
MSG-IDE Guide

e-Biz Impact
5.4.5



DOCUMENT ID: DC10097-01-0545-01

LAST REVISED: July 2005

Copyright © 1999-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. 
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement, 
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other 
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled 
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, 
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, 
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, 
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler, 
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile 
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon 
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, 
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database 
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect, 
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway, 
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise 
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work 
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, 
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information 
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail 
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, 
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL 
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, 
Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket 
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, 
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft 
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare, 
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, 
Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL 
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL 
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL 
Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase 
Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, 
Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System XI (logo), 
SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, 
Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, 
Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, 
WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc.     
02/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.



Contents

MSG-IDE Guide iii

About This Book ............................................................................................................................  v

CHAPTER 1 Overview ..........................................................................................  1
Introduction ......................................................................................  1
Using MSG-IDE................................................................................  2

MSG-IDE terminology ...............................................................  2
Starting MSG-IDE......................................................................  3
MSG-IDE objects.......................................................................  4

Creating MSG-IDE projects..............................................................  6
Project organization...................................................................  7
Rules and restrictions................................................................  8

Building acquisition AIMs .................................................................  8
Acquisition AIM structure.........................................................  10

Building delivery AIMs....................................................................  10
Delivery AIM structure .............................................................  13

CHAPTER 2 Developing ODL Applications......................................................  15
Introduction ....................................................................................  15
Building ODL acquisition AIMs.......................................................  16

Setting up data formats ...........................................................  16
Building ODL delivery AIMs............................................................  19

CHAPTER 3 Using MSG-IDE..............................................................................  21
Starting MSG-IDE ..........................................................................  21
Building ODL AIMs.........................................................................  21

Domains and files....................................................................  22
Protocol objects .......................................................................  22
Defining control flow objects....................................................  25
Defining message frame objects .............................................  29
Defining communication objects..............................................  32
Defining data objects...............................................................  33
Defining blob objects ...............................................................  36
Defining distributed function objects........................................  37



Contents

iv e-Biz Impact

Defining database interface objects ........................................  39
Defining function objects .........................................................  52
Defining I/O file objects ...........................................................  54
Defining production objects .....................................................  56
Defining timer objects..............................................................  56
Understanding object flow .......................................................  57



MSG-IDE Guide v

About This Book

Audience This book is for developers who create applications using e-Biz Impact™ 
version 5.4.5.

How to use this book This guide is organized into the following chapters:

• Chapter 1, “Overview” provides a introduction to MSG-IDE basic 
concepts and terminology and describes MSG-IDE objects.

• Chapter 2, “Developing ODL Applications” discusses the 
development of e-biz Impact Object Definition Language (ODL) 
acquisition and delivery AIMs.

• Chapter 3, “Using MSG-IDE” describes how to use MSG-IDE to 
build ODL acquisition and delivery AIMs.

Related documents e-Biz Impact documentation  The following documents are available 
on the Sybase™ Getting Started CD in the e-Biz Impact 5.4.5 product 
container:

• The e-Biz Impact installation guide explains how to install the e-Biz 
Impact software.

• The e-Biz Impact release bulletin contains last-minute information 
not documented elsewhere.

e-Biz Impact online documentation The following e-Biz Impact 
documents are available in PDF and DynaText format on the e-Biz Impact 
5.4.5 SyBooks CD: 

• The e-Biz Impact Application Guide provides information about the 
different types of applications you create and use in an e-Biz Impact 
implementation.

• The e-Biz Impact Authorization Guide explains how to configure 
e-Biz Impact security.

• e-Biz Impact Command Line Tools describes how to execute e-Biz 
Impact functionality from a command line.

• The e-Biz Impact Configurator Guide explains how to configure e-
Biz Impact using the Configurator.



 

vi  e-Biz Impact

• The e-Biz Impact Feature Guide describes new features, documentation 
updates, and fixed bugs in this version of e-Biz Impact.

• The e-Biz Impact Getting Started Guide provides information to help you 
quickly become familiar with e-Biz Impact.

• The Monitoring e-Biz Impact explains how to use the Global Console, the 
Event Monitor, and alerts to monitor e-Biz Impact transactions and events. 
It also describes how e-Biz Impact uses the standard Simple Network 
Management Protocol (SNMP).

• Java Support in e-Biz Impact describes the Java support available in e-Biz 
Impact 5.4.5.

• The e-Biz Impact MSG-IDE Guide (this book) describes MSG-IDE 
terminology and explains basic concepts that are used to build Object 
Definition Language (ODL) applications.

• The e-Biz Impact ODL Guide provides a reference to Object Definition 
Language (ODL) functions and objects. ODL is a high-level programming 
language that lets the developer further customize programs created with 
the IDE tools.

• The e-Biz Impact TRAN-IDE Guide describes how to use the TRAN-IDE 
tool to build e-Biz Impact production objects, which define incoming data 
and the output transactions produced from that data.

Note  The e-Biz Impact ODL Application Guide has been incorporated 
into the e-Biz Impact ODL Guide. 

The e-Biz Impact Alerts Guide, the e-Biz Impact SNMP Guide, and the 
e-Biz Impact Global Console Guide have been combined into a new 
guide—Monitoring e-Biz Impact.

Adaptive Server Anywhere documentation The e-Biz Impact installation 
includes Adaptive Server® Anywhere, which is used to set up a Data Source 
Name (DSN) used with e-Biz Impact security and authorization. To reference 
Adaptive Server Anywhere documentation, go to the Sybase Product Manuals 
Web site at Product Manuals at http://www.sybase.com/support/manuals/, select 
SQL Anywhere Studio from the product drop-down list, and click Go. 

Note  Read the SyBooks Installation Guide on the Getting Started CD, or the 
README.txt file on the SyBooks CD for instructions on installing and starting 
SyBooks.



     About This Book

MSG-IDE Guide vii

Other sources of 
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product 
Manuals Web site to learn more about your product: 

• The Getting Started CD contains release bulletins and installation guides 
in PDF format, and may also contain other documents or updated 
information not included on the SyBooks CD. It is included with your 
software. To read or print documents on the Getting Started CD, you need 
Adobe Acrobat Reader, which you can download at no charge from the 
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your 
software. The Eclipse-based SyBooks browser allows you to access the 
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can 
access through the PDF directory on the SyBooks CD. To read or print the 
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the 
README.txt file on the SyBooks CD for instructions on installing and 
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks 
CD that you can access using a standard Web browser. In addition to 
product manuals, you will find links to EBFs/Maintenance, Technical 
Documents, Case Management, Solved Cases, newsgroups, and the 
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at 
http://www.sybase.com/support/manuals/.

Sybase certifications 
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications 

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.



 

viii  e-Biz Impact

❖ Creating a personalized view of the Sybase Web site (including support 
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create 
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and 
software 
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at 
http://www.sybase.com/support.

2 Select EBFs/Maintenance. Enter user name and password information, if 
prompted (for existing Web accounts) or create a new account (a free 
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Maintenance report, or click the 
product description to download the software.

Conventions The syntax conventions used in this manual are:

Key Definition

commands and methods Command names, command option names, 
utility names, utility flags, Java 
methods/classes/packages, and other 
keywords are in lowercase Arial font.

variable Italic font indicates:

• Program variables, such as myServer

• Parts of input text that must be substituted, 
for example:

Server.log

• File names

File | Save Menu names and menu items are displayed in 
plain text. The vertical bar shows you how to 
navigate menu selections. For example, File | 
Save indicates “select Save from the File 
menu.”



     About This Book

MSG-IDE Guide ix

Accessibility 
features

This document is available in an HTML version that is specialized for 
accessibility. You can navigate the HTML with an adaptive technology such as 
a screen reader, or view it with a screen enlarger. 

For information about how Sybase supports accessibility, see Sybase 
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility 
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more 
designated people who are authorized to contact Sybase Technical Support. If 
you cannot resolve a problem using the manuals or online help, please have the 
designated person contact Sybase Technical Support or the Sybase subsidiary 
in your area.

package 1 Monospace font indicates:

• Information that you enter in a graphical 
user interface, at a command line, or as 
program text

• Sample program fragments

• Sample output fragments

Key Definition



 

x  e-Biz Impact



MSG-IDE Guide 1

C H A P T E R  1 Overview

Application Interface Module (AIM) applications are the e-Biz Impact 
components that acquire data from and deliver data to endpoint 
applications. 

This chapter describes how AIM applications function and provides a 
summary of the creation process using the e-Biz Impact MSG-IDE tool.

Note  AIMs are developed using the Object Definition Language (ODL). 
See the e-Biz Impact ODL Guide for more information on ODL.

Introduction
e-Biz Impact uses Application Interface Module (AIM) applications to 
communicate with other systems, acquire transaction data from an 
endpoint application (a logical or physical device), and deliver the data to 
one or several endpoint destinations. 

AIMS can be developed using ODL, Java, and C\C++.

• ODL AIMs – use MSG-IDE and this guide to develop acquisition and 
delivery AIMs (also known as message AIMs) using the e-Biz Impact 
Object Definition Language (ODL).

• Java AIMs – to develop Java AIMs, see Java Support in e-Biz Impact 
on the e-Biz Impact SyBooks CD that comes with the product.

Topic Page
Introduction 1

Using MSG-IDE 2

Creating MSG-IDE projects 6

Building acquisition AIMs 8

Building delivery AIMs 10



Using MSG-IDE 

2  e-Biz Impact

• C/C++ AIMs – AIMs that transmit data to a different cluster, and MQAcq 
and MQDel AIMs that interact with IBM WebSphere MQ, see the e-Biz 
Impact Application Guide on the e-Biz Impact SyBooks CD that comes 
with the product. 

Data acquired by an AIM application can also be transformed in a variety of 
ways using transaction production, which is optional. The Store and Forward 
Manager (SFM) performs transaction production using ODL applications that 
you develop using the TRAN-IDE tool. See the e-Biz Impact TRAN-IDE Guide 
for instructions on creating SFM applications and specific details about 
transaction production.

MSG-IDE provides a means to build custom message AIMs for 
communicating between applications and e-Biz Impact. The resulting program 
can act as either an acquisition or delivery AIM.

Using MSG-IDE
MSG-IDE tool, a Windows-based tool, with a graphical user interface that 
allows you to easily develop ODL applications.

MSG-IDE terminology
The following terms are used in this guide to describe the creation of ODL 
AIMs using MSG-IDE:

Term Definition

File The physical containers for objects in a message AIM. Files 
are saved individually with a .fle extension. File names have 
a maximum of 256 characters.

Child file A file nested within another file. Saving a parent file does 
not automatically save the associated child file because the 
parent file contains a reference to the child file, not the actual 
file

Parent file Any file that contains a child file. When files are nested 
more than two deep, a file can be both a parent and a child 
file.

Peer file A file at the same level as another file.

Root file Any file displayed at the first level in the objects list of the 
Browse dialog box.



CHAPTER 1    Overview

MSG-IDE Guide 3

Starting MSG-IDE
To start MSG-IDE, select Start | Programs | Sybase | e-Biz Impact 5.4 | 
Msg-IDE. When the tool executes, two windows display (Figure 1-1):

Figure 1-1: MSG-IDE tool

Message Interface Development window The main MSG-IDE window 
allows you to create and save new applications. Applications are saved as 
project files (.prj), and you can have only one application per project.

Project A file with a .prj extension. This file is run as the message 
AIM. A project can contain only one file or multiple child 
files

Domain Logical containers for the objects in a message AIM. MSG-
IDE objects require a domain. A file can contain zero or 
multiple domains, depending on the requirements of your 
program; however, all objects in a project must be within the 
scope of a domain, even if an individual file does not contain 
a domain.

Term Definition



Using MSG-IDE 

4  e-Biz Impact

Browse window The Browse window lists the files you currently have open, 
their domain, and their objects. The object list in the left pane displays the 
available objects. Once you create objects, the list in the right pane displays a 
tree view of the currently open project file and its domains, and a list of the 
objects that have been created within that project. For example, if you select 
Protocol in the left pane list, the right pane displays the names of all the 
protocol objects created for the currently open project You can also choose All 
Objects to display all existing objects in the current project.

Note  If the Browse window is not visible, select View | Launch Browser from 
the Message Interface Development window.

MSG-IDE objects
To begin building an AIM, you select an object from the object list and click 
Add. Table 1-1 lists each object type and its primary function.

Table 1-1: Message interaction objects

Object type What it does

Major objects:

Domains and files • Domains – logical containers for acquisition and delivery AIM project (.prj) files. 
Each AIM must have a project file.

• Files – in the MSG-IDE context, files are containers for MSG-IDE objects that are 
common to more than one project, which allows you to build objects once, save the 
object in a file (.fle), then include the file in each project that requires the common 
objects.

Communications Identifies the connection component that the AIM uses to communicate with the 
endpoint application. 



CHAPTER 1    Overview

MSG-IDE Guide 5

Control flow A container of functions and data objects that control the processing of data. Defines 
the startup and shutdown processing for TCP/IP AIM communication object, and 
define the actions to take and the functions to perform once a message frame object 
matches on incoming data. 

Note  You must always pass the argument “blob *pb” to a control flow object 
because the control flow object always receives the data in a blob.

A control flow object can be called by:

• A protocol object after the protocol object receives data from the communication 
object.

• A message frame object after that message frame matches on data.

• Another control flow object.

Message frame Defines the characteristics of the data coming from the source endpoint system by 
describing the data. Message frame objects include the number of bytes, all data, 
hexidecimal, decimal, octal, ASCII, and control characters. For example, the data 
below uses the message frame object to match a transaction that includes VT as the 
header control character and FS & CR as the trailer control characters.

Objects in the message frame matching list are ordered in the sequence of the 
incoming message. In this example, the first item in the list would be the control 
character VT.

Protocol Regulate the flow of data from the communication object to the message frame 
objects. It is the main logical container for other message interaction objects.

Note  All data sent to an acquisition AIM by the communication object enters the 
protocol object, which then controls the passage of data to the message frame objects. 
A protocol object must be started in the clinit() function or with the process() method.

The protocol object identifies:

• The communications object to use

• The available message frame objects 

• The control flow objects to run after the communication object connects to the port 
and after communication object closes or losses the port connection

• The control flow object to run when the protocol object receives data. 

Supporting objects:

Object type What it does



Creating MSG-IDE projects 

6  e-Biz Impact

Creating MSG-IDE projects
A message AIM gathers protocol messages from a source and breaks the 
message’s data out for other use. It also gathers a set of messages into a single 
message format and surrounds the resulting data stream with the appropriate 
protocol to send it to an application.

A message AIM can function as an acquisition AIM or a delivery AIM. The 
structure of a message AIM and the object flow are different depending on 
whether the message AIM is an acquisition or delivery AIM and whether the 
message AIM uses a protocol object.

To create and implement ODL AIMs:

Data Provide data variable definitions for data that you may want to manipulate or access 
at a later point in the program. A data object is any data variable defined with MSG-
IDE or TRAN-IDE.

Create data objects to build a distributed function call command for gathering or 
sending data, to add a symbolic name definition, or to build your own structures or 
class definitions.

Distributed Function Used to build distributed function call (DFC) commands for the client and its 
corresponding DFC entry point for the server.When the client needs to gather or send 
data, to an application endpoint, it uses a DFC command to send a transaction to the 
server.

Function Within a control flow, a function object defines the actions to take, either on the data 
itself or because of the data’s presence. When not within a control flow, a function 
object defines the actions to take to service a DFC command. Function objects are 
user-provided routines within which you may perform data manipulation and actions. 

Other objects:

Blob A blob object (Binary Large Object Block) is a special type of data object. A blob may 
contain any type of data, including null bytes. Blob objects have methods that you can 
use within a function object to manipulate the contents of the blob.

Database Interface Allows ODL code to access external SQL databases.

I/O File Object Allows you access disk files or to read the contents of a directory.

Production Displays the production objects when you open a TRAN-IDE project file in MSG-
IDE. You can only display production objects in MSG-IDE; you must use TRAN-IDE 
to edit or remove the objects. 

Timer Allows you to set an alarm to keep track of the time a user spends doing certain 
activities, or to execute specific commands on a periodic basis.

Object type What it does



CHAPTER 1    Overview

MSG-IDE Guide 7

1 Use MSG-IDE to create acquisition and delivery AIMs and save them as 
project files. See Chapter 2, “Developing ODL Applications.”

2 Use the Configurator to specify acquisition and delivery AIM properties 
such as communication protocol (resources) and functions. See the e-Biz 
Impact Configurator Guide.

3 Deploy the MSG-IDE project files to the network server. See the e-Biz 
Impact Configuration Guide, Chapter 5, “Deploying Files and Executing 
e-Biz Impact Clusters.”

Project organization
When you create an acquisition or delivery AIM, you populate it with message 
interaction objects, then save the application in a project file with a .prj 
filename extension. The project file is the file that runs the AIM. 

You can organize a project in any of three ways:

1 Have one MSG-IDE project file (.prj) and domain that contains all the 
objects needed for each AIM. For a simple e-Biz Impact implementation, 
you would have a project file for the acquisition AIM and a project file for 
the delivery AIM. This is the simplest organization choice, and should be 
used whenever possible. 

2 Have one MSG-IDE project file and multiple domains that contain the 
objects needed for the AIM. Organize the project in this manner when you 
require some objects to be static and other objects to be global.

3 Have a MSG-IDE project file with one domain and several child files 
(.fle), with or without domains, that contain the objects needed for the 
AIM. Use this method when you have data objects, functions, or other 
objects that are common to more than one project. This allows you to build 
the objects once, in a child file, then include the file in each project that 
requires the common objects.

The components of a message AIM are called message interaction objects. 
These objects interact with a communication process to gather data from and 
send data to endpoint applications. Message interaction objects include 
protocol, communications, message frame, and control flow objects. 
Supporting objects include data and functions. 

e-Biz Impact provide the MSG-IDE tool To develop ODL acquisition and 
delivery AIMs, use the e-Biz Impact provided 



Building acquisition AIMs 

8  e-Biz Impact

Rules and restrictions
When you create acquisition and delivery AIMs, keep in mind:

• For each e-Biz Impact implementation, you must develop at least one 
acquisition AIM and one delivery AIM.

• Each AIM must have an associated project file with a .prj file name 
extension. The project file can contain all objects required by the AIM or 
some of the objects and child files that contain the remainder of the 
objects.

• All AIM objects must be within the scope of a domain, and the project file 
must have at least one domain. If a project’s objects are outside the scope 
of a domain, the AIM does not run.

• Duplicate domain names prevent the execution of an ODL project.

• All acquisition AIMs must use a clinit and a cldeinit function.

• All delivery AIMs must use a clinit, a cldeinit, a servayt, and a servproc 
function.

Building acquisition AIMs
An acquisition AIM obtains data from a source, packages the data into a 
transaction, and sends it to the SFM via a distributed function command 
(DFC). The input source can be a data file generated by another application or 
an application on an endpoint system. 



CHAPTER 1    Overview

MSG-IDE Guide 9

Figure 1-2: Acquisition AIM flow

Figure 1-2 illustrates this ODL acquisition AIMs object flow:

1 When the communication object connects to the designated port, it notifies 
the protocol object of a successful connection.

2 The protocol object executes the control flow object listed in its Open box 
and waits to receive data from the communication object.

3 Once data is received, the protocol object executes the control flow object 
listed in the Preview box.

4 The protocol object processes data through the defined message frame and 
control flow objects, then waits to receive more data from the 
communication object.

5 If the communication object looses the connection to the endpoint, the 
protocol object executes the close flow.

See Chapter 3, “Using MSG-IDE,” for instructions.



Building delivery AIMs 

10  e-Biz Impact

Acquisition AIM structure
• Using a communication object, a data packet is received from the endpoint 

application. 

• Headers/footers and other protocol characters are stripped using message 
frame objects and the data is placed into a blob variable.

• If necessary, the control flow attached to the message frame performs data 
blob manipulation. The AIM may contain multiple message frames with 
their associated control flows. 

• The AIM receives the next packet of data from the communication object 
and processes it through message frames. 

• The framed data is appended to the blob variable.

• The message frame object and control flow continue the append action 
until the blob data variable accumulates the transaction data, then sends 
the data to an SFM by calling one of the SFM routing functions 
(route_vprod(), route_vrec(), and so on). See the e-Biz Impact TRAN-IDE 
Guide for information on routing functions.

• An acknowledgement is sent to the endpoint based on the return value 
from the SFM using the send() method.

Sources defined in the SFM configuration can receive a ping() DFC. If you 
do not have a ping() DFC entry point in your acquisition AIM configured 
to receive these commands, unpredictable results may occur.

Building delivery AIMs
A delivery AIM receives transactions routed by an SFM and sends them to the 
endpoint application. 

Program flow in a delivery AIM can begin either with a function that services 
a DFC or with the protocol object. Figure 1-3 illustrates the program flow 
through a delivery AIM, and the action sources that trigger entry into the AIM.



CHAPTER 1    Overview

MSG-IDE Guide 11

Figure 1-3: Delivery AIM flow

1 An SFM sends a servayt() DFC. The message AIM executes the servayt() 
function to service the DFC. This function gets the serial number of the 
last transaction that the AIM processed from the lastid file. The function 
finishes by sending that serial number to the SFM. Program control returns 
to the protocol object, which waits to receive data from the communication 
object, or waits for the SFM to send another DFC. 

2 The SFM sends a servproc() DFC. The message AIM executes the 
servproc() function to service the DFC. This main task of this function is 
to put the data received from the SFM into the format required by the 
endpoint application and send the data through the communication object 
to the endpoint. 



Building delivery AIMs 

12  e-Biz Impact

After servproc() sends the data to the endpoint, it calls clSuspend() to 
suspend processing of servproc() to wait for a response from the endpoint 
application. When the endpoint sends a response, the protocol object 
processes the response data through the preview control flow, then through 
the message frame objects and their control flows. 

After the endpoint’s response is fully processed, the final control flow runs 
on the response data and calls clRelease() to return processing control to 
servproc(). The servproc() function finishes any required processing, 
including writing the transaction’s serial number to the lastid file and 
returning the appropriate value back to the SFM. The appropriate value 
sent back to the SFM may be an error condition if the endpoint system did 
not accept the transaction. 

The AIM waits for the next DFC from the SFM. Program control returns 
to the protocol object, which waits to receive data from the communication 
object, or waits for the SFM to send another DFC. 

3 The communication object connects or dies. When the communication 
object connects to its designated port, it notifies the protocol object that it 
connected. The protocol object executes the control flow object listed in 
its Open box. Program control returns to the protocol object, which waits 
to receive data from the communication object, or waits for the SFM to 
send a DFC. 

If the communication object terminates unexpectedly, the protocol object 
executes the control flow object listed in its Close box. In this case, it uses 
the restart() method in the close control flow to restart the communication 
object or uses a timer object to delay restarting the connection. 

4 The communication object gets a response from the endpoint. After 
servproc() sends data through the communication object to the endpoint, it 
calls clSuspend() and waits for a response from the endpoint. When the 
protocol object receives a response about the transaction from the endpoint 
application, it executes the control flow object listed in its Preview box. 
The protocol object processes the data received from the endpoint 
application through its message frame objects and their control flows. 

After the endpoint’s response is fully processed, the final control flow runs 
on the response data calls clRelease() to return processing control to the 
servproc() function. If the protocol object receives data through the 
communication object while the AIM is processing a DFC, the data queues 
at the protocol object until the function processing the DFC calls 
clSuspend().



CHAPTER 1    Overview

MSG-IDE Guide 13

The communication object does not have to be connected to its port before 
the AIM can begin servicing a servayt() or servproc() DFC from the SFM. 
However, the communication object must be connected before the 
servproc() function can send the data to the endpoint application.

Delivery AIM structure
• The AIM receives servayt() command from the SFM.

• It executes servayt() function. The function reads the lastid file to retrieve 
the serial number of the last transaction processed by the AIM. The serial 
number is then returned back to SFM.

• The AIM receives servproc() DFC from the SFM

• It executes servproc() function. The function may perform necessary 
manipulation to put data in the format required by the endpoint 
application. The data then is sent to the endpoint using communication 
object’s send() method. At this point, servproc() calls clSuspend() to pass 
control to the protocol object to process the endpoint acknowledgement.

• The protocol object executes preview control flow when the 
communication object receives the response from the endpoint.

• The endpoint response is processed through defined message frame 
objects to determine if the endpoint accepted or rejected the transaction. 
The control flow attached to the message frame calls clRelease() to return 
control to the servproc() function.

• If the endpoint accepts the transaction, servproc() saves the serial number 
to the lastid file.

• If the transaction is executed successfully, servproc() returns appropriate 
value to the SFM.



Building delivery AIMs 

14  e-Biz Impact



MSG-IDE Guide 15

C H A P T E R  2 Developing ODL Applications

This chapter provides a summary of the concepts and procedures used to 
build e-Biz Impact Object Definition Language (ODL) acquisition and 
delivery AIMs. 

Introduction
An acquisition AIM acquires data from an endpoint application through a 
direct data feed over a communication connection (such as TCP/IP, TTY, 
or Telnet) or by reading data from one or more files, and sends the 
information to an SFM for optional transaction production.

A delivery AIM receives transactions from an SFM and sends them to the 
destination endpoint.

To develop acquisition and delivery AIMs, follow these steps:

1 Use MSG-IDE to create the AIMs. See Chapter 3, “Using MSG-
IDE.”

2 Use the Configurator to specify acquisition and delivery AIM 
properties such as a communication protocol (resources) and routing 
functions. See the e-Biz Impact Configuration Guide, Chapter 4, 
“Configuring Applications,” for detailed instructions.

3 Deploy the MSG-IDE project files to the location of the e-Biz Impact 
server. See the e-Biz Impact Configuration Guide, Chapter 5, 
“Deploying Files and Executing e-Biz Impact Clusters.”

Topic Page
Introduction 16

Building ODL acquisition AIMs 16

Building ODL delivery AIMs 19



Building ODL acquisition AIMs 

16  e-Biz Impact

In addition to developing acquisition and delivery AIMs, you also must 
develop any SFM objects necessary for transaction production (see the e-Biz 
Impact TRAN-IDE Guide), and implement optional security authorization (see 
the e-Biz Impact Authorization Guide). See the e-Biz Impact Getting Started 
Guide for an overview of all the procedures that are necessary to develop and 
configure an e-Biz Impact implementation.

Building ODL acquisition AIMs
The program flow of an acquisition AIM is dependent on its functionality, but 
in general, the application executes as follows:

• Gathers data from an endpoint application and puts it into the form the 
SFM expects.

• Uses a routing function (DFC) to send the data to the SFM.

• Checks the return value from the routing function:

• If greater than zero (0), identifies the transaction condition.

• If equal to -1, checks the clGetDfcErrno() value for a cause.

• If -1 or less, performs the appropriate error alert or correction 
procedures.

Note  For more information about routing functions, see the e-Biz Impact 
ODL Guide.

Setting up data formats
After the acquisition AIM receives all of the necessary data from the endpoint 
application, that data must be put into the format that the SFM expects from an 
incoming transaction. The SFM receives the transaction via one of several 
routing functions, which can send the data in a string or blob object. String and 
blob objects are ODL data classes.

1 Build data objects for the arguments used by the routing function. Data 
objects are data variables defined using MSG-IDE or TRAN-IDE:

• int flv



CHAPTER 2    Developing ODL Applications

MSG-IDE Guide 17

• string src_ref

• string tranid – used only with route_vrec().

• string prodname – used only with route_vprod().

• string databuf or blob databuf

2 Populate the data objects you built in the previous step. You can populate 
these data objects either before or in the same custom function from which 
you call the routing function.

If the value for any of the data objects is the same for every transaction sent 
by the acquisition AIM, then you can populate the data objects once during 
the program’s initialization function, clinit(). Otherwise, populate the data 
objects with the correct values before each routing function call made by 
the program to the SFM. For example:

int route_vrec(int [flavor] flavor, string [in] src, 
string [in] tranid, blob [in] data);

int route_vprod(int [flavor] flavor, string [in] 
src, string [in] prodname, blob [in] data);

int route_veng(int [flavor] flavor, string [in] src, 
string [in] engname, blob [in] data);

int route_recx(int [flavor] flavor, string [in] src, 
string [in] tranid, blob [in] data, int [in] opts, 
char [in] priority, string [in] fkey, string [out] 
*serial, string [out] *errs, string [out] *status, 
string [out] *dests, string [out] *sfmName, int 
[out] *stmFlavor, string [out] *hostname);

Example This example populates data objects for the route_vrec() routing function:

int rv;
int flav;
string src_ref;
string tranid;
blob dataBuf;

flav = 2;
src_ref = "acqaim1";
tranid = "tran1";
dataBuf = "this is my data";

rv = route_vrec(flv, src_ref, tranid, dataBuf);

where:

• flv – is the flavor of the SFM that should receive the data.



Building ODL acquisition AIMs 

18  e-Biz Impact

• src_ref – is a reference name for the acquisition AIM.

• tranid – is the transaction ID reference.

• databuf – is the data to send. In this example, name, address, and number 
are the defined data objects.

Return values • The main controller that contains the SFM and ODL applications always 
returns a negative value to your acquisition AIM if it encounters a problem 
of some kind. If the return value is -1, it calls the clGetDfcErrno() function.

• If the e-Biz Impact cluster does not find an error, it returns whatever value 
the SFM sets as the return value.

• After the program issues a DFC command, to send or receive data, it 
should:

a Check the return value for a negative value. If the return value is not 
a negative value, check for your programmed return values, if any.

b If the return value is a negative value, check for one of the following 
conditions. Check for the integer value or for the mnemonic that is 
associated with the integer as listed in Table 2-2.

Table 2-1: DFC return values

Error handling The errors list in Table 2-3 can be returned by DFCs:

Mnemonic # Description

RESERVED_FOR_DFCERR -1 The cluster could not pass the transaction on to the SFM. Your program 
should call clGetDfcErrno() to troubleshoot the problem.

UNKNOWN_TRANCODE -2 The SFM could not find the production name (route_vprod()) or the 
transaction ID name (route_vrec()) in its configuration file.

LOGFILE_FULL -3 The SFM could not process the transaction because the log file was full.

TRAN_REFUSED -5 The SFM refused the record because it is in refuse mode.

NOT_QUALIFIED -6 The transaction data did not pass the field object validation or production 
object qualification checks in the referenced production object.

NO_DESTS -7 There are no valid destinations for the production objects for which the 
transaction qualified. This occurs when the production objects uses the 
setDestName and/or the setDestNameData dynamic routing built-in filter 
functions to override the production object’s configured destinations but the 
built-in filter function did not specify a valid destination.

INVALID_DEST -8 The SFM could not process the transaction because an invalid destination 
was specified with a dynamic routing built-in filter function.



CHAPTER 2    Developing ODL Applications

MSG-IDE Guide 19

Table 2-2: DFC errors

Building ODL delivery AIMs
ODL delivery AIMs must define the following functions: 

• servayt() – provides a response to the SFM when it checks to see if the AIM 
is active, and identifies the transaction last processed using the lastID file. 

For example:

int servayt(int [in, flavor] flavor, string [out] *pSerial, int [in]
sfmFlavor)

• servproc() – used by the SFM to send a transaction to the delivery AIM.

For example:

int servproc(int [in, flavor] flavor, string [in, out] *pSerial, string
[in] src, blob [in] dataBuf, string [in] tranid, string [out]
*errTxt, string [in] fkey, int [in] opts, char [in] priority, int
[in] sfmFlavor)

In addition, an ODL delivery AIM must provide the return values listed in 
Table 2-1.

Error code Description

4300 General DFC error.

4311 The DFC timed out while trying to acquire and instance of the DFC server.

4312 The DFC timed out while waiting for the server to pick up the message (message 
removed from server).

4313 The DFC timed out while the server was processing the message (message still in 
server).

4321 The DFC function/flavor combination was not found in the route map.

4322 The DFC function/flavor combination was unavailable due to the availability 
configuration.

4331 The DFC connection to the child controller could not be established.

4332 The DFC connection to the peer controller, remote cluster, or SFM could not be 
established.

4340 General DFC error in the server.

4350 General DFC error in the client bridge.



Building ODL delivery AIMs 

20  e-Biz Impact

Table 2-3: Delivery AIM function return values

You may want to have a delivery AIM cancel or skip a transaction if it finds an 
error that transaction production could not catch, such as assigning a duplicate 
part number. The transaction cannot be processed due to the error, but the 
delivery AIM that caught the error can continue to receive and process other 
transactions.

When a delivery AIM cancels or skips a transaction, the SFM marks the 
transaction for that destination as CANCELLED or SKIPPED. You can repair 
the suspended transaction using the Global Console. See Monitoring e-Biz 
Impact for detailed information about monitoring and log file maintenance.

Return Value Description

-1 Do not use a return value of -1, which is reserved by e-Biz Impact.

1+ A return value of 1 or greater indicates a successful DFC service function.

0, less than 0 (except for 
the reserved value of -1)

A return value of 0 or less than 0 indicates a DFC service function failure. The 
transaction for that destination remains in a PENDING status and the SFM goes into 
retry mode to dispatch the transaction again. 

-998 Used by servproc() to tell the SFM to skip processing of the current transaction for a 
particular destination. The transaction is marked as SKIPPED for the destination and 
is moved to the completed log after the entire transaction is processed.

-999 Used by servproc() to tell the SFM to skip processing of the current transaction for a 
particular destination. The transaction is marked as CANCELLED for the destination 
and the entire transaction remains in the PENDING log.



MSG-IDE Guide 21

C H A P T E R  3 Using MSG-IDE

This chapter explains how to build ODL AIMs using MSG-IDE.

Starting MSG-IDE
To start MSG-IDE, select Start | Programs | Sybase | e-Biz Impact 5.4 | 
Msg-IDE. When the tool executes, the Message Interface Development 
and Browse windows open.

Building ODL AIMs
ODL AIMs contain both message interaction and supporting objects. 
Objects are listed in the left pane of the MSG-IDE Browse window. 

ODL AIMs do not need to use all message interaction objects listed and, 
at a minimum, can contain only data and function objects. For example, 
an AIM that contains all objects, except communications objects, might 
receive data only through routing commands, but can, from within a 
function object, call the protocol object process() method and send data 
through the protocol object to the message frame objects. A message AIM 
that uses all message interaction objects can receive data through a 
communication object or routing commands. 

Topic Page
Starting MSG-IDE 21

Building ODL AIMs 21



Building ODL AIMs 

22  e-Biz Impact

MSG-IDE includes several primary and supporting object types. See “MSG-
IDE objects” on page 4 for a description of each object type.

Note  For more information about objects with user callable methods, see the 
e-Biz Impact ODL Guide. 

Domains and files
Domains and files are found in the objects list, and you can add, delete, or 
rename a file or domain just as you would other objects. 

Domains and files do not share all the characteristics of a standard object. 
Specifically, domains are logical containers that contain other objects, such as 
files that are added as to a specified domain. 

Protocol objects
Protocol objects regulate the flow of data from the communication object to the 
message frame objects. It is the main container object for other message 
interaction objects, except data objects, in a message AIM. All data sent to a 
message AIM by the communication object enters the protocol object, which 
then controls the passage of data to the message frame objects.

The protocol object identifies the communications object, available message 
frame objects, control flow objects to run after the communication object is 
open and after it closes down, and the control flow object to run when the 
protocol object receives data from the communication object. 

The protocol object executes the open control flow object after the 
communication object connects to the port, executing the close control flow 
object if the communication object loses the port connection, accepting data 
from the communication object, executing the preview control flow object 
after receiving data from the communication object, offering the data to the 
message frame objects for bidding, and submitting the data to the proper 
message frame object.

❖ Defining a protocol object

1 Select Protocol from the list of objects in the main MSG-IDE window and 
click Add. The Protocol Definition window appears.



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 23

2 Click in the Name field and type a protocol object name; for example, 
proto1.

3 In the Communications section, select the communications object used by 
the protocol object. To build a new communications object, click the 
ellipsis button. The Communications dialog box appears.

4 Complete these options:

Open: Select an existing control flow object from the list or click Detail to 
open the Control Flow dialog box and build a new control flow object. 
This is the control flow object run by the protocol object after 
Communication shows that it is up

After you build the control flow object, the name of its associated function 
appears next to the Run label.

5 Close: Select from the drop-down list or click Detail to open the control 
flow dialog box and build a new control flow object. This is the control 
flow object run by the protocol object when the communication object 
loses the connection or closes down before the application tells it to.

After you build the control flow object, the name of its associated function 
appears next to the Run label. If you want the communication object to re-
establish the connection to the endpoint application, use restart() within the 
close control flow.

6 Preview Data: Select an existing control flow object from the list or click 
Detail to open the Control Flow dialog box and build a new Control Flow 
object. This is the control flow object run by the protocol object each time 
it receives data from the communication object and before it submits that 
data packet to the message frame objects for bidding. Use this control flow 
object to view or modify the data packet.

After you build the control flow object, the name of its associated function 
appears next to the Run label.

7 Choose one of the following: 

• To view or modify all data that the protocol object has accumulated to 
send to the message frame objects for bidding, check the Accumulate 
Data check box.

• To view or modify the data packet that the protocol object just 
received from the communication object, deselect the Accumulate 
Data check box.

8 Choose one of the following:



Building ODL AIMs 

24  e-Biz Impact

The AIM Type identifies how the protocol object should handle incoming 
data. These options do not indicate the data format, only the way the 
protocol object handles the data.

• To accumulate the data received from the communication object, 
click Stream.

If a message frame object does not make a successful bid on the data, 
the protocol object leaves the data in the blob, appends the next piece 
of data from the communication object onto the blob, and submits the 
accumulated data to the message frame objects. The protocol object 
does not clear its blob until a message frame object makes a 
successful bid on some part of the accumulated data.

• To have the protocol object not accumulate data, click Block.

If a message frame object does not make a successful bid on the data, 
the protocol object clears its blob, places the next piece of data from 
the communication object into its blob, and submits the newly 
received data to the message frame objects.

9 At the bottom of the Frames pane, click Include to add an existing message 
frame object to the protocol object. 

The Frames pane displays all message frame objects available to the 
protocol object. The protocol object submits the data for bidding to the 
message frame objects based upon their order in the list. 

The Include Frame dialog box appears. 

10 Select the message frame object to include from the drop-down list and 
click OK to return to the Protocol Definition window.

11 To add to protocol object to the project, click OK.

12 If you are editing an existing protocol object, click OK to update the 
object. 

13 Use the start() method to add logic to the clinit() function to start the 
Protocol object (use start() method...).

For more information, see the e-Biz Impact ODL Guide.



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 25

Defining control flow objects
Control flow objects define the actions to take and the functions to perform 
after a message frame object matches data. Control flow objects can be 
contained within a control flow object or separate within an AIM. The object 
generates a single function that executes all of the commands (the functions or 
methods) in the control flow. The commands in a control flow object act on the 
data itself or on other objects in the program that you want to manipulate based 
upon the data content. You must always pass the argument “blob *pb” to a 
control flow object in the Flow Arg. SLE of the control flow dialog box 
because the control flow object always receives the data in a blob.

Control flow object also provides a graphical representation of the commands, 
showing the order in which they are executed. A control flow object can be 
called by three objects. It can be called by:

• A protocol object after the protocol object receives a data packet from the 
communication object. 

• A message from object after that message frame matches on data.

• Another control flow object

❖ Defining a control flow object

1 Select Control Flow from the list of objects in the main MSG-IDE window 
and click Add. The Control Flow window appears.

2 Click in the Name field and type the name you want to assign to this 
control flow.

This name, prepended by an underscore, becomes the reference name of 
the function generated by the control flow. For example, if you name the 
control flow cf1, you call it with the reference name _cf1. Use this 
reference name to activate the control flow object commands if you do not 
enter a name in the Run box. 

After you build the control flow, this reference name appears in the 
Objects List in the Browse dialog box when the Function class is selected.

3 (Optional) To call the control flow object with an alternate name, type the 
name in the Run box.

For example, if you name the control flow cf1, but want to call it with the 
name myCF1, enter myCFI in this field.



Building ODL AIMs 

26  e-Biz Impact

When you use this field, this is the name that appears in the Objects list in 
the Browse dialog box when you select the Function class, and this is the 
name that appears in any drop-down lists from which you select function 
objects.

4 The Flow Argument Declaration defines the arguments that must be 
passed to the control flow object when it is called. These arguments 
depend on what type of object is calling the control flow. The following 
table describes the argument to use for each of the objects that can call a 
control flow object.

5 To put arguments in the Flow Arg. declaration field, select the appropriate 
argument from the Arguments menu bar option:

6 Do one of the following:

• To make the control flow available only to objects in the same 
module, click the Exclusive to Domain check box.

• To make the control flow available to all objects in the entire project, 
deselect the Exclusive to Domain check box.

7 Use the following command specification fields to identify or define the 
functions for this control flow to execute and the objects for it to 
manipulate:

Object calling the control flow Flow Arg. Declaration

Protocol: for an Open control flow Leave this entry blank.

Protocol: for a Close control flow Leave this entry blank.

Protocol: for a Preview control flow blob *pb

Message frame object blob *pb

another control flow object user defined

Impact (to service a DFC command) blob *pb

Argument Description

Custom Select this only if the control flow is executed by 
another control flow and is passed an argument 
other than blob *pb. Enter the required argument 
declarations in the Flow Arg. field.

Callback Not applicable to a message AIM.
Validation Not applicable to a message AIM.
blob *pb Places blob *pb in the Flow Arg. declaration 

field. Select for all control flows, except Open 
and Close and for the exception stated under the 
Custom description above



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 27

8 Select Function to build a command that uses a function or another control 
flow. If the function or control flow exists in the project, select it from the 
drop-down list.

If you entered a value in the Run field, that value is what appears in this 
list, not the control flow object reference name

To build a new function from within the control flow dialog box, choose 
from the following:

Field Description

Description For each command, an icon appears in the 
Commands list of the Control Flow. The 
Description field value appears next to this icon.

Statement Click Statement when your function or object 
performs some action that does not require 
comparison, such as a function that builds a list or 
that gathers data from some external source.

When you use a Statement, the control flow does 
not check the return value from the function or 
object method performed. It continues processing 
its remaining commands regardless of the return 
value for the function or method. Use Test if the 
control flow should stop processing or perform a 
different set of actions if the function or method 
returns a value other than a 1.

Test Click Test when your function contains an “if” 
statement or when the control flow should 
perform one set of commands when the function 
or object method returns a value of 1 or another 
set of commands if it does not.

For example, if the function “check that GL 
system is up” returns a value of 1, the control flow 
executes the “send data to GL” and “send ACK to 
client” statements. Otherwise, the control flow 
executes the “notify administrator that GL system 
is down” and “send NAK to client” statements.

Test/Loop Click Test/Loop when your function contains a 
“while” statement. If the statement returns a value 
of 1, the control flow executes the commands in 
the path indicated by the 1 in the icon.

Stop Click Stop to generate a simple return statement. 
Place it at any point at which your control flow 
should stop processing.



Building ODL AIMs 

28  e-Biz Impact

• Enter its name in the Function field, enter the arguments that should 
be used to call the function in the Command Arguments field, and 
then type the Function logic in the viewing area at the bottom of the 
Control Flow dialog box.

• Click Detail. From the Edit Function dialog box, define the function 
and then select File | Update to build the function and return to the 
Control Flow dialog box.

9 If the Function was selected, declare the datatype of each argument in the 
Command Arguments field in the Command Argument Declaration field.

For example, if the Command Arguments data object is named “my_int” 
(integer datatype), then this field has an argument declaration of “int 
my_int”. 

Separate each argument with a comma. For example: string 
name,string address,string city,int zip

10 To execute a method on a particular object, click Object and select the 
object name in the Object field. Select the associated object method from 
the Method list, and enter the method's arguments in the Command 
Arguments field. 

11 If the Object was selected, list the data objects that contain the information 
to be sent to the function or method in the Command Arguments field. In 
effect, you should enter the arguments as you would when making a call 
to a function or method. Separate each argument with a comma. For 
example: name,address,city,zip

12 The control flow logic displays in Commands pane in flow chart format as 
you build the control flow object. The control flow executes the functions 
and methods in the order in which they are listed in this box. 

To modify or move commands in the Commands pane, do the following:

• Click the buttons below the Commands box to modify the display.

These buttons let you add, update, or remove items from the display 
and move existing items to different locations in the control flow. This 
updates only the command display in the control flow, not the 
associated function.

Click Update if you modify a command in the Commands box. If you 
do not, a warning message appears.



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 29

• Click the arrow buttons to move a command from one location to 
another in the control flow. Highlight a command in the Commands 
box and click the arrow pointing in the appropriate direction. The 
object moves one position with each click

13 Select File | Close to close the control flow without updating.

Defining message frame objects
Message frame objects define the structure of the data from the communication 
object that the program should act upon and the control flow objects to execute 
once that data arrives. 

A message frame object defines the format of a specific piece of the incoming 
data message, describing the byte order sequence of the data to match. A 
message AIM can use as many message frames as necessary to identify the 
structure of the incoming message (data). The message frame object identifies 
the start of the data, datatype/length, data end, and the control flow object to 
execute when incoming data matches the message frame definition.

❖ Defining a message frame

1 Select the Message Frame object and click Add. The Frame Matching 
window appears.

2 Click in the Frame Name field and enter a name for the message frame 
object that is descriptive of the type of message being framed by this 
object.

3 To define the Message Frame, click the appropriate button and complete 
additional information in its associated field.

The button options are described in the following table:

Button Description

Any Select this option to match on any type of data for the specified number of 
bytes. Enter the number of bytes in the entry field.



Building ODL AIMs 

30  e-Biz Impact

4 Click Add to add the definition to the message frame object.

5 Click the Non-recursive scan check box if you do not want the message 
frame object to perform a recursive scan on the data. 

The message frame object performs recursive scanning by default in case 
some interference, such as line noise, causes the communication object to 
receive only part of a data packet and then the entire packet if it is re-sent.

All Data Until Select this option to match any type and amount of data until it reaches whatever 
value is specified in the next line of the frame definition. To stop matching when the 
frame finds a set of values instead of a single value, define a definition for each value, 
in the order you want them matched, after the “All Data Until” statement. Then put 
an “...end All Data Until” statement after the definition for the final value.

For example, if you want the Frame to stop matching on data when it finds a CRLF 
combination, but not when it finds just a CR or just an LF, place the following 
definitions in the message frame object:

All Data Until..

Control Character CR

Control Character LF

..end All Data Until

end All Data Until Select this option to stop matching upon encountering any type of data.
Hex value Select this option to match on the hex value specified in the entry field.
Decimal value Select this option to match on the decimal value specified in the entry field
Octal value Select this option to match on the octal value specified in the entry field.
ASCII String Select this option to match on the ascii string specified in the entry field.
Control Character Select this option to match on the control character specified in the entry 

field.
Var String Select this option to match on the value of the selected char, string, or blob 

variable. The drop-down list contains all char, string, and blob variables 
declared in the Define dialog box of the project data object.

Note  The values of the Var String and Var length variables must be initialized in 
clinit(). You can modify the variables by using the message frame object reset() 
method within another function. See the e-Biz Impact ODL Guide for more detailed 
information about the reset() method.

Var Length Select this option to match of the value of the selected short, int, or long 
variable. Use this option to make a variable out of the number of bytes 
delimiting the message. Use the Any option to hard code the number of 
bytes. The drop-down list contains all short, int, and long variables declared 
in the Define dialog box of the project data object

Button Description



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 31

In a recursive scan, after the message frame object matches on part of the 
data, it checks within the matched area to see if it can match on a smaller 
part of that data. The Message Frame continues to check within the 
matched data for another match until it finds the smallest possible part of 
the data to match. 

Example: The Protocol Object submits this data to the Message Frame 
Object for bidding. The Message Frame Object is looking for an STX and 
then all data until an ETX.

STXthisSTXthis is aSTXthis is a test.ETX

In a recursive scan, the Message Frame Object first matches on the entire 
piece of data, “STXthisSTXthis is aSTXthis is a test.ETX”. It then looks 
for another match within that piece of data and finds “STXthis is aSTXthis 
is a test.ETX”. It then looks within that piece of matched data for another 
match and finds “STXthis is a test.ETX”. It then looks for another match 
within that piece and does not find one, so it bids on the final piece of the 
data that it matched on. In a non-recursive scan, the Message Frame Object 
matches on the entire piece of data, “STXthisSTXthis is aSTXthis is a 
test.ETX”, does not look any further within the data for another match, and 
bids on the entire piece of data.

6 The Frame Definition box displays the frame definition, which describes 
what the data looks like that the message frame object should match on. 
Each part of the definition defined in the Options box displays in this box.

• Click Add to add the currently defined option to the message frame 
definition.

• Click Remove to remove a selected line from the message frame 
definition

• Use the spin arrows to change the order of lines in the Frame 
Definition box.

7 Click the Control Flow down arrow and select an existing control flow 
object from the list. 

The control flow object that the message frame object should run after the 
message frame makes a successful bid on the data. 

8 Click Detail to open the control flow dialog box and build a new control 
flow object.

The name of the function associated with the control flow appears next to 
the Run label.



Building ODL AIMs 

32  e-Biz Impact

9 When you finish completing the fields or updating the message frame, 
click Close to close the Frame Matching dialog box.

The message frame object is added to the project or the message frame is 
updated with the modifications.

Defining communication objects

The message AIM uses communication objects to handle communications 
with the endpoint application. Once the message aim is initialized, the protocol 
object launches the communication object to establish the endpoint connection. 
The communication object then receives data from the endpoint and passes it 
to the protocol object to be processed using defined frame objects. The data is 
send to the endpoint programmatically using the communication object's 
send() method. 

To set up the communication mode, use the Configurator. For more detailed 
information, see the e-Biz Impact Configurator Guide.

❖ Defining a communications object

1 Select Communications from the list and click Add. The Communications 
window appears:

2 To configure the communications object, enter a name for the object in the 
Name field.

When you configure the ODL Application for the AIM in the 
Configurator, use the Icon Name as the name of the ODL Resource. 

3 Specify the Icon Name for the communication object.

Note  The Icon Name is required for both UNIX and Windows operating 
systems.

4 Click OK to add the new communications object to the project.

Note  See the e-Biz Impact ODL Guide for details about the kill(), restart(), and 
send() methods, which are associated with the communications object.



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 33

Defining data objects
Data objects provide data variable definitions and contain data that you may 
want to manipulate or access at a later point in the program. A data object is 
any data variable defined with MSG-IDE or TRAN-IDE.

Use the Define dialog box to build data objects to:

• Build a DFC command for gathering or sending data.

• Add a symbolic name definition.

• Build your own structures or class definitions.

As you build a definition, you can see what the program generates in the 
viewing area at the bottom of the dialog box. Expand the size of the viewing 
area, if necessary, to view an entire definition

❖ Defining data objects

1 To access the Define dialog box, select Data from the Classes list and click 
Add.

2 For the Basic Datatype, complete the following fields:

Type Description

char Character: a single character.

short Short Integer: a whole number in the 
range of -32767 to +32767

int Integer: a whole number in the range of -
-2147483647 to +2147483647

long Long Integer: a whole number in the 
range of -2147483647 to +2147483647

float Floating Point: a floating point number.

string A null-terminated character string. 

cptr A real C memory pointer.

iptr For internal use only.

void A void pointer

decimal A decimal number, like 123.45

blob A binary large object block. A collection 
of bytes that can include null characters, 
and is terminated by length.

clNdo Use in conjunction with tree data, 
supported by the clNdo object.

clot Use in conjunction with transports, 
supported by the clot object.



Building ODL AIMs 

34  e-Biz Impact

3 From the Class drop-down list, select to build an object for the selected 
class.

Only the classes that are useful in a message AIM are listed below. Except 
the string class, you can also build any of these objects directly from the 
Browse dialog box.

4 Click Distributed Function to define a Distributed Function Call that this 
program makes to an AIM or an instance of SFM.

These are blocking function calls; that is, after the program issues this 
DFC command, it waits for a return response from the program that 
services the function call before it continues its own processing.

To build a DFC command, type its name in the Name field and click either 
OK or Accept. The Distributed Function Declaration dialog box opens, 
where you define the DFC command arguments.

5 Click Symbolic Name to add a local or global Symbolic Name.

clmap Store string pairs in a <key, element> 
format.

Class Description

Timer To build a timer object.

Control Flow Builds a control flow object.

Message Frame Builds a message frame object.

Protocol Builds a protocol object.

Communications Builds a communications object.

string Builds a string object.

Blob Builds a blob object

Production Use TRAN-IDE to edit Production 
Objects. Not used by MSG-IDE

clNdo Use to build an NDO object.

clot Use to build a transport object.

clmap Store string pairs in a <key, element> 
format.

Type Description



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 35

A symbolic name is a means for substituting a name for a particular value, 
usually a number. Symbolic names allow you to reference a number when 
the value of the number may change. For example, if you set up a symbolic 
name for the maximum number of cattle you could keep in a pen (#define 
MAXINPEN 10), and used the symbolic name (MAXINPEN) instead of 
the number (10) throughout your program, then, if the pen size changes so 
you can only put 5 cattle in a pen, you only have to change the symbolic 
name value. 

You can use a symbolic name Data Object in Custom, Callback, and 
Validation functions. If you set Exclusive to Domain ON, the program 
builds a #lcldefine statement that is available only to the objects and 
functions in the current module. 

If you have Exclusive to Domain set OFF, the program builds a icldefine 
statement that is available to all the objects and functions in the entire 
project. Only numeric values are supported.

6 Click Custom to define data objects that are not available with the basic 
datatype option. Use the area at the bottom of the Define dialog box to 
enter your code.

7 Type the user-assigned name for this definition

In all cases, make this name unique within the domain. If you have 
Exclusive to Domain deselected for building a global definition, you 
should make the name unique to the project. Names must be a maximum 
of 32 characters, contain only A-Z, a-z, 0-9, and underscore characters, 
and begin with an alpha character.

8 In the Initial Value field, type the initial value for the data object.

This value is useful only when defining a basic datatype or a symbolic 
name.

9 In the Array Size field, type the size of an array.

This field is only available for definitions of basic datatypes.

10 Do one of the following:

• (Default) Select the Exclusive to Domain check box to allow the data 
object to be accessed only by other objects and functions within the 
same domain.

• Deselect the Exclusive to Domain check box to allow all objects and 
functions in the project to reference the data object.



Building ODL AIMs 

36  e-Biz Impact

11 The viewing area at the bottom of the Define dialog box displays the Data 
Object you are currently creating and, in some cases, allows you to edit 
that Data Object definition.

If the definition is longer than two lines, either use the scrolling arrows or 
enlarge the viewing area. To enlarge the viewing area, move the cursor 
over the bottom of the dialog box until it displays as a two-way arrow. 
Then hold the left mouse button down, drag the cursor to the size of the 
dialog box you want, and release the mouse button.

12  Do one of the following:

• Click OK to build the data object and return to the Browse dialog box.

• Click Accept to build the data object and remain in the define dialog 
box. 

• Click Cancel to return to the Browse dialog box without building the 
data object.

Defining blob objects
A blob (Binary Large Object Block) is a collection of bytes containing arbitrary 
values that may include null characters. It is terminated by a length value. To 
define a Blob Object, use the format:

blob obj_name;

Generally, a Blob object maximum size is the same as the maximum size of an 
integer. This size is dependent on the computer architecture, whether 16 bit, 32 
bit, or 64 bit. For most computer systems, the maximum size is 4 GB.

There are two ways to build a blob object: 

• Highlight “Blob” in the Classes list of the Browse dialog box and click 
Add.

• When the Define Window opens, select Class, then select Blob from the 
associated drop-down list

Note  See the e-Biz Impact ODL Guide for details on blob methods.



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 37

Defining distributed function objects
A Distributed Function Object contains the definition of a Distributed Function 
Call (DFC command) that the AIM makes to another application within the 
Impact environment. In the DFC command, you define arguments for the 
information going out to the Impact server and the receiving application and 
for the information returning from it. The order of the arguments in this 
window must exactly match the order of the arguments in the Impact receiving 
DFC function. As you build the arguments, they appear in the idempotent 
statement displayed in the viewing area at the bottom of the window. When you 
delete an argument from the Argument List, it is also removed from this 
statement. Enlarge the bottom of the window to view the entire statement if it 
exceeds a few lines.

❖ Defining a distributed function object

1 In the Distributed Function Declaration window, click in the Distributed 
Function field and type the distributed function call (DFC) command. 

If you accessed the Distributed Function declaration box through the 
Define window, this field is disabled and displays the last entry to the 
Name drop-down box in the Define window.

After you build a DFC command, if you select Accept, focus returns to this 
drop-down box, and you can enter the name of another DFC command.

2 Choose one of the following:

• Select the Exclusive to Domain check box to make the DFC command 
exclusive to the domain, or static; that is, only objects and functions 
in the same domain can reference the DFC command.

• Deselect the Exclusive to Domain check box to make the DFC 
command considered global to the project, meaning that objects and 
functions in other domains in the same project can reference it

3 Select the Function Wrapper check box to generate a function that issues 
the DFC command, checks the return value from the function, and 
displays an error message if it detects a problem. 

The function name is identical to the DFC command name, but is 
prepended with an underscore. The Argument Name field becomes a drop-
down list from which you can select predefined data objects as arguments.

4 Click in the Argument Name field and type the user-assigned name for this 
argument in the Name field. 



Building ODL AIMs 

38  e-Biz Impact

This name does not need to match the name of the argument used in the 
destination AIM.

5 Select one or more of the following Attributes:

Each argument must have one or more of the attributes check boxes 
selected.

6 Select the Array check box and use the associated field to define an array.

7 Select the Pointer check box if this DFC argument is a pointer.

8 In the Argument List box, which displays a list of the arguments built for 
this DFC command, do any of the following:

• To delete an argument from the list, highlight the entry and click 
Delete.

• To modify the presentation sequence of the arguments, use the spinner 
buttons.

• To update changes to the argument list, click Update.

9 Click Add Arg when you complete your definition of an argument to add 
it to the arguments list. 

You can use a maximum of 100 arguments per DFC command.

Viewing Area The viewing area is at the bottom of the Distributed Function Declaration 
dialog box. It displays the DFC command in its current state. 

• If the DFC command exceeds two lines, use the scrolling arrows to display 
the rest of the definition, or you may enlarge the viewing area.

Attribute Description

In The sending AIM fills this argument with a value 
before issuing the DFC command.

Out The receiving application fills this argument. The 
destination AIM fills this argument upon receiving the 
DFC command and before the argument set returns to 
the sending AIM.

Flavor Impact uses the flavor in the idempotent statement to 
choose a specific function from its tables to service the 
DFC command. Only one argument per DFC 
command can have a Flavor attribute. 



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 39

• To enlarge the viewing area, move the cursor over the bottom of the dialog 
box until it displays as a two-way arrow. Then hold the left mouse button 
down, drag the cursor to the size of the dialog box you want, and release 
the mouse button.

Note  See the e-Biz Impact ODL Guide for more information on SFM and DFC 
interfaces.

❖ Using the Viewing Area

1 Click Accept to add the distributed function object to the current file and 
remain in the Distributed Function Declaration box to build another 
object.

If you build the object from the Define dialog box and click Accept in the 
Define dialog box, you return to that dialog box.

2 Click OK to add the distributed function object to the current file and 
return to the Browse dialog box.

Defining database interface objects
Database interface objects allow ODL programmers to access external 
databases. You can use a database interface object to:

• gather data from a database and store the data in data objects

• Gather data from data objects and store the data in a database

• Transform data in a filter. Field objects can be compared with database 
entries and modified if necessary.

• Check data in a qualifying object. If the database interface object returns 
any rows, the qualification is passed.

You can write SQL to use the contents of a data object as a comparison point 
for selecting rows of data, then bind columns of the result row to data objects 
and manipulate data objects with the callback function. For example, you can 
put a last name in a data object, then use the last name to draw a row from a 
database of last name-salary-phone number information. Bind the salary 
column to another data object, and use the callback function to send the last 
name and salary to the message broker for distribution to an endpoint 
application.



Building ODL AIMs 

40  e-Biz Impact

❖ Defining a database object

1 To view the database interface, select Tools | Database Interface from the 
MSG-IDE toolbar.

2 Select Database Interface from the Classes list and click Add.

3 Click in the Obj Name field and type a name for the database interface 
object.

4 Click in the Dsn field and type the DSN name setup on the current system. 

5 Click in the User field and type the user name to access the database 
defined in the DSN. 

6 Click in the Password field and type the associated password.

The nnsyreg.dat file entry should look similar to the following example, 
for a SQL 8.0 database on Windows 2000:

OTContext.InputContext
NNOT_CTX_TMID= OTTestTransactionManager
NNOT_CTX_ENFORCE_TX= TRUE

OTContext.OutputContext1
NNOT_CTX_TMID= OTTestTransactionManager2
NNOT_CTX_ENFORCE_TX= TRUE

OTContext.OutputContext2
NNOT_CTX_TMID= OTTestTransactionManager
NNOT_CTX_ENFORCE_TX= TRUE

Transport.TransportInput
NNOT_SHARED_LIBRARY= dbt26mqs
NNOT_FACTORY_FUNCTION= NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID= MQSession

Transport.TransportError
NNOT_SHARED_LIBRARY= dbt26mqs
NNOT_FACTORY_FUNCTION= NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID= MQSession2

Transport.TransportOutput1
NNOT_SHARED_LIBRARY= dbt26mqs
NNOT_FACTORY_FUNCTION= NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID= MQSession

Transport.TransportOutput2
NNOT_SHARED_LIBRARY= dbt26mqs



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 41

NNOT_FACTORY_FUNCTION= NNMQSQueueFactory
NNOT_TIL_OPEN_SESSION_ID= MQSession

TransactionManager.OTTestTransactionManager
NNOT_SHARED_LIBRARY= oti26mqstm
NNOT_FACTORY_FUNCTION= NNOTMQSeriesTXManagerFactory
NN_TM_MQS_QMGR= QUEUEMGR

TransactionManager.OTTestTransactionManager2
NNOT_SHARED_LIBRARY= oti26mqstm
NNOT_FACTORY_FUNCTION= NNOTMQSeriesTXManagerFactory
NN_TM_MQS_QMGR= QUEUEMGR

Session.MQSession
NNOT_SHARED_LIBRARY= dbt26mqs
NNOT_FACTORY_FUNCTION= NNMQSSessionFactory
NNMQS_SES_OPEN_QMGR= QUEUEMG

Session.MQSession2
NNOT_SHARED_LIBRARY= dbt26mqs
NNOT_FACTORY_FUNCTION= NNMQSSessionFactory
NNMQS_SES_OPEN_QMGR= QUEUEMGR

7 The Statements pane displays a list of the statement objects in the database 
interface object. A statement object comprises SQL statements and other 
settings that perform an action involving the database. The statement 
objects apply only to the database to which the database interface object is 
linked.

• To create a new statement object, click New. 

• To view an existing Statement Object, select the statement and click 
Details.

8 Click the drop-down list in the Isolation Level field to select an isolation 
level. 

The isolation level is the method used to deal with concurrent data calls to 
the database. Refer to the ODBC manuals provided by your DBMS or 
database middleware vendor for information on isolation levels.

9 To select Status Scope, click its check box.

10 Click OK to accept the settings in the database interface object dialog box 
and close the dialog box.



Building ODL AIMs 

42  e-Biz Impact

Using a SQL template and a datalink

ClDbStmt is the ODL representation of a database-specific SQL statement. A 
SQL statement is constructed with the creation of a clDbStmt, which is done 
using MSG-IDE or TRAN-IDE.

❖ Building a SQL statement

1 Start MSG-IDE. Select Start | Programs | Sybase | e-biz Impact 5.4 | Msg-
IDE. 

2 If Database Interface does not appear in the object list on the left of the 
MSG-IDE Browse window, select Tools | Database Interface in the 
Message Interface Development window. 

3 In the Browse window, select Database Interface in the object list and click 
Add. The Database Interface Object window opens.

4 Click New. The SQL Statement Builder window appears.

5 In the Stmt Name field, type a descriptive name for the statement object 
that you are building. 

6 In the Stmt ID# field, type the ID number of the statement object that you 
are building. The ID number allows other objects to reference the 
statement object.

7 In the Tables section, click the table that you want to use. The columns in 
the selected table appear in the Columns list. To insert a table name in the 
SQL syntax, double-click the table name.

8 Click a column in the list to display the column’s datatype in the status bar 
at the bottom of the window. Double-click the column name to insert it 
into the SQL syntax.

9 Click a procedure in the list to display its parameters in the status bar. To 
insert a procedure into the SQL syntax, double-click the procedure. The 
procedures section contains a list of the available procedures in the 
database. A procedure is a piece of user-defined logic contained in its 
database.

10 To insert the contents of the data object into the SQL syntax, double-click 
the Data Object. The Data Object name enclosed by << >> appears in the 
Syntax Box. This is an output Object. Field objects, indicated by type 
clTrFld, are read-only.



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 43

11 To insert the return value from a procedure into the data object in the SQL 
syntax, press Shift and double-click the Data Object. The Data Object 
name enclosed by >> << appears in the Syntax Box. This is an input 
object. For example, >>object<<

12 To insert the content of the Data Object, while at the same time inserting 
the return value from a stored procedure into the Data Object, type the 
name of the stored procedure, enclosed with <> <>. For example, 
<>object<>

13 Insert SQL into the syntax box by clicking the SQL verbs and the keypad, 
and by double-clicking items in the Tables, Columns, Procedures, and 
Data Objects lists. 

To replace text in the box, highlight the text you want to replace and click 
the replacement 

The Database Interface Object statement can contain more than one SQL 
statement. The maximum size for the SQL in this box is 2000 bytes.

Buttons are provided for common SQL syntax and functions. Click these 
buttons to build the SQL syntax with a minimal amount of typing

Datalink types

The following table lists all Datalink types.



Building ODL AIMs 

44  e-Biz Impact

Note  Outbound and in/out bound datalinks used in stored procedures are not 
populated with data from the system database until all rows from the result set 
(if any) are fetched. To ensure population of the datalink, set the statement to 
fetch via the multifetch option.

SQL statement options 

You expand the Statement Object definition by changing the source for SQL, 
expanding the SQL syntax, or automatically committing to database changes.

❖ Defining SQL statement options

1 In the SQL Statement Options dialog box, 

2 Click the down-arrow in the SQL Data Obj field to select an existing Data 
Object, or click Detail (...) to open the Define window and create a new 
Data Object

Datalink Type Description

<<odl_variable_name>> Input Datalinks of this type retrieve the value 
of the corresponding ODL variable at 
execution time and substitute the value 
where the datalink is placed in the SQL 
statement. 

>>odl _variable_name<< Output Datalinks of this type are written with the 
data sent back from the database on 
execution of the statement. 

Use this datalink only with stored 
procedure SQL statements.

<>odl_variable_name<> Input

Output

The value from the ODL variable 
associated with the datalink is used at 
execution time. Data returned from the 
database is also written to do the ODL 
variable.

Use this datalink only with stored 
procedure SQL statements.

<!odl_variable_name!> Input

Output

Data from the ODL variable is 
substituted/expanded in place of the 
datalink literally (as text characters) at 
execution time.



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 45

If your SQL commands vary depending on the result of other operations, 
use a Data Object to store the SQL and reference the Data Object. The 
SQL commands in the Data Object selected in this dialog box is executed. 
The SQL commands in the Syntax box of the SQL Statement Builder 
dialog box is ignored.

3 Click the auto commit check box to automatically commit the changes to 
the database upon completion.

This guarantees the changes are permanent without a manual 
confirmation.

4 Click the inline data obj. references check box to enable inline Data Object 
references. 

References in the SQL Data Object can be expanded by substituting values 
for existing parameters.

For example, given {string foo;} and {foo=“nextus”}, then “select * from 
sales where id like <<foo>>“ is expanded to “select * from sales where id 
like ‘nextus’”.

This is useful if your ODBC or database does not support extended 
parameters.

5 Do one of the following: 

• Click Done to accept the settings.

• Click Cancel to exit without accepting the settings.

SQL statement result options

In the SQL Statement Result Options dialog box, you can assign a name to the 
result set of the statement object, execute a function on the result set, define 
column and row separators, determine a maximum number of rows to be 
included in the result, and specify other aspects of the statement output.

❖ Defining SQL statement result options

1 Click the down arrow in the Data Obj field to select an existing Data 
Object or click Detail to build a new Data Object.

Individual column data can be bound to Data Objects using the Column 
Bindings dialog box.



Building ODL AIMs 

46  e-Biz Impact

The Data Object stores all of the result rows generated by the Statement 
Object. The result rows include all separators, and are concatenated as 
they are processed,; ensure that the Data Object is large enough to hold all 
of the result data. Use a Data Object type of either BLOB or string as both 
grow as needed. 

2 Click the down arrow in the Callback field to select an existing function to 
execute against each result row, or click Detail to build a new function. 
The function executes after each result row is gathered and acts on the data 
in the new row. The following table lists possible callback events 
generated by the Database Interface Object.

See “Defining function objects” on page 52 for more information about 
building a function.

3 In the Col. Separator field, type the string to use as a column separator. The 
string can include Escape sequences.

4 In the Row Separator field, type the string to use as a row separator. The 
string can include Escape sequences.

5 In the Maximum Rows field, type the maximum number of rows to be 
included in the result-set row count.

The default value is 0, which means all rows. The maximum value is 
2,147,483,647.

6 Click the No trunc check box to leave trailing white space on each result 
column.

7 Click the Multirow check box to return all result rows. Otherwise, only the 
first result row is returned.

Event Condition

DBE_SELECT Got a row of data on a select or stored 
procedure.

DBE_ERR_OOM Out of memory error.

DBE_ERR_SQL SQL syntax error at run time.

DBE_ERR_ARG Invalid arguments.

DBE_ERR_NOROWS No rows affected on insert/update/delete 
command.

DBE_NOTIFY Insert/update/delete completed 
successfully.

DBE_EMPTY SELECT has returned empty result set.

DBE_RESULT SELECT has returned entire result set, 
which has at least one result row.



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 47

8 Select the No Fetch option if you do not want to automatically fetch each 
result row after executing the Callback function. Otherwise, result rows 
are automatically fetched.

You can use the fetch( ) method to step through the result set. The fetch() 
method triggers the callback function each time it is called.

9 Select the Skip Last Row Sep option if you do not want a row separator 
placed at the end of the last row.

10 Select the Skip Last Col Sep option if you do not want a column separator 
placed at the end of the last column in each row.

11 Do one of the following: 

• Click OK to accept the settings.

• Click Cancel to exit without accepting the settings.

SQL bindings 

In the SQL Bindings dialog box, when you include a column-generating 
procedure in the SQL syntax, you can move a piece of column data into a Data 
Object after each result row is returned. This Data Object can then be used by 
the SQL Statement Result Options callback function or other objects outside 
the database interface object.

❖ Binding column data to a data object

1 Click the column name in the Column Box, choose a data object from the 
Data Object drop-down list, and click Set.

The column box shows which column data is bound to which data object. 
The columns appear on the left side of the box and the Data Objects bound 
to those columns appear on the right side of the box. The link is 
represented by ==>.

2 Click on the down arrow in the Data Object field to open a drop-down list 
of Data Objects and select the Data Object that you want to bind to a 
column.

3 Click the Auto Bind check box to automatically bind any column data to 
a Data Object that has the same name as the column.



Building ODL AIMs 

48  e-Biz Impact

For example, if the Auto Bind box is selected, the result set has a column 
named FName, and you have a Data Object named FName, the contents 
of the column is placed into the Data Object of the same name every time 
a result row is returned. The name of the column must be identical to the 
name of the Data Object. Selecting Auto Bind automatically matches 
identically named column and Data Objects and disallows a match in 
which the names vary in any respect.

4 Do one of the following: 

• Click Accept to accept the settings.

• Click Clear to clear all the bindings on all columns.

• Click Cancel to exit without accepting the settings.

SQL statement syntax

SQL statements are passed to the underlying system database when executed, 
therefore, they must conform to the system database syntax. SQL statements 
can contain, input, inline, and datalinks. Embedded datalinks within the SQL 
statement are translated or converted to appropriate system database values.

SQL statements, such as select, insert, update, and drop, should not contain 
outbound (output, in-out) datalinks. Use these with Stored Procedures only.

Example of a SQL statement with a datalink:

Select * from customers where id = <<odl_int>>

Stored procedure syntax

A stored procedure template syntax requires:

• Stored procedure name on the system database.

• The correct number of parameters the stored procedure on the system 
database expects.

• An optional output datalink to store the return value of the procedure.

Stored procedure templates can contain all four types of datalinks.

The format for the stored procedure template is:

{ >>rv<< = call storedProcedureName (parameters) }

where rv is an optional datalink to hold the return value of the stored 
procedure. Not all stored procedures have a return value. 



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 49

storedProcedureName is the name of the stored procedure on the system 
database.

parameters are parameters for the stored procedure. Parameters can include 
string, numeric literals, or any of the four datalink types.

Examples of a stored procedure call:

{ call sp1('foo', 'bar', 1, 2, 3, <<int_datalink>>) }

{ >>int_rv<< = call sp2(>>string_value<<,<int_value>>)}

Advanced datalink features

New datalinks features are transparent to existing and older project files. The 
new features are designed to give you more precise control of the data being 
sent to and retrieved from the system database. Use of the new features is 
optional. 

A datalink consists of four parts:

• Datalink direction. One of four types: in, in-out, out, and inline.

• (Optional) Pre-cast to represent the datalink as a particular database 
column type. This is used for input type datalinks to represent ODL data 
as a different datatype in the system database.

An example is a datalink that a string type in ODL. You can represent this 
as a type of varchar data to be used in a SQL statement instead of the 
default type of char. Casting is used in this situation.

• ODL variable name the datalink is bound to. Variables used as datalinks 
must be of global scope.

• (Optional) Post-cast to represent data from the system database as a 
particular ODL datatype. Use this for outbound datalinks to represent the 
data retrieved from system database as a particular ODL datatype.

An example is in a stored procedure, to store binary values from an 
outbound datalink as sequence of null terminated characters to store in an 
ODL string, cast this into a char.

All datalinks have a default ODL type to system database type conversion. 
These are listed in the following table.

ODL datatype/SQL type Description

blob SQL_char

float SQL_double

char SQL_char



Building ODL AIMs 

50  e-Biz Impact

ODL datatypes not listed in conversion table above are treated as SQL_char.

Pre-cast and post-cast syntax

Pre-cast Datalink syntax:

<< (Pre-cast) datalink_name [Post-cast] >> 

Pre-cast represents ODL datatypes in the datalink as a different datatype on the 
system or a datatype with a particular size and precision, which is also known 
as “sql_digit.”

Pre-cast is optional, it may not appear in the datalinks.

Syntax and options Allowable syntax for pre-cast:

Note   The enclosing parenthesis are required.

(cast_type)

(cast_type, sql_size)

(cast_type, sql_size, sql_digit)

Possible cast_type for pre-cast are:

• char

• varchar

• longvarchar

• binary

• varbinary

• longvarbinary

unsigned char SQL_tinyint

short SQL_tinyint

unsigned short SQL_tinyint

int SQL_integer

unsigned int SQL_integer

long SQL_integer

unsigned long SQL_integer

string SQL char

ODL datatype/SQL type Description



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 51

sql_size and sql_dIgit The sql_size is the user-specified size for the data being sent to the system 
database. The sql_size can be used to limit the amount of data being sent to the 
system database if the specified size is smaller than the ODL data size.

sql_digit is used for precision. 

For fixed length datatypes, these two options are disregarded.

An example of a pre-cast datalink is: 

<<(varchar, 10)odl_string>>

 

Datalink Syntax:

>> (Pre-cast) datalink_name [Post-cast] <<

where:

>> is the datalink type. This could be one of four: <<. >>, <>, <|

Pre-cast is optional. 

datalink_ name is the ODL variable name bound to the datalink.

Post-cast is optional. 

Post-cast Post-cast fine tunes the results retrieved from the system database so they can 
be stored in outbound datalinks in a certain way.

Note  Use post-cast only with outbound or in-out datalinks. It cannot be used 
with inbound or inline type datalinks.

Syntax and options Allowable syntax for post-cast:

Note  The enclosing brackets are required.

[cast_type]

[cast_type, varible_buffer_size]

Possible cast_type for post-cast:

• char

• long

• binary

• float



Building ODL AIMs 

52  e-Biz Impact

The variable_buffer_size is the buffer size to retrieve from system 
database.

An example of a post-cast datalink is:

>>odl_string[char, 10]<<

Additional performance considerations are:

• Each clDbi object owns multiple clDbStmts during run time. At any given 
time, only one clDbStmt can be executed. ClDbStmts and associated SQL 
statements not in use are cached until they are selected to be the active 
statement and executed.

• Caching of statements significantly improves performance, however, 
ClDbStmts and associated SQL statements can only be cached in the 
following scenarios:

• The SQL statement in the ClDbStmt does not contain inline datalinks.

Because values of inline datalinks are expanded within the statement 
and values may change during run time, this type of SQL statement 
cannot be cached.

• The SQL statement within the ClDbStmt is constructed and defined 
by the SQL Statement Builder before run time. 

ClDbStmts using an ODL datalink string to hold SQL statement 
cannot be cached because its value may change during run time. 

Defining function objects
Within a control flow, a function object defines the actions to take, either on the 
data itself or because of the data presence. When not within a control flow, a 
function object defines the actions to take to service a DFC command. Function 
objects are user provided routines within which you may perform all kinds of 
data manipulation and actions in the Object Definition Language (ODL).

When you select Function in the MSG-IDE object list and click Add, the Edit 
Function window displays.

When you add a function, you select the type of function you want to create by 
clicking one of the buttons on the top of the window. The following table lists 
the available function types:



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 53

❖ Defining function objects

1 Select Function from the Classes list and click Add

The Edit Function window appears.

2 Select File | Update to check the syntax of the ODL in the function.

 If MSG-IDE finds no errors, it adds the function to the current domain, or 
updates it if editing an existing function, and returns focus to the Browse 
dialog box. If it finds an error, it displays a Syntax Errors window that lists 
the line(s) that contain syntax errors, along with a description of the error. 
Click Done in the Syntax Errors window to return to the Edit Function 
dialog box and fix the detected error.

3 Select File | Exit to exit the Edit Function dialog box without checking 
syntax or adding the function.

Function type Description

Initialize Specifies any actions the ODL application must perform when initialized by 
executing clinit(). Start your protocol object in this function.

Acquire Executes the clacquire().
Deinitialize Specifies any action the ODL application must perform when deinitialized. The 

program executes this function after calling clQuit(). 
DBCallback Builds a function that manipulates the data received from each result row of a 

SQL statement object. The function executes after each result row has gathered 
events and data in the new row.

Custom Specify the actions to take on application data or on other objects in the AIM that you 
want to manipulate based on data content. You can call custom functions from within a 
control flow object. If necessary, you can use the same custom function in multiple 
control flows.

Callback Acts as a control object. You can assign the function name, but you cannot modify the 
return value or arguments received. Attach the function to a control object by assigning 
it to the Callback Function property for that control. You can have multiple callback 
functions in an application, but each must have a unique name.

Validation Used to perform validation on the data beyond normal content checking. For example, a 
validation function could check for a range of numbers rather than just check for numeric 
data entered into a numeric field.



Building ODL AIMs 

54  e-Biz Impact

Defining I/O file objects
An Input/Output (I/O) file object provides the ability to access disk files and to 
create, edit, and delete these files. The I/O file object references the actual file 
on the disk and defines access permissions for the file. After you create the file 
object within MSG-IDE, use methods to create or delete the file and to 
manipulate its contents.

I/O file objects also give you the ability to read the contents of a directory. In 
this case, the I/O file object references the directory rather than a specific file. 
You can then use openDir() and readDir() to create an internal list of the files that 
exist within the directory and to access each file in the list. See the e-Biz Impact 
ODL Guide for more information on the file object methods.

❖ Defining an I/O file object

1 Select Tools | IO File from the MSG-IDE menu bar. The I/O File Object 
window appears and I/O File now appears in the Classes list.

2 Select I/O File and click Add.

3 Click in the Object Name field and type a name for your I/O file object. 
The name cannot contain a period (.) or a space.

4 Click in the Associated File field and type the file name.

• When the I/O file object references a file, this is the name of the file 
to access or to create.

• When the I/O file object references a directory, this is the name of the 
directory to access. 

• If the file or directory is not in the current working drive or directory 
of the ODL application, include either the full or relative path to the 
file. 

• Use a forward slash in the path for both Windows and UNIX.

• This field is limited to 255 bytes for the actual filename and 1024 
bytes for the path to the file.

5 Choose one of the following I/O Options:

• Read Only: The I/O file object can only read the file.

• Write Only: The I/O file object can only write to the file.

• Read and Write: The I/O file object can read and write to the file.

6 Select from the following Write Options:



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 55

Use these options to specify how the I/O file object writes to the file. These 
options are not available when Read Only is selected in the I/O Options 
box.

You can select only one option, or you can select Create with either the 
Append or Truncate option. In the latter case, the I/O file object creates the 
file only if it does not currently exist. 

• Append: select to append new data to the end of an existing file.

• Truncate: select to delete the contents of an existing file before 
writing new data to the file. 

• Create: select to create the file. Select the Exclusive check box to not 
create the file if a file of the same name already exists in the location 
specified in the Associated File field. When set and the file already 
exists, the I/O file object returns an FEEXIST error.

7 Select from the following Create Permissions options:

These options are used only when the I/O file object creates a file; they do 
not affect the permissions set on existing files.

• Owner: Select the choices in this column to specify permissions of the 
file owner. The file owner is the controller running the application.

• Group: Select the choices in this column to specify permissions for 
other users in the owner’s group. The owner’s group is the group of 
the controller running the application.

• Other: Select the choices in this column to specify the permissions for 
all other users.

8 Click the Binary I/O check box to open or transfer the I/O file object 
associated file in binary rather than text mode.

This option is useful only on Windows platforms.

9 Click the Non Blocking I/O check box to never block on a read or write 
when the file has an enforcement lock.

When another user has an enforcement lock (rather than an advisory lock) 
set on a file, if you try to read or write to that file, your application blocks 
on the read or write call until the other user unlocks the file.

This does not affect blocking on a lockFile() or lockSeg() method.

10 Click OK to build the I/O file object and return to the Browse dialog box.



Building ODL AIMs 

56  e-Biz Impact

Defining production objects
Production objects are created, modified, and tested in TRAN-IDE, not MSG-
IDE. After the production object is created and tested in TRAN-IDE, it can be 
included in a MSG-IDE project. You can view the production objects included 
in a MSG-IDE project.

To viewing production objects in a MSG-IDE project, select Tools | Production 
from the menu bar. 

Note  For more information about TRAN-IDE functionality, see the e-Biz 
Impact TRAN-IDE Guide.

Defining timer objects
The timer object provides a means for setting an alarm in the application. Use 
it to execute a set of logic on a periodic basis.

Note  Although the function associated with the timer is normally executed at 
the end of the interval set in the timer, there is an exception. If, at the end of 
this interval, some other process (such as a loop) is being run from within the 
AIM, the execution of the function associated with the timer will not occur 
until that other process has terminated. This is because the timer was designed 
to not allow its associated function to interrupt another process.

❖ Defining a timer object

1 Select Timer from the Classes list and click Add. The Timer window 
appears.

2 Click in the name Field and type the reference name for the timer object.

3 Click in the ID field and type an object ID value, which must fall in the 
range of 1 - 32767.

4 Click in the Interval field and type the number of milliseconds the timer 
should wait before performing the function identified in the Function 
drop-down list. 

This is an initial value. This number is replaced by any value greater than 
0 in the timer::set() method that makes the timer active.



CHAPTER 3    Using MSG-IDE

MSG-IDE Guide 57

5 Either click the Function drop-down list and select the name of the 
function the timer should initiate whenever it counts up to the time 
specified in the Interval box or click Details.

6 Choose one of the following: 

• Click the One Shot check box to have the timer count up to the 
interval, perform the function, and stop. It never repeats the action 
unless you reset it with the timer::set() method.

• Do not click the One Shot check box to have the timer count up to the 
interval, performs the function, reset its counter, and restart the 
process. The only way to stop the timer action is to issue the kill() 
method from some other activity in your program

7 Click OK to complete your entries or modifications and build the timer.

Note  See the e-Biz Impact ODL Guide for more information about the kill() and 
set() methods.

Understanding object flow
1 The communication object receives data from an application.

2 The Protocol Object receives the data from the communication object and 
places it into a blob.

3 The Protocol Object executes a Control Flow Object, if one is defined, to 
preview the data.

4 The Protocol Object then offers the data to its Message Frame Objects for 
bidding. Each Message Frame Object bids on the data based upon the 
position in the data that the Frame definition matches. The closer the 
Message Frame matches to the first position in the data, the lower its bid.

5 Decision Point:

• 5a. If no Message Frame Objects bid on the data, then the Protocol 
Object waits for another block of data from the communication 
object, appends it to the data currently in the blob, runs the Control 
Flow Object to preview the data, and submits the accumulated data to 
the Message Frame Objects for bidding.

• 5b. If Message Frame Objects match on the data, they submit a bid to 
the Protocol Object. 



Building ODL AIMs 

58  e-Biz Impact

6 The Message Frame with the lowest bid (i.e., the one that matched closest 
to the first position in the data) gets the piece of the data that it matched 
and bid on. The Protocol Object extracts the matched data from its blob 
and passes that data to the Message Frame Object that won the bidding. 
The Protocol Object deletes from its blob any remaining data that came 
before the piece the Message Frame Object matched on and retains any 
data that came after the piece the Message Frame Object matched on.

7 After a Message Frame Object receives data from the Protocol Object, it 
passes program control to its Control Flow Object which executes its 
associated function. 

8 Decision Point:

• 8a. If the Protocol Object has no data remaining in its blob, it waits for 
the next piece of data to arrive from the communication object, then 
starts the cycle over.

• 8b. If the Protocol Object still has data in its blob, it submits that data 
to the Message Frame Objects for bidding. 

9 Decision Point:

• 9a. If no Message Frame Objects bid on the data, then the Protocol 
Object deletes the remaining data from its blob and waits for another 
block of data from the communication object. 

• 9b. If Message Frame Objects match on the data, program flow 
follows as described in steps 5b – 8.


	MSG-IDE Guide
	About This Book
	CHAPTER 1 Overview
	Introduction
	Using MSG-IDE
	MSG-IDE terminology
	Starting MSG-IDE
	MSG-IDE objects

	Creating MSG-IDE projects
	Project organization
	Rules and restrictions

	Building acquisition AIMs
	Acquisition AIM structure

	Building delivery AIMs
	Delivery AIM structure


	CHAPTER 2 Developing ODL Applications
	Introduction
	Building ODL acquisition AIMs
	Setting up data formats

	Building ODL delivery AIMs

	CHAPTER 3 Using MSG-IDE
	Starting MSG-IDE
	Building ODL AIMs
	Domains and files
	Protocol objects
	Defining control flow objects
	Defining message frame objects
	Defining communication objects
	Defining data objects
	Defining blob objects
	Defining distributed function objects
	Defining database interface objects
	Using a SQL template and a datalink

	Defining function objects
	Defining I/O file objects
	Defining production objects
	Defining timer objects
	Understanding object flow





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


