
UltraLite™ Database User’s
Guide

Part number: DC37121-01-0902-01
Last modified: October 2004

Copyright© 1989–2004 Sybase, Inc. Portions copyright© 2001–2004 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP, AvantGo, AvantGo Application Alerts, AvantGo
Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma,
AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo
Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE
Professional Logo, ClearConnect, Client Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM,
Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library,
dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS,
Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo),
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator,
eremote, Everything Works Better When Everything Works Together, EWA, E-Whatever, Financial Fusion, Financial Fusion (and design), Financial
Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager,
GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, MAP,
M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere
Server, MetaWorks, MethodSet, ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket
PowerBuilder, PocketBuilder, Power Through Knowledge, power.stop, Power++, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket,
Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise,
ProcessAnalyst, QAnywhere, Rapport, Relational Beans, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication
Server Manager, Replication Toolkit, Report Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message
Format Libraries, SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts,
smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase
Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools,
Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Versacore, Viewer, VisualWriter, VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect,
Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright© 1997–2001 Certicom Corp.
Portions are Copyright© 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights reserved.
Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568; 5,761,305.
Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual vii
SQL Anywhere Studio documentation viii
Documentation conventions xi
The CustDB sample database xiii
Finding out more and providing feedback xiv

I UltraLite Databases 1

1 Welcome to UltraLite 3
Introduction to UltraLite . 4
Choosing an UltraLite programming interface 10

2 Tutorial: The CustDB Sample UltraLite Application 15
Introduction . 16
Lesson 1: Start the MobiLink synchronization server 19
Lesson 2: Start the sample application and synchronize . . . 20
Lesson 3: Add an order . 21
Lesson 4: Approve or deny an existing order 22
Lesson 5: Synchronize your changes 23
Lesson 6: Browse the consolidated database 25

3 UltraLite Databases 27
Creating UltraLite databases and schemas 28
Setting UltraLite database properties 33
User authentication in UltraLite 40
Character sets in UltraLite . 43
UltraLite database internals 47
UltraLite database limitations 50
Upgrading UltraLite database schemas 54
The UltraLite runtime . 58

4 Connection Parameters 63
Overview . 64
Database Identification parameters 68
Open Connection parameters 73
Database Schema parameters 78
Additional connection parameters 82

iii

5 UltraLite Utilities Reference 87
The UltraLite engine . 88
The UltraLite Generator . 89
The SQL Preprocessor . 95
The HotSync Conduit Installer 99
The dbulstop utility . 100
The ulconv utility . 101
The ulcreate utility . 108
The uldbsgen utility . 110
The ulinit utility . 112
The UltraLite Interactive SQL utility 115
The ulload utility . 117
The ulsync utility . 119
The ulunload utility . 121
The ULUtil utility . 123
The UltraLite Schema Painter 124
The ulxml utility . 126

6 Tutorial: Working with UltraLite Databases 129
Lesson 1: Create an UltraLite database schema 130
Lesson 2: Define and create a consolidated database 133
Lesson 3: Enter data in your UltraLite database 137
Lesson 4: Synchronize your databases 138

II UltraLite SQL 139

7 SQL Language Elements 141
Overview of SQL support in UltraLite 142
Data types in UltraLite . 145
UltraLite SQL functions . 148

8 Dynamic SQL 159
Introduction to dynamic SQL 160
Dynamic SQL expressions 163
Dynamic SQL operators . 166
Dynamic SQL search conditions 170
Dynamic SQL statements . 172
Query optimization . 185

III Application Development 187

9 Developing Applications for the Palm OS 189

iv

Choosing database storage on the Palm OS 190
Understanding the Palm Creator ID 191

10 Using UltraLite Static Interfaces 193
Overview . 194
Choosing an UltraLite static interface 197
Preparing a reference database 198
Defining SQL statements for your application 202
Generating the UltraLite data access code 207
Configuring development tools for static UltraLite development 208

11 UltraLite Static Interfaces Reference 209
Reference database stored procedures 210

Index 213

v

vi

About This Manual

Subject This manual introduces the UltraLite database system for small devices.

Audience This manual is intended for all developers who wish to take advantage of the
performance, resource efficiency, robustness, and security of an UltraLite
relational database for data storage and synchronization.

vii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

♦ Adaptive Server Anywhere SNMP Extension Agent User’s Guide
This book describes how to configure the Adaptive Server Anywhere
SNMP Extension Agent for use with SNMP management applications to
manage Adaptive Server Anywhere databases.

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

viii

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Administration Guide This book describes how to use the
MobiLink data synchronization system for mobile computing, which
enables sharing of data between a single Oracle, Sybase, Microsoft or
IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Clients This book describes how to set up and synchronize
Adaptive Server Anywhere and UltraLite remote databases.

♦ MobiLink Server-Initiated Synchronization User’s Guide This book
describes MobiLink server-initiated synchronization, a feature of
MobiLink that allows you to initiate synchronization from the
consolidated database.

♦ MobiLink Tutorials This book provides several tutorials that walk you
through how to set up and run MobiLink applications.

♦ QAnywhere User’s Guide This manual describes MobiLink
QAnywhere, a messaging platform that enables the development and
deployment of messaging applications for mobile and wireless clients, as
well as traditional desktop and laptop clients.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

ix

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ PDF books The SQL Anywhere books are provided as a set of PDF
files, viewable with Adobe Acrobat Reader.

The PDF books are accessible from the online books, or from the
Windows Start menu.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store, at
http://eshop.sybase.com/eshop/documentation.

x

http://eshop.sybase.com/eshop/documentation

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xi

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xii

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following diagram shows the tables in the CustDB database and how
they are related to each other.

ULOrderIDPool

pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULCustomer

cust_id integer
cust_name varchar(30)
last_modified timestamp

ULProduct

prod_id integer
price integer
prod_name varchar(30)

ULOrder

order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee

emp_id integer
emp_name varchar(30)
last_download timestamp

ULEmpCust

emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULCustomerIDPool

pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULIdentifyEmployee

emp_id integercust_id = cust_id

emp_id = emp_id

emp_id = emp_id

emp_id = pool_emp_id

prod_id = prod_id

cust_id = cust_id

emp_id = pool_emp_id

xiii

Finding out more and providing feedback
Finding out more Additional information and resources, including a code exchange, are

available at the iAnywhere Developer Network at
http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere
Solutions newsgroups listed below.

When you write to one of these newsgroups, always provide detailed
information about your problem, including the build number of your version
of SQL Anywhere Studio. You can find this information by typingdbeng9
-v at a command prompt.

The newsgroups are located on theforums.sybase.comnews server. The
newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and ensure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can e-mail comments and suggestions to the SQL Anywhere
documentation team atiasdoc@ianywhere.com. Although we do not reply
to e-mails sent to that address, we read all suggestions with interest.

xiv

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

In addition, you can provide feedback on the documentation and the
software through the newsgroups listed above.

xv

xvi

PART I

ULTRA L ITE DATABASES

This part introduces the UltraLite relational database system for small
devices and describes general features of the UltraLite database.

CHAPTER 1

Welcome to UltraLite

About this chapter This chapter introduces you to UltraLite features, platforms, architecture,
and functionality.

Contents Topic: page

Introduction to UltraLite 4

Choosing an UltraLite programming interface 10

3

Introduction to UltraLite
UltraLite is a relational database management and synchronization system
for small, mobile, and embedded devices. It provides the following benefits:

♦ Robust data management Data held on small devices is as important
as data in enterprise databases. UltraLite brings transaction processing,
referential integrity, and other benefits of relational database systems to
small devices.

☞ For more information about UltraLite database features, see
“UltraLite database features” on page 6.

♦ Powerful synchronization UltraLite gives you the ability to
synchronize data with a central database.

UltraLite uses MobiLink synchronization technology, included in
SQL Anywhere Studio, to synchronize with industry-standard
database-management systems. MobiLink synchronization works with
Sybase Adaptive Server Anywhere, Sybase Adaptive Server Enterprise,
IBM DB2, Microsoft SQL Server, and Oracle. It provides flexible,
programmable, and scalable synchronization that can manage thousands
of UltraLite databases.

☞ For more information, see“UltraLite Clients” [MobiLink Clients,
page 277].

♦ Your choice of programming interface UltraLite components provide
the option of using an object-based programming interface for
straightforward access to data. Integration into popular development tools
such as Visual Studio .NET, AppForge MobileVB and Crossfire, Borland
JBuilder, and eMbedded Visual Basic improves developers’ productivity.
Graphical tools enable you to design and modify UltraLite databases
quickly.

☞ For more information, see“UltraLite programming interfaces” on
page 4and“Choosing an UltraLite programming interface” on page 10.

♦ Multi-platform availability You can develop and deploy UltraLite
database applications for Windows CE, Palm OS, Windows XP, and
Java-based devices.

☞ For more information, see“UltraLite development platforms”
[Introducing SQL Anywhere Studio,page 99].

UltraLite programming interfaces

UltraLite provides a variety of programming interfaces and integrates into
several popular programming tools. Each interface uses the same underlying
UltraLite runtime library.

4

Chapter 1. Welcome to UltraLite

The interfaces fall into two categories:componentsandstatic interfaces.
Each interface has its own strengths and has particular cases for which it is
an appropriate choice. For tips on choosing a programming interface, see
“Choosing an UltraLite programming interface” on page 10.

♦ UltraLite components UltraLite components provide users of
development tools with a relational database and synchronization
features. They provide a familiar interface for each supported
development tool. UltraLite components provide a simple table-based
data access interface and also dynamic SQL for more complex queries.

The following components are available:
• UltraLite for MobileVB Development using the AppForge

MobileVB extension to Microsoft Visual Basic or the AppForge
Crossfire extension to Microsoft Visual Studio .NET.
☞ SeeUltraLite for MobileVB User’s Guide.

• UltraLite ActiveX Development using eMbedded Visual Basic or
JScript with Pocket IE.
☞ SeeUltraLite ActiveX User’s Guide.

• Native UltraLite for Java Development using a supported JDK. The
UltraLite component itself accesses native (C++) methods for
improved performance.
☞ SeeNative UltraLite for Java User’s Guide.

• UltraLite.NET Development using Visual Studio .NET, including an
ADO.NET programming interface.
☞ SeeUltraLite.NET User’s Guide.

• UltraLite C++ Component Development using a C++ interface.
☞ SeeUltraLite C/C++ User’s Guide.

• UltraLite for M-Business Anywhere Development using
M-Business Anywhere.
☞ SeeUltraLite for M-Business Anywhere User’s Guide.

• ODBC UltraLite supports a subset of the ODBC programming
interface.
☞ See“Tutorial: Build an Application Using ODBC”[UltraLite
C/C++ User’s Guide,page 189]and“UltraLite ODBC API Reference”
[UltraLite C/C++ User’s Guide,page 389].

♦ Static interfaces Static interfaces provide a rich SQL interface for
C/C++ and Java developers comfortable with a preprocessor-based
interface. All SQL statements used in the application must be defined at
compile time.

The following static interfaces are available:

5

• Embedded SQL and Static C++ API Development using C/C++
with embedded SQL statements.

☞ SeeUltraLite C/C++ User’s Guide.

• UltraLite Static Java Development in pure Java using a JDBC
interface. This interface uses a different runtime library to the other
UltraLite interfaces.

☞ SeeUltraLite Static Java User’s Guide.

UltraLite database features

UltraLite provides the following features:

♦ Tables A single UltraLite database file can hold many tables. The
number and type of columns in a table is fixed at design time, but each
table can have any number of rows (up to 64 K). Each row has a single
entry for each column. The special NULL entry is used when there is no
value for the entry.

When designing your database, each table should represent a separate
type of item, such as customers or employees.

♦ Data types UltraLite databases can hold a full range of data types, as
well as default values and NULL values.

♦ Indexes The rows in a relational database table are not ordered. You
can create indexes to access the rows in order and to provide fast access
to data. Indexes are commonly associated with a single column, but
UltraLite also provides multi-column indexes.

♦ Keys Each table has a special index called theprimary key . Entries in
the primary key column or columns must be unique.

Foreign keysrelate the data in one table to that in another. Each entry in
the foreign key column must correspond to an entry in the primary key of
another table.

Between them, primary keys and foreign keys ensure that the database
hasreferential integrity . Referential integrity is enforced in UltraLite
databases so that you cannot, for example, enter an order for a customer
unless that customer exists in the database.

By enforcing referential integrity, UltraLite ensures that the data in your
UltraLite database is correct, in the same manner that data elsewhere in
the enterprise is correct. Referential integrity is checked when operations
are committed, providing you with flexibility in the order with which you
make changes to your data.

6

Chapter 1. Welcome to UltraLite

♦ Publications To synchronize the data in your UltraLite database with
other databases you must have a valid SQL Anywhere Studio license.
SQL Anywhere Studio includes MobiLink synchronization technology to
synchronize UltraLite databases with desktop, workgroup or enterprise
databases.

A publication defines a set of data to be synchronized. It is often
desirable to synchronize all the data in an UltraLite database, but
publications provide extra flexibility and control. They allow you to
perform priority synchronizations, which means you can specify that only
certain tables or groups of tables should be synchronized.

♦ Transactions and recovery UltraLite has commit and rollback
features, together with automatic recovery in the event of device failure,
to guarantee that transactions are executed completely or not at all.

♦ Security UltraLite provides user authentication and database
encryption, as well as encryption during synchronization, to build secure
applications.

♦ Performance and small footprint UltraLite target devices tend to have
relatively slow processors. UltraLite employs algorithms and data
structures that provide high performance and low memory use. For
example, UltraLite provides a caching algorithm designed specifically for
small devices.

♦ Multi-threaded applications For platforms that support multi-threaded
applications, UltraLite supports both multi-threaded applications and
multiple applications connecting to a single database.

☞ For information about working with UltraLite databases, see“UltraLite
Databases” on page 27.

UltraLite application architecture

All UltraLite applications are built on the same underlying database
management code. UltraLite components include this code in the component
itself, while static interfaces use the code in the form of a separate UltraLite
runtime library.

7

UltraLite

runtime

UltraLite

programming

interfaces

Application development tools

UltraLite applications consist of the following:

♦ Your application code

♦ The UltraLite component or runtime library

♦ An UltraLite database or schema file

Using the UltraLite documentation

Once you have selected an UltraLite programming interface, you can find
the information you need in the following books, all of which are included in
the SQL Anywhere online books.

☞ For tips on choosing a programming interface, see“Choosing an
UltraLite programming interface” on page 10.

♦ UltraLite Database User’s Guide (this book) This book presents
information that is useful for all UltraLite interfaces, including
information about UltraLite database management, SQL, and
synchronization.

♦ Interface books Each UltraLite interface has a separate book, which
contains all the information you need for developing applications using
that interface.
• Native UltraLite for Java User’s Guide

• UltraLite ActiveX User’s Guide

• UltraLite C/C++ User’s Guide

• UltraLite for MobileVB User’s Guide

• UltraLite Static Java User’s Guide

• UltraLite.NET User’s Guide

8

Chapter 1. Welcome to UltraLite

• UltraLite for M-Business Anywhere User’s Guide

♦ MobiLink books If your application includes synchronization, the
MobiLink Administration Guideand theMobiLink Clientsprovide a
complete guide to the synchronization system.

9

Choosing an UltraLite programming interface
Choosing which UltraLite programming interface to use depends primarily
on your answers to the following questions:

♦ What is your target platform or platforms?

♦ Which programming language do you wish to use?

The availability of more than one interface for C/C++ developers, and for
Java developers, provides further flexibility.

Each interface is described in a separate book. For more information, see
“Using the UltraLite documentation” on page 8.

Cross platform
development for Palm
OS, Windows XP, and
Windows CE

Your options are as follows:

♦ C/C++ You can choose from the following:

♦ UltraLite C++ Component
♦ Static C++ API
♦ Embedded SQL (static interface)

For information about choosing between these interfaces, see“Choosing
between components and static interfaces” on page 11.

♦ Visual Basic .NET and Visual Basic You can use UltraLite for
MobileVB together with AppForge MobileVB or AppForge Crossfire to
develop cross-platform applications from a Microsoft development
environment.

♦ Web development You can use UltraLite for M-Business Anywhere to
develop cross-platform web applications.

Development for Palm
OS only

Your options are as follows:

♦ C/C++ You can choose from the following:

♦ UltraLite C++ Component
♦ Static C++ API
♦ Embedded SQL (static interface)

For information about choosing between these interfaces, see“Choosing
between components and static interfaces” on page 11.

♦ Visual Basic You can use UltraLite for MobileVB to develop Visual
Basic applications for the Palm OS.

♦ Web development You can use UltraLite for M-Business Anywhere to
develop browser-based applications for the Palm OS.

10

Chapter 1. Welcome to UltraLite

Development for
Windows CE and
Windows XP

Your options are as follows:

♦ C/C++ You can choose from the following:

♦ UltraLite C++ Component
♦ ODBC
♦ Static C++ API
♦ Embedded SQL (static interface)

For information about choosing between these interfaces, see“Choosing
between components and static interfaces” on page 11.

♦ Java You can choose from the following:

♦ Native UltraLite for Java (component)
♦ Static Java API

For information about choosing between these interfaces, see“Choosing
between components and static interfaces” on page 11.

♦ Visual Basic You can choose from the following:

• UltraLite.NET, which provides an interface from Visual Basic .NET.

• UltraLite for MobileVB, which provides an interface from Visual
Basic, using the AppForge MobileVB extension.

• UltraLite ActiveX, which provides an interface from eMbedded Visual
Basic.

♦ C# You can use UltraLite.NET to develop C# applications for
Windows CE or Windows XP.

♦ Web development You can build JavaScript applications using the
following:

♦ UltraLite for M-Business Anywhere
♦ UltraLite ActiveX

Development for other
platforms

UltraLite Static Java provides a pure Java solution for any platform
supporting JDK 1.1.8 or later.

Choosing between components and static interfaces

UltraLite applications are built using either an UltraLitecomponentor a
static interface.

The choice of which to use depends partly on the language you wish to use.
If you are a C#, Visual Basic, or JavaScript programmer, you should choose
an UltraLite component. If you are a C/C++ or Java programmer, you have a
choice between using a component or a static interface. This section
compares components and static interfaces.

11

Data access features UltraLite components can use either dynamic SQL or a table-based API to
access data.

♦ Dynamic SQL provides many common SQL features, including
multi-table joins. In contrast to the static interfaces, dynamic SQL
permits SQL statements to be constructed at runtime.

☞ For a full description, see“Dynamic SQL” on page 159.

♦ The UltraLite component table-based API accesses rows one at a time. It
is simple, but if you require logic such as joining tables, then you must
implement it yourself within your application.

You can combine dynamic SQL and the table-based API in a single
application.

Static interfaces (embedded SQL, the Static C++ API, and the static Java
API) use SQL to access data. A wider range of SQL is supported in the static
interfaces than in dynamic SQL, but all queries must be specified at compile
time. For example, UNION and FULL OUTER JOIN queries are currently
supported only from the static interfaces. In both static and dynamic SQL,
queries can contain parameters, for which you can supply values at runtime.

The Static C++ API also provides a table-based API, which has some of the
benefits and limitations of the component table-based API. For a description,
see“Developing Applications Using the Static C++ API”[UltraLite C/C++
User’s Guide,page 41].

Application size The UltraLite components include code to parse, optimize, and execute
arbitrary queries. In contrast, the static interfaces generate code that executes
specified queries, but do not need to generate code to parse or optimize
queries. For this reason, applications built using the static interfaces are
typically much smaller than those built with UltraLite components.

As the number of queries and tables in the database increases, the size
advantage of the static interfaces is lost. For complex applications using
many queries and addressing databases that contain many tables, the
components can be smaller as they do not need to contain code for each
separate query.

Development model Each UltraLite component exposes an object-oriented API designed to be
familiar to users of the language supported by that component. The
development model is similar to that for many other kinds of applications.

The UltraLite static interfaces require a more complicated development
model, in which a preprocessing step generates application code from a
reference database.

12

Chapter 1. Welcome to UltraLite

For many users, the UltraLite components are easier to learn than the static
interfaces.

For more information, see the following sections:

♦ “ Developing applications with UltraLite components” on page 13

♦ “Developing Static C++ applications”[UltraLite C/C++ User’s Guide,
page 6]

♦ “Developing embedded SQL applications”[UltraLite C/C++ User’s Guide,
page 7]

♦ “Data Access Using the Static Java API”[UltraLite Static Java User’s
Guide,page 19]

Performance Queries included as part of an application that uses a static interface are
already parsed and optimized. Therefore, they may perform better than
queries in UltraLite components. The optimization of queries in the static
interface depends on the distribution of data in the reference database. The
closer the data in the reference database is to that in the UltraLite database,
the better the performance will be.

☞ For more information about Adaptive Server Anywhere SQL support,
see“SQL Statements”[ASA SQL Reference,page 253].

Compatibility with
Adaptive Server
Anywhere

Embedded SQL provides a common static programming interface for
UltraLite and Adaptive Server Anywhere databases. ADO.NET and ODBC
provide programming models that are shared between UltraLite components
and Adaptive Server Anywhere.

Maintaining a common interface may be particularly useful on platforms
such as Windows CE, where both databases are available. If you need to
move from UltraLite to the more powerful and full-featured Adaptive Server
Anywhere database, using embedded SQL, ODBC, or ADO.NET makes
migrating your application easier.

Developing applications with UltraLite components

❖ To develop an UltraLite component application

1. Design your database schema file.

You create a database schema using the UltraLite Schema Painter or by
writing an XML file. Users of SQL Anywhere Studio can generate an
UltraLite database schema from an Adaptive Server Anywhere database.

☞ For more information, see“The UltraLite Schema Painter” on
page 124, “The ulxml utility” on page 126, and“The ulinit utility” on
page 112.

13

2. Set up your development environment for UltraLite projects.

☞ For more information, see the following:

♦ UltraLite for MobileVB: “Lesson 1: Create a project architecture”
[UltraLite for MobileVB User’s Guide,page 43].

♦ UltraLite.NET:“Lesson 1: Create a Visual Studio project”
[UltraLite.NET User’s Guide,page 7].

♦ UltraLite C++ Component:“Tutorial: Build an Application Using the
C++ Component”[UltraLite C/C++ User’s Guide,page 147].

♦ UltraLite ActiveX: “Adding UltraLite ActiveX to the eMbedded
Visual Basic design environment”[UltraLite ActiveX User’s Guide,
page 6].

♦ Native UltraLite for Java:“Developing applications with Borland
JBuilder” [Native UltraLite for Java User’s Guide,page 60].

♦ UltraLite for M-Business Anywhere:“UltraLite for M-Business
Anywhere Quick Start”[UltraLite for M-Business Anywhere User’s Guide,
page 6].

3. Write your application code using the UltraLite API for a particular
language.

4. Deploy your application and database schema.

The steps depend on the target device and on the component used.

14

CHAPTER 2

Tutorial: The CustDB Sample UltraLite
Application

About this chapter This chapter uses the CustDB sample application to illustrate some key
features of UltraLite.

These techniques are illustrated using a desktop version of CustDB.
Additionally, a version of CustDB is provided for each of the supported
interfaces. For more information, see“What Next?” on page 26.

Much of the material in this chapter is explained in a more general manner
elsewhere in this book.

Contents Topic: page

Introduction 16

Lesson 1: Start the MobiLink synchronization server 19

Lesson 2: Start the sample application and synchronize 20

Lesson 3: Add an order 21

Lesson 4: Approve or deny an existing order 22

Lesson 5: Synchronize your changes 23

Lesson 6: Browse the consolidated database 25

15

Introduction
This chapter introduces you to the CustDB (Customer Database) UltraLite
sample application. CustDB is a sales-status application.

The CustDB sample application provides you with examples of how to
implement many of the techniques you will need to develop UltraLite
applications.

This chapter uses the compiled version of the application for Windows
NT/2000/XP.

A separate version of the CustDB application is provided for each UltraLite
programming interface. Each version has similar features, with some
variation to conform to the conventions of each platform.

UltraLite features This chapter illustrates the following UltraLite features:

♦ UltraLite database applications run on small devices using very limited
resources.

♦ UltraLite applications include a relational database engine.

♦ UltraLite applications share data with a central, consolidated database in
a two-way synchronization scheme. UltraLite databases are also called
remotedatabases.

♦ Each remote database contains a subset of the data in the consolidated
database.

♦ The MobiLink synchronization server, included with SQL Anywhere
Studio, carries out data synchronization between the consolidated
database and each UltraLite installation.

♦ SQL scripts stored in the consolidated database implement the
synchronization logic.

♦ You can use Sybase Central to browse and edit the synchronization
scripts.

Scenario The CustDB scenario is as follows:

A consolidated database is stored at the head office.

There are two types of remote databases, sales representatives and mobile
managers. Each sales representative’s UltraLite remote database contains all
products but only those orders assigned to that sales representative. A mobile
manager’s UltraLite remote database contains all products and orders.

You can carry out the following tasks with the sample application.

16

Chapter 2. Tutorial: The CustDB Sample UltraLite Application

♦ View lists of customers and products.

♦ Add new customers.

♦ Add or delete orders.

♦ Scroll through the list of outstanding orders.

♦ Accept or deny orders.

♦ Synchronize changes with the consolidated database.

When you run the CustDB UltraLite application, you are working on a
single remote database, and synchronizing your changes with a consolidated
database.

In a typical UltraLite installation, there will be many remote databases, each
running on a handheld device, and each containing a small subset of the data
from the consolidated database.

File locations

The CustDB sample application is included in the following locations within
your UltraLite installation.

Runtime file locations To run the CustDB sample application, you need the following components:

♦ The consolidated database An Adaptive Server Anywhere version of
the CustDB database is located inSamples\UltraLite\Custdb\custdb.db.
For information about the schema, and information about using one of
the other supported consolidated database types, see“The CustDB
Sample Application”[MobiLink Tutorials,page 99].

This database serves as the consolidated database. It contains the
following information.

• MobiLink system tables that hold the synchronization metadata.

• The CustDB data, stored in rows in base tables.

• The synchronization scripts.

During installation, an ODBC data source named UltraLite 9.0 Sample is
created for this database.

♦ The UltraLite application executable and source code A version of
the sample is supplied for each interface.

The executable and source code are located in the following
subdirectories of your SQL Anywhere Studio installation:

17

Component Location

UltraLite for MobileVB Samples\UltraLiteForMobileVBandSam-
ples\UltraLiteForCrossfire

UltraLite ActiveX Samples\UltraLiteActiveX

UltraLite.NET Samples\UltraLite.NET

Native UltraLite for Java Samples\NativeUltraLiteForJava

C++ Component Samples\UltraLite

Embedded SQL Samples\UltraLite

Static C++ API Samples\UltraLite

Static Java API Samples\UltraLite

UltraLite for M-Business
Anywhere

Samples\UltraLiteForMBusinessAnywhere

To browse the samples from the Start menu, choose Programs➤ SQL
Anywhere 9➤ Sample Applications and Projects.

Synchronization techniques in the sample application

Synchronization with the CustDB sample database is carried out by the
MobiLink synchronization server running on your desktop computer.

The CustDB sample application demonstrates several useful synchronization
techniques. For a more detailed explanation of how synchronization works,
refer to the following sections in the MobiLink documentation.

♦ ☞ For an overview of the synchronization process, see“The
synchronization process”[MobiLink Administration Guide,page 15].

♦ ☞ For a description of how to write the synchronization scripts that
control synchronization, see“Writing Synchronization Scripts”[MobiLink
Administration Guide,page 227].

♦ ☞ For information about the synchronization techniques used in the
CustDB sample application, see“The CustDB Sample Application”
[MobiLink Tutorials,page 99].

18

Chapter 2. Tutorial: The CustDB Sample UltraLite Application

Lesson 1: Start the MobiLink synchronization
server

When you start the sample UltraLite application for the first time, the remote
database contains no data. The application carries out synchronization to
download an initial copy of the data from a consolidated database.

Before you can carry out synchronization, you must start the database server,
and start the MobiLink synchronization server running against the UltraLite
sample database.

The following procedure uses some of the shortcuts that the SQL Anywhere
Studio installation adds to the Start menu.

❖ To start the MobiLink synchronization server

1. Start the Adaptive Server Anywhere CustDB sample database.

From the Start menu, choose Programs➤ Sybase SQL Anywhere 9➤
UltraLite ➤ Personal Server Sample for UltraLite.

The CustDB sample database is the consolidated database in this tutorial.
You will synchronize data between an UltraLite database and this
consolidated database. You can also use database servers other than
Adaptive Server Anywhere as consolidated databases. For more
information, see“The CustDB Sample Application”[MobiLink Tutorials,
page 99].

2. Start the MobiLink synchronization server, running against the CustDB
database.

From the Start menu, select Programs➤ SQL Anywhere 9➤ MobiLink
➤ Synchronization Server Sample.

The MobiLink synchronization server uses an ODBC driver to connect to
the consolidated database server. It can run on a separate computer from
the database server, but in this example it runs on the same computer.

19

Lesson 2: Start the sample application and
synchronize

The following procedure starts the sample application, and synchronizes
with the consolidated database to obtain an initial set of data. The data you
download depends on the user ID you enter when you start the application.

❖ To start and synchronize the sample application

1. Launch the sample application.

From the Start menu, choose Programs➤ SQL Anywhere 9➤ UltraLite
➤ Windows Sample Application.

In this walkthrough the sample application is running on the same
desktop machine as the MobiLink synchronization server. In a production
environment, UltraLite applications more commonly run on handheld
devices.

2. Enter an employee ID.

Enter a value of 50 and click Enter. The application also allows values of
51, 52, or 53, but behaves slightly differently in these cases.

After you enter the employee ID, the application synchronizes, and a set
of customers, products, and orders is downloaded to the application. The
MobiLink synchronization server window displays messages showing the
synchronization taking place.

3. Confirm that the application contains data.

A company name and a sample order should appear on the application
window.

20

Chapter 2. Tutorial: The CustDB Sample UltraLite Application

Lesson 3: Add an order
In this section, you add a new order to the database. Adding an order is
carried out in a similar way in each version of the application.

The database contains a table in which each row holds information about a
particular order. For each order, this data includes the customer, the product,
the quantity, the price, and any applicable discount. Also included are a
status field and a notes field, which you can modify from this application.

The remote database does not receive all the orders listed in the ULOrder
table in the consolidated database. Only orders that have not yet been
approved are downloaded. Synchronization scripts allow you to control
which information is sent to your application.

Add an order

❖ To add an order

1. Scroll through the outstanding orders.

Click Next to display the next customer.

2. Enter a new order.

From the Order menu, choose New.

The Add New Order screen is displayed.

3. Choose a customer.

ChooseBasements R Usfrom the dropdown list. This list exposes the
complete list of customers from the consolidated database.

The current list of orders does not have any from this customer.

4. Choose a product.

The UltraLite application holds the complete list of products from the
consolidated database. To see this list, open the Product drop-down list
box.

ChooseScrewmaster Drill from the list. The price of this item is
automatically entered in the Price field.

5. Enter the quantity and discount.

Enter a value of 20 for the quantity, and a value of 5 for the discount.

6. Click Enter to add the new order.

By adding an order, you have modified the data in your local UltraLite
database. This data is not shared with the consolidated database until you
synchronize.

21

Lesson 4: Approve or deny an existing order
In this step, you approve one order and deny another. Approving or denying
orders updates two columns in the local database. The data in the
consolidated database is unchanged until you synchronize.

❖ To approve, deny, and delete orders

1. Approve the order from Apple Street Builders.

♦ Go to the first order in the list, which is from Apple Street Builders.

♦ Click Approve to approve the order.

♦ Add a note to your approval, saying Good Work.

♦ The order appears with a status of Approved.

2. Deny the order from Art’s Renovations.

♦ Go to the next order in the list, which is from Art’s Renovations.

♦ Click Deny to deny this order.

♦ Add a note stating Discount too high.

3. Delete the order from Awnings R Us.

♦ Go to the next order in the list, which is from Awnings R Us.

♦ Delete this order by choosing the menu item Order➤ Delete. It
disappears from your local copy of the data.

22

Chapter 2. Tutorial: The CustDB Sample UltraLite Application

Lesson 5: Synchronize your changes
In this section, you synchronize the changes you made to the remote
database with the consolidated database.

For synchronization to take place, the MobiLink synchronization server
must be running. If you have shut down your MobiLink synchronization
server, restart it as described in“Lesson 1: Start the MobiLink
synchronization server” on page 19.

❖ To synchronize your changes

1. Choose File➤ Synchronize to synchronize your data.

2. Confirm that synchronization took place.

The synchronization process for the sample application removes
approved orders from your database. Confirm that the approved order for
Apple Street Builders is no longer in your application.

Confirm the synchronization at the consolidated database

In this section, you use Interactive SQL to connect to the consolidated
database to confirm that your changes were synchronized.

❖ To confirm the synchronization at the consolidated database

1. Connect to the consolidated database from Interactive SQL.

♦ Choose Start➤ Programs➤ SQL Anywhere 9➤ Adaptive Server
Anywhere➤ Interactive SQL.

The Interactive SQL Connect dialog appears.

♦ Select ODBC Data Source Name and choose UltraLite 9.0 Sample
from the dropdown list.

2. Confirm the status change of the approved and denied orders.

To confirm that the approval and denial have been synchronized, issue the
following statement.

SELECT order_id, status
FROM ULOrder
WHERE status IS NOT NULL

The results show that order 5100 is approved, and 5101 is denied.

3. Confirm that the deleted order has been removed.

The deleted order has an order_id of 5102. The following query returns
no rows, demonstrating that the order has been removed from the system.

23

SELECT *
FROM ULOrder
WHERE order_id = 5102

24

Chapter 2. Tutorial: The CustDB Sample UltraLite Application

Lesson 6: Browse the consolidated database
You can use Sybase Central to manage MobiLink synchronization. The
synchronization logic is held in the consolidated database.

This section describes how to use Sybase Central to browse the scripts in the
CustDB consolidated database.

Connect to the CustDB database from Sybase Central

1. Start the CustDB database.

♦ Select Programs➤ Sybase SQL Anywhere 9➤ UltraLite ➤ Personal
Server Sample for UltraLite.

2. Start Sybase Central.

♦ From the Start menu, select Programs➤ SQL Anywhere 9➤ Sybase
Central.

3. Connect to the sample database.

♦ In Sybase Central, select Tools➤ Connect. If there is a choice of
connection types, select MobiLink.

The MobiLink Connect dialog appears.

♦ Select ODBC and enter UltraLite 9.0 Sample in the Data Source box.
Click OK to connect.

Browse the synchronization scripts

From Sybase Central, you can browse the tables, users, synchronized tables,
and synchronization scripts that are stored in the consolidated database.
Sybase Central is the primary tool for adding these scripts to the database.

❖ To browse the synchronization scripts

1. Open the Connection Scripts folder.

The right hand pane lists a set of synchronization scripts and a set of
events with which these scripts are associated. As the MobiLink
synchronization server carries out the synchronization process, it triggers
a sequence of events. Any synchronization script associated with an event
is run at that time. By writing synchronization scripts and assigning them
to the synchronization events, you can control the actions that are carried
out during synchronization.

2. Open the Synchronized Tables folder, and open the ULCustomer table
folder.

25

The right hand pane lists a pair of scripts that are specific to this table,
and their corresponding events. These scripts control the way that data in
the ULCustomer table is synchronized with the remote databases.

The content of the synchronization scripts is discussed in detail in“Writing
Synchronization Scripts”[MobiLink Administration Guide,page 227]and“The
CustDB Sample Application”[MobiLink Tutorials,page 99].

What Next?

In addition to the CustDB application, tutorials are provided for each of the
supported interfaces. For more information, see the following sections:

♦ Native UltraLite for Java “Tutorial: The CustDB Sample Application”
[Native UltraLite for Java User’s Guide,page 23].

♦ UltraLite ActiveX “Tutorial: A Sample UltraLite ActiveX Application”
[UltraLite ActiveX User’s Guide,page 43]or “Tutorial: An UltraLite ActiveX
Application for Pocket IE”[UltraLite ActiveX User’s Guide,page 63].

♦ UltraLite C++ Component “Tutorial: Build an Application Using the
C++ Component”[UltraLite C/C++ User’s Guide,page 147].

♦ UltraLite Embedded SQL “Tutorial: Build an Application Using
Embedded SQL”[UltraLite C/C++ User’s Guide,page 177].

♦ UltraLite for MobileVB “Tutorial: A Sample UltraLite for MobileVB
Application” [UltraLite for MobileVB User’s Guide,page 41].

♦ UltraLite.NET “Tutorial: Build an UltraLite.NET Application”
[UltraLite.NET User’s Guide,page 5].

♦ UltraLite for M-Business Anywhere “UltraLite for M-Business
Anywhere Quick Start”[UltraLite for M-Business Anywhere User’s Guide,
page 6]

26

CHAPTER 3

UltraLite Databases

About this chapter This chapter provides basic information about data storage, user
authentication, and character set issues in UltraLite databases.

Contents Topic: page

Creating UltraLite databases and schemas 28

Setting UltraLite database properties 33

User authentication in UltraLite 40

Character sets in UltraLite 43

UltraLite database internals 47

UltraLite database limitations 50

Upgrading UltraLite database schemas 54

The UltraLite runtime 58

27

Creating UltraLite databases and schemas
UltraLite databases are held in a single file (or, in the case of Palm OS, in the
Palm persistent store). The database file contains tables, indexes, and also
contains additional information required for synchronization.

Every database contains aschema: information about the tables, indexes,
and so on that make up the database. This metadata includes column names
and data types, primary and foreign key definitions, and so on. Most
relational databases store the schema in a special set of tables called the
system tables, or catalog. UltraLite stores its schema in a more compact
form.

Creating an UltraLite
schema

To create an UltraLite database, you create an UltraLite schema externally,
separately from the database itself.

If you are developing applications using an UltraLite component, you create
the schema in a schema file. You then apply the schema to an UltraLite
database file.

If you are developing applications using a static interface, you create the
schema in a reference database; when you generate your application code
from the reference database, the schema is added to the application itself.

☞ For more information, see“Creating UltraLite schema files” on page 29.

Applying a schema to a
database

It is common not to deploy UltraLite database files with your application,
but instead to let UltraLite create the database file and to use synchronization
to fill up the database with the appropriate data.

UltraLite component applications require that you deploy a database schema
file. You can write your application so that it creates a database file on the
first connection attempt, and applies the schema file to this database file.
Sample code is provided in the tutorials for each programming interface.

UltraLite static interface applications contain a database schema definition in
the generated code. They automatically create a database and apply the
schema on the first connection attempt.

☞ For more information, see“Creating UltraLite databases” on page 30.

Altering a database
schema

You can alter the schema of an UltraLite database by applying a new schema
to the database file. As with the original schema, a new schema may be held
in a schema file (UltraLite components) or in a new version of the
application (static interfaces).

If you are using an UltraLite component, you can also alter the schema of an
UltraLite database by executing SQL statements that modify tables and
indexes (data definition statements).

28

Chapter 3. UltraLite Databases

☞ For more information, see“Upgrading UltraLite database schemas” on
page 54.

See also ☞ For an introduction to UltraLite database features, see“UltraLite
database features” on page 6.

Creating UltraLite schema files

UltraLite schema files are used with UltraLite components. You can create
an UltraLite schema file in the following ways:

♦ UltraLite Schema Painter The simplest way to create a schema file is
to use the graphical UltraLite Schema Painter.

To start the Schema Painter, choose Start➤ Programs➤
SQL Anywhere 9➤ UltraLite ➤ UltraLite Schema Painter, or
double-click a schema file (with extension.usm) in Windows Explorer.
For more information, see“The UltraLite Schema Painter” on page 124.

♦ Generate the schema from an Adaptive Server Anywhere database
If you already have an Adaptive Server Anywhere database with the
schema needed for your UltraLite database, or a superset of that schema,
you can generate an UltraLite schema file using the ulinit command line
utility.

☞ For more information, see“The ulinit utility” on page 112.

You can use the Adaptive Server Anywhere migration wizard to migrate
table definitions, indexes, and data from other databases into an Adaptive
Server Anywhere database. You can use this wizard to assist in creating
UltraLite schema definitions from Adaptive Server Enterprise, Oracle,
SQL Server, or DB2 databases.

☞ For more information, see“Migrating databases to Adaptive Server
Anywhere” [ASA SQL User’s Guide,page 591].

♦ Convert an XML file to a schema file The ulxml command line utility
allows you to convert XML files to schema files. It can also carry out the
conversion of schema files to XML files.

The utility is useful, for example, if you wish to keep your database
definition under source control. It also integrates well into automated
build processes.

For more information, see“The ulxml utility” on page 126.

♦ Unload the schema from an existing UltraLite database The ulconv
command line utility allows you to carry out numerous operations on
UltraLite databases, including unloading a schema from an existing
database.

29

☞ For more information, see“The ulconv utility” on page 101.

When you create an UltraLite schema file, you set some database-wide
characteristics. These include the following:

♦ Case sensitivity The case sensitivity of a database affects all string
comparisons. It must be specified when the database is created because
indexes are stored in sorted order, and the order depends on whether the
database is case sensitive or not.

♦ Character set Each database has a well-defined collation sequence
(character set and sort order). The collation sequence is defined when the
database is created.

☞ For more information, see“Character sets in UltraLite” on page 43.

Creating UltraLite databases

The way you create an UltraLite database depends on the development
model you use.

❖ To create an UltraLite database (UltraLite components)

1. Create an UltraLite schema file.

☞ For more information, see“Creating UltraLite schema files” on
page 29.

2. Write your application to use the schema file when a database is not
found.

Your code that connects to the database should carry out the following
steps:

Open Connection(database identification parameters)
If (database not found) Then

Create Database(database schema parameters)
End If

For a list of database identification parameters, see“Database
Identification parameters” on page 68. For a list of database schema
parameters, see“Database Schema parameters” on page 78.

The specifics depend on the component you are using. For more
information, see the following:

♦ UltraLite for MobileVB: “Connecting to an UltraLite database”
[UltraLite for MobileVB User’s Guide,page 11]

♦ UltraLite ActiveX: “Connecting to an UltraLite database”[UltraLite
ActiveX User’s Guide,page 11]

30

Chapter 3. UltraLite Databases

♦ Native UltraLite for Java:“Connecting to a database”[Native UltraLite
for Java User’s Guide,page 36]

♦ UltraLite.NET:“Connecting to a database”[UltraLite.NET User’s Guide,
page 24]

♦ UltraLite C++ Component:“Connecting to a database”[UltraLite
C/C++ User’s Guide,page 17]

♦ UltraLite for M-Business Anywhere:“Connecting to an UltraLite
database ”[UltraLite for M-Business Anywhere User’s Guide,page 13]

3. Add data to the UltraLite database from the application or by
synchronizing.

❖ To create an UltraLite database (static interface)

1. Create an Adaptive Server Anywherereference database. A reference
database holds the same tables and indexes as your UltraLite database.

☞ For more information, see“Preparing a reference database” on
page 198.

2. Generate an UltraLite application from the reference database.

☞ For more information, see“Generating the UltraLite data access
code” on page 207.

3. When your application first runs, it creates an UltraLite database file with
the information from the reference database.

4. Add data to the UltraLite database from the application or by
synchronizing.

Creating UltraLite database files

UltraLite applications require a schema definition in order to create a
database. If you are using an UltraLite component, you deploy the database
schema in a separate schema file. If you are using a static development
model, your application contains the schema definition.

The physical storage of the UltraLite database depends on the target
platform.

♦ Palm Computing Platform The database is stored in the Palm
persistent (static) memory using the Data Manager API. For devices
operating Palm OS version 4.0, you can store UltraLite databases in the
file-based storage of expansion cards.

☞ For more information, see“Choosing database storage on the Palm
OS” on page 190and“Database On Palm connection parameter” on
page 71.

31

♦ Windows and Windows CE The database is stored in the file system.
On Windows CE the default file is\UltraLiteDB\ul.udb. On other
versions of Windows the default file isul_<project>.udb in the working
directory of the application, where<project> is the UltraLite project
name used during the development process.

You can choose to explicitly specify a database file name , or you can
choose to use the default file name.

☞ For more information, see“Database On CE connection parameter”
on page 69.

♦ Static Java The database is either transient, or is stored as a file in the
file system. By default, it is transient.

For static APIs, you can supply parameters that control features such as
database encryption on your first connection attempt (which is when the
database is created). For UltraLite components, set the schema parameters
of the Create Database method.

For more information ♦ UltraLite for MobileVB See“CreateDatabaseWithParms method”
[UltraLite ActiveX User’s Guide,page 102].

♦ UltraLite ActiveX See“CreateDatabaseWithParms method”[UltraLite
ActiveX User’s Guide,page 102].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET See“ULDatabaseManager class”[UltraLite.NET User’s
Guide,page 137](iAnywhere.Data.UltraLite namespace) or
“DatabaseManager class”[UltraLite.NET User’s Guide,page 399]
(iAnywhere.UltraLite namespace).

♦ UltraLite C++ Component See“Class UltraLite_DatabaseManager”
[UltraLite C/C++ User’s Guide,page 249].

♦ UltraLite for embedded SQL See“Macros and compiler directives for
UltraLite C/C++ applications”[UltraLite C/C++ User’s Guide,page 221].

♦ UltraLite Static C++ See“Macros and compiler directives for UltraLite
C/C++ applications”[UltraLite C/C++ User’s Guide,page 221].

♦ UltraLite Static Java See“UltraLite API reference”[UltraLite Static
Java User’s Guide,page 54].

♦ UltraLite for M-Business Anywhere See“Method
createDatabaseWithParms”[UltraLite for M-Business Anywhere User’s
Guide,page 76].

32

Chapter 3. UltraLite Databases

Setting UltraLite database properties
You can set global characteristics of UltraLite databases when the database
is first created, either in the schema or on the first connection attempt.

♦ Character set.

☞ See“Creating UltraLite schema files” on page 29.

♦ Case sensitivity.

☞ See“Creating UltraLite schema files” on page 29.

♦ Data encryption.

☞ See“Encrypting UltraLite databases” on page 36and“Obfuscate
connection parameter” on page 83.

♦ Database page size.

☞ See“UltraLite database files” on page 47and“Page Size connection
parameter ” on page 83.

♦ Date and time formats.

☞ These must be set in the schema file as database options. See
“UltraLite database options” on page 33.

♦ Precision and scale for arithmetic operations.

☞ These must be set in the schema file as database options. See
“UltraLite database options” on page 33.

♦ The amount of memory used as a cache by the UltraLite runtime.

☞ See“Cache Size connection parameter ” on page 73.

♦ Preallocation of file-system space.

☞ See“Reserve Size connection parameter ” on page 84.

UltraLite database options

UltraLite databases support the following set of database options, which
must be set in the schema file. One set of options controls the handling of
dates and times. A second set controls the default handling of arithmetic
operations.

Setting database options For UltraLite components, the database options must be set in the schema
file.

♦ If you are using the Schema Painter, set the options in the database
property sheet.

33

♦ If you are using the ulinit utility, set the options in your Adaptive Server
Anywhere reference database.

♦ If you are using the ulxml utility, set the options in the XML document
that describes the database schema.

For UltraLite static interfaces, set the options in your Adaptive Server
Anywhere reference database.

☞ For information about setting Adaptive Server Anywhere database
options, see“Setting options”[ASA Database Administration Guide,page 614].

Date and time options The following database options control the default handling of dates and
times. These settings can be changed within SQL operations by using
functions such as the DATEFORMAT function.

♦ DateFormat Sets the default string format in which dates are retrieved
from the database.

Allowed values are constructed from the symbols listed in the table that
follows this list. The default value is YYYY-MM-DD.

The corresponding Adaptive Server Anywhere database option is
DATE_FORMAT. See“DATE_FORMAT option [compatibility]” [ASA
Database Administration Guide,page 646].

♦ DateOrder Sets the default interpretation of dates when submitted to
the database.

Allowed values are MDY, YMD, DMY. The default value is YMD.

The corresponding Adaptive Server Anywhere database option is
DATE_ORDER. See“DATE_ORDER option [compatibility]”[ASA
Database Administration Guide,page 648].

♦ NearestCentury Sets the interpretation of two-integer year values
when submitted to the database.

Allowed values are integers from 0 to 100 inclusive. The default value is
50. Two digit yearsYY less than the value are converted to 20YY , while
years greater than or equal to the value are converted to 19YY .

The corresponding Adaptive Server Anywhere database option is
NEAREST_CENTURY. See“NEAREST_CENTURY option
[compatibility]” [ASA Database Administration Guide,page 671].

♦ TimeFormat Sets the default format for times retrieved from the
database.

Allowed values are constructed from the symbols listed in the table that
follows this list. The default value is HH:NN:SS.SSS.

34

Chapter 3. UltraLite Databases

The corresponding Adaptive Server Anywhere database option is
TIME_FORMAT. See“TIME_FORMAT option [compatibility]” [ASA
Database Administration Guide,page 694].

♦ TimestampFormat Sets the default format for timestamp values
retrieved from the database.

Allowed values are constructed from the symbols listed in the table that
follows this list. The default value is YYYY-MM-DD HH:NN:ss.SSS.

The corresponding Adaptive Server Anywhere database option is
TIMESTAMP_FORMAT. See“TIMESTAMP_FORMAT option
[compatibility]” [ASA Database Administration Guide,page 695].

♦ TimestampIncrement As timestamps are inserted into the database,
UltraLite truncates them to match this increment. This value is useful
when a DEFAULT TIMESTAMP column is being used as a primary key
or row identifier. In particular, during synchronization it can be important
that timestamps match, and different supported consolidated databases
maintain timestamps to different resolution. Setting the
TimestampIncrement to match that of the consolidated database can help
to avoid spurious inequalities.

Allowed values are integers greater than zero. The default value is 1.

The corresponding Adaptive Server Anywhere database option is
TRUNCATE_TIMESTAMP_VALUES. See
“TRUNCATE_TIMESTAMP_VALUES option [database]”[ASA Database
Administration Guide,page 697].

The symbols used in DateFormat, TimeFormat, and TimestampFormat
values are taken from the following table:

Symbol Description

yy Two digit year.

yyyy Four digit year.

mm Two digit month, or two digit minutes if following a colon
(as in hh:mm).

mmm[m. . .] Character short form for months—as many characters as
there are “m”s. An upper case M causes the output to be
made upper case.

d Single digit day of week, (0 = Sunday, 6 = Saturday).

dd Two digit day of month. A leading zero is not required.

35

Symbol Description

ddd[d. . .] Character short form for day of the week. An upper case
D causes the output to be made upper case.

hh Two digit hours. A leading zero is not required.

nn Two digit minutes. A leading zero is not required.

ss[.ss..] Seconds and parts of a second.

aa Indicate AM or PM (12 hour clock).

pp Indicate times after noon by PM (12 hour clock).

jjj Day of the year, from 1 to 366.

Arithmetical operations The Precision and Scale options control the handling of arithmetical
operations.

♦ Precision Sets the maximum number of digits in the result of any
decimal arithmetic.

Allowed values are integers between 0 and 127 inclusive. The default
value is 30.

Precision is the total number of digits to the left and right of the decimal
point. The Scale option specifies the minimum number of digits after the
decimal point when an arithmetic result is truncated to the maximum
Precision.

♦ Scale Sets the minimum number of digits after the decimal point when
an arithmetic result is truncated to the maximum Precision.

Allowed values are integers between 0 and 127 inclusive. The default
value is 6.

For example, when a DECIMAL(8,2) value is multiplied by a
DECIMAL(9,2) value, the result could require a DECIMAL(17,4). If
Precision is 15, only 15 digits are kept in the result. If Scale is 4, the result is
a DECIMAL(15,4). If Scale is 2, the result is a DECIMAL(15,2). In both
cases, there is a possibility of overflow.

Encrypting UltraLite databases

By default, UltraLite databases are unencrypted on disk and in permanent
memory. Text and binary columns are plainly readable within the database
file when using a viewing tool such as a hex editor. Two options are
provided for greater security:

36

Chapter 3. UltraLite Databases

♦ Obfuscation This option provides protection against casual attempts to
access data in the database. It does not provide as much security as strong
encryption. Obfuscation has minimal performance impact.

♦ Strong encryption UltraLite database files can be strongly encrypted
using the AES 128-bit algorithm, which is the same algorithm used to
encrypt Adaptive Server Anywhere databases. Use of strong encryption
provides security against skilled and determined attempts to gain access
to the data, but has a significant performance impact.

Caution
If the encryption key for a strongly encrypted database is lost or forgot-
ten, there is no way to access the database. Under these circumstances,
technical support cannot gain access to the database for you. It must be
discarded and you must create a new database.

Encrypting UltraLite
databases

To encrypt an UltraLite database, you supply an encryption key when you
create the database file. The supplied key is used to encrypt the database. On
subsequent attempts, the supplied key is checked against the encryption key,
and connection fails unless the key matches.

Changing the encryption
key

Each interface provides a function to change the encryption key for a
database. The application must already be connected to the database using
the existing key before the change can be made.

Caution
When the key is changed, every row in the database is decrypted using the
old key and re-encrypted using the new key. This operation is unrecov-
erable. If the application is interrupted part-way through, the database is
invalid and cannot be accessed. A new one must be created.

For more information ♦ UltraLite for MobileVB See“Encryption and obfuscation”[UltraLite for
MobileVB User’s Guide,page 14].

♦ UltraLite ActiveX See“Encryption and obfuscation”[UltraLite ActiveX
User’s Guide,page 16].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.ConnectionParmsin the API Reference.

♦ UltraLite.NET See“ULConnectionParms class”[UltraLite.NET User’s
Guide,page 100](iAnywhere.Data.UltraLite namespace) or
“ConnectionParms class”[UltraLite.NET User’s Guide,page 362]
(iAnywhere.UltraLite namespace).

♦ UltraLite C++ Component See“Class UltraLite_Connection_iface”
[UltraLite C/C++ User’s Guide,page 236].

37

♦ Embedded SQL and Static C++ API See“Encrypting data”[UltraLite
C/C++ User’s Guide,page 49].

♦ UltraLite Static Java See“Encrypting UltraLite databases”[UltraLite
Static Java User’s Guide,page 35].

♦ UltraLite for M-Business Anywhere See“Encryption and
obfuscation”[UltraLite for M-Business Anywhere User’s Guide,page 17].

Palm OS considerations

If you encrypt an UltraLite database on the Palm Computing Platform, the
end user is prompted to re-enter the key each time they launch the
application. This section describes how to add code that circumvents the
re-entering of the key.

You can save the encryption key in dynamic memory as a Palmfeature, and
retrieve the key when you launch the application rather than prompting the
user. Features are indexed by creator and a feature number. Users can pass in
their creator ID or NULL, along with the feature number or NULL, to save
and retrieve the encryption key.

The encryption key is not backed up and is cleared on any reset of the
device. The retrieval of the key then fails, and the user is prompted to
re-enter the key.

The following sample code (embedded SQL) illustrates how to save and
retrieve the encryption key:

#define UL_STORE_PARMS StoreParms
static ul_char StoreParms[STORE_PARMS_MAX];
...
startupRoutine() {

ul_char buffer[MAX_PWD];

if(!ULRetrieveEncryptionKey(
buffer, MAX_PWD, NULL, NULL)){

// prompt user for key
userPrompt(buffer, MAX_PWD);
if(!ULSaveEncryptionKey(buffer, NULL, NULL)) {

// inform user save failed
}

}
// build store parms
StrCopy(StoreParms, "key=");
StrCat(StoreParms, buffer);
ULPalmLaunch(&sqlca, UL_NULL);

}

The following sample code illustrates how to use a menu item to secure the
device by clearing the encryption key:

38

Chapter 3. UltraLite Databases

case MenuItemClear
ULClearEncryptionKey(NULL, NULL);
break;

39

User authentication in UltraLite
UltraLite provides optional database user IDs and passwords for user
authentication. Unlike Adaptive Server Anywhere and other multi-user
database systems, UltraLite user IDs are used for authentication only, not for
permission checking or object ownership within a database. By default,
UltraLite databases have no user authentication. Once connected to the
database, each user has full access to the database.

When an UltraLite database is created, it has an initial user ID of DBA, with
a password of SQL. These are also the default values when you connect, so
that you can avoid user authentication by not supplying user ID or password
connection parameters.

UltraLite permits up to four different user IDs to be defined at a time, with
both user ID and password being less than 16 characters long.

If the database is case insensitive (the default) then the user ID and password
are case insensitive. If the database is case sensitive, then the password is
case sensitive.

UltraLite users have to be added from an existing connection. This means
that if you want to add user authentication to your application by changing
the user ID or password, you must do so once you have connected using the
default user ID and password. What is more, you cannot change a user ID:
you add a user and delete an existing user. The function used for changing a
password is the same as for changing a user ID.

The general scheme for adding user authentication is as follows:

❖ To add user authentication to your application

1. Connect to the database using the defaultuid andpwd parameters.

New users have to be added from an existing connection, so the first
connection to a database must be made using the default user ID and
password of DBA and SQL.

2. Prompt for a user ID and password.

The way in which you prompt the user depends on your application.

3. Grant access to this user ID and password combination.

The method for granting access depends on the interface you are using.

4. Revoke access from the original user ID.

In a production environment, it is a security problem if you leave the
default user ID and password with access to the database.

40

Chapter 3. UltraLite Databases

UltraLite user IDs are separate from MobiLink user names and from user
IDs in any reference database or consolidated databases you use during
development and after deployment. In many cases you may wish to provide
code so that the values used for each are the same, but they do remain
distinct concepts. For example, in the CustDB sample application, you are
prompted for an employee number when starting the application. This
employee number identifies the database for the purposes of MobiLink
synchronization, and is not an UltraLite user ID for connection or data
access purposes.

For more information ♦ UltraLite for MobileVB See“Authenticating users”[UltraLite ActiveX
User’s Guide,page 38].

♦ UltraLite.NET See“User authentication”[UltraLite.NET User’s Guide,
page 46].

♦ UltraLite C++ Component See“Authenticating users”[UltraLite C/C++
User’s Guide,page 35].

♦ UltraLite ActiveX See“Authenticating users”[UltraLite ActiveX User’s
Guide,page 38].

♦ Native UltraLite for Java See“User authentication”[Native UltraLite for
Java User’s Guide,page 54].

♦ Embedded SQL See“Authenticating users”[UltraLite C/C++ User’s
Guide,page 85].

♦ Static C++ API See“Authenticating users”[UltraLite C/C++ User’s
Guide,page 47].

♦ UltraLite Static Java See“Adding user authentication to your
application”[UltraLite Static Java User’s Guide,page 33].

♦ UltraLite for M-Business Anywhere See“Authenticating users”
[UltraLite for M-Business Anywhere User’s Guide,page 32].

Sharing MobiLink and UltraLite user IDs

Although UltraLite and MobiLink user authentication mechanisms are
separate, you may wish to provide your end users with a single user ID and
password that provides both MobiLink and UltraLite user authentication. To
share user IDs and passwords, store them in variables and use the same
variable in the UltraLite user authentication calls and the synchronization
call.

You can design your application so that, if passwords are reset at a
MobiLink consolidated site, your application prompts for the new password.

41

❖ To prompt for a new MobiLink or UltraLite password

1. Save the user ID and password in variables.

2. Synchronize.

3. If synchronization fails because the user was not authenticated, prompt
the user for a new password.

4. Update the UltraLite user’s password using the appropriate function or
method.

5. Update the synchronization information and synchronize again.

☞ For information on MobiLink user authentication, see“Authenticating
MobiLink Users” [MobiLink Clients,page 9].

42

Chapter 3. UltraLite Databases

Character sets in UltraLite
There are several places in UltraLite applications where character set issues
can arise:

♦ The UltraLite schema The database itself has a single collating
sequence (character set and sort order), which is specified when the
database is created. The collating sequence determines the order of
character data in indexes, the results of string comparisons, and so on.

☞ For more information, see“UltraLite database character sets” on
page 43.

♦ The UltraLite runtime library or component The UltraLite
component or runtime library that accesses the database uses a character
set for messages and other interactions with the environment.

The runtime character sets may be Unicode or ANSI. The character set
used determines how the data is stored in the database file. To manage a
database, you must use a runtime of the same character set as the one
used to create it.

☞ For more information, see“UltraLite runtime character sets” on
page 44.

♦ Synchronization When data in the UltraLite database is synchronized
with a MobiLink synchronization server, the character set used in the
UltraLite database and that in the consolidated database must be
consistent.

☞ For more information, see“Synchronization and character sets ” on
page 46.

UltraLite database character sets

If you are using an UltraLite component, and create an UltraLite database
schema using the Schema Painter, you specify the character set and collating
sequence as you create the database schema.

UltraLite applications use the native multi-byte character encoding of the
target platform for reasons of efficiency. When the reference database uses a
different character encoding, the UltraLite application uses the default
collation of the target device.

UltraLite applications use the collating sequence of the reference database if
either of the following conditions is met.

♦ The reference database uses a single-byte character set.

43

♦ The native character encoding of the target device is multi-byte, the
reference database uses the same multi-byte character encoding, and the
UltraLite analyzer can find a compact representation for the collation
sequence used by the reference database.

For example, if you use a 932JPN reference database to build an application
for the Japanese Palm Computing Platform, then the UltraLite application
can inherit the collation information because the native character encoding is
the same as that of the reference database. However, if you use a 932JPN
reference database to build an UltraLite application for the Windows CE
platform, the application will use Unicode and the default Unicode collation
information.

Sort orders If the character set is single byte, or the native character set of the target
device is the same as the character set of the reference database, columns
that are CHAR(n) or VARCHAR(n) compare and sort according to the
collation sequence of the reference database.

☞ For information about creating databases, see“Creating UltraLite
databases and schemas” on page 28.

Data storage The way that character data is stored depends not only on the collation
sequence used when creating the schema, but also on the character set (ANSI
or Unicode) of the UltraLite runtime library that manages the database.

☞ For more information, see“UltraLite runtime character sets” on page 44.

UltraLite runtime character sets

The character set of the UltraLite runtime library is different depending on
the target operating system. The character set determines how data is
exchanged with the application and also affects data storage. This section
provides background information on character sets used on platforms
supported by UltraLite.

Palm Computing
Platform

Single-byte Palm Computing Platform devices use a character set based on
code page 1252 (the Windows US code page). The 1252Latin1 code page is
appropriate for developing applications for the Palm Computing Platform.
The 1252Latin1 code page is the default Adaptive Server Anywhere
collation sequence. Japanese Palm Computing Platform devices use the
932JPN character set.

Windows CE The Windows CE operating system uses Unicode. UltraLite running on
Windows CE also uses Unicode to store CHAR(n) and VARCHAR(n)
columns. Adaptive Server Anywhere collating sequences define behavior for
8-bit ASCII character sets.

UltraLite for Windows CE uses the Adaptive Server Anywhere collating

44

Chapter 3. UltraLite Databases

sequence when comparing Unicode characters that have a corresponding
8-bit ASCII character in the collating sequence being used, allowing
accented characters to be considered equal to and to sort with unaccented
characters. Unicode characters that have no corresponding 8-bit ASCII
character use a comparison of two Unicode values.

Windows desktop
operating systems

The UltraLite components are all Unicode based.

The runtime library used by UltraLite embedded SQL and Static C++
applications on Windows NT/2000/XP and Windows 98 is provided in both
ANSI and UNICODE versions. UltraLite versions before version 9 included
only an ANSI version of the runtime library.

Compatibility of database
files

The runtime or component that is used to create the database determines
how characters are stored within the database. You cannot create an
UltraLite database using an ANSI component or runtime library and then
use that database file with a Unicode component or runtime library.

The following table lists the character set in use by UltraLite components
and runtime libraries. These character sets dictate whether or not you can
use a database file created by one version of UltraLite in another. In
particular, note that you cannot open a database created by version 8.0.2
UltraLite for MobileVB or UltraLite ActiveX on a Windows operating
system (other than Windows CE) in version 9.0 or later software.

Environment 8.0.2 9.0 and later

Windows components ANSI Unicode

Windows CE compo-
nents

Unicode Unicode

Windows (Native Ultra-
Lite for Java)

Unicode Unicode

Windows 8.0.2 DLL ANSI N/A

Windows (ulrt9.dll) N/A ANSI

Windows (ulrtw9.dll) N/A Unicode

Windows (ulrtcw9.dll
(engine))

N/A Unicode

Windows CE Unicode Unicode

Static Java The error-handling objectsSQLExceptionandSQLWarning provide the
capability for Java applications to obtain error or warning messages. By

45

default, these messages are supplied in English.

Localized error and warning messages may be obtained in a non-English
language by setting the Java Locale to the appropriate language.
For example, to obtain French messages, the following code fragment might
be used:

java.util.Locale locale = new java.util.Locale("fr", "");
java.util.Locale.setDefault(locale);

The default Locale should be set at the start of the program. Once a message
is placed in an error-handling object, the language to be used for the
message is established for that execution of the program. For more
information, see your Java documentation.

Synchronization and character sets

When you synchronize, the MobiLink synchronization server always
translates characters uploaded from your application database to Unicode
and passes them to your consolidated database server using the Unicode
ODBC API. The consolidated database server, or its ODBC driver, then
performs any translation that may be required to convert them to the
character encoding of your consolidated database. This second translation
will always occur unless your consolidated database uses Unicode.

When information is downloaded, the consolidated database server converts
the characters to Unicode. The MobiLink synchronization server then
automatically translates the characters, if necessary, to suit the requirements
of your UltraLite application.

When both UltraLite application and consolidated database use the same
character encoding, no translation is necessary. If translation is necessary,
problems can arise when multiple character codes in your UltraLite
application map to a single Unicode value, or vice versa. In this event, the
MobiLink synchronization server translates in a consistent manner, but the
behavior is influenced by the translation mechanism within the consolidated
database server.

46

Chapter 3. UltraLite Databases

UltraLite database internals
In addition to storing the rows of data in each table, UltraLite stores state
information about each row, and stores indexes to efficiently access the rows.

UltraLite database files

UltraLite databases are stored in a single file that holds the tables, indexes,
and all other information in the database.

The tables and indexes are stored in fixed-size pages. Database I/O
operations are carried out a page at a time. The default page size is 4K. For
more information, see“Page Size connection parameter ” on page 83.

The temporary file UltraLite maintains a temporary file to hold information while processing
and to hold application state information. This file can be deleted without
loss of data when UltraLite is not running.

On Windows and Windows CE, UltraLite database files typically have a
name of the formdbname.udb. In this case, the temporary file is
dbname.~db(with the same path). If the database name has a different form,
a ‘~’ is appended to the end of the name for the temporary file. On Palm OS
the temporary file isul_tmp_<creator-id>.

Palm OS UltraLite databases on the Palm OS can be stored in the Palm virtual file
system for expansion cards, or they can be stored in the Palm record-based
data store. For more information, see“Choosing database storage on the
Palm OS” on page 190.

How UltraLite tracks row states

Each row in an UltraLite database has a one-byte marker to keep track of the
state of the row. The row states are used to control transaction processing,
recovery, and synchronization.

When a delete is issued, the state of each affected row is changed to reflect
the fact that it was deleted. Rolling back a delete is as simple as restoring the
original state of the row.

When a delete is committed, the affected rows are not always removed from
memory. If the row has never been synchronized, then it is removed. If the
row has been synchronized, then it is not removed until the next
synchronization confirms the delete with the consolidated database. After
the next synchronization, the row is removed from memory.

Similarly, when a row is updated in an UltraLite database, a new version of
the row is created. The states of the old and new rows are set so the old row
is no longer visible and the new row is visible. When an update is

47

synchronized, both the old and new versions of the row are needed to allow
conflict detection and resolution.

The old version of the row is deleted after synchronization. If a row is
updated many times between synchronizations, only the oldest version of the
row and the most recent version of the row are kept.

UltraLite tables must have primary keys

Tables in UltraLite applications must include a primary key.

Primary keys are also required during MobiLink synchronization, to
associate rows in the UltraLite database with rows in the consolidated
database.

For static APIs, the UltraLite generator uses primary key columns from your
reference database to generate primary key columns in the UltraLite
database. If the primary key columns for any table are not included in the
data required in the UltraLite database, the UltraLite generator looks for a
uniqueness constraint on the table, and promotes the columns with such a
constraint to a primary key in the UltraLite database. If there are no unique
columns, the generator reports an error.

Indexes in UltraLite databases

UltraLite indexes are similar to B+ trees with very small index entries.

Except for pure Java databases, each index entry is exactly two bytes, and
each index page contains 256 entries. Since index pages are rarely 100% full
and each index has some fixed overhead, the memory used by an UltraLite
index is more than two bytes per row in the table. The overhead for each
index is just over 1 K per index. Typically, UltraLite index pages on larger
tables will be least 85% full.

No similar consistent rule can be given for the memory requirements of
UltraLite Java databases.

Transaction processing, recovery, and backup

UltraLite provides transaction processing. A transaction is a logical set of
operations that are executed atomically; that is, either all operations in the
transaction are stored in the database or none are. If a transaction is
committed, all operations are stored in the database; if a transaction is
rolled back, none are.

Some transactions consist of a single operation. Many programming
interfaces use anautocommit setting to commit a transaction after each

48

Chapter 3. UltraLite Databases

operation. If you are using one of these interfaces, you must set autocommit
to off in order to exploit multi-operation transactions. The way of setting
autocommit off depends on the programming interface you are using; in
most interfaces it is a property of the connection object.

Recovery from system
failure

If an application using an UltraLite database stops running unexpectedly, the
UltraLite database automatically recovers to a consistent state when the
application is restarted. All transactions committed prior to the unexpected
failure are present in the UltraLite database. All transactions not committed
at the time of the failure are rolled back.

UltraLite does not use a transaction log to perform recovery. Instead,
UltraLite uses the state byte for every row to determine the fate of a row
when recovering. When a row is inserted, updated, or deleted in an UltraLite
database, the state of the row is modified to reflect the operation and the
connection that performed the operations. When a transaction is committed,
the states of all rows affected by the transaction are modified to reflect the
commit. If an unexpected failure occurs during a commit, the entire
transaction is rolled back on recovery.

☞ For information about state bytes, see“How UltraLite tracks row states”
on page 47.

Backups UltraLite provides protection against system failures, but not against media
failures. If the UltraLite data store itself is corrupted, the only way to protect
is through synchronization.

The best way of making a backup of an UltraLite application is to
synchronize with a consolidated database. To restore an UltraLite database,
start with an empty database and populate it from the consolidated database
through synchronization.

49

UltraLite database limitations
The following table lists the absolute limitations imposed by data structures
in the software on the size and number of objects in an UltraLite database. In
most cases, the memory, CPU, and storage device of the computer impose
stricter limits.

Item Limitation

Number of connections per database 14

Number of columns per table 65535 but limited by row size.

Row size is limited to about
4 KB, so the practical limit
on the number of columns per
table is much smaller than this:
much less than 4000 in most
situations.

Number of indexes Approximately 1000.

If you set the page size to 2 KB,
the maximum number of in-
dexes per table is reduced to
approximately 500.

Number of rows per database Limited by persistent store.

Number of rows per table 65534.

Number of tables per database Approximately 1000.

If you set the page size to 2 KB,
the maximum number of tables
is reduced to approximately
500.

Number of tables referenced per transac-
tion

No limit

Row size Approximately 4 KB (com-
pressed). LONG VARCHAR
and LONG BINARY values are
stored separately, and are in
addition to the 4 KB limit.

File-based persistent store 2 GB file or OS limit on file size

50

Chapter 3. UltraLite Databases

Item Limitation

Palm Computing Platform database size 128 Mb (Primary storage)

2 GB (expansion card file sys-
tem)

☞ For other limitations, see“Overview of SQL support in UltraLite” on
page 142.

Adaptive Server Anywhere features not available in UltraLite

The following Adaptive Server Anywhere features are not available in
UltraLite databases:

♦ Cascading updates and deletes Some applications rely on declarative
referential integrity to implement business rules. These features are not
available in UltraLite databases except during synchronization
downloads, when updates and deletes are cascaded automatically.

Any attempt to delete a primary key that has a corresponding value in a
foreign key fails with an error. Any attempt to update a primary key value
when foreign keys reference the original value also fails.

♦ Check constraints You cannot include table or column check
constraints in an UltraLite database.

♦ Computed columns You cannot include computed columns in an
UltraLite database.

♦ Global temporary tables The temporary aspect of global temporary
tables is not recognized by UltraLite. They are treated as if they were
permanent base tables, which you should use instead.

♦ Declared temporary tables You cannot declare a temporary table
within an UltraLite application.

♦ Stored procedures You cannot call stored procedures or user-defined
functions in an UltraLite application.

♦ Functions Not all SQL functions are available for use in UltraLite
applications.

Use of an unsupported function gives aFeature not available in

UltraLite error.

☞ For a list of supported functions, see“UltraLite SQL functions” on
page 148.

51

♦ Triggers Triggers are not supported in UltraLite databases.

♦ System table access There are no system tables in an UltraLite
database.

♦ System functions You cannot use Adaptive Server Anywhere system
functions, including property functions, in UltraLite applications.

♦ Java in the database You cannot include Java methods in your queries
or make any other use of Java in the database.

♦ Timestamp columns You cannot use Transact-SQL timestamp
columns in UltraLite databases. Transact-SQL timestamp columns are
created with the following default:

DEFAULT TIMESTAMP

You can use columns created as follows:

DEFAULT CURRENT TIMESTAMP

There is a behavior difference between the two: a DEFAULT CURRENT
TIMESTAMP column is not automatically updated when the row is
updated, while a DEFAULT TIMESTAMP column is automatically
updated. You must explicitly update columns created with DEFAULT
CURRENT TIMESTAMP if you wish the column to reflect the latest
update time.

SQL limitations If you are using dynamic SQL in your UltraLite application, the range of
SQL available is less than in Adaptive Server Anywhere.

☞ For more information, see“Dynamic SQL” on page 159.

UltraLite applications using static interfaces can use a wider range of SQL,
but the following SQL features are not supported.

♦ Dynamic SQL Dynamic SQL is not available to applications using
static interfaces.

♦ SAVEPOINT statement UltraLite databases support transactions, but
not savepoints within transactions.

♦ SET OPTION statement UltraLite databases do support a set of
options, but you cannot use the SET OPTION statement in an UltraLite
application to change option settings.

For UltraLite components, you can set options in the database schema
file, either by setting them in the reference database and using ulinit, or
from the UltraLite Schema Painter, or in an XML document holding the
schema.

52

Chapter 3. UltraLite Databases

☞ For more information about UltraLite database options, see
“UltraLite database options” on page 33.

♦ Schema modification To modify the schema of a UltraLite database
from a static interface application, you must build a new version of your
application.

To modify the schema of an UltraLite database from an UltraLite
component, you can use schema modification statements or you can
deploy an updated schema file.

☞ For more information, see“Upgrading UltraLite database schemas”
on page 54.

53

Upgrading UltraLite database schemas
If you develop a new version of an UltraLite application, you may wish to
alter the database schema. You can deploy an upgraded UltraLite schema
and maintain the data in existing end-user databases subject to some
restrictions. This feature is not available to UltraLite applications built using
the Static Java API.

Caution
Schema upgrade is not a reversible process. If an error occurs during
schema upgrade, it is possible to be left with an unusable database. Ensure
that your application has backed up all changes (by synchronizing or
by copying the database file) before upgrading the schema of databases
containing important data.

The mechanism for deploying an upgraded schema depends on whether you
use an UltraLite component (which requires a new schema file) or whether
you use a static interface (in which case the schema definition is held in the
generated application code).

❖ To deploy a new schema (UltraLite components)

1. Create a new schema file.

You can create your new schema using the Schema Painter or using ulinit.

If you use the schema painter, prepare the schema for deployment by
defining the mapping between old and new names. This mapping is used
to avoid losing data during the migration.

a. In the schema painter, choose File➤ Prepare Schema for Deployment.

b. Specify the mappings between old table or column names and their
equivalent in the new database schema.

If you use ulinit to create the new schema, you lose any data held in
renamed columns—the schema is interpreted as dropping the old column
and creating a new column.

2. Apply the schema file to the existing database.

The components expose a database schema as a DatabaseSchema or
ULDatabaseSchema object. You obtain a schema object using the
DatabaseSchema property on the Connection or ULConnection object.

Use the ApplyFile method on the ULDatabaseSchema object to apply the
new schema.

54

Chapter 3. UltraLite Databases

❖ To deploy a new schema (embedded SQL and Static C++ API)

1. Modify the schema in your reference database.

2. Create the new version of your application.

3. Ensure that your application calls ULEnableGenericSchema().

When a new UltraLite application built with a static interface is deployed
to a device, UltraLite by default recreates an empty database, losing any
data that was in the database before the new application was deployed. If
you call ULRegisterSchemaUpgradeObserver, the existing database is
instead upgraded to the schema of the new application. Applications that
upgrade a database schema must call this function.

☞ See“ULRegisterSchemaUpgradeObserver function”[UltraLite
C/C++ User’s Guide,page 216].

4. The schema is upgraded automatically when the new application is
applied.

☞ For information on how the schema upgrade happens, see“How
schema upgrade works” on page 56.

Monitoring schema
upgrades

Database schema upgrades can be a time-consuming process. An upgrade
observer lets you display progress information to the user, and allows the
user to cancel the upgrade during the initial step of the process.

The mechanism depends on the interface you are using.

♦ UltraLite for MobileVB Implement handlers for the
OnSchemaUpgradeStateChange and OnSchemaUpgradeProgress events.

☞ See“OnSchemaUpgradeProgress event”[UltraLite for MobileVB
User’s Guide,page 95]and“OnSchemaUpgradeStateChange event”
[UltraLite for MobileVB User’s Guide,page 96].

♦ UltraLite.NET Implement the SchemaUpgradeListener interface and
supply the object to DatabaseSchema.ApplyFile(). During the schema
upgrade, your SchemaUpgradeListener.SchemaUpgrading method is
invoked.

☞ See SchemaUpgradeListener in the API Reference.

♦ Native UltraLite for Java Implement the SchemaUpgradeListener
interface and supply the object to DatabaseSchema.applyFile(). During
the schema upgrade, your SchemaUpgradeListener.schemaUpgrading
method is invoked.

☞ Seeianywhere.native_ultralite.SchemaUpgradeListenerin the
API Reference.

55

♦ UltraLite C/C++ interfaces Implement and register a callback function
that handles the schema upgrade events.

☞ See“ULRegisterSchemaUpgradeObserver function”[UltraLite
C/C++ User’s Guide,page 216]and“Callback function for
ULRegisterSchemaUpgradeObserver”[UltraLite C/C++ User’s Guide,
page 206].

♦ UltraLite ActiveX This feature is not available for UltraLite ActiveX.

♦ UltraLite for M-Business Anywhere This feature is not available for
UltraLite for M-Business Anywhere.

How schema upgrade works

Back up before upgrading
It is strongly recommended that you back up your data before attempting a
schema upgrade, either by copying the database file or by synchronizing.

The schema upgrading process relies on matching names in the old and new
schema. If a row in the database is incompatible with the new schema, that
row is deleted from the database. In general, adding constraints to tables that
have data in them or carrying out unpredictable column conversions may
result in lost rows.

The schema upgrade proceeds as follows:

1. Any old tables not in the new schema are dropped.

2. Any new tables are created.

3. For any table that exists in both the old and new schema, columns are
added and dropped as needed. If a new column is not nullable and has no
default value, it is filled with zeros (numeric data types), the empty string
(character data types), and an empty binary value.

4. Columns whose properties have changed are then modified.

Caution
If an error occurs during conversion for any row, that row is dropped and
the SQL warning SQLE_ROW_DROPPED_DURING_SCHEMA_-
UPGRADE is generated.

5. Indexes and constraints are rebuilt. This step may also result in rows
being dropped if, for example, an index is redefined as UNIQUE but has
duplicate values.

56

Chapter 3. UltraLite Databases

Upgrading UltraLite software

On Windows operating systems other than Windows CE, if you are using
UltraLite for MobileVB or UltraLite ActiveX, you cannot open an UltraLite
database file created using 8.0.2 software. For more information, see
“UltraLite behavior changes”[What’s New in SQL Anywhere Studio,page 96].

☞ For compatibility of UltraLite database files with previous releases, see
“UltraLite runtime character sets” on page 44.

57

The UltraLite runtime
TheUltraLite runtime manages UltraLite databases and synchronization.
With the exception of the Static Java API, the UltraLite runtime for each
target platform is based on a single code base. The UltraLite runtime is
provided in several different forms:

♦ Components The UltraLite runtime is linked into each component.

♦ Static library For static interfaces, the UltraLite runtime is provided as
a static library that you link into your application. There is then no
separate file to deploy.

♦ Dynamic library For C/C++ Windows and Windows CE applications,
the UltraLite runtime is provided as a dynamically linked library (DLL).

♦ Separate executable For Windows and Windows CE a separate
executable called theUltraLite engine is provided. The UltraLite engine
is the only version of the runtime to support connections from multiple
applications. Each such application must link against a client library
when using the UltraLite engine.

☞ For more information, see“Using the UltraLite engine” on page 61.

Understanding concurrency in UltraLite

UltraLite databases may receive multiple concurrent requests. In order to
design applications that handle concurrent requests properly you should
understand how UltraLite manages concurrency in the database.

Concepts It is helpful to separate several concepts when thinking about concurrent
database access. These concepts are ordered from high-level to low-level:

♦ Applications The UltraLite engine can respond to requests from
multiple separate applications. Other versions of the UltraLite runtime
permit only a single application to connect to a database at a time.

☞ For more information, see“The UltraLite runtime” on page 58.

♦ Threads The UltraLite runtime supports multi-threaded applications.
A single application may be written to use multiple threads, each of
which may connect to the database.

☞ For more information, see“Threading in UltraLite applications” on
page 60.

♦ Connections Even a single-threaded application may open multiple
connections to a database. In any case, individual connections can
employ only a single thread.

58

Chapter 3. UltraLite Databases

♦ Transactions Each connection can have a single transaction in
progress at any one time. Transactions may consist of a single request or
multiple requests. Data modifications made during a transaction are not
permanent in the database until the transaction is committed. Either all
data modifications made in a transaction are committed, or all are rolled
back.

♦ Requests A transaction consists of one or more requests. A request
may be a query that reads data, or an insert, update, or delete that
modifies data, or a synchronization.

♦ The current row When an application is working with the result set of
a query, UltraLite maintains a pointer to thecurrent row within the result
set. In some interfaces, this current row is tracked explicitly using a
cursor (a pointer to a position in a result set). In others, the application
uses methods on a result set object or table object to identify and change
the current row. Such methods use a cursor “under the covers”.

Multiple databases The UltraLite runtime can manage a maximum of four databases at any one
time. A single UltraLite application may open multiple connections to
separate databases. No concurrency issues arise from such applications, as
the data in each database is independent.

Locking When a transaction changes a row, UltraLite locks that row until the
transaction is committed or rolled back. The lock prevents other transactions
from changing the row, although they can still read the row. An attempt to
change a locked row sets error SQLCODE SQLE_LOCKED, while an
attempt to change a deleted row sets the error SQLE_NOTFOUND. Your
applications should check the SQLCODE value after attempting to modify
data.

Re-reading rows To understand how locking and concurrency is managed, it helps to consider
two connections, A and B, each with their own transaction.

As connection A works with the result set of a query, UltraLitefetchesa
copy of the current row into a buffer. If A modifies the current row, it
changes the copy in the buffer. The copy in the buffer is written back into the
database when connection A calls an Update method or closes the result set.
At that time, a write lock is placed on the row to prevent other transactions
from modifying it. The change to the database is not permanent until
connection A commits the transaction.

Reading or fetching a row does not lock the row. If connection A fetches but
does not modify a row, connection B can still modify the row.

If connection B does modify the current row, the row becomes locked.
Connection A can then not modify the current row. If connection A fetches

59

the current row again, and the row has been deleted, connection A gets the
next row in the result set. If the row has been modified, connection A gets
the latest copy of the row. If the columns of the index used by connection A
have been modified, connection A sees the change as a delete followed by an
insert, and so gets the next row in the result set.

Synchronization Synchronization behaves as a separate connection. During the upload phase,
UltraLite applications can access UltraLite databases in a read-only fashion.
During the download phase, read-write access is permitted but if an
application changes a row that the download then attempts to change, the
download will fail and roll back. You can disable access to data during
synchronization by setting the Disable Concurrency synchronization
parameter.

☞ For more information, see“Disable Concurrency synchronization
parameter”[MobiLink Clients,page 319].

Threading in UltraLite applications

The UltraLite runtime is thread safe. You can develop multi-threaded
applications as long as the development tool and the target platform both
support multi-threaded applications. The exceptions are as follows:

♦ You cannot develop multi-threaded applications using UltraLite for
MobileVB, because of limitations in the underlying development tools.

♦ You cannot develop multi-threaded applications using UltraLite ActiveX
or UltraLite for M-Business Anywhere, because of limitations in
eMbedded Visual Basic, JScript, and JavaScript.

♦ You cannot develop multi-threaded applications for the Palm OS, because
of limitations in the operating system.

♦ From static interfaces, the same query cannot be executed more than once
at a time. As a result, you cannot access more than one instance at a time
of a result set for a given query.

Each thread must manage its own set of objects, including the Database
Manager object or its equivalents in the static interfaces (ULData, SQLCA).
The database manager object can be passed to a thread rather than being
initialized on the thread, but all management of data must be carried out on
an individual thread.

Static Java API The UltraLite runtime used by the Static Java API permits access to a single
database by a single application.

The UltraLite runtime is thread safe. Users of the Sun Java VM must use
version 1.2 or later to run multi-threaded UltraLite applications. Users of the

60

Chapter 3. UltraLite Databases

Jeode VM on Pocket PC and the IBM Java VM can run multi-threaded
UltraLite applications even though these VMs are based on JDK 1.1.8.

The entire UltraLite runtime is treated as a single critical section, only
allowing one thread to enter it at a time.

☞ For more information, see“Using the UltraLite JdbcDatabase.connect
method”[UltraLite Static Java User’s Guide,page 26].

Using the UltraLite engine

You can deploy the UltraLite runtime in the form of the UltraLite engine as
an alternative to deploying the UltraLite runtime as a library or in a
component.

The UltraLite engine acts as a database server for UltraLite databases. It is
provided for Windows and Windows CE platforms, as a separate executable.
The advantage of the UltraLite engine is that it provides same-machine
access to the database from multiple applications. The disadvantage is that
the UltraLite engine requires more system resources than other versions of
the UltraLite runtime and may yield lower performance.

❖ To use the UltraLite engine

1. Deploy the client version of your component.

The client versions are as follows. Paths are relative to your SQL
Anywhere installation:

♦ UltraLite.NET (Windows CE)
UltraLite\UltraLite.NET\ce\arm\ulnetclient9.dll

♦ UltraLite.NET (Windows XP) win32\ulnetclient9.dll

♦ Native UltraLite for Java (Windows CE)
UltraLite\NativeUltraLiteForJava\ce\arm\julclient9.dll

♦ Native UltraLite for Java (Windows XP)
UltraLite\NativeUltraLiteForJava\win32\julclient9.dll

♦ C++ Component (Windows CE) UltraLite\ce\arm\lib\ulrtc.lib
(static library)

♦ C++ Component (Windows XP)
UltraLite\win32\386\lib\ulimpcw.lib(import library) and
UltraLite\win32\386\ulrtcw9.dll(dynamic library)

♦ UltraLite for M-Business Anywhere (Windows CE)
UltraLite\UltraLiteForMBusinessAnywhere\ce\arm\ulpodclient9.dll.
The client library must be deployed under theAvantGo\Podsdirectory.

61

♦ UltraLite for M-Business Anywhere (Windows XP)
UltraLite\UltraLiteForMBusinessAnywhere\win32\386\ulpodclient9.-
dll. The client library must be deployed under theAvantGo\Pods
directory.

♦ UltraLite ActiveX Not available.

♦ UltraLite for MobileVB Not available.

2. Specify the runtime type in the DatabaseManager constructor.

This step is required for Native UltraLite for Java and for UltraLite.NET
only.

Starting the engine You can start the UltraLite engine in the following ways.

♦ Manually starting the UltraLite engine Enter the following command
at a command prompt.

dbuleng9

♦ Let your application start the UltraLite engine When you deploy
your UltraLite application using the client version of your UltraLite
component, it starts the UltraLite engine on the first connection attempt.
If an engine is already running, it uses that engine to connect to the
database.

To specify the location ofdbuleng9.exe, use the StartLine connection
parameter when connecting to the database for the first time. If the
StartLine parameter is not provided, the client looks fordbuleng9.exein
the\Windows, root (\), and\UltraLiteDB directories in that order on
Windows CE and in thewin32 subdirectory of your SQL Anywhere
installation on other Windows operating systems.

To connect to a database using the UltraLite engine, you must supply the
user ID (uid) and password (pwd) connection parameters.

You can stop the UltraLite engine manually using thedbulstoputility.
Alternatively, you can let the application stop the engine. The last
application to disconnect from the database stops the UltraLite engine
automatically.

62

CHAPTER 4

Connection Parameters

About this chapter This chapter provides a reference for the parameters that establish and
describe connections from client applications to a database.

Contents Topic: page

Overview 64

Database Identification parameters 68

Open Connection parameters 73

Database Schema parameters 78

Additional connection parameters 82

63

Overview
You must supply connection parameters for an application to connect to an
UltraLite database. The connection parameters must specify the database to
which the connection is to be established, usually by providing a database
filename and path.

As an application may be compiled for more than one platform, a separate
parameter for each target platform is available to identify the database. If
user authentication is enabled, the connection parameters must also specify a
user name and password.

☞ For more information, see“Database Identification parameters” on
page 68, and“Open Connection parameters” on page 73.

UltraLite databases are often created by the application itself, and
characteristics of the database are defined by connection parameters. The
connection parameters must include a schema file (for UltraLite
components) as well as optional parameters to adjust database features. If
you are using embedded SQL, the static C++ API, or the Static Java API, the
database is created from information already stored in the application and no
schema file is needed.

☞ For more information, see“Database Schema parameters” on page 78,
and“Additional connection parameters” on page 82.

All connection parameters are case insensitive.

The following table lists the available connection parameters. Database
Schema parameters, used only when creating a database are marked with an
asterisk (*).

Parameter Description

Additional Parms A placeholder for additional connection parameters. See
“Additional Parms connection parameter” on page 68

Cache Size Defines the size of the cache. See“Cache Size connec-
tion parameter ” on page 73.

Connection
Name

Specifies a connection name. See“Connection Name
connection parameter” on page 74.

Database On CE The path and filename of the UltraLite database file
to which you want to connect on Windows CE. See
“Database On CE connection parameter” on page 69.

64

Chapter 4. Connection Parameters

Parameter Description

Database On
Desktop

The path and filename of the UltraLite database file to
which you want to connect. See“Database On Desktop
connection parameter” on page 70.

Database On
Palm

An identifier for the UltraLite database on Palm OS. See
“Database On Palm connection parameter” on page 71.

Encryption Key An encryption key for the database. See“Encryption
Key connection parameter ” on page 75.

Obfuscate* Apply a simple encryption scheme to the database. See
“Obfuscate connection parameter” on page 83.

Page Size The database page size. See“Page Size connection
parameter ” on page 83.

Palm Allow
Backup

Controls HotSync backup behavior on Palm OS devices.
See“Palm Allow Backup parameter” on page 84.

Password A password for the user. See“Password connection
parameter” on page 76.

Reserve Size Defines the reserve size. See“Reserve Size connection
parameter ” on page 84.

Schema On CE∗ The path and filename of the UltraLite schema on
Windows CE. See“Schema On CE connection parameter
” on page 78.

Schema On
Desktop*

The path and filename of the UltraLite schema. See
“Schema On Desktop connection parameter ” on page 79

Schema On
Palm*

The UltraLite schema for the Palm OS. See“Schema On
Palm connection parameter ” on page 80.

User ID The user ID with which you connect to the database. See
“User ID connection parameter” on page 76.

VFS On Palm* Identifies the Palm card as using the virtual file system.
See“VFS On Palm parameter ” on page 81.

Specifying file paths

Filenames and paths in connection parameters are subject to the following
requirements, depending on the UltraLite Component you are using:

65

Target platform Requirement

Java All backslashes must be escaped. For example,
"file_name=\\UltraLite\\MyFile.udb" .

Windows CE Paths are absolute.

Windows Paths may be absolute or relative.

Specifying connection parameters

Each connection parameter can be specified in the following ways:

♦ As a property of a Connection Parameters object The following
interfaces provide a connection parameters object. This object has
properties that are individual connection parameters.

• UltraLite for MobileVB. You can specify connection parameters by
adding an UltraLite control to a form and specifying its properties in
the Properties window.

• UltraLite ActiveX

• Native UltraLite for Java

• UltraLite.NET. You can specify connection parameters by adding an
UltraLite.NET control to a form and specifying its properties in the
Properties window.

♦ In the AdditionalParms property The interfaces that supply a
connection parameters object include an Additional Parms property. This
property takes a connection string as its value.

♦ As a keyword in a connection string UltraLite interfaces can supply a
connection string when connecting. The keywords in the connection
string are individual connection parameters.

♦ In the UL_STORE_PARMS macro Embedded SQL and the static C++
API both use the UL_STORE_PARMS macro to hold connection
parameters that affect database file. The parameters are used only on the
initial connection attempt, when the database is created. The
UL_STORE_PARMS macro takes a connection string.

For example, the following definition sets a connection parameter.

#define UL_STORE_PARMS UL_TEXT("reserve_size=2m")

Where possible, it is recommended that you use the Connection Parameters
object. It provides easier checking and a more systematic interface than
using a connection string.

66

Chapter 4. Connection Parameters

Connection strings and
connection parameters

Some less commonly used parameters can be specified only in a connection
string. Depending on the interface, the connection string can be supplied in
the AdditionalParms property, in the UL_STORE_PARMS macro, or in an
Open method that takes a connection string as argument.

If a parameter is specified both in a property and in a connection string, the
value in the property takes precedence.

Troubleshooting tip
UltraLite ignores unrecognized connection string parameters. As a result,
spelling mistakes may not be immediately obvious.

67

Database Identification parameters
The connection parameters in this section are used to identify the UltraLite
database. At least one of these parameters must be specified on each
connection attempt.

Database Identification parameters are also used when dropping (deleting) a
database.

For more information ♦ UltraLite for MobileVB See“OpenConnection method”[UltraLite for
MobileVB User’s Guide,page 108], and“OpenConnectionWithParms
method”[UltraLite for MobileVB User’s Guide,page 109].

♦ UltraLite ActiveX See“OpenConnection method”[UltraLite ActiveX
User’s Guide,page 107], and“OpenConnectionWithParms method”
[UltraLite ActiveX User’s Guide,page 107].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET See“ULDatabaseManager class”[UltraLite.NET User’s
Guide,page 137](iAnywhere.Data.UltraLite namespace) or
“DatabaseManager class”[UltraLite.NET User’s Guide,page 399]
(iAnywhere.UltraLite namespace).

♦ UltraLite C++ Component See“Class UltraLite_DatabaseManager”
[UltraLite C/C++ User’s Guide,page 249].

♦ UltraLite for M-Business Anywhere See“Method openConnection”
[UltraLite for M-Business Anywhere User’s Guide,page 77], and“Method
openConnectionWithParms”[UltraLite for M-Business Anywhere User’s
Guide,page 77].

♦ UltraLite for Embedded SQL See“Initializing the SQL
Communications Area”[UltraLite C/C++ User’s Guide,page 64].

♦ UltraLite Static C++ API See“Connecting to a database”[UltraLite
C/C++ User’s Guide,page 45].

♦ UltraLite Static Java See“Connecting to the database using JDBC”
[UltraLite Static Java User’s Guide,page 27].

Additional Parms connection parameter

Function Permits additional connection parameters to be specified.

Syntax

68

Chapter 4. Connection Parameters

Interface Connection parameter

UltraLite for MobileVB AdditionalParms

UltraLite ActiveX AdditionalParms

UltraLite.NET AdditionalParms

Native UltraLite for Java additionalParms

UltraLite for M-Business Anywhere additionalParms

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66and“Additional connection parameters”
on page 82.

Usage Some less commonly used connection parameters do not have properties
associated with them in the UltraLite components. These parameters can be
specified as a connection string in AdditionalParms.

Values A connection string.

Default None.

See also “Specifying connection parameters” on page 66

Database On CE connection parameter

Function The path and filename of the UltraLite database file to which you want to
connect on Windows CE.

Syntax

Interface Connection parameter

UltraLite for MobileVB DatabaseOnCE

UltraLite ActiveX DatabaseOnCE

UltraLite.NET DatabaseOnCE

Native UltraLite for Java databaseOnCE

UltraLite for M-Business Anywhere databaseOnCE

Connection string ce_file

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Values String

Default If Database On CE is not specifed then the value for Database On Desktop is

69

used.

If neither is specified then the default value of\UltraLiteDB\ulstore.udbis
used. It is recommended that you explicitly specify the parameter, and not
rely on default behavior.

Description When creating a database, this parameter names the new database file.

When opening a connection to an existing database, the parameter identifies
the database.

♦ If the filename does not include an extension, the file of extension.udb is
presumed.

♦ The full path of the file must be specified. No substitutions are performed
on this value.

♦ The schema file is not required if a.udb file already exists.

♦ Database On CE is required if you use a database with any name other
than the default.

♦ You must ensure that this directory exists when the connection parameter
is used. UltraLite does not create the directory automatically.

Example To create and connect to the sample database,udemo.udb:

"schema_file=MyOrders.usm;CE_FILE=udemo.udb"

See also “Specifying file paths” on page 65

Database On Desktop connection parameter

Function The database file to which you want to connect in the desktop development
environment.

Syntax

Interface Connection parameter

UltraLite for MobileVB DatabaseOnDesktop

UltraLite ActiveX DatabaseOnDesktop

UltraLite.NET DatabaseOnDesktop

Native UltraLite for Java databaseOnDesktop

UltraLite for M-Business Anywhere databaseOnDesktop

Connection string { file_name| DBF }

70

Chapter 4. Connection Parameters

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Values String

Default The default value isulstore.udb.

It is recommended that you explicitly specify the parameter, and not rely on
default behavior.

Description When creating a database, this parameter names the new database file.

When opening a connection to an existing database, the parameter identifies
the database.

If the filename does not include an extension, the file of extension.udb is
assumed.

Example ♦ To create and connect to the sample database,udemo.udb, installed in the
directoryc:\mydb, use the following connection string:

"schema_file=MyOrders.usm;DBF=c: \mydb\udemo.udb"

See also “Specifying file paths” on page 65

Database On Palm connection parameter

Function The Palm creator ID of the database to which you want to connect.

Syntax

Interface Connection parameter

UltraLite for MobileVB DatabaseOnPalm

UltraLite for M-Business Anywhere databaseOnPalm

Connection string palm_db

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Values String

Default For C++, the creator ID of the application. For MobileVB applications, there
is no default.

Description For many applications, there is no need to supply a Database On Palm
connection parameter. From UltraLite for MobileVB, supply a
DatabaseOnPalm connection parameter that matches the creator ID of your
application.

71

On first connecting to a database, UltraLite creates a database which is
named ul_udb_creator-idand which has a creator ID ofcreator-id, where
creator-idis the value of the Database On Palm connection parameter, or (if
that parameter is not supplied) is the creator ID of the application.

See also ♦ “Specifying file paths” on page 65
♦ “Understanding the Palm Creator ID” on page 191

72

Chapter 4. Connection Parameters

Open Connection parameters
Open Connection parameters are used, together with Database Identification
parameters, by OpenConnection methods and OpenConnectionWithParms
methods.

For more information ♦ UltraLite for MobileVB See“OpenConnection method”[UltraLite for
MobileVB User’s Guide,page 108], and“OpenConnectionWithParms
method”[UltraLite for MobileVB User’s Guide,page 109].

♦ UltraLite ActiveX See“OpenConnection method”[UltraLite ActiveX
User’s Guide,page 107], and“OpenConnectionWithParms method”
[UltraLite ActiveX User’s Guide,page 107].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET See“ULConnectionParms class”[UltraLite.NET User’s
Guide,page 100](iAnywhere.Data.UltraLite namespace) or
“ConnectionParms class”[UltraLite.NET User’s Guide,page 362]
(iAnywhere.UltraLite namespace).

♦ UltraLite C++ Component See“OpenConnection Function”[UltraLite
C/C++ User’s Guide,page 251].

♦ UltraLite for M-Business Anywhere See“Method openConnection”
[UltraLite for M-Business Anywhere User’s Guide,page 77], and“Method
openConnectionWithParms”[UltraLite for M-Business Anywhere User’s
Guide,page 77].

♦ UltraLite for Embedded SQL See“Authenticating users”[UltraLite
C/C++ User’s Guide,page 85].

♦ UltraLite Static C++ API See“Authenticating users”[UltraLite C/C++
User’s Guide,page 47].

♦ UltraLite Static Java See“Adding user authentication to your
application”[UltraLite Static Java User’s Guide,page 33].

Cache Size connection parameter

Function Defines the size of the database cache.

Syntax

Interface Connection parameter

Connection string cache_size

73

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Usage Used when you configure a database. Use k or K, m or M to denote
kilobytes or megabytes, respectively.

Values The minimum cache size is 4K.

Default The default is 16 x page_size. Actual value used is rounded down to the
nearest multiple of page_size.

Description Defines the size of the cache. You can specify the size in units of bytes. Use
the suffix k or K to indicate units of kilobytes and use the suffix M or m to
indicate megabytes

The default cache size is sixteen pages. Using the default page size of 4 K,
the default cache size is therefore 64 K. The minimum cache size is platform
dependent.

The default cache size is conservative. If your testing shows the need for
better performance, you should increase the cache size.

Increasing the cache size beyond the size of the database itself provides no
performance improvement. Also, large cache sizes may interfere with the
number of other applications you can use.

On the Palm Computing Platform, the parameter applies only to virtual file
system (VFS) databases. The cache itself resides in record storage, not VFS
storage.

Example For example, the following string sets the cache size to 128 K.

"cache_size=128k"

Connection Name connection parameter

Function Specifies a name for the connection. This is only needed if you create more
than one connection to the database.

Syntax

74

Chapter 4. Connection Parameters

Interface Connection parameter

UltraLite for MobileVB ConnectionName

UltraLite ActiveX ConnectionName

UltraLite.NET ConnectionName

Native UltraLite for Java connectionName

UltraLite for M-Business Anywhere connectionName

Connection string con

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Usage The Connection Name parameter is global to the application.

Encryption Key connection parameter

Function An encryption key for the database. You can define an encryption key for
your UltraLite database when CreateDatabase is called.

Syntax

Interface Connection parameter

UltraLite for MobileVB EncryptionKey

UltraLite ActiveX EncryptionKey

UltraLite.NET EncryptionKey

Native UltraLite for Java encryptionKey

UltraLite for M-Business Anywhere encryptionKey

Connection string { key | dbkey }

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Values String

Default No key is provided.

Description Used only when you create a database.

If a database is created using an encryption key, the database file is strongly
encrypted using the AES 128-bit algorithm, which is the same algorithm
used to encrypt Adaptive Server Anywhere databases. Use of strong
encryption provides security against skilled and determined attempts to gain

75

access to the data, but may have a significant performance impact.

Example "schema_file=MyOrders.usm;KEY=MyKey"

See also “Encrypting UltraLite databases” on page 36

Password connection parameter

Function A password for the user. Passwords are case insensitive if the database is
case insensitive and case sensitive if the database is case sensitive.

Syntax

Interface Connection parameter

UltraLite for MobileVB Password

UltraLite ActiveX Password

UltraLite.NET Password

Native UltraLite for Java password

UltraLite for M-Business Anywhere password

Connection string { password| PWD }

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Usage Anywhere

Values String

Default SQL

Description Every user of a database has a password. The password must be supplied for
the user to be allowed to connect to the database.

The Password (PWD) connection parameter is not encrypted.

Example ♦ The following connection string fragment supplies the user ID DBA and
password SQL.

"UID=DBA;PWD=SQL;schema_file=MyOrders.usm"

User ID connection parameter

Function The user ID with which you log on to the database. The value must be an
authenticated user for the database. User ID’s are case-insensitive if the
database is case-insensitive and case sensitive if the database is case
sensitive.

76

Chapter 4. Connection Parameters

Databases are created with a single authenticated user DBA whose initial
password is SQL. By default, connections are opened using the UID=DBA
and the PWD=SQL. To disable the default user, use

connection.revokeConnectionFrom.

To add a user or change a user’s password, use

connection.grantConnectTo.

Syntax

Interface Connection parameter

UltraLite for MobileVB UserID

UltraLite ActiveX UserID

UltraLite.NET UserID

Native UltraLite for Java userID

UltraLite for M-Business Anywhere userID

Connection string { userid | UID }

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Usage Anywhere

Values String

Default DBA

Description You must always supply a user ID when connecting to a database, unless you
leave the database using the default user ID and password of DBA and SQL.

Example ♦ The following connection string fragment supplies the user ID DBA and
password SQL:

"schema_file=MyOrders.usm;uid=DBA;pwd=SQL"

77

Database Schema parameters
The keywords in this section are used to specify a schema for an UltraLite
database.

For more information ♦ UltraLite for MobileVB See“CreateDatabase method”[UltraLite for
MobileVB User’s Guide,page 105], and“CreateDatabaseWithParms
method”[UltraLite for MobileVB User’s Guide,page 107].

♦ UltraLite ActiveX See“CreateDatabase method”[UltraLite ActiveX
User’s Guide,page 101], and“CreateDatabaseWithParms method”
[UltraLite ActiveX User’s Guide,page 102].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET See“OpenWithCreate method”[UltraLite.NET User’s
Guide,page 93](iAnywhere.Data.UltraLite namespace) or
“CreateDatabase method”[UltraLite.NET User’s Guide,page 401]
(iAnywhere.UltraLite namespace).

♦ UltraLite C++ Component See“CreateAndOpenDatabase Function”
[UltraLite C/C++ User’s Guide,page 250].

♦ UltraLite for M-Business Anywhere See“Method createDatabase”
[UltraLite for M-Business Anywhere User’s Guide,page 75], and“Method
createDatabaseWithParms”[UltraLite for M-Business Anywhere User’s
Guide,page 76].

♦ UltraLite for embedded SQL See“Macros and compiler directives for
UltraLite C/C++ applications”[UltraLite C/C++ User’s Guide,page 221].

♦ UltraLite static C++ See“Macros and compiler directives for UltraLite
C/C++ applications”[UltraLite C/C++ User’s Guide,page 221].

Schema On CE connection parameter

Function To identify the schema filename deployed to Windows CE.

Syntax

78

Chapter 4. Connection Parameters

Interface Connection parameter

UltraLite for MobileVB SchemaOnCE

UltraLite ActiveX SchemaOnCE

UltraLite.NET SchemaOnCE

Native UltraLite for Java schemaOnCE

UltraLite for M-Business Anywhere schemaOnCE

Connection string ce_schema

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Values String

Default The recommended file extension is.usm.

Description Used only when you create a database.

The path and filename of the UltraLite schema file on Windows CE. The
default extension for UltraLite schema files is .usm. This is a required
parameter when using CreateDatabase for CE.

Example ♦ The following connection string fragment supplies the ce_schema and
schema_file parameters. When run on the desktop,MyOrders.usmis
used; when run on a CE device (including the emulator),orders.usmis
used.

"CE_SCHEMA=orders.usm;SCHEMA_FILE=MyOrders.usm"

Schema On Desktop connection parameter

Function To identify the schema file in the desktop development environment.

Syntax

Interface Connection parameter

UltraLite for MobileVB SchemaOnDesktop

UltraLite ActiveX SchemaOnDesktop

UltraLite.NET SchemaOnDesktop

Native UltraLite for Java schemaOnDesktop

UltraLite for M-Business Anywhere schemaOnDesktop

Connection string schema_file

79

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Values String

Default The recommended file extension is.usm.

Description Used only when you create a database.

The path and filename of the UltraLite schema in the development
environment.

Example ♦ The following connection string fragment supplies the ce_schema and
schema_file parameters. When run on the desktop,MyOrders.usmis
used; when run on a CE device (including the emulator),orders.usmis
used.

"CE_SCHEMA=orders.usm;SCHEMA_FILE=MyOrders.usm"

Schema On Palm connection parameter

Function To identify the schema file deployed to a Palm OS device.

Syntax

Interface Connection parameter

UltraLite for MobileVB SchemaOnPalm

UltraLite for M-Business Anywhere schemaOnPalm

Connection string palm_schema

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Values String

Default There is no default value.

Description This parameter specifies the UltraLite schema for a Palm OS device. It is
required only when you create a database.

Although.pdb is the extension on the desktop, do not supply.pdb in your
connection parameter string.

Example ♦ The following connection string fragment supplies the palm_schema and
schema_file parameters.

"PALM_SCHEMA=orders;SCHEMA_FILE=MyOrders.usm"

80

Chapter 4. Connection Parameters

VFS On Palm parameter

Function Identifies the Palm card as using the virtual file system.

This parameter is available only in UltraLite for MobileVB. To use the
virtual file system from an embedded SQL or static C++ API application,
use the EnablePalmFileDB function.

Syntax

Interface Connection parameter

UltraLite for MobileVB VFSOnPalm

Connection string (UltraLite for Mo-
bileVB)

PALM_FS=VFS

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Values As a parameter, VFSOnPalm is a boolean value.

In the connection string, the parameter must be specified as follows:

PALM_FS=VFS

Description Thepalm_fs=vfs parameter needs to be specified both for CreateDatabase
and OpenConnection if you are using the VFS card for Palm devices and
you want the database stored on the card.

The default database filename isul_udb_YYYY.udb, whereYYYY is the
creator ID of the application. You can control the filename by specifying a
different creator ID in the DatabaseOnPalm parameter. For example, the
following connection string references a database on the card with filename
ul_udb_XXXX.udb:

palm_db=XXXX;palm_fs=vfs

Even when the VFSOnPalm parameter is specified, the palm_db parameter
(Database on Palm) must be set to a valid creator ID.

If the VFS On Palm parameter is not specified, the database is created (or
dropped from or to which you are connecting) on the device and not the card.

81

Additional connection parameters
These are optional parameters to configure a database when it is created.
Some of these parameters can influence performance, so it is suggested that
you test these parameters to find the optimal performance for your
application.

For more information ♦ UltraLite for MobileVB See“CreateDatabase method”[UltraLite for
MobileVB User’s Guide,page 105], and“CreateDatabaseWithParms
method”[UltraLite for MobileVB User’s Guide,page 107].

♦ UltraLite ActiveX See“CreateDatabase method”[UltraLite ActiveX
User’s Guide,page 101], and“CreateDatabaseWithParms method”
[UltraLite ActiveX User’s Guide,page 102].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET See“OpenWithCreate method”[UltraLite.NET User’s
Guide,page 93](iAnywhere.Data.UltraLite namespace) or
“CreateDatabase method”[UltraLite.NET User’s Guide,page 401]
(iAnywhere.UltraLite namespace).

♦ UltraLite C++ Component See“CreateAndOpenDatabase Function”
[UltraLite C/C++ User’s Guide,page 250].

♦ UltraLite for M-Business Anywhere See“Method createDatabase”
[UltraLite for M-Business Anywhere User’s Guide,page 75], and“Method
createDatabaseWithParms”[UltraLite for M-Business Anywhere User’s
Guide,page 76].

♦ UltraLite for embedded SQL See“Macros and compiler directives for
UltraLite C/C++ applications”[UltraLite C/C++ User’s Guide,page 221].

♦ UltraLite static C++ See“Macros and compiler directives for UltraLite
C/C++ applications”[UltraLite C/C++ User’s Guide,page 221].

Database Name connection parameter

Function For applications that connect to more than one database, this parameter can
be used to distinguish the databases.

Syntax

Interface Connection parameter

Connection string dbn

82

Chapter 4. Connection Parameters

Usage Specify this parameter either in connection strings or in the AdditionalParms
string.

Once a database has been started, UltraLite sets the database name. You can
then make new connections using the database name parameter instead of
specifying the database file.

Default The default value is derived from the database file name by removing the
path and extension. On Palm OS, the default value is the creator ID.

Obfuscate connection parameter

Function Obfuscates the database. Obfuscation is a form of simple encryption.

Syntax

Interface Connection parameter

Connection string obfuscate

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Values 0 or 1. A value of 1 indicates that the database should be obfuscated.

Usage Used only when you create a database.

Embedded SQL and static C++ API developers can also use the
UL_ENABLE_OBFUSCATION macro to obfuscate a database. See
“UL_ENABLE_OBFUSCATION macro”[UltraLite C/C++ User’s Guide,
page 221].

Default By default, databases are not obfuscated.

See also “Encrypting UltraLite databases” on page 36

Page Size connection parameter

Function Defines the database page size.

Syntax

Interface Connection parameter

Connection string page_size

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Usage Used only when you create a database.

Used when you create a database. Use k or K to denote kilobytes.

83

Default The default page size for UltraLite databases is 4 K. The range of size is 2 K
to 4 K.

Description UltraLite databases are stored in pages. I/O operations are carried out a page
at a time. It can be used on any target platform. Setting a page size of 2 K
reduces the maximum number of tables to approximately 500.

This parameter is ignored when starting an existing database.

Example You can specify 2 kb pages using the following storage parameters string:

"schema_file=MyOrders.usm;PAGE_SIZE=2K"

Palm Allow Backup parameter

Function Control backup behavior over HotSync on Palm devices.

Syntax

Interface Connection parameter

Connection string palm_allow_backup

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Usage Used when you configure a database.

Values yesor no.

Description If the backup bit is set on the UltraLite database, and if this parameter is set
to yes, the entire Palm database is backed up every time the device is
synchronized using HotSync. If this parameter is not set, UltraLite ensures
that the backup bit is cleared. In most applications, data is backed up by
synchronization, so there is no need to set this parameter.

The backup bit is set when a database file is deployed by HotSync, and can
also be set by the ULUtil utility. For more information, see“The ULUtil
utility” on page 123.

Example The following string sets the parameter.

#define UL_STORE_PARMS UL_TEXT("palm_allow_backup=yes")

Reserve Size connection parameter

Function Reserves file system space for storage of UltraLite persistent data.

Syntax

84

Chapter 4. Connection Parameters

Interface Connection parameter

Connection string reserve_size

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 66.

Usage Use k or K, m or M to denote kilobytes or megabytes, respectively.

Values Values can be expressed in KB or MB.

Description The reserve_size parameter allows you to pre-allocate the file system space
required for your UltraLite database without actually inserting any data.
Reserving file system space can improve performance slightly and also
prevent out of memory failures. By default, the persistent storage file only
grows when required as the application updates the database.

Reserve_size reserves file system space, which includes the metadata in the
persistent store file, and not just the raw data. The metadata overhead as well
as data compression must be considered when deriving the required file
system space from the amount of database data. Running the database with
test data and observing the persistent store file size is recommended.

The reserve_size parameter reserves space by growing the persistent store
file to the given reserve size on startup, regardless of whether the file
previously existed. The file is never truncated.

This parameter does not apply to the Palm Computing Platform unless the
application uses the Virtual File System (VFS).

Example Use the reserve_size parameter to pre-allocate space as follows:

"CE_SCHEMA=orders;RESERVE_SIZE=128K"

This example ensures that the persistent store file is at least 128 K upon
startup.

85

CHAPTER 5

UltraLite Utilities Reference

About this chapter This chapter provides reference information about UltraLite utility
programs.

Contents Topic: page

The UltraLite engine 88

The UltraLite Generator 89

The SQL Preprocessor 95

The HotSync Conduit Installer 99

The dbulstop utility 100

The ulconv utility 101

The ulcreate utility 108

The uldbsgen utility 110

The ulinit utility 112

The UltraLite Interactive SQL utility 115

The ulload utility 117

The ulsync utility 119

The ulunload utility 121

The ULUtil utility 123

The UltraLite Schema Painter 124

The ulxml utility 126

87

The UltraLite engine
Function Manages UltraLite databases. In contrast to the UltraLite runtime, which

hosts a single application, the UltraLite engine permits multiple applications
to access UltraLite databases concurrently.

Syntax dbuleng9

Applies to Windows XP and Windows CE.

Remarks There are no command line options for the UltraLite engine.

See also ♦ “Using the UltraLite engine” on page 61
♦ “The dbulstop utility” on page 100

88

Chapter 5. UltraLite Utilities Reference

The UltraLite Generator
Applies to Static interfaces only.

Function The UltraLite generator implements your application database and generates
additional C/C++ or Java source files, which must be compiled and linked
into your application.

Syntax ulgen [options] [project [output-filename]]

Option Description

-a Uppercase SQL string names [Java]

-c “key-
word=value;. . . ”

Supply database connection parameters for your
reference database

-e Replace SQL strings with generated constants [
Java]

-f filename Specify output file name

-g Do not display warnings

-I Generate inner classes [Java]

-j project-name Project name

-l type Log the execution plan for each statement to a file.
The type must be one of the following:

♦ xml

♦ short

♦ long

-m version Specify the version name for generated synchro-
nization scripts

-o table-name,. . . Specify the order in which tables are uploaded
during synchronization

-p package-name Package name for generated classes [Java]

-q Do not print the banner

-r filename The file containing the trusted root certificates

-s filename Generate a list of SQL strings in an interface
definition [Java]

89

Option Description

-t target Target language. Must be one of the following:

♦ c

♦ c++

♦ java

-u pub-name The publication to use©++ API only)

-v pub-name The publication to use for synchronization

-x Generate more and smaller C/C++ files.

Remarks The UltraLite generator creates code that you compile and make part of an
UltraLite application. Its output is based on the schema of the Adaptive
Server Anywhere reference database and the specific SQL statements or
tables that you use in your embedded SQL source files.

You must ensure that all your statements and tables are defined in the
dbo.ul_statement table before running the generator. You do this as follows:

♦ In embedded SQL, run the SQL preprocessor on each file.

♦ In the C/C++ API and Java, add statements to the database using
ul_add_statement, and/or define publications in the database.

In this table, statements are associated with projects. By specifying a project
name on the generator command line, you determine which statements are
included in your generated database.

You can include multiple projects, and also mix projects with a publication,
on the generator command line. You must run the generator only once for
each generated database.

If you do not specify an output file name, the generated code is written to a
file with a name ofproject. It is recommended that you specify an output file
name using the-f command line option.

Customizing UltraLite generator operations The UltraLite analyzer
provides hooks that you can use to customize the code generation process.
These hooks are stored procedure names. If you supply stored procedures
with the following names, the UltraLite analyzer invokes them before and
after the analysis process:

♦ sp_hook_ulgen_begin()

90

Chapter 5. UltraLite Utilities Reference

♦ sp_hook_ulgen_end()

These hooks are defined in the reference database and are used only during
the analyzer analysis phase. The hooks can be created as follows:

CREATE PROCEDURE sp_hook_ulgen_begin ()
BEGIN
// actions here
END
CREATE PROCEDURE sp_hook_ulgen_end ()
BEGIN
// actions here
END

Options project The project name determines the set of statements that are to be
included in the generated database. For a more precise specification of the
filename, use the-j option.

output-filename The name for the generated file, without extension. For a
more precise specification of the filename, use the-f option.

In Java, this name is also the database name, which you must supply on
connection.

-a If you are developing a Java application, the names of the SQL
statements in the project are used as constants in your application. By
convention, constants are upper case, with underscore characters between
words. The-a option makes the names of SQL statements fit this
convention by making the characters upper case and inserting an underscore
whenever an uppercase character in the original name is found if not already
preceded by an underscore or an uppercase character. For example, a
statement namedMyStatement becomesMY_STATEMENT, and a statement
namedAStatement becomesASTATEMENT.

The generated names have spaces and non-alphanumeric characters replaced
with an underscore, regardless of whether –a is used.

-c connection-string The connection string must give the generator
permission to read and modify your reference database. This parameter is
required.

-e The SQL strings in the generated database are replaced by smaller,
generated strings. This option is useful when you are trying to reduce the
footprint of a database with a lot of statements.

-f filename This is the recommended way to specify the output file. Do not
specify an extension.

-g Suppress the display of warning messages. Error messages are still
displayed.

91

The UltraLite generator provides warnings to indicate that some generated
code may, under some circumstances, cause problems. For example, it
generates a warning for SQL statements that include temporary tables.

-I By default, generated classes are written as top-level non-public classes
except for the main database class. If you use-I , the generated classes are
written as inner classes. If you use this option, you must use a Java compiler
that can correctly compile inner classes.

-j project-name This is the recommended way to specify the project. You
can specify multiple projects using this option as follows:

ulgen -j project1 -j project2 ...

-l type Log the execution plan for queries in the application. These plans
can be viewed in Interactive SQL. The types available are:

♦ xml Description in XML format. Use the Interactive SQL File➤ Open
command to display the plan.

♦ short Brief description of the plan in a file named<statement>.txt.
The content is that generated by the EXPLANATION function

♦ long Detailed description of the plan in a file named<statement>.txt.
The content is that generated by the PLAN function.

-m version Specify the version name for generated synchronization
scripts. The generated synchronization scripts can be used in a MobiLink
consolidated database for simple synchronization. The default value is
ul_default.

-o table-name,. . . Specify the order in which tables are uploaded during
synchronization. This option can be used to avoid referential integrity errors
during upload. Each table to be uploaded must be specified exactly once.

-p package-name A package name for generated files when generating
Java output.

-q Do not display output messages.

-r filename The file containing the trusted root certificates used for secure
synchronization using Certicom security software.

The generator embeds these trusted roots into the UltraLite application.
When the application receives a certificate chain from a MobiLink
synchronization server, it checks if its root is among the trusted roots, and
only accepts a connection if it is.

The generator checks the expiry dates of all the certificates in the trusted root
certificate file and issues the following warning for any certificate that

92

Chapter 5. UltraLite Utilities Reference

expires in less than 6 months (180 days):

Warning: Certificate will expire in %1 days"

The generator issues aCertificate has expired error for any
certificate that has already expired.

On platforms other than Palm OS, an alternative to using -r is to supply the
certificate separately and address it with the trusted_certificates security
parameter. For more information, see“trusted_certificates”[MobiLink Clients,
page 53].

☞ For more information, see“UltraLite Synchronization Parameters”
[MobiLink Clients,page 315], and“MobiLink Transport-Layer Security”
[MobiLink Administration Guide,page 165].

-s filename Generate an interface that contains the SQL statements as
constants. This option is for use with Java only. The interface file has a
format similar to the following example:

package com.sybase.test;
public interface EmpTestSQL {

String EMPLOYEE = "select emp_fname, emp_lname
from employee where emp_id = ?";

String UPDATE_EMPLOYEE = "update employee
set emp_fname = ?, emp_lname = ?
where emp_id = ?";

}

Do not supply the.javaextension infilename. The-a option controls the
case of the statement names.

-t target Specifies the kind and extension of the generated file.

♦ If you are using Java, you must use atargetof java. If you are using
embedded SQL or the C++ API, you can use atargetof eitherc or c++.
Which one you choose decides the extension of the file name, and has
nothing to do with whether you are using the C++ API or embedded SQL.

♦ If you specifyc++, the following files are generated:

• filename.cpp The code for the generated API.

• filename.h A header file. You do not need to look at this file.

• filename.hpp The C++ API definition for your application.

♦ If you specify atargetof c, filename.cis generated.

-u pub-name If you are generating a C++ API for a publication, specify
the publication name with the -u option.

93

-v pub-name Specifies a publication to synchronize. If you do not use
publications to define which changes are to be synchronized, all changes are
synchronized.

If columns or tables specified in publications are not referenced by SQL
statements in your application, they are not included in the UltraLite
database.

To specify multiple publications, repeat the-v option. For example:

ulgen -v pub1 -v pub2 ...

The maximum number of publications is 32.

☞ For more information, see“UltraLite Clients” [MobiLink Clients,
page 277].

-x This option is intended for use in situations where the file containing the
generated code is too large for the C/C++ compiler to compile.

This option causes the UltraLite generator to produce more and smaller files.
When-x is used, the UltraLite generator writes out one C/C++ file for the
database and one for each SQL statement.

This option has no effect when generating Java code.

94

Chapter 5. UltraLite Utilities Reference

The SQL Preprocessor
Applies to Embedded SQL static development model only.

Function The SQL preprocessor processes a C or C++ program containing embedded
SQL, before the compiler is run.

Syntax sqlpp [options] sql-filename [output-filename]

Option Description

–c “key-
word=value;. . . .”

Supply database connection parameters for your
reference database

-d Generate code that favors small data size

–e level Flag non-conforming SQL syntax as an error

-g Do not display UltraLite warnings

–h line-width Limit the maximum line length of output

-k Include user declaration of SQLCODE

-m version Specify the version name for generated synchro-
nization scripts

–n Line numbers

-o operating-sys Target operating system: WIN32, WINNT, NET-
WARE, or UNIX

–p project-name UltraLite project name

–q Quiet mode—do not print banner

–sstring-len Maximum string length for the compiler

–w level Flag non-conforming SQL syntax as a warning

–x Change multi-byte SQL strings to escape se-
quences.

–zsequence Specify collation sequence

See also “Introduction” [ASA Programming Guide,page 136]

Remarks The SQL preprocessor processes a C or C++ source file that contains
embedded SQL, before the compiler is run. This preprocessor translates the
SQL statements in theinput-file into C/C++. It writes the result to the
output-file. The normal extension for source files containing embedded SQL

95

is sqc. The default output filename is theSQL-filenamebase name with an
extension ofc. However, if theSQL-filenamealready has the.c extension,
the default output extension is.cc.

When preprocessing files that are part of an UltraLite application, the SQL
preprocessor requires access to an Adaptive Server Anywhere reference
database. You must supply the connection parameters for the reference
database using the–coption.

If you specifyno project name, the SQL preprocessor also runs the UltraLite
generator and appends additional code to the generated C/C++ source file.
This code contains a C/C++ language description of your database schema
as well as the implementation of the SQL statements in the application.

Customizing UltraLite generator operations The UltraLite analyzer
provides hooks that you can use to customize the code generation process.
These hooks are stored procedure names. If you supply stored procedures
with the following names, the UltraLite analyzer invokes them before and
after the analysis process:

♦ sp_hook_ulgen_begin()

♦ sp_hook_ulgen_end()

These hooks are defined in the reference database and are used only during
the analyzer analysis phase. The hooks can be created as follows:

CREATE PROCEDURE sp_hook_ulgen_begin ()
BEGIN
// actions here
END
CREATE PROCEDURE sp_hook_ulgen_end ()
BEGIN
// actions here
END

Options -c Required when preprocessing files that are part of an UltraLite
application. The connection string must give the SQL preprocessor access to
read and modify your reference database.

-d Generate code that reduces data space size. Data structures are reused
and initialized at execution time before use. This increases code size.

-e This option flags any embedded SQL that is not part of a specified set of
SQL/92 as an error. The option is not applicable to UltraLite.

The allowed values oflevel and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

96

Chapter 5. UltraLite Utilities Reference

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag features not supported by UltraLite

♦ w allow all supported syntax

-g Do not display warning specific to UltraLite code generation.

-h num Limits the maximum length of lines output bysqlpp to NUM
characters. The continuation character is a backslash (\), and the minimum
value of NUM is ten.

-k Notifies the preprocessor that the program to be compiled includes a
user declaration of SQLCODE.

-m version Specify the version name for generated synchronization
scripts. The generated synchronization scripts can be used in a MobiLink
consolidated database for simple synchronization. The default value is
ul_default.

-n Generate line number information in the C file. This consists of#line
directives in the appropriate places in the generated C code. If your compiler
supports the#line directive, this option will make the compiler report errors
on line numbers in theSQL-filename, as opposed to reporting errors on line
numbers in the C/C++ output file. Also, the#line directives will indirectly
be used by the source-level debugger so that you can debug while viewing
theSQL-filename.

-o Specify the target operating system. Note that this option must match
the operating system where you will run the program. A reference to a
special symbol will be generated in your program. This symbol is defined in
the interface library. If you use the wrong operating system specification or
the wrong library, an error will be detected by the linker. The supported
operating systems are:

♦ WIN32 Microsoft Windows 95/98/Me and Windows CE

♦ WINNT Microsoft Windows NT/2000/XP

-p project-name Identifies the UltraLite project to which the embedded
SQL files belong. Applies only when processing files that are part of an
UltraLite application.

-q Operate quietly. Do not print the banner.

-s string-len Set the maximum size string that the preprocessor will put
into the C file. Strings longer than this value will be initialized using a list of
characters (‘a’ ,‘b’ ,‘c’ , and so on). Most C compilers have a limit on the size

97

of string literal they can handle. This option is used to set that upper limit.
The default value is 500.

-w level This option flags any embedded SQL that is not part of a specified
set of SQL/92 as a warning. The option is not applicable to UltraLite.

The allowed values oflevel and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag features not supported by UltraLite

♦ w allow all supported syntax

-x Change multi-byte strings to escape sequences so that they can pass
through compilers.

-z sequence This option specifies the collation sequence or filename. For
a listing of recommended collation sequences, typedbinit –l at the
command prompt.

98

Chapter 5. UltraLite Utilities Reference

The HotSync Conduit Installer
Function The utility installs or removes a HotSync conduit onto the current machine.

Syntax dbcond9 [options] id

Option Description

id The creator ID of the application to use the conduit

-n name The name displayed by the HotSync manager.

-k key Default encryption key

-p parms Default client synchronization parameters.

-x Remove the conduit for the specified creator ID

Remarks The utility installs a HotSync conduit onto the current machine. HotSync
Manager must be present in order for the HotSync Conduit Installer to run.

Options id The application user ID who is to use the conduit. If a conduit already
exists for the specifiedcreatorID, it is replaced by the new conduit. This is a
required option.

-k key The default encryption key. Supply an empty string (-k "") to
clear an existing encryption key.

-n name The name displayed by the HotSync manager. This is also the
name of the subdirectory where the conduit stores data. Do not use this
option together with-x . The default value isMobiLink conduit .

-p parms The default client synchronization parameters. Supply an empty
string (-p "") to clear any existing parameters.

-x Remove the conduit for the namedcreatorID. If -x is not specified, a
conduit is installed.

Examples The following command line installs the conduit for the CustDB sample
application, which has a creator ID of Syb2:

dbcond9 -n CustDB Syb2

99

The dbulstop utility
Function Stops the UltraLite engine.

Syntax dbulstop

Applies to Windows XP and Windows CE.

Remarks There are no command line options for the UltraLite engine stop utility.

See also ♦ “Using the UltraLite engine” on page 61
♦ “The UltraLite engine” on page 88

100

Chapter 5. UltraLite Utilities Reference

The ulconv utility
Function This utility converts UltraLite databases and schema files among formats.

Syntax ulconv create [options]

ulconv { load | unload } [options] xml-file

ulconv sync [options] [sync-parms]

The options depend on the syntax used. Command line options for this
utility are case sensitive.

♦ create Create a new, empty UltraLite database from a specified schema
file. The following options are supported:

Option Description

-c “keyword=value;. . . ” UltraLite database connection parameters.
Required.

-m Create a multibyte UltraLite database.

-p creator-id Create a Palm OS database, using the supplied
creator ID. The database file is given a Palm
OS PDB name of ul_udb_creator-id.

☞ For more information about creator IDs,
see“Understanding the Palm Creator ID” on
page 191.

-q Do not print the banner or messages.

-S schema-file Use the specified schema file to define the
database schema.

-u Create a Unicode UltraLite database. Default
behavior.

-v Print verbose messages.

-y Overwrite the database file if it exists.

♦ load Read an XML file and load the data into a new or existing
database. The following options are supported:

Option Description

xml-file The XML file that holds the data to be loaded.

101

Option Description

-c “keyword=value;. . . ” UltraLite database connection parameters.
Required.

-d Create a new database only if an existing
database cannot be opened. If an existing
database can be opened, ignore the schema
definition in the XML file.

If -d is not supplied, a new database is created.

-D directory Specify a directory for files holding external
data.

The xml-file may contain column data for
long binary and long character columns in an
external file, as follows:

<uldata>
<table name="table-name">

<row
longData.File="column.dat"

.../>
...

</table>
...

</uldata>

If -D is supplied, the path of column.dat is in-
terpreted as relative to the supplied directory.
If no -D is supplied, the path is relative to the
xml-file.

-i Include inserted rows in the next upload syn-
chronization. By default, rows inserted by
this utility are not uploaded during synchro-
nization.

-m Create a multibyte UltraLite database.

-n Load schema only. Ignore data.

-p creator-id Create a Palm OS database, using the supplied
creator ID.

-q Do not print the banner or messages.

-S schema-file Save the schema to the specified schema file.

-u Create a Unicode UltraLite database. Default
behavior.

-v Print verbose messages.

102

Chapter 5. UltraLite Utilities Reference

Option Description

-y Overwrite the database file if it exists.

♦ sync Open and synchronize an UltraLite database, using the supplied
synchronization parameter. The following options are supported:

Option Description

sync-parms A semicolon-separated list ofkeyword=value
pairs that control synchronization.

The keywords must be taken from the follow-
ing case-insensitive list:

downloadOnly (boolean)
newpasswd (string)
passwd (string)
publicationMask (integer)
sendColumnNames (boolean)
uploadOnly (boolean)
username (string)
version (string)

For more information about synchronization
parameters, see“UltraLite Synchronization
Parameters” [MobiLink Clients,page 315].

-a auth-parm MobiLink authentication parameters. Several
authentication parameters can be specified
using multiple-a auth-parmoptions.

The parameters are sent in the order they
appear on the command line.

☞ For information on MobiLink au-
thentication parameters, see“authenti-
cate_parameters connection event” [Mo-
biLink Administration Guide,page 334].

-c " keyword=value;. . ." UltraLite database connection parameters.
Required.

-k stream-type The synchronization stream to use.

stream-typemust be one of the following
case-insensitive values:

tcpip (the default)
http

103

Option Description

-q Do not print the banner or messages.

-s stream-
Parms=keyword=value;...

The stream parameters to use when synchro-
nizing.

Stream parameters arestream-typespecific.
The default streamParms is “host=localhost”,
which corresponds to the -k tcpip stream-
type.

For a list of available stream parameters,
see“Network protocol options for UltraLite
synchronization clients” [MobiLink Clients,
page 341].

Boolean false can be specified by0, no, off
or false; true with the values1, yes, on, or
true.

Integer values can be given in octal, hex, or
decimal.

String values can be quoted (quotation marks
are removed).

-v Print verbose messages.

♦ unload Save an UltraLite database file to an XML document. The
following options are supported:

Option Description

xml-file The XML file to which data is to be unloaded.

-B max-blob-size The maximum size of long binary or long
character data to write to the XML file. The
default value is 10 KB.

A value of -1 corresponds to no maximum size
(all data is stored in the XML file).

-c “keyword=value;. . . ” UltraLite database connection parameters.
Required.

-d Unload data only. Do not unload the schema.

104

Chapter 5. UltraLite Utilities Reference

Option Description

-D blob-directory The directory in which to store long binary
data that exceeds the-B max-blob-sizelimit.

Values are stored as files namedtableName-
columnName-rowNumber.bin.

The default directory is the same directory as
the XML file.

-e table,... Exclude data for the named tables.

-n Unload schema only. Do not unload data.

-q Quiet mode—do not print messages.

-S schema-file Save the schema to the named UltraLite
schema file.

-t table,... Only output data for the named tables.

-v Verbose messages.

-y Overwrite the XML file if it exists.

Remarks The XML file that is a central format for unloading and loading databases is
the filewin32\usm.xsdin your SQL Anywhere installation. This file is the
same as that for the UltraLite XML utility.

If your application is built using embedded SQL or the Static C++ API, if
you are deploying it to the Palm OS, and if you wish to use a database
created using the UltraLite database converter, you must make a special call
in your application. Before initializing the database APIs, call
ULEnableGenericSchemaEx (&sqlca, false) .

The connection string must include a database file (DBF) parameter.

When used for unload, the utility makes a temporary copy of the UltraLite
database file before unloading data.

When used for load or create, you can specify a user ID and password
combination in the connection string. The utility adds this user ID and
password combination to the list of authenticated users, in addition to the
default user ID and password combination of DBA and SQL.

Examples The following examples illustrate uses of the UltraLite database converter.

♦ Create an UltraLite database for distribution on the Palm OS with an
application.

1. Start MobiLink against the consolidated database:

105

start dbmlsrv9 -c dsn=...

2. Create an UltraLite schema file:

ulinit -f app.usm -c dsn=...

3. Create a database in Palm OS format with creator IDSYB2:

ulconv create -p SYB2 -c DBF=app.udb;schema_file=app.usm

This command creates a desktop file named app.udb which, when
synchronized to a Palm OS device using HotSync, appears as the PDF
ul_udb_SYB2. It you export the file back to the desktop, it appears as
ul_udb_SYB2.

4. Synchronize with MobiLink, downloading application data. The
following command must be entered all on one line.

ulconv sync -c "DBF=app.pdb"
username=appuid;version=app;downloadOnly=true

The username, version, and downloadOnly values are the
synchronization parameters that control the synchronization.

5. Copypalmos.pdbto Palm devices with the UltraLite application.

♦ Defragment an existing Windows CE UltraLite database, already copied
to the desktop.

1. Unload the schema and data into an XML filecedatabase.xml.

ulconv unload -c DBF=cedatabase.udb cedatabase.xml

2. Load the new database from the XML file (-u forces a new Unicode
database)

ulconv load -u -c DBF=newdb.udb cedatabase.xml

3. Copy the new database file to the Windows CE device.

♦ Convert an existing UltraLite database from desktop to Palm OS format.

1. Unload data todatabase.xml:

ulconv unload -c DBF=database.udb database.xml

2. Create and load a new UltraLite database in Palm OS format, with
creator IDCREA.

ulconv load -p CREA -c dbf=palm.pdb database.xml

3. Copypalm.pdbto the Palm OS device.

♦ Convert from a UNICODE UltraLite database into a multibyte character
set database:

106

Chapter 5. UltraLite Utilities Reference

ulconv unload -c DBF=CEDatabase.udb newdb.xml
ulconv load -m -c DBF=MBDatabase.udb newdb.xml

♦ Save the indicated tables as data only:

ulconv unload -c dbf=existingDB.udb -d -t table1,table2

107

The ulcreate utility
Function Creates UltraLite databases.

Syntax ulcreate options

Command line options for this utility are case sensitive.

Option Description

-c “key-
word=value;. . . ”

UltraLite database connection string. Required.

Use the DBF parameter to set the database file name.
For information about UltraLite connection strings,
see“Connection Parameters” on page 63.

-C Create the database as case-sensitive for all string
comparisons.

-I database-id Set the initial database ID for global autoincrement
columns.

-l List the available collation sequences and exit.

For a list of collation sequences, see“Supplied and
recommended collations” [ASA Database Administra-
tion Guide,page 336].

-m Create a multibyte UltraLite database.

-p creator-id Create a Palm OS database, using the supplied creator
ID. The database file is given a Palm OS PDB name
of ul_udb_creator-id.

☞ For more information about creator IDs, see
“Understanding the Palm Creator ID” on page 191.

-q Quiet mode—do not print messages.

-S schema-file Use the specified schema file to define the database
schema.

-u Create a Unicode database. (default)

-v Print verbose messages.

-y Overwrite the database file if it exists.

-z collation-
sequence

Specify the collation sequence.

108

Chapter 5. UltraLite Utilities Reference

Remarks It the database file does not exist, the database is created as case insensitive,
non-Unicode database with a collation sequence that depends on the current
locale.

Examples Create an UltraLite database in the file with all default settings:

ulcreate -c "dbf=test.udb"

Create a case-sensitive Unicode database, overwriting the database file if it
exists:

ulcreate -c "dbf=test.udb" -C -u -y

Create a database and apply the schema supplied in the filemyschema.usm:

ulcreate -c "dbf=test.udb" -S myschema.usm

Create an encrypted database with encryption keyafvc_1835:

ulcreate -c "dbf=test.udb;key=afvc_1835"

109

The uldbsgen utility
Function Writes SQL statements defining the schema of an Adaptive Server

Anywhere consolidated database to a file, including table definitions and
MobiLink synchronization scripts.

This utility is called by the UltraLite Schema Painter when it generates
synchronization scripts.

Syntax uldbsgen options sql-file

Command line options for this utility are case sensitive.

Option Description

-a sync-info-file Specify a file containing synchronization settings, saved
by the UltraLite Schema Painter.

-c “key-
word=value;...”

UltraLite database connection string. Required.

For information about UltraLite connection strings, see
“Connection Parameters” on page 63.

-d var=value Set initial value for a script.

-e table,... Exclude listed tables.

-gm Write MobiLink synchronization scripts only.

-gt Write table definitions only.

-m ml-version Set the MobiLink synchronization version.

-oa Cancel if database would be upgraded (default)

-or Read only. Do not upgrade database.

-ou Upgrade database if it is from an older UltraLite release.

-p publication,... Write statements only for tables contained in the listed
publications.

-q Quiet mode—do not print messages.

-s event,... Write MobiLink synchronization scripts only for the
specified synchronization events.

-t table,... Write statements only for the listed tables.

-v Verbose messages.

-y Overwritesql-file without confirmation.

110

Chapter 5. UltraLite Utilities Reference

Remarks The uldbsgen utility is primarily used by the UltraLite Schema Painter. It is
provided as a command-line utility for optional batch-mode use.

See also ♦ “The UltraLite Schema Painter” on page 124
♦ “Generate Consolidated Database and MobiLink Scripts dialog”[SQL

Anywhere Studio Help,page 284]

111

The ulinit utility
Applies to UltraLite components.

Function Theulinit utility lets you create a .usmfile for use with any UltraLite
component. The utility connects to an Adaptive Server Anywhere database.
Consequently, SQL Anywhere Studio (version 8.0.2 or later) is required in
order to use it.

Syntax ulinit -f schema_file -n pub_name [options]

Option Description

-c ”connection_string” Supply database connection parameters
in the formkeyword=value, separated by
semi-colons. You supply these so you may
connect to an Adaptive Server Anywhere
database.

-f schema_file Specify the name of the output file. This
option is required.

-m version Specify the version string for generated
MobiLink scripts.

-n pubname Add tables to the UltraLite database
schema.

pubnamespecifies a publication in the ref-
erence database. Tables in the publication
are added to the UltraLite database schema.
Specify the option multiple times to add
multiple publications in to the UltraLite
database schema.

To add all tables in the reference database
to the UltraLite schema, specify-n* .

This option is required.

-o ”keyword=value;. . .” Supply schema creation options.

-palm id Create a schema file compatible with Palm
OS. Id is the four digit Palm creator id that
identifies the database.

-q Quiet operation — only report errors and
warnings.

112

Chapter 5. UltraLite Utilities Reference

Option Description

-s pubname Specify a publication for synchronization.
pubnamespecifies a publication in the
reference database that is added as a named
publication to the UltraLite database.

If -s is not supplied, the UltraLite schema
has no named publications.

This option can be used multiple times.

-t file Specify the file containing the trusted root
certificates.

-w Do not display warnings.

-z ordering Specify the order in which tables are up-
loaded during synchronization (for exam-
ple, -z table1,table2).

Remarks The-n and-s options both take publication names in the reference database
as arguments, but serve different purposes:

♦ The-n option defines the tables to be included in the UltraLite database
schema. It does not create named publications in the UltraLite database,
and is not used for synchronization.

♦ The-s option defines named publications in the UltraLite database.
These named publications are used for synchronization. The -s option
does not define which tables are included in the UltraLite database
schema.

Examples Create a file calledcustomer.usmthat contains the tables in TestPublication:

ulinit -c "uid=dba;pwd=sql" -f customer.usm -n TestPublication

Create a schema with two distinct publications:

ulinit -c "dsn= dsn-name " -f schema.usm -n Pub1 -n Pub2 -s Pub1 -
s Pub2

For example, one of the publications may contain a small subset of data for
priority synchronization, while the other would contain the bulk of the data.

Synchronization of publications is managed with a bit mask in the UltraLite
schema. For more information, see“Designing sets of data to synchronize
separately”[MobiLink Clients,page 280].

When creating an UltraLite schema for Palm withulinit, use the-palm

option to generate a.pdb file. For example:

113

ulinit -c "uid=dba;pwd=sql;dsn=ASA 9.0 Sample"
-f tutcustomer.usm -n TutCustomersPub -palm Syb3

Note
Syb3 is an example of a Palm creator ID. Use the four digit Palm registered
creator ID that matches the creator ID of your application. For MobileVB
developers, this must be set in your MobileVB project settings.

The PDB file generated byulinit must be loaded to the Palm device. The
creator ID used by the application should match the PDF filename. When an
UltraLite application creates its database from the schema file, it should
include the creator ID in the parameters of the call to Open, without the.pdb
file extension. For example:

DatabaseManager.CreateDatabase("palm_schema=Syb3")

114

Chapter 5. UltraLite Utilities Reference

The UltraLite Interactive SQL utility
Function Execute SQL statements against an UltraLite database.

Syntax ulisql [options] [command-file]

Option Description

-c “key-
word=value;...”

UltraLite database connection string. If you do not
supply a connection string, a connection dialog is
displayed.

The connection string must include the following
keywords:

dbf (database file)
uid (user ID)
pwd (password)

For more information on connection strings, see
“Connection Parameters” on page 63.

-oa Do not open databases with old file formats.

-or Open databases with old file formats as read-only.

-ou Upgrade databases with old file formats to the format
of the current version.

command-file A file containing one or more SQL statements to be
executed. Whencommand-fileis specified, the user
interface is not displayed.

The file must follow the following conventions:

Each statement must end with a semi-colon. No char-
acters other than white space are allowed between the
semi-colon and the end of the line.
Each statement must begin on a new line. Only white

space is allowed to precede a statement.
There is no support for comment characters.
Statements that return a result set (queries) are ig-

nored.

Remarks UltraLite Interactive SQL is a graphical utility for executing SQL statements
against an UltraLite database. It is useful during application development for
developing and testing SQL statements, and for browsing data in databases.

UltraLite Interactive SQL has a window that displays the access plan of a
query. If you have queries that demonstrate slow performance, this query

115

plan may be helpful in diagnosing the problem. For example, it may be the
case that creating a suitable index would help speed up your query.

If you choose to do so, UltraLite upgrades old database files to the native file
format of the current version of the software. This upgrade makes it
impossible to use the database from older versions of UltraLite, including
applications developed with older versions of the software. Use the -or or
-oa options to ensure that old databases are not upgraded. If you choose the
-or option, UltraLite opens the database in read-only mode. Any changes
you make are discarded when UltraLite Interactive SQL closes, even if you
commit your changes.

If you do not specify any of the-o parameters and if the database needs to be
upgraded, the Upgrade dialog box is displayed. This dialog allows you to
choose whether to upgrade, open in read-only mode or cancel the operation.

See also ♦ “Dynamic SQL statements” on page 172
♦ “Query optimization” on page 185

116

Chapter 5. UltraLite Utilities Reference

The ulload utility
Function Loads data from an XML file into an UltraLite database.

Syntax ulload options xml-file

Command line options for this utility are case sensitive.

Option Description

-c “key-
word=value;...”

UltraLite database connection string. Required.

Use the DBF parameter to set the database file name.
For information about UltraLite connection strings, see
“Connection Parameters” on page 63.

-d Load data only.

-D directory Specify the directory for data stored in external files.
The default is the same directory as the XML file.

This option is primarily for use with XML files created
by ulunload.

-i Include inserted rows in the next upload synchroniza-
tion. By default, rows inserted by this utility are not
uploaded during synchronization.

-m Create a multibyte database.

-n Schema only—ignore data.

-p creator-id Create a Palm OS database using the namedcreator-id.

-q Quiet mode—do not print messages.

-S schema-file Save UltraLite schema to the named schema file.

-u Create a Unicode database. (default).

-v Verbose messages.

-y Replace the database without confirmation.

This option has no effect if-d is used.

Remarks The ulload utility loads data from an XML file into an UltraLite database. It
creates the UltraLite database file if it does not already exist. Options allow
you to specify whether to load database schema, data, or both, as well as to
specify the character set of the UltraLite database.

Examples Create a new UltraLite database in the filesample.udbfrom the schema and

117

data insample.xml:

ulload -c dbf=sample.udb sample.xml

Load the data fromsample.xmlinto the existing databasesample.udb:

ulunload -d -c dbf=sample.udb sample.xml

118

Chapter 5. UltraLite Utilities Reference

The ulsync utility
Function Synchronize an UltraLite database.

Syntax ulsync options sync-parms

Command line options for this utility are case sensitive.

Option Description

-a authentication-
parameter

MobiLink authentication parameter.

-c “key-
word=value;...”

UltraLite database connection string. Required.

Use the DBF parameter to set the database file name.
For information about UltraLite connection strings, see
“Connection Parameters” on page 63.

-k stream-type Specify the synchronization stream.stream-typemust
be eithertcpip or http . The default stream istcpip.

-q Quiet mode—do not print messages.

-s stream-
parm=value;...

A semicolon-separated list of synchronization stream
parameters. The default value ishost=localhost.

☞ For more information, see“Network protocol op-
tions for UltraLite synchronization clients” [MobiLink
Clients,page 341].

-v Verbose messages.

-y Replace the database without confirmation.

sync-parms A semicolon-separated list of keyword-value pairs.
The keywords are case insensitive, and are drawn from
the following list:

downloadOnly (Boolean)
newpasswd (string)
passwd (string)
publicationMask (integer)
sendColumnNames (Boolean)
uploadOnly (Boolean)
username (string)
version (string)

Remarks The ulsync utility synchronizes an UltraLite database with a MobiLink

119

synchronization server. It is a tool for testing synchronization during
application development.

Do not confuse thesync-parmsoption (which sets synchronization
parameters) with the-sstream-parmsoption (which sets synchronization
streamparameters).

☞ For more information on synchronization parameters, see
“Synchronization parameters”[MobiLink Clients,page 316]; for more
information on stream parameters, see“Network protocol options for
UltraLite synchronization clients”[MobiLink Clients,page 341].

Example The following command synchronizes a database fileul.udb over HTTP
with a MobiLink synchronization server running on a machineserverand
listening on port 8181. The MobiLink user name isml-user and the script
version isscript-version.

The command must be entered on a single line.

ulsync -c "dbf=ul.udb"
-k http
-s "host=server;port=8181"
"username=ml-user;version=script-version"

120

Chapter 5. UltraLite Utilities Reference

The ulunload utility
Function Unloads data from an UltraLite database into an XML file.

Syntax ulunload options xml-file

Command line options for this utility are case sensitive.

Option Description

-B max-size Maximum size of binary or character data to be stored
in the XML file. The default is 10K. Use-B -1 to have
no maximum size, and to store all data in the XML file.

Data that is over the maximum size is saved as a file
namedtablename-columname-rownumber.binin the
same directory as the XML file, or in the directory
specified by -D.

-c “key-
word=value;...”

UltraLite database connection string. Required.

Use the DBF parameter to set the database file name.
For information about UltraLite connection strings, see
“Connection Parameters” on page 63.

-d Unload data only. Do not unload the schema definition.

-D directory Specify the directory to store data larger than the
maximum size specified by-B. The default is the same
directory as the XML file.

-e table,... Exclude the listed tables.

-n Schema only—ignore data.

-q Quiet mode—do not print messages.

-S schema-file Save UltraLite schema to the named schema file.

-t table,... Unload only the listed tables.

-v Verbose messages.

-y Overwritexml-file without confirmation.

Remarks The ulunload utility unloads data from an UltraLite database into an XML
file. As long as you do not use the-d option, the unloaded file can be loaded
into a new database using the ulload utility.

Examples Unload the UltraLite databasesample.udbinto the XML file sample.xml:

ulunload -c "dbf=sample.udb" sample.xml

121

Unload the data from the UltraLite databasesample.udbinto the XML file
sample.xml, overwriting the file if it exists:

ulunload -c "dbf=sample.udb" -d -y sample.xml

122

Chapter 5. UltraLite Utilities Reference

The ULUtil utility
Function The UltraLite Palm utility is a Palm Computing Platform application that

deletes all of the data stored in an UltraLite application’s remote database.

Remarks The UltraLite Palm utility is installed as the following file:

%ASANY9%\UltraLite \Palm\68k \ULUtil.prc

ULUtil is useful in deployments where devices are shared between different
users. When a different user gets a device, they may want to clear out the
previous user’s data, to save storage space. Also, the previous user might
want to clear out their data because it is confidential. WithoutULUtil , the
only way to clear out an application’s data would be to delete and re-install
the application.

You can setULUtil to back up the Palm store to the PC on subsequent
synchronization. You can use this feature to perform an initial
synchronization and then backup the store which can be deployed on other
devices so they do not need to perform an initial synchronization. The
backup option is automatically turned off by the UltraLite runtime to prevent
subsequent backups. If you explicitly want to require the database to be
backed up on every synchronization, you must add the palm_allow_backup
parameter in UL_STORE_PARMS.

☞ For more information, see“UL_STORE_PARMS macro”[UltraLite
C/C++ User’s Guide,page 222].

OnceULUtil is installed on the device, you can delete an UltraLite
application’s data as follows:

1. Switch toULUtil .

2. Select an application from the list of UltraLite Applications. Only
applications built with version 8 or later are displayed.

3. Tap the Delete button.

On devices with expansion cards, ULUtil provides access to both file-based
and record-based stores.

123

The UltraLite Schema Painter
Function The UltraLite Schema Painter allows you to create a new UltraLite schema

file or edit an existing one. You can also use it to define table definitions and
synchronization scripts for an Adaptive Server Anywhere consolidated
database.

For a tutorial that walks you through some of the features of the UltraLite
Schema Painter, see“Tutorial: Working with UltraLite Databases” on
page 129.

Starting the UltraLite Schema Painter

❖ To start the UltraLite Schema Painter

1. From the Start menu, choose Start➤ Programs➤ SQL Anywhere 9➤

UltraLite ➤ UltraLite Schema Painter.

Alternatively, open a command prompt and enter the following command:

ulview

Creating, saving and exporting schema files

❖ To create a new schema file

1. Open the Tools folder and double-click Create UltraLite Schema.

2. In the New Schema dialog, type in a file name.

3. Click OK to create the schema.

❖ To save a file

1. Choose File➤ Save to save the file.

2. You can select to Save in.xml or .usmformat.

❖ To export a Palm schema file

1. Right-click the schema icon and choose Export Schema for Palm from
the popup menu.

2. Enter a Palm Creator ID.

3. Click OK.

124

Chapter 5. UltraLite Utilities Reference

Managing schema files

When you first rename a table or column in your schema UltraLite stores the
original name of the table or column. For example, if you create a table
named cust, and later rename it to customer, cust is saved as the old name. If
you then renamed the table a second time, to customer_info, the old name
remains cust.

The scheme is designed so that a schema file can be used to alter the schema
of an existing database. For example, assume that version one of your
application shipped with a table named cust. As part of the changes for
version two, you modify your version one schema file by renaming the table
to customer. This automatically saves cust as the old name. If you now apply
this schema file to a version one database file, UltraLite looks for a table
named cust, the old name, and renames it Customer. The same applies to
columns in a table.

It is therefore important for future compatibility that you clear the old names
from a schema file after a schema file is deployed.

☞ For more information, see“Upgrading UltraLite database schemas” on
page 54.

❖ To clear all of the old names in the schema file after deployment

1. Open the schema file in the UltraLite Schema Painter.

2. Choose File➤ Clear Upgrade Information.

This sets all of the old names for tables and columns to empty values. You
can then safely edit your schema file for the next version of your application.

Manual renaming of
object names

Sometimes it may be desirable to manually alter the names of tables and
columns. For example, you may have versions one and two of your
application deployed and wish to create a single UltraLite schema file that
can upgrade both versions one and two of this database to version three.

❖ To manually change object names

1. Open your schema in the UltraLite Schema Painter.

2. Choose File➤ Export Schema for Palm.

You can use this feature to inspect the current old names in your schema. If
you use ulxml, you can explicitly set the old name of tables and columns in
the<table> and<column> XML elements.

125

The ulxml utility
Applies to UltraLite components.

Function Theulxml utility lets you convert UltraLite database schema definitions
among XML, USM and Palm PDB file formats. For example, you can create
a .usmfile from an XML file. The resulting schema file can be used with
any UltraLite component.

Syntax ulxml [options] input-file output-file

Option Description

-y Overwrite output file if it already exists.

-totype where
type=xml|usm|pdb

Note: pdb files require a Cre-
atorID.

Converts the file to one of these standard
formats.

Usetoxml to convert an UltraLite schema
to XML.

Use tousm to convert an XML file to an
UltraLite schema

Use topdb creator-idto convert an XML
file to an UltraLite schema for Palm.

You can export your UltraLite schema so that you can work in XML format:

The XML schema that defines the documents is inwin32\usm.xsdin your

126

Chapter 5. UltraLite Utilities Reference

SQL Anywhere installation. The ulxml utility requires that schema file.

You can view and use the documented sample located in
Samples\NativeUltraLiteForJava\sample.xml,
Samples\UltraLiteActiveX\sample.xml, and
Samples\UltraLiteForMobileVB\sample.xml.

UltraLite Schema Painter
The UltraLite Schema Painter by default creates, opens and saves UltraLite
schema files in their native USM file format. However, you are given the
option to create, open and save XML files as well by choosing UltraLite
XML Schema Files in any file type dropdown box.

Return code 0 on success, less than 0 on failure.

127

CHAPTER 6

Tutorial: Working with UltraLite Databases

About this chapter This chapter walks you through several tasks related to UltraLite database
schemas and database files. It introduces the UltraLite Schema Painter, the
UltraLite Interactive SQL utility, and the UltraLite command-line
administration tools. It also shows how you can generate and synchronize
with an Adaptive Server Anywhere consolidated database from an UltraLite
database.

Contents Topic: page

Lesson 1: Create an UltraLite database schema 130

Lesson 2: Define and create a consolidated database 133

Lesson 3: Enter data in your UltraLite database 137

Lesson 4: Synchronize your databases 138

129

Lesson 1: Create an UltraLite database schema
In this lesson, you build a single-table UltraLite database schema for
Windows CE, Windows XP, and Palm OS devices.

This lesson is the first in a complete tutorial on working with UltraLite
databases. You may also have reached this lesson from one of several
UltraLite component tutorials, in which case you should return to your main
tutorial after creating a schema file.

☞ For more information on UltraLite schemas, see“Creating UltraLite
databases and schemas” on page 28.

To start this tutorial, create a directory to hold the schema and other files.
This directory is assumed to beC:\tutorial\. If you create your tutorial
directory elsewhere, supply the path to your location instead ofc:\tutorial\
throughout.

❖ To create a schema file

1. Start the UltraLite Schema Painter:

Choose Start➤ Programs➤ SQL Anywhere 9➤ UltraLite ➤ UltraLite
Schema Painter.

2. Create a new schema file calledtutCustomer.
♦ From the File menus, select New➤ UltraLite Schema.

♦ For a filename, enterc:\tutorial\tutCustomer.usm or Browse to the
folder and entertutCustomer.usm.

♦ Leave the other settings at their default values and click OK to create
the schema.

3. Create a table called customer.

♦ In the left pane of the UltraLite Schema Painter, expand the
tutCustomeritem and select the Tables folder.

♦ In the right pane, double-click Add Table.

The New Table dialog appears.

♦ Enter the name Customer.

♦ Click Add to add the following columns:

130

Chapter 6. Tutorial: Working with UltraLite Databases

Column

name

Data type

(Size)

Column Allows

NULL values?

Default value

ID integer No autoincrement

FName char (15) No None

LName char (20) No None

City char (20) Yes None

Phone char (12) Yes 555-1234

Tutorial use only
The use of autoincrement as a primary key is not recommended in
a database that is going to be synchronized. Instead, use a global
autoincrement or UUID value. For the purposes of this tutorial, an
autoincrement is sufficient.

For more information on maintaining unique primary keys in a syn-
chronization setup, see“Maintaining unique primary keys”[MobiLink
Administration Guide,page 56].

♦ Set ID as the primary key: click Primary Key and add ID to the index,
marking it as ascending.

♦ Check your work and click OK to complete the table definition and
dismiss the New Table dialog.

4. Click File ➤ Save to save thetutcustomer.usmfile.

5. Optionally, export a Palm schema file.

If you intend to work with the Palm OS as a target platform, you may
want to export a schema definition for the Palm OS.

♦ From the File menu, choose Export Schema for Palm.

♦ Enter a Palm Creator ID. For tutorial purposes you could useSyb3, but
do not use this for deployed applications.

A note on Palm Creator IDs
A Palm creator ID is assigned to you by Palm. You can use Syb3 as
your creator ID when you make sample applications. However, when
you create production applications, you should obtain and use your
own creator ID.

♦ Leave the filename at its default setting to save the PDB file in your
tutorial directory. Click OK.

You have now defined the schema of an UltraLite database. Although this
database contains only a single table, you can use many tables in UltraLite
databases.

131

UltraLite component tutorial readers
You may be carrying out this lesson as part of an UltraLite component
tutorial or you may be working through the complete tutorial in this
chapter. If you reached this lesson from an UltraLite component tutorial,
you only need the schema file and so you can return to your main tutorial
now. Otherwise, continue.

❖ To create an UltraLite database file

1. From the Tools menu of the UltraLite Schema Painter, choose Create
UltraLite Database.

The Create UltraLite Database dialog appears.

2. Choose Multibyte Character Database (Desktop) and leave the other
settings at their default values.

3. Click OK to create the database.

132

Chapter 6. Tutorial: Working with UltraLite Databases

Lesson 2: Define and create a consolidated
database

You can use the UltraLite Schema Painter to generate a SQL command file
that defines tables and synchronization scripts for an Adaptive Server
Anywhere consolidated database. This feature is useful if you are extending
an UltraLite application to include synchronization.

In this lesson, you create a consolidated database that manages
timestamp-based synchronization with your UltraLite database. The task
involves the following procedures:

1. Create a publication that holds the Customer table.

2. Define synchronization settings for the table.

3. Generate the table definitions and synchronization scripts.

4. Create the consolidated Adaptive Server Anywhere database.

This lesson assumes that you have the UltraLite Schema Painter open with
the tutCustomer schema opened, as at the end of“Lesson 1: Create an
UltraLite database schema” on page 130.

❖ To create a publication holding the Customer table

1. Create the publication:

In the left pane, select the Publications folder. In the right pane, double
click Add Publication. The Publication dialog appears.

2. In the Publication Name field, enterCustomerPublication.

3. Select the Customer table and click>> to add it to the list of tables in the
publication. Click OK.

The next step defines synchronization settings.

❖ To define synchronization settings

1. Add the table to the list of tables with custom settings:

♦ In the left pane, open the MobiLink Synchronization folder. In the
right pane, double click Add Table-specific Settings.

The MobiLink Table Settings dialog appears.

♦ Select the Customer table and click>> to add it to the list of tables
with MobiLink settings. Click OK.

133

2. Define the settings.

In the left pane, select the MobiLink Synchronization folder.

Right click the Customer table and choose Properties. The MobiLink
Synchronization Property sheet appears. The settings here are chosen for
simplicity in this demonstration: in a production environment the settings
depend on your business rules.

a. On the Direction tab, leave the setting at Full Synchronization.

b. On the Row Increment tab, choose Timestamp. Leave the Use Shadow
Table option.

An additional column will be created in the consolidated database that
holds the timestamp values for this table.

c. On the Row Partition tab, leave the setting at Same Data on All
Remote Databases.

d. On the Deletions tab, choose Download Deletions and select the first
of the two options. A table named Customer_deletes will be created in
the consolidated database that holds identifying values for the deleted
rows.

e. On the Conflict tab and the Resolution tab, leave the values at their
default settings.

f. Click OK to save the settings.

3. Optionally, preview the table definitions and synchronization scripts.

You can preview the table definitions and synchronization scripts by
right-clicking the table and choosing Preview Consolidated Tables and
Scripts from the popup menu. The previewed definitions and scripts
define the tables and synchronization scripts needed for an Adaptive
Server Anywhere consolidated database that can synchronize with this
UltraLite database. Comment lines are prefixed by–.

The next step is to generate the SQL command file that holds the table
definitions and synchronization scripts.

❖ To generate the consolidated database table and script defini-
tions

1. From the Tools menu, choose Generate Consolidated Tables and Scripts.

The Generate Consolidated Tables and MobiLink Scripts dialog appears.

2. In the Settings group, set the MobiLink script version is to Tutorial.
Leave the other two checkboxes at their default values.

134

Chapter 6. Tutorial: Working with UltraLite Databases

3. In the Generated SQL group, ensure the Consolidated Tables, Triggers,
MobiLink Scripts and Procedures checkbox is selected.

During the development of real applications, you may regenerate
synchronization scripts and table definitions several times as you modify
your application. For this reason, the dialog provides you with the option
to generate only some of the database objects.

4. Leave the Generated SQL file as the default setting (tutCustomer.sql) and
click OK to generate the scripts.

The final step is to use the generated SQL command file to create an
Adaptive Server Anywhere consolidated database.

❖ To create a consolidated database

1. Create the consolidated database file.

Open a command prompt, and change to the tutorial directory. Enter the
following command to create a database file namedconsol.db:

dbinit consol.db

2. Define an ODBC data source for the database.

a. Open the ODBC Administrator.

From the Start menu, choose Programs➤ SQL Anywhere 9➤

Adaptive Server Anywhere➤ ODBC Administrator.

b. On the User DSN table, click Add. The Create New Data Source
dialog appears.

c. From the list, choose Adaptive Server Anywhere 9.0 and click Finish.
The Adaptive Server Anywhere ODBC Configuration dialog appears.

d. Enter the following settings in the dialog:

Field Value

Data Source Name (ODBC tab) Consolidated

User ID (Login tab) DBA

Password (Login tab) SQL

Server name (Database tab) consol

Database file (Database tab) c:\tutorial\consol.db

e. On the ODBC tab, click Test Connection to test the settings.

f. Once the Test Connection succeeds, click OK to save your definition
and close the ODBC Administrator. If it fails, review the settings.

135

3. Connect to the consolidated database using Interactive SQL.

a. From the Start menu, choose Programs➤ SQL Anywhere 9➤

Adaptive Server Anywhere➤ Interactive SQL.

b. In the Connection dialog, specify an ODBC data source of
Consolidated, and click OK to connect.

4. Open the generated SQL command file.

From the File Menu, choose Open. Open the file
c:\tutorial\tutCustomer.sql.

5. Run the SQL command file.

Choose SQL➤ Execute to execute the SQL statements and create the
tables and synchronization scripts in the consolidated database.

Your consolidated database is now created. It does not, of course, contain
any data.

136

Chapter 6. Tutorial: Working with UltraLite Databases

Lesson 3: Enter data in your UltraLite database
In this tutorial we use UltraLite Interactive SQL to add data to the UltraLite
database. This lesson introduces the UltraLite Interactive SQL utility.

❖ To enter data in your UltraLite database

1. Start UltraLite Interactive SQL

At a command prompt, enter the following command:

ulisql

A Connect dialog appears.

2. In the Filename field, browse to thetutCustomer.udbfile that you created
in lesson 1.

Enter a user ID of DBA and a password of SQL. Click OK to connect to
the database.

3. Enter the following statement to add a Customer name to the database:

INSERT Customer (FName, LName, City)
VALUES (’Jane’, ’Doe’, ’Boston’)

Press F5 to execute the statement and add the row to the table.

4. Optionally, add some other names of your choice by modifying this
statement. The number of names is not important for this tutorial.

5. Enter the following statement to commit the changes.

COMMIT

6. Check the values in the table by executing this statement:

SELECT * FROM Customer

7. Close UltraLite Interactive SQL.

137

Lesson 4: Synchronize your databases
In this lesson, you upload the changes you have made to your UltraLite
database. As you do not have an UltraLite application, this lesson uses the
ulsync command-line utility to synchronize.

❖ To synchronize your databases

1. Start the MobiLink synchronization server running against the
consolidated database.

At a command prompt, change directories to your tutorial directory
(holding theconsol.dbconsolidated database file) and enter the following
command:

dbmlsrv9 -c "dsn=Consolidated" -zu+

The -zu+ command-line option is a convenience option that allows
unrecognized users to synchronize. It should not be used in production
environments.

2. Synchronize the UltraLite database.

Ensure that UltraLite Interactive SQL is closed, as only one application at
a time can access this UltraLite database.

At the command prompt, enter the following command, which must be
entered on a single line:

ulsync -c "dbf=tutCustomer.udb"
"version=Tutorial;username=test"

The database synchronizes.

The tutorial is now complete. You can inspect the data in either of the
databases, make more changes to either database using Interactive SQL (for
the consolidated database) or UltraLite Interactive SQL (for the UltraLite
database), and synchronize them using the techniques described here.

138

PART II

ULTRA L ITE SQL

This part describes the range of SQL available to UltraLite applications.

UltraLite components can construct queries and other SQL statements at
runtime (dynamic SQL).

The static interfaces support a wider range of SQL, but the statements used
in the application must be specified at compile time.

CHAPTER 7

SQL Language Elements

About this chapter This chapter describes the building blocks of SQL statements and data
management in UltraLite databases. These building blocks are common to
all UltraLite databases.

Contents Topic: page

Overview of SQL support in UltraLite 142

Data types in UltraLite 145

UltraLite SQL functions 148

141

Overview of SQL support in UltraLite
In UltraLite, both the data types available to represent data and the SQL
features available to access that data depend on the development model you
adopt.

If you use a static interface (embedded SQL, static C++ API, or static Java
API), the range of SQL available is wider, but all statements used by the
application must be specified at compile time. If you develop your
application using an UltraLite component, dynamic SQL provides a
narrower range of SQL, but the SQL statements can be constructed at
runtime.

When an UltraLite program attempts to use a SQL statement or feature that
is not supported in UltraLite, the SQL errorFeature not available

with UltraLite (SQLCODE -749) is reported. Dynamic SQL may also
return syntax errors.

♦ Data types UltraLite supports a subset of the data types available in
Adaptive Server Anywhere.

If you create a database from an Adaptive Server Anywhere reference
database, you can use a wide range of data types. Those Adaptive Server
Anywhere data types not supported in UltraLite are converted by the
UltraLite generator into a smaller set of base types. If you create an
UltraLite database using the Schema Painter, you are restricted to the
smaller set of base types.

For a listing of the UltraLite base types, see“Data types in UltraLite” on
page 145.

☞ For a complete listing of Adaptive Server Anywhere data types, see
“SQL Data Types”[ASA SQL Reference,page 53].

♦ Identifiers Identifiers are the names of database objects, such as
columns and tables. UltraLite supports the same rules for identifiers as
Adaptive Server Anywhere.

Tables in UltraLite do not have an owner. As a convenience for existing
SQL and for SQL that is programmatically generated, UltraLite does
support the syntaxowner.table-namein SQL statements but the owner
part is not checked.

For information about identifiers, see“Identifiers” [ASA SQL Reference,
page 7].

♦ Strings Strings are used to hold character data in the database.
UltraLite supports the same rules for strings as Adaptive Server
Anywhere.

142

Chapter 7. SQL Language Elements

If you create an UltraLite database from an Adaptive Server Anywhere
reference database, the rules for strings are determined by the database
options in effect in the reference database when the UltraLite generator is
run. The QUOTED_IDENTIFIER option is particularly important in
setting rules for strings. Dynamic SQL always operates as if this option is
ON (the default in Adaptive Server Anywhere).

☞ For information about strings, see“Strings” [ASA SQL Reference,
page 9].

The results of comparisons on strings, and the sort order of strings,
depends on both the case sensitivity of the database and the character set.
These properties are set when the database is created.

For more information, see“Creating UltraLite databases” on page 30.

♦ Functions UltraLite supports the same range of functions as Adaptive
Server Anywhere, with a few minor exceptions. The functions supported
are the same for static interfaces such as embedded SQL as they are for
dynamic SQL.

For a list of supported functions, see“UltraLite SQL functions” on
page 148.

♦ Expressions Expressions are formed by combining data, often in the
form of column references, with operators or functions.

Adaptive Server Anywhere provides a wide range of operators that it uses
to form expressions. These operators are available if you develop your
UltraLite application using a static interface (embedded SQL, static C++
API, or static Java API). One exception is that in Adaptive Server
Anywhere you can use SQL variables to form expressions. You cannot
use SQL variables (including global variables) in UltraLite applications.
The @@identity global variable is an exception, and can be used within
UltraLite applications.

☞ For information about expressions in Adaptive Server Anywhere, see
“Expressions”[ASA SQL Reference,page 16].

Dynamic SQL is more limited in the range of expressions it supports than
is static SQL. For example, dynamic SQL does not support subqueries in
all the places that they are supported by static SQL.

☞ For information about the expressions available in dynamic SQL, see
“Dynamic SQL expressions” on page 163.

♦ Search conditions Search conditions or predicates are used in the
WHERE clause, the HAVING clause, and the ON clause of SELECT
statements.

143

Dynamic SQL is more limited in the range of conditions that it supports
than is static SQL.

☞ For information about search conditions available in dynamic SQL,
see“Dynamic SQL search conditions” on page 170.

Static interfaces have the entire range of conditions supported in
Adaptive Server Anywhere available.

☞ For information about search conditions in Adaptive Server
Anywhere, see“Search conditions”[ASA SQL Reference,page 23].

♦ Statements SQL statements are constructed from the building blocks
listed above.

For a list of SQL statements available in dynamic SQL, see“Dynamic
SQL statements” on page 172.

The following SQL statements can be used in static UltraLite
applications:

• Data Manipulation Language SELECT, INSERT, UPDATE, and
DELETE statements can be included. You can use placeholders in
these statements that are filled in at runtime.

For more information, see“Writing UltraLite SQL statements” on
page 205.

• TRUNCATE TABLE statement You can use this statement to rapidly
delete entire tables.

• Transaction control You can use COMMIT and ROLLBACK
statements to provide transaction control within your UltraLite
application.

• START/STOP SYNCHRONIZATION DELETE statements These
statements are used to temporarily suspend synchronization of delete
operations.

For more information, see“Temporarily stopping synchronization of
deletes”[MobiLink Clients,page 87].

☞ For information on other UltraLite limitations, see“UltraLite database
limitations” on page 50.

144

Chapter 7. SQL Language Elements

Data types in UltraLite
The following are the SQL data types supported in UltraLite databases.

If you create an UltraLite database from an Adaptive Server Anywhere
reference database, you can use other data types, including user-defined data
types, in the reference database. The UltraLite generator casts those data
types into a data type supported in UltraLite databases. You cannot use
user-defined data types that include DEFAULT values or CHECK
constraints.

If you use dynamic SQL, or if you design an UltraLite database using the
Schema Painter, you are limited to the use of the types listed here.

☞ For data types in Adaptive Server Anywhere, see“SQL Data Types”
[ASA SQL Reference,page 53].

Data type Remarks

BIT Boolean values (0 or 1). See“BIT data type” [ASA
SQL Reference,page 66]

{ CHAR| CHARACTER}
[(max-length)]

Character data of maximum lengthmax-length
characters. The maximum length is 2048 bytes.
See“CHAR data type [Character]” [ASA SQL
Reference,page 55]

{ VARCHAR
| CHARACTER

VARYING}
[(max-length)]

In UltraLite, VARCHAR is implemented identi-
cally to CHAR. In other databases, VARCHAR
is used for variable-length character data of max-
imum lengthmax-length. See“CHARACTER
VARYING (VARCHAR) data type [Character]”
[ASA SQL Reference,page 55]

LONG VARCHAR Arbitrary length character data. Conditions in
SQL statements (such as in the WHERE clause)
cannot operate on LONG VARCHAR columns.
The only operations allowed on LONG VAR-
CHAR columns are to insert, update, or delete
them, or to include them in theselect-listof a
query.

For static interfaces, the maximum size of LONG
VARCHAR values is 64 KB. There is no explicit
limit for the component interfaces. See“LONG
VARCHAR data type [Character]” [ASA SQL
Reference,page 56]

145

Data type Remarks

[UNSIGNED]
BIGINT

An integer requiring 8 bytes of storage. See“BIG-
INT data type [Numeric]” [ASA SQL Reference,
page 58]

{ DECIMAL | DEC}
[(precision

[, scale])]

A decimal number withprecisiontotal digits and
with scaleof the digits after the decimal point.
See“DECIMAL data type [Numeric]” [ASA SQL
Reference,page 59]

NUMERIC
[(precision

[, scale])]

Same as DECIMAL. See“NUMERIC data type
[Numeric]” [ASA SQL Reference,page 62]

DOUBLE
[PRECISION]

A double-precision floating-point number. See
“DOUBLE data type [Numeric]” [ASA SQL
Reference,page 60]

FLOAT
[(precision)]

A floating point number, which may be single
or double precision. See“FLOAT data type
[Numeric]” [ASA SQL Reference,page 60]

[UNSIGNED]
{ INT | INTEGER}

An integer requiring 4 bytes of storage. See“INT
or INTEGER data type [Numeric]” [ASA SQL
Reference,page 61]

REAL A single-precision floating-point number stored in
4 bytes. See“REAL data type [Numeric]” [ASA
SQL Reference,page 63]

[UNSIGNED]
SMALLINT

An integer requiring 2 bytes of storage. See
“SMALLINT data type [Numeric]” [ASA SQL
Reference,page 63]

[UNSIGNED]
TINYINT

An integer requiring 1 byte of storage. See
“TINYINT data type [Numeric]” [ASA SQL
Reference,page 63]

DATE A calendar date, such as a year, month and day.
See“DATE data type [Date and Time]” [ASA SQL
Reference,page 71]

TIME The time of day, containing hour, minute, second
and fraction of a second. See“TIME data type
[Date and Time]” [ASA SQL Reference,page 72]

146

Chapter 7. SQL Language Elements

Data type Remarks

DATETIME Identical to TIMESTAMP. See“DATETIME data
type [Date and Time]” [ASA SQL Reference,
page 72]

TIMESTAMP The point in time, containing year, month, day,
hour, minute, second and fraction of a second. See
“TIMESTAMP data type [Date and Time]” [ASA
SQL Reference,page 73]

VARBINARY
[(max-length)]

Identical to BINARY. See“VARBINARY data
type [BINARY]” [ASA SQL Reference,page 76]

BINARY
[(max-length)]

Binary data of maximum lengthmax-lengthbytes.
The maximum length is 2048 bytes. See“BI-
NARY data type [Binary]” [ASA SQL Reference,
page 74]

LONG BINARY Arbitrary length binary data. Conditions in SQL
statements (such as in the WHERE clause) cannot
operate on LONG BINARY columns. The only
operations allowed on LONG BINARY columns
are to insert, update, or delete them, or to include
them in theselect-listof a query.

For static interfaces, the maximum size of LONG
BINARY values is 64 KB. There is no explicit
limit for the component interfaces. See“LONG
BINARY data type [BINARY]” [ASA SQL Refer-
ence,page 74]

UNIQUEIDENTIFIER Typically used for a primary key or other unique
column to hold UUID (Universally Unique Identi-
fier) values that uniquely identify rows. UltraLite
provides functions that generate UUID values in
such a way that a value produced on one computer
will not match a UUID produced on another com-
puter. UNIQUEIDENTIFIER values generated
in this way can therefore be used as keys in a
synchronization environment.

See“UNIQUEIDENTIFIER data type [Binary]”
[ASA SQL Reference,page 75].

147

UltraLite SQL functions
The following is a convenient reference for finding functions in dynamic
SQL. Each function is listed, and the function type (numeric, character, and
so on) is indicated next to it.

☞ For information about functions in Adaptive Server Anywhere, see
“SQL Functions”[ASA SQL Reference,page 91].

Function Remarks

ABS (
numeric-expression)

See“ABS function [Numeric]” [ASA SQL
Reference,page 106]

ACOS (
numeric-expression)

See“ACOS function [Numeric]” [ASA SQL
Reference,page 106]

ARGN (
integer-expression ,
expression [, ...])

See“ARGN function [Miscellaneous]”
[ASA SQL Reference,page 107]

ASCII (
string-expression)

See“ASCII function [String]” [ASA SQL
Reference,page 107]

ASIN (
numeric-expression)

See“ASIN function [Numeric]” [ASA SQL
Reference,page 108]

ATAN (
numeric-expression)

See“ATAN function [Numeric]” [ASA SQL
Reference,page 108]

{ ATN2 | ATAN2 } (
numeric-expression1 ,
numeric-expression2)

See“ATN2 function [Numeric]” [ASA SQL
Reference,page 109]

AVG (
numeric-expression
| DISTINCT column-name)

DISTINCT column-namecannot be used
from dynamic SQL.

See“AVG function [Aggregate]” [ASA SQL
Reference,page 109]

BYTE_LENGTH (
string-expression)

See“BYTE_LENGTH function [String]”
[ASA SQL Reference,page 111]

BYTE_SUBSTR (
string-expression ,
start [, length])

See“BYTE_SUBSTR function [String]”
[ASA SQL Reference,page 111]

148

Chapter 7. SQL Language Elements

Function Remarks

CAST (
expression AS data type)

See“CAST function [Data type conver-
sion]” [ASA SQL Reference,page 112]

CEILING (
numeric-expression)

See“CEILING function [Numeric]” [ASA
SQL Reference,page 113]

CHAR (
integer-expression)

See“CHAR function [String]” [ASA SQL
Reference,page 113]

CHARINDEX (
string-expression1 ,
string-expression2)

See“CHARINDEX function [String]”
[ASA SQL Reference,page 113]

CHAR_LENGTH (
string-expression)

See“CHAR_LENGTH function [String]”
[ASA SQL Reference,page 114]

COALESCE (
expression ,
expression [, ...])

See“COALESCE function [Miscella-
neous]” [ASA SQL Reference,page 115]

CONVERT (
data-type ,
expression
[, format-style])

See“CONVERT function [Data type con-
version]” [ASA SQL Reference,page 121]

COS (
numeric-expression)

See“COS function [Numeric]” [ASA SQL
Reference,page 124]

COT (
numeric-expression)

See“COT function [Numeric]” [ASA SQL
Reference,page 124]

COUNT (

* | expression
| DISTINCT
{ expression

column-name })

DISTINCT column-namecannot be used
from dynamic SQL.

See“COUNT function [Aggregate]” [ASA
SQL Reference,page 125]

DATALENGTH (
expression)

See“DATALENGTH function [System]”
[ASA SQL Reference,page 130]

DATE (
expression)

See“DATE function [Date and time]” [ASA
SQL Reference,page 130]

149

Function Remarks

DATEADD (
date-part ,
numeric-expression ,
date-expression)

See“DATEADD function [Date and time]”
[ASA SQL Reference,page 131]

DATEDIFF (
date-part ,
date-expression1 ,
date-expression2)

See“DATEDIFF function [Date and time]”
[ASA SQL Reference,page 131]

DATEFORMAT (
datetime-expression ,
string-expression)

See“DATEFORMAT function [Date and
time]” [ASA SQL Reference,page 133]

DATENAME (
date-part ,
date-expression)

See“DATENAME function [Date and
time]” [ASA SQL Reference,page 133]

DATEPART (
date-part ,
date-expression)

See“DATEPART function [Date and time]”
[ASA SQL Reference,page 134]

DATETIME (
expression)

See“DATETIME function [Date and time]”
[ASA SQL Reference,page 134]

DAY (
date-expression)

See“DAY function [Date and time]” [ASA
SQL Reference,page 135]

DAYNAME(
date-expression)

See“DAYNAME function [Date and time]”
[ASA SQL Reference,page 135]

DAYS (
[datetime-expression ,]
datetime-expression)

See“DAYS function [Date and time]” [ASA
SQL Reference,page 136]

DAYS (
datetime-expression ,
integer-expression)

See“DAYS function [Date and time]” [ASA
SQL Reference,page 136]

DEGREES (
numeric-expression)

See“DEGREES function [Numeric]” [ASA
SQL Reference,page 141]

150

Chapter 7. SQL Language Elements

Function Remarks

DIFFERENCE (
string-expression-1 ,
string-expression-2)

See“DIFFERENCE function [String]”
[ASA SQL Reference,page 143]

DOW (
date-expression)

See“DOW function [Date and time]” [ASA
SQL Reference,page 144]

EXP (
numeric-expression)

See“EXP function [Numeric]” [ASA SQL
Reference,page 152]

FLOOR (
numeric-expression)

See“FLOOR function [Numeric]” [ASA
SQL Reference,page 155]

GETDATE () See“GETDATE function [Date and time]”
[ASA SQL Reference,page 157]

GREATER (
expression1 ,
expression2)

See“GREATER function [Miscellaneous]”
[ASA SQL Reference,page 159]

HEXTOINT (
hexadecimal-string)

See“HEXTOINT function [Data type con-
version]” [ASA SQL Reference,page 161]

HOUR (
datetime-expression)

See“HOUR function [Date and time]”
[ASA SQL Reference,page 162]

HOURS (
[datetime-expression ,]
datetime-expression)

See“HOURS function [Date and time]”
[ASA SQL Reference,page 162]

HOURS (
datetime-expression ,
integer-expression)

See“HOURS function [Date and time]”
[ASA SQL Reference,page 162]

IFNULL (
expression-1 ,
expression-2
[, expression-3])

See“IFNULL function [Miscellaneous]”
[ASA SQL Reference,page 168]

INSERTSTR (
integer-expression ,
string-expression-1 ,
string-expression-2)

See“INSERTSTR function [String]” [ASA
SQL Reference,page 169]

151

Function Remarks

INTTOHEX (
integer-expression)

See“INTTOHEX function [Data type con-
version]” [ASA SQL Reference,page 169]

ISDATE (
string)

See“ISDATE function [Data type conver-
sion]” [ASA SQL Reference,page 170]

ISNULL (
expression ,
expression [, ...])

See“ISNULL function [Data type conver-
sion]” [ASA SQL Reference,page 170]

LCASE (
string-expression)

See“LCASE function [String]” [ASA SQL
Reference,page 172]

LEFT (
string-expression ,
para-expression

See“LEFT function [String]” [ASA SQL
Reference,page 172]

LENGTH (
string-expression)

See“LENGTH function [String]” [ASA
SQL Reference,page 173]

LESSER (
expression1 ,
expression2)

See“LESSER function [Miscellaneous]”
[ASA SQL Reference,page 173]

LIST (
{ string-expression

| DISTINCT column-name }
[, delimiter-string])

DISTINCT column-namecannot be used
from dynamic SQL.

See“LIST function [Aggregate]” [ASA SQL
Reference,page 174]

LOCATE (
string-expression-1 ,
string-expression-2
[, integer-expression])

See“LOCATE function [String]” [ASA
SQL Reference,page 176]

LOG (
numeric-expression)

See“LOG function [Numeric]” [ASA SQL
Reference,page 177]

LOG10 (
numeric-expression)

See“LOG10 function [Numeric]” [ASA
SQL Reference,page 178]

LOWER (
string-expression)

See“LOWER function [String]” [ASA SQL
Reference,page 179]

152

Chapter 7. SQL Language Elements

Function Remarks

LTRIM (
string-expression)

See“LTRIM function [String]” [ASA SQL
Reference,page 179]

MAX (expression) See“MAX function [Aggregate]” [ASA
SQL Reference,page 180]

MIN (expression) See“MIN function [Aggregate]” [ASA SQL
Reference,page 180]

MINUTE (
datetime-expression)

See“MINUTE function [Date and time]”
[ASA SQL Reference,page 181]

MINUTES (
[datetime-expression ,]
datetime-expression)

See“MINUTES function [Date and time]”
[ASA SQL Reference,page 181]

MINUTES (
datetime-expression ,
integer-expression)

See“MINUTES function [Date and time]”
[ASA SQL Reference,page 181]

MOD (
dividend ,
divisor)

See“MOD function [Numeric]” [ASA SQL
Reference,page 182]

MONTH (
date-expression)

See“MONTH function [Date and time]”
[ASA SQL Reference,page 183]

MONTHNAME (
date-expression)

See“MONTHNAME function [Date and
time]” [ASA SQL Reference,page 183]

MONTHS (
[datetime-expression ,]
datetime-expression)

See“MONTHS function [Date and time]”
[ASA SQL Reference,page 184]

MONTHS (
datetime-expression ,
integer-expression)

See“MONTHS function [Date and time]”
[ASA SQL Reference,page 184]

NEWID() This function is not supported by the Ultra-
Lite static Java API.

See“NEWID function [Miscellaneous]”
[ASA SQL Reference,page 185]

NOW (*) See“NOW function [Date and time]” [ASA
SQL Reference,page 189]

153

Function Remarks

NULLIF (
expression-1 ,
expression-2)

See“NULLIF function [Miscellaneous]”
[ASA SQL Reference,page 189]

PATINDEX (
’%pattern %’ ,
string-expression)

See“PATINDEX function [String]” [ASA
SQL Reference,page 196]

PI (*) See“PI function [Numeric]” [ASA SQL
Reference,page 197]

POWER (
numeric-expression-1 ,
numeric-expression-2)

See“POWER function [Numeric]” [ASA
SQL Reference,page 199]

QUARTER (
date-expression)

See“QUARTER function [Date and time]”
[ASA SQL Reference,page 201]

RADIANS (
numeric-expression)

See“RADIANS function [Numeric]” [ASA
SQL Reference,page 202]

REMAINDER (
dividend ,
divisor)

See“REMAINDER function [Numeric]”
[ASA SQL Reference,page 212]

REPEAT (
string-expression ,
integer-expression)

See“REPEAT function [String]” [ASA SQL
Reference,page 212]

REPLACE (
original-string ,
search-string ,
replace-string)

See“REPLACE function [String]” [ASA
SQL Reference,page 213]

REPLICATE (
string-expression ,
integer-expression)

See“REPLICATE function [String]” [ASA
SQL Reference,page 213]

RIGHT (
string-expression ,
integer-expression)

See“RIGHT function [String]” [ASA SQL
Reference,page 216]

ROUND (
numeric-expression ,
integer-expression)

See“ROUND function [Numeric]” [ASA
SQL Reference,page 216]

154

Chapter 7. SQL Language Elements

Function Remarks

RTRIM (
string-expression)

See“RTRIM function [String]” [ASA SQL
Reference,page 218]

SECOND (
datetime-expression)

See“SECOND function [Date and time]”
[ASA SQL Reference,page 218]

SECONDS (
[datetime-expression ,]
datetime-expression)

See“SECONDS function [Date and time]”
[ASA SQL Reference,page 219]

SECONDS (
datetime-expression ,
integer-expression)

See“SECONDS function [Date and time]”
[ASA SQL Reference,page 219]

SIGN (
numeric-expression)

See“SIGN function [Numeric]” [ASA SQL
Reference,page 220]

SIMILAR (
string-expression-1 ,
string-expression-2)

See“SIMILAR function [String]” [ASA
SQL Reference,page 221]

SIN (
numeric-expression)

See“SIN function [Numeric]” [ASA SQL
Reference,page 221]

SOUNDEX (
string-expression)

See“SOUNDEX function [String]” [ASA
SQL Reference,page 225]

SPACE (
integer-expression)

See“SPACE function [String]” [ASA SQL
Reference,page 226]

SQRT (
numeric-expression)

See“SQRT function [Numeric]” [ASA SQL
Reference,page 227]

STR (
numeric-expression
[, length

[, decimal]])

See“STR function [String]” [ASA SQL
Reference,page 229]

STRING (
string-expression
[, ...])

See“STRING function [String]” [ASA SQL
Reference,page 230]

155

Function Remarks

STRTOUUID (
string-expression)

This function is not supported by the Ultra-
Lite static Java API.

See“STRTOUUID function [String]” [ASA
SQL Reference,page 230]

STUFF (
string-expression1 ,
start ,
length ,
string-expression2)

See“STUFF function [String]” [ASA SQL
Reference,page 231]

{ SUBSTRING | SUBSTR } (
string-expression ,

start
[, length])

See“SUBSTRING function [String]” [ASA
SQL Reference,page 232]

SUM (
expression
| DISTINCT column-name)

DISTINCT column-namecannot be used
from dynamic SQL.

See“SUM function [Aggregate]” [ASA
SQL Reference,page 233]

TAN (
numeric-expression)

See“TAN function [Numeric]” [ASA SQL
Reference,page 234]

TODAY (*) See“TODAY function [Date and time]”
[ASA SQL Reference,page 235]

TRIM (
string-expression)

See“TRIM function [String]” [ASA SQL
Reference,page 236]

" TRUNCATE" (
numeric-expression ,
integer-expression)

See“TRUNCATE function [Numeric]”
[ASA SQL Reference,page 236]

TRUNCNUM (
numeric-expression ,
integer-expression)

See“TRUNCNUM function [Numeric]”
[ASA SQL Reference,page 237]

UCASE (
string-expression)

See“UCASE function [String]” [ASA SQL
Reference,page 238]

UPPER (
string-expression)

See“UPPER function [String]” [ASA SQL
Reference,page 238]

156

Chapter 7. SQL Language Elements

Function Remarks

UUIDTOSTR(
uuid-expression)

This function is not supported by the Ultra-
Lite static Java API.

See“UUIDTOSTR function [String]” [ASA
SQL Reference,page 239]

WEEKS (
[datetime-expression ,]
datetime-expression)

See“WEEKS function [Date and time]”
[ASA SQL Reference,page 243]

WEEKS (
datetime-expression ,
integer-expression)

See“WEEKS function [Date and time]”
[ASA SQL Reference,page 243]

YEAR (
[datetime-expression ,]
datetime-expression)

See“YEAR function [Date and time]” [ASA
SQL Reference,page 249]

YEARS (
datetime-expression ,
integer-expression)

See“YEARS function [Date and time]”
[ASA SQL Reference,page 250]

YMD (
integer-expression ,
integer-expression ,
integer-expression)

See“YMD function [Date and time]” [ASA
SQL Reference,page 251]

157

CHAPTER 8

Dynamic SQL

About this chapter Dynamic SQL is the version of SQL available to UltraLite components. This
chapter describes the features of the dynamic SQL in UltraLite.

Dynamic SQL statements can be constructed at run time. This is in contrast
to the static SQL available to embedded SQL, static C++ API, and static
Java API applications, which must have all SQL statements specified at
compile time.

Contents Topic: page

Introduction to dynamic SQL 160

Dynamic SQL expressions 163

Dynamic SQL operators 166

Dynamic SQL search conditions 170

Dynamic SQL statements 172

Query optimization 185

159

Introduction to dynamic SQL
Structured Query Language (SQL) can be used by an application to perform
a database task, such as retrieving information using a query or inserting a
new row into a table. SQL is a relational database language standardized by
the ANSI and ISO standards bodies. UltraLite dynamic SQL is a variant
designed for use on small-footprint devices.

SQL statements are supplied as strings in function calls from the
programming language you are using. UltraLite components provide
functions for building and generating SQL statements. The programming
interface delivers the SQL statement to the database. The database receives
the statement and executes it, returning the required information (such as
query results) back to the application.

Queries are one form of Data Manipulation Language used in SQL. In fact,
the “Q” in “SQL” stands for query. You query, or retrieve, data from a
database with a SELECT statement. A query produces a result set, which is
a collection of rows that satisfy the query. The basic query operations in a
relational system are projection, restriction, and join. The SELECT
statement implements all of them.

A projection is a subset of the columns in a table. A restriction, also called
selection, is a subset of the rows in a table, based on some conditions. For
example, the following SELECT statement retrieves the names and prices of
all products that cost more than $15:

SELECT name, unit_price
FROM product
WHERE unit_price > 15

This query uses both a projection, as shown in the SELECT clause, and a
restriction, given in the WHERE clause.

You can do more with dynamic SQL than just query the data. It also
includes statements that modify data (the INSERT, UPDATE, and DELETE
statements), statements that control transactions (COMMIT and
ROLLBACK) and statements for creating and dropping tables and indexes
(CREATE or DROP TABLE or INDEX).

Availability Dynamic SQL is the variant of SQL available for UltraLite components.
UltraLite static interfaces use a different variant of SQL. The UltraLite
components can use a table-based interface as well as dynamic SQL.

☞ For a comparison of these data access methods, see“Choosing between
components and static interfaces” on page 11.

160

Chapter 8. Dynamic SQL

Using dynamic SQL

Dynamic SQL can be used from UltraLite components, but not from static
development models. The steps in executing dynamic SQL statements are
common to all components:

1. Prepare the statement using a prepared statement method on the
connection object. The name of the method varies slightly with the
interface.

Preparing a statement causes the character string representing the
statement to be parsed and optimized (prepared) and returns an object
representing the prepared statement. The optimization is necessarily less
involved than that in Adaptive Server Anywhere.

2. Set the value of any parameters.

Optionally, when the statement has input parameters (identified by
question marks), then your application can call methods on the prepared
statement object to set the value of these parameters. Any parameters for
which values are not set are set to NULL.

3. Execute the statement.

If the statement is an INSERT, UPDATE, or DELETE, use the
ExecuteStatement method. This method returns the number of rows
modified by the statement.

If the statement is a SELECT statement, use the ExecuteQuery method.
This method returns an object that holds the query result set.

4. For queries, navigate the result set and access the values in the result set.

♦ You can use methods on the result set object to set the position to
different rows in the result set. Some examples are MoveNext,
MovePrevious, MoveFirst, MoveLast, Relative, BeforeFirst, and
AfterLast.

♦ When the current position is at a row of the result set, the values of
columns in the result set can be obtained by methods that get values.
The names of the methods depend on the interface. The methods
convert data to application data types automatically. For example, an
integer result expression can automatically be converted to a string if
the result is assigned to a string variable.

5. For repeated execution of a prepared statement, repeat steps 2 through 4.
Using parameters is more efficiient than preparing the entire statement
again.

161

The values for input variables persist after a prepared statement is
executed. If you use a different value, you must reset the value of the
parameter.

162

Chapter 8. Dynamic SQL

Dynamic SQL expressions
Expressions in UltraLite dynamic SQL are built from column names,
constants, and operators. Expressions evaluate to a value, and so have data
types associated with them.

Syntax expression :
constant

| column-name
| - expression
| expression operator expression
| (expression)
| function-name (expression, . . .)
| if-expression
| case-expression

See also ♦ “Subqueries in expressions” on page 163
♦ “IF expressions” on page 164
♦ “CASE expressions” on page 164
♦ “UltraLite SQL functions” on page 148
♦ “Dynamic SQL operators” on page 166“CASE expressions” on

page 164“Dynamic SQL operators” on page 166

Aggregate expressions An aggregate expression calculates a single value from a range of rows. For
example, the following query computes the total payroll for employees in the
employee table. In this query,SUM(salary) is an aggregate expression:

SELECT sum(salary)
FROM employee

An aggregate expression is one in which either an aggregate function is
used, or in which one or more of the operands is an aggregate expression.

When a SELECT statement does not have a GROUP BY clause, the
expressions in theselect-listmust be either all aggregate expressions or none
of the expressions can be an aggregate expression. When a SELECT
statement does have a GROUP BY clause, any non-aggregate expression in
theselect-listmust appear in the GROUP BY list.

Subqueries in expressions

A subquery is a SELECT statement that is nested inside another SELECT
statement. Subqueries can be used as a table expression in the FROM clause,
where they are also called derived tables.

Subqueries can be written with references to names that are specified before
(to the left of) the subquery, sometimes known as outer references to the left.

163

There can be no references to items within subqueries, sometimes known as
inner references. In the case of derived tables, it is required to have a derived
table name and to specify the column names by which values in the
SELECT list are fetched.

☞ For other uses of subqueries, see“Dynamic SQL search conditions” on
page 170.

IF expressions

The syntax of the IF expression is as follows:

IF condition
THEN expression1
[ELSE expression2]
ENDIF

This expression returns the following:

♦ If condition is TRUE, the IF expression returnsexpression1.

♦ If condition is FALSE, the IF expression returnsexpression2.

♦ If condition is FALSE, and there is noexpression2, the IF expression
returns NULL.

♦ If condition is UNKNOWN, the IF expression returns NULL.

☞ For more information about TRUE, FALSE and UNKNOWN
conditions, see“NULL value” [ASA SQL Reference,page 49], and“Search
conditions”[ASA SQL Reference,page 23].

CASE expressions

The CASE expression provides conditional SQL expressions. Case
expressions can be used anywhere an expression can be used.

Syntax 1 CASE expression
WHEN expression THEN expression, . . .
[ELSE expression]
END

If the expression following the CASE statement is equal to the expression
following the WHEN statement, then the expression following the THEN
statement is returned. Otherwise the expression following the ELSE
statement is returned, if it exists.

For example, the following code uses a case expression as the second clause
in a SELECT statement.

164

Chapter 8. Dynamic SQL

SELECT id,
(CASE name

WHEN ’Tee Shirt’ then ’Shirt’
WHEN ’Sweatshirt’ then ’Shirt’
WHEN ’Baseball Cap’ then ’Hat’
ELSE ’Unknown’

END) as Type
FROM Product

Syntax 2 CASE
WHEN search-condition
THEN expression, . . .
[ELSE expression]
END

If the search-condition following the WHEN statement is satisfied, the
expression following the THEN statement is returned. Otherwise the
expression following the ELSE statement is returned, if it exists.

For example, the following statement uses a case expression as the third
clause of a SELECT statement to associate a string with a search-condition.

SELECT id, name,
(CASE

WHEN name=’Tee Shirt’ then ’Sale’
WHEN quantity >= 50 then ’Big Sale’
ELSE ’Regular price’

END) as Type
FROM Product

NULLIF function for
abbreviated CASE
expressions

The NULLIF function provides a way to write some CASE statements in
short form. The syntax for NULLIF is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression
equals the second expression, NULLIF returns NULL. If the first expression
does not equal the second expression, NULLIF returns the first expression.

165

Dynamic SQL operators
Operators are used to compare, combine, or modify expressions. Dynamic
SQL supports the operators listed in this section. UltraLite static interfaces
have access to all of the Adaptive Server Anywhere operators.

☞ For information about operators in Adaptive Server Anywhere, see
“Operators”[ASA SQL Reference,page 11].

Binary comparison operators

The syntax for binary comparison conditions is as follows:

expression compare expression

wherecompareis a comparison operator. The following comparison
operators are available:

Operator Description

= Equal to

[NOT] LIKE A text comparison, possibly using regular expressions

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

<> Not equal to

!> Not greater than

!< Not less than

♦ Case sensitivity Comparisons are carried out with the same attention
to case as the database on which they are operating. By default, UltraLite
databases are created as case insensitive.

♦ NULL operators Comparisons involving NULL expressions follow
these rules:

Two null values compare as equals. When exactly one of the operands
being compared is NULL, the result is UNKNOWN. Thus, SQL
comparisons produce one of three results (TRUE, FALSE, and

166

Chapter 8. Dynamic SQL

UNKNOWN). Similarly, logical expressions (AND, OR, NOT) can also
produce these results.

Arithmetic operators

expression + expression Addition. If either expression is NULL, the
result is NULL.

expression – expression Subtraction. If either expression is NULL, the
result is NULL.

– expression Negation. If the expression is NULL, the result is NULL.

expression * expression Multiplication. If either expression is NULL, the
result is NULL.

expression / expression Division. If either expression is NULL or if the
second expression is 0, the result is NULL.

expression % expression Modulo finds the integer remainder after a
division involving two whole numbers. For example, 21 % 11 = 10 because
21 divided by 11 equals 1 with a remainder of 10.

String operators

expression || expression String concatenation (two vertical bars). If
either string is NULL, it is treated as the empty string for concatenation.

expression + expression Alternative string concatenation. When using
the + concatenation operator, you must ensure the operands are explicitly set
to character data types rather than relying on implicit data conversion.

For example, the following query returns the integer value579:

SELECT 123 + 456

whereas the following query returns the character string123456:

SELECT ’123’ + ’456’

You can use the CAST or CONVERT function to explicitly convert data
types.

Bitwise operators

The following operators can be used on integer data types in UltraLite.

167

Operator Description

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

~ bitwise NOT

The bitwise operators &, | and ~ are not interchangeable with the logical
operators AND, OR, and NOT. The bitwise operators operate on integer
values using the bit representation of the values.

Example For example, the following statement selects rows in which the correct bits
are set.

SELECT *
FROM tableA
WHERE (options & 0x0101) <> 0

Logical operators

Logical operators compare conditions (AND, OR, and NOT) or test the truth
or NULL value nature of expressions (IS)

Conditions are combined using AND as follows:

condition1 AND condition2

The combined condition is TRUE if both conditions are TRUE, FALSE if
either condition is FALSE, and UNKNOWN otherwise.

Conditions are combined using OR as follows:

condition1 OR condition2

The combined condition is TRUE if either condition is TRUE, FALSE if
both conditions are FALSE, and UNKNOWN otherwise.

The syntax for the NOT operator is as follows:

NOT condition

The NOT condition is TRUE ifcondition is FALSE, FALSE ifcondition
is TRUE, and UNKNOWN ifcondition is UNKNOWN.

The IS operator provides a means to test a logical value. The syntax for the
IS operator is as follows:

expression IS [NOT] { truth-value | NULL }

168

Chapter 8. Dynamic SQL

The condition is TRUE if theexpressionevaluates to the supplied
truth-value, which must be one of TRUE, FALSE, or UNKNOWN.
Otherwise, the value is FALSE.

Operator precedence

The precedence of operators in expressions is as follows. The operators at
the top of the list are evaluated before those at the bottom of the list.

1. Names, functions, constants

2. ()

3. unary operators (operators that require a single operand): +, -

4. ~

5. & , | , ^

6. * , /, %

7. +, -

8. ||

9. Comparisons:>, <, <>, !=, <=, >=, [NOT] BETWEEN, [NOT] IN, [
NOT] LIKE

10. Comparisons: IS [NOT] TRUE, FALSE, UNKNOWN

11. NOT

12. AND

13. OR

When you use more than one operator in an expression, it is recommended
that you make the order of operation explicit using parentheses rather than
relying on an identical operator precedence in UltraLite.

169

Dynamic SQL search conditions
Search conditions appear in the WHERE clause or the ON phrase in SQL
queries. The following search conditions are supported in dynamic SQL.

Syntax search-condition:
expression compare expression

| expression IS [NOT] { NULL | TRUE | FALSE | UNKNOWN }
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] IN (expression, ...)
| expression [NOT] IN (subquery)
| expression [NOT] { ANY | ALL } (subquery)
| expression [NOT] EXISTS (subquery)
| NOT search-condition
| search-condition AND search-condition
| search-condition OR search-condition
| (search-condition)

ALL conditions

The syntax for ALL conditions is

expression compare [NOT] ALL (subquery)

wherecompareis a comparison operator.

ANY conditions

The syntax for ANY conditions is

expression compare [NOT] ANY (subquery)

wherecompareis a comparison operator.

For example, an ANY condition with an equality operator,

expression = ANY (subquery)

is TRUE if expressionis equal to any of the values in the result of the
subquery, and FALSE if the expression is not NULL and does not equal any
of the values returned by the subquery. The ANY condition is UNKNOWN
if expressionis the NULL value, unless the result of the subquery has no
rows, in which case the condition is always FALSE.

BETWEEN conditions

The syntax for BETWEEN conditions is as follows:

expression [NOT] BETWEEN start-expression AND end-expression

170

Chapter 8. Dynamic SQL

The BETWEEN condition can evaluate as TRUE, FALSE, or UNKNOWN.
Without the NOT keyword, the condition evaluates as TRUE ifexpressionis
betweenstart-expressionandend-expression. The NOT keyword reverses
the meaning of the condition but leaves UNKNOWN unchanged.

The BETWEEN conditions is equivalent to a combination of two
inequalities:

[NOT] (expression >= start-expression
AND expression <= end-expression)

EXISTS conditions

The syntax for EXISTS conditions is as follows:

[NOT] EXISTS(subquery)

The EXISTS condition is TRUE if the subquery result contains at least one
row, and FALSE if the subquery result does not contain any rows. The
EXISTS condition cannot be UNKNOWN.

IN conditions

The syntax for IN conditions is as follows:

expression [NOT] IN { (subquery) | (value-expr , . . .) }

An IN condition, without the NOT keyword, evaluates according to the
following rules:

♦ TRUE if expressionis not NULL and equals at least one of the values.

♦ UNKNOWN if expressionis NULL and the values list is not empty, or if
at least one of the values is NULL andexpressiondoes not equal any of
the other values.

♦ FALSE if expressionis NULL andsubqueryreturns no values; or if
expressionis not NULL, none of the values are NULL, andexpression
does not equal any of the values.

The NOT keyword interchanges TRUE and FALSE.

The search conditionexpressionIN (values) is identical to the search
conditionexpression= ANY (values). The search conditionexpression
NOT IN (values) is identical to the search conditionexpression<>
ALL (values).

Thevalue-exprarguments are expressions that take on a single value, which
may be a string, a number, a date, or any other SQL data type.

171

Dynamic SQL statements
The following are dynamic SQL statements that you can use in UltraLite.

COMMIT statement

Description Use this statement to make changes to the database permanent, or to
terminate a user-defined transaction.

Syntax COMMIT [WORK]

Usage A transaction is the logical unit of work done on one database connection to
a database between COMMIT or ROLLBACK statements. The COMMIT
statement ends a transaction and makes all changes made during this
transaction permanent in the database.

CREATE and DROP statements both carry out a COMMIT automatically.

Side effects Closes all cursors.

CREATE INDEX statement

Description Use this statement to create an index on a specified table. Indexes can
improve query performance by providing quick ways for UltraLite to look
up specific rows.

☞ For more information about indexes, see“Query optimization” on
page 185.

Syntax CREATE [UNIQUE] INDEX index-name
ON [owner.]table-name (column-name, . . .)

Parameters UNIQUE keyword The UNIQUE attribute ensures that there will not be
two rows in the table with identical values in all the columns in the index.
Each index key must be unique or contain a NULL in at least one column.

There is a difference between a unique constraint on a table and a unique
index. Columns of a unique index are allowed to be NULL, while columns
in a unique constraint are not. A foreign key can reference either a primary
key or a column with a unique constraint, but not a unique index, because it
can include multiple instances of NULL.

UltraLite tables do not have owners. The optionalowner is supported as a
convenience for existing SQL and for programmatically-generated SQL.
UltraLite accepts but ignoresowner.

Usage The CREATE INDEX statement creates a sorted index on the specified
columns of the named table. Indexes are automatically used to improve the
performance of queries issued to the database, and to sort queries with an

172

Chapter 8. Dynamic SQL

ORDER BY clause. Once an index is created, it is never referenced in a
SQL statement again except to delete it with DROP INDEX.

Indexes do take space in the database. Also, the additional work required to
maintain indexes can affect the performance of data modification operations.
For these reasons, you should avoid creating indexes that do not assist in
query performance.

♦ Exclusive table use CREATE INDEX is prevented whenever the
statement affects a table currently being used by another connection.
CREATE INDEX can be time consuming and the server will not process
requests referencing the same table while the statement is being
processed.

♦ Automatically created indexes UltraLite automatically creates indexes
for primary keys and for unique constraints.

CREATE TABLE statement

Description Use this statement to create a table in the database.

Syntax CREATE TABLE [owner.]table-name
({ column-definition | table-constraint }, . . .)

column-definition :
column-name data-type [NOT NULL]
[DEFAULT default-value]
[UNIQUE | PRIMARY KEY]

default-value :
| constant-expression
| AUTOINCREMENT
| GLOBAL AUTOINCREMENT [(partition-size)]
| NULL
| NEWID ()
| CURRENT DATE
| CURRENT TIME
| CURRENT TIMESTAMP

table-constraint :
UNIQUE (column-name, . . .)

| PRIMARY KEY (column-name, . . .)
| foreign-key-constraint

foreign-key-constraint :
[NOT NULL] FOREIGN KEY (column-name, . . .)
REFERENCES table-name (column-name, . . .)
[CHECK ON COMMIT]

173

Parameters column-definition Define a column in the table. The following are part of
column definitions.

♦ column-name The column name is an identifier. Two columns in the
same table cannot have the same name.

♦ data-type For information on data types, see“Data types in UltraLite”
on page 145.

♦ NOT NULL If NOT NULL is specified, or if the column is in a
UNIQUE or PRIMARY KEY constraint, the column cannot contain
NULL in any row.

♦ DEFAULT The DEFAULT value is used as the value for the column in
any INSERT statement that does not specify a value for the column. If no
DEFAULT is specified, it is equivalent to DEFAULT NULL.

• constant-expression The default value is the supplied constant
expression. Only constant expressions that do not reference database
objects are allowed in a DEFAULT clause. If the expression is not a
simple value, for example if it is an expression involving an addition
operator, it must be enclosed in parentheses.

• AUTOINCREMENT The default value is an autoincremented value for
each row in the table. When using AUTOINCREMENT, the column
must be one of the integer data types, or an exact numeric type.

On inserts into the table, if a value is not specified for the
AUTOINCREMENT column, a unique value larger than any other
value in the column is generated. If an INSERT specifies a value for
the column, it is used; if the specified value is larger than the current
maximum value for the column, that value will be used as a starting
point for subsequent inserts.

Deleting rows does not decrement the AUTOINCREMENT counter.
Gaps created by deleting rows can only be filled by explicit assignment
when using an insert. After an explicit insert of a row number less then
the maximum, subsequent rows without explicit assignment are still
automatically incremented with a value of one greater than the
previous maximum.

The next value to be used for each column is stored as an integer.
Using values greater than (231 – 1) may cause wraparound to incorrect
values, and AUTOINCREMENT should not be used in such cases.

• GLOBAL AUTOINCREMENT The default value is an
autoincremented value within a partition of values provided for this
database. The GLOBAL AUTOINCREMENT default is intended for
use when multiple databases will be used in a synchronization
environment.

174

Chapter 8. Dynamic SQL

This default is similar to AUTOINCREMENT, except that the domain
is partitioned. Each partition contains the same number of values. You
assign each copy of the database a unique global database
identification number.
The partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may
be any positive integer, although the partition size is generally chosen
so that the supply of numbers within any one partition will rarely, if
ever, be exhausted.
If the column is of type BIGINT or UNSIGNED BIGINT, the default
partition size is 232 = 4294967296; for columns of all other types the
default partition size is 216 = 65536. Since these defaults may be
inappropriate, especially if the column is not of type INT or BIGINT, it
is best to specify the partition size explicitly.
When using this default, the Global Database ID of each database must
be set to a unique, non-negative integer. This value uniquely identifies
the database and indicates from which partition default values are to be
assigned. The range of allowed values isn p + 1 to (n + 1) p, wheren
is the value of the Global Database ID andp is the partition size.
For example, if you define the partition size to be 1000 and set the
Global Database ID to 3, then the range is from 3001 to 4000.
If the previous value is less than (n + 1) p, the next default value will
be one greater than the previous largest value in column. If the column
contains no values, the first default value isn p + 1. Default column
values are not affected by values in the column outside of the current
partition; that is, by numbers less thanpn + 1 or greater thanp(n + 1).
Such values may be present if they have been replicated from another
database via MobiLink synchronization.
Because the Global Database ID cannot be set to negative values, the
values chosen are always positive. The maximum identification
number is restricted only by the column data type and the partition size.
If the Global Database ID is set to the default value of 2147483647, a
NULL is inserted into the column. Should null values not be permitted,
attempting to insert the row causes an error. This situation arises,
for example, if the column is contained in the table’s primary key.
NULL default values are generated when the supply of values within
the partition has been exhausted. In this case, a new Global Database
ID should be assigned to the database to allow default values to be
chosen from another partition. Attempting to insert the null value
causes an error if the column does not permit nulls.

• NULL The default value is NULL. A column that is DEFAULT
NULL is equivalent to a column that allows NULL and has no explicit
default value.

175

• NEWID The default value is a universal unique identifier (UUID).
UUIDs can be used as an alternative to GLOBAL AUTOINCREMENT
to uniquely identify rows in a table even in a synchronized environment
of many databases. The values are generated such that a value
produced on one computer will not match that produced on another.
Hence they can also be used as keys in synchronization environments.
The column type must be a UNIQUEIDENTIFIER or a BINARY
column of size at least 16.
NEWID is a non-deterministic function. Successive calls to NEWID
may return different values.

• CURRENT DATE The default value is the current date.

• CURRENT TIME The default value is the current time.

• CURRENT TIMESTAMP The default value is the current timestamp,
which specifies a date and time.

♦ UNIQUE Imposes the restriction that all values in the column must be
distinct. A column that is declared UNIQUE does not allow NULL.

♦ PRIMARY KEY Declares the column as the primary key for the table.
The primary key column cannot hold NULL, and each row must be
unique.

A table can have only one primary key, although that key may be
composed of more than one column. To create a table with a multiple
column primary key, declare the primary key in a table constraint.

table-constraint A table constraint restricts the values that one or more
columns in the table can hold.

Table constraints help ensure the integrity of data in the database. UltraLite
prevents the execution of statements that cause constraint violations and
reports an error.

Table constraints must be used instead of column constraints when the
constraint references more than one column in the table.

♦ UNIQUE Identifies one or more columns that uniquely identify each row
in the table. No two rows in the table can have the same values in all the
named column(s). A table may have more than one unique constraint.

Columns of a unique index are allowed to be NULL, while columns in a
unique constraint are not. A foreign key can reference either a primary
key or a unique constraint, but not a unique index, because it can include
multiple instances of NULL.

☞ For information about unique indexes, see“CREATE INDEX
statement” on page 172.

176

Chapter 8. Dynamic SQL

♦ PRIMARY KEY This is the same as a unique constraint, except that a
table can have only one primary key constraint.

Columns included in primary keys cannot allow NULL. Each row in the
table has a unique primary key value. A table can have only one
PRIMARY KEY.

♦ foreign-key-constraint A foreign key constraint restricts the values for
a set of columns to match the values in a primary key or, less commonly,
a unique constraint of another table (the primary table). For example, a
foreign key constraint could be used to ensure that a customer number in
an invoice table corresponds to a customer number in the customer table.

If you do not explicitly define a foreign key column, it is created with the
same data type as the corresponding column in the primary table. These
automatically-created columns cannot be part of the primary key of the
foreign table. Thus, a column used in both a primary key and foreign key
of the same table must be explicitly created.

If foreign key column names are specified, then primary key column
names must also be specified, and the column names are paired according
to position in the lists. If the primary table column names are not
specified in a FOREIGN KEY table constraint, then the primary key
columns are used. If foreign key column names are not specified then the
foreign key columns are give the same names as the columns in the
primary table.

If at least one value in a multi-column foreign key is NULL, there is no
restriction on the values that can be held in other columns of the key.

The CHECK ON COMMIT clause causes UltraLite to wait for a
COMMIT before checking that the action does not violate the foreign key
constraint.

UltraLite tables do not have owners. The optionalowner is supported as a
convenience for existing SQL and for programmatically-generated SQL.
UltraLite accepts but ignoresowner.

DELETE statement

Description Use this statement to delete rows from the database.

Syntax DELETE
[FROM] [owner.]table-name
[WHERE search-condition]

Usage The DELETE statement deletes all the rows that satisfy the search condition
from the named table.

177

Caution
If no WHERE clause is specified, all rows from the named table are deleted.

UltraLite tables do not have owners. The optionalowner is supported as a
convenience for existing SQL and for programmatically-generated SQL.
UltraLite accepts but ignoresowner.

Side effects None.

Example Remove employee 105 from the database.

DELETE
FROM employee
WHERE emp_id = 105

Remove all data prior to 2000 from the fin_data table.

DELETE
FROM fin_data
WHERE year < 2000

DROP INDEX statement

Description Use this statement to permanently remove an index definition from the
database.

Syntax DROP INDEX [[owner.]table-name.]index-name

Usage The DROP INDEX statement removes the definition of the indicated index.

DROP INDEX is prevented whenever the statement affects a table that is
currently being used by another connection.

UltraLite tables do not have owners. The optionalowner is supported as a
convenience for existing SQL and for programmatically-generated SQL.
UltraLite accepts but ignoresowner.

DROP TABLE statement

Description Use this statement to permanently remove a table definition and all data in
the table from a database.

Syntax DROP TABLE [owner.]table-name

Usage The DROP TABLE statement removes the definition of the indicated table.
All data in the table is automatically deleted as part of the dropping process.
Also, all indexes and keys for the table are dropped by the DROP TABLE
statement.

DROP TABLE is prevented whenever the statement affects a table that is

178

Chapter 8. Dynamic SQL

currently being used by another connection.

UltraLite tables do not have owners. The optionalowner is supported as a
convenience for existing SQL and for programmatically-generated SQL.
UltraLite accepts but ignoresowner.

INSERT statement

Description Use this statement to insert a single row into a table (Syntax 1) or to insert
the results from a SELECT statement into the table (Syntax 2).

Syntax 1 INSERT [INTO] [owner.]table-name [(column-name, . . .)]
VALUES (expression, . . .)

Syntax 2 INSERT [INTO] [owner.]table-name [(column-name, . . .)]
SELECT statement

Usage The INSERT statement is used to add new rows to a database table.

Insert a single row with the specified expression values. If the optional list of
column names is given, the values are inserted one for one into the specified
columns. If the list of column names is not specified, the values are inserted
into the table columns in the order they were created (the same order as
retrieved with SELECT *). The row is inserted into the table at an arbitrary
position.

If you specify column names, the columns from the select list are matched
ordinally with the columns specified in the column list, or sequentially in the
order in which the columns were created.

Character strings inserted into tables are always stored in the same case as
they are entered, regardless of whether the database is case sensitive or not.
Thus a stringValue inserted into a table is always held in the database with
an upper-case V and the remainder of the letters lower case. SELECT
statements return the string asValue. If the database is not case sensitive,
however, all comparisons makeValue the same asvalue, VALUE , and so
on. Further, if a single-column primary key already contains an entryValue,
an INSERT ofvalue is rejected, as it would make the primary key not
unique.

UltraLite tables do not have owners. The optionalowner is supported as a
convenience for existing SQL and for programmatically-generated SQL.
UltraLite accepts but ignoresowner.

Side effects None.

Examples Add an Eastern Sales department to the database.

179

INSERT
INTO department (dept_id, dept_name)
VALUES (230, ’Eastern Sales’)

ROLLBACK statement

Description Use this statement to end a transaction and undo any changes made since the
last COMMIT or ROLLBACK.

Syntax ROLLBACK [WORK]

Usage A transaction is the logical unit of work done on one database connection to
a database between COMMIT or ROLLBACK statements. The
ROLLBACK statement ends the current transaction and undoes all changes
made to the database since the previous COMMIT or ROLLBACK.

SELECT statement

Description Use this statement to retrieve information from the database.

Syntax SELECT [DISTINCT] [FIRST | TOP n] select-list
[FROM table-expression]
[WHERE search-condition]
[GROUP BY group-by-expression,...group-by-expression]
[HAVING search-condition]
[ORDER BY order-by-expression,...order-by-expression]
[OPTION (FORCE ORDER)]

table-expression :
[owner.]table-name [[AS] correlation-name]
| table-expression { join-operator table-expression

[ON join-condition] ,... }
| (table-expression, . . .)
| (select-statement) [AS] derived-table-name ([column-name, ...

] column-name)

join-operator :
, (ON condition not allowed)

| CROSS JOIN (ON condition not allowed)
| INNER JOIN
| JOIN (ON phrase required)
| LEFT OUTER JOIN

order-by-expression :
{ integer | expression } [ASC | DESC]

Parameters DISTINCT If you do not specify DISTINCT, all rows that satisfy the
clauses of the SELECT statement. If DISTINCT is specified, duplicate

180

Chapter 8. Dynamic SQL

output rows are eliminated. Many statements take significantly longer to
execute when DISTINCT is specified, so you should reserve DISTINCT for
cases where it is necessary.

FIRST or TOP You can explicitly retrieve only the first row of a query or
the firstn rows of a query. These keywords are principally for use with
ORDER BY queries.

select-list Theselect-listis a list of expressions, separated by commas,
specifying what will be retrieved from the database. An asterisk (*) means
select all columns of all tables in the FROM clause. Subqueries are not
allowed in theselect-list.

An alias name can be specified following an expression in theselect-listto
represent that expression. The alias name can then be used elsewhere in the
query, such as in the WHERE clause or ORDER BY clause.

FROM clause Rows are retrieved from the tables and views specified in
thetable-expression. Thetable-expressionis built from base tables and
subqueries, as listed in the syntax above.

For information on expressions, see“Dynamic SQL expressions” on
page 163.

ON condition The ON condition is specified for a single join operation and
indicates how the join is to create rows in the result set. A WHERE clause is
used to restrict the rows in the result set, after potential rows have been
created by a join. For INNER joins restricting with an ON or WHERE is
equivalent. For OUTER joins, they are not equivalent.

WHERE clause This clause limits the rows that are selected from the
tables named in the FROM clause. It can be used to restrict rows between
multiple tables.

Although both the ON phrase (which is part of the FROM clause) and the
WHERE clause restrict the rows in the result set, they differ in that the
WHERE clause is applied at a later stage of query execution. The ON phrase
is part of the join operation between tables, while the WHERE clause is
applied after the join is complete. In some queries, a condition can be
specified in a WHERE clause or in the ON phrase with the same net result,
but in other cases the results differ. For example, for outer joins, a condition
specified in a WHERE clause gives different results from the same condition
specified in the ON phrase.

Thesearch-conditionis built from expressions, including subqueries. For
more information, see“Dynamic SQL search conditions” on page 170.

GROUP BY clause You can group by columns, alias names, or functions.

181

The result of the query contains one row for each distinct set of values in the
named columns, aliases, or functions. All NULL-containing rows are treated
as a single set. The resulting rows are often referred to as groups since there
is one row in the result for each group of rows from the table list. Aggregate
functions can then be applied to these groups to get meaningful results.

A group-by-expris a (non-aggregate) expression written exactly the same as
one of the expressions in theselect-list.

When GROUP BY is used, theselect-listand ORDER BY expressions must
not reference any identifier that is not named in the GROUP BY clause. The
exception is that theselect-listmay contain aggregate functions.

HAVING clause This clause selects rows based on the group values and not
on the individual row values. The HAVING clause can only be used if either
the statement has a GROUP BY clause or the select list consists solely of
aggregate functions. Any column names referenced in the HAVING clause
must either be in the GROUP BY clause or be used as a parameter to an
aggregate function in the HAVING clause.

ORDER BY clause This clause sorts the results of a query. Each item in
the ORDER BY list can be labeled as ASC for ascending order (the default)
or DESC for descending order. If the expression is an integern, then the
query results will be sorted by thenth item in the select list.

The only way to ensure that rows are returned in a particular order is to use
ORDER BY. In the absence of an ORDER BY clause, UltraLite returns rows
in whatever order is most efficient. This means that the appearance of result
sets may vary depending on when you last accessed the row and other
factors.

OPTION (FORCE ORDER) clause This clause is not recommended for
general use. It overrides UltraLite’s choice of the order in which to access
tables, and require that UltraLite access the tables in the order they appear in
the query. In general, it is best to let UltraLite decide on the table access
order.

☞ For more information, see“Query optimization” on page 185.

Usage The SELECT statement is used for retrieving results from the database.

UltraLite tables do not have owners. The optionalowner is supported as a
convenience for existing SQL and for programmatically-generated SQL.
UltraLite accepts but ignoresowner.

See also “SELECT statement”[ASA SQL Reference,page 597]

Example How many employees are there?

182

Chapter 8. Dynamic SQL

SELECT count(*)
FROM employee

UPDATE statement

Description Use this statement to modify existing rows in database tables.

Syntax UPDATE [owner.]table-name
SET column-name = expression
[WHERE search-condition]

Parameters table-name Thetable-namespecifies the name of the table to be updated.
Only a single table is allowed.

SET clause Each named column is set to the value of the expression on the
right hand side of the equal sign. There are no restrictions on the expression.
If the expression is acolumn-name, the old value is used.

Only columns specified in the SET clause have their values changed. In
particular, you cannot use UPDATE to set a column’s value to its default.

WHERE clause If a WHERE clause is specified, only rows satisfying
search-conditionare updated. For information about search conditions, see
“Dynamic SQL search conditions” on page 170.

Caution
If no WHERE clause is specified, every row in the table is updated.

Case sensitivity Character strings inserted into tables are always stored in
the same case as they are entered, regardless of whether the database is case
sensitive or not. A CHAR data type column updated with a stringValue is
always held in the database with an upper case V and the remainder of the
letters lower case. SELECT statements return the string asValue. If the
database is not case sensitive, however, all comparisons makeValue the
same asvalue, VALUE , and so on. Further, if a single-column primary key
already contains an entryValue, an INSERT ofvalue is rejected, as it would
make the primary key not unique.

Usage The UPDATE statement modifies values in a table.

UltraLite tables do not have owners. The optionalowner is supported as a
convenience for existing SQL and for programmatically-generated SQL.
UltraLite accepts but ignoresowner.

Side effects None.

See also ♦ “INSERT statement” on page 179
♦ “DELETE statement” on page 177

183

Example Transfer employee Philip Chin (employee 129) from the sales department to
the marketing department.

UPDATE employee
SET dept_id = 400
WHERE emp_id = 129

184

Chapter 8. Dynamic SQL

Query optimization
There are many different ways for UltraLite to execute any query. Each
distinct way of executing a query is called aplan. In UltraLite a plan is
defined mainly by the order in which tables are accessed and by whether
each table is searched using an index or by scanning the rows directly. For
some queries, there can be an orders of magnitude difference in execution
times between efficient and inefficient plans.

UltraLite includes aquery optimizer: an internal component of the
UltraLite runtime that inspects alternative plans and attempts to select an
efficient one. The primary goal of optimization in UltraLite is to choose
indexes so that data can be accessed in an efficient order. The optimizer
attempts to avoid the use of temporary tables to store intermediate results
and attempts to ensure that only the pertinent subset of a table is accessed
when a query joins two tables.

UltraLite optimizes queries automatically. The main area in which you can
tune execution time is by creating indexes in your database that UltraLite
can exploit as it optimizes queries.

Inspecting query plans As a development aid, you can use the UltraLite Interactive SQL to display
the plan that summarizes how a prepared statement is to be executed. The
plan is displayed on a tab in the bottom pane of the utility. You can choose
whether to display a plan graphically or in a text format.

For example, the statement

SELECT I.inv_no, I.name, T.quantity, T.prod_no
FROM Invoice I, Transactions T
WHERE I.inv_no = T.inv_no

might produce the following plan:

join[scan(Invoice,0),index-scan(Transactions,1)]

The plan indicates that the join operation is accomplished by reading all rows
from the Invoice table (following index[0]) and then using the index[1] from
the Transaction table to read only the row whose inv_no column matches.

☞ For more information about UltraLite Interactive SQL, see“The
UltraLite Interactive SQL utility” on page 115.

Overriding the optimizer To be usable on small devices, query optimization in UltraLite is not as
extensive as that carried out in Adaptive Server Anywhere. You can override
the table order it selects by adding theOPTION (FORCE ORDER)clause to a
query, which forces UltraLite to access the tables in the order they appear in
the query.This option is not recommended for general use.If performance

185

is slow, a better approach is usually to create appropriate indexes to speed up
execution.

186

PART III

APPLICATION

DEVELOPMENT

This part introduces the embedded SQL, Static C++ API, and Static Java
programming interfaces.

When using a static interface, all queries must be specified at compile time.

CHAPTER 9

Developing Applications for the Palm OS

About this chapter This chapter describes general issues when developing applications for the
Palm OS.

Contents Topic: page

Choosing database storage on the Palm OS 190

Understanding the Palm Creator ID 191

189

Choosing database storage on the Palm OS
On the Palm OS, it is important to distinguish between UltraLite databases
and the Palm data store, which is sometimes called the Palm database. In
this documentation, the termPDB means a Palm database anddatabase
refers to an UltraLite relational database. In addition to the Palm data store,
Palm OS version 4.0 and later also support a virtual file system (VFS) on
expansion cards.

Palm data store or virtual
file system

UltraLite databases can be stored either in the Palm data store on the virtual
file system on expansion cards. The way of specifying the storage depends
on the interface used:

♦ UltraLite for MobileVB To use the virtual file system, set the VFS On
Palm parameter. See“VFS On Palm parameter ” on page 81.

♦ UltraLite C++ component, static C++ API, embedded SQL Call
ULEnablePalmRecordDB or ULEnableFileDB at the beginning of your
application. See“ULEnablePalmRecordDB function”[UltraLite C/C++
User’s Guide,page 210]and“ULEnableFileDB function”[UltraLite C/C++
User’s Guide,page 208].

Storage details When using the Palm data store, UltraLite actually stores database
information in multiple PDBs, whose names are constructed using the given
creator ID. For example, a database created with a creator ID of ABCD
causes the following files to be created:

♦ ul_state_ABCD

♦ ul_udb_ABCD

UltraLite uses thestate PDB(ul_state_ABCD) to hold the current row on
which the application is positioned for any open tables when the application
exits. The state PDB allows UltraLite allows you to write your application
so that when it is launched, users can resume where they left off.

190

Chapter 9. Developing Applications for the Palm OS

Understanding the Palm Creator ID
UltraLite applications for the Palm OS, like all Palm OS applications, require
acreator ID . You assign this creator ID to your application at development
time and, if you are using HotSync synchronization, you register the creator
ID with HotSync manager for use by the MobiLink synchronization.

☞ For information about assigning creator IDs to applications, see your
development tool documentation. For information about registering creator
IDs with HotSync manager, see“Registering the MobiLink HotSync conduit
to HotSync Manager”[MobiLink Clients,page 299].

UltraLite uses the creator ID to manage databases and HotSync
synchronization. In many scenarios, you do not need to know the details of
how UltraLite uses creator IDs. However, if you create an application that
connects to more than one UltraLite database and that uses HotSync for
synchronization, you do need to know more about how UltraLite uses
creator IDs. This section is provided for those users.

Palm OS uses a creator ID to associate related PDBs and applications. For
example, the CustDB sample application has the creator ID Syb1. The
MobiLink conduit uses this Syb1 creator ID to find the associated UltraLite
database on the device.

The creator ID is a string from one to four characters long. The first
character should be an upper case letter, as Palm OS uses an initial
lower-case letter for its system files.

UltraLite database
names

UltraLite assigns each new database a creator ID and a PDB name based on
the value of the creator ID supplied in the Database On Palm connection
parameter or, if no Database On Palm connection parameter is supplied, the
creator ID of your application:

♦ For applications that use the record-based Palm OS store, the PDB name
is ul_udb_creator-id.

♦ For applications that use the virtual file system, the name of the file is
ul_udb_creator-id.udb.

☞ For more information, see“Database On Palm connection parameter”
on page 71.

HotSync and creator IDs The use of creator IDs to identify both applications and their related
databases can cause problems if your application connects to multiple
databases.

During HotSync synchronization, HotSync Manager checks the creator ID
of each application. It passes those creator IDs registered by the MobiLink

191

conduit to the conduit for synchronization. The conduit looks for a database
named ul_udb_creator-id, wherecreator-idis the name supplied to it by
HotSync manager.

If your application connects to two databases, at least one must have a
different creator ID from the application. Because the database and
application creator IDs do not match, HotSync Manager does not find an
application associated with the database, which is therefore not included in
the synchronization.

To work around this limitation, and to use HotSync for several UltraLite
applications on the Palm OS, write a dummy Palm application for each
creator ID. The dummy Palm application does not need to carry out any
actions at all; it simply has to have a creator ID that HotSync can hand to the
MobiLink conduit for synchronization, and which the MobiLink conduit can
map to your UltraLite database creator ID. With this approach, the
MobiLink HotSync conduit can identify multiple copies of UltraLite
databases and synchronize them.

192

CHAPTER 10

Using UltraLite Static Interfaces

About this chapter This chapter presents an overview of the UltraLite static programming
interfaces.

When using static interfaces, the SQL statements to be used in an
application must be specified at compile time. In a dynamic model, SQL
statements can be specified at run time. The static interfaces are embedded
SQL, the Static C++ API, and the Static Java API which uses JDBC. This
chapter describes aspects common to all static UltraLite interfaces.

Contents Topic: page

Overview 194

Choosing an UltraLite static interface 197

Preparing a reference database 198

Defining SQL statements for your application 202

Generating the UltraLite data access code 207

Configuring development tools for static UltraLite development 208

193

Overview
This section describes the development environment and process for
UltraLite static interfaces.

The development environment for static UltraLite applications

Developing UltraLite applications using a static interface requires the
following tools.

♦ A reference database A reference database is an Adaptive Server
Anywhere database that serves as a model of the UltraLite database you
want to create. You create this database yourself, using tools such as
Sybase Central.

Your UltraLite database is a subset of the columns, tables, and indexes, in
your reference database. The arrangement of tables and of the foreign
key relationships between them is called the databaseschema.

In addition to modeling the UltraLite database, you need to add the SQL
statements that are to be included in your UltraLite application to the
reference database.

☞ For more information, see“Preparing a reference database” on
page 198.

♦ A supported development tool You use a standard development tool
to develop UltraLite applications. For the non-UltraLite specific portions
of your application, such as the user interface, use your development tool
in the usual way. For the UltraLite-specific data-access portions, you also
need to use the UltraLite development tools.

It can be convenient to separate the data access code from the user
interface and internal logic of your application.

☞ For information about supported application development tools, see
“UltraLite development platforms”[Introducing SQL Anywhere Studio,
page 99].

♦ UltraLite development tools UltraLite includes several tools for
development using the static interfaces.

• The UltraLite generator This application generates source code that
implements the underlying query execution, data storage, and
synchronization features of your application. The generator is required
for all kinds of UltraLite development using static SQL.

• The SQL preprocessor This application is needed only if you are
developing an UltraLite application using embedded SQL. It reads
your embedded SQL source files and generates standard C/C++ files.

194

Chapter 10. Using UltraLite Static Interfaces

As it scans the embedded SQL source files, it also stores information in
the reference database that is used by the generator.

♦ UltraLite runtime libraries UltraLite includes a runtime library for each
target platform. On some platforms, this is a static library that becomes
part of your application executable; on other platforms it is a dynamic
link library. For Java, the runtime library is a jar file. UltraLite includes
all the header files and import files needed to use the runtime libraries.

The static interface UltraLite development process

The basic features of the development process are common to all static
interfaces. The following diagram summarizes the key features.

Reference
Database

UltraLite
Generator

Database
schemaDatabase

schemaDatabase
schema

Compiler

Application
Source files

SQL
statements

Generated
Source files

UltraLite
application

♦ Create a reference database, which contains a superset of the tables to be
included in your application. It may also contain representative data for
your application. This reference database is needed only as part of the
development process, and is not required by your final application.

♦ Add the SQL statements into a special table in the reference database.
The way this is accomplished is dependent on the interface you choose:

• If you are using the Static C++ API or Java, these statements are added
to your database using Sybase Central or a stored procedure.

• If you are using embedded SQL, the SQL preprocessor adds the
statements to the reference database for you.

195

♦ Run the UltraLite generator, which produces source files that include
code needed to execute your SQL statements, and code needed to define
the database schema for your UltraLite application. This generated code
includes function calls into the UltraLite runtime library.

♦ Create application source files. If you are using embedded SQL, the SQL
preprocessor reads your.sqcfiles and inserts the SQL statements into the
reference database for you.

♦ Compile your application source files together with the generated source
files to produce your UltraLite application.

Adding synchronization

Most UltraLite applications include synchronization to integrate their data
with data on a consolidated database.

☞ For more information about synchronization, and the kinds of
synchronization available, see“UltraLite Clients” [MobiLink Clients,
page 277].

196

Chapter 10. Using UltraLite Static Interfaces

Choosing an UltraLite static interface
There are three static interfaces for developing UltraLite applications:

♦ Static C++ API Development using C or C++ with data access features
using a result-set based API.

♦ Embedded SQL Development using C or C++ with data access
features using embedded SQL statements.

♦ Static Java API Development using the Java programming language.

The decision whether to use Java or C/C++ development will be determined
primarily by your target platform.

Here are some considerations when choosing between embedded SQL and
the Static C++ API:

♦ Embedded SQL is an industry standard programming method, while the
Static C++ API is a proprietary API.

♦ Embedded SQL gives more control in designing your application. If you
are experienced with embedded SQL development, you can design a
more efficient application using this method.

♦ Many programmers are more familiar with API-based programming. The
Static C++ API requires less learning for these developers.

♦ The Static C++ API generates classes and associated methods for
manipulating the database. It enforces standardized function names and
so can be a quicker approach in terms of development time.

197

Preparing a reference database
To implement the UltraLite database engine for your application, the
UltraLite generator must have access to an Adaptive Server Anywhere
reference database. This database must contain the following information:

♦ Database schema The database objects used in your UltraLite
application, including tables and any indexes on those tables you wish to
use in your application.

☞ For more information, see“Using an existing database as a reference
database” on page 200.

♦ Data (Optional) You can fill your reference database with data that is
similar in quantity and distribution to the data you expect your UltraLite
database to hold. The UltraLite analyzer automatically uses this
information to optimize the performance of your application.

☞ For more information, see“Using an existing database as a reference
database” on page 200.

♦ Queries The UltraLite system tables must contain any SQL statements
you wish to use in your application.

☞ For more information, see“Defining SQL statements for your
application” on page 202.

♦ Publications If you wish to add multiple synchronization options to
your application, you can do so using publications. You also add
publications to your database if you wish to develop a C++ API
application without defining queries.

☞ For information on multiple synchronization options, see“Designing
sets of data to synchronize separately”[MobiLink Clients,page 280].

♦ Database options Database options such as date formats and govern
some aspects of database behavior that can make applications behave
differently. The UltraLite database is generated with the same option
settings as those in the reference database.

For many purposes, you can leave all database options at their default
settings.

☞ For more information, see“Setting database options in the reference
database” on page 199.

Creating a reference database

The analyzer uses the reference database as a template when constructing
your UltraLite application.

198

Chapter 10. Using UltraLite Static Interfaces

❖ To create a reference database

1. Start with an existing Adaptive Server Anywhere database or create a
new database using thedbinit command.

☞ For more information on upgrading a database, see“Using an
existing database as a reference database” on page 200.

2. Add the tables and foreign key relationships that you need within your
application. You can use any convenient tool, such as Sybase Central or
Sybase PowerDesigner Physical Architect (included with SQL Anywhere
Studio), or a more powerful database design tool such as the complete
Sybase PowerDesigner package.

Performance tip
You do not need to include any data in your reference database. However,
if you populate your database tables with data representative of the data
you expect to be stored by a typical user of your application, the UltraLite
analyzer automatically uses this data to optimize the performance of your
application.

☞ For information about designing a database and creating a schema, see
“Designing Your Database”[ASA SQL User’s Guide,page 3].

Example 1. Create a database.

From a command prompt, execute the following statement:

dbinit path \dbname.db

2. Use Sybase Central to add tables for your UltraLite application, based on
your own needs.

3. Add your sample data. Interactive SQL includes an Import menu item
that allows several common file formats to be imported.

☞ For more information, see“Importing and Exporting Data”[ASA SQL
User’s Guide,page 555].

Setting database options in the reference database

UltraLite does not support the getting or setting of option values.

When the UltraLite application is generated, certain option values in the
reference database affect the behavior of the generated code. The following
options have an effect:

♦ Date_format

♦ Date_order

199

♦ Nearest_century

♦ Precision

♦ Scale

♦ Time_format

♦ Timestamp_format

By setting these options in the reference database, you can control the
behavior of your UltraLite database. The option setting in your reference
database is used when generating your UltraLite application.

Using an existing database as a reference database

Many UltraLite applications synchronize data via MobiLink with a central,
master store of data called theconsolidated database. Do not confuse a
reference database with a consolidated database. The reference database for
the UltraLite application is generally a different database from the
consolidated database.

Only an Adaptive Server Anywhere consolidated database can also be used
as a reference database. If your consolidated database is of another type, you
must create an Adaptive Server Anywhere reference database. Even if your
consolidated database is Adaptive Server Anywhere, you must create a
separate reference database if you wish to have a different schema or use
different settings in your UltraLite application.

You can choose any of the supported ODBC-compliant database
management products to create and manage the consolidated database,
including Adaptive Server Enterprise, Adaptive Server Anywhere, Oracle,
Microsoft SQL Server, and IBM DB2.

If you have an existing Adaptive Server Anywhere database that you will be
using as a consolidated database, you could make a copy of it for your
reference database.

❖ To create a reference database from a non-Adaptive Server Any-
where database
1. Create a new Adaptive Server Anywhere database.

You can use thedbinit command or use Sybase Central.

2. Add the tables and foreign-key relationships that you need within your
application using your consolidated database as a guide.

You can use a tool such as Sybase Physical Data Architect to re-engineer
the consolidated database.

200

Chapter 10. Using UltraLite Static Interfaces

3. Populate your database tables with representative data from your
consolidated database.

You need not transfer all the information in your consolidated database,
only a representative sample. In the early stages of development, you do
not need sample data at all. For production applications, you may want to
use representative data because access plans of UltraLite queries are
based on the distribution of data in the reference database.

☞ For more information on creating reference databases from
non-Adaptive Server Anywhere databases, see“Migrating databases to
Adaptive Server Anywhere”[ASA SQL User’s Guide,page 591].

Optimizing query execution

You can improve the performance of your static UltraLite applications using
the following techniques.

♦ add an index If you frequently retrieve information in a particular
order, consider adding an index to your reference database. Primary keys
are automatically indexed, but other columns are not. Particularly on
slow devices, an index can improve performance dramatically.

♦ add representative data The Adaptive Server Anywhere optimizer
automatically optimizes the performance of your queries. It chooses
access plans using the information present in your reference database. To
improve application performance, fill your reference database with data
that is representative in size and distribution of the data you expect your
application will hold once it is deployed.

201

Defining SQL statements for your application
All the data access instructions for your application are defined by adding
SQL statements to the reference database.

If you use the Static C++ API, you can also use publications to define data
access methods. For information on using publications, see“Defining
UltraLite tables”[UltraLite C/C++ User’s Guide,page 43].

If you are using embedded SQL, the SQL preprocessor carries out the tasks
in this section for you.

Creating an UltraLite project

When you add SQL statements to a reference database, you assign them to
an UltraLiteproject. By grouping them this way, you can develop multiple
applications using the same reference database.

When the UltraLite generator runs against a reference database to generate
the database source code files, it takes a project name as an argument and
generates the code for the SQL statements in that project.

You can define an UltraLite project using Sybase Central or by directly
calling a system stored procedure.

If you are using embedded SQL, the SQL preprocessor defines the UltraLite
project for you and you do not need to create it explicitly.

❖ To create an UltraLite project (Sybase Central)

1. In Sybase Central, connect to your database if you are not already
connected.

2. In the left pane, open the database container.

3. In the left pane, open the UltraLite Projects folder.

4. From the File menu, choose New➤ UltraLite Project.

The UltraLite Project Creation wizard appears.

5. Enter an UltraLite project name and click Finish to create the project in
the database.

☞ For information on UltraLite project naming rules, see
“ul_add_project system procedure” on page 210.

202

Chapter 10. Using UltraLite Static Interfaces

❖ To create an UltraLite project (SQL)

1. From Interactive SQL or another application, enter the following
command:

call ul_add_project(’project-name’)

whereproject-nameis the name of the project.

☞ For more information, see“ul_add_project system procedure” on
page 210.

❖ To create an UltraLite project (embedded SQL)

1. If you are using the embedded SQL interface, specify the UltraLite
project name on the SQL Preprocessor command line, and the
preprocessor adds the project to the database for you.

☞ For more information, see“Building embedded SQL applications”
[UltraLite C/C++ User’s Guide,page 97].

Notes UltraLite project names must conform to the rules for database identifiers. If
you include spaces in the project name, do not enclose the name in double
quotes, as these are added for you by Sybase Central or the stored procedure.

☞ For more information, see“Identifiers” [ASA SQL Reference,page 7].

Adding SQL statements to an UltraLite project

Each UltraLite application carries out a set of data access requests. These
requests are implemented differently in each interface, but the data access
requests are defined in the same way for each model.

You define the data access requests that an UltraLite application can carry
out by adding a set of SQL statements to the UltraLite project for that
application in your reference database. The UltraLite generator then creates
the code for a database engine that can execute the set of SQL statements.

In the Static C++ API, you can also use publications to define data access
methods. For information on using publications, see“Defining UltraLite
tables”[UltraLite C/C++ User’s Guide,page 43].

You can add SQL statements to an UltraLite project using Sybase Central, or
by directly calling a system stored procedure. If you are using embedded
SQL, the SQL preprocessor adds the SQL statements in your embedded
SQL source files to the reference database for you.

203

❖ To add a SQL statement to an UltraLite project (Sybase Central)

1. In Sybase Central, connect to your database if you are not already
connected.

2. In the left pane, open the database container.

3. In the left pane, open the UltraLite Projects folder.

4. Open the project for your application.

5. From the File menu, choose New➤ UltraLite statement.

The UltraLite Statement Creation wizard appears.

6. Enter a short, descriptive name for the statement, and click Next

7. Enter the statement itself, and click Finish to add the statement to the
project.

You can test the SQL statements against the database by right-clicking
the statement and choosing Execute From Interactive SQL from the
popup menu.

☞ For information on what kinds of statement you can use, see
“Writing UltraLite SQL statements” on page 205.

❖ To add a SQL statement to an UltraLite project (SQL)

1. From Interactive SQL or another application, enter the following
command:

call ul_add_statement(’ project-name ’,
’ statement-name ’,
’ sql-statement ’)

whereproject-nameis the name of the project,statement-nameis a short
descriptive name, andsql-statementis the actual SQL statement.

☞ For more information, see“ul_add_statement system procedure” on
page 210.

❖ To add a SQL statement to an UltraLite project (embedded SQL)

1. If you are using the embedded SQL interface, specify the UltraLite
project name on the SQL Preprocessor command line.

No statement name is used in embedded SQL development.

☞ For more information, see“Building embedded SQL applications”
[UltraLite C/C++ User’s Guide,page 97].

204

Chapter 10. Using UltraLite Static Interfaces

Notes Statement names should be short and descriptive. They are used by the
UltraLite generator to identify the statement for use in Java or in the
C++ API. For example, a statement namedProductQuery generates a
C++ API class namedProductQuery and a Java constant named
PRODUCT_QUERY. Names should be valid SQL identifiers.

The SQL statement syntax is checked when you add the statement to the
database, and syntax errors give an error message to help you identify
mistakes.

You can use Sybase Central or ul_add_statement to update a statement in a
project, in just the same way as you add a statement. If a statement already
exists, it is overwritten with the new syntax. You must regenerate the
UltraLite code whenever you modify a statement.

Writing UltraLite SQL statements

This section describes what SQL statements you can add to an UltraLite
project, and describes how to use placeholders in your SQL statements.

☞ For information on the range of SQL that you can use, see“Overview of
SQL support in UltraLite” on page 142.

How to supply double
quotes

The SQL statement that you enter, whether into Sybase Central or as an
argument toul_add_statement, is added to the reference database as a
string. It must therefore conform to the rules for SQL strings.

You must escape some characters in your SQL statements using the
backslash character.

☞ For information on SQL strings, see“Strings” [ASA SQL Reference,
page 9].

Using variables with
statements

For most insert or update statements, you do not know the new values ahead
of time. You can use question marks as placeholders for variables, and
supply values at run time:

call ul_add_statement(
’ProductApp’,
’AddCap’,
’INSERT INTO \"DBA\".product (id, name, price)

VALUES(?, ?, ?)’
)

Placeholders can also be used in the WHERE clause of queries:

205

call ul_add_statement(
’ProductApp’,
’ProductQuery’,
’SELECT id, name, price

FROM\"DBA\".product
WHERE price > ?’

)

The backslash characters are used to escape the double quotes.

In embedded SQL, you usehost variablesas placeholders. For more
information, see“Using host variables”[UltraLite C/C++ User’s Guide,
page 68].

For SQL statements containing placeholders, an extra parameter on the
Openor Executemethod of the generated C++ class is defined for each
parameter. For Java applications, you use the JDBC set methods to assign
values for the parameters.

206

Chapter 10. Using UltraLite Static Interfaces

Generating the UltraLite data access code
To generate the code for storing and accessing the UltraLite database, the
UltraLite generator analyzes your reference database and the SQL
statements you use in your application. The UltraLite generator is a
command-line application. It takes a set of command-line options to
customize the behavior for each project. For example, it can generate either
C/C++ or Java code, depending on the command-line options you supply.

The data storage code includes only those tables and columns of the
reference database that you use in your application. Additionally, the
UltraLite generator includes indexes present in your reference database
whenever they improve the efficiency of your application.

The data access code includes only those SQL statements that you have
added to the project in the reference database.

The result is a custom database engine tailored to your application. The
engine is much smaller than a general-purpose database engine because the
UltraLite generator includes only the features your application uses.

☞ For more information about the UltraLite generator, see“The UltraLite
Generator” on page 89.

207

Configuring development tools for static UltraLite
development

Most development tools use a dependency model, sometimes expressed as a
makefile, in which the timestamp on each source file is compared with that
on the target file (object file, in most cases) to decide whether the target file
needs to be regenerated.

With UltraLite development, a change to any SQL statement in a
development project means that the generated code needs to be regenerated.
Changes are not reflected in the timestamp on any individual source file
because the SQL statements are stored in the reference database.

☞ For specific instructions on adding UltraLite projects to a
dependency-based development environment, see“Configuring development
tools for embedded SQL development”[UltraLite C/C++ User’s Guide,
page 102].

208

CHAPTER 11

UltraLite Static Interfaces Reference

About this chapter This chapter provides reference information about for the Ultralite static
interfaces: embedded SQL, the Static C++ API, and the Static Java API.

Contents Topic: page

Reference database stored procedures 210

209

Reference database stored procedures
This section describes system stored procedures in the Adaptive Server
Anywhere reference database, which can be used to add SQL statements to a
project.

For each SQL statement added in this way, the UltraLite generator defines a
C++ or Java class.

These system procedures are owned by the built-in user IDdbo.

ul_add_statement system procedure

Function Adds a SQL statement to an UltraLite project.

Syntax ul_add_statement (in @project char(128),
in @name char(128),
in @statement text)

Permissions DBA authority required

Side effects None

See also “ul_add_project system procedure” on page 210

“ul_delete_statement system procedure” on page 211

Description Adds or modifies a statement to an UltraLite project.

project The UltraLite project to which the statement should be added. The
UltraLite generator defines classes for all statements in a project at one time.

name The name of the statement. This name is used in the generated
classes.

statement A string containing the SQL statement.

If a statement of the same name in the same project exists, it is updated with
the new syntax. Ifprojectdoes not exist, it is created.

Examples The following call adds a statement to the TestSQL project:

call ul_add_statement(
’TestSQL’, ’TestQuery’,
’select prod_id, price, prod_name from ulproduct where price <

?’)

ul_add_project system procedure

Function Creates an UltraLite project.

210

Chapter 11. UltraLite Static Interfaces Reference

Syntax ul_add_project (in @project char(128))

Permissions DBA authority required

Side effects None

See also “ul_delete_statement system procedure” on page 211

Description Adds an UltraLite project to the database. The project acts as a container for
the SQL statements in an application, and the project name is supplied on
the UltraLite generator command line so that it can define classes for all
statements in the project.

project The UltraLite project name.

Examples The following call adds a project namedProduct to the database:

call ul_add_project(’Product’)

ul_delete_project system procedure

Function Removes an UltraLite project from a database.

Syntax ul_delete_project (in @project char(128))

Permissions DBA authority required

Side effects None

See also “ul_add_project system procedure” on page 210

“ul_delete_statement system procedure” on page 211

Description Removes an UltraLite project from the database.

project The UltraLite project to be deleted from the database.

Examples The following call deletes theProduct project:

call ul_delete_project(’Product’)

ul_delete_statement system procedure

Function Removes a SQL statement from an UltraLite project.

Syntax ul_delete_statement (in @project char(128),
in @name char(128))

Permissions DBA authority required

Side effects None

211

See also “ul_add_project system procedure” on page 210

“ul_add_statement system procedure” on page 210

Description Removes a statement from an UltraLite project.

project The UltraLite project from which the statement should be removed.

name The name of the statement. This name is used in the generated
classes.

Examples The following call removes a statement from theProduct project:

call ul_delete_statement(’Product’, ’AddProd’)

ul_set_codesegment system procedure

Function For Palm Computing Platform development using the C++ API, assigns a
SQL statement from an UltraLite project to a particular segment.

Syntax ul_set_codesegment (in @project char(128),
in @name char(128), in @segment_name char(8))

Side effects None

See also “ul_add_statement system procedure” on page 210

“Explicitly assigning segments”[UltraLite C/C++ User’s Guide,page 123]

Description Explicitly assigns the generated code for a C++ API SQL statement to a
named Palm segment.

project The UltraLite project to which the statement applies.

name The name of the statement as defined in“ul_add_statement system
procedure” on page 210..

segment_name The name of the segment to which the statement is
assigned.

Examples The following call assigns the statementmystmt in projectmyproject to
segmentMYSEG1.

call ul_set_codesegment(
’myproject’, ’mystmt’, ’MYSEG1’)

212

Index

Symbols
% operator

modulo function 148
&

bitwise operator for UltraLite 167
^

bitwise operator for UltraLite 167
~

bitwise operator for UltraLite 167
|

bitwise operator for UltraLite 167

A
ABS function

UltraLite SQL syntax 148
ACOS function

UltraLite SQL syntax 148
AdditionalParms connection parameter

UltraLite 68
AdditionalParms property

connection strings 66
AES encryption algorithm

UltraLite databases 36
aggregate expressions

UltraLite 163
aliases

columns in UltraLite 181
DELETE statement for UltraLite dynamic SQL

178
ALL conditions

UltraLite dynamic SQL 170
altering

UltraLite databases 54
AND

bitwise operators for UltraLite 167
logical operators for UltraLite 168

ANSI character sets
UltraLite databases 45

ANY conditions
UltraLite dynamic SQL 170

applications

writing static UltraLite applications 194
architecture

UltraLite 7
ARGN function

UltraLite SQL syntax 148
arithmetic

operators and UltraLite dynamic SQL syntax 167
ASCII

function and UltraLite SQL syntax 148
ASIN function

UltraLite SQL syntax 148
ATAN function

UltraLite SQL syntax 148
ATAN2 function

UltraLite SQL syntax 148
ATN2 function

UltraLite SQL syntax 148
autocommit

UltraLite 48
AUTOINCREMENT

about (UltraLite) 174
AVG function

UltraLite SQL syntax 148

B
backups

UltraLite databases 48
UltraLite databases on Palm 123

BETWEEN conditions
UltraLite dynamic SQL 170

BIGINT data type
UltraLite 145

BINARY data type
UltraLite 145

bitwise operators
UltraLite dynamic SQL syntax 167

BYTE_LENGTH function
UltraLite SQL syntax 148

BYTE_SUBSTR function
UltraLite SQL syntax 148

213

Index

C
cache_size connection parameter

UltraLite 73
CacheSize connection parameter

UltraLite 73
cascading deletes

not supported in UltraLite 51
cascading updates

not supported in UltraLite 51
CASE expression

NULLIF function for UltraLite 148
UltraLite dynamic SQL syntax 164

case sensitivity
comparison operators for UltraLite 166
UltraLite databases 30
UltraLite strings 143

CAST function
UltraLite SQL syntax 148

ce_file connection parameter
about UltraLite 69

ce_schema connection parameter
UltraLite 78

CEILING function
UltraLite SQL syntax 148

Certicom
security for UltraLite 92

changeEncryptionKey method
UltraLite Static C++ 37

CHAR data type
UltraLite 145

CHAR function
UltraLite SQL syntax 148

CHAR_LENGTH function
UltraLite SQL syntax 148

character sets
synchronization for UltraLite 46
synchronization in UltraLite 43
UltraLite 43
UltraLite databases 30, 43
UltraLite Java 45
UltraLite on Palm Computing Platform 44
UltraLite on Windows 45
UltraLite on Windows CE 44
UltraLite strings 143

character strings
UltraLite embedded SQL 97

CHARINDEX function

UltraLite SQL syntax 148
check constraints

UltraLite limitations 51
choosing

UltraLite programming interface 10
COALESCE function

UltraLite SQL syntax 148
code generation

UltraLite 207
code pages

synchronization in UltraLite 43
collation sequences

UltraLite databases 43
columns

aliases in UltraLite 181
comma-separated lists

LIST function UltraLite syntax 148
COMMIT statement

UltraLite dynamic SQL syntax 172
commits

UltraLite databases 47
committing

transactions in UltraLite 48, 172
comparison operators

dynamic SQL syntax for UltraLite 166
UltraLite dynamic SQL 166

compatibility
UltraLite databases 45
UltraLite dynamic SQL 166

components
choosing for UltraLite 11
UltraLite development 11

compression
UltraLite databases 47

computed columns
UltraLite limitations 51

con connection parameter
UltraLite 74

concatenating strings
string operators for UltraLite 167

concurrency
synchronizing UltraLite applications 60
UltraLite databases 58

concurrent access
UltraLite engine 61

conditions
ALL conditions for UltraLite dynamic SQL 170

214

Index

ANY for UltraLite dynamic SQL 170
BETWEEN for UltraLite dynamic SQL 170
EXISTS for UltraLite dynamic SQL 171
IN for UltraLite dynamic SQL 171

conduit
installing 99
installing for CustDB 99

configuring
development tools for UltraLite 208

connecting
UltraLite database troubleshooting 67
UltraLite databases 40

connection parameters
about UltraLite 66
AdditionalParms for UltraLite 68
cache_size for UltraLite 73
CacheSize for UltraLite 73
ce_file for UltraLite 69
ce_schema for UltraLite 78
ConnectionName for UltraLite 74
DatabaseName for UltraLite 82
DatabaseOnCE for UltraLite 69
DatabaseOnDesktop for UltraLite 70
dbn for UltraLite 82
EncryptionKey for UltraLite 75
key for UltraLite 75
obfuscate for UltraLite 83
page_size for UltraLite 83
PageSize for UltraLite 83
palm_db for UltraLite 71
palm_fs for UltraLite 81
palm_schema for UltraLite 80
password for UltraLite 76
precedence for UltraLite 67
reserve_size for UltraLite 84
schema_file for UltraLite 79
SchemaOnCE for UltraLite 78
SchemaOnDesktop for UltraLite 79
SchemaOnPalm for UltraLite 80
specifying UltraLite 66
UltraLite 63
UltraLite ConnectionName 74
UltraLite DatabaseOnPalm 71
UltraLite file_name 70
UltraLite overview 64
UserID for UltraLite 76
VFSOnPalm for UltraLite 81

connection strings
about UltraLite 66

ConnectionName connection parameter
UltraLite 74

connections
concurrency in UltraLite 58
UltraLite limitations 50

consolidated databases
UltraLite sample 25

conventions
documentation x

CONVERT function
UltraLite SQL syntax 148

converting
UltraLite databases 101

COS function
UltraLite SQL syntax 148

COT function
UltraLite SQL syntax 148

COUNT function
UltraLite SQL syntax 148

CREATE TABLE statement
SQL syntax (UltraLite) 173

creating
reference databases for UltraLite 198
tables (UltraLite) 173
UltraLite databases 30, 101, 108
UltraLite reference databases 198
UltraLite schema files 29

creator IDs
about 191
Database On Palm connection parameter 71
HotSync synchronization 191
Palm OS applications 191

current row
concurrency in UltraLite 59

CURRENT TIMESTAMP
SQL special value for UltraLite 52

cursors
concurrency in UltraLite 59

CustDB application
file locations in UltraLite 17
installing conduit 99
location in UltraLite 17
source code in UltraLite 17
starting in UltraLite 20
synchronization in UltraLite 18

215

Index

UltraLite 16
UltraLite tutorial 15

custdb.db
location in UltraLite 17

D
data

selecting rows in UltraLite 180
data access

UltraLite 11
Data Manager

UltraLite database storage 31
data types

BIGINT in UltraLite 145
BINARY in UltraLite 145
CHAR in UltraLite 145
DATE in UltraLite 145
DECIMAL in UltraLite 145
DOUBLE in UltraLite 145
FLOAT in UltraLite 145
INT in UltraLite 145
INTEGER in UltraLite 145
LONG BINARY in UltraLite 145
LONG VARCHAR in UltraLite 145
NUMERIC in UltraLite 145
REAL in UltraLite 145
retrieving in UltraLite 148
SMALLINT in UltraLite 145
TIME in UltraLite 145
TIMESTAMP in UltraLite 145
TINYINT in UltraLite 145
UltraLite 145
UltraLite SQL 142
VARBINARY in UltraLite 145
VARCHAR in UltraLite 145

database creation parameters
UltraLite 82

database engine
UltraLite runtime 61

database files
changing the encryption key in UltraLite Static

C++ 37
encrypting for UltraLite 37
encrypting UltraLite 75
UltraLite 47
UltraLite connection parameters 65
UltraLite on Palm OS 47

database identification parameters
UltraLite 68

database options
setting in UltraLite 33
UltraLite 33
UltraLite DateFormat 34
UltraLite DateOrder 34
UltraLite NearestCentury 34
UltraLite Precision 36
UltraLite reference databases 199
UltraLite Scale 36
UltraLite TimeFormat 34
UltraLite TimestampFormat 35
UltraLite TimestampIncrement 35

database properties
UltraLite 33

database schemas
UltraLite 30

DatabaseName connection parameter
UltraLite 82

DatabaseOnCE connection parameter
UltraLite 69

DatabaseOnDesktop connection parameter
UltraLite 70

DatabaseOnPalm connection parameter
UltraLite 71

databases
collation sequences for UltraLite 43
creating UltraLite 30
deleting UltraLite 123
introduction to UltraLite 6
Palm database 190
UltraLite database storage 31
UltraLite introduction 28
UltraLite limitations 50
UltraLite reference 198

DATALENGTH function
UltraLite SQL syntax 148

DATE data type
UltraLite 145

DATE function
UltraLite SQL syntax 148

DATE_FORMAT option
UltraLite databases 199

DATE_ORDER option
UltraLite databases 199

DATEADD function

216

Index

UltraLite SQL syntax 148
DATEDIFF function

UltraLite SQL syntax 148
DateFormat database option

UltraLite 34
DATEFORMAT function

UltraLite SQL syntax 148
DATENAME function

UltraLite SQL syntax 148
DateOrder database option

UltraLite 34
DATEPART function

UltraLite SQL syntax 148
dates

formatting in UltraLite 34
interpreting in UltraLite 34
UltraLite databases 199

DATETIME function
UltraLite SQL syntax 148

DAY function
UltraLite SQL syntax 148

DAYNAME function
UltraLite SQL syntax 148

DAYS function
UltraLite SQL syntax 148

dbcond9 utility
syntax 99

DBF connection parameter
UltraLite 70

dbn connection parameter
about UltraLite 82

dbuleng9 see alsoUltraLite engine
syntax 88

dbulstop
UltraLite engine 61

dbulstop utility
syntax 100

DECIMAL data type
UltraLite 145

DEFAULT TIMESTAMP columns
UltraLite 174

defaults
autoincrement (UltraLite) 174

DEGREES function
UltraLite SQL syntax 148

DELETE statement
dynamic SQL syntax (UltraLite) 177

deletes
UltraLite databases 47

deleting
UltraLite utility to delete databases 123

derived tables
UltraLite dynamic SQL 163

development
UltraLite static development process 195

development tools
configuring for UltraLite 208
UltraLite preprocessing 208

DIFFERENCE function
UltraLite SQL syntax 148

DISTINCT keyword
UltraLite dynamic SQL 180

documentation
conventions x
SQL Anywhere Studio viii
UltraLite 8

DOUBLE data type
UltraLite 145

double quotes
static UltraLite SQL statements 205

DOW function
UltraLite SQL syntax 148

dynamic SQL
arithmetic operators for UltraLite 167
bitwise operators for UltraLite 167
comparison operators for UltraLite 166
introduction for UltraLite 160
logical operators for UltraLite 168
operator precedence for UltraLite 169
string operators for UltraLite 167
UltraLite 161
UltraLite data access 11
UltraLite limitations 144

dynamic SQL UltraLite syntax
operators 166

E
ELSE

CASE expression for UltraLite 164
IF expressions for UltraLite 164

embedded SQL
authorization for UltraLite 97
character strings for UltraLite 97
line numbers for UltraLite 97

217

Index

preprocessor for UltraLite 95
encryption

changing keys in UltraLite Static C++ 37
Palm Computing Platform 38
storing the encryption key in UltraLite embedded

SQL 38
UltraLite databases 36, 37
UltraLite encryption keys 75

encryption keys
guidelines for UltraLite 37

EncryptionKey connection parameter
UltraLite 75

END
CASE expression for UltraLite 164

ENDIF
IF expressions for UltraLite 164

exclusive OR
bitwise operator for UltraLite 167

EXISTS conditions
UltraLite dynamic SQL 171

EXP function
UltraLite SQL syntax 148

expressions
aggregate for UltraLite 163
CASE expressions for UltraLite 164
data types of 148
IF expressions for UltraLite 164
SQL operator precedence for UltraLite 169
subqueries for UltraLite dynamic SQL 163
UltraLite SQL 143

EXPRTYPE function
UltraLite SQL syntax 148

F
features

UltraLite 4
UltraLite sample 16

feedback
documentation xiv
providing xiv

fetching rows
concurrency in UltraLite 59

file_name connection parameter
UltraLite 70

filenames
UltraLite connection parameters 65

files

CustDB sample application in UltraLite 17
FIRST clause

UltraLite dynamic SQL SELECT statement 180
FLOAT data type

UltraLite 145
FLOOR function

UltraLite SQL syntax 148
FOR clause

SELECT statement for UltraLite dynamic SQL
182

FORCE ORDER clause
UltraLite dynamic SQL 182

foreign keys
integrity constraints (UltraLite) 177
role names (UltraLite) 177
UltraLite 6
unnamed (UltraLite) 177

FROM clause
SELECT statement for UltraLite dynamic SQL

181
functions

UltraLite SQL 143
functions, aggregate

AVG for UltraLite 148
COUNT for UltraLite 148
LIST for UltraLite 148
MAX for UltraLite 148
MIN for UltraLite 148

functions, data type conversion
CAST for UltraLite 148
CONVERT for UltraLite 148
HEXTOINT for UltraLite 148
INTTOHEX for UltraLite 148
ISDATE for UltraLite 148
ISNULL for UltraLite 148

functions, date and time
DATE for UltraLite 148
DATEADD for UltraLite 148
DATEDIFF for UltraLite 148
DATEFORMAT for UltraLite 148
DATENAME for UltraLite 148
DATEPART for UltraLite 148
DATETIME for UltraLite 148
DAY for UltraLite 148
DAYNAME for UltraLite 148
DAYS for UltraLite 148
DOW for UltraLite 148

218

Index

GETDATE for UltraLite 148
HOUR for UltraLite 148
HOURS for UltraLite 148
MINUTE for UltraLite 148
MINUTES for UltraLite 148
MONTH for UltraLite 148
MONTHNAME for UltraLite 148
MONTHS for UltraLite 148
NOW for UltraLite 148
QUARTER for UltraLite 148
SECOND for UltraLite 148
SECONDS for UltraLite 148
TODAY for UltraLite 148
WEEKS for UltraLite 148
YMD for UltraLite 148

functions, miscellaneous
ARGN for UltraLite 148
COALESCE for UltraLite 148
GREATER for UltraLite 148
IFNULL for UltraLite 148
LESSER for UltraLite 148
NEWID for UltraLite 148
NULLIF for UltraLite 148

functions, numeric
ABS for UltraLite 148
ACOS for UltraLite 148
ASIN for UltraLite 148
ATAN for UltraLite 148
ATAN2 for UltraLite 148
ATN2 for UltraLite 148
CEILING for UltraLite 148
COS for UltraLite 148
COT for UltraLite 148
DEGREES for UltraLite 148
FLOOR for UltraLite 148
LOG for UltraLite 148
LOG10 for UltraLite 148
MOD for UltraLite 148
PI for UltraLite 148
POWER for UltraLite 148
RADIANS for UltraLite 148
REMAINDER for UltraLite 148
ROUND for UltraLite 148
SIGN for UltraLite 148
SIN for UltraLite 148
SQRT for UltraLite 148
TAN for UltraLite 148

TRUNCATE for UltraLite 148
TRUNCNUM for UltraLite 148

functions, string
ASCII for UltraLite 148
BYTE_LENGTH for UltraLite 148
BYTE_SUBSTR for UltraLite 148
CHAR for UltraLite 148
CHAR_LENGTH for UltraLite 148
CHARINDEX for UltraLite 148
DIFFERENCE for UltraLite 148
INSERTSTR for UltraLite 148
LCASE for UltraLite 148
LEFT for UltraLite 148
LENGTH for UltraLite 148
LOCATE for UltraLite 148
LOWER for UltraLite 148
LTRIM for UltraLite 148
PATINDEX for UltraLite 148
REPEAT for UltraLite 148
REPLACE for UltraLite 148
REPLICATE for UltraLite 148
RIGHT for UltraLite 148
RTRIM for UltraLite 148
SIMILAR for UltraLite 148
SOUNDEX for UltraLite 148
SPACE for UltraLite 148
STR for UltraLite 148
STRING for UltraLite 148
STRTOUUID for UltraLite 148
STUFF for UltraLite 148
SUBSTRING for UltraLite 148
TRIM for UltraLite 148
UCASE for UltraLite 148
UPPER for UltraLite 148
UUIDTOSTR for UltraLite 148

functions, system
DATALENGTH for UltraLite 148

G
generator

database options for UltraLite 200
GETDATE function

UltraLite SQL syntax 148
global temporary tables

creating (UltraLite) 173
GLOBAL_DATABASE_ID option

CREATE TABLE statement (UltraLite) 174

219

Index

globally unique identifiers
UltraLite SQL syntax for NEWID function 148

GREATER function
UltraLite SQL syntax 148

GROUP BY clause
SELECT statement for UltraLite dynamic SQL

181
GUIDs

UltraLite SQL syntax for NEWID function 148
UltraLite SQL syntax for STRTOUUID function

148
UltraLite SQL syntax for UUIDTOSTR function

148

H
HAVING clause

SELECT statement for UltraLite dynamic SQL
182

HEXTOINT function
UltraLite SQL syntax 148

hooks
sqlpp customization for UltraLite 96
ulgen customization for UltraLite 90

host platforms
static interfaces UltraLite development 194

HotSync conduit
installing 99
installing for CustDB 99

HotSync synchronization
creator IDs 191

HOUR function
UltraLite SQL syntax 148

HOURS function
UltraLite SQL syntax 148

I
icons

used in manuals xii
identifiers

UltraLite SQL 142
IF expressions

UltraLite dynamic SQL syntax 164
IFNULL function

UltraLite SQL syntax 148
IN conditions

UltraLite dynamic SQL 171
indexes

automatically created in UltraLite 173
foreign keys in UltraLite 173
primary keys in UltraLite 173
UltraLite 6
UltraLite databases 48
UltraLite static interfaces 201
unique in UltraLite 172

inner references
subqueries for UltraLite dynamic SQL 163

INSERT statement
dynamic SQL syntax (UltraLite) 179

inserting
rows into UltraLite tables 179

INSERTSTR function
UltraLite SQL syntax 148

INT data type
UltraLite 145

INTEGER data type
UltraLite 145

integrity
constraints (UltraLite) 176

INTO clause
SELECT statement for UltraLite dynamic SQL

181
INTTOHEX function

UltraLite SQL syntax 148
IS

logical operators for UltraLite 168
ISDATE function

UltraLite SQL syntax 148
ISNULL function

UltraLite SQL syntax 148
isolation levels

UltraLite 59

J
Java

UltraLite character sets 45

K
key connection parameter

UltraLite 75

L
large files

UltraLite generator 94

220

Index

LCASE function
UltraLite SQL syntax 148

LEFT function
UltraLite SQL syntax 148

LENGTH function
UltraLite SQL syntax 148

LESSER function
UltraLite SQL syntax 148

limitations
UltraLite 50
UltraLite data types 145
UltraLite SQL 144

line length
sqlpp output for UltraLite 97

LIST function
UltraLite SQL syntax 148

lists
LIST function UltraLite syntax 148

loading
UltraLite databases 101, 117

LOCATE function
UltraLite SQL syntax 148

locking
concurrency in UltraLite 59

LOG function
UltraLite SQL syntax 148

LOG10 function
UltraLite SQL syntax 148

logical operators
UltraLite dynamic SQL syntax 168

LONG BINARY data type
UltraLite 145

LONG VARCHAR data type
UltraLite 145

LOWER function
UltraLite SQL syntax 148

LTRIM function
UltraLite SQL syntax 148

M
managing schemas

UltraLite Schema Painter 125
mathematical expressions

arithmetic operators for UltraLite 167
MAX function

UltraLite SQL syntax 148
maximum

columns per table for UltraLite 50
connections per UltraLite database 50
rows per table for UltraLite 50
tables per UltraLite database 50

media failures
UltraLite databases 48

memory usage
UltraLite database storage 31
UltraLite indexes 48
UltraLite row states 47

MIN function
UltraLite SQL syntax 148

MINUTE function
UltraLite SQL syntax 148

MINUTES function
UltraLite SQL syntax 148

MobiLink conduit
installing 99

MOD function
UltraLite SQL syntax 148

monitoring
UltraLite schema upgrades 55

MONTH function
UltraLite SQL syntax 148

MONTHNAME function
UltraLite SQL syntax 148

MONTHS function
UltraLite SQL syntax 148

multiple databases
UltraLite 59

multi-process access
UltraLite engine 61

multi-threaded applications
UltraLite 60
UltraLite Static Java 60
UltraLite thread-safe 194

N
NEAREST_CENTURY option

UltraLite databases 199
NearestCentury database option

UltraLite 34
NEWID function

UltraLite SQL syntax 148
newsgroups

technical support xiv
NOT

221

Index

bitwise operator for UltraLite 167
logical operators for UltraLite 168

NOW function
UltraLite SQL syntax 148

NULL
ISNULL function 148

NULLIF function
UltraLite 148
using with CASE expressions in UltraLite 165

NUMERIC data type
UltraLite 145

O
obfuscate connection parameter

UltraLite 83
obfuscation

UltraLite databases 36, 83
operator precedence

UltraLite dynamic SQL syntax 169
operators

arithmetic operators for UltraLite 167
bitwise operators for UltraLite 167
comparison operators for UltraLite 166
logical operators for UltraLite 168
precedence of operators for UltraLite 169
string operators for UltraLite 167
UltraLite dynamic SQL syntax 166

optimization
UltraLite dynamic SQL 185

optimizer see alsoquery optimizer
options

setting in UltraLite 33
UltraLite databases 33
UltraLite reference databases 199

OR
bitwise operators for UltraLite 167
logical operators for UltraLite 168

ORDER BY clause
UltraLite dynamic SQL 182

order of operations
SQL operator precedence for UltraLite 169

outer references
subqueries for UltraLite dynamic SQL 163

owners
UltraLite tables 142

P
page size

UltraLite databases 83
page_size connection parameter

UltraLite 83
PageSize connection parameter

UltraLite 83
Palm Computing Platform

code pages in UltraLite 43
collation sequences for UltraLite 43
creator IDs 191
UltraLite character sets 44
UltraLite databases 190

Palm databases
PDB 190

Palm OS
creator IDs 191
UltraLite databases 190

palm_allow_backup parameter
persistent storage for UltraLite 84

palm_db connection parameter
UltraLite 71

palm_fs connection parameter
UltraLite 81

palm_schema connection parameter
UltraLite 80

Password connection parameter
UltraLite 76

passwords
PASSWORD UltraLite connection parameter 76
sharing MobiLink and UltraLite 41
UltraLite databases 40

paths
UltraLite connection parameters 65

PATINDEX function
UltraLite SQL syntax 148

pattern matching
PATINDEX function for UltraLite 148
wildcards for UltraLite 148

performance
database cache for UltraLite 73
UltraLite static interfaces 201

persistent memory
UltraLite database storage 31

persistent storage
file_name parameter for UltraLite 70
palm_allow_backup for UltraLite 84

222

Index

physical limitations
UltraLite 50

PI function
UltraLite SQL syntax 148

POWER function
UltraLite SQL syntax 148

precedence
SQL operator precedence for UltraLite 169

precision
arithmetic operations in UltraLite 36

Precision database option
UltraLite 36

PRECISION option
UltraLite databases 199

predicates
ALL for UltraLite dynamic SQL 170
ANY for UltraLite dynamic SQL 170
BETWEEN for UltraLite dynamic SQL 170
comparison operators for UltraLite 166
EXISTS for UltraLite dynamic SQL 171
IN for UltraLite dynamic SQL 171

preprocessor
database options for UltraLite 200

primary keys
generating unique values in UltraLite 148
generating unique values using UUIDs in

UltraLite 148
integrity constraints (UltraLite) 176
order of columns (UltraLite) 176
UltraLite 6
UltraLite requirements 48
UUIDs and GUIDs for UltraLite 148

procedures
UltraLite limitations 51

projects
UltraLite 202, 203

properties
UltraLite databases 33

PWD connection parameter
UltraLite 76

Q
QUARTER function

UltraLite SQL syntax 148
query optimization

UltraLite dynamic SQL 185
UltraLite static interfaces 201

query optimizer
UltraLite 185

quotation marks
static UltraLite SQL statements 205

R
RADIANS function

UltraLite SQL syntax 148
reading

rows in UltraLite 59
REAL data type

UltraLite 145
recovery

UltraLite databases 47, 48
reference database

performance for UltraLite 201
reference databases

creating for UltraLite 198
creating from existing databases 200
options for UltraLite 199

referential integrity
UltraLite databases 51

REMAINDER function
UltraLite SQL syntax 148

remote databases
deleting UltraLite data 123
UltraLite 16

remote servers
creating tables (UltraLite) 173

renaming schemas
UltraLite Schema Painter 125

REPEAT function
UltraLite SQL syntax 148

REPLACE function
UltraLite SQL syntax 148

REPLICATE function
UltraLite SQL syntax 148

requests
concurrency in UltraLite 59

reserve_size connection parameter
UltraLite 84

restoring
UltraLite databases 48

RIGHT function
UltraLite SQL syntax 148

role names
about (UltraLite) 177

223

Index

ROLLBACK statement
UltraLite dynamic SQL syntax 180

rollbacks
UltraLite databases 47

rolling back
transactions (UltraLite) 180
transactions in UltraLite 48, 180

ROUND function
UltraLite SQL syntax 148

rows
inserting into UltraLite tables 179
selecting in UltraLite 180
updating for UltraLite dynamic SQL 183

RTRIM function
UltraLite SQL syntax 148

runtime library
UltraLite 58

S
sample application

CustDB in UltraLite 15
starting CustDB in UltraLite 20
synchronization in UltraLite 18

samples
CustDB file locations in UltraLite 17
CustDB in UltraLite 16

scale
arithmetic operations in UltraLite 36

Scale database option
UltraLite 36

SCALE option
UltraLite databases 199

schema changes
UltraLite databases 54, 56

schema files
creating for UltraLite 29
introduction for UltraLite 30

Schema Painter
starting 124
UltraLite 124

schema parameters
UltraLite 78

schema upgrades
monitoring in UltraLite 55
UltraLite databases 54, 56

schema_file connection parameter
UltraLite 79

SchemaOnCE connection parameter
UltraLite 78

SchemaOnDesktop connection parameter
UltraLite 79

SchemaOnPalm connection parameter
UltraLite 80

schemas
UltraLite databases 30, 194

search conditions
ALL for UltraLite dynamic SQL 170
ANY for UltraLite dynamic SQL 170
BETWEEN for UltraLite dynamic SQL 170
EXISTS for UltraLite dynamic SQL 171
IN for UltraLite dynamic SQL 171

SECOND function
UltraLite SQL syntax 148

SECONDS function
UltraLite SQL syntax 148

security
Certicom for UltraLite 92
changing the encryption key in UltraLite Static

C++ 37
database encryption for UltraLite 37
encryption on Palm 38
UltraLite generator 92
UltraLite user authentication 40

segments
assigning statements for Palm 212
Palm Computing Platform 212

SELECT statement
UltraLite dynamic SQL syntax 180

selecting
rows in UltraLite 180

SET OPTION statement
UltraLite limitations 52

SIGN function
UltraLite SQL syntax 148

SIMILAR function
UltraLite SQL syntax 148

SIN function
UltraLite SQL syntax 148

SMALLINT data type
UltraLite 145

SOUNDEX function
UltraLite SQL syntax 148

source control
storing UltraLite database schema in 29

224

Index

ulxml command line utility 29
sp_hook_ulgen_begin

sqlpp for UltraLite 96
ulgen hook 90

sp_hook_ulgen_end
sqlpp for UltraLite 96
ulgen hook 90

SPACE function
UltraLite SQL syntax 148

SQL
UltraLite data access 11

SQL Anywhere Studio
documentation viii

SQL in UltraLite
overview 142

SQL preprocessor
syntax for UltraLite 95
UltraLite 95

SQL statements
CREATE TABLE syntax (UltraLite) 173
DELETE dynamic SQL syntax (UltraLite) 177
INSERT syntax (UltraLite) 179
UltraLite 205
UltraLite dynamic SQL COMMIT syntax

(UltraLite) 172
UltraLite dynamic SQL ROLLBACK syntax 180
UltraLite dynamic SQL SELECT syntax 180
UltraLite SQL 144
UPDATE syntax for UltraLite dynamic SQL 183

SQL syntax
CASE expression for UltraLite 164
IF expressions for UltraLite 164

sqlpp utility
syntax for UltraLite 95

SQRT function
UltraLite SQL syntax 148

START SYNCHRONIZATION DELETE statement
UltraLite SQL 144

state bytes
UltraLite databases 47

state PDB
about 190

statements
CREATE TABLE syntax (UltraLite) 173
DELETE dynamic SQL syntax (UltraLite) 177
INSERT syntax (UltraLite) 179

UltraLite dynamic SQL COMMIT syntax
(UltraLite) 172

UltraLite dynamic SQL ROLLBACK syntax 180
UltraLite dynamic SQL SELECT syntax 180
UPDATE syntax for UltraLite dynamic SQL 183

static interfaces
choosing for UltraLite 11
UltraLite 194
UltraLite development 11

static SQL
UltraLite data access 11

STOP SYNCHRONIZATION DELETE statement
UltraLite SQL 144

stored procedures
UltraLite limitations 51

STR function
UltraLite SQL syntax 148

STRING function
UltraLite SQL syntax 148

string operators
dynamic SQL syntax for UltraLite 167

strings
replacing for UltraLite 148
static UltraLite SQL statements 205
UltraLite case sensitivity 143
UltraLite SQL 142

strong encryption
UltraLite databases 36

STRTOUUID function
UltraLite SQL syntax 148

STUFF function
UltraLite SQL syntax 148

subqueries
UltraLite dynamic SQL 163

SUBSTR function
UltraLite SQL syntax 148

SUBSTRING function
UltraLite SQL syntax 148

substrings
replacing for UltraLite 148
UltraLite SQL 148

support
newsgroups xiv

Sybase Central
adding SQL statements to an UltraLite project203
browsing CustDB in UltraLite 25
connecting to CustDB in UltraLite 25

225

Index

creating UltraLite projects 202
synchronization

character sets in UltraLite 43
concurrency in UltraLite 60
CustDB application in UltraLite 18
ulsync utility for UltraLite databases 119
UltraLite character sets 46

synchronization logic
browsing Sybase Central in UltraLite 25

synchronization scripts
browsing the UltraLite sample 25

syntax
arithmetic operators for UltraLite 167
bitwise operators for UltraLite 167
CASE expression for UltraLite 164
comparison operators for UltraLite 166
IF expressions for UltraLite 164
logical operators for UltraLite 168
SQL operator precedence for UltraLite 169
string operators for UltraLite 167
UltraLite dynamic SQL operators 166

system failures
UltraLite databases 48

system functions
UltraLite limitations 52

system procedures
ul_add_project 210
ul_add_statement 210
ul_delete_project 211
ul_delete_statement 211
ul_set_codesegment 212

system tables
UltraLite limitations 52

T
table constraints

UltraLite 176
table-based API

UltraLite data access 11
tables

creating (UltraLite) 173
inserting rows into for UltraLite 179
owner in UltraLite 142
UltraLite 6
UltraLite limitations 50
UltraLite requirements 48

TAN function

UltraLite SQL syntax 148
target platforms

UltraLite development for static interfaces 194
technical support

newsgroups xiv
temporary files

UltraLite 47
temporary tables

creating (UltraLite) 173
UltraLite limitations 51

THEN
IF expressions for UltraLite 164

threads
concurrency in UltraLite 58
UltraLite applications 60, 194
UltraLite Static Java applications 60

TIME data type
UltraLite 145

TIME_FORMAT option
UltraLite databases 199

TimeFormat database option
UltraLite 34

times
formatting in UltraLite 34
UltraLite databases 199

TIMESTAMP
TIMESTAMP columns (UltraLite) 174

timestamp columns
UltraLite limitations 52

TIMESTAMP data type
UltraLite 145

TIMESTAMP_FORMAT option
UltraLite databases 199

TimestampFormat database option
UltraLite 35

TimestampIncrement database option
UltraLite 35

timestamps
formatting in UltraLite 35
increments in UltraLite 35
synchronizing 35

TINYINT data type
UltraLite 145

TODAY function
UltraLite SQL syntax 148

TOP clause
UltraLite dynamic SQL SELECT statement 180

226

Index

transactions
committing in UltraLite 172
concurrency in UltraLite 59
rolling back (UltraLite) 180
rolling back in UltraLite 180
UltraLite databases 47

triggers
UltraLite limitations 52

TRIM function
UltraLite SQL syntax 148

troubleshooting
connecting to UltraLite databases 67
UltraLite compilation problems 94

TRUNCATE function
UltraLite SQL syntax 148

TRUNCATE TABLE statement
UltraLite SQL 144

TRUNCNUM function
UltraLite SQL syntax 148

tutorials
UltraLite CustDB sample 15
UltraLite Interactive SQL 129
UltraLite Schema Painter 129

U
UCASE function

UltraLite SQL syntax 148
UID connection parameter

UltraLite 76
ul_add_project system procedure

about 210
ul_add_statement system procedure

about 210
ul_delete_project system procedure

about 211
ul_delete_statement procedure

about 211
ul_delete_statement system procedure

about 211
ul_set_codesegment procedure

about 212
ul_set_codesegment system procedure

about 212
UL_STORE_PARMS macro

connection parameters 66
ULChangeEncryptionKey function

using in UltraLite Static C++ 37

ULClearEncryptionKey function
using 38

ulconv utility
creating UltraLite schema files 29
syntax 101

ulcreate utility
syntax 108

uldbsgen utility
syntax 110

ULEnableFileDB function
creating UltraLite databases 190

ULEnablePalmRecordDB function
creating UltraLite databases 190

ulgen utility
syntax 89

ulinit utility
syntax 112

ulisql utility seeUltraLite Interactive SQL
ullload utility

syntax 117
ULRetrieveEncryptionKey function

using 38
ULSaveEncryptionKey function

using 38
ulsync utility

syntax 119
UltraLite

about 3
architecture 7
choosing a programming interface 10
code generation 207
database identification parameters 68
features 4
introduction 4
SQL support 142
static interface development overview 195
upgrading 57
utility programs 87

UltraLite components
choosing 11
development process 13

UltraLite connection parameters
about 66

UltraLite consolidated database generation utility
syntax 110

UltraLite database converter
syntax 101

227

Index

UltraLite database creation utility
syntax 108

UltraLite database files
about 47
page size 47
Palm OS 47

UltraLite database loading utility
syntax 117

UltraLite database synchronization utility
syntax 119

UltraLite database unloading utility
syntax 121

UltraLite databases
concurrency 58
encrypting 36
introduction 6, 28
Palm OS 190
properties 33
storage 31
user IDs 40

UltraLite documentation
using 8

UltraLite engine
about 58, 61
deployment 61
starting 62
syntax 88

UltraLite engine stop utility
syntax 100

UltraLite generator
defined 207
introduction 207
syntax 89

UltraLite initialization utility
about 112

UltraLite Interactive SQL
about 115
tutorial 129

UltraLite passwords
about 40

UltraLite programming interfaces
choosing 10

UltraLite project creation wizard
using 202

UltraLite projects
about 202
adding statements 203

UltraLite runtime
about 58

UltraLite schema files
XML format 126

UltraLite Schema Painter
about 124
managing schemas 125
tutorial 129

UltraLite SQL functions
ABS function syntax 148
ACOS function syntax 148
ARGN function syntax 148
ASCII function syntax 148
ASIN function syntax 148
ATAN function syntax 148
ATAN2 function syntax 148
ATN2 function syntax 148
AVG function syntax 148
BYTE_LENGTH function syntax 148
BYTE_SUBSTR function syntax 148
CAST function syntax 148
CEILING function syntax 148
CHAR function syntax 148
CHAR_LENGTH function syntax 148
CHARINDEX function syntax 148
COALESCE function syntax 148
CONVERT function syntax 148
COS function syntax 148
COT function syntax 148
COUNT function syntax 148
DATALENGTH function syntax 148
DATE function syntax 148
DATEADD function syntax 148
DATEDIFF function syntax 148
DATEFORMAT function syntax 148
DATENAME function syntax 148
DATEPART function syntax 148
DATETIME function syntax 148
DAY function syntax 148
DAYNAME function syntax 148
DAYS function syntax 148
DEGREES function syntax 148
DIFFERENCE function syntax 148
DOW function syntax 148
EXP function syntax 148
EXPRTYPE syntax 148
FLOOR function syntax 148

228

Index

GETDATE function syntax 148
GREATER function syntax 148
HEXTOINT function syntax 148
HOUR function syntax 148
HOURS function syntax 148
IFNULL function syntax 148
INSERTSTR function syntax 148
INTTOHEX function syntax 148
ISDATE function syntax 148
ISNULL function syntax 148
LCASE function syntax 148
LEFT function syntax 148
LENGTH function syntax 148
LESSER function syntax 148
LIST function syntax 148
LOCATE function syntax 148
LOG function syntax 148
LOG10 function syntax 148
LOWER function syntax 148
LTRIM function syntax 148
MAX function syntax 148
MIN function syntax 148
MINUTE function syntax 148
MINUTES function syntax 148
MOD function syntax 148
MONTH function syntax 148
MONTHNAME function syntax 148
MONTHS function syntax 148
NEWID function syntax 148
NOW function syntax 148
NULLIF function syntax 148
PATINDEX function syntax 148
PI function syntax 148
POWER function syntax 148
QUARTER function syntax 148
RADIANS function syntax 148
REMAINDER function syntax 148
REPEAT function syntax 148
REPLACE function syntax 148
REPLICATE function syntax 148
RIGHT function syntax 148
ROUND function syntax 148
RTRIM function syntax 148
SECOND function syntax 148
SECONDS function syntax 148
SIGN function syntax 148
SIMILAR function syntax 148

SIN function syntax 148
SOUNDEX function syntax 148
SPACE function syntax 148
SQRT function syntax 148
STR function syntax 148
STRING function syntax 148
STRTOUUID function syntax 148
STUFF function syntax 148
SUBSTR function syntax 148
SUBSTRING function syntax 148
TAN function syntax 148
TODAY function syntax 148
TRIM function syntax 148
TRUNCATE function syntax 148
TRUNCNUM function syntax 148
UCASE function syntax 148
UPPER function syntax 148
UUIDTOSTR function syntax 148
WEEKS function syntax 148
YMD function syntax 148

UltraLite statement creation wizard
using 203

UltraLite static interfaces
choosing 11

UltraLite temporary files
about 47

UltraLite user IDs
about 40

ulunload utility
syntax 121

ULUtil
about 123

ulxml utility
about 126
creating UltraLite schema files 29
source control systems 29
syntax 126

undoing
changes by rolling back transactions (UltraLite)

180
Unicode

UltraLite databases 45
unique

constraint (UltraLite) 176
unique indexes

UltraLite databases 172
UNIQUEIDENTIFIER data type

229

Index

UltraLite 145
universally unique identifiers

UltraLite SQL syntax for NEWID function 148
unloading

UltraLite databases 101, 121
UPDATE statement

UltraLite dynamic SQL syntax 183
updates

UltraLite databases 47
updating

rows for UltraLite dynamic SQL 183
upgrading

UltraLite database schema 54, 56
UltraLite database schemas 125
UltraLite software 57

UPPER function
UltraLite SQL syntax 148

user authentication
PASSWORD UltraLite connection parameter 76
sharing MobiLink and UltraLite 41
UltraLite 40
UltraLite databases 40

user authentication parameters
UltraLite 73

user IDs
UltraLite databases 40

user-defined data types
unsupported in UltraLite 145

UserID connection parameter
UltraLite 76

userid connection parameter
UltraLite 76

usm files
creating for UltraLite 29

usm.xsd
ulconv utility 101

utilities
SQL preprocessor for UltraLite 95
ulconv 101
ulcreate 108
uldbsgen 110
ulisql 115
ulload 117
ulsync 119
UltraLite consolidated database generation 110
UltraLite database conversion 101
UltraLite database creation 108

UltraLite database loading 117
UltraLite database synchronization 119
UltraLite database unloading 121
UltraLite engine 88
UltraLite engine stop utility 100
UltraLite generator 89
UltraLite Palm utility 123
ulunload 121

UUIDs
UltraLite SQL syntax for NEWID function 148
UltraLite SQL syntax for STRTOUUID function

148
UltraLite SQL syntax for UUIDTOSTR function

148
UUIDTOSTR function

UltraLite SQL syntax 148

V
VARBINARY data type

UltraLite 145
VARCHAR data type

UltraLite 145
variables

UltraLite SQL 143
VFSOnPalm connection parameter

creating UltraLite databases 190
UltraLite 81

virtual file system
Palm OS 81, 190

W
warnings

UltraLite generator 91
WEEKS function

UltraLite SQL syntax 148
WHEN

CASE expression for UltraLite 164
WHERE clause

SELECT statement for UltraLite dynamic SQL
181

wildcards
pattern matching for UltraLite 148

Windows
UltraLite character sets 45

Windows CE
collation sequences in UltraLite 43

Windows CE

230

Index

UltraLite character sets 44
wizards

UltraLite project creation 202
UltraLite statement creation 203

X
XML

loading UltraLite databases from 101
saving UltraLite databases as 101

Y
Y2K problem

UltraLite NearestCentury option 34
year 2000

NEAREST_CENTURY option for UltraLite 199
YMD function

UltraLite SQL syntax 148

231

	UltraLite Database User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	UltraLite Databases
	Welcome to UltraLite
	Introduction to UltraLite
	UltraLite programming interfaces
	UltraLite database features
	UltraLite application architecture
	Using the UltraLite documentation

	Choosing an UltraLite programming interface
	Choosing between components and static interfaces
	 Developing applications with UltraLite components

	Tutorial: The CustDB Sample UltraLite Application
	Introduction
	File locations
	Synchronization techniques in the sample application

	Lesson 1: Start the MobiLink synchronization server
	Lesson 2: Start the sample application and synchronize
	Lesson 3: Add an order
	Add an order

	Lesson 4: Approve or deny an existing order
	Lesson 5: Synchronize your changes
	Confirm the synchronization at the consolidated database

	Lesson 6: Browse the consolidated database
	Connect to the CustDB database from Sybase Central
	Browse the synchronization scripts
	What Next?

	UltraLite Databases
	Creating UltraLite databases and schemas
	Creating UltraLite schema files
	Creating UltraLite databases
	Creating UltraLite database files

	Setting UltraLite database properties
	UltraLite database options
	Encrypting UltraLite databases
	Palm OS considerations

	User authentication in UltraLite
	Sharing MobiLink and UltraLite user IDs

	Character sets in UltraLite
	UltraLite database character sets
	UltraLite runtime character sets
	Synchronization and character sets

	UltraLite database internals
	UltraLite database files
	How UltraLite tracks row states
	UltraLite tables must have primary keys
	Indexes in UltraLite databases
	Transaction processing, recovery, and backup

	UltraLite database limitations
	Adaptive Server Anywhere features not available in UltraLite

	Upgrading UltraLite database schemas
	How schema upgrade works
	Upgrading UltraLite software

	The UltraLite runtime
	Understanding concurrency in UltraLite
	Threading in UltraLite applications
	Using the UltraLite engine

	Connection Parameters
	Overview
	Specifying file paths
	Specifying connection parameters

	Database Identification parameters
	Additional Parms connection parameter
	Database On CE connection parameter
	Database On Desktop connection parameter
	Database On Palm connection parameter

	Open Connection parameters
	Cache Size connection parameter
	Connection Name connection parameter
	Encryption Key connection parameter
	Password connection parameter
	User ID connection parameter

	Database Schema parameters
	Schema On CE connection parameter
	Schema On Desktop connection parameter
	Schema On Palm connection parameter
	VFS On Palm parameter

	Additional connection parameters
	Database Name connection parameter
	Obfuscate connection parameter
	Page Size connection parameter
	Palm Allow Backup parameter
	Reserve Size connection parameter

	UltraLite Utilities Reference
	The UltraLite engine
	The UltraLite Generator
	The SQL Preprocessor
	The HotSync Conduit Installer
	The dbulstop utility
	The ulconv utility
	The ulcreate utility
	The uldbsgen utility
	The ulinit utility
	The UltraLite Interactive SQL utility
	The ulload utility
	The ulsync utility
	The ulunload utility
	The ULUtil utility
	The UltraLite Schema Painter
	Starting the UltraLite Schema Painter
	Creating, saving and exporting schema files
	Managing schema files

	The ulxml utility

	Tutorial: Working with UltraLite Databases
	Lesson 1: Create an UltraLite database schema
	Lesson 2: Define and create a consolidated database
	Lesson 3: Enter data in your UltraLite database
	Lesson 4: Synchronize your databases

	UltraLite SQL
	SQL Language Elements
	Overview of SQL support in UltraLite
	Data types in UltraLite
	UltraLite SQL functions

	Dynamic SQL
	Introduction to dynamic SQL
	Using dynamic SQL

	Dynamic SQL expressions
	Subqueries in expressions
	IF expressions
	CASE expressions

	Dynamic SQL operators
	Binary comparison operators
	Arithmetic operators
	String operators
	Bitwise operators
	Logical operators
	Operator precedence

	Dynamic SQL search conditions
	ALL conditions
	ANY conditions
	BETWEEN conditions
	EXISTS conditions
	IN conditions

	Dynamic SQL statements
	COMMIT statement
	CREATE INDEX statement
	CREATE TABLE statement
	DELETE statement
	DROP INDEX statement
	DROP TABLE statement
	INSERT statement
	ROLLBACK statement
	SELECT statement
	UPDATE statement

	Query optimization

	Application Development
	Developing Applications for the Palm OS
	Choosing database storage on the Palm OS
	Understanding the Palm Creator ID

	Using UltraLite Static Interfaces
	Overview
	The development environment for static UltraLite applications
	The static interface UltraLite development process
	Adding synchronization

	Choosing an UltraLite static interface
	Preparing a reference database
	Creating a reference database
	Setting database options in the reference database
	Using an existing database as a reference database
	Optimizing query execution

	Defining SQL statements for your application
	Creating an UltraLite project
	Adding SQL statements to an UltraLite project
	Writing UltraLite SQL statements

	Generating the UltraLite data access code
	Configuring development tools for static UltraLite development

	UltraLite Static Interfaces Reference
	Reference database stored procedures
	ul_add_statement system procedure
	ul_add_project system procedure
	ul_delete_project system procedure
	ul_delete_statement system procedure
	ul_set_codesegment system procedure

	Index

