
UltraLite™ C/C++ User’s
Guide

Part number: DC50023-01-0902-01
Last modified: October 2004

Copyright© 1989–2004 Sybase, Inc. Portions copyright© 2001–2004 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP, AvantGo, AvantGo Application Alerts, AvantGo
Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma,
AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo
Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE
Professional Logo, ClearConnect, Client Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM,
Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library,
dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS,
Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo),
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator,
eremote, Everything Works Better When Everything Works Together, EWA, E-Whatever, Financial Fusion, Financial Fusion (and design), Financial
Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager,
GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InstaHelp, Intelligent Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, MAP,
M-Business Channel, M-Business Network, M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere
Server, MetaWorks, MethodSet, ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo,
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Orchestration Studio, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket
PowerBuilder, PocketBuilder, Power Through Knowledge, power.stop, Power++, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket,
Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise,
ProcessAnalyst, QAnywhere, Rapport, Relational Beans, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication
Server Manager, Replication Toolkit, Report Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message
Format Libraries, SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts,
smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central,
Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase
Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools,
Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning
Connection, The Model For Client/Server Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Versacore, Viewer, VisualWriter, VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect,
Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright© 1997–2001 Certicom Corp.
Portions are Copyright© 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights reserved.
Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568; 5,761,305.
Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual xi
SQL Anywhere Studio documentation xii
Documentation conventions xv
The CustDB sample database xvii
Finding out more and providing feedback xviii

I Introduction 1

1 Introduction to UltraLite for C/C++ Developers 3
UltraLite and the C/C++ programming languages 4
System requirements and supported platforms 9
UltraLite C++ Component architecture 10

II Application Development 11

2 Developing Applications Using the UltraLite C++ Compo-
nent 13
Using the UltraLite namespace 14
UltraLite database schemas 15
Connecting to a database . 17
Accessing data using dynamic SQL 21
Accessing data with the Table API 26
Managing transactions . 32
Accessing schema information 33
Handling errors . 34
Authenticating users . 35
Encrypting data . 36
Synchronizing data . 37
Compiling and linking your application 38

3 Developing Applications Using the Static C++ API 41
Introduction . 42
Defining features for your application 43
Connecting to a database . 45
Accessing data . 46
Authenticating users . 47

iii

Encrypting data . 49
Synchronizing data . 51
Building Static C++ API applications 58

4 Developing Applications Using Embedded SQL 61
Introduction . 62
Initializing the SQL Communications Area 64
Connecting to a database . 66
Using host variables . 68
Fetching data . 80
Authenticating users . 85
Encrypting data . 87
Adding synchronization to your application 89
Building embedded SQL applications 97

5 Common Features of UltraLite C/C++ Interfaces 105
Understanding the SQL Communications Area 106
Combining UltraLite C/C++ interfaces 108
Defragmenting UltraLite databases 110

6 Developing UltraLite Applications for the Palm Computing
Platform 113
Introduction . 114
Developing UltraLite applications with Metrowerks CodeWarrior115
Saving state in UltraLite Palm applications 120
Building multi-segment applications 122
Adding HotSync synchronization to Palm applications 125
Adding TCP/IP, HTTP, or HTTPS synchronization to Palm ap-

plications . 127
Deploying Palm applications 128

7 Developing UltraLite Applications for Windows CE 131
Introduction . 132
Building the CustDB sample application 134
Storing persistent data . 136
Deploying Windows CE applications 137
Synchronization on Windows CE 140

III Tutorials 145

8 Tutorial: Build an Application Using the C++ Component 147
Introduction . 148
Lesson 1: Connect to the database 149

iv

Lesson 2: Insert data into the database 156
Lesson 3: Select the rows from the table 158
Lesson 4: Add synchronization to your application 160
Lesson 5: Deploy to a Windows CE device 162

9 Tutorial: Build an Application Using the Static C++ API 163
Introduction to the UltraLite static C++ API 164
Lesson 1: Getting started . 166
Lesson 2: Create an UltraLite database template 167
Lesson 3: Run the UltraLite generator 168
Lesson 4: Write the application source code 169
Lesson 5: Build and run your application 172
Lesson 6: Add synchronization to your application 174
Restore the sample database 176

10 Tutorial: Build an Application Using Embedded SQL 177
Introduction . 178
Lesson 1: Configure eMbedded Visual C++ 179
Lesson 2: Write an embedded SQL source file 180
Lesson 3: Build the sample embedded SQL UltraLite appli-

cation . 186
Lesson 4: Add synchronization to your application 187

11 Tutorial: Build an Application Using ODBC 189
Introduction to UltraLite ODBC 190
Lesson 1: Getting started . 191
Lesson 2: Create an UltraLite database schema file 193
Lesson 3: Connect to the database 194
Lesson 4: Insert data into the database 197
Lesson 5: Query the database 198

IV API Reference 201

12 UltraLite C/C++ Common API Reference 203
Callback function for ULRegisterErrorCallback 204
Callback function for ULRegisterSchemaUpgradeObserver . 206
ULEnableFileDB function . 208
ULEnableGenericSchema function (deprecated) 209
ULEnablePalmRecordDB function 210
ULEnableStrongEncryption function 211
ULEnableUserAuthentication function 212
ULRegisterErrorCallback function 213
ULRegisterSchemaUpgradeObserver function 216

v

ULStoreDefragFini function 218
ULStoreDefragInit function 219
ULStoreDefragStep function 220
Macros and compiler directives for UltraLite C/C++ applications221

13 UltraLite C++ Component API Reference 227
Class ULSqlca . 229
Class ULSqlcaBase . 230
Class ULSqlcaWrap . 233
Class UltraLite_Connection 234
Class UltraLite_Connection_iface 236
Class UltraLite_Cursor_iface 245
Class UltraLite_DatabaseManager 249
Class UltraLite_DatabaseManager_iface 250
Class UltraLite_DatabaseSchema 252
Class UltraLite_DatabaseSchema_iface 253
Class UltraLite_IndexSchema 256
Class UltraLite_IndexSchema_iface 257
Class UltraLite_PreparedStatement 260
Class UltraLite_PreparedStatement_iface 261
Class UltraLite_ResultSet . 263
Class UltraLite_ResultSet_iface 264
Class UltraLite_ResultSetSchema 265
Class UltraLite_RowSchema_iface 266
Class UltraLite_SQLObject_iface 269
Class UltraLite_StreamReader 271
Class UltraLite_StreamReader_iface 272
Class UltraLite_StreamWriter 275
Class UltraLite_Table . 276
Class UltraLite_Table_iface 278
Class UltraLite_TableSchema 285
Class UltraLite_TableSchema_iface 286
Class ULValue . 291

14 UltraLite Static C++ API Reference 303
C++ API class hierarchy . 304
C++ API language elements 305
ULConnection class . 306
ULCursor class . 319
ULData class . 331
ULResultSet class . 340
ULTable class . 341
Generated result set class . 347
Generated statement class 350

vi

Generated table class . 352

15 Embedded SQL API Reference 357
db_fini function . 359
db_init function . 360
db_start_database function 361
db_stop_database function 362
ULActiveSyncStream function 363
ULChangeEncryptionKey function 364
ULClearEncryptionKey function 365
ULCountUploadRows function 366
ULDropDatabase function . 367
ULGetDatabaseID function 368
ULGetLastDownloadTime function 369
ULGetSynchResult function 370
ULGlobalAutoincUsage function 372
ULGrantConnectTo function 373
ULHTTPSStream function . 374
ULHTTPStream function . 375
ULIsSynchronizeMessage function 376
ULPalmDBStream function (deprecated) 377
ULPalmExit function (deprecated) 378
ULPalmLaunch function (deprecated) 379
ULResetLastDownloadTime function 380
ULRetrieveEncryptionKey function 381
ULRevokeConnectFrom function 382
ULRollbackPartialDownload function 383
ULSaveEncryptionKey function 384
ULSetDatabaseID function 385
ULSetSynchInfo function . 386
ULSocketStream function . 387
ULSynchronize function . 388

16 UltraLite ODBC API Reference 389
SQLAllocHandle function . 391
SQLBindCol function . 392
SQLBindParameter function 393
SQLConnect function . 394
SQLDescribeCol function . 395
SQLDisconnect function . 396
SQLEndTran function . 397
SQLExecDirect function . 398
SQLExecute function . 399
SQLFetch function . 400

vii

SQLFetchScroll function . 401
SQLFreeHandle function . 402
SQLGetCursorName function 403
SQLGetData function . 404
SQLGetDiagRec function . 405
SQLGetInfo function . 406
SQLNumResultCols function 407
SQLPrepare function . 408
SQLRowCount function . 409
SQLSetCursorName function 410
SQLSetConnectionName function 411
SQLSetSuspend function . 412
SQLSynchronize function . 413

17 Synchronization Parameters Reference 415
Synchronization parameters 417
auth_parms parameter . 418
auth_status parameter . 419
auth_value synchronization parameter 420
checkpoint_store synchronization parameter 421
disable_concurrency synchronization parameter 422
download_only synchronization parameter 423
keep_partial_download synchronization parameter 424
ignored_rows synchronization parameter 425
new_password synchronization parameter 426
num_auth_parms parameter 427
observer synchronization parameter 428
partial_download_retained synchronization parameter 429
password synchronization parameter 430
ping synchronization parameter 431
publication synchronization parameter 432
resume_partial_download synchronization parameter 433
security synchronization parameter 434
security_parms synchronization parameter 435
send_column_names synchronization parameter 436
send_download_ack synchronization parameter 437
stream synchronization parameter 438
stream_error synchronization parameter 440
stream_parms synchronization parameter 443
upload_ok synchronization parameter 444
upload_only synchronization parameter 445
user_data synchronization parameter 446
user_name synchronization parameter 447

viii

version synchronization parameter 448

Index 449

ix

x

About This Manual

Subject This manual describes UltraLite C and C++ programming interfaces. With
UltraLite you can develop and deploy database applications to handheld,
mobile, or embedded devices.

Audience This manual is intended for C and C++ application developers who wish to
take advantage of the performance, resource efficiency, robustness, and
security of an UltraLite relational database for data storage and
synchronization.

xi

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

♦ Adaptive Server Anywhere SNMP Extension Agent User’s Guide
This book describes how to configure the Adaptive Server Anywhere
SNMP Extension Agent for use with SNMP management applications to
manage Adaptive Server Anywhere databases.

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

xii

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Administration Guide This book describes how to use the
MobiLink data synchronization system for mobile computing, which
enables sharing of data between a single Oracle, Sybase, Microsoft or
IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Clients This book describes how to set up and synchronize
Adaptive Server Anywhere and UltraLite remote databases.

♦ MobiLink Server-Initiated Synchronization User’s Guide This book
describes MobiLink server-initiated synchronization, a feature of
MobiLink that allows you to initiate synchronization from the
consolidated database.

♦ MobiLink Tutorials This book provides several tutorials that walk you
through how to set up and run MobiLink applications.

♦ QAnywhere User’s Guide This manual describes MobiLink
QAnywhere, a messaging platform that enables the development and
deployment of messaging applications for mobile and wireless clients, as
well as traditional desktop and laptop clients.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

xiii

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ PDF books The SQL Anywhere books are provided as a set of PDF
files, viewable with Adobe Acrobat Reader.

The PDF books are accessible from the online books, or from the
Windows Start menu.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store, at
http://eshop.sybase.com/eshop/documentation.

xiv

http://eshop.sybase.com/eshop/documentation

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xv

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xvi

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following diagram shows the tables in the CustDB database and how
they are related to each other.

ULOrderIDPool

pool_order_id
 integer

pool_emp_id
 integer

last_modified
 timestamp

ULCustomer

cust_id

integer

cust_name varchar(30)

last_modified

 timestamp

ULProduct

prod_id

integer

price
 integer

prod_name varchar(30)

ULOrder

order_id

integer

cust_id
 integer

prod_id
 integer

emp_id
 integer

disc
 integer

quant
 integer

notes
 varchar(50)

status
 varchar(20)

last_modified timestamp

ULEmployee

emp_id

integer

emp_name varchar(30)

last_download timestamp

ULEmpCust

emp_id

integer

cust_id

integer

action
 char(1)

last_modified timestamp

ULCustomerIDPool

pool_cust_id

integer

pool_emp_id
 integer

last_modified
 timestamp

ULIdentifyEmployee

emp_id
 integer
cust_id = cust_id

emp_id = emp_id

emp_id = emp_id

emp_id = pool_emp_id

prod_id = prod_id

cust_id = cust_id

emp_id = pool_emp_id

xvii

Finding out more and providing feedback
Finding out more Additional information and resources, including a code exchange, are

available at the iAnywhere Developer Network at
http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere
Solutions newsgroups listed below.

When you write to one of these newsgroups, always provide detailed
information about your problem, including the build number of your version
of SQL Anywhere Studio. You can find this information by typingdbeng9
-v at a command prompt.

The newsgroups are located on theforums.sybase.comnews server. The
newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and ensure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can e-mail comments and suggestions to the SQL Anywhere
documentation team atiasdoc@ianywhere.com. Although we do not reply
to e-mails sent to that address, we read all suggestions with interest.

xviii

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

In addition, you can provide feedback on the documentation and the
software through the newsgroups listed above.

xix

xx

PART I

INTRODUCTION

This part introduces UltraLite for C/C++ programmers.

CHAPTER 1

Introduction to UltraLite for C/C++
Developers

About this chapter This chapter introduces you to UltraLite for C/C++. It assumes that you are
familiar with the features of UltraLite, as described in“Welcome to
UltraLite” [UltraLite Database User’s Guide,page 3].

☞ For more information about creating applications using UltraLite for
C/C++, see“Common Features of UltraLite C/C++ Interfaces” on page 105.

☞ For a hands-on tutorial introducing UltraLite for C/C++, see“Tutorial:
Build an Application Using the C++ Component” on page 147.

Contents Topic: page

UltraLite and the C/C++ programming languages 4

System requirements and supported platforms 9

UltraLite C++ Component architecture 10

3

UltraLite and the C/C++ programming languages
C and C++ provides the following benefits for UltraLite developers targeting
small devices:

♦ a robust relational database store

♦ the power, efficiency, and flexibility of C or C++

♦ deployment on the Windows CE, Palm OS, and Windows XP platforms

☞ For more information about the features of UltraLite databases, see
“UltraLite Databases”[UltraLite Database User’s Guide,page 27].

UltraLite programming interfaces are either static or dynamic. Static and
dynamic interfaces have different benefits and limitations. They also have a
different development model.

UltraLite developers using C++ have several options available:

♦ The UltraLite C++ Component.

♦ Embedded SQL (static interface).

♦ The Static C++ API (static interface).

♦ The ODBC programming interface (component interface).

UltraLite developers using C must use embedded SQL or ODBC.

☞ For more information, see“Choosing between components and static
interfaces”[UltraLite Database User’s Guide,page 11].

Benefits and limitations of the C++ Component

The benefits and disadvantages of the UltraLite C++ Component are as
follows:

♦ Dynamic SQL The UltraLite C++ Component broadens the scope of
the applications you can build by providing access to dynamic SQL.
Dynamic SQL permits SQL statements to be defined at runtime. By
contrast, the static interfaces, such as embedded SQL and the Static C++
API, require all SQL statements to be specified at compile time.

♦ Development model You can use the UltraLite Schema Painter to
create an UltraLite database when you use the UltraLite C++ Component.
Also, no preprocessing is required. By contrast, the embedded SQL and
Static C++ API interfaces require a preprocessing step before compiling
your application. They also require that you construct an Adaptive Server
Anywhere reference database.

4

Chapter 1. Introduction to UltraLite for C/C++ Developers

♦ Efficiency For databases with few tables, applications built with the
static interfaces provide a smaller footprint than those built using the
component interfaces. For databases with more complex schemas, this
advantage of the static interfaces is lost.

♦ Multi-process support The UltraLite C++ Component provides a
version of the UltraLite runtime engine that supports connections from
multiple applications.

Advanced developers can combine features of the UltraLite C++ Component
API with those of the Static C++ API and even embedded SQL.

☞ For more information, see“Combining UltraLite C/C++ interfaces” on
page 108.

Benefits and limitations of the Static C++ API

UltraLite provides several programming interfaces, including both static
development models (of which the Static C++ interface is one) and UltraLite
components. Many of the benefits and disadvantages of the Static C++ API
are shared with the embedded SQL.

The Static C++ API has the following advantages:

♦ Small footprint database As the Static C++ API uses an UltraLite
database engine compiled specifically for each application, the footprint
is generally smaller than when using an UltraLite component, especially
for a small number of tables. For a large number of tables, this benefit is
lost.

♦ High performance Combining the high performance of C and C++
applications with the optimization of the generated code, including data
access plans, makes the Static C++ API a good choice for
high-performance application development.

♦ Extensive SQL support With the Static C++ API you can use a wide
range of SQL in your applications.

The Static C++ API has the following disadvantages:

♦ Knowledge of C or C++ required If you are not familiar with C or
C++ programming, you may wish to use one of the other UltraLite
interfaces. UltraLite components provide interfaces from several popular
programming languages and tools.

♦ Complex development model The use of a reference database to hold
the UltraLite database schema, together with the need to generate the API
for your specific application, makes the Static C++ API development

5

process complex. The UltraLite components provide a much simpler
development process.

♦ SQL must be specified at design time Only SQL statements defined
at compile time can be included in your application. The UltraLite
components allow dynamic use of SQL statements.

The choice of development model is guided by the needs of your particular
project, and by the programming skills and experience available.

Developing Static C++ applications

When developing Static C++ UltraLite applications, you use a programming
interface that is generated from a reference database. In order to develop
these applications you should be familiar with the C or C++ programming
language.

The development process for Static C++ UltraLite applications is as follows:

1. Design your database.

Prepare an Adaptive Server Anywhere reference database that contains
the tables and indexes you wish to include in your UltraLite database.

2. Add SQL statements to the database.

The SQL Statements you wish to use in your application must be added
to the reference database.

3. Generate the API for your application.

The UltraLite generator provides an API for your specific application.

4. Write your application.

Data access features in your application code use function calls from the
generated API.

5. Compile your .cpp files.

You can compile the generated .cpp files just as you compile other .cpp
files.

6. Link the .cpp files.

You must link the files against the UltraLite runtime library.

☞ For a full description of the development process, see“Building Static
C++ API applications” on page 58.

6

Chapter 1. Introduction to UltraLite for C/C++ Developers

Benefits and limitations of embedded SQL

UltraLite provides several programming interfaces, including both static
development models (of which embedded SQL is one) and UltraLite
components. Many of the benefits and disadvantages of embedded SQL are
shared with the UltraLite Static C++ API.

Embedded SQL has the following advantages:

♦ Small footprint database As embedded SQL uses an UltraLite
database engine compiled specifically for each application, the footprint
is generally smaller than when using an UltraLite component, especially
for a small number of tables. For a large number of tables, this benefit is
lost.

♦ High performance Combining the high performance of C and C++
applications with the optimization of the generated code, including data
access plans, makes embedded SQL a good choice for high-performance
application development.

♦ Extensive SQL support With embedded SQL you can use a wide
range of SQL in your applications.

Embedded SQL has the following disadvantages:

♦ Knowledge of C or C++ required If you are not familiar with C or
C++ programming, you may wish to use one of the other UltraLite
interfaces. UltraLite components provide interfaces from several popular
programming languages and tools.

♦ Complex development model The use of a reference database to hold
the UltraLite database schema, together with the need to preprocess your
source code files, makes the embedded SQL development process
complex. The UltraLite components provide a much simpler
development process.

♦ SQL must be specified at design time Only SQL statements defined
at compile time can be included in your application. The UltraLite
components allow dynamic use of SQL statements.

The choice of development model is guided by the needs of your particular
project, and by the programming skills and experience available.

Developing embedded SQL applications

When developing embedded SQL applications, you mix SQL statements in
with standard C or C++ source code. In order to develop embedded SQL

7

applications you should be familiar with the C or C++ programming
language.

The development process for embedded SQL applications is as follows:

1. Design your database.

Prepare an Adaptive Server Anywhere reference database that contains
the tables and indexes you wish to include in your UltraLite database.

2. Write your source code in an embedded SQL source file, which typically
has extension.sqc.

When you need data access in your source code, use the SQL statement
you wish to execute, prefixed by the EXEC SQL keywords. For example:

EXEC SQL SELECT price, prod_name
INTO :cost, :pname
FROM ULProduct
WHERE prod_id= :pid;

if((SQLCODE==SQLE_NOTFOUND)||(SQLCODE<0)) {
return(-1);

}

3. Preprocess the.sqcfiles.

SQL Anywhere Studio includes a SQL preprocessor (sqlpp), which reads
the .sqc files, accesses an Adaptive Server Anywhere reference database,
and generates .c or .cpp files. These files hold function calls to the
UltraLite runtime library.

4. Compile your .c or .cpp files.

You can compile the generated .c or .cpp files just as you compile other .c
or .cpp files.

5. Link the .c or .cpp files.

You must link the files against the UltraLite runtime library.

☞ For a full description of the embedded SQL development process, see
“Building embedded SQL applications” on page 97.

8

Chapter 1. Introduction to UltraLite for C/C++ Developers

System requirements and supported platforms
Development platforms To develop applications using UltraLite C++, you require the following.

♦ Microsoft Windows NT/2000/XP.

♦ A supported C/C++ compiler.

Target platforms UltraLite C/C++ supports the following target platforms:

♦ Windows CE 3.0 and higher, or Palm OS 3.5 or later.

☞ For more information, see“UltraLite development platforms”
[Introducing SQL Anywhere Studio,page 99]and“UltraLite target platforms”
[Introducing SQL Anywhere Studio,page 109].

9

UltraLite C++ Component architecture
The UltraLite C++ Component interface is defined in theuliface.hheader
file.

♦ DatabaseManager You create one DatabaseManager object for each
application.

♦ Connection Each Connection object represents a connection to an
UltraLite database. You can create one or more Connection objects.

♦ Table The Table object provides access to the data in the database.

♦ PreparedStatement, ResultSet, and ResultSetSchema These
dynamic SQL objects allow you to create Dynamic SQL statements,
make queries and execute INSERT, UPDATE and DELETE statements,
and attain programmatic control over database result sets.

♦ SyncParms You use the SyncParms object to synchronize your
UltraLite database with a MobiLink synchronization server.

The API Reference is supplied in the online books. For more information
about accessing the API reference, see“UltraLite C++ Component API
Reference” on page 227.

10

PART II

APPLICATION

DEVELOPMENT

This part provides development notes for UltraLite C/C++ programmers.

CHAPTER 2

Developing Applications Using the
UltraLite C++ Component

About this chapter This chapter explains how to develop applications using the UltraLite C++
component.

☞ For hands-on tutorials, see“Tutorial: Build an Application Using the
C++ Component” on page 147.

Contents Topic: page

Using the UltraLite namespace 14

UltraLite database schemas 15

Connecting to a database 17

Accessing data using dynamic SQL 21

Accessing data with the Table API 26

Managing transactions 32

Accessing schema information 33

Handling errors 34

Authenticating users 35

Encrypting data 36

Synchronizing data 37

Compiling and linking your application 38

13

Using the UltraLite namespace
The UltraLite C++ Component interface provides a set of classes with
names prefixed by UltraLite_, such as the UltraLite_Connection and
UltraLite_DatabaseManager class. Most of the functions for each of these
classes implement a function from an underlying interface with the string
_iface appended to it. For example, the UltraLite_Connection class
implements functions from UltraLite_Connection_iface.

When you explicitly use the UltraLite namespace, you can use a shorter
name to refer to each class. Instead of declaring a connection as an
UltraLite_Connection object, you can declare it as a Connection object if
you are using the UltraLite namespace:

using namespace UltraLite;
ULSqlca sqlca;
sqlca.Initialize();
DatabaseManager * dbMgr = ULInitDatabaseManager(sqlca);
Connection * conn = UL_NULL;

As a result of this architecture, code samples in this chapter use types such
as DatabaseManager, Connection, and TableSchema, but links for more
information direct you to UltraLite_DatabaseManager_iface,
UltraLite_Connection_iface, and UltraLite_TableSchema_iface,
respectively.

14

Chapter 2. Developing Applications Using the UltraLite C++
Component

UltraLite database schemas
The database schema is a description of the database. It is the collection of
tables, indexes, keys, and publications within the database, and all the
relationships between them.

You do not alter the schema of an UltraLite database directly. Instead, you
create a schema (.usm) file and upgrade the database schema from that file
by calling a built-in UltraLite function in your application.

A schema file is also used in the initial creation of a database to specify the
structure of the database.

Creating UltraLite database schema files

You can create an UltraLite schema file using the UltraLite Schema Painter
or theulinit utility.

♦ UltraLite Schema Painter The UltraLite Schema Painter is a graphical
utility for creating and editing UltraLite schema files.

To start the Schema painter, choose Start➤ Programs➤
SQL Anywhere 9➤ UltraLite ➤ UltraLite Schema Painter, or
double-click a schema (.usm) file in Windows Explorer.

☞ For more information about using the UltraLite Schema Painter, see
“Lesson 1: Create an UltraLite database schema”[UltraLite Database
User’s Guide,page 130].

♦ The ulinit utility If you have the Adaptive Server Anywhere database
management system, you can generate an UltraLite schema file using the
ulinit command line utility.

☞ For more information about using theulinit utility, see“The ulinit
utility” [UltraLite Database User’s Guide,page 112].

Upgrading your database schema

To modify your existing database structure, use the
UpgradeSchemaFromFile method. In most cases there will be no data loss,
however, data loss can occur if columns are deleted or if the data type for a
column is changed to an incompatible type.

Example The following code applies a new schema file.

// issue a commit before applying a new schema
// if there are any uncommitted transactions
conn->Commit();
conn->UpgradeSchemaFromFile(

UL_TEXT("schema_file=genup01b.usm")));

15

☞ For more information, see“UpgradeSchemaFromFile Function” on
page 244.

16

Chapter 2. Developing Applications Using the UltraLite C++
Component

Connecting to a database
UltraLite applications must connect to a database before carrying out
operations on the data in it. This section describes how to connect to an
UltraLite database. You can find sample code inSamples\UltraLite\CustDB.

Using the Connection
object

The following properties of the Connection object govern global application
behavior.

♦ Commit behavior In the UltraLite C++ component, there is no
autocommit mode. Each transaction must be followed by a
Connection.Commit statement.

☞ For more information, see“Managing transactions” on page 32.

♦ User authentication You can change the user ID and password for the
application from the default values of DBA and SQL by using methods to
Grant and Revoke connection permissions. Each application can have a
maximum of four user IDs.

☞ For more information, see“User authentication in UltraLite”
[UltraLite Database User’s Guide,page 40]and“Authenticating users” on
page 35.

♦ Synchronization A set of objects governing synchronization is
accessed from the Connection object.

☞ For more information, see“Synchronizing data” on page 37.

♦ Tables UltraLite tables are accessed using methods of the Connection
object.

☞ For more information, see“Accessing data with the Table API” on
page 26.

♦ Prepared statements A set of objects is provided to handle the
execution of dynamic SQL statements and to navigate result sets.

☞ For more information, see“Accessing data using dynamic SQL” on
page 21.

☞ For more information about the Connection object, see“Class
UltraLite_Connection” on page 234.

17

❖ To connect to an UltraLite database

1. Use the UltraLite namespace.

Using the UltraLite namespace allows you to use simple names for
classes in the C++ Component interface.

using namespace UltraLite;

2. Create and initialize a DatabaseManager object and an UltraLite SQL
communications area (ULSqlca). The ULSqlca is a structure that handles
communication between the application and the database.

The DatabaseManager object is at the root of the object hierarchy. You
create only one DatabaseManager object per application. It is often best
to declare the DatabaseManager object as global to the application.

ULSqlca sqlca;
sqlca.Initialize();
DatabaseManager * dbMgr = ULInitDatabaseManager(sqlca);

☞ For more information, see“Class UltraLite_DatabaseManager_iface”
on page 250.

On the Palm OS, you should precede the call to ULInitDatabaseManager
by a call to ULEnableFileDB or ULEnablePalmRecordDB. This sets the
database store to use the Palm data store or the virtual file system. For
more details, see“ULEnablePalmRecordDB function” on page 210and
“ULEnableFileDB function” on page 208.

3. Declare a Connection object.

Most applications use a single connection to an UltraLite database and
leave the connection open. Multiple connections are only required for
multi-threaded data access. For this reason, it is often best to declare the
Connection object as global to the application.

Connection * conn = UL_NULL;

☞ For more information, see“Class UltraLite_Connection_iface” on
page 236

4. Open a connection to an existing database, or create a new database if the
specified database file does not exist.

Most UltraLite applications deploy a schema file rather than a database
file, and let UltraLite create the database file on the first connection
attempt. Thus, the following code attempts to connect to an existing
database. If the database file does not exist, the application creates a
database file.

18

Chapter 2. Developing Applications Using the UltraLite C++
Component

// specify the location of the database file
static ul_char * parms = "file_name=mydata.udb";
ULValue lp(parms);
conn = dbMgr->OpenConnection(sqlca, lp);
if(sqlca.GetSQLCode() ==

SQLE_ULTRALITE_DATABASE_NOT_FOUND) {
static ul_char * parms = UL_TEXT("schema_file=mydata.usm")
UL_TEXT(";file_name=mydata.udb");
ULValue lp(parms);
conn = dm->CreateAndOpenDatabase(sqlca, lp);
if(sqlca.GetSQLCode() < SQLE_NOERROR){

printf("Open failed with sql code: %d. \n" ,
sqlca.GetSQLCode());

}
}

☞ For more information, see“OpenConnection Function” on page 251
and“CreateAndOpenDatabase Function” on page 250.

Example The following code opens a connection to an UltraLite database named
mydata.udb.

#include "uliface.h"
using namespace UltraLite;
static ul_char * parms =
UL_TEXT(";file_name=tutcustomer.udb")
UL_TEXT(";schema_file=tutcustomer.usm");
ULSqlca sqlca;
DatabaseManager * dm = UL_NULL;
Connection * conn = UL_NULL;
sqlca.Initialize();
dm = ULInitDatabaseManager(sqlca);
if(dm == UL_NULL){

// You may have mismatched UNICODE vs. ANSI runtimes.
return 1;

}
ULValue lp(parms);
conn = dm->OpenConnection(sqlca, lp);
if(sqlca.GetSQLCode() ==

SQLE_ULTRALITE_DATABASE_NOT_FOUND) {
conn = dm->CreateAndOpenDatabase(sqlca, lp);
if(sqlca.GetSQLCode() < SQLE_NOERROR) {

printf("Open failed with sql code: %d. \n" ,
sqlca.GetSQLCode());
return NULL;

} else {
printf("Connected to a new database. \n");

}
} else {

printf("Connected to an existing database. \n");
}
return(conn);

Multi-threaded
applications

Each Connection and all objects created from it should be used on a single

19

thread. If your application requires multiple threads accessing the UltraLite
database, each thread requires a separate connection.

20

Chapter 2. Developing Applications Using the UltraLite C++
Component

Accessing data using dynamic SQL
UltraLite applications can access table data using dynamic SQL or the Table
API. This section describes data access using dynamic SQL.

☞ For information about using the Table API, see“Accessing data with the
Table API” on page 26.

This section explains how to perform the following tasks using dynamic
SQL.

♦ Inserting, deleting, and updating rows.

♦ Retrieving rows to a result set.

♦ Scrolling through the rows of a result set.

☞ This section does not describe the SQL language itself. For information
about dynamic SQL features, see“Dynamic SQL” [UltraLite Database User’s
Guide,page 159].

☞ For an overview of the sequence of operations required for any SQL
operation, see“Using dynamic SQL”[UltraLite Database User’s Guide,
page 161].

Data manipulation: INSERT, UPDATE and DELETE

With UltraLite, you can perform SQL Data Manipulation Language
operations. These operations are performed using the ExecuteStatement
method, a member of the PreparedStatement class.

☞ For more information, see the“Class UltraLite_PreparedStatement” on
page 260.

Using parameters in your prepared statements
UltraLite indicates query parameters using the ? character. For any
INSERT, UPDATE or DELETE, each ? is referenced according to its
ordinal position in the prepared statement. For example, the first ? is
referred to as 1, and the second as 2.

❖ To INSERT a row

1. Declare a PreparedStatement.

PreparedStatement * prepStmt;

☞ For more information, see“PrepareStatement Function” on page 241.

2. Assign a SQL statement to the PreparedStatement object.

21

ULValue sqltext(
"INSERT INTO MyTable(MyColumn) values (?)");

prepStmt = conn->PrepareStatement(sqltext);

3. Assign input parameter values for the statement.

The following code shows a string parameter.

ULValue newValue(" string-value ");
prepStmt->SetParameter(1, newValue);

4. Execute the statement.

The return value indicates the number of rows affected by the statement.

ul_s_long rowsInserted;
rowsInserted = prepStmt->ExecuteStatement();

5. Commit the change.

conn->Commit();

❖ To UPDATE a row

1. Declare a PreparedStatement.

PreparedStatement * prepStmt;

2. Assign a statement to the PreparedStatement object.

ULValue sqltext(
"UPDATE MyTable SET MyColumn1 = ? WHERE MyColumn2 = ?");

prepStmt = conn->PrepareStatement(sqltext);

3. Assign input parameter values for the statement.

ULValue newValue(new-value);
ULValue oldValue(old-value);
stmt->SetParameter(1, newValue);
stmt->SetParameter(2, oldValue);

4. Execute the statement.

long rowsUpdated = prepStmt->ExecuteStatement();

5. Commit the change.

conn->Commit();

22

Chapter 2. Developing Applications Using the UltraLite C++
Component

❖ To DELETE a row

1. Declare a PreparedStatement.

PreparedStatement * prepStmt;

2. Assign a statement to the PreparedStatement object.

ULValue sqltext(
"DELETE FROM MyTable WHERE MyColumn = ?");

prepStmt = conn->PrepareStatement(sqltext);

3. Assign input parameter values for the statement.

ULValue deleteValue(old-value);
prepStmt->SetParameter(1, deleteValue);

4. Execute the statement.

long rowsDeleted = prepStmt->ExecuteStatement();

5. Commit the change.

conn->Commit();

Data retrieval: SELECT

The SELECT statement allows you to retrieve information from the
database. When you execute a SELECT statement, the
PreparedStatement.ExecuteQuery method returns a ResultSet object.

☞ For more information, see“Class UltraLite_PreparedStatement_iface”
on page 261.

❖ To execute a SELECT statement

1. Create a new prepared statement and result set.

PreparedStatement * prepStmt;

2. Assign a prepared statement to your newly created PreparedStatement
object.

ULValue sqltext("SELECT MyColumn FROM MyTable");
prepStmt = conn->PrepareStatement(sqltext);

3. Execute the statement.

In the following code, the result of the SELECT query contain a string,
which is output to a command prompt.

23

#define MAX_NAME_LEN 100
ULValue mycol;
ResultSet * rs = stmt->ExecuteQuery();
rs->BeforeFirst();
while(rs->Next()){

char mycol[MAX_NAME_LEN];
val = rs->Get(1);
val.GetString(mycol, MAX_NAME_LEN);
printf("mycol= %s \n", mycol);

}

Navigating dynamic SQL result sets

You can navigate through a result set using methods associated with the
ResultSet object.

The result set object provides you with the following methods to navigate a
result set.

♦ AfterLast() moves to a position after the last row.

♦ BeforeFirst() moves to a position before the first row.

♦ First() moves to the first row.

♦ Last() moves to the last row.

♦ Next() moves to the next row.

♦ Previous() moves to the previous row.

♦ Relative(offset) moves a certain number of rows relative to the
current row, as specified by the offset. Positive offset values move
forward in the result set, relative to the current position of the cursor in
the result set, and negative offset values move backward in the result set.
An offset value of zero does not move the cursor, but allows you to
repopulate the row buffer.

☞ For more information, see“Class UltraLite_ResultSet_iface” on
page 264.

Result set schema description

The ResultSet.GetSchema method allows you to retrieve information about a
result set, such as column names, total number of columns, column scales,
column sizes and column SQL types.

Example The following example demonstrates how to use the ResultSet.GetSchema
method to display schema information in a console window.

24

Chapter 2. Developing Applications Using the UltraLite C++
Component

ResultSetSchema * rss = rs->GetSchema();
ULValue val;
char name[MAX_NAME_LEN];
for(int i = 1;

i <= rss->GetColumnCount();
i++){

val = rss->GetColumnName(i);
val.GetString(name, MAX_NAME_LEN);
printf("id= %d, name= %s \n", i, name);

}

☞ For more information, see“GetSchema Function” on page 264.

25

Accessing data with the Table API
UltraLite applications can access table data using dynamic SQL or the Table
API. This section describes data access using the Table API.

☞ For information about dynamic SQL, see“Accessing data using
dynamic SQL” on page 21.

This section explains how to perform the following tasks using the Table
API.

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

Navigating the rows of a table

UltraLite C++ component provides you with a number of methods to
navigate a table in order to perform a wide range of navigation tasks.

The table object provides you with the following methods to navigate a table.

♦ AfterLast() moves to a position after the last row.

♦ BeforeFirst() moves to a position before the first row.

♦ First() moves to the first row.

♦ Last() moves to the last row.

♦ Next() moves to the next row.

♦ Previous() moves to the previous row.

♦ Relative(offset) moves a certain number of rows relative to the
current row, as specified by the offset. Positive offset values move
forward in the table, relative to the current position of the cursor in the
table, and negative offset values move backward in the table. An offset
value of zero does not move the cursor, but allows you to repopulate the
row buffer.

☞ For more information, see“Class UltraLite_Table_iface” on page 278.

Example The following code opens the MyTable table and displays the value of the
MyColumn column for each row.

26

Chapter 2. Developing Applications Using the UltraLite C++
Component

Table * t = conn->openTable("MyTable");
ul_column_num colValue =

t->GetSchema()->GetColumnID("MyColumn");
while (t->Next()){

char lname[MAX_NAME_LEN];
printf("%s \n", colValue);

}

You expose the rows of the table to the application when you open the table
object. By default, the rows are ordered by primary key value, but you can
specify an index when opening a table to access the rows in a particular
order.

Example The following code fragment moves to the first row of the MyTable table as
ordered by the ix_col index.

ULValue table_name("MyTable")
ULValue index_name("ix_col")
Table * t =

conn->OpenTableWithIndex(table_name, index_name);
t.moveFirst();

☞ For more information, see“Class UltraLite_Table_iface” on page 278.

Using UltraLite modes

UltraLite mode determines the purpose for which the values in the buffer
will be used. UltraLite has the following four modes of operation, in
addition to a default mode.

♦ Insert mode The data in the buffer is added to the table as a new row
when the insert method is called.

♦ Update mode The data in the buffer replaces the current row when the
update method is called.

♦ Find mode Used to locate a row whose value exactly matches the data
in the buffer when when one of the find methods is called.

♦ Lookup mode Used to locate a row whose value matches or is greater
than the data in the buffer when one of the lookup methods is called.

Accessing the values of the current row

A Table object is always located at one of the following positions.

♦ Before the first row of the table.

♦ On a row of the table.

27

♦ After the last row of the table.

If the Table object is positioned on a row, you can use one of a set of methods
appropriate for the data type to retrieve or modify the value of each column.

Retrieving column values The Table object provides a set of methods for retrieving column values.
These methods take the column ID as argument.

Example The following code fragment retrieves the value of the lname column, which
is a character string.

ULValue val;
char lname[MAX_NAME_LEN];
val = t->Get(lname_col_id);
val.GetString(lname, MAX_NAME_LEN);

The following code retrieves the value of the cust_id column, which is an
integer.

int id = (int)(t->Get(id_col_id);

Modifying column values In addition to the methods for retrieving values, there are methods for setting
values. These methods take the column ID and the value as arguments.

Example For example, the following code sets the value of the lname column to
Kaminski.

ULValue lname_col("fname");
ULValue v_lname("Kaminski");
t->Set(lname_col, v_lname);

By assigning values to these properties you do not alter the value of the data
in the database. You can assign values to the properties even if you are
before the first row or after the last row of the table, but it is an error to try to
access data when the current row is at one of these positions, for example by
assigning the property to a variable.

// This code is incorrect
t.BeforeFirst();
id = t.Get(cust_id);

Casting values The method you choose must match the data type you wish to assign.
UltraLite automatically casts database data types where they are compatible,
so that you could use the getString method to fetch an integer value into a
string variable, and so on.

Searching rows with find and lookup

UltraLite has several modes of operation for working with data. Two of
these modes, the find and lookup modes, are used for searching. The Table

28

Chapter 2. Developing Applications Using the UltraLite C++
Component

object has methods corresponding to these modes for locating particular
rows in a table.

Note
The columns searched using Find and Lookup methods must be in the
index used to open the table.

♦ Find methods move to the first row that exactly matches specified
search values, under the sort order specified when the Table object was
opened. If the search values cannot be found, the application is
positioned before the first or after the last row.

♦ Lookup methods move to the first row that matches or is greater than a
specified search value, under the sort order specified when the Table
object was opened.

❖ To search for a row

1. Enter find or lookup mode.

The mode is entered by calling a method on the table object. For
example, the following code enters find mode.

t.FindBegin();

2. Set the search values.

You do this by setting values in the current row. Setting these values
affects the buffer holding the current row only, not the database. For
example, the following code fragment sets the value in the buffer to
Kaminski.

ULValue lname_col = t->GetSchema()->GetColumnID("lname");
ULValie v_lname("Kaminski");
t.Set(lname_col, v_lname);

3. Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index.

For multi-column indexes, a value for the first column is always used, but
you can omit the other columns.

tCustomer.FindFirst();

4. Search for the next instance of the row.

Use the appropriate method to carry out the search. For a find operation,
FindNext() locates the next instance of the parameters in the index. For a
lookup, MoveNext() locates the next instance.

29

☞ For more information, see“Class UltraLite_Table_iface” on page 278.

Updating rows

The following procedure updates a row.

❖ To update a row

1. Move to the row you wish to update.

You can move to a row by scrolling through the table or by searching the
table using find and lookup methods.

2. Enter update mode.

For example, the following instruction enters update mode on t.

t.BeginUpdate();

3. Set the new values for the row to be updated. For example, the following
instruction sets the id column in the buffer to 3.

t.SetInt(id, 3);

4. Execute the Update.

t.Update();

After the update operation the current row is the row that has been updated.
If you changed the value of a column in the index specified when the Table
object was opened, the current row is undefined.

UltraLite C++ component does not commit changes to the database until you
commit them usingconn- >Commit() . For more information, see
“Managing transactions” on page 32.

Caution
Do not update the primary key of a row: delete the row and add a new row
instead.

Inserting rows

The steps to insert a row are very similar to those for updating rows, except
that there is no need to locate a row in the table before carrying out the insert
operation. The order of row insertion into the table has no significance.

Example The following code fragment inserts a new row.

30

Chapter 2. Developing Applications Using the UltraLite C++
Component

t.InsertBegin();
t.SetInt(id, 3);
t.SetString(lname, "Carlo");
t.Insert();
t.Commit();

If you do not set a value for one of the columns, and that column has a
default, the default value is used. If the column has no default, one of the
following entries is used.

♦ For nullable columns, NULL.

♦ For numeric columns that disallow NULL, zero.

♦ For character columns that disallow NULL, an empty string.

♦ To explicitly set a value to NULL, use the setNull method.

For update operations, an insert is applied to the database in permanent
storage when a commit is carried out. In AutoCommit mode, a commit is
carried out as part of the insert method.

Deleting rows

The steps to delete a row are simpler than to insert or update rows. There is
no delete mode corresponding to the insert or update modes.

The following procedure deletes a row.

❖ To delete a row

1. Move to the row you wish to delete.

2. Execute the Table.Delete() method.

t.Delete();

31

Managing transactions
☞ For background information about transaction management in UltraLite,
see“Transaction processing, recovery, and backup”[UltraLite Database User’s
Guide,page 48].

The UltraLite C++ component does not support an autocommit model. It
requires that transactions be explicitly completed.

❖ To commit a transaction

1. Execute a Connection.Commit() statement.

❖ To roll back a transaction

1. Execute a Connection.Rollback() statement.

☞ For more information, see“Class UltraLite_Connection_iface” on
page 236.

32

Chapter 2. Developing Applications Using the UltraLite C++
Component

Accessing schema information
The objects in the API represent tables, columns, indexes, and
synchronization publications. Each object has a GetSchema method that
provides access to information about the structure of that object.

You cannot modify the schema through the API. You can only retrieve
information about the schema.

☞ For information about modifying the schema, see“Upgrading your
database schema” on page 15.

You can access the following schema objects and information.

♦ DatabaseSchema exposes the number and names of the tables in the
database, as well as global properties such as the format of dates and
times.

To obtain a DatabaseSchema object, use Connection.GetSchema.

☞ For more information, see“GetSchema Function” on page 238.

♦ TableSchema The number and names of the columns and indexes for
this table.

To obtain a TableSchema object, use Table.GetSchema.

☞ For more information , see“GetSchema Function” on page 281.

♦ IndexSchema Information about the column in the index. As an index
has no data directly associated with it there is no separate Index class, just
a IndexSchema class.

To obtain a IndexSchema object, call the TableSchema.GetIndex, the
TableSchema.GetOptimalIndex, or the TableSchema.GetPrimaryKey
method.

☞ For more information, see“Class UltraLite_Table_iface” on
page 278.

♦ PublicationSchema A list of the tables and columns contained in a
publication. Publications are also comprised of schema only, and so there
is no Publication object.

To obtain a PublicationSchema object, call the
DatabaseSchema.TableSchema.GetPublicationSchema method.

☞ For more information, see“GetSchema Function” on page 281.

33

Handling errors
You should check for errors after each database operation. You do so by
using methods of the ULSqlca object. For example, LastCodeOK() checks if
the operation was successful, while GetSQLCode() returns the numerical
value of the SQLCode. You can look up the meaning of these values in
“Error messages indexed by Adaptive Server Anywhere SQLCODE”[ASA
Error Messages,page 2].

In addition to explicit error handling, UltraLite supports an error callback
function. If you register a callback function, then UltraLite calls the function
each time an error occurs. The callback function does not control application
flow, but does provide you with the ability to be notified of all errors, which
is particularly helpful during application development. Use of the callback is
illustrated in the tutorial:“Tutorial: Build an Application Using the C++
Component” on page 147.

☞ For a sample callback function, see“Callback function for
ULRegisterErrorCallback” on page 204and“ULRegisterErrorCallback
function” on page 213.

☞ For a list of error codes thrown by the UltraLite C++ component, see
“Error messages indexed by Adaptive Server Anywhere SQLCODE”[ASA
Error Messages,page 2].

☞ For more information, see“Class ULSqlca” on page 229.

34

Chapter 2. Developing Applications Using the UltraLite C++
Component

Authenticating users
New users have to be added from an existing connection. As all UltraLite
databases are created with a default user ID and password of DBA and SQL,
respectively, you must first connect as this initial user.

You cannot change a user ID. Instead, you add a user and delete an existing
user. A maximum of four user IDs are permitted for each UltraLite database.

☞ For more information, see“User authentication in UltraLite”[UltraLite
Database User’s Guide,page 40].

❖ To add a user or change a password for an existing user

1. Connect to the database as a user with DBA authority.

2. Grant the user connection authority with the desired password using the
Connection.GrantConnectTo method.

This procedure is the same whether you are adding a new user or
changing the password of an existing user.

☞ For more information, see“Class UltraLite_Connection_iface” on
page 236.

❖ To delete an existing user

1. Connect to the database as a user with DBA authority.

2. Revoke the user’s connection authority using the
Connection.RevokeConnectFrom method.

35

Encrypting data
You can encrypt or obfuscate your UltraLite database using the UltraLite
C++ component.

☞ For background information, see“Encrypting UltraLite databases”
[UltraLite Database User’s Guide,page 36],

Encryption To create a database with encryption, specify an encryption key by
specifying thekey connection parameter in the connection string. When you
call the CreateAndOpenDatabase method, the database is created and
encrypted with the specified key.

☞ For more information, see“Encryption Key connection parameter ”
[UltraLite Database User’s Guide,page 75].

You can change the encryption key by specifying the new encryption key
with the UltraLite_Connection.ChangeEncryptionKey method.

☞ For more information, see“Class UltraLite_Connection_iface” on
page 236.

After the database is encrypted, connections to the database must specify the
correct encryption key. Otherwise, the connection fails.

Obfuscation To obfuscate the database, specifyobfuscate=1 as a creation parameter.

☞ For more information about database encryption, see“Encrypting
UltraLite databases”[UltraLite Database User’s Guide,page 36].

36

Chapter 2. Developing Applications Using the UltraLite C++
Component

Synchronizing data
Users of SQL Anywhere Studio 9.0 can synchronize UltraLite applications
with a central database. Synchronization requires the MobiLink
synchronization software included with SQL Anywhere Studio.

This section provides a brief introduction to synchronization and describes
some features of particular interest to users of the UltraLite C++ component.

☞ For a more detailed explanation of synchronization, see“UltraLite
Clients” [MobiLink Clients,page 277]and“UltraLite Synchronization
Parameters”[MobiLink Clients,page 315].

UltraLite C++ component supports TCP/IP, HTTP, and HTTPS
synchronization. Synchronization is initiated by the UltraLite application. In
all cases, you use methods and properties of the connection object to control
synchronization.

Note
To synchronize using HTTPS or encryption over TCP/IP you must obtain
the separately-licensable security option. To order this option, see the
card in your SQL Anywhere Studio package or seehttp://www.sybase.-
com/detail?id=1015780.

☞ For more information, see“Welcome to SQL Anywhere Studio”
[Introducing SQL Anywhere Studio,page 4].

37

http://www.sybase.com/detail?id=1015780
http://www.sybase.com/detail?id=1015780

Compiling and linking your application
A set of runtime libraries is available for some platforms when using the
UltraLite C++ component. These include, for Windows CE and
Windows XP, a database engine that permits multi-process access to the
same database.

The runtime libraries are provided in theUltraLite\palm, UltraLite\ce, and
UltraLite\win32 subdirectories of your SQL Anywhere installation.

The runtime library for Palm OS is as follows:

♦ ulrt.lib A static library. This is located inUltraLite\palm\68k\lib\cw.

The Windows CE libraries are in theUltraLite\ce\<platform> directories,
where platform may be one ofarm, 386, mips, or emulator. Both static and
dynamic libraries are provided for Windows CE:

♦ ulrt9.dll A Unicode character set dynamic link library. To use this
library, link your application against the import library,
UltraLite\ce\<platform>\lib\ulimp.lib.

When linking against this library, be sure to specify the following
compilation options:

/DUNICODE /DUL_USE_DLL

♦ ulrt.lib A Unicode character set static library. This is located in
UltraLite\ce\<platform>\lib\.

When linking against this library, be sure to specify the following
compilation option:

/DUNICODE

♦ ulrtc.lib A Unicode character set static library for use with the
UltraLite engine for multi-process access to an UltraLite database. This
is located inUltraLite\ce\<platform>\lib\.

When linking against this library, be sure to specify the following
compilation option:

/DUNICODE

Runtime libraries for
Windows XP

TheUltraLite\win32\386directory contains libraries for Windows operating
systems other than Windows CE. These include the following:

♦ ulrt9.dll An ANSI character set dynamic link library. To use this
library, link your application against the import library,
UltraLite\win32\386\ulimp.lib. Databases created using this library

38

Chapter 2. Developing Applications Using the UltraLite C++
Component

cannot be deployed to Windows CE devices, as Windows CE uses
Unicode.

When linking against this library, be sure to specify the following
compilation option:

/DUL_USE_DLL

♦ ulrtw9.dll A Unicode character set dynamic link library. To use this
library, link your application against the import library,
UltraLite\win32\386\ulimpw.lib.

When linking against this library, specify the following compilation
options:

/DUNICODE /DUL_USE_DLL

♦ ulrtcw9.dll A Unicode character set dynamic link library for use with
the UltraLite engine for multi-process access to an UltraLite database. To
use this library, link your application against the import library,
UltraLite\win32\386\ulimpcw.lib. Databases created using this library
require distribution of the UltraLite engine, as well as the DLL.

When linking against this library, be sure to specify the following
compilation options:

/DUNICODE /DUL_USE_DLL

For information about the UltraLite engine, see“Using the UltraLite
engine”[UltraLite Database User’s Guide,page 61].

39

CHAPTER 3

Developing Applications Using the Static
C++ API

About this chapter This chapter describes how to develop applications using the UltraLite Static
C++ API. This interface represents predefined queries or tables in your
UltraLite database as objects, and provides methods that enable you to
manipulate them from your application without using SQL.

Contents Topic: page

Introduction 42

Defining features for your application 43

Connecting to a database 45

Accessing data 46

Authenticating users 47

Encrypting data 49

Synchronizing data 51

Building Static C++ API applications 58

41

Introduction
This chapter provides notes for developers who are writing and building
UltraLite applications using the Static C++ API.

What’s in this chapter? The chapter includes the following information:

♦ Information about how to define the data access features to be used in
your application.

☞ See“Defining features for your application” on page 43.

♦ Information on generating C++ API classes from your reference database.

☞ See“Generating UltraLite C++ classes” on page 58.

♦ Notes on compiling and linking UltraLite C++ API applications.

☞ See“Compiling and linking your application” on page 59.

Before you begin The development process for the C++ API is similar to that for other
UltraLite development models. This chapter assumes a familiarity with that
process.

☞ For more information, see“Using UltraLite Static Interfaces”[UltraLite
Database User’s Guide,page 193].

42

Chapter 3. Developing Applications Using the Static C++ API

Defining features for your application
The SQL statements to be included in the UltraLite application, and the
structure of the UltraLite database itself, are defined by adding the SQL
statements to the reference database for your application.

Defining projects

When you run the UltraLite generator, it writes out class definitions for all
the SQL statements in a givenproject. A project is a name defined in the
reference database, which groups the SQL statements for an application.
You can store SQL statements for multiple applications in a single reference
database by defining multiple projects.

☞ For information on creating projects, see“Creating an UltraLite project”
[UltraLite Database User’s Guide,page 202].

☞ You can use theul_delete_projectstored procedure to remove a project
definition.

Adding statements to a project

☞ For information on adding SQL statements to an UltraLite project, see
“Adding SQL statements to an UltraLite project”[UltraLite Database User’s
Guide,page 203].

☞ For information on using placeholders, and other aspects of writing SQL
statements for UltraLite, see“Writing UltraLite SQL statements”[UltraLite
Database User’s Guide,page 205].

Defining UltraLite tables

If you do not intend to carry out joins, and if you have strong constraints on
your application executable size, you can define tables instead of queries for
your UltraLite application.

You define a subset of a database for use in a Static C++ API application by
creating a publication in the reference database. A publication defines the set
of tables, and columns in those tables, that you want to include in your
UltraLite application. The use of a publication is purely a convenience for
UltraLite, and does not imply any connection with SQL Remote or
MobiLink synchronization.

Publications allow you to qualify which rows any user receives using
subqueries and parameters. You cannot use these devices when creating
publications for use with UltraLite: only the set of tables and columns

43

within those tables is used for defining the UltraLite classes.

Tables or queries?

Table definitions and query definitions provide alternative ways of defining
the data that is to be included in your UltraLite database, and the range of
operations you can carry out on that data.

Using SQL statements and projects provides a more general approach to
defining applications, and are most likely to be used in larger enterprise
applications. Table definitions may be useful as a convenient device in the
following cases:

♦ Your application needs to access data only one table at a time. You
cannot define joins using table definitions.

♦ You are severely constrained for memory use. The code generated for
table definitions is smaller than that for queries, because of their simpler
structure.

Defining database features for Static C++ API applications

Static C++ API applications use some functions that are not part of the class
hierarchy. These functions control features such as database storage and
access configuration. They are as follows:

♦ “ULEnableFileDB function” on page 208

♦ “ULRegisterSchemaUpgradeObserver function” on page 216

♦ “ULEnablePalmRecordDB function” on page 210

♦ “ULEnableStrongEncryption function” on page 211

♦ “ULEnableUserAuthentication function” on page 212.

Other aspects of database storage are configured using the
UL_STORE_PARMS macro. For more information, see
“UL_STORE_PARMS macro” on page 222.

44

Chapter 3. Developing Applications Using the Static C++ API

Connecting to a database
TheULData object makes the data in the database object available to your
application. You need to callULData::Open() before you can connect to
the UltraLite database or carry out any operations on the data.

TheULData::Open() method can be called with parameters that define the
storage and access parameters for the database (file name, cache size,
reserved size).

Once theULData object is opened, you can open a connection on the
database. You do that using theULConnection::Open() method, supplying
a reference to theULData object and a set of connection parameters to
establish the connection. You can use multiple connections on a single
database. Once the connection is established, you can open the generated
ULStatement, ULResultSetor ULTable objects that define the tables or
statements used in your application, and use these objects to manipulate the
data.

TheULConnection object defines the general characteristics of how you
interact with the data.

Synchronization is carried out using theULConnection object. The
Synchronizemethod carries out synchronization of the data with a
MobiLink server.

45

Accessing data
Each table or query is represented by a class. The API for accessing and
modifying the rows in the table or query is based on a SQLcursor: a pointer
to a position in the table or query.

The cursor can have the following positions:

♦ Before the first row This position has value 0. This is the position of
the cursor when the table or query is opened.

♦ On a row If a table or query hasn rows, positions 1 ton for the cursor
correspond to the rows.

♦ After the last row This position has value (n+ 1)

You can move through the rows of the object using methods of the object,
includingNext() andPrevious().

Palm Computing
Platform developers

If you are developing an application for the Palm Computing Platform, there
are some extra considerations for how to use these objects.

☞ For more information, see“Selecting a network protocol”[MobiLink
Clients,page 288].

Row ordering

The order of the rows in the object is determined when it is opened. By
default, tables are ordered by primary key. The UltraLite generator adds an
enumeration for the object definition, with a member for each index on the
table in the reference database (the primary key is namedPrimary), and by
specifying a member of this enumeration, you can control the ordering of the
rows in the object.

If you update a row so that it no longer belongs in the current position the
current row of the cursor moves to that row.

For example, consider a single-column object with the values A, B, C, and E.

♦ If a cursor is sitting on row B (position 2) and modifies the value to D,
then the row is moved to sit between C and E (becoming position 3) and
the current row of the cursor changes to position 3.

If you insert a row, the current position does not move to that row.

46

Chapter 3. Developing Applications Using the Static C++ API

Authenticating users
New users have to be added from an existing connection. As all UltraLite
databases are created with a default user ID and password of DBA and SQL,
respectively, you must first connect as this initial user.

You cannot change a user ID. Instead, you add a user and delete an existing
user. A maximum of four user IDs are permitted for each UltraLite database.

☞ For more information, see“User authentication in UltraLite”[UltraLite
Database User’s Guide,page 40].

❖ To enable user authentication (Static C++ API)

1. Define the compiler directive UL_ENABLE_USER_AUTH when
compilingulapi.cpp.

2. Call ULEnableUserAuthentication before opening the database. For
example:

ULData db;
...
ULEnableUserAuthentication(&sqlca);
db.open();
...

The following code fragment performs user management and authentication
for a Static C++ API UltraLite application.

A complete sample can be found in theSamples\UltraLite\apiauth
subdirectory of your SQL Anywhere directory. The code below is taken
from Samples\UltraLite\apiauth\sample.cpp.

ULEnableUserAuthentication(&sqlca);
db.Open() ;

if(conn.Open(&db,
UL_TEXT("dba"),
UL_TEXT("sql"))){

// prompt for new user ID and password
printf("Enter new user ID and password \n");
scanf("%s %s", uid, pwd);
if(conn.GrantConnectTo(uid, pwd)){

// new user added, remove dba
conn.RevokeConnectFrom(UL_TEXT("dba"));

}
conn.Close();

}
// regular connection
printf("Enter user ID and password \n");
scanf("%s %s", uid, pwd);
if(conn.Open(&db, uid, pwd)){
...

47

The code carries out the following tasks:

1. Initiate database functionality by opening the database object.

2. Attempt to connect using the default user ID and password.

3. If the connection attempt is successful, add a new user.

4. If the new user is successfully added, delete the DBA user from the
UltraLite database.

5. Disconnect. An updated user ID and password is now added to the
database.

6. Connect using the updated user ID and password.

☞ For more information, see“GrantConnectTo method” on page 311, and
“RevokeConnectFrom method” on page 315.

48

Chapter 3. Developing Applications Using the Static C++ API

Encrypting data
You can encrypt or obfuscate your UltraLite database using the UltraLite
Static C++ API.

☞ For background information, see“Encrypting UltraLite databases”
[UltraLite Database User’s Guide,page 36],

Encryption UltraLite databases are created on the first connection attempt. To encrypt an
UltraLite database, you supply an encryption key before that connection
attempt. On the first attempt, the supplied key is used to encrypt the
database. On subsequent attempts, the supplied key is checked against the
encryption key, and connection fails unless the key matches.

❖ To strongly encrypt an UltraLite database

1. Load the encryption module.

Call ULEnableStrongEncryption before opening the database.

You open a database by callingULData::Open.

2. Specify the encryption key.

Define the UL_STORE_PARMS macro with the parameter namekey.

#define UL_STORE_PARMS "key=a secret key"

As with most passwords, it is best to choose a key value that cannot be
easily guessed. The key can be of arbitrary length, but generally the
longer the key, the better because a shorter key is easier to guess than a
longer one. As well, including a combination of numbers, letters, and
special characters decreases the chances of someone guessing the key.

Do not include semicolons in your key. Do not put the key itself in
quotes, or the quotes will be considered part of the key.

You must supply this key each time you want to start the database. Lost
or forgotten keys result in completely inaccessible databases.

☞ For more information, see“UL_STORE_PARMS macro” on
page 222.

3. Handle attempts to open an encrypted database with the wrong key.

If an attempt is made to open an encrypted database and the wrong key is
passed in,db_init returnsul_falseand SQLCODE -840 is set.

Changing the encryption
key

You can change the encryption key for a database. The application must
already be connected to the database using the existing key before the
change can be made.

49

❖ To change the encryption key on an UltraLite database

1. Call theULChangeEncryptionKey function, supplying the new key as
an argument.

The application must already be connected to the database using the old
key before this function is called.

☞ For more information, see“ULChangeEncryptionKey function” on
page 364.

Obfuscation

❖ To obfuscate an UltraLite database

1. Define the UL_ENABLE_OBFUSCATION compiler directive when
compiling the generated database.

☞ For more information, see“UL_ENABLE_OBFUSCATION macro”
on page 221.

50

Chapter 3. Developing Applications Using the Static C++ API

Synchronizing data
Synchronization is a key feature of many UltraLite applications. This
section describes how to add synchronization to your application.

The synchronization logic that keeps UltraLite applications up to date with
the consolidated database is not held in the application itself.
Synchronization scripts stored in the consolidated database, together with
the MobiLink synchronization server and the UltraLite runtime library,
control how changes are processed when they are uploaded and determines
which changes are to be downloaded.

Overview The specifics of each synchronization is controlled by a set of
synchronization parameters. These parameters are gathered into a structure
C/C++, which is then supplied as an argument in a function call to
synchronize. The outline of the method is the same in each development
model.

❖ To add synchronization to your application

1. Initialize the synchronization structure.

☞ For information, see“Initializing the synchronization parameters” on
page 89.

2. Assign the parameter values for your application.

☞ For information, see“Network protocol options for UltraLite
synchronization clients”[MobiLink Clients,page 341].

3. Call the synchronization function, supplying the structure or object as
argument.

☞ For information, see“Invoking synchronization” on page 52.

You must ensure that there are no uncommitted changes when you
synchronize. For more information, see“Commit all changes before
synchronizing” on page 53.

Synchronization
parameters

Synchronization specifics are controlled through a set of synchronization
parameters. For information on these parameters, see“Network protocol
options for UltraLite synchronization clients”[MobiLink Clients,page 341].

Initializing the synchronization parameters

The synchronization parameters are stored in a C/C++ structure.

In C/C++ the members of the structure may not be well-defined on
initialization. You must set your parameters to their initial values with a call

51

to a special function. The synchronization parameters are defined in a
structure declared in the UltraLite header fileulglobal.h.

☞ For a complete list of synchronization parameters, see“UltraLite
Synchronization Parameters”[MobiLink Clients,page 315].

❖ To initialize the synchronization parameters (Static C++ API)

1. Call theInitSynchInfo() method on theConnectionobject. For example:

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);

Setting synchronization parameters

The following code initiates TCP/IP synchronization. The MobiLink user
name is50, with an empty password, the script version iscustdb , and the
MobiLink synchronization server is running on the same machine as the
application (localhost), on the default port (2439):

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=localhost");
conn.Synchronize(&synch_info);

Invoking synchronization

The details of how to invoke synchronization depends on your target
platform and on the synchronization stream.

The synchronization process can only work if the device running the
UltraLite application is able to communicate with the synchronization
server. For some platforms, this means that the device needs to be physically
connected by placing it in its cradle or by attaching it to a server computer
using a cable. You need to add error handling code to your application in
case the synchronization cannot be carried out.

❖ To invoke synchronization (TCP/IP, HTTP, or HTTPS streams)

1. Call Connection.InitSynchInfo() to initialize the synchronization
parameters, and callConnection.Synchronize()to synchronize. See
“Synchronize method” on page 317.

52

Chapter 3. Developing Applications Using the Static C++ API

❖ To invoke synchronization (HotSync)

1. Call Connection.InitSynchInfo to initialize the synchronization
parameters andULSetSynchInfo to manage synchronization before
exiting the application.

☞ For more information, see“ULSetSynchInfo function” on page 386.

HotSync synchronization is managed outside the application.

The synchronization call requires a structure that holds a set of parameters
describing the specifics of the synchronization. The particular parameters
used depend on the stream.

Commit all changes before synchronizing

An UltraLite database cannot have uncommitted changes when it is
synchronized. If you attempt to synchronize an UltraLite database when any
connection has an uncommitted transaction, the synchronization fails, an
exception is thrown and the SQLE_UNCOMMITTED_TRANSACTIONS
error is set. This error code also appears in the MobiLink synchronization
server log.

☞ For more information on download-only synchronizations, see
“Download Only synchronization parameter”[MobiLink Clients,page 320].

Adding initial data to your application

Many UltraLite application need data in order to start working. You can
download data into your application by synchronizing. You may want to add
logic to your application to ensure that, the first time it is run, it downloads
all necessary data before any other actions are carried out.

Development tip
It is easier to locate errors if you develop an application in stages. When
developing a prototype, temporarily code INSERT statements in your
application to provide data for testing and demonstration purposes. Once
your prototype is working correctly, enable synchronization and discard
the temporary INSERT statements.

For more synchronization development tips, see“Development tips”
[MobiLink Administration Guide,page 47].

Monitoring and canceling synchronization

This section describes how to monitor and cancel synchronization from
UltraLite applications.

53

♦ An API for monitoring synchronization progress and for canceling
synchronization.

♦ A progress indicator component that implements the interface, which you
can add to your application.

Monitoring
synchronization

♦ Specify the name of your callback function in theobservermember of
the synchronization structure (ul_synch_info).

♦ Call the synchronization function or method to start synchronization.

♦ UltraLite calls your callback function called whenever the
synchronization state changes. The following section describes the
synchronization state.

Handling synchronization status information

The callback function that monitors synchronization takes a
ul_synch_statusstructure as parameter.

Theul_synch_statusstructure has the following members:

ul_synch_state state;
ul_u_short tableCount;
ul_u_short tableIndex;

struct {
ul_u_long bytes;
ul_u_short inserts;
ul_u_short updates;
ul_u_short deletes;

} sent;
struct {

ul_u_long bytes;
ul_u_short inserts;
ul_u_short updates;
ul_u_short deletes;

} received;
p_ul_synch_info info;
ul_bool stop;

♦ state One of the following states:

• UL_SYNCH_STATE_STARTING No synchronization actions have
yet been taken.

• UL_SYNCH_STATE_CONNECTING The synchronization stream
has been built, but not yet opened.

• UL_SYNCH_STATE_SENDING_HEADER The synchronization
stream has been opened, and the header is about to be sent.

• UL_SYNCH_STATE_SENDING_TABLE A table is being sent.

54

Chapter 3. Developing Applications Using the Static C++ API

• UL_SYNCH_STATE_SENDING_DATA Schema information or data
is being sent.

• UL_SYNCH_STATE_FINISHING_UPLOAD The upload stage is
completed and a commit is being carried out.

• UL_SYNCH_STATE_RECEIVING_UPLOAD_ACK An
acknowledgement that the upload is complete is being received.

• UL_SYNCH_STATE_RECEIVING_TABLE A table is being received.

• UL_SYNCH_STATE_RECEIVING_DATA Schema information or
data is being received.

• UL_SYNCH_STATE_COMMITTING_DOWNLOAD The download
stage is completed and a commit is being carried out.

• UL_SYNCH_STATE_SENDING_DOWNLOAD_ACK An
acknowledgement that download is complete is being sent.

• UL_SYNCH_STATE_DISCONNECTING The synchronization stream
is about to be closed.

• UL_SYNCH_STATE_DONE Synchronization has completed
successfully.

• UL_SYNCH_STATE_ERROR Synchronization has completed, but
with an error.

☞ For a description of the synchronization process, see“The
synchronization process”[MobiLink Administration Guide,page 15].

♦ tableCount Returns the number of tables being synchronized. For each
table there is a sending and receiving phase, so this number may be more
than the number of tables being synchronized.

♦ tableIndex The current table which is being uploaded or downloaded,
starting at 0. This number may skip values when not all tables are being
synchronized.

♦ info A pointer to theul_synch_infostructure.

♦ sent.inserts The number of inserted rows that have been uploaded so
far.

♦ sent.updates The number of updated rows that have been uploaded so
far.

♦ sent.deletes The number of deleted rows that have been uploaded so
far.

♦ sent.bytes The number of bytes that have been uploaded so far.

55

♦ received.inserts The number of inserted rows that have been
downloaded so far.

♦ received.updates The number of updated rows that have been
downloaded so far.

♦ received.deletes The number of deleted rows that have been
downloaded so far.

♦ received.bytes The number of bytes that have been downloaded so far.

♦ stops Set this member to true to interrupt the synchronization. The
SQL exception SQLE_INTERRUPTED is set, and the synchronization
stops as if a communications error had occurred. The observer isalways
called with either the DONE or ERROR state so that it can do proper
cleanup.

♦ getUserData Returns the user data object.

♦ getStatement Returns the statement that called the synchronization.
The statement is an internal UltraLite statement, and this method is
unlikely to be of practical use, but is included for completion.

♦ getErrorCode When the synchronization state is set to ERROR, this
method returns a diagnostic error code.

♦ isOKToContinue This is set tofalsewhencancelSynchronizationis
called. Otherwise, it istrue.

Example The following code illustrates a very simple observer function:

extern void __stdcall ObserverFunc(
p_ul_synch_status status)

{
printf("UL_SYNCH_STATE is %d: ",

status->state);
switch(status->state) {

case UL_SYNCH_STATE_STARTING:
printf("Starting \n");
break;

case UL_SYNCH_STATE_CONNECTING:
printf("Connecting \n");
break;

case UL_SYNCH_STATE_SENDING_HEADER:
printf("Sending Header \n");
break;

case UL_SYNCH_STATE_SENDING_TABLE:
printf("Sending Table %d of %d \n",

status->tableIndex + 1,
status->tableCount);

break;
...

56

Chapter 3. Developing Applications Using the Static C++ API

This observer produces the following output when synchronizing two tables:

UL_SYNCH_STATE is 0: Starting
UL_SYNCH_STATE is 1: Connecting
UL_SYNCH_STATE is 2: Sending Header
UL_SYNCH_STATE is 3: Sending Table 1 of 2
UL_SYNCH_STATE is 3: Sending Table 2 of 2
UL_SYNCH_STATE is 4: Receiving Upload Ack
UL_SYNCH_STATE is 5: Receiving Table 1 of 2
UL_SYNCH_STATE is 5: Receiving Table 2 of 2
UL_SYNCH_STATE is 6: Sending Download Ack
UL_SYNCH_STATE is 7: Disconnecting
UL_SYNCH_STATE is 8: Done

CustDB example An example of an observer function is included in the CustDB sample
application. The implementation in CustDB provides a dialog that displays
synchronization progress and allows the user to cancel synchronization. The
user-interface component makes the observer function platform specific.

The CustDB sample code is in theSamples\UltraLite\CustDBsubdirectory
of your SQL Anywhere directory. The observer function is contained in the
platform-specific subdirectories of theCustDBdirectory.

57

Building Static C++ API applications
This section covers the following subjects:

♦ “Generating UltraLite C++ classes” on page 58.

♦ “Compiling and linking your application” on page 59.

Some small sample applications are provided that include makefiles for
compilation. These applications can be found in subdirectories of the
Samples\UltraLitedirectory.

Generating UltraLite C++ classes

The generator generates table classes from publications in the database, and
query classes from any SQL statements added with the ul_add_statement
stored procedure, writing the output to the following files:

♦ filename.hpp This file contains the prototypes for the generated
interface. You should inspect this file to determine the API you can use in
your application.

♦ filename.cpp This file contains the interface source. You do not need to
look at this file.

♦ filename.h This file contains internal definitions required by UltraLite.
You do not need to look at this file.

♦ Here,filenameis the name supplied on theulgencommand line.

Whether you use queries in a project, publications, or a mix to define the
classes in your application, you must generate all the code in a single run of
the UltraLite generator.

❖ To generate UltraLite code for a publication

1. Run the UltraLite generator specifying the publication name with the-u

command-line switch. For example:

ulgen -c "uid=dba;pwd=sql" -t c++ -u pubName -f filename

❖ To generate UltraLite code for a UltraLite project

1. Run the UltraLite generator, specifying the project name with the-j

command-line switch. For example:

ulgen -c "uid=dba;pwd=sql" -t c++ -j projectname -f filename

58

Chapter 3. Developing Applications Using the Static C++ API

❖ To generate UltraLite code for both a project and a publication

1. Run the UltraLite generator, specifying the project name and the
publication name. For example:

ulgen -c "uid=dba;pwd=sql" -t c++ -j projectname -u pubname
-f filename

☞ For more information on the UltraLite generator, see“The UltraLite
Generator”[UltraLite Database User’s Guide,page 89].

Compiling and linking your application

When you compile your UltraLite application, you must ensure that the
compiler can locate all the required files.

♦ Generated source files You must included the generated files
describing the API in your project. This includes the generated.cppfile,
.h file, and.hppfile.

♦ UltraLite header files You must configure your compiler so that it can
locate the UltraLite header files.

These header files are installed into theh directory under your Adaptive
Server Anywhere installation directory.

♦ UltraLite c file You must configure your linker so that it can locate the
UltraLite API file ulapi.cpp.

This file is installed into thesrc subdirectory of your Adaptive Server
Anywhere installation directory.

♦ Library or import library You must configure your compiler so that it
can locate the UltraLite runtime library for your target platform or, in the
case that you are using the UltraLite runtime DLL, the UltraLite imports
library.

These files are installed under theUltraLite subdirectory of your
Adaptive Server Anywhere installation directory. Each target platform
has a separated directory, and if there are different processors for a
platform, each has its own subdirectory.

☞ For a sample application that includes compilation options, see the files
in Samples\UltraLite\apitutorial.

59

CHAPTER 4

Developing Applications Using
Embedded SQL

About this chapter This chapter describes how to write data access code for embedded SQL
UltraLite applications.

Before you begin ☞ This chapter assumes an elementary familiarity with the UltraLite
development process. For an overview, see“Using UltraLite Static
Interfaces”[UltraLite Database User’s Guide,page 193].

☞ For reference information, see“Embedded SQL API Reference” on
page 357.

☞ For detailed information about the SQL preprocessor, see“The SQL
preprocessor”[ASA Programming Guide,page 203].

Contents Topic: page

Introduction 62

Initializing the SQL Communications Area 64

Connecting to a database 66

Using host variables 68

Fetching data 80

Authenticating users 85

Encrypting data 87

Adding synchronization to your application 89

Building embedded SQL applications 97

61

Introduction
The following is a very simple embedded SQL program. It updates the
surname of employee 195 and commits the change.

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main()
{

db_init(&sqlca);
EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
EXEC SQL UPDATE employee

SET emp_lname = ’Plankton’
WHERE emp_id = 195;

EXEC SQL COMMIT;
EXEC SQL DISCONNECT;
db_fini(&sqlca);
return(0);
error:

printf("update unsuccessful: sqlcode = %ld \n",
sqlca.sqlcode);

return(-1);
}

Although too simple to be useful, this example demonstrates the following
aspects common to all embedded SQL applications:

♦ Each SQL statement is prefixed with the keywords EXEC SQL.

♦ Each SQL statement ends with a semicolon.

♦ Some embedded SQL statements are not found in standard SQL.
The INCLUDE SQLCA statement is one example.

♦ Embedded SQL provides library functions to perform some specific
tasks. The functionsdb_init anddb_fini are examples.

Before working with data The above example demonstrates the necessary initialization statements.
You must include these before working with the data in any database.

1. You must define theSQL communications area, sqlca, using the
following command.

EXEC SQL INCLUDE SQLCA;

This definition must be your first embedded SQL statement, so a natural
place for it is the end of your include list.

If you have multiple.sqcfiles in your application, each file must have this
line.

62

Chapter 4. Developing Applications Using Embedded SQL

2. Your first executable database action must be a call to an embedded SQL
library function nameddb_init . This function initializes the UltraLite
runtime library. Only embedded SQL definition statements can be
executed before this call.

☞ For more information, see“db_init function” on page 360.

3. You must use the CONNECT statement to connect to your database.

Preparing to exit This example also demonstrates the sequence of calls you must make when
preparing to exit.

1. Commit or rollback any outstanding changes.

2. Disconnect from the database.

3. End your SQL work with a call to a library function nameddb_fini.

If you leave changes to the database uncommitted when you exit, any
uncommitted operations are automatically rolled back.

Error handling There is virtually no interaction between the SQL and C code in this
example. The C code only controls flow. The WHENEVER statement is
used for error checking. The error action, GOTO in this example, is executed
after any SQL statement causes an error.

Structure of embedded SQL programs

All embedded SQL statements start with the words EXEC SQL and end with
a semicolon (;). Normal C-language comments are allowed in the middle of
embedded SQL statements.

Every C program using embedded SQL must contain the following
statement before any other embedded SQL statements in the source file.

EXEC SQL INCLUDE SQLCA;

The first embedded SQL executable statement executed in any program must
be a CONNECT statement. If you are not including UltraLite user
authentication in your application, this CONNECT statement is ignored.

☞ For information about UltraLite user authentication in embedded SQL
applications, see“Authenticating users” on page 85, and“User
authentication in UltraLite”[UltraLite Database User’s Guide,page 40].

Some embedded SQL commands do not generate any executable C code, or
do not involve communication with the database. Only these commands are
allowed before the CONNECT statement. Most notable are the INCLUDE
statement and the WHENEVER statement for specifying error processing.

63

Initializing the SQL Communications Area
TheSQL Communication Area (SQLCA) is an area of memory that is
used for communicating statistics and errors from the application to the
database and back to the application. The SQLCA is used as a handle for the
application-to-database communication link. It is passed explicitly to all
database library functions that communicate with the database. It is
implicitly passed in all embedded SQL statements.

UltraLite defines a global SQLCA variable for you in the generated code.
The preprocessor generates an external reference for the global SQLCA
variable. The external reference is namedsqlcaand is of type SQLCA. The
actual global variable is declared in the imports library.

The SQLCA type is defined by thesqlca.hheader file, which is located in
theh subdirectory of your installation directory.

After declaring the SQLCA (EXEC SQL INCLUDE SQLCA;) but before
your application can carry out any operations on a database, it must initialize
the communications area by calling db_init and passing it the SQLCA:

db_init(&sqlca);

SQLCA provides error
codes

You reference the SQLCA to test for a particular error code. Thesqlcode
field contains an error code when a database request causes an error (see
below). Some C macros are defined for referencing thesqlcodefield and
some other fields.

SQLCA fields

The fields in the SQLCA have the following meanings:

♦ sqlcaid An 8-byte character field that contains the stringSQLCA as an
identification of the SQLCA structure. This field helps in debugging
when you are looking at memory contents.

♦ sqlcabc A long integer that contains the length of the SQLCA structure
(136 bytes).

♦ sqlcode A long integer that specifies the error code when the database
detects an error on a request. Definitions for the error codes can be found
in the header filesqlerr.h. The error code is 0 (zero) for a successful
operation, positive for a warning and negative for an error.

You can access this field directly using theSQLCODE macro.

☞ For a list of error codes, seeASA Error Messages.

♦ sqlerrml The length of the information in thesqlerrmc field.

64

Chapter 4. Developing Applications Using Embedded SQL

UltraLite applications do not use this field.

♦ sqlerrmc May contain one or more character strings to be inserted into
an error message. Some error messages contain a placeholder string (%1)
which is replaced with the text in this field.

UltraLite applications do not use this field.

♦ sqlerrp Reserved.

♦ sqlerrd A utility array of long integers.

♦ sqlwarn Reserved.

UltraLite applications do not use this field.

♦ sqlstate The SQLSTATE status value.

UltraLite applications do not use this field.

65

Connecting to a database
To connect to an UltraLite database from an embedded SQL application,
include the EXEC SQL CONNECT statement in your code after initializing
the SQLCA.

The CONNECT statement takes one of the following two forms:

EXEC SQL CONNECT " user-name " IDENTIFIED BY " password" ;

EXEC SQL CONNECT
USING " uid= user-name;pwd= password ;dbf= database-filename" ;

The first syntax assumes that the startup parameters are supplied in
UL_STORE_PARMS. For more information, see“UL_STORE_PARMS
macro” on page 222.

The second syntax ignores settings in UL_STORE_PARMS and supplies the
database startup parameters explicitly (specifically the filename).

For more information on the CONNECT statement, see“CONNECT
statement [ESQL] [Interactive SQL]”[ASA SQL Reference,page 332].

Managing multiple connections

If you want more than one database connection in your application, you can
either use multiple SQLCAs or you can use a single SQLCA to manage the
connections.

❖ To manage multiple SQLCAs in your application

1. Each SQLCA used in your program must be initialized with a call to
db_init and cleaned up at the end with a call todb_fini.

☞ For more information, see“db_init function” on page 360.

2. The embedded SQL statement SET SQLCA is used to tell the
SQL preprocessor to use a different SQLCA for database requests.
Usually, a statement such as the following:

EXEC SQL SET SQLCA ’task_data->sqlca’;

is used at the top of your program or in a header file to set the SQLCA
reference to point at task specific data. This statement does not generate
any code and thus has no performance impact. It changes the state within
the preprocessor so that any reference to the SQLCA will use the given
string.

☞ For information about creating SQLCAs, see“SET SQLCA
statement [ESQL]”[ASA SQL Reference,page 619].

66

Chapter 4. Developing Applications Using Embedded SQL

Using a single SQLCA As an alternative to using multiple SQLCAs, you can use a single SQLCA to
manage more than one connection to a database.

Each SQLCA has a single active or current connection, but that connection
can be changed. Before executing a command, use the SET CONNECTION
statement to specify the connection on which the command should be
executed.

☞ For more information, see“SET CONNECTION statement [Interactive
SQL] [ESQL]” [ASA SQL Reference,page 610].

67

Using host variables
Embedded SQL applications use host variables to send values to the
database or receive values from the database. Host variables are C variables
that are identified to the SQL preprocessor.

Declaring host variables

You can define host variables by placing them within adeclaration section.
Host variables are declared by surrounding the normal C variable
declarations with BEGIN DECLARE SECTION and
END DECLARE SECTION statements.

Whenever you use a host variable in a SQL statement, you must prefix the
variable name with a colon (:) so that the SQL preprocessor can distinguish
it from other identifiers allowed in the statement.

You can use host variables in place of value constants in any SQL statement.
When the database server executes the command, the value of the host
variable is read from or written to each host variable. Host variables cannot
be used in place of table or column names.

The SQL preprocessor does not scan C language code except inside a
declaration section. Initializers for variables are allowed inside a declaration
section, whiletypedef types and structures are not permitted.

Example The following sample code illustrates the use of host variables with an
INSERT command. The variables are filled in by the program and then
inserted into the database:

/ * Declare fields for personal data. * /
EXEC SQL BEGIN DECLARE SECTION;

long employee_number = 0;
char employee_name[50];
char employee_initials[8];
char employee_phone[15];

EXEC SQL END DECLARE SECTION;
/ * Fill variables with appropriate values. * /
/ * Insert a row in the database. * /
EXEC SQL INSERT INTO Employee

VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone);

Data types in embedded SQL

To transfer information between a program and the database server, every
piece of data must have a data type. You can create a host variable with any
one of the supported types.

68

Chapter 4. Developing Applications Using Embedded SQL

Only a limited number of C data types are supported as host variables. Also,
certain host variable types do not have a corresponding C type.

Macros defined in thesqlca.hheader file can be used to declare a host
variable of type VARCHAR, FIXCHAR, BINARY, DECIMAL, or
SQLDATETIME. These macros are used as follows:

EXEC SQL BEGIN DECLARE SECTION;
DECL_VARCHAR(10) v_varchar;
DECL_FIXCHAR(10) v_fixchar;
DECL_BINARY(4000) v_binary;
DECL_DECIMAL(10, 2) v_packed_decimal;
DECL_DATETIME v_datetime;

EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within a declaration section and
treats the variable as the appropriate type.

The following data types are supported by the embedded SQL programming
interface:

♦ 16-bit signed integer.

short int i;
unsigned short int i;

♦ 32-bit signed integer.

long int l;
unsigned long int l;

♦ 4-byte floating point number.

float f;

♦ 8-byte floating point number.

double d;

♦ Packed decimal number.

DECL_DECIMAL(p,s)
typedef struct TYPE_DECIMAL {

char array[1];
} TYPE_DECIMAL;

♦ NULL-terminated blank-padded character string.

char a[n]; / * n > 1 * /
char * a; / * n = 2049 * /

Because the C-language array must also hold the NULL terminator, a
char a[n] data type maps to aCHAR(n – 1) SQL data type, which can

69

holdn – 1characters.

Pointers to char, WCHAR, TCHAR
The SQL preprocessor assumes that apointer to char points to a
character array of size 2049 bytes and that this array can safely hold
2048 characters, plus the NULL terminator. In other words, a char*
data type maps to a CHAR(2048) SQL type. If that is not the case, your
application may corrupt memory. If you are using a 16-bit compiler,
requiring 2049 bytes can make the program stack overflow. Instead,
use a declared array, even as a parameter to a function, to let the
SQL preprocessor know the size of the array. WCHAR and TCHAR
behave similarly to char.

♦ NULL terminated UNICODE or wide character string.

Each character occupies two bytes of space and so may contain
UNICODE characters.

WCHAR a[n]; / * n > 1 * /

♦ NULL terminated system-dependent character string.

A TCHAR is equivalent to a WCHAR for systems that use UNICODE
(for example, Windows CE) for their character set; otherwise, a TCHAR
is equivalent to a char. The TCHAR data type is designed to support
character strings in either kind of system automatically.

TCHAR a[n]; / * n > 1 * /

♦ Fixed-length blank padded character string.

char a; / * n = 1 * /
DECL_FIXCHAR(n) a; / * n >= 1 * /

♦ Variable-length character string with a two-byte length field.

When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server sets the length field (not padded).

DECL_VARCHAR(n) a; / * n >= 1 * /
typedef struct VARCHAR {

unsigned short int len;
TCHAR array[1];

} VARCHAR;

♦ Variable-length binary data with a two-byte length field.

When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server sets the length field.

70

Chapter 4. Developing Applications Using Embedded SQL

DECL_BINARY(n) a; / * n >= 1 * /
typedef struct BINARY {

unsigned short int len;
unsigned char array[1];

} BINARY;

♦ SQLDATETIME structure with fields for each part of a timestamp.

DECL_DATETIME a;
typedef struct SQLDATETIME {

unsigned short year; / * e.g., 1999 * /
unsigned char month; / * 0-11 * /
unsigned char day_of_week; / * 0-6, 0 = Sunday * /
unsigned short day_of_year; / * 0-365 * /
unsigned char day; / * 1-31 * /
unsigned char hour; / * 0-23 * /
unsigned char minute; / * 0-59 * /
unsigned char second; / * 0-59 * /
unsigned long microsecond; / * 0-999999 * /

} SQLDATETIME;

The SQLDATETIME structure can be used to retrieve fields of DATE,
TIME, and TIMESTAMP type (or anything that can be converted to one
of these). Often, applications have their own formats and date
manipulation code. Fetching data in this structure makes it easier for a
programmer to manipulate this data. Note that DATE, TIME and
TIMESTAMP fields can also be fetched and updated with any character
type.

If you use a SQLDATETIME structure to enter a date, time, or timestamp
into the database via, theday_of_year andday_of_week members are
ignored.

☞ For more information, see the DATE_FORMAT, TIME_FORMAT,
TIMESTAMP_FORMAT, and DATE_ORDER database options in
“Database Options”[ASA Database Administration Guide,page 613]. While
these options cannot be set during execution of an UltraLite program,
their values are identical to the settings in the reference database used to
generate the program.

♦ DT_LONGVARCHAR Long varying length character data. The macro
defines a structure, as follows:

#define DECL_LONGVARCHAR(size) \
struct { a_sql_uint32 array_len; \

a_sql_uint32 stored_len; \
a_sql_uint32 untrunc_len; \
char array[size+1]; \

}

The DECL_LONGVARCHAR struct may be used with more than 32K of

71

data. Large data may be fetched all at once, or in pieces using the GET
DATA statement. Large data may be supplied to the server all at once, or
in pieces by appending to a database variable using the SET statement.
The data is not null terminated.

typedef struct BINARY {
unsigned short int len;
char array[1];

} BINARY;

♦ DT_LONGBINARY Long binary data. The macro defines a structure, as
follows:

#define DECL_LONGBINARY(size) \
struct { a_sql_uint32 array_len; \

a_sql_uint32 stored_len; \
a_sql_uint32 untrunc_len; \
char array[size]; \

}

The DECL_LONGBINARY struct may be used with more than 32K of
data. Large data may be fetched all at once, or in pieces using the GET
DATA statement. Large data may be supplied to the server all at once, or
in pieces by appending to a database variable using the SET statement.

The structures are defined in thesqlca.hfile. The VARCHAR, BINARY, and
TYPE_DECIMAL types contain a one-character array and are thus not
useful for declaring host variables, but they are useful for allocating
variables dynamically or typecasting other variables.

DATE and TIME
database types

There are no corresponding embedded SQL interface data types for the
various DATE and TIME database types. These database types are fetched
and updated either using the SQLDATETIME structure or using character
strings.

There are no embedded SQL interface data types for LONG VARCHAR and
LONG BINARY database types.

Host variable usage

Host variables can be used in the following circumstances:

♦ In a SELECT, INSERT, UPDATE, or DELETE statement in any place
where a number or string constant is allowed.

♦ In the INTO clause of a SELECT or FETCH statement.

♦ In CONNECT, DISCONNECT, and SET CONNECT statements, a host
variable can be used in place of a user ID, password, connection name, or
database environment name.

72

Chapter 4. Developing Applications Using Embedded SQL

Host variables canneverbe used in place of a table name or a column name.

The scope of host variables

A host-variable declaration section can appear anywhere that C variables can
normally be declared, including the parameter declaration section of a C
function. The C variables have their normal scope (available within the
block in which they are defined). However, since the SQL preprocessor does
not scan C code, it does not respect C blocks.

The preprocessor
assumes all host
variables are global

As far as the SQL preprocessor is concerned, host variables are globally
known in the source module following their declaration. Two host variables
cannot have the same name. The only exception to this rule is that two host
variables can have the same name if they have identical types (including any
necessary lengths).

The best practice is to give each host variable a unique name.

Examples ♦ Because the SQL preprocessor can not parse C code, it assumes that all
host variables, no matter where they are declared, are known globally
following their declaration.

// Example demonstrating poor coding
EXEC SQL BEGIN DECLARE SECTION;

long emp_id;
EXEC SQL END DECLARE SECTION;
long getManagerID(void)
{

EXEC SQL BEGIN DECLARE SECTION;
long manager_id = 0;

EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT manager_id

INTO :manager_id
FROM employee
WHERE emp_number = :emp_id;

return(manager_number);
}
void setManagerID(long manager_id)
{

EXEC SQL UPDATE employee
SET manager_number = :manager_id
WHERE emp_number = :emp_id;

}

Although it works, the above code is confusing because the
SQL preprocessor relies on the declaration insidegetManagerIDwhen
processing the statement withinsetManagerID. You should rewrite this code
as follows.

73

// Rewritten example
#if 0

// Declarations for the SQL preprocessor
EXEC SQL BEGIN DECLARE SECTION;

long emp_id;
long manager_id;

EXEC SQL END DECLARE SECTION;
#endif
long getManagerID(long emp_id)
{

long manager_id = 0;
EXEC SQL SELECT manager_id

INTO :manager_id
FROM employee
WHERE emp_number = :emp_id;

return(manager_number);
}
void setManagerID(long emp_id, long manager_id)
{

EXEC SQL UPDATE employee
SET manager_number = :manager_id
WHERE emp_number = :emp_id;

}

The SQL preprocessor sees the declaration of the host variables contained
within the #if directive because it ignores these directives. On the other
hand, it ignores the declarations within the procedures because they are not
inside a DECLARE SECTION. Conversely, the C compiler ignores the
declarations within the #if directive and uses those within the procedures.

These declarations work only because variables having the same name are
declared to have exactly the same type.

Using expressions as host variables

Because host variables must be simple names, the SQL preprocessor does
not recognize pointer or reference expressions. For example, the following
statementdoes not workbecause the SQL preprocessor does not understand
the dot operator. The same syntax has a different meaning in SQL.

// Incorrect statement:
EXEC SQL SELECT LAST sales_id INTO :mystruct.mymember;

Although the above syntax is not allowed, you can still use an expression
with the following technique:

♦ Wrap the SQL declaration section in an #if 0 preprocessor directive. The
SQL preprocessor will read the declarations and use them for the rest of
the module because it ignores preprocessor directives.

74

Chapter 4. Developing Applications Using Embedded SQL

♦ Define a macro with the same name as the host variable. Since the SQL
declaration section is not seen by the C compiler because of the #if
directive, no conflict will arise. Ensure that the macro evaluates to the
same type host variable.

The following code demonstrates this technique to hide thehost_value
expression from the SQL preprocessor.

EXEC SQL INCLUDE SQLCA;
#include <sqlerr.h>
#include <stdio.h>
typedef struct my_struct {

long host_field;
} my_struct;
#if 0

// Because it ignores #if preprocessing directives,
// SQLPP reads the following declaration.
EXEC SQL BEGIN DECLARE SECTION;

long host_value;
EXEC SQL END DECLARE SECTION;

#endif
// Make C/C++ recognize the ’host_value’ identifier
// as a macro that expands to a struct field.
#define host_value my_s.host_field

Since the SQLPP processor ignores directives for conditional compilation,
host_valueis treated as along host variable and will emit that name when it
is subsequently used as a host variable. The C/C++ compiler processes the
emitted file and will substitutemy_s.host_fieldfor all such uses of that
name.

With the above declarations in place, you can proceed to accesshost_fieldas
follows.

75

void main(void)
{

my_struct my_s;
db_init(&sqlca);
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
EXEC SQL DECLARE my_table_cursor CURSOR FOR

SELECT int_col FROM my_table order by int_col;
EXEC SQL OPEN my_table_cursor;
for(; ;) {

// :host_value references my_s.host_field
EXEC SQL FETCH NEXT AllRows INTO :host_value;
if(SQLCODE == SQLE_NOTFOUND) {

break;
}
printf("%ld \n", my_s.host_field);

}
EXEC SQL CLOSE my_table_cursor;
EXEC SQL DISCONNECT;
db_fini(&sqlca);

}

You can use the same technique to use other lvalues as host variables.

♦ pointer indirections

* ptr
p_struct->ptr
(* pp_struct)->ptr

♦ array references

my_array[i]

♦ arbitrarily complex lvalues

Using host variables in C++

A similar situation arises when using host variables within C++ classes. It is
frequently convenient to declare your class in a separate header file. This
header file might contain, for example, the following declaration of
my_class.

typedef short a_bool;
#define TRUE ((a_bool)(1==1))
#define FALSE ((a_bool)(0==1))
public class {

long host_member;
my_class(); // Constructor
~my_class(); // Destructor
a_bool FetchNextRow(void);

// Fetch the next row into host_member
} my_class;

76

Chapter 4. Developing Applications Using Embedded SQL

In this example, each method is implemented in an embedded SQL source
file. Only simple variables can be used as host variables. The technique
introduced in the preceding section can be used to access a data member of a
class.

EXEC SQL INCLUDE SQLCA;
#include "my_class.hpp"
#if 0

// Because it ignores #if preprocessing directives,
// SQLPP reads the following declaration.
EXEC SQL BEGIN DECLARE SECTION;

long this_host_member;
EXEC SQL END DECLARE SECTION;

#endif
// Macro used by the C++ compiler only.
#define this_host_member this->host_member
my_class::my_class()
{

EXEC SQL DECLARE my_table_cursor CURSOR FOR
SELECT int_col FROM my_table order by int_col;

EXEC SQL OPEN my_table_cursor;
}
my_class::~my_class()
{

EXEC SQL CLOSE my_table_cursor;
}
a_bool my_class::FetchNextRow(void)
{

// :this_host_member references this->host_member
EXEC SQL FETCH NEXT AllRows INTO :this_host_member;
return(SQLCODE != SQLE_NOTFOUND);

}
void main(void)
{

db_init(&sqlca);
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
{

my_class mc; // Created after connecting.
while(mc.FetchNextRow()) {

printf("%ld \n", mc.host_member);
}

}
EXEC SQL DISCONNECT;
db_fini(&sqlca);

}

The above example declaresthis_host_member for the SQL
preprocessor, but the macro causes C++ to convert it to
this- >host_member . The preprocessor would otherwise not know the
type of this variable. Many C/C++ compilers do not tolerate duplicate
declarations. The#if directive hides the second declaration from the
compiler, but leaves it visible to the SQL preprocessor.

77

While multiple declarations can be useful, you must ensure that each
declaration assigns the same variable name to the same type. The
preprocessor assumes that each host variable is globally known following its
declaration because it can not fully parse the C language.

Using indicator variables

An indicator variable is a C variable that holds supplementary information
about a particular host variable. You can use a host variable when fetching or
putting data. Use indicator variables to handle NULL values.

An indicator variable is a host variable of typeshort int . To detect or specify
a NULL value, place the indicator variable immediately following a regular
host variable in a SQL statement.

Example ♦ For example, in the following INSERT statement,:ind_phone is an
indicator variable.

EXEC SQL INSERT INTO Employee
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

Indicator variable values The following table provides a summary of indicator variable usage.

Indicator

Value

Supplying Value

to database

Receiving value from database

0 Host variable value Fetched a non-NULL value.

–1 NULL value Fetched a NULL value

Using indicator variables to handle NULL

Do not confuse the SQL concept of NULL with the C-language constant of
the same name. In the SQL language, NULL represents either an unknown
attribute or inapplicable information. The C-language constant represents a
pointer value which does not point to a memory location.

When NULL is used in the Adaptive Server Anywhere documentation, it
refers to the SQL database meaning given above. The C language constant is
referred to as thenull pointer (lower case).

NULL is not the same as any value of the column’s defined type. Thus, in
order to pass NULL values to the database or receive NULL results back,
you require something beyond regular host variables.Indicator variables
serve this purpose.

Using indicator variables
when inserting NULL

An INSERT statement can include an indicator variable as follows:

78

Chapter 4. Developing Applications Using Embedded SQL

EXEC SQL BEGIN DECLARE SECTION;
short int employee_number;
char employee_name[50];
char employee_initials[6];
char employee_phone[15];
short int ind_phone;
EXEC SQL END DECLARE SECTION;
/ * set values of empnum, empname,

initials, and homephone * /
if(/ * phone number is known * /) {

ind_phone = 0;
} else {

ind_phone = -1; / * NULL * /
}
EXEC SQL INSERT INTO Employee

VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

If the indicator variable has a value of –1, a NULL is written. If it has a
value of 0, the actual value ofemployee_phoneis written.

Using indicator variables
when fetching NULL

Indicator variables are also used when receiving data from the database.
They are used to indicate that a NULL value was fetched (indicator is
negative). If a NULL value is fetched from the database and an indicator
variable is not supplied, the SQLE_NO_INDICATOR error is generated.

☞ Errors and warnings are returned in the SQLCA structure, as described
in “Initializing the SQL Communications Area” on page 64.

79

Fetching data
Fetching data in embedded SQL is done using the SELECT statement.
There are two cases:

1. The SELECT statement returns at most one row.

2. The SELECT statement may return multiple rows.

Fetching one row

A single row query retrieves at most one row from the database. A
single-row query SELECT statement may have an INTO clause following
the select list and before the FROM clause. The INTO clause contains a list
of host variables to receive the value for each select list item. There must be
the same number of host variables as there are select list items. The host
variables may be accompanied by indicator variables to indicate NULL
results.

When the SELECT statement is executed, the database server retrieves the
results and places them in the host variables.

♦ If the query selects more than one row, the database server returns the
SQLE_TOO_MANY_RECORDS error.

♦ If the query selects no rows, the SQLE_NOTFOUND warning is
returned.

☞ Errors and warnings are returned in the SQLCA structure, as described
in “Initializing the SQL Communications Area” on page 64.

Example For example, the following code fragment returns 1 if a row from the
employee table is successfully fetched, 0 if the row doesn’t exist, and –1 if
an error occurs.

80

Chapter 4. Developing Applications Using Embedded SQL

EXEC SQL BEGIN DECLARE SECTION;
long int emp_id;
char name[41];
char sex;
char birthdate[15];
short int ind_birthdate;

EXEC SQL END DECLARE SECTION;
int find_employee(long employee)
{

emp_id = employee;
EXEC SQL SELECT emp_fname || ’ ’ || emp_lname,

sex, birth_date
INTO :name, :sex, birthdate:ind_birthdate
FROM "DBA".employee
WHERE emp_id = :emp_id;

if(SQLCODE == SQLE_NOTFOUND) {
return(0); / * employee not found * /

} else if(SQLCODE < 0) {
return(-1); / * error * /

} else {
return(1); / * found * /

}
}

Fetching multiple rows

You use acursor to retrieve rows from a query that has multiple rows in its
result set. A cursor is a handle or an identifier for the SQL query result set
and a position within that result set.

☞ For an introduction to cursors, see“Working with cursors”[ASA
Programming Guide,page 21].

❖ To manage a cursor in embedded SQL

1. Declare a cursor for a particular SELECT statement, using the
DECLARE statement.

2. Open the cursor using the OPEN statement.

3. Retrieve rows from the cursor one at a time using the FETCH statement.
♦ Fetch rows until the SQLE_NOTFOUND warning is returned.

☞ Error and warning codes are returned in the variable SQLCODE,
defined in the SQL communications area structure.

4. Close the cursor, using the CLOSE statement.

Cursors in UltraLite applications are always opened using the WITH HOLD
option. They are never closed automatically. You must close each cursor
explicitly using the CLOSE statement.

81

The following is a simple example of cursor usage:

void print_employees(void)
{

int status;
EXEC SQL BEGIN DECLARE SECTION;
char name[50];
char sex;
char birthdate[15];
short int ind_birthdate;
EXEC SQL END DECLARE SECTION;
/ * 1. Declare the cursor. * /
EXEC SQL DECLARE C1 CURSOR FOR

SELECT emp_fname || ’ ’ || emp_lname,
sex, birth_date

FROM "DBA".employee
ORDER BY emp_fname, emp_lname;

/ * 2. Open the cursor. * /
EXEC SQL OPEN C1;
/ * 3. Fetch each row from the cursor. * /
for(;;) {

EXEC SQL FETCH C1 INTO :name, :sex,
:birthdate:ind_birthdate;

if(SQLCODE == SQLE_NOTFOUND) {
break; / * no more rows * /

} else if(SQLCODE < 0) {
break; / * the FETCH caused an error * /

}
if(ind_birthdate < 0) {

strcpy(birthdate, "UNKNOWN");
}
printf("Name: %s Sex: %c Birthdate:

%s\n",name, sex, birthdate);
}
/ * 4. Close the cursor. * /
EXEC SQL CLOSE C1;

}

☞ For details of the FETCH statement, see“FETCH statement [ESQL]
[SP]” [ASA SQL Reference,page 482].

Cursor positioning A cursor is positioned in one of three places:

♦ On a row

♦ Before the first row

♦ After the last row

82

Chapter 4. Developing Applications Using Embedded SQL

0

1

2

3

n – 2

n – 1

n

n + 1

–n – 1

–n

–n + 1

–n + 2

–3

–2

–1

0
After last row

Before first row

Absolute row

from start

Absolute row

from end

Order of the rows in a
cursor

You control the order of rows in a cursor by including an ORDER BY clause
in the SELECT statements that defines that cursor. If you omit this clause,
the order of the rows is unpredictable.

If you don’t explicitly define an order, your only guarantee is that fetching
repeatedly will return each row in the result set once and only once before
SQLE_NOTFOUND is returned.

Order of rows in a cursor
If the cursor must have a specific order, include an ORDER BY clause in
the SELECT statement in the cursor definition. Without this clause, the
ordering is unpredictable and can vary from one time to the next.

Repositioning a cursor When you open a cursor, it is positioned before the first row. The FETCH
statement automatically advances the cursor position. An attempt to FETCH
beyond the last row results in an SQLE_NOTFOUND error, which can be
used as a convenient signal to complete sequential processing of the rows.

You can also reposition the cursor to an absolute position relative to the start
or the end of the query results, or move it relative to the current cursor

83

position. There are specialpositionedversions of the UPDATE and
DELETE statements that can be used to update or delete the row at the
current position of the cursor. If the cursor is positioned before the first row
or after the last row, an SQLE_NOTFOUND error is returned.

To avoid unpredictable results when using explicit positioning, you can
include an ORDER BY clause in the SELECT statement that defines the
cursor.

You can use the PUT statement to insert a row into a cursor.

Cursor positioning after
updates

After updating any information that is being accessed by an open cursor, it is
best to fetch and display the rows again. If the cursor is being used to display
a single row, FETCH RELATIVE 0 will re-fetch the current row. When the
current row has been deleted, the next row will be fetched from the cursor
(or SQLE_NOTFOUND is returned if there are no more rows).

When a temporary table is used for the cursor, inserted rows in the
underlying tables do not appear at all until that cursor is closed and
reopened. It is difficult for most programmers to detect whether or not a
temporary table is involved in a SELECT statement without examining the
code generated by the SQL preprocessor or by becoming knowledgeable
about the conditions under which temporary tables are used. Temporary
tables can usually be avoided by having an index on the columns used in the
ORDER BY clause.

☞ For more information about temporary tables, see“Use of work tables in
query processing”[ASA SQL User’s Guide,page 190].

Inserts, updates and deletes to non-temporary tables may affect the cursor
positioning. Because UltraLite materializes cursor rows one at a time (when
temporary tables are not used), the data from a freshly inserted row (or the
absence of data from a freshly deleted row) may affect subsequent FETCH
operations. In the simple case where (parts of) rows are being selected from
a single table, an inserted or updated row will appear in the result set for the
cursor when it satisfies the selection criteria of the SELECT statement.
Similarly, a freshly deleted row that previously contributed to the result set
will no longer be within it.

84

Chapter 4. Developing Applications Using Embedded SQL

Authenticating users
New users have to be added from an existing connection. As all UltraLite
databases are created with a default user ID and password of DBA and SQL,
respectively, you must first connect as this initial user.

You cannot change a user ID. Instead, you add a user and delete an existing
user. A maximum of four user IDs are permitted for each UltraLite database.

☞ For more information, see“User authentication in UltraLite”[UltraLite
Database User’s Guide,page 40].

For the static interfaces, you must enable the user authentication feature
before you can add or delete users or change passwords. On Palm OS, if you
wish to authenticate users whenever they return to an application from some
other application, you must include the prompt for user and password
information in yourPilotMain routine.

❖ To enable user authentication (embedded SQL)

1. Call ULEnableUserAuthentication before callingdb_init . For example:

app(){
...
ULEnableUserAuthentication(&sqlca);
db_init(&sqlca);
...

The call todb_init precedes all other database activity in the application.

The following code performs user management and authentication for an
embedded SQL UltraLite application.

User authentication
example

A complete sample can be found in theSamples\UltraLite\esqlauth
subdirectory of your SQL Anywhere directory. The code below is taken
from Samples\UltraLite\esqlauth\sample.sqc.

85

//Embedded SQL
app() {

...
/ * Declare fields * /

EXEC SQL BEGIN DECLARE SECTION;
char uid[31];
char pwd[31];

EXEC SQL END DECLARE SECTION;
ULEnableUserAuthentication(&sqlca);
db_init(&sqlca);
...
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
if(SQLCODE == SQLE_NOERROR) {

printf("Enter new user ID and password \n");
scanf("%s %s", uid, pwd);
ULGrantConnectTo(&sqlca,

UL_TEXT(uid), UL_TEXT(pwd));
if(SQLCODE == SQLE_NOERROR) {

// new user added: remove DBA
ULRevokeConnectFrom(&sqlca, UL_TEXT("DBA"));

}
EXEC SQL DISCONNECT;

}
// Prompt for password

printf("Enter user ID and password \n");
scanf("%s %s", uid, pwd);
EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

The code carries out the following tasks:

1. Enable user authentication by callingULEnableUserAuthentication.

2. Initiate database functionality by callingdb_init .

3. Attempt to connect using the default user ID and password.

4. If the connection attempt is successful, add a new user.

5. If the new user is successfully added, delete the DBA user from the
UltraLite database.

6. Disconnect. An updated user ID and password is now added to the
database.

7. Connect using the updated user ID and password.

☞ For more information, see“ULGrantConnectTo function” on page 373,
and“ULRevokeConnectFrom function” on page 382.

86

Chapter 4. Developing Applications Using Embedded SQL

Encrypting data
You can encrypt or obfuscate your UltraLite database using the UltraLite
embedded SQL.

☞ For background information, see“Encrypting UltraLite databases”
[UltraLite Database User’s Guide,page 36],

Encryption UltraLite databases are created on the first connection attempt. To encrypt an
UltraLite database, you supply an encryption key before that connection
attempt. On the first attempt, the supplied key is used to encrypt the
database. On subsequent attempts, the supplied key is checked against the
encryption key, and connection fails unless the key matches.

❖ To strongly encrypt an UltraLite database

1. Load the encryption module.

Call ULEnableStrongEncryption before opening the database.

You open a database by calling db_init.

2. Specify the encryption key.

Define the UL_STORE_PARMS macro with the parameter namekey.

#define UL_STORE_PARMS "key=a secret key"

As with most passwords, it is best to choose a key value that cannot be
easily guessed. The key can be of arbitrary length, but generally the
longer the key, the better because a shorter key is easier to guess than a
longer one. As well, including a combination of numbers, letters, and
special characters decreases the chances of someone guessing the key.

Do not include semicolons in your key. Do not put the key itself in
quotes, or the quotes will be considered part of the key.

You must supply this key each time you want to start the database. Lost
or forgotten keys result in completely inaccessible databases.

☞ For more information, see .

3. Handle attempts to open an encrypted database with the wrong key.

If an attempt is made to open an encrypted database and the wrong key is
passed in,db_init returnsul_falseand SQLCODE -840 is set.

Changing the encryption
key

You can change the encryption key for a database. The application must
already be connected to the database using the existing key before the
change can be made.

87

❖ To change the encryption key on an UltraLite database

1. Call theULChangeEncryptionKey function, supplying the new key as
an argument.

The application must already be connected to the database using the old
key before this function is called.

☞ For more information, see“ULChangeEncryptionKey function” on
page 364.

Obfuscation

❖ To obfuscate an UltraLite database

1. Define the UL_ENABLE_OBFUSCATION compiler directive when
compiling the generated database.

☞ For more information, see“UL_ENABLE_OBFUSCATION macro”
on page 221.

88

Chapter 4. Developing Applications Using Embedded SQL

Adding synchronization to your application
Synchronization is a key feature of many UltraLite applications. This
section describes how to add synchronization to your application.

The synchronization logic that keeps UltraLite applications up to date with
the consolidated database is not held in the application itself.
Synchronization scripts stored in the consolidated database, together with
the MobiLink synchronization server and the UltraLite runtime library,
control how changes are processed when they are uploaded and determines
which changes are to be downloaded.

Overview The specifics of each synchronization is controlled by a set of
synchronization parameters. These parameters are gathered into a structure,
which is then supplied as an argument in a function call to synchronize. The
outline of the method is the same in each development model.

❖ To add synchronization to your application

1. Initialize the structure that holds the synchronization parameters.

☞ For information, see“Initializing the synchronization parameters” on
page 89.

2. Assign the parameter values for your application.

☞ For information, see“Network protocol options for UltraLite
synchronization clients”[MobiLink Clients,page 341].

3. Call the synchronization function, supplying the structure or object as
argument.

☞ For information, see“Invoking synchronization” on page 90.

You must ensure that there are no uncommitted changes when you
synchronize. For more information, see“Commit all changes before
synchronizing” on page 53.

Synchronization
parameters

Synchronization specifics are controlled through a set of synchronization
parameters. For information on these parameters, see“Network protocol
options for UltraLite synchronization clients”[MobiLink Clients,page 341].

Initializing the synchronization parameters

The synchronization parameters are stored in a structure.

The members of the structure may not be well-defined on initialization. You
must set your parameters to their initial values with a call to a special

89

function. The synchronization parameters are defined in a structure declared
in the UltraLite header fileulglobal.h.

☞ For a complete list of synchronization parameters, see“Synchronization
parameters”[MobiLink Clients,page 316].

❖ To initialize the synchronization parameters (embedded SQL)

1. Call theULInitSynchInfo function. For example:

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);

Setting synchronization parameters

The following code initiates TCP/IP synchronization. The MobiLink user
name isBetty Best , with passwordTwentyFour , the script version is
default , and the MobiLink synchronization server is running on the host
machinetest.internal , on port2439 :

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("Betty Best");
synch_info.password = UL_TEXT("TwentyFour");
synch_info.version = UL_TEXT("default");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=test.internal;port=2439");
ULSynchronize(&sqlca, &synch_info);

The following code for an application on the Palm Computing Platform is
called when the user exits the application. It allows HotSync
synchronization to take place, with a MobiLink user name of50, an empty
password, a script version ofcustdb . The HotSync conduit communicates
over TCP/IP with a MobiLink synchronization server running on the same
machine as the conduit (localhost), on the default port (2439):

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.name = UL_TEXT("Betty Best");
synch_info.version = UL_TEXT("default");
synch_info.stream = ULConduitStream();
synch_info.stream_parms =

UL_TEXT("stream=tcpip;host=localhost");
ULSetSynchInfo(&sqlca, &synch_info);

Invoking synchronization

The details of how to invoke synchronization depends on your target

90

Chapter 4. Developing Applications Using Embedded SQL

platform and on the synchronization stream.

The synchronization process can only work if the device running the
UltraLite application is able to communicate with the synchronization
server. For some platforms, this means that the device needs to be physically
connected by placing it in its cradle or by attaching it to a server computer
using a cable. You need to add error handling code to your application in
case the synchronization cannot be carried out.

❖ To invoke synchronization (TCP/IP, HTTP, or HTTPS streams)

1. Call ULInitSynchInfo to initialize the synchronization parameters, and
call ULSynchronize to synchronize.

❖ To invoke synchronization (HotSync)

1. Call ULInitSynchInfo to initialize the synchronization parameters, and
call ULSetSynchInfo to manage synchronization before exiting the
application.

☞ For more information, see“ULSetSynchInfo function” on page 386.

The synchronization call requires a structure that holds a set of parameters
describing the specifics of the synchronization. The particular parameters
used depend on the stream.

Commit all changes before synchronizing

An UltraLite database cannot have uncommitted changes when it is
synchronized. If you attempt to synchronize an UltraLite database when any
connection has an uncommitted transaction, the synchronization fails, an
exception is thrown and the SQLE_UNCOMMITTED_TRANSACTIONS
error is set. This error code also appears in the MobiLink synchronization
server log.

☞ For more information on download-only synchronizations, see
“Download Only synchronization parameter”[MobiLink Clients,page 320].

Adding initial data to your application

Many UltraLite application need data in order to start working. You can
download data into your application by synchronizing. You may want to add
logic to your application to ensure that, the first time it is run, it downloads
all necessary data before any other actions are carried out.

91

Development tip
It is easier to locate errors if you develop an application in stages. When
developing a prototype, temporarily code INSERT statements in your
application to provide data for testing and demonstration purposes. Once
your prototype is working correctly, enable synchronization and discard
the temporary INSERT statements.

For more synchronization development tips, see“Development tips”
[MobiLink Administration Guide,page 47].

Handling synchronization communications errors

The following code illustrates how to handle communications errors from
embedded SQL applications:

if(psqlca->sqlcode == SQLE_COMMUNICATIONS_ERROR) {
printf(" Stream error information: \n"

" stream_id = %d \t(ss_stream_id) \n"
" stream_context = %d \t(ss_stream_context) \n"
" stream_error_code = %ld \t(ss_error_code) \n"
" error_string = \"%s\" \n"
" system_error_code = %ld \n",

(int)info.stream_error.stream_id,
(int)info.stream_error.stream_context,
(long)info.stream_error.stream_error_code,
info.stream_error.error_string,
(long)info.stream_error.system_error_code);

SQLE_COMMUNICATIONS_ERROR is the general error code for
communications errors. More information about the specific error is
supplied to your application in the members of the stream_error
synchronization parameter.

To keep UltraLite small, the runtime reports numbers rather than messages.
For information on what the numbers mean, see“stream_error
synchronization parameter” on page 440.

Monitoring and canceling synchronization

This section describes how to monitor and cancel synchronization from
UltraLite applications.

♦ An API for monitoring synchronization progress and for canceling
synchronization.

♦ A progress indicator component that implements the interface, which you
can add to your application.

Monitoring
synchronization

92

Chapter 4. Developing Applications Using Embedded SQL

♦ Specify the name of your callback function in theobservermember of
the synchronization structure (ul_synch_info).

♦ Call the synchronization function or method to start synchronization.

♦ UltraLite calls your callback function called whenever the
synchronization state changes. The following section describes the
synchronization state.

The following code shows how this sequence of tasks can be implemented in
an embedded SQL application:

ULInitSynchInfo(&info);
info.user_name = m_EmpIDStr;
...
//The info parameter of ULSynchronize() contains
// a pointer to the observer function
info.observer = ObserverFunc;
ULSynchronize(&sqlca, &info);

Handling synchronization status information

The callback function that monitors synchronization takes a
ul_synch_statusstructure as parameter.

Theul_synch_statusstructure has the following members:

ul_synch_state state;
ul_u_short tableCount;
ul_u_short tableIndex;

struct {
ul_u_long bytes;
ul_u_short inserts;
ul_u_short updates;
ul_u_short deletes;

} sent;
struct {

ul_u_long bytes;
ul_u_short inserts;
ul_u_short updates;
ul_u_short deletes;

} received;
p_ul_synch_info info;
ul_bool stop;

♦ state One of the following states:

• UL_SYNCH_STATE_STARTING No synchronization actions have
yet been taken.

• UL_SYNCH_STATE_CONNECTING The synchronization stream
has been built, but not yet opened.

93

• UL_SYNCH_STATE_SENDING_HEADER The synchronization
stream has been opened, and the header is about to be sent.

• UL_SYNCH_STATE_SENDING_TABLE A table is being sent.

• UL_SYNCH_STATE_SENDING_DATA Schema information or data
is being sent.

• UL_SYNCH_STATE_FINISHING_UPLOAD The upload stage is
completed and a commit is being carried out.

• UL_SYNCH_STATE_RECEIVING_UPLOAD_ACK An
acknowledgement that the upload is complete is being received.

• UL_SYNCH_STATE_RECEIVING_TABLE A table is being received.

• UL_SYNCH_STATE_SENDING_DATA Schema information or data
is being received.

• UL_SYNCH_STATE_COMMITTING_DOWNLOAD The download
stage is completed and a commit is being carried out.

• UL_SYNCH_STATE_SENDING_DOWNLOAD_ACK An
acknowledgement that download is complete is being sent.

• UL_SYNCH_STATE_DISCONNECTING The synchronization stream
is about to be closed.

• UL_SYNCH_STATE_DONE Synchronization has completed
successfully.

• UL_SYNCH_STATE_ERROR Synchronization has completed, but
with an error.
☞ For a description of the synchronization process, see“The
synchronization process”[MobiLink Administration Guide,page 15].

♦ tableCount Returns the number of tables being synchronized. For each
table there is a sending and receiving phase, so this number may be more
than the number of tables being synchronized.

♦ tableIndex The current table which is being uploaded or downloaded,
starting at 0. This number may skip values when not all tables are being
synchronized.

♦ info A pointer to theul_synch_infostructure.

♦ sent.inserts The number of inserted rows that have been uploaded so
far.

♦ sent.updates The number of updated rows that have been uploaded so
far.

♦ sent.deletes The number of deleted rows that have been uploaded so
far.

94

Chapter 4. Developing Applications Using Embedded SQL

♦ sent.bytes The number of bytes that have been uploaded so far.

♦ received.inserts The number of inserted rows that have been
downloaded so far.

♦ received.updates The number of updated rows that have been
downloaded so far.

♦ received.deletes The number of deleted rows that have been
downloaded so far.

♦ received.bytes The number of bytes that have been downloaded so far.

♦ stop Set this member to true to interrupt the synchronization. The SQL
exception SQLE_INTERRUPTED is set, and the synchronization stops
as if a communications error had occurred. The observer isalwayscalled
with either the DONE or ERROR state so that it can do proper cleanup.

♦ getUserData Returns the user data object.

♦ getStatement Returns the statement that called the synchronization.
The statement is an internal UltraLite statement, and this method is
unlikely to be of practical use, but is included for completion.

♦ getErrorCode When the synchronization state is set to ERROR, this
method returns a diagnostic error code.

♦ isOKToContinue This is set tofalsewhencancelSynchronizationis
called. Otherwise, it istrue.

Example The following code illustrates a very simple observer function:

extern void __stdcall ObserverFunc(
p_ul_synch_status status)

{
printf("UL_SYNCH_STATE is %d: ",

status->state);
switch(status->state) {

case UL_SYNCH_STATE_STARTING:
printf("Starting \n");
break;

case UL_SYNCH_STATE_CONNECTING:
printf("Connecting \n");
break;

case UL_SYNCH_STATE_SENDING_HEADER:
printf("Sending Header \n");
break;

case UL_SYNCH_STATE_SENDING_TABLE:
printf("Sending Table %d of %d \n",

status->tableIndex + 1,
status->tableCount);

break;
...

95

This observer produces the following output when synchronizing two tables:

UL_SYNCH_STATE is 0: Starting
UL_SYNCH_STATE is 1: Connecting
UL_SYNCH_STATE is 2: Sending Header
UL_SYNCH_STATE is 3: Sending Table 1 of 2
UL_SYNCH_STATE is 3: Sending Table 2 of 2
UL_SYNCH_STATE is 4: Receiving Upload Ack
UL_SYNCH_STATE is 5: Receiving Table 1 of 2
UL_SYNCH_STATE is 5: Receiving Table 2 of 2
UL_SYNCH_STATE is 6: Sending Download Ack
UL_SYNCH_STATE is 7: Disconnecting
UL_SYNCH_STATE is 8: Done

CustDB example An example of an observer function is included in the CustDB sample
application. The implementation in CustDB provides a dialog that displays
synchronization progress and allows the user to cancel synchronization. The
user-interface component makes the observer function platform specific.

The CustDB sample code is in theSamples\UltraLite\CustDBsubdirectory
of your SQL Anywhere directory. The observer function is contained in the
platform-specific subdirectories of theCustDBdirectory.

96

Chapter 4. Developing Applications Using Embedded SQL

Building embedded SQL applications
This section describes a general build procedure for UltraLite embedded
SQL applications. You can use a simpler modification if your application
uses only a single.sqcfile. For more information, see“Single-file build
procedure” on page 100.

☞ This section assumes a familiarity with the overall embedded SQL
development model. For more information, see“Using UltraLite Static
Interfaces”[UltraLite Database User’s Guide,page 193].

There are two build processes, depending on whether you have a single
embedded SQL file or multiple embedded SQL files.

General build procedure

Sample code You can find a makefile that uses this process in the
Samples\UltraLite\ESQLSecuritydirectory. You require the
separately-licensable transport-layer security option to build that sample.

☞ For information on obtaining the transport-layer security option, see the
card in your SQL Anywhere package or see
http://www.sybase.com/detail?id=1015780.

Procedure The following diagram depicts the procedure for building an UltraLite
embedded SQL application. In addition to your source files, you need a
reference database that contains the tables and indexes you wish to use in
your application.

97

http://www.sybase.com/detail?id=1015780

Adaptive Server

Anywhere

reference database

1
2

3

4

C or C++

Source files

Embedded

SQL source

files

one

generated

C/C++ file

preprocess

each file

with sqlpp

UltraLite

analyzer

compile

each

C or C++

source file

link all object

files and

database

components

Custom

database

application

UltraLite

library or

imports library

one

generated

C/C++ file

5

❖ To build an UltraLite embedded SQL application

1. Start the Adaptive Server Anywhere personal database server, specifying
your reference database.

2. Run the SQL preprocessor oneachembedded SQL source file.

The SQL preprocessor is the sqlpp command-line utility. It carries out
two functions in an UltraLite development project:

♦ It preprocesses the embedded SQL files, producing C files to be
compiled into your application.

♦ It adds the SQL statements to the reference database, for use by the
UltraLite generator.

98

Chapter 4. Developing Applications Using Embedded SQL

Caution
sqlpp overwrites the output file without regard to its contents. Ensure
that the output file name does not match the name of any of your source
files. By default, sqlpp constructs the output file name by changing the
suffix of your source file to .c. When in doubt, specify the output file
name explicitly, following the name of the source file.

Use the sqlpp-c command-line option to connect to the reference
database and the-p command-line option to specify a project name. Use
the same project name for each embedded SQL file in your project.

☞ For detailed information about the SQL preprocessor, see“The SQL
Preprocessor”[UltraLite Database User’s Guide,page 95].

☞ For information about projects, see“Creating an UltraLite project”
[UltraLite Database User’s Guide,page 202].

3. Run the UltraLite generator.

The generator analyzes information collected while pre-processing your
embedded SQL files. It prepares extra code and writes out a new C
source file. This step also relies on your reference database.

Enter the following command at a command-prompt:

ulgen -"c "connection-string" options

whereoptionsdepend on the specifics of your project.

The UltraLite generator command line customizes its behavior. The
following command-line switches are particularly important:

♦ -c You must supply a connection string, to connect to the reference
database.
☞ For information on Adaptive Server Anywhere connection strings,
see“Connection parameters”[ASA Database Administration Guide,
page 176].

♦ -f Specify the output file name.

♦ -j Specify the UltraLite project name.
☞ For more information on UltraLite generator options, see“The
UltraLite Generator”[UltraLite Database User’s Guide,page 89].

4. CompileeachC or C++ source file for the target platform of your choice.
Include

♦ each C files generated by the SQL preprocessor,

♦ the C file made by the UltraLite generator,

♦ any additional C or C++ source files that comprise your application.

5. Link all these object files, together with the UltraLite runtime library.

99

Example

♦ Suppose that your project containstwo embedded SQL source files,
calledstore.sqcanddisplay.sqc. You could give your project the name
salesdband process these two commands using the following commands.
(Each command should be entered on a single line.)

sqlpp -c "uid=dba;pwd=sql" -p salesdb store.sqc
sqlpp -c "uid=dba;pwd=sql" -p salesdb display.sqc

These two commands generate the filesstore.canddisplay.c,
respectively. In addition, they store information in the reference database
for the UltraLite analyzer.

Single-file build procedure

☞ This section assumes a familiarity with the overall embedded SQL
development model. For more information, see“Using UltraLite Static
Interfaces”[UltraLite Database User’s Guide,page 193].

You can use a simpler single-file build procedure if the following
requirements are also met:

♦ You are not using transport-layer security.

♦ You do not wish to use publications for synchronization.

♦ You do not need to specify an UltraLite project name.

♦ You have more than one embedded SQL source file.

If these requirements are not all met, you must use the general build process.
For instructions, see“Building embedded SQL applications” on page 97.

The following diagram depicts the single-file build procedure for UltraLite
database applications. In addition to your source files, you need a reference
database that contains the tables and indexes you wish to use in your
application.

100

Chapter 4. Developing Applications Using Embedded SQL

Adaptive Server

Anywhere

reference database

1

2

3

4

C or C++

Source files

Embedded

SQL source

file

one

generated

C/C++ file

preprocess

each file

with sqlpp

and UltraLite

analyzer

compile

each

C or C++

source file

link all object

files and

database

components

Custom

database

application

UltraLite

library or

imports library

❖ To build an UltraLite application (one embedded SQL file only)

1. Start the Adaptive Server Anywhere personal database server, specifying
your reference database.

2. Preprocess the embedded SQL source file using the SQL preprocessor.

The SQL preprocessor is the sqlpp command-line utility. The SQL
preprocessor runs the UltraLite generator automatically and appends
additional code to the generated C/C++ source file. This step relies on
your reference database and on the database server.

Use the sqlpp-c command-line option to connect to the reference
database. In the single-file build procedure, do not specify a project on
the SQL preprocessor command line.

☞ For a list of the parameters tosqlpp, see“The SQL preprocessor”
[ASA Programming Guide,page 203].

101

3. Compile the C or C++ source file for the target platform of your choice.
Include

♦ the C file generated by the SQL preprocessor,

♦ any additional C/C++ source files that comprise your application.

4. Link all these object files, together with the UltraLite runtime library.

Example ♦ Your application contains onlyoneembedded SQL source file, called
store.sqc. You can process this file using the following command. Do not
specify a project name. This command causes the SQL preprocessor to
write the filestore.c.

sqlpp -c "uid=dba;pwd=sql" store.sqc

In addition, the preprocessor automatically runs the UltraLite generator,
which generates more C/C++ code to implement your application
database. This code is automatically appended to the filestore.c.

Configuring development tools for embedded SQL development

Many development tools use a dependency model, sometimes expressed as a
makefile, in which the timestamp on each source file is compared with that
on the target file (object file, in most cases) to decide whether the target file
needs to be regenerated.

With UltraLite development, a change to any SQL statement in a
development project means that the generated code needs to be regenerated.
Changes are not reflected in the timestamp on any individual source file
because the SQL statements are stored in the reference database,.

This section describes how to incorporate UltraLite application
development, specifically the SQL preprocessor and the UltraLite generator,
into a dependency-based build environment. The specific instructions
provided are for Visual C++, and you may need to modify them for your
own development tool.

☞ The UltraLite plug-in for Metrowerks CodeWarrior automatically
provides Palm Computing platform developers with the techniques
described here. For information on this plug-in, see“Developing UltraLite
applications with Metrowerks CodeWarrior” on page 115.

☞ or a tutorial describing details for a very simple project, see“Tutorial:
Build an Application Using Embedded SQL” on page 177.

SQL preprocessing The first set of instructions describes how to add instructions to run the SQL
preprocessor to your development tool.

102

Chapter 4. Developing Applications Using Embedded SQL

❖ To add embedded SQL preprocessing into a dependency-based
development tool

1. Add the.sqcfiles to your development project.

Thedevelopment projectis defined in your development tool. It is
separate from the UltraLite project name used by the UltraLite generator.

2. Add a custom build rule for each.sqcfile.
♦ The custom build rule should run the SQL preprocessor. In

Visual C++, the build rule should have the following command
(entered on a single line):

"%asany9%\win32 \sqlpp.exe" -q -o WINNT
-c connection-string -p project-name
$(InputPath) $(InputName).c

whereasany9is an environment variable that points to your
SQL Anywhere installation directory,connection-stringprovides the
connection to the reference database, andproject-nameis the name of
your UltraLite project.
If you are generating an executable for a non-Windows platform,
choose the appropriate setting instead of WINNT.
☞ For a full description of the SQL preprocessor command line, see
“The SQL preprocessor”[ASA Programming Guide,page 203].

♦ Set the output for the command to$(InputName).c.

3. Compile the.sqcfiles, and add the generated.c files to your development
project.

You need to add the generated files to your project even though they are
not source files, so that you can set up dependencies and build options.

4. For each generated.c file, set the preprocessor definitions.
♦ Under General or Preprocessor, add UL_USE_DLL to the

Preprocessor definitions.

♦ Under Preprocessor, add$(asany9)\hand any other include folders you
require to your include path, as a comma-separated list.

UltraLite code generation The following set of instructions describes how to add UltraLite code
generation to your development tool.

❖ To add UltraLite code generation into a dependency-based devel-
opment environment

1. Add a dummy file to your development project.

Add a file named, for example,uldatabase.ulg, in the same directory as
your generated files.

103

2. Set the build rules for this file to be the UltraLite generator command line.

In Visual C++, use a command of the following form (which should be
all on one line):

"%asany9%\win32 \ulgen.exe" -q -c "connection-string"
$(InputName) $(InputName).c

whereasany9is an environment variable that points to your
SQL Anywhere installation directory,connection-stringis a connection
to your reference database, andInputNameis the UltraLite project name,
and should match the root of the text file name. The output is
$(InputName).c.

3. Set the dummy file to depend on the output files from the preprocessor.

In Visual C++, click Dependencies on the custom build page, and enter
the names of the generated.c files produced by the SQL preprocessor.

This instructs Visual C++ to run the UltraLite generator after all the
necessary embedded SQL files have been preprocessed.

4. Compile your dummy file to generate the.c file that implements the
UltraLite database.

5. Add the generated UltraLite database file to your project and change its
C/C++ settings.

6. Add the UltraLite imports library to your object/libraries modules list.

In Visual C++, go to the project settings, choose the Link tab, and add the
following to the Object/libraries module list for Windows development.

$(asany9) \ultralite \win32 \386\lib \ulimp.lib

For other targets, choose the appropriate import library.

7. When you alter any SQL statements in the reference database, touch the
dummy file, to update its timestamp and force the UltraLite generator to
be run.

104

CHAPTER 5

Common Features of UltraLite C/C++
Interfaces

About this chapter This chapter addresses development issues that are common to the UltraLite
C/C++ interfaces. It also describes how to mix the interfaces in the same
application.

Contents Topic: page

Understanding the SQL Communications Area 106

Combining UltraLite C/C++ interfaces 108

Defragmenting UltraLite databases 110

105

Understanding the SQL Communications Area
All UltraLite C/C++ interfaces address the same UltraLite runtime engine.
They each provide access to the same underlying functionality.

All UltraLite C/C++ interfaces also share the same basic data structure for
marshaling data between the UltraLite runtime and your application. This
data structure is the SQL Communications Area or SQLCA. Each SQLCA
has a current connection, and separate threads cannot share a common
SQLCA.

Your code must carry out the following tasks before connecting to a
database:

♦ Initialize a SQLCA. This prepares your application for communication
with the UltraLite runtime.

♦ Set any data store characteristics and register your error callback
function. For a list of functions, see“UltraLite C/C++ Common API
Reference” on page 203.

♦ Start a database. This operation may be carried out as part of opening the
connection.

The following functions are equivalent ways of carrying out these tasks.

Task Interface Function

Initialize SQLCA Embedded SQL db_init

Static C++ API ULData::Initialize

C++ Component ULSqlca::Initialize

Initialize SQLCA and
start database

Embedded SQL db_init

db_start_database

Static C++ API ULData::Open

C++ Component The database is started
as part of the connection
function in UltraLite_-
DatabaseManager

Creating databases

To create a database, UltraLite requires a schema definition. In static
interfaces that use generated code, the schema definition is held in the

106

Chapter 5. Common Features of UltraLite C/C++ Interfaces

generated code. In the UltraLite C++ component, the schema definition is
held externally in a schema file.

The following connection primitives know about the generated code
database schema, and create a database that matches that schema.

♦ db_start_database (embedded SQL)

♦ ULData::Open (static C++ API)

♦ EXEC SQL CONNECT statement (embedded SQL)

The C++ component does not require any generated code and does not
reference the generated code database schema. If you add C++ component
code to a static application, you must use one of the primitives that know
about the generated code database schema to start the database. You cannot
start a database without an external schema file using the C++ component
DatabaseManager::CreateAndOpenDatabase() method.

Name the database
explicitly

The different interfaces use different default filenames for the database. If
you are mixing the interfaces, it is therefore best to always name the
database explicitly when creating or connecting. You can do this using a
DBN connection parameter.

107

Combining UltraLite C/C++ interfaces
You can combine the use of separate C/C++ interfaces in a single
application. There are several reasons you may wish to do this. For example:

♦ You may wish to add features from the new UltraLite C++ Component to
an existing static interface application.

♦ You may wish to include dynamic SQL features together with SQL
statements that are supported only in static interfaces.

Use a generated
database schema

When combining interfaces, the database schema must be defined by the
generated code of a static interface because the static code has no way of
accessing a database schema held in an external file. This means that if you
are mixing C++ Component features with static interface features, you must
start the database using the static interface. That is, you must start the
database using ULData::StartDatabase (static C++ API) or
db_start_database (embedded SQL).

Simple mixing The simplest way to add dynamic SQL or other C++ Component features to
a static interface application is to use a separate SQLCA and a separate
connection for the two feature sets. One SQLCA and connection can use
C++ Component code and execute dynamic SQL queries, while the other
SQLCA and connection can use static interface features. In this approach,
no coordination between the static interface code and the C++ Component is
required. The overhead for the separate connection is minimal.

The only restriction to this method of mixing interfaces is that the dynamic
SQL and static statements cannot be part of the same transaction.

Sharing a SQLCA If you wish statements from static and dynamic SQL to be part of the same
transaction, you must share a single connection among the interfaces.
Sharing a SQLCA is a prerequisite to sharing connections. It is also possible
to write your application to share a SQLCA but have different connections.

❖ To share a single SQLCA

1. Declare the SQLCA using the UltraLite C++ Component ULSqlca object.

//Declare a SQLCA using C++ Component
ULSqlca MySqlca;

2. Set the static interface to use this object.

For embedded SQL:

//Set the embedded SQL SQLCA
EXEC SQL SET SQLCA "MySqlca.GetCA()";

For the static C++ API:

108

Chapter 5. Common Features of UltraLite C/C++ Interfaces

ULData MyData
MyData.Initialize(MySqlca.GetCA());

3. Initialize the SQLCA once only.

Use either the UltraLite C++ Component ULSqlca::Initialize() method or
db_init. The following example uses C++ component initialization.

//Initialize the SQLCA
MySqlca.Initialize();

4. Start the database.

You must start the database from the static component, so that the internal
generated schema can be used to create the database on the first
connection.

For embedded SQL:

db_start_database();

For the static C++ API:

MyData.StartDatabase();

You can now use separate connections from the C++ Component and the
static interface, and these connections will share the same SQLCA. If you
wish to share a single connection, there is another step to carry out.

❖ To share a single connection

1. Ensure that your application is sharing a single SQLCA, as described in
the previous procedure.

2. Manage the connection using the UltraLite C++ Component.

Use the DatabaseManager::OpenConnection and Connection::Release
methods to open and close connections. Do not use the static interface
connection mechanisms.

Once OpenConnection returns, the connection is current for the SQLCA
and is used for any subsequent embedded SQL or static C++ API
statements.

109

Defragmenting UltraLite databases
The UltraLite store is designed to efficiently reuse free space, so explicit
defragmentation is not required under normal circumstances. This section
describes a technique to explicitly defragment UltraLite databases, for use
by applications with extremely strict space requirements.

UltraLite provides a defragmentation step function, which defragments a
small part of the database. To defragment the entire database at once, call the
defragmentation step function in a loop until it returnsul_true. This can be
an expensive operation, and SQLCODE must also be checked to detect
errors (an error here usually indicates a file I/O error).

Explicit defragmentation occurs incrementally under application control
during idle time. Each step is a small operation.

☞ For more information, see“ULStoreDefragFini function” on page 218,
“ULStoreDefragInit function” on page 219, and“ULStoreDefragStep
function” on page 220.

❖ To defragment an UltraLite database

1. Obtain a p_ul_store_defrag_info information block. For example,

p_ul_store_defrag_info DefragInfo;
//...
db_init(&sqlca);
DefragInfo = ULStoreDefragInit(&sqlca);

2. During idle time, call UlStoreDefragStep to defragment a piece of the
database. For example,

ULStoreDefragStep(&sqlca, DefragInfo);

3. When complete, dispose of the defragmentation block. For example,

ULStoreDefragFini(&sqlca, DefragInfo);

Example In this embedded SQL sample, defragmentation occurs incrementally under
application control during idle time. Each defragmentation step is a small
operation.

110

Chapter 5. Common Features of UltraLite C/C++ Interfaces

p_ul_store_defrag_info DefragInfo;

idle()
{

for(i = 0; i < DEFRAG_IDLE_STEPS; i++){
ULStoreDefragStep(&sqlca, DefragInfo);
if(SQLCODE != SQLE_NOERROR) break;

}
}

main()
{

db_init(&sqlca);
DefragInfo = ULStoreDefragInit(&sqlca);
//
// main application code,
// calls idle() when appropriate...
//
ULStoreDefragFini(&sqlca, DefragInfo);
db_fini(&sqlca);

}

To defragment the entire store at once, you can callULStoreDefragStepin
a loop until it returnsul_true. This can be an expensive operation, and you
must check SQLCODE to detect errors such as file I/O errors.

111

CHAPTER 6

Developing UltraLite Applications for the
Palm Computing Platform

About this chapter This chapter describes details of development, deployment and
synchronization that are specific to developing applications for the Palm
Computing Platform.

Contents Topic: page

Introduction 114

Developing UltraLite applications with Metrowerks CodeWarrior 115

Saving state in UltraLite Palm applications 120

Building multi-segment applications 122

Adding HotSync synchronization to Palm applications 125

Adding TCP/IP, HTTP, or HTTPS synchronization to Palm appli-
cations

127

Deploying Palm applications 128

113

Introduction
This chapter describes features of UltraLite development specific to the
Palm Computing Platform.

Development
environments

You can use one of the following development environments to build
UltraLite Palm applications:

♦ Metrowerks CodeWarrior, version 8 or 9, using embedded SQL, the static
C++ API, or the UltraLite C++ component.

☞ See“Developing UltraLite applications with Metrowerks
CodeWarrior” on page 115.

CodeWarrior includes a version of the Palm SDK. Depending on the
particular devices you are targeting, you may want to upgrade your Palm
SDK to a more recent version than that included in the development tool.

☞ For a list of supported platforms, see“UltraLite development
platforms” [Introducing SQL Anywhere Studio,page 99]and“UltraLite target
platforms” [Introducing SQL Anywhere Studio,page 109].

♦ AppForge MobileVB, using the UltraLite MobileVB component.

☞ SeeUltraLite for MobileVB User’s Guide.

Target platforms ☞ For a list of supported target operating systems, see“UltraLite target
platforms” [Introducing SQL Anywhere Studio,page 109].

See also For general information on development environments for the Palm,
including more information on each of the supported host platforms, see the
Palm Computing Platform Development Zone Web site.

For information on supported development environments, see“UltraLite
development platforms”[Introducing SQL Anywhere Studio,page 99].

114

http://www.palmos.com/dev

Chapter 6. Developing UltraLite Applications for the Palm Computing
Platform

Developing UltraLite applications with Metrowerks
CodeWarrior

Metrowerks CodeWarrior versions 8 and 9 are supported platforms for
developing Palm Computing Platform applications using the UltraLite C++
component, the static C++ API and embedded SQL.

A CodeWarrior plug-in is supplied to make building UltraLite applications
easier. This plug-in is supplied in theUltraLite\Palm\68k\cwplugin
directory.

This section describes how to develop UltraLite applications using
CodeWarrior. It assumes a familiarity with CodeWarrior programming for
the Palm Computing Platform.

Installing the UltraLite plug-in for CodeWarrior

The files for the UltraLite plug-in for CodeWarrior are placed on your disk
during UltraLite installation, but the plug-in is not available for use without
an additional installation step.

❖ To install the UltraLite plug-in for CodeWarrior

1. Ensure that you are running CodeWarrior version 8 or CodeWarrior
version 9. You can obtain patches for CodeWarrior from the Metrowerks
Web site.

2. From a command prompt, change to theUltraLite\palm\68k\cwplugin
subdirectory of your SQL Anywhere directory.

3. Runinstall.batto copy the appropriate files into your CodeWarrior
installation directory: Theinstall.batfile takes two arguments:

♦ Your CodeWarrior directory

♦ Your CodeWarrior version.

For example, the following command (which should be entered on one
line) installs the plug-in for CodeWarrior 9 in the default CodeWarrior
installation directory.

install "c: \Program Files \Metrowerks \CodeWarrior for Palm OS
Platform 9.0" r9

You only need double quotes around the directory if the path has spaces.

Uninstalling the
CodeWarrior plug-in

There is also a fileuninstall.bat, that you can use in the same way as
install.batto uninstall the UltraLite Plug-in from CodeWarrior.

115

Creating UltraLite projects in CodeWarrior

❖ To create an UltraLite project in CodeWarrior

1. Start CodeWarrior.

2. Create a new project.

a. From the CodeWarrior menu, choose File➤ New. A tabbed dialog
appears.

b. On the Projects tab, choose Palm OS Application Stationery.

c. Also on the Projects tab, choose a name and location for the project.
Click OK.

3. Choose an UltraLite stationery.

The UltraLite plug-in adds the following choices to the stationery list:

♦ Palm OS UltraLite C++ API App
♦ Palm OS UltraLite C++ Component App
♦ Palm OS UltraLite ESQL App

Choose the development model you want to use and click OK to create
the project.

The stationery is standard C stationery for embedded SQL, and standard
C++ stationery for the static C++ API and C++ component. It contains
almost-empty source files.

4. If you are using embedded SQL or the static C++ API, configure the
target settings for your project.

If you are using the C++ component, these settings are ignored.

a. On your project window (.mcp), choose the Targets tab, and click the
Settings icon on the toolbar. The Project Settings window opens.

b. In the tree on the left pane, choose Target➤ UltraLite preprocessor.
You can enter the settings for your project, such as which reference
database to use.

Preprocessing When you build an embedded SQL project, the UltraLite project callssqlpp
andulgenutilities to convert any.sqcfiles into.c or .cppfiles and to
generate the database code.

When you build a C++ API project, the UltraLite plugin callsulgento
generate the UltraLite API files and the database code.

There is no preprocessing required for C++ component, which is why the
target settings are ignored.

116

Chapter 6. Developing UltraLite Applications for the Palm Computing
Platform

For embedded SQL and the static C++ API, plugin also adds paths to
required UltraLite files, such as headers and runtime library, to the search
paths.

Converting an existing CodeWarrior project to an UltraLite application

If you install the UltraLite plug-in into CodeWarrior, you will be asked to
convert each existing project when you open it. In this conversion,
CodeWarrior sets the default SQL preprocessor settings and saves them in
the project file. This causes no disruption to projects that do not use the SQL
preprocessor. If you want to further convert a project to invoke the SQL
preprocessor automatically, you need to do the following:

1. Add a file mapping entry for.sqcand.ulg files to the File Mappings
panel of the Target settings.

These files are of file typeTEXT and the Compiler isUltraLite
Preprocessor. All flags for these files should be unchecked.

2. For embedded SQL applications, remove all.cppfiles generated by the
SQL preprocessor from the Files view. These files are automatically
generated and re-added when the.sqcfiles are built.

3. For static C++ API applications, mark the.ulg dummy file dirty and
remove the UltraLite Files folder.

Using the UltraLite plug-in for CodeWarrior

For embedded SQL and the static C++ API, the UltraLite plug-in for
CodeWarrior integrates the UltraLite preprocessing steps (running the
UltraLite generator and, for embedded SQL applications, running the SQL
preprocessor) into the CodeWarrior compilation model. It ensures that the
SQL preprocessor and UltraLite generator run when required.

If you change the UltraLite project name, or if you change the generated
database name, you should delete the UltraLite Files folder. This forces
regeneration of the generated files. To avoid filename collisions, do not use a
generated database name that is the same as the.sqcfile name.

If you change a SQL statement in a static C++ API UltraLite project, or if
you alter a publication used in a static C++ API project, you must manually
touch the dummy.ulg file to prompt the UltraLite generator to run.

☞ For an overview of the tasks the plug-in carries out, see“Configuring
development tools for static UltraLite development”[UltraLite Database
User’s Guide,page 208].

Using prefix files A prefix file is a header file that all source files in a Metrowerks

117

CodeWarrior project must include. You should useulpalmos.hfrom theh
subdirectory of your SQL Anywhere Studio installation as your prefix file.
The CodeWarrior plug-in sets this for you automatically.

If you have your own prefix file, it must includeulpalmos.h. Theulpalmos.h
file defines macros required by UltraLite Palm applications and also sets
CodeWarrior compiler options required by UltraLite.

Notes Although the UltraLite plug-in does not configure your development
environment for expanded mode, you can build expanded mode applications.
For more information, see“Building Expanded Mode applications” on
page 119.

If you are using either the ULSecureCerticomTLSStream or
ULSecureRSATLSStream functions to implement encrypted
synchronization, you must addulrsa.lib or ulecc.lib to your CodeWarrior
projects.

Building the CustDB sample application from CodeWarrior

CustDB is a simple sales-status application.

☞ For a diagram of the sample database schema, see“The CustDB sample
database” on page xvii.

Files for the application are located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. Generic files are located in
theCustDBdirectory. Files specific to CodeWarrior for the Palm
Computing Platform are in the following locations:

♦ cwcommon Files common to all versions of CodeWarrior.

♦ cw8 Files for CodeWarrior 8 or CodeWarrior 9.

The instructions in this section describe how to build the CustDB application
using CodeWarrior 9. The process is very similar for CodeWarrior 8.

❖ To build the CustDB sample application using CodeWarrior

1. Start the CodeWarrior IDE.

2. Open the CustDB project file:

♦ Choose File➤ Open.

♦ Open the project fileSamples\UltraLite\custdb\cw8\custdb.mcpunder
your SQL Anywhere directory.

3. To build the target application (custdb.prc), choose Project➤ Make.

118

Chapter 6. Developing UltraLite Applications for the Palm Computing
Platform

You can use the UltraLite plug-in to customize settings for your own
application. For more information, see“Developing UltraLite applications
with Metrowerks CodeWarrior” on page 115.

Building Expanded Mode applications

CodeWarrior supports a code generation mode calledexpanded mode,
which improves memory use for global data. If you are using CodeWarrior
version 9 you can now use expanded mode with an A5-based jump table. To
do so, you must specify a specific version of the UltraLite runtime library.
For expanded mode, specify the following runtime library:

ultralite \palm \68k \lib \cw9_a4a5jt \ulrt.lib

Expanded mode may be helpful for large applications that would otherwise
exceed the 64 KB global data limit. A limitation of expanded mode is that
encrypted synchronization can be used only via HotSync, as the
synchronization security libraries for UltraLite do not use expanded mode.

Using the UltraLite
plug-in

The UltraLite plug-in for CodeWarrior does not add the expanded mode
library to applications.

The easiest way to build expanded mode applications from the UltraLite
plug-in is to copy the expanded mode runtime library over the normal
runtime library.

❖ To use the expanded mode runtime library from the UltraLite
plug-in

1. Back up the standard runtime library.

Copy the fileultralite\palm\68k\lib\cw\ulrt.libto a safe location.

2. Copy the expanded mode runtime library over the normal runtime library.

Copyultralite\palm\68k\lib\cw9_a4a5jt\ulrt.libover
ultralite\palm\68k\lib\cw\ulrt.lib.

The UltraLite plug-in should then add the required paths, headers, and
runtime library to the CW project.

3. Repeat the process if you install updated UltraLite software.

Installing updates to the UltraLite software will copy the new standard
mode library over your expanded mode runtime library. Be sure to repeat
the earlier steps in the procedure to use the expanded mode runtime
library.

119

Saving state in UltraLite Palm applications
You can save the state of tables and cursors when an application is closed by
suspending the connection instead of closing it.

The current state is only stored for tables that are not closed, and when the
connection object is not closed. This means that, to maintain state, the
application should terminate without ever closing the connection object; or
exiting the routine that defined the connection object; or assigning the
variable for the connection object to nothing or null.

Whenever your UltraLite application is closed, and the user switches to
another application, UltraLite saves the state of any open cursors and tables.

1. When the user returns to the application, call the appropriate open
methods:

♦ For the Static C++ API, call the following functions:

♦ ULData::Open,
♦ ULEnablePalmRecordDB or ULEnableFileDB,
♦ ULConnection::Open.

♦ For embedded SQL, call the following functions:

♦ db_init,
♦ ULEnablePalmRecordDB or ULEnableFileDB,
♦ EXEC SQL CONNECT.

♦ For the C++ Component, call the following functions:

♦ ULSqlca.Initialize,
♦ ULInitDatabaseManager,
♦ ULEnablePalmRecordDB or ULEnableFileDB,
♦ OpenDatabase.

2. Confirm that the connection was restored properly by checking that the
SQLCODE is SQLE_CONNECTION_RESTORED.

3. For cursor objects, including instances of generated result set classes, you
can do either of the following:

♦ Ensure that the object is closed when the user switches away from the
application, and call Open when you next need the object. If you
choose this option, the current position is not restored.

♦ Do not close the object when the user switches away, and call Reopen
when you next need to access the object. The current position is then
maintained, but the application takes more memory in the Palm when
the user is using other applications.

120

Chapter 6. Developing UltraLite Applications for the Palm Computing
Platform

4. For table objects, including instances of generated table classes, you
cannot save a position. You must close table objects before a user moves
away from the application, and Open them when the user needs them
again. Do not use Reopen on table objects.

Closing a connection rolls back any uncommitted transactions. By not
closing connection objects, any outstanding transactions are saved (not
committed), so that when the application restarts, those transactions will
appear and can be committed or rolled back. Also, uncommitted changes are
not synchronized.

Restoring state in UltraLite Palm applications

When an application restarts on the Palm OS, UltraLite restores the state of
any cursors or tables that were not explicitly closed when the application
was most recently shut down.

121

Building multi-segment applications
☞ Application code for the Palm Computing Platform must be divided into
segments. For CodeWarrior, these segments are at most 64 KB in size. This
section describes how to manage the assignment of code into segments.

☞ UltraLite applications include the following types of code:

♦ User-defined code Application code, including the.cppfile generated
by the SQL Preprocessor.

♦ Generated code for SQL statements Code generated by the UltraLite
Analyzer to execute SQL statements.

♦ Generated code for the database schema Code generated by the
UltraLite Analyzer to represent the database tables.

♦ Runtime library The UltraLite runtime library is compiled as
multi-segment code. Segment names of the form ULRTn and ULRTnn
are reserved for the UltraLite runtime libraries.

☞ Building multi-segment applications is a general feature of application
development for the Palm Computing Platform, whether or not you are using
UltraLite. Some familiarity with building multi-segment applications using
your development tool is assumed. User-defined code is no different to other
standard Palm applications. For a reminder about assigning user-defined
code to segments, see“Assigning user-defined code to segments” on
page 124.

You can partition generated code into segments in the following ways:

♦ Enable multi-segment code generation, but let the UltraLite Analyzer
assign segments in a default manner.

☞ For more information, see“Enabling multi-segment code generation”
on page 122.

♦ Enable multi-segment code-generation and explicitly assign segments
yourself.

☞ For more information, see“Explicitly assigning segments” on
page 123.

Enabling multi-segment code generation

This section describes how to instruct the UltraLite Analyzer to generate
multi-segment code using its default scheme. If you wish to customize the
assignment of code to segments by explicitly assigning functions to

122

Chapter 6. Developing UltraLite Applications for the Palm Computing
Platform

segments, you can do so. For more information, see“Explicitly assigning
segments” on page 123.

You enable generated code segments by defining macros.

❖ To enable multi-segment code generation

1. Define a prefix file for your CodeWarrior project with the following
contents:

#define UL_ENABLE_SEGMENTS
#include "ulpalmos.h"

☞ For more information, see“UL_ENABLE_SEGMENTS macro” on
page 222.

Notes When multi-segment code generation is enabled, the default behavior of the
UltraLite Analyzer is as follows:

♦ The generated schema code fits into a single segment and is assigned to a
segment named ULSEGDB.

♦ For the C++ API, the generated statement code is assigned to a segment
named ULSEGDEF.

♦ For embedded SQL, the generated statement code is assigned to a
segment with a generated name based on the.sqcfile. All the code for a
single.sqcfile goes into a single segment.

Explicitly assigning segments

This section describes how to explicitly assign the generated code for SQL
statements to segments. You must first enable multi-segment code generation
as described in“Enabling multi-segment code generation” on page 122.

Explicit segment assignment requires a database upgraded to version 8 or
later standards.

❖ To explicitly assign generated statement code to segments (em-
bedded SQL)

1. Split your.sqcfiles into separate files. The generated code for the
statements in each.sqcfile is placed into a separate segment.

❖ To explicitly assign generated statement code to segments (static
C++ API)

1. Do one of the following:

123

♦ Call theul_set_codesegmentprocedure for each SQL statement,
providing the name of the segment to which the statement should be
assigned.

For example, the following statement assigns the statementmystmt, in
the projectmyproject, to the segmentMYSEG1.

call ul_set_codesegment(
’myproject’, ’mystmt’, ’MYSEG1’)

☞ For more information, see“ul_set_codesegment system
procedure”[UltraLite Database User’s Guide,page 212].

♦ From Sybase Central, open the UltraLite Project folder. Right click the
statement and choose Properties from the popup menu. Enter a code
segment name in the box.

Assigning user-defined code to segments

Assigning user-defined code to segments is a standard part of programming
applications for the Palm Computing Platform. This section is intended as a
reminder for Palm programmers.

❖ To assign user-defined code to segments (CodeWarrior)

1. Add the following line at various places in your.sqcfile or .cppfile:

#pragma segment segment-name

wheresegment-nameis a unique name for the segment This forces code
after each#pragma line to be in a separate segment.

The first segment You must ensure thatPilotMain and all functions called inPilotMain are in
the first segment.

If necessary, you can add a line of the following form before your startup
code:

#pragma segment segment-name

wheresegment-nameis the name of your first segment.

For more information on prefix files and segments, see your Palm developer
documentation.

124

Chapter 6. Developing UltraLite Applications for the Palm Computing
Platform

Adding HotSync synchronization to Palm
applications

HotSync synchronization takes place when your UltraLite application is
closed. It is initiated by the HotSync.

If you use HotSync, then you synchronize by calling ULSetSynchInfo
before closing the application. Do not useULSynchronizeor
ULConnection.Synchronizefor HotSync synchronization.

To call HotSync synchronization from your application you must add code
for the following steps:

1. Prepare aul_synch_infostructure.

2. Call the ULSetSynchInfo function, supplying theul_synch_info
structure as an argument.

This function is called when the user switches away from the UltraLite
application. You must ensure that all outstanding operations are
committed before callingdb_fini or ULData.Close. The
ul_synch_info.streamparameter is ignored, and so does not need to be
set.

For example:

//Static C++ API
ul_synch_info info;
ULInitSynchInfo(&info);
info.stream_parms =

UL_TEXT("stream=tcpip;host=localhost");
info.user_name = UL_TEXT("50");
info.version = UL_TEXT("custdb");

ULSetSynchInfo(&sqlca, &info);

if(!db.Close()) {
return(false);

}

3. Call db_fini or ULData.Close.

☞ For more information, see“Saving state in UltraLite Palm applications”
on page 120, and“Synchronization parameters”[MobiLink Clients,page 316].

A MobiLink HotSync conduit is required for HotSync synchronization of
UltraLite applications. If there are uncommitted transactions when you close
your Palm application, and if you synchronize, the conduit reports that
synchronization fails because of uncommitted changes in the database.

125

Specifying the stream
parameters

The synchronization stream parameters in the ul_synch_info structure
control communication with the MobiLink synchronization server. For
HotSync synchronization, the UltraLite application does not communicate
directly with a MobiLink synchronization server; it is the HotSync conduit
instead.

You can supply synchronization stream parameters to govern the behavior of
the MobiLink conduit in one of the following ways:

♦ Supply the required information in the stream_parms member of
ul_synch_info passed to ULSetSynchInfo.

☞ For a list of available values, see“Network protocol options for
UltraLite synchronization clients”[MobiLink Clients,page 341].

♦ Supply a null value for the stream_parms member. The MobiLink
conduit then searches in theClientParmsregistry entry on the machine
where it is running for information on how to connect to the MobiLink
synchronization server.

The stream and stream parameters in the registry entry are specified in
the same format as in the ul_synch_info structure stream_parms field.

☞ For more information, see“HotSync configuration overview”
[MobiLink Clients,page 298].

See also ☞ For information about configuring HotSync, including a description of
how to set up your MobiLink HotSync conduit, see“Configuring the
MobiLink HotSync conduit”[MobiLink Clients,page 301].

126

Chapter 6. Developing UltraLite Applications for the Palm Computing
Platform

Adding TCP/IP, HTTP, or HTTPS synchronization to
Palm applications

This section describes how to add TCP/IP, HTTP, or HTTPS synchronization
to your Palm application.

☞ For a general description of how to add synchronization to UltraLite
applications, see“Synchronizing data” on page 51.

Transport layer security
on the Palm Computing
Platform

You can use transport-layer security with Palm applications built with
Metrowerks CodeWarrior.

☞ For information on transport-layer security, see“MobiLink
Transport-Layer Security”[MobiLink Administration Guide,page 165].

Palm devices can synchronize using TCP/IP, HTTP, or HTTPS
communication by setting thestreammember of theul_synch_info
structure to the appropriate stream, and callingULSynchronizeor
ULConnection.Synchronizeto carry out the synchronization.

When using TCP/IP, HTTP, or HTTPS synchronization, db_init or
ULData.Initialize and db_fini or ULData.Close save and restore the state of
the application on exiting and activating the application, but do not
participate in synchronization.

Before closing the application, set the synchronization information using
ULSetSynchInfo, providingul_synch_infostructure as an argument.

When using TCP/IP, HTTP, or HTTPS synchronization from a Palm device,
you must specify an explicit host name or IP number in thestream_parms
member of theul_synch_infostructure. Specifying NULL defaults to
localhost , which represents the device, not the host.

☞ For information on theul_synch_infostructure, see“Network protocol
options for UltraLite synchronization clients”[MobiLink Clients,page 341].

127

Deploying Palm applications
This section describes the following aspects of deploying Palm applications:

♦ Deploying the application.

☞ See“Deploying the application” on page 128

♦ Deploying the MobiLink synchronization conduit for HotSync.

☞ See“Deploying the MobiLink synchronization conduit” on page 128.

♦ Deploying an initial copy of the UltraLite database.

☞ See“Deploying UltraLite databases” on page 128.

Install your UltraLite application on your Palm device as you would any
other Palm Computing Platform application.

Deploying the application

❖ To install an application on a Palm device

1. Open the Install Tool, included with your Palm Desktop Organizer
Software.

2. Choose Add and locate your compiled application (.prc file).

3. Close the Install Tool.

4. HotSync to copy the application to your Palm device.

Deploying the MobiLink
synchronization conduit

For applications using HotSync synchronization, each end user must have
the MobiLink synchronization conduit installed on their desktop.

☞ For more information about installing the MobiLink synchronization
conduit, see“Deploying the MobiLink HotSync conduit”[MobiLink Clients,
page 302].

Deploying UltraLite
databases

If you deploy your application without a database, the database is created the
first time it is accessed from the application. The user must then download
an initial copy of data on the first synchronization. You can use theULUtil
utility to back up the UltraLite database to the PC. To deploy many UltraLite
databases with an initial database including data, you can perform an initial
synchronization and then back up the UltraLite database. The database can
be deployed on other devices so they do not need to perform an initial
synchronization.

☞ For more information, see“The ULUtil utility” [UltraLite Database User’s
Guide,page 123].

128

Chapter 6. Developing UltraLite Applications for the Palm Computing
Platform

If you are using HotSync synchronization, each of your end users must also
install the synchronization conduit onto their desktop machine.

☞ For information on installing the synchronization conduit, see
“Configuring the MobiLink HotSync conduit”[MobiLink Clients,page 301].

If you deploy a database using HotSync, HotSync sets abackup bit on the
database. When this backup bit is set, the entire database is backed up to the
desktop machine on each synchronization. This behavior is generally not
appropriate for UltraLite databases. When an UltraLite application is
launched, the Palm data store is checked to see if its backup bit is set to true.
If it is set, it is cleared. If it is not set, there is no change.

If you wish the backup bit to remain set to true, you can set the store
parameterpalm_allow_backup in UL_STORE_PARMS.

☞ For more information, see“UL_STORE_PARMS macro” on page 222.

129

CHAPTER 7

Developing UltraLite Applications for
Windows CE

About this chapter This chapter describes details of development, deployment and
synchronization that are specific to Windows CE. These instructions assume
familiarity with the general development process. They assist in building the
CustDB sample application, included with your UltraLite software, on each
of these platforms.

Contents Topic: page

Introduction 132

Building the CustDB sample application 134

Storing persistent data 136

Deploying Windows CE applications 137

Synchronization on Windows CE 140

131

Introduction
This section contains instructions pertaining to building UltraLite
applications for use under Microsoft Windows CE.

☞ For a list of supported host platforms and development tools for
Windows CE development, and for a list of supported target Windows CE
platforms, see“UltraLite development platforms”[Introducing SQL Anywhere
Studio,page 99], and“UltraLite target platforms”[Introducing SQL Anywhere
Studio,page 109].

You can test your applications under an emulator on most Windows CE
target platforms.

Preparing for
Windows CE
development

The recommended development environment for Windows CE at the time of
writing is Microsoft eMbedded Visual C++ 3.0. This development
environment is available from Microsoft as part of eMbedded Visual Tools.

☞ You can download eMbedded Visual C++ from the Microsoft Developer
Network athttp://msdn.microsoft.com/.

A first application A sample eMbedded Visual C++ project is provided in the
Samples\UltraLite\CEStarterdirectory under your SQL Anywhere directory.
The workspace file isSamples\UltraLite\CEStarter\ul_wceapplication.vcw.

When preparing to use eMbedded Visual C++ for UltraLite applications, you
should make the following changes to the project settings. The CEStarter
application has these changes made.

♦ Compiler settings:

• Add $(ASANY9)\h to the include path.

• Define appropriate compiler directives. For example, the UNDER_CE
macro should be defined for eMbedded Visual C++ projects.

♦ Linker settings:

• Add “$(ASANY9)\ultralite\ce\processor\lib\ulrt.lib”
whereprocessoris the target processor for your application.

• Add winsock.lib.

♦ The.sqcfile (embedded SQL only):

• Add ul_database.sqcandul_database.cppto the project

• Add the following custom build step for the.sqcfile:

"$(ASANY9) \win32 \sqlpp" -q -c "dsn=UltraLite 9.0 Sample"
$(InputPath) ul_database.cpp

• Set the output file toul_database.cpp.

132

http://msdn.microsoft.com/

Chapter 7. Developing UltraLite Applications for Windows CE

• Disable the use of precompiled headers forul_database.cpp.

Choosing how to link the runtime library

Windows CE supports dynamic link libraries. At link time, you have the
option of linking your UltraLite application to the runtime DLL using an
imports library, or statically linking your application using the UltraLite
runtime library.

If you have a single UltraLite application on your target device, a statically
linked library uses less memory. If you have multiple UltraLite applications
on your target device, using the DLL may be more economical in memory
use.

If you are repeatedly downloading UltraLite applications to a device, over a
slow link, then you may want to use the DLL in order to minimize the size
of the downloaded executable, after the initial download.

❖ To build and deploy an application using the UltraLite runtime
DLL
1. Preprocess your code, then compile the output with UL_USE_DLL.

2. Link your application using the UltraLite imports library.

3. Copy both your application executable and the UltraLite runtime DLL to
your target device.

133

Building the CustDB sample application
CustDB is a simple sales-status application. It is located in the UltraLite
samplesdirectory of your Adaptive Server Anywhere installation. Generic
files are located in theCustDBdirectory. Files specific to Windows CE are
located in thece subdirectory ofCustDB.

The CustDB application is provided as an eMbedded Visual C++ 3.0 project.

☞ For a diagram of the sample database schema, see“The CustDB sample
database” on page xvii.

❖ To build the CustDB sample application

1. Start eMbedded Visual C++.

2. Open the project file that corresponds to your version of eMbedded
Visual C++:

♦ Samples\UltraLite\CustDB\EVC\EVCCustDB.vcpfor eVC 3.0.

♦ Samples\UltraLite\CustDB\EVC40\EVCCustDB.vcpfor eVC 4.0.

3. Choose Build➤ Set Active Platform to set the target platform.
♦ Set a platform of your choice.

4. Choose Build->Set Active Configuration to select the configuration.
♦ Set an active configuration of your choice.

5. If you are building CustDB for the Pocket PC x86em emulator platform
only:

♦ Choose Project➤ Settings. The Project Settings dialog appears.

♦ On the Link tab, in the Object/library modules box, change the
UltraLite runtime library entry to theemulator30directory rather than
theemulatordirectory.

6. Build the application:
♦ Press F7 or select Build➤ Build EVCCustDB.exe to build CustDB.

When eMbedded Visual C++ has finished building the application, it
automatically attempts to upload it to the remote device.

7. Start the synchronization server:
♦ To start the MobiLink synchronization server, select Programs➤

Sybase SQL Anywhere 9➤ MobiLink ➤ Synchronization Server
Sample.

8. Run the CustDB application:

PressCTRL+F5 or select Build➤ Execute CustDB.exe

134

Chapter 7. Developing UltraLite Applications for Windows CE

Folder locations and environment variables
The sample project uses environment variables wherever possible. It may
be necessary to adjust the project in order for the application to build
properly. If you experience problems, try searching for missing files in the
MS VC++ folder and adding the appropriate directory settings.

For embedded SQL, the build process uses the SQL preprocessor,sqlpp, to
preprocess the fileCustDB.sqcinto the fileCustDB.c. This one-step process
is useful in smaller UltraLite applications where all the embedded SQL can
be confined to one source module. In larger UltraLite applications, you need
to use multiplesqlppinvocations followed by oneulgencommand to create
the customized remote database.

☞ For more information, see“Building embedded SQL applications” on
page 97.

135

Storing persistent data
The UltraLite database is stored in the Windows CE file system. The default
file is \UltraLiteDB\ul_<project>.udb, with projectbeing truncated to eight
characters. You can override this choice using thefile_nameparameter
which specifies the full path name of the file-based persistent store.

The UltraLite runtime carries out no substitutions on thefile_name
parameter. If a directory has to be created in order for the file name to be
valid, the application must ensure that any directories are created before
callingdb_init .

As an example, you could make use of a flash memory storage card by
scanning for storage cards and prefixing a name by the appropriate directory
name for the storage card. For example,

file_name = " \\Storage Card \\My Documents \\flash.udb"

Example The following sample embedded SQL code sets thefile_nameparameter:

#undef UL_STORE_PARMS
#define UL_STORE_PARMS UL_TEXT(

"file_name= \\uldb \\my own name.udb;cache_size=128k")
...
db_init(&sqlca);

136

Chapter 7. Developing UltraLite Applications for Windows CE

Deploying Windows CE applications
When compiling UltraLite applications for Windows CE, you can link the
UltraLite runtime library either statically or dynamically. If you link it
dynamically, you must copy the UltraLite runtime library for your platform
to the target device.

❖ To build and deploy an application using the UltraLite runtime
DLL
1. Preprocess your code, then compile the output with UL_USE_DLL.

2. Link your application using the UltraLite imports library.

3. Copy both your application executable and the UltraLite runtime DLL to
your target device.

The UltraLite runtime DLL is in chip-specific directories under the
UltraLite\cesubdirectory of your SQL Anywhere directory.

To deploy the UltraLite runtime DLL for the Windows CE emulator, place
the DLL in the appropriate subdirectory of your Windows CE tools directory.
The following directory is the default setting for the Pocket PC emulator:

C: \Program Files \Windows CE Tools \wce300\MS Pocket PC\
emulation \palm300 \windows

Deploying applications that use ActiveSync

Applications that use ActiveSync synchronization must be registered with
ActiveSync and copied to the device. The MobiLink provider for
ActiveSync must also be installed.

☞ For more information, see“Deploying applications that use ActiveSync”
[MobiLink Clients,page 312], “Installing the MobiLink provider for
ActiveSync” [MobiLink Clients,page 310]and“Registering applications for
use with ActiveSync”[MobiLink Clients,page 311].

Assigning class names for applications

When registering applications for use with ActiveSync you must supply a
window class name. Assigning class names is carried out at development
time and your application development tool documentation is the primary
source of information on the topic.

Microsoft Foundation Classes (MFC) dialog boxes are given a generic class
name ofDialog, which is shared by all dialogs in the system. This section

137

describes how to assign a distinct class name for your application if you are
using MFC and eMbedded Visual C++.

❖ To assign a window class name for MFC applications using eM-
bedded Visual C++
1. Create and register a custom window class for dialog boxes, based on the

default class.

Add the following code to your application’s startup code. The code must
be executed before any dialogs get created:

WNDCLASS wc;
if(! GetClassInfo(NULL, L"Dialog", &wc)) {

AfxMessageBox(L"Error getting class info");
}
wc.lpszClassName = L"MY_APP_CLASS";
if(! AfxRegisterClass(&wc)) {

AfxMessageBox(L"Error registering class");
}

whereMY_APP_CLASSis the unique class name for your application.

2. Determine which dialog is the main dialog for your application.

If your project was created with the MFC Application Wizard, this is
likely to be a dialog namedCMyAppDlg .

3. Find and record the resource ID for the main dialog.

The resource ID is a constant of the same general form as
IDD_MYAPP_DIALOG.

4. Ensure that the main dialog remains open any time your application is
running.

Add the following line to your application’sInitInstance function. The
line ensures that if the main dialogdlg is closed, the application also
closes.

m_pMainWnd = &dlg;

For more information see the Microsoft documentation for
CWinThread::m_pMainWnd .

If the dialog does not remain open for the duration of your application,
you must change the window class of other dialogs as well.

5. Save your changes.

If eMbedded Visual C++ is open, save your changes and close your
project and workspace.

6. Modify the resource file for your project.

138

Chapter 7. Developing UltraLite Applications for Windows CE

♦ Open your resource file (which has an extension of.rc) in a text editor
such as Notepad.

Locate the resource ID of your main dialog.

♦ Change the main dialog’s definition to use the new window class as in
the following example. Theonly change that you should make is the
addition of theCLASS line:

IDD_MYAPP_DIALOG DIALOG DISCARDABLE 0, 0, 139, 103
STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION
EXSTYLE WS_EX_APPWINDOW | WS_EX_CAPTIONOKBTN
CAPTION "MyApp"
FONT 8, "System"
CLASS "MY_APP_CLASS"
BEGIN

LTEXT "TODO: Place dialog controls here.",IDC_
STATIC,13,33,112,17

END

whereMY_APP_CLASSis the name of the window class you used
earlier.

♦ Save the.rc file.

7. Reopen eMbedded Visual C++ and load your project.

8. Add code to catch the synchronization message.

☞ For information, see“Adding ActiveSync synchronization (MFC)”
on page 141.

139

Synchronization on Windows CE
UltraLite applications on Windows CE can synchronize through the
following streams:

♦ ActiveSync See“Adding ActiveSync synchronization to your
application” on page 140

♦ TCP/IP See“TCP/IP, HTTP, or HTTPS synchronization from Windows
CE” on page 143.

♦ HTTP See“TCP/IP, HTTP, or HTTPS synchronization from Windows
CE” on page 143.

Theuser_nameandstream_parmsparameters must be surrounded by the
UL_TEXT() macro for Windows CE when initializing, since the
compilation environment is Unicode wide characters.

☞ For information on adding synchronization to your application, see
“Synchronizing data” on page 51. For detailed information on
synchronization parameters, see“Synchronization parameters”[MobiLink
Clients,page 316].

Adding ActiveSync synchronization to your application

ActiveSync is synchronization software for Microsoft Windows CE
handheld devices. UltraLite supports ActiveSync versions 3.1 and 3.5.

This section describes how to add ActiveSync to your application, and how
to register your application for use with ActiveSync on your end users’
machines.

If you use ActiveSync, synchronization can be initiated only by ActiveSync
itself. ActiveSync automatically initiates a synchronization when the device
is placed in the cradle or when the Synchronization command is selected
from the ActiveSync window. The MobiLink provider starts the application,
if it is not already running, and sends a message to the application.

☞ For information on setting up ActiveSync synchronization, see
“Deploying applications that use ActiveSync” on page 137.

The ActiveSync provider uses thewParam parameter. AwParam value of
1 indicates that the MobiLink provider for ActiveSync launched the
application. The application must then shut itself down after it has finished
synchronizing. If the application was already running when called by the
MobiLink provider for ActiveSync,wParam is 0. The application can
ignore thewParam parameter if it wants to keep running.

140

Chapter 7. Developing UltraLite Applications for Windows CE

☞ Adding synchronization depends on whether you are addressing the
Windows API directly or whether you are using the Microsoft Foundation
Classes. Both development models are described here.

Adding ActiveSync synchronization (Windows API)

If you are programming directly to the Windows API, you must handle the
message from the MobiLink provider in your application’sWindowProc
function, using theULIsSynchronizeMessagefunction to determine if it
has received the message.

Here is an example of how to handle the message:

LRESULT CALLBACK WindowProc(HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)

{
if(ULIsSynchronizeMessage(uMsg)) {

DoSync();
if(wParam == 1) DestroyWindow(hWnd);
return 0;

}
switch(uMsg) {
// code to handle other windows messages
default:

return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return 0;

}

whereDoSyncis the function that actually calls ULSynchronize.

☞ For more information, see“ULIsSynchronizeMessage function” on
page 376.

Adding ActiveSync synchronization (MFC)

If you are using Microsoft Foundation Classes to develop your application,
you can catch the synchronization message in the main dialog class or in
your application class. Both methods are described here.

☞ Your application must create and register a custom window class name
for notification. See“Assigning class names for applications” on page 137.

❖ To add ActiveSync synchronization in the main dialog class

1. Add a registered message and declare a message handler.

Find the message map in the source file for your main dialog (the name
is of the same form asCMyAppDlg.cpp). Add a registered message

141

using thestatic and declare a message handler using
ON_REGISTERED_MESSAGE as in the following example:

static UINT WM_ULTRALITE_SYNC_MESSAGE =
::RegisterWindowMessage(UL_AS_SYNCHRONIZE);

BEGIN_MESSAGE_MAP(CMyAppDlg, CDialog)
//{{AFX_MSG_MAP(CMyAppDlg)
//}}AFX_MSG_MAP

ON_REGISTERED_MESSAGE(WM_ULTRALITE_SYNC_MESSAGE,
OnDoUltraLiteSync)

END_MESSAGE_MAP()

2. Implement the message handler.

Add a method to the main dialog class with the following signature. This
method is automatically executed any time the MobiLink provider for
ActiveSync requests that your application synchronize. The method
should callULSynchronize.

LRESULT CMyAppDlg::OnDoUltraLiteSync(
WPARAM wParam,
LPARAM lParam

);

The return value of this function should be 0.

☞ For information on handling the synchronization message, see
“ULIsSynchronizeMessage function” on page 376.

❖ To add ActiveSync synchronization in the Application class

1. Open up the Class Wizard for the application class.

2. In the Messages list, highlight PreTranslateMessage and then click the
Add Function button.

3. Click the Edit Code button. The PreTranslateMessage function appears.
Change it to read as follows:

BOOL CMyApp::PreTranslateMessage(MSG * pMsg)
{

if(ULIsSynchronizeMessage(pMsg->message)) {
DoSync();
// close application if launched by provider
if(pMsg->wParam == 1) {

ASSERT(AfxGetMainWnd() != NULL);
AfxGetMainWnd()->SendMessage(WM_CLOSE);

}
return TRUE; // message has been processed

}
return CWinApp::PreTranslateMessage(pMsg);

}

whereDoSyncis the function that actually calls ULSynchronize.

142

Chapter 7. Developing UltraLite Applications for Windows CE

☞ For information on handling the synchronization message, see
“ULIsSynchronizeMessage function” on page 376.

TCP/IP, HTTP, or HTTPS synchronization from Windows CE

For TCP/IP, HTTP, or HTTPS synchronization, the application controls
when synchronization occurs. Your application will usually provide a menu
item or user interface control so that the user can request synchronization.

☞ For more information, see“Synchronizing data” on page 51.

143

144

PART III

TUTORIALS

This part provides tutorials that walk you through the development of a
simple UltraLite application.

CHAPTER 8

Tutorial: Build an Application Using the
C++ Component

About this chapter This chapter provides a tutorial to guide you through the process of building
a simple UltraLite C++ Component application.

Contents Topic: page

Introduction 148

Lesson 1: Connect to the database 149

Lesson 2: Insert data into the database 156

Lesson 3: Select the rows from the table 158

Lesson 4: Add synchronization to your application 160

Lesson 5: Deploy to a Windows CE device 162

147

Introduction
This tutorial guides you through the process of building an UltraLite C++
application. The application is built for Windows operating systems, and
runs at a command prompt.

This tutorial uses a text editor to edit the C++ files. You can also use any
C++ development environment, such as Microsoft Visual Studio.

Timing The tutorial takes about 30 minutes if you copy and paste the code. If you
enter the code yourself, it takes significantly longer.

Competencies and
experience

This tutorial assumes:

♦ you are familiar with the C++ programming language

♦ you have a C++ compiler installed on your computer

♦ you know how to create an UltraLite schema using the UltraLite Schema
Painter

☞ For more information, see“Lesson 1: Create an UltraLite database
schema”[UltraLite Database User’s Guide,page 130].

Note
The synchronization portion of this tutorial requires SQL Anywhere Studio.

Goals The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite C++ Component application.

148

Chapter 8. Tutorial: Build an Application Using the C++ Component

Lesson 1: Connect to the database
In the first procedure, you create a database schema. You then write,
compile, and run a C++ application that creates a database using the schema
you have created.

❖ To create a database schema

1. Create a directory to hold the files you create in this tutorial.

The remainder of this tutorial assumes that this directory is
c:\tutorial\cpp. If you create a directory with a different name, use that
directory instead ofc:\tutorial\cppthroughout the tutorial.

2. Using the UltraLite Schema Painter, create a database schema in your
new directory with the following characteristics.

☞ For more information about using the UltraLite Schema painter, see
“Lesson 1: Create an UltraLite database schema”[UltraLite Database
User’s Guide,page 130].

Schema file name:tutcustomer.usm

Table name:customer

Columns in customer:

Column

Name

Data Type

(Size)

Column allows

NULL values?

Default value

id integer No autoincrement

fname char(15) No None

lname char(20) No None

city char(20) Yes None

phone char(12) Yes 555-1234

Primary key: ascendingid

❖ To connect to an UltraLite database

1. In Microsoft Visual C++, choose File➤ New.

2. On the Files tab, choose C++ Source File.

3. Save the file ascustomer.cppin your tutorial directory.

4. Import the UltraLite libraries and use the UltraLite namespace.

Copy the code below intocustomer.cpp.

149

#include "uliface.h"
#include <stdio.h>
#include <tchar.h>
#include <assert.h>
using namespace UltraLite;
#define MAX_NAME_LEN 100
ULSqlca Sqlca;

☞ For information about how using the UltraLite namespace makes
class declarations simpler, see“Using the UltraLite namespace” on
page 14.

5. Define connection parameters to connect to the database. In this example,
the parameters are the location of the database and schema files.

In the following code, these locations are hard coded. In a real
application, the locations would be specified at runtime. In addition,
these connection parameters are sufficient only for connections in the
development environment; additional parameters are needed for the
application to run on a Windows CE device.

Copy the code below intocustomer.cpp.

static ul_char const * ConnectionParms =
UL_TEXT("UID=DBA;PWD=SQL")
UL_TEXT(";DBF=tutcustomer.udb")
UL_TEXT(";schema_file=tutcustomer.usm");

☞ For more information about connection parameters, see“Class
UltraLite_Connection_iface” on page 236.

6. Define a method for error handling.

UltraLite provides a callback mechanism to notify the application of
errors.

This is a sample callback function.

150

Chapter 8. Tutorial: Build an Application Using the C++ Component

ul_error_action UL_GENNED_FN_MOD MyErrorCallBack(
SQLCA * sqlca,
ul_error_kind kind,
ul_void * user_data,
ul_char * message_parameter)

{
ul_error_action rc;

(void) user_data;
switch(kind) {

case UL_ERROR_KIND_MEDIA_REMOVED:
// Not handled in this sample: Prompt user to re-

insert media
// (message_parameter contains the filename).
rc = UL_ERROR_ACTION_ABORT;
// use UL_ERROR_ACTION_RETRY to retry
break;

case UL_ERROR_KIND_SQLCODE:
switch(sqlca->sqlcode){
// The following errors are used for flow control,

and we don’t want to
// report them here:
case SQLE_NOTFOUND:
case SQLE_ULTRALITE_DATABASE_NOT_FOUND:

break;
case SQLE_CANNOT_ACCESS_SCHEMA_FILE:

_tprintf(_TEXT(

"Error %ld: UltraLite schema file %s not found \n"),
sqlca->sqlcode, message_parameter);

break;
case SQLE_COMMUNICATIONS_ERROR:

_tprintf(_TEXT(

"Error %ld: Communications error \n"), sqlca->sqlcode
);

break;
default:

_tprintf(_TEXT(

151

"Error %ld: %s \n"), sqlca->sqlcode, message_parameter
);

break;
}
rc = UL_ERROR_ACTION_ABORT; // N/A for SQLCODE kind,

return ABORT
break;

default:
// future error kinds
assert(0);
rc = UL_ERROR_ACTION_ABORT; // default action
break;

}
return rc;

}

In UltraLite, two errors are used to control application flow. The
SQLE_ULTRALITE_DATABASE_NOT_FOUND error is signaled on
the first connection attempt (when only the schema file is present), and is
used to prompt the application to create a database from the schema file.
The SQLE_NOTFOUND error marks the end of a loop over a result set.

☞ For more information about error handling, see“Handling errors” on
page 34.

7. Define a method to open a connection to a database.

If the database file does not exist, a SQLException is thrown. The schema
file is used to create a new database and establish a connection to it.

If the database file exists, a connection is established.

152

Chapter 8. Tutorial: Build an Application Using the C++ Component

Connection * open_conn(DatabaseManager * dm) {
Connection * conn;
conn = dm->OpenConnection(Sqlca, ConnectionParms);
if(conn == NULL) {

if(Sqlca.GetSQLCode() == SQLE_ULTRALITE_DATABASE_NOT_
FOUND) {

// The database doesn’t exist yet -- create it using the
schema file.

conn = dm->CreateAndOpenDatabase(Sqlca,
ConnectionParms);

if(conn == NULL) {
handle_error(_TEXT("create database"));

} else {
_tprintf(_TEXT("Connected to a new database. \n")
);

}
} else {

handle_error(_TEXT("open database"));
}

} else {
_tprintf(_TEXT("Connected to an existing database. \n")

);
}
return conn;

}

8. Implement the main() method.

The main method carries out the following tasks.

♦ Instantiates a DatabaseManager object. All UltraLite objects are
created from the DatabaseManager object.

♦ Registers the error handling function.

♦ Opens a connection to the database.

♦ Closes the connection and shuts down the database manager.

153

int main() {
ul_char buffer[100];
DatabaseManager * dm;
Connection * conn;
Sqlca.Initialize();
ULRegisterErrorCallback(

Sqlca.GetCA(), MyErrorCallBack,
UL_NULL, buffer, 100);

dm = ULInitDatabaseManager(Sqlca);
if(dm == UL_NULL){

// You may have mismatched UNICODE vs. ANSI
runtimes.

Sqlca.Finalize();
return 1;
}

conn = open_conn(dm);
if(conn == UL_NULL){

dm->Shutdown(Sqlca);
Sqlca.Finalize();
return 1;
}

dm->Shutdown(Sqlca);
Sqlca.Finalize();
return 0;

}

9. Compile and link the Customer class.

The method you use to compile the class depends on your compiler. The
following instructions are for the Microsoft Visual C++ command line
compiler using a makefile.

♦ From a command prompt, browse to your tutorial directory.

♦ Create a makefile namedmakefile.

♦ In the makefile, add directories to your include path as follows.

IncludeFolders= \
/I"$(ASANY9) \h"

♦ In the makefile, add directories to your libraries path as follows.

LibraryFolders= \
/LIBPATH:"$(ASANY9) \ultralite \win32 \386\lib"

♦ In the makefile, add libraries to your linker command line options as
follows.

Libraries= \
ulimp.lib

The UltraLite runtime library,ulimp.lib, is an ASCII version of the
library. If you choose the Unicode version,ulimpw.lib, you should add
/DUNICODE to the compiler options.

154

Chapter 8. Tutorial: Build an Application Using the C++ Component

♦ In the makefile, set the following compiler options all on one line.

CompileOptions=/c /nologo /W3 /Od /Zi /DWIN32 /DUL_USE_
DLL

♦ In the makefile, add an instruction for linking the application.

customer.exe: customer.obj
link /NOLOGO /DEBUG customer.obj $(LibraryFolders)

$(Libraries)

♦ In the makefile, add an instruction for compiling the application.

customer.obj: customer.cpp
cl $(CompileOptions) $(IncludeFolders) customer.cpp

♦ Add an instruction to create a preprocessed version of the file. This
step is included for debugging purposes.

customer.i: customer.cpp
cl $(CompileOptions) $(IncludeFolders) customer.cpp -

P

♦ Run the makefile as follows:

nmake

An executable namedcustomer.exeis created.

10. Run the application.

At the command prompt, entercustomer.

155

Lesson 2: Insert data into the database
The following procedures demonstrate how to add data to a database.

❖ To add rows to your database

1. Add procedure below tocustomer.cpp, immediately before the main
method.

This procedure carries out the following tasks.

♦ Opens the table using theconnection- >OpenTable() method. You
must open a Table object to carry out operations on the table.

♦ Obtains identifiers for the required columns of the table. The other
columns in the table can accept NULL values or have a default value.

♦ If the table is empty, adds two rows. To insert each row, the code
changes to insert mode using the InsertBegin method, sets values for
each required column, and executes an insert to add the rows to the
database.

The commit method is only required when you turn off autocommit.
By default, autocommit is enabled but it may be disabled for better
performance, or for multi-operation transactions.

♦ If the table is not empty, reports the number of rows in the table.

♦ Closes the Table object.

♦ Returns a boolean indicating whether the operation was completed.

156

Chapter 8. Tutorial: Build an Application Using the C++ Component

bool do_insert(Connection * conn) {
Table * table = conn->OpenTable(UL_TEXT("customer"));
if(table == NULL) {
return false;
}
if(table->GetRowCount() == 0) {
_tprintf(UL_TEXT("Inserting two rows. \n"));

table->InsertBegin();
table->Set(UL_TEXT("fname"), UL_TEXT("Penny"));
table->Set(UL_TEXT("lname"), UL_TEXT("Stamp"));
table->Insert();
CHECK_ERROR();

table->InsertBegin();
table->Set(UL_TEXT("fname"), UL_TEXT("Gene"));
table->Set(UL_TEXT("lname"), UL_TEXT("Poole"));
table->Insert();
CHECK_ERROR();

conn->Commit();
CHECK_ERROR();

} else {
_tprintf(UL_TEXT("The table has %lu rows \n"),

table->GetRowCount());
}
table->Release();
return true;

}

2. Call the do_insert method you have created.

Add the following line to themain() method, immediately after the call
to open_conn.

do_insert(conn);

3. Compile your application by runningnmake.

4. Run your application by typingcustomerat the command prompt.

157

Lesson 3: Select the rows from the table
The following procedure retrieves rows from the table and prints them on the
command line.

❖ To list the rows in the table

1. Add the method below tocustomer.cpp. This method carries out the
following tasks.

♦ Opens the Table object.

♦ Retrieves the column identifiers.

♦ Sets the current position before the first row of the table.

Any operations on a table are carried out at the current position. The
position may be before the first row, on one of the rows of the table, or
after the last row. By default, as in this case, the rows are ordered by
their primary key value (id). To order rows in a different way, you can
add an index to an UltraLite database and open a table using that index.

♦ For each row, the id and name are written out. The loop carries on until
the Next method returns false, which occurs after the final row.

♦ Closes the Table object.

158

Chapter 8. Tutorial: Build an Application Using the C++ Component

bool do_select(Connection * conn) {
Table * table = conn->OpenTable(UL_TEXT("customer"));
if(table == NULL) {
return false;
}
TableSchema * schema = table->GetSchema();
if(schema == NULL) {

table->Release();
return false;

}
ul_column_num id_cid = schema->GetColumnID(UL_TEXT("id")

);
ul_column_num fname_cid = schema->GetColumnID(UL_

TEXT("fname"));
ul_column_num lname_cid = schema->GetColumnID(UL_

TEXT("lname"));
schema->Release();
while(table->Next()) {

ul_char fname[MAX_NAME_LEN];
ul_char lname[MAX_NAME_LEN];
table->Get(fname_cid).GetString(fname, MAX_NAME_LEN

);
table->Get(lname_cid).GetString(lname, MAX_NAME_LEN

);
_tprintf("id=%d, name=%s %s \n", (int)table->Get(id_cid

), fname, lname);
}
table->Release();
return true;

}

2. Add the following line to themain() method, immediately after the call
to the insert method:

do_select(conn);

3. Compile your application by runningnmake.

4. Run your application by typingcustomerat the command prompt.

159

Lesson 4: Add synchronization to your application
This lesson synchronizes your application with a consolidated database
running on your computer.

The following procedures add synchronization code to your application, start
the MobiLink synchronization server, and run your application to
synchronize.

Note
This lesson uses MobiLink synchronization, which is part of SQL Any-
where Studio. You must have SQL Anywhere Studio installed on your
computer to carry out this lesson.

The UltraLite database you created in the previous lessons synchronizes
with the UltraLite 9.0 Sample database. The UltraLite 9.0 sample database
has a ULCustomer table whose columns match those in the customer table
of your UltraLite database.

This lesson assumes that you are familiar with MobiLink synchronization.

❖ To add synchronization to your application

1. Add the method below tocustomer.cpp. This method carries out the
following tasks.

♦ Sets the synchronization stream to TCP/IP. Synchronization can also
be carried out over HTTP, ActiveSync, or HTTPS. For more
information, see“UltraLite Clients” [MobiLink Clients,page 277].

♦ Sets the script version. MobiLink synchronization is controlled by
scripts stored in the consolidated database. The script version identifies
which set of scripts to use.

♦ Sets sendColumnNames to true so the MobiLink synchronization
server can generate synchronization scripts automatically.

☞ For more information, see“Generating scripts automatically”
[MobiLink Administration Guide,page 230].

♦ Sets the MobiLink user name. This value is used for authentication at
the MobiLink synchronization server. It is distinct from the UltraLite
database user ID, although in some applications you may wish to give
them the same value.

♦ Sets the download_only parameter to true. By default, MobiLink
synchronization is two-way. This application uses download-only
synchronization so that the rows in your table do not get uploaded to
the sample database.

160

Chapter 8. Tutorial: Build an Application Using the C++ Component

bool do_sync(Connection * conn) {
ul_synch_info info;
conn->InitSynchInfo(&info);
info.stream = ULSocketStream();
info.version = UL_TEXT("ul_default");
info.user_name = UL_TEXT("sample");
info.send_column_names = true;
info.download_only = true;
if(!conn->Synchronize(&info)) {
handle_error(_TEXT("synchronize"));
return false;
}
return true;

}

2. Add the following line to themain() method, immediately after the call
to the insert method and before the call to the select method.

do_sync(conn);

3. Compile your application by runningnmake.

❖ To synchronize your data

1. Start the MobiLink synchronization server.

From a command prompt, run the following command.

dbmlsrv9 -c "dsn=UltraLite 9.0 Sample" -v+ -zu+ -za

The-zu+ and-za command line options provide automatic addition of
users and generation of synchronization scripts.

☞ For more information about these options, see the“MobiLink
Synchronization Server Options”[MobiLink Administration Guide,
page 189].

2. Run your application by typingcustomerat the command prompt.

The MobiLink synchronization server window displays status messages
indicating the synchronization progress. If synchronization is successful,
the final message displaysSynchronization complete .

161

Lesson 5: Deploy to a Windows CE device
The following procedure demonstrates how to deploy an UltraLite C++
Component application to a Windows CE device.

❖ To deploy to a Windows CE device

1. Ensure that your device is connected to your computer.

2. Start File Explorer on your device.

Choose Start➤ Programs➤ File Explorer.

3. Create directories to hold the UltraLite runtime and application.

♦ Navigate to the root of the device. The root may be named My Device
or My Pocket PC.

♦ Create a directory namedUltraLite.

♦ Open the UltraLite directory and create subdirectories namedlib and
CustDB.

\UltraLite\lib is the location for the UltraLite runtime files, and
\UltraLite\CustDBis the location for the application.

4. Copy the UltraLite runtime files to the Windows CE device.

You can now run the application on your Windows CE device. This
completes the tutorial.

162

CHAPTER 9

Tutorial: Build an Application Using the
Static C++ API

About this chapter This chapter provides a tutorial to guide you through the process of
developing a UltraLite application using the static + API. It describes how to
build a very simple application, and how to add synchronization to your
application.

Contents Topic: page

Introduction to the UltraLite static C++ API 164

Lesson 1: Getting started 166

Lesson 2: Create an UltraLite database template 167

Lesson 3: Run the UltraLite generator 168

Lesson 4: Write the application source code 169

Lesson 5: Build and run your application 172

Lesson 6: Add synchronization to your application 174

Restore the sample database 176

163

Introduction to the UltraLite static C++ API
You can use the UltraLite static C++ API to develop UltraLite C/C++
programs using an API instead of embedded SQL. It provides an equivalent
functionality to embedded SQL, but in the form of a C++ interface.

Base classes The UltraLite C++ API starts with a set of base classes that represent the
basic components of an UltraLite application. These are:

♦ ULData Represents an UltraLite database.

♦ ULConnection Represents a connection to an UltraLite database, and
also handles synchronization.

♦ ULCursor Provides methods used by generated table or result set
objects, for accessing and modifying the data.

♦ ULTable Provides methods used by generated table objects, but not by
generated result set objects. This class inherits fromULCursor .

♦ ULResultSet Provides methods used by generated result set objects, but
not by generated table objects. This class inherits fromULCursor , and is
not documented separately as it contains only methods that are in
ULCursor .

♦ ULStatement Represents a statement that does not return a result set,
such as an INSERT or UPDATE statement. All methods of this class are
generated.

Generated classes For each application, the UltraLite generator writes out a set of classes that
describe your particular UltraLite database.

♦ Generated result set classes Individual SQL statements that return
result sets are represented by a class, with methods for traversing the
result set, and for modifying the underlying data.

♦ Generated table classes Each table in the application is represented
by a class, and methods on that table allow the rows of the table to be
modified.

For example, for a table named Employee, the UltraLite generator
generates a class namedEmployee.

♦ Generated statement classes Individual SQL statements that do not
return result sets are represented by a simple class with anExecute
method.

You use these classes in your application to access and modify data, and to
synchronize with consolidated databases.

164

Chapter 9. Tutorial: Build an Application Using the Static C++ API

Overview

This tutorial describes how to construct a simple application using the
UltraLite static C++ API. The application is a Windows console application,
developed using Microsoft Visual C++, which queries data in the ULProduct
table of the UltraLite 9.0 Sample database.

The tutorial takes you through configuration of Visual C++, in such a way
that users of other development platforms should be able to identify the steps
required. These steps are supplied so that you can start development of your
own applications.

In the tutorial, you write and build an application that carries out the
following tasks.

1. Connects to an UltraLite database, consisting of a single table. The table
is a subset of the ULProduct table of the UltraLite Sample database.

2. Inserts rows into the table. Initial data is usually added to an UltraLite
application by synchronizing with a consolidated database.
Synchronization is added later in the chapter.

3. Writes the first row of the table to standard output.

In order to build the application, you must carry out the following steps:

1. Design the UltraLite database in an Adaptive Server Anywhere reference
database.

Here we use a single table from the UltraLite sample database (CustDB).

2. Run the UltraLite generator to generate the API for this UltraLite
database.

The generator writes out a C++ file and a header file.

3. Write source code that implements the logic of the application.

Here, the source code ismain.cpp.

4. Compile, link, and run the application.

You then add synchronization to your application.

165

Lesson 1: Getting started
In this tutorial, you will create a set of files, including source files and
executable files. You should make a directory to hold these files. In addition,
you should make a copy of the UltraLite sample database so that you can
work on it, and be sure you still have the original sample database for other
projects.

Copies of the files used in this tutorial can be found in the
Samples\UltraLite\APITutorialsubdirectory of your SQL Anywhere
directory.

❖ To prepare a tutorial directory

1. Create a directory to hold the files you will create. The remainder of the
tutorial assumes that this directory isc:\APITutorial.

❖ To copy the sample database

1. Make a backup copy of the UltraLite 9.0 Sample database into the
tutorial directory. The UltraLite 9.0 Sample database is the filecustdb.db,
in theSamples\UltraLite\CustDBsubdirectory of your SQL Anywhere
installation directory. In this tutorial, we use the original UltraLite 9.0
Sample database, and at the end of the tutorial you can copy the
untouched version from theAPITutorial directory back into place.

166

Chapter 9. Tutorial: Build an Application Using the Static C++ API

Lesson 2: Create an UltraLite database template
In this tutorial, you use the original copy of the UltraLite 9.0 Sample
database (CustDB) as a reference database. The copy you placed in the
APITutorial directory serves as a backup.

An UltraLite database template is a set of tables, and columns within
tables, that are to be included in your UltraLite database. You create an
UltraLite database template by creating a publication in the reference
database. The publication is simply a convenient device for assembling
tables and column-based subsets of tables: there is no direct connection to
SQL Remote or MobiLink synchronization.

You can also define your UltraLite database by adding SQL statements to the
reference database. SQL statements allow you to include joins and more
advanced features in your UltraLite application. Here, we build an UltraLite
database template by defining tables, as it is more simple.

The tutorial uses SQL statements to define the UltraLite database.

☞ For an example of how to add SQL statements to a database, see
“Lesson 1: Getting started” on page 166.

❖ To create the UltraLite database template

1. Start Sybase Central.

2. Connect to the UltraLite 9.0 Sample database.
♦ Choose Tools➤ Connect.

♦ If a list of plugins is displayed, choose Adaptive Server Anywhere 9.

♦ In the Connect dialog, choose the UltraLite 9.0 Sample ODBC data
source.

♦ Click OK to connect.

3. Create a publication that describes the data you wish to include in your
UltraLite database.

♦ In Sybase Central, open the custdb database.

♦ Open the Publications folder. Choose File➤ New ➤ Publication.
The Publication Creation wizard appears.

♦ Name the publication ProductPub.

♦ Add the ULProduct table to the publication, including all columns in
the publication.

♦ Click Finish to create the publication.

You have now finished designing the UltraLite database template. Leave
Sybase Central and the database server running for the next lesson.

167

Lesson 3: Run the UltraLite generator
The UltraLite generator writes a C++ file and a header file that define an
interface to the UltraLite database, as specified in the UltraLite database
template.

❖ To generate the UltraLite interface code

1. From a command prompt, change directory to yourAPITutorial
directory.

2. Run the UltraLite generator with the following arguments (all on one
line):

ulgen -c "dsn=UltraLite 9.0 Sample" -t c++ -u ProductPub -f
ProductPubAPI

The generator writes out the following files:

♦ ProductPubAPI.hpp This file contains prototypes for the generated
API. You should inspect this file to determine the API you can use in
your application.

♦ ProductPubAPI.cpp This file contains the interface source. You do
not need to look at this file.

♦ ProductPubAPI.h This file contains internal definitions required by
UltraLite. You do not need to look at this file.

168

Chapter 9. Tutorial: Build an Application Using the Static C++ API

Lesson 4: Write the application source code
The following procedure creates a C++ source file containing the application
source code. This code does not contain error checking or other features that
you would require in a complete application. It is provided as a simplified
application, for illustrative purposes only.

You can find the source code inSamples\UltraLite\APITutorial\sample.cpp,
although you may have to edit the file to uncomment the inserts.

❖ To write the application source code

1. In Microsoft Visual C++, choose File➤ New.

2. On the Files tab, choose C++ Source File. Click OK.

3. Copy and paste the following source code into a file namedsample.cppin
yourAPItutorial directory.

169

// (1) include headers
#include <stdio.h>
#include "ProductPubAPI.hpp"

void main() {
// (2) declare variables
long price;
ULData db;
ULConnection conn;
ULProduct productTable;

// (3) connect to the UltraLite database
db.Open() ;

conn.Open(&db, "dba", "sql");
productTable.Open(&conn);

// (4) insert sample data
productTable.SetProd_id(1);
productTable.SetPrice(400);
productTable.SetProd_name("4x8 Drywall x100");
productTable.Insert();

productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();

// (5) Write out the price of the items
productTable.BeforeFirst();
while(productTable.Next()) {

productTable.GetPrice(price);
printf("Price: %d \n", price);

}

// (6) close the objects to finish
productTable.Close();
conn.Close();
db.Close();

}

Explanation The numbered comments in the code indicate the main tasks this routine
carries out:

1. Include headers.

In addition tostdio.h, you need to include the generated header file
ProductPubAPI.hppto include the generated classes describing the
Product table. This file includes the UltraLite header fileulapi.h.

2. Declare variables.

The UltraLite database is declared as an instance of classULData, and
the connection to the database is an instance of classULConnection.
These classes are included fromulapi.h.

170

Chapter 9. Tutorial: Build an Application Using the Static C++ API

The table is declared as an instance of classULProduct , a generated
name derived from the name of the table in the reference database.

3. Connect to the database.

Opening each of the declared objects establishes access to the data.
Opening the database requires no arguments; opening a connection
requires a user ID and password, and also the name of the database.
Opening the table requires the name of the connection.

4. Insert sample data.

In a production application, data is entered into the database by
synchronizing. It is a useful practice to insert some sample data during
the initial stages of development, and include synchronization at a later
stage.

The method names in theULProduct class are unique names that reflect
the columns of the table in the reference database.

☞ Synchronization is added to this routine in“Lesson 6: Add
synchronization to your application” on page 174.

5. Write out the price of each item.

The price is retrieved and written out for each row in the table.

6. Close the objects.

Closing the objects used in the program frees the memory associated with
them.

171

Lesson 5: Build and run your application
You can compile and link your application in the development tool of your
choice. In this section, we describe how to compile and link using Visual
C++; if you are using one of the other supported development tools, modify
the instructions to fit your tool.

1. Start Microsoft Visual C++ from your desktop in the standard fashion.

2. Configure Visual C++ to search the appropriate directories for UltraLite
header files and library files.

Select Tools➤ Options and click on the Directories tab. In the Show
Directories For dropdown list, choose Include Files. Include the
following directory, so that the header files can be accessed.

C: \Program Files \Sybase \SQL Anywhere 9 \h

On the same tab, select Library Files under the Show Directories For
dropdown menu. Include the following directory so that the UltraLite
library files can be accessed.

C: \Program Files \Sybase \SQL Anywhere 9 \ultralite \win32 \386\
lib

Click OK to submit the changes.

3. Create a project namedAPITutorial (it should have the same name as
the directory you have used to hold your files).

♦ Select File➤ New. The New dialog is displayed.

♦ On the Projects tab choose Win32 Console Application.

♦ Specify a project name ofAPITutorial.

♦ Specify theAPITutorial directory as its location.

♦ Select Create a New Workspace and click OK.

♦ Choose to create An Empty Project and click Finish.

♦ On the Workspace window, click the FileView tab. The workspace
tutorial consists of just the APITutorial project. Double-click
APITutorial files to display the three folders: Source Files, Header
Files, Resource Files.

4. Configure the project settings.

♦ Right-click APITutorial files and select Settings.

The Project Settings dialog is displayed.

♦ From the Settings For dropdown menu, choose All Configurations.

172

Chapter 9. Tutorial: Build an Application Using the Static C++ API

♦ Click the Link tab. Add the following runtime library to the
Object/Library Modules box.

ulimp.lib

♦ Click the C/C++ tab. From the Category dropdown menu, choose
General. Add the following to the Preprocessor definitions list:

__NT__,UL_USE_DLL

Here, __NT__ has two underscores either side of NT.

♦ Click OK to finish.

5. Add sample.cppandProductPubAPI.cppto the project.

♦ Right-click the Source Files folder and select Add Files to Folder.
Locatesample.cppand click OK. Open the Source Files folder to
verify that it containssample.cpp.

♦ Repeat to add the generatedProductPubAPI.cppfile to the project.

6. Add the file containing the base classes for the UltraLite API to the
project.

♦ Right-click the Source Files folder and choose Add Files to Folder.
Browse toulapi.cpp, located in thesrc subdirectory of your
SQL Anywhere installation. Click OK.

7. Compile and link the application.

♦ Select Build➤ Build APITutorial.exe to compile and link the
executable. Depending on your settings, theAPITutorial.exe
executable may be created in a Debug directory within your
APITutorial directory.

8. Run the application.

♦ Select Build➤ Execute APITutorial.exe.

A command prompt window appears and displays the prices of the
products in the product table.

You have now built and run a simple UltraLite application. The next step is
to add synchronization to your application.

173

Lesson 6: Add synchronization to your application
UltraLite applications exchange data with a consolidated database. In this
lesson, you add synchronization to the simple application you created in the
previous section. In addition, you change the output to verify that
synchronization has taken place.

Adding synchronization actually simplifies the code. Your initial version of
main.cpphas the following lines, that insert data into your UltraLite
database.

productTable.SetProd_id(1);
productTable.SetPrice(400);
productTable.SetProd_name("4x8 Drywall x100");
productTable.Insert();

productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();

This code is included to provide an initial set of data for your application. In
a production application, you would usually not insert an initial copy of your
data from source code, but instead carry out a synchronization.

❖ To add synchronization to your application

1. Add a synchronization information structure to your code.

♦ Add the following line immediately after the line that says
// (2) declare variables .

auto ul_synch_info synch_info;

This structure holds the parameters that control the synchronization.

2. Replace the explicit inserts with a synchronization call.

♦ Delete theproductTable methods listed above.

♦ Add the following lines in their place:

conn.InitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb 9.0");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=localhost");
conn.Synchronize(&synch_info);

The value of50 is the MobiLink user name.

The stringcustdb instructs MobiLink to use the default script version
for synchronization.

174

Chapter 9. Tutorial: Build an Application Using the Static C++ API

ULSocketStream() instructs the application to synchronize over
TCP/IP, andhost=localhost specifies the host name of the
MobiLink server, which in this case is the current machine.

3. Compile and link your application.

♦ Select Build➤ Build APITutorial.exe to compile and link the
executable. Depending on your settings, theAPITutorial.exe
executable may be created in a Debug directory within your
APITutorial directory.

4. Start the MobiLink server running against the sample database.

From a command prompt in yourAPITutorial directory, enter the
following command:

start dbmlsrv9 -c "dsn=UltraLite 9.0 Sample"

5. Run your application.

From the Build menu, choose Execute APITutorial.exe.

The application connects, synchronizes to receive data, and writes out
information to the command prompt window. The output is as follows:

The ULData object is open
Price: 400
Price: 3000
Price: 40
Price: 75
Price: 100
Price: 400
Price: 3000
Price: 75
Price: 40
Price: 100

175

Restore the sample database
Now that you have completed the tutorial, you should restore the sample
database so that it can be used again. You created a copy of the UltraLite 9.0
Sample database in“Lesson 1: Getting started” on page 166. You can now
replace the version ofcustdb.dbthat you just changed with the copy.

❖ To restore the sample database

1. Copy thecustdb.dbfile from your tutorial directory to the
UltraLite\Samples\CustDBsubdirectory of your SQL Anywhere
directory.

2. In the same directory, delete the transaction log filecustdb.log.

Your sample database is now restored to its original state.

176

CHAPTER 10

Tutorial: Build an Application Using
Embedded SQL

About this chapter This chapter provides a tutorial to guide you through the process of
developing an embedded SQL UltraLite application using eMbedded Visual
C++.

☞ For an overview of the development process and background
information on the UltraLite database, see“Developing embedded SQL
applications” on page 7.

☞ For information on developing embedded SQL UltraLite Applications,
see“Developing Applications Using Embedded SQL” on page 61.

☞ For a description of embedded SQL, see“Embedded SQL API
Reference” on page 357.

Contents Topic: page

Introduction 178

Lesson 1: Configure eMbedded Visual C++ 179

Lesson 2: Write an embedded SQL source file 180

Lesson 3: Build the sample embedded SQL UltraLite application 186

Lesson 4: Add synchronization to your application 187

177

Introduction
In this tutorial, you create an embedded SQL source file and use it to build a
simple UltraLite application. This UltraLite application can be executed on a
remote device.

This tutorial assumes that you have UltraLite and Microsoft eMbedded
Visual Tools installed on your computer. If you use a different C/C++
development tool, you will have to translate the eMbedded Visual C++
instructions into their equivalent for your development tool.

❖ To prepare for the tutorial

1. Create a directory to hold the files you will create.

The remainder of the tutorial assumes that this directory isc:\tutorial\.

178

Chapter 10. Tutorial: Build an Application Using Embedded SQL

Lesson 1: Configure eMbedded Visual C++
The following procedure configures eMbedded Visual C++ for UltraLite
development. You may need to add additional library and include paths.

❖ To configure eMbedded Visual C++ for UltraLite development

1. Start Microsoft eMbedded Visual C++ 3.0.

From the Start menu, choose Programs➤ Microsoft Visual Tools➤

eMbedded Visual C++ 3.0

2. Configure eMbedded Visual C++ to search the appropriate directories for
embedded SQL header files and UltraLite library files.

a. Select Tools➤ Options.

The Options dialog is displayed.

b. Click the Directories tab

c. For each target platform and CPU combination,

♦ Choose Include Files under the Show Directories For dropdown
menu. Include the following directory, so that the embedded SQL
header files are accessible.

C: \Program Files \Sybase \SQL Anywhere 9 \h
If you have installed SQL Anywhere to a directory other than the
default, substitute the\h subdirectory of your installation.

♦ Choose Library Files under the Show Directories For dropdown
menu. Include the UltraLite\lib directory, located in a
platform-specific directory. For example, for the Pocket PC
emulator, choose the following:

C: \Program Files \Sybase \SQL Anywhere 9 \UltraLite \ce\
emulator30 \lib

d. Click OK.

179

Lesson 2: Write an embedded SQL source file
The following procedure creates a sample program that establishes a
connection with the UltraLite CustDB sample database and executes a query.

❖ To build the sample embedded SQL UltraLite application

1. Start Microsoft eMbedded Visual C++.

Choose Start➤ Programs➤ Microsoft eMbedded Visual Tools➤
eMbedded Visual C++.

2. Create a new workspace namedUltraLite :

♦ Select File➤ New.

♦ Click the Workspaces tab.

♦ Choose Blank Workspace. Specify a workspace nameUltraLite and
specifyC:\tutorial as the location to save this workspace. Click OK.

TheUltraLite workspace is added to the Workspace window.

3. Create a new project namedesqland add it to theUltraLite workspace.

♦ Select File➤ New.

♦ Click the Projects tab.

♦ Choose WCE Pocket PC 2002 Application. Specify a project name
esqland select Add To Current Workspace. Select the applicable
CPUs. Click OK.

♦ Choose Create An Empty Project and click Finish.

The project is saved in thec:\tutorial\esqlfolder.

4. Create thesample.sqcsource file.

♦ Choose File➤ New.

♦ Click the Files tab.

♦ Select C++ Source File.

♦ Select Add to Project and select esql from the dropdown list.

♦ Name the filesample.sqc. Click OK.

♦ Copy the following source code into the file:

180

Chapter 10. Tutorial: Build an Application Using Embedded SQL

#include <stdio.h>
#include <wingdi.h>
#include <winuser.h>
#include <string.h>
#include "uliface.h"
EXEC SQL INCLUDE SQLCA;
int WINAPI WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nShowCmd)

{
/ * Declare fields * /
EXEC SQL BEGIN DECLARE SECTION;

long pid=1;
long cost;
char pname[31];

EXEC SQL END DECLARE SECTION;
/ * Before working with data * /
db_init(&sqlca);
/ * Connect to database * /
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
/ * Fill table with data first * /
EXEC SQL INSERT INTO ULProduct(

prod_id, price, prod_name)
VALUES (1, 400, ’4x8 Drywall x100’);

EXEC SQL INSERT INTO ULProduct (
prod_id, price, prod_name)

VALUES (2, 3000, ’8’’2x4 Studs x1000’);
EXEC SQL COMMIT;
/ * Fetch row from database * /
EXEC SQL SELECT price, prod_name

INTO :cost, :pname
FROM ULProduct
WHERE prod_id= :pid;

/ * Error handling. If the row does not exist,
or if an error occurs, -1 is returned * /

if((SQLCODE==SQLE_NOTFOUND)||(SQLCODE<0)) {
return(-1);

}

181

/ * Print query results * /
wchar_t query[100];
wchar_t result[10];
wchar_t wpname[31];
mbstowcs(wpname, pname, 31);
wcscpy(query, L"Product id: ");
_ltow(pid, result, 10);
wcscat(query, result);
wcscat(query, L" Price: ");
_ltow(cost, result, 10);
wcscat(query, result);
wcscat(query, L" Product name: ");
wcscat(query, wpname);
wcscpy(result, L"Result");
MessageBox(NULL, query, result, MB_OK);
/ * Preparing to exit:
rollback any outstanding changes and disconnect * /
EXEC SQL DISCONNECT;
db_fini(&sqlca);
return(0);

}

♦ Save the file.

5. Configure thesample.sqcsource file settings to invoke the SQL
preprocessor to preprocess the source file:

♦ Right-clicksample.sqcin the Workspace window and select Settings.

The Project Settings dialog appears.

♦ From the Settings For drop down menu, choose All Configurations.

♦ In the Custom Build tab, enter the following statement in the
Commands box. Ensure that the statement is entered all on one line.

The following statement runs the SQL preprocessorsqlppon the
sample.sqcfile, and writes the processed output in a file named
sample.cpp. The SQL preprocessor translates SQL statements in the
source file into C/C++.

"%asany9%\win32 \sqlpp.exe" -q -o WINDOWS -c
"dsn=Ultralite 9.0 Sample" $(InputPath)
sample.cpp

☞ For more information about the SQL preprocessor, see“The SQL
preprocessor”[ASA Programming Guide,page 203].

♦ Specifysample.cppin the Outputs box.

♦ Click OK to submit the changes.

6. Start the Adaptive Server Anywhere personal database server.

By starting the database server, both the SQL preprocessor and the
UltraLite analyzer will have access to your reference database. The

182

Chapter 10. Tutorial: Build an Application Using Embedded SQL

sample application uses the CustDB sample databasecustdb.dbas a
reference database and as consolidated database.

Start the database server at the command line from the
Samples\UltraLite\CusDBdirectory containingcustdb.dbas follows:

dbeng9 custdb.db

Alternatively, you can start the database server by selecting Start➤

Programs➤ SQL Anywhere 9➤ UltraLite ➤ Personal Server Sample for
UltraLite.

7. Preprocess thesample.sqcfile.

Because the sample application consists of only one source file, the
preprocessor automatically runs the UltraLite analyzer as well and
appends extra C/C++ code to the generated source file.

♦ Selectsample.sqcin the Workspace window. Choose Build➤

Compile sample.sqc. Asample.cppfile will be created and saved in
thetutorial\esqlfolder.

8. Add sample.cppto the project:

♦ Right-click the Source Files folder in the Workspace window and
select Add Files to Folder.

♦ Browse toc:\tutorial\esql\sample.cppand click OK.

Thesample.cppfile appears inside the Source Files folder.

Explanation of the sample program

Although the sample program is simple, it contains elements that must be
present in every embedded SQL source file used for database access.

The following list describes the key elements in the sample program. Use
these steps as a guide when creating your own embedded SQL UltraLite
application.

1. Include the appropriate header files.

The sample program uses standard I/O, therefore thestdio.hheader file
has been included.

2. Define the SQL communications area, sqlca.

Use the following command:

EXEC SQL INCLUDE SQLCA;

This definition must be your first embedded SQL statement, so place it at
the end of your include list.

183

Prefix SQL statements
All SQL statements must be prefixed with the keywords EXEC SQL
and must end with a semicolon.

3. Define host variables by creating a declaration section.

Host variables are used to send values to the database server or receive
values from the database server. Create a declaration section as follows:

EXEC SQL BEGIN DECLARE SECTION;
long pid=1;
long cost;
char pname[31];

EXEC SQL END DECLARE SECTION;

☞ For information about host variables, see“Using host variables” on
page 68.

4. Call the embedded SQL library functiondb_init to initialize the UltraLite
runtime library.

Call this function as follows:

db_init(&sqlca);

5. Connect to the database using the CONNECT statement.

To connect to the UltraLite sample database, you must supply the login
user ID and password. Connect as userDBA with passwordSQL as
follows:

EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";

6. Insert data into database tables.

When an application is first started, its database tables are empty. When
you synchronize the remote database with the consolidated database, the
tables are filled with values so that you may execute select, update or
delete commands.

Rather than using synchronization, this sample code directly inserts data
into the tables. Directly inserting data is a useful technique during the
early stages of UltraLite development.

If you use synchronization and your application fails to execute a query, it
can be due to a problem in the synchronization process or due to a
mistake in your program. To locate the source of failure may be difficult.
If you directly fill tables with data in your source code rather than
perform synchronization, then, if your application fails, you will know
automatically that the failure is due to a mistake in your program.

After you have tested that there are no mistakes in your program, remove
the insert statements and replace them with a call to theULSynchronize

184

Chapter 10. Tutorial: Build an Application Using Embedded SQL

function to synchronize the remote database with the consolidated
database.

☞ For information on adding synchronization to an UltraLite
application, see“Lesson 4: Add synchronization to your application” on
page 187.

7. Execute your SQL query.

The sample program executes a select query that returns one row of
results. The results are stored in the previously defined host variables
cost andpname.

8. Perform error handling.

The sample program executes a select request that returns an error code,
sqlcode . This code is negative if an error occurs; SQL_NOTFOUND is
returned if there are no query results. The sample program handles these
errors by returning –1.

9. Disconnect from the database.

You should rollback or commit any outstanding changes before
disconnecting.

To disconnect, use the DISCONNECT statement as follows:

EXEC SQL DISCONNECT;

10. End your SQL work with a call to the library functiondb_fini:

db_fini(&sqlca);

185

Lesson 3: Build the sample embedded SQL
UltraLite application

The following procedure uses the source file generated in the previous
lesson,sample.cpp, to create the sample embedded SQL UltraLite
application.

❖ To build the sample embedded SQL UltraLite application

1. Ensure that the Adaptive Server Anywhere personal database server is
still running.

2. Configure the project settings:

♦ Right-clickesqland select Settings.

The Project Settings dialog appears.

♦ Select All Configurations under the Settings For drop down menu.

♦ Click the Link tab and add the following runtime library to the
Object/Library Modules box.

ulimp.lib

♦ Click the C/C++ tab. Select Preprocessor from the Category
drop-down menu. Ensure that the following are included in the
Preprocessor definitions:

__NT__

♦ Click OK to close the dialog.

3. Build the executable:

♦ Select Build➤ Build esql.exe.

Theesqlexecutable is created. Depending on your settings, the
executable may be created in a Debug directory within your tutorial
directory.

4. Run the application:

♦ Select Build➤ Execute esql.exe.

A screen appears and displays the first row of the product table.

186

Chapter 10. Tutorial: Build an Application Using Embedded SQL

Lesson 4: Add synchronization to your application
Once you have tested that your program is functioning properly, you can
replace the code that manually insert data into the ULProduct table with
instructions to synchronize the remote database with the consolidated
database. Synchronization will fill the tables with data and you can
subsequently execute a select query.

Synchronization via TCP/IP

You can synchronize the remote database with the consolidated database
using a TCP/IP socket connection. CallULSynchronize with the
ULSocketStream() stream.

In order to synchronize with the CustDB consolidated database, the
employee ID must be supplied. This ID identifies an instance of an
application to the MobiLink server. You may choose a value of 50, 51, 52, or
53. The MobiLink server uses this value to determine the download content,
to record the synchronization state, and to recover from interruptions during
synchronization.

☞ For more information about the ULSynchronize function, see
“ULSynchronize function” on page 388.

Running the sample application with synchronization

After you have made changes tosample.sqc, you must preprocess
sample.sqcand rebuildesql.exe.

❖ To synchronize your application

1. Ensure that the Adaptive Server Anywhere database server is still
running.

2. Delete the INSERT commands and add the following code. Replace
your-pcwith the name of your computer.

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb 9.0");
synch_info.stream = ULSocketStream();
synch_info.send_column_names = ul_true;
synch_info.stream_parms = UL_TEXT("host= your-pc ;port=2439");
ULSynchronize(&sqlca, &synch_info);

3. Preprocesssample.sqc.

187

Choose Build➤ Compilesample.sqcto recompile the altered file. When
prompted, choose to reloadsample.cpp.

4. Build the executable.

Select Build➤ Build esql.exe to build the sample executable.

5. Start the MobiLink synchronization server.

At a command prompt, execute the following command on a single line:

dbmlsrv9 -c "DSN=UltraLite 9.0 Sample" -o ulsync.mls -vcr -x
tcpip -za

6. Run the application:

♦ Select Build➤ Execute esql.exe to run the sample application.

The remote database will be synchronized with the consolidated
database, filling the tables in the remote database with data. The select
query in the sample application will be processed, and a row of query
results will appear on the screen.

188

CHAPTER 11

Tutorial: Build an Application Using
ODBC

About this chapter This chapter walks you through the creation of an UltraLite ODBC
application.

Contents Topic: page

Introduction to UltraLite ODBC 190

Lesson 1: Getting started 191

Lesson 2: Create an UltraLite database schema file 193

Lesson 3: Connect to the database 194

Lesson 4: Insert data into the database 197

Lesson 5: Query the database 198

189

Introduction to UltraLite ODBC
ODBC is a standard database programming interface. UltraLite supports a
subset of the ODBC interface, together with extensions to permit
synchronization. For a listing of the functions UltraLite supports, see
“UltraLite ODBC API Reference” on page 389.

This section walks you through the creation of a simple UltraLite ODBC
application. It does not provide an extensive guide to ODBC programming,
as the main reference for ODBC is the MicrosoftODBC SDK
documentation.

UltraLite ODBC does not share some features with other C/C++ interfaces.
In particular, the functions listed in“UltraLite C/C++ Common API
Reference” on page 203cannot be used from UltraLite ODBC.

190

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcabout_this_manual.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcabout_this_manual.asp

Chapter 11. Tutorial: Build an Application Using ODBC

Lesson 1: Getting started
In this tutorial, you will create a set of files, including source files and
executable files. You should make a directory to hold these files. In the
remainder of the tutorial, it is assumed the directory isc:\tutorial\ulodbc. If
you choose a different name, use that name throughout.

The ODBC interface does not depend on any particular C/C++ compiler or
development environment. The tutorial uses a makefile with Microsoft’s
nmake syntax. If you are using a different development environment, make
the appropriate substitutions.

❖ Create and test your build environment

1. Add the following code to a file calledmakefilein your tutorial directory:

IncludeFolders= /I"$(ASANY9) \h"

CompileOptions=/c /nologo /W3 /Od /Zi /DWIN32 /DUL_USE_DLL

LibraryFolders= \
/LIBPATH:"$(ASANY9) \ultralite \win32 \386\lib"

Libraries= ulimp.lib

LinkOptions=/NOLOGO /DEBUG

sample.exe: sample.obj
link $(LinkOptions) sample.obj $(LibraryFolders)

$(Libraries)

sample.obj: sample.cpp
cl $(CompileOptions) $(IncludeFolders) sample.cpp

These options compile a source file calledsample.cppinto an executable
sample.exe, using the UltraLite import library for Windows (ulimp.lib).
They rely on the environment variable ASANY9, which is defined as
your SQL Anywhere installation directory.

2. Add the following code to a file calledsample.cppin your tutorial
directory:

#include "ulodbc.h"
#include <stdio.h>
#include <tchar.h>
int main() {

return 0;
}

This application simply returns 0 to the calling environment.

3. Compile and linksample.cpp.

191

If you are using the Microsoft compiler, typenmakeat a command
prompt to compile and link your application. Otherwise, use the
command appropriate for your development environment.

Compiling and linking the application confirms that your build
environment is set up properly. You are now ready for the rest of the
tutorial.

192

Chapter 11. Tutorial: Build an Application Using ODBC

Lesson 2: Create an UltraLite database schema
file

The database schema holds the table definitions. This tutorial uses a simple
one-table database. It is the same schema as used in other UltraLite
component tutorials.

This section assumes you can use the UltraLite Schema Painter to create a
schema file.

☞ For more information about creating a database schema, see the“Lesson
1: Create an UltraLite database schema”[UltraLite Database User’s Guide,
page 130].

❖ Create a database schema

1. Create a database schema using the UltraLite Schema Painter.

To start the UltraLite Schema Painter, choose Start➤ Programs➤ SQL
Anywhere Studio 9➤ UltraLite ➤ UltraLite Schema Painter.

Create your schema as follows:

♦ Schema filename c:\tutorial\ulodbc\customer.usm

♦ Table name customer

♦ Columns in customer

Column

Name

Data Type

(Size)

Column allows

NULL values?

Default value

id integer No autoincrement

fname char(15) No None

lname char(20) No None

city char(20) Yes None

phone char(12) Yes 555-1234

♦ Primary key ascending id

193

Lesson 3: Connect to the database
UltraLite uses standard ODBC programming methods to connect to a
database. Each application requires an environment handle to manage the
communication with UltraLite and a connection handle for a specific
connection.

❖ Write code to allocate an environment handle

1. Add functionsopendbandclosedbto sample.cpp:

static SQLHANDLE opendb(void){
SQLRETURN retn;
SQLHANDLE henv;
retn = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE,

&henv);
if(retn == SQL_SUCCESS){

_tprintf("success in opendb: %d. \n", retn);
return henv;

} else {
_tprintf("error in opendb: %d. \n", retn);
return henv;

}
}

static void closedb(SQLHANDLE henv){
SQLRETURN retn;
retn = SQLFreeHandle(SQL_HANDLE_ENV, henv);

}

These functions do not connect to the database, they simply allocate the
environment handlehenv that manages UltraLite features.

2. Call opendb and closedb from the main() function.

Alter your main() function in sample.cpp so that it reads as follows:

int main() {
SQLHANDLE henv;
henv = opendb();
closedb(henv);
return 0;

}

3. Compile, link, and run your application to confirm that the application
builds properly.

☞ For more information about the functions called in this procedure, see
“SQLAllocHandle function” on page 391, and“SQLFreeHandle function”
on page 402.

The next step is to connect to the UltraLite database

194

Chapter 11. Tutorial: Build an Application Using ODBC

❖ Write code to connect to your database

1. Add functionsconnectanddisconnectto sample.cpp:

static SQLHANDLE connect (SQLHANDLE henv){
SQLRETURN retn;
SQLHANDLE hcon;
retn = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hcon);
retn = SQLConnect(hcon

, (SQLTCHAR*)UL_TEXT(
"schema_file=customer.usm;dbf=customer.udb")

, SQL_NTS
, (SQLTCHAR*)UL_TEXT("dba")
, SQL_NTS
, (SQLTCHAR*)UL_TEXT("sql")
, SQL_NTS);

if(retn == SQL_SUCCESS){
_tprintf("success in connect: %d. \n", retn);
return hcon;

} else {
_tprintf("error in connect: %d. \n", retn);
return hcon;

}
}

static void disconnect(SQLHANDLE hcon, SQLHANDLE henv){
SQLRETURN retn;
retn = SQLDisconnect(hcon);
retn = SQLFreeHandle(SQL_HANDLE_DBC, hcon);

}

2. Call connect and disconnect from the main() function.

Alter your main() function insample.cppso that it reads as follows:

int main() {
SQLHANDLE henv;
SQLHANDLE hcon;
henv = opendb();
hcon = connect(henv);
disconnect(hcon, henv);
closedb(henv);
return 0;

}

3. Compile, link, and run your application to confirm that the application
builds properly.

You should see that the application creates an UltraLite database file
customer.udbtogether with a temporary filecustomer.~db.

☞ For more information about the functions called in this procedure, see
“SQLConnect function” on page 394, and“SQLDisconnect function” on
page 396.

195

You now have an application that connects to and disconnects from a
database. The next step is to add some data to the database.

196

Chapter 11. Tutorial: Build an Application Using ODBC

Lesson 4: Insert data into the database
ODBC provides a set of functions to carry out operations on the database. In
this lesson we use the simplest statement, SQLExecDirect.

❖ Write code to insert data into the database

1. Add a functioninsert to sample.cpp:

static ul_bool insert(SQLHANDLE hcon)
{

SQLRETURN retn;
SQLHANDLE hstmt;
retn = SQLAllocHandle(SQL_HANDLE_STMT, hcon, &hstmt);
static const ul_char * sql = UL_TEXT(

"INSERT customer(id, fname, lname) VALUES (42,
’jane’, ’doe’)");

retn = SQLExecDirect(hstmt, (SQLTCHAR *)sql, SQL_NTS);
if(retn == SQL_SUCCESS) {

_tprintf("success in insert. \n");
} else {

_tprintf("error in insert: %d. \n", retn);
retn = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
hstmt = 0;
}
return retn == SQL_SUCCESS;

}

2. Call insert from the main() function.

Alter your main() function insample.cppso that it reads as follows:

int main() {
SQLHANDLE henv;
SQLHANDLE hcon;
henv = opendb();
hcon = connect(henv);
insert(hcon);
disconnect(hcon, henv);
closedb(henv);
return 0;

}

3. Compile, link, and run your application to confirm that the application
builds properly.

You should see that the application reports success on inserting the data.

☞ For more information about the function called in this procedure, see
“SQLExecDirect function” on page 398.

197

Lesson 5: Query the database
In order to process query result sets, ODBC requires that statements be
prepared before they are executed. In this lesson you prepare and execute a
statement, and print out the results.

❖ Write code to query the database

1. Add functionsprepare, execute, andfetch to sample.cpp:

static SQLHANDLE prepare(SQLHANDLE hcon){
SQLRETURN retn;
SQLHANDLE hstmt;
static const ul_char * sql =

UL_TEXT("SELECT id, fname, lname FROM customer");
retn = SQLAllocHandle(SQL_HANDLE_STMT, hcon, &hstmt);
retn = SQLPrepare(hstmt, (SQLTCHAR *)sql, SQL_NTS);
if(retn == SQL_SUCCESS) {

_tprintf("success in prepare. \n");
} else {

_tprintf("error in prepare: %d. \n", retn);
retn = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
hstmt = 0;

}
return hstmt;

}

The prepare function does not execute the SQL statement.

static ul_bool execute(SQLHANDLE hstmt)
{

SQLRETURN retn;
retn = SQLExecute(hstmt);
if(retn == SQL_SUCCESS) {

_tprintf("success in execute. \n");
} else {

_tprintf("error in execute: %d. \n", retn);
retn = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
hstmt = 0;
}
return retn == SQL_SUCCESS;

}

The execute function executes the query, but does not make the result set
directly available to the client application. Your application must
explicitly fetch the rows it needs from the result set.

198

Chapter 11. Tutorial: Build an Application Using ODBC

static ul_bool fetch(SQLHANDLE hstmt)
{
#define NAME_LEN 20

SQLCHAR fName[NAME_LEN], lName[NAME_LEN];
SQLINTEGER id;
SQLINTEGER cbID = 0, cbFName = SQL_NTS, cbLName =

SQL_NTS;
SQLRETURN retn;

SQLBindCol(hstmt, 1, SQL_C_ULONG, &id, 0, &cbID);
SQLBindCol(hstmt, 2, SQL_C_CHAR,

fName, sizeof(fName), &cbFName);
SQLBindCol(hstmt, 3, SQL_C_CHAR,

lName, sizeof(lName), &cbLName);
while ((retn = SQLFetch(hstmt)) != SQL_NO_DATA){

if (retn == SQL_SUCCESS || retn == SQL_SUCCESS_WITH_
INFO){

fName[cbFName] = ’ \0’;
lName[cbLName] = ’ \0’;
_tprintf("%20s %d %20s \n", fName, id, lName);

} else {
_tprintf ("error while fetching: %d. \n", retn

);
break;

}
}
return retn == SQL_SUCCESS;

}

The values are fetched into variables that have been bound to the column.
String variables are not returned with a null terminator, and so the null
terminator is added for printing purposes. The length of the actual string
that was returned is available in the final parameter of SQLBindCol.

2. Call prepare, execute, and fetch from the main() function.

Alter your main() function insample.cppso that it reads as follows:

int main() {
SQLHANDLE henv;
SQLHANDLE hcon;
SQLHANDLE hstmt;

henv = opendb();
hcon = connect(henv);
insert(hcon);
hstmt = prepare(hcon);
execute(hstmt);
fetch(hstmt);
SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
disconnect(hcon);
closedb(henv);
return 0;

}

199

3. Compile, link, and run your application to confirm that the application
builds properly.

You should see that the application prints out the row you inserted.

☞ For more information about the functions called in this procedure, see
“SQLPrepare function” on page 408, “SQLExecute function” on page 399,
“SQLBindCol function” on page 392, and“SQLFetch function” on
page 400.

This completes the tutorial.

200

PART IV

API REFERENCE

This part provides API reference material for UltraLite C/C++ programmers.

CHAPTER 12

UltraLite C/C++ Common API Reference

About this chapter This chapter lists functions and macros that are for use from any of the
embedded SQL, static C++ API, or C++ Component interfaces. They cannot
be used from ODBC.

The functions in this chapter all require a SQL Communications Area. For
more information, see“Common Features of UltraLite C/C++ Interfaces” on
page 105.

Contents Topic: page

Callback function for ULRegisterErrorCallback 204

Callback function for ULRegisterSchemaUpgradeObserver 206

ULEnableFileDB function 208

ULEnableGenericSchema function (deprecated) 209

ULEnablePalmRecordDB function 210

ULEnableStrongEncryption function 211

ULEnableUserAuthentication function 212

ULRegisterErrorCallback function 213

ULRegisterSchemaUpgradeObserver function 216

ULStoreDefragFini function 218

ULStoreDefragInit function 219

ULStoreDefragStep function 220

Macros and compiler directives for UltraLite C/C++ applications 221

203

Callback function for ULRegisterErrorCallback
Handle errors that the UltraLite runtime signals to your application.

Prototype ul_error_action UL_GENNED_FN_MOD error-callback-function(
SQLCA * sqlca,
ul_error_kind kind ,
ul_void * user_data,
ul_char * buffer
)

Parameters ♦ error-callback-function The name of your function. You must supply
the name to ULRegisterErrorCallback. See“ULRegisterErrorCallback
function” on page 213.

♦ sqlca A pointer to the SQL communications area (SQLCA).

The SQLCA contains the SQL code insqlca- >sqlcode . Any error
parameters have already been retrieved from the SQLCA and stored in
buffer.

This sqlca pointer does not necessarily point to the SQLCA in your
application, and cannot be used to call back to UltraLite. It is used only
to communicate the SQL code to the callback.

In the static C++ API the SQLCA is declared in the header file assqlca.
In the C++ Component use the Sqlca.GetCA() method.

♦ kind The kind of error that UltraLite is signaling. One of the following
constants:

• UL_ERROR_KIND_MEDIA_REMOVED The media card containing
the database has been removed and must be re-inserted for the current
I/O operation to succeed.

A common action to take for this kind of error is to prompt the user to
insert the media card.

For this kind of error, the buffer holds the database filename.

• UL_ERROR_KIND_SQLCODE A SQL error. The SQLCA contains
the SQL code in sqlca->sqlcode. SQL codes and their meanings are
listed in“Error messages indexed by Adaptive Server Anywhere
SQLCODE” [ASA Error Messages,page 2]. The returned error action is
ignored for this kind of error; the operation is always canceled.

♦ user_data The user data supplied to ULRegisterErrorCallback.
UltraLite does not change this data in any way. As the callback function
may be signaled anywhere in your application, the user_data argument is
an alternative to creating a global variable.

204

Chapter 12. UltraLite C/C++ Common API Reference

♦ buffer The buffer supplied when the callback function was registered.
UltraLite fills the buffer with a string holding any substitution parameters
for the error message. To keep UltraLite as small as possible, UltraLite
does not supply error messages themselves. The substitution parameters
depend on the specific error. You can look up the error parameters for
SQL errors in“Database Error Messages”[ASA Error Messages,page 1].

Return value Returns one of the following actions:

♦ UL_ERROR_ACTION_CANCEL Cancel the operation that raised the
error.

♦ UL_ERROR_ACTION_CONTINUE Continue execution, ignoring the
operation that raised the error.

♦ UL_ERROR_ACTION_DEFAULT Behave as if there is no error
callback. This value is particularly appropriate for
UL_ERROR_KIND_SQLCODE.

♦ UL_ERROR_ACTION_TRY_AGAIN Try the operation again that raised
the error.

Description ☞ For a description of error handling using this technique, see
“ULRegisterErrorCallback function” on page 213.

See also ♦ “ULRegisterErrorCallback function” on page 213
♦ “Error messages indexed by Adaptive Server Anywhere SQLCODE”

[ASA Error Messages,page 2]

205

Callback function for
ULRegisterSchemaUpgradeObserver

Enables applications to display progress during UltraLite database schema
upgrades.

Prototype ul_ret_void UL_GENNED_FN_MOD upgrade-callback-function(
p_ul_schema_upgrade_status status
)

Parameters ♦ upgrade-callback-function The name of your function. You must
supply the name to ULRegisterSchemaUpgradeObserver.

♦ status A pointer to a schema upgrade structure, which has the
following definition:

typedef struct {
ul_schema_upgrade_state state;
ul_u_long progress_counter;
ul_u_long final_progress_count;
ul_u_long upgrade_operations;
ul_bool stop;
ul_void * user_data;

}

The status fields are as follows:

♦ state One of the following:

• UL_UPGRADE_STATE_STARTING The upgrade is starting. The
user can safely cancel the operation at this stage.

• UL_UPGRADE_STATE_UPGRADING The upgrade is in progress.

• UL_UPGRADE_STATE_ABORT The schema upgrade is canceled as
a result of a recoverable error or as a result of user action. The old
database is preserved.

• UL_UPGRADE_STATE_ERROR A critical error occurred. The
database is unusable.

• UL_UPGRADE_STATE_DONE The upgrade completed successfully.

♦ progress_counter An approximation of the progress so far. The value
is a number between zero and final_progress_count, enabling you to
display a percentage complete value in a dialog box.

♦ final_progress_count The value of the progress_counter when the
upgrade completes successfully.

206

Chapter 12. UltraLite C/C++ Common API Reference

♦ upgrade_operations An approximation of the amount of work done
during the upgrade. The value starts at zero and increases as the upgrade
proceeds. It is updated more frequently than progress_counter. It can be
used as a relative measure to compare against other schema upgrades.

♦ stop To cancel the schema upgrade, set this value to ul_true when the
state is UL_UPGRADE_STATE_STARTING. Your application will
receive a second callback with UL_UPGRADE_STATUS_ABORT.

In embedded SQL and the Static C++ API, the connect operation fails
with SQLCODE SQLE_SCHEMA_UPGRADE_NOT_ALLOWED. In
the C++ Component, the UpgradeSchemaFromFile call returns false and
the SQLCODE is set to
SQLE_SCHEMA_UPGRADE_NOT_ALLOWED.

The stop value is ignored if you set stop to ul_true when the state is not
UL_UPGRADE_STATE_STARTING.

♦ user_data This is identical to the user_data parameter passed to
ULRegisterSchemaUpgradeObserver or UpgradeSchemaFromFile.

207

ULEnableFileDB function
Use a file-based data store on a device operating the Palm Computing
Platform version 4.0 or later.

Prototype void ULEnableFileDB(SQLCA * sqlca);

Parameters sqlca A pointer to the SQLCA. This argument is supplied even in C++
Component and static C++ API applications.

In the static C++ API the SQLCA is declared in the header file assqlca. In
the C++ Component use the Sqlca.GetCA() method.

Description To use the file-based data store on a Palm expansion card, an UltraLite
application must call ULEnableFileDB to load the persistent storage file-I/O
modules before connecting to the database.

Examples The following embedded SQL code illustrates the use of ULEnableFileDB.

db_init(& sqlca);
ULEnablePalmRecordDB(&sqlca);
// connection code here
if(SQLCODE == SQLE_CONNECTION_RESTORED){

// connection was restored
// cursor is already open

} else {
// open cursor

}

See also “ULEnablePalmRecordDB function” on page 210

208

Chapter 12. UltraLite C/C++ Common API Reference

ULEnableGenericSchema function (deprecated)
Upgrade the database schema when deploying a new version of an
application.

Deprecated feature
This statement is deprecated. Use ULRegisterSchemaUpgradeObserver
instead.

Prototype void ULEnableGenericSchema(SQLCA * sqlca);

Parameters sqlca A pointer to the SQLCA. This argument is supplied even in
C++ API applications.

In the static C++ API the SQLCA is declared in the header file assqlca. In
the C++ Component use the Sqlca.GetCA() method.

Description When a new UltraLite application is deployed to a device, UltraLite by
default re-creates an empty database, losing any data that was in the database
before the new application was deployed. If you call
ULEnableGenericSchema, the existing database is instead upgraded to the
schema of the new application.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called beforedb_init or ULData.Open(). An
exception is the Palm Computing Platform, where there is no need to close
all cursors before upgrading. Immediately following an upgrade on the Palm
Computing Platform the LAUNCH_SUCCESS_FIRST launch code is
returned.

Backup before upgrading
It is strongly recommended that you backup your data before attempting
an upgrade, either by copying the database file or by synchronizing.

For more information about the schema upgrade process, see“How schema
upgrade works”[UltraLite Database User’s Guide,page 56].

209

ULEnablePalmRecordDB function
Use a standard record-based data store on a device operating the Palm
Computing Platform.

Prototype void ULEnablePalmRecordDB(SQLCA * sqlca);

Parameters sqlca A pointer to the SQLCA. This argument is supplied even in C++
Component and C++ API applications.

In the static C++ API the SQLCA is declared in the header file assqlca. In
the C++ Component use the Sqlca.GetCA() method.

Description This function can be used by C++ Component and C++ API applications as
well as embedded SQL applications.

Examples The following embedded SQL code illustrates the use of
ULEnablePalmRecordDB.

db_init(& sqlca);
ULEnablePalmRecordDB(&sqlca);
// connection code here
if(SQLCODE == SQLE_CONNECTION_RESTORED){

// connection was restored
// cursor is already open

} else {
// open cursor

}

See also “ULEnableFileDB function” on page 208

210

Chapter 12. UltraLite C/C++ Common API Reference

ULEnableStrongEncryption function
Strongly encrypt an UltraLite database.

Prototype void ULEnableStrongEncryption(SQLCA * sqlca)

Parameters sqlca A pointer to the SQLCA. This argument is supplied even in C++
Component and C++ API applications.

In the static C++ API the SQLCA is declared in the header file assqlca. In
the C++ Component use the Sqlca.GetCA() method.

Description This function can be used by C++ API applications as well as embedded
SQL applications. It must be called beforedb_init() or ULData.Open().

See also “Encrypting data” on page 49

211

ULEnableUserAuthentication function
Enable user authentication in the UltraLite application.

Prototype void ULEnableUserAuthentication(SQLCA * sqlca);

Parameters sqlca A pointer to the SQLCA. This argument is supplied even in C++
Component and C++ API applications.

In the static C++ API the SQLCA is declared in the header file assqlca. In
the C++ Component use the Sqlca.GetCA() method.

Description If you do not call this function, no user ID or password is required to access
an UltraLite database. With this function, your application must supply a
valid user ID and password. UltraLite databases are created with a single
authenticated user IDDBA which has initial passwordSQL.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called before a connection is opened.

See also “User authentication in UltraLite”[UltraLite Database User’s Guide,page 40]

212

Chapter 12. UltraLite C/C++ Common API Reference

ULRegisterErrorCallback function
Register a callback function that handles errors.

Prototype void ULRegisterErrorCallback (
SQLCA * sqlca,
ul_error_callback_fn callback ,
ul_void * user_data,
ul_char * buffer ,
size_t len

)

Parameters ♦ sqlca A pointer to the SQL Communications Area.

In the static C++ API the SQLCA is declared in the header file assqlca.
In the C++ Component use the Sqlca.GetCA() method.

♦ callback The name of your callback function. For information about
the prototype of the function, see“Callback function for
ULRegisterErrorCallback” on page 204.

A callback value of UL_NULL disables any previously registered
callback function.

♦ user_data As the callback function may be called from any location in
your application, any context information you wish it to access would
have to be globally accessible. As an alternative to global variables, use
this field to supply any context information you wish your function to
have access to.

UltraLite does not modify the supplied data, it simply passes it to your
callback function when it is invoked.

You can declare any data type here and cast it into the correct type in your
callback function. For example, you could include a line of the following
form in your callback function:

MyContextType * context = (MyContextType *)user_data;

♦ buffer A character array holding the substitution parameters for the
error message, including a null terminator. To keep UltraLite as small as
possible, UltraLite does not supply error messages. The substitution
parameters depend on the specific error. You can look up the error
parameters for SQL errors in“Database Error Messages”[ASA Error
Messages,page 1].

The buffer must exist as long as UltraLite is active. Supply UL_NULL if
you do not want to receive parameter information.

213

♦ len The length of the buffer, in ul_char characters. A value of 100 is
large enough to hold most error parameters. If the buffer is too small, the
parameters are truncated safely.

Description Once this function has been called, the user-supplied callback function is
called whenever UltraLite signals an error. You should therefore call
ULRegisterErrorCallback immediately after initializing the SQL
Communications Area.

Error handling using this callback technique is particularly helpful during
development, as it ensures that your application is notified of any and all
errors that occur. However, the callback function does not control execution
flow, so the callback function does not replace other error handling code.

Example The following code registers a callback function for an UltraLite C++
Component application:

int main(){
ul_char buffer[100];
DatabaseManager * dm;
Connection * conn;
Sqlca.Initialize();
ULRegisterErrorCallback(

Sqlca.GetCA(),
MyErrorCallBack,
UL_NULL,
buffer,
100);

dm = ULInitDatabaseManager(Sqlca);
...

The following is a sample callback function:

ul_error_action UL_GENNED_FN_MOD MyErrorCallBack(
SQLCA * sqlca,
ul_error_kind kind,
ul_void * user_data,
ul_char * message_parameter){

ul_error_action rc;
(void) user_data;

switch(kind) {
case UL_ERROR_KIND_MEDIA_REMOVED:

// TODO: Prompt user to re-insert media
// (message_parameter contains the filename).
rc = UL_ERROR_ACTION_ABORT; // use UL_ERROR_ACTION_RETRY

to retry
break;

214

Chapter 12. UltraLite C/C++ Common API Reference

case UL_ERROR_KIND_SQLCODE:
switch(sqlca->sqlcode){
// The following errors are used for flow control, and

we don’t want to
// report them here:
case SQLE_NOTFOUND:
case SQLE_ULTRALITE_DATABASE_NOT_FOUND:

break;
case SQLE_CANNOT_ACCESS_SCHEMA_FILE:

_tprintf(
_TEXT("Error %ld: UltraLite schema file %s not

found \n"),
sqlca->sqlcode,
message_parameter);
break;

case SQLE_COMMUNICATIONS_ERROR:
_tprintf(

_TEXT("Error %ld: Communications error \n"),
sqlca->sqlcode);
break;

default:
_tprintf(

_TEXT("Error %ld: %s \n"),
sqlca->sqlcode,
message_parameter);
break;

}

rc = UL_ERROR_ACTION_ABORT; // ignored for SQL kind
break;

default:
// future error kinds
assert(0);
rc = UL_ERROR_ACTION_ABORT; // default action
break;

}
return rc;

}

See also ♦ “Error messages indexed by Adaptive Server Anywhere SQLCODE”
[ASA Error Messages,page 2]

♦ “Callback function for ULRegisterErrorCallback” on page 204

215

ULRegisterSchemaUpgradeObserver function
Prototype ul_ret_void ULRegisterSchemaUpgradeObserver (

SQLCA * sqlca,
ul_schema_upgrade_observer_fn callback ,
ul_void * user_data
);

Parameters ♦ sqlca A pointer to the SQL Communications Area.

In the static C++ API the SQLCA is declared in the header file assqlca.
In the C++ Component use the Sqlca.GetCA() method.

♦ callback The name of your callback function. For information about
the prototype of the function, see“Callback function for
ULRegisterErrorCallback” on page 204.

A callback value of UL_NULL disables any previously registered
callback function.

♦ user_data As the callback function may be called from any location in
your application, any context information you wish it to access would
have to be globally accessible. As an alternative to global variables, use
this field to supply any context information you wish your function to
have access to.

UltraLite does not modify the supplied data, it simply passes it to your
callback function when it is invoked.

You can declare any data type here and cast it into the correct type in your
callback function. For example, you could include a line of the following
form in your callback function:

MyContextType * context = (MyContextType *)user_data;

Description The schema upgrade process can be time consuming. You can use an
observer callback to monitor the upgrade process and provide feedback to
your end user. For example, you can use this feature to provide a dialog box
that displays percentage progress to the user.

Call ULRegisterSchemaUpgradeObserver after the call to db_init
(embedded SQL) or ULData::Open (Static C++ API), but before connecting
to the database. The upgrade takes place during the connect operation, at
which time callbacks are made to your registered callback function.

Although you can call ULRegisterSchemaUpgradeObserver from the C++
Component, you can also use the Connection.UpgradeSchemaFromFile
method to carry out the same action. If your application calls both,
ULRegisterSchemaUpgradeObserver is used.

216

Chapter 12. UltraLite C/C++ Common API Reference

You must call ULRegisterSchemaUpgradeObserver in applications that
upgrade the database schema. If you do not wish to provide feedback to the
user, pass UL_NULL as the callback function. If your application does not
upgrade a database schema, you may wish to omit the call to
ULRegisterSchemaUpgradeObserver, as it can add significantly to
application size.

See also “Upgrading UltraLite database schemas”[UltraLite Database User’s Guide,
page 54]

217

ULStoreDefragFini function
Prototype ul_ret_void ULStoreDefragFini(

SQLCA * sqlca,
p_ul_store_defrag_info dfi);

Description This function disposes of the defragmentation information block returned by
ULStoreDefragInit .

Parameters sqlca A pointer to the SQLCA.

dfi A defragmentation information block.

See also “Defragmenting UltraLite databases” on page 110

“ULStoreDefragInit function” on page 219

218

Chapter 12. UltraLite C/C++ Common API Reference

ULStoreDefragInit function
Prototype p_ul_store_defrag_info ULStoreDefragInit(SQLCA * sqlca);

Description This function initializes and returns a defragmentation information block to
maintain the defragmentation state of the database.

Parameters sqlca A pointer to the SQLCA.

Returns If successful, returns a defragmentation information block
p_ul_store_defrag_info. If unsuccessful, for example if there is not enough
memory, returnsUL_NULL .

See also “Defragmenting UltraLite databases” on page 110

“ULStoreDefragFini function” on page 218

219

ULStoreDefragStep function
Prototype ul_bool ULStoreDefragStep(

SQLCA * sqlca
p_ul_store_defrag_info dfi);

Description This function defragments a piece of the database.

Parameters sqlca A pointer to the SQLCA.

dfi A defragmentation information block.

Returns If the entire store has been defragmented, returnsul_true.

If the entire store is not defragmented, returnsul_false.

If an error occurs, SQLCODE is set.

See also “Defragmenting UltraLite databases” on page 110

“ULStoreDefragFini function” on page 218

“ULStoreDefragInit function” on page 219

220

Chapter 12. UltraLite C/C++ Common API Reference

Macros and compiler directives for UltraLite C/C++
applications

This section describes compiler directives to supply for UltraLite C/C++
applications. Unless stated otherwise, directives apply to both embedded
SQL and C++ API applications.

Compiler directives can be supplied on your compiler command line or in
the compiler settings dialog box of your user interface. Alternatively, they
can be defined in source code.

On the compiler command line, a compiler directive is commonly set by
using the /D command-line option. For example, to compile an UltraLite
application with user authentication, a makefile for the Microsoft Visual
C++ compiler may look as follows:

CompileOptions=/c /DPRWIN32 /Od /Zi /DWIN32
/D__NT__ /DUL_USE_DLL /DULB_USE_BIGINT_TYPES
/DULB_USE_FLOAT_TYPES /DUL_ENABLE_USER_AUTH

IncludeFolders= \
/I"$(VCDIR) \include" \
/I"$(ASANY9) \h"

sample.obj: sample.cpp
cl $(CompileOptions) $(IncludeFolders) sample.cpp

whereVCDIR is your Visual C++ directory andASANY9 is your
SQL Anywhere directory.

In source code, directives are supplied using the#define statement.

UL_AS_SYNCHRONIZE macro

Function Provides the name of the callback message used to indicate an ActiveSync
synchronization.

Applies to Windows CE applications using ActiveSync only.

See also “Adding ActiveSync synchronization to your application” on page 140

“Adding ActiveSync synchronization to your application” on page 140

UL_ENABLE_OBFUSCATION macro

Function By default, obfuscation is disabled. To enable obfuscation, define
UL_ENABLE_OBFUSCATION when compiling the generated database.

Applies to The generated database code.

221

See also “Encrypting data” on page 49

UL_ENABLE_USER_AUTH macro

Function For C++ API applications only, define this directive to enable user
authentication. Without this directive, there is no user authentication on
C++ API UltraLite applications.

Applies to Theulapi.cppfile.

See also “Authenticating users” on page 47

UL_ENABLE_SEGMENTS macro

Function Instructs the compiler to generate multi-segment code for Palm Computing
Platform applications.

Applies to The generated database code.

See also “Enabling multi-segment code generation” on page 122

“Enabling multi-segment code generation” on page 122

UL_OMIT_COLUMN_INFO macro

Function Reduce the number of Palm OS data segments required by the generated
code.

Usage Define the preprocessor symbol UL_OMIT_COLUMN_INFO before
compiling generated files. In CodeWarrior, you can do this by adding the
#define to your prefix file.

The macro decreases the number of segments required by the generated
code. To accomplish the reduction, it omits extended schema information
that the UltraLite generator would otherwise write. As a result, when this
macro is defined, you cannot upgrade a database schema, and you cannot use
the send_column_names synchronization parameter.

UL_STORE_PARMS macro

Function Supply a set of keyword-value pairs to configure database storage.

Syntax #define UL_STORE_PARMS UL_TEXT(" keyword=value;. . . ")

All spaces in the keyword-value list are significant, except spaces at the start
of the string and any spaces that immediately follow a semicolon.

Usage Define the UL_STORE_PARMS macro in the header of your application

222

Chapter 12. UltraLite C/C++ Common API Reference

source code so that it is visible to alldb_init() calls.

Parameters Keywords are case insensitive. The case sensitivity of the values depends on
the application interpreting it. For example, the case sensitivity of the
filename depends on the operating system.

☞ For a list of available parameters, see“Database Schema parameters”
[UltraLite Database User’s Guide,page 78], and“Additional connection
parameters”[UltraLite Database User’s Guide,page 82].

Examples The following statements set the cache size to 128 kb.

#undef UL_STORE_PARMS
#define UL_STORE_PARMS UL_TEXT("cache_size=128k")

. . .
db_init(&sqlca);

You can set UL_STORE_PARMS to a string, then set the value of that string
programmatically before calling db_init, as in the following example. The
UL_TEXT macro and the _stprintf function are used to achieve proper
character encoding.

char store_parms[32];
#undef UL_STORE_PARMS
#define UL_STORE_PARMS store_parms
...

/ * Set cache_size to the correct number of bytes. * /
...
_stprintf(store_parms, UL_TEXT("cache_size=%lu"),

cache_size);
db_init(&sqlca);

Here is a similar example that uses the password as an encryption key, and
which sets the location and file name of the UltraLite database file. The code
assumes that the variablefilename already contains the desired path and
filename. The code must be executed before calling db_init:

TCHAR store_parms[100];
#undef UL_STORE_PARMS
#define UL_STORE_PARMS store_parms

//put the password in UL_STORE_PARMS to be used as encryption
key

my_sprintf(store_parms, UL_TEXT("key=%s"), app_pword);

#ifdef UNDER_CE
if(filename != NULL) {

my_strcat(store_parms, _T(";file_name="));
my_strcat(store_parms, filename);

}
#endif

See also “Database Schema parameters”[UltraLite Database User’s Guide,page 78]

223

“Additional connection parameters”[UltraLite Database User’s Guide,page 82]

“Creating UltraLite database schema files” on page 15

“Encrypting data” on page 49

UL_SYNC_ALL macro

Function Provides a publication mask that refers to all tables in the database,
including those not in publications.

See also “publication synchronization parameter” on page 432

“ULGetLastDownloadTime function” on page 369

“ULCountUploadRows function” on page 366

“UL_SYNC_ALL_PUBS macro” on page 224

UL_SYNC_ALL_PUBS macro

Function Provides a publication mask that refers to all tables in the database that are
in publications.

See also “publication synchronization parameter” on page 432

“ULGetLastDownloadTime function” on page 369

“ULCountUploadRows function” on page 366

“UL_SYNC_ALL macro” on page 224

UL_TEXT macro

Function Prepares constant strings to be compiled as single-byte strings or
wide-character strings. In embedded SQL and C++ API applications, use
this macro to enclose all constant strings so that the compiler handles these
parameters correctly.

UL_USE_DLL macro

Function For Windows CE and Windows applications only, define this directive to use
the runtime library DLL, rather than a static runtime library.

Applies to The generated database code.

UNDER_CE macro

Function Use this macro when compiling UltraLite applications for Windows CE only.

By default, this macro is defined in all new eMbedded Visual C++ projects.

224

Chapter 12. UltraLite C/C++ Common API Reference

See also “Developing UltraLite Applications for Windows CE” on page 131.

UNDER_PALM_OS macro

Function Use this macro when compiling UltraLite applications for Palm OS only.

This macro is defined in theulpalmXX.h header file included in UltraLite
Palm OS applications by the UltraLite plugin. For more information, see
“Using the UltraLite plug-in for CodeWarrior” on page 117.

See also “Developing UltraLite Applications for the Palm Computing Platform” on
page 113.

225

CHAPTER 13

UltraLite C++ Component API Reference

About this chapter This chapter describes the UltraLite C++ Component API.

Contents Topic: page

Class ULSqlca 229

Class ULSqlcaBase 230

Class ULSqlcaWrap 233

Class UltraLite_Connection 234

Class UltraLite_Connection_iface 236

Class UltraLite_Cursor_iface 245

Class UltraLite_DatabaseManager 249

Class UltraLite_DatabaseManager_iface 250

Class UltraLite_DatabaseSchema 252

Class UltraLite_DatabaseSchema_iface 253

Class UltraLite_IndexSchema 256

Class UltraLite_IndexSchema_iface 257

Class UltraLite_PreparedStatement 260

Class UltraLite_PreparedStatement_iface 261

Class UltraLite_ResultSet 263

Class UltraLite_ResultSet_iface 264

Class UltraLite_ResultSetSchema 265

Class UltraLite_RowSchema_iface 266

Class UltraLite_SQLObject_iface 269

Class UltraLite_StreamReader 271

Class UltraLite_StreamReader_iface 272

Class UltraLite_StreamWriter 275

227

Topic: page

Class UltraLite_Table 276

Class UltraLite_Table_iface 278

Class UltraLite_TableSchema 285

Class UltraLite_TableSchema_iface 286

Class ULValue 291

228

Chapter 13. UltraLite C++ Component API Reference

Class ULSqlca
Synopsis public ULSqlca

Base classes ♦ “Class ULSqlcaBase” on page 230

Remarks Class ULSqlcaBasesubclass which contains a SQLCA structure so an
external one is not required.

This is used in most C++ Component applications. The communication area
must be initialized before any other functions are called. Each thread
requires its own communication area.

Members All members of ULSqlca, including all inherited members.

♦ “Finalize Function” on page 230
♦ “GetCA Function” on page 230
♦ “GetParameter Function” on page 231
♦ “GetParameterCount Function” on page 231
♦ “GetSQLCode Function” on page 231
♦ “GetSQLCount Function” on page 231
♦ “GetSQLErrorOffset Function” on page 232
♦ “Initialize Function” on page 232
♦ “LastCodeOK Function” on page 232
♦ “LastFetchOK Function” on page 232
♦ “ULSqlca Function” on page 229
♦ “˜ULSqlca Function” on page 229

ULSqlca Function

Synopsis ULSqlca::ULSqlca()

Remarks Constructor.

~ULSqlca Function

Synopsis ULSqlca::~ULSqlca()

Remarks Destructor.

229

Class ULSqlcaBase
Synopsis public ULSqlcaBase

Derived classes ♦ “Class ULSqlca” on page 229
♦ “Class ULSqlcaWrap” on page 233

Remarks Provides a communication area.

ULSqlcaBase defines the communication area between the interface library
and the application. Use a subclass of this class (typicallyClass ULSqlca) to
create your communication area. There is always an underlying SQLCA
object required. The communication area must be initialized before any
other functions are called. Each thread requires its own communication area.

Members All members of ULSqlcaBase, including all inherited members.

♦ “Finalize Function” on page 230
♦ “GetCA Function” on page 230
♦ “GetParameter Function” on page 231
♦ “GetParameterCount Function” on page 231
♦ “GetSQLCode Function” on page 231
♦ “GetSQLCount Function” on page 231
♦ “GetSQLErrorOffset Function” on page 232
♦ “Initialize Function” on page 232
♦ “LastCodeOK Function” on page 232
♦ “LastFetchOK Function” on page 232

Finalize Function

Synopsis void ULSqlcaBase::Finalize()

Remarks Finalizes this communication area.

Until the communication area is initialized again, it cannot be used.

GetCA Function

Synopsis SQLCA * ULSqlcaBase::GetCA()

Remarks Gets the SQLCA structure for direct access to additional fields.

Returns Raw sqlca structure.

230

Chapter 13. UltraLite C++ Component API Reference

GetParameter Function

Synopsis size_t ULSqlcaBase::GetParameter(
ul_u_long parm_num
ul_char * buffer
size_t size

)

Parameters ♦ parm_num A 1-based parameter number.

♦ buffer The buffer to receive parameter string.

♦ size The size, in ul_chars, of the buffer.

Remarks Gets the error parameter string.

The output parameter string is always null-terminated, even if the buffer is
too small and the parameter is truncated. The parameter number is 1-based.

Returns If the function succeeds, the return value is the buffer size required to hold
the entire parameter string (number of ul_chars, including the null
terminator). If the function fails, the return value is zero. The function fails
if an invalid (out of range) parameter number is given.

GetParameterCount Function

Synopsis ul_u_long ULSqlcaBase::GetParameterCount()

Remarks Gets the error parameter count for last operation.

Returns The number of parameters for the current error.

GetSQLCode Function

Synopsis an_sql_code ULSqlcaBase::GetSQLCode()

Remarks Gets the error code (SQLCODE) for last operation.

Returns The sqlcode value

GetSQLCount Function

Synopsis an_sql_code ULSqlcaBase::GetSQLCount()

Remarks Gets the sql count variable (SQLCOUNT) for the last operation.

This indicates the number of rows affected by an INSERT, DELETE, or
UPDATE operation, and is zero otherwise.

231

GetSQLErrorOffset Function

Synopsis ul_s_long ULSqlcaBase::GetSQLErrorOffset()

Remarks Gets the error offset in dynamic SQL statement.

Returns When applicable, the return value is the offset into the associated dynamic
SQL statement (passed to the PrepareStatement function) corresponding to
the current error. When not applicable, the return value is -1.

Initialize Function

Synopsis bool ULSqlcaBase::Initialize()

Remarks Initializes this communication area.

You must initialize the communications area before any other operations
occur.

Returns On success, true, otherwise false. This method can fail if basic interface
library initialization fails, which could occur if system resources are
depleted.

LastCodeOK Function

Synopsis bool ULSqlcaBase::LastCodeOK()

Remarks Tests the error code for the last operation.

Returns true if the sqlcode is SQLE_NOERROR or a warning; false if it indicates an
error.

LastFetchOK Function

Synopsis bool ULSqlcaBase::LastFetchOK()

Remarks Tests the error code for last fetch operation.

Use this function only immediately after performing a fetch operation.

Returns true if the sqlcode indicates that a row was fetched successfully by the last
operation.

232

Chapter 13. UltraLite C++ Component API Reference

Class ULSqlcaWrap
Synopsis public ULSqlcaWrap

Base classes ♦ “Class ULSqlcaBase” on page 230

Remarks Class ULSqlcaBasesubclass which attaches to an existing SQLCA object.

This can be used with a previously-initialized SQLCA object (in which case,
you would NOT call Initialize again). The communication area must be
initialized before any other functions are called. Each thread requires its own
communication area.

Members All members of ULSqlcaWrap, including all inherited members.

♦ “Finalize Function” on page 230
♦ “GetCA Function” on page 230
♦ “GetParameter Function” on page 231
♦ “GetParameterCount Function” on page 231
♦ “GetSQLCode Function” on page 231
♦ “GetSQLCount Function” on page 231
♦ “GetSQLErrorOffset Function” on page 232
♦ “Initialize Function” on page 232
♦ “LastCodeOK Function” on page 232
♦ “LastFetchOK Function” on page 232
♦ “ULSqlcaWrap Function” on page 233
♦ “˜ULSqlcaWrap Function” on page 233

ULSqlcaWrap Function

Synopsis ULSqlcaWrap::ULSqlcaWrap(
SQLCA * sqlca

)

Parameters ♦ sqlca The SQLCA object to use.

Remarks Constructor.

You may initialize the given SQLCA object before creating this object. In
this case, don’t callInitialize Functionagain.

~ULSqlcaWrap Function

Synopsis ULSqlcaWrap::~ULSqlcaWrap()

Remarks Destructor.

233

Class UltraLite_Connection
Synopsis public UltraLite_Connection

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269
♦ “Class UltraLite_Connection_iface” on page 236

Remarks Connection class.

Members All members of UltraLite_Connection, including all inherited members.

♦ “AddRef Function” on page 269
♦ “ChangeEncryptionKey Function” on page 237
♦ “Commit Function” on page 237
♦ “CountUploadRows Function” on page 237
♦ “GetConnection Function” on page 269
♦ “GetConnectionNum Function” on page 237
♦ “GetDatabaseID Function” on page 237
♦ “GetDatabaseProperty Function” on page 237
♦ “GetIFace Function” on page 269
♦ “GetLastDownloadTime Function” on page 238
♦ “GetLastIdentity Function” on page 238
♦ “GetNewUUID Function” on page 238
♦ “GetPublicationMask Function” on page 238
♦ “GetSchema Function” on page 238
♦ “GetSqlca Function” on page 239
♦ “GetSuspend Function” on page 239
♦ “GetSynchResult Function” on page 239
♦ “GetUtilityULValue Function” on page 239
♦ “GlobalAutoincUsage Function” on page 239
♦ “GrantConnectTo Function” on page 239
♦ “InitSynchInfo Function” on page 240
♦ “OpenTable Function” on page 240
♦ “OpenTableWithIndex Function” on page 240
♦ “PrepareStatement Function” on page 241
♦ “Release Function” on page 270
♦ “ResetLastDownloadTime Function” on page 241
♦ “RevokeConnectFrom Function” on page 241
♦ “Rollback Function” on page 241
♦ “RollbackPartialDownload Function” on page 241
♦ “SetDatabaseID Function” on page 241
♦ “SetSuspend Function” on page 242
♦ “SetSynchInfo Function” on page 242
♦ “Shutdown Function” on page 242
♦ “StartSynchronizationDelete Function” on page 242

234

Chapter 13. UltraLite C++ Component API Reference

♦ “StopSynchronizationDelete Function” on page 242
♦ “StrToUUID Function” on page 243
♦ “Synchronize Function” on page 243
♦ “UpgradeSchemaFromFile Function” on page 244
♦ “UpgradeSchemaFromFile Function” on page 244
♦ “UUIDToStr Function” on page 243
♦ “UUIDToStr Function” on page 244

235

Class UltraLite_Connection_iface
Synopsis public UltraLite_Connection_iface

Derived classes ♦ “Class UltraLite_Connection” on page 234

Remarks Connection interface.

Members All members of UltraLite_Connection_iface, including all inherited
members.

♦ “ChangeEncryptionKey Function” on page 237
♦ “Commit Function” on page 237
♦ “CountUploadRows Function” on page 237
♦ “GetConnectionNum Function” on page 237
♦ “GetDatabaseID Function” on page 237
♦ “GetDatabaseProperty Function” on page 237
♦ “GetLastDownloadTime Function” on page 238
♦ “GetLastIdentity Function” on page 238
♦ “GetNewUUID Function” on page 238
♦ “GetPublicationMask Function” on page 238
♦ “GetSchema Function” on page 238
♦ “GetSqlca Function” on page 239
♦ “GetSuspend Function” on page 239
♦ “GetSynchResult Function” on page 239
♦ “GetUtilityULValue Function” on page 239
♦ “GlobalAutoincUsage Function” on page 239
♦ “GrantConnectTo Function” on page 239
♦ “InitSynchInfo Function” on page 240
♦ “OpenTable Function” on page 240
♦ “OpenTableWithIndex Function” on page 240
♦ “PrepareStatement Function” on page 241
♦ “ResetLastDownloadTime Function” on page 241
♦ “RevokeConnectFrom Function” on page 241
♦ “Rollback Function” on page 241
♦ “RollbackPartialDownload Function” on page 241
♦ “SetDatabaseID Function” on page 241
♦ “SetSuspend Function” on page 242
♦ “SetSynchInfo Function” on page 242
♦ “Shutdown Function” on page 242
♦ “StartSynchronizationDelete Function” on page 242
♦ “StopSynchronizationDelete Function” on page 242
♦ “StrToUUID Function” on page 243
♦ “Synchronize Function” on page 243
♦ “UpgradeSchemaFromFile Function” on page 244

236

Chapter 13. UltraLite C++ Component API Reference

♦ “UpgradeSchemaFromFile Function” on page 244
♦ “UUIDToStr Function” on page 243
♦ “UUIDToStr Function” on page 244

ChangeEncryptionKey Function

Synopsis virtual bool UltraLite_Connection_iface::ChangeEncryptionKey(
const ULValue & new_key

)

Parameters ♦ new_key The new encryption key value for the database.

Remarks Changes the encryption key.

Commit Function

Synopsis virtual bool UltraLite_Connection_iface::Commit()

Remarks Commits the current transaction.

CountUploadRows Function

Synopsis virtual ul_u_long UltraLite_Connection_iface::CountUploadRows(
ul_publication_mask mask
ul_u_long threshold

)

Parameters ♦ mask The set of publications to consider.

♦ threshold The limit on the number of rows to count.

Remarks Determines the number of rows that need to be uploaded.

GetConnectionNum Function

Synopsis virtual ul_connection_num UltraLite_Connection_iface::GetConnectionNum()

Remarks Gets the connection number.

GetDatabaseID Function

Synopsis virtual ul_u_long UltraLite_Connection_iface::GetDatabaseID()

Remarks Gets the database ID used for global autoincrement columns.

GetDatabaseProperty Function

Synopsis virtual ULValue UltraLite_Connection_iface::GetDatabaseProperty(
ul_database_property_id id

)

237

Parameters ♦ id The ID of the property being requested.

Remarks Gets the Database Property.

Returns The value of the requested property.

GetLastDownloadTime Function

Synopsis virtual bool UltraLite_Connection_iface::GetLastDownloadTime(
ul_publication_mask mask
DECL_DATETIME * value

)

Parameters ♦ mask The publication mask.

♦ value output: the last download time.

Remarks Gets the time of the last download.

GetLastIdentity Function

Synopsis virtual ul_u_big UltraLite_Connection_iface::GetLastIdentity()

Remarks Gets the @@identity value.

GetNewUUID Function

Synopsis virtual bool UltraLite_Connection_iface::GetNewUUID(
p_ul_binary uuid

)

Parameters ♦ uuid The new UUID value.

Remarks Creates a new UUID.

GetPublicationMask Function

Synopsis virtual ul_publication_mask UltraLite_Connection_iface::GetPublicationMask(
const ULValue & pub_id

)

Parameters ♦ pub_id The publication name or ordinal.

Remarks Gets the publication mask for a given publication name.

Publication masks are not publication IDs. 0 is returned if the publication is
not found.

GetSchema Function

Synopsis virtual UltraLite_DatabaseSchema * Ultra-
Lite_Connection_iface::GetSchema()

238

Chapter 13. UltraLite C++ Component API Reference

Remarks Gets the database schema.

GetSqlca Function

Synopsis virtual ULSqlcaBase const & UltraLite_Connection_iface::GetSqlca()

Remarks Gets the communication area associated with this connection.

GetSuspend Function

Synopsis virtual bool UltraLite_Connection_iface::GetSuspend()

Remarks Gets the Suspend property.

Returns true if this connection is suspended, false otherwise.

GetSynchResult Function

Synopsis virtual bool UltraLite_Connection_iface::GetSynchResult(
p_ul_synch_result synch_result

)

Parameters ♦ synch_result A pointer to the ul_synch_result structure that holds the
synchronization results.

Remarks Gets the result of the last synchronization.

GetUtilityULValue Function

Synopsis virtual ULValue UltraLite_Connection_iface::GetUtilityULValue()

Remarks Gets a newClass ULValue.

A Class ULValueobject must be bound to a connection in order for many of
its methods to succeed.

GlobalAutoincUsage Function

Synopsis virtual ul_u_short UltraLite_Connection_iface::GlobalAutoincUsage()

Remarks Gets the percent usage of the global autoincrement counter.

GrantConnectTo Function

Synopsis virtual bool UltraLite_Connection_iface::GrantConnectTo(
const ULValue & uid
const ULValue & pwd

)

239

Parameters ♦ uid The user ID being granted authority to connect.

♦ pwd The password the user ID must specify to connect.

Remarks Adds a new user or changes an existing user’s password.

InitSynchInfo Function

Synopsis virtual void UltraLite_Connection_iface::InitSynchInfo(
p_ul_synch_info info

)

Parameters ♦ info A pointer to the ul_synch_info structure that holds the
synchronization parameters.

Remarks Initializes the synchronization information structure.

OpenTable Function

Synopsis virtual UltraLite_Table * UltraLite_Connection_iface::OpenTable(
const ULValue & table_id
const ULValue & persistent_name

)

Parameters ♦ table_id The table name or ordinal.

♦ persistent_name The instance name used for suspending.

Remarks Opens a table.

When a table is first opened, the cursor position is BeforeFirst()

OpenTableWithIndex Function

Synopsis virtual UltraLite_Table * UltraLite_Connection_iface::OpenTableWithIndex(
const ULValue & table_id
const ULValue & index_id
const ULValue & persistent_name

)

Parameters ♦ table_id The table name or ordinal.

♦ index_id The index name or ordinal.

♦ persistent_name The instance name used for suspending.

Remarks Opens a table, using a specified index to order the rows.

When a table is first opened, the cursor position is BeforeFirst()

240

Chapter 13. UltraLite C++ Component API Reference

PrepareStatement Function

Synopsis virtual UltraLite_PreparedStatement * UltraLite_Connection_
iface::PrepareStatement(

const ULValue & sql
const ULValue & persistent_name

)

Parameters ♦ sql The SQL statement as a string.

♦ persistent_name The instance name used for suspending.

Remarks Prepares a SQL statement.

ResetLastDownloadTime Function

Synopsis virtual bool UltraLite_Connection_iface::ResetLastDownloadTime(
ul_publication_mask mask

)

Parameters ♦ mask The set of publications to reset.

Remarks Resets the time of the last download.

RevokeConnectFrom Function

Synopsis virtual bool UltraLite_Connection_iface::RevokeConnectFrom(
const ULValue & uid

)

Parameters ♦ uid The user ID whose authority to connect is being revoked.

Remarks Deletes an existing user.

Rollback Function

Synopsis virtual bool UltraLite_Connection_iface::Rollback()

Remarks Rolls back the current transaction.

RollbackPartialDownload Function

Synopsis virtual bool UltraLite_Connection_iface::RollbackPartialDownload()

Remarks Rollback a partial download.

SetDatabaseID Function

Synopsis virtual bool UltraLite_Connection_iface::SetDatabaseID(
ul_u_long value

)

241

Parameters ♦ value The database ID, which determines the starting value for global
autoincrement columns.

Remarks Sets the database ID used for global autoincrement columns.

SetSuspend Function

Synopsis virtual void UltraLite_Connection_iface::SetSuspend(
bool suspend

)

Parameters ♦ suspend Set to true to suspend the connection so that its state can be
restored when the database is reopened.

Remarks Sets the Suspend property.

If true, this connection is suspended and restored when the database is
reopened. The connection name (or lack of one) is used to identifiy
suspended connetions.

SetSynchInfo Function

Synopsis virtual bool UltraLite_Connection_iface::SetSynchInfo(
p_ul_synch_info info

)

Parameters ♦ info A pointer to the ul_synch_info structure that holds the
synchronization parameters.

Remarks Attaches a ul_synch_info struct to the current database.

Shutdown Function

Synopsis virtual void UltraLite_Connection_iface::Shutdown()

Remarks Destroys this connection and any remaining associated objects.

If not set to suspend, this connection is rolled back.

StartSynchronizationDelete Function

Synopsis virtual bool UltraLite_Connection_iface::StartSynchronizationDelete()

Remarks START SYNCHRONIZATION DELETE for this connection.

StopSynchronizationDelete Function

Synopsis virtual bool UltraLite_Connection_iface::StopSynchronizationDelete()

Remarks STOP SYNCHRONIZATION DELETE for this connection.

242

Chapter 13. UltraLite C++ Component API Reference

StrToUUID Function

Synopsis virtual bool UltraLite_Connection_iface::StrToUUID(
p_ul_binary dst
size_t len
const ULValue & src

)

Parameters ♦ dst The UUID value being returned.

♦ len The length of the ul_binary array.

♦ src A string holding the UUID value to be converted.

Remarks Converts a string to a UUID.

Synchronize Function

Synopsis virtual bool UltraLite_Connection_iface::Synchronize(
p_ul_synch_info info

)

Parameters ♦ info A pointer to the ul_synch_info structure that holds the
synchronization parameters.

Remarks Synchronizes the database.

Example:

ul_synch_info info;
conn.InitSynchInfo(&info);
info.user_name = UL_TEXT("user_name");
info.version = UL_TEXT("test");
conn.Synchronize(&info);

Or

ul_synch_info info;
conn.InitSynchInfo(&info);
info.user_name = UL_TEXT("user_name");
info.version = UL_TEXT("test");
conn.SetSynchInfo(&info);
conn.Synchronize();

UUIDToStr Function

Synopsis virtual bool UltraLite_Connection_iface::UUIDToStr(
char * dst
size_t len
p_ul_binary src

)

243

Parameters ♦ dst The string being returned.

♦ len The length of the ul_binary array.

♦ src The UUID value to be converted to a string.

Remarks Converts a UUID to an ANSI string.

UUIDToStr Function

Synopsis virtual bool UltraLite_Connection_iface::UUIDToStr(
ul_wchar * dst
size_t len
p_ul_binary src

)

Parameters ♦ dst The Unicode string being returned.

♦ len The length of the ul_binary array.

♦ src The UUID value to be converted to a string.

Remarks Converts a UUID to a Unicode string.

UpgradeSchemaFromFile Function

Synopsis virtual bool UltraLite_Connection_iface::UpgradeSchemaFromFile(
const ULValue & options

)

Parameters ♦ options A semicolon-delimited list of upgrade options.

Remarks Upgrades to a new schema using an external schema definition file.

options is a semicolon-delimited list of upgrade options.

UpgradeSchemaFromFile Function

Synopsis virtual bool UltraLite_Connection_iface::UpgradeSchemaFromFile(
const ULValue & options
ul_schema_upgrade_observer_fn callback
ul_void * user_data

)

Parameters ♦ options A list of options.

♦ callback The upgrade observer callback function.

♦ user_data User data passed to the callback function.

Remarks Upgrades to a new schema using an external schema definition file.

options is a semi-colon delimited list of upgrade options.

244

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_Cursor_iface
Synopsis public UltraLite_Cursor_iface

Derived classes ♦ “Class UltraLite_ResultSet” on page 263
♦ “Class UltraLite_Table” on page 276

Remarks Cursor interface.

Members All members of UltraLite_Cursor_iface, including all inherited members.

♦ “AfterLast Function” on page 245
♦ “BeforeFirst Function” on page 245
♦ “First Function” on page 245
♦ “Get Function” on page 246
♦ “GetRowCount Function” on page 246
♦ “GetState Function” on page 246
♦ “GetStreamReader Function” on page 246
♦ “GetSuspend Function” on page 246
♦ “IsNull Function” on page 247
♦ “Last Function” on page 247
♦ “Next Function” on page 247
♦ “Previous Function” on page 247
♦ “Relative Function” on page 247
♦ “SetSuspend Function” on page 247

AfterLast Function

Synopsis virtual bool UltraLite_Cursor_iface::AfterLast()

Remarks Moves the cursor after the last row.

BeforeFirst Function

Synopsis virtual bool UltraLite_Cursor_iface::BeforeFirst()

Remarks Moves the cursor before the first row.

First Function

Synopsis virtual bool UltraLite_Cursor_iface::First()

Remarks Moves the cursor to the first row.

245

Get Function

Synopsis virtual ULValue UltraLite_Cursor_iface::Get(
const ULValue & column_id

)

Parameters ♦ column_id The name or ordinal of the column.

Remarks Fetches a value from a column.

GetRowCount Function

Synopsis virtual ul_u_long UltraLite_Cursor_iface::GetRowCount()

Remarks Gets the number of rows in the table.

Calling this method is equivalent to executing “select count(*) from table”

GetState Function

Synopsis virtual UL_RS_STATE UltraLite_Cursor_iface::GetState()

Remarks Gets the internal state of the cursor.

See enum UL_RS_STATE in ulglobal.h

GetStreamReader Function

Synopsis virtual UltraLite_StreamReader * UltraLite_Cursor_iface::GetStreamReader(
const ULValue & id

)

Parameters ♦ id A column identifier, which may be either a 1-based ordinal number
or a column name.

Remarks Gets a stream reader object for reading string or binary column data in
chunks.

GetSuspend Function

Synopsis virtual bool UltraLite_Cursor_iface::GetSuspend()

Remarks Gets the value of the Suspend property.

Returns true if this cursor is suspended, false otherwise.

246

Chapter 13. UltraLite C++ Component API Reference

IsNull Function

Synopsis virtual bool UltraLite_Cursor_iface::IsNull(
const ULValue & column_id

)

Parameters ♦ column_id The name or ordinal of the column.

Remarks Checks if a column is NULL.

Last Function

Synopsis virtual bool UltraLite_Cursor_iface::Last()

Remarks Moves the cursor to the last row.

Next Function

Synopsis virtual bool UltraLite_Cursor_iface::Next()

Remarks Moves the cursor forward one row.

On failure there is no next row, the resulting cursor position isAfterLast
Function

Previous Function

Synopsis virtual bool UltraLite_Cursor_iface::Previous()

Remarks Moves the cursor back one row.

On failure, the resulting cursor position isBeforeFirst Function

Relative Function

Synopsis virtual bool UltraLite_Cursor_iface::Relative(
ul_fetch_offset offset

)

Parameters ♦ offset The number of rows to move.

Remarks Moves the cursor byoffset rows from the current cursor position.

SetSuspend Function

Synopsis virtual void UltraLite_Cursor_iface::SetSuspend(
bool suspend

)

Parameters

247

♦ suspend Set to true to suspend the connection so that its state can be
restored when the database is reopened.

Remarks Sets the value of the Suspend property.

If true, this cursor is suspended and restored when the database is reopened.
Use the persistent name parameter when opening the associated object to
identify suspended cursors. If a persistent name parameter was not supplied
for this cursor, it cannot be suspended.

248

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_DatabaseManager
Synopsis public UltraLite_DatabaseManager

Base classes ♦ “Class UltraLite_DatabaseManager_iface” on page 250

Remarks DatabaseManager class.

Members All members of UltraLite_DatabaseManager, including all inherited
members.

♦ “CreateAndOpenDatabase Function” on page 250
♦ “DropDatabase Function” on page 250
♦ “OpenConnection Function” on page 251
♦ “Shutdown Function” on page 251

249

Class UltraLite_DatabaseManager_iface
Synopsis public UltraLite_DatabaseManager_iface

Derived classes ♦ “Class UltraLite_DatabaseManager” on page 249

Remarks DatabaseManager interface.

Members All members of UltraLite_DatabaseManager_iface, including all inherited
members.

♦ “CreateAndOpenDatabase Function” on page 250
♦ “DropDatabase Function” on page 250
♦ “OpenConnection Function” on page 251
♦ “Shutdown Function” on page 251

CreateAndOpenDatabase Function

Synopsis virtual UltraLite_Connection * UltraLite_DatabaseManager_
iface::CreateAndOpenDatabase(

ULSqlcaBase & sqlca
ULValue const & parms_string

)

Parameters ♦ sqlca The initialized sqlca to associate with new connection.

♦ parms_string The creation and connection parameters.

Remarks Creates a new database and connects to it.

The given sqlca is associated with the new connection. If the database
already exists, this function fails.

Returns If the function succeeds, a new connection object is returned. If the function
fails, NULL is returned.

DropDatabase Function

Synopsis virtual bool UltraLite_DatabaseManager_iface::DropDatabase(
ULSqlcaBase & sqlca
const ULValue & parms_string

)

Parameters ♦ sqlca The initialized sqlca.

♦ parms_string The database identification parameters.

Remarks Erases an existing database.

In order to be erased, the database must be stopped.

250

Chapter 13. UltraLite C++ Component API Reference

OpenConnection Function

Synopsis virtual UltraLite_Connection * UltraLite_DatabaseManager_
iface::OpenConnection(

ULSqlcaBase & sqlca
ULValue const & parms_string

)

Parameters ♦ sqlca The initialized sqlca to associate with the new connection.

♦ parms_string The connection string.

Remarks Opens a new connection to an existing database.

The given sqlca is associated with the new connection.

♦ SQLE_CONNECTION_ALREADY_EXISTS - You are already
connected using these parameters (specifically the sqlca and connection
name, CON).

♦ SQLE_INVALID_LOGON - The userid you supplied does not exist or
the password is incorrect. User authentication is only enabled if you have
called the ULEnableUserAuthentication function before connecting.

♦ SQLE_INVALID_SQL_IDENTIFIER - The userid or password you
supplied was not legal, or no userid was supplied at all (use
UID=user;PWD=password).

♦ SQLE_TOO_MANY_CONNECTIONS - You have opened too many
connections and attempted to exceed the (concurrent) connection limit.

To get error information, use the associatedClass ULSqlcaobject. Possible
errors include:

Returns If the function succeeds, a new connection object is returned. If the function
fails, NULL is returned.

Shutdown Function

Synopsis virtual void UltraLite_DatabaseManager_iface::Shutdown(
ULSqlcaBase & sqlca

)

Parameters ♦ sqlca The initialized sqlca.

Remarks Closes all databases and releases the database manager.

Any remaining associated objects are destroyed. After calling this function,
the database manager can no longer be used (nor can any other previously
obtained objects).

251

Class UltraLite_DatabaseSchema
Synopsis public UltraLite_DatabaseSchema

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269
♦ “Class UltraLite_DatabaseSchema_iface” on page 253

Remarks DatabaseSchema class.

Members All members of UltraLite_DatabaseSchema, including all inherited
members.

♦ “AddRef Function” on page 269
♦ “GetCollationName Function” on page 253
♦ “GetConnection Function” on page 269
♦ “GetIFace Function” on page 269
♦ “GetPublicationCount Function” on page 253
♦ “GetPublicationID Function” on page 253
♦ “GetPublicationMask Function” on page 254
♦ “GetPublicationName Function” on page 254
♦ “GetSignature Function” on page 254
♦ “GetTableCount Function” on page 254
♦ “GetTableName Function” on page 254
♦ “GetTableSchema Function” on page 255
♦ “IsCaseSensitive Function” on page 255
♦ “Release Function” on page 270

252

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_DatabaseSchema_iface
Synopsis public UltraLite_DatabaseSchema_iface

Derived classes ♦ “Class UltraLite_DatabaseSchema” on page 252

Remarks DatabaseSchema interface.

Members All members of UltraLite_DatabaseSchema_iface, including all inherited
members.

♦ “GetCollationName Function” on page 253
♦ “GetPublicationCount Function” on page 253
♦ “GetPublicationID Function” on page 253
♦ “GetPublicationMask Function” on page 254
♦ “GetPublicationName Function” on page 254
♦ “GetSignature Function” on page 254
♦ “GetTableCount Function” on page 254
♦ “GetTableName Function” on page 254
♦ “GetTableSchema Function” on page 255
♦ “IsCaseSensitive Function” on page 255

GetCollationName Function

Synopsis virtual ULValue UltraLite_DatabaseSchema_iface::GetCollationName()

Remarks Gets the name of the current collation sequence.

Returns A Class ULValuecontaining a string is returned.

GetPublicationCount Function

Synopsis virtual ul_publication_count UltraLite_DatabaseSchema_
iface::GetPublicationCount()

Remarks Gets the number of publications in the database.

Publication IDs range from 1 toGetPublicationCount Function

GetPublicationID Function

Synopsis virtual ul_u_short UltraLite_DatabaseSchema_iface::GetPublicationID(
const ULValue & pub_id

)

Parameters ♦ pub_id A 1-based ordinal number.

Remarks Gets a 1-based id for the publication given its name.

253

GetPublicationMask Function

Synopsis virtual ul_publication_mask UltraLite_DatabaseSchema_
iface::GetPublicationMask(

const ULValue & pub_id
)

Parameters ♦ pub_id A 1-based ordinal number.

Remarks Gets the publication mask for a given publication name Publication masks
are not publication IDs.

0 is returned if the publication is not found

GetPublicationName Function

Synopsis virtual ULValue UltraLite_DatabaseSchema_iface::GetPublicationName(
const ULValue & pub_id

)

Parameters ♦ pub_id A 1-based ordinal number.

Remarks Gets the name of a publication given its 1-based index ID.

Publication masks are not publication IDs.

GetSignature Function

Synopsis virtual ULValue UltraLite_DatabaseSchema_iface::GetSignature()

Remarks Gets the database signature.

GetTableCount Function

Synopsis virtual ul_table_num UltraLite_DatabaseSchema_iface::GetTableCount()

Remarks Gets the number of tables.

GetTableName Function

Synopsis virtual ULValue UltraLite_DatabaseSchema_iface::GetTableName(
ul_table_num tableID

)

Parameters ♦ tableID A 1-based ordinal number.

Remarks Gets the name of a table given its 1-based table ID.

TheClass ULValueobject returned is empty if the table does not exist.

254

Chapter 13. UltraLite C++ Component API Reference

GetTableSchema Function

Synopsis virtual UltraLite_TableSchema * UltraLite_DatabaseSchema_
iface::GetTableSchema(

const ULValue & table_id
)

Parameters ♦ table_id A 1-based ordinal number.

Remarks Gets a TableSchema object given a 1-based table ID or name UL_NULL is
returned if the table does not exist.

IsCaseSensitive Function

Synopsis virtual bool UltraLite_DatabaseSchema_iface::IsCaseSensitive()

Remarks Gets the case sensitivity of the database.

Returns true is returned if the database is case sensitive.

255

Class UltraLite_IndexSchema
Synopsis public UltraLite_IndexSchema

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269
♦ “Class UltraLite_IndexSchema_iface” on page 257

Remarks IndexSchema class.

Members All members of UltraLite_IndexSchema, including all inherited members.

♦ “AddRef Function” on page 269
♦ “GetColumnCount Function” on page 257
♦ “GetColumnName Function” on page 257
♦ “GetConnection Function” on page 269
♦ “GetID Function” on page 258
♦ “GetIFace Function” on page 269
♦ “GetName Function” on page 258
♦ “GetReferencedIndexName Function” on page 258
♦ “GetReferencedTableName Function” on page 258
♦ “GetTableName Function” on page 258
♦ “IsColumnDescending Function” on page 258
♦ “IsForeignKey Function” on page 259
♦ “IsForeignKeyCheckOnCommit Function” on page 259
♦ “IsForeignKeyNullable Function” on page 259
♦ “IsPrimaryKey Function” on page 259
♦ “IsUniqueIndex Function” on page 259
♦ “IsUniqueKey Function” on page 259
♦ “Release Function” on page 270

256

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_IndexSchema_iface
Synopsis public UltraLite_IndexSchema_iface

Derived classes ♦ “Class UltraLite_IndexSchema” on page 256

Remarks IndexSchema interface.

Members All members of UltraLite_IndexSchema_iface, including all inherited
members.

♦ “GetColumnCount Function” on page 257
♦ “GetColumnName Function” on page 257
♦ “GetID Function” on page 258
♦ “GetName Function” on page 258
♦ “GetReferencedIndexName Function” on page 258
♦ “GetReferencedTableName Function” on page 258
♦ “GetTableName Function” on page 258
♦ “IsColumnDescending Function” on page 258
♦ “IsForeignKey Function” on page 259
♦ “IsForeignKeyCheckOnCommit Function” on page 259
♦ “IsForeignKeyNullable Function” on page 259
♦ “IsPrimaryKey Function” on page 259
♦ “IsUniqueIndex Function” on page 259
♦ “IsUniqueKey Function” on page 259

GetColumnCount Function

Synopsis virtual ul_column_num UltraLite_IndexSchema_iface::GetColumnCount()

Remarks Gets the number of columns in the index.

GetColumnName Function

Synopsis virtual ULValue UltraLite_IndexSchema_iface::GetColumnName(
ul_column_num col_id_in_index

)

Parameters ♦ col_id_in_index The 1-based ordinal number indicating the position of
the column in the index.

Remarks Gets the name of the column given the position of the column in the index.

Class ULValueobject returned is empty if the column does not exist.
SQLE_COLUMN_NOT_FOUND is returned if the column name does not
exist.

257

GetID Function

Synopsis virtual ul_index_num UltraLite_IndexSchema_iface::GetID()

Remarks Gets the index Id.

Returns The id of this index.

GetName Function

Synopsis virtual ULValue UltraLite_IndexSchema_iface::GetName()

Remarks Gets the name of the index.

GetReferencedIndexName Function

Synopsis virtual ULValue UltraLite_IndexSchema_iface::GetReferencedIndexName()

Remarks Gets the associated primary index name.

This method is for foreign keys only. TheClass ULValueobject returned is
empty if the index is not a foreign key.

GetReferencedTableName Function

Synopsis virtual ULValue UltraLite_IndexSchema_iface::GetReferencedTableName()

Remarks Gets the associated primary table name.

This method is for foreign keys TheClass ULValueobject returned is empty
if the index is not a foreign key

GetTableName Function

Synopsis virtual ULValue UltraLite_IndexSchema_iface::GetTableName()

Remarks Gets the name of the table containing the index.

IsColumnDescending Function

Synopsis virtual bool UltraLite_IndexSchema_iface::IsColumnDescending(
const ULValue & column_name

)

Parameters ♦ column_name The column name.

Remarks Returns true if the column is set to descending order.

SQLE_COLUMN_NOT_FOUND is set if the column name does not exist.

258

Chapter 13. UltraLite C++ Component API Reference

IsForeignKey Function

Synopsis virtual bool UltraLite_IndexSchema_iface::IsForeignKey()

Remarks Returns true if the index is a foreign key.

IsForeignKeyCheckOnCommit Function

Synopsis virtual bool UltraLite_IndexSchema_iface::IsForeignKeyCheckOnCommit()

Remarks Returns true if this foreign key checks referential integrity on commit.

Otherwise RI is checked on insert

IsForeignKeyNullable Function

Synopsis virtual bool UltraLite_IndexSchema_iface::IsForeignKeyNullable()

Remarks Returns true if the index is a unique foreign key constraint.

IsPrimaryKey Function

Synopsis virtual bool UltraLite_IndexSchema_iface::IsPrimaryKey()

Remarks Returns true if the index is the primary key.

IsUniqueIndex Function

Synopsis virtual bool UltraLite_IndexSchema_iface::IsUniqueIndex()

Remarks Returns true if the index is a unique index.

IsUniqueKey Function

Synopsis virtual bool UltraLite_IndexSchema_iface::IsUniqueKey()

Remarks Returns true if the index is a primary key or a unique constraint.

259

Class UltraLite_PreparedStatement
Synopsis public UltraLite_PreparedStatement

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269
♦ “Class UltraLite_PreparedStatement_iface” on page 261

Remarks PreparedStatement class.

Members All members of UltraLite_PreparedStatement, including all inherited
members.

♦ “AddRef Function” on page 269
♦ “ExecuteQuery Function” on page 261
♦ “ExecuteStatement Function” on page 261
♦ “GetConnection Function” on page 269
♦ “GetIFace Function” on page 269
♦ “GetPlan Function” on page 261
♦ “GetSchema Function” on page 262
♦ “GetStreamWriter Function” on page 262
♦ “HasResultSet Function” on page 262
♦ “Release Function” on page 270
♦ “SetParameter Function” on page 262
♦ “SetParameterNull Function” on page 262

260

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_PreparedStatement_iface
Synopsis public UltraLite_PreparedStatement_iface

Derived classes ♦ “Class UltraLite_PreparedStatement” on page 260

Remarks PreparedStatement interface.

Members All members of UltraLite_PreparedStatement_iface, including all inherited
members.

♦ “ExecuteQuery Function” on page 261
♦ “ExecuteStatement Function” on page 261
♦ “GetPlan Function” on page 261
♦ “GetSchema Function” on page 262
♦ “GetStreamWriter Function” on page 262
♦ “HasResultSet Function” on page 262
♦ “SetParameter Function” on page 262
♦ “SetParameterNull Function” on page 262

ExecuteQuery Function

Synopsis virtual UltraLite_ResultSet * UltraLite_PreparedStatement_
iface::ExecuteQuery()

Remarks Executes a SQL query.

A ResultSet object is returned.

ExecuteStatement Function

Synopsis virtual ul_s_long UltraLite_PreparedStatement_iface::ExecuteStatement()

Remarks Executes a SQL statement.

GetPlan Function

Synopsis virtual size_t UltraLite_PreparedStatement_iface::GetPlan(
ul_char * buffer
size_t size

)

Parameters ♦ buffer The buffer to receive the plan description.

♦ size The size, in ul_chars, of the buffer.

Remarks Gets a text-based description of query execution plan.

261

GetSchema Function

Synopsis virtual UltraLite_ResultSetSchema * UltraLite_PreparedStatement_
iface::GetSchema()

Remarks Gets the schema for the result set.

GetStreamWriter Function

Synopsis virtual UltraLite_StreamWriter * UltraLite_PreparedStatement_
iface::GetStreamWriter(

ul_column_num parameter_id
)

Parameters ♦ parameter_id A column identifier, which may be either a 1-based
ordinal number or a column name.

Remarks Gets a stream writer for streaming string/binary data into a parameter.

HasResultSet Function

Synopsis virtual bool UltraLite_PreparedStatement_iface::HasResultSet()

Remarks Determines if this SQL statement has a result set.

SetParameter Function

Synopsis virtual void UltraLite_PreparedStatement_iface::SetParameter(
ul_column_num parameter_id
ULValue const & value

)

Parameters ♦ parameter_id The 1-based ordinal of the parameter.

♦ value The value to set the parameter.

Remarks Sets a parameter for the SQL statement.

SetParameterNull Function

Synopsis virtual void UltraLite_PreparedStatement_iface::SetParameterNull(
ul_column_num parameter_id

)

Parameters ♦ parameter_id The 1-based ordinal of the parameter.

Remarks Sets a parameter to null.

262

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_ResultSet
Synopsis public UltraLite_ResultSet

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269
♦ “Class UltraLite_ResultSet_iface” on page 264
♦ “Class UltraLite_Cursor_iface” on page 245

Remarks ResultSet class.

Members All members of UltraLite_ResultSet, including all inherited members.

♦ “AddRef Function” on page 269
♦ “AfterLast Function” on page 245
♦ “BeforeFirst Function” on page 245
♦ “First Function” on page 245
♦ “Get Function” on page 246
♦ “GetConnection Function” on page 269
♦ “GetIFace Function” on page 269
♦ “GetRowCount Function” on page 246
♦ “GetSchema Function” on page 264
♦ “GetState Function” on page 246
♦ “GetStreamReader Function” on page 246
♦ “GetSuspend Function” on page 246
♦ “IsNull Function” on page 247
♦ “Last Function” on page 247
♦ “Next Function” on page 247
♦ “Previous Function” on page 247
♦ “Relative Function” on page 247
♦ “Release Function” on page 270
♦ “SetSuspend Function” on page 247

263

Class UltraLite_ResultSet_iface
Synopsis public UltraLite_ResultSet_iface

Derived classes ♦ “Class UltraLite_ResultSet” on page 263

Remarks ResultSet interface.

Members All members of UltraLite_ResultSet_iface, including all inherited members.

♦ “GetSchema Function” on page 264

GetSchema Function

Synopsis virtual UltraLite_ResultSetSchema * Ultra-
Lite_ResultSet_iface::GetSchema()

Remarks Gets the schema for this result set.

264

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_ResultSetSchema
Synopsis public UltraLite_ResultSetSchema

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269
♦ “Class UltraLite_RowSchema_iface” on page 266

Remarks ResultSetSchema class.

Members All members of UltraLite_ResultSetSchema, including all inherited
members.

♦ “AddRef Function” on page 269
♦ “GetColumnCount Function” on page 266
♦ “GetColumnID Function” on page 266
♦ “GetColumnName Function” on page 266
♦ “GetColumnPrecision Function” on page 267
♦ “GetColumnScale Function” on page 267
♦ “GetColumnSize Function” on page 267
♦ “GetColumnSQLType Function” on page 267
♦ “GetColumnType Function” on page 268
♦ “GetConnection Function” on page 269
♦ “GetIFace Function” on page 269
♦ “Release Function” on page 270

265

Class UltraLite_RowSchema_iface
Synopsis public UltraLite_RowSchema_iface

Derived classes ♦ “Class UltraLite_ResultSetSchema” on page 265
♦ “Class UltraLite_TableSchema” on page 285

Remarks RowSchema interface.

Members All members of UltraLite_RowSchema_iface, including all inherited
members.

♦ “GetColumnCount Function” on page 266
♦ “GetColumnID Function” on page 266
♦ “GetColumnName Function” on page 266
♦ “GetColumnPrecision Function” on page 267
♦ “GetColumnScale Function” on page 267
♦ “GetColumnSize Function” on page 267
♦ “GetColumnSQLType Function” on page 267
♦ “GetColumnType Function” on page 268

GetColumnCount Function

Synopsis virtual ul_column_num UltraLite_RowSchema_iface::GetColumnCount()

Remarks Gets the number of columns in the table.

GetColumnID Function

Synopsis virtual ul_column_num UltraLite_RowSchema_iface::GetColumnID(
const ULValue & column_name

)

Parameters ♦ column_name The column name.

Remarks Gets the 1-based column ID 0 is returned if the column does not exist
SQLE_COLUMN_NOT_FOUND is set if the column name does not exist.

GetColumnName Function

Synopsis virtual ULValue UltraLite_RowSchema_iface::GetColumnName(
ul_column_num column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Gets the name of a column given its 1-based ID TheClass ULValueobject
returned is empty if the column does not exist.

SQLE_COLUMN_NOT_FOUND is set if the column name does not exist

266

Chapter 13. UltraLite C++ Component API Reference

GetColumnPrecision Function

Synopsis virtual size_t UltraLite_RowSchema_iface::GetColumnPrecision(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Gets the precision of a numeric column Same errors as GetColumnScale.

GetColumnSQLType Function

Synopsis virtual ul_column_sql_type UltraLite_RowSchema_iface::GetColumnSQLType(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Gets the SQL type of a column.

See the ul_column_sql_type in ulprotos.h. UL_SQLTYPE_BAD_INDEX is
returned if the column does not exist No SQL error is set

GetColumnScale Function

Synopsis virtual size_t UltraLite_RowSchema_iface::GetColumnScale(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Gets the scale of a numeric column.

0 is returned if the column is not a numeric type or if the column does not
exist. SQLE_COLUMN_NOT_FOUND is set if the column name does not
exist SQLE_DATATYPE_NOT_ALLOWED is set if the column type is not
a numeric.

GetColumnSize Function

Synopsis virtual size_t UltraLite_RowSchema_iface::GetColumnSize(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Gets the size of the column.

0 is returned if the column does not exist or if the column type does not have
a variable length. SQLE_COLUMN_NOT_FOUND is set if the column

267

name does not exist SQLE_DATATYPE_NOT_ALLOWED is set if the
column type is not one of the following: UL_SQLTYPE_CHAR
UL_SQLTYPE_BINARY

GetColumnType Function

Synopsis virtual ul_column_storage_type UltraLite_RowSchema_iface::GetColumnType(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Gets the type of a column.

See the ul_column_storage_type enum in ulprotos.h
UL_TYPE_BAD_INDEX is returned if the column does not exist No SQL
error is set

268

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_SQLObject_iface
Synopsis public UltraLite_SQLObject_iface

Derived classes ♦ “Class UltraLite_Connection” on page 234
♦ “Class UltraLite_DatabaseSchema” on page 252
♦ “Class UltraLite_IndexSchema” on page 256
♦ “Class UltraLite_PreparedStatement” on page 260
♦ “Class UltraLite_ResultSet” on page 263
♦ “Class UltraLite_ResultSetSchema” on page 265
♦ “Class UltraLite_StreamReader” on page 271
♦ “Class UltraLite_StreamWriter” on page 275
♦ “Class UltraLite_Table” on page 276
♦ “Class UltraLite_TableSchema” on page 285

Remarks SQLObject interface.

Members All members of UltraLite_SQLObject_iface, including all inherited
members.

♦ “AddRef Function” on page 269
♦ “GetConnection Function” on page 269
♦ “GetIFace Function” on page 269
♦ “Release Function” on page 270

AddRef Function

Synopsis virtual ul_ret_void UltraLite_SQLObject_iface::AddRef()

Remarks Increase the internal reference count for an object.

Note that you must match each call toAddRef Functionwith a call to
Release Functionin order to free the object.

GetConnection Function

Synopsis virtual UltraLite_Connection * UltraLite_SQLObject_iface::GetConnection()

Remarks Gets the Connection object.

Returns The connection associated with this object.

GetIFace Function

Synopsis virtual ul_void * UltraLite_SQLObject_iface::GetIFace(
ul_iface_id iface

)

269

Parameters ♦ iface Reserved for future use.

Remarks Reserved for future use.

Release Function

Synopsis virtual ul_u_long UltraLite_SQLObject_iface::Release()

Remarks Release a reference to an object.

The object will be freed once all references have been removed. You must
call Release Functionat least once and if you useAddRef Functionyou also
need a matching call from eachAddRef Function.

270

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_StreamReader
Synopsis public UltraLite_StreamReader

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269
♦ “Class UltraLite_StreamReader_iface” on page 272

Remarks StreamReader class.

Members All members of UltraLite_StreamReader, including all inherited members.

♦ “AddRef Function” on page 269
♦ “GetByteChunk Function” on page 272
♦ “GetConnection Function” on page 269
♦ “GetIFace Function” on page 269
♦ “GetLength Function” on page 272
♦ “GetStringChunk Function” on page 273
♦ “GetStringChunk Function” on page 273
♦ “Release Function” on page 270
♦ “SetReadPosition Function” on page 274

271

Class UltraLite_StreamReader_iface
Synopsis public UltraLite_StreamReader_iface

Derived classes ♦ “Class UltraLite_StreamReader” on page 271

Remarks StreamReader interface.

This interface supports reading/retrieving string (varchar) and binary
columns.

Members All members of UltraLite_StreamReader_iface, including all inherited
members.

♦ “GetByteChunk Function” on page 272
♦ “GetLength Function” on page 272
♦ “GetStringChunk Function” on page 273
♦ “GetStringChunk Function” on page 273
♦ “SetReadPosition Function” on page 274

GetByteChunk Function

Synopsis virtual bool UltraLite_StreamReader_iface::GetByteChunk(
ul_byte * data
size_t buffer_len
size_t * len_retn
bool * morebytes

)

Parameters ♦ data A buffer of bytes.

♦ buffer_len The length of buffer.

♦ len_retn output: the length returned.

♦ morebytes output: true if there are more bytes to read.

Remarks Gets a byte chunk from current StreamReader offset.

Copybuffer_len bytes in to bufferdata . bytes are read from where the
last read left off unlessSetReadPosition Functionis used.

GetLength Function

Synopsis virtual size_t UltraLite_StreamReader_iface::GetLength(
bool fetching_as_wide

)

Parameters ♦ fetching_as_wide The indicated fetch string type. Use false for binary.

272

Chapter 13. UltraLite C++ Component API Reference

Remarks Gets the length of a string/binary value.

For binary and for strings fetched as ANSI (fetch_is_wide = false) the
number of bytes is returned. When fetching UNICODE (fetch_is_wide =
true) the number of unicode characters is returned.

GetStringChunk Function

Synopsis virtual bool UltraLite_StreamReader_iface::GetStringChunk(
ul_wchar * str
size_t buffer_len
size_t * len_retn
bool * morebytes

)

Parameters ♦ str A buffer of wide characters.

♦ buffer_len The length of the buffer.

♦ len_retn output: the length returned.

♦ morebytes output: true if there are more characters to read.

Remarks Gets a string chunk from current StreamReader offset.

Copybuffer_len wide characters in to bufferstr . Characters are read
from where the last read left off unlessSetReadPosition Functionis used.

GetStringChunk Function

Synopsis virtual bool UltraLite_StreamReader_iface::GetStringChunk(
char * str
size_t buffer_len
size_t * len_retn
bool * morebytes

)

Parameters ♦ str A buffer of characters.

♦ buffer_len The length of the buffer.

♦ len_retn output: the length returned.

♦ morebytes output: true if there are more characters to read.

Remarks Gets a string chunk from current StreamReader offset.

Copybuffer_len bytes in to bufferstr . Characters are read from where
the last read left off unlessSetReadPosition Functionis used.

273

SetReadPosition Function

Synopsis virtual bool UltraLite_StreamReader_iface::SetReadPosition(
size_t offset

)

Parameters ♦ offset The offset. For strings, the offset is in characters.

Remarks Sets the offset in the data for the next read.

274

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_StreamWriter
Synopsis public UltraLite_StreamWriter

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269

Remarks StreamWriter class.

Members All members of UltraLite_StreamWriter, including all inherited members.

♦ “AddRef Function” on page 269
♦ “GetConnection Function” on page 269
♦ “GetIFace Function” on page 269
♦ “Release Function” on page 270

275

Class UltraLite_Table
Synopsis public UltraLite_Table

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269
♦ “Class UltraLite_Table_iface” on page 278
♦ “Class UltraLite_Cursor_iface” on page 245

Remarks Table class.

Members All members of UltraLite_Table, including all inherited members.

♦ “AddRef Function” on page 269
♦ “AfterLast Function” on page 245
♦ “BeforeFirst Function” on page 245
♦ “Delete Function” on page 278
♦ “DeleteAllRows Function” on page 278
♦ “Find Function” on page 279
♦ “FindBegin Function” on page 279
♦ “FindFirst Function” on page 279
♦ “FindLast Function” on page 280
♦ “FindNext Function” on page 280
♦ “FindPrevious Function” on page 280
♦ “First Function” on page 245
♦ “Get Function” on page 246
♦ “GetConnection Function” on page 269
♦ “GetIFace Function” on page 269
♦ “GetRowCount Function” on page 246
♦ “GetSchema Function” on page 281
♦ “GetState Function” on page 246
♦ “GetStreamReader Function” on page 246
♦ “GetStreamWriter Function” on page 281
♦ “GetSuspend Function” on page 246
♦ “Insert Function” on page 281
♦ “InsertBegin Function” on page 281
♦ “IsNull Function” on page 247
♦ “Last Function” on page 247
♦ “Lookup Function” on page 281
♦ “LookupBackward Function” on page 282
♦ “LookupBegin Function” on page 282
♦ “LookupForward Function” on page 282
♦ “Next Function” on page 247
♦ “Previous Function” on page 247
♦ “Relative Function” on page 247
♦ “Release Function” on page 270

276

Chapter 13. UltraLite C++ Component API Reference

♦ “Set Function” on page 283
♦ “SetDefault Function” on page 283
♦ “SetNull Function” on page 283
♦ “SetSuspend Function” on page 247
♦ “TruncateTable Function” on page 283
♦ “Update Function” on page 283
♦ “UpdateBegin Function” on page 284

277

Class UltraLite_Table_iface
Synopsis public UltraLite_Table_iface

Derived classes ♦ “Class UltraLite_Table” on page 276

Remarks Table interface.

Members All members of UltraLite_Table_iface, including all inherited members.

♦ “Delete Function” on page 278
♦ “DeleteAllRows Function” on page 278
♦ “Find Function” on page 279
♦ “FindBegin Function” on page 279
♦ “FindFirst Function” on page 279
♦ “FindLast Function” on page 280
♦ “FindNext Function” on page 280
♦ “FindPrevious Function” on page 280
♦ “GetSchema Function” on page 281
♦ “GetStreamWriter Function” on page 281
♦ “Insert Function” on page 281
♦ “InsertBegin Function” on page 281
♦ “Lookup Function” on page 281
♦ “LookupBackward Function” on page 282
♦ “LookupBegin Function” on page 282
♦ “LookupForward Function” on page 282
♦ “Set Function” on page 283
♦ “SetDefault Function” on page 283
♦ “SetNull Function” on page 283
♦ “TruncateTable Function” on page 283
♦ “Update Function” on page 283
♦ “UpdateBegin Function” on page 284

Delete Function

Synopsis virtual bool UltraLite_Table_iface::Delete()

Remarks Deletes the current row.

The cursor position is left on the next valid row.

DeleteAllRows Function

Synopsis virtual bool UltraLite_Table_iface::DeleteAllRows()

Remarks Deletes all rows from table.

278

Chapter 13. UltraLite C++ Component API Reference

If the stop sync property is set on the connection, the deleted rows are not
synchronized.

Note: Uncommitted inserts from other connections are not deleted, any
uncommitted deletes from other connections will not be deleted if the other
connection does a rollback afterDeleteAllRows Functionhas been called.

Returns true on success, false otherwise (table not open, SQL error, etc.).

Find Function

Synopsis virtual bool UltraLite_Table_iface::Find(
ul_column_num ncols

)

Parameters ♦ ncols For composite indexes, the number of columns to use in the
lookup.

Remarks Equivalent to FindFirst.

To specify the value to search for, Set the column value for each column in
the index

The cursor is left positioned on the first row that exactly matches the index
value

If no row matches the index value, the cursor position is AfterLast() and the
function returns false

FindBegin Function

Synopsis virtual bool UltraLite_Table_iface::FindBegin()

Remarks Selects find mode for setting columns.

Only columns in the index that the table was opened with may be set.

FindFirst Function

Synopsis virtual bool UltraLite_Table_iface::FindFirst(
ul_column_num ncols

)

Parameters ♦ ncols For composite indexes, the number of columns to use in the
lookup.

Remarks Does an exact match lookup based on the current index scanning forward
through the table.

♦ To specify the value to search for, Set the column value for each column
in the index

279

♦ The cursor is left positioned on the first row that exactly matches the
index value

♦ If no row matches the index value, the cursor position is AfterLast() and
the function returns false

FindLast Function

Synopsis virtual bool UltraLite_Table_iface::FindLast(
ul_column_num ncols

)

Parameters ♦ ncols For composite indexes, the number of columns to use in the
lookup.

Remarks Does an exact match lookup based on the current index scanning backward
through the table.

♦ To specify the value to search for, Set the column value for each column
in the index

♦ The cursor is left positioned on the first row that exactly matches the
index value

♦ If no row matches the index value, the cursor position is BeforeFirst() and
the function returns false

FindNext Function

Synopsis virtual bool UltraLite_Table_iface::FindNext(
ul_column_num ncols

)

Parameters ♦ ncols For composite indexes, the number of columns to use in the
lookup.

Remarks Gets the next row (forward) that exactly matches the index.

Returns false if no more rows match the index. In this case the cursor is
positioned after the last row.

FindPrevious Function

Synopsis virtual bool UltraLite_Table_iface::FindPrevious(
ul_column_num ncols

)

Parameters ♦ ncols For composite indexes, the number of columns to use in the
lookup.

280

Chapter 13. UltraLite C++ Component API Reference

Remarks Gets the previous row (backward) that exactly matches the index.

Returns false if no more rows match the index. In this case the cursor is
positioned before the first row.

GetSchema Function

Synopsis virtual UltraLite_TableSchema * UltraLite_Table_iface::GetSchema()

Remarks Gets a schema object for this table.

GetStreamWriter Function

Synopsis virtual UltraLite_StreamWriter * UltraLite_Table_iface::GetStreamWriter(
const ULValue & column_id

)

Parameters ♦ column_id A column identifier, which may be either a 1-based ordinal
number or a column name.

Remarks Gets a stream writer for streaming string/binary data into a column.

Insert Function

Synopsis virtual bool UltraLite_Table_iface::Insert()

Remarks Inserts a new row into the table.

The table must be in insert mode for this operation to succeed. Use
InsertBegin Functionto switch to insert mode.

InsertBegin Function

Synopsis virtual bool UltraLite_Table_iface::InsertBegin()

Remarks Selects insert mode for setting columns.

All columns may be modified in this mode.

Lookup Function

Synopsis virtual bool UltraLite_Table_iface::Lookup(
ul_column_num ncols

)

Parameters ♦ ncols For composite indexes, the number of columns to use in the
lookup.

Remarks Equivalent to LookupForward.

281

To specify the value to search for, Set the column value for each column in
the index

The cursor is left positioned on the first row that matches or is greater than
the index value

If the resulting cursor position is AfterLast() the return value is false

LookupBackward Function

Synopsis virtual bool UltraLite_Table_iface::LookupBackward(
ul_column_num ncols

)

Parameters ♦ ncols For composite indexes, the number of columns to use in the
lookup.

Remarks Does a lookup based on the current index scanning backward through the
table.

♦ To specify the value to search for, Set the column value for each column
in the index

♦ The cursor is left positioned on the last row that matches or is less than
the index value

♦ If resulting cursor position is BeforeFirst() the return value is false

♦ For composite indexes, ncols specifies the number of columns to use in
the lookup

LookupBegin Function

Synopsis virtual bool UltraLite_Table_iface::LookupBegin()

Remarks Selects lookup mode for setting columns.

Only columns in the index that the table was opened with may be set.

LookupForward Function

Synopsis virtual bool UltraLite_Table_iface::LookupForward(
ul_column_num ncols

)

Parameters ♦ ncols For composite indexes, the number of columns to use in the
lookup.

Remarks Does a lookup based on the current index scanning forward through the
table.

282

Chapter 13. UltraLite C++ Component API Reference

♦ To specify the value to search for, Set the column value for each column
in the index

♦ The cursor is left positioned on the first row that matches or is greater
than the index value

♦ If the resulting cursor position is AfterLast() the return value is false

Set Function

Synopsis virtual bool UltraLite_Table_iface::Set(
const ULValue & column_id
const ULValue & value

)

Parameters ♦ column_id A 1-based ordinal number identifying the column.

♦ value The value to which the column is set.

Remarks Sets a column value.

SetDefault Function

Synopsis virtual bool UltraLite_Table_iface::SetDefault(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number identifying the column.

Remarks Sets column(s) to their default value.

SetNull Function

Synopsis virtual bool UltraLite_Table_iface::SetNull(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number identifying the column.

Remarks Sets a column to null.

TruncateTable Function

Synopsis virtual bool UltraLite_Table_iface::TruncateTable()

Remarks Truncates the table.

Temporarily activates stop synchronization delete.

Update Function

Synopsis virtual bool UltraLite_Table_iface::Update()

283

Remarks Updates the current row.

The table must be in update mode for this operation to succeed. Use
UpdateBegin Functionto switch to update mode;

UpdateBegin Function

Synopsis virtual bool UltraLite_Table_iface::UpdateBegin()

Remarks Selects update mode for setting columns.

Columns in the primary key may not be modified when in update mode.

284

Chapter 13. UltraLite C++ Component API Reference

Class UltraLite_TableSchema
Synopsis public UltraLite_TableSchema

Base classes ♦ “Class UltraLite_SQLObject_iface” on page 269
♦ “Class UltraLite_TableSchema_iface” on page 286
♦ “Class UltraLite_RowSchema_iface” on page 266

Remarks TableSchema class.

Members All members of UltraLite_TableSchema, including all inherited members.

♦ “AddRef Function” on page 269
♦ “GetColumnCount Function” on page 266
♦ “GetColumnDefault Function” on page 286
♦ “GetColumnID Function” on page 266
♦ “GetColumnName Function” on page 266
♦ “GetColumnPrecision Function” on page 267
♦ “GetColumnScale Function” on page 267
♦ “GetColumnSize Function” on page 267
♦ “GetColumnSQLType Function” on page 267
♦ “GetColumnType Function” on page 268
♦ “GetConnection Function” on page 269
♦ “GetGlobalAutoincPartitionSize Function” on page 287
♦ “GetID Function” on page 287
♦ “GetIFace Function” on page 269
♦ “GetIndexCount Function” on page 287
♦ “GetIndexName Function” on page 287
♦ “GetIndexSchema Function” on page 287
♦ “GetName Function” on page 288
♦ “GetOptimalIndex Function” on page 288
♦ “GetPrimaryKey Function” on page 288
♦ “GetUploadUnchangedRows Function” on page 288
♦ “InPublication Function” on page 288
♦ “IsColumnAutoinc Function” on page 289
♦ “IsColumnCurrentDate Function” on page 289
♦ “IsColumnCurrentTime Function” on page 289
♦ “IsColumnCurrentTimestamp Function” on page 289
♦ “IsColumnGlobalAutoinc Function” on page 289
♦ “IsColumnInIndex Function” on page 290
♦ “IsColumnNewUUID Function” on page 290
♦ “IsColumnNullable Function” on page 290
♦ “IsNeverSynchronized Function” on page 290
♦ “Release Function” on page 270

285

Class UltraLite_TableSchema_iface
Synopsis public UltraLite_TableSchema_iface

Derived classes ♦ “Class UltraLite_TableSchema” on page 285

Remarks TableSchema interface.

Members All members of UltraLite_TableSchema_iface, including all inherited
members.

♦ “GetColumnDefault Function” on page 286
♦ “GetGlobalAutoincPartitionSize Function” on page 287
♦ “GetID Function” on page 287
♦ “GetIndexCount Function” on page 287
♦ “GetIndexName Function” on page 287
♦ “GetIndexSchema Function” on page 287
♦ “GetName Function” on page 288
♦ “GetOptimalIndex Function” on page 288
♦ “GetPrimaryKey Function” on page 288
♦ “GetUploadUnchangedRows Function” on page 288
♦ “InPublication Function” on page 288
♦ “IsColumnAutoinc Function” on page 289
♦ “IsColumnCurrentDate Function” on page 289
♦ “IsColumnCurrentTime Function” on page 289
♦ “IsColumnCurrentTimestamp Function” on page 289
♦ “IsColumnGlobalAutoinc Function” on page 289
♦ “IsColumnInIndex Function” on page 290
♦ “IsColumnNewUUID Function” on page 290
♦ “IsColumnNullable Function” on page 290
♦ “IsNeverSynchronized Function” on page 290

GetColumnDefault Function

Synopsis virtual ULValue UltraLite_TableSchema_iface::GetColumnDefault(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Gets the default value for the column if it exists TheClass ULValueobject
returned has the default contained as a string.

TheClass ULValueobject returned is empty if the column does not contain a
default value. SQLE_COLUMN_NOT_FOUND is set if the column name
does not exist.

286

Chapter 13. UltraLite C++ Component API Reference

GetGlobalAutoincPartitionSize Function

Synopsis virtual bool UltraLite_TableSchema_iface::GetGlobalAutoincPartitionSize(
const ULValue & column_id
ul_u_big * size

)

Parameters ♦ column_id A 1-based ordinal number.

♦ size output: The partition size for the column.

Remarks Returns the partition size for a global autoincrement column.

GetID Function

Synopsis virtual ul_table_num UltraLite_TableSchema_iface::GetID()

Remarks Gets the table ID.

GetIndexCount Function

Synopsis virtual ul_index_num UltraLite_TableSchema_iface::GetIndexCount()

Remarks Returns the number of indexes in the table.

GetIndexName Function

Synopsis virtual ULValue UltraLite_TableSchema_iface::GetIndexName(
ul_index_num index_id

)

Parameters ♦ index_id A 1-based ordinal number.

Remarks Gets the index name given its 1-based ID.

TheClass ULValueobject returned is empty if the index does not exist.

GetIndexSchema Function

Synopsis virtual UltraLite_IndexSchema * UltraLite_TableSchema_
iface::GetIndexSchema(

const ULValue & index_id
)

Parameters ♦ index_id The name or ID number identifying the index.

Remarks Gets an IndexSchema object with the given name or id.

UL_NULL is returned if the index does not exist

287

GetName Function

Synopsis virtual ULValue UltraLite_TableSchema_iface::GetName()

Remarks Gets the name of the table.

GetOptimalIndex Function

Synopsis virtual ULValue UltraLite_TableSchema_iface::GetOptimalIndex(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Determine the best index to use for searching for a column value.

Returns the name of the index.

GetPrimaryKey Function

Synopsis virtual UltraLite_IndexSchema * UltraLite_TableSchema_
iface::GetPrimaryKey()

Remarks Gets the primary key for the table.

GetUploadUnchangedRows Function

Synopsis virtual bool UltraLite_TableSchema_iface::GetUploadUnchangedRows()

Remarks Returns true if the table upload every row.

Rows will be uploaded even if they haven’t been modified since the last
download

InPublication Function

Synopsis virtual bool UltraLite_TableSchema_iface::InPublication(
const ULValue & publication_name

)

Parameters ♦ publication_name The name of the publication.

Remarks Returns true if the table is contained in the publication
SQLE_PUBLICATION_NOT_FOUND is set if the publication does not
exist.

288

Chapter 13. UltraLite C++ Component API Reference

IsColumnAutoinc Function

Synopsis virtual bool UltraLite_TableSchema_iface::IsColumnAutoinc(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Returns true if the column default is set to be auto increment.

SQLE_COLUMN_NOT_FOUND is set if the column name does not exist

IsColumnCurrentDate Function

Synopsis virtual bool UltraLite_TableSchema_iface::IsColumnCurrentDate(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Returns true if the column has a current date default.

IsColumnCurrentTime Function

Synopsis virtual bool UltraLite_TableSchema_iface::IsColumnCurrentTime(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Returns true if the column has a current time default.

IsColumnCurrentTimestamp Function

Synopsis virtual bool UltraLite_TableSchema_iface::IsColumnCurrentTimestamp(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Returns true if the column has a current timestamp default.

IsColumnGlobalAutoinc Function

Synopsis virtual bool UltraLite_TableSchema_iface::IsColumnGlobalAutoinc(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

289

Remarks Returns true if the column default is set to be auto increment
SQLE_COLUMN_NOT_FOUND is set if the column name does not exist.

IsColumnInIndex Function

Synopsis virtual bool UltraLite_TableSchema_iface::IsColumnInIndex(
const ULValue & column_id
const ULValue & index_id

)

Parameters ♦ column_id A 1-based ordinal number identifying the column. You can
get the column_id by callingGetColumnCount Function.

♦ index_id A 1-based ordinal number identifying the index. You can get
the number of indexes in a table by callingGetIndexCount Function.

Remarks Returns true if the column is contained in the index - id must be 1-based.

SQLE_COLUMN_NOT_FOUND is set if the column name does not exist.
SQLE_INDEX_NOT_FOUND is set if the index does not exist.

IsColumnNewUUID Function

Synopsis virtual bool UltraLite_TableSchema_iface::IsColumnNewUUID(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Returns true if the column has a UUID default.

IsColumnNullable Function

Synopsis virtual bool UltraLite_TableSchema_iface::IsColumnNullable(
const ULValue & column_id

)

Parameters ♦ column_id A 1-based ordinal number.

Remarks Returns true if the column is nullable SQLE_COLUMN_NOT_FOUND is
set if the column name does not exist.

IsNeverSynchronized Function

Synopsis virtual bool UltraLite_TableSchema_iface::IsNeverSynchronized()

Remarks Returns true if the table is omitted from syncronization.

290

Chapter 13. UltraLite C++ Component API Reference

Class ULValue
Synopsis public ULValue

Remarks ULValue object.

The ULValue class is a wrapper for the data types stored in an UltraLite
cursor. This allows you to store data without having to worry about the data
type.

ULValue contains many constructors and cast operators so that ULValue can
be used seamlessly in most cases without explicitly instantiating a ULValue.

Members All members of ULValue, including all inherited members.

♦ “GetBinary Function” on page 292
♦ “GetBinary Function” on page 292
♦ “GetBinaryLength Function” on page 293
♦ “GetString Function” on page 293
♦ “GetString Function” on page 293
♦ “GetStringLength Function” on page 294
♦ “InDatabase Function” on page 294
♦ “IsNull Function” on page 294
♦ “operator bool Function” on page 300
♦ “operator DECL_DATETIME Function” on page 300
♦ “operator double Function” on page 300
♦ “operator float Function” on page 300
♦ “operator int Function” on page 300
♦ “operator long Function” on page 300
♦ “operator short Function” on page 300
♦ “operator ul_s_big Function” on page 301
♦ “operator ul_u_big Function” on page 301
♦ “operator unsigned char Function” on page 301
♦ “operator unsigned int Function” on page 301
♦ “operator unsigned long Function” on page 301
♦ “operator unsigned short Function” on page 301
♦ “operator= Function” on page 301
♦ “SetBinary Function” on page 294
♦ “SetString Function” on page 295
♦ “SetString Function” on page 295
♦ “StringCompare Function” on page 295
♦ “ULValue Function” on page 296
♦ “ULValue Function” on page 296
♦ “ULValue Function” on page 296
♦ “ULValue Function” on page 296
♦ “ULValue Function” on page 296

291

♦ “ULValue Function” on page 297
♦ “ULValue Function” on page 297
♦ “ULValue Function” on page 297
♦ “ULValue Function” on page 297
♦ “ULValue Function” on page 297
♦ “ULValue Function” on page 298
♦ “ULValue Function” on page 298
♦ “ULValue Function” on page 298
♦ “ULValue Function” on page 298
♦ “ULValue Function” on page 298
♦ “ULValue Function” on page 299
♦ “ULValue Function” on page 299
♦ “ULValue Function” on page 299
♦ “ULValue Function” on page 299
♦ “ULValue Function” on page 299
♦ “˜ULValue Function” on page 302

GetBinary Function

Synopsis void ULValue::GetBinary(
p_ul_binary bin
size_t len

)

Parameters ♦ bin The binary structure to receive bytes.

♦ len The length of the buffer.

Remarks Gets a binary value.

Retrieve the current value into a binary buffer, casting as required If the
buffer is too small then the value is truncated. Up tolen characters are be
copied to the given buffer.

GetBinary Function

Synopsis void ULValue::GetBinary(
ul_byte * dst
size_t len
size_t * retr_len

)

Parameters ♦ dst The buffer to receive bytes.

♦ len The length of the buffer.

♦ retr_len output: The actual number of bytes returned.

292

Chapter 13. UltraLite C++ Component API Reference

Remarks Gets a binary value.

Retrieve the current value into a binary buffer, casting as required If the
buffer is too small then the value is truncated. Up tolen bytes are be copied
to the given buffer. The number of bytes actually copied is returned in
retr_len .

GetBinaryLength Function

Synopsis size_t ULValue::GetBinaryLength()

Remarks Gets the length of a Binary value.

Returns Number of bytes necessary to hold the binary value returned byGetBinary
Function.

GetString Function

Synopsis void ULValue::GetString(
char * dst
size_t len

)

Parameters ♦ dst The buffer to receive string value.

♦ len The length, in bytes, ofdst .

Remarks Gets the String value.

Retrieve the current value into a string buffer, casting as required. The
output string is always null-terminated, if the buffer is too small then the
value is truncated. Up tolen characters are be copied to the given buffer,
including the null terminator.

GetString Function

Synopsis void ULValue::GetString(
ul_wchar * dst
size_t len

)

Parameters ♦ dst The buffer to receive string value.

♦ len The length, in wide chars, ofdst .

Remarks Gets a String value.

Retrieve the current value into a string buffer, casting as required. The
output string is always null-terminated, if the buffer is too small then the

293

value is truncated. Up tolen characters are be copied to the given buffer,
including the null terminator.

GetStringLength Function

Synopsis size_t ULValue::GetStringLength(
bool fetching_as_wide

)

Parameters ♦ fetching_as_wide The indicated fetch string type.

Remarks Gets the length of a String.

Intended usage is as follows.

len = v.GetStringLength();
dst = new char_type[len];
(dst, len); GetString

Given this usage, the length may be different for different character types
because of multi-element encodings. Thefetching_as_wide parmeter is
used to indicate what character type is used with theGetString Functioncall.

Returns Number of bytes or wide chars required to hold the string returned by one of
theGetString Functionmethods, including the null-terminator. This is not
necessarily the number of characters in the string.

InDatabase Function

Synopsis bool ULValue::InDatabase()

Remarks Check if value is in the Database.

Returns Returns true if this object is referencing a cursor field

IsNull Function

Synopsis bool ULValue::IsNull()

Remarks Check if NULL.

Returns Returns true if this object is an empty ULValue object, or if it references a
cursor field that is set to NULL.

SetBinary Function

Synopsis void ULValue::SetBinary(
ul_byte * src
size_t len

)

294

Chapter 13. UltraLite C++ Component API Reference

Parameters ♦ src A buffer of bytes.

♦ len The length of the buffer.

Remarks Sets a Binary value.

Set the value to reference the binary buffer provided. No bytes are copied
from the provided buffer until the value is used.

SetString Function

Synopsis void ULValue::SetString(
const char * val
size_t len

)

Parameters ♦ val A pointer to the null-terminated string representation of this
ULValue.

♦ len The length of the string.

Remarks Cast a ULValue to a string.

SetString Function

Synopsis void ULValue::SetString(
const ul_wchar * val
size_t len

)

Parameters ♦ val A pointer to the null-terminated unicode string representation of
this ULValue.

♦ len The length of the string.

Remarks Cast a ULValue to a unicode string.

StringCompare Function

Synopsis ul_compare ULValue::StringCompare(
const ULValue & value

)

Parameters ♦ value The string to compare with.

Remarks Compare strings.

Compares strings, or string representations of ULValue objects

Returns ♦ Returns 0 if the strings are equal.

295

♦ Returns -1 if the current value compares less thanvalue .

♦ Returns 1 if the current value compares greater thanvalue .

♦ On error returns -3 if the sqlca of either ULValue object is not set or -2 if
the string representation of either ULValue object is UL_NULL

ULValue Function

Synopsis ULValue::ULValue()

Remarks Construct a ULValue.

ULValue Function

Synopsis ULValue::ULValue(
const ULValue & vSrc

)

Parameters ♦ vSrc A value to be treated as a ULValue.

Remarks Construct a ULValue from a const.

ULValue Function

Synopsis ULValue::ULValue(
bool val

)

Parameters ♦ val A boolean value to be treated as a ULValue.

Remarks Construct a ULValue from a boool.

ULValue Function

Synopsis ULValue::ULValue(
short val

)

Parameters ♦ val A short value to be treated as a ULValue.

Remarks Construct a ULValue from a short.

ULValue Function

Synopsis ULValue::ULValue(
long val

)

Parameters ♦ val A long value to be treated as a ULValue.

296

Chapter 13. UltraLite C++ Component API Reference

Remarks Construct a ULValue from a long.

ULValue Function

Synopsis ULValue::ULValue(
int val

)

Parameters ♦ val An int value to be treated as a ULValue.

Remarks Construct a ULValue from an int.

ULValue Function

Synopsis ULValue::ULValue(
unsigned int val

)

Parameters ♦ val An unsigned int value to be treated as a ULValue.

Remarks Construct a ULValue from an unsigned int.

ULValue Function

Synopsis ULValue::ULValue(
float val

)

Parameters ♦ val A float value to be treated as a ULValue.

Remarks Construct a ULValue from a float.

ULValue Function

Synopsis ULValue::ULValue(
double val

)

Parameters ♦ val A double value to be treated as a ULValue.

Remarks Construct a ULValue from a double.

ULValue Function

Synopsis ULValue::ULValue(
unsigned char val

)

Parameters ♦ val An unsigned char to be treated as a ULValue.

Remarks Construct a ULValue from an unsigned char.

297

ULValue Function

Synopsis ULValue::ULValue(
unsigned short val

)

Parameters ♦ val An unsigned short to be treated as a ULValue.

Remarks Construct a ULValue from an unsigned short.

ULValue Function

Synopsis ULValue::ULValue(
unsigned long val

)

Parameters ♦ val An unsigned long to be treated as a ULValue.

Remarks Construct a ULValue from an unsigned long.

ULValue Function

Synopsis ULValue::ULValue(
const ul_u_big & val

)

Parameters ♦ val A ul_u_big value to be treated as a ULValue.

Remarks Construct a ULValue from a ul_u_big.

ULValue Function

Synopsis ULValue::ULValue(
const ul_s_big & val

)

Parameters ♦ val A ul_s_big value to be treated as a ULValue.

Remarks Construct a ULValue from a ul_s_big.

ULValue Function

Synopsis ULValue::ULValue(
const p_ul_binary val

)

Parameters ♦ val A ul_binary value to be treated as a ULValue.

Remarks Construct a ULValue from a ul_binary.

298

Chapter 13. UltraLite C++ Component API Reference

ULValue Function

Synopsis ULValue::ULValue(
DECL_DATETIME & val

)

Parameters ♦ val A datetime value to be treated as a ULValue.

Remarks Construct a ULValue from a datetime.

ULValue Function

Synopsis ULValue::ULValue(
const char * val

)

Parameters ♦ val A pointer to a string to be treated as a ULValue.

Remarks Construct a ULValue from a string.

ULValue Function

Synopsis ULValue::ULValue(
const ul_wchar * val

)

Parameters ♦ val A pointer to a unicode string to be treated as a ULValue.

Remarks Construct a ULValue from a unicode string.

ULValue Function

Synopsis ULValue::ULValue(
const char * val
size_t len

)

Parameters ♦ val A buffer holding the string to be treated as a ULValue.

♦ len The length of the buffer.

Remarks Construct a ULValue from a buffer of characters.

ULValue Function

Synopsis ULValue::ULValue(
const ul_wchar * val
size_t len

)

Parameters ♦ val A buffer holding the string to be treated as a ULValue.

299

♦ len The length of the buffer.

Remarks Construct a ULValue from a buffer of unicode characters.

operator DECL_DATETIME Function

Synopsis ULValue::operator DECL_DATETIME()

Remarks Cast a ULValue to a datetime.

operator bool Function

Synopsis ULValue::operator bool()

Remarks Cast a ULValue to a boolean.

operator double Function

Synopsis ULValue::operator double()

Remarks Cast a ULValue to a double.

operator float Function

Synopsis ULValue::operator float()

Remarks Cast a ULValue to a float.

operator int Function

Synopsis ULValue::operator int()

Remarks Cast a ULValue to an int.

operator long Function

Synopsis ULValue::operator long()

Remarks Cast a ULValue to a long.

operator short Function

Synopsis ULValue::operator short()

Remarks Cast a ULValue to a short.

300

Chapter 13. UltraLite C++ Component API Reference

operator ul_s_big Function

Synopsis ULValue::operator ul_s_big()

Remarks Cast a ULValue to a signed big int.

operator ul_u_big Function

Synopsis ULValue::operator ul_u_big()

Remarks Cast a ULValue to an unsigned big int.

operator unsigned char Function

Synopsis ULValue::operator unsigned char()

Remarks Cast a ULValue to a char.

operator unsigned int Function

Synopsis ULValue::operator unsigned int()

Remarks Cast a ULValue to an unsigned int.

operator unsigned long Function

Synopsis ULValue::operator unsigned long()

Remarks Cast a ULValue to an unsigned long.

operator unsigned short Function

Synopsis ULValue::operator unsigned short()

Remarks Cast a ULValue to an unsigned short.

operator= Function

Synopsis ULValue & ULValue::operator=(
const ULValue & other

)

Parameters ♦ other The value to be assigned to a ULValue.

Remarks Override the = operator for ULValues.

301

~ULValue Function

Synopsis ULValue::~ULValue()

Remarks Destructor for ULValue.

302

CHAPTER 14

UltraLite Static C++ API Reference

About this chapter This chapter describes the UltraLite Static C++ API.

Contents Topic: page

C++ API class hierarchy 304

C++ API language elements 305

ULConnection class 306

ULCursor class 319

ULData class 331

ULResultSet class 340

ULTable class 341

Generated result set class 347

Generated statement class 350

Generated table class 352

303

C++ API class hierarchy
The classes in the C++ API are displayed in the following diagram:

ULTable

ULCursor

ULResultSet

ULData
ULConnection

table-name
 query-name

Defined in

ulapi.h

Generated

classes

statement-

name

ULStatement

The classes are described in the following header files:

♦ generated-name.hpp The interface generated for a particular set of
statements or tables is defined in the generated.hppfile.

♦ ulapi.h The base classes are defined inulapi.h, in theh subdirectory of
your SQL Anywhere installation directory.

♦ ulglobal.h You may want to look atulglobal.h, in theh subdirectory of
your SQL Anywhere installation directory, for some of the data types and
other definitions used inulapi.h.

Functions available from
the Static C++ API

C++ API applications use some functions that are not part of the class
hierarchy. These functions are as follows:

♦ “ULEnableFileDB function” on page 208.

♦ “ULEnablePalmRecordDB function” on page 210.

♦ “ULEnableStrongEncryption function” on page 211.

♦ “ULEnableUserAuthentication function” on page 212.

♦ “ULRegisterErrorCallback function” on page 213.

♦ “ULRegisterSchemaUpgradeObserver function” on page 216.

304

Chapter 14. UltraLite Static C++ API Reference

C++ API language elements
The UltraLite API methods and variables are described in terms of a set of
UltraLite data types. These data types are described in this section.

UltraLite data types

♦ an_SQL_code A data type for holding SQL error codes.

♦ ul_char A data type representing a character. If the operating system
uses Unicode,ul_char uses two bytes per character. For single-byte
character sets,ul_char uses a single byte per character.

♦ ul_binary A data type representing one byte of binary information.

♦ ul_column_num A data type for holding a number indicating a column
of a table or query. The first column in the table or query is number one.

♦ ul_fetch_offset A data type for holding a relative number in a
ULCursor object.

♦ ul_length A data type for holding the length of a data type.

♦ DECL_DATETIME A type for holding date and time information in a
SQLDATETIME structure, which is defined as follows:

typedef struct sqldatetime {
unsigned short year; / * e.g. 1999 * /
unsigned char month; / * 0-11 * /
unsigned char day_of_week; / * 0-6 0=Sunday * /
unsigned short day_of_year; / * 0-365 * /
unsigned char day; / * 1-31 * /
unsigned char hour; / * 0-23 * /
unsigned char minute; / * 0-59 * /
unsigned char second; / * 0-59 * /
unsigned long microsecond; / * 0-999999 * /

} SQLDATETIME;

DECL_DATETIME is also used in embedded SQL programming. Other
embedded SQL data types with named DECL_type are not needed in
C++ API programming.

♦ UL_NULL A constant representing a SQL NULL.

305

ULConnection class
Object Represents a database connection.

Description A ULConnection object represents an UltraLite database connection. It
provides methods to open and close a connection, to check whether a
connection is open, to synchronize a database on the current connection, and
more.

For embedded SQL users, opening aULConnection object is equivalent to
the EXEC SQL CONNECT statement.

Close method

Prototype bool Close ()

Description Disconnects your application from the database, and frees resources
associated with the ULConnection object. Once you have closed the
ULConnection object, your application is no longer connected to the
UltraLite database.

Closing a connection rolls back any outstanding changes.

You should not close a connection object in a Palm Computing Platform
application. Instead, use theReopenmethod when the application is
reactivated. For more information, see“Reopen method (deprecated)” on
page 314.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example closes a ULConnection object:

conn.Close();

See also “Open method” on page 313

Commit method

Prototype bool Commit()

Description Commits outstanding changes to the database.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following code inserts a value to the database, and commits the change.

306

Chapter 14. UltraLite Static C++ API Reference

productTable.Open(&conn);
productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();
conn.Commit();

See also “Rollback method” on page 316

CountUploadRows method

Prototype ul_u_long CountUploadRows(
ul_publication_mask mask ,
ul_u_long threshold)

Description Returns the number of rows that need to be uploaded when the next
synchronization takes place.

You can use this function to determine if a synchronization is needed.

Parameters publication-mask A set of publications to check. A value of 0 corresponds
to the entire database. The set is supplied as a mask. For example, the
following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see“publication
synchronization parameter” on page 432.

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determines if any rows need to be synchronized.

Returns The number of rows to be uploaded.

GetCA method

Prototype SQLCA *GetCA()

Description Retrieves the SQLCA associated with the current connection.

This function is useful if you are combining embedded SQL and the C++
API in a single application.

Returns A pointer to the SQLCA.

Example ULConnection conn;
conn.Open();
conn.GetCA();

See also “The SQL Communication Area (SQLCA)”[ASA Programming Guide,

307

page 161]

GetDatabaseID method

Prototype ul_u_long ULGetDatabaseID()

Description ULGetDatabaseID returns the current database ID used for global
autoincrement. It returns the value set by the last call to SetDatabaseID or
UL_INVALID_DATABASE_ID if the ID was never set.

GetLastIdentity method

Prototype ul_u_big GetLastIdentity()

Description Returns the most recent identity value used. This function is equivalent to
the following SQL statement:

SELECT @@identity

The function is particularly useful in the context of global autoincrement
columns.

Returns The last identity value.

See also “Determining the most recently assigned value”[MobiLink Clients,page 294]

“Declaring default global autoincrement columns”[MobiLink Clients,
page 291]

GetLastDownloadTime method

Prototype bool GetLastDownloadTime(
ul_publication_mask mask ,
DECL_DATETIME *value)

Description Provides the last time a specified publication was downloaded.

Parameters publication-mask A set of publications for which the last download time
is retrieved. A value of 0 corresponds to the entire database. The set is
supplied as a mask. For example, the following mask corresponds to
publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see“publication
synchronization parameter” on page 432.

value A pointer to the DECL_DATETIME structure to be populated.

A value ofJanuary 1, 1990indicates that the publication has yet to be

308

Chapter 14. UltraLite Static C++ API Reference

synchronized.

Returns ♦ true Indicates thatvalueis successfully populated by the last download
time of the publication specified bypublication-mask.

♦ false Indicates thatpublication-maskspecifies more than one
publication or that the publication is undefined. If the return value is
false, the contents ofvalueare not meaningful.

GetSQLCode method

Prototype an_SQL_code GetSQLCode()

Description Provides error checking capabilities by checking the SQLCODE value for
the success or failure of a database operation. The SQLCODE is the
standard Adaptive Server Anywhere code.

SQLCODE is reset by any subsequent UltraLite database operation,
including those on other connections.

Returns The SQLCODE value as an integer.

Example The following code writes out a SQLCODE. If the synchronization call fails,
a value of -85 is returned.

conn.Synchronize(&synch_info);
sqlcode = conn.GetSQLCode();
printf("sqlcode: %d \n", sqlcode);

See also ASA Error Messages

GetSynchResult method

Prototype bool GetSynchResult(ul_synch_result * synch-result);

Description Stores the results of the most recent synchronization, so that appropriate
action can be taken in the application:

The application must allocate aul_synch_resultobject before passing it to
GetSynchResult. The function fills theul_synch_resultwith the result of
the last synchronization. These results are stored persistently in the database.

The function is of particular use when synchronizing applications on the
Palm Computing Platform using HotSync, as the synchronization takes
place outside the application itself. The SQLCODE value set in the call to
ULData.PalmLaunch reflects theULData.PalmLaunch operation itself.
The synchronization status and results are written to the HotSync log only.
To obtain extended synchronization result information, call
GetSynchResultafter a successfulULData.PalmLaunch.

309

Parameters synch-result A structure to hold the synchronization result. It is defined in
ulglobal.has follows:.

typedef struct {
an_sql_code sql_code;
ul_stream_error stream_error;
ul_bool upload_ok;
ul_bool ignored_rows;
ul_auth_status auth_status;
ul_s_long auth_value;
SQLDATETIME timestamp;
ul_synch_status status;
} ul_synch_result, * p_ul_synch_result;

where the individual members have the following meanings:

♦ sql_code The SQL code from the last synchronization. For a list of
SQL codes, see“Error messages indexed by Adaptive Server Anywhere
SQLCODE” [ASA Error Messages,page 2].

♦ stream_error The communication stream error code from the last
synchronization. For a listing, see“MobiLink Communication Error
Messages”[ASA Error Messages,page 549].

♦ upload_ok Set totrue if the upload was successful;falseotherwise.

♦ ignored_rows Set totrue if uploaded rows were ignored;false
otherwise.

♦ auth_status The synchronization authentication status. For more
information, see“auth_status parameter” on page 419.

♦ auth_value The value used by the MobiLink synchronization server to
determine theauth_statusresult. For more information, see“auth_value
synchronization parameter” on page 420.

♦ timestamp The time and date of the last synchronization.

♦ status The status information used by the observer function. For more
information, see“observer synchronization parameter” on page 428.

Returns The method returns a boolean value.

true Success.

false Failure.

See also “PalmLaunch method [deprecated]” on page 335

310

Chapter 14. UltraLite Static C++ API Reference

GlobalAutoincUsage method

Prototype ul_u_short GlobalAutoincUsage()

Description Returns the percentage of available global autoincrement values that have
been used.

If the percentage approaches 100, your application should set a new value
for the global database ID, using the SetDatabaseID.

Returns The percent usage of the available global autoincrement values.

See also “SetDatabaseID method” on page 316

GrantConnectTo method

Prototype bool GrantConnectTo(userid , password)

Parameters userid Character array holding the user ID. The maximum length is 16
characters.

password Character array holding the password foruserid. The maximum
length is 16 characters.

Description Grant access to an UltraLite database for a user ID with a specified
password. If an existing user ID is specified, this function updates the
password for the user.

See also “User authentication in UltraLite”[UltraLite Database User’s Guide,page 40]

“Authenticating users” on page 47

“RevokeConnectFrom method” on page 315

InitSynchInfo method

Prototype an_SQL_code InitSynchInfo(ul_synch_info * synch_info)

Description Initializes thesynch_infostructure used for synchronization.

Returns None

Example The following code illustrates where theInitSynchInfo method is used in
the sequence of calls that synchronize data in a UltraLite application.

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);
conn.Synchronize(&synch_info);

See also “Synchronize method” on page 317

311

IsOpen method

Prototype bool IsOpen ()

Description Checks whether the ULConnection object is currently open.

Returns true (1) if the ULConnection object is open.

false(0) if the ULConnection object is not open.

Example The following example checks that an attempt to Open a connection
succeeded:

ULConnection conn;
conn.Open();
if(conn.IsOpen()){

printf("Connected to the database. \n");
}

See also “Open method” on page 313

LastCodeOK method

Prototype bool LastCodeOK ()

Description Checks the most recent SQLCODE and returnstrue if the code represents a
warning or success. The function returnsfalse if the most recent SQLCODE
represents an error.

This method provides a convenient way of checking for the success or
potential failure of operations. You can use GetSQLCode to obtain the
numerical value.

SQLCODE is reset by any subsequent UltraLite database operation,
including those on other connections.

Returns true (1) if the previous SQLCode was zero or a warning.

false(0) if the previous SQLCode was an error.

Example The following example checks that an attempt to Open a connection
succeeded:

ULConnection conn;
conn.Open();
if(conn.LastCodeOK()){

printf("Connected to the database. \n");
};

See also “GetSQLCode method” on page 309

312

Chapter 14. UltraLite Static C++ API Reference

LastFetchOK method

Prototype bool LastFetchOK()

Description Provides a convenient way of checking that the most recent fetch of a row
succeeded (true) or failed (false).

The value is reset by any subsequent UltraLite database operation, including
those on other connections.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example moves to the last row in a table, fetches a value from
the row, and checks for the success of the fetch:

tb.Open(&conn);
tb.Last();
tb.GetID(iVal);
if(tb.LastFetchOK()){

... operations on success...
}

See also “AfterLast method” on page 320

“First method” on page 322

Open method

Prototype bool Open (ULData* db,
ul_char* userid ,
ul_char* password ,
ul_char* name = SQLNULL)

bool Open (SQLCA * sqlca, char * start-parms)

Description Open a connection to a database. TheULData object must be open for this
call to succeed.

Parameters db A pointer to theULData object on which the connection is made. This
argument is usually the address of theULData object opened prior to
making the connection.

userid The user ID argument is a placeholder reserved for possible future
use. It is ignored.

☞ For more information on user IDs and UltraLite, see“User
authentication in UltraLite”[UltraLite Database User’s Guide,page 40].

313

password The password parameter is a placeholder reserved for possible
future use. It is ignored.

name An optional name for the connection. This is needed only if you
have multiple connections from a single application to the same database.

start-parms A connection string, consisting of a semicolon-separated list
of keyword=value pairs.

☞ For information on allowed keywords, see“Connection Parameters”
[UltraLite Database User’s Guide,page 63].

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example opens a connection to the UltraLite database.

ULData db;
ULConnection conn;

db.Open();
conn.Open(&db, "dummy", "dummy");

See also “Close method” on page 306

Reopen method (deprecated)

Prototype bool Reopen ()

bool Reopen(ULData *db, ul_char * name = SQLNULL)

Description
Deprecated feature
The Reopen method is no longer needed and is deprecated. Use ULCon-
nection::Open instead.

This method is available for the Palm Computing Platform only. The
ULData object must be reopened for this call to succeed.

When developing Palm applications, you should never close the connection
object. Instead, you should callReopenwhen the user switches to the
UltraLite application. The method prepares the data in use by the database
object for use by the application.

db A pointer to theULData object on which the connection is made. This
argument is usually the address of theULData object opened prior to
reopening the connection.

name An optional name for the connection. This is needed only if you

314

Chapter 14. UltraLite Static C++ API Reference

have multiple connections from a single application to the same database.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example reopens a database object, and then a connection
object:

db.Reopen();
conn.Reopen(&db);

See also “Open method” on page 313

ResetLastDownloadTime method

Prototype bool ResetLastDownloadTime(ul_publication_mask publication-mask)

Description This method can be used to repopulate values and return an application to a
known clean state. It resets the last download time so that the application
resynchronizes previously downloaded data.

Parameters publication-mask A set of publications to check. A value of 0 corresponds
to the entire database. The set is supplied as a mask. For example, the
following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see“publication
synchronization parameter” on page 432.

Example The following example resets the download time for all tables in the
database:

db.Reopen();
conn.ResetLastDownloadTime(UL_SYNC_ALL);

See also “GetLastDownloadTime method” on page 308

“Timestamp-based synchronization”[MobiLink Administration Guide,page 48]

RevokeConnectFrom method

Prototype bool RevokeConnectFrom(ul_char * userid)

Description Revoke access from an UltraLite database for a user ID.

Parameters userid Character array holding the user ID to be excluded from database
access. The maximum length is 16 characters.

See also “User authentication in UltraLite”[UltraLite Database User’s Guide,page 40]

315

“Authenticating users” on page 47

“GrantConnectTo method” on page 311

Rollback method

Prototype bool Rollback()

Description Rolls back outstanding changes to the database.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following code inserts a value to the database, but then rolls back the
change.

productTable.Open(&conn);
productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();
conn.Rollback();

See also “Commit method” on page 306

RollbackPartialDownload method

Roll back the changes from a failed synchronization.

Prototype bool RollbackPartialDownload ()

Description When a communication error occurs during the download phase of
synchronization, UltraLite can apply the downloaded changes, so that the
synchronization can be resumed from the place it was interrupted. If the
download changes are not needed (the user or application does not want to
resume the download at this point), RollbackPartialDownload rolls back the
failed download transaction.

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “Keep Partial Download synchronization parameter”[MobiLink Clients,

page 321]
♦ “Partial Download Retained synchronization parameter”[MobiLink

Clients,page 324]
♦ “Resume Partial Download synchronization parameter”[MobiLink Clients,

page 327]

SetDatabaseID method

Prototype bool SetDatabaseID(ul_u_long value)

316

Chapter 14. UltraLite Static C++ API Reference

Description Sets the database ID value to be used for global autoincrement columns

Parameters value The value to use for generating global autoincrement values.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “GLOBAL_DATABASE_ID option [database]”[ASA Database Administration
Guide,page 656]

“GlobalAutoincUsage method” on page 311

StartSynchronizationDelete method

Prototype bool StartSynchronizationDelete()

Description Once this function is called, all delete operations are again synchronized.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “START SYNCHRONIZATION DELETE statement [MobiLink]”[ASA SQL
Reference,page 630]

“StopSynchronizationDelete method” on page 317

StopSynchronizationDelete method

Prototype bool StopSynchronizationDelete()

Description Prevents delete operations from being synchronized. This is useful for
deleting old information from an UltraLite database to save space, while not
deleting this information on the consolidated database.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “START SYNCHRONIZATION DELETE statement [MobiLink]”[ASA SQL
Reference,page 630]

“StartSynchronizationDelete method” on page 317

Synchronize method

Prototype bool Synchronize (ul_synch_info * synch_info)

Description Synchronizes an UltraLite database.

317

☞ For a detailed description of the members of thesynch_infostructure,
see“Synchronization parameters” on page 417.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following code fragment illustrates how information is provided to the
Synchronize method.

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=localhost");
conn.Synchronize(&synch_info);

See also “Synchronization parameters” on page 417

318

Chapter 14. UltraLite Static C++ API Reference

ULCursor class
TheULCursor class contains methods needed by both generated table
objects and generated result set objects.

☞ For its position in the API hierarchy, see“C++ API class hierarchy” on
page 304.

Data types enumeration

This enumeration lists the available UltraLite data types, as constants. It
contains the following members:

Enumeration value Description

BAD_INDEX An inappropriate argument was provided

S_LONG Signed 4-byte integer

S_SHORT Signed 2-byte integer

LONG 4-byte integer

SHORT 2-byte integer

TINY 1-byte integer

BIT Bit

TIMESTAMP_-
STRUCT

Timestamp information as a struct.

DATE Data and time information as a string

TIME Time information as a string

S_BIG Signed 8-byte integer

BIG 8-byte integer

DOUBLE Double precision number

REAL Real number

BINARY Binary data, with a specified length

TCHAR Character data, with a specified length

NUMERIC Exact numerical data, with a specified precision
and scale

MAX_INDEX Reserved

319

The GetColumnType method returns a value from this enumeration.

See also “GetColumnType method” on page 324

SQL data types enumeration

This enumeration lists the available UltraLite SQL data types, as constants.
It contains the following members:

enum {
SQL_BAD_INDEX,
SQL_S_LONG,
SQL_U_LONG,
SQL_LONG = SQL_U_LONG,
SQL_S_SHORT,
SQL_U_SHORT,
SQL_SHORT = SQL_U_SHORT,
SQL_S_BIG,
SQL_U_BIG,
SQL_BIG = SQL_U_BIG,
SQL_TINY,
SQL_BIT,
SQL_TIMESTAMP,
SQL_DATE,
SQL_TIME,
SQL_DOUBLE,
SQL_REAL,
SQL_NUMERIC,
SQL_BINARY,
SQL_CHAR,
SQL_LONGVARCHAR,
SQL_LONGBINARY,
SQL_MAX_INDEX

};

The GetColumnSQLType method returns a value from this enumeration.

See also “GetColumnSQLType method” on page 324

AfterLast method

Prototype bool AfterLast()

Description Changes the cursor position to be after the last row in the current table or
result set.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example makes the current row the last row of the tabletb:

tb.AfterLast();
tb.Previous();

320

Chapter 14. UltraLite Static C++ API Reference

See also “BeforeFirst method” on page 321

“Last method” on page 325

BeforeFirst method

Prototype bool BeforeFirst()

Description Changes the cursor position to be before the first row in the current table or
result set.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example makes the current row the first row of the tabletb:

tb.BeforeFirst();
tb.Next();

See also “AfterLast method” on page 320

“First method” on page 322

Close method

Prototype bool Close()

Description Frees resources associated with the generated object in your application.
This method must be called after all processing involving the table is
complete, and before the ULConnection and ULData objects are closed.

Any uncommitted operations are rolled back when theClose()method is
called.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example closes a generated object for a table named
ULProduct:

tb.Close();

See also “Open method” on page 354

Delete method

Prototype bool Delete()

Description Deletes the current row from the current table or result set.

321

Returns true (1) if successful.

false(0) if unsuccessful. For example, if you attempt to use the method on a
SQL statement that represents more than one table.

Example The following example deletes the last row from a tabletb:

tb.Open(&conn);
tb.Last();
tb.Delete();

See also “Insert method” on page 325

“Update method” on page 329

First method

Prototype bool First()

Description Moves the cursor to the first row of the table or result set.

Returns true (1) if successful.

false(0) if unsuccessful. For example, the method fails if there are no rows.

Example The following example deletes the first row from a tabletb:

tb.Open(&conn);
tb.First();
tb.Delete();

See also “BeforeFirst method” on page 321

“Last method” on page 325

Get method

Prototype bool Get(ul_column_num colnum,
value-declaration,
bool* isNull = UL_NULL)

value-declaration:
ul_char * ptr , ul_length length
| p_ul_binary name , ul_length length
| DECL_DATETIME &date-value
| { DECL_BIGINT | DECL_UNSIGNED_BIGINT } &bigint-value
| [unsigned] long &integer-value
| unsigned char &char-value
| double & double-value
| float & float-value
| [unsigned] short &short-value

322

Chapter 14. UltraLite Static C++ API Reference

Description Gets a value from the specified column.

colnum A 2-byte integer. The first column is column 1.

value declaration The arguments required to specify the value depend on
the data type. Character and binary data must be mapped into buffers, with
the buffer name and length specified in the call. For other data types, a
pointer to a variable of the proper type is needed. For character data, the
length parameter specifies the length of the C arrayincluding the space used
for the terminator.

isNULL If a value in a column is NULL,isNull is set totrue. In this case,
thevalueargument is not meaningful.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “Get generated method” on page 352

“Set method” on page 328

GetColumnCount method

Prototype int GetColumnCount()

Description Returns the number of columns in the current table or result set.

Returns Integer number of columns.

Example The following example opens a table object namedtb and places the
number of columns in the variablenumCol :

tb.Open(&conn);
numCol = tb.GetColumnCount();

GetColumnSize method

Prototype ul_length GetColumnSize(ul_column_num column-index)

Description Returns the number of bytes needed to hold the information in the specified
column.

Parameters column-index The number of the column. The first column in the table
has a value of one.

Returns The number of bytes.

Example The following example gets the number of bytes needed to hold the third
column in the tabletb:

323

tb.Open(&conn);
colSize = tb.GetColumnSize(3);

See also “GetColumnType method” on page 324

GetColumnType method

Prototype int GetColumnType(ul_column_num column-index)

Description Returns the data type needed to hold the information in the specified column.

Parameters column-index The number of the column. The first column in the table or
result set has a value of one.

Returns The column type is a member of the UltraLite data types enumeration. For
more information, see“Data types enumeration” on page 319:

Example The following example gets the column type for the third column in the table
tb:

tb.Open(&conn);
colType = tb.GetColumnType(3);

See also “Data types enumeration” on page 319

“Get generated method” on page 352

“GetColumnSQLType method” on page 324

GetColumnSQLType method

Prototype int GetColumnSQLType(ul_column_num column-index)

Description Returns the SQL data type of the specified column.

Parameters column-index The number of the column. The first column in the table or
result set has a value of one.

Returns The column type is a member of the UltraLite data types enumeration. For
more information, see“Data types enumeration” on page 319:

Example The following example gets the column type for the third column in the table
tb:

tb.Open(&conn);
colType = tb.GetColumnType(3);

See also “Data types enumeration” on page 319

“Get generated method” on page 352

324

Chapter 14. UltraLite Static C++ API Reference

“GetColumnType method” on page 324

GetSQLCode method

This is a convenience method that calls theULConnection::GetSQLCode
method.

☞ For more information see“GetSQLCode method” on page 309.

Insert method

Prototype bool Insert()

Description Inserts a row in the table with values specified in previousSetmethods.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example inserts a new row into the table based at the current
position:

productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();

When inserting a row, you must supply a value for each column in the table.

☞ For information on cursor positioning after inserts, and the position of
the inserted row, see“Accessing data” on page 46.

See also “Delete method” on page 321

“Update method” on page 329

IsOpen method

Prototype bool IsOpen ()

Description Checks whether the ULCursor object is currently open.

Returns true (1) if the ULCursor object is open.

false(0) if the ULCursor object is not open.

See also “Open method” on page 327

Last method

Prototype bool Last()

325

Description Move the cursor to the last row in the table or result set.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example moves to a position after the last row in a table:

tb.Open(&conn);
tb.Last();
tb.Next();

See also “AfterLast method” on page 320

“First method” on page 322

LastCodeOK method

This is a convenience method that calls theULConnection::LastCodeOK
method.

☞ For more information see“LastCodeOK method” on page 312.

LastFetchOK method

This is a convenience method that calls theULConnection::LastFetchOK
method.

☞ For more information see“LastFetchOK method” on page 326.

Next method

Prototype bool Next()

Description Moves the cursor position to the next row in the table or result set.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example moves the cursor position to the first row in the table:

tb.Open(&conn);
tb.BeforeFirst();
tb.Next();

See also “Previous method” on page 327

“Relative method” on page 327

326

Chapter 14. UltraLite Static C++ API Reference

Open method

Prototype bool Open(ULConnection * conn)

Description Opens a cursor on the specified connection. If the object is a result set with
parameters, you must set the parameters before opening the result set.

When usingOpen from theULTable subclass ofULCursor , do not open
two connections on aULTable object at one time.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example opens a result set object (which extends the cursor
class) and moves the cursor position to the first row:

rs.Open(&conn);
rs.BeforeFirst();
rs.Next();

See also “Close method” on page 321

“Open method” on page 348

Previous method

Prototype bool Previous()

Description Moves the cursor position to the previous row in the table or result set.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example moves to the last row in a table:

tb.Open(&conn);
tb.AfterLast();
tb.Previous();

See also “Next method” on page 326

“Relative method” on page 327

Relative method

Prototype bool Relative(ul_fetch_offset offset)

Description Moves the cursor position relative to the current position. If the row does not
exist, the method returns false, and the cursor is left atAfterLast() if offset

327

is positive, andBeforeFirst() if offset is negative.

offset The number of rows to move. Negative values correspond to
moving backwards.

Returns true (1) if the row exists.

false(0) if the row does not exist.

See also “Next method” on page 326

“Previous method” on page 327

Reopen method

Prototype bool Reopen(ULConnection *conn)

Description This method is available for the Palm Computing Platform only. The
ULData andULConnection objects must already be open for this call to
succeed.

When developing Palm applications, you should never close result set
objects if you wish to maintain the cursor position. Instead, you should call
Reopenwhen the user switches back to the UltraLite application.

Although theULTable object inherits from theULCursor class, you should
not useReopenon table objects. Instead, you should close them on exiting
the Palm application and Open them on re-entering. The cursor position is
not maintained inULTable objects.

Parameters conn A pointer to theULConnection object on which the cursor is
defined.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example reopens a database object, and then a connection
object, and then a result set object:

db.Reopen();
conn.Reopen(&db);
rs.Reopen(&conn);

See also “Open method” on page 313

Set method

Prototype bool Set(ul_column_num colnum, value)

328

Chapter 14. UltraLite Static C++ API Reference

value:
p_ul_binary buffer-name, ul_length buffer-length

| ul_char * buffer-name, ul_length buffer-length = 0
| DECL_DATETIME date-value
| DECL_UNSIGNED_BIGINT bigint-value
| unsigned char char-value
| double double-value
| float float-value
| [unsigned] long long-value
| [unsigned] short short-value

Description Sets a value in the specified column, for the current row.

colnum A 2-byte integer. The first column is column 1.

value For character and binary data you must supply a buffer name and
length. For other data types, a value of the proper type is needed. The
function fails if the data type is incorrect for the column.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “Get method” on page 322

SetColumnNull method

Prototype int SetColumnNull(ul_column_num column-index)

Description Sets a column to the SQL NULL. The data is not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

Parameters column-index The number of the column. The first column in the table
has a value of one.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “SetNull<Column> generated method” on page 355

Update method

Prototype bool Update()

Description Updates a row in the table with values specified in previousSetmethods.

Returns true (1) if successful.

false(0) if unsuccessful.

329

Example The following example sets a new price on the current row of the
productTable object, and then updates the row in the UltraLite database:

productTable.SetPrice(400);
productTable.Update();

See also “Delete method” on page 321

“Insert method” on page 325

330

Chapter 14. UltraLite Static C++ API Reference

ULData class
Object Represents an UltraLite database.

Prototype ULData db;
db.Open();

Description The ULData class represents an UltraLite database to your application. It
provides methods to open and close a database, and to check whether a
database is open.

You must open a database before connecting to it or carrying out any other
operation, and you must close the database after you have finished all
operations on the database, and before your application terminates.

For multi-threaded applications, each thread must create its ownULData.
Neither theULData object nor the other objects inherited from it
(ULConnection and other classes) can be shared across threads.

For embedded SQL users, opening aULData object is equivalent to calling
db_init .

☞ For its position in the API hierarchy, see“C++ API class hierarchy” on
page 304.

Example The following example declares a ULData object and opens it:

ULData db;
db.Open();

Close method

Prototype bool Close ()

Description Frees resources associated with a ULData object, before you terminate your
application. Once you have closed the ULData object, you cannot execute
any other operations on that database using the C++ API without reopening.

Palm Computing Platform
Use ULSetSynchInfo to save the state of the application before calling
ULData.Close. Use theOpen method when the application is reactivated.
For more information, see“Open method” on page 333and“ULSetSynch-
Info function” on page 386.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example closes a ULData object:

331

db.Close();

See also “Open method” on page 333

Drop method

Prototype bool Drop (SQLCA * sqlca, ul_char * store-parms)

Description Delete the UltraLite database file.

Caution
This function deletes the database file and all data in it. Use with care.

Do not call this function while a database connection is open. Call this
function only after closing the database or before opening the database (C++
API).

On the Palm OS, call this function only when not connected to the database
(but after anyULEnable functions have been called)

Parameters sqlca A pointer to the SQLCA.

store-parms A string of connection parameters, including the file name to
delete as a keyword-value pair of the formfile_name=file.udb. It is often
convenient to use the UL_STORE_PARMS macro as this argument. A value
of UL_NULL deletes the default database filename.

☞ For more information, see“UL_STORE_PARMS macro” on page 222.

Returns ♦ true Indicates that database files was successfully deleted.

♦ false You can obtain detailed error information by using GetSQLCode.
The usual reason for failure is that an incorrect filename was supplied or
that access to the file was denied, perhaps because it is opened by an
application.

Initialize method

Prototype bool Initialize (SQLCA * ca)

Description Initializes UltraLite for communications with a database. The method does
not start the database. Typically, applications start the database when
connecting (ULConnection::Open).

Use this function before any other data management functions, including
ULConnection::Open.

Parameters Open() This prototype can be used by most UltraLite applications. Any
persistent storage parameters defined in the UL_STORE_PARMS macro are

332

Chapter 14. UltraLite Static C++ API Reference

employed when opening the database.

Open(SQLCA* ca) Use this prototype if you are using embedded SQL as
well as the C++ API in your application, and if you have a SQLCA in use, to
access the same data using the C++ API.

IsOpen method

Prototype bool IsOpen ()

Description Checks whether the ULData object is currently open.

Returns true (1) if the ULData object is open.

false(0) if the ULData object is not open.

Example The following example declares a ULData object, opens it, and checks that
the Open method succeeded:

ULData db;
db.Open();
if(db.IsOpen()){

printf("The ULData object is open \n");
}

See also “Open method” on page 333

Open method

Prototype bool Open ()

bool Open(SQLCA* ca)

bool Open(ul_char* parms)

bool Open(SQLCA* ca , ul_char* parms)

Description Prepares your application to work with a database. You must open the
ULData object before carrying out any other operations on the database
using the C++ API. Exceptions to this rule are as follows:

♦ On the Palm Computing Platform, theULData.PalmLaunch method is
called beforeULData.Open. The resources that this library requires for
your program are allocated and initialized on this call.

On the Palm Computing Platform, callULData.Open whenever
ULData.PalmLaunch returns LAUNCH_SUCCESS_FIRST. For more
information, see“PalmLaunch method [deprecated]” on page 335.

♦ Functions that configure database storage can be called. These functions

333

have names starting withULEnable.

For special purposes, you can specify persistent storage parameters when
opening a database to configure caching, encryption, and the database file
name. For information on these parameters, see“Setting UltraLite
database properties”[UltraLite Database User’s Guide,page 33].

For multi-threaded applications, each thread must open its ownULData
object. Neither theULData object nor the other objects inherited from it
(ULConnection and other classes) can be shared across threads.

Parameters Open() This prototype can be used by most UltraLite applications. Any
persistent storage parameters defined in the UL_STORE_PARMS macro are
employed when opening the database.

Open(SQLCA* ca) Use this prototype if you are using embedded SQL as
well as the C++ API in your application, and if you have a SQLCA in use, to
access the same data using the C++ API.

Open(ul_char* parms) Persistent storage parameters can be specified
using the UL_STORE_PARMS macro. This prototype provides an
alternative way of specifying persistent storage parameters. The string is a
semicolon-separated list of assignments, of the formparameter=value.

Open(SQLCA *ca, ul_char* parms) A call specifying both the SQLCA
and persistent storage parameters.

☞ For more information on persistent storage parameters, see
“UL_STORE_PARMS macro” on page 222.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example declares a ULData object and opens it:

ULData db;
db.Open();

See also “Close method” on page 331

“Setting UltraLite database properties”[UltraLite Database User’s Guide,
page 33]

“UL_STORE_PARMS macro” on page 222

PalmExit method [deprecated]

Prototype bool PalmExit(SQLCA *ca)

bool PalmExit(ul_synch_info * synch_info)

334

Chapter 14. UltraLite Static C++ API Reference

Description
Deprecated feature
This function is no longer required. Use ULData::Close instead.

Call this method just before your application is closed, to save the state of
the application.

For applications using HotSync or Scout Sync synchronization, the method
also writes an upload stream. When the user uses HotSync or Scout Sync to
synchronize data between their Palm device and a PC, the upload stream is
read by the MobiLink HotSync conduit or the MobiLink Scout conduit
respectively.

The MobiLink HotSync conduit synchronizes with the MobiLink
synchronization server through a TCP/IP or HTTP stream. You can tune the
synchronization by specifying a set of stream parameters or network
protocol options in thesynch_info.stream_parms. Alternatively, you may
specify the stream and stream parameters via theClientParmsregistry entry.
If the ClientParmsregistry entry does not exist, a default setting of
{stream=tcpip;host=localhost} is used.

Parameters sqlca A pointer to the SQLCA. You do not need to supply this argument
unless you are using embedded SQL as well as the C++ API in your
application and have used a non-default SQLCA.

synch_info A synchronization structure.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL
instead of the ul_synch_info structure. When using these streams, the
synchronization information is supplied instead in the call to
ULSynchronize.

If you use HotSync or Scout Sync synchronization, supply the
synchronization structure. The value of thestreamparameter is ignored, and
may be UL_NULL.

☞ For information on the members of thesynch_infostructure, see
“Synchronization parameters” on page 417.

Returns true (1) if successful.

false(0) if unsuccessful

PalmLaunch method [deprecated]

Prototype UL_PALM_LAUNCH_RET PalmLaunch() ;

UL_PALM_LAUNCH_RET PalmLaunch(ul_synch_info * synch_info);

335

UL_PALM_LAUNCH_RET PalmLaunch(SQLCA* ca);

UL_PALM_LAUNCH_RET PalmLaunch(SQLCA* ca ,
ul_synch_info * synch_info);

typedef enum {
LAUNCH_SUCCESS_FIRST ,
LAUNCH_SUCCESS ,
LAUNCH_FAIL
} UL_PALM_LAUNCH_RET;

Description
Deprecated feature
This function is no longer required. Use ULData::Initialize instead.

This function restores the application state when the application is activated.
For applications using HotSync or Scout Sync synchronization, it carries out
the additional task of processing the download stream prepared by the
MobiLink HotSync conduit or MobiLink Scout conduit.

If you are using TCP/IP or HTTP synchronization, supply a null value for
the stream parameter in theul_synch_infosynchronization structure. This
information is supplied instead in the synchronization structure called by the
ULConnection.Synchronizemethod.

Parameters ca A pointer to the SQLCA. You do not need to supply this argument
unless you are using embedded SQL as well as the C++ API in your
application and have used a non-default SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see“Synchronization parameters” on page 417.

If you are using TCP/IP or HTTP synchronization, supply a null value for
thestreamparameter.

Returns A member of theUL_PALM_LAUNCH_RET enumeration. The return
values have the following meanings:

♦ LAUNCH_SUCCESS_FIRST This value is returned the first time the
application is successfully launched and at any subsequent time the
internal state of the UltraLite database needs to be re-established. In
general, the state of the database needs to be re-established only after
severe failures.

You should open aULData object when LAUNCH_SUCCESS_FIRST
is returned.

♦ LAUNCH_SUCCESS This value is returned when an application is
successfully launched, after the Palm user has been using other

336

Chapter 14. UltraLite Static C++ API Reference

applications.

♦ LAUNCH_FAIL This value is returned when the launch fails.

Examples A typical C++ API example is

ULData db;
ULEnablePalmRecordDB(& sqlca);
switch(db.PalmLaunch(&synch_info)){
case LAUNCH_SUCCESS_FIRST:

if(!db.Open()){
// initialization failed: add error handling here
break;

}
// fall through

case LAUNCH_SUCCESS:
db.Reopen();
// do work here
break;

case LAUNCH_FAIL:
// error
break;

}

Reopen method [deprecated]

Prototype bool Reopen ()

bool Reopen(SQLCA* ca)

Description
Deprecated feature
This function is no longer required. Use ULData::Open or UL-
Data::Initialize instead.

This method is available for the Palm Computing Platform only.

When developing Palm applications, you should never close the database
object. Instead, you should callReopenwhen the user switches to the
UltraLite application. The method prepares the data in use by the database
object for use by the application.

Parameters Open() No arguments are needed if you are not using embedded SQL as
well as the C++ API in your application.

Open(SQLCA* ca) If you are also using embedded SQL in your
application, and you have a non-default SQLCA in use, you can use this
method to access the same data using the C++ API.

Returns true (1) if successful.

337

false(0) if unsuccessful.

Example The following example reopens a database object and a connection object:

db.Reopen();
conn.Reopen(&db);

See also “Open method” on page 333

StartDatabase method

Prototype bool StartDatabase (ul_char const * parms);

Description Start a database if the database is not already running. This function is
required when developing applications that combine the Static C++ API and
the C++ Component. See“Combining UltraLite C/C++ interfaces” on
page 108.

You must call ULData::Initialize() before calling StartDatabase. If you use
the StartDatabase method to start a database, any information in
UL_STORE_PARMS is ignored.

The return value is true if the database was already running or successfully
started. Error information is returned in the SQLCA.

Parameters ♦ parms A connection string identifying the database to start. Typically,
this includes only a database file:

DBF=mydatabase.udb

Returns true (1) if successful.

false(0) if unsuccessful.

StopDatabase method

Prototype bool StopDatabase (ul_char const * parms);

Description Stop a database. This function is not commonly needed, as UltraLite
automatically stops the database when all connections are closed.

This function may be useful when developing applications that combine the
Static C++ API and the C++ Component. See“Combining UltraLite C/C++
interfaces” on page 108.

You must call ULData::Close() after calling StartDatabase.

The return value is true if the database was successfully stopped. Error
information is returned in the SQLCA.

Parameters

338

Chapter 14. UltraLite Static C++ API Reference

♦ parms A connection string identifying the database to stop. Typically,
this includes only a database file:

DBF=mydatabase.udb

Returns true (1) if successful.

false(0) if unsuccessful.

339

ULResultSet class
TheULResultSetclass extends theULCursor class, and provides methods
needed by all generated result sets.

☞ For more information, see“ULCursor class” on page 319, and
“Generated result set class” on page 347.

☞ For its position in the API hierarchy, see“C++ API class hierarchy” on
page 304.

SetParameter method

Prototype virtual bool SetParameter(int argnum, value-reference)

value-reference:
[unsigned] long & value

| p_ul_binary value
| unsigned char & value
| ul_char * value
| double & value
| float & value
| [unsigned] short & value
| DECL_DATETIME value
| DECL_BIGINT value
| DECL_UNSIGNED_BIGINT value

Description The following query defines a result set with a parameter:

SELECT id
FROM mytable
WHERE id < ?

The result set object defined in the C++ API that corresponds to this query
has a parameter. You must set the value of the parameter before opening the
generated result set object.

Parameters argnum An identifier for the argument to be set. The first argument is 1,
the second 2, and so on.

value-reference A reference to the parameter value. The data type listing
above provides the possibilities. As the parameter are passed as pointers,
they must remain valid until used. Do not free them until they are used.

Returns true (1) if successful.

false(0) if unsuccessful. If you supply a parameter of the wrong data type,
the method fails.

See also “Open method” on page 348

340

Chapter 14. UltraLite Static C++ API Reference

ULTable class
TheULTable class extends theULCursor class, and provides methods
needed by all generated table objects.

You cannot have multiple connections to aULTable object at one time.

☞ For its position in the API hierarchy, see“C++ API class hierarchy” on
page 304.

DeleteAllRows method

Prototype ul_ret_void DeleteAllRows()

Description The function deletes all rows in the table.

In some applications, it can be useful to delete all rows from tables before
downloading a new set of data into the table. Rows can be deleted from the
UltraLite database without being deleted from the consolidated database
using theULConnection::StopSynchronizationDeletemethod.

See also “StartSynchronizationDelete method” on page 317

“StopSynchronizationDelete method” on page 317

Find method

Equivalent to the FindNext method.

☞ See“FindNext method” on page 343.

FindFirst method

Prototype bool FindFirst(ul_column_num ncols)

Description Move forwards through the table from the beginning, looking for a row that
exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see“Open method”
on page 354.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position isAfterLast() .

Parameters ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a

341

value that matches based on the first column only, you shouldSetthe value
for the first column, and then supply anncolsvalue of 1.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “FindLast method” on page 342

“FindNext method” on page 343

“FindPrevious method” on page 343

“LookupBackward method” on page 344

“LookupForward method” on page 345

FindLast method

Prototype bool FindLast(ul_column_num ncols)

Description Move backwards through the table from the end, looking for a row that
matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see“Open method”
on page 354.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position isBeforeFirst().

Parameters ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a
value that matches based on the first column only, you shouldSetthe value
for the first column, and then supply anncolsvalue of 1.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “FindFirst method” on page 341

“FindNext method” on page 343

“FindPrevious method” on page 343

“LookupBackward method” on page 344

“LookupForward method” on page 345

342

Chapter 14. UltraLite Static C++ API Reference

FindNext method

Prototype bool FindNext(ul_column_num ncols)

Description Move forwards through the table from the current position, looking for a row
that exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see“Open method”
on page 354.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure, the cursor position isAfterLast() .

Parameters ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a
value that matches based on the first column only, you shouldSetthe value
for the first column, and then supply anncolsvalue of 1.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “FindFirst method” on page 341

“FindLast method” on page 342

“FindPrevious method” on page 343

“LookupBackward method” on page 344

“LookupForward method” on page 345

FindPrevious method

Prototype bool FindPrevious(ul_column_num ncols)

Description Move backwards through the table from the current position, looking for a
row that exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see“Open method”
on page 354.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position isBeforeFirst().

343

Parameters ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a
value that matches based on the first column only, you shouldSetthe value
for the first column, and then supply anncolsvalue of 1.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “FindFirst method” on page 341

“FindLast method” on page 342

“FindNext method” on page 343

“LookupBackward method” on page 344

“LookupForward method” on page 345

Lookup method

Equivalent to the LookupForward method.

☞ See“LookupForward method” on page 345

GetRowCount method

Prototype ul_ul_long GetRowCount()

Description The function returns the number of rows in the table.

One use for the function is to decide when to delete old rows to save space.
Old rows can be deleted from the UltraLite database without being deleted
from the consolidated database using the
ULConnection::StartSynchronizationDeletemethod.

Returns The number of rows in the table.

See also “StartSynchronizationDelete method” on page 317

“StopSynchronizationDelete method” on page 317

LookupBackward method

Prototype bool LookupBackward(ul_column_num ncols)

Description Move backwards through the table starting from the end, looking for the first
row that matches or is less than a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The

344

Chapter 14. UltraLite Static C++ API Reference

default index is the primary key. For more information, see“Open method”
on page 354.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is less than the
index value. On failure (that is, if no row is less than the value being looked
for), the cursor position isBeforeFirst().

Parameters ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a
value that matches based on the first column only, you shouldSetthe value
for the first column, and then supply anncolsvalue of 1.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “FindFirst method” on page 341

“FindLast method” on page 342

“FindNext method” on page 343

“FindPrevious method” on page 343

“LookupForward method” on page 345

LookupForward method

Prototype bool LookupForward(ul_column_num ncols)

Description Move forward through the table starting from the beginning, looking for the
first row that matches or is greater than a value or set of values in the current
index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see“Open method”
on page 354.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is greater than
the index value. On failure (that is, if no rows are greater than the value
being looked for), the cursor position isAfterLast() .

Parameters ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a
value that matches based on the first column only, you shouldSetthe value
for the first column, and then supply anncolsvalue of 1.

345

Returns true (1) if successful.

false(0) if unsuccessful.

See also “FindFirst method” on page 341

“FindLast method” on page 342

“FindNext method” on page 343

“FindPrevious method” on page 343

“LookupBackward method” on page 344

346

Chapter 14. UltraLite Static C++ API Reference

Generated result set class
Object The generated result set class represents a query result set to your

application. The name of the class is generated by the UltraLite generator,
based on the name of the statement supplied when it was added to the
database.

Prototype To create a generated result set object, you use the generated name in the
declaration

result-set rs;
rs.Open() ;

result-set : generated name

Description The UltraLite generator defines a class for each named statement in an
UltraLite project that returns a result set. This class inherits methods from
ULCursor .

☞ For its position in the API hierarchy, see“C++ API class hierarchy” on
page 304.

See also “ULCursor class” on page 319

“ul_add_statement system procedure”[UltraLite Database User’s Guide,
page 210]

Get<Column > generated method

Prototype bool Getcolumn-name(type* variable, [ul_length* length,]
bool* isNull = UL_NULL)

Description Retrieves a value fromcolumn-name. The type specification depends on the
column data type.

Parameters column-name The name of the column.

variable A variable of the proper data type for the column. This data type
can be retrieved usingGetColumnType.

length For variable length data. For character data, the length parameter
specifies the length of the C array including the space used for the
terminator.

isNull If the value is NULL, this argument istrue.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “Set<Column> generated method” on page 348

347

Open method

Prototype bool Open(ULConnection * conn,
datatype value, . . .)

Description The UltraLite generator defines a class for each named statement in an
UltraLite project that returns a result set. This class inherits methods from
ULCursor .

You must supply a value for each placeholder in the result set.

Parameters conn The connection on which the result set is to be opened.

value The value for the placeholder in the result set.

Example The following query contains a single placeholder:

select prod_id, price, prod_name
from "DBA".ulproduct
where price < ?

The generator writes out the following methods for the object (in addition to
some others):

bool Open(ULConnection * conn,
long Price);

bool Open(ULConnection * conn);
bool SetParameter(int index, long &value);

See also “SetParameter method” on page 340

Set<Column > generated method

Prototype bool Setcolumn-name()

Description Sets the value of the cursor at the current position. The data in the row is not
actually changed until you execute an Insert or Update, and that change is
not permanent until it is committed.

Parameters column-name A generated name derived from the name of the column in
the reference database.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “Get<Column> generated method” on page 347

“SetNull<Column> generated method” on page 349

348

Chapter 14. UltraLite Static C++ API Reference

SetNull <Column > generated method

Prototype bool SetNull column-name()

Description Sets a column to the SQL NULL. The data is not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

Parameters column-name A generated name derived from the name of the column in
the reference database.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “Set<Column> generated method” on page 348

349

Generated statement class
For each SQL statement that does not return a result set, including inserts,
updates, and deletes, the UltraLite generator defines a generated statement
class. The name of the class is the name provided in the ul_add_statement
stored procedure call that added the statement to the reference database.

The generated statement class inherits from theULStatementclass, which
has no methods of its own.

☞ For its position in the API hierarchy, see“C++ API class hierarchy” on
page 304.

Execute method

Prototype bool Execute(ULConnection* conn,
[datatype column-name,. . .])

Description Executes a named statement that does not return a result set. Any change
made is not permanent until it is committed.

When a statement is defined using ul_add_statement, you supply
placeholders for the values, and supply them at run time. The generated
prototype has a data type and name for each value.

If the set of parameters is omitted, each value must be set using SetNull or
SetParameter before the Execute is called.

Parameters conn The connection on which the statement is to be executed.

datatype A member of the UltraLite data type enumeration.

column-name The name of the column.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “ul_add_statement system procedure”[UltraLite Database User’s Guide,
page 210]

“SetNull method” on page 350

“SetParameter method” on page 351

SetNull method

Prototype bool SetNull(ULConnection* conn,
ul_column_num column-index)

Description Sets the specified column to NULL.

350

Chapter 14. UltraLite Static C++ API Reference

Parameters conn The connection on which the statement is to be executed.

column-index The number of the column. The first column in the table
has a value of one.

Returns true (1) if successful.

false(0) if unsuccessful.

SetParameter method

Prototype virtual bool SetParameter(int argnum, value-reference)

value-reference:
[unsigned] long & value

| p_ul_binary value
| unsigned char & value
| ul_char * value
| double & value
| float & value
| [unsigned] short & value
| DECL_DATETIME value
| DECL_BIGINT value
| DECL_UNSIGNED_BIGINT value

Description This method sets parameters for statements before the Execute method is
called.

To set parameters to NULL, use the SetNull method.

Parameters argnum An identifier for the argument to be set. The first argument is 1,
the second 2, and so on.

value-reference A reference to the parameter value. The data type listing
above provides the possibilities. As the parameter are passed as pointers,
they must remain valid until used. Do not free them until they are used.

Returns true (1) if successful.

false(0) if unsuccessful. If you supply a parameter of the wrong data type,
the method fails.

See also “Execute method” on page 350

“SetNull method” on page 350

351

Generated table class
Object The generated table class represents a database table to your application.

The name of the class is generated by the UltraLite generator, based on the
name of the table in the database.

Prototype Tablename tb;
tb.Open() ;

Tablename:
generated name

Description The UltraLite generator defines a class for each table in a named publication.
The generated table class inherits fromULTable andULCursor . The class
has a name based on the table or statement name, so that for a table named
Product, the generator defines a class namedProduct.

☞ For its position in the API hierarchy, see“C++ API class hierarchy” on
page 304.

See also “ULCursor class” on page 319

“ULTable class” on page 341

Get generated method

Prototype bool Get (
ul_column_num column-index ,
value-declaration,
bool* is-null = UL_NULL);

value-declaration:
ul_char * buffer-name, ul_length buffer-length

| p_ul_binary buffer-name, ul_length buffer-length
| DECL_DATETIME & date-value
| { DECL_BIGINT | DECL_UNSIGNED_BIGINT } & bigint-value
| unsigned char & char-value
| double & double-value
| float & float-value
| [unsigned] long & integer-value
| [unsigned] short & short-value

Description Gets a value of from a column, specified by index.

Parameters column-index The number of the column. The first column in the table
has a value of one.

value declaration The arguments required to specify the value depend on
the data type. Character and binary data must be mapped into buffers, with
the buffer name and length specified in the call. For other data types, a

352

Chapter 14. UltraLite Static C++ API Reference

pointer to a variable of the proper type is needed. For character data, the
length parameter specifies the length of the C arrayincluding the space used
for the terminator.

isNULL If a value in a column is NULL,isNull is set totrue. In this case,
thevalueargument is not meaningful.

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example is part of aswitch statement that gets values from
rows based on their data type:

switch(tb.GetColumnType(colIndex)) {
case tb.S_LONG :

ret = tb.Get(colIndex, longval);
printf("Long column: %d \n", longval);
break;

...

See also “Data types enumeration” on page 319

“Get method” on page 322

“Get<Column> generated method” on page 353

“GetColumnSize method” on page 323

Get<Column > generated method

Prototype bool Getcolumn-name(type* variable, [ul_length* length,]
bool* isNull = UL_NULL)

Description Retrieves a value fromcolumn-name. The type specification depends on the
column data type.

Parameters column-name The name of the column.

variable A variable of the proper data type for the column. This data type
can be retrieved usingGetColumnType.

length For variable length data types. For character data, the length
parameter specifies the length of the C arrayincluding the space used for the
terminator.

isNull If the value is NULL, this argument istrue.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “Get generated method” on page 352

353

GetSize<Column > generated method

Prototype ul_length GetSizecolumn-name()

Description Returns the storage area needed to hold a value from the specified column.

Parameters column-name A generated name derived from the name of the column in
the reference database.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “GetColumnType method” on page 324

Open method

Prototype bool Open(ULConnection* conn)

bool Open(ULConnection* conn, ul_index_num index)

Description Prepares your application to work with the data in a generated table object.

Parameters conn The address of a ULConnection object. The connection must be
open.

index An optional index number, used to order the rows in the table. The
index is one of the members of the generated index enumeration. By default,
the table is ordered by primary key value.

☞ For more information, see“Index enumeration” on page 355.

When the table is opened, the cursor is positioned before the first row

Returns true (1) if successful.

false(0) if unsuccessful.

Example The following example declares a generated object for a table named
ULProduct, and opens it:

ULData db;
ULConnection conn;
ULProduct tb;
db.Open();
conn.Open(&db, "DBA", "SQL");
tb.Open(&conn);

See also “Close method” on page 321

“Index enumeration” on page 355

354

Chapter 14. UltraLite Static C++ API Reference

Set<Column > generated method

Prototype bool Setcolumn-name()

Description Sets the value of the cursor at the current position. The data in the row is not
actually changed until you execute an Insert or Update, and that change is
not permanent until it is committed.

Parameters column-name A generated name derived from the name of the column in
the reference database.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “SetColumnNull method” on page 329

SetNull <Column > generated method

Prototype bool SetNull column-name()

Description Sets a column to the SQL NULL. The data is not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

Parameters column-name A generated name derived from the name of the column in
the reference database.

Returns true (1) if successful.

false(0) if unsuccessful.

See also “SetColumnNull method” on page 329

Index enumeration

Prototype enum { index-name,. . . }

Description Each member of the enumeration is an index name in the table being
generated. You can use the index name to specify an ordering for the table
when it is opened, and thereby control the behavior of the cursor movement
methods.

Parameters index-name The name of an index in the table. The primary key has the
namePrimary , and other indexes have their name in the database.

See also “Open method” on page 354

355

CHAPTER 15

Embedded SQL API Reference

About this chapter This chapter lists functions that can be used in UltraLite embedded SQL
applications. It does not include the embedded SQL EXEC SQL statement
and the SQL statements that can be included in your application. For
information about these statements, see“Developing Applications Using
Embedded SQL” on page 61.

Use the EXEC SQL INCLUDE SQLCA command to include prototypes for
the functions in this chapter.

Contents Topic: page

db_fini function 359

db_init function 360

db_start_database function 361

db_stop_database function 362

ULActiveSyncStream function 363

ULChangeEncryptionKey function 364

ULClearEncryptionKey function 365

ULCountUploadRows function 366

ULDropDatabase function 367

ULGetDatabaseID function 368

ULGetLastDownloadTime function 369

ULGetSynchResult function 370

ULGlobalAutoincUsage function 372

ULGrantConnectTo function 373

ULHTTPSStream function 374

ULHTTPStream function 375

ULIsSynchronizeMessage function 376

ULPalmDBStream function (deprecated) 377

357

Topic: page

ULPalmExit function (deprecated) 378

ULPalmLaunch function (deprecated) 379

ULResetLastDownloadTime function 380

ULRetrieveEncryptionKey function 381

ULRevokeConnectFrom function 382

ULRollbackPartialDownload function 383

ULSaveEncryptionKey function 384

ULSetDatabaseID function 385

ULSetSynchInfo function 386

ULSocketStream function 387

ULSynchronize function 388

358

Chapter 15. Embedded SQL API Reference

db_fini function
Prototype unsigned short db_fini(SQLCA * sqlca);

Description Frees resources used by the UltraLite runtime library.

You must not make any other library calls or execute any embedded SQL
commands afterdb_fini is called. If an error occurs during processing, the
error code is set in SQLCA and the function returns 0.If there are no errors, a
non-zero value is returned.

Call db_fini once for each SQLCA being used.

See also “db_init function” on page 360

359

db_init function
Prototype unsigned short db_init(SQLCA * sqlca) ;

Description Initializes the UltraLite runtime library and creates a new UltraLite database,
if one does not exist.

This function must be called before any other library call is made, and
before any embedded SQL command is executed. Exceptions to this rule are
as follows:

♦ Functions that configure database storage can be called. These functions
have names starting withULEnable.

Deprecated feature
It is recommended that you call ULEnable functions immediately
after calling db_init. Calling ULEnable functions before db_init is
deprecated.

If there are any errors during processing (for example, during initialization
of the persistent store), they are returned in the SQLCA and 0 is returned. If
there are no errors, a non-zero value is returned and you can begin using
embedded SQL commands and functions.

In most cases, this function should be called only once (passing the address
of the globalsqlcavariable defined in thesqlca.hheader file). If you have
multiple execution paths in your application, you can use more than one
db_init call, as long as each one has a separatesqlcapointer. This separate
SQLCA pointer can be a user-defined one, or could be a global SQLCA that
has been freed usingdb_fini.

In multi-threaded applications, each thread must calldb_init to obtain a
separate SQLCA. Subsequent connections and transactions that use this
SQLCA must be carried out on a single thread.

See also “db_fini function” on page 359

360

Chapter 15. Embedded SQL API Reference

db_start_database function
Prototype unsigned int db_start_database(SQLCA * sqlca, char * parms);

Parameters sqlca A pointer to a SQLCA structure. For information, see“Initializing
the SQL Communications Area” on page 64.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the formKEYWORD =value. Typically, only
a filename is required. For example,

"DBF=c: \\db\\mydatabase.db"

☞ For an available list of connection parameters, see“Connection
Parameters”[UltraLite Database User’s Guide,page 63].

Description Start a database if the database is not already running. This function is
required when developing applications that combine embedded SQL and the
C++ Component. See“Combining UltraLite C/C++ interfaces” on page 108.

If you use the db_start_database function to start a database, any information
in UL_STORE_PARMS is ignored.

If the database was already running or was successfully started, the return
value is true (non-zero) and SQLCODE is set to 0. Error information is
returned in the SQLCA.

361

db_stop_database function
Prototype unsigned int db_stop_database(SQLCA * sqlca, char * parms);

Parameters sqlca A pointer to a SQLCA structure. For information, see“Initializing
the SQL Communications Area” on page 64.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the formKEYWORD =value. Typically, only
a database file is needed. For example,

"DBF=c: \\db\\mydatabase.db"

☞ For an available list of connection parameters, see“Connection
Parameters”[UltraLite Database User’s Guide,page 63].

Description Stop a database. This function is not commonly needed, as UltraLite
automatically stops the database when all connections are closed.

This function may be useful when developing applications that combine
embedded SQL and the C++ Component. See“Combining UltraLite C/C++
interfaces” on page 108.

This function does not stop a database that has existing connections.

A return value of TRUE indicates that there were no errors.

362

Chapter 15. Embedded SQL API Reference

ULActiveSyncStream function
Prototype ul_stream_defn ULActiveSyncStream(void);

Description Defines an ActiveSync stream suitable for synchronization.

The ActiveSync stream is available only on Windows CE devices.

Synchronization using ULActiveSyncStream must be initiated from the
ActiveSync software. The application receives a message, which must be
handled in itsWindowProc function. You can use
ULIsSynchronizeMessageto identify the message as an instruction to
synchronize.

See also “ULIsSynchronizeMessage function” on page 376

“ULSynchronize function” on page 388

“Synchronize method” on page 317

“ActiveSync protocol options”[MobiLink Clients,page 341]

363

ULChangeEncryptionKey function
Prototype ul_bool ULChangeEncryptionKey(SQLCA *sqlca, ul_char *new_key);

Description Changes the encryption key for an UltraLite database.

Caution
When the key is changed, every row in the database is decrypted using the
old key and re-encrypted using the new key. This operation is unrecov-
erable. If the application is interrupted part-way through, the database is
invalid and cannot be accessed. A new one must be created.

See also “Encrypting data” on page 87

364

Chapter 15. Embedded SQL API Reference

ULClearEncryptionKey function
Prototype ul_bool ULClearEncryptionKey(

ul_u_long * creator ,
ul_u_long * feature-num);

Description On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palmfeature. Features are indexed by creator and a feature
number.

This function clears the encryption key.

Parameters creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL is the default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL uses the UltraLite default, which is feature number 100.

See also “ULRetrieveEncryptionKey function” on page 381

“ULSaveEncryptionKey function” on page 384

“Palm OS considerations”[UltraLite Database User’s Guide,page 38]

365

ULCountUploadRows function
Prototype ul_u_long ULCountUploadRows (

SQLCA * sqlca,
ul_publication_mask publication-mask ,
ul_u_long threshold);

Description Returns the number of rows that need to be synchronized, either in a set of
publications or in the whole database.

One use of the function is to prompt users to synchronize.

Parameters sqlca A pointer to the SQLCA.

publication-mask A set of publications to check. A value of 0 corresponds
to the entire database. The set is supplied as a mask. For example, the
following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see“Designing sets of data
to synchronize separately”[MobiLink Clients,page 280].

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determines if any rows need to be synchronized.

Example The following call checks the entire database for the number of rows to be
synchronized:

count = ULCountUploadRows(sqlca, 0, 0);

The following call checks publications PUB1 and PUB2 for a maximum of
1000 rows:

count = ULCountUploadRows(sqlca,
UL_PUB_PUB1 | UL_PUB_PUB2, 1000);

The following call checks to see if any rows need to be synchronized:

count = ULCountUploadRows(sqlca, UL_SYNC_ALL, 1);

366

Chapter 15. Embedded SQL API Reference

ULDropDatabase function
Prototype ul_bool ULDropDatabase (SQLCA * sqlca, ul_char * store-parms);

Description Delete the UltraLite database file.

Caution
This function deletes the database file and all data in it. Use with care.

Do not call this function while a database connection is open. Call this
function only beforedb_init or afterdb_fini.

On the Palm OS, call this function only when not connected to the database
(but after anyULEnable functions have been called)

Parameters sqlca A pointer to the SQLCA.

store-parms A string of connection parameters, including the file name to
delete as a keyword-value pair of the formfile_name=file.udb. It is often
convenient to use the UL_STORE_PARMS macro as this argument. A value
of UL_NULL deletes the default database filename.

☞ For more information, see“UL_STORE_PARMS macro” on page 222.

Returns ♦ ul_true Indicates that database files was successfully deleted.

♦ ul_false The detailed error message is defined by the sqlcode field in
the SQLCA. The usual reason for failure is that an incorrect filename was
supplied or that access to the file was denied, perhaps because it is
opened by an application.

Example The following call deletes the UltraLite database filemyfile.udb.

#define UL_STORE_PARMS UL_TEXT("file_name=myfile.udb")
if(ULDropDatabase(&sqlca, UL_STORE_PARMS)){

// success
};

367

ULGetDatabaseID function
Prototype ul_u_long ULGetDatabaseID(SQLCA * sqlca)

Description ULGetDatabaseID returns the current database ID used for global
autoincrement. It returns the value set by the last call to SetDatabaseID or
UL_INVALID_DATABASE_ID if the ID was never set.

Parameters sqlca A pointer to the SQLCA.

368

Chapter 15. Embedded SQL API Reference

ULGetLastDownloadTime function
Prototype ul_bool ULGetLastDownloadTime(

SQLCA * sqlca,
ul_publication_mask publication-mask ,
DECL_DATETIME * value);

Description Obtains the last time a specified publication was downloaded.

Parameters sqlca A pointer to the SQLCA.

publication-mask A set of publications for which the last download time
is retrieved. A value of 0 corresponds to the entire database. The set is
supplied as a mask. For example, the following mask corresponds to
publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see“Designing sets of data
to synchronize separately”[MobiLink Clients,page 280].

value A pointer to the DECL_DATETIME structure to be populated.

A value ofJanuary 1, 1990indicates that the publication has yet to be
synchronized.

Returns ♦ true Indicates thatvalueis successfully populated by the last download
time of the publication specified bypublication-mask.

♦ false Indicates thatpublication-maskspecifies more than one
publication or that the publication is undefined. If the return value is
false, the contents ofvalueare not meaningful.

Examples The following call populates thedt structure with the date and time that
publication UL_PUB_PUB1 was downloaded:

DECL_DATETIME dt;
ret = ULGetLastDownloadTime(&sqlca, UL_PUB_PUB1, &dt);

The following call populates thedt structure with the date and time that the
entire database was last downloaded. It uses the special UL_SYNC_ALL
publication mask.

ret = ULGetLastDownloadTime(&sqlca, UL_SYNC_ALL, &dt);

See also “UL_SYNC_ALL macro” on page 224

“UL_SYNC_ALL_PUBS macro” on page 224

369

ULGetSynchResult function
Prototype ul_bool ULGetSynchResult(ul_synch_result * synch-result);

Description Stores the results of the most recent synchronization, so that appropriate
action can be taken in the application:

The application must allocate aul_synch_resultobject before passing it to
ULGetSynchResult. The function fills theul_synch_resultwith the result
of the last synchronization. These results are stored persistently in the
database.

The function is of particular use when synchronizing applications on the
Palm Computing Platform using HotSync, as the synchronization takes
place outside the application itself. The SQLCODE value set in the
connection reflect the result of the connecting operation itself. The
synchronization status and results are written to the HotSync log only. To
obtain extended synchronization result information, call
ULGetSynchResultwhen connected to the database.

Parameters synch-result A structure to hold the synchronization result. It is defined in
ulglobal.has follows:.

typedef struct {
an_sql_code sql_code;
ul_stream_error stream_error;
ul_bool upload_ok;
ul_bool ignored_rows;
ul_auth_status auth_status;
ul_s_long auth_value;
SQLDATETIME timestamp;
ul_synch_status status;

} ul_synch_result, * p_ul_synch_result;

where the individual members have the following meanings:

♦ sql_code The SQL code from the last synchronization. For a list of
SQL codes, see“Error messages indexed by Adaptive Server Anywhere
SQLCODE” [ASA Error Messages,page 2].

♦ stream_error A structure of type ul_stream error.

☞ For more information, see“stream_error synchronization parameter”
on page 440.

♦ upload_ok Set totrue if the upload was successful;falseotherwise.

♦ ignored_rows Set totrue if uploaded rows were ignored;false
otherwise.

370

Chapter 15. Embedded SQL API Reference

♦ auth_status The synchronization authentication status. For more
information, see“auth_status parameter” on page 419.

♦ auth_value The value used by the MobiLink synchronization server to
determine theauth_statusresult. For more information, see“auth_value
synchronization parameter” on page 420.

♦ timestamp The time and date of the last synchronization.

♦ status The status information used by the observer function. For more
information, see“observer synchronization parameter” on page 428.

Returns The function returns a Boolean value.

true Success.

false Failure.

Examples The following code checks for success of the previous synchronization.

ul_synch_result synch_result;
memset(&synch_result, 0, sizeof(ul_synch_result));
db_init(&sqlca);
EXEC SQL CONNECT "dba" IDENTIFIED BY "sql";
if(!ULGetSynchResult(&sqlca, &synch_result)) {

prMsg("ULGetSynchResult failed");
}

371

ULGlobalAutoincUsage function
Prototype short ULGlobalAutoincUsage(SQLCA * sqlca);

Description Obtains the percent of the default values used in all the columns having
global autoincrement defaults. If the database contains more than one
column with this default, this value is calculated for all columns and the
maximum is returned. For example, a return value of 99 indicates that very
few default values remain for at least one of the columns.

Returns The function returns a value of type short in the range 0–100.

See also “ULSetDatabaseID function” on page 385

372

Chapter 15. Embedded SQL API Reference

ULGrantConnectTo function
Prototype void ULGrantConnectTo(

SQLCA * sqlca,
ul_char * userid ,
ul_char * password);

Description Grant access to an UltraLite database for a user ID with a specified
password. If an existing user ID is specified, this function updates the
password for the user.

Parameters sqlca A pointer to the SQLCA.

userid Character array holding the user ID. The maximum length is 16
characters.

password Character array holding the password foruserid. The maximum
length is 16 characters.

See also “User authentication in UltraLite”[UltraLite Database User’s Guide,page 40]

“Authenticating users” on page 85

“ULRevokeConnectFrom function” on page 382

373

ULHTTPSStream function
Prototype ul_stream_defn ULHTTPSStream(void);

Description Defines an UltraLite HTTPS stream suitable for synchronization via HTTP.

The HTTPS stream uses TCP/IP as its underlying transport. UltraLite
applications act as Web browsers and MobiLink acts as a web server.

See also “ULSynchronize function” on page 388

“Synchronize method” on page 317

“stream synchronization parameter” on page 438

“HTTPS protocol options”[MobiLink Clients,page 347]

374

Chapter 15. Embedded SQL API Reference

ULHTTPStream function
Prototype ul_stream_defn ULHTTPStream(void);

Description Defines an UltraLite HTTP stream suitable for synchronization via HTTP.

The HTTP stream uses TCP/IP as its underlying transport. UltraLite
applications act as Web browsers and MobiLink acts as a web server.
UltraLite applications send POST requests to send data to the server and
GET requests to read data from the server.

See also “ULSynchronize function” on page 388

“Synchronize method” on page 317

“stream synchronization parameter” on page 438

“HTTP protocol options”[MobiLink Clients,page 346]

375

ULIsSynchronizeMessage function
Prototype ul_bool ULIsSynchronizeMessage(ul_u_long uMsg);

Description On Windows CE, this function checks a message to see if it is a
synchronization message from the MobiLink provider for ActiveSync, so
that code to handle such a message can be called.

This function should be included in theWindowProc function of your
application.

Example The following code snippet illustrates how to use ULIsSynchronizeMessage
to handle a synchronization message.

LRESULT CALLBACK WindowProc(HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)

{
if(ULIsSynchronizeMessage(uMsg)) {

// execute synchronization code
if(wParam == 1) DestroyWindow(hWnd);
return 0;

}

switch(uMsg) {

// code to handle other windows messages

default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);

}
return 0;

}

See also “Adding ActiveSync synchronization to your application” on page 140

376

Chapter 15. Embedded SQL API Reference

ULPalmDBStream function (deprecated)
Prototype ul_stream_defn ULPalmDBStream(void);

Description Defines a stream under the Palm Computing Platform suitable for HotSync
and Scout Sync.

This function is deprecated. Thestreamparameter is not needed for
HotSync synchronization, and may be UL_NULL.

See also “HotSync protocol options”[MobiLink Clients,page 343]

“Synchronize method” on page 317

377

ULPalmExit function (deprecated)
Prototype ul_bool ULPalmExit(SQLCA * sqlca, ul_synch_info * synch_info);

Description
Deprecated feature
ULPalmExit is no longer required and is a deprecated feature. Use
ULSetSynchInfo and db_fini to exit the application instead.

Saves application state for UltraLite applications on the Palm Computing
Platform, and writes out an upload stream for HotSync synchronization.

Parameters sqlca A pointer to the SQLCA.

synch_info A synchronization structure.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL
instead of the ul_synch_info structure. When using these streams, the
synchronization information is supplied instead in the call to
ULSynchronize.

If you use HotSync or Scout Sync synchronization, supply the
synchronization structure. The value of thestreamparameter is ignored, and
may be UL_NULL.

☞ For information on the members of thesynch_infostructure, see
“Synchronization Parameters Reference” on page 415.

Returns The function returns a Boolean value.

true Success.

false Failure.

378

Chapter 15. Embedded SQL API Reference

ULPalmLaunch function (deprecated)
Prototype UL_PALM_LAUNCH_RET ULPalmLaunch(

SQLCA * sqlca,
ul_synch_info * synch_info);

typedef enum {
LAUNCH_SUCCESS_FIRST ,
LAUNCH_SUCCESS ,
LAUNCH_FAIL
} UL_PALM_LAUNCH_RET;

Parameters sqlca A pointer to the SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see“Synchronization parameters” on page 417.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL as
synch_info.

Description
Deprecated feature
ULPalmLaunch is no longer required and is a deprecated feature. Use
db_init to launch the application instead.

This function restores application state for UltraLite applications on the
Palm Computing Platform. This function is required by all UltraLite Palm
applications.

See also “Restoring state in UltraLite Palm applications” on page 121

“ULEnableFileDB function” on page 208

“ULEnablePalmRecordDB function” on page 210

379

ULResetLastDownloadTime function
Prototype void ULResetLastDownloadTime(

SQLCA * sqlca,
ul_publication_mask publication-mask);

Description This function can be used to repopulate values and return an application to a
known clean state. It resets the last download time so that the application
resynchronizes previously downloaded data.

Parameters sqlca A pointer to the SQLCA.

publication-mask A set of publications to check. A value of 0 corresponds
to the entire database. The set is supplied as a mask. For example, the
following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see“publication
synchronization parameter” on page 432.

Example The following function call resets the last download time for all tables:

ULResetLastDownloadTime(&sqlca, UL_SYNC_ALL);

See also “ULGetLastDownloadTime function” on page 369

“Timestamp-based synchronization”[MobiLink Administration Guide,page 48]

380

Chapter 15. Embedded SQL API Reference

ULRetrieveEncryptionKey function
Prototype ul_bool ULRetrieveEncryptionKey(

ul_char * key ,
ul_u_short len,
ul_u_long * creator ,
ul_u_long * feature-num);

Description On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palmfeature. Features are indexed by creator and a feature
number.

This function retrieves the encryption key from memory.

Parameters key A pointer to a buffer in which to hold the retrieved encryption key.

len The length of the buffer that holds the encryption key with a
terminating null character.

creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL is the default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL uses the UltraLite default, which is feature number 100.

Returns ♦ true if the operation is successful.

♦ false if the operation is unsuccessful. This occurs if the feature was not
found or if the supplied buffer length is insufficient to hold the key plus a
terminating null character.

See also “ULClearEncryptionKey function” on page 365

“ULSaveEncryptionKey function” on page 384

“Palm OS considerations”[UltraLite Database User’s Guide,page 38]

381

ULRevokeConnectFrom function
Prototype void ULRevokeConnectFrom(SQLCA * sqlca, ul_char * userid);

Description Revoke access from an UltraLite database for a user ID.

Parameters sqlca A pointer to the SQLCA.

userid Character array holding the user ID to be excluded from database
access. The maximum length is 16 characters.

See also “User authentication in UltraLite”[UltraLite Database User’s Guide,page 40]

“Authenticating users” on page 85

“ULGrantConnectTo function” on page 373

382

Chapter 15. Embedded SQL API Reference

ULRollbackPartialDownload function
Roll back the changes from a failed synchronization.

Prototype void ULRollbackPartialDownload (SQLCA * sqlca)

Parameters ♦ sqlca A pointer to the SQL Communications Area.

In the static C++ API the SQLCA is declared in the header file assqlca.
In the C++ Component use the Sqlca.GetCA() method.

Description When a communication error occurs during the download phase of
synchronization, UltraLite can apply the downloaded changes, so that the
synchronization can be resumed from the place it was interrupted. If the
download changes are not needed (the user or application does not want to
resume the download at this point), ULRollbackPartialDownload rolls back
the failed download transaction.

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “Keep Partial Download synchronization parameter”[MobiLink Clients,

page 321]
♦ “Partial Download Retained synchronization parameter”[MobiLink

Clients,page 324]
♦ “Resume Partial Download synchronization parameter”[MobiLink Clients,

page 327]

383

ULSaveEncryptionKey function
Prototype ul_bool ULSaveEncryptionKey(

ul_char * key ,
ul_u_long * creator ,
ul_u_long * feature-num);

Description On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palmfeature. Features are indexed by creator and a feature
number. They are not backed up and are cleared on any reset of the device.

This function saves the encryption key in Palm dynamic memory.

Parameters key A pointer to the encryption key.

creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL is the default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL uses the UltraLite default, which is feature number 100.

Returns ♦ true if the operation is successful.

♦ false if the operation is unsuccessful.

See also “ULClearEncryptionKey function” on page 365

“ULRetrieveEncryptionKey function” on page 381

“Palm OS considerations”[UltraLite Database User’s Guide,page 38]

384

Chapter 15. Embedded SQL API Reference

ULSetDatabaseID function
Prototype void ULSetDatabaseID(SQLCA * sqlca, ul_u_long id);

Description Sets the database identification number.

Parameters sqlca A pointer to the SQLCA.

id A positive integer that uniquely identifies a particular database in a
replication or synchronization setup.

See also “ULGlobalAutoincUsage function” on page 372

385

ULSetSynchInfo function
Prototype ul_bool ULSetSynchInfo(

SQLCA * sqlca,
ul_synch_info * synch_info);

Description For HotSync synchronization on the Palm OS, use ULSetSynchInfo to store
the synchronization parameters for use when HotSync runs. Typically,
ULSetSynchInfo is called just before closing the application by calling
db_fini or ULData::Close.

Parameters sqlca A pointer to the SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see“Synchronization parameters” on page 417.

386

Chapter 15. Embedded SQL API Reference

ULSocketStream function
Prototype ul_stream_defn ULSocketStream(void);

Description Defines an UltraLite socket stream suitable for synchronization via TCP/IP.

See also “ULSynchronize function” on page 388

“Synchronize method” on page 317

387

ULSynchronize function
Prototype void ULSynchronize(

SQLCA * sqlca,
ul_synch_info * synch_info);

Description Initiates synchronization in an UltraLite application.

For TCP/IP or HTTP synchronization, theULSynchronize function initiates
synchronization. Errors during synchronization that are not handled by the
handle_error script are reported as SQL errors. Your application should test
the SQLCODE return value of this function.

Parameters sqlca A pointer to the SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see“Synchronization parameters” on page 417.

See also “MobiLink Synchronization Server Options”[MobiLink Administration Guide,
page 189]

“START SYNCHRONIZATION DELETE statement [MobiLink]”[ASA SQL
Reference,page 630]

388

CHAPTER 16

UltraLite ODBC API Reference

About this chapter This chapter describes those parts of the ODBC interface supported by
UltraLite

It is not a comprehensive ODBC reference. It is intended as a quick
reference to complement the main reference for ODBC, which is the
MicrosoftODBC SDK documentation.

Contents Topic: page

SQLAllocHandle function 391

SQLBindCol function 392

SQLBindParameter function 393

SQLConnect function 394

SQLDescribeCol function 395

SQLDisconnect function 396

SQLEndTran function 397

SQLExecDirect function 398

SQLExecute function 399

SQLFetch function 400

SQLFetchScroll function 401

SQLFreeHandle function 402

SQLGetCursorName function 403

SQLGetData function 404

SQLGetDiagRec function 405

SQLGetInfo function 406

SQLNumResultCols function 407

SQLPrepare function 408

SQLRowCount function 409

389

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcstartpage1.asp

Topic: page

SQLSetCursorName function 410

SQLSetConnectionName function 411

SQLSetSuspend function 412

SQLSynchronize function 413

390

Chapter 16. UltraLite ODBC API Reference

SQLAllocHandle function
Allocates a handle.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLAllocHandle(
SQLSMALLINT HandleType,
SQLHANDLE InputHandle,
SQLHANDLE * OutputHandle);

Parameters ♦ HandleType The type of handle to be allocated. UltraLite supports the
following handle types:

♦ SQL_HANDLE_ENV (environment handle)
♦ SQL_HANDLE_DBC (connection handle)
♦ SQL_HANDLE_STMT (statement handle)

♦ InputHandle The handle in whose context the new handle is to be
allocated. For a connection handle, this is the environment handle; for a
statement handle, this is the connection handle.

♦ OutputHandle Pointer to a buffer in which to return the new handle.

Remarks ODBC uses handles to provide the context for database operations. An
environment handle provides the context for communication with a data
source, like the SQL Communications Area in other interfaces. A
connection handle provides a context for all database operations. A
statement handle manages result sets and data modification. A descriptor
handle manages the handling of result set data types.

See also ♦ SQLAllocHandlein the MicrosoftODBC Programmer’s Reference.

391

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21bpr_2.asp

SQLBindCol function
Binds a result set column to an application data buffer, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLBindCol (
SQLHSTMT StatementHandle,
SQLUSMALLINT ColumnNumber ,
SQLSMALLINT TargetType,
SQLPOINTER TargetValue,
SQLLEN BufferLength,
SQLLEN * StrLen_or_Ind);

Parameters ♦ StatementHandle A handle for the statement that is to return a result
set.

♦ ColumnNumber The number of the column in the result set to bind to
an application data buffer.

♦ TargetType The identifier of the data type of the TargetValue pointer.

♦ TargetValue A pointer to the data buffer to bind to the column.

♦ BufferLength The length of the TargetValue buffer in bytes.

♦ StrLen_or_lnd Pointer to the length or indicator buffer to bind to the
column. For strings, the length buffer holds the length of the actual string
that was returned, which may be less than the length allowed by the
column.

Remarks To exchange information between your application and the database, ODBC
binds buffers in the application to database objects such as columns.
SQLBindCol is used when executing a query to identify a buffer in your
application as a place that UltraLite puts the value of a specified column.

See also ♦ SQLBindColin the MicrosoftODBC Programmer’s Reference.

392

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21bpr_4.asp

Chapter 16. UltraLite ODBC API Reference

SQLBindParameter function
Binds a buffer parameter to a parameter marker in a SQL statement, for
UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLBindParameter (
SQLHSTMT StatementHandle,
SQLUSMALLINT ParameterNumber ,
SQLSMALLINT ParamType,
SQLSMALLINT CType,
SQLSMALLINT SqlType,
SQLULEN ColDef ,
SQLSMALLINT Scale,
SQLPOINTER rgbValue,
SQLLEN cbValueMax ,
SQLLEN * StrLen_or_Ind);

Parameters ♦ StatementHandle A statement handle.

♦ ParameterNumber The number of the parameter marker in the
statement, in sequential order counting from 1.

♦ ParamType The parameter type. One of the following:

♦ SQL_PARAM_INPUT
♦ SQL_PARAM_INPUT_OUTPUT
♦ SQL_PARAM_OUTPUT

♦ CType The C data type of the parameter.

♦ SQLType The SQL data type of the parameter.

♦ ColDef The size of the column or expression of the parameter marker.

♦ Scale The number of decimal digits for the column or expression of
the parameter marker.

♦ rgbValue A pointer to a buffer for the parameter’s data.

♦ cbValueMax The length of the rgbValue buffer.

♦ StrLen_or_Ind A pointer to a buffer for the parameter’s length.

Remarks To exchange information between your application and the database, ODBC
binds buffers in the application to database objects such as columns.
SQLBindParameter is used when executing a statement, to identify a buffer
in your application as a place that UltraLite gets or sets the value of a
specified parameter in a query.

See also ♦ SQLBindParameterin the MicrosoftODBC Programmer’s Reference.

393

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21bpr_5.asp

SQLConnect function
Connects to a database, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLConnect (
SQLHDBC ConnectionHandle,
SQLTCHAR * ServerName,
SQLSMALLINT NameLength1,
SQLTCHAR * UserName,
SQLSMALLINT NameLength2,
SQLTCHAR * Authentication,
SQLSMALLINT NameLength3);

Parameters ♦ ConnectionHandle The connection handle.

♦ ServerName A connection string that defines the database to which
your application connects. UltraLite ODBC does not use ODBC data
sources. Instead, supply a connection string containing the schema file
and database file parameters, together with optional other parameters.

The following is an example of a ServerName parameter:

(SQLTCHAR*)UL_TEXT(
"schema_file=customer.usm;dbf=customer.udb"

)

For a complete list of connection parameters, see“Connection
Parameters”[UltraLite Database User’s Guide,page 63].

♦ NameLength1 The length of * ServerName.

♦ UserName The user ID to use when connecting. The user ID can
alternatively be specified in the connection string supplied to the
ServerName parameter.

♦ NameLength2 The length of * UserName.

♦ Authentication The password to use when connecting.The password
can alternatively be specified in the connection string supplied to the
ServerName parameter.

♦ NameLength3 The length of * Authentication.

Remarks Connects to a database. For information about UltraLite connection
parameters, see“Connection Parameters”[UltraLite Database User’s Guide,
page 63].

See also ♦ SQLConnectin the MicrosoftODBC Programmer’s Reference.

394

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21cpr_2.asp

Chapter 16. UltraLite ODBC API Reference

SQLDescribeCol function
Returns the result descriptor for a column in the result set.

The result descriptor includes the column name, column size, data type,
number of decimal digits, and nullability.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLDescribeCol (
SQLHSTMT StatementHandle,
SQLUSMALLINT ColumnNumber ,
SQLTCHAR * ColumnName,
SQLSMALLINT BufferLength,
SQLSMALLINT * NameLength,
SQLSMALLINT * DataType,
SQLULEN * ColumnSize,
SQLSMALLINT * DecimalDigits,
SQLSMALLINT * Nullable);

Parameters ♦ StatementHandle A statement handle.

♦ ColumnNumber The 1-based column number of result data.

♦ ColumnName Pointer to a buffer in which to return the column name.

♦ BufferLength The length of *ColumnName, in characters.

♦ NameLength Pointer to a buffer in which to return the total number of
bytes (excluding the null-termination byte) available to return in
*ColumnName.

♦ DataType Pointer to a buffer in which to return the SQL data type of
the column.

♦ ColumnSize Pointer to a buffer in which to return the size of the
column on the data source.

♦ DecimalDigits Pointer to a buffer in which to return the number of
decimal digits of the column on the data source.

♦ Nullable Pointer to a buffer in which to return a value that indicates
whether the column allows NULL values.

See also ♦ SQLDescribeColin the MicrosoftODBC Programmer’s Reference

395

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21dpr.asp

SQLDisconnect function
Disconnects the application from a database, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLDisconnect (
SQLHDBC ConnectionHandle);

Parameters ♦ ConnectionHandle The handle for the connection to be closed.

Remarks Once SQLDisconnect is called, no further operations can be carried out
against the database without opening a new connection.

See also ♦ “SQLConnect function” on page 394
♦ SQLDisconnectin the MicrosoftODBC Programmer’s Reference

396

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21dpr_2.asp

Chapter 16. UltraLite ODBC API Reference

SQLEndTran function
Commits or rolls back a transaction, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLEndTran (
SQLSMALLINT HandleType,
SQLHANDLE Handle,
SQLSMALLINT CompletionType);

Parameters ♦ HandleType The type of handle to be allocated. UltraLite supports the
following handle types:

♦ SQL_HANDLE_ENV
♦ SQL_HANDLE_DBC
♦ SQL_HANDLE_STMT

♦ Handle The connection handle indicating the scope of the transaction.

♦ CompletionType One of the following two values:

♦ SQL_COMMIT
♦ SQL_ROLLBACK

See also ♦ SQLEndTranin the MicrosoftODBC Programmer’s Reference

397

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21dpr_5.asp

SQLExecDirect function
Executes a SQL statement, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLExecDirect (
SQLHSTMT StatementHandle,
SQLTCHAR * StatementText ,
SQLINTEGER TextLength);

Parameters ♦ StatementHandle A statement handle.

♦ StatementText The text of the SQL statement.

♦ TextLength The length of * StatementText.

Remarks Unlike SQLExecute, the statement does not need to be prepared before
being executed using SQLExecDirect.

SQLExecDirect has slower performance than SQLExecute for statements
executed repeatedly.

See also ♦ SQLExecDirectin the MicrosoftODBC Programmer’s Reference

398

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21epr.asp

Chapter 16. UltraLite ODBC API Reference

SQLExecute function
Executes a prepared SQL statement, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLExecute (
SQLHSTMT StatementHandle);

Parameters ♦ StatementHandle The handle for the statement to be executed.

Remarks The statement must be prepared using SQLPrepare before it can be
executed. If the statement has parameter markers, they must be bound to
variables using SQLBindParameter before execution.

You can use SQLExecDirect to execute a statement without preparing it first.
SQLExecDirect has slower performance than SQLExecute for statements
executed repeatedly.

See also ♦ “SQLBindParameter function” on page 393
♦ “SQLPrepare function” on page 408
♦ SQLExecutein the MicrosoftODBC Programmer’s Reference.

399

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21epr_1.asp

SQLFetch function
Fetches the next row from a result set and returns data for all bound
columns, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLFetch (
SQLHSTMT StatementHandle);

Parameters ♦ StatementHandle A statement handle.

Remarks Before fetching rows, you must have bound the columns in the result set to
buffers using SQLBindCol. To fetch a row other than the next row in the
result set, use SQLFetchScroll.

See also ♦ “SQLFetchScroll function” on page 401
♦ “SQLBindCol function” on page 392
♦ SQLFetchin the MicrosoftODBC Programmer’s Reference.

400

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21epr_3.asp

Chapter 16. UltraLite ODBC API Reference

SQLFetchScroll function
Fetches the specified row from the result set and returns data for all bound
columns.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLFetchScroll (
SQLHSTMT StatementHandle,
SQLSMALLINT FetchOrientation,
SQLLEN FetchOffset);

Parameters ♦ StatementHandle A statement handle.

♦ FetchOrientation The type of fetch.

♦ FetchOffset The number of the row to fetch. The interpretation
depends on the value of FetchOrientation.

Remarks Before fetching rows, you must have bound the columns in the result set to
buffers using SQLBindCol. SQLFetchScroll is for use in those cases where
the more straightforward SQLFetch is not appropriate.

See also ♦ “SQLFetch function” on page 400
♦ “SQLBindCol function” on page 392
♦ SQLFetchScrollin the MicrosoftODBC Programmer’s Reference.

401

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21epr_4.asp

SQLFreeHandle function
Frees resources for a handle allocated for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLFreeHandle (
SQLSMALLINT HandleType,
SQLHANDLE Handle);

Parameters ♦ HandleType The type of handle to be allocated. UltraLite supports the
following handle types:

♦ SQL_HANDLE_ENV
♦ SQL_HANDLE_DBC
♦ SQL_HANDLE_STMT

♦ Handle The handle to be freed.

Remarks SQLFreeHandle should be called for each handle allocated using
SQLAllocHandle, when the handle is no longer needed.

See also ♦ “SQLAllocHandle function” on page 391
♦ SQLFreeHandlein the MicrosoftODBC Programmer’s Reference.

402

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21fpr_3.asp

Chapter 16. UltraLite ODBC API Reference

SQLGetCursorName function
Returns the name associated with a cursor for a specified statement, for
UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLGetCursorName (
SQLHSTMT StatementHandle,
SQLTCHAR * CursorName,
SQLSMALLINT BufferLength,
SQLSMALLINT * NameLength);

Parameters ♦ StatementHandle A statement handle.

♦ CursorName Pointer to a buffer in which to return the name of the
cursor associated with StatementHandle.

♦ BufferLength The length of *CursorName.

♦ NameLength Pointer to memory in which to return the total number of
bytes (excluding the null-termination character) available to return in
*CursorName.

See also ♦ “SQLSetCursorName function” on page 410
♦ SQLGetCursorNamein the MicrosoftODBC Programmer’s Reference.

403

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21fpr_7.asp

SQLGetData function
Retrieves data for a single column in the result set. SQLGetData is typically
used to retrieve variable-length data in parts.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLGetData (
SQLHSTMT StatementHandle,
SQLUSMALLINT ColumnNumber ,
SQLSMALLINT TargetType,
SQLPOINTER TargetValue,
SQLLEN BufferLength,
SQLLEN * StrLen_or_Ind);

Parameters ♦ StatementHandle A statement handle.

♦ ColumnNumber The number of the column in the result set to bind.

♦ TargetType The output handle.

♦ TargetValue A pointer to the data buffer to bind to the column.

♦ BufferLength The length of the TargetValue buffer in bytes.

♦ StrLen_or_Ind Pointer to the length or indicator buffer to bind to the
column.

See also ♦ SQLGetDatain the MicrosoftODBC Programmer’s Reference.

404

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21gpr.asp

Chapter 16. UltraLite ODBC API Reference

SQLGetDiagRec function
Returns the current values of multiple fields of a diagnostic status record, for
UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLGetDiagRec (
SQLSMALLINT HandleType,
SQLHANDLE Handle,
SQLSMALLINT RecNumber ,
SQLTCHAR * Sqlstate,
SQLINTEGER * NativeError ,
SQLTCHAR * MessageText ,
SQLSMALLINT BufferLength,
SQLSMALLINT * TextLength);

Parameters ♦ HandleType The type of handle to be allocated. UltraLite supports the
following handle types:

♦ SQL_HANDLE_ENV
♦ SQL_HANDLE_DBC
♦ SQL_HANDLE_STMT

♦ Handle The input handle

♦ RecNumber The output handle.

♦ Sqlstate The ANSI/ISO SQLSTATE value of the error. For a listing,
see“Error messages indexed by SQLSTATE”[ASA Error Messages,
page 36].

♦ NativeError The SQLCODE value of the error. For a listing, see“Error
messages indexed by Adaptive Server Anywhere SQLCODE”[ASA Error
Messages,page 2].

♦ MessageText The text of the error or status message.

♦ BufferLength The length of the MessageText buffer in bytes.

♦ TextLength Pointer to a buffer in which to return the total number of
bytes (excluding the null-termination byte) available to return in
*MessageText.

See also ♦ SQLGetDiagRecin the MicrosoftODBC Programmer’s Reference.

405

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21gpr_4.asp

SQLGetInfo function
Returns general information about the current ODBC driver and data source,
for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLGetInfo (
SQLHDBC ConnectionHandle,
SQLUSMALLINT InfoType,
SQLPOINTER InfoValue,
SQLSMALLINT BufferLength,
SQLSMALLINT ODBCFAR * StringLength);

Parameters ♦ ConnectionHandle A connection handle.

♦ InfoType The type of information returned. The only type supported is
SQL_DBMS_VER. The information returned is a character string
identifying the current release of the software.

♦ InfoValue Pointer to a buffer in which to return the information.

♦ BufferLength The length of the InfoValue buffer in bytes.

♦ StringLength Pointer to a buffer in which to return the total number of
bytes (excluding the null-termination character for character data)
available to return in *InfoValue.

See also ♦ SQLGetInfoin the MicrosoftODBC Programmer’s Reference.

406

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21gpr_7.asp

Chapter 16. UltraLite ODBC API Reference

SQLNumResultCols function
Returns the number of columns in a result set, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLNumResultCols (
SQLHSTMT StatementHandle,
SQLSMALLINT * ColumnCount);

Parameters ♦ StatementHandle A statement handle.

♦ ColumnCount Pointer to a buffer in which to return the total number
of columns in the result set.

See also ♦ SQLNumResultColsin the MicrosoftODBC Programmer’s Reference.

407

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21ipr.asp

SQLPrepare function
Prepares a SQL statement for execution, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLPrepare (
SQLHSTMT StatementHandle,
SQLTCHAR * StatementText ,
SQLINTEGER TextLength);

Parameters ♦ StatementHandle A statement handle.

♦ StatementText Pointer to a buffer that holds the SQL statement text.

♦ TextLength The length of *StatementText.

See also ♦ “SQLExecute function” on page 399
♦ SQLPreparein the MicrosoftODBC Programmer’s Reference.

408

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21ipr_3.asp

Chapter 16. UltraLite ODBC API Reference

SQLRowCount function
Returns the number of rows affected by an INSERT, UPDATE, or DELETE
operation, for UltraLite ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLRowCount (
SQLHSTMT StatementHandle,
SQLLEN * RowCount);

Parameters ♦ StatementHandle A statement handle.

♦ RowCount Pointer to a buffer in which the number of rows is returned.

See also ♦ SQLRowCountin the MicrosoftODBC Programmer’s Reference.

409

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21jpr_2.asp

SQLSetCursorName function
Sets the name of a cursor associated with a SQL statement, for UltraLite
ODBC.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLSetCursorName (
SQLHSTMT StatementHandle,
SQLTCHAR * CursorName,
SQLSMALLINT NameLength);

Parameters ♦ StatementHandle A statement handle.

♦ CursorName Pointer to a buffer holding the cursor name.

♦ NameLength The length of *CursorName.

See also ♦ “SQLGetCursorName function” on page 403
♦ SQLSetCursorNamein the MicrosoftODBC Programmer’s Reference.

410

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odch21jpr_5.asp

Chapter 16. UltraLite ODBC API Reference

SQLSetConnectionName function
Sets a connection name for the suspend and restore operation, for UltraLite
ODBC. This function is specific to UltraLite and is not part of the ODBC
standard.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLSetConnectionName (
SQLHSTMT StatementHandle,
SQLTCHAR * ConnectionName,
SQLSMALLINT NameLength);

Parameters ♦ StatementHandle A statement handle.

♦ ConnectionName Pointer to a buffer holding the connection name.

♦ NameLength The length of *ConnectionName

Remarks SQLSetConnectionName is used to provide a connection name for use in the
suspend and restore operation, together with SQLSetSuspend. Set the
connection name before opening a connection in order to restore application
state.

See also ♦ “Saving state in UltraLite Palm applications” on page 120
♦ “SQLSetSuspend function” on page 412

411

SQLSetSuspend function
Indicates whether the state of open cursors should be saved on closing the
application, for UltraLite ODBC. This function is specific to UltraLite and is
not part of the ODBC standard.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLSetSuspend (
SQLSMALLINT HandleType,
SQLHSTMT StatementHandle,
SQLSMALLINT TrueFalse);

Parameters ♦ HandleType The type of handle to be allocated. UltraLite supports the
following handle types:

♦ SQL_HANDLE_ENV
♦ SQL_HANDLE_DBC
♦ SQL_HANDLE_STMT

♦ StatementHandle A statement handle.

♦ TrueFalse The output handle.

See also “Saving state in UltraLite Palm applications” on page 120

412

Chapter 16. UltraLite ODBC API Reference

SQLSynchronize function
Synchronizes data in the database using MobiLink synchronization, for
UltraLite ODBC. This function is specific to UltraLite and is not part of the
ODBC standard.

Prototype UL_FN_SPEC SQLRETURN UL_FN_MOD SQLSynchronize (
SQLHDBC ConnectionHandle,
ul_synch_info * SynchInfo);

Parameters ♦ ConnectionHandle A handle.

♦ SynchInfo The structure holding synchronization information. See
“Synchronization Parameters Reference” on page 415.

Remarks SQLSynchronize is an extension to ODBC. It initiates a MobiLink
synchronization operation.

See also ♦ “Synchronization Parameters Reference” on page 415.
♦ MobiLink Administration Guide

413

CHAPTER 17

Synchronization Parameters Reference

About this chapter This chapter provides reference information about synchronization
parameters.

Contents Topic: page

Synchronization parameters 417

auth_parms parameter 418

auth_status parameter 419

auth_value synchronization parameter 420

checkpoint_store synchronization parameter 421

disable_concurrency synchronization parameter 422

download_only synchronization parameter 423

keep_partial_download synchronization parameter 424

ignored_rows synchronization parameter 425

new_password synchronization parameter 426

num_auth_parms parameter 427

observer synchronization parameter 428

partial_download_retained synchronization parameter 429

password synchronization parameter 430

ping synchronization parameter 431

publication synchronization parameter 432

resume_partial_download synchronization parameter 433

security synchronization parameter 434

security_parms synchronization parameter 435

send_column_names synchronization parameter 436

send_download_ack synchronization parameter 437

415

Topic: page

stream synchronization parameter 438

stream_error synchronization parameter 440

stream_parms synchronization parameter 443

upload_ok synchronization parameter 444

upload_only synchronization parameter 445

user_data synchronization parameter 446

user_name synchronization parameter 447

version synchronization parameter 448

416

Chapter 17. Synchronization Parameters Reference

Synchronization parameters
The synchronization parameters are members of a structure that is provided
as an argument in the call to synchronize. Theul_synch_infostructure that
holds the synchronization parameters is defined inulglobal.has follows:

struct ul_synch_info {
ul_char * user_name;
ul_char * password;
ul_char * new_password;
ul_char * version;
p_ul_stream_defn stream;
ul_char * stream_parms;
p_ul_stream_defn security;
ul_char * security_parms;
ul_synch_observer_fn observer;
ul_void * user_data;
ul_publication_mask publication;
ul_bool upload_only;
ul_bool download_only;
ul_bool send_download_ack;
ul_bool send_column_names;
ul_bool ping;
ul_bool checkpoint_store;
ul_bool disable_concurrency;
ul_byte num_auth_params;
ul_char * * auth_parms;
ul_bool keep_partial_download;
ul_bool resume_partial_download;

// fields set on output
ul_stream_error stream_error;
ul_bool upload_ok;
ul_bool ignored_rows;
ul_auth_status auth_status;
ul_s_long auth_value;
ul_bool partial_download_retained;

p_ul_synch_info init_verify;
};

The init_verify field is reserved for internal use.

Use UL_TEXT around constant strings
TheUL_TEXT macro allows constant strings to be compiled as single-byte
strings or wide-character strings. Use this macro to enclose all constant
strings supplied as members of theul_synch_info structure so that the
compiler handles these parameters correctly.

☞ For a description of the role of each synchronization parameter, see
“Synchronization parameters”[MobiLink Clients,page 316].

417

auth_parms parameter
Function Provides parameters to a custom user authentication script.

Usage Set the parameters as follows:

ul_char * Params[3] = { UL_TEXT("parm1"),
UL_TEXT("parm2"),
UL_TEXT("parm3") };

// ...
info.num_auth_parms = 3;
info.auth_parms = Params;

See also ♦ “Authentication Parameters synchronization parameter”[MobiLink Clients,
page 316]

♦ “num_auth_parms parameter” on page 427
♦ “authenticate_parameters connection event”[MobiLink Administration

Guide,page 334]
♦ “authenticate_user connection event”[MobiLink Administration Guide,

page 336]

418

Chapter 17. Synchronization Parameters Reference

auth_status parameter
Function Reports the status of MobiLink user authentication.

Usage Access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.auth_status;

Allowed values After synchronization, the parameter must hold one of the following values.
If a customauthenticate_usersynchronization script at the consolidated
database returns a different value, the value is interpreted according to the
rules given in“authenticate_user connection event”[MobiLink Administration
Guide,page 336].

Constant Value Description

UL_AUTH_STATUS_-
UNKNOWN

0 Authorization status is un-
known, possibly because the
connection has not yet syn-
chronized.

UL_AUTH_STATUS_VALID 1000 User ID and password were
valid at the time of synchro-
nization.

UL_AUTH_STATUS_VALID_-
BUT_EXPIRES_SOON

2000 User ID and password were
valid at the time of synchro-
nization but will expire soon.

UL_AUTH_STATUS_EXPIRED 3000 Authorization failed: user ID
or password have expired.

UL_AUTH_STATUS_INVALID 4000 Authorization failed: bad user
ID or password.

UL_AUTH_STATUS_IN_USE 5000 Authorization failed: user ID
is already in use.

See also ♦ “Authentication Status synchronization parameter”[MobiLink Clients,
page 317]

♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9].

419

auth_value synchronization parameter
Function Reports return values from custom user authentication synchronization

scripts.

Default The values set by the default MobiLink user authentication mechanism are
described in“authenticate_user connection event”[MobiLink Administration
Guide,page 336].

Usage The parameter is read-only.

Access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.auth_value;

See also ♦ “Authentication Value synchronization parameter”[MobiLink Clients,
page 318]

♦ “authenticate_user connection event”[MobiLink Administration Guide,
page 336]

♦ “authenticate_user_hashed connection event”[MobiLink Administration
Guide,page 340]

♦ “auth_status parameter” on page 419

420

Chapter 17. Synchronization Parameters Reference

checkpoint_store synchronization parameter
Function Adds additional checkpoints of the database during synchronization to limit

database growth during the synchronization process.

Default By default, limited checkpointing is done.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.checkpoint_store = ul_true ;

See also “Checkpoint Store synchronization parameter”[MobiLink Clients,page 318]

421

disable_concurrency synchronization parameter
Function Disallow database access from other threads during synchronization.

Default By default, data access is available. Data access is read-write during the
download phase, and read-only otherwise.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.checkpoint_store = ul_false ;

See also ♦ “Disable Concurrency synchronization parameter”[MobiLink Clients,
page 319]

♦ “Understanding concurrency in UltraLite”[UltraLite Database User’s
Guide,page 58]

422

Chapter 17. Synchronization Parameters Reference

download_only synchronization parameter
Function Do not upload any changes from the UltraLite database during this

synchronization.

Default The parameter is an optional Boolean value, and by default is false.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.download_only = ul_true;

See also ♦ “Download Only synchronization parameter”[MobiLink Clients,page 320]
♦ “Including read-only tables in an UltraLite database”[MobiLink Clients,

page 283].
♦ “upload_only synchronization parameter” on page 445

423

keep_partial_download synchronization parameter
Function On download errors, hold on to partial downloads rather than rolling back all

changes.

Default The parameter is an optional Boolean value, and by default is false.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.keep_partial_download = ul_true;

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “Keep Partial Download synchronization parameter”[MobiLink Clients,

page 321]

424

Chapter 17. Synchronization Parameters Reference

ignored_rows synchronization parameter
Function Reports if any rows were ignored by the MobiLink synchronization server

during synchronization because of absent scripts.

The parameter is read-only.

425

new_password synchronization parameter
Function Sets a new MobiLink password associated with the user name.

Default There is no default.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.password = UL_TEXT("myoldpassword");
info.new_password = UL_TEXT("mynewpassword");

See also ♦ “New Password synchronization parameter”[MobiLink Clients,page 322]
♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9].

426

Chapter 17. Synchronization Parameters Reference

num_auth_parms parameter
Function The number of authentication parameter strings passed to a custom

authentication script.

Default No parameters passed to a custom authentication script.

Usage The parameter is used together with auth_parms to supply information to
custom authentication scripts.

☞ For more information, see“auth_parms parameter” on page 418.

See also ♦ “Number of Authentication Parameters parameter”[MobiLink Clients,
page 322]

♦ “auth_parms parameter” on page 418
♦ “authenticate_parameters connection event”[MobiLink Administration

Guide,page 334]
♦ “authenticate_user connection event”[MobiLink Administration Guide,

page 336]

427

observer synchronization parameter
Function A pointer to a callback function that monitors synchronization.

See also ♦ “Observer synchronization parameter”[MobiLink Clients,page 323]
♦ “Monitoring and canceling synchronization” on page 53
♦ “user_data synchronization parameter” on page 446

428

Chapter 17. Synchronization Parameters Reference

partial_download_retained synchronization
parameter
Function Indicates that a partial downloads was held as a result of failure during the

download phase of synchronization.

Default The parameter is set during synchronization if a download error occurs and a
partial download was retained.

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “Partial Download Retained synchronization parameter”[MobiLink

Clients,page 324]

429

password synchronization parameter
Function A string specifying the MobiLink password associated with theuser_name.

This user name and password are separate from any database user ID and
password, and serves to identify and authenticate the application to the
MobiLink synchronization server.

Default There is no default.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.password = UL_TEXT("mypassword");

See also ♦ “Password synchronization parameter”[MobiLink Clients,page 324]
♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9].

430

Chapter 17. Synchronization Parameters Reference

ping synchronization parameter
Function Confirm communications between the UltraLite client and the MobiLink

synchronization server. When this parameter is set to true, no
synchronization takes place.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to ml_user.

The MobiLink synchronization server may execute the following scripts, if
they exist, for a ping request:

♦ begin_connection

♦ authenticate_user

♦ authenticate_user_hashed

♦ end_connection

Default The parameter is an optional Boolean value, and by default is false.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.ping = ul_true;

See also ♦ “Ping synchronization parameter”[MobiLink Clients,page 325]
♦ “-pi option” [MobiLink Clients,page 144]

431

publication synchronization parameter
Function Specifies the publications to be synchronized.

Default If you do not specify a publication, all data is synchronized.

Usage The UltraLite generator identifies the publications specified on theulgen -v

command line option as upper case constants with the name
UL_PUB_pubname, where pubname is the name given to the -v option.

For example, the following command line generates a publication identified
by the constant UL_PUB_SALES:

ulgen -v sales ...

When synchronizing, set the publication parameter to apublication mask:
an OR’d list of publication constants. For example:

ul_synch_info info;
// ...
info.publication = UL_PUB_MYPUB1 | UL_PUB_MYPUB2 ;

The special publication maskUL_SYNC_ALL describes all the tables in
the database, whether in a publication or not. The mask
UL_SYNC_ALL_PUBS describes all tables in publications in the database.

See also ♦ “Publication synchronization parameter”[MobiLink Clients,page 326]
♦ “The UltraLite Generator”[UltraLite Database User’s Guide,page 89]
♦ “Designing sets of data to synchronize separately”[MobiLink Clients,

page 280]

432

Chapter 17. Synchronization Parameters Reference

resume_partial_download synchronization
parameter
Function Resume a synchronization interrupted by a communication failuer during the

downloads.

Default The parameter is a Boolean value, and by default is false.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.resume_partial_download = ul_true;

See also ♦ “Resuming failed downloads”[MobiLink Administration Guide,page 74]
♦ “Resume Partial Download synchronization parameter”[MobiLink Clients,

page 327]

433

security synchronization parameter
Function Set the UltraLite client to use Certicom encryption technology when

exchanging messages with the MobiLink synchronization server.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see“Welcome to SQL
Anywhere Studio”[Introducing SQL Anywhere Studio,page 4].

Default The Security parameter is null by default, corresponding to no
transport-layer security.

Usage The security stream is specified in addition to the synchronization stream.
Allowed values are as follows:

♦ ULSecureCerticomTLSStream() Elliptic-curve transport-layer security
provided by Certicom.

♦ ULSecureRSATLSStream() RSA transport-layer security provided by
Certicom.

☞ For more information, including libraries that you must link against, see
“Security synchronization parameter”[MobiLink Clients,page 328].

See also ♦ “Security synchronization parameter”[MobiLink Clients,page 328]
♦ “MobiLink Transport-Layer Security”[MobiLink Administration Guide,

page 165].

434

Chapter 17. Synchronization Parameters Reference

security_parms synchronization parameter
Function Sets the parameters required when using transport-layer security. This

parameter must be used together with thesecurity parameter.

☞ For more information, see“security synchronization parameter” on
page 434.

Usage The ULSecureCerticomTLSStream() and ULSecureRSATLSStream()
security parameters take a string composed of the following optional
parameters, supplied in an semicolon-separated string.

♦ certificate_company The UltraLite application only accepts server
certificates when the organization field on the certificate matches this
value. By default, this field is not checked.

♦ certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on the certificate matches this
value. By default, this field is not checked.

♦ certificate_name The UltraLite application only accepts server
certificates when the common name field on the certificate matches this
value. By default, this field is not checked.

For example:

ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULSecureCerticomTLSStream();
info.security_parms =

UL_TEXT("certificate_company=Sybase")
UL_TEXT(";")
UL_TEXT("certificate_unit=Sales");

Thesecurity_parmsparameter is a string, and by default is null.

If you use secure synchronization, you must also use the-r command-line
option on the UltraLite generator. For more information, see“The UltraLite
Generator”[UltraLite Database User’s Guide,page 89].

See also ♦ “Security Parameters synchronization parameter”[MobiLink Clients,
page 329]

435

send_column_names synchronization parameter
Function Whensend_column_namesis set toul_true UltraLite sends each column

name to the MobiLink synchronization server. By default UltraLite does not
send column names.

This parameter is typically used together with the -za or -ze switch on the
MobiLink synchronization server for automatically generating
synchronization scripts.

See also ♦ “Send Column Names synchronization parameter”[MobiLink Clients,
page 330]

♦ “-za option” [MobiLink Administration Guide,page 219]

436

Chapter 17. Synchronization Parameters Reference

send_download_ack synchronization parameter
Function Set this boolean parameter totrue to instruct the MobiLink synchronization

server that the client will provide a download acknowledgement.

If the client does send a download acknowledgement, the MobiLink
synchronization server worker thread must wait for the client to apply the
download. If the client does not sent a download acknowledgement, the
MobiLink synchronization server is freed up sooner for its next
synchronization.

Default The default setting isfalse.

See also ♦ “Send Download Acknowledgement synchronization parameter”
[MobiLink Clients,page 331]

437

stream synchronization parameter
Function Set the MobiLink synchronization stream to use for synchronization.

☞ For more information, see“stream_parms synchronization parameter”
on page 443.

Default The parameter has no default value, and must be explicitly set.

Usage //Embedded SQL
ul_synch_info info;
...
info.stream = ULSocketStream();

//Static C++ API
Connection conn;
auto ul_synch_info info;
...
conn.InitSynchInfo(&info);
info.stream = ULSocketStream();

When the type of stream requires a parameter, pass that parameter using the
stream_parmsparameter; otherwise, set thestream_parmsparameter to
null.

The following stream functions are available, but not all are available on all
target platforms:

Stream Description

ULActiveSyncStream() ActiveSync synchronization (Windows CE only).

☞ For a list of stream parameters, see“Ac-
tiveSync protocol options” [MobiLink Clients,
page 341].

ULHTTPStream() Synchronize via HTTP.

The HTTP stream uses TCP/IP as its underly-
ing transport. UltraLite applications act as Web
browsers and the MobiLink synchronization
server acts as a Web server. UltraLite applica-
tions send POST requests to send data to the
server and GET requests to read data from the
server.

☞ For a list of stream parameters, see“HTTP
protocol options” [MobiLink Clients,page 346].

438

Chapter 17. Synchronization Parameters Reference

Stream Description

ULHTTPSStream() Synchronize via the HTTPS synchronization
stream.

The HTTPS stream uses SSL or TLS as its
underlying protocol. It operates over Internet
protocols (HTTP and TCP/IP).

The HTTPS stream requires the use of tech-
nology supplied by Certicom. Use of Certi-
com technology requires that you obtain the
separately-licensable SQL Anywhere Studio se-
curity option and is subject to export regulations.
For more information on this option, see“Wel-
come to SQL Anywhere Studio” [Introducing
SQL Anywhere Studio,page 4].

☞ For a list of stream parameters, see“HTTPS
protocol options” [MobiLink Clients,page 347].

ULSocketStream() Synchronize via TCP/IP.

☞ For a list of stream parameters, see“TCP/IP
protocol options” [MobiLink Clients,page 345].

See also ♦ “Stream Type synchronization parameter”[MobiLink Clients,page 332]

439

stream_error synchronization parameter
Function Sets a structure to hold communications error reporting information.

Access methods This feature is not available to Java applications.

Default The parameter has no default value, and must be explicitly set.

Description Thestream_error field is a structure of typeul_stream_error.

typedef struct ss_error {
ss_stream_id stream_id;
ss_stream_context stream_context;
ss_error_code stream_error_code;
asa_uint32 system_error_code;
rp_char * error_string;
asa_uint32 error_string_length;

} ss_error, * p_ss_error;

The structure is defined insserror.h, in theh subdirectory of your
SQL Anywhere directory.

Theul_stream_error fields are as follows:

♦ stream_id The network layer reporting the error. This enumeration is
listed insserror.h. The following are the meaningful constants:

Constant Value

STREAM_ID_TCPIP 0

STREAM_ID_PALM_CONDUIT 3

STREAM_ID_PALM_SS 4

STREAM_ID_HTTP 7

STREAM_ID_HTTPS 8

STREAM_ID_SECURE 10

STREAM_ID_CERTICOM 12

STREAM_ID_JAVA_CERTICOM 13

STREAM_ID_CERTICOM_SSL 14

STREAM_ID_CERTICOM_TLS 15

STREAM_ID_WIRESTRM 16

STREAM_ID_ACTIVESYNC 23

STREAM_ID_RSA_TLS 24

440

Chapter 17. Synchronization Parameters Reference

Constant Value

STREAM_ID_JAVA_RSA 25

♦ stream_context The basic network operation being performed, such as
open, read, or write. For details, seesserror.h.

♦ stream_error_code The error reported by the stream itself. The
stream_error_codeis of typess_error_code. The stream error codes
are all prefixed with STREAM_ERROR_. A write error, for example, is
STREAM_ERROR_WRITE.

☞ For a listing of error numbers, see“MobiLink Communication Error
Messages”[ASA Error Messages,page 549]. For the error code suffixes, see
sserror.h.

In this version, to find the constant associated with each number you must
count down the number of lines prefixed by DO_STREAM_Error in
sserror.h. For example, to find the constant for error number 10, you use
the tenth DO_STREAM_ERROR entry insserror.h, which is as follows:

DO_STREAM_ERROR(WRITE)

The constant associated with this error is therefore
STREAM_ERROR_WRITE.

♦ system_error_code A system-specific error code. For more
information on the error code, you must look at your platform
documentation. For Windows platforms, this is the Microsoft Developer
Network documentation.

The following are common system errors on Windows:
• 10048 (WSAADDRINUSE) Address already in use.

• 10053 (WSAECONNABORTED) Software caused connection abort.

• 10054 (WSAECONNRESET) The other side of the communication
closed the socket.

• 10060 (WSAETIMEDOUT) Connection timed out.

• 10061 (WSAECONNREFUSED) Connection refused. Typically, this
means that the MobiLink server is not running or is not listening on the
specified port.

☞ For a complete listing, seethe Microsoft Developer Network web
site.

♦ error_string An application-provided error message. The string may or
may not be empty. A non-empty error_string provides information in
addition to the stream_error_code. For instance, for a write error (error

441

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/windows_sockets_error_codes_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/windows_sockets_error_codes_2.asp

code 9) the error string is a number showing how many bytes it was
trying to write.

Usage Check for SQLE_COMMUNICATIONS_ERROR as follows:

Connection conn;
auto ul_synch_info info;
...
conn.InitSynchInfo(&info);
info.stream_error.error_string = error_buff;
info.stream_error.error_string_length =

sizeof(error_buff);
if(!conn.Synchronize(&synch_info)){

if(SQLCODE == SQLE_COMMUNICATIONS_ERROR){
printf(error_buff);

// more error handline here

See also ♦ “Stream Error synchronization parameter”[MobiLink Clients,page 332]

442

Chapter 17. Synchronization Parameters Reference

stream_parms synchronization parameter
Function Sets network protocol options to configure the synchronization stream.

A semi-colon separated list of option assignments. Each assignment is of the
form keyword=value, where the allowed sets of keywords depends on the
synchronization stream.

For a list of available options for each stream, see the following sections:

♦ “ActiveSync protocol options”[MobiLink Clients,page 341]

♦ “HotSync protocol options”[MobiLink Clients,page 343]

♦ “HTTP protocol options”[MobiLink Clients,page 346]

♦ “HTTPS protocol options”[MobiLink Clients,page 347]

♦ “TCP/IP protocol options”[MobiLink Clients,page 345]

Default The parameter is optional, is a string, and by default is null.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.stream_parms= UL_TEXT("host=myserver;port=2439");

See also ♦ “Stream Parameters synchronization parameter”[MobiLink Clients,
page 334]

♦ “Network protocol options for UltraLite synchronization clients”
[MobiLink Clients,page 341].

443

upload_ok synchronization parameter
Function Reports the status of MobiLink uploads. The MobiLink synchronization

server provides this information to the client.

The parameter is read-only.

Usage After synchronization, theupload_okparameter holdstrue if the upload
was successful, andfalseotherwise.

Access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.upload_ok;

See also ♦ “Upload OK synchronization parameter”[MobiLink Clients,page 336]

444

Chapter 17. Synchronization Parameters Reference

upload_only synchronization parameter
Function Indicates that there should be no downloads in the current synchronization,

which can save communication time, especially over slow communication
links. When set to true, the client waits for the upload acknowledgement
from the MobiLink synchronization server, after which it terminates the
synchronization session successfully.

Default The parameter is an optional Boolean value, and by default is false.

Usage Set the parameter to true as follows:

ul_synch_info info;
// ...
info.upload_only = ul_true;

See also ♦ “Upload Only synchronization parameter”[MobiLink Clients,page 337]
♦ “Synchronizing high-priority changes”[MobiLink Clients,page 282]
♦ “download_only synchronization parameter” on page 423

445

user_data synchronization parameter
Function Make application-specific information available to the synchronization

observer.

Usage When implementing the synchronization observer callback function
observer, you can make application-specific information available by
providing information usinguser_data.

See also ♦ “User Data synchronization parameter”[MobiLink Clients,page 338]
♦ “observer synchronization parameter” on page 428

446

Chapter 17. Synchronization Parameters Reference

user_name synchronization parameter
Function A string specifying the user name that uniquely identifies the MobiLink

client to the MobiLink synchronization server. MobiLink uses this value to
determine the download content, to record the synchronization state, and to
recover from interruptions during synchronization.

Default The parameter is required, and is a string.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.user_name= UL_TEXT("mluser");

See also ♦ “User Name synchronization parameter”[MobiLink Clients,page 338]
♦ “Authenticating MobiLink Users”[MobiLink Clients,page 9].
♦ “MobiLink users” [MobiLink Clients,page 7].

447

version synchronization parameter
Function Each synchronization script in the consolidated database is marked with a

version string. For example, there may be two differentdownload_cursor
scripts, identified by different version strings. The version string allows an
UltraLite application to choose from a set of synchronization scripts.

Default The parameter is a string, and by default is the MobiLink default version
string.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.version = UL_TEXT("default");

See also ♦ “Version synchronization parameter”[MobiLink Clients,page 339]
♦ “Script versions”[MobiLink Administration Guide,page 239].

448

Index

Symbols
#define

UltraLite applications 221
~ULSqlca function

UltraLite C++ Component API 229
~ULSqlcaWrap function

UltraLite C++ Component API 233
~ULValue function

UltraLite C++ Component API 302
16-bit signed integer UltraLite embedded SQL data

type 69
32-bit signed integer UltraLite embedded SQL data

type 69
4-byte floating point UltraLite embedded SQL data

type 69
8-byte floating point UltraLite embedded SQL data

type 69

Numbers
10054

synchronization stream system errors (UltraLite
clients) 441

A
ActiveSync

about 140
adding to UltraLite applications 140
class names 137
MFC UltraLite applications 141
supported versions 140
ULIsSynchronizeMessage function 376
UltraLite message 221
WindowProc function 141

AddRef function
UltraLite C++ Component API 269

AES encryption algorithm
UltraLite embedded SQL databases 87
UltraLite Static C++ API databases 49

AfterLast function
UltraLite C++ Component API 245

AfterLast method (ULCursor class)

UltraLite Static C++ API 320
an_SQL_code UltraLite data type

UltraLite Static C++ API 305
applications

building the sample UltraLite embedded SQL
application 186

building UltraLite embedded SQL 97
compiling UltraLite embedded SQL 97
deploying UltraLite on Palm Computing Platform

128
preprocessing UltraLite embedded SQL 97
writing in UltraLite embedded SQL 180
writing UltraLite embedded SQL 61

auth_parms synchronization parameter
about (UltraLite C/C++) 418

auth_status synchronization parameter
about (UltraLite C/C++) 419

auth_value synchronization parameter
about (UltraLite C/C++) 420

autoCommit mode
UltraLite C++ component 32

B
BeforeFirst function

UltraLite C++ Component API 245
BeforeFirst method (ULCursor class)

UltraLite Static C++ API 321
benefits

UltraLite C++ component 4
UltraLite embedded SQL 7
UltraLite Static C++ API 5

binary UltraLite embedded SQL data type 70
build processes

single-file embedded SQL applications 100
UltraLite embedded SQL applications 97

building
sample UltraLite embedded SQL application 186
UltraLite embedded SQL applications 97
UltraLite Static C++ API applications 58

C
C++ API see alsoUltraLite Static C++ API

449

Index

cache_size persistent storage parameter
about 223

casting
data types in UltraLite C++ component 28

Certicom
unavailable on Power PC 127

ChangeEncryptionKey function
UltraLite C++ Component API 237

changeEncryptionKey method
UltraLite embedded SQL 87
UltraLite Static C++ API 49

character string UltraLite embedded SQL data type
fixed length 70
variable length 70

checkpoint_store synchronization parameter
MobiLink synchronization 421

class names
ActiveSync synchronization 137

ClientParms registry entry
MobiLink conduit 126

Close method (ULConnection class)
UltraLite Static C++ API 306

Close method (ULCursor class)
UltraLite Static C++ API 321

Close method (ULData class)
do not use on Palm Computing Platform 331
UltraLite Static C++ API 331

CLOSE statement
UltraLite embedded SQL 81

CodeWarrior
converting projects 117
creating UltraLite projects 116
expanded mode UltraLite applications 119
installing UltraLite plug-in 115
stationery for UltraLite 116
UltraLite C/C++ development 115
using UltraLite plug-in 117

combining interfaces
UltraLite C/C++ 108

Commit function
UltraLite C++ Component API 237

commit method
UltraLite C++ component 32

Commit method (ULConnection class)
UltraLite Static C++ API 306

commits
UltraLite C++ component 32

communications errors
UltraLite embedded SQL 92

compiler directives
UltraLite applications 221
UNDER_CE 224
UNDER_PALM_OS 225

compiler options
UltraLite C++ component development 39

compilers
Palm Computing Platform 114
Windows CE 132

compiling
UltraLite embedded SQL applications 97
UltraLite Static C++ API applications 58, 59

configuring
development tools for UltraLite embedded SQL

102
CONNECT statement

UltraLite embedded SQL 66
connecting

UltraLite C++ component databases 17
Connection object

UltraLite C++ component 17
connections

SQLCAs in UltraLite C/C++ 106
UltraLite embedded SQL 66

conventions
documentation xiv

CountUploadRows function
UltraLite C++ Component API 237

CountUploadRows method (ULConnection class)
UltraLite Static C++ API 307

CreateAndOpenDatabase function
UltraLite C++ Component API 250

cursors
UltraLite embedded SQL 81

CustDB application
building for Palm Computing Platform 118
building for Windows CE 134

D
data manipulation

dynamic SQL in UltraLite C++ component 21
table API in UltraLite C++ component 26

data types
accessing in UltraLite C++ component 27
casting in UltraLite C++ component 28

450

Index

UltraLite embedded SQL 68
UltraLite enumeration 319
UltraLite SQL enumeration 320

database files
changing the encryption key in UltraLite

embedded SQL 87
changing the encryption key in UltraLite Static

C++ API 49
defragmenting in UltraLite C/C++ 110
encrypting in UltraLite embedded SQL 87
encrypting in UltraLite Static C++ API 49
obfuscating 221
obfuscating in UltraLite embedded SQL 87
obfuscating in UltraLite Static C++ API 49
UltraLite (Windows CE) 136

database schemas
accessing in UltraLite C++ component 33
upgrading in UltraLite C++ component 15

DatabaseManager object
UltraLite C++ component 17

databases
connecting in UltraLite C++ component 17
schema information in UltraLite C++ component

33
DatabaseSchema object

UltraLite C++ component 33
db_fini function

do not use on the Palm Computing Platform 359
UltraLite embedded SQL syntax 359

db_init function
UltraLite embedded SQL syntax 360

db_start_database function
UltraLite embedded SQL syntax 361

db_stop_database function
UltraLite embedded SQL syntax 362

decimal UltraLite embedded SQL data type, packed
69

DECL_BINARY macro
UltraLite embedded SQL 69

DECL_DATETIME data type
UltraLite Static C++ API 305

DECL_DATETIME macro
UltraLite embedded SQL 69

DECL_DECIMAL macro
UltraLite embedded SQL 69

DECL_FIXCHAR macro
UltraLite embedded SQL 69

DECL_VARCHAR macro
UltraLite embedded SQL 69

declaration section
UltraLite embedded SQL 68

DECLARE statement
UltraLite embedded SQL 81

declaring
UltraLite host variables 68

defragmenting
UltraLite C/C++ databases 110

Delete function
UltraLite C++ Component API 278

Delete method (ULCursor class)
UltraLite Static C++ API 321

DeleteAllRows function
UltraLite C++ Component API 278

DeleteAllRows method (ULTable class)
UltraLite Static C++ API 341

deleting
rows in UltraLite C++ component 31

dependencies
UltraLite embedded SQL 102

deploying
UltraLite applications on Palm Computing

Platform 128
UltraLite C/C++ applications (Windows CE) 137
UltraLite databases 209
UltraLite on Palm Computing Platform 128
UltraLite to Palm Computing Platform 128

descUltraLite ODBC interface
SQLDisconnect function 396

development
UltraLite C++ component 13, 105
UltraLite Static C++ 6

development platforms
UltraLite C++ 9

development process
UltraLite embedded SQL 7

development tools
configuring for UltraLite embedded SQL 102
preprocessing UltraLite embedded SQL 102
UltraLite embedded SQL 102

directives
UltraLite applications 221

disable_concurrency synchronization parameter
UltraLite C/C++ 422

DML

451

Index

UltraLite C++ component 21
documentation

conventions xiv
SQL Anywhere Studio xii

download acknolwedgements
send_download_ack synchronization parameter

(embedded SQL) 437
send_download_ack synchronization parameter

(static C++ API) 437
download_only synchronization parameter

about (UltraLite C/C++) 423
download-only synchronization

download_only synchronization parameter
(UltraLite C/C++) 423

Drop method (ULData class)
UltraLite Static C++ API 332

DropDatabase function
UltraLite C++ Component API 250

DT_BINARY UltraLite embedded SQL data type 72
DT_LONGVARCHAR UltraLite embedded SQL

data type 72
dynamic SQL

adding to UltraLite embedded SQL 108
adding to UltraLite Static C++ API 108
UltraLite C++ component development 21

E
embedded SQL

combining with UltraLite C++ Component 108
cursors (UltraLite) 81
fetching data (UltraLite) 80
UltraLite benefits 7
UltraLite data access 61
UltraLite functions 357
UltraLite host variables 68
UltraLite sample program 180
UltraLite tutorial 178
using in UltraLite 357

embedded SQL library functions
ULActiveSyncStream (UltraLite) 363
ULChangeEncryptionKey (UltraLite) 364
ULClearEncryptionKey (UltraLite) 365
ULCountUploadRows (UltraLite) 366
ULDropDatabase (UltraLite) 367
ULEnableFileDB (UltraLite) 208
ULEnableGenericSchema (UltraLite) 209
ULEnablePalmRecordDB (UltraLite) 210

ULEnableStrongEncryption (UltraLite) 211
ULEnableUserAuthentication (UltraLite) 212
ULGetDatabaseID (UltraLite) 368
ULGetLastDownloadTime (UltraLite) 369
ULGetSynchResult (UltraLite) 370
ULGlobalAutoincUsage (UltraLite) 372
ULGrantConnectTo (UltraLite) 373
ULHTTPSStream (UltraLite) 374
ULHTTPStream (UltraLite) 375
ULIsSynchronizeMessage (UltraLite) 376
ULPalmDBStream (UltraLite) 377
ULPalmExit (UltraLite) 378
ULPalmLaunch (UltraLite) 379
ULResetLastDownloadTime (UltraLite) 380
ULRetrieveEncryptionKey (UltraLite) 381
ULRevokeConnectFrom (UltraLite) 382
ULSaveEncryptionKey (UltraLite) 384
ULSetDatabaseID (UltraLite) 385
ULSetSynchInfo (UltraLite) 386
ULSocketStream (UltraLite) 387
ULSynchronize (UltraLite) 388

eMbedded Visual C++
obtaining UltraLite 132

emulator
Windows CE for UltraLite C/C++ applications

137
encryption

changing keys in UltraLite embedded SQL 87
changing keys in UltraLite Static C++ API 49
changing UltraLite encryption keys (embedded

SQL) 364
ULEnableStrongEncryption function in UltraLite

C/C++ 211
UltraLite C++ component development 36
UltraLite databases using embedded SQL 87
UltraLite databases using Static C++ API 49
UltraLite embedded SQL databases 87
UltraLite Static C++ API 44
UltraLite Static C++ API databases 49

error checking
UltraLite ODBC interface 405

error handling
UltraLite C++ component 34
UltraLite C/C++ 204, 213

errors
codes (UltraLite) 64
communications errors in UltraLite embedded

452

Index

SQL 92
handling in UltraLite C++ component 34
SQLCODE (UltraLite) 64
sqlcode SQLCA field (UltraLite) 64

EXEC SQL
UltraLite embedded SQL development 63

Execute method (generated statement class)
UltraLite Static C++ API 350

ExecuteQuery function
UltraLite C++ Component API 261

ExecuteStatement function
UltraLite C++ Component API 261

expanded mode
Palm OS UltraLite applications 119
UltraLite plug-in for CodeWarrior 118

F
feedback

documentation xviii
providing xviii

FETCH statement
UltraLite embedded SQL 80, 81

fetching
UltraLite embedded SQL 80

Finalize function
UltraLite C++ Component API 230

Find function
UltraLite C++ Component API 279

Find method (ULTable class)
UltraLite Static C++ API 341

find methods
UltraLite C++ component 28

find mode
UltraLite C++ component 27

FindBegin function
UltraLite C++ Component API 279

FindFirst function
UltraLite C++ Component API 279

FindFirst method (ULTable class)
UltraLite Static C++ API 341

FindLast function
UltraLite C++ Component API 280

FindLast method (ULTable class)
UltraLite Static C++ API 342

FindNext function
UltraLite C++ Component API 280

FindNext method (ULTable class)

UltraLite Static C++ API 343
FindPrevious function

UltraLite C++ Component API 280
FindPrevious method (ULTable class)

UltraLite Static C++ API 343
First function

UltraLite C++ Component API 245
First method (ULCursor class)

UltraLite Static C++ API 322
functions

UltraLite embedded SQL 357

G
generated databases

naming in UltraLite 117
generated result set class

UltraLite Static C++ API 350
generating multi-segment code

UltraLite 122
Get function

UltraLite C++ Component API 246
Get method (generated table class)

UltraLite Static C++ API 352
Get method (ULCursor class)

UltraLite Static C++ API 322
GetBinary function

UltraLite C++ Component API 292
GetBinaryLength function

UltraLite C++ Component API 293
GetByteChunk function

UltraLite C++ Component API 272
GetCA function

UltraLite C++ Component API 230
GetCA method (ULConnection class)

UltraLite Static C++ API 307
GetCollationName function

UltraLite C++ Component API 253
GetColumn method (generated result set class)

UltraLite Static C++ API 347
GetColumn method (generated table class)

UltraLite Static C++ API 353
GetColumnCount function

UltraLite C++ Component API 257, 266
GetColumnCount method (ULCursor class)

UltraLite Static C++ API 323
GetColumnDefault function

UltraLite C++ Component API 286

453

Index

GetColumnID function
UltraLite C++ Component API 266

GetColumnName function
UltraLite C++ Component API 257, 266

GetColumnPrecision function
UltraLite C++ Component API 267

GetColumnScale function
UltraLite C++ Component API 267

GetColumnSize function
UltraLite C++ Component API 267

GetColumnSize method (ULCursor class)
UltraLite Static C++ API 323

GetColumnSQLType function
UltraLite C++ Component API 267

GetColumnSQLType method (ULCursor class) 324
GetColumnType function

UltraLite C++ Component API 268
GetColumnType method (ULCursor class) 324
GetConnection function

UltraLite C++ Component API 269
GetConnectionNum function

UltraLite C++ Component API 237
GetDatabaseID function

UltraLite C++ Component API 237
GetDatabaseID method (ULConnection class)

UltraLite Static C++ API 308
GetDatabaseProperty function

UltraLite C++ Component API 237
GetGlobalAutoincPartitionSize function

UltraLite C++ Component API 287
GetID function

UltraLite C++ Component API 258, 287
GetIFace function

UltraLite C++ Component API 269
GetIndexCount function

UltraLite C++ Component API 287
GetIndexName function

UltraLite C++ Component API 287
GetIndexSchema function

UltraLite C++ Component API 287
GetLastDownloadTime function

UltraLite C++ Component API 238
GetLastDownloadTime method (ULConnection

class)
UltraLite Static C++ API 308

GetLastIdentity function
UltraLite C++ Component API 238

GetLastIdentity method (ULConnection class)
UltraLite Static C++ API 308

GetLength function
UltraLite C++ Component API 272

GetName function
UltraLite C++ Component API 258, 288

GetNewUUID function
UltraLite C++ Component API 238

GetOptimalIndex function
UltraLite C++ Component API 288

GetParameter function
UltraLite C++ Component API 231

GetParameterCount function
UltraLite C++ Component API 231

GetPlan function
UltraLite C++ Component API 261

GetPrimaryKey function
UltraLite C++ Component API 288

GetPublicationCount function
UltraLite C++ Component API 253

GetPublicationID function
UltraLite C++ Component API 253

GetPublicationMask function
UltraLite C++ Component API 238, 254

GetPublicationName function
UltraLite C++ Component API 254

GetReferencedIndexName function
UltraLite C++ Component API 258

GetReferencedTableName function
UltraLite C++ Component API 258

GetRowCount function
UltraLite C++ Component API 246

GetRowCount method (ULTable class)
UltraLite Static C++ API 344

GetSchema function
UltraLite C++ Component API238, 262, 264, 281

GetSignature function
UltraLite C++ Component API 254

GetSizeColumn method (generated table class)
UltraLite Static C++ API 354

GetSqlca function
UltraLite C++ Component API 239

GetSQLCode function
UltraLite C++ Component API 231

GetSQLCode method (ULConnection class)
UltraLite Static C++ API 309

GetSQLCode method (ULCursor class)

454

Index

UltraLite Static C++ API 325
GetSQLCount function

UltraLite C++ Component API 231
GetSQLErrorOffset function

UltraLite C++ Component API 232
GetState function

UltraLite C++ Component API 246
GetStreamReader function

UltraLite C++ Component API 246
GetStreamWriter function

UltraLite C++ Component API 262, 281
GetString function

UltraLite C++ Component API 293
GetStringChunk function

UltraLite C++ Component API 273
GetStringLength function

UltraLite C++ Component API 294
GetSuspend function

UltraLite C++ Component API 239, 246
GetSynchResult function

UltraLite C++ Component API 239
GetSynchResult method (ULConnection class)

UltraLite Static C++ API 309
GetTableCount function

UltraLite C++ Component API 254
GetTableName function

UltraLite C++ Component API 254, 258
GetTableSchema function

UltraLite C++ Component API 255
GetUploadUnchangedRows function

UltraLite C++ Component API 288
GetUtilityULValue function

UltraLite C++ Component API 239
global autoincrement

ULGlobalAutoincUsage function 372
ULSetDatabaseID function (UltraLite embedded

SQL) 385
UltraLite Static C++ API 311, 316

global database identifier
UltraLite embedded SQL 385
UltraLite Static C++ API 316

GlobalAutoincUsage function
UltraLite C++ Component API 239

GlobalAutoincUsage method (ULConnection class)
UltraLite Static C++ API 311

GrantConnectTo function
UltraLite C++ Component API 239

grantConnectTo method
UltraLite C++ component development 35

GrantConnectTo method (ULConnection class)
UltraLite Static C++ API 311

H
handling errors

UltraLite C/C++ 204, 213
HasResultSet function

UltraLite C++ Component API 262
header files

UltraLite Static C++ API 304
host variables

expressions in UltraLite embedded SQL 74
UltraLite embedded SQL 68
UltraLite scope 73
UltraLite usage 72

HotSync synchronization
Palm Computing Platform 125

hpp file
UltraLite Static C++ API 304

HTTP synchronization
Palm Computing Platform in UltraLite 127

HTTPS synchronization
Palm Computing Platform in UltraLite 127

I
icons

used in manuals xvi
ignored_rows synchronization parameter

UltraLite C/C++ 425
import libraries

UltraLite C++ component 38
INCLUDE statement

SQLCA (UltraLite) 64
InDatabase function

UltraLite C++ Component API 294
index enumeration (generated table class)

UltraLite Static C++ API 355
indexes

schema information in UltraLite C++ component
33

IndexSchema object
UltraLite C++ component development 33

indicator variables
NULL (UltraLite) 78
UltraLite embedded SQL 78

455

Index

Initialize function
UltraLite C++ Component API 232

Initialize method (ULData class)
UltraLite Static C++ API 332

InitSynchInfo function
UltraLite C++ Component API 240

InitSynchInfo method
about 52

InitSynchInfo method (ULConnection class)
UltraLite Static C++ API 311

InPublication function
UltraLite C++ Component API 288

Insert function
UltraLite C++ Component API 281

Insert method (ULCursor class)
UltraLite Static C++ API 325

insert mode
UltraLite C++ component 27

InsertBegin function
UltraLite C++ Component API 281

inserting
rows in UltraLite C++ component 30

installing
Palm Computing Platform UltraLite 128
UltraLite plug-in for CodeWarrior 115
Windows CE UltraLite 132

IsCaseSensitive function
UltraLite C++ Component API 255

IsColumnAutoinc function
UltraLite C++ Component API 289

IsColumnCurrentDate function
UltraLite C++ Component API 289

IsColumnCurrentTime function
UltraLite C++ Component API 289

IsColumnCurrentTimestamp function
UltraLite C++ Component API 289

IsColumnDescending function
UltraLite C++ Component API 258

IsColumnGlobalAutoinc function
UltraLite C++ Component API 289

IsColumnInIndex function
UltraLite C++ Component API 290

IsColumnNewUUID function
UltraLite C++ Component API 290

IsColumnNullable function
UltraLite C++ Component API 290

IsForeignKey function

UltraLite C++ Component API 259
IsForeignKeyCheckOnCommit function

UltraLite C++ Component API 259
IsForeignKeyNullable function

UltraLite C++ Component API 259
IsNeverSynchronized function

UltraLite C++ Component API 290
IsNull function

UltraLite C++ Component API 247, 294
IsOpen method (ULConnection class)

UltraLite Static C++ API 312
IsOpen method (ULCursor class)

UltraLite Static C++ API 325
IsOpen method (ULData class)

UltraLite Static C++ API 333
IsPrimaryKey function

UltraLite C++ Component API 259
IsUniqueIndex function

UltraLite C++ Component API 259
IsUniqueKey function

UltraLite C++ Component API 259

K
keep_partial_download synchronization parameter

UltraLite C/C++ 424

L
last download timestamp

resetting in UltraLite databases 315, 380
ULGetLastDownloadTime function 369

Last function
UltraLite C++ Component API 247

Last method (ULCursor class)
UltraLite Static C++ API 325

LastCodeOK function
UltraLite C++ Component API 232

LastCodeOK method (ULConnection class)
UltraLite Static C++ API 312

LastCodeOK method (ULCursor class)
UltraLite Static C++ API 326

LastFetchOK function
UltraLite C++ Component API 232

LastFetchOK method (ULCursor class)
UltraLite Static C++ API 313, 326

LAUNCH_SUCCESS_FIRST
UltraLite Static C++ API 336

library functions

456

Index

RollbackPartialDownload (UltraLite Static C++
API) 316

ULActiveSyncStream (UltraLite embedded SQL)
363

ULChangeEncryptionKey (UltraLite embedded
SQL) 364

ULClearEncryptionKey (UltraLite embedded
SQL) 365

ULCountUploadRows (UltraLite embedded SQL)
366

ULDropDatabase (UltraLite embedded SQL) 367
ULEnableFileDB (UltraLite C/C++) 208
ULEnableGenericSchema (UltraLite C/C++) 209
ULEnablePalmRecordDB (UltraLite C/C++) 210
ULEnableStrongEncryption (UltraLite C/C++)

211
ULEnableUserAuthentication (UltraLite C/C++)

212
ULGetDatabaseID (UltraLite embedded SQL)368
ULGetLastDownloadTime (UltraLite embedded

SQL) 369
ULGetSynchResult (UltraLite embedded SQL)

370
ULGlobalAutoincUsage (UltraLite embedded

SQL) 372
ULGrantConnectTo (UltraLite embedded SQL)

373
ULHTTPSStream (UltraLite embedded SQL) 374
ULHTTPStream (UltraLite embedded SQL) 375
ULIsSynchronizeMessage (UltraLite embedded

SQL) 376
ULPalmDBStream (UltraLite embedded SQL)

377
ULPalmExit (UltraLite embedded SQL) 378
ULPalmLaunch (UltraLite embedded SQL) 379
ULRegisterErrorCallback (UltraLite C/C++) 204,

213
ULRegisterSchemaUpgradeObserver (UltraLite

C/C++) 206, 216
ULResetLastDownloadTime (UltraLite

embedded SQL) 380
ULRetrieveEncryptionKey (UltraLite embedded

SQL) 381
ULRevokeConnectFrom (UltraLite embedded

SQL) 382
ULRollbackPartialDownload (UltraLite

embedded SQL) 383

ULSaveEncryptionKey (UltraLite embedded
SQL) 384

ULSetDatabaseID (UltraLite embedded SQL)385
ULSetSynchInfo UltraLite embedded SQL) 386
ULSocketStream (UltraLite embedded SQL) 387
ULStoreDefragFini (UltraLite C/C++) 218
ULStoreDefragInit (UltraLite C/C++) 219
ULStoreDefragStep (UltraLite C/C++) 220
ULSynchronize (UltraLite embedded SQL) 388
UltraLite embedded SQL 357

linking
UltraLite applications in UltraLite 133
UltraLite C++ component applications 38
UltraLite Static C++ API applications 59

Lookup function
UltraLite C++ Component API 281

Lookup method (ULTable class)
UltraLite Static C++ API 344

lookup methods
UltraLite C++ component 28

lookup mode
UltraLite C++ component 27

LookupBackward function
UltraLite C++ Component API 282

LookupBackward method (ULTable class)
UltraLite Static C++ API 344

LookupBegin function
UltraLite C++ Component API 282

LookupForward function
UltraLite C++ Component API 282

LookupForward method (ULTable class)
UltraLite Static C++ API 345

M
macros

UL_ENABLE_OBFUSCATION 221
UL_ENABLE_SEGMENTS 222
UL_ENABLE_USER_AUTH 222
UL_OMIT_COLUMN_INFO 222
UL_STORE_PARMS 222
UL_SYNC_ALL 224
UL_SYNC_ALL_PUBS 224
UL_TEXT 224
UL_USE_DLL 224
UltraLite applications 221

makefiles
UltraLite embedded SQL 102

457

Index

Metrowerks CodeWarrior
creating UltraLite projects 116

MFC
ActiveSync for UltraLite 141

modes
UltraLite C++ component 27

monitoring synchronization
observer synchronization parameter (UltraLite

C/C++) 428
moveFirst method (Table object)

UltraLite C++ component development 23, 26
moveNext method (Table object)

UltraLite C++ component development 23, 26
multi-row queries

cursors (UltraLite) 81
multi-segment code

generating in UltraLite 122
multi-threaded applications

UltraLite C++ component 19
UltraLite embedded SQL 66

N
network protocol options

UltraLite C/C++ 443
new_password synchronization parameter

UltraLite C/C++ 426
UltraLite UltraLite C/C++ 426

newsgroups
technical support xviii

Next function
UltraLite C++ Component API 247

Next method (ULCursor class)
UltraLite Static C++ API 326

NULL
UltraLite indicator variables 78
UltraLite Static C++ API 322

NULL-terminated string UltraLite embedded SQL
data type 69

NULL-terminated TCHAR character string
UltraLite SQL data type 70

NULL-terminated UNICODE character string
UltraLite SQL data type 70

NULL-terminated WCHAR character string
UltraLite SQL data type 70

NULL-terminated wide character string UltraLite
SQL data type 70

num_auth_parms synchronization parameter

num_auth_parms (UltraLite C/C++) 427

O
obfuscating

compiler directive 221
UltraLite databases 221
UltraLite embedded SQL databases 87
UltraLite Static C++ API databases 49

obfuscation
UltraLite C++ component development 36
UltraLite databases using embedded SQL 88
UltraLite databases using Static C++ API 50
UltraLite embedded SQL databases 87
UltraLite Static C++ API databases 49

objects
generated result set 347
generated statement 350
generated table 352
ULConnection 306
ULCursor 319
ULData 331
ULResultSet 340
ULTable 341

observer synchronization parameter
about (UltraLite C/C++) 428
UltraLite embedded SQL example 95
UltraLite Static C++ API example 56

Open method (generated result set class)
UltraLite Static C++ API 348

Open method (generated table class)
UltraLite Static C++ API 354

open method (Table object)
UltraLite C++ component development 23

Open method (ULConnection class)
UltraLite Static C++ API 313

Open method (ULCursor class)
UltraLite Static C++ API 327

Open method (ULData class)
UltraLite Static C++ API 333

OPEN statement
UltraLite embedded SQL 81

openByIndex method (Table object)
UltraLite C++ component development 23

OpenConnection function
UltraLite C++ Component API 251

OpenTable function
UltraLite C++ Component API 240

458

Index

OpenTableWithIndex function
UltraLite C++ Component API 240

operator bool function
UltraLite C++ Component API 300

operator DECL_DATETIME function
UltraLite C++ Component API 300

operator double function
UltraLite C++ Component API 300

operator float function
UltraLite C++ Component API 300

operator int function
UltraLite C++ Component API 300

operator long function
UltraLite C++ Component API 300

operator short function
UltraLite C++ Component API 300

operator ul_s_big function
UltraLite C++ Component API 301

operator ul_u_big function
UltraLite C++ Component API 301

operator unsigned char function
UltraLite C++ Component API 301

operator unsigned int function
UltraLite C++ Component API 301

operator unsigned long function
UltraLite C++ Component API 301

operator unsigned short function
UltraLite C++ Component API 301

operator= function
UltraLite C++ Component API 301

P
packed decimal UltraLite embedded SQL data type

69
Palm Computing Platform

applications in UltraLite C++ 114
file-based data store 208
HotSync synchronization in UltraLite 125
HTTP synchronization in UltraLite 127
installing UltraLite applications 128
platform requirements 114
record-based data store 210
security 127
segments 122, 123
TCP/IP synchronization in UltraLite 127
UltraLite Static C++ API 314, 328, 337
version 4.0 208, 210

PalmExit method (ULData class)
UltraLite Static C++ API 334

PalmLaunch method (ULData class)
UltraLite Static C++ API 335

partial_download_retained synchronization
parameter

UltraLite C/C++ 429
password synchronization parameter

about (UltraLite C/C++) 430
passwords

authentication in UltraLite C++ component 35
UltraLite C/C++ synchronization 426

PATH environment variable
HotSync 114

performance
UltraLite cache_size parameter 223

permissions
UltraLite embedded SQL 63

persistent storage
cache_size parameter 223
Windows CE 136

PilotMain function
UltraLite applications 121, 125

ping synchronization parameter
about (UltraLite C/C++) 431

platforms
supported in UltraLite C++ 9

prefix files
about 117
CodeWarrior 123

prepared statements
UltraLite C++ component 21

preparedStatement class
UltraLite C++ component 21

PrepareStatement function
UltraLite C++ Component API 241

preprocessing
development tool settings for UltraLite embedded

SQL 102
UltraLite embedded SQL applications 97

Previous function
UltraLite C++ Component API 247

Previous method (ULCursor class)
UltraLite Static C++ API 327

program structure
UltraLite embedded SQL 63

projects

459

Index

adding statements in UltraLite Static C++ API 43
UltraLite Static C++ API 43

publication creation wizard
using in UltraLite static C++ 167

publication synchronization parameter
about (UltraLite C/C++) 432

publications
publication synchronization parameter (UltraLite

C/C++) 432
schema information in UltraLite C++ component

33
PublicationSchema object

UltraLite C++ component development 33

Q
queries

single-row (UltraLite embedded SQL) 80
UltraLite Static C++ API 43

R
registry

ClientParms registry entry 126
Relative function

UltraLite C++ Component API 247
Relative method (ULCursor class)

UltraLite Static C++ API 327
Release function

UltraLite C++ Component API 270
Reopen method

UltraLite C/C++ 120
Reopen method (ULConnection class)

deprecated function 314
Reopen method (ULCursor class)

UltraLite Static C++ API 328
Reopen method (ULData class)

deprecated function 337
ResetLastDownloadTime function

UltraLite C++ Component API 241
ResetLastDownloadTime method (ULConnection

class)
UltraLite Static C++ API 315

restartable downloads
keep_partial_download synchronization

parameter 424
partial_download_retained synchronization

parameter 429

resume_partial_download synchronization
parameter 433

UltraLite embedded SQL 383
UltraLite Static C++ API 316

result set schemas
UltraLite C++ component 24

result sets
UltraLite C++ component 24

resume_partial_download synchronization
parameter

UltraLite C/C++ 433
RevokeConnectFrom function

UltraLite C++ Component API 241
RevokeConnectFrom method (ULConnection class)

UltraLite Static C++ API 315
revokeConnectionFrom method

UltraLite C++ component development 35
Rollback function

UltraLite C++ Component API 241
rollback method

UltraLite C++ component 32
Rollback method (ULConnection class)

UltraLite Static C++ API 316
RollbackPartialDownload function

UltraLite C++ Component API 241
UltraLite Static C++ API 316

rollbacks
UltraLite C++ component 32

rows
accessing current in UltraLite C++ component 27
accessing in UltraLite C++ Component tutorial

158
runtime libraries

UltraLite C++ component 38
runtime library

Windows CE 133, 224

S
sample application

building for Palm Computing Platform 118
building for Windows CE 134

saving state
UltraLite on Palm OS 120

schema changes
UltraLite C/C++ callback function 206

schema files
creating in UltraLite C++ component 15

460

Index

upgrading in UltraLite C++ component 15
schema upgrades

UltraLite C/C++ callback function 206
UltraLite databases 209

schemas
accessing in UltraLite C++ component 33
upgrading in UltraLite C++ component 15

script versions
version synchronization parameter (UltraLite

C/C++) 448
scrolling

UltraLite C++ component 26
security

changing the encryption key in UltraLite
embedded SQL 87

changing the encryption key in UltraLite Static
C++ API 49

database obfuscation 221
obfuscation in UltraLite embedded SQL 87
obfuscation in UltraLite Static C++ API 49
security synchronization parameter (UltraLite

C/C++) 434
security_parms synchronization parameter

(UltraLite C/C++) 435
send_column_names synchronization parameter

(UltraLite C/C++) 436
UltraLite C/C++ applications 127
UltraLite database encryption 49, 87
unavailable on Power PC 127

security synchronization parameter
about (UltraLite C/C++) 434

security_parms synchronization parameter
about (UltraLite C/C++) 435

segments
about 122, 123
explicitly assigning 123
generating multi-segment code 122
Palm Computing Platform 122–124, 222
reducing UltraLite requirements 222
user-defined code 124

SELECT statement
single row (UltraLite embedded SQL) 80
UltraLite C++ component development 23

send_column_names synchronization parameter
about (UltraLite C/C++) 436

send_download_ack synchronization parameter
about (embedded SQL) 437

about (static C++ API) 437
SET CONNECTION statement

multiple connections in UltraLite embedded SQL
67

Set function
UltraLite C++ Component API 283

Set method (ULCursor class)
UltraLite Static C++ API 328

SetBinary function
UltraLite C++ Component API 294

SetColumn method (generated result set)
UltraLite Static C++ API 348

SetColumn method (generated table class)
UltraLite Static C++ API 355

SetColumnNull method (ULCursor class)
UltraLite Static C++ API 329

SetDatabaseID function
UltraLite C++ Component API 241

SetDatabaseID method (ULConnection class)
UltraLite Static C++ API 316

SetDefault function
UltraLite C++ Component API 283

SetNull function
UltraLite C++ Component API 283

SetNull method (generated statement class)
UltraLite Static C++ API 350

SetNullColumn method (generated result set class)
UltraLite Static C++ API 349

SetNullColumn method (generated table class)
UltraLite Static C++ API 355

SetParameter function
UltraLite C++ Component API 262

SetParameter method (generated statement class)
UltraLite Static C++ API 351

SetParameter method (ULResultSet class)
UltraLite Static C++ API 340, 351

SetParameterNull function
UltraLite C++ Component API 262

SetReadPosition function
UltraLite C++ Component API 274

SetString function
UltraLite C++ Component API 295

SetSuspend function
UltraLite C++ Component API 242, 247

SetSynchInfo function
UltraLite C++ Component API 242

Shutdown function

461

Index

UltraLite C++ Component API 242, 251
SQL Anywhere Studio

documentation xii
SQL Communications Area

UltraLite C/C++ 106
UltraLite embedded SQL 64

SQL preprocessor
UltraLite embedded SQL applications 97
UltraLite example 100

sqlaid SQLCA field
UltraLite embedded SQL 64

SQLAllocHandle function
UltraLite ODBC interface 391

SQLBindCol function
UltraLite ODBC interface 392

SQLBindParameter function
UltraLite ODBC interface 393

SQLCA
fields (UltraLite) 64
multiple (UltraLite embedded SQL) 66
UltraLite C/C++ 106
UltraLite embedded SQL 64

sqlcabc SQLCA field
UltraLite embedded SQL 64

SQLCODE
UltraLite C++ component error handling 34
UltraLite C/C++ error handling 204

sqlcode SQLCA field
UltraLite embedded SQL 64

SQLConnect function
UltraLite ODBC interface 394

SQLDescribeCol function
UltraLite ODBC interface 395

SQLDisconnect function
UltraLite ODBC interface 396

SQLEndTran function
UltraLite ODBC interface 397

sqlerrd SQLCA field
UltraLite embedded SQL 65

sqlerrmc SQLCA field
UltraLite embedded SQL 65

sqlerrml SQLCA field
UltraLite embedded SQL 64

sqlerrp SQLCA field
UltraLite embedded SQL 65

SQLExecDirect function
UltraLite ODBC interface 398

SQLExecute function
UltraLite ODBC interface 399

SQLFetch function
UltraLite ODBC interface 400

SQLFetchScroll function
UltraLite ODBC interface 401

SQLFreeHandle function
UltraLite ODBC interface 402

SQLGetCursorName function
UltraLite ODBC interface 403

SQLGetData function
UltraLite ODBC interface 404

SQLGetDiagRec function
UltraLite ODBC interface 405

SQLGetInfo function
UltraLite ODBC interface 406

SQLNumResultCols function
UltraLite ODBC interface 407

sqlpp utility
UltraLite embedded SQL applications 97

SQLPrepare function
UltraLite ODBC interface 408

SQLRowCount function
UltraLite ODBC interface 409

SQLSetConnectionName function
UltraLite ODBC interface 411

SQLSetCursorName function
UltraLite ODBC interface 410

SQLSetSuspend function
UltraLite ODBC interface 412

sqlstate SQLCA field
UltraLite embedded SQL 65

SQLSynchronize function
UltraLite ODBC interface 413

sqlwarn SQLCA field
UltraLite embedded SQL 65

StartDatabase method (ULData class)
UltraLite Static C++ API 338

StartSynchronizationDelete function
UltraLite C++ Component API 242

StartSynchronizationDelete method (ULConnection
class)

UltraLite Static C++ API 317
StopDatabase method (ULData class)

UltraLite Static C++ API 338
StopSynchronizationDelete function

UltraLite C++ Component API 242

462

Index

StopSynchronizationDelete method (ULConnection
class)

UltraLite Static C++ API 317
stream definition functions

GetSynchResult method 309
ULActiveSyncStream (UltraLite embedded SQL)

363
ULHTTPSStream (UltraLite embedded SQL) 374
ULHTTPStream (UltraLite) 375
ULPalmDBStream (embedded SQL) 377
ULSetDatabaseID (embedded SQL) 385
ULSocketStream (UltraLite embedded SQL) 387

stream synchronization parameter
about (embedded SQL) 438
about (static C++ API) 438

stream_error synchronization parameter
about (UltraLite C/C++) 440
ul_stream_error structure (UltraLite C/C++) 440

stream_parms synchronization parameter
about (UltraLite C/C++) 443

string UltraLite embedded SQL data type
fixed length 70
NULL-terminated 69
variable length 70

StringCompare function
UltraLite C++ Component API 295

strings
UL_TEXT macro 224

strong encryption
UltraLite databases 211
UltraLite embedded SQL 87
UltraLite Static C++ API 49

StrToUUID function
UltraLite C++ Component API 243

support
newsgroups xviii

supported platforms
UltraLite C++ 9

synchronization
adding to UltraLite embedded SQL applications

89
adding to UltraLite Static C++ API applications

51
canceling in UltraLite embedded SQL 92
canceling in UltraLite Static C++ API 53
checkpoint_store parameter in UltraLite C/C++

421

committing changes in UltraLite embedded SQL
91

committing changes in UltraLite Static C++ API
53

disable_concurrency parameter in UltraLite
C/C++ 422

HotSync in UltraLite 125
HTTP in UltraLite C++ 127
ignored_ rows parameter in UltraLite C/C++ 425
initial in UltraLite embedded SQL 91
initial in UltraLite Static C++ API 53
invoking in UltraLite embedded SQL 90
invoking in UltraLite Static C++ API 52
monitoring in UltraLite embedded SQL 92
monitoring in UltraLite Static C++ API 53
Palm Computing Platform in UltraLite 125
TCP/IP in UltraLite 127
troubleshooting in UltraLite C++ 309
troubleshooting in UltraLite embedded SQL 370
UltraLite C++ Component tutorial 160
UltraLite embedded SQL 89
UltraLite embedded SQL example 90
UltraLite embedded SQL tutorial 187
UltraLite ODBC interface 413
UltraLite Static C++ API 51, 317
UltraLite Static C++ API example 52
UltraLite static C++ tutorial 174
Windows CE for UltraLite 140

synchronization errors
communications errors in UltraLite embedded

SQL 92
synchronization functions

ULSetSynchInfo (UltraLite embedded SQL) 386
synchronization parameters

auth_parms (UltraLite C/C++) 418
auth_status (UltraLite C/C++) 419
auth_value (UltraLite C/C++) 420
download_only (UltraLite C/C++) 423
new_password (UltraLite C/C++) 426
new_password in UltraLite C/C++ 426
num_auth_parms (UltraLite C/C++) 427
observer (UltraLite C/C++) 428
password (UltraLite C/C++) 430
ping (UltraLite C/C++) 431
publication (UltraLite C/C++) 432
security (UltraLite C/C++) 434
security_parms (UltraLite C/C++) 435

463

Index

send_column_names (UltraLite C/C++) 436
send_download_ack (embedded SQL) 437
send_download_ack (static C++ API) 437
stream (embedded SQL) 438
stream (static C++ API) 438
stream_error (UltraLite C/C++) 440
stream_parms (UltraLite C/C++) 443
upload_ok (UltraLite C/C++) 444
upload_only (UltraLite C/C++) 445
user_data (UltraLite C/C++) 446
user_name (UltraLite C/C++) 447
version (UltraLite C/C++) 448

synchronization status
GetSynchResult method 309
ULGetSynchResult function 370

synchronization streams
stream synchronization parameter (embedded

SQL) 438
stream synchronization parameter (static C++

API) 438
stream_error synchronization parameter

(UltraLite C/C++) 440
stream_parms synchronization parameter

(UltraLite C/C++) 443
ULActiveSyncStream (UltraLite C/C++) 438
ULHTTPStream (UltraLite C/C++) 438
ULSocketStream (UltraLite C/C++) 438

Synchronize function
UltraLite C++ Component API 243

Synchronize method (ULConnection class)
UltraLite Static C++ API 317

sysAppLaunchCmdNormalLaunch
UltraLite applications 121, 125

system_error_code values
synchronization stream errors (UltraLite clients)

441

T
Table object

UltraLite C++ component development 23
tables

defining in UltraLite Static C++ API 43
schema information in UltraLite C++ component

33
TableSchema object

UltraLite C++ component development 33
target platforms

UltraLite C++ 9
TCP/IP synchronization

Palm Computing Platform in UltraLite 127
technical support

newsgroups xviii
threads

multi-threaded UltraLite C++ component
applications 19

UltraLite embedded SQL 66
timestamp structure UltraLite embedded SQL data

type 71
tips

UltraLite development 53, 91
transaction processing

UltraLite C++ component 32
transactions

UltraLite C++ component 32
transport-layer security

unavailable on Power PC 127
troubleshooting

commiting changes before synchronization in
UltraLite embedded SQL 91

commiting changes before synchronization in
UltraLite Static C++ API 53

ping synchronization parameter (UltraLite
C/C++) 431

previous synchronization 309, 370
UltraLite development 53, 91
upload_ok synchronization parameter (UltraLite

C/C++) 444
TruncateTable function

UltraLite C++ Component API 283
truncation

FETCH (UltraLite) 79
tutorials

UltraLite C++ Component 147
UltraLite embedded SQL 178
UltraLite Static C++ 164

U
UL_AS_SYNCHRONIZE macro

ActiveSync UltraLite messages 221
UL_AUTH_STATUS_EXPIRED auth_status value

about 419
UL_AUTH_STATUS_IN_USE auth_status value

about 419
UL_AUTH_STATUS_INVALID auth_status value

464

Index

about 419
UL_AUTH_STATUS_UNKNOWN auth_status

value
about 419

UL_AUTH_STATUS_VALID auth_status value
about 419

UL_AUTH_STATUS_VALID_BUT_EXPIRES_-
SOON auth_status
value

about 419
ul_binary data UltraLite type

UltraLite Static C++ API 305
ul_char data UltraLite type

UltraLite Static C++ API 305
ul_column_num UltraLite data type

UltraLite Static C++ API 305
UL_ENABLE_OBFUSCATION macro

about 221
UL_ENABLE_SEGMENTS macro

about 222
UL_ENABLE_USER_AUTH macro

about 222
ul_fetch_offset UltraLite data type

UltraLite Static C++ API 305
ul_length UltraLite data type

UltraLite Static C++ API 305
UL_NULL 305
UL_OMIT_COLUMN_INFO macro

about 222
UL_STORE_PARMS macro

about 222
ul_stream_error structure

about (UltraLite C/C++) 440
UL_SYNC_ALL macro

about 224
publication mask 432

UL_SYNC_ALL_PUBS macro
about 224
publication mask 432

ul_synch_info structure
about 52, 90
UltraLite C/C++ 417

ul_synch_status structure
UltraLite embedded SQL 93
UltraLite Static C++ API 54

UL_TEXT macro
about 224

UL_USE_DLL macro
about 224

ULActiveSyncStream function
setting synchronization stream (UltraLite C/C++)

438
UltraLite embedded SQL syntax 363
Windows CE 140

ulapi.h
UltraLite Static C++ API 304

ULChangeEncryptionKey function
UltraLite embedded SQL syntax 364
using in UltraLite embedded SQL 87
using in UltraLite Static C++ API 49

ULClearEncryptionKey function
UltraLite embedded SQL syntax 365

ULConduitStream function
setting synchronization stream (UltraLite C/C++)

438
ULConnection class

ResetLastDownloadTime method 315
RevokeConnectFrom method 315
UltraLite Static C++ API 45, 306

ULCountUploadRows function
UltraLite embedded SQL syntax 366

ULCursor class
UltraLite Static C++ API 319, 352

ULData class
UltraLite Static C++ API 45, 331

ULDropDatabase function
UltraLite embedded SQL syntax 367

ULEnableFileDB function
UltraLite C/C++ syntax 208
UltraLite Static C++ API 44, 304

ULEnableGenericSchema function
deprecated feature 209
UltraLite C/C++ syntax 209

ULEnablePalmRecordDB function
UltraLite C/C++ syntax 210
UltraLite Static C++ API 44, 304

ULEnableStrongEncryption function
UltraLite C/C++ syntax 211
UltraLite Static C++ API 44, 304

ULEnableUserAuthentication function
about 47, 85
UltraLite C/C++ syntax 212
UltraLite Static C++ API 44, 304

ulgen utility

465

Index

UltraLite Static C++ API 58
ULGetDatabaseID function

UltraLite embedded SQL syntax 368
ULGetLastDownloadTime function

UltraLite embedded SQL syntax 369
ULGetSynchResult function

UltraLite embedded SQL syntax 370
ULGlobalAutoincUsage function

UltraLite embedded SQL syntax 372
ulglobal.h

ul_synch_info structure (UltraLite C/C++) 417
UltraLite Static C++ API 304

ULGrantConnectTo function
UltraLite embedded SQL syntax 373

ULHTTPSStream function
setting synchronization stream (UltraLite C/C++)

438
UltraLite embedded SQL syntax 374
Windows CE 143

ULHTTPStream function
setting synchronization stream (UltraLite C/C++)

438
UltraLite embedded SQL syntax 375
Windows CE 143

ULInitDatabaseManager function
UltraLite C++ component 18

ULInitSynchInfo function
about 90

ULIsSynchronizeMessage function
ActiveSync 140
UltraLite embedded SQL syntax 376

ULPalmDBStream function
UltraLite embedded SQL syntax 377

ULPalmExit function
deprecated function 378

ULPalmLaunch function
deprecated function 379

ULRegisterErrorCallback function
UltraLite C/C++ syntax 204, 213
UltraLite Static C++ API 304

ULRegisterSchemaUpgradeObserver function
UltraLite C/C++ syntax 206, 216
UltraLite Static C++ API 304

ULResetLastDownloadTime function
UltraLite embedded SQL syntax 380

ULResultSet class
UltraLite Static C++ API 340

ULRetrieveEncryptionKey function
UltraLite embedded SQL syntax 381

ULRevokeConnectFrom function
UltraLite embedded SQL syntax 382

ULRollbackPartialDownload function
UltraLite embedded SQL 383

ulrt9.dll
linking UltraLite C++ component applications 39

ulrtcw9.dll
linking UltraLite applications 39

ulrtw9.dll
linking UltraLite applications 39

ULSaveEncryptionKey function
UltraLite embedded SQL syntax 384

ULSecureCerticomTLSStream function
about (UltraLite C/C++) 434
UltraLite plug-in for CodeWarrior 118

ULSecureRSATLSStream function
about (UltraLite C/C++) 434
UltraLite plug-in for CodeWarrior 118

ULSetDatabaseID function
UltraLite embedded SQL syntax 385

ULSetSynchInfo function
UltraLite embedded SQL syntax 386
using 125

ULSocketStream function
setting synchronization stream (UltraLite C/C++)

438
UltraLite embedded SQL syntax 387
Windows CE 143

ULSqlca class
UltraLite C++ Component API 229

ULSqlca function
UltraLite C++ Component API 229

ULSqlcaBase class
UltraLite C++ Component API 230

ULSqlcaWrap class
UltraLite C++ Component API 233

ULSqlcaWrap function
UltraLite C++ Component API 233

ULStoreDefragFini function
UltraLite C/C++ syntax 218

ULStoreDefragInit function
UltraLite C/C++ syntax 219

ULStoreDefragStep function
UltraLite C/C++ syntax 220

ULSynchronize function

466

Index

serial port on Palm Computing Platform 127
syntax 388
UltraLite embedded SQL tutorial 187

ULTable class
UltraLite Static C++ API 341

ULTable objects
reopening 120

UltraLite
Static C++ API 304
static development 42

UltraLite C++
supported platforms 9

UltraLite C++ API
obfuscating UltraLite databases 88

UltraLite C++ Component
tutorials 147

UltraLite C++ component
benefits 4
creating schema files 15
data manipulation with dynamic SQL 21
data manipulation with Table API 26
development 13, 105
encryption 36
upgrading database schemas 15

UltraLite C/C++
about 3
architecture 10
combining interfaces 108
Palm OS 120

UltraLite databases
deploying on Palm Computing Platform 128
encrypting in embedded SQL 87
encrypting in Static C++ API 49
Windows CE 136

UltraLite embedded SQL
authorization 63
synchronization 89

UltraLite namespace
UltraLite C++ component 14

UltraLite ODBC interface
SQLAllocHandle function 391
SQLBindCol function 392
SQLBindParameter function 393
SQLConnect function 394
SQLDescribeCol function 395
SQLEndTran function 397
SQLExecDirect function 398

SQLExecute function 399
SQLFetch function 400
SQLFetchScroll function 401
SQLFreeHandle function 402
SQLGetCursorName function 403
SQLGetData function 404
SQLGetDiagRec function 405
SQLGetInfo function 406
SQLNumResultCols function 407
SQLPrepare function 408
SQLRowCount function 409
SQLSetConnectionName function 411
SQLSetCursorName function 410
SQLSetSuspend function 412
SQLSynchronize function 413

UltraLite plug-in for CodeWarrior
converting projects 117
creating projects 116
installing 115
using 117

UltraLite projects
CodeWarrior 116

UltraLite runtime libraries
UltraLite C++ component 38

UltraLite runtime library
deploying 137

UltraLite Static C++ API
adding statements to projects 43
benefits 5
class hierarchy 304
compiling applications 59
defining projects 43
defining tables 43
development 6, 42
generating classes 58
header files 304
linking applications 59
obfuscating UltraLite databases 50
Palm Computing Platform 314, 328, 337
query classes 46
Reopen methods 120
synchronization 51
table classes 46
tutorial 164

UltraLite_ classes
using the UltraLite namespace 14

UltraLite_Connection class

467

Index

UltraLite C++ Component API 234
UltraLite_Connection_iface class

UltraLite C++ Component API 236
UltraLite_Cursor_iface class

UltraLite C++ Component API 245
UltraLite_DatabaseManager class

UltraLite C++ Component API 249
UltraLite_DatabaseManager_iface class

UltraLite C++ Component API 250
UltraLite_DatabaseSchema class

UltraLite C++ Component API 252
UltraLite_DatabaseSchema_iface class

UltraLite C++ Component API 253
UltraLite_IndexSchema class

UltraLite C++ Component API 256
UltraLite_IndexSchema_iface class

UltraLite C++ Component API 257
UltraLite_PreparedStatement class

UltraLite C++ Component API 260
UltraLite_PreparedStatement_iface class

UltraLite C++ Component API 261
UltraLite_ResultSet class

UltraLite C++ Component API 263
UltraLite_ResultSet_iface class

UltraLite C++ Component API 264
UltraLite_ResultSetSchema class

UltraLite C++ Component API 265
UltraLite_RowSchema_iface class

UltraLite C++ Component API 266
UltraLite_SQLObject_iface class

UltraLite C++ Component API 269
UltraLite_StreamReader class

UltraLite C++ Component API 271
UltraLite_StreamReader_iface class

UltraLite C++ Component API 272
UltraLite_StreamWriter class

UltraLite C++ Component API 275
UltraLite_Table class

UltraLite C++ Component API 276
UltraLite_Table_iface class

UltraLite C++ Component API 278
UltraLite_TableSchema class

UltraLite C++ Component API 285
UltraLite_TableSchema_iface class

UltraLite C++ Component API 286
ULValue class

UltraLite C++ Component API 291

ULValue function
UltraLite C++ Component API 296–299

UNDER_CE compiler directive
about 224

UNDER_PALM_OS compiler directive
about 225

Update function
UltraLite C++ Component API 283

Update method (ULCursor class)
UltraLite Static C++ API 329

update mode
UltraLite C++ component 27

UpdateBegin function
UltraLite C++ Component API 284

updating
rows in UltraLite C++ component 30

UpgradeSchemaFromFile function
UltraLite C++ Component API 244

UpgradeSchemaFromFile method
UltraLite C++ component development 15

upgrading
database schemas in UltraLite C++ component 15
UltraLite databases 209

upload only synchronization
upload_only synchronization parameter

(UltraLite C/C++) 445
upload_ok synchronization parameter

about (UltraLite C/C++) 444
upload_only synchronization parameter

about (UltraLite C/C++) 445
user authentication

auth_parms synchronization parameter (UltraLite
C/C++) 418

auth_status synchronization parameter (UltraLite
C/C++) 419

auth_value synchronization parameter (UltraLite
C/C++) 420

compiler directive for UltraLite 222
embedded SQL UltraLite applications 85, 311,

373, 382
new_password synchronization parameter in

UltraLite UltraLite C/C++ 426
password synchronization parameter (UltraLite

C/C++) 430
UltraLite C++ component development 35
UltraLite C/C++ applications 212
UltraLite databases 212, 311, 315, 373

468

Index

UltraLite embedded SQL 382
UltraLite Static C++ API 44
UltraLite Static C++ API applications 47
user_name synchronization parameter (UltraLite

C/C++) 447
user_data synchronization parameter

about (UltraLite C/C++) 446
user_name synchronization parameter

about (UltraLite C/C++) 447
users

authentication in the UltraLite C++ component 35
usm files

UltraLite C++ component 15
UUIDToStr function

UltraLite C++ Component API 243, 244

V
values

accessing in UltraLite C++ component 27
version synchronization parameter

about (UltraLite C/C++) 448
Visual C++

Windows CE development 132

W
WindowProc function

ActiveSync 141, 376
Windows CE

development for 132
platform requirements 132
synchronization for UltraLite 140

winsock.lib
Windows CE applications 132

wizards
publication creation in UltraLite static C++ 167

469

	UltraLite C/C++ User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Introduction
	Introduction to UltraLite for C/C++ Developers
	UltraLite and the C/C++ programming languages
	Benefits and limitations of the C++ Component
	Benefits and limitations of the Static C++ API
	Developing Static C++ applications
	Benefits and limitations of embedded SQL
	Developing embedded SQL applications

	System requirements and supported platforms
	UltraLite C++ Component architecture

	Application Development
	Developing Applications Using the UltraLite C++ Component
	Using the UltraLite namespace
	UltraLite database schemas
	Creating UltraLite database schema files
	Upgrading your database schema

	Connecting to a database
	Accessing data using dynamic SQL
	Data manipulation: INSERT, UPDATE and DELETE
	Data retrieval: SELECT
	Navigating dynamic SQL result sets
	Result set schema description

	Accessing data with the Table API
	Navigating the rows of a table
	Using UltraLite modes
	Accessing the values of the current row
	Searching rows with find and lookup
	Updating rows
	Inserting rows
	Deleting rows

	Managing transactions
	Accessing schema information
	Handling errors
	Authenticating users
	Encrypting data
	Synchronizing data
	Compiling and linking your application

	Developing Applications Using the Static C++ API
	Introduction
	Defining features for your application
	Defining projects
	Adding statements to a project
	Defining UltraLite tables
	Tables or queries?
	Defining database features for Static C++ API applications

	Connecting to a database
	Accessing data
	Row ordering

	Authenticating users
	Encrypting data
	Synchronizing data
	Initializing the synchronization parameters
	Setting synchronization parameters
	Invoking synchronization
	Commit all changes before synchronizing
	Adding initial data to your application
	Monitoring and canceling synchronization
	Handling synchronization status information

	Building Static C++ API applications
	Generating UltraLite C++ classes
	Compiling and linking your application

	Developing Applications Using Embedded SQL
	Introduction
	Structure of embedded SQL programs

	Initializing the SQL Communications Area
	SQLCA fields

	Connecting to a database
	Managing multiple connections

	Using host variables
	Declaring host variables
	Data types in embedded SQL
	Host variable usage
	The scope of host variables
	Using expressions as host variables
	Using host variables in C++
	Using indicator variables
	Using indicator variables to handle NULL

	Fetching data
	Fetching one row
	Fetching multiple rows

	Authenticating users
	Encrypting data
	Adding synchronization to your application
	Initializing the synchronization parameters
	Setting synchronization parameters
	Invoking synchronization
	Commit all changes before synchronizing
	Adding initial data to your application
	Handling synchronization communications errors
	Monitoring and canceling synchronization
	Handling synchronization status information

	Building embedded SQL applications
	General build procedure
	Single-file build procedure
	Configuring development tools for embedded SQL development

	Common Features of UltraLite C/C++ Interfaces
	Understanding the SQL Communications Area
	Creating databases

	Combining UltraLite C/C++ interfaces
	Defragmenting UltraLite databases

	Developing UltraLite Applications for the Palm Computing Platform
	Introduction
	Developing UltraLite applications with Metrowerks CodeWarrior
	Installing the UltraLite plug-in for CodeWarrior
	Creating UltraLite projects in CodeWarrior
	Converting an existing CodeWarrior project to an UltraLite application
	Using the UltraLite plug-in for CodeWarrior
	Building the CustDB sample application from CodeWarrior
	Building Expanded Mode applications

	Saving state in UltraLite Palm applications
	Restoring state in UltraLite Palm applications

	Building multi-segment applications
	Enabling multi-segment code generation
	Explicitly assigning segments
	Assigning user-defined code to segments

	Adding HotSync synchronization to Palm applications
	Adding TCP/IP, HTTP, or HTTPS synchronization to Palm applications
	Deploying Palm applications

	Developing UltraLite Applications for Windows CE
	Introduction
	Choosing how to link the runtime library

	Building the CustDB sample application
	Storing persistent data
	Deploying Windows CE applications
	Deploying applications that use ActiveSync
	Assigning class names for applications

	Synchronization on Windows CE
	Adding ActiveSync synchronization to your application
	Adding ActiveSync synchronization (Windows API)
	Adding ActiveSync synchronization (MFC)

	TCP/IP, HTTP, or HTTPS synchronization from Windows CE

	Tutorials
	Tutorial: Build an Application Using the C++ Component
	Introduction
	Lesson 1: Connect to the database
	Lesson 2: Insert data into the database
	Lesson 3: Select the rows from the table
	Lesson 4: Add synchronization to your application
	Lesson 5: Deploy to a Windows CE device

	Tutorial: Build an Application Using the Static C++ API
	Introduction to the UltraLite static C++ API
	Overview

	Lesson 1: Getting started
	Lesson 2: Create an UltraLite database template
	Lesson 3: Run the UltraLite generator
	Lesson 4: Write the application source code
	Lesson 5: Build and run your application
	Lesson 6: Add synchronization to your application
	Restore the sample database

	Tutorial: Build an Application Using Embedded SQL
	Introduction
	Lesson 1: Configure eMbedded Visual C++
	Lesson 2: Write an embedded SQL source file
	Explanation of the sample program

	Lesson 3: Build the sample embedded SQL UltraLite application
	Lesson 4: Add synchronization to your application
	Synchronization via TCP/IP
	Running the sample application with synchronization

	Tutorial: Build an Application Using ODBC
	Introduction to UltraLite ODBC
	Lesson 1: Getting started
	Lesson 2: Create an UltraLite database schema file
	Lesson 3: Connect to the database
	Lesson 4: Insert data into the database
	Lesson 5: Query the database

	API Reference
	UltraLite C/C++ Common API Reference
	Callback function for ULRegisterErrorCallback
	Callback function for ULRegisterSchemaUpgradeObserver
	ULEnableFileDB function
	ULEnableGenericSchema function (deprecated)
	ULEnablePalmRecordDB function
	ULEnableStrongEncryption function
	ULEnableUserAuthentication function
	ULRegisterErrorCallback function
	ULRegisterSchemaUpgradeObserver function
	ULStoreDefragFini function
	ULStoreDefragInit function
	ULStoreDefragStep function
	Macros and compiler directives for UltraLite C/C++ applications
	UL_AS_SYNCHRONIZE macro
	UL_ENABLE_OBFUSCATION macro
	UL_ENABLE_USER_AUTH macro
	UL_ENABLE_SEGMENTS macro
	UL_OMIT_COLUMN_INFO macro
	UL_STORE_PARMS macro
	UL_SYNC_ALL macro
	UL_SYNC_ALL_PUBS macro
	UL_TEXT macro
	UL_USE_DLL macro
	UNDER_CE macro
	UNDER_PALM_OS macro

	UltraLite C++ Component API Reference
	Class ULSqlca
	ULSqlca Function
	-ULSqlca Function

	Class ULSqlcaBase
	Finalize Function
	GetCA Function
	GetParameter Function
	GetParameterCount Function
	GetSQLCode Function
	GetSQLCount Function
	GetSQLErrorOffset Function
	Initialize Function
	LastCodeOK Function
	LastFetchOK Function

	Class ULSqlcaWrap
	ULSqlcaWrap Function
	-ULSqlcaWrap Function

	Class UltraLite_Connection
	Class UltraLite_Connection_iface
	ChangeEncryptionKey Function
	Commit Function
	CountUploadRows Function
	GetConnectionNum Function
	GetDatabaseID Function
	GetDatabaseProperty Function
	GetLastDownloadTime Function
	GetLastIdentity Function
	GetNewUUID Function
	GetPublicationMask Function
	GetSchema Function
	GetSqlca Function
	GetSuspend Function
	GetSynchResult Function
	GetUtilityULValue Function
	GlobalAutoincUsage Function
	GrantConnectTo Function
	InitSynchInfo Function
	OpenTable Function
	OpenTableWithIndex Function
	PrepareStatement Function
	ResetLastDownloadTime Function
	RevokeConnectFrom Function
	Rollback Function
	RollbackPartialDownload Function
	SetDatabaseID Function
	SetSuspend Function
	SetSynchInfo Function
	Shutdown Function
	StartSynchronizationDelete Function
	StopSynchronizationDelete Function
	StrToUUID Function
	Synchronize Function
	UUIDToStr Function
	UUIDToStr Function
	UpgradeSchemaFromFile Function
	UpgradeSchemaFromFile Function

	Class UltraLite_Cursor_iface
	AfterLast Function
	BeforeFirst Function
	First Function
	Get Function
	GetRowCount Function
	GetState Function
	GetStreamReader Function
	GetSuspend Function
	IsNull Function
	Last Function
	Next Function
	Previous Function
	Relative Function
	SetSuspend Function

	Class UltraLite_DatabaseManager
	Class UltraLite_DatabaseManager_iface
	CreateAndOpenDatabase Function
	DropDatabase Function
	OpenConnection Function
	Shutdown Function

	Class UltraLite_DatabaseSchema
	Class UltraLite_DatabaseSchema_iface
	GetCollationName Function
	GetPublicationCount Function
	GetPublicationID Function
	GetPublicationMask Function
	GetPublicationName Function
	GetSignature Function
	GetTableCount Function
	GetTableName Function
	GetTableSchema Function
	IsCaseSensitive Function

	Class UltraLite_IndexSchema
	Class UltraLite_IndexSchema_iface
	GetColumnCount Function
	GetColumnName Function
	GetID Function
	GetName Function
	GetReferencedIndexName Function
	GetReferencedTableName Function
	GetTableName Function
	IsColumnDescending Function
	IsForeignKey Function
	IsForeignKeyCheckOnCommit Function
	IsForeignKeyNullable Function
	IsPrimaryKey Function
	IsUniqueIndex Function
	IsUniqueKey Function

	Class UltraLite_PreparedStatement
	Class UltraLite_PreparedStatement_iface
	ExecuteQuery Function
	ExecuteStatement Function
	GetPlan Function
	GetSchema Function
	GetStreamWriter Function
	HasResultSet Function
	SetParameter Function
	SetParameterNull Function

	Class UltraLite_ResultSet
	Class UltraLite_ResultSet_iface
	GetSchema Function

	Class UltraLite_ResultSetSchema
	Class UltraLite_RowSchema_iface
	GetColumnCount Function
	GetColumnID Function
	GetColumnName Function
	GetColumnPrecision Function
	GetColumnSQLType Function
	GetColumnScale Function
	GetColumnSize Function
	GetColumnType Function

	Class UltraLite_SQLObject_iface
	AddRef Function
	GetConnection Function
	GetIFace Function
	Release Function

	Class UltraLite_StreamReader
	Class UltraLite_StreamReader_iface
	GetByteChunk Function
	GetLength Function
	GetStringChunk Function
	GetStringChunk Function
	SetReadPosition Function

	Class UltraLite_StreamWriter
	Class UltraLite_Table
	Class UltraLite_Table_iface
	Delete Function
	DeleteAllRows Function
	Find Function
	FindBegin Function
	FindFirst Function
	FindLast Function
	FindNext Function
	FindPrevious Function
	GetSchema Function
	GetStreamWriter Function
	Insert Function
	InsertBegin Function
	Lookup Function
	LookupBackward Function
	LookupBegin Function
	LookupForward Function
	Set Function
	SetDefault Function
	SetNull Function
	TruncateTable Function
	Update Function
	UpdateBegin Function

	Class UltraLite_TableSchema
	Class UltraLite_TableSchema_iface
	GetColumnDefault Function
	GetGlobalAutoincPartitionSize Function
	GetID Function
	GetIndexCount Function
	GetIndexName Function
	GetIndexSchema Function
	GetName Function
	GetOptimalIndex Function
	GetPrimaryKey Function
	GetUploadUnchangedRows Function
	InPublication Function
	IsColumnAutoinc Function
	IsColumnCurrentDate Function
	IsColumnCurrentTime Function
	IsColumnCurrentTimestamp Function
	IsColumnGlobalAutoinc Function
	IsColumnInIndex Function
	IsColumnNewUUID Function
	IsColumnNullable Function
	IsNeverSynchronized Function

	Class ULValue
	GetBinary Function
	GetBinary Function
	GetBinaryLength Function
	GetString Function
	GetString Function
	GetStringLength Function
	InDatabase Function
	IsNull Function
	SetBinary Function
	SetString Function
	SetString Function
	StringCompare Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	ULValue Function
	operator DECL_DATETIME Function
	operator bool Function
	operator double Function
	operator float Function
	operator int Function
	operator long Function
	operator short Function
	operator ul_s_big Function
	operator ul_u_big Function
	operator unsigned char Function
	operator unsigned int Function
	operator unsigned long Function
	operator unsigned short Function
	operator= Function
	-ULValue Function

	UltraLite Static C++ API Reference
	C++ API class hierarchy
	C++ API language elements
	UltraLite data types

	ULConnection class
	Close method
	Commit method
	CountUploadRows method
	GetCA method
	GetDatabaseID method
	GetLastIdentity method
	GetLastDownloadTime method
	GetSQLCode method
	GetSynchResult method
	GlobalAutoincUsage method
	GrantConnectTo method
	InitSynchInfo method
	IsOpen method
	LastCodeOK method
	LastFetchOK method
	Open method
	Reopen method (deprecated)
	ResetLastDownloadTime method
	RevokeConnectFrom method
	Rollback method
	RollbackPartialDownload method
	SetDatabaseID method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	Synchronize method

	ULCursor class
	Data types enumeration
	SQL data types enumeration
	AfterLast method
	BeforeFirst method
	Close method
	Delete method
	First method
	Get method
	GetColumnCount method
	GetColumnSize method
	GetColumnType method
	GetColumnSQLType method
	GetSQLCode method
	Insert method
	IsOpen method
	Last method
	LastCodeOK method
	LastFetchOK method
	Next method
	Open method
	Previous method
	Relative method
	Reopen method
	Set method
	SetColumnNull method
	Update method

	ULData class
	Close method
	Drop method
	Initialize method
	IsOpen method
	Open method
	PalmExit method [deprecated]
	PalmLaunch method [deprecated]
	Reopen method [deprecated]
	StartDatabase method
	StopDatabase method

	ULResultSet class
	SetParameter method

	ULTable class
	DeleteAllRows method
	Find method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Lookup method
	GetRowCount method
	LookupBackward method
	LookupForward method

	Generated result set class
	Get<Column> generated method
	Open method
	Set<Column> generated method
	SetNull<Column> generated method

	Generated statement class
	Execute method
	SetNull method
	SetParameter method

	Generated table class
	Get generated method
	Get<Column> generated method
	GetSize<Column> generated method
	Open method
	Set<Column> generated method
	SetNull<Column> generated method
	Index enumeration

	Embedded SQL API Reference
	db_fini function
	db_init function
	db_start_database function
	db_stop_database function
	ULActiveSyncStream function
	ULChangeEncryptionKey function
	ULClearEncryptionKey function
	ULCountUploadRows function
	ULDropDatabase function
	ULGetDatabaseID function
	ULGetLastDownloadTime function
	ULGetSynchResult function
	ULGlobalAutoincUsage function
	ULGrantConnectTo function
	ULHTTPSStream function
	ULHTTPStream function
	ULIsSynchronizeMessage function
	ULPalmDBStream function (deprecated)
	ULPalmExit function (deprecated)
	ULPalmLaunch function (deprecated)
	ULResetLastDownloadTime function
	ULRetrieveEncryptionKey function
	ULRevokeConnectFrom function
	ULRollbackPartialDownload function
	ULSaveEncryptionKey function
	ULSetDatabaseID function
	ULSetSynchInfo function
	ULSocketStream function
	ULSynchronize function

	UltraLite ODBC API Reference
	SQLAllocHandle function
	SQLBindCol function
	SQLBindParameter function
	SQLConnect function
	SQLDescribeCol function
	SQLDisconnect function
	SQLEndTran function
	SQLExecDirect function
	SQLExecute function
	SQLFetch function
	SQLFetchScroll function
	SQLFreeHandle function
	SQLGetCursorName function
	SQLGetData function
	SQLGetDiagRec function
	SQLGetInfo function
	SQLNumResultCols function
	SQLPrepare function
	SQLRowCount function
	SQLSetCursorName function
	SQLSetConnectionName function
	SQLSetSuspend function
	SQLSynchronize function

	Synchronization Parameters Reference
	Synchronization parameters
	auth_parms parameter
	auth_status parameter
	auth_value synchronization parameter
	checkpoint_store synchronization parameter
	disable_concurrency synchronization parameter
	download_only synchronization parameter
	keep_partial_download synchronization parameter
	ignored_rows synchronization parameter
	new_password synchronization parameter
	num_auth_parms parameter
	observer synchronization parameter
	partial_download_retained synchronization parameter
	password synchronization parameter
	ping synchronization parameter
	publication synchronization parameter
	resume_partial_download synchronization parameter
	security synchronization parameter
	security_parms synchronization parameter
	send_column_names synchronization parameter
	send_download_ack synchronization parameter
	stream synchronization parameter
	stream_error synchronization parameter
	stream_parms synchronization parameter
	upload_ok synchronization parameter
	upload_only synchronization parameter
	user_data synchronization parameter
	user_name synchronization parameter
	version synchronization parameter

	Index

