
Component Integration Services User’s Guide

Adaptive Server® Enterprise
Version 15.0

DOCUMENT ID: DC32702-01-1500-02

LAST REVISED: October 2005

Copyright © 1987-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Search Anywhere,
Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SOA Anywhere, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/
Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle,
Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System
11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse
Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of
Sybase, Inc. 06/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Component Integration Services User’s Guide iii

About This Book .. vii

CHAPTER 1 Introduction ... 1

CHAPTER 2 Understanding Component Integration Services 5
Basic concepts ... 5

Access methods .. 6
Server classes... 6
Object types .. 7
Interface to remote servers ... 7

Proxy tables ... 8
Using the create table command... 8
Using the create existing table command 9
Using the create proxy_table command.................................. 10
Remote procedures as proxy tables.. 11
Server limits... 14
Cascading proxy tables ... 18

Proxy databases .. 18
User proxy databases ... 18
System proxy databases ... 21

File system access ... 23
Security considerations ... 24
Directory access.. 24
Recursion through subordinate directories.............................. 27
File access .. 27

Remote servers .. 29
Server class ASEnterprise .. 30
Server class ASAnywhere... 30
Server class ASIQ ... 30
Server class direct_connect .. 30
Server class sds .. 31
Connection management .. 32
Connecting to remote servers without the interfaces file......... 32

Contents

iv Adaptive Server Enterprise

LDAP directory services .. 33
Secure communication with SSL... 33
Security issues .. 34
Remote server logins .. 34
Mapping external logins .. 36
Remote server connection failover.. 37
Remote server capabilities .. 38

Query processing ... 38
Processing steps ... 38

RPC handling and Component Integration Services...................... 44
Site handler and outbound RPCs.. 45
Component Integration Services and outbound RPCs............ 45
Text parameters for RPCs... 47
Text parameter support for XJS/390 49

Distributed Transaction Management .. 49
Server classes and ASTC ... 49
DTM-enabled servers.. 50
Pre-DTM servers ... 50
strict DTM enforcement ... 51
enable xact coordination ... 51
Enable Component Integration Services................................. 52
Transactional RPCs .. 52
Restrictions on transaction management 52

Adaptive Server to Adaptive Server update statistics 53
Limitations ... 53

Updating statistics on non-Adaptive Server backends................... 54
Java in the database .. 54

@@textsize... 55
@@stringsize.. 55
Constraints on Java class columns ... 55
Error messages ... 56
Java abstract datatypes (ADTs) .. 56

Datatypes ... 57
Unicode support .. 57
Datatype conversions.. 60
text and image datatypes .. 61

Configuration and tuning .. 65
Using sp_configure.. 65
Global variables for status... 69

CHAPTER 3 SQL Reference ... 71
dbcc commands ... 71

dbcc options .. 72
Trace flags... 72

Contents

Component Integration Services User’s Guide v

Functions.. 74
Support for functions within Component Integration Services. 74
Aggregate functions .. 74
Datatype conversion functions .. 74
Date functions ... 75
Mathematical functions.. 75
Security functions .. 76
String functions.. 77
System functions ... 77
Text and image functions .. 79

Transact-SQL commands .. 79
alter table... 80
case... 82
connect to...disconnect.. 83
create existing table .. 84
create index... 91
create table.. 92
delete... 94
drop index.. 94
fetch... 95
insert.. 96
readtext ... 97
select ... 98
truncate table... 99
update ... 99
update statistics... 100
writetext ... 102

Passthrough mode ... 102
connect to.. 103
sp_autoconnect ... 104
sp_passthru... 105
sp_remotesql... 106

Quoted identifier support .. 107
Delimited identifier support... 107
auto identity option ... 107
Triggers .. 108

APPENDIX A Tutorial... 109
Getting started with Component Integration Services.................. 109

Adding a remote server ... 109
Join between two remote tables.. 111

APPENDIX B Troubleshooting.. 115

Contents

vi Adaptive Server Enterprise

Problems accessing Component Integration Services................. 115
Problems using Component Integration Services 116

Unable to access remote server.. 116
Unable to access remote object .. 119
Problem retrieving data from remote objects 119

If you need help.. 122

Index ... 125

Component Integration Services User’s Guide vii

About This Book

Audience This book is written for Sybase® Adaptive Server® Enterprise System
Administrators, database administrators, and users.

How to use this book This guide will assist you in configuring and using Component Integration
Services. The book includes the following chapters:

• Chapter 1, “Introduction,” provides an overview of Component
Integration Services.

• Chapter 2, “Understanding Component Integration Services,”
provides a framework for understanding how Component Integration
Services works. This chapter includes both basic concepts and in-
depth topics.

• Chapter 3, “SQL Reference,” describes Transact-SQL commands
that utilize Component Integration Services.

• Chapter A, “Tutorial,” includes a tutorial designed to help new users
get Component Integration Services up and running.

• Chapter B, “Troubleshooting,” provides troubleshooting tips if you
encounter a problem with Component Integration Services.

Related documents The Sybase® Adaptive Server® Enterprise documentation set consists of
the following:

• The release bulletin for your platform – contains last-minute
information that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document
information that was added after the release of the product CD, use
the Sybase Technical Library.

• The Installation Guide for your platform – describes installation,
upgrade, and configuration procedures for all Adaptive Server and
related Sybase products.

viii Adaptive Server Enterprise

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

• ASE Replicator User’s Guide – describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
a primary server to one or more remote Adaptive Servers.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• The Configuration Guide for your platform – provides instructions for
performing specific configuration tasks for Adaptive Server.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Historical Server User’s Guide – describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

• Job Scheduler User's Guide – provides instructions on how to install and
configure, and create and schedule jobs on a local or remote Adaptive
Server using the command line or a graphical user interface (GUI).

• Messaging Service User’s Guide – describes how to useReal Time
Messaging Services to integrate TIBCO Java Message Service and IBM
WebSphere MQ messaging services with all Adaptive Server database
applications.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Performance and Tuning Guide – is a series of four books that explains
how to tune Adaptive Server for maximum performance:

 About This Book

Component Integration Services User’s Guide ix

• Basics – the basics for understanding and investigating performance
questions in Adaptive Server.

• Locking – describes how the various locking schemas can be used for
improving performance in Adaptive Server.

• Optimizer and Abstract Plans – describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

• Monitoring and Analyzing – explains how statistics are obtained and
used for monitoring and optimizing performance.

• Quick Reference Guide – provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book.

• Reference Manual – is a series of four books that contains the following
detailed Transact-SQL® information:

• Building Blocks – Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

• Commands – Transact-SQL commands.

• Procedures – Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

• Tables – Transact-SQL system tables and dbcc tables.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

x Adaptive Server Enterprise

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Unified Agent and Agent Management Console – Describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

• Utility Guide – documents the Adaptive Server utility programs, such as
isql and bcp, which are executed at the operating system level.

• Web Services User’s Guide – explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Other sources of
information

Use the Sybase Getting Started CD, the Sybase Technical Library CD and the
Technical Library Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

 About This Book

Component Integration Services User’s Guide xi

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software updates

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Update report, or click the product
description to download the software.

Conventions What you type to the computer screen is shown as:

Enter text in an entry field

Computer output is shown as:

xii Adaptive Server Enterprise

CIS returns results.

Command arguments you replace with a non-generic value are shown in
italics:

machine _name

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Component Integration Services User’s Guide 1

C H A P T E R 1 Introduction

Component Integration Services extends Adaptive Server capabilities and
provides enhanced interoperability.

It also provides location transparency and functional compensation.

Location transparency means that Component Integration Services allows
Adaptive Server to present a uniform view of enterprise data to client
applications. Enterprise-wide data from heterogeneous sources can be
accessed as if it were local.

Functional compensation allows Component Integration Services to
emulate all features of Transact-SQL, and interact with a data source only
when actual data is needed. With this capability, the full range and power
of Transact-SQL can be applied to any data source, whether or not the data
source provides support for a particular feature of Transact-SQL.
Examples of this capability are built-in functions and Java functions.
Component Integration Services allows statements to use these functions
even though the data on which these functions may operate is derived
from external sources that cannot support the functions.

Component Integration Services, together with Adaptive Server
Anywhere, Adaptive Server IQ and various DirectConnect interfaces,
extends the reach of Adaptive Server by enabling transparent access to
database management systems anywhere in the enterprise. This
transparent, extended reach of Adaptive Server Enterprise makes it easy
for Enterprise Portal components to:

• Access data from anywhere, and present it as dynamic content to Web
pages

• Execute transactions that span heterogeneous boundaries

• View an entire enterprise through a single view provided by the
global metadata stored in the Adaptive Server/Component
Integration Services system catalogs

Component Integration Services allows users to access both Sybase and
non-Sybase databases on different servers. These external data sources
include host data files, tables, views, and RPCs (remote procedure calls)
in database systems such as Adaptive Server and Oracle.

2 Adaptive Server Enterprise

Figure 1-1: Component Integration Services connects to multiple
vendor databases

Using Component Integration Services, you can:

• Access tables in remote servers as if the tables were local.

• Perform joins between tables in multiple remote, heterogeneous servers.
For example, it is possible to join tables between an Oracle database
management system (DBMS) and an Adaptive Server, and between tables
in multiple Adaptive Servers.

• Transfer the contents of one table into a new table on any supported remote
server by means of a select into statement.

• Maintain referential integrity across heterogeneous data sources.

• Access native remote server capabilities using the Component Integration
Services passthrough mode.

Component Integration Services can be used by anyone who needs to access
multiple data sources or legacy data. It can also be used by anyone who needs
to migrate data from one server to another.

A single server is often used to access data on multiple external servers.
Component Integration Services manages the data regardless of the location of
the external servers. Data management is transparent to the client application.

Component Integration Services, in combination with EnterpriseConnect™
and MainframeConnect™, provides transparent access to a wide variety of
data sources, including:

• Oracle

Sybase in NY

Oracle in London

Sybase in Tokyo
ADAPTIVE SERVER

dataserver CIS

CHAPTER 1 Introduction

Component Integration Services User’s Guide 3

• Informix

• Microsoft SQL Server

• Adaptive Server Enterprise

• Adaptive Server Anywhere

• Adaptive Server IQ

• Mainframe data, including:

• ADABAS

• IDMS

• IMS

• VSAM

To start Component Integration Services:

• Install DirectConnect server(s) or gateways for the external data sources
you choose to access (for example, Oracle, Informix, Microsoft SQL
Server).

• Configure the server to access remote objects as described in Chapter 2,
“Understanding Component Integration Services.”

4 Adaptive Server Enterprise

Component Integration Services User’s Guide 5

C H A P T E R 2 Understanding Component
Integration Services

This chapter explains how to use Component Integration Services. It is
intended to help you understand how Adaptive Server works with the
Component Integration Services option configured.

Basic concepts
The ability to access remote (or external) tables as if they were local is a
hallmark of Component Integration Services. Component Integration
Services presents tables to a client application as if all the data in the tables
were stored locally. Remote tables are mapped to local proxy tables which
hold metadata. Internally, when a query involving remote tables is
executed, the storage location is determined, and the remote location is
accessed so that data can be retrieved.

The access method used to retrieve remote data is determined by two
attributes of the external object:

Topic Page
Basic concepts 5

Proxy tables 8

Proxy databases 18

File system access 23

Remote servers 29

Query processing 38

RPC handling and Component Integration Services 44

Distributed Transaction Management 49

Updating statistics on non-Adaptive Server backends 54

Java in the database 54

Datatypes 57

Configuration and tuning 65

Basic concepts

6 Adaptive Server Enterprise

• The server class associated with the remote object

• The object type

To achieve location transparency, tables must first be mapped to their
corresponding external locations.

Access methods
Access methods form the interface between the server and an external object.
For each server class, there are separate access methods that handle all
interaction between Adaptive Server and remote servers of the same class and
object type.

Server classes
A server class must be assigned to each server when it is added using
sp_addserver. Server classes determine the access method used to interact with
the remote server. The server classes are:

• ASEnterprise – used if the server is Adaptive Server. This is the default
server class.

• ASAnywhere – used if the server is Adaptive Server Anywhere version 6.0
or later. This server class should be used for Adaptive Server IQ versions
earlier than Adaptive Server IQ 12.5.

• ASIQ – used if the server is Adaptive Server IQ version 12.5 and later.

• local – the local server. There can be only one.

• direct_connect – indicates that the server is an Open Server™ application
that conforms to the interface requirements of a DirectConnect™ server.
For access to Microsoft SQL Server, DB2, Oracle, or Informix, you must
use a DirectConnect server.

• sds – indicates that the server conforms to the interface requirements of a
Specialty Data Store.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 7

Object types
The server presents a number of object types to client applications as if they
were local tables. Supported object types are:

• table – the object in a remote server of any class is a relational table. This
is the default type.

• view – the object in a remote server of any class is a view. Component
Integration Services treats views as if they were local tables without any
indexes.

• remote procedure – the object in a remote server of any class is a remote
procedure. Component Integration Services treats the result set from the
remote procedure as a read-only table.

• file – the object is an individual file within a file system.

• directory – the object is a file system directory.

Interface to remote servers
The interface between the server and remote servers is handled by the Open
Client software, Client-Library™. The Client-Library features that are used to
implement the interface are dependent upon the class of server with which
Component Integration Services is interacting.

For example, if the server class is direct_connect, a number of features such as
cursor and dynamic requests are used.

Before the server can interact with a remote server, you must configure the
following:

• Remote server addition to directory services

• Remote server definition

• Remote server login information

• Remote object definition

Directory services Before accessing remote tables with Component Integration Services, you
must either have access to LDAP directory services, or an interfaces file
(sql.ini file on Windows platforms). For more information about accessing
remote tables, see “Connection management” on page 32. For information on
setting up directory services, see the configuration documentation for your
platform. See Appendix A, “Tutorial,” which serves as a basic tutorial for
Component Integration Services users.

Proxy tables

8 Adaptive Server Enterprise

Remote server
definition

Remote servers are defined by means of the stored procedure sp_addserver.
This procedure is documented in the Reference Manual.

Logging in to remote
servers

Once you have configured the remote server, you must provide login
information. By default, Component Integraiton Services uses the names and
passwords of Adaptive Server clients whenever it connects to a remote server
on behalf of those clients. However, this default can be overridden using
sp_addexternlogin, which allows a System Administrator to define the name
and password for each user who connects to a remote server.

Using connect to server_name, you can verify that the server configuration is
correct. This command establishes a passthrough mode connection to the
remote server. Passthrough mode allows clients to communicate with remote
servers in native syntax. This passthrough mode remains in effect until you
issue a disconnect command.

Defining remote
objects

Once you have configured a remote server, you cannot access objects in that
remote server as tables until a mapping between them and a local object (proxy
table) has been established.

You can create new tables on remote servers, and you can define the schema
for an existing object in a remote server. The procedures for both are similar.

Proxy tables
Proxy tables are the key to location transparency. A proxy table is a local table
containing metadata which points to a remote object. For information about
remote objects, see “Object types” on page 7. The remote table is mapped to
the proxy table to make it appear as if it were a local table.

The complete description of how to do this is in Chapter 3, “SQL Reference.”

Using the create table command
The create table command creates a proxy table and a remote table at the same
time with the following syntax:

create table table_name (column_list) [[external {table | file}] at “pathname”]]

The remote location is specified with the at pathname clause. create table
allows external object type table and file. The datatype of each column is passed
to the remote server without conversion.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 9

Using the create existing table command
The create existing table command allows the definition of existing tables
(proxy tables). The syntax for this option is similar to the create table
command:

create existing table table_name (column_list)
[[external {table | procedure | file}] at pathname]

The action taken by the server when it receives this command is quite different
from the action it takes when it receives the create table command, however. A
new table is not created at the remote location; instead, the table mapping is
checked, and the existence of the underlying object is verified. If the object
does not exist (either host data file or remote server object), the command is
rejected with an error message.

If the object does exist, its attributes are obtained and used to update system
tables sysobjects, syscolumns, and sysindexes.

• The nature of the existing object is determined.

• For remote server objects (other than RPCs), column attributes found for
the table or view are compared with those defined in the column_list.
Column names must match (case sensitive), column types and lengths
must match, or at least be convertible, and the NULL attributes of the
columns must match.

• Index information from the host data file or remote server table is
extracted and used to create rows for the system table sysindexes. This
defines indexes and keys in server terms and enables the query optimizer
to consider any indexes that may exist on this table.

After successfully defining an existing table, issue an update statistics
command for the table.This allows the query optimizer to make intelligent
choices regarding index selection and join order.

Datatype conversions

When you use the create table or create existing table commands, you must
specify all datatypes, using recognized Adaptive Server datatypes. If the
remote server tables reside on a class of server that is heterogeneous, the
datatypes of the remote table are converted into the specified Adaptive Server
types automatically when the data is retrieved. If the conversion cannot be
made, the create table or create existing table commands do not allow the table
to be created or defined.

Proxy tables

10 Adaptive Server Enterprise

Example of remote table definition

The following example defines the remote Adaptive Server table authors,
starting with the server definition:

1 Define a server named SYBASE. Its server class is ASEnterprise, and its
name in the interfaces file is SYBASE:

exec sp_addserver SYBASE, ASEnterprise, SYBASE

2 Define a remote login alias. This step is optional if the username and
password are the same on both servers. User “sa” is known to remote
server SYBASE as user “sa,” password “timothy”:

exec sp_addexternlogin SYBASE, sa, sa, timothy

3 Define the remote authors table:

create existing table authors
(
au_id varchar(11) not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null,
phone char(12) not null,
address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null
)
EXTERNAL TABLE at "SYBASE.pubs2.dbo.authors"

4 Update statistics on tables to ensure reasonable choices by the query
optimizer:

update statistics authors

5 Execute a query to test the configuration:

select * from authors where au_lname = 'Carson'

Using the create proxy_table command
Use of the create proxy_table command does not require a column list.
Component Integration Services derives the column list from the metadata it
obtains from the remote table.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 11

If the object does exist, create proxy_table updates sysobjects, syscolumns, and
sysindexes.

Remote procedures as proxy tables
You can add an optional clause to the create existing table statement to indicate
the remote object is actually a stored (or other) procedure instead of a table.
Without this clause, the remote object is assumed to be a table or view:

create existing table t1
(

column_1 int,
column_2 int

)
EXTERNAL PROCEDURE AT "SYBASE.mydb.dbo.p1"

If the remote object is type procedure, several processing differences occur:

• No indexes are created for objects of this type.

• You must provide a column list that matches the description of the remote
procedure’s result set. No verification of the list’s accuracy is provided.

• You can use column names beginning with underscore (‘_’) to specify
columns that are not part of the remote procedure’s result set. These
columns are referred to as parameter columns. For example:

create existing table t1
(

a int,
b int,
c int,
_p1 int null,
_p2 int null

)
external procedure
at “SYBASE.sybsystemprocs.dbo.myproc”

select a, b, c from t1
where _p1 = 10 and _p2 = 20

• In this example, the parameter columns _p1 and _p2 are not expected in
the result set, but can be referenced in the query. Component Integration
Services passes the search arguments to the remote procedure via
parameters, using the names @p1 and @p2.

Proxy tables

12 Adaptive Server Enterprise

• If a parameter column is included in the select list, its value is equivalent
to the values specified for it in the where clause, if it was passed to the
remote procedure as a parameter. If the parameter column did not appear
in the where clause, or was not able to be passed to the remote procedure
as a parameter, but was included in the select list, its value would be
NULL.

• A parameter column can be passed to the remote procedure as a parameter
if it is what the Adaptive Server query processor considers to be a
searchable argumen. It is generally a searchable argument if it is not
included in any “or” predicates. For example, the following query would
prevent the parameter columns from being used as parameters.

select a, b, c from t1
where _p1 = 10 OR _p2 = 20

• Rules exist for the definition of parameter columns in the create existing
table statement:

• Parameter columns must allow NULL.

• Parameter columns cannot precede normal, result columns (they must
appear at the end of the column list).

Allowing the definition of remote procedures as local tables allows
Component Integration Services to treat the result set of a remote
procedure as a “virtual table,” which can be sorted, joined with other
tables, or inserted into another table via insert/select syntax. However,
virtual tables are considered read-only:

• You cannot issue a delete, update, or insert command against a table
of type procedure;

• You cannot issue a create index, truncate table, or alter table command
against virtual tables.

If an object of the type procedure has been defined within the server, a query is
not issued to the remote server on which the object resides. Instead,
Component Integration Services issues an RPC and treats the results from the
RPC as a read-only table.

Examples create existing table rtable
 (col1 int,
 col2 datetime,
 col3 varchar(30)
)
external procedure at “SYBASE...myproc “

select * from rtable

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 13

When this query is issued, Component Integration Services sends the RPC
named myproc to server SYBASE. Row results are treated like the results from
any other table; they can be sorted, joined with other tables, grouped, inserted
into another table, and so forth.

RPC parameters should represent arguments that restrict the result set. If the
RPC is issued without parameters, the entire result set of the object is returned.
If the RPC is issued with parameters, each parameter further limits the result
set. For example:

select * from rtable where col1 = 10

results in a single parameter, named @col1, that is sent along with the RPC. Its
value is 10.

Component Integration Services attempts to pass as many of the search
arguments as possible to the remote server, but depending on the SQL
statement being executed, Component Integration Services might perform the
result set calculation itself. Each parameter represents a search for an exact
match, for example, the = operator.

The following rules define the parameters sent to the RPC. If an RPC is used
as a Component Integration Services object, you should keep these rules in
mind during development.

• Component Integration Services sends = operators in the where clause as
parameters. For example, this query results in Component Integration
Services sending two parameters:

 select * from rpc1 where a = 3 and b = 2

Parameter a has a value of 3 and parameter b has a value of 2. The RPC is
expected to return only result rows in which column a has a value of 3 and
column b has a value of 2.

• Component Integration Services does not send any parameters for a where
clause, or portion of a where clause, if there is not an exact search
condition. For example:

select * from rpc1 where a = 3 or b = 2

Component Integration Services does not send parameters for a or b
because of the or clause.

Another example:

select * from rpc1 where a = 2 and b < 3

Component Integration Services sends parameters for a and b, and filters
rows containing b with values smaller than 3.

Proxy tables

14 Adaptive Server Enterprise

Server limits
Adaptive Server configuration allows page sizes of 2K, 4K, 8K, or 16K bytes.
Also, the limit of 255 bytes for char/binary columns has been removed.
Adaptive Server supports extended sizes of char, varchar, univarchar, unichar,
binary, and varbinary datatypes. The new limit depends on the page size of the
server. For various page sizes, the new limits are as follows:

Table 2-1: New limits

These sizes are approximate. The basic rule specifies that the limit is the
maximum size that still allows a single row to fit on a page. These limits also
vary depending on the locking scheme specified when the table is created. It is
assumed that the bulk of proxy tables are created with the default locking
scheme, which is allpages locking.

• Limits on length of Transact-SQL variables and parameters – the size of
char, varchar, binary, and varbinary variables are extended to equal the
maximum size of columns of the same datatype for a given server. This
allows variables to be passed to stored procedures (or RPCs) whose length
exceeds the current limit of 255 bytes.

• Limits on number of columns per table – as many as 1024 columns per
table are allowed, as long as the columns can still fit on a page. There is a
limit of 254 variable-length columns (null columns are also considered
variable length).

• Limits on the width of an index – the total width of an index within
Adaptive Server can be larger than in earlier versions, depending on server
page size. In Table 2-2, maximum index width is shown according to page
size:

Page size Maximum column size

2048 2048

4096 4096

8192 8192

16384 16384

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 15

Table 2-2: Maximum index width

• Limits on the number of columns per index – 31 columns per index.

• Table names, column names and index names can be up to 255 bytes.

• Identifier names can now be up to 255 bytes.

create new proxy table

create table allows columns of datatype char, varchar, binary, and varbinary to
be specified with extended lengths, as described above. These datatypes and
lengths are forwarded to the remote server on which the table is to be created.

create existing proxy table

The create existing table command also allows columns to be specified with a
length of greater than 255 bytes. This allows Component Integration Services
to treat columns in remote databases as char, varchar, binary, or varbinary that
previously had to be treated as text or image columns.

There is still an opportunity for column size mismatch errors. For example, in
the case where the remote database contains a table with a column length of
5000 bytes, and the Adaptive Server processing create existing table supports
columns only up to 1900 bytes, a size mismatch error occurs. In this case, it is
necessary to respecify the column as a text or image column.

When the proxy table column size exceeds that of the corresponding column in
the remote table, a size mismatch error is detected and the command is aborted.

create proxy_table

create proxy_table imports metadata from a remote server and converts column
information into an internal create existing table command, with a column list
derived from the imported metadata. When obtaining the column metadata,
conversion from the remote DBMS type to internal Adaptive Server Enterprise
types is required.

Page size Index width

2048 600

4096 1250

8192 2600

16384 5300

Proxy tables

16 Adaptive Server Enterprise

If the size of a remote char, varchar, binary, or varbinary column exceeds the
maximum allowed by the local server, its length is truncated to the maximum
size possible, which depends on page size. If the size exceeds 16K bytes, the
type is converted from char or varchar to text, or from binary or varbinary to
image.

alter table

If alter table operates on a proxy table, it is first processed locally, then
forwarded to the remote server for execution. If the remote execution fails, the
local changes are backed out and the command is aborted.

The remote server must process the command appropriately, or raise an error.
If an error is produced, the Component Integration Services side of the
command is aborted and rolled back.

select, insert, delete, update

Component Integration Services handles large column values when proxy
tables are involved in data manipulation language (DML) operations.
Component Integration Services handles DML using one of several strategies:

• Tabular data stream (TDS)™ language commands – if the entire SQL
statement can be forwarded to a remote server, then Component
Integration Services does so using TDS Language commands generated
by CT-Library ct_command (CS_LANG_CMD).

The text of the language buffer may contain data for long char or binary
values that exceeds 255 bytes, and remote servers must handle parsing of
these command buffers.

• TDS dynamic commands – if Component Integration Services cannot
forward the entire SQL statement to a remote server (for example,
Component Integration Services is forced to provide functional
compensation for the statement), then an insert, update, or delete may be
handled by using TDS dynamic commands, with parameters as needed,
using the CT-Library function ct_dynamic (CS_PREPARE_CMD,
CS_EXECUTE_CMD, CS_DEALLOC_CMD).

The parameters for the dynamic command may be
CS_LONGCHAR_TYPE or CS_LONGBINARY_TYPE.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 17

• TDS cursor commands – CT-Library cursor operations can be used to
handle proxy table operations for select, update, and delete if functional
compensation has to be performed. For example, if you are updating a
proxy table and there are multiple tables in the from clause, Component
Integration Services may have to fetch rows from multiple data sources,
and for each qualifying row, apply the update to the target table. In this
case, Component Integration Services uses ct_cursor
({CS_DECLARE_CMD, CS_OPEN_CMD,
CS_CURSOR_UPDATE_CMD, CS_CLOSE_CMD,
CS_DEALLOC_CMD}).

After a cursor is prepared, parameters are specified. These parameters may
include those of type CS_LONGCHAR or CS_LONGBINARY.

• Bulk insert commands – when performing a select/into operation, if the
target server supports the bulk interface (only true of remote Adaptive
Servers and DirectConnect for Oracle), then the remote server must be
prepared to handle char and binary values greater than 255 (via
CS_LONGCHAR, CS_LONGBINARY values).

Columns from remote servers may be returned to Component Integration
Services as type CS_LONGCHAR_TYPE or CS_LONGBINARY_TYPE.

RPC handling

RPCs sent to remote servers can contain parameters of types CS_LONGCHAR
and CS_LONGBINARY. The Component Integration Services command
cis_rpc_handling supports these types.

Sending long parameters to Adaptive Servers older than version 12.5 is not
allowed, as earlier versions of Adaptive Server do not support
CS_LONGCHAR or CS_LONGBINARY data. Component Integration
Services examines TDS capabilities for the remote server prior to sending the
RPC, and if the remote server cannot accept these datatypes, an error results.

sp_tables

The Adaptive Server Anywhere or ASIQ stored procedure sp_tables only
returns user tables.

Proxy databases

18 Adaptive Server Enterprise

Cascading proxy tables
Adaptive Server allows cascading proxy table configurations between any
number of instances of Component Integration Services.

There are conditions where this can cause problems, such as circular
references, or transactions in which the second proxy table references a local
table on the same server as the first proxy table. In this case, application
deadlocks can result that are not detected by Component Integration Services.
You must configure your systems to avoid these potential pitfalls.

Proxy databases
There are two types of proxy databases: user and system.

User proxy databases
When a user proxy database is created, metadata for the proxy tables is
imported automatically from the remote location that contains the actual tables.
This metadata is then used to create proxy tables within the proxy database.

To create a proxy database, use:

create database <dbname>
[create database options]
[with default_location = ’pathname’]
[for proxy_update]]

The use of the clause with default_location allows you to specify the storage
location of any new tables, and the location from which metadata may be
imported for automatic proxy table creation if the for proxy_update clause is
also specified. for proxy_update establishes the database as a proxy database;
with default_location defines the location from which proxy tables are imported.
Without for proxy_update, the behavior of with default_location is the same as
that provided by sp_defaultloc — a default storage location is established for
new and existing table creation, but automatic import of proxy table definitions
does not take place during the processing of the create database command.

The value of path name is a string identifier in the following format:
servername.dbname.owner.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 19

• servername – required field; represents the name of the server that owns
the objects to be referenced by proxy tables. Must exist in
master.dbo.sysservers.srvname.

• dbname – optional. The name of the database within servername which
contains objects to be referenced by proxy tables

• owner – optional. The name of the owner of objects to be referenced by
proxy tables. This may be restrictive, so that if more than one user owns
objects in dbname, specifying the owner selects only those objects owned
by that user. Do not create proxy tables for objects owned by other users.

If for proxy_update is specified with no default_location, an error is reported.

When a proxy database is created (using the for proxy_update option),
Component Integration Services functions are called upon to:

• Provide an estimate of the database size required to contain all proxy
tables representing the actual tables/views found in the primary server’s
database. This estimate is provided in terms of the number of database
pages needed to contain all proxy tables and indexes. This size is used if
no size is specified, and no database devices are specified.

Note If the database is created with specific size specifications [on
device_name = nn], or if a device name is specified with no size [on
device_name], then the size requirements for the proxy database are not
estimated; it is assumed in this case that the user or data base administrator
wants to override the default size calculated for the proxy database.

If you are importing metadata from another Adaptive Server, remote
database users are imported before proxy tables are created. Each
imported database user must have a corresponding system user name in
syslogins.

• Create all proxy tables representing the actual tables/views found in the
companion server’s database. Proxy tables are not created for system
tables.

• Grant all permissions on proxy tables to “public.”

• Add the “guest” user to the proxy database.

• Import database users from remote site (if Adaptive Server).

• Grant create table permission to “public.”

Proxy databases

20 Adaptive Server Enterprise

• Set the database status to indicate that this database is a user proxy
database. This is done by setting a status field in
master.dbo.sysdatabases.status3 (0x0001, DBT3_USER_PROXYDB).

After the database has been created, it contains a proxy table for each table or
view found in the default location. The behavior for a user proxy database is
identical to prior database behavior. Users can create additional objects, such
as procedure, views, rules, defaults, and so on, and both DDL and DML
statements that operate on proxy tables behave as documented in this book.

The only exception to this is the alter database command. The syntax and
capabilities of this command are described in the next section.

User proxy database schema synchronization

At times, it may be necessary for a DBA to force resynchronization of the
proxy tables contained within the proxy database. This can be done using the
alter database command:

alter database <dbname>
[alter database options]
[for proxy_update]

If the for proxy_update clause is entered with no other options, the size of the
database is not extended; instead, the proxy tables, if any, are dropped from the
proxy database and re-created from the metadata obtained from the pathname
specified during create database ... with default_location = ’pathname’.

If create database is used with other options to extend the size of the database,
the proxy table synchronization is performed after the size extensions are
made.

The purpose of this alter database extension is to provide a DBA with an easy-
to-use, single-step operation with which to obtain an accurate and up-to-date
proxy representation of all tables at a single remote site.

This resynchronization is supported for all external data sources, and not just
the primary server in a HA-cluster environment. Also, a database need not have
been created with the for proxy_update clause. If a default storage location has
been specified, either through the create database command or using
sp_defaultloc, the metadata within the database can be synchronized with the
metadata at the remote storage location.

Certain behavior is implied by the use of create/alter database to specify a
proxy database:

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 21

• Modification to the default location specified with the create database
command is not allowed using alter database.

• Local tables cannot be created in the proxy database. create table
commands result in the creation of proxy tables, and the actual table is
created at the default location.

• The default location of the table may be specified in the create table
command, using the at ’pathname’ syntax. If the path name differs from the
default location, then the alter database command will not synchronize the
metadata for this table.

• To change the default location, drop the database, then re-create it with a
new path name specified in the default_location = ’pathname’ clause. If the
location is changed using sp_defaultloc, then the new location is used to
provide metadata synchronization, and proxy tables that were created with
the prior location not be synchronized, and may be dropped and replaced
if the name conflicts with that of tables at the new location.

System proxy databases
System proxy databases behave like user proxy databases, with some notable
enhancements and exceptions. System proxy databases are only used in an HA
configuration.

System proxy databases allow customer-written applications to run on either
node in a high-availability cluster. This does not imply “single-system image”
capability; rather, it suggests an environment in which most user-written
applications can execute on either node in the cluster. This means that both
databases and user-created objects should be visible to both nodes.

A system proxy database has the same name as the database in the primary
node it references, and contains handling for the user-defined objects that are
necessary to support the application. Proxy tables are created for each user
table and view found in the primary database, and stored procedures are
converted to RPCs and forwarded to the node referenced by the proxy
database.

System proxy database creation

A system proxy database is created automatically under the following
circumstances:

Proxy databases

22 Adaptive Server Enterprise

• The HA cluster is being configured through the use of the stored procedure
sp_companion ServerName, ’configure’, with_proxydb.

In this case, a system proxy database is created for each user database
found in server indicated by ServerName.

• A create database command is issued in a server whose HA state is one of
MODE_APNC, MODE_SNC, or MODE_ASNC.

When the creation of the system proxy database is complete, Component
Integration Services functions are called upon to:

• grant create table to public – this allows table creation on the primary server
to result in proxy table creation in the system proxy database.

Schema synchronization when current database has a system proxy database

In an HA cluster, some of the changes to a primary server’s database must be
forwarded to the companion server to keep both servers synchronized.

Several DDL commands, when executed within a database that has a system
proxy database, cause notification of the companion server and result in
automatic synchronization of the resulting changes:

• create table and drop table – local operation executes, resulting in the local
table being created or dropped. The command is then forwarded to the
companion server, for execution in the system proxy database, so that a
proxy table can be created or dropped

• create index and drop index – local operation executes, resulting in an index
being created or dropped. The server owning the system proxy database is
then notified, and the proxy table is dropped and re-created, allowing the
change to the index to be represented within the proxy table.

• create view and drop view – the local operation succeeds, resulting in the
local view being created or dropped. The server owning the system proxy
database is then notified, and a proxy table is either created or dropped.

If these commands are executed within the system proxy database, similar
behavior occurs:

• create table and drop table – local proxy table is created or dropped. The
command is then forwarded to the primary server, so that a local table
referenced by the proxy table can be created or dropped.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 23

• create index and drop index – local operation on the proxy table executes,
resulting in an index being created or dropped. The server owning the
primary database is then notified, and an index is either created or dropped
on the local table referenced by the proxy table

• create view and drop view – not allowed within a system proxy database.

Stored procedure execution within a system proxy database

If a system stored procedure request is encountered when the current database
is a system proxy database, Component Integration Services attempts to locate
the stored procedure first in the local sybsystemprocs database, and execute it.
If it is not found in sybsystemprocs, Component Integration Services searches
the master database. If the procedure is not a system stored procedure, or if it
is but cannot be found locally, the stored procedure request is converted to an
RPC and transmitted to the server referenced by the system proxy databases
default location.

Additional behavior of the system proxy database

Certain commands, when executed within a system proxy database, are
rejected with an error:

• create procedure and drop procedure

• create view and drop view

• create trigger and drop trigger

• create rule and drop rule

• create default and drop default

The error generated in these cases is: Msg 12818, Severity 16: Cannot
create an object of this type in system-created proxy

database.

File system access

Note Directories and files mapped to proxy tables now have a file path limit
of 255 bytes.

File system access

24 Adaptive Server Enterprise

Adaptive Server provides access to the file system through the SQL language.
With file system access, you can create proxy tables that are mapped to file
system directories, or to individual files.

To create proxy tables mapped to directories or files, you must have System
Administrator or System Security Officer privileges.

Security considerations
Only Adaptive Server Enterprise users with System Administrator (sa) or
System Security Officer (sso) roles are allowed to create proxy tables that are
mapped to files or directories. This requirement addresses the concerns over
the security aspects of accessing file system data from within the Adaptive
Server Enterprise server process (which may have root permission as it runs).

Directory access
Proxy tables can be created to reference file system directories. The supported
syntax is:

create proxy_table <table_name>
external directory at "directory pathname[;R]"

The directory path name must reference a file system directory visible to and
searchable by the Adaptive Server Enterprise process. A proxy table that maps
column names to attributes of files that exist within the directory is created. If
the ‘;R’ (indicating “recursion”) extension is added to the end of the path
name, Component Integration Services includes entries in all subordinate
directories. Table 2-3 contains a description of the proxy table columns that are
created when this command successfully completes:

Table 2-3: Proxy table columns

Column
name Datatype Description

id numeric(24)
– on 32-bit
machines

numeric(36)
– on 64-bit
machines

Identity value consisting of values from st_dev
and st_ino. These two values are converted first
to a single string (format: “%d%014ld”), and
the string is then converted to a numeric value.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 25

A proxy table that maps to a file system directory can support the following
SQL commands:

• select – file attributes and content can be obtained from the proxy table
using the select command. Built-in functions that are designed to handle
text values are fully supported for the content column, (for example,
textptr, textvalid, patindex, pattern).

filename varchar(n) The name of the file within the directory
specified in at ‘pathname’, or within directories
subordinate to pathname. The total length (n) of
filename is limited to 255 bytes.

size int For regular files – specifies the number of bytes
in the file.

For directories – block special or character
special, this is not defined.

filetype varchar(4) The file type – legal values are: FIFO, for pipe
files; DIR for directories; CHRS for character
special files; BLKS for block special files; REG
for ordinary files; UNKN for all other file types.
Links are automatically expanded, and do not
appear as a separate file type.

access char(10) Access permissions, presented in a more or less
‘standard’ UNIX format: “drwxrwxrwx”

uid varchar(n) The name of the file owner. The value of n is
specified by the system definition L_cuserid,
which is 9 on all UNIX systems. This value is 0
on Windows systems.

gid varchar(n) The name of the owning group. The value of n
is specified by the system definition L_cuserid,
which is 9 on all UNIX systems. This value is 0
on Windows systems.

atime datetime Date/time file data was last accessed.

mtime datetime Date/time when file was last modified.

ctime datetime Date/time when file status was last changed.

content image The actual physical content of the file (for
regular files only). NULL if the file is not a
regular file.

Column
name Datatype Description

File system access

26 Adaptive Server Enterprise

• insert – new files or directories can be created using the insert command.
The only columns that have meaning are filename, filetype, and content.
The rest of the columns should be left out of the insert statement, and are
ignored if they are located. The content column is ignored if file type is
DIR, which indicates that a new directory is to be created.

To create a new directory, enter:

insert D1 (filename, filetype) values ("newdir",
"DIR")

To create a new file, enter:

insert D1 (filename, content) values
("newdir/newfile", "This is an example.")

• delete – files or directories may be removed by the use of the delete
command. A directory can be removed only if it is empty. For example:

/* delete the files only */
delete D1 where filename = ’newdir/newfile’
/* deletes the directory (if empty) */
delete D1 where filetype = ’DIR’ and filename =
’newdir’

• update – only the name of a file may be changed using the update
command.

• readtext – the contents of a file may be retrieved using the readtext
command.

• writetext – the contents of a file may be modified using the writetext
command.

No other SQL commands operate on proxy tables.

Regular file content is available only if the Adaptive Server process has
sufficient privileges to access and read the file, and if the file type indicates an
“ordinary” file. In all other cases, the content column is NULL. For example:

select filename, size, content
from directory_table
where filename like ‘%.html’

returns the name, size and content of regular files with a suffix of “.html,” if
the Adaptive Server process has access privileges to the file. Otherwise, the
content column will be NULL.

create proxy_table fails if the path name referenced by directory path name is
not a directory, or is not searchable by the Adaptive Server Enterprise process.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 27

If trace flag 11206 is turned on, messages are written to the error log that
contain information about the contents of the directories and the query
processing steps needed to obtain that information.

Recursion through subordinate directories
If the path name specified in the create proxy_table statement contains the ;R
extension, Component Integration Services traverses all directories
subordinate to the path name, and returns information for the contents of each
subordinate directory. When this is done, the file name returned by a query
contains the complete name of the file relative to the path name. In other words,
all subordinate directory names appear in the file name. For example, if path
name specifies “/work;R”:

create proxy_table d1 external directory at "/work;R"
select filename, filetype from d1

values for files in subordinate directories are returned as outlined in Table 2-4:

Table 2-4: Values for files

File access
Another class of proxy tables allowed in Adaptive Server enables SQL access
to individual files within a file system. The supported syntax is:

create proxy_table <table_name>
external file at " pathname" [column delimiter “<string>”]

When this command is used, a proxy table with one column (named “record”,
type varchar(255)) is created. It is assumed in this case that the contents of the
file are readable characters, and that individual records within the file are
separated by the newline (\n) character.

You can also specify your own column names and datatypes, using the create
[existing] table command:

File name File type

dir1 DIR

dir1/file1.c REG

dir1/file2.c REG

dir2 DIR

dir2/file1.c REG

File system access

28 Adaptive Server Enterprise

create existing table fname (
column1 int null,
column2 datetime null,
column3 varchar(1024) null
etc. etc.

) external file at "pathname" [column delimiter “<string>”]

Columns may be any datatype except text, image, or a Java ADT. The use of the
existing keyword is optional, and has no effect on the processing of the
statement. If the file referenced by path name does not exist, it is created. If it
does exist, its contents are not overwritten. There is no difference in behavior
between the create table and create existing table commands.

When a proxy table is mapped to a file, these assumptions about the file and its
contents are made:

• The file is not a directory, block special, or character special file.

• The Adaptive Server process has at least read access to the file. If the file
is to be created, the server process must have write access to the directory
in which the file is to be created.

• The contents of an existing file are in human-readable form.

• Records within the file are delimited by a newline character.

• The maximum supported record size is 32767 bytes.

• Individual columns, except for the last one, are delimited by the column
delimiter string, which can be up to 16 bytes long; the default is a single tab
character.

• There is a correspondence between delimited values within each record of
the file and the columns within the proxy table.

With proxy tables mapped to files, you can:

1 Back up database tables to the file system using either select/into or
insert/select. When an insert statement is processed, each column is
converted to characters in the default character set of the server. The
results of the conversion are buffered, and all columns (except the last) are
delimited by a single tab. The last column is terminated by a newline
character. The buffer is then written to the file, representing a single row
of data.

2 Provide a SQL alternative to using bcp in and bcp out. The use of a
select/into statement can easily back up a table to a file, or copy a file’s
contents into a table.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 29

3 Query file content with the select statement, qualifying rows as needed
with search arguments or functions. For example, you can read the
individual records within the Adaptive Server error log file:

create proxy_table errorlog
external file at "/usr/sybase/ASE15_0/install/errorlog"

select record from errorlog where record like "%server%"

This query returns all rows from the file that match the like pattern. If the
rows are longer than 255 bytes, they are truncated. You can specify longer
rows by entering:

create existing table errorlog
(

record varchar(512) null
)
external file at "/usr/sybase/ASE15_0/install/errorlog"

In this case, records up to 512 bytes in length are returned. Since the proxy
table contains only one column, the actual length of each column is
determined by the presence of a newline character.

Only the select, insert, and truncate table statements are supported for file
access. update and delete result in errors if the file proxy is the target of these
commands.

When inserting values into a file, all datatypes are first converted to char values
and then delimited by the column delimiter.

 Warning! truncate table sets the file size to 0.

Trace flag 11206 is used to log messages to the error log. These messages
contain information about the stages of query processing that are involved with
file access.

Remote servers
Use sp_addserver to add entries to the sysservers table for the local server and
for each remote server that is to be called. The sp_addserver syntax is:

sp_addserver server_name [,server_class [,network_name]]

where:

• server_name is a unique name used to identify the server.

Remote servers

30 Adaptive Server Enterprise

• server_class is the type of server. The supported server classes with the
types of servers that are in each class are described in the following
sections. The default is server class ASEnterprise.

Note Component Integration Services no longer supports server class
db2.

• network_name is the server name in the interfaces file. This name may be
the same as server_name, or it may differ. The network_name is
sometimes referred to as the physical name. The default is the same name
as server_name.

Note You need the same sort order and case sensitivity between servers.

Server class ASEnterprise
Adaptive Server uses server class ASEnterprise. When Component Integration
Services first establishes a connection to a server in this class, Component
Integration Services determines the Adaptive Server version and establishes
server capabilities based on the version found.

Server class ASAnywhere
A server with server class ASAnywhere is an instance of Adaptive Server
Anywhere:

• Adaptive Server Anywhere 9.0 or later

Server class ASIQ
A server with server class ASIQ is Adaptive Server IQ version 12.5 or later.

Server class direct_connect
A server with server class direct_connect is an Open Server-based application
that conforms to the direct_connect interface specification.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 31

Open Server-based applications using server class direct_connect are the
preferred means of accessing all external, non-Sybase data sources.

Figure 2-1 illustrates how Adaptive Server with Component Integration
Services enabled interacts with clients and Open Server-based applications.
The data sources are not limited to those in this diagram:

Figure 2-1: Adaptive Server with Component Integration Services
interacting with clients and other servers

Server class sds
A server with server class sds conforms to the interface requirements of a
Specialty Data Store™ as described in the Adaptive Server Specialty Data
Store Developer’s Kit manual. A Specialty Data Store is an Open Server
application you design to interface with Adaptive Server.

 DirectConnect - Oracle

 DirectConnect - AS/400

Client
application

Client
application

Access to DirectConnect
DirectConnect - Informix

Network

 Adaptive Server

CIS

Remote servers

32 Adaptive Server Enterprise

Connection management
When connecting to a remote server on behalf of a client, Component
Integration Services uses Client-Library functions. Once the first connection to
a remote server is established for a given client, that connection remains open
until the client disconnects from Component Integration Services.

Connecting to remote servers without the interfaces file
You can establish a connection to remote servers without using corresponding
entries in directory services ldap or interfaces files. This is accomplished
through Component Integration Services’s use of the CT-Library connection
property CS_SERVERADDR, which allows a server to be specified in the
form:

"hostname.domain.com:99999"
"hostname:99999"
"255.255.255.255:99999"

where 99999 is the port number, and hostname is expressed as a simple name,
an IP address, or a complete domain name.

Enter names in this format using sp_addserver with the net name argument:

sp_addserver S1, ASEnterprise,
"myhost.sybase.com:11222"

or:

sp_addserver S1, ASEnterprise, "192.123.321.101:11222"

There are some limitations to this usage of net names:

• Adaptive Server site handler does not recognize this syntax.

• Replication Agent threads do not recognize this syntax.

If this syntax is used, CT-Library does not attempt to look up connection
information from directory services, whether an interfaces file or LDAP server
is configured.

If SSL is configured and you have a pointer to the SSL section in the server
docs, you can use the optional SSL syntax:

"hostname.domain.com:99999:SSL"
"hostname:99999:SSL"
"255.255.255.255.99999:SSL"

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 33

For more information about configuring Adaptive Server for SSL, see Chapter
19, “Confidentiality of Data,” in the System Administration Guide: Volume
One.

LDAP directory services
The LDAP directory services means that it is no longer necessary to use an
interfaces file in both the client and the server. Adaptive Server supports LDAP
services for obtaining server information, and so does Component Integration
Services. When a connection to a remote server is attempted, Component
Integration Services instructs Open Client software to reference either the
interfaces file or an LDAP server unless the net name argument to
sp_addserver contains a colon (:).

Component Integration Services uses LDAP services only when the
configuration file (libtcl.cfg) specifies it. libtcl.cfg can be found at
$SYBASE/$SYBASE_OCS/config/libtcl.cfg or
$SYBASE/$SYBASE_OCS/config/libtcl64.cfg for 64-bit applications.

Note When an LDAP server is specified in libtcl.cfg, server information
becomes accessible from the LDAP server only and Adaptive Server and
Component Integration Services ignore any (traditional) interfaces file.

Secure communication with SSL
Using SSL, you can establish secure connections from Component Integration
Services to any number of remote servers that support the SSL protocol
(Adaptive Server and some DirectConnects).

Component Integration Services handles SSL connections as follows:

• The location of the trusted roots file is established. If the current server is
SSL-enabled, then all outbound Component Integration Services
connections will use the same trusted roots file as Adaptive Server
Enterprise.

• If the current server is SSL-enabled, then a connection property is
established to define the Open Client callback that will be used to respond
to a challenge from a remote SSL-enabled server. If the current server is
not SSL-enabled, then the callback used fails any connection to a remote
SSL-enabled server.

Remote servers

34 Adaptive Server Enterprise

Trusted roots files

The trusted roots file contains certificates for other servers that the local server
treats as trusted when properly added to the system. If $SYBASE_CERT is
defined, a trusted roots file is accessible by the local server (Adaptive Server)
in:

$SYBASE_CERT/trusted.txt

Otherwise it is in:

$SYBASE/$SYBASE_ASE/certificates/servername.txt

(for UNIX)

%SYBASE%\%SYBASE_ASE%\certificates\servername.txt

 (for NT)

where servername is the name of the current Adaptive Server.

Security issues
When establishing a connection to a remote Adaptive Server, Client-Library
functions are used instead of a site handler when either cis_rpc_handling or set
transactional_rpc is on. This method of establishing connections prevents the
remote server from distinguishing these connections from those of other
clients. Thus, any remote server security configured on the remote server to
allow or disallow connections from a given server does not take effect.

Another Adaptive Server with Component Integration Services enabled cannot
use trusted mode for remote server connections. This forces the Adaptive
Server to be configured with all possible user accounts if it is going to be used
with Component Integration Services.

Passwords are stored internally in encrypted form.

Remote server logins
To fully support remote logins, Client-Library provides connection properties
that enable Component Integration Services to request a server connection.
This connection is recognized at the receiving server as a server connection (as
opposed to an ordinary client connection), allowing the remote server to
validate the connection through the use of sysremotelogins as if the connection
were made by a site handler.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 35

Server connections are not enabled automatically. Instead, the SSO or DBA
must request it by executing sp_serveroption:

exec sp_serveroption <server_name>,
‘server login’, true | false

You cannot change the server login property if the current server’s
@@servername global variable is NULL.

If the server login option is true, then Component Integration Services uses
Client-Library connection properties to establish connections to the specified
server.

Remote passwords specified by the client application are passed unchanged to
the remote server. The use of and rules associated with remote passwords in
server logins are identical to those associated with site handler connections.

These connection properties are only established if:

• The server option server login is set to true.

• The remote server is configured with server class ASEnterprise.

• There is a local server name defined for the Component Integration
Services-enabled server (in other words the query select @@servername
returns something other than NULL).

Trusted mode

Trusted mode can be used with Component Integration Services connections if
“server logins” is set for a remote server.

Connecting to Backup Server and XP Server

Beginning with Adaptive Server 12.5.1, Component Integration Services can
send RPCs to Backup Server or XP Server. Before doing so, the server option
negotiated logins must be enabled:

exec sp_serveroption server_name, "negotiated logins",
true

This allows Component Integration Services to respond to the login challenge
initiated by either of these Sybase-provided servers.

Remote servers

36 Adaptive Server Enterprise

Mapping external logins
Adaptive Server users who invoke Component Integration Services require
login names and passwords to remote servers. By default, the user name and
password pair used by Component Integration Services to connect to a remote
server is the same as is used by the client to connect to Adaptive Server.

Component Integration Services supports a one-to-one mapping of Adaptive
Server login names and passwords to remote server login names and
passwords. For example, using the stored procedure sp_addexternlogin, it is
possible to map Adaptive Server user steve, password sybase to Oracle login
name login1, password password1:

sp_addexternlogin Oracle, steve, login1, password1

In Adaptive Server version 12.5 and later, you can provide a many-to-one
mapping so that all Adaptive Server users who need an Oracle connection can
be assigned the same name and password:

sp_addexternlogin Oracle, NULL, login2, password2

One-to-one mapping has precedence, so that if user steve has an external login
for Oracle, that would be used rather than the many-to-one mapping.

In addition, you can assign external logins to Adaptive Server roles. With this
capability, anyone with a particular role can be assigned a corresponding login
name/password for any given remote server:

sp_addexternlogin Oracle, null, login3, password3, rolename

The role name identifies the name of a role, rather than the name of a user.
When a user with this role active requires a connection to Oracle, the
appropriate login name/password for the role is used to establish the
connection. When establishing a connection to a remote server for a user who
has more than one role active, each role is searched for an external login
mapping, and the first mapping found is used to establish the login. This is the
same order as displayed by sp_activeroles.

The general syntax for sp_addexternlogin is:

sp_addexternlogin
<servername>,
<loginname>,
<external_loginname>,
<external_password>
[, <rolename>]

<rolename> is optional; if specified then loginname is ignored.

Precedence for these capabilities are as follows:

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 37

• If one-to-one mapping is defined, it is used.

• If no one-to-one mapping is defined, and a role is active and a mapping for
it can be found, the role mapping is used to establish a remote connection.

• If neither of the above are true, then many-to-one mapping is used if
defined.

• If none of the above is true, then the Adaptive Server login name and
password are used to make the connection.

If role mapping is done, and a user’s role is changed (via set role), any
connections made to remote servers that used role mapping are disconnected.

sp_helpexternlogin has been updated to allow viewing the various types of
external logins that have been added using sp_addexternlogin. The syntax for
sp_helpexternlogin is:

sp_helpexternlogin [<servername> [,<loginname> [,<rolename>]]]

All three parameters are optional, and any of the parameters can be NULL.

The stored procedure sp_dropexternlogin also accepts the <rolename>
argument. If <role name> is specified then the second argument, <login
name>, is ignored.

Remote server connection failover
If the interfaces file (or LDAP directory service) is set up to define a failover
configuration, then Component Integration Services takes advantage of it by
automatically failing over connections to the failover server if a connection to
the primary server fails.

You can set up remote servers for failover after performing these configuration
steps:

1 Enable new server option cis hafailover:

exec sp_serveroption server_name, ’cis hafailover’,
true

2 Modify directory services (interfaces file or server entries in the LDAP
server) to specify a failover server

For example, you can configure server S2 to serve as a failover server for
S1, and vice-versa, by additions to the interfaces file, as shown in this
example:

Query processing

38 Adaptive Server Enterprise

S1
master tcp ether host1 8000
query tcp ether host1 8000
hafailover S2

S2
master ether host2 9000
query ether host2 9000
hafailover S1

See Using Sybase Failover in a High Availability System, Appendix C, for
more discussion of the CS_HAFAILOVER connection property. Component
Integration Services uses the ct_con_props() API to set this property, if the cis
hafailover server option is true.

Remote server capabilities
The first time Adaptive Server establishes a connection to a remote server of
class sds or direct_connect, it issues an RPC named sp_capabilities and expects
a result set in return. This result set describes functional capabilities of the
remote server so that Component Integration Services can adjust its interaction
with that remote server to take advantage of available features. Component
Integration Services forwards as much syntax as possible to a remote server,
according to its capabilities.

Query processing
This section describes query processing within Component Integration
Services.

Processing steps
The query processing steps taken when Component Integration Services is
enabled are similar to the steps taken by Adaptive Server, except for the
following:

• If a client connection is made in passthrough mode, the Adaptive Server
query processing is bypassed and the SQL text is forwarded to the remote
server for execution.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 39

• When select, insert, delete, or update statements are submitted to the server
for execution, additional steps may be taken by Component Integration
Services to improve the query’s performance, if local proxy tables are
referenced.

The query processing steps are shown in Figure 2-2.

An overview of these steps follows.

Figure 2-2: Query processing steps

Query parsing

The SQL parser checks the syntax of incoming SQL statements, and raises an
error if the SQL being submitted for execution is not recognized by the
Transact-SQL parser.

parse

normalize

preprocess

?
Adaptive Server

generation
Component Integration
Services plan generation

yes no

Component Integration

 location optimizer

Can Component
Integration Services
handle the entire

execute

Component Integration
Services access methods

 Server
access methods

optimization/plan

Shaded boxes indicate steps taken by Component Integration Services.

statement?
Services remote

Query processing

40 Adaptive Server Enterprise

Query normalization

During query normalization, each object referenced in the SQL statement is
validated. Query normalization verifies the objects referenced in the statement
exist, and the datatypes are compatible with values in the statement.

Example select * from t1 where c1 = 10

The query normalization stage verifies that table t1 with a column named c1
exists in the system catalogs. It also verifies that the datatype of column c1 is
compatible with the value 10. If the column’s datatype is datetime, for example,
this statement is rejected.

Query preprocessing

Query preprocessing prepares the query for optimization. It may change the
representation of a statement such that the SQL statement Component
Integration Services generates is syntactically different from the original
statement.

Preprocessing performs view expansion, so that a query can operate on tables
referenced by the view. It also takes steps such as reordering expressions and
transforming subqueries to improve processing efficiency. For example,
subquery transformation may convert some subqueries into joins.

Decision point

After preprocessing, a decision is made as to whether Component Integration
Services or the standard Adaptive Server query optimizer handles
optimization.

Component Integration Services handles optimization (using a feature known
as quickpass mode) when:

• Every table represented in the SQL statement resides within a single
remote server.

• The remote server is capable of processing all the syntax represented by
the statement.

Component Integration Services determines the query processing
capabilities of the remote server by its server class. For example,
Component Integration Services assumes that any server configured as
server class sql_server is capable of processing all Transact-SQL syntax.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 41

For remote servers with server class direct_connect, Component
Integration Services issues an RPC to ask the remote server for its
capabilities the first time a connection is made to the server. Based on the
server’s response to the RPC, Component Integration Services determines
the syntax of the SQL it forwards to the remote server.

• The following is true of the SQL statement:

• It is a select, insert, delete, or update statement.

• If it is an insert, update, or delete statement, there are no identity or
timestamp columns, or referential constraints.

• It contains no text or image columns.

• It contains no compute by clauses.

• It contains no for browse clauses.

• It is not a select...into statement.

• It is not a cursor-related statement (for example, fetch, declare, open,
close, deallocate, update, or delete statements that include where
current of cursor).

If the above conditions are not met, quickpass mode cannot be used, and the
standard Adaptive Server query optimizer handles optimization.

Component Integration Services plan generation

If quickpass mode can be used, Component Integration Services produces a
simplified query plan. When statements contain proxy tables, they are executed
more quickly when processed by the remote server than when processed
through the Adaptive Server plan generation phase.

Adaptive Server optimization and plan generation

Adaptive Server optimization and plan generation evaluates the optimal path
for executing a query and produces a query plan that tells the Adaptive Server
how to execute the query.

If the update statistics command has been run for the tables in the query, the
optimizer has sufficient data on which to base decisions regarding join order.
If update statistics has not been run, the Adaptive Server defaults apply.

For more information on Adaptive Server optimization, see Chapter 7, “The
Adaptive Server Query Optimizer,” in the Performance and Tuning Guide.

Query processing

42 Adaptive Server Enterprise

Component Integration Services plan generation

If quickpass mode can be used, Component Integration Services produces a
simplified query plan in which the entire statement is pushed to a remote
server.

If quickpass mode cannot be used, the Adaptive Server optimizer generates a
plan for executing the entire statement. This plan is then examined and portions
of the plan are chosen to be pushed off to remote servers. As much of the
original plan is pushed off as is possible based on the locations of the tables and
the capabilities of the remote servers. The remote statement may come very
close to the original statement for a fully capable remote server. A more
minimal statement may be produced for other servers with the local Adaptive
Server executing the portion of the plan that could not be sent.

For example, if a client entered the statement:

select a,b from table1 where cos(a) > 0 and sin(b) > 0

If the remote server that owned table1 supported cos() but not sin(), the
statement sent to the remote server would be:

select a,b from table1 where cos(a) > 0

The local server would then have a plan that would apply the check for
sin(b) > 0 to the result set returned by the remote server.

Component Integration Services remote location optimizer

Adaptive Server generates a query plan containing the optimal join order for a
multi-table query without regard to the storage location of each table. If remote
tables are represented in the query, Component Integration Services performs
additional optimization taking location into account and possibly rearranging
the plan for a join order that allows part of the join to be executed remotely.††

Statistics

To make intelligent plan choices, statistics are required for all tables involved
in the query, including proxy tables. These are obtained by executing update
statistics for a specific table.

If update statistics has not been run, the Adaptive Server defaults apply. For
more information on Adaptive Server optimization, see Chapter 7, “The
Adaptive Server Query Optimizer,î in the Performance and Tuning Guide.†

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 43

Optimizer cost model for proxy tables

The Adaptive Server optimizer incorporates the cost of network access to
remote servers based on a “network exchange” unit which specifies the time
required to execute the sequence:

• Open a cursor

• Fetch 50 rows

• Close a cursor

The cost of a single exchange is under the user’s control, and is specified on a
per-server basis, defaulting to 1000 milliseconds, by sp_serveroption:

sp_serveroption <servername>, "server cost", "nnnn"

where nnnn is a string of numeric digits representing the number of
milliseconds to be used per exchange during the optimizerís calculation of
network cost.

Note The server cost limit is 32767. If you exceed that limit, an arithmetic
overflow error occurs.

When a new server is added to sysservers using sp_addserver, the default cost,
1000 milliseconds, is stored in sysattributes for that server. sp_serveroption can
be used to specify a greater or lesser cost for a given server. sp_helpserver
shows the current network cost associated with the server.†

Query plan execution

Any command that can affect a table is checked by the server to determine
whether the object has a local or remote storage location. If the storage location
is remote, then the appropriate access method is invoked when the query plan
is executed in order to apply the requested operation to the remote objects. The
following commands are affected if they operate on objects that are mapped to
a remote storage location:

• alter table

• begin transaction

• commit

• create index

• create table

RPC handling and Component Integration Services

44 Adaptive Server Enterprise

• create existing table

• deallocate table

• declare cursor

• delete

• drop table

• drop index

• execute

• fetch

• insert

• open

• prepare transaction

• readtext

• rollback

• select

• set

• setuser

• truncate table

• update

• update statistics

• writetext

RPC handling and Component Integration Services
When Component Integration Services is enabled, you can choose between the
site handler or Component Integration Services to handle outbound remote
procedure calls (RPCs). Each of these mechanisms is described in the
following sections.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 45

Site handler and outbound RPCs
Within an Adaptive Server, outgoing RPCs are transmitted by means of a site
handler, which multiplexes multiple requests through a single physical
connection to a remote server. The RPC is handled as part of a multistep
operation:

1 Establish connection – the Adaptive Server site handler establishes a
single physical connection to the remote server. Each RPC requires that a
logical connection be established over this physical connection. The
logical connection is routed through the site handler of the intended
remote server.

The connection validation process for these connect requests is different
from that of normal client connections. First, the remote server must
determine if the server from which the connect request originated is
configured in its sysservers table. If so, then the system table
sysremotelogins is checked to determine how the connect request should
be handled. If trusted mode is configured, password checking is not
performed. (For more information about trusted mode, see “Trusted
mode” on page 35.)

2 Transmit the RPC – the RPC request is transmitted over the logical
connection.

3 Process results – all results from the RPC are relayed from the logical
connection to the client.

4 Disconnect – the logical connection is terminated.

Because of the logical connect and disconnect steps, site handler RPCs can be
slow.

Component Integration Services and outbound RPCs
If Component Integration Services has been enabled, a client can use one of
two methods to request that Component Integration Services handle outbound
RPC requests:

• Configure Component Integration Services to handle outbound RPCs as
the default for all clients by issuing:

sp_configure "cis rpc handling", 1

RPC handling and Component Integration Services

46 Adaptive Server Enterprise

If you use this method to set the cis rpc handling configuration parameter,
all new client connections inherit this behavior, and outbound RPC
requests are handled by Component Integration Services. This is a server
property inherited by all future connections. The client can, if necessary,
revert back to the default Adaptive Server behavior by issuing the
command:

set cis_rpc_handling off

• Configure Component Integration Services to handle outbound RPCs for
the current connection only by issuing:

set cis_rpc_handling on

This command enables cis rpc handling for the current thread only, and
does not affect the behavior of other threads.

When cis rpc handling is enabled, outbound RPC requests are not routed
through the Adaptive Servers site handler. Instead, they are routed through
Component Integration Services, which uses persistent Client-Library
connections to handle the RPC request. Using this mechanism, Component
Integration Services handles outbound RPCs as follows:

1 Determines whether the client already has a Client-Library connection to
the server in which the RPC is intended. If not, establish one.

2 Sends the RPC to the remote server using Client-Library functions.

3 Relays the results from the remote server back to the client program that
issued the RPC using Client-Library functions.

RPCs can be included within a user-defined transaction. In fact, all work
performed by Component Integration Services on behalf of its client can be
performed within a single connection context. This allows RPCs to be included
in a transaction’s unit of work, and the work performed by the RPC can be
committed or rolled back with the other work performed within the transaction.

The benefits of using Component Integration Services to handle outbound RPC
requests are as follows:

• Client-Library connections are persistent so that subsequent RPC requests
can use the same connection to the remote server. This can result in
substantial RPC performance improvements, since the connect and
disconnect logic is bypassed for all but the first RPC.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 47

• Work performed by an RPC can be included in a transaction, and is
committed or rolled back with the rest of the work performed by the
transaction. This transactional RPC behavior is currently supported only
when the server receiving the RPC is another Adaptive Server or a
DirectConnect which supports transactional RPCs.

• Connect requests appear to a remote server as ordinary client connections.
The remote server cannot distinguish the connection from a normal
application’s connection, unless server logins are enabled. This affects the
remote server management capabilities of an Adaptive Server, since no
verification is performed against sysremotelogins, and all connections
must have valid Adaptive Server login accounts established prior to the
connect request (trusted mode cannot be used in this case).

Text parameters for RPCs
Adaptive Server can send large chunks of data in a single remote procedure
call. This is done by treating certain parameters as text pointers, then
dereferencing these text pointers to obtain the text values associated with them.
The text data is then packaged into 16K chunks for Adaptive Server and 32K
chunks for all other servers, and handed to Client-Library as parameters to the
RPC.

A text pointer is identified as a parameter of type binary(16) or varbinary(16).
The text value referenced by each text pointer parameter is obtained when the
RPC is executed, and expanded into 16K chunks for Adaptive Server and 32K
chunks for all other servers, each of which is passed to Client-Library as a
parameter of type CS_LONGCHAR_TYPE.

This behavior is triggered by this set command:

set textptr_parameters ON

When an RPC is requested (cis_rpc_handling must be on), text pointers are
dereferenced in the Component Integration Services layer, and the text value
obtained is used to construct one or more parameters for Client-Library.

For this to work, the text pointers must be preceded by a path name argument,
which is used to identify the table from which the text pointers have been
derived. For example:

declare @pathname varchar(90)
declare @textptr1 binary(16)
declare @textptr2 binary(16)
select @pathname = "mydatabase.dbo.t1",

@textptr1 = textptr(c1),

RPC handling and Component Integration Services

48 Adaptive Server Enterprise

@textptr2 = textptr(c2)
from mydatabase.dbo.t1
where ... (whatever)

set textptr_parameters ON
exec SYBASE...myrpc @pathname, @textptr1, @textptr2
set textptr_parameters OFF

When the RPC named ‘myrpc’ gets sent to server SYBASE, the @pathname
parameter is not actually sent, but is used to help locate the text values
referenced by the textptr’s @textptr1 and @textptr2.

The varchar parameter @pathname must immediately precede the binary(16)
parameter, otherwise @textptr1 is considered an ordinary parameter and is
transmitted to the server SYBASE as a normal binary(16) value.

The text will be broken into 16K or 32K chunks, each of which is a separate
parameter of type CS_LONGCHAR_TYPE.

The current value of @@textsize is ignored.

This scheme is also designed to work with proxy tables mapped to remote
procedures. For example:

create existing table myrpctable
(

id int, -- result column
crdate datetime, -- result column
name varchar(30), -- result column
_pathname varchar(90), -- parameter column
_textptr1 binary(16), -- parameter column
_textptr2 binary(16), -- parameter column

) external procedure at ’SYBASE...myrpc’
go
declare @textptr1 binary(16)
declare @textptr2 binary(16)
select @textptr1 = textptr(c1), @textptr2 = textptr(c2)
from mydatabase.dbo.t1 where <whatever>
set textptr_parameters ON
select id, crdate, name
from myrpctable
where_pathname = "mydatabase.dbo.t1" and

_textptr1 = @textptr1 and
_textptr2 = @textptr2

When the query against the proxy table myrpctable is processed, Component
Integration Services sends an RPC named ‘myrpc’ to the server ‘SYBASE’.
The parameters will be derived from the search arguments contained in the
where clause of the query. Since the textptr_parameter option has been set ON,
the textptrs are expanded to CS_LONGCHAR_TYPE, as in the case of the
RPC example shown previously.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 49

Text parameter support for XJS/390
Because of the ability to forward large blocks of text as RPC parameters, it is
now possible for Component Integration Services to interact with IBM
mainframes using XJS/390. XJS/390 scripts (JavaScript-like syntax) can be
stored within Adaptive Server tables (or files accessible via proxy tables), and
forwarded to the mainframe using an RPC. The syntax of the script is analyzed
and executed by XJS/390 facilities, and result sets are generated according to
the procedural logic of the script.

Several features are enabled:

• Database events within Adaptive Server can result in the generation of an
MQ Series message. Since XJS/390 Mscript supports the generation of
messages, an RPC can be sent to the mainframe to request that such a
message be generated in response to a triggered event within the database.

• Component Integration Services users have access to VSAM, IMS, and
MQSeries data without the need to install third-party middleware such as
InfoHub.

Version 2.0 or later of XJS/390 is required for handling scripts as RPC
parameters. See the XJS/390 specification for details.

Distributed Transaction Management
Distributed Transaction Management within Adaptive Server tracks the state
of a transaction in the local Adaptive Server/Component Integration Services,
as well as in all remote servers participating in transactions. When a user
application commits a transaction, the commit is propagated to all participating
remote servers using Adaptive Server Transaction Coordinator (ASTC). The
management of multisite transactions is handled by ASTC in cooperation with
Component Integration Services. Component Integration Services registers
new participating servers for each transaction, then turns over control of the
transaction coordination to ASTC, which calls back into Component
Integration Services to execute various commands for transaction
management.

Server classes and ASTC
Internally, ASTC views a server as either:

Distributed Transaction Management

50 Adaptive Server Enterprise

• DTM-enabled

• Pre-DTM

These types map to the three sets of callbacks used, and map to server classes
as indicated in Table 2-5:

Table 2-5: Transaction capabilities

Note Before starting a distributed transaction, the local server must be named.
@@servername cannot be null.

DTM-enabled servers
Remote servers that are “DTM-enabled” support the full two-phase commit
service enabled by ASTC. Servers that support this must allow a separate
connection (or session) to either commit or roll back a transaction that was
begun by another session. This capability is necessary if the commit
coordinator (ASTC) is required to connect to a remote site and commit or roll
back in-doubt transactions. Adaptive Server 12.0 and later provide this support,
as does DirectConnect for Oracle 12.5 or later.

Pre-DTM servers
Remote servers that are classified as “pre-DTM” are those that support
transaction management statements such as begin tran, commit tran, rollback
tran, but does not support one session’s ability to commit or rollback a
transaction started by another session.

ASTC
server
type Component Integration Services server class

DTM-
enabled

ASEnterprise (12.x or later)
DC/Oracle 12.5 or later

Pre-DTM ASEnterprise (pre-12.0)
ASAnywhere
ASIQ
other Direct Connect
sds

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 51

Component Integration Services makes every effort to manage user
transactions for pre-DTM servers reliably. However, different access methods
incorporated into the server allow varying degrees of support for this
capability. The general logic described below is employed by server classes
ASEnterprise (prior to 12.0), ASAnywhere, ASIQ, direct_connect, and sds if the
Specialty Data Store supports transaction management. The method for
managing transactions involving remote servers uses a two-phase commit
protocol. Adaptive Server implements a strategy that ensures transaction
integrity for most scenarios. However, there is still a chance that a distributed
unit of work will be left in an undetermined state. Even though two-phase
commit protocol is used, no recovery process is included. The general logic for
managing a user transaction is as follows:

Component Integration Services prefaces work to a remote server with a begin
transaction notification. When the transaction is ready to be committed,
Component Integration Services sends a prepare transaction notification to
each remote server that has been part of the transaction. prepare transaction
pings the remote server to determine whether the connection is still viable. If a
prepare transaction request fails, all remote servers are told to roll back the
current transaction. If all prepare transaction requests are successful, the server
sends a commit transaction request to each remote server involved with the
transaction. Any command preceded by begin transaction can begin a
transaction. Other commands are sent to a remote server to be executed as a
single, remote unit of work.

strict DTM enforcement
To ensure complete two-phase commit capability, ASTC uses the concept of
strict dtm enforcement. When enabled, strict dtm enforcement causes a
transaction to abort if an attempt is made to include a pre-DTM server in the
transaction.

enable xact coordination
ASTC uses the configuration option enable xact coordination. This option,
enabled by default, allows ASTC to manage all transactions involving remote
servers. You must enable Component Integration Services before xact
coordination is enabled. While xact coordination is enabled, Component
Integration Services cannot be disabled. When xact coordination is enabled,
transactional_rpcs are implicitly enabled.

Distributed Transaction Management

52 Adaptive Server Enterprise

Enable Component Integration Services
ASTC relies on Component Integration Services to handle all communication
with remote servers. Since ASTC is enabled by default (enable xact
coordination), Component Integration Services is also enabled by default.

Transactional RPCs
The server allows RPCs to be included within the unit of work initiated by the
current transaction.

Before using transactional RPCs, issue the set transactional_rpc on command.

Assuming that the remote server can support the inclusion of RPCs within
transactions, the following syntax shows how this capability might be used:

begin transaction
 insert into t1 values (1)
 update t2 set c1 = 10
 execute @status = SYBASE.pubs2.dbo.myproc
 if @status = 1
 commit transaction
 else
 rollback transaction

In this example, the work performed by the procedure myproc in server
SYBASE is included in the unit of work that began with the begin transaction
command. This example requires that the remote procedure myproc return a
status of “1” for success. The application controls whether the work is
committed or rolled back as a complete unit.

The server that is to receive the RPC must allow RPCs to be included in the
same transactional context as Data Manipulation Language (DML) commands
(select, insert, delete, update). This is true for Adaptive Server and is expected
to be true for most DirectConnect products released by Sybase. However, some
database management systems may not support this capability.

Restrictions on transaction management
If nested begin transaction and commit transaction statements are included in a
transaction that involves remote servers, only the outermost set of statements
is processed. The innermost set, containing the begin transaction and commit
transaction statements, is not transmitted to remote servers.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 53

Adaptive Server to Adaptive Server update statistics
When you perform update statistics on a remote server proxy table, if the
relevant table and index statistics are available, the table catalogs are imported
to the local systabstats and sysstatistics.

By default, update statistics for proxy tables always attempts to import the
required statistics data. But when the statistics data is unavailable or
incomplete on the remote table, Component Integration Services (CIS) reverts
to the prior mechanism of gathering statistic data.

You can also force CIS to revert to the prior mechanism of gathering statistic
data by turning on Traceflag 11229. This allows you to obtain all data from the
database, then calculating the statistics.

Note This is the behavior if update statistics has not been run on the remote
tables and there are no statistics available.

Limitations
Key limitations:

• The proxy table must be mapped to another Adaptive Server version 11.9
or later.

• Excludes proxy tables mapped to RPCs, external files, and system
directories.

• If the remote servers are not Adaptive Server Enterprise version 11.9 or
later, or of another server class, CIS continues to obtain statistics data
using prior mechanisms.

Updating statistics on non-Adaptive Server backends

54 Adaptive Server Enterprise

Updating statistics on non-Adaptive Server backends
The update statistics command helps the server make the best decisions about
which indexes to use when it processes a query, by providing information about
the distribution of the key values in the indexes. update statistics does not
automatically run when you create or re-create an index on a table that already
contains data. It can be used when a large amount of data in an indexed column
has been added, changed, or deleted. The crucial element in query optimization
is the accuracy of the distribution steps. If there are significant changes in the
key values in the index, re-run update statistics on that index.

Only the table owner or the System Administrator can issue the update statistics
command.

The syntax is:

update statistics table_name [index_name]

Because running update statistics is resource intensive, try to run update
statistics at a time when the tables you specify are not heavily used. update
statistics acquires locks on the remote tables and indexes as it reads the data. If
you use trace flag 11209, tables are not locked.

You can set update statistics to run automatically at the time that best suits your
site and avoid running it at times that hamper your system. For more
information see Chapter 4, “Using Statistics to Improve Performance” in the
Performance and Tuning Guide: Monitoring and Analyzing.

The server performs a table scan for each index specified in the update statistics
command.

Since Transact-SQL does not require index names to be unique in a database,
you must give the name of the table with which the index is associated.

After running update statistics, run sp_recompile so triggers and procedures that
use the indexes use the new distribution:

sp_recompile authors

Java in the database
Java in the database is supported for remote data access with Component
Integration Services.

The following restrictions apply:

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 55

• Java is supported for remote Adaptive Server 12.x and later only.

• Java is supported for language events only (no dynamic SQL can be used
with remote tables.)

Before using Java for remote data access, read “Java class definitions” on page
57. Then, after installing your Java class files on the local server, install the
required Java class files on the remote server.

@@textsize
Data is returned as a serialized Java object using the image datatype format and
then deserialized on the local server. @@textsize must be set large enough to
hold the serialized object. If @@textsize is set too small, the object is truncated,
and the deserialization fails.

@@stringsize
@@stringsize indicates the amount of character data to be returned from a
toString() method. It is similar in behavior to @@textsize, except it applies only
the char data returned by the Java Object.toString() method. The default value is
50. The maximum value is 16384. A value of zero means “use the default.”
This value can be modified by a set command:

set stringsize n

where n is an integer value between 0 and 16384. The value immediately
displays in the global variable @@stringsize.

Constraints on Java class columns
Constraints defined on Java columns of remote tables must be checked on the
remote server. If the constraint checking is attempted on the local server, it
fails. Therefore, you must enable trace flag 11220 when you insert, update, or
delete data for which constraint checking is done on Java datatypes. See “Trace
flags” on page 72.

Java in the database

56 Adaptive Server Enterprise

Error messages
There are two error messages that are specific to Java use with remote data
access:

• Error 11275 – a statement referencing an extended datatype contained
syntax that prevented it from being sent to the remote server. Rewrite the
statement or remove the extended datatype reference.

• Error 11276 – an object in column '<colname>' could not be deserialized,
possibly because the object was truncated. Check that the value of
@@textsize is large enough to accommodate the serialized object.

Java abstract datatypes (ADTs)
Java Classes in SQL (JCS) is the method of storing and using Java objects
within the Adaptive Server. Component Integration Services interaction in this
implementation is needed to support Java objects and Java functions on remote
servers.

Component Integration Services supports JCS on remote Adaptive Server
version 12.0 or later.

Objects are passed between the local and remote servers in a serialized format
that is a binary representation used to reinstantiate the object. Component
Integration Services treats a serialized object as an image blob, using text and
image handling functions to pass objects between servers. The object is
reinstantiated on the destination server before processing continues.

When handling queries containing references to Java objects and functions on
remote servers, Component Integration Services attempts to forward as much
syntax as possible to the remote server. Any portion of the query that cannot be
passed to the remote server is handled on the local server, requiring the
serialization and deserialization of all necessary remote objects. Due to the
overhead associated with serializing and deserializing Java objects,
performance of such queries is significantly less than comparable local access.

To facilitate the interchange of Java objects between servers, Component
Integration Services issues:

set raw_object_serialization ON

to each ASEnterprise server that is Java-enabled. This allows Component
Integration Services to easily deserialize the object obtained from the remote
site.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 57

Java class definitions

The Java class definitions on the local and remote servers must be compatible
to facilitate passing objects between servers. For this reason, Component
Integration Services assumes that compatibility exists, and any errors in object
definition are detected during deserialization efforts. Objects are considered
compatible if the serialized form of the object on the remote server can be used
to successfully instantiate an object on the local server, or vise versa. Also, any
Java method referenced in the local server in conjunction with a remotely
mapped object must be defined on the remote object as well.

It is the responsibility of the database administrator to ensure that class
definitions on local and remote servers are compatible. Incompatible objects
and invalid method references result in deserialization errors or Java
exceptions that cancel the requesting query.

To improve overall performance, increase the cis packet size configuration
variable to better facilitate passing serialized objects between servers.
Serialized objects are passed between servers with an image datatype, and can
vary in size from a few bytes to 2GB.

Datatypes
This section discusses how Component Integration Services deals with various
datatype issues.

Unicode support
Adaptive Server contains formal support for the Unicode character set. The
datatypes provided are unichar, univarchar, and unitext. They comprise 2-byte
characters expressed in Unicode. Adaptive Server provides conversion
functions between Unicode data and all other datatypes, consistent with current
handling of char and varchar datatypes. By supporting these datatypes,
Component Integration Services is able to present a view of all enterprise
character data expressed in Unicode. Character data from mainframes and all
other foreign or legacy systems is converted to Unicode when columns of type
unichar or univarchar are used to defined columns in proxy tables.

The Component Integration Services features below are affected by these new
datatypes:

Datatypes

58 Adaptive Server Enterprise

create table

create table may contain columns described using the new Unicode datatypes.
If the table to be created is a proxy table, Component Integration Services
forwards the entire command, including the Unicode datatype names (unichar,
univarchar, and unitext) to the remote server where the new table is to be
created. If the remote server cannot handle the datatypes, it raises an error.

create existing table

When comparing Adaptive Server column types and lengths with the metadata
obtained from a remote server, Unicode datatypes in the proxy table are
allowed under the following circumstances:

• The remote server datatype for a column is unichar, unitext, or univarchar
with equal length (expressed in characters, not bytes).

• The remote server datatype for a given column is char or varchar. In this
case, Component Integration Services performs conversions to Unicode
on data fetched from the remote server, and conversions from Unicode to
the default Adaptive Server character set (UTF8) on data transmitted as
part of DML commands (select, insert, delete, update).

• The remote server datatype for a Unicode column is binary or varbinary.
The length of the remote server column must be twice the length of the
Unicode column. Component Integration Services performs conversions
as required when transmitting data to or from the remote server.

No other datatype mapping for Unicode datatypes is allowed when mapping a
proxy table to a remote table. Other types result in a type mismatch error. You
can convert data from legacy systems into Unicode simply by creating a proxy
table that maps a Unicode column to an existing char or varchar column.

Note Unicode can only be mapped to unitext columns using the create existing
table command.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 59

create proxy_table

By using create proxy_table, an Adaptive Server user does not have to specify
the column list associated with the proxy table. Instead, the column list is
derived from column metadata imported from the remote server on which the
actual table resides. Unicode columns from the remote server are mapped to
Unicode columns in the proxy table only when the remote column is datatype
unichar, unitext, or univarchar.

alter table

alter table allows column types to be modified. With Adaptive Server version
12.5 and later, a column’s type can be modified to and from Unicode datatypes.
If the command operates on a proxy table, the command is reconstructed and
forwarded to the remote server that owns the actual table. If the remote server
(or DirectConnect) cannot process the command, an error is expected, and the
Adaptive Server command is aborted.

If trace flag 11221 is on, alter table does not get forwarded to a remote server;
adding, deleting, or modifying columns is done locally on the proxy table only.

Using the alter table command, unitext can be changed to char, varchar, nchar,
nvarchar, unichar, univarchar, binary, and varbinary. Any of these datatypes can
be changed to unitext.

select, insert, update, and delete statements

Unicode datatypes impact the processing of select statements in two ways
when proxy tables are involved. The first involves the construction of SQL
statements and parameters that are passed to remote servers; the second
involves the conversion of data to Unicode when Component Integration
Services fetches non-Unicode data.

A DML command involving a proxy table is handled using either TDS
language requests or TDS cursor requests when interacting with the remote
server. If a select statement contains predicates in the where clause that involve
Unicode columns and constants, the Unicode constants musts be handled in
one of two ways, depending on whether language or cursor commands are used
to process the statement:

1 TDS language – generate clear-text values that can be included in the
language text buffer. This involves converting a constant Unicode value to
clear text values that can be transmitted as part of a language request.

Datatypes

60 Adaptive Server Enterprise

2 TDS cursor – generate Unicode parameters for CT-Library cursor
requests. Parameter values may be Unicode data, requiring Component
Integration Services to use parameter types of CS_UNICHAR_TYPE.

Component Integration Services handles an insert command involving a proxy
table using either TDS language requests or TDS dynamic requests.

If the insert command can be processed in quickpass mode, then TDS language
requests are used. If the command cannot be handled in quickpass mode, the
insert is processed using TDS Dynamic requests.

In language requests, the issues are the same as with select — Unicode values
must be converted to clear-text form so they can be transmitted with the rest of
the SQL statement. In dynamic requests, Unicode data (along with all other
data values) is transmitted as parameters to the dynamic command. The
receiving server is expected to process parameters of type
CS_UNICHAR_TYPE.

The issues with update and delete commands are the same as for select and
insert. Unicode values must be converted either to clear-text characters for
transmission with the rest of the SQL statement, or they must be converted into
parameters of type CS_UNICHAR_TYPE.

Datatype conversions
Datatype conversion can take place whenever the server receives data from a
remote source, be it Adaptive Server, or an Open Server-based application.

Depending on the remote datatype of each column, data is converted from the
native datatype on the remote server to a form that the local server supports.

Datatype conversions are made when the create table, alter table and create
existing table commands are processed. The datatype conversions are
dependent on the remote server’s server class. See the create table, alter table,
and create existing table commands Chapter 3, “SQL Reference,” for tables
that illustrate the datatype conversions that take place for each server class
when the commands are processed.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 61

text and image datatypes
The text datatype is used to store printable character data, the column size of
which depends on the logical page size of the Adaptive Server. The image
datatype is used to store a number of bytes of hexadecimal-encoded binary data
that, again, depends on the logical page size of the Adaptive Server. The
maximum length for text, image, and unitext data is defined by the server class
of the remote server to which the column is mapped.

Note unitext with Component Integration Services is only supported for
Adaptive Server version 15.0 and higher.

Restrictions on text, image, and unitext columns

text, image, and unitext columns cannot be used:

• As parameters to stored procedures, except when set textptr_parameters is
on

• As local variables

• In order by, compute, or group by clauses

• In indexes

• In subqueries

• In where clauses, except with the keyword like

• In joins

Limits of @@textsize

select statements return text, image, and unitext data up to the limit specified in
the global variable @@textsize. The set textsize command is used to change
this limit. The initial value of @@textsize is 32K; the maximum value for
@@textsize is 2147MB.

Odd bytes padded

image values of less than 255 bytes that have an odd number of bytes are
padded with a leading zero (an insert of “0xaaabb” becomes “0x0aaabb”). It is
an error to insert an image value of more than 255 bytes if the value has an odd
number of bytes.

Datatypes

62 Adaptive Server Enterprise

Converting text and image datatypes

You can explicitly convert text values to char or varchar and image values to
binary or varbinary with the convert function, but you are limited to the
maximum length of the character and binary datatypes, which depends on the
logical page size of the Adaptive Server. If you do not specify the length, the
converted value has a default length of 30 bytes. Implicit conversion is not
supported.

Pattern matching with text and unitext data

Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in a text, unitext, varchar, or char column. The
% wildcard character must precede and follow the pattern (except when you
are searching for the first or last character).

You can use the like keyword to search for a particular pattern. This example
selects each text data value from the blurb column of the texttest table that
contains the pattern “Straight Talk%”:

select blurb from texttest
 where blurb like "Straight Talk%"

You can use the keyword like to search a unitext column for a specific pattern.
However, the like clause is not optimized when it is used with a unitext column.
like pattern matching for unitext depends on the default Unicode sort order,
which is also used for like pattern matching for unichar and univarchar
datatypes.

Entering text and image values

The DB-Library™ functions dbwritetext and dbmoretext and the Client-Library
function ct_send_data are the most efficient ways to enter text, unitext, and
image values.

When inserting text or image values using the insert command, the maximum
length of the data is 16KB.

readtext using bytes

If you use the readtext using bytes command on a text column, and the
combination of size and offset result in the transmission of a partial character,
errors result.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 63

text, image, and unitext with bulk copy

When you use bulk copy to copy text, unitext, and image values to a remote
server, the server must store the values in data pages before sending them to the
remote server. Once the values have been issued to the remote server, the data
pages are released. Data pages are allocated and released row by row. This is
important because:

• The overhead of allocating and releasing data pages impacts performance.

• Data pages are allocated in the database where the table resides, so the
database must be large enough to accommodate enough data pages for the
largest text, unitext, and image values that exist for any given row.

Error logging

Processing of text, unitext, and image data (with remote servers only) can be
logged by using trace flag 11207.

text, unitext, and image data with server class ASEnterprise

• A pointer in a text, unitext, or image column is assigned when the column
is initialized. Before you can enter text, unitext, or image data into a
column, the column must be initialized. This causes a 2K page to be
allocated on the remote or Adaptive Server. To initialize text, unitext, or
image columns, use the update with a NULL or a non-null insert command.

• Before you use writetext to enter text or unitext data or readtext to read it,
the text or unitext, column must be initialized. Use update or insert non-null
data to initialize the text column, and then use writetext and readtext.

• Using update to replace existing text, unitext, and image data with NULL
reclaims all of the allocated data pages, except the first page, in the remote
server.

• writetext, select into, DB-Library functions, or Client-Library functions
must be used to enter text, unitext, or image values that are larger than
16KB.

• readtext is the most efficient way to access text, unitext, and image data.

• insert select and select into can be used to insert text, unitext, and image data
to proxy tables, but a unique index is required.

Datatypes

64 Adaptive Server Enterprise

text, image, and unitext data with server class direct_connect

• Specific DirectConnect servers support text and image data to varying
degrees. See the DirectConnect documentation for information on text,
unitext, and image support.

• The server uses the length defined in the global variable @@textsize for
the column length. Before issuing create table, the client application
should set @@textsize to the required length by invoking set textsize.

• For DirectConnect servers that support text, unitext, and image datatypes
but do not support text pointers, the following restrictions apply:

• The writetext command is not supported.

• The readtext command is not supported.

• Client-Library functions that use text pointers are not supported.

• DB-Library functions that use text pointers are not supported.

• For DirectConnect servers that support text, unitext, and image datatypes
but do not support text pointers, some additional processing is performed
to allow the following functions to be used:

• patindex

• char_length

• datalength

If text pointers are supported, the server performs these functions by
issuing an RPC to the DirectConnect server.

• For DirectConnect servers that do not support text pointers, the server
stores data in the sysattributes system table. Data pages are preallocated on
a per column per row basis. The column size is determined by @@textsize.
If this value is not sufficient an error is returned.

• Specific DirectConnect servers may or may not support pattern matching
against the text datatype. If a DirectConnect server does not support this
pattern matching, the server copies the text value to internal data pages and
performs the pattern matching internally. The best performance is seen
when pattern matching is performed by the DirectConnect server.

• You must use writetext, select into, or insert...select to enter text, unitext, or
image values that exceed 450 bytes.

• You can use select into and insert...select to insert text, unitext, or image
values, but the table must have a unique index.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 65

Configuration and tuning
This section provides information about configuration, tuning, trace flags,
backup and recovery, and security issues.

The System Administrator or Database Owner may elect to use the server to
optimize performance or to allow use by a required number of clients.
Configuration choices might involve being able to review total numbers of
reads and writes for a given SQL command.

Once an application is up and running, the System Administrator should
monitor performance and may choose to customize and fine-tune the system.
The server provides tools for these purposes. This section explains:

• Changing system parameters with the sp_configure procedure

• Using update statistics to ensure that Component Integration Services
makes the best use of existing indexes

• Monitoring server activity with the dbcc command

• Setting trace flags

• Executing ddlgen and related backup and recovery issues

• Determining database size requirements

Using sp_configure
The configuration parameters in sp_configure control resource allocation and
performance. The System Administrator can reset these configuration
parameters to tune performance and redefine storage allocation. In the absence
of intervention by the System Administrator, the server supplies default values
for all the parameters.

The procedure for resetting configuration parameters is:

• Execute sp_configure, which updates the values field of the system table
master..sysconfigures.

• Restart the server if you have reset any of the static configuration
parameters. The parameters listed below are dynamic:

• cis rpc handling

• cis cursor rows

• cis bulk insert batch size

Configuration and tuning

66 Adaptive Server Enterprise

• cis bulk insert array size

• cis packet size

sysconfigures table

The master..sysconfigures system table stores all configuration options. It
contains columns identifying the minimum and maximum values possible for
each configuration parameter, as well as the configured value and run value for
each parameter.

The status column in sysconfigures cannot be updated by the user. Status 1
means dynamic, indicating that new values for these configuration parameters
take effect immediately. The rest of the configuration parameters (those with
status 0) take effect only after the reconfigure command has been issued and the
server restarted.

You can display the configuration parameters currently in use (run values) by
executing sp_configure without giving it any parameters.

Changing the configuration parameters

sp_configure displays all the configuration values when it is used without an
argument. When used with an option name and a value, the server resets the
configuration value of that option in the system tables.

See the System Administration Guide for a complete discussion of sp_configure
with syntax options.

To see the Component Integration Services options, enter:

sp_configure "Component Integration Services"

To change the current value of a configuration parameter, execute sp_configure
as follows:

sp_configure "parameter", value

Component Integration Services configuration parameters

The following configuration parameters are unique to Component Integration
Services:

• enable cis

• enable file access

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 67

• enable full-text search

• max cis remote connections

• cis bulk insert batch size

• cis bulk insert array size

• cis cursor rows

• cis packet size

• cis rpc handling

enable cis Use this parameter with sp_configure to enable Component Integration
Services as follows:

1 Log in to Adaptive Server as the System Administrator and issue the
following command:

sp_configure "enable cis", 1

2 Restart Adaptive Server.

Issuing sp_configure "enable cis", 0 disables Component Integration Services
after restarting the server.

enable file access This configuration parameter enables access through proxy tables to eXternal
File System.

enable full-text search This configuration parameter enables Enhanced Full-Text Search services.
Requires a license for ASE_EFTS.

max cis remote
connections

This configuration property is no longer used.

cis bulk insert batch
size

This configuration parameter determines how many rows from the source
tables are to be bulk copied into the target table as a single batch using select
into, when the target table resides in an Adaptive Server or in a DirectConnect
server that supports a bulk copy interface.

If left at zero (the default), all rows are copied as a single batch. Otherwise,
after the count of rows specified by this parameter has been copied to the target
table, Component Integration Services issues a bulk commit to the target
server, causing the batch to be committed.

If a normal client-generated bulk copy operation (such as that produced by the
bcp utility) is received, the client is expected to control the size of the bulk
batch, and Component Integration Services ignores the value of this
configuration parameter.

Configuration and tuning

68 Adaptive Server Enterprise

cis bulk insert array
size

When performing a bulk transfer of data from one Adaptive Server to another,
Component Integration Services buffers rows internally, and asks the Open
Client bulk library to transfer them as a block. The size of the array is
controlled by the configuration parameter cis bulk insert array size. The default
is 50 rows, and the property is dynamic, allowing it to be changed without
server reboot.

cis cursor rows This configuration parameter allows users to specify the cursor row count for
cursor open and cursor fetch operations. Increasing this value means more rows
are fetched in one operation. This increases speed but requires more memory.
The default is 50.

cis packet size This configuration parameter allows you to specify the size of Tabular Data
Stream™ (TDS) packets that are exchanged between Component Integration
Services and a remote server when connection is initiated.

The default packet size on most systems is 512 bytes, which is adequate for
most applications. However, larger packet sizes may result in significantly
improved query performance, especially when text and image or bulk data is
involved.

If a packet size larger than the default is specified, then the target server must
be configured to allow variable-length packet sizes. Adaptive Server
configuration parameters of interest in this case are:

• additional netmem

• maximum network packet size

See the System Administration Guide for a complete explanation of these
configuration parameters.

cis rpc handling This global configuration parameter determines whether Component
Integration Services handles outbound RPC requests by default. When this is
enabled using sp_configure “cis rpc handling” 1, all outbound RPCs are handled
by Component Integration Services. When you use sp_configure “cis rpc
handling” 0, the Adaptive Server site handler is used. The thread cannot
override it with set cis_rpc_handling on. If the global property is disabled, a
thread can enable or disable the capability, as required.

For more information on using the Adaptive Server site handler versus using
Component Integration Services to handle outbound RPCs, see “RPC handling
and Component Integration Services” on page 44.

CHAPTER 2 Understanding Component Integration Services

Component Integration Services User’s Guide 69

Global variables for status
The following global variables have been added for Component Integration
Services users:

• @@cis_rpc_handling

• @@transactional_rpc

• @@textptr_parameters

• @@stringsize

• @@bulkbatchsize – contains the value of the current cis bulk insert batch
size configured via sp_configure, or set through the set bulk batch size
command.

• @@bulkarraysize – contains the value of the current cis bulk insert array
size configured via sp_configure or set through the set bulk array size
command.

These global variables show the current status of the corresponding
configuration parameters. For instance, to see the status of cis_rpc_handling,
issue the following command:

select @@cis_rpc_handling

This returns either 0 (off) or 1 (on).

Configuration and tuning

70 Adaptive Server Enterprise

Component Integration Services User’s Guide 71

C H A P T E R 3 SQL Reference

This chapter provides reference material on the server classes supported
by Component Integration Services.

Each server class has a set of unique characteristics that System
Administrators and programmers need to know about in order to configure
the server for remote data access. These properties are:

• Types of servers that each server class supports

• Datatype conversions specific to the server class

• Restrictions on Transact-SQL statements that apply to the server class

dbcc commands
All dbcc commands used by Component Integration Services are available
with a single dbcc entry point.

The syntax for dbcc cis is:

dbcc cis ("subcommand"[, vararg1, vararg2...])

If Component Integration Services is not configured or loaded, the
command results in a runtime error.

The use of the dbcc cis command is unrestricted.

Topic Page
dbcc commands 71

Functions 74

Transact-SQL commands 79

Passthrough mode 102

Quoted identifier support 107

Delimited identifier support 107

auto identity option 107

Triggers 108

dbcc commands

72 Adaptive Server Enterprise

dbcc options
The following dbcc options are unique to Component Integration Services.

remcon remcon displays a list of all remote connections made by all Component
Integration Services clients. It takes no arguments.

srvdes srvdes returns a formatted list of all in-memory SRVDES structures, if no
argument is provided. If an argument is provided, this command syncs the in-
memory version of a SRVDES with information found in sysservers. The
command takes an optional argument as follows:

srvdes, [srvid]

showcaps showcaps displays a list of all capabilities for servername by capability name,
ID, and value as follows:

showcaps, servername

Example:

dbcc cis(“showcaps”, “servername”)

Trace flags
The dbcc traceon option allows the System Administrator to turn on trace flags
within Component Integration Services. Trace flags enable the logging of
certain events when they occur within Component Integration Services. Each
trace flag is uniquely identified by a number. Some are global to Component
Integration Services, while others are spid-based and affect only the user who
enabled the trace flag. dbcc traceoff turns off trace flags.

The syntax is:

dbcc traceon (traceflag [, traceflag...])

Trace flags and their meanings are shown in Table 3-1:

Table 3-1: Component Integration Services trace flags

Trace flag Description

11201 Logs client connect events, disconnect events, and attention
events. (global)

11202 Logs client language, cursor declare, dynamic prepare, and
dynamic execute-immediate text. (global)

11203 Logs client RPC events. (global)

11204 Logs all messages routed to client. (global)

11205 Logs all interaction with remote server. (global)

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 73

11206 Logs file/directory processing steps. (global)

11207 Logs text and image processing. (global)

11208 Prevents the create index and drop index statements from being
transmitted to a remote server. sysindexes is updated anyway.
(spid)

11209 Instructs update statistics to obtain only row counts rather than
complete distribution statistics, from a remote table. (spid)

11211 Prevents the drop table syntax from being forwarded to remote
servers if the table was created using the create table at location
syntax.

11212 Prevents escape on underscores (“_”) in table names. (spid)

11213 Prevents generation of column and table constraints. (spid)

11214 Disables Component Integration Services recovery at start-up.
(global)

11216 Disables quickpass. (spid)

11217 Disables quickpass. (global)

11218 Makes cursors involving Component Integration Services
tables updateable by default.

11220 Disables constraint checking of remote tables on the local
server. This avoids duplicate checking. Setting this trace flag on
ensures that queries are not rejected by the quickpass mode
because of constraints. (spid)

11221 Disables alter table commands to the remote server when ON.
This allows users to modify type, length, and nullability of
columns in a local table without changing columns in the
remote table. Use trace flag 11221 with caution. It may lead to
tables that are “out of sync.” (spid)

11223 Disables proxy table index creation during create existing table
or create proxy_table command execution. If this flag is set on,
no index metadata is imported from the remote site referenced
by the proxy table, and no indexes for the proxy table are
created. This trace flag should be used with care and turned off
when no longer necessary. (global)

11229 Instructs Component Integration Services to use pre-Adaptive
Server version 12.5.3 methods of gathering statistics data.

11299 Allows connection information to be logged when a connection
to a remote server fails.

Trace flag Description

Functions

74 Adaptive Server Enterprise

Functions
This section defines the compatibility of the Component Integration Services
server classes with the built-in Adaptive Server functions.

Support for functions within Component Integration Services
When a SQL statement such as a select, insert, delete, or update contains a
built-in function, Component Integration Services has to determine whether or
not the function can be forwarded to the remote server, or if it must be
evaluated within the local server using remote data.

Functions are only sent to a remote server if the statement containing them can
be handled by quickpass mode.

In the tables shown below, support for function by server class is indicated by
a ‘Y’; ‘N’ indicates no support is provided, and ‘C’ indicates support for it is
determined by capabilities of the underlying DBMS (often the case for
DirectConnects).

Aggregate functions
The aggregate functions generate summary values that appear as new columns
in the query results.

Table 3-2: Server class support for aggregate functions

Datatype conversion functions
Datatype conversion functions change expressions from one datatype to
another and specify new display formats for date/time information.

Function ASE ASA ASIQ dir_con

avg Y Y Y C

count Y Y Y C

max Y Y Y C

min Y Y Y C

sum Y Y Y C

count_big Y N N N

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 75

Table 3-3: Server class support for datatype conversion functions

Date functions
The date functions manipulate values of the datatypes datetime or
smalldatetime. The getdate() function is always expanded by the local server;
the presence of this builtin function does not cause a query to be eliminated
from quickpass mode optimizations, however.

Table 3-4: Server class support for date functions

Mathematical functions
Mathematical functions return values commonly needed for operations on
mathematical data. Mathematical function names are not keywords.

Each function also accepts arguments that can be implicitly converted to the
specified type. For example, functions that accept approximate numeric types
also accept integer types. Adaptive Server automatically converts the argument
to the desired type

Function ASE ASA ASIQ dir_con

convert() Y Y Y C

inttohex() Y N N N

hextoint() Y N N N

biginttohex() Y N N N

hextobigint() Y N N N

Function ASE ASA ASIQ dir_con

dateadd Y Y Y C

datediff Y Y Y C

datename Y Y N C

datepart Y Y Y C

Functions

76 Adaptive Server Enterprise

Table 3-5: Server class support for mathematical functions

Security functions
Security functions return security-related information.

Function ASE ASA ASIQ dir_con

abs Y Y Y C

acos Y Y N C

asin Y Y N C

atan Y Y N C

atn2 Y Y N C

ceiling Y Y Y C

cos Y Y N C

cot Y Y N C

degrees Y Y N C

exp Y Y N C

floor Y Y Y C

log Y Y N C

log10 Y Y N C

pi Y Y N C

power Y Y N C

radians Y Y N C

rand Y Y Y C

round Y Y N C

sign Y Y N C

sin Y Y N C

sqrt Y Y Y C

tan Y Y N C

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 77

Table 3-6: Server class support for security functions

String functions
String function operate on binary data, character strings, and expressions. The
string functions are:

Table 3-7: Server class support for string functions

System functions
System functions return special information from the database.

Function ASE ASA ASIQ dir_con

ic_sec_ser
vice_on()

N N N N

show_sec_
services()

N N N N

Function ASE ASA ASIQ dir_con

ascii Y Y N C

char Y Y N C

charindex Y Y N C

char_lengt Y Y N C

difference Y Y Y C

lower Y Y Y C

ltrim Y Y Y C

patindex N N N N

replicate Y Y N C

reverse Y N N Y

right Y Y Y C

rtrim Y Y Y C

soundex Y N Y C

space Y Y N C

str Y Y N C

stuff Y Y N C

substring Y Y Y C

upper Y Y Y C

Functions

78 Adaptive Server Enterprise

Table 3-8: Server class support for system functions

Function ASE ASA ASIQ dir_con

col_length Y Y N C

col_name Y Y N C

curunreservedp
gs

N N N N

data_pgs N N N N

datalength Y Y N C

db_id N N N N

db_name N N N N

getdate Y N N N

getutcdate Y N N N

host_id N N N N

host_name N N N N

index_col N N N N

isnull Y Y N N

lct_admin N N N N

mut_excl_roles N N N N

object_id N N N N

object_name N N N N

proc_role N N N N

ptn_data_pgs N N N N

reserved_pgs N N N N

role_contain N N N N

role_id N N N N

role_name N N N N

rowcnt N N N N

show_role N N N N

suser_id N Y Y N

suser_name N Y Y N

tsequal Y Y N N

used_pgs N N N N

user Y Y Y N

user_id Y Y Y N

user_name Y Y Y N

valid_name N N N N

valid_user N N N N

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 79

Text and image functions
Text and image functions operate on text and image data.

Table 3-9: Server class support for text and image functions

Transact-SQL commands
The following pages discuss, in alphabetical order, Transact-SQL commands
that directly or indirectly affect external tables, and, as a result, Component
Integration Services. For each command, a description of its effect on
Component Integration Services, and the manner in which Component
Integration Services processes the command is provided. For a complete
description of each command, see the Reference Manual.

If Component Integration Services does not pass all of a command’s syntax to
a remote server (such as all clauses of a select statement), the syntax that is
passed along is described for each server class.

Each command has several sections that describe it:

• Description – contains a brief description of the command.

• Syntax – contains a description of the full Transact-SQL syntax of the
command.

• Usage – contains a general, server class-independent description of
handling by Component Integration Services.

• Server class ASEnterprise – contains a description of handling specific to
server class ASEnterprise. This includes syntax that is forwarded to a
remote server of class ASEnterprise.

• Server class ASAnywhere – contains a description of handling specific to
server class ASAnywhere. This includes syntax that is forwarded to a
remote server of class ASAnywhere.

• Server class ASIQ – contains a description of handling specific to server
class ASIQ. This includes syntax that is forwarded to a remote server of
class ASIQ.

Function ASE ASA ASIQ dir_con

textptr() Y Y N C

textvalid() Y Y N C

Transact-SQL commands

80 Adaptive Server Enterprise

• Server class direct_connect – contains a description of handling specific to
server class direct_connect. This includes syntax that is forwarded to a
remote server of class direct_connect. In this release, all comments that
apply to server class direct_connect, also apply to server class sds.

alter table
Server class
ASEnterprise

Component Integration Services forwards the following syntax to a server
configured as class ASEnterprise:

alter table [database.[owner].]table_name
{add column_name datatype [{identity | null}]

 {[, next_column]}...}
| [drop column_name [, column_name]}
| modify column_name [data_type] [NULL] |

[not null]] [, column_name]}

• When a user adds a column with the alter table command, Component
Integration Services passes the datatype of each column to the remote
server without type name conversions.

• For ASEnterprise class servers only, the lock clause is also forwarded, if
contained in the original query, if the version of Adaptive Server is 11.9.2
or later.

Server class
ASAnywhere

Handling of alter table by servers in this class is the same as for ASEnterprise
servers.

Server class ASIQ • Handling of alter table by servers in this class is the same as for
ASEnterprise servers.

• text and image datatypes are fully supported by server class ASIQ.

Server class
direct_connect

• Component Integration Services forwards the following syntax to a
remote server configured as class direct_connect:

alter table [database.[owner].]table_name
 add column_name datatype [{identity | null}]
 {[, next_column]}...

• Although Component Integration Services requests a capabilities response
from a server with class direct_connect, support for alter table is not
optional. Component Integration Services forwards alter table to the
remote server regardless of the capabilities response.

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 81

• The behavior of the server with class direct_connect is database dependent.
The Transact-SQL syntax is forwarded, and errors may or may not be
raised, depending on the ability of the remote database to handle this
syntax.

• Server class direct_connect does not support bigint, unsigned tinyint,
unsigned smallint, unsigned int, unsigned bigint.

• If the syntax capability of the remote server indicates Sybase Transact-
SQL, Adaptive Server datatypes are sent to the remote server. If the syntax
capability indicates DB2 SQL, DB2 datatypes are sent.

Direct Connect does not support bigint, unsigned tinyint, unsigned smallint,
unsigned int, unsigned bigint.

The mapping for these datatypes is shown in Table 3-10:

Table 3-10: DirectConnect datatype conversions for alter table

Adaptive Server
datatype

DirectConnect
 default datatype

binary(n) binary(n)

bit bit

char char

date date

datetime datetime

decimal(p, s) decimal(p, s)

float float

image image

int int

money money

numeric(p, s) numeric(p, s)

nchar(n) nchar(n)

nvarchar(n) nvarchar(n)

real real

smalldatetime smalldatetime

smallint smallint

smallmoney smallmoney

time time

timestamp timestamp

tinyint tinyint

text text

unichar unichar

Transact-SQL commands

82 Adaptive Server Enterprise

Useage When the server receives the alter table command, it passes the command to an
appropriate access method if:

• The object on which the command is to operate has been associated with
a remote or external storage location.

• The command consists of an add column request. Requests to add or drop
constraints are not passed to the access methods; instead, they are handled
locally.

alter table is passed to remote servers as a language request.

See also alter table in the Reference Manual

case
Server class
ASEnterprise

The presence of a case expression in the original query syntax does not cause
the query optimizer to reject quickpass mode.

Server class
ASAnywhere

The presence of a case expression in the original query syntax will not cause
the query optimizer to reject quickpass mode.

Server class ASIQ The ability to handle case expressions is not set for servers in this class. When
a SQL statement containing a case expression is optimized, the presence of the
case expression causes the Component Integration Services quickpass
optimization to reject the statement. When this happens, the case expression
must be evaluated by the local Adaptive Server after retrieving data from the
remote server.

Server class
direct_connect

The ability to handle case expressions is determined by the result set from the
RPC sp_capabilities. If direct_connect indicates that it can handle case
expressions, then Component Integration Services forwards them to the
direct_connect when quickpass mode is used to handle the query.

See also case in the Reference Manual.

unitext unitext

varbinary(n) varbinary(n)

varchar(n) varchar(n)

Adaptive Server
datatype

DirectConnect
 default datatype

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 83

connect to...disconnect
Server class
ASEnterprise

When disconnect is issued, Component Integration Services forwards
disconnect to the remote server, to take it out of passthrough mode. If not in
passthrough mode, syntax errors may occur, but they are ignored by
Component Integration Services and not forwarded to the client.

Server class
ASAnywhere

No interaction occurs with ASAnywhere when connect or disconnect are issued.

Server class ASIQ No interaction occurs with ASIQ when connect or disconnect are issued.

Server class
direct_connect

When connect is issued using a server in class direct_connect, the
direct_connect is sent an RPC:

sp_thread_props “passthru mode”, 1

When disconnect is issued, and the server for which a passthrough-mode
connection has been established is a direct_connect, the direct_connect is sent
an RPC:

sp_thread_props “passthru mode”, 0

See also commit in the Reference Manual

Transact-SQL commands

84 Adaptive Server Enterprise

create existing table
Server class
ASEnterprise

• Table 3-11 describes the allowable datatypes that can be used when
mapping remote Adaptive Server columns to local proxy table columns:

Table 3-11: Adaptive Server datatype conversions for create existing
table

Remote Adaptive
Server datatype Allowable Adaptive Server datatypes

binary(n) image, binary(n), and varbinary(n); if not image,
the length must match

bit bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must
match

datetime datetime, smalldatetime, char, and varchar

decimal(p, s) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

numeric(p, s) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

nvarchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must
match

real bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smalldatetime datetime, smalldatetime, char, and varchar

smallint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

text text, unitext

timestamp timestamp

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 85

tinyint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

unichar char, varchar, unichar, univarchar, text, datetime,
and smalldatetime

univarchar char, varchar, unichar, univarchar, text, datetime,
and smalldatetime

unitext unitext

varbinary(n) image, binary(n), and varbinary(n); if not image,
the length must match

varchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n)
unichar, univarchar; if not text, the length must
match

date

time

bigint Implicit: binary, varbinary, bit, tinyint, smallint, int,
decimal, numeric, float, real, money, smallmoney

Explicit: char, varchar, unichar, univarchar

unsigned tinyint Implicit: binary, varbinary, bit, tinyint, smallint,
unsigned smallint, int, unsigned int, bigint,
unsigned bigint, decimal, numeric, float, real
money, smallmoney

Explicit: char, varchar, unichar, univarchar

Unsupported: text, image, date, time, datetime,
smalldatetime

unsigned smallint Implicit: binary, varbinary, bit, tinyint, smallint,
unsigned smallint, int, unsigned int, bigint,
unsigned bigint, decimal, numeric, float, real
money, smallmoney

Explicit: char, varchar, unichar, univarchar

Unsupported: text, image, date, time, datetime,
smalldatetime

unsigned int Implicit: binary, varbinary, bit, tinyint, smallint,
unsigned smallint, int, unsigned int, bigint,
unsigned bigint, decimal, numeric, float, real
money, smallmoney

Explicit: char, varchar, unichar, univarchar

Unsupported: text, image, date, time, datetime,
smalldatetime

Remote Adaptive
Server datatype Allowable Adaptive Server datatypes

Transact-SQL commands

86 Adaptive Server Enterprise

Note Component Integration Services only supports unitext with Adaptive
Server version 15.0 and higher.

Server class
ASAnywhere

• Table 3-12 describes the allowable datatypes that can be used when
mapping remote Adaptive Server columns to local proxy table columns:

unsigned bigint Implicit: binary, varbinary, bit, tinyint, smallint,
unsigned smallint, int, unsigned int, bigint,
unsigned bigint, decimal, numeric, float, real
money, smallmoney

Explicit: char, varchar, unichar, univarchar

Unsupported: text, image, date, time, datetime,
smalldatetime

Remote Adaptive
Server datatype Allowable Adaptive Server datatypes

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 87

Table 3-12: Adaptive Server Anywhere datatype conversions for create
existing table

Remote Adaptive Server
Anywhere datatype

Allowable Adaptive Server Anywhere
datatypes

binary(n) image, binary(n), and varbinary(n); if not image,
the length must match

bit bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must
match

datetime datetime and smalldatetime

decimal(p, s) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

numeric(p, s) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

real bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smalldatetime datetime and smalldatetime

smallint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

text text

timestamp timestamp

tinyint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

varbinary(n) image, binary(n), and varbinary(n), unichar,
unitext, univarchar; if not image, the length must
match

varchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must
match

date

Transact-SQL commands

88 Adaptive Server Enterprise

Server class ASIQ • text and image datatypes are supported by ASIQ version 12.6 and requires
a license.

time

bigint Implicit: binary, varbinary, bit, tinyint, smallint,
unsigned smallint, int, unsigned int, bigint,
unsigned bigint, decimal, numeric, float, real
money, smallmoney

Explicit: char, varchar, unichar, univarchar

Unsupported: text, image, date, time, datetime,
smalldatetime

unsigned tinyint Implicit: binary, varbinary, bit, tinyint, smallint,
unsigned smallint, int, unsigned int, bigint,
unsigned bigint, decimal, numeric, float, real
money, smallmoney

Explicit: char, varchar, unichar, univarchar

Unsupported: text, image, date, time, datetime,
smalldatetime

unsigned smallint Implicit: binary, varbinary, bit, tinyint, smallint,
unsigned smallint, int, unsigned int, bigint,
unsigned bigint, decimal, numeric, float, real
money, smallmoney

Explicit: char, varchar, unichar, univarchar

Unsupported: text, image, date, time, datetime,
smalldatetime

unsigned int Implicit: binary, varbinary, bit, tinyint, smallint,
unsigned smallint, int, unsigned int, bigint,
unsigned bigint, decimal, numeric, float, real
money, smallmoney

Explicit: char, varchar, unichar, univarchar

Unsupported: text, image, date, time, datetime,
smalldatetime

unsigned bigint Implicit: binary, varbinary, bit, tinyint, smallint,
unsigned smallint, int, unsigned int, bigint,
unsigned bigint, decimal, numeric, float, real
money, smallmoney

Explicit: char, varchar, unichar, univarchar

Unsupported: text, image, date, time, datetime,
smalldatetime

Remote Adaptive Server
Anywhere datatype

Allowable Adaptive Server Anywhere
datatypes

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 89

• Behavior is the same as for server class ASAnywhere.

Server class
direct_connect

• The RPC sp_columns queries the datatypes of the columns in the existing
table.

• Local column datatypes do not need to be identical to remote column
datatypes, but they must be convertible as shown in Table 3-13. If not, a
column type error is raised and the command is aborted.

Transact-SQL commands

90 Adaptive Server Enterprise

Table 3-13: DirectConnect datatype conversions for create existing
table

DirectConnect
datatype Allowable Adaptive Server datatypes

binary(n) image, binary(n), varbinary(n); if the length does not
match, the command is aborted

binary(16) timestamp

bit bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n) and varchar(n),
unichar, univarchar; if the length does not match, the
command is aborted

datetime datetime, smalldatetime

decimal(p, s) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n) and varchar(n),
unichar, univarchar; if the length does not match, the
command is aborted

numeric(p, s) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

nvarchar(n) text, nchar(n), nvarchar(n), char(n) and varchar(n),
unichar, univarchar; if the length does not match, the
command is aborted

real bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smalldatetime datetime, smalldatetime

smallint bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

text text

timestamp timestamp, binary(8), varbinary(8)

unichar text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must match

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 91

• Datatype information is passed in the CS_DATAFMT structure associated
with the parameter. The following fields of the structure contain datatype
information:

• datatype – the CS_Library datatype representing the Adaptive Server
datatype. For example, CS_INT_TYPE.

• usertype – the native DBMS datatype. sp_columns passes this
datatype back to Component Integration Services during a create
existing table command as part of its result set (see sp_columns in the
Reference Manual). Adaptive Server returns this datatype in the
usertype field of parameters to assist the DirectConnect in datatype
conversions.

Usage When a create existing table command is received, it is interpreted as a request
to import metadata from the remote or external location of the object for
updating system catalogs. Importing this metadata is performed by means of
three RPCs sent to the remote server with which the object has been associated:

• sp_tables – verifies that the remote object actually exists.

• sp_columns – obtains column attributes of the remote object for
comparison with those defined in create existing table.

• sp_statistics – obtains index information to update the local system table,
sysindexes.

See also create existing table in the Reference Manual

create index
Server class
ASEnterprise

Component Integration Services forwards everything except the on
segment_name clause to the remote server.

Server class
ASAnywhere

Component Integration Services forwards everything except the on
segment_name clause to the remote server.

univarchar text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must match

date

time

bigint UDB and DC/Microsoft support bigint.

DirectConnect
datatype Allowable Adaptive Server datatypes

Transact-SQL commands

92 Adaptive Server Enterprise

Server class ASIQ Component Integration Services forwards everything except the on
segment_name clause to the remote server.

Server class
direct_connect

• When the language capability is set to “Transact-SQL”, Component
Integration Services forwards all syntax except the max_rows_per_page
and on segment_name clauses to the remote server.

Usage When the server receives the create index command, it passes the command to
an appropriate access method, if the object on which the command is to operate
has been associated with a remote or external storage location.

The command is reconstructed using a syntax appropriate for the class and is
passed to the remote server for execution.

create index is passed to remote servers as a language request.

See also create index in the Reference Manual

create table
Server class
ASEnterprise

Component Integration Services passes the datatype of each column to the
remote server without conversion.

Server class
ASAnywhere

Component Integration Services passes the datatype of each column to the
remote server without conversion.

Server class ASIQ Component Integration Services passes the datatype of each column to the
remote server without conversion.

Server class
direct_connect

• Component Integration Services reconstructs create table and passes
commands to the targeted DirectConnect. The gateway transforms the
commands into a form that the underlying DBMS recognizes.

• Direct Connect does not support bigint, unsigned tinyint, unsigned smallint,
unsigned int, unsigned bigint.

• Adaptive Server datatypes are converted to either the DirectConnect
syntax mode datatypes shown in Table 3-14.

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 93

Table 3-14: DirectConnect datatype conversions for create table

Usage When the server receives a create table command, the command is interpreted as
a request for new table creation. The server invokes the access method
appropriate for the server class of the table that is to be created. If it is remote,
the table is created. If this command is successful, system catalogs are updated,
and the object appears to clients as a local table in the database in which it was
created.

Adaptive Server datatype DirectConnect default datatype

binary(n) binary(n)

bit bit

char char

datetime datetime

decimal(p, s) decimal(p, s)

float float

image image

int int

money money

numeric(p, s) numeric(p, s)

nchar(n) nchar(n)

nvarchar(n) nvarchar(n)

real real

smalldatetime smalldatetime

smallint smallint

smallmoney smallmoney

timestamp timestamp

tinyint tinyint

text text

unichar(n) unichar

univarchar(n) char(n) for bit data

varbinary(n) varbinary(n)

varchar(n) varchar(n)

date

time

bigint UDB and DC/Microsoft support
bigint

Transact-SQL commands

94 Adaptive Server Enterprise

create table is reconstructed in a syntax that is appropriate if the server class.
For example, if the server class is direct_connect and the remote server is DB2,
the command is reconstructed using Adaptive Server Anywhere syntax before
being passed to the remote server. Datatype conversions are made for datatypes
that are unique to the Adaptive Server environment.

Some server classes have restrictions on what datatypes can and cannot be
supported.

create table is passed to remote servers as a language request.

See also create table in the Reference Manual

delete
Server class
ASEnterprise

If Component Integration Services cannot forward the original query without
alteration, it performs the delete using method 2.

Server class
ASAnywhere

If Component Integration Services cannot forward the original query without
alteration, it performs the delete using method 2.

Server class ASIQ If Component Integration Services cannot forward the original query without
alteration, you get an error because ASIQ does not support updatable cursors.

Server class
direct_connect

• The syntax forwarded to servers of class direct_connect is dependent on
the capabilities negotiation, which occurs when Component Integration
Services first connects to the remote DirectConnect. Examples of
negotiable capabilities include: subquery support, group by support, and
built-in support.

• Component Integration Services passes data values as parameters to either
a cursor or a dynamic SQL statement. Language statements can also be
used if the DirectConnect supports it. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

See also delete in the Reference Manual

drop index
Server class
ASEnterprise

Component Integration Services forwards the following drop index syntax to a
remote server configured as class ASEnterprise:

drop index table_name.index_name

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 95

Component Integration Services precedes this statement with a use database
command since the drop index syntax does not allow you to specify the
database name.

Server class
ASAnywhere

• Component Integration Services forwards the following drop index syntax
to a remote server configured as class ASAnywhere:

drop index table_name.index_name

Component Integration Services precedes this statement with a use
database command since the drop index syntax does not allow you to
specify the database name.

Server class ASIQ Component Integration Services forwards the following drop index syntax to a
remote server configured as class ASIQ:

drop index table_name.index_name

Component Integration Services precedes this statement with a use database
command since the drop index syntax does not allow you to specify the
database name.

Server class
direct_connect

Component Integration Services forwards the following drop index syntax to a
remote server configured as class direct_connect:

drop index table_name.index_name

Usage When the server receives the drop index command, it passes the command to an
appropriate access method, if the object on which the command is to operate
has been associated with a remote or external storage location.

drop index is reconstructed using a syntax appropriate for the class and is
passed to the remote server for execution.

This command is passed to remote servers as a language request.

See also drop index in the Reference Manual

fetch
Server class
ASEnterprise

If the cursor is read only, Component Integration Services sends a language
request to the remote server when the first fetch is received after the cursor is
opened. Otherwise, Component Integration Services declares a cursor to the
remote server by means of Client-Library.

Server class
ASAnywhere

Handling of the fetch statement is the same as for ASEnterprise.

Transact-SQL commands

96 Adaptive Server Enterprise

Server class ASIQ Component Integration Services sends a language request to the remote server
when the first fetch is requested after the cursor is opened.

Server class
direct_connect

Component Integration Services treats servers in this class the same as servers
in ASEnterprise.

See also close, deallocate cursor, declare cursor, open

fetch in the Reference Manual

insert
Server class
ASEnterprise

• insert commands using the values keyword are fully supported.

• insert commands using a select command are supported for all datatypes
except text and image. text and image columns are only supported when
they contain null values.

• If all insert and select tables reside on the same remote server, the entire
statement is forwarded to the remote server for execution. This is referred
to as quickpass mode. Quickpass mode is not used if select does not
conform to all the quickpass rules for a select command.

• If the select tables reside on one remote server, and the insert table resides
on a different server, Component Integration Services selects each row
from the source tables, and inserts the row into the target table.

• You cannot insert into a computed column.

Server class
ASAnywhere

Handling of the insert statement is the same as for ASEnterprise.

Server class ASIQ Handling of the insert statement is the same as for ASEnterprise.

Server class
direct_connect

• insert commands using the values keyword are fully supported.

• insert commands using a select command are fully supported, but the table
must have a unique index if the table has text or image columns. When
using insert with a select command, the entire command is sent to the
remote server if:

• All tables referenced in the command reside on the remote server.

• The capability’s response from the DirectConnect indicates that
insert-select commands are supported.

• If you use the TopN feature, you must have an order by clause.

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 97

If both conditions are not met, Component Integration Services selects
each row from the source tables, and inserts the row into the target table.

• Component Integration Services passes data values as parameters to either
a cursor or a dynamic SQL statement. Language statements can also be
used if the DirectConnect supports it. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

See also insert in the Reference Manual

readtext
Server class
ASEnterprise

Component Integration Services forwards the following syntax to the remote
server when the underlying table is a proxy table:

readtext [[database.]owner.]table_name.column_name
 text_pointer offset size
[using {chars | characters}]

Server class
ASAnywhere

Handling of the readtext statement is the same as for ASEnterprise.

Server class ASIQ Handling of the readtext statement is the same as for ASEnterprise.

Server class
direct_connect

• If the DirectConnect does not support text pointers, readtext cannot be sent
and its use results in errors.

• If the DirectConnect does support text pointers, Component Integration
Services forwards the following syntax to the remote server:

readtext
 [[database.]owner.]table_name.column_name
text_pointer offset size
 [using {chars | characters}]

• readtext is issued anytime text or image data must be read. readtext is called
when a select command refers to a text or image column in the select list,
or when a where clause refers to a text or image column.

For example, you have a proxy table books that is mapped to the books
table on the remote server foo. The columns are id, name, and the text
column blurb. When the following statement is issued:

select * from books

Component Integration Services sends the following syntax to the remote
server:

select id, name, textptr(blurb) from foo_books

Transact-SQL commands

98 Adaptive Server Enterprise

readtext foo_books.blurb @p1 0 0 using chars

See also readtext in the Reference Manual

select
Server class
ASEnterprise

• All syntax is supported. Since the remote server is assumed to have all
capabilities necessary to process Transact-SQL syntax, all elements of a
select command, except those mentioned above, are forwarded to a remote
server, using quickpass mode.

• A bulk copy transfer is used to copy data into the new table when a
select...into command is issued and the into table resides on a remote
Adaptive Server. Both the local and remote databases must be configured
with dboption set to select into / bulkcopy.

Server class
ASAnywhere

• All syntax is supported. Since the remote server is assumed to have all
capabilities necessary to process Transact-SQL syntax, all elements of a
select command, except those mentioned above, are forwarded to a remote
server, using quickpass mode.

• If the select...into format is used and the into table is accessed through the
ASAnywhere interface, bulk inserts are not used. Instead, Component
Integration Services uses Client-Library to prepare a parameterized
dynamic insert command, and executes it for each row returned by the
select portion of the command.

Server class ASIQ • All syntax is supported. Since the remote server is assumed to have all
capabilities necessary to process Transact-SQL syntax, all elements of a
select command, except those mentioned above, are forwarded to a remote
server, using quickpass mode.

Server class
direct_connect

• The first time Component Integration Services requires a connection to a
server in class direct_connect, a request for capabilities is made of the
DirectConnect. Based on the response, Component Integration Services
determines the parts of a select command to forward to the DirectConnect.
In most cases, this is determined by the capabilities of the DBMS with
which the DirectConnect is interfacing.

• If the entire statement cannot be forwarded to the DirectConnect using
quickpass mode, Component Integration Services compensates for the
functionality that cannot be forwarded. For example, if the remote server
cannot handle the order by clause, quickpass is not used and Component
Integration Services performs a sort on the result set.

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 99

• Component Integration Services passes data values as parameters to either
a cursor or a dynamic SQL statement. Language statements can also be
used if the DirectConnect supports it. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

• The select...into command is supported, but the table must have a unique
index if the table has text or image columns.

• If the select...into format is used and the into table is accessed through a
DirectConnect, bulk inserts are not used. Instead, Component Integration
Services uses Client-Library to prepare a dynamic insert command, and
executes it for each row returned by the select portion of the command.

See also select in the Reference Manual

truncate table
Server class
ASEnterprise

Component Integration Services forwards the truncate table command to
servers of class ASEnterprise.

Server class
ASAnywhere

Component Integration Services forwards the truncate table command to
servers of class ASAnywhere.

Server class ASIQ Component Integration Services forwards the truncate table command to
servers of class ASIQ.

Server class
direct_connect and
sds

Transact-SQL syntax is sent:

truncate table [[database.]owner.]table_name

See also truncate table in the Reference Manual

update
Server class
ASEnterprise

• If Component Integration Services cannot pass the entire statement to a
remote server, a unique index must exist on the table.

• The update command is fully supported for all datatypes except text and
image. text and image data cannot be changed with the update command,
except when setting the text or image value to null. Use the writetext
command instead.

Transact-SQL commands

100 Adaptive Server Enterprise

• If quickpass mode is not used, data is retrieved from the source tables, and
the values in the target table are updated using a separate cursor designed
for handling a positioned update.

Server class
ASAnywhere

Handling of the update statement is the same as for ASEnterprise.

Server class ASIQ Handling of the update statement is the same as for ASEnterprise.

If Component Integration Services cannot forward the original query without
alteration, you get an error because ASIQ does not support updatable cursors.

Server class
direct_connect

• The following syntax is supported by servers of class direct_connect:

update [[database.]owner.]{table_name | view_name}
 set [[[database.]owner.]{table_name.|view_name.}]
 column_name1 =
 {expression1|NULL|(select_statement)}
 [, column_name2 =
 {expression2|NULL|(select_statement)}]...

[where search_conditions]

update commands that conform to this syntax use quickpass mode, if the
capabilities response from the remote server indicates that all elements of
the command are supported. Examples of negotiable capabilities include:
subquery support, group by support, and built-in support.

• If the remote server does not support all elements of the command, or the
command contains a from clause, Component Integration Services issues
a query to obtain the values for the set clause, and then issues an update
command to the remote server.

• Component Integration Services passes data values as parameters to either
a cursor or a dynamic SQL statement. Language statements can also be
used if the DirectConnect supports it. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

See also update in the Reference Manual

update statistics
Server class
ASEnterprise

• If the table on which the statistics are requested has no indexes,
Component Integration Services issues the following command:

select count(*) from table_name

It is also the only command issued when trace flag 11209 is on.

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 101

• If the table has an index and the index is specified in the command,
Component Integration Services issues the following commands:

select count(*) from table_name

select count(*) column_name [,column_name, ...]
 from table_name
 group by column_name [,column_name, ..]

The column name(s) represent the column or columns that make up the
index.

For example, when the following command is issued:

update statistics customers ind_name

Component Integration Services issues:

select count(*) from customers

select count(*) last_name, first_name
 from customers
 group by last_name, first_name

• If the table has one or more indexes but no index is specified in the
statement, Component Integration Services issues the select count (*) once,
and the select/order by commands for each index.

• You must have the sa_role to run update statistic on a proxy table using a
remote login.

• In Adaptive Server version 15.0 or later, if a proxy table points to a
partitioned table, only global statistics are imported. These are aggregated
statistics since proxy tables in Adaptive Server version 15.0 are not
partitioned.

Server class
ASAnywhere

The processing of update statistics in this server class is identical to pre-
Adaptive Server version 15.0 servers.

Server class ASIQ The processing of update statistics in this server class is identical to pre-
Adaptive Server version 15.0 servers.

Server class
direct_connect

• The processing of update statistics in this server class is identical to that of
server class ASEnterprise described above.

• If the direct_connect indicates that is cannot handle the group by or the
count(*) syntax, statistics are not collected for the direct_connect.

See also update statistics in the Reference Manual

Passthrough mode

102 Adaptive Server Enterprise

writetext
Server class
ASEnterprise

The writetext command is processed using a separate connection to the remote
server.

Server class
ASAnywhere

The writetext command is processed using a separate connection to the remote
server.

Server class ASIQ The writetext command is processed using a separate connection to the remote
server.

Server class
direct_connect

If the DirectConnect supports text pointers, Component Integration Services
treats the DirectConnect as if it were a server in class ASEnterprise.

See also writetext in the Reference Manual

Passthrough mode
Passthrough mode is provided within Component Integration Services as a
means of enabling a user to perform native operations on the server to which
the user is being “passed through.”

For example, requesting passthrough mode for an Oracle server allows you to
send native Oracle SQL statements to the Oracle DBMS. Results are converted
into a form that is usable by the Open Client application and passed back to the
user.

The Transact-SQL parser and compiler are bypassed in this mode, and each
language batch received from the user is passed directly to the server to which
the user is connected in passthrough mode. Results from each batch are
returned to the client.

There are several ways to use passthrough mode:

• connect to

• sp_autoconnect

• sp_passthru

• sp_remotesql

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 103

connect to
The connect to command enables users to specify the server to which a
passthrough connection is required. The syntax of the command is:

connect to server_name

where server_name is the name of a server added to the sysservers table, with
its server class and network name defined. See sp_addserver in the Reference
Manual.

When establishing a connection to server_name on behalf of the user, the
server uses:

• A remote login alias set using sp_addexternlogin, or

• The name and password used to communicate with the Adaptive Server.

In either case, if the connection cannot be made to the server specified, the
reason is contained in a message returned to the user.

Once a passthrough connection has been made, the Transact-SQL parser and
compiler are bypassed when subsequent language text is received. Any
statements received by the server are passed directly to the specified remote
server.

Note Some database management systems do not recognize more than one
statement at a time and produce syntax errors if, for example, multiple select
statements were received as part of a single language text buffer.

After statements are passed to the requested server, any results are converted
into a form that can be recognized by the Open Client interface and sent back
to the client program.

To exit from passthrough mode, issue the disconnect, or disc, command.
Subsequent language text from this client is then processed using the Transact-
SQL parser and compiler.

Permission to use connect to must be explicitly granted by the System
Administrator. The syntax is:

grant connect to user_name

To revoke permission to use connect to, the syntax is:

revoke connect from user_name

Passthrough mode

104 Adaptive Server Enterprise

The connect to permissions are stored in the master database. To globally grant
or revoke permissions to “public”, the System Administrator sets the
permissions in the master database; the effect is server-wide, regardless of what
database is being used. The System Administrator can only grant or revoke
permissions to or from a user if the user is a valid user of the master database.

The System Administrator can grant or revoke “all” permissions to or from
“public” within any database. If the permissions are in the master database,
“all” includes the connect to command. If they are in another database, “all”
does not include the connect to command.

Example The System Administrator wants to revoke permission from “public” and
wants only the user “fred” to be able to execute the connect to command. “fred”
must be made a valid user of master. To do this, the System Administrator
issues the following commands in master:

revoke connect from public
 sp_adduser fred
 grant connect to fred

sp_autoconnect
Some users may always require a passthrough connection to a given server. If
this is the case, Component Integration Services can be configured so that it
automatically connects these users to a specified remote server in passthrough
mode when the users connect to the server. This feature is enabled and disabled
by sp_autoconnect using this syntax:

sp_autoconnect server_name, true|false [,loginname]

Before using sp_autoconnect, add the server_name to sysservers using
sp_addserver.

A user can request automatic connection to a server using sp_autoconnect, but
only the System Administrator can enable or disable automatic passthrough
connection for another user. Thus, only the System Administrator can specify
a third argument to this procedure.

If the second argument is true, the autoconnect feature is enabled for the current
user (or the user specified in the third argument). If the second argument is
false, autoconnect is disabled.

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 105

When a user connects to the server, that user’s autoconnect status in syslogins
is checked. If enabled, the server_name, also found in syslogins (placed there
by sp_autoconnect), is checked for validity. If the server is valid, the user is
automatically connected to that server, and a passthrough status is established.
Subsequent language statements received by the server from this user are
handled exactly as if the user explicitly entered the connect command. This
user then views the server similar to a passthrough gateway to the remote
server.

When an “autoconnected” user executes a disconnect, she or he is returned
normally to the server.

If the remote server cannot be reached, the user (unless the user is assigned the
“sa” role) will not be connected to the local Adaptive Server. A “login failed”
error message is returned.

sp_passthru
sp_passthru allows the user to pass a SQL command buffer to a remote server.
The syntax of the SQL statements being passed is assumed to be the syntax
native to the class of server receiving the buffer; no translation or interpretation
is performed. Results from the remote server are optionally placed in output
parameters. The syntax for sp_passthru follows:

sp_passthru server, command, errcode, errmsg, rowcount
 [, arg1, arg2, ... argn]

where:

• server is the name of the server that is to receive the SQL command buffer;
the datatype is varchar(30).

• command is the SQL command buffer; the datatype is varchar(255).

• errcode is the error code returned by the remote server; the datatype is int
output.

• errmsg is the error message returned by the remote server; the datatype is
varchar(255) output.

• rowcount is the number of rows affected by the last command in the
command buffer; the datatype is int output.

• arg1 – argn are optional parameters. If provided, these output parameters
will receive the results from the last row returned by the last command in
the command buffer. The datatypes may vary. All must be output
parameters.

Passthrough mode

106 Adaptive Server Enterprise

Example sp_passthru ORACLE, "select date from dual",
@errcodeoutput, @errmsg output, @rowcount output,
@oradate output

This example returns the date from the Oracle server in the output parameter
@oradate. If an Oracle error occurs, the error code is placed in @errcode and
the corresponding message is placed in @errmsg. The @rowcount parameter is
set to 1.

For more information on sp_passthru and its return status, see the Reference
Manual.

sp_remotesql
sp_remotesql allows you to pass native syntax to a remote server. The
procedure establishes a connection to a remote server, passes a query buffer,
and relays the results back to the client. The syntax for sp_remotesql is as
follows:

sp_remotesql server_name, query_buf1
[, query_buf2, ... , query_buf254]

where:

• server_name is the name of a server that has been defined using
sp_addserver.

• server_name is a varchar(30) field. If server_name is not defined or is not
available, the connection fails, and the procedure is aborted. This
parameter is required.

• query_buf1 is a query buffer of type char or varchar with a maximum
length of 255 bytes. This parameter is required.

Each additional buffer is char or varchar with a maximum length of 255 bytes.
If supplied, these optional arguments are concatenated with the contents of
query_buf1 into a single query buffer.

Example sp_remotesql freds_server, "select @@version"

In this example, the server passes the query buffer to freds_server, which
interprets the select @@version syntax and returns version information to the
client. The returned information is not interpreted by the server.

For more information on sp_remotesql and its return codes, see the Reference
Manual.

CHAPTER 3 SQL Reference

Component Integration Services User’s Guide 107

Quoted identifier support
Quoted identifiers are forwarded to remote servers that support them. This is
triggered by a set command:

set quoted_identifier on

If this thread property is enabled, Component Integration Services quotes
identifiers before sending SQL statements to remote servers.

Remote servers must have the ability to support quoted identifiers. There is a
capability in the sp_capabilities result set reserved for this purpose:

• Capability ID: 135

• Capability name: quoted identifier

• Capability value: 0 = no support; 1 = supported

The capability defaults to 0 for DirectConnects that do not provide a value for
this capability.

Delimited identifier support
The behavior of bracketed identifiers is identical to quoted identifiers, with the
exception that you do not need to set quoted_identifier on in order to use them.

auto identity option
When the Adaptive Server auto identity database option is enabled, an
IDENTITY column is added to any tables that are created in the database. The
column name is CIS_IDENTITY_COL, for proxy tables, or
SYB_IDENTITY_COL, for local tables. In either case, the column can be
referenced using the syb_identity keyword.

Triggers

108 Adaptive Server Enterprise

Triggers
Component Integration Services allows triggers on proxy tables; however,
their usefulness is limited. You can create a trigger on a proxy table and the
trigger is invoked just as it would be for a normal Adaptive Server table.
However, before and after image data is not written to the log for proxy tables
because the insert, update, and delete commands are passed to the remote
server. The inserted or deleted tables, which are actually views into the log,
contain no data for proxy tables. Users cannot examine the rows being inserted,
deleted, or updated, so a trigger with a proxy table has limited value.

In Adaptive Server version 15.0, there is no support for the updated function
with triggers.

Component Integration Services User’s Guide 109

A P P E N D I X A Tutorial

This chapter provides a tutorial for setting up Component Integration
Services and accessing a remote server.

Note This tutorial assumes that the pubs2 database has been installed.

Getting started with Component Integration Services
This section provides a step-by-step guide to configuring the server to
access remote data sources. It includes instructions for:

• Adding a remote server

• Mapping remote objects to local proxy tables

• Performing joins between remote tables

Routine system administration tasks such as starting and stopping
Adaptive Server, creating logins, creating groups, adding users, granting
permissions, and password administration are explained in the Adaptive
Server documentation.

Adding a remote server
You can use the server to access data on remote servers. Before you can
do this, you must configure Component Integration Services.

Overview

1 Add the remote server to the interfaces file.

2 Add the name, server class, and network name of the remote server to
system tables.

Getting started with Component Integration Services

110 Adaptive Server Enterprise

3 Optionally, assign an alternate login name and password.

Adding the remote server to the interfaces file

Use the dsedit or dscp utility to edit the interfaces file located in the $SYBASE
directory:

• In UNIX, the interfaces file is called interfaces.

• In Windows , the interfaces file is called sql.ini.

For a complete discussion of the interfaces file, see the Adaptive Server
Configuration Guide for your platform.

Creating server entries in system tables

Use sp_addserver to add entries to the sysservers table. sp_addserver creates
entries for the local server and an entry for each remote server that is to be
called. The sp_addserver syntax is:

sp_addserver server_name [,server_class [,network_name]]

where:

• server_name is the name used to identify the server. It must be unique.

• server_class is one of the supported server classes. The default value is
ASEnterprise. If server_class is set to local, network_name is ignored.

• network_name is the server name in the interfaces file. This name may be
the same as server_name, or it may differ. The network_name is
sometimes referred to as the physical name.

Example The following examples create entries for the local server named SYBASE and
for the remote server CTOSDEMO with server class ASEnterprise.

sp_addserver SYBASE, local
sp_addserver CTOSDEMO, ASEnterprise, CTOSDEMO

You must reboot Adaptive Server after your add a local server.

Adding an alternate login and password

Use sp_addexternlogin to assign an alternate login name and password to be
used when communicating with a remote server. This step is optional. The
syntax for sp_addexternlogin is:

APPENDIX A Tutorial

Component Integration Services User’s Guide 111

sp_addexternlogin remote_server, login_name, remote_name [,
remote_password]

where:

• remote_server is the name of the remote server. The remote_server must
be known to the local server by an entry in the master.dbo.sysservers table.

• login_name is an account known to the local server. login_name must be
represented by an entry in the master.dbo.syslogins table. The “sa”
account, the “sso” account, and the login_name account are the only users
authorized to modify remote access for a given local user.

• remote_name is an account known to the remote_server and must be a
valid account on the node where the remote_server runs. This is the
account used for logging in to the remote_server.

• remote_password is the password for remote_name.

Examples sp_addexternlogin FRED, sa, system, sys_pass

Allows the local server to gain access to remote server FRED using the remote
name “system” and the remote password “sys_pass” on behalf of user “sa”.

sp_addexternlogin OMNI1012, bobj, jordan, hitchpost

Tells the local server that when the login name “bobj” logs in, access to the
remote server OMNI1012 is by the remote name “jordan” and the remote
password “hitchpost”. Only the “bobj” account, the “sa” account, and the “sso”
account have the authority to add or modify a remote login for the login name
“bobj”.

Verifying connectivity

Use the connect to server_name command to verify that the configuration is
correct. connect to requires that “sa” explicitly grant connect authority to users
other than “sa.” The connect to command establishes a passthrough mode
connection to the remote server. This passthrough mode remains in effect until
you issue a disconnect command.

Join between two remote tables
With Component Integration Services, you can perform joins across remote
tables.

Getting started with Component Integration Services

112 Adaptive Server Enterprise

Adding the remote servers to the interfaces file

Edit the interfaces file using dsedit.

Defining the remote servers

Use sp_addserver to add entries to the sysservers system table. On the server
originating the call, there must be an entry for each remote server that is to be
called. The sp_addserver syntax is:

sp_addserver server_name [,server_class] [,network_name]

where:

• server_name is the name used to identify the server. It must be unique.

• server_class is one of the supported server classes. The default value is
sql_server. If the value is local, network_name is ignored.

• network_name is the server name in the interfaces file. This name may be
the same as the server_name specification, or it may be different. If
network_name is not provided, the default value is the server_name.

Example The following examples create entries for the local server named SYBASE and
for the remote server SYBASE of class ASEnterprise.

sp_addserver SYBASE, local
sp_addserver CTOSDEMO, ASEnterprise, SYBASE

Mapping the remote tables to Adaptive Server

create existing table enables the definition of existing (proxy) tables. The syntax
for this option is similar to the create table command and reads as follows:

create proxy_table
table_name
at “pathname”

When the server processes this command, it does not create a new table.
Instead, it checks the table mapping and verifies the existence of the underlying
object. If the object does not exist (either host data file or remote server object),
the server rejects the command and returns an error message to the client.

After you define an existing table, issue an update statistics command for that
table. This helps the query optimizer make intelligent choices regarding index
selection and join order.

Example Figure A-1 illustrates the remote Adaptive Server tables publishers and titles in
the sample pubs2 database mapped to a local server.

APPENDIX A Tutorial

Component Integration Services User’s Guide 113

Figure A-1: Defining remote tables in a local server

Mapping the remote
tables

The steps required to produce the mapping illustrated above are as follows:

1 Define a server named SYBASE. Its server class is ASEnterprise, and its
name in the interfaces file is SYBASE:

exec sp_addserver SYBASE, ASEnterprise, SYBASE

2 Define a remote login alias. This step is optional. User “sa” is known to
remote server SYBASE as user “sa,” password “timothy”:

exec sp_addexternlogin SYBASE, sa, sa, timothy

3 Define the remote publishers table:

create proxy_table publishers
at "SYBASE.pubs2.dbo.publishers"

4 Define the remote titles table:

create proxy_table titles
at "SYBASE.pubs2.dbo.titles"

Performing the join

Use the select statement to perform the join.

select Publisher = p.pub_name, Title = t.title
 from publishers p, titles t
 where p.pub_id = t.pub_id
 order by p.pub_name

 SYBASE server
pubs2 database

owner “dbo”

Tables

MYCIS Server
myown database

owner “sa”

Tables

publishers
proxy table

publishers table

....pub_id pub_name city

books
proxy table

titles table

....title_id title type

Proxy

Getting started with Component Integration Services

114 Adaptive Server Enterprise

Component Integration Services User’s Guide 115

A P P E N D I X B Troubleshooting

This appendix provides troubleshooting tips for problems that you may
encounter when using Component Integration Services. The purpose of
this chapter is to provide:

• Enough information about certain error conditions so that you can
resolve problems without help from Technical Support

• Lists of information that you can gather before calling Technical
Support, which may help resolve your problem more quickly

• You with a greater understanding of Component Integration Services

The Troubleshooting and Error Messages Guide should also be used for
troubleshooting. While this appendix provides troubleshooting tips for
most frequently asked Component Integration Services questions, lists all
error messages with a one-line recovery procedure; the Troubleshooting
and Error Messages Guide provides tips on Adaptive Server problems
that are not specific to Component Integration Services.

Problems accessing Component Integration Services
If you issue a command that accesses a remote object and Component
Integration Services is not found, the following error message appears:

 cis extension not enabled or installed

• Verify that the enable cis configuration parameter is set to 1 by
running:

sp_configure "enable cis"

sp_configure returns the following row for the enable cis parameter:

Topic Page
Problems accessing Component Integration Services 115

Problems using Component Integration Services 116

If you need help 122

Problems using Component Integration Services

116 Adaptive Server Enterprise

name min max config value run value
enable cis 0 1 1 1

Both “config value” and “run value” should be 1. If both values are 0, set
the enable cis configuration parameter to 1, and restart the server. Use the
syntax:

sp_configure "enable cis" 1

If “config value” is 1 and “run value” is 0, the enable cis configuration
parameter is set, but does not take effect until the server is restarted.

Note Component Integration Services is enabled by default beginning with
Adaptive Server version 12.0.

Problems using Component Integration Services
This section provides tips on how to correct problems you may encounter when
using Component Integration Services.

Unable to access remote server
When you cannot access a remote server, the following error message is
returned:

11206 Unable to connect to server server_name.

The message is preceded by one of the following Client-Library messages:

Requested server name not found
Driver call to connect two endpoints failed
Login failed

The Client-Library message indicates why you cannot access the remote server
as described in the following sections.

Requested server name not found

The server is not defined in the interfaces file when the following messages
display:

APPENDIX B Troubleshooting

Component Integration Services User’s Guide 117

Requested server name not found
11206 Unable to connect to server server_name.

When a remote server is added using sp_addserver, the interfaces file is not
checked. It is checked the first time you try to make a connection to the remote
server. To correct this problem, add the remote server to the interfaces file that
is being used by Component Integration Services.

Driver call to connect two endpoints failed

If the remote server is defined in the interfaces file, but no response was
received from the connect request, the following messages are displayed:

Driver call to connect two endpoints failed
11206 Unable to connect to server server_name.

• Verify that your environment is set up correctly.

To test this, try to connect directly to the remote server using isql or a
similar tool:

a Log in to the machine where Component Integration Services is
running.

b Set the SYBASE environment variable to the same location that was
used when Component Integration Services was started. Component
Integration Services uses the interfaces file in the directory specified
by the SYBASE environment variable, unless it is overridden in the
runserver file by the -i argument.

Note These first two steps are important to ensure that the test
environment is the same environment that Component Integration
Services was using when you could not connect to the remote server.

c Use isql or a similar tool to connect directly to the remote server.

If the environment is set up correctly and the connection fails, continue
through this list. If the connection is made, there is a problem with the
environment being used by Component Integration Services.

• Verify that the remote server is up and running.

Log in to the machine where the remote server is located to verify that the
server is running. If the server is running, continue through this list. If the
server is not running, restart the server and try your query again.

• Verify that the entry for the remote server in the interfaces file is correct:

Problems using Component Integration Services

118 Adaptive Server Enterprise

• Verify that the machine name is the correct name for the machine the
software is loaded on.

• Verify that if the interfaces file is a text file, the query and master lines
start with a tab and not spaces.

• Verify that the port number is available. Check the services file in the
/etc directory to ensure that the port number is not reserved for
another process.

Login failed

If you can access the remote server, but the login name and password are
correct, the following messages display:

Login failed
11206 Unable to connect to server server_name.

See if there is an external login established for the remote server by executing:

exec sp_helpexternlogin server_name

If no external login is defined, Component Integration Services uses the user
login name and password that was used to connect to Adaptive Server. For
example, if the user connected to Adaptive Server using the “sa” account,
Component Integration Services uses the login name “sa” when making a
remote connection. Unless the remote server is another Adaptive Server, the
“sa” account probably does not exist, and an external login must be added
using sp_addexternlogin.

If an external login is defined, verify that the user’s login name is correct.
Remote server logins are case sensitive.Is the case correct for the user login
name you are using and the entry in externlogins?

If the login name is correct, the password might be incorrect. You cannot
display the password. If the user login name is incorrect or if the password
might be incorrect, drop the existing external login and redefine it by executing
the commands:

exec sp_dropexternlogin server_name, login_name
go
 exec sp_addexternlogin server_name, login_name,
remote_login, remote_password
go

APPENDIX B Troubleshooting

Component Integration Services User’s Guide 119

Unable to access remote object
When you are unable to access a remote object, the following error message
appears:

Error 11214 Remote object object does not exist.

The problem may be in the local proxy table definition or in the table itself on
the remote server.

Verify that:

• The object has been defined in Component Integration Services.

To confirm, run:

sp_help object_name

If the object does not exist, create the object in Component Integration
Services.

• If the object has been defined in Component Integration Services, the
definition is correct.

Table names can have four parts with the format
server.dbname.owner.tablename. The dbname part is not valid for Oracle,
or InfoHUB servers.

If the object definition is incorrect, delete it using sp_dropobjectdef, and
define it correctly using sp_addobjectdef.

• If the local object definition is correct, check the table on the remote
server, to verify that:

• Permissions are set to allow access to both the database and table.

• The database has been marked suspect.

• The database is available.

• You can access the remote table using a native tool (for example,
SQL*Plus on Oracle).

Problem retrieving data from remote objects
When you receive error messages pertaining to mismatches in remote objects,
the Component Integration Services object definition does not match the
remote object definition. This happens if:

Problems using Component Integration Services

120 Adaptive Server Enterprise

• The object definition was altered outside of Component Integration
Services.

• An index was added or dropped outside of Component Integration
Services.

Object is altered outside Component Integration Services

Once an object is defined in Component Integration Services, alterations made
to an object at the remote server are not made to the local proxy object
definition. If an object is altered outside of Component Integration Services,
the steps to correct the problem differ, depending on whether create existing
table or create table was used to define the object.

To determine which method was used to define the object, run:

sp_help object_name

If the object was defined via create existing table, the following message is
returned in the result set:

Object existed prior to CIS.

If this message is not displayed, the object was defined via create table.

If create existing table was used to create the table in Component Integration
Services:

1 Use drop table in Component Integration Services.

2 Create the table again in Component Integration Services using create
existing table. This creates the table using the new version of the table on
the remote server.

If the table was created in Component Integration Services using create table,
you will drop the remote object when you use drop table. To prevent this, follow
these steps:

1 Rename the table on the remote server so the table is not deleted when you
use drop table.

2 Create a table on the remote server using the original name.

3 Use drop table in Component Integration Services to drop the table in
Component Integration Services and on the remote server.

4 Rename the saved table in step 1 with its original name on the remote
server.

APPENDIX B Troubleshooting

Component Integration Services User’s Guide 121

5 Create the table again in Component Integration Services using create
existing table.

 Warning! Do not use drop table in Component Integration Services before
renaming the table on the remote server, or you will delete the table on the
remote server.

A good rule to follow is to create the object on the remote server, and then
execute create existing table to create the object in Component Integration
Services. This enables you to correct mismatch problems with fewer steps and
with no chance of deleting objects on the remote server.

Index is added or dropped outside Component Integration Services

Component Integration Services is unaware of indexes that are added or
dropped outside Component Integration Services. Verify that the indexes used
by Component Integration Services are the same as the indexes used on the
remote server. Use sp_help to see the indexes used by Component Integration
Services. Use the appropriate command on your remote server to verify the
indexes used by the remote server.

If the indexes are not the same, the steps to correct the problem differ,
depending on whether create existing table or create table was used to define the
object.

To determine which method was used to define the object, run:

sp_help object_name

If the object was defined via the create existing table command, the following
message is returned in the result set:

Object existed prior to CIS.

If this message is not displayed, the object was defined via create table.

If create existing table was used to create the object:

1 Use drop table in Component Integration Services.

2 Re-create the table in Component Integration Services using create
existing table. This will update the indexes to match the indexes on the
remote table.

If create table was used to create the object:

1 Use drop index to drop the index from the remote table.

If you need help

122 Adaptive Server Enterprise

2 Re-create the index in Component Integration Services using create index.
This creates the index in Component Integration Services and the remote
server.

If create table was used to define the object, an alternative method is to turn on
trace flag 11208. This trace flag prevents create index from transmitting to the
remote server. To use trace flag 11208, follow these steps:

1 Turn on trace flag 11208:

dbcc traceon(11208)

2 Create the index using create index.

3 Turn off trace flag 11208:

dbcc traceoff(11208)

If you need help
If you encounter a problem that you cannot resolve using the manuals, ask the
designated person at your site to contact Sybase Technical Support. Gather the
following information prior to calling Technical Support to help resolve your
problem more quickly.

• If a problem occurs while you are trying to access remote data, execute the
same script against a local table. If the problem does not exist on the local
table, it is specific to Component Integration Services and you should
continue through this list.

• Find out what version of Adaptive Server you are using:

select @@version

• Note the SQL script that reproduces the problem. Include the script that
was used to create the tables.

• Find the processing plan for your query. This is generated using set
showplan. An example of this is:

set showplan, noexec on
 go
 select au_lname, au_fname from authors
 where au_id = ‘A1374065371’
 go

The output for this query looks like this:

APPENDIX B Troubleshooting

Component Integration Services User’s Guide 123

set showplan, noexec on
go
select au_lname, au_fname from authors where au_id = 'A1374065371'
 go
The Abstract Plan (AP) of the final query execution plan:
(remote_sql)
To experiment with the optimizer behavior, this AP can be modified and
then
passed to the optimizer using the PLAN clause:
SELECT/INSERT/DELETE/UPDATE ...
PLAN '(...)

QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

 |LE_REMSCANOP Operator
 | SELECT "au_lname" , "au_fname" FROM pubs2.dbo."authors"
WHERE "au_
 | id" = 'A1374065371'

The noexec option compiles the query, but does not execute it. No
subsequent commands are executed until noexec is turned off.

• Obtain the event logging when executing the query by turning on trace
flags 11201 – 11205. These trace flags log the following:

• 11201 – client connect, disconnect, and attention events.

• 11202 – client language, cursor declare, dynamic prepare, and
dynamic execute-immediate text.

• 11203 – client RPC events.

• 11204 – messages routed to client.

• 11205 – interaction with remote servers.

• 11206 – logs file and directory processing steps.

• 11207 – logs text and image processing.

After executing the script with the trace flags turned on, the logging is
found in the error log in the $SYBASE/install directory. For example:

If you need help

124 Adaptive Server Enterprise

dbcc traceon (11201,11202,11203,11204,11205)
 go
 select au_lname, au_fname from authors
 where au_id = 'A1374065371'
 go
 dbcc traceoff (11201,11202,11203,11204,11205)
 go

The error log output is as follows (the timestamps printed at the beginning
of each entry have been removed to improve legibility):

server TDS_LANG, spid 15: command text:
select au_lname, au_fname from authors where au_id = 'A1374065371'

server RemoteAccess constructed
server EXECLANG, spid 15, server huntington0_19442, quickpass statement:

ELECT "au_lname" , "au_fname" FROM pubs2.dbo."authors" WHERE "au_id" =
'A1374065371'

server BINDCOLS, spid 15: column 1, name au_lname, fmt.type 'CHAR',
fmt.maxlen 40, fmt.stat 16, con.type 'VARCHAR', con.maxlen 40

server BINDCOLS, spid 15: column 2, name au_fname, fmt.type 'CHAR',
fmt.maxlen 20, fmt.stat 16, con.type 'VARCHAR', con.maxlen 20
server BINDCOLS, spid 15: bind array size 50, total memory required is
4304 bytes

server FETCH , spid 15: cursor C1; ct_fetch() returned 0 rows; status
-204

server RemoteAccess deleted

This tracing is global, so once the trace flags are turned on, any query that
is executed is logged; therefore, turn tracing off once you have your log.
Also, clean out the error log periodically by bringing the server down,
renaming the error log, and restarting the server. This creates a new error
log.

Component Integration Services User’s Guide 125

A
access methods 6
aliases, user

remote logins 110
allocating resources with sp_configure 65
ASTC server type 50
@@textsize global variable 61
auto identity
auto identity database option 10
automatic connections 104

B
bcp (bulk copy utility)

for text and image datatypes 63

C
cis connect timeout configuration parameter 67
cis packet size configuration parameter 68
cis rpc handling configuration parameter 68
Client-Library functions 7

connection management 32
ct_send_data 62

columns
creating indexes on proxy table 91

Component Integration Services
configuring and tuning 113
running 3
setting up 3, 109
users 2

configuration (server)
Component Integration Services 109, 113

configuration and tuning 65
configuration parameters

Component Integration Services 66, 68
connect to command 103, 111

connect to option, grant 103
connection management 32
connections

listing of remote 72
management of 32
permission 103
physical and logical 45
verification 111

constraints
preventing 73

conventions
used in manuals xi

converting remote server datatypes 9
copying

text and image datatypes 63
create existing table 9, 10
create existing table command 9

datatype conversions and 9
example 10
proxy tables 83

create index command 91
query plan for remote tables 92

create table command
proxy tables 92
query plan 93
remote tables 9

creating
indexes on proxy tables 91
proxy tables 83, 92

ct_send_data Client-Library function 62
cursors

row count, setting 68

D
database syntax, using native. See passthrough mode
datatype conversions 60

remote servers 9
server class direct_connect 91

Index

Index

126 Adaptive Server Enterprise

datatypes 57
dbcc (Database Consistency Checker) 47
dbmoretext DB-Library function 62
dbwritetext DB-Library function 62
deallocate cursor command

remote servers and 94
defining

indexes 9
remote objects 8
remote servers 8, 109, 111
tables 9, 10

direct_connect server class
with text and image datatypes 64

DirectCONNECT servers 3
directory access 24
disconnect command 103
distributed transaction management 49
drop database command

remote servers 94
drop index command

query plan for remote tables 95
drop table command

proxy tables 95
DTM-enabled servers 50

E
enable cis configuration parameter 67
error logging of text and image datatypes 63
event logging 72
external logins 110

F
file access 27
file system access 24
files

interfaces 110
sql.ini file 110

G
grant command

passthrough connections 103
grant connect to command 103

I
IDENTITY columns 10
image datatype 61

bulk copy to remote servers 63
converting 62
entering values 62
error logging 63
padding 61
pattern matching 62
restrictions 61
with server class direct_connect 64

import statistics
proxy tables 53

indexes
defining 9
updating 73

insert command
proxy tables 96

integrity of data
remote tables and 108

interface to remote servers 7
interfaces file

adding remote servers 110

J
Java in the database 54
joins

between remote tables 111, 112

L
LDAP directory services 33
like keyword 62
local tables. See proxy tables
lock timeout interval configuration parameter 47
logging

events 72
logging in

Index

Component Integration Services User’s Guide 127

to remote servers 8
logical connections 45
logins

external 110

M
mapping external logins 36
max cis remote connections configuration parameter

67
memory usage report 72
modes, trusted/untrusted 35

O
object types 7
open command 97
optimization

defining existing tables and 9
quickpass mode 40, 96
remote tables 54

outbound remote procedure calls 68

P
packets, network

size for remote servers 68
passthrough connection permission 103
passthrough mode

connect to command 103, 111
sp_autoconnect system procedure 104
sp_passthru system procedure 105
sp_remotesql system procedure 106

patindex string function 62
pattern matching

remote tables 62
with text datatype 62

performance
configuration parameters 65
remote tables 54

permissions
passthrough connections 103

physical connections 45

pre-DTM servers 50
processing remote procedure calls 45
proxy databases 18
proxy tables 8

import statistics 53
triggers 108
update statistics 53

Q
query optimization 38
query plans 43

create table 93
query processing 38
quickpass mode 40, 96
quoted identifier support 107

R
readtext command

errors from 62
recovery

disabling CIS at start-up 73
reference information

Transact-SQL commands for CIS 79
referential integrity 108
remcon option, dbcc 72
remote connection listing 72
remote logins. See external logins
remote objects

defining 8
remote procedure calls

handling outbound 68
transmitting 45

remote servers 29
adding 109, 111
connection verification 111
definition 8
interface to 7
interfaces file entries 110
joins 111, 112
logging in 8
security issues 34
setting up external logins 110

Index

128 Adaptive Server Enterprise

remote tables
joins 111, 112

reports
memory usage 72
remote connections 72

resource allocation (sp_configure) 65
rollback command

remote servers and 98
RPC handling 17, 44
running Component Integration Services 109
rusage option, dbcc 72

S
schema synchronization 22
sds server class 31
search conditions

remote tables 62
security

issues for remote servers 34
security issues 35
server class direct_connect

with text and image datatypes 64
server class sds 31
server classes 6

See also individual server class names
sds 31

set command
See also individual set options
remote queries 99

setting up Component Integration Services 109
sp_addexternlogin system procedure 110
sp_addserver system procedure 110, 112
sp_autoconnect system procedure 104
sp_capabilities system procedure 38
sp_configure system procedure 65
sp_passthru system procedure 105
sp_remotelogin system procedure 35
sp_remotesql system procedure 106
sql.ini file 110
SSL 33
start-up recovery, disabling 73
statistics

update statistics 100
syntax, using native database. Seepassthrough mode

sysconfigures system table
updating values in 66

sysservers system table
remote servers for Component Integration Services

29, 110

T
tables

read-only 12
remote, joins 111, 112

tables, proxy
defining 9, 10
triggers 108

text datatype 61
bulk copy to remote servers 63
converting 62
entering values 62
error logging 63
padding 61
pattern matching 62
restrictions 61
with server class direct_connect 64

@@textsize global variable 61
textsize option, set 61
trace flags 72
traceon/traceoff option, dbcc 72
transaction management 49, 52
transactional RPCs 52
transactional_rpc on option, set command 52
transmitting remote procedure calls 45
trusted mode 35
tuning

Component Integration Services 113

U
update command

remote tables 99
update statistics 54
update statistics

proxy tables 53
update statistics command

defining existing tables and 9

Index

Component Integration Services User’s Guide 129

obtaining complete distribution statistics 73
remote tables 54

updating
image datatype 63
indexes 73
text datatype 63

using option, readtext
errors from 62

V
variables, configuration. See configuration parameters
verifying connectivity 111

W
wildcard characters 62
writetext command

remote tables 101

Index

130 Adaptive Server Enterprise

	Component Integration Services User’s Guide
	About This Book
	CHAPTER 1 Introduction
	CHAPTER 2 Understanding Component Integration Services
	Basic concepts
	Access methods
	Server classes
	Object types
	Interface to remote servers

	Proxy tables
	Using the create table command
	Using the create existing table command
	Datatype conversions
	Example of remote table definition

	Using the create proxy_table command
	Remote procedures as proxy tables
	Server limits
	create new proxy table
	create existing proxy table
	create proxy_table
	alter table
	select, insert, delete, update
	RPC handling
	sp_tables

	Cascading proxy tables

	Proxy databases
	User proxy databases
	User proxy database schema synchronization

	System proxy databases
	System proxy database creation
	Schema synchronization when current database has a system proxy database
	Stored procedure execution within a system proxy database
	Additional behavior of the system proxy database

	File system access
	Security considerations
	Directory access
	Recursion through subordinate directories
	File access

	Remote servers
	Server class ASEnterprise
	Server class ASAnywhere
	Server class ASIQ
	Server class direct_connect
	Server class sds
	Connection management
	Connecting to remote servers without the interfaces file
	LDAP directory services
	Secure communication with SSL
	Trusted roots files

	Security issues
	Remote server logins
	Trusted mode
	Connecting to Backup Server and XP Server

	Mapping external logins
	Remote server connection failover
	Remote server capabilities

	Query processing
	Processing steps
	Query parsing
	Query normalization
	Query preprocessing
	Decision point
	Component Integration Services plan generation
	Adaptive Server optimization and plan generation
	Component Integration Services plan generation
	Component Integration Services remote location optimizer
	Query plan execution

	RPC handling and Component Integration Services
	Site handler and outbound RPCs
	Component Integration Services and outbound RPCs
	Text parameters for RPCs
	Text parameter support for XJS/390

	Distributed Transaction Management
	Server classes and ASTC
	DTM-enabled servers
	Pre-DTM servers
	strict DTM enforcement
	enable xact coordination
	Enable Component Integration Services
	Transactional RPCs
	Restrictions on transaction management

	Adaptive Server to Adaptive Server update statistics
	Limitations

	Updating statistics on non-Adaptive Server backends
	Java in the database
	@@textsize
	@@stringsize
	Constraints on Java class columns
	Error messages
	Java abstract datatypes (ADTs)
	Java class definitions

	Datatypes
	Unicode support
	create table
	create existing table
	create proxy_table
	alter table
	select, insert, update, and delete statements

	Datatype conversions
	text and image datatypes
	Restrictions on text, image, and unitext columns
	Limits of @@textsize
	Odd bytes padded
	Converting text and image datatypes
	Pattern matching with text and unitext data
	Entering text and image values
	readtext using bytes
	text, image, and unitext with bulk copy
	Error logging
	text, unitext, and image data with server class ASEnterprise
	text, image, and unitext data with server class direct_connect

	Configuration and tuning
	Using sp_configure
	sysconfigures table
	Changing the configuration parameters
	Component Integration Services configuration parameters

	Global variables for status

	CHAPTER 3 SQL Reference
	dbcc commands
	dbcc options
	Trace flags

	Functions
	Support for functions within Component Integration Services
	Aggregate functions
	Datatype conversion functions
	Date functions
	Mathematical functions
	Security functions
	String functions
	System functions
	Text and image functions

	Transact-SQL commands
	alter table
	case
	connect to...disconnect
	create existing table
	create index
	create table
	delete
	drop index
	fetch
	insert
	readtext
	select
	truncate table
	update
	update statistics
	writetext

	Passthrough mode
	connect to
	sp_autoconnect
	sp_passthru
	sp_remotesql

	Quoted identifier support
	Delimited identifier support
	auto identity option
	Triggers

	APPENDIX A Tutorial
	Getting started with Component Integration Services
	Adding a remote server
	Overview
	Adding the remote server to the interfaces file
	Creating server entries in system tables
	Adding an alternate login and password
	Verifying connectivity

	Join between two remote tables
	Adding the remote servers to the interfaces file
	Defining the remote servers
	Mapping the remote tables to Adaptive Server
	Performing the join

	APPENDIX B Troubleshooting
	Problems accessing Component Integration Services
	Problems using Component Integration Services
	Unable to access remote server
	Requested server name not found
	Driver call to connect two endpoints failed
	Login failed

	Unable to access remote object
	Problem retrieving data from remote objects
	Object is altered outside Component Integration Services
	Index is added or dropped outside Component Integration Services

	If you need help

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

