of afield object containing the date format.
e In Datalink — the name of adatalink object containing the date format.
e InLiteral —aformat specifier using theletters above, and any ordinary characters.

e Out — any format specifier that is valid with the C function strftime(), and any
ordinary characters.

e-Biz Impact

CHAPTER 3 Building Production Objects

Examples When In Literal is“MMDDYY” (asin 123197) and Outis“sm - %d - $vy”, the
result becomes“12 - 31 - 97”.

Note Refer to your platform and version-specific C developers guide for the
valid strftime() arguments available to you. These arguments may vary
depending on platform and OS version.

fmtGregorian()

Description Converts theincoming data from a Gregorian format (YYMMDD Of YYYYMMDD)
to the format indicated by the arguments and placesit into the current output
blob area.

Arguments Date Format — any format specifier that is valid with the C function strftime()

and any ordinary characters.

TRAN-IDE Guide

Year 1900 Base — use this option when both dates being passed have a
1900 base century (1900 — 1999). For example, the two dates that are
passed are 85/03/29 and 99/03/29. When Year 1900 Base is selected,
85 and 99 are considered to be the years 1985 and 1999.

Year 2000 Base — use this option when both dates being passed have a 2000
base century (2000-2999). For example, the two dates that are passed are
01/03/29 and 05/03/29. When Year 2000 Base is selected, 01 and 03
are considered to be 2001 and 2003.

Trust Current OS Base — use this option when you want to apply the base
century of the operating system being used to the dates being passed. For
example, the two dates that are passed are 85/03/29 and 99/03/29.
When Trust Current OS Base is selected, 85 and 99 are considered to be
1985 and 1999 if the current OS base is also a 1900 base century, or 2085
and 2099 if the current OS base is a 2000 base century.

Window Year — use this option when you want to set a two-digit window
year to be applied by the engine to determine base century of the dates
passed. Enter the two-digit year in the field next to the Window Year
option. If thetwo-digit datesthat are passed are greater than the number in
the Window Year field, the engine assigns a 1900 base century. If the two-
digit dates are less than or equal to that number, the engine assigns a 2000
base century.

121

Defining filter objects

Examples

fmtJulian()
Description

Arguments

122

o°
o°

D, %Y

Note When setting the Window Year date, if you set it to adate that islow, you
must increaseit beforethe end of that year so the engine does not revert to 1900
when that year is over.

Refer to your platform and version-specific C developers guide for the valid
strftime() arguments available to you. These arguments may vary depending on
platform and OS version.

Converts the incoming data from Julian format (vyygJgg or YyyvyJgaJd) to the
format indicated by the arguments and placesit into the current output blob
area.

Date Format — any format specifier that is valid with the C function strftime()
and any ordinary characters.

¢ Year 1900 Base — use this option when both dates being passed have a
1900 base century (1900 — 1999). For example, the two dates that are
passed are 85/03/29 and 99/03/29. When Year 1900 Base is selected,
85 and 99 are considered to be the years 1985 and 1999.

e Year 2000 Base - use this option when both dates being passed have a 2000
base century (2000-2999). For example, the two dates that are passed are
01/03/29 and 05/03/29. When Year 2000 Base is selected, 01 and 03
are considered to be 2001 and 2003.

e Trust Current OS Base — Use this option when you want to apply the base
century of the operating system being used to the dates being passed. For
example, the two dates that are passed are 85/03/29 and 99/03/29.
When Trust Current OS Base is selected, 85 and 99 are considered to be
1985 and 1999 if the current OS base is also a 1900 base century, or 2085
and 2099 if the current OS base is a 2000 base century.

e Window Year — use this option when you want to set atwo-digit window
year to be applied by the engine to determine base century of the dates
passed. Enter the two-digit year in the field next to the Window Year
option. If thetwo-digit datesthat are passed are greater than the number in
the Window Year field, the engine assigns a 1900 base century. If the two-
digit dates are less than or equal to that number, the engine assigns a 2000
base century.

e-Biz Impact

CHAPTER 3 Building Production Objects

Examples

%a, sm, %d, %Y

Note Be careful when setting the Window Year date. If you set it to adate that
islow, remember to increase it before the end of that year, so that the engine
does not revert to 1900 when that year is over.

Miscellaneous functions

These functions do not fit in any other category, but perform useful functions,
like conversion of EBCDIC datato ASCI| and vice versa, sending datathrough
mail, and so on.

AscEbc()
Description Converts the current blob areafrom the ASCII to the EBCDIC character set.
Arguments None.
asciiCtl()
Description Appendsthe ASCII control character in the Argumentsfield onto theend of the
current output blob area. Use the ASCII control characters from the list below.
Use thisfilter as the first component of the first rulein a production object to
place ASCII control characters at the beginning of an output transaction.
Arguments Arguments — one or more ASCII control characters.
Control Control
Control Char | Usage Char Usage Char Usage
NUL Null SOH Start of Heading STX Start of Text
ETX End of Text EOT End of transmission | ENQ Enquiry
ACK Acknowledge BEL Bell BS Backspace
HT Horiz.Tab LF Linefeed VT Vertical tab
FF Form feed CR Carr. Return Sl Shift In
SO Shift Out DLE Data Link Escape DC1 Device Control 1
DC2 Device Control 2 DC3 Device Control 3 DC4 Device Control 4
NAK Negative SYN Synchronous DLE ETB End of Trans. Block
Acknowledge
CAN Cancel EM End of Media SuUB Substitute
ESC Escape FS Field Separator GS Group Separator
RS Record Separator us Unit Separator DEL Delete
SP Space Character

TRAN-IDE Guide

123

Defining filter objects

Examples

binaryVli()
Description

Arguments

Examples

charTranslate()
Description

Arguments

crcl6é()
Description

Arguments

124

e ETX appends an ETX to the current output blob area.

e CR,LF appends the sequence of CRLF to the current output blob area.

Generates either an 8-bit or a 16-bit binary variable length indicator (VLI) for
the current blob area and placesthe VLI either at the beginning or the end of
that blob area, depending on the information in the Argumentsfield. Use this
function, or the formatted VLI function in a production object’s post-filter, to
calculate the VLI for the entire output transaction.

Default (no argumentsincluded) isa 16-bit VLI placed at the beginning of the
blob area.

Arguments—“1" is 8-bit, “2” is 16-bit, and “post” specifiesto build trailing
VLI.

e ‘“post” buildsa16-bit trailing VLI.
e ‘“2post” issameas‘“post”.

e “1” buildsan 8-hit leading VLI.

e “1post” buildsan 8-bit trailing VLI.

Trandates data from one character set to another.
¢ Source —the character set of the source data.
e Target —the character set into which the source data should be translated.

The characters sets availabl e for substitution for either source or target are
ASCII, BCDIC, T-11 EBCDIC, and TN EBCDIC.

Appends a 16-bit CRC (Cyclica Redundancy Check) value to an output blob
areain the format HIGHBYTELOWBYTE. The function processes the entire
output blob areato compute the 16-bit value.

Arguments— optional . Enter “pre” or “prefix” (without the quotes) to place
the CRC vaue at the front of the output blob area.

e-Biz Impact

CHAPTER 3 Building Production Objects

cutColumn()
Description

Arguments

Examples

dbAssemble()
Description

Arguments

TRAN-IDE Guide

Replaces the value in the current blob with the value contained in the column
specified by the argument. To usethisfilter, the content of the current blob must
consist of columns of data with each column separated by the character
specified in the argument. An example of datafitting thisformat is
“here”is”some”data™". Thisexamplehasfour columns, each separated by
a“~" character.

If the column specified in the argument does not exist or isempty, the function
fails.

Column Number[,Separator] —where Column Number is the number of the
column whose contents you want to useto replace the value of the current blob,
and Separator is the character that separates each column of datain the blob;
for example, “3, #”. If aseparator isnot specified, thefilter uses” " by default.

Data:
Here|are|6|columns |of |data|cutColumn (4, |)
Resultsin:

columns

Retrieves data from collection files (obtains collection file names by calling
dbDiskList) into atemporary Binary Search Tree (BST), and replaces the
current blob datawith the sorted data from the BST, inserting an optional
separator string between collection data in the current blob.

Returns “mMcMeM” if BST cannot be completed.

Retrieves only the data from collection files that match file name mask (key).
Before end of function, the temporary BST is completely removed from
memory.

* Table—literal name of the collection on file subdirectory; dbDiskList error
is blank or not found.

* Key Field —enter tor select the field from which to retrieve the data.

* Key Datalink — enter tor select the datalink for the field from which to
retrieve the data.

» Key Lit —enter the optional literal string by which to separate the output
data.

125

Defining filter objects

dbDelete()
Description

Arguments

dbDiskAgeList()
Description

Arguments

dbDiskList()
Description

Arguments

dblinsert()
Description

Arguments

126

e Seplit—entertheoptional literal separator by which to separate the output
data.

Deletes the specified entry from the referenced collection file.
e Table—the name of the collection file.

¢ Key Field—theentry to delete.

e Key Datalink —the datalink for the entry to delete.

ThedbDiskAgeList built-in function buildsup akey list based on the age of keys
rather than using a mask on the key name like memKeyList.

See “memKeyList()” on page 131 for adescription of thisfunction’'s
arguments.

Finds the elements in the referenced collection file that match a pattern and
writes alist of those elements to afile, separated by aliteral string.

e Table—the name of the collection file.

¢ Key Field —the entry for which to search.

e Key Datalink —the datalink for the entry to for which to search.

¢ KeyLit—theliteral string by which to separate the elementsin the list.

e SeplLit—theliteral separator by which to separate the elementsin thelist.

Copies the contents of the current blob area to the referenced collection file.
e Table—the name of the collection file.
* Key Field —enter or select the field containing the data to copy and insert.

« Key Datalink —enter or select the datalink for thefield containing the data
to copy and insert.

e-Biz Impact

CHAPTER 3 Building Production Objects

dbSelect()
Description

Arguments

EbcAsc()
Description

Arguments

email()
Description

Arguments

emailByFld()
Description

Arguments

emailByData()
Description

Arguments

TRAN-IDE Guide

Copiesthe specified entry from the referenced collection fileto the current blob
areain the production object. The dbSelect() filter writes over the current
contents of the blob area rather than concatenating the entry onto the current
contents of the blob area. Call thisfilter from within an empty rule object each
time you want to copy an entry from acollection file to the output transaction.

e Table—the name of the collection file.
* Key Field —enter or select the field containing the data to copy.

» Key Datalink —enter or select the datalink for the field containing the data
to copy.

Converts the current blob areafrom the EBCDIC to the ASCII character set.

None.

Sends the current blob areato the destination specified in the argument. The
content of the argument is the e-mail destination.

Dest. —the e-mail address where the current blob area should be mailed.

Sends the current blob areato the e-mail destination specified in the argument.

Dest Fld —the field that contain the e-mail address where the current blob area
should be mailed.

Sends the current blob areato the destination specified in the argument.

Dest Data—the datalink that contains the e-mail address where the current blob
area should be mailed.

127

Defining filter objects

formattedVli()

Arguments

Examples

loadFile()
Description

Arguments

128

Generatesavariablelength indicator (VLI) for the current blob areaand places
the VLI either at the beginning or the end of that blob area. The formatting and
position of the VLI depend on the information in the argument. Use this
function, or the binaryVli function in a production object’s post-filter, to
calculate the VLI for the entire output transaction.

The default (no argumentsincluded) isa 16-bit VLI placed at the beginning of
the blob area.

Format — format-control specifiers, asfollows: $<len><type>, Where <len>

isthesizeof the VLI inbytes, Ofor leading zero, and <type> isany oneof: “ 1

for integer, “u” for unsigned integer, “a” for decimal, “o” for octal, “orx”" for
hexadecimal. Entering “post” anywhere in the arguments generates atrailing
VLI.

When the blob contains “12345":
e s04dpost - buildsa4-byte, decimal, trailing VLI (*123450005").

e 304d ;" —buildsa4-byte, decimal, leading VLI, withthe " ;” separator
(“0005;12345").

e 3%04d “;” post —buildsad4-byte, decimal, leading VLI, with the“ ;"
separator (“12345;00005").

e s02x —buildsa2-byte, hexadecimal, leading VLI (“0512345").
e 30101 —buildsa10-byte, integer, leading VLI (“000000000512345").

e s030post — builds a 3-byte, octal, trailing VLI (“12345005").

Note If you do not want to not have thelength “0” filled, removethe 0" from
the command; for example, “s04dpost = %4dpost”.

Copies the contents of the file specified in the argument and placesit in the
current blob area, overriding the current contents of the blob.

Use only one of the available argument fields to identify the file to read. The
argument can include a path or just the filename. When the argument includes
apath, aways use forward slashes (/). Leave the argument fields blank to use
the contents of the current blob as the argument to the filter.

¢ File—thename of thefileto read.

e-Biz Impact

CHAPTER 3 Building Production Objects

logger()
Description

Arguments

Irc()

Description

Arguments

memAssemble()
Description

Arguments

TRAN-IDE Guide

¢ FieldObj — the name of the field object containing the name of the file to read.

e Datalink —the name of the datalink object containing the name of thefileto read.

Appends the current blob area to the file name in the arguments. Thefile name
can includeitslocation. If the location is not included, then the file should
reside in the current user’s PATH environment variable. If the function cannot
find thefile, it attempts to build the file and write to it. If the function cannot
open thefile, or cannot write to it, the function returns the system’s error
number as a negative value to transaction production. Transaction production
indicates in the current xlog file which operation failed (read or write), what
the return value was, and ends processing of the current production object.

File—the location (optional) and name of afile to which the current blob area
should be appended; for example,

“/usr/impact/logfiles/accounting.log”.

Adds an 8-hit or 16-bit LRC (Longitudinal Redundancy Check) value to the
output blob area. The function processes the current output blob areato
compute the value. Format of a 16-bit valueis“HIGHBYTELOWBYTE".

Arguments—enter “2” to produce a 16-bit value. The default “1.rc” isan 8-bit
value.

Retrieves node data from the BST specified by table, then replaces the current
blob data with the sorted node data, inserting an optional separator string
between node dataiin the current blob. Retrieves dataonly from nodes with key
values that match the key mask.

e Table—litera name of the table. Generates an error if left blank (MCINPUT) or
not found (MCFIND).

Note TheKey Field, Key Datalink, and Key Lit arguments are required and
mutually exclusive. The first non-null value to occur is used. Generates an
error (mcInpuUT) if al argumentsarenull (blank). The®Key..” isused asamask

for a substring search (as opposed to an exact match). Use“+” or “?” asa
wildcard. An error is generated (McFIND) if no datais found.

129

Defining filter objects

memDelete()
Description

Arguments

memDeleteAll()
Description

Arguments

memIinsert()
Description

130

e Key Field —name of field object to use as key mask.

¢ Key Datalink — name of datalink to use as key mask; used only if the Key
Field isleft blank.

e« Key Lit—literal key mask; used only if both the Key Field and Key
Datalink are left blank.

e SeplLit—optionadl. Literal string to separate node datain the current blob.
The default valueis™:”.

Removes a single node (releasing the node’s allocated memory) from the BST
specified by the Table argument; if the table is empty after removing the BST
node, the table node is also removed and its allocated memory rel eased.

e Table-literal name of the table. Generates an error if left blank (MCINPUT) or
not found (MCFIND).

Note The Key Field and Key Datalink arguments a required and mutually
exclusive. Only one argument is used; that is, the first non-null value to occur
inthelist. An error is generated (mcInpPUT) if both are null (blank). The Key
argument value must be exact. An error isgenerated (Mcr1ND) if the key isnot
found.

¢ Key Field — name of the field object to use as the key.

¢ Key Datalink —name of the datalink to use asthe key; used only if the Key Field
argument isleft.

Removes (rel eases allocated memory of) all nodes from the table specified by
the Argument, or it removes al nodes from all tablesif the Argument is blank.

Arguments — literal name of the table to be completely deleted. Generates an
error (MCrIND) if atableis specified but does not exist. If left blank (the
default), then al tables are deleted.

Adds the current blob data to a new node in the table.

e-Biz Impact

CHAPTER 3 Building Production Objects

Arguments

memKeyList()
Description

Arguments

TRAN-IDE Guide

e Table - literal name of the table. Generates an error if left blank (MCINPUT). If
the table does not yet exist then anew table nodeis created and added to the table
list. TheMCMEM error isreturned if the memory cannot be all ocated for anew table
node.

Note TheKey Field and Key Datalink arguments are required and mutually
exclusive. Thefirst non-null value to occur is used. Generates an error
(mc1npuT) if both argumentsare null (blank). The*Key..” value must be exact.
An error isgenerated (MCDUPKEY) if the key aready existsin the table as specified by
the Table argument. The MCMEM error isreturned if memory cannot be allocated for the
new node.

* Key Field —name of field object to use as the key.

« Key Datalink —name of datalink to use asthe key; used only if the Key
Field isleft blank.

Replaces current blob data with an index (ordered list) of all node key values
in the BST specified by the Table argument, inserting an optional separator
string between each key value returned. Only retrieves key values that match
the key mask.

e Table—litera name of the table. Generates an error if left blank (MCINPUT) or
not found (MCFIND).

Note TheKey Field, Key Datalink, and Key Lit arguments are required and
mutually exclusive. The first non-null value to occur is used. Generates an
error (mcInpuT) if al argumentsarenull (blank). The®Key..” isused asamask

for a substring search (as opposed to an exact match). Use“+” or “?” asa
wildcard. An error is generated (McFIND) if no matches are found.

« Key Field—literal name of thetable. Generates an error if left blank (MCINPUT)
or if the specified tableis not found (MCFIND).

« Key Datalink — name of datalink to use as key mask; used only if the Key
Field isleft blank.

« Key Lit—literal key mask; used only if both the Key Field and Key
Datalink are left blank.

e SeplLit—optional. Literal string to separate key namesin the current blob.
The default valueis*:".

131

Defining filter objects

memSelect()
Description

Arguments

memTableAgeList()
Description

Arguments

memUpdate()
Description

Arguments

shellCmd()
Description

Arguments

132

Replaces current blob data with stored data from a node, which is retrieved
from the BST specified by the Table argument.

e Table-litera name of the table. Generates an error if left blank (MCINPUT) or
not found (MCFIND).

Note The Key Field and Key Datalink arguments are required and mutually
exclusive. The first non-null value to occur is used. Generates an error
(mcinpurT) if al arguments are null (blank). The Key value must be exact.
Generates an error (MCFIND) if the key is not found.

¢ Key Field — name of thefield object to use as the key.

* Key Datalink —name of datalink to use as key mask; used only if the Key
Field isleft blank.

Thisfunction buildsakey list based on the key age rather than using amask on
the key name, like memKeyList.

See" dbDiskAgeList()” on page 126 for a description of the arguments.

The memUpdate function works like meminsert except if akey already exists,
it overwrites the data behind the key, as opposed to failing. In reverse mode,
the function appends the data.

See “meminsert()” on page 130 for a description of the arguments.

Executes the UNIX command, or shell script file reference, in the arguments.
The current blob areais not passed as an argument to the command or shell
script.

¢ Cmd-aUNIX command or the name of a shell script file; for example,
“myshscript”. If you enter the name of a shell script file, the file must exist in
one of the directories included in your PATH environment variable.

e Status—optional. The exit status of the command. If the exit status does
not match the status specified in this argument, then the shellCmd() filter
function fails and returns a value of zero.

e-Biz Impact

CHAPTER 3 Building Production Objects

Select a status from the drop-down list or type a status in the entry field
using this format (without the brackets):

<comparison operator><blank spaces><integer value>

If the status entered does not match this format, the function fails and
returns avalue of -1.

If you do not use the Status argument, the filter does not fail regardless of the exit
status of the command. However, it could still fail for other reasons.

thIEdit()
Description Warning! Use this function only with tables that are in atag/value format.

Allows you to add, change, or delete atrand ation table file. The incoming
transaction contains the delimiter (optional), the name of the translation table
fileto edit (optional), the action to perform on the table (add, change, delete,
reload), the tag, and the value. You can also optionally write an audit trail to the
significant event log. The audit trail shows the date and time the filter ran, the
name of the filter (tblEdit()), the name of the acquisition module that sent the
transaction (SRCRef in the route_rec() call), the directory location of the table,
the action performed, the tag, and the value.

Arguments * Table Name—enter the name of the trandation tablefileto edit only if the
incoming transaction does not contain the name of the table. To indicate
when to write an audit trail to the significant event log, enter “, aupIT”
after the table name in this field. The commain front of “aup1T” is
reguired even if you do not enter the table namein thisfield.

For example, enter:
table name, AUDIT

where table_nameisthe name of the translation table file to edit. Enter the table

name in this argument only if the incoming transaction does not contain the name
of the table.

If the table name isin the incoming transaction, you can enter “, Aup1T”.

* FieldObj —if the incoming transaction does contain the name of the table
to edit, enter the field object that contains the table name.

For example, enter “ F1dobj name”, Where FIdObj_name is the name of
the field object containing the name of the translation table file to edit.

The production object puts the action to perform on the table (add, change,
delete, reload), a delimiter, the tag, the delimiter, and the value.

TRAN-IDE Guide 133

Defining filter objects

Error values

ThetblIEdit filter ways usesthe character following the action asthe delimiter,
therefore, the delimiter must be the same between the action and the tag, and
between the tag and the value.

Theinformation needed to edit the trand ation tablefile can either be part of an
incoming transaction or the entire transaction. When it is the production
object’s entire input transaction, run this filter in the production object’s post-
filters. Otherwise, run thisfilter from arule or rule component object.

Warning! ThetblEdit() filter readsthe entire table from disk, performsthe edit,
and saves the table back to disk, which can affect throughput.

If the thIEdit() filter fails, e-Biz Impact places one of the following error codes
into the error message text. Use the geterrtext() method within an error function
to extract thiserror code from the error message. See“Writing error functions”

on page 172.

Examples

134

Code Description
0 Theargumentsto thefilter arebad or invalid, or the systemisout of memory, or the system

suffered adisk 1/O failure.

-1 A change failed due to an invalid action code or not enough available memory.

-2 An add failed due to a duplicate key. Seen only in releases prior to e-Biz Impact version
2.19.

-3 An add failed due to not enough available memory.

-4 A delete failed because the key could not be found.

-5 A change failed due to not enough available memory.

-6 File open error on input.

-7 File open error on output.

-8 File write error on output.

-9 File write error on output items.

-10 Rename error on regeneration of trandation table.

-11 Backup error on regeneration of trandation table.

-12 Unlink error on regeneration of trand ation table.

-13 Trandation table is not in atag/value format.

e Example1—inthisexample, al of the necessary information isin the
incoming transaction.

The incoming transaction datais:

*PRCECODE.TBL"C"*123-45-678"55.60"

e-Biz Impact

CHAPTER 3 Building Production Objects

TRAN-IDE Guide

where“*” isthe delimiter, “ prcecope . TBL” iSthe name of thetranslation
tablefileto edit, “c” isthe action to perform on the table, “123-45-678"
isthetag, and “s5.60" isthe value to change.

The function builds this outgoing transaction:

C*123-45-678"55.60

Note The delimiter does not have to be the same in the outgoing
transaction asit isin the incoming transaction.

First the function builds field objects for the four data areas of the
incoming transaction.

Next, thefunction builds rule component objects that place the action, tag,
and value into the outgoing transaction.

Last, the function builds a post-filter to run on the outgoing transaction.

Select the thiEdit filter and place the name of thefield object that contains
the name of the translation table to edit into the FIdObj argument field. If
desired, place“, aup1T” into the Thl Name argument field.

Example 2 —for this example, the name of the translation table to edit is
not present in the incoming transaction.

The incoming transaction datais:
*A*55783%123.45

where“+” isthe delimiter, “a” isthe action to perform on the table,
“55783" isthetag, and “5.60” isthe value to change.

The function builds this outgoing transaction:
A*55783%123.45

First the function builds field objects for the three data areas of the
incoming transaction.

Next, the function builds rule component objectsthat placethe action, tag,
and value into the outgoing transaction.

Last, the function builds a post-filter to run on the outgoing transaction.

Select the thiEdit filter and type the name of the translation table to edit in
the Thl Name argument field. You can put“, aun1T” after the name of the
table to edit.

135

Defining filter objects

writeFile()
Description

Arguments

136

Example 3 —this example shows an incoming transaction that uses a
trigger event.

The incoming transaction datais:
xyzzy#003 | gamma |

“xyzzy#" indicates that the following information is an addition for the
ABC123.TBL fileand that the delimiter isapipe(|) symbol. For example,
the programmer knows that atrigger event with “xyzzy#" isfor the
specific table and uses that delimiter. “003” isthetag and “gamma” isthe
value.

The function builds this outgoing transaction:
A| 003 |gamma

First, the function builds field objects for the three data areas of the
incoming transaction.

Second, the function builds rule component objects that place the action,
tag, and value into the outgoing transaction. You know that the action
should be “a” because “xyzzy#" indicates an addition to the table.

Last, the function builds a post-filter to run on the outgoing transaction.

Select the thiEdit filter and in the Thl Name argument, then enter the name
of the trandlation table to edit, and, optionally, enter “, aup1T”.

Writes the contents of the current blob areato the file specified in the
arguments.

Use one of the available argument fields to identify the file in which to write.
The argument can include a path or just the filename. When the argument
includes a path, always use forward slashes (/). If the subdirectories specified
in a path do not exist, the filter attempts to create them. Leave all argument
fields blank to use the contents of the current blob as the argument to the filter.

File — the name of the filein which to write.

FieldObj — the name of the field object containing the name of the filein which
to write.

Datalink —the name of the datalink object containing the name of thefileinwhich
to write.

e-Biz Impact

CHAPTER 3 Building Production Objects

Dynamic routing functions

addDestName()
Description

Arguments

TRAN-IDE Guide

Dynamic routing built-in functions (labelled “ TDMRelated” in the Built-in
Filter Functions window), allow you to add, delete, or specify destinations for
atransaction that are not originally part of the transaction’sroute. You can use
only destinations or a distributed SFM already defined to the local SFM
through destination 1D recordsin the SFM’s configuration file.

Note If one of the destinations you add or specify is a NullDest, or if the
transaction 1D record in the SFM configuration file specifies a NullDest, only
the NullDest is used. Other destinations are ignored.

If the SFM does not recognize a destination as valid, the transaction fails
production object qualification. These filter functions do not change the SFM
configuration filein any way.

Note Use adynamic routing function only as part of a post-qualification rule.
Any other rule that uses a dynamic routing function isignored.

When atransaction qualifies for multiple production objects and one or more
of those production objects uses dynamic routing, the SFM rejects the
transaction.

Adds a destination to those already specified for this production object’s
output. You can specify up to ten destinations per use of thisfunction, and each
destination name can be up to 32-characters long.

Use only one of the available argument fields to identify the destination to be
added to the destination list. Use a carat () character to separate each
destination name in the argument field; for example “mMgB1*MQB2*DST7”.

e Literal —the name of the destination as listed in the SFM configuration file.
e FieldObj — the name of afield object that contains the destination names.

e Datalink — the name of adatalink object containing the destination names.

137

Defining filter objects

addDestNameData()
Description

Arguments

delDestName()
Description

Arguments

delDestNameData()
Description

Arguments

setDestName()
Description

Arguments

138

Uses the contents of the current blob to add a destination to those already
specified for the production object’s output. The contents of the blob can
specify up to ten destinations to add, and each destination name can be up to
32 characters long. Each destination must be separated with a carat (%)
character.

None.

Deletes adestination for this production object’s output. You can specify up to
ten destinations to delete per use of thisfunction. Use a carat (") character to
separate each destination name in the argument field.

Use only one of the available argument fields to identify the destination or
distributed SFM to be removed. Use a carat () character to separate each
destination name in the argument field; for example “MgB1*MQB2*DST7”.

¢ Literal —the name of the destination or distributed SFM as listed in the SFM
configuration file.

¢ FieldObj — the name of afield object containing the destination names.

¢ Datalink — the name of adatalink object containing the destination names.

Uses the contents of the current blob to delete a destination for this production
object’s output. The contents of the blob can specify up to ten destinationsto
delete. Each destination must be separated with a carat (*) character.

None.

Overridesall previousdestinations specified for this production object’s output
with the destination listed in the argument field. You can specify up to ten
destinations per use of this function, and each destination name can have a
maximum of 32 characters. If you need to specify additional destinations,
multiple calls of the setDestName() function should be used. Use acarat ()
character to separate each destination name in the argument field.

Use only one of the available argument fields to identify the destination to be used
asthedestination list. Use a carat (") character to separate each destination name
in the argument field; for example “MoB1*MQB2*DST7”.

e-Biz Impact

CHAPTER 3 Building Production Objects

setDestNameData()
Description

Arguments

e Literal —the name of the destination or distributed SFM as listed in the SFM
configuration file.

¢ FieldObj — the name of afield object that contains the destination names.

e Datalink — the name of adatalink object containing the destination names.

Overridesall previous destinations specified for this production object’s output
with the destination listed in the contents of the current blob. The contents of
the blob can specify up to ten destinations, and each destination name can be
up to 32 characters long. To specify additional destinations, use multiple calls
of the setDestNameData() function. Each destination must be separated with a
carat (™) character.

None.

Non-dynamic routing functions

submit()
Description

Arguments

TRAN-IDE Guide

Submits the data that the filter object is processing back to the SFM viaa
production record. The name of the production object for which the new
transaction is being submitted.

Warning! There must be a routing function name in the SFM configuration
file, which cannot be “ENGINE.”

* ProdObj Field — enter or select the field to which the output will be
submitted.

* ProdObj Datalink — enter or select the datalink (variables) for thefield to
which the output will be submitted.

e ProdObj Lit —the name of the production object aslisted in the SFM
configuration file.

Note If you have anull character in the data string, but not at the beginning,
the dataiis truncated to the point of the null.

139

Defining filter objects

tranCancel()
Description

Arguments

submitTran()
Description

Arguments

tranDestID()
Description

Argument

tranDestName()
Description

Arguments

140

Specifies the actions that the SFM should perform when a transaction
encounters a processing error through a production object. Allows the
destination to continueto receive new transactions, just asif the destination had
returned a-999 for the transaction. Overrides any error option selections made
in the Production Object Options window.

None.

Submits the data that the filter object is processing back to the SFM viaa
transaction record. If you have anull character in the data string, but not at the
beginning, the datais truncated to the point of the null.

Warning! There must be a routing function name in the SFM configuration
file, which cannot be “ENGINE.”

e TranlD field —enter or select the field to which the output will be
submitted.

e TranlD Datalink — enter or select the datalink (variables) for the field to
which the output will be submitted.

¢ TranlD Lit —enter the transaction ID.

Appends the ID number (flavor value) of the production object’s destination,
as defined in the SFM configuration file, to the current blob area.

None.

Appends the reference name of the production object’s destination, as defined
in the SFM configuration file, to the current blob area.

None.

e-Biz Impact

CHAPTER 3 Building Production Objects

tranHalt()
Description

Argument

tranPriority()
Description

Arguments

tranSerialNo()
Description

Arguments

tranSourceName()
Description

TRAN-IDE Guide

Specifies the actions that SFM should perform when a transaction encounters
aprocessing error through this production object. Halts the destination, and
preventsit from receiving any further transactions until the unprocessable
transaction is placed in the unprocessable log. Overrides any error option
selections made in the Production Object Options window.

None.

Warning! Useonly in the post-qualification rule in aproduction object. If you
call tranPriority() at any other point during transaction production, it has no
effect.

Assigns a priority to the transaction. Whenever e-Biz Impact receives a
transaction that has a priority set, it processes that transaction before any non-
prioritized transactions. When more than one prioritized transaction iswaiting
for processing, e-Biz Impact processes transactions from the highest priority to
the lowest. If multiple transactions have the same priority, e-Biz Impact
processes them based on their timestamp.

A priority set with this builtins filter function overrides a priority assignment
in aroute or production object setting in the SFM configuration or a priority
assignment in the Priority argument in the route_recx() function.

Priority —enter a number (0 to 255), where 1 isthe lowest priority and 255 is
the highest.

Note Limityour prioritiesto 1-16, as17-255 arereserved. O removesapriority
set through the Transaction 1D record.

Appends the serial number assigned by the SFM to the current module to the
end of the current blob area. The serial number dataisin string format.

None.

Appends the source name sent from the input transaction’s acquisition module
to the end of the current blob area.

141

Defining filter objects

Arguments

None.

Creating custom filters

Click Custom to create afilter that executes the ODL logic in the selected
custom filter function. If the function returns zero (0), thefilter fails.

Table 3-3: Custom filter keys

Field (key)

Description

Name

Enter the name of a new function, or select the name of an existing custom filter
function from the drop-down list.

When you enter the name of a new function, click the elipsis button to open the
Custom Filter Function window. See" Writing custom filter functions’ on page 142
for details.

Arguments

The arguments required for the custom filter function.

Run filter in reverse mode

Thisallowsyou to run your argumentsin either normal forward mode, or in reverse
mode.

Writing custom filter functions

142

Use custom filter functions to perform any data manipulation that you cannot
do with acombination of built-in filters and table objects. One of the most
common uses for a custom filter function isto make a distributed function call
(DFC).

Design the custom filter function to accomplish one specific task. Before
developing the function, break the problem down into small steps. Asyou do
this, you may find that you can do some, or even all, of the steps with table
objects or built-in filters. When designing a custom filter function, consider
reusability. All custom filter functions have a stack limit of 10K for symbols
used in the function.

Do not use custom filter functions to check for empty fields or blobs. Instead,
use the field object default value to place a constant value in empty fields. If
required, you can then check for the default valuein afield qualification object
or in a production object qualification object. Use one or more built-in filters
instead of custom filter functions whenever possible for faster processing
results.

e-Biz Impact

CHAPTER 3 Building Production Objects

Key

A custom filter function return value indicates whether or not e-Biz Impact
should continue processing the transaction. A return value of “1” (one)
indicates that the filter operation was successful and processing continues. A
return value of “0” (zero) indicatesthat the filter operation was not successful,
and causes the SFM to terminate transaction processing and enter the
appropriate error function. If the custom filter is attached to arule or rule
component object, it enters the rule object error function; otherwise, it enters
the production object error function.

When you finish entering the function, check the statement syntax and make
sure your arguments are parsed correctly. The TRAN-IDE tool checks your
syntax when you click OK. Syntax checking only ensures that you have not
made asyntactical error in your function statements. To check the output of the
function, you must test drive a transaction through the related production
objects. See “Using the test drive” on page 181.

Use the buttons in the Custom Filter Function window to load or append text
filesto the code, and to save, print, or cancel your work. Select Public to make
the function global (public).

Table 3-4: Arguments

Description

blob *pb

A pointer to the current blob. In a pre-filter, the blob contains the field data the filter
is acting on. In a post-filter, the blob contains the outgoing transaction that has been
built up to that point.

char mode

The mode setting. Contains avaue of “2" if you set the reverse mode, otherwise
containsavaue of “1".

string args

A string containing the arguments that you entered in the Filter Information window.

Field (key)

Table 3-5: Custom filter function keys
Description

Goto Line#

Moves the cursor to the specified line of ODL text in the function. Typetheline
number to go to, then press enter. The ODL text editor moves the cursor to the
specified line of text and highlightsit.

Warning! Click once on thetext or use an arrow key to unselect it before typing any
characters, otherwise the selected lineis replaced by the new characters.

DFC's

View alist of the current DFC commands, click the down arrow. To defineanew DFC
command, click the ellipsis button. The Distributed Function Declaration window
opens.

Datalinks

TRAN-IDE Guide

Toview alist of thecurrent datalink definitions, click the down arrow. To defineanew
datalink, click the ellipsis button. The Datalink Information window opens.

143

Defining filter objects

Field (key)

Description

Module

To placethefunctioninto adifferent module, click the down arrow and select another
module. If you put the function into a different module, then you must make the
function public.

Alternate error return
values

144

Use the setErrNum(), setErrTxt(), and getAlterrtext() object methods to augment
the return value and error text generated by a production object custom filter,
error, generic, and qualification functions. This allows you to add a unique
error number and error message to each function so that you can immediately
determine within which function the processing error occurred.

Use the setErrNum() and setErrTxt() methods to add an alternate error number
and error message to the error text generated by the production object. You
must use both of these methodsfor the getAlterrtext() method to function. These
methods do not replace the error number and error text generated by the
production object, but append extrainformation to the error message generated
by the production object, using the format

tran error text, which can contain line feeds
the alternate error text
rv = the alternate error number

When aprocessing failure occurs, the alternate error val ues displayed are those
of the last function that called one of these methods. For example, a custom
filter function that calls these methods fails, and then the error function
executed next also uses these methods. The error message generated by the
production object contains the alternate error text set by the error function, not
that set by the custom filter.

Also, when you use these methodsin afunction, they set the alternate error text
regardless of whether or not the function encounters a processing error.
Therefore, if thefunction that fails does not call the setErrNum() and setErrTxt()
methods, but a previously executed function did, the alternate error text
generated by the production object does not reflect the function where the
processing failure actually occurred.

Use the getAlterrtext() method to read the alternate error number and alternate
error message into an integer and string data variables. Thisis useful if you
want to perform specific actions in the production object error function
depending on which function encountered the processing error.

Note For detailed information about these functions, seethee-Bizlmpact ODL
Guide.

e-Biz Impact

CHAPTER 3 Building Production Objects

Creating datalink filters

Field (key)

Click datalink to define afilter that performs the specified operation between
the incoming data and the value in the specified datalink and places the result
in the datalink. The datain the current blob is always the first operand in the
eguation, asin: current blob data operation datalink. If the SFM isunable to
perform the specified operation, the filter fails.

Table 3-6: Datalink filter keys
Description

Datalink

The datalink with the value you want to manipulate with thisfilter. The datalink you
select for this type of filter operation must have anumeric datatype. In effect, this
option uses the data coming into the filter to operate in some way on the specified
datalink, and place the result in the datalink.

Click the down-arrow to theright of the field to select the name from alist of existing
datalinks. Click the ellipsisbutton to open the Datalink | nformation window to define
anew datalink.

Operation

Select the operation to perform on the selected datalink from the drop-down list of
operations.

Operation action

Datalink operation

Datalink types

Add theinput to the Add
datalink.

string, char, blob, float,

long, int, short, decimal

Subtract theinput from the | Subtract
datalink.

char, float, long, int, short,

decimal

Multiply thedatalink by the | Multiply
input.

char, float, long, int, short,

decimal

Dividethe datalink by the | Divide
input.

char, float, long, int, short,

decimal

Add 1 to the datalink. Increment

char, float, long, int, short,
decimal

TRAN-IDE Guide

145

Defining filter objects

Field (key)

Description

Subtract 1 from the
datalink.

char, float, long, int, short,
decimal

Decrement

Place theinput into the
datalink.

string, char, blob, float,
long, int, short, decimal

Clear the datalink value to
ZEero.

string, char, blob, float,
long, int, short, decimal

Clear

Perform a modulus
operation on the input by
the datalink.

char, long, int, short

Modulus

Creating edit mask filters

146

Click Edit Mask to create afilter that runs the edit mask against the datain the
current blob and replaces the data in the current blob with the result. If e-Biz
Impact isunableto run the edit mask; for example, if the datais not the correct
type for the mask, thefilter fails.

Table 3-7: Edit mask filter keys

Field (key) | Description
Edit Mask Enter the edit mask you want to use to massage the input
data.

You can filter and manipulate data with an edit mask as follows:
e Limit number of characters displayed.

e Suppress leading zeros.

e Add afixed or floating currency symbol.

¢ Add comma and/or decimal separators.

e Insert characters.

e Display plus (+) and minus (-) signs.

e-Biz Impact

CHAPTER 3 Building Production Objects

Input data

« Display negative valuesin brackets (<>).
* Non-printing decimal alignment.

When defining a mask, use the letter “x” to denote alphabetic dataand “9” to
denote numeric data. Usetheletter “z” to suppressthe display of leading zeros.
You can use the format “x (n)” where“n” is the number of alphabetic
charactersto display. You cannot place al phabetic and numeric editsin the
same mask. If the input data overflows the display limit defined by the edit
mask, the output data displays as asterisks (*).

You can insert any character into the output data by placing it in the edit mask.
Use the underscore character () to insert a space character. Place one

backslash (\) in front of any specia charactersyou insert (for example, $, +, -,
or other characters normally part of an edit mask). Use the caret symbol (") to
have non-printing decimal alignment in the output data. Place the caret in the

mask at the position you would normally place the decimal.

Table 3-8: Edit mask examples

Edit mask

Output

Description

001234.56

$z27,229.99

$ 1,234.56

Display field islimited to eight characters of numeric data
with the currency symbol fixed at the far left of the field.
The leading zeros are suppressed and the result displays
with comma and decimal separators

1234567

999\-9999

123-4567

Display field islimited to seven charactersof numeric data
with a dash inserted.

anderson

x(12)

anderson

Display field is limited to twelve characters of alphabetic
data.

1234.56-

$658,889.99-

$1,234.56-

Display field islimited to eight characters of numeric data
with afloating currency symbol. The result displays with
aminussign (-) if theinput data contains one.

34.56-

229.99;<229.99>

<34.56>

The output displays in brackets (< >) when input isa
negative value and displays without brackets when it isa
positive value.

Creating database interface filters

Click Database to create afilter that executes on a database interface object
Statement.

TRAN-IDE Guide

147

Defining filter objects

Field (key)

Table 3-9: Database interface filter keys
Description

Database Interface Object

Enter or select the database object to use to act on the input data. When you enter a
new name, click the ellipsis button to define the new database interface object.

Staterment Name

Select the statement to be executed against the current blob from the drop-down list.

Use Current Blob

Use the current data blob as input for the database interface object.

Allow 0 Result-rows

Select this option to prevent the filter from failing if zero rows are modified or
selected from the database.

Creating production object filters

Click Prod Obj to create afilter that runs a production object against the data
being filtered. The production object output goesinto the current blob, unless
the No Output option is selected. Thisfilter is used to set datalinks or perform
alternate processing of data based on the result of qualification objects.

The production object filter must be in the current project, but in a different
module from the one in which the filter object resides, and the production
object’ s static scope checkbox must be desel ected. The production object using
the filter object and the production object used as the filter object must not
share any objects, except datalinks.

Table 3-10: Production object filter keys

Field (key) Description

ProdObj Select a production object from the drop-down list of available production objectsin
other modules of the same project whose scope is global .

No Output Select this option to prevent the output of the production object being placed into the

current blob.

Creating DFC filters

Click DFCto create afilter that makesaDFC call from your production object.
This alows you to avoid using ODL to make the DFC call. Use thisfilter to
handle throughput issues.

Table 3-11: DFC filters

Name Description
Func Field Enter the name of thefield to use or the field from the drop-down list.
148 e-Biz Impact

CHAPTER 3 Building Production Objects

Name Description

Func DL If you do not dready have afunction field, you can use afunction datalink. If you do
have a function field and enter afunction datalink, the datalink isignored. To create
afunction datalink, typeit in the space provided or select one from the drop-down list.

Func Lit If you do not have afunction field or afunction datalink, you can useafunctionliteral .
If you do have either one of the other functions, the function literal isignored. To
create afunction literal, enter the name.

Flavor Thisisthe DFC function flavor. To increase or decrease the flavor, click the up or
down arrows to the right of thefield.

Timeout Thisis how long the DFC call waits for a response before timing out. To increase or
decrease the time-out, click the up or down arrows to the right of the field.

Fire and Forget Thisfunction sendsaDFC call, and does not wait for aresponse. When thisoptionis
selected, the timeout function isignored.

Flow Control This function appears only when the Fire and Forget option is selected. By enabling

thisfunction, you aretelling thefilter that on every “Nth” call, make ablock call using
the timeout function. Where “N” is the number of instances that can be spawned by
your server.

Changing filter objects

1 Inthe main TRAN-IDE window, click the Filtersicon.
Double-click thefilter you want to modify in the Filter Objects list.

2 When the Filter Information window opens, make your changes to the
data.

3 Click OK to update the Filter or click Cancel to cancel any changesto the
existing filter.

Deleting filter objects

TRAN-IDE Guide

You cannot delete the built-ins filter objects. To delete a user-defined filter:
e Inthe main TRAN-IDE window, click the Filtersicon.
* Sdect thefilter you want to delete in the Filter Objects list.

* Click Delete. When the dial og box displays asking for confirmation, click
Yes to complete the deletion or click No to cancel the deletion.

149

Creating table objects

Attaching post-filters to production objects
1 Click Pro-Obj in the main TRAN-IDE window.

2 IntheProduction Objects list, double-click the production objection to
which you want to attach a post-filter.

3 IntheProduction Object Information window, select Production Object |
Post Filtersfrom the menu bar. The Production Object Post Filterswindow
opens, displaying the filter objects that act on the output transaction.

You can build post filtersin any order, and use the spin buttons at the right
to reorder them.

4 You can perform severa operations from this window:

« Toview the contents of an existing filter, double-click thefilter in the
list.

e Toreusean existing filter, click Reuse, select thefilter in the Add
Existing Filter window and click OK.

e Toremove afilter from this production object, select the filter and
click Unlink.

¢ Click New to createanew filter. See“ Defining filter objects’ on page
96.

5 Click OK when you finish to save any changes and additions, and to close
the Production Object Post Filters window.

Creating table objects

Select View | Table Objects or click the Tablesicon in the main TRAN-IDE
window to display alist of al table objects defined in the current file. Thetable
objectslist may include a series of tablesthat are generic to e-Biz Impact or the
list may contain user-defined tables.

To beincluded in thislist, atable object file must reside on the current
workstation in the selected table object directory, and the filename must have
the three-character extension .thl.

150 e-Biz Impact

CHAPTER 3 Building Production Objects

Changing the Table Objects directory

Formatting tables

TRAN-IDE Guide

1

To change where TRAN-IDE looks for and saves tables, select Options |
Table Scan.

When the Table Object Directory dialog box opens, enter the directory
where you want TRAN-IDE to look for tablesin the Directory field.

Click OK.

Table objects can bein amulti-column format and contain as many columnsas
you require. You can load atable object that isin any format into the Table
Maintenance window and edit it.

e-Biz Impact supports these table formats:

Tag/Value A two-column table. The Tag column contains the datayou
expect to find in the incoming transaction; the Value column contains the
data you want put into the output transaction in place of the input data.
Saved in the Tag Value Table (* TBL) format.

Tokenized value A tag/valuetable that contains multiple pieces of data
(tokens) in the Tokenized Value column with each token separated by the
same character. An example of atokenized value field’'s dataiis:

name*addr”city*st*zip®ID"

Save thisformat in the Tag Value Table (* TBL) format.

Note Thistokenized value format was originally referred to as“ multi-
column” becausethe Value column simul ated multiple columns. However,
because TRAN-IDE still treats the entire value column as one column,
when you load a tokenized value table into the Table Maintenance
window, the tokenized value column is considered one column.

Multi-column A table that contains any number of columns. When you
use a multi-column table in afilter or qualification object, specify which
column to search on for a match to the datain the current blob and which
columnsto placeinto the output transaction if data matches.

151

Creating table objects

Creating tables

152

To create anew table, click the Tablesicon in the main TRAN-IDE
window, then click New below the Table Objectslist in the left pane. The
Table Maintenance window opens.

Note When you have existing tables, double-click the table name in the
Table Objects list. TRAN-IDE loads the table in the Table Maintenance
window.

Enter the Table Name. The name can be a maximum of eight characters
and contain only letters, numbers, and the underscore (_) character.
TRAN-IDE uses this name to reference the table in arule object.

Warning! All table names must be in lowercase | etters.

Enter an optional Description of the table's content.
Add the columns that you need:
a Click Add Column. The Add Column window appears.

b Enter the Column Name, then sel ect the Datatype from the drop-down
list—raw, alpha, or numeric.

Warning! You can access the Datatype only when you first build the
table.

C Repeat steps 7aand 7b for each column you need in the table. You
now have columns, but no data. Now you need to add rows and the
data that each row contains.

d To specify that a column cannot have any duplicate entry, click Edit
Column, select Key in the Column Information window, then click
OK.

After you add columns, click Add Row to add a new row. The row you
added is highlighted in the display pane. Add the row data:

a IntheCell Vauefield, enter the datafor the cell where the row and
column intersect, then press Enter.

e-Biz Impact

CHAPTER 3 Building Production Objects

TRAN-IDE adds the data and also adds default data to the other
columnsin the row. If the column’s datatype is alpha or raw, the
default datais double quotes (“”). If the column’s datatype is numeric,
the default datais a zero (0).

b Edit the default data for the new row.
Repeat step 5 until you build all of the necessary rows.
6 To change any table data:

¢ To change column data, click Edit Column in the Table Maintenance
window. You can change the column name and whether the columniis
akey, but you cannot change the datatype.

e Tochange cell data, highlight the cell you want to change, enter the
new value in the Cell Valuefield, and press Enter.

« Todeletearow, select therow in the display pane, then click Remove
Row.

7 Click Save Asto savethetablefor thefirst time or under adifferent name
if you are editing an existing table. By default, TRAN-IDE savestablesin
the multi-column format—TableFiles (* TBL). To save an old tag/value or
tokenized valuetableinitscurrent format, select Tag Value Table (*.TBL)
in the Save Asfield.

Note See“Table Maintenance window fields’ for additional details about
each field.

Table Maintenance window fields

The Table Maintenance Window contains these fields and options, in addition
to the display pane in the center of the window, where the actual table data

displays.

Field (key) Description

Table Name Enter the name of the table. The name can be a maximum of eight characters
and contain only letters, numbers, and the underscore () character. TRAN-
IDE uses this name to reference the table in arule object.

Description Enter an optional description of the table's contents.

Row Thisfield isonly for reference and displays the row where the cursor is currently
located. Row numbering starts at zero (0).

Column Thisfieldisonly for reference and displays the column where the cursor is currently

located. Column numbering starts at zero (0).

TRAN-IDE Guide

153

Creating table objects

Field (key)

Description

Page

The page number you are viewing. There are 50 rows to a page. To view a different
page, enter the page number in the field or click the up and down arrows until you
reach the desired page number, then press Enter.

Width

The width of the currently selected column, between 1 and 40 characters. Enter a
valuein thisfield and press Enter or click Update to change all columnsto that width.

Cell Value

The data to enter in the selected cell. Also displays the contents of the currently
selected cell.

Search

Allows you to search for arow in the table. You only the currently selected column.
Sel ect the column in which you want to search for data, then enter the value for which
to search in thisfield and press Enter or click Go.

If the value is present, TRAN-IDE highlights the value in display pane and displays
therow’sdatain Cell Valuefield. If the valueis not present, TRAN-IDE displays a
message that prompts you to select Add Row to add the row to the table.

Search is case sensitive, so asearch for “jane doe” will not match on the value “ Jane
Doe”.

Default Row

Select this option to mark the currently selected row as the table’s default row. A
default row has an asterisk (*) following its values in the display pane.

Add Row button

Adds arow to the end of thetable. The cursor rests on the far Ieft column of the new
row. Enter thevalueto enter in thiscell inthe Cell Valuefield and press Enter. TRAN-
IDE places empty strings ("") or zeros (depending on a column’s datatype) into the
other columns. Use the Cell Value field to edit the other columns in the new row.

Input Modes

Specifies how the cursor responds when you add the data that entered in the Cell
Valuefield.

« Cell —after entering the datain the Cell Valuefield, the cursor remains on that cell.

* Row — after entering the datain the Cell Valuefield, the cursor moves to the next
row down. If the data was entered in the last row, the cursor remains there.

¢ Column — after entering the datain the Cell Value field, the cursor movesto the
next column to the right. If the data was entered in the last column, the cursor
remains there.

¢ Add Row —when you have Row or Column chosen and sel ect this option, you can
add rows to the end of the table by simply pressing Enter. The data entered in the
new row replicates the data that the cursor highlighted when you pressed Enter or
the datain the Search field.

Button

The Table Maintenance window also has these buttons;

Description

Add Row

Adds arow to the end of the table using the value in the Search field for the selected
column cell. Empty strings ("") or zeros (depending on a column’s datatype) into the
other columns. Use the Cell Value field to edit the other columnsin the new row.

Remove Row

Removes the entire row of the currently cell.

154

e-Biz Impact

CHAPTER 3 Building Production Objects

Button Description

Add Column Opens the Add Column window, which allows you to add a column after the table’s
last column on the right.

Edit Column Opens the Column Information window. You can change the column name and
whether the column is akey column. You cannot change the datatype.

Update Adjustsevery columnto thevalue specified in thewidth field, or changesthe sel ected
cell’s data to the data that you enter in the Cell Valuefield.

Import Opens the Table Import window, which allows you to import afile from which to
build atable. See “Importing table objects’ on page 155 for instructions.

Save Saves a new table with the name you enter or saves an existing table with the same
name.

Save As Saves anew table with the name you enter pr saves an existing table with a different
name.

Close Closes the window after asking if you want to save any changes.

Importing table objects

1 Toimport afilefromwhichto build table objects, click Import inthe Table
Maintenance window. Use this window to identify the ASCII text file to
import into the table object or the tag/value table to load. You do not need
to use the Table Import window to load atag/value table.

When importing an ASCI| text fileto build thedatain atable, TRAN-IDE
uses “ Col#" asthe namefor each columnwhere#is1, 2, 3, etc., and uses
“raw” asthe datatype for each column. After importing the file, you can
edit the column and change its name; however, you cannot change its
datatype.

Note When youimport afileinto atable, thefile's contents overwrite any
existing datain the table. Use the import option only on an empty table.

2 Complete these options:

Table 3-12: Table Import window keys

Field (key) Description

Import Type The choicesin this box identify whether you are importing a tag/value table or an
ASCII text file.

TRAN-IDE Select thisto import atable object that isin the tag/value format. You do not need to

Tag/Value Table use the Table Import window to load a tag/value table into a table object.

Custom Select this to use the contents of an ASCI| text file to build the Table object.

TRAN-IDE Guide 155

Creating table objects

Field (key)

Description

Separators

Thesefieldsidentify the file or table to import, as well as metadata. When a TRAN-
IDE tag/value table is selected for the Import Type, the Table Path field is the only
available option here.

Table Path

The path to and name of thefile or tag/value table to import. By default, this field
displays the default directory location as specified in the Table Object Directory
window.

Row Separator

The character separating each row in the file. If the row separator is a printable
character, type that character in thisfield, otherwise type the octal value for the row
separator. If the rows are separated by both a carriage return and aline feed, type the
octal valuefor alinefeed in thisfield.

Column Separator

The character separating each column in thefile. If the separator is a printable
character, type that character in thisfield, otherwise type the octal value for the
separator.

If the columns in the file have open and close token separators instead of asingle
column separator, leave this field blank.

If the columnsin the file have both open and close token separators and a column
separator, leave thisfield blank. You do not need to specify acolumn separator when
using open and close token separators.

This character is not included in the data loaded into the table.

Open Token Separator

The character at the beginning of each column’s data, for example, the bracket “[“
character in“[Dublin]”. This character is optional and need not be present in thefile,
but whenitis present, there must also be aclose token separator. This character isnot
included in the data loaded into the table.

Close Token Separator

The character at the end of each column’s data; for example, the bracket (]) character
in“[Dublin]”. This character isoptiona and need not be present in the file, but when
itispresent, there must al so be an open token separator. This character is not included
in the dataloaded into the table.

3 Click Load. TRAN-IDE loadsthefileinto the Table M ai ntenance window

and attemptsto build a table object with the data contained in the file.

4 Tosavethetableobject, click Save or Save As.

Working with key columns and duplicate entries

156

When you make duplicate column entriesin a column that has the Key option
selected in the Column Information window, you see this message:

Duplicates found. Column[column name] unique property
removed.

e-Biz Impact

CHAPTER 3 Building Production Objects

This means that TRAN-IDE unselected the Key option for the column that
contains duplicates. Click OK.

When you make duplicate entriesin acolumn that does not havethe Key option
selected, but then edit the column and select the Key option, you see this
message:
Col [column name] has [#] duplicate[entry]. Edit
duplicates now?

Select OK to open the Edit Duplicates window. If you click Cancel, TRAN-
IDE unselects Key in the Column Information window.

When you edit duplicate keys, complete these options:

Item Description

Column Name Displays the column name. You cannot edit this information.

Row and Displays the duplicate column values.

Duplicate Value + Row — displays the ordinal position of the rows containing the duplicate values

(thefirst row is always at 0 position).

» Duplicate Value —displays the duplicate val ues.
Highlight the row containing the datayou want to change, then use the Valuefield to
edit the data.

Value Displays the datain the highlighted row. Type anew value in the field.

When you finish, click Done to save the changes and close the window.

Note If acolumn has duplicate entries and the column is marked as a search
(key) columnin afilter or qualification object, the SFM performs alinear
search of the table, otherwise, it performs a binary search, which takes less
time.

Deleting table objects

TRAN-IDE Guide

To delete atable object:
1 Inthe TRAN-IDE window, click the Tablesicon.

In the Table Objects list, select the table you want to delete.
2 Click Delete.

When a prompt asks you to confirm the deletion, click Yesto delete the
table, or click No to cancel the deletion.

157

Defining qualification objects

Defining qualification objects

A qualification object determines the criteriafor the data in an incoming
transaction, and whether the SFM should process a transaction through a
specific production, rule, rule component, or node component object. A
qualification object contains one or more:

e Input fields or datalink object references, which is required
e Literal values

¢ Operation codes

e Custom code references

e Table object references

e Options

If the data meetsthis criteria, the datais passed on to the qualification object’s
parent object for further processing. The parent object can be a production
object, rule object, or rule component, or node component object.

You can run the qualification object against either the datain an input field, or
the datain adata object. Node attribute data can also be qualified for tree fields.

[ICreating qualification objects

1 Inthemain TRAN-IDE window, select View | Qualification Objects or
click the Qualify icon to display all qualification objects defined in the
current module.

2 Tochange an existing qualification object, double-click the object’s name
in the Qualification Object list.

To create anew qualification object, click New beneath the Qualification
Object list.

Note To delete aqualification object, select the object’s name in the
Qualification Object list and click Delete.

The Qualification Object Information window appears.

3 Completethese options, then select the type of qualification objection you
want to create.

Table 3-13: Qualification object keys

Field (key) Description
Name Enter areference name for the qualification object.
158 e-Biz Impact

CHAPTER 3 Building Production Objects

Field (key)

Description

FIdObj

The name of the field object whose contents you want to qualify. Enter in the name
or select the name from the drop-down list.

Datalink

The name of the datalink object whose contents you want to qualify. Enter in the
name or click the down-arrow to the right of the field to select from alist of al
datalink objects. Click the ellipsis button to create a new datalink object.

FIdAttr

For tree fields only. Select the attribute from the drop-down list to qualify it's data.

Optional

When this option is selected, it makes the qualification object’s criteria optional,
which allows you to use AND/OR logic.

For example, you could have three qualification objects, one that checks that an age
field'sdatais between 25 — 35, another that checks for arange of 45— 65, and thelast
that checks for a specific heart condition. If the first two qualification objects have
Optional selected, and the last one does not, then the incoming data must satisfy
either of the qualification objects that specify the age range and it must also satisfy
the heart condition qualification object.

If al of the qualification objects for a production object have Optional selected, the
incoming data must satisfy at least one of the qualification objects before e-Biz
Impact continues processing.

Ignore

Qualification
object type

When selected, it causes SFM to not process the transaction even though the
transaction passed production object qualification. During transaction production, if
the transaction qualifies for only one production object and a qualification object
attached to the production object has this selected, then SFM returns a value greater
than O to the Acquisition AIM but does not log or process the transaction.

This option allows you to process only a subset of a certain transaction type without
having to send the transactions you do not want to processto the NullDest destination.

4 Select the qualification object you want to create. The options on theright
of the window change depending on the qualification option you select.
Supported qualification objects are:

Description

Table Object The SFM checksthe datain the Qualification Object I nformation windows's FIdObj
or Datalink field against the tag field or key column in each item of the referenced
table until it finds amatch. See “ Creating table object qualifications’ on page 160.

Custom Code The SFM executesthe ODL logic in the qualification function. See” Creating custom
code qualifications’ on page 160.

Built-in The SFM executes the selected built-in qualification function against the datain the

TRAN-IDE Guide

Qualification Object Information windows's FIdObj or Datalink field. See“Using
built-in qualifications’ on page 163.

159

Defining qualification objects

Qualification
object type

Description

Compare Operations

The SFM performs a specific comparison operation between the datain the
Qudlification Object Information windows's FIdObj or Datalink field and aliteral, or
the contents of another datalink object, or the contents of another input field. See
“Using compare operation qualifications’ on page 167.

DB Object

The SFM executes the database interface object. See “Creating DB object
qualifications’ on page 168.

Bitwise

e-Biz Impact performs a bitwise operation on the contents of the Qualification Object
Information windows's FIdObj or Datdink field. See “Creating bitwise operator

qualifications’ on page 168.

5 Whenyou complete your entries, click OK to save the qualification object
and close the window.

Creating table object qualifications

Create table object qualifiers to have the SFM check the datain the
Qualification Object Information windows's FIdObj or Datalink field against
the tag field or key column in each item of the referenced table until it findsa
match. If thereis no match, this qualification object fails. Table objects are
different than collection tables, discussed in the e-Biz Impact ODL Guide.

Table 3-14: Table object keys

Field (key) Description

Table Object Name The name of the table object to use for qualification. Enter atable object’s name (8
characters maximum) or select an existing table from the drop-down list. Click the
ellipsis button on the right to build a new table object or view the contents of the
selected table object.

Key Column For use with multi-column tables only. Thisis the column that e-Biz Impact should
use to compare against the datain the referenced field or datalink object.

Not Match When selected, the qualification object fails if the value in the selected field object

Creating custom

160

or datalink matches avalue in the table.

code qualifications

Choose this option to have the SFM execute the ODL logic in the quaification
function. If the function returns zero (0), the object fails.

1 Click Custom Code.

e-Biz Impact

CHAPTER 3 Building Production Objects

Field (key)

2

Enter the Custom Function Name, which is the name of the custom
qualification function you want executed, or select the name of an existing
qualification function from the drop-down list.

Click the ellipsis button to build the new qualification function or edit an
existing function. The Qualification Function window displays.

Write the custom qualification function in the text editor pane. Click Load
to load atext file into the function. Click Append to load atext file to
append on to the function.

Description

Public

Setsthe qualification function statusto “ public.” This meansthat modules other than
the current module can use this qualification function. The default is“static,” which
meansthat only the production objectsin the current modul e can use the qualification
function.

Argument

The content of the “fldval” argument passed to this function is the current value of
either the field object or datalink object you select when defining the qualification
object that executes this function.

Goto Line#

Moves the cursor to the specified line of ODL text in the function. Enter the line
number to go to then press Enter. The ODL text editor moves the cursor to the
specified line of text and highlightsit.

Click once on the text or use an arrow key to deselect it before typing any characters,
otherwise the highlighted line is deleted and replaced with the new characters.

DFC's

To view alist of the current DFC commands, select a DFC from the drop-down list.
To define anew DFC command, click the ellipsis button. The Distributed Function
Declaration Window opens. See the e-Biz Impact MSG-IDE Guide for more
information.

Datalink

Datalinksallow you to share datawith other functionsand TRAN-IDE objects, which
can aso change the datain the datalink. To view alist of the current datalink
definitions, select adatalink from the drop-down list. To define anew datalink, click
the ellipsis button.

Module

TRAN-IDE Guide

5

To place the qualification function into a different module, select the module from
thedrop-down list. If you placethequalification function into adifferent module, you
must make the function public.

When you finish, select from these options:

¢ OK —save the qudification function without closing the window.

e Save - savethe qualification function and close the window.

e Cancd — cancel the qualification function, exit and close the window.

e Print — print the qualification function.

161

Defining qualification objects

Writing custom qualification functions

Qualification object
attached to

When the Qualification Function window appears, you create a qualification
function by entering any of the ODL logic supported by the Object Definition
Language (ODL). Refer to the e-Biz Impact ODL Guide for information about
ODL.

You can use qualification functionsin qualification objectsthat are attached to
field, production, rule, and rule component objects. Use qualification functions
on field and production objects to determine if a specific production object
should process the incoming transaction. Use qualification functions on rule
and rule component objectsto determineif the SFM should run theruleor rule
component on the part of the transaction currently being processed.

The quadification function return value indicates if e-Biz Impact should
continue processing the transaction through the TRAN-IDE object that this
function qualification object is attached to. A return value of zero (0)
terminates processing. A return value of 1 (one) alows processing to continue.
During processing, the point at which e-Biz Impact executes a qualification
function depends on the TRAN-IDE object type.

The following table:

¢ Showsthefour types of TRAN-IDE objectsto which qualification objects
can be attached.

¢ Describes at what point during processing the SFM executes the
qualification object’s associated qualification function.

e Showswhat occursif the function returns a value of zero (0).

Qualification function executed

Field Object

Executed after the incoming transaction passes parsing and datatype validation and
beforeit is processed by the production object. If the function returns zero (0), the
SFM sends the transaction on to the first production object in the next transaction
production project file.

Production Object

Executed after the incoming transaction passes parsing and datatype validation and
beforeit is processed by the production object. If the function returns zero (0), the
SFM sends the transaction on to the next production object.

Rule Object

Executed before the incoming transaction enters the rule object for processing. If the
function returns zero (0), the SFM skips this rule object and goes on to the next rule
in the production object.

Rule Component Object

162

Executed before the incoming transaction enters the rule component object for
processing. If the function returns zero (0), the SFM skips this rule component object
and goes on to the next rule component in the rule object.

e-Biz Impact

CHAPTER 3 Building Production Objects

Using built-in qualifications

1 SdectBuilt-insto havethe SFM execute the selected built-in qualification
function against the data in the referenced field or datalink object. If the
function returns false (0), this qualification object fails.

2 Inthe Built-in Function Name field, enter the name of the built-in
qualification function to run, or select the name from available built-in
qualification functions from the drop-down list. See “Built-in
qualification functions’ on page 163 for a description of each available
function.

3 Inthe Argsfield, enter the arguments to pass to the built-in qualification
function.

4 Click OK to save the function.

Built-in qualification functions

dbExist
Description

Arguments

dbNotExist
Description

Arguments

isDate
Description

TRAN-IDE Guide

The following built-in qualification functions are avail able:

Verifiesthe existence of datain the specified collection file. Use thisfunction
before using the dbSelect built-in filter function when you cannot be certain if
dataisin acollection file.

Must match the pattern string in the Qualification Object Information
windows's FIdObj or Datalink field.

Verifiesthat datais not present in the specified collection file. Usethisfunction
before using the dbinsert built-in filter function to verify that thereisno datain
the collection file that the dbinsert operation would overwrite.

Must match the pattern string in the Qualification Object Information
windows's FIdObj or Datalink field.

Performs a byte-by-byte comparison of the content in the Qualification Object
Information windows's FIdObj or Datalink field to the date format specifiersin
the argument string. If they match, the function returns true (1).

163

Defining qualification objects

Arguments L
Argument Description

YY The last two digits of the year.
YYYY The year.

jij The Julian date (0 — 365).
JiJ The for Julian date (1 — 366).
mm The month (1 -12).

dd Theday (1—31).

w The day of the week (0 - 6).
w The day of the week (1-7).

Any other character must match the data in the Qualification Object
Information windows's FIdObj or Datalink field.

If the referenced object’s data contains at least the month and day, then isDate
aso verifiesthat the dateis valid (for example, “9 —31” isinvalid). To verify
leap year dates, the referenced object must contain the month, day, and year.

Because isDate compares each format specifier in the argument string to one
byte of datain the referenced field or datalink object, the bytes of data must
exactly match the format specifiers. For example, if the datafor the month is
“3" instead of “03”, usethe“m” argument instead of the “mm” argument.

Examples e vvy/mm/dd w—Intheincoming data, the year, month, and day must each
be two characters. The two slashes (/) and the space character must be
present in the data exactly as entered in the argument string.

e JJ—Intheincoming data, the Julian date can be only two characters,
specificaly, from 01 to 99.

* m-YYYY—Intheincoming data, the month can only have one character,
from 1to0 9, and the year must have four characters. The dash must be
present in the data, exactly as entered in the argument string.

isMatch

Description Compares the content of the Qualification Object Information windows's
FIdObj or Datalink field to the argument string. If they match, the function
returns true (1).

Arguments Must match the pattern string in the Qualification Object Information
windows's FIdObj or Datalink field.

164 e-Biz Impact

CHAPTER 3 Building Production Objects

isNotMatch
Description

Arguments

isNotRegEx
Description

Arguments

isRegEx

Description

Arguments

Examples

TRAN-IDE Guide

Compares the content of the Qualification Object Information windows's
FIdObj or Datalink field to the argument string. If they do not match, the
function returnstrue (1).

Must not match the pattern string in the Qualification Object Information
windows's FIdObj or Datalink field.

Checks the content of the Qualification Object I nformation windows's FIdObj
or Datalink field for the regular expression in the argument string. If it is not
present, the function returns true (1). You can use asimple literal or aUNIX-
style regular expression.

The regular expression in the Qualification Object Information windows's
FIdObj or Datalink field.

Checks the content of the Qualification Object | nformation windows's FIdObj
or Datalink field for the regular expression in the argument string. If itis
present, the function returns true (1). You can use asimple literal or a UNIX-
style regular expression.

The regular expression in the Qualification Object Information windows's
FIdObj or Datalink field.

Because isTime compares each format specifier in the arguments string to one
byte of datain the Qualification Object Information windows's FIdObj or
Datalink field, the bytes of data must exactly match the format specifiers. For
example, if the datafor the minutesis“7” instead of “07”, use the “m”
argument of mm. However, “xx” must always contain two characters, and
“zzz" must always contain three-characters.

* hh:mm xx—Intheincoming data, the hour and minutes must each be two
characters. The colon and the space characters must be in the data exactly
as entered in the argument string.

* ss:m:H—Intheincoming data, the seconds must be two characters, ie.
from 01 to 59, and the minutes and hour can only be one character each,
ie. from 0to 9.

When you use the isRegEx() and isNotRegEx() qualification functions, the
regular expression in the argument string can contain special symbols so the
value matches arange of valuesin the data area.

165

Defining qualification objects

Symbol

Description

Brackets define arange of characters to match a single character position.
Example—"abc [def]g” matches“abcdg”, “abceg”, or “abcfg”.

A period matches any single character except newline.

" ou n o

Example—"“abc.g” matches“abcag”, “abebg”, “abeeg”, and so on.

An asterisk matches any character or characters.
Example—"a*" matches“aa”, “a9”, “a+", “az”, and so on.

A caret at the start of an expression causes a match only on the initial segment of a
line. If the caret precedes astring in brackets, amatch occurs on any character except
the charactersin the string and new line.

Example—"abc [*def] g” matches the same values as the expression “abc . g”

”

except the strings “abcdg”, “abeceg”, “abefg” and “abe (newline) g”.

A plussign following aregular expression means one or more times.
Example—"[1-5]+" isequivalentto“ [1-5] [1-5] *".

A dollar sign asthelast character of aregular expression anchors the expression to
theend of aline. The stringsthat end in the expression's charactersjust preceding the
$fulfill the search criteria.

Example—"abs” matches “erafxab” but not “abrefok”.

e Iftheminussignisinan expressionin brackets, it indicates astring of consecutive
values.

Example—" [a-e]” isequivalent to “ [abcde]”.
e If theminussignisthefirst or last character in brackets, it appears as itself.
Example—" [- [1” matches the characters“-" and “ [“.

{m} {m.}

{mu}

Integers that specify the number of timesto apply the preceding regular expression.
“m” isthe minimum number and “u” is a number in the range of 0 —255. The
expression “ {m}"” by itself indicates the exact number of times the preceding regular
expression isto be applied. The expression “ {m, }"” specifies” {m, infinity}".

O

Use parentheses to group other expressions. Operatorslike*, {}, and + can work on
aregular expression enclosed in parentheses () as well as on asingle character.

Examples

166

You can use any of the above charactersastheir own value by preceding the character
with abackslash. The backslash works on only one character at atime.

Example—"“aB\ .\ *cD” resolvesto theliteral “AB. *CD”".
To scan for the string “ [Task-01]1 c:>", where the numbers can change
to any other numbers, use:
\ [TASK-[0-9] [0-9]\] C:.>

To accept avalue without case sensitivity, follow the example below. This
exampl e accepts any combination of these letters, but in the correct
sequence, to make the word date.

e-Biz Impact

CHAPTER 3 Building Production Objects

[Dd] [Aa] [Tt] [Ee]

To enter an octal value, enter the character in theform “\134”.

Using compare operation qualifications

Select Compare Oper to have the SFM perform a specific comparison
operation between the data in the Qualification Object Information windows's
FIdObj or Datalink field and aliteral, or the contents of another datalink object,
or the contents of another input field. If the comparison operation fails, this
qualification object fails.

Field (key)

With compare operations, the content referenced in the Qualification Object
Information windows's FIdObj or Datalink field is the first operand in the
equation and the Literal Value/Datalink/Input Field value listed below the
operation isthe second operand, asin“Field oObject/datalink”
“operation” “Literal Value/datalink/Field Object”.

Description

Oper

Enter the operation to use between the Qualification Object Information windows's
FIdObj or Datalink field and the Literal Value/Datalink/Input Field value, or choose
the operation from the drop-down list. Available operations are

Equal — the first operand is equal to the second operand.

Not Equal — the first operand is not equal to the second operand.

Less Than —thefirst operand is |ess than the second operand.

Greater Than — thefirst operand is greater than the second operand.

Less/Equal —thefirst operand is less than or equal to the second operand.
Greater/Equal — the first operand is greater than or equal to the second operand.
Missing — the first operand was not found in the incoming transaction.

Not Missing —the first operand isin the incoming transaction.

Empty — the first operand does not contain data.

Not Empty — the first operand does contain data.

inRange — the first operand is between the two valuesin the literal range (to be
entered as “low,high”; for example, “3,6").

outOfRange —the first operand is not between the two values in the litera range
(to be entered as “low,high”; for example, “3,6").

TRAN-IDE Guide

167

Defining qualification objects

Field (key)

Description

Literal Value

The byte-sensitive value against which therelated input field is compared. Be careful
when entering a Literal Value to match it to an expected input field value.

If you choose the Missing, Not Missing, Empty, or Not Empty operation, select
Literal Value and enter any value. The SFM ignores this value for these four
operations but still requires an entry in the field.

If you choose the inRange or outOfRange operation, asingle field appears. Put the
range in thisfield. The two range boundaries must be integers separated by acomma.
For example, if the number must be between 13 and 35, the literal range would be
“13,35". If therangeisinvalid, the qualification object fails.

Datalink

Select to use the contents of adatalink as the second operand. Enter the name of the
datalink object or click the down-arrow to the right of the field to choose from alist
of existing datalink objects.

Input Field

Select to use the contents of afield object as the second operand. Enter the name of
thefield object select the input field from alist of existing field objects.

Creating DB object qualifications

Field (key)

Select DB Object to have the SFM execute the database interface object. If it
does not return at | east one row, this qualification object fails. See the database
interface object section of the e-Biz Impact MSG-IDE Guide for more
information.

Table 3-15: DB object keys
Description

Database Interface Object

Enter the name of the database object you want to act on the input data, or select the
name of an existing database object from the drop-down list. Click the ellipsis button
to open the Database Interface Object window and define a new database interface
object.

Statement Name

Select the statement to execute from the drop-down list of statementsin the database
interface object.

Not Match

When this option is selected, the qualification object succeedsif the SQL statements
in the database interface object fail.

Creating bitwise operator qualifications

168

Select Bitwise to have e-Biz Impact perform a bitwise operation on the
contents of the Qualification Object Information windows's FIdObj or Dataink field.
The actual contents of the FIdObj or Datalink are not changed. If the result of the
bitwise operation isfalse or zero (0), the qudlification fails.

e-Biz Impact

CHAPTER 3 Building Production Objects

Table 3-16: Bitwise keys

Field (key) Description

Operator Select the bitwise operator from the drop-down list to use on the contents of the
Qudlification Object |nformation windows's FIdObj or Datalink field. Available
operators are;

* On-thebitindicated by the Bit Loc field is on. The bits of the field object or
datalink are numbered from left to right, starting with zero (0).

« Off —thebit indicated by the Bit Loc field is off. The bits are numbered from left
to right, starting with zero (0).

¢ & —performs abitwise AND between the referenced field object or datalink and
the value provided for Literal Value/Datalink/Input Field.

¢ |—performs ahitwise OR between the referenced field object or datalink and the
value provided for Literal Value/Datalink/Input Field.

e " —performs abitwise EXCLUSIVE OR between the referenced field object or
datalink and value provided for Literal Value/Datalink/Input Field.

e >>—performsaright bit shift. The newly opened places are filled with zero.
Supply the number of placesto shift in the Literal Value/Datalink/Input Field
fields.

o <<—performsaleft bit shift. The newly opened places arefilled with zero. Supply
the number of placesto shift in the Literal Value/Datalink/Input Field fields.

e ~—performs abitwise complement. For example, if you have“0101”, the
complement is“1010”.

Bit loc Thisfield appears only when on or off is chosen as the operator. Select the bit you
want to evaluate. If the bit selected is beyond the scope of the data, the Qualification
fails.

Literal Value Thisfield appearsonly when &, |, *, <<, and >> operators are used. Select thisto use
aliteral value as the second operand. Enter avalue in the entry field.

Datalink Thisfield appearsonly when &, |, », <<, and >> operators are used. Select thisto use
the contents of adatalink asthe second operand. Enter the name of the datalink object
or select the Down Arrow to choose from alist of existing datalink objects.

Input Field Thisfield appearsonly when &, |, *, <<, and >> operators are used. Select thisto use
the contents of a Field object as the second operand. Enter the name of the Field
object or select the Down Arrow to choose from alist of existing Field objects.

Attaching qualification objects to rule components
To attach a qualification object to a rule component:

1 Inthemain TRAN-IDE window, select View | Production Objectsor click
the Pro-Obj icon in the main TRAN-IDE window.

TRAN-IDE Guide 169

Defining data objects

2 Double-click an production object in the Production Objectslist. The
Production Object Information window opens.

3 Select Production Object | Qualifications from the menu bar. The Current
Qualifications Objects window opens.

4 Theoptionsare:

Field (key) Description

(display pane) List the quaification objects in the current production object.

New Click New to open the Qualification Object Information window and cresate a new
qualification object. See “ Defining qualification objects’ on page 158 for
instructions.

Reuse Click Reuse to add qualification objects from other production objectsin this

production object. The Add Existing Qualification Object window opens. Select a
qualification object from the list, which displays existing qualification objects for
other production objects. Click OK to add the select object to the Current
Qualification Objects list.

Unlink Click Unlink to remove the selected qualification object from the list.

Post-Qualify Rule Select an existing output rule from the drop-down list to run after the qualification
object. You can also enter the name of anew rule. Click the élipsisbutton to open the
Current Output Rule window where you add information for anew rule or modify an
existing rule.

5 Whenyou finish, click OK to save your entries and close the window.
Click Cancel to close the window without saving your entries.

Defining data objects
To define a data object:

1 Inthe TRAN-IDE main window, select View | Data Objects or click the
Variablesicon to display alist of all data objectsdefined in the current file.

2 Todefine anew data object, click New below the Data Objects list.

170 e-Biz Impact

CHAPTER 3 Building Production Objects

Field (key)

To edit an existing variable, double-click its name in the Data Objectslist.

Note To delete data objects, select the object’s name in the Data Object
list and click Delete.

The Datalink Information window appears where the Name and Type
fields define the data object.

3 Complete these fields and options:

Table 3-17: Data object keys
Description

Name

The name you want to assign to the data object.

Module

The name of the module where you want TRAN-IDE to place this data object.

Type

The datatype of the data object. You can choose any one of the itemsin thelist. To

view al the options, click the down-arrow at the end of thisfield. Options include:

blob, string, integer, long integer, short integer, character, clFile, and decimal.
You can aso create aone dimensional array of any type. Type “nn”, where “nn” is

thesizeof thearray, after thetype (for example, “string [30]” would createan array

of 30 strings). In acharacter array, the size of the array should be the same as the
number of charactersin the field object’s data area, because e-Biz Impact fills the
array by placing thefirst character from the data areaiinto the first array element, the
second character from the data area into the second array element, and so on. A rule
component object cannot accesstheindividual elementsof thearray. Accessthearray
elements using ODL code in custom filter functions.See “Writing custom filter
functions” on page 142.

Public

Sets the datalink to a“public” status. This means that different modules can usethis
datavariable. The default is“static” (unselected), which mean that only the
production objectsin the current modul e can use the datalink. In most cases, you want
to place all public datalinks in their own module.

Display

TRAN-IDE Guide

Shows the current value of the datalink.

4 Whenyou finish, click OK to save the data object (variable) and close the

window.

171

Writing error functions

Writing error functions

Rule objects and production objects use error functions, which are described in
this section.

Error functions attached to rule objects

When an error function is attached to arule object, e-Biz Impact executes the
error function when an error is encountered while processing the rule object,
its components, and filters. An error function attached to arule object can
attempt to correct problems encountered during transaction. The error function
can look for and attempt to repair the most common errorsthat halt transaction
processing, such as a transaction containing an unexpected item that needs to
be added to atrandation table.

When an error function attached to a rule can repair the data in the blob, the
error function should return avalue of 1 (one) to indicate that processing can
continue.

If the error function attached to the rule cannot return the datain the blob to a
state where e-Biz Impact can continue, the function must return a value of 0
(zero). e-Biz Impact then executes the primary error function, which isthe
error function attached to the production object.

Writing rule object error functions

172

Error recovery happens only at the current production rule failure level and
never at the production object level. A production rule that allows for error
recovery should execute only one operation. Group components carefully
when making production rules; for example, layout on paper how the output
should look.

Below isasample error recovery function. The input component isafield that
can have anull value in the input transaction, but the output transaction
requiresanumber that isfour charactersin length, left justified, and zerofilled.
Thefilter that would fail, and call thisroutine, isatable. Tables cannot contain
null values and thisisasimple way around the problem. In more critical areas,
adifferent error recovery scheme could be used.

e-Biz Impact

CHAPTER 3 Building Production Objects

if (reason == 7)

{pb->set ("0000") ;

// using the set blob method to replace the
// blob contents

return 1;

}

return O;

Returning a 1 from an error function allows the production object to continue
with the production rule following the one that failed. Components within the
production rule that follow the error are not executed.

Error functions attached to production objects

An error function attached to a production object cannot change the contents of
the blob, and, thus, cannot attempt to repair the error. Error functions at this
level should notify an administrator that an unrecoverable error has occurred,
and, if desired, e-mail the administrator the blob contents.

Error functions attached to production objects must always return a value of
zero (0) to indicate that all further processing of the transaction by the current
production object should end because the error cannot be repaired. When the
SFM executes the error function, the production object stops processing the
current input data, deletes all fields built so far for the current output
transaction, and waits for the next input transaction.

Writing production object error functions

Production object error functions receive the same arguments as rule error
functions. Use production object error functionsto log the transaction in afile
or perform whatever logging is necessary so the transaction is not |ost.

After the SFM enters this function, no further transaction recovery for the
current production object can be attempted. When this function exits, e-Biz
Impact exits the production object and continues with the next production
object in sequence.

Production object methods

TRAN-IDE Guide

There are two production object methods used in error functions to extract
information from the error text generated by the production object and to dump
information about aruntime error to the xlog file—geterrtext() and debug(). For
more information about these methods, see the e-Biz Impact ODL Guide.

173

Writing error functions

Alternate error return values

174

Use the setErrNum(), setErrTxt(), and getAlterrtext() production object methods
to augment the return value and error text generated by a production object’s
custom filter, error, generic, and qualification functions. These methods allow
you to add a unique error number and error message to each function so that
you can immediately determine within which function the processing error
occurred.

Use the setErrNum() and setErrTxt() methods to add an alternate error number
and error message to the error text generated by the production object.

Note You must use both of these methods for the getAlterrtext() method to
function.

These methods do not replace the error number and error text generated by the
production object. They append extrainformation to the error message
generated by the production object, using this format:

tran error text, which can contain line feeds
the alternate error text rv = the alternate error number

When a processing failure occurs, the aternate error values that display are
those of the last function that called one of these methods. For example, when
acustom filter function that calls these methods fails, the error function
executed next also uses these methods. The error message generated by the
production object contains the alternate error text set by the error function, not
the custom filter.

When you use setErrNum(), and setErrTxt() methods in afunction, they set the
alternate error text regardless of whether the function encounters a processing
error. Therefore, if the function that fails does not call the setErrNum() and
setErrTxt() methods, but a previously executed function did, the alternate error
text generated by the production object does not reflect the function where the
processing failure actually occurred.

Use the getAlterrtext() method to read the alternate error number and alternate
error message into datalink objects or data variables. Thisisuseful to perform
specific actions in the production object’s error function depending on which
function encountered the processing error.

e-Biz Impact

CHAPTER 3 Building Production Objects

Error codes

When checking the val ue of the reason argument, use either the mnemonic (for
example, EPARSE) or the integer value (for example, 5).

Table 3-18: Error codes

Error code Value | Description
1= The production rule has generated too many bytes.
2% The production rule has generated too few bytes.
3 Not used.
ETRANSPORT | 4 Transport error—DFC.
EPARSE 5 Parse error; could not satisfy input field with data given.
EIDFAILED 6 Validation function on field failed.
EFILTER 7 Filter failed. A custom filter function returned a value of zero (0).
EBADFLD 8 Input field invalid; message too short.
EINVALDATA | 9 Invalid data character where numeric.
EBADRULE 10 Rule object damaged or invalid. Part cannot find field reference.
ENOFLDDATA | 11 Input field empty. Datalink with no dataiin it.
EBADFLDLEN | 12 Input field overrun. Input message length too big (usually a default value
problem).
ENOQUAL 13 Qualification object failed; only seen during atest drive. A transaction did
not pass a production rule's qualification function criteria
ENOTABLE 14 A tablefile required by the production object cannot be found.
EBADTYPE 15 Datatype mismatch—the data in the incoming transaction does not agree
with the input field's datatype.
ENOTHIT 16 Data in the incoming transaction does not match any tag in the specified
table object.
ECHAIN 17 Recursive input field chaining detected. For example, fld_b followsfld_a,
fld_cfollowsfld b, and fld_afollowsfld c.
18 Not used.
ENOTBLMEM | 19 Out of memory. The table object is too big to load into memory.
ETBLDUPES | 20 Cannot |oad table object due to duplicate entries.
EMEMORY 21 Out of memory.

* When error 1 or 2 occur, if your error function returns avalue of 1, the SFM
truncates or extends the blob, as necessary, and attempts to continue.

[IWriting error functions

TRAN-IDE Guide

1 To create a production object error function:
a Select Pro-Obj in the main TRAN-IDE window.

175

Writing error functions

176

b To create an error function in a new production object, click New

below the Production Objects list. To create or edit an error function
for an existing production object, double-click the object in the
Production Object list.

In the Production Object Information window, enter a namein the
Error Func field and click the ellipsis button. To edit an existing error
function, select the function from the Error Func drop-down list, and
click the ellipsis. The Error Function window appears.

2 Tocreate aruleobject error function:
a Seect Pro-Obj in the main TRAN-IDE window, then click the Rules

icon. The Output Rules list displaysin the left pane.

To create an error functionin anew rule, click New below the Output
Rules list. To create or edit an error function for an existing rule
object, double-click the rulein the Output Rules list.

In the Current Output Rule window, enter a name in the Error Func
field and click the ellipsis button. To edit an existing error function,
select the function from the Error Func drop-down list, and click the
élipsis. The Error Function window appears.

3 Writethe error function in the text editor pane. Click Load to load atext
fileinto the function. Click Append to load atext file to append on to the
error function.

Error function arguments included:

int reason —an error status code.

blob *pb — apointer to the current blob. If the error functionis
attached to arule object, then the current blob is the part of the
transaction that the rule object is currently processing. if the error
function is attached to a production object, then the current blob isthe
output message built to the point that the error occurred plus the part
of the transaction where processing failed.

For example, a production object has two input fields containing the
data“Hello” and “ brave new world” . Rulel changesthe datain Field1
to uppercase characters, and Rule2 removesthe first ten characters of
datain Field2. If processing fails at Rule2, the contents of the blob
sent to Rule?'s error function would be “brave new world” since
Rule2 was processing only the contents of Field2. The contents of the
blob sent to the production object’s error function would be “HELLO

e-Biz Impact

CHAPTER 3 Building Production Objects

Field (key)

brave new world”; the output message built to the point where
processing failed, plus the part of the transaction where processing
failed.

4 Complete these options in the Error Function window:

Description

Public

Sets the error function status to public, which means that different modules can use
this error function. The default is static (unselected), which means that only the
production and rule objects in the current module can use the error function.

Goto Linett

Moves the cursor to the specified line of ODL text in the function text editor pane.
Enter the line number to go to then press Enter. The ODL text editor movesthe cursor
to the specified line of text and highlightsit.

Warning! Click once on the text or use an arrow key to de-select it before typing
anything new, otherwise the selected lineis replaced with the new characters.

DFC's

Select the DFC to add to this error function. Select an existing DFC from the drop-
down ligt, or click the ellipsis button to create anew DFC. Seethe e-Biz Impact MSG-
IDE Guide for more information.

Datalink

Datalinks allow you to share datawith other functions and TRAN-IDE objects, which
can aso change the datain the datalink. Select an existing datalink from the drop-
down list. Click the éllipsis button to create anew datalink. See“Building adatalink”
on page 85.

Module

To place the error function into a different module, select the module from the drop-
down list. If you place the error function into a different module, you must make the
function public.

TRAN-IDE Guide

5 When you finish, select from these options:
¢ OK —savethe error function without closing the window.
* Save-savethe error function and close the window.
e Cancel — cancel the error function, exit and close the window.

e Print — print the error function.

177

Defining ODL functions

Defining ODL functions

Generic ODL functions have adightly different format than other functions
because they are not specific to TRAN-IDE objects, and you determine what
arguments to pass to them. You cannot attach a generic ODL function to a
TRAN-IDE object; you must call a generic function from within other
functions attached to TRAN-IDE objects.

You code ageneric ODL function differently from the other functions. You
must include the full function definition within the coding window, including
the function’s return value type, its name, and its arguments, not just the parts
that fall between the brackets{ }.

A generic ODL function is public by default and available to any function in
the project. To make a function available only to functionsin the selected
module, you must place“static” beforethe function’s name and return type;
for example, “static int foo(int a, int b)”".

Warning! Do not attach a generic ODL function directly to a TRAN-IDE
object. Instead, call it from within another function that is attached to aTRAN-
IDE object, such as a custom filter function, error function, or qualification
function. More than one of these other functions can call the same generic
function.

Building generic ODL functions

178

1 Inthemain TRAN-IDE window, select View | ODL Functionsor click the
Function icon in the TRAN-IDE main window to display alist of all
generic ODL functions defined in the current file.

2 Tobuild anew generic ODL function, click New. To edit an existing ODL
function, double-click the function namein the ODL Functions list.

Note To delete an ODL function, select the function’'s name in the ODL
Functions list and click Delete.

The ODL Function window opens.

3 Usethefollowing optionsto build the ODL function:

e-Biz Impact

CHAPTER 3 Building Production Objects

Field (key) Description

Goto Line# Moves the cursor to the specified line of ODL text in the function. Type the line
number to go to, then press Enter. The ODL text editor moves the cursor to the
specified line of text and highlightsit.

Click once on thetext or use an arrow key to deselect it before typing any characters,
otherwise the highlighted lineis deleted and replaced with the new characters.

DFC's To view alist of the current DFC commands, click the down arrow. To define a new
DFC command, click Detail. The Distributed Function Declaration window opens.
See the e-Biz Impact MSG-IDE Guide for more information.

Datalink Datalinks allow you to share datawith other functions and TRAN-IDE objects, which
can aso change the datain the datalink. To view alist of the current datalink
definitions, click the down arrow. To defineanew datalink, click Detail. The Datalink
Information window opens.

Module To placethefunction into adifferent module, click the down arrow and select another
module. A generic ODL functionis public by default and availableto any functionin
the project. To make this function available only to functionsin the selected module,
makeit static. See “Modules’ on page 53 for more information about module
requirements.

4 Whenyou finish, click OK. TRAN-IDE namesthe generic ODL function
with the name you used in the function’s definition. Afterward, you can
edit only what isin the function’s brackets.

Defining production object options

1 Inthe TRAN-IDE window, select View | Production Objects or click the
Pro-Obj icon. Double-click an existing object in the Production Objects
list. The Production Objection Information window opens.

2 Select Production Object | Options from the menu bar. The Production
Object Options window opens.

3 Complete these fields and options:

Field (key) Description

Static Scope All production objects are static by default. To call a production object with the
produce() method from within an ODL function in another module, or to use the
production object as part of afilter object, unselect this option to make the production
object global.

TRAN-IDE Guide 179

Defining production object options

Field (key) Description
Recycle Output As A New | Recycle the output of the current production object asinput. To have the production
Transaction object only recycleits output transaction and not send it to a destination as well, map

the production object to the NullDest destination.

Input NDO Seriaization When processing tree input, select the appropriate input NDO serialization.

¢ NCF: Self-describing — the defaullt.

* NCF: Non-self-describing — select this option if you are generating a format
description based on an NCM file generated by Formatter, then enter thefile name.

e XML —sdlect thisoption if your input messageisin an XML format.

Output NDO Seridlization | When processing tree output, you must select the appropriate output NDO

serialization.

* NCF: Self-describing — the defaullt.

« NCF: Non-self-describing — select this option if your output will be used by
Formatter.

e XML —sdlect thisoption if your output requires an XML format.

Error Options Specify actions that e-Biz Impact should perform when a transaction encounters a
processing error through this production object. You can use the tranHalt() and
tranCancel() built-in filter functions to override the option settings.

Error Rule The name of the rule object to run after executing the production object error
function. Use thisrule object to execute any other actions you want to perform when
atransaction encounters a processing error through this production object. For
example, you could examine datalink and input fields and write the contentsto afile
or e-mail them.

Thisrule object can add more data to the production object output blob, but it cannot
change or delete any data currently in the blob. This rule object can use the tranHalt()
or tranCancel() built-infilter function to determine which actionse-Biz Impact should
take, but it cannot force continued processing of the transaction.

Halt Processing To AIM Same as the destination returning a zero or negative value. Places the transaction in
the unprocessable | og file, hats the destination, and preventsit from receiving any
further transactions until this unprocessable transaction is repaired and resent to the
destination. By default, e-Biz Impact performsthe halt actionswhenever atransaction
encounters a processing error through a production object.

Cancel & Keep Going Same as the destination returning a-999. Places the transaction in the unprocessable
logfile and allows the destination to continue to receive new transactions.

Skip & Keep Going Skips the entire transaction and continues to receive new transactions. Places the
transaction in the unprocessable log file.

Defaults The options available identify a default separator to append to all rule object and/or

rule component object output.

180 e-Biz Impact

CHAPTER 3 Building Production Objects

Field (key)

Description

Rule Separator

Select this option to have e-Biz Impact append a separator to the output of every rule
object. Tousealiteral value asthe default separator, select the Literal option and enter
the desired value into the adjacent entry field. To use the contents of an input field as
the default separator, select FIdObj, then select the desired input field from the drop-
down list.

If you do not want an individual rule object to use the default separator, select No
Default Separator in the Current Production Rule window when defining the rule
object.

Rule Component Separator

Select this option to have e-Biz Impact append a separator to the output of every rule
component object. To use aliteral value as the default separator, select the Literal
option and enter the desired value into the adjacent entry field. To use the contents of
an Input Field asthe default separator, sel ect the FIdObj option, then select the desired
input field from the drop-down list.

If you do not want an individua rule object to use the default separator, select No
Default Separator inthe Rule Component | nformation window when defining therule
component obj ect.

PreFilters

Define one or morefilter objectsto run against the input transaction. Thesefiltersare
the first action taken on a transaction when e-Biz Impact presents them to a
production object and are run before input field parsing or any qualification takes
place.

Use this option to run afilter on an entire transaction; for example, converting the

transaction datato upper or lowercase or changing all pipe“|” symbolsto dollar signs
“ $11 i

Note Thisfilter does not change the actual transaction logged by the SFM; it affects
only the copy of that transaction presented to this production object.

4 Click OK to save the entries and close the window. To exit the window

without changing or accepting new entries, click Cancel.

Using the test drive

TRAN-IDE Guide

You can test drive production object definitionsto determine if they parse
correctly and run against all defined rules.

1 Click Pro-Obj in the main TRAN-IDE window.
2 Double-click the production object you want to test from the Production

Objects ist.

181

Using the test drive

3 From the Production Object Information window, select Test Drive | Start
Test Drive. Four windows display—the Test Drive control panel, the Input
Va ue window, the Output Value window, and the Input Field Parsed Data
window.

4 UseTest Drive | Toggle to move between each of windows. Use the other
Test Drive menu options to test the production object.

Note To retain your window view after you configure toggle settings, use the
Test Drive | Window Geography menu options.

Test Drive menu and control panel options

The following options are available from the Production Object Information
window Test Drive menu. When the same option is available from the Test
Drive control panel, the equivalent option islisted in the second column.

182 e-Biz Impact

CHAPTER 3 Building Production Objects

Test Drive menu Test Drive control
option panel option

Description

Start Test Drive

Field Value

Starts the test drive for the current production object. Four
windows display:

Test Drive control panel — opens the Test Drive window.
This windows options alow you to control the testing
input, output, and parameters. See

Input Value window — when you enter data in the Test
Drive control panel’sField Va ueto test aproduction rule,
thethiswindow displaysthe valueyou entered. When you
use adatafileto test a production rule, it displays the
content of the input transaction. The maximum display of
the Input Value window is 256 characters. The data
displaysin character format on thetop lineand in
hexadecimal on the second linewith aposition notation on
thethird line.

Output Value window — displays the value produced by a
single selected production rule or by al of a production
object’s rules depending upon whether you used run rule
or run al. Likethe Input. The maximum display of is 256
characters. The data displays in character format on the
top line and in hexadecimal on the second line. The third
line has position notation.

Input Field Parsed Data window (Input Field Dump) —
displays parsed results. Click Dump to save the resultsto
atextfile.

Toggle Window none

TRAN-IDE Guide

Allows you to toggle between, open and close, the four test
drive windows (Test Drive, Input/Output Value, Input Field
Parsed Data).

183

Using the test drive

Test Drive menu Test Drive control
option panel option

Description

Load
Load File

Load First

Load Next

i

Load the data to test drive:

* Whole File—loads afile that contains a complete input
transaction. When you load adatafile, TRAN-IDE clears
the datalink objects and places the appropriate data into
each field object’s datalink, when defined.

 First Trxn —loads a datafile that contains multiple
transactions, then loadsthefirst transaction inthe datafile.

* Next Trxn — loads the next transaction in the data file
selected using First Trxn.

 Set Trxn Delimiter — opens the Multi-Record Detail
window:

e Transaction Separator —if using atransaction separator
character asadelimiter, select onefrom thedrop-down
list of common separators, or type the separator in the
entry field.

» Fixed Record Length —if the records have afixed
length, enter that value.

Select the data to run:

» All Output Rules—once afileisloaded, select this option
to run the transaction through the entire set of production
rulesin the Production Ruleslist, in the order presented in
that list.

» Current Output Rule — test the currently selected output
rule.

e Until Current Output Rule —once afileisloaded, select
this option to run the transaction through the production
rules up to and including the rule currently selected in the
Production Ruleslist. All production rules after the
selected rule are not run on the transaction.

Run
Run All Rules
Run Rule
Run Until
View Datalinks View Datainks
184

Opens the View Datalinks window and displays the
production object’sdatalinks and their contents. Thetop pane
displaysall datalinks. The bottom pane displays the contents
of thedatalink selected inthetop pane. Click Doneto exit and
close the window.

e-Biz Impact

CHAPTER 3 Building Production Objects

Test Drive menu
option

Test Drive control
panel option

Description

Find Rule

Find Rule

Use this option after testing a compl ete production object
with all rules. Highlight aportion of datain the Output Value
window and select this option. TRAN-IDE movesthe
selection bar in the production rule list to the production rule
that generated the data. If you do not select any datain the
Output Value window and select this option, TRAN-IDE
selects the production rule that generated the data that starts
at the far left position in the window.

End Test Drive

none

Stopsthe test drive.

Window Geography

none

Select from the following options:

» SaveCurrent Geo—savesthe current geography of thetest
drive windows so that the next timeyou use the test drive,
the windows are in the same position on the screen.

¢ Load Custom Geo—restorersthetest drivewindowsto the
position on the screen they were in the last time Save
Current Geo was selected.

* Load Default Geo —restores the test drive windows to the
TRAN-IDE default location.

* Reset Geography — resets the test drive windows to the
position where they were located when the test drive was
started.

Addition test drive control panel options

In addition to the options listed in the preceding table, the test drive control
panel has these options.

TRAN-IDE Guide

Option Description

Clear

Parse

Save Input Writes the input data to disk. Savesfiles
with a.dat extension

Save Output Saves the output of atransaction’stravel

through the Test Drivefor later review or
test usage. Savesfileswith a.dat
extension.

Hex Dump/Line Dump

Toggles between hexadecimal and
line dump views in the Input and
Output Value windows.

185

Using the test drive

Option Description

Debug On/Debug Off Toggles the test drive debugger. The
debugger outputs to the xlog in the
TRAN-IDE working directory.

SFM Not currently used.

186 e-Biz Impact

	TRAN-IDE Guide
	About This Book
	CHAPTER 1 Overview
	What transaction production is
	How transaction production works
	Routing types

	Transaction production elements
	Production objects
	Field objects
	Rule objects
	Rule component objects
	Filter objects
	Qualification objects
	Datalink objects
	Table objects
	ODL functions

	How production objects work
	Multiple rules and components example
	Qualification failure example
	General processing example
	Rule component processing example
	Multiple rule and component processing example

	Building production objects
	Requirements
	Input transaction format
	Output transaction format
	What the production object needs to do
	What a production object requires

	Building a sample production object

	Using name/value pairing
	Input transaction format
	Building field objects

	Using groups
	Specifying group types
	Building field objects
	Building rule objects
	Building component objects
	Nested groups
	Building field objects
	Building rule objects for a nested group
	Building component objects for a nested group
	Modifying component objects from the parent group

	Using collection
	Defining a table
	Defining the Key field
	General information and rules
	General information
	Rules

	Data organization
	Implementing collection
	Format 1
	Format 2

	Data size limitations

	TRAN-IDE objects
	SFM log overview
	sfmlog utility options
	Transaction filtering options
	Transaction status

	CHAPTER 2 Using TRAN-IDE
	Introduction
	Transaction production objects
	Modules
	Repositories

	General use
	Requirements
	Object naming conventions
	Starting TRAN-IDE
	Creating projects and modules
	Working with repositories
	Using the HL7 objects repository

	Selecting a data structure
	Supported data structures

	Import and export options
	Importing comma-separated fields
	Building field objects using Custom Import
	Exporting text files

	Using the TRAN-IDE Options menu

	CHAPTER 3 Building Production Objects
	Introduction
	Building production objects
	Starting TRAN-IDE
	Selecting a data structure
	Building tree-to-stream production objects
	Importing a DTD

	Building stream-to-tree production objects
	Importing tree output nodes

	Building tree-to-tree production objects
	Building stream-to-stream production objects
	Defining input fields
	Building a datalink
	Changing an input field
	Deleting an input field

	Deleting production objects
	Editing production objects

	Using import options
	Importing comma-separated fields
	Building field objects using Custom Import
	Entering values in the Custom Import Criteria fields

	Exporting text files

	Defining stream output rules
	Defining rule components (subrules)
	Adding field separators

	Defining filter objects
	Creating table object filters
	Creating built-in filters
	Formatting filter functions
	Editing functions
	Text manipulation functions
	Date/time functions
	Miscellaneous functions
	Dynamic routing functions
	Non-dynamic routing functions

	Creating custom filters
	Writing custom filter functions

	Creating datalink filters
	Creating edit mask filters
	Creating database interface filters
	Creating production object filters
	Creating DFC filters
	Changing filter objects
	Deleting filter objects
	Attaching post-filters to production objects

	Creating table objects
	Changing the Table Objects directory
	Formatting tables
	Creating tables
	Table Maintenance window fields

	Importing table objects
	Working with key columns and duplicate entries
	Deleting table objects

	Defining qualification objects
	Creating table object qualifications
	Creating custom code qualifications
	Writing custom qualification functions

	Using built-in qualifications
	Built-in qualification functions

	Using compare operation qualifications
	Creating DB object qualifications
	Creating bitwise operator qualifications
	Attaching qualification objects to rule components

	Defining data objects
	Writing error functions
	Error functions attached to rule objects
	Writing rule object error functions

	Error functions attached to production objects
	Writing production object error functions
	Production object methods
	Alternate error return values

	Error codes

	Defining ODL functions
	Building generic ODL functions

	Defining production object options
	Using the test drive
	Test Drive menu and control panel options
	Addition test drive control panel options

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

